Merge "wlan_cfg80211: Set the hidden ssid scan properly." into tizen
[profile/mobile/platform/kernel/linux-3.10-sc7730.git] / kernel / events / hw_breakpoint.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 2 of the License, or
5  * (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15  *
16  * Copyright (C) 2007 Alan Stern
17  * Copyright (C) IBM Corporation, 2009
18  * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
19  *
20  * Thanks to Ingo Molnar for his many suggestions.
21  *
22  * Authors: Alan Stern <stern@rowland.harvard.edu>
23  *          K.Prasad <prasad@linux.vnet.ibm.com>
24  *          Frederic Weisbecker <fweisbec@gmail.com>
25  */
26
27 /*
28  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
29  * using the CPU's debug registers.
30  * This file contains the arch-independent routines.
31  */
32
33 #include <linux/irqflags.h>
34 #include <linux/kallsyms.h>
35 #include <linux/notifier.h>
36 #include <linux/kprobes.h>
37 #include <linux/kdebug.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/percpu.h>
41 #include <linux/sched.h>
42 #include <linux/init.h>
43 #include <linux/slab.h>
44 #include <linux/list.h>
45 #include <linux/cpu.h>
46 #include <linux/smp.h>
47
48 #include <linux/hw_breakpoint.h>
49
50
51 /*
52  * Constraints data
53  */
54
55 /* Number of pinned cpu breakpoints in a cpu */
56 static DEFINE_PER_CPU(unsigned int, nr_cpu_bp_pinned[TYPE_MAX]);
57
58 /* Number of pinned task breakpoints in a cpu */
59 static DEFINE_PER_CPU(unsigned int *, nr_task_bp_pinned[TYPE_MAX]);
60
61 /* Number of non-pinned cpu/task breakpoints in a cpu */
62 static DEFINE_PER_CPU(unsigned int, nr_bp_flexible[TYPE_MAX]);
63
64 static int nr_slots[TYPE_MAX];
65
66 /* Keep track of the breakpoints attached to tasks */
67 static LIST_HEAD(bp_task_head);
68
69 static int constraints_initialized;
70
71 /* Gather the number of total pinned and un-pinned bp in a cpuset */
72 struct bp_busy_slots {
73         unsigned int pinned;
74         unsigned int flexible;
75 };
76
77 /* Serialize accesses to the above constraints */
78 static DEFINE_MUTEX(nr_bp_mutex);
79
80 __weak int hw_breakpoint_weight(struct perf_event *bp)
81 {
82         return 1;
83 }
84
85 static inline enum bp_type_idx find_slot_idx(struct perf_event *bp)
86 {
87         if (bp->attr.bp_type & HW_BREAKPOINT_RW)
88                 return TYPE_DATA;
89
90         return TYPE_INST;
91 }
92
93 /*
94  * Report the maximum number of pinned breakpoints a task
95  * have in this cpu
96  */
97 static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
98 {
99         int i;
100         unsigned int *tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu);
101
102         for (i = nr_slots[type] - 1; i >= 0; i--) {
103                 if (tsk_pinned[i] > 0)
104                         return i + 1;
105         }
106
107         return 0;
108 }
109
110 /*
111  * Count the number of breakpoints of the same type and same task.
112  * The given event must be not on the list.
113  */
114 static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
115 {
116         struct task_struct *tsk = bp->hw.bp_target;
117         struct perf_event *iter;
118         int count = 0;
119
120         list_for_each_entry(iter, &bp_task_head, hw.bp_list) {
121                 if (iter->hw.bp_target == tsk &&
122                     find_slot_idx(iter) == type &&
123                     (iter->cpu < 0 || cpu == iter->cpu))
124                         count += hw_breakpoint_weight(iter);
125         }
126
127         return count;
128 }
129
130 /*
131  * Report the number of pinned/un-pinned breakpoints we have in
132  * a given cpu (cpu > -1) or in all of them (cpu = -1).
133  */
134 static void
135 fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp,
136                     enum bp_type_idx type)
137 {
138         int cpu = bp->cpu;
139         struct task_struct *tsk = bp->hw.bp_target;
140
141         if (cpu >= 0) {
142                 slots->pinned = per_cpu(nr_cpu_bp_pinned[type], cpu);
143                 if (!tsk)
144                         slots->pinned += max_task_bp_pinned(cpu, type);
145                 else
146                         slots->pinned += task_bp_pinned(cpu, bp, type);
147                 slots->flexible = per_cpu(nr_bp_flexible[type], cpu);
148
149                 return;
150         }
151
152         for_each_possible_cpu(cpu) {
153                 unsigned int nr;
154
155                 nr = per_cpu(nr_cpu_bp_pinned[type], cpu);
156                 if (!tsk)
157                         nr += max_task_bp_pinned(cpu, type);
158                 else
159                         nr += task_bp_pinned(cpu, bp, type);
160
161                 if (nr > slots->pinned)
162                         slots->pinned = nr;
163
164                 nr = per_cpu(nr_bp_flexible[type], cpu);
165
166                 if (nr > slots->flexible)
167                         slots->flexible = nr;
168         }
169 }
170
171 /*
172  * For now, continue to consider flexible as pinned, until we can
173  * ensure no flexible event can ever be scheduled before a pinned event
174  * in a same cpu.
175  */
176 static void
177 fetch_this_slot(struct bp_busy_slots *slots, int weight)
178 {
179         slots->pinned += weight;
180 }
181
182 /*
183  * Add a pinned breakpoint for the given task in our constraint table
184  */
185 static void toggle_bp_task_slot(struct perf_event *bp, int cpu, bool enable,
186                                 enum bp_type_idx type, int weight)
187 {
188         unsigned int *tsk_pinned;
189         int old_count = 0;
190         int old_idx = 0;
191         int idx = 0;
192
193         old_count = task_bp_pinned(cpu, bp, type);
194         old_idx = old_count - 1;
195         idx = old_idx + weight;
196
197         /* tsk_pinned[n] is the number of tasks having n breakpoints */
198         tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu);
199         if (enable) {
200                 tsk_pinned[idx]++;
201                 if (old_count > 0)
202                         tsk_pinned[old_idx]--;
203         } else {
204                 tsk_pinned[idx]--;
205                 if (old_count > 0)
206                         tsk_pinned[old_idx]++;
207         }
208 }
209
210 /*
211  * Add/remove the given breakpoint in our constraint table
212  */
213 static void
214 toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type,
215                int weight)
216 {
217         int cpu = bp->cpu;
218         struct task_struct *tsk = bp->hw.bp_target;
219
220         /* Pinned counter cpu profiling */
221         if (!tsk) {
222
223                 if (enable)
224                         per_cpu(nr_cpu_bp_pinned[type], bp->cpu) += weight;
225                 else
226                         per_cpu(nr_cpu_bp_pinned[type], bp->cpu) -= weight;
227                 return;
228         }
229
230         /* Pinned counter task profiling */
231
232         if (!enable)
233                 list_del(&bp->hw.bp_list);
234
235         if (cpu >= 0) {
236                 toggle_bp_task_slot(bp, cpu, enable, type, weight);
237         } else {
238                 for_each_possible_cpu(cpu)
239                         toggle_bp_task_slot(bp, cpu, enable, type, weight);
240         }
241
242         if (enable)
243                 list_add_tail(&bp->hw.bp_list, &bp_task_head);
244 }
245
246 /*
247  * Function to perform processor-specific cleanup during unregistration
248  */
249 __weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
250 {
251         /*
252          * A weak stub function here for those archs that don't define
253          * it inside arch/.../kernel/hw_breakpoint.c
254          */
255 }
256
257 /*
258  * Contraints to check before allowing this new breakpoint counter:
259  *
260  *  == Non-pinned counter == (Considered as pinned for now)
261  *
262  *   - If attached to a single cpu, check:
263  *
264  *       (per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
265  *           + max(per_cpu(nr_task_bp_pinned, cpu)))) < HBP_NUM
266  *
267  *       -> If there are already non-pinned counters in this cpu, it means
268  *          there is already a free slot for them.
269  *          Otherwise, we check that the maximum number of per task
270  *          breakpoints (for this cpu) plus the number of per cpu breakpoint
271  *          (for this cpu) doesn't cover every registers.
272  *
273  *   - If attached to every cpus, check:
274  *
275  *       (per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
276  *           + max(per_cpu(nr_task_bp_pinned, *)))) < HBP_NUM
277  *
278  *       -> This is roughly the same, except we check the number of per cpu
279  *          bp for every cpu and we keep the max one. Same for the per tasks
280  *          breakpoints.
281  *
282  *
283  * == Pinned counter ==
284  *
285  *   - If attached to a single cpu, check:
286  *
287  *       ((per_cpu(nr_bp_flexible, cpu) > 1) + per_cpu(nr_cpu_bp_pinned, cpu)
288  *            + max(per_cpu(nr_task_bp_pinned, cpu))) < HBP_NUM
289  *
290  *       -> Same checks as before. But now the nr_bp_flexible, if any, must keep
291  *          one register at least (or they will never be fed).
292  *
293  *   - If attached to every cpus, check:
294  *
295  *       ((per_cpu(nr_bp_flexible, *) > 1) + max(per_cpu(nr_cpu_bp_pinned, *))
296  *            + max(per_cpu(nr_task_bp_pinned, *))) < HBP_NUM
297  */
298 static int __reserve_bp_slot(struct perf_event *bp)
299 {
300         struct bp_busy_slots slots = {0};
301         enum bp_type_idx type;
302         int weight;
303
304         /* We couldn't initialize breakpoint constraints on boot */
305         if (!constraints_initialized)
306                 return -ENOMEM;
307
308         /* Basic checks */
309         if (bp->attr.bp_type == HW_BREAKPOINT_EMPTY ||
310             bp->attr.bp_type == HW_BREAKPOINT_INVALID)
311                 return -EINVAL;
312
313         type = find_slot_idx(bp);
314         weight = hw_breakpoint_weight(bp);
315
316         fetch_bp_busy_slots(&slots, bp, type);
317         /*
318          * Simulate the addition of this breakpoint to the constraints
319          * and see the result.
320          */
321         fetch_this_slot(&slots, weight);
322
323         /* Flexible counters need to keep at least one slot */
324         if (slots.pinned + (!!slots.flexible) > nr_slots[type])
325                 return -ENOSPC;
326
327         toggle_bp_slot(bp, true, type, weight);
328
329         return 0;
330 }
331
332 int reserve_bp_slot(struct perf_event *bp)
333 {
334         int ret;
335
336         mutex_lock(&nr_bp_mutex);
337
338         ret = __reserve_bp_slot(bp);
339
340         mutex_unlock(&nr_bp_mutex);
341
342         return ret;
343 }
344
345 static void __release_bp_slot(struct perf_event *bp)
346 {
347         enum bp_type_idx type;
348         int weight;
349
350         type = find_slot_idx(bp);
351         weight = hw_breakpoint_weight(bp);
352         toggle_bp_slot(bp, false, type, weight);
353 }
354
355 void release_bp_slot(struct perf_event *bp)
356 {
357         mutex_lock(&nr_bp_mutex);
358
359         arch_unregister_hw_breakpoint(bp);
360         __release_bp_slot(bp);
361
362         mutex_unlock(&nr_bp_mutex);
363 }
364
365 /*
366  * Allow the kernel debugger to reserve breakpoint slots without
367  * taking a lock using the dbg_* variant of for the reserve and
368  * release breakpoint slots.
369  */
370 int dbg_reserve_bp_slot(struct perf_event *bp)
371 {
372         if (mutex_is_locked(&nr_bp_mutex))
373                 return -1;
374
375         return __reserve_bp_slot(bp);
376 }
377
378 int dbg_release_bp_slot(struct perf_event *bp)
379 {
380         if (mutex_is_locked(&nr_bp_mutex))
381                 return -1;
382
383         __release_bp_slot(bp);
384
385         return 0;
386 }
387
388 static int validate_hw_breakpoint(struct perf_event *bp)
389 {
390         int ret;
391
392         ret = arch_validate_hwbkpt_settings(bp);
393         if (ret)
394                 return ret;
395
396         if (arch_check_bp_in_kernelspace(bp)) {
397                 if (bp->attr.exclude_kernel)
398                         return -EINVAL;
399                 /*
400                  * Don't let unprivileged users set a breakpoint in the trap
401                  * path to avoid trap recursion attacks.
402                  */
403                 if (!capable(CAP_SYS_ADMIN))
404                         return -EPERM;
405         }
406
407         return 0;
408 }
409
410 int register_perf_hw_breakpoint(struct perf_event *bp)
411 {
412         int ret;
413
414         ret = reserve_bp_slot(bp);
415         if (ret)
416                 return ret;
417
418         ret = validate_hw_breakpoint(bp);
419
420         /* if arch_validate_hwbkpt_settings() fails then release bp slot */
421         if (ret)
422                 release_bp_slot(bp);
423
424         return ret;
425 }
426
427 /**
428  * register_user_hw_breakpoint - register a hardware breakpoint for user space
429  * @attr: breakpoint attributes
430  * @triggered: callback to trigger when we hit the breakpoint
431  * @tsk: pointer to 'task_struct' of the process to which the address belongs
432  */
433 struct perf_event *
434 register_user_hw_breakpoint(struct perf_event_attr *attr,
435                             perf_overflow_handler_t triggered,
436                             void *context,
437                             struct task_struct *tsk)
438 {
439         return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
440                                                 context);
441 }
442 EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
443
444 /**
445  * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
446  * @bp: the breakpoint structure to modify
447  * @attr: new breakpoint attributes
448  * @triggered: callback to trigger when we hit the breakpoint
449  * @tsk: pointer to 'task_struct' of the process to which the address belongs
450  */
451 int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
452 {
453         u64 old_addr = bp->attr.bp_addr;
454         u64 old_len = bp->attr.bp_len;
455         int old_type = bp->attr.bp_type;
456         int err = 0;
457
458         /*
459          * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
460          * will not be possible to raise IPIs that invoke __perf_event_disable.
461          * So call the function directly after making sure we are targeting the
462          * current task.
463          */
464         if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
465                 __perf_event_disable(bp);
466         else
467                 perf_event_disable(bp);
468
469         bp->attr.bp_addr = attr->bp_addr;
470         bp->attr.bp_type = attr->bp_type;
471         bp->attr.bp_len = attr->bp_len;
472
473         if (attr->disabled)
474                 goto end;
475
476         err = validate_hw_breakpoint(bp);
477         if (!err)
478                 perf_event_enable(bp);
479
480         if (err) {
481                 bp->attr.bp_addr = old_addr;
482                 bp->attr.bp_type = old_type;
483                 bp->attr.bp_len = old_len;
484                 if (!bp->attr.disabled)
485                         perf_event_enable(bp);
486
487                 return err;
488         }
489
490 end:
491         bp->attr.disabled = attr->disabled;
492
493         return 0;
494 }
495 EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
496
497 /**
498  * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
499  * @bp: the breakpoint structure to unregister
500  */
501 void unregister_hw_breakpoint(struct perf_event *bp)
502 {
503         if (!bp)
504                 return;
505         perf_event_release_kernel(bp);
506 }
507 EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
508
509 /**
510  * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
511  * @attr: breakpoint attributes
512  * @triggered: callback to trigger when we hit the breakpoint
513  *
514  * @return a set of per_cpu pointers to perf events
515  */
516 struct perf_event * __percpu *
517 register_wide_hw_breakpoint(struct perf_event_attr *attr,
518                             perf_overflow_handler_t triggered,
519                             void *context)
520 {
521         struct perf_event * __percpu *cpu_events, **pevent, *bp;
522         long err;
523         int cpu;
524
525         cpu_events = alloc_percpu(typeof(*cpu_events));
526         if (!cpu_events)
527                 return (void __percpu __force *)ERR_PTR(-ENOMEM);
528
529         get_online_cpus();
530         for_each_online_cpu(cpu) {
531                 pevent = per_cpu_ptr(cpu_events, cpu);
532                 bp = perf_event_create_kernel_counter(attr, cpu, NULL,
533                                                       triggered, context);
534
535                 *pevent = bp;
536
537                 if (IS_ERR(bp)) {
538                         err = PTR_ERR(bp);
539                         goto fail;
540                 }
541         }
542         put_online_cpus();
543
544         return cpu_events;
545
546 fail:
547         for_each_online_cpu(cpu) {
548                 pevent = per_cpu_ptr(cpu_events, cpu);
549                 if (IS_ERR(*pevent))
550                         break;
551                 unregister_hw_breakpoint(*pevent);
552         }
553         put_online_cpus();
554
555         free_percpu(cpu_events);
556         return (void __percpu __force *)ERR_PTR(err);
557 }
558 EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
559
560 /**
561  * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
562  * @cpu_events: the per cpu set of events to unregister
563  */
564 void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
565 {
566         int cpu;
567         struct perf_event **pevent;
568
569         for_each_possible_cpu(cpu) {
570                 pevent = per_cpu_ptr(cpu_events, cpu);
571                 unregister_hw_breakpoint(*pevent);
572         }
573         free_percpu(cpu_events);
574 }
575 EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
576
577 static struct notifier_block hw_breakpoint_exceptions_nb = {
578         .notifier_call = hw_breakpoint_exceptions_notify,
579         /* we need to be notified first */
580         .priority = 0x7fffffff
581 };
582
583 static void bp_perf_event_destroy(struct perf_event *event)
584 {
585         release_bp_slot(event);
586 }
587
588 static int hw_breakpoint_event_init(struct perf_event *bp)
589 {
590         int err;
591
592         if (bp->attr.type != PERF_TYPE_BREAKPOINT)
593                 return -ENOENT;
594
595         /*
596          * no branch sampling for breakpoint events
597          */
598         if (has_branch_stack(bp))
599                 return -EOPNOTSUPP;
600
601         err = register_perf_hw_breakpoint(bp);
602         if (err)
603                 return err;
604
605         bp->destroy = bp_perf_event_destroy;
606
607         return 0;
608 }
609
610 static int hw_breakpoint_add(struct perf_event *bp, int flags)
611 {
612         if (!(flags & PERF_EF_START))
613                 bp->hw.state = PERF_HES_STOPPED;
614
615         return arch_install_hw_breakpoint(bp);
616 }
617
618 static void hw_breakpoint_del(struct perf_event *bp, int flags)
619 {
620         arch_uninstall_hw_breakpoint(bp);
621 }
622
623 static void hw_breakpoint_start(struct perf_event *bp, int flags)
624 {
625         bp->hw.state = 0;
626 }
627
628 static void hw_breakpoint_stop(struct perf_event *bp, int flags)
629 {
630         bp->hw.state = PERF_HES_STOPPED;
631 }
632
633 static int hw_breakpoint_event_idx(struct perf_event *bp)
634 {
635         return 0;
636 }
637
638 static struct pmu perf_breakpoint = {
639         .task_ctx_nr    = perf_sw_context, /* could eventually get its own */
640
641         .event_init     = hw_breakpoint_event_init,
642         .add            = hw_breakpoint_add,
643         .del            = hw_breakpoint_del,
644         .start          = hw_breakpoint_start,
645         .stop           = hw_breakpoint_stop,
646         .read           = hw_breakpoint_pmu_read,
647
648         .event_idx      = hw_breakpoint_event_idx,
649 };
650
651 int __init init_hw_breakpoint(void)
652 {
653         unsigned int **task_bp_pinned;
654         int cpu, err_cpu;
655         int i;
656
657         for (i = 0; i < TYPE_MAX; i++)
658                 nr_slots[i] = hw_breakpoint_slots(i);
659
660         for_each_possible_cpu(cpu) {
661                 for (i = 0; i < TYPE_MAX; i++) {
662                         task_bp_pinned = &per_cpu(nr_task_bp_pinned[i], cpu);
663                         *task_bp_pinned = kzalloc(sizeof(int) * nr_slots[i],
664                                                   GFP_KERNEL);
665                         if (!*task_bp_pinned)
666                                 goto err_alloc;
667                 }
668         }
669
670         constraints_initialized = 1;
671
672         perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
673
674         return register_die_notifier(&hw_breakpoint_exceptions_nb);
675
676  err_alloc:
677         for_each_possible_cpu(err_cpu) {
678                 for (i = 0; i < TYPE_MAX; i++)
679                         kfree(per_cpu(nr_task_bp_pinned[i], err_cpu));
680                 if (err_cpu == cpu)
681                         break;
682         }
683
684         return -ENOMEM;
685 }
686
687