Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[platform/kernel/linux-rpi.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54
55 #include "internal.h"
56
57 #include <asm/irq_regs.h>
58
59 typedef int (*remote_function_f)(void *);
60
61 struct remote_function_call {
62         struct task_struct      *p;
63         remote_function_f       func;
64         void                    *info;
65         int                     ret;
66 };
67
68 static void remote_function(void *data)
69 {
70         struct remote_function_call *tfc = data;
71         struct task_struct *p = tfc->p;
72
73         if (p) {
74                 /* -EAGAIN */
75                 if (task_cpu(p) != smp_processor_id())
76                         return;
77
78                 /*
79                  * Now that we're on right CPU with IRQs disabled, we can test
80                  * if we hit the right task without races.
81                  */
82
83                 tfc->ret = -ESRCH; /* No such (running) process */
84                 if (p != current)
85                         return;
86         }
87
88         tfc->ret = tfc->func(tfc->info);
89 }
90
91 /**
92  * task_function_call - call a function on the cpu on which a task runs
93  * @p:          the task to evaluate
94  * @func:       the function to be called
95  * @info:       the function call argument
96  *
97  * Calls the function @func when the task is currently running. This might
98  * be on the current CPU, which just calls the function directly
99  *
100  * returns: @func return value, or
101  *          -ESRCH  - when the process isn't running
102  *          -EAGAIN - when the process moved away
103  */
104 static int
105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107         struct remote_function_call data = {
108                 .p      = p,
109                 .func   = func,
110                 .info   = info,
111                 .ret    = -EAGAIN,
112         };
113         int ret;
114
115         do {
116                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
117                 if (!ret)
118                         ret = data.ret;
119         } while (ret == -EAGAIN);
120
121         return ret;
122 }
123
124 /**
125  * cpu_function_call - call a function on the cpu
126  * @func:       the function to be called
127  * @info:       the function call argument
128  *
129  * Calls the function @func on the remote cpu.
130  *
131  * returns: @func return value or -ENXIO when the cpu is offline
132  */
133 static int cpu_function_call(int cpu, remote_function_f func, void *info)
134 {
135         struct remote_function_call data = {
136                 .p      = NULL,
137                 .func   = func,
138                 .info   = info,
139                 .ret    = -ENXIO, /* No such CPU */
140         };
141
142         smp_call_function_single(cpu, remote_function, &data, 1);
143
144         return data.ret;
145 }
146
147 static inline struct perf_cpu_context *
148 __get_cpu_context(struct perf_event_context *ctx)
149 {
150         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
151 }
152
153 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
154                           struct perf_event_context *ctx)
155 {
156         raw_spin_lock(&cpuctx->ctx.lock);
157         if (ctx)
158                 raw_spin_lock(&ctx->lock);
159 }
160
161 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
162                             struct perf_event_context *ctx)
163 {
164         if (ctx)
165                 raw_spin_unlock(&ctx->lock);
166         raw_spin_unlock(&cpuctx->ctx.lock);
167 }
168
169 #define TASK_TOMBSTONE ((void *)-1L)
170
171 static bool is_kernel_event(struct perf_event *event)
172 {
173         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
174 }
175
176 /*
177  * On task ctx scheduling...
178  *
179  * When !ctx->nr_events a task context will not be scheduled. This means
180  * we can disable the scheduler hooks (for performance) without leaving
181  * pending task ctx state.
182  *
183  * This however results in two special cases:
184  *
185  *  - removing the last event from a task ctx; this is relatively straight
186  *    forward and is done in __perf_remove_from_context.
187  *
188  *  - adding the first event to a task ctx; this is tricky because we cannot
189  *    rely on ctx->is_active and therefore cannot use event_function_call().
190  *    See perf_install_in_context().
191  *
192  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
193  */
194
195 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
196                         struct perf_event_context *, void *);
197
198 struct event_function_struct {
199         struct perf_event *event;
200         event_f func;
201         void *data;
202 };
203
204 static int event_function(void *info)
205 {
206         struct event_function_struct *efs = info;
207         struct perf_event *event = efs->event;
208         struct perf_event_context *ctx = event->ctx;
209         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
210         struct perf_event_context *task_ctx = cpuctx->task_ctx;
211         int ret = 0;
212
213         lockdep_assert_irqs_disabled();
214
215         perf_ctx_lock(cpuctx, task_ctx);
216         /*
217          * Since we do the IPI call without holding ctx->lock things can have
218          * changed, double check we hit the task we set out to hit.
219          */
220         if (ctx->task) {
221                 if (ctx->task != current) {
222                         ret = -ESRCH;
223                         goto unlock;
224                 }
225
226                 /*
227                  * We only use event_function_call() on established contexts,
228                  * and event_function() is only ever called when active (or
229                  * rather, we'll have bailed in task_function_call() or the
230                  * above ctx->task != current test), therefore we must have
231                  * ctx->is_active here.
232                  */
233                 WARN_ON_ONCE(!ctx->is_active);
234                 /*
235                  * And since we have ctx->is_active, cpuctx->task_ctx must
236                  * match.
237                  */
238                 WARN_ON_ONCE(task_ctx != ctx);
239         } else {
240                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
241         }
242
243         efs->func(event, cpuctx, ctx, efs->data);
244 unlock:
245         perf_ctx_unlock(cpuctx, task_ctx);
246
247         return ret;
248 }
249
250 static void event_function_call(struct perf_event *event, event_f func, void *data)
251 {
252         struct perf_event_context *ctx = event->ctx;
253         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
254         struct event_function_struct efs = {
255                 .event = event,
256                 .func = func,
257                 .data = data,
258         };
259
260         if (!event->parent) {
261                 /*
262                  * If this is a !child event, we must hold ctx::mutex to
263                  * stabilize the the event->ctx relation. See
264                  * perf_event_ctx_lock().
265                  */
266                 lockdep_assert_held(&ctx->mutex);
267         }
268
269         if (!task) {
270                 cpu_function_call(event->cpu, event_function, &efs);
271                 return;
272         }
273
274         if (task == TASK_TOMBSTONE)
275                 return;
276
277 again:
278         if (!task_function_call(task, event_function, &efs))
279                 return;
280
281         raw_spin_lock_irq(&ctx->lock);
282         /*
283          * Reload the task pointer, it might have been changed by
284          * a concurrent perf_event_context_sched_out().
285          */
286         task = ctx->task;
287         if (task == TASK_TOMBSTONE) {
288                 raw_spin_unlock_irq(&ctx->lock);
289                 return;
290         }
291         if (ctx->is_active) {
292                 raw_spin_unlock_irq(&ctx->lock);
293                 goto again;
294         }
295         func(event, NULL, ctx, data);
296         raw_spin_unlock_irq(&ctx->lock);
297 }
298
299 /*
300  * Similar to event_function_call() + event_function(), but hard assumes IRQs
301  * are already disabled and we're on the right CPU.
302  */
303 static void event_function_local(struct perf_event *event, event_f func, void *data)
304 {
305         struct perf_event_context *ctx = event->ctx;
306         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
307         struct task_struct *task = READ_ONCE(ctx->task);
308         struct perf_event_context *task_ctx = NULL;
309
310         lockdep_assert_irqs_disabled();
311
312         if (task) {
313                 if (task == TASK_TOMBSTONE)
314                         return;
315
316                 task_ctx = ctx;
317         }
318
319         perf_ctx_lock(cpuctx, task_ctx);
320
321         task = ctx->task;
322         if (task == TASK_TOMBSTONE)
323                 goto unlock;
324
325         if (task) {
326                 /*
327                  * We must be either inactive or active and the right task,
328                  * otherwise we're screwed, since we cannot IPI to somewhere
329                  * else.
330                  */
331                 if (ctx->is_active) {
332                         if (WARN_ON_ONCE(task != current))
333                                 goto unlock;
334
335                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
336                                 goto unlock;
337                 }
338         } else {
339                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
340         }
341
342         func(event, cpuctx, ctx, data);
343 unlock:
344         perf_ctx_unlock(cpuctx, task_ctx);
345 }
346
347 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
348                        PERF_FLAG_FD_OUTPUT  |\
349                        PERF_FLAG_PID_CGROUP |\
350                        PERF_FLAG_FD_CLOEXEC)
351
352 /*
353  * branch priv levels that need permission checks
354  */
355 #define PERF_SAMPLE_BRANCH_PERM_PLM \
356         (PERF_SAMPLE_BRANCH_KERNEL |\
357          PERF_SAMPLE_BRANCH_HV)
358
359 enum event_type_t {
360         EVENT_FLEXIBLE = 0x1,
361         EVENT_PINNED = 0x2,
362         EVENT_TIME = 0x4,
363         /* see ctx_resched() for details */
364         EVENT_CPU = 0x8,
365         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
366 };
367
368 /*
369  * perf_sched_events : >0 events exist
370  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
371  */
372
373 static void perf_sched_delayed(struct work_struct *work);
374 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
375 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
376 static DEFINE_MUTEX(perf_sched_mutex);
377 static atomic_t perf_sched_count;
378
379 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
380 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
381 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
382
383 static atomic_t nr_mmap_events __read_mostly;
384 static atomic_t nr_comm_events __read_mostly;
385 static atomic_t nr_namespaces_events __read_mostly;
386 static atomic_t nr_task_events __read_mostly;
387 static atomic_t nr_freq_events __read_mostly;
388 static atomic_t nr_switch_events __read_mostly;
389 static atomic_t nr_ksymbol_events __read_mostly;
390 static atomic_t nr_bpf_events __read_mostly;
391 static atomic_t nr_cgroup_events __read_mostly;
392
393 static LIST_HEAD(pmus);
394 static DEFINE_MUTEX(pmus_lock);
395 static struct srcu_struct pmus_srcu;
396 static cpumask_var_t perf_online_mask;
397
398 /*
399  * perf event paranoia level:
400  *  -1 - not paranoid at all
401  *   0 - disallow raw tracepoint access for unpriv
402  *   1 - disallow cpu events for unpriv
403  *   2 - disallow kernel profiling for unpriv
404  */
405 int sysctl_perf_event_paranoid __read_mostly = 2;
406
407 /* Minimum for 512 kiB + 1 user control page */
408 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
409
410 /*
411  * max perf event sample rate
412  */
413 #define DEFAULT_MAX_SAMPLE_RATE         100000
414 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
415 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
416
417 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
418
419 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
420 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
421
422 static int perf_sample_allowed_ns __read_mostly =
423         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
424
425 static void update_perf_cpu_limits(void)
426 {
427         u64 tmp = perf_sample_period_ns;
428
429         tmp *= sysctl_perf_cpu_time_max_percent;
430         tmp = div_u64(tmp, 100);
431         if (!tmp)
432                 tmp = 1;
433
434         WRITE_ONCE(perf_sample_allowed_ns, tmp);
435 }
436
437 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
438
439 int perf_proc_update_handler(struct ctl_table *table, int write,
440                 void __user *buffer, size_t *lenp,
441                 loff_t *ppos)
442 {
443         int ret;
444         int perf_cpu = sysctl_perf_cpu_time_max_percent;
445         /*
446          * If throttling is disabled don't allow the write:
447          */
448         if (write && (perf_cpu == 100 || perf_cpu == 0))
449                 return -EINVAL;
450
451         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452         if (ret || !write)
453                 return ret;
454
455         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
456         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
457         update_perf_cpu_limits();
458
459         return 0;
460 }
461
462 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
463
464 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
465                                 void __user *buffer, size_t *lenp,
466                                 loff_t *ppos)
467 {
468         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
469
470         if (ret || !write)
471                 return ret;
472
473         if (sysctl_perf_cpu_time_max_percent == 100 ||
474             sysctl_perf_cpu_time_max_percent == 0) {
475                 printk(KERN_WARNING
476                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
477                 WRITE_ONCE(perf_sample_allowed_ns, 0);
478         } else {
479                 update_perf_cpu_limits();
480         }
481
482         return 0;
483 }
484
485 /*
486  * perf samples are done in some very critical code paths (NMIs).
487  * If they take too much CPU time, the system can lock up and not
488  * get any real work done.  This will drop the sample rate when
489  * we detect that events are taking too long.
490  */
491 #define NR_ACCUMULATED_SAMPLES 128
492 static DEFINE_PER_CPU(u64, running_sample_length);
493
494 static u64 __report_avg;
495 static u64 __report_allowed;
496
497 static void perf_duration_warn(struct irq_work *w)
498 {
499         printk_ratelimited(KERN_INFO
500                 "perf: interrupt took too long (%lld > %lld), lowering "
501                 "kernel.perf_event_max_sample_rate to %d\n",
502                 __report_avg, __report_allowed,
503                 sysctl_perf_event_sample_rate);
504 }
505
506 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
507
508 void perf_sample_event_took(u64 sample_len_ns)
509 {
510         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
511         u64 running_len;
512         u64 avg_len;
513         u32 max;
514
515         if (max_len == 0)
516                 return;
517
518         /* Decay the counter by 1 average sample. */
519         running_len = __this_cpu_read(running_sample_length);
520         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
521         running_len += sample_len_ns;
522         __this_cpu_write(running_sample_length, running_len);
523
524         /*
525          * Note: this will be biased artifically low until we have
526          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
527          * from having to maintain a count.
528          */
529         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
530         if (avg_len <= max_len)
531                 return;
532
533         __report_avg = avg_len;
534         __report_allowed = max_len;
535
536         /*
537          * Compute a throttle threshold 25% below the current duration.
538          */
539         avg_len += avg_len / 4;
540         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
541         if (avg_len < max)
542                 max /= (u32)avg_len;
543         else
544                 max = 1;
545
546         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
547         WRITE_ONCE(max_samples_per_tick, max);
548
549         sysctl_perf_event_sample_rate = max * HZ;
550         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
551
552         if (!irq_work_queue(&perf_duration_work)) {
553                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
554                              "kernel.perf_event_max_sample_rate to %d\n",
555                              __report_avg, __report_allowed,
556                              sysctl_perf_event_sample_rate);
557         }
558 }
559
560 static atomic64_t perf_event_id;
561
562 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
563                               enum event_type_t event_type);
564
565 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
566                              enum event_type_t event_type,
567                              struct task_struct *task);
568
569 static void update_context_time(struct perf_event_context *ctx);
570 static u64 perf_event_time(struct perf_event *event);
571
572 void __weak perf_event_print_debug(void)        { }
573
574 extern __weak const char *perf_pmu_name(void)
575 {
576         return "pmu";
577 }
578
579 static inline u64 perf_clock(void)
580 {
581         return local_clock();
582 }
583
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586         return event->clock();
587 }
588
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614         struct perf_event *leader = event->group_leader;
615
616         if (leader->state <= PERF_EVENT_STATE_OFF)
617                 return leader->state;
618
619         return event->state;
620 }
621
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625         enum perf_event_state state = __perf_effective_state(event);
626         u64 delta = now - event->tstamp;
627
628         *enabled = event->total_time_enabled;
629         if (state >= PERF_EVENT_STATE_INACTIVE)
630                 *enabled += delta;
631
632         *running = event->total_time_running;
633         if (state >= PERF_EVENT_STATE_ACTIVE)
634                 *running += delta;
635 }
636
637 static void perf_event_update_time(struct perf_event *event)
638 {
639         u64 now = perf_event_time(event);
640
641         __perf_update_times(event, now, &event->total_time_enabled,
642                                         &event->total_time_running);
643         event->tstamp = now;
644 }
645
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648         struct perf_event *sibling;
649
650         for_each_sibling_event(sibling, leader)
651                 perf_event_update_time(sibling);
652 }
653
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657         if (event->state == state)
658                 return;
659
660         perf_event_update_time(event);
661         /*
662          * If a group leader gets enabled/disabled all its siblings
663          * are affected too.
664          */
665         if ((event->state < 0) ^ (state < 0))
666                 perf_event_update_sibling_time(event);
667
668         WRITE_ONCE(event->state, state);
669 }
670
671 #ifdef CONFIG_CGROUP_PERF
672
673 static inline bool
674 perf_cgroup_match(struct perf_event *event)
675 {
676         struct perf_event_context *ctx = event->ctx;
677         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
678
679         /* @event doesn't care about cgroup */
680         if (!event->cgrp)
681                 return true;
682
683         /* wants specific cgroup scope but @cpuctx isn't associated with any */
684         if (!cpuctx->cgrp)
685                 return false;
686
687         /*
688          * Cgroup scoping is recursive.  An event enabled for a cgroup is
689          * also enabled for all its descendant cgroups.  If @cpuctx's
690          * cgroup is a descendant of @event's (the test covers identity
691          * case), it's a match.
692          */
693         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
694                                     event->cgrp->css.cgroup);
695 }
696
697 static inline void perf_detach_cgroup(struct perf_event *event)
698 {
699         css_put(&event->cgrp->css);
700         event->cgrp = NULL;
701 }
702
703 static inline int is_cgroup_event(struct perf_event *event)
704 {
705         return event->cgrp != NULL;
706 }
707
708 static inline u64 perf_cgroup_event_time(struct perf_event *event)
709 {
710         struct perf_cgroup_info *t;
711
712         t = per_cpu_ptr(event->cgrp->info, event->cpu);
713         return t->time;
714 }
715
716 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
717 {
718         struct perf_cgroup_info *info;
719         u64 now;
720
721         now = perf_clock();
722
723         info = this_cpu_ptr(cgrp->info);
724
725         info->time += now - info->timestamp;
726         info->timestamp = now;
727 }
728
729 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
730 {
731         struct perf_cgroup *cgrp = cpuctx->cgrp;
732         struct cgroup_subsys_state *css;
733
734         if (cgrp) {
735                 for (css = &cgrp->css; css; css = css->parent) {
736                         cgrp = container_of(css, struct perf_cgroup, css);
737                         __update_cgrp_time(cgrp);
738                 }
739         }
740 }
741
742 static inline void update_cgrp_time_from_event(struct perf_event *event)
743 {
744         struct perf_cgroup *cgrp;
745
746         /*
747          * ensure we access cgroup data only when needed and
748          * when we know the cgroup is pinned (css_get)
749          */
750         if (!is_cgroup_event(event))
751                 return;
752
753         cgrp = perf_cgroup_from_task(current, event->ctx);
754         /*
755          * Do not update time when cgroup is not active
756          */
757         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
758                 __update_cgrp_time(event->cgrp);
759 }
760
761 static inline void
762 perf_cgroup_set_timestamp(struct task_struct *task,
763                           struct perf_event_context *ctx)
764 {
765         struct perf_cgroup *cgrp;
766         struct perf_cgroup_info *info;
767         struct cgroup_subsys_state *css;
768
769         /*
770          * ctx->lock held by caller
771          * ensure we do not access cgroup data
772          * unless we have the cgroup pinned (css_get)
773          */
774         if (!task || !ctx->nr_cgroups)
775                 return;
776
777         cgrp = perf_cgroup_from_task(task, ctx);
778
779         for (css = &cgrp->css; css; css = css->parent) {
780                 cgrp = container_of(css, struct perf_cgroup, css);
781                 info = this_cpu_ptr(cgrp->info);
782                 info->timestamp = ctx->timestamp;
783         }
784 }
785
786 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
787
788 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
789 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
790
791 /*
792  * reschedule events based on the cgroup constraint of task.
793  *
794  * mode SWOUT : schedule out everything
795  * mode SWIN : schedule in based on cgroup for next
796  */
797 static void perf_cgroup_switch(struct task_struct *task, int mode)
798 {
799         struct perf_cpu_context *cpuctx;
800         struct list_head *list;
801         unsigned long flags;
802
803         /*
804          * Disable interrupts and preemption to avoid this CPU's
805          * cgrp_cpuctx_entry to change under us.
806          */
807         local_irq_save(flags);
808
809         list = this_cpu_ptr(&cgrp_cpuctx_list);
810         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
811                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
812
813                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
814                 perf_pmu_disable(cpuctx->ctx.pmu);
815
816                 if (mode & PERF_CGROUP_SWOUT) {
817                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
818                         /*
819                          * must not be done before ctxswout due
820                          * to event_filter_match() in event_sched_out()
821                          */
822                         cpuctx->cgrp = NULL;
823                 }
824
825                 if (mode & PERF_CGROUP_SWIN) {
826                         WARN_ON_ONCE(cpuctx->cgrp);
827                         /*
828                          * set cgrp before ctxsw in to allow
829                          * event_filter_match() to not have to pass
830                          * task around
831                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
832                          * because cgorup events are only per-cpu
833                          */
834                         cpuctx->cgrp = perf_cgroup_from_task(task,
835                                                              &cpuctx->ctx);
836                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
837                 }
838                 perf_pmu_enable(cpuctx->ctx.pmu);
839                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
840         }
841
842         local_irq_restore(flags);
843 }
844
845 static inline void perf_cgroup_sched_out(struct task_struct *task,
846                                          struct task_struct *next)
847 {
848         struct perf_cgroup *cgrp1;
849         struct perf_cgroup *cgrp2 = NULL;
850
851         rcu_read_lock();
852         /*
853          * we come here when we know perf_cgroup_events > 0
854          * we do not need to pass the ctx here because we know
855          * we are holding the rcu lock
856          */
857         cgrp1 = perf_cgroup_from_task(task, NULL);
858         cgrp2 = perf_cgroup_from_task(next, NULL);
859
860         /*
861          * only schedule out current cgroup events if we know
862          * that we are switching to a different cgroup. Otherwise,
863          * do no touch the cgroup events.
864          */
865         if (cgrp1 != cgrp2)
866                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
867
868         rcu_read_unlock();
869 }
870
871 static inline void perf_cgroup_sched_in(struct task_struct *prev,
872                                         struct task_struct *task)
873 {
874         struct perf_cgroup *cgrp1;
875         struct perf_cgroup *cgrp2 = NULL;
876
877         rcu_read_lock();
878         /*
879          * we come here when we know perf_cgroup_events > 0
880          * we do not need to pass the ctx here because we know
881          * we are holding the rcu lock
882          */
883         cgrp1 = perf_cgroup_from_task(task, NULL);
884         cgrp2 = perf_cgroup_from_task(prev, NULL);
885
886         /*
887          * only need to schedule in cgroup events if we are changing
888          * cgroup during ctxsw. Cgroup events were not scheduled
889          * out of ctxsw out if that was not the case.
890          */
891         if (cgrp1 != cgrp2)
892                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
893
894         rcu_read_unlock();
895 }
896
897 static int perf_cgroup_ensure_storage(struct perf_event *event,
898                                 struct cgroup_subsys_state *css)
899 {
900         struct perf_cpu_context *cpuctx;
901         struct perf_event **storage;
902         int cpu, heap_size, ret = 0;
903
904         /*
905          * Allow storage to have sufficent space for an iterator for each
906          * possibly nested cgroup plus an iterator for events with no cgroup.
907          */
908         for (heap_size = 1; css; css = css->parent)
909                 heap_size++;
910
911         for_each_possible_cpu(cpu) {
912                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
913                 if (heap_size <= cpuctx->heap_size)
914                         continue;
915
916                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
917                                        GFP_KERNEL, cpu_to_node(cpu));
918                 if (!storage) {
919                         ret = -ENOMEM;
920                         break;
921                 }
922
923                 raw_spin_lock_irq(&cpuctx->ctx.lock);
924                 if (cpuctx->heap_size < heap_size) {
925                         swap(cpuctx->heap, storage);
926                         if (storage == cpuctx->heap_default)
927                                 storage = NULL;
928                         cpuctx->heap_size = heap_size;
929                 }
930                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
931
932                 kfree(storage);
933         }
934
935         return ret;
936 }
937
938 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
939                                       struct perf_event_attr *attr,
940                                       struct perf_event *group_leader)
941 {
942         struct perf_cgroup *cgrp;
943         struct cgroup_subsys_state *css;
944         struct fd f = fdget(fd);
945         int ret = 0;
946
947         if (!f.file)
948                 return -EBADF;
949
950         css = css_tryget_online_from_dir(f.file->f_path.dentry,
951                                          &perf_event_cgrp_subsys);
952         if (IS_ERR(css)) {
953                 ret = PTR_ERR(css);
954                 goto out;
955         }
956
957         ret = perf_cgroup_ensure_storage(event, css);
958         if (ret)
959                 goto out;
960
961         cgrp = container_of(css, struct perf_cgroup, css);
962         event->cgrp = cgrp;
963
964         /*
965          * all events in a group must monitor
966          * the same cgroup because a task belongs
967          * to only one perf cgroup at a time
968          */
969         if (group_leader && group_leader->cgrp != cgrp) {
970                 perf_detach_cgroup(event);
971                 ret = -EINVAL;
972         }
973 out:
974         fdput(f);
975         return ret;
976 }
977
978 static inline void
979 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
980 {
981         struct perf_cgroup_info *t;
982         t = per_cpu_ptr(event->cgrp->info, event->cpu);
983         event->shadow_ctx_time = now - t->timestamp;
984 }
985
986 /*
987  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
988  * cleared when last cgroup event is removed.
989  */
990 static inline void
991 list_update_cgroup_event(struct perf_event *event,
992                          struct perf_event_context *ctx, bool add)
993 {
994         struct perf_cpu_context *cpuctx;
995         struct list_head *cpuctx_entry;
996
997         if (!is_cgroup_event(event))
998                 return;
999
1000         /*
1001          * Because cgroup events are always per-cpu events,
1002          * @ctx == &cpuctx->ctx.
1003          */
1004         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005
1006         /*
1007          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008          * matching the event's cgroup, we must do this for every new event,
1009          * because if the first would mismatch, the second would not try again
1010          * and we would leave cpuctx->cgrp unset.
1011          */
1012         if (add && !cpuctx->cgrp) {
1013                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014
1015                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016                         cpuctx->cgrp = cgrp;
1017         }
1018
1019         if (add && ctx->nr_cgroups++)
1020                 return;
1021         else if (!add && --ctx->nr_cgroups)
1022                 return;
1023
1024         /* no cgroup running */
1025         if (!add)
1026                 cpuctx->cgrp = NULL;
1027
1028         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
1029         if (add)
1030                 list_add(cpuctx_entry,
1031                          per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1032         else
1033                 list_del(cpuctx_entry);
1034 }
1035
1036 #else /* !CONFIG_CGROUP_PERF */
1037
1038 static inline bool
1039 perf_cgroup_match(struct perf_event *event)
1040 {
1041         return true;
1042 }
1043
1044 static inline void perf_detach_cgroup(struct perf_event *event)
1045 {}
1046
1047 static inline int is_cgroup_event(struct perf_event *event)
1048 {
1049         return 0;
1050 }
1051
1052 static inline void update_cgrp_time_from_event(struct perf_event *event)
1053 {
1054 }
1055
1056 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1057 {
1058 }
1059
1060 static inline void perf_cgroup_sched_out(struct task_struct *task,
1061                                          struct task_struct *next)
1062 {
1063 }
1064
1065 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1066                                         struct task_struct *task)
1067 {
1068 }
1069
1070 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1071                                       struct perf_event_attr *attr,
1072                                       struct perf_event *group_leader)
1073 {
1074         return -EINVAL;
1075 }
1076
1077 static inline void
1078 perf_cgroup_set_timestamp(struct task_struct *task,
1079                           struct perf_event_context *ctx)
1080 {
1081 }
1082
1083 static inline void
1084 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1085 {
1086 }
1087
1088 static inline void
1089 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1090 {
1091 }
1092
1093 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1094 {
1095         return 0;
1096 }
1097
1098 static inline void
1099 list_update_cgroup_event(struct perf_event *event,
1100                          struct perf_event_context *ctx, bool add)
1101 {
1102 }
1103
1104 #endif
1105
1106 /*
1107  * set default to be dependent on timer tick just
1108  * like original code
1109  */
1110 #define PERF_CPU_HRTIMER (1000 / HZ)
1111 /*
1112  * function must be called with interrupts disabled
1113  */
1114 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1115 {
1116         struct perf_cpu_context *cpuctx;
1117         bool rotations;
1118
1119         lockdep_assert_irqs_disabled();
1120
1121         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1122         rotations = perf_rotate_context(cpuctx);
1123
1124         raw_spin_lock(&cpuctx->hrtimer_lock);
1125         if (rotations)
1126                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1127         else
1128                 cpuctx->hrtimer_active = 0;
1129         raw_spin_unlock(&cpuctx->hrtimer_lock);
1130
1131         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1132 }
1133
1134 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1135 {
1136         struct hrtimer *timer = &cpuctx->hrtimer;
1137         struct pmu *pmu = cpuctx->ctx.pmu;
1138         u64 interval;
1139
1140         /* no multiplexing needed for SW PMU */
1141         if (pmu->task_ctx_nr == perf_sw_context)
1142                 return;
1143
1144         /*
1145          * check default is sane, if not set then force to
1146          * default interval (1/tick)
1147          */
1148         interval = pmu->hrtimer_interval_ms;
1149         if (interval < 1)
1150                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1151
1152         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1153
1154         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1155         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1156         timer->function = perf_mux_hrtimer_handler;
1157 }
1158
1159 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1160 {
1161         struct hrtimer *timer = &cpuctx->hrtimer;
1162         struct pmu *pmu = cpuctx->ctx.pmu;
1163         unsigned long flags;
1164
1165         /* not for SW PMU */
1166         if (pmu->task_ctx_nr == perf_sw_context)
1167                 return 0;
1168
1169         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1170         if (!cpuctx->hrtimer_active) {
1171                 cpuctx->hrtimer_active = 1;
1172                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1173                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1174         }
1175         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1176
1177         return 0;
1178 }
1179
1180 void perf_pmu_disable(struct pmu *pmu)
1181 {
1182         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1183         if (!(*count)++)
1184                 pmu->pmu_disable(pmu);
1185 }
1186
1187 void perf_pmu_enable(struct pmu *pmu)
1188 {
1189         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1190         if (!--(*count))
1191                 pmu->pmu_enable(pmu);
1192 }
1193
1194 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1195
1196 /*
1197  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1198  * perf_event_task_tick() are fully serialized because they're strictly cpu
1199  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1200  * disabled, while perf_event_task_tick is called from IRQ context.
1201  */
1202 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1203 {
1204         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1205
1206         lockdep_assert_irqs_disabled();
1207
1208         WARN_ON(!list_empty(&ctx->active_ctx_list));
1209
1210         list_add(&ctx->active_ctx_list, head);
1211 }
1212
1213 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1214 {
1215         lockdep_assert_irqs_disabled();
1216
1217         WARN_ON(list_empty(&ctx->active_ctx_list));
1218
1219         list_del_init(&ctx->active_ctx_list);
1220 }
1221
1222 static void get_ctx(struct perf_event_context *ctx)
1223 {
1224         refcount_inc(&ctx->refcount);
1225 }
1226
1227 static void free_ctx(struct rcu_head *head)
1228 {
1229         struct perf_event_context *ctx;
1230
1231         ctx = container_of(head, struct perf_event_context, rcu_head);
1232         kfree(ctx->task_ctx_data);
1233         kfree(ctx);
1234 }
1235
1236 static void put_ctx(struct perf_event_context *ctx)
1237 {
1238         if (refcount_dec_and_test(&ctx->refcount)) {
1239                 if (ctx->parent_ctx)
1240                         put_ctx(ctx->parent_ctx);
1241                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1242                         put_task_struct(ctx->task);
1243                 call_rcu(&ctx->rcu_head, free_ctx);
1244         }
1245 }
1246
1247 /*
1248  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1249  * perf_pmu_migrate_context() we need some magic.
1250  *
1251  * Those places that change perf_event::ctx will hold both
1252  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1253  *
1254  * Lock ordering is by mutex address. There are two other sites where
1255  * perf_event_context::mutex nests and those are:
1256  *
1257  *  - perf_event_exit_task_context()    [ child , 0 ]
1258  *      perf_event_exit_event()
1259  *        put_event()                   [ parent, 1 ]
1260  *
1261  *  - perf_event_init_context()         [ parent, 0 ]
1262  *      inherit_task_group()
1263  *        inherit_group()
1264  *          inherit_event()
1265  *            perf_event_alloc()
1266  *              perf_init_event()
1267  *                perf_try_init_event() [ child , 1 ]
1268  *
1269  * While it appears there is an obvious deadlock here -- the parent and child
1270  * nesting levels are inverted between the two. This is in fact safe because
1271  * life-time rules separate them. That is an exiting task cannot fork, and a
1272  * spawning task cannot (yet) exit.
1273  *
1274  * But remember that that these are parent<->child context relations, and
1275  * migration does not affect children, therefore these two orderings should not
1276  * interact.
1277  *
1278  * The change in perf_event::ctx does not affect children (as claimed above)
1279  * because the sys_perf_event_open() case will install a new event and break
1280  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1281  * concerned with cpuctx and that doesn't have children.
1282  *
1283  * The places that change perf_event::ctx will issue:
1284  *
1285  *   perf_remove_from_context();
1286  *   synchronize_rcu();
1287  *   perf_install_in_context();
1288  *
1289  * to affect the change. The remove_from_context() + synchronize_rcu() should
1290  * quiesce the event, after which we can install it in the new location. This
1291  * means that only external vectors (perf_fops, prctl) can perturb the event
1292  * while in transit. Therefore all such accessors should also acquire
1293  * perf_event_context::mutex to serialize against this.
1294  *
1295  * However; because event->ctx can change while we're waiting to acquire
1296  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1297  * function.
1298  *
1299  * Lock order:
1300  *    exec_update_mutex
1301  *      task_struct::perf_event_mutex
1302  *        perf_event_context::mutex
1303  *          perf_event::child_mutex;
1304  *            perf_event_context::lock
1305  *          perf_event::mmap_mutex
1306  *          mmap_sem
1307  *            perf_addr_filters_head::lock
1308  *
1309  *    cpu_hotplug_lock
1310  *      pmus_lock
1311  *        cpuctx->mutex / perf_event_context::mutex
1312  */
1313 static struct perf_event_context *
1314 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1315 {
1316         struct perf_event_context *ctx;
1317
1318 again:
1319         rcu_read_lock();
1320         ctx = READ_ONCE(event->ctx);
1321         if (!refcount_inc_not_zero(&ctx->refcount)) {
1322                 rcu_read_unlock();
1323                 goto again;
1324         }
1325         rcu_read_unlock();
1326
1327         mutex_lock_nested(&ctx->mutex, nesting);
1328         if (event->ctx != ctx) {
1329                 mutex_unlock(&ctx->mutex);
1330                 put_ctx(ctx);
1331                 goto again;
1332         }
1333
1334         return ctx;
1335 }
1336
1337 static inline struct perf_event_context *
1338 perf_event_ctx_lock(struct perf_event *event)
1339 {
1340         return perf_event_ctx_lock_nested(event, 0);
1341 }
1342
1343 static void perf_event_ctx_unlock(struct perf_event *event,
1344                                   struct perf_event_context *ctx)
1345 {
1346         mutex_unlock(&ctx->mutex);
1347         put_ctx(ctx);
1348 }
1349
1350 /*
1351  * This must be done under the ctx->lock, such as to serialize against
1352  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1353  * calling scheduler related locks and ctx->lock nests inside those.
1354  */
1355 static __must_check struct perf_event_context *
1356 unclone_ctx(struct perf_event_context *ctx)
1357 {
1358         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1359
1360         lockdep_assert_held(&ctx->lock);
1361
1362         if (parent_ctx)
1363                 ctx->parent_ctx = NULL;
1364         ctx->generation++;
1365
1366         return parent_ctx;
1367 }
1368
1369 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1370                                 enum pid_type type)
1371 {
1372         u32 nr;
1373         /*
1374          * only top level events have the pid namespace they were created in
1375          */
1376         if (event->parent)
1377                 event = event->parent;
1378
1379         nr = __task_pid_nr_ns(p, type, event->ns);
1380         /* avoid -1 if it is idle thread or runs in another ns */
1381         if (!nr && !pid_alive(p))
1382                 nr = -1;
1383         return nr;
1384 }
1385
1386 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1387 {
1388         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1389 }
1390
1391 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1392 {
1393         return perf_event_pid_type(event, p, PIDTYPE_PID);
1394 }
1395
1396 /*
1397  * If we inherit events we want to return the parent event id
1398  * to userspace.
1399  */
1400 static u64 primary_event_id(struct perf_event *event)
1401 {
1402         u64 id = event->id;
1403
1404         if (event->parent)
1405                 id = event->parent->id;
1406
1407         return id;
1408 }
1409
1410 /*
1411  * Get the perf_event_context for a task and lock it.
1412  *
1413  * This has to cope with with the fact that until it is locked,
1414  * the context could get moved to another task.
1415  */
1416 static struct perf_event_context *
1417 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1418 {
1419         struct perf_event_context *ctx;
1420
1421 retry:
1422         /*
1423          * One of the few rules of preemptible RCU is that one cannot do
1424          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1425          * part of the read side critical section was irqs-enabled -- see
1426          * rcu_read_unlock_special().
1427          *
1428          * Since ctx->lock nests under rq->lock we must ensure the entire read
1429          * side critical section has interrupts disabled.
1430          */
1431         local_irq_save(*flags);
1432         rcu_read_lock();
1433         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1434         if (ctx) {
1435                 /*
1436                  * If this context is a clone of another, it might
1437                  * get swapped for another underneath us by
1438                  * perf_event_task_sched_out, though the
1439                  * rcu_read_lock() protects us from any context
1440                  * getting freed.  Lock the context and check if it
1441                  * got swapped before we could get the lock, and retry
1442                  * if so.  If we locked the right context, then it
1443                  * can't get swapped on us any more.
1444                  */
1445                 raw_spin_lock(&ctx->lock);
1446                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1447                         raw_spin_unlock(&ctx->lock);
1448                         rcu_read_unlock();
1449                         local_irq_restore(*flags);
1450                         goto retry;
1451                 }
1452
1453                 if (ctx->task == TASK_TOMBSTONE ||
1454                     !refcount_inc_not_zero(&ctx->refcount)) {
1455                         raw_spin_unlock(&ctx->lock);
1456                         ctx = NULL;
1457                 } else {
1458                         WARN_ON_ONCE(ctx->task != task);
1459                 }
1460         }
1461         rcu_read_unlock();
1462         if (!ctx)
1463                 local_irq_restore(*flags);
1464         return ctx;
1465 }
1466
1467 /*
1468  * Get the context for a task and increment its pin_count so it
1469  * can't get swapped to another task.  This also increments its
1470  * reference count so that the context can't get freed.
1471  */
1472 static struct perf_event_context *
1473 perf_pin_task_context(struct task_struct *task, int ctxn)
1474 {
1475         struct perf_event_context *ctx;
1476         unsigned long flags;
1477
1478         ctx = perf_lock_task_context(task, ctxn, &flags);
1479         if (ctx) {
1480                 ++ctx->pin_count;
1481                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1482         }
1483         return ctx;
1484 }
1485
1486 static void perf_unpin_context(struct perf_event_context *ctx)
1487 {
1488         unsigned long flags;
1489
1490         raw_spin_lock_irqsave(&ctx->lock, flags);
1491         --ctx->pin_count;
1492         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1493 }
1494
1495 /*
1496  * Update the record of the current time in a context.
1497  */
1498 static void update_context_time(struct perf_event_context *ctx)
1499 {
1500         u64 now = perf_clock();
1501
1502         ctx->time += now - ctx->timestamp;
1503         ctx->timestamp = now;
1504 }
1505
1506 static u64 perf_event_time(struct perf_event *event)
1507 {
1508         struct perf_event_context *ctx = event->ctx;
1509
1510         if (is_cgroup_event(event))
1511                 return perf_cgroup_event_time(event);
1512
1513         return ctx ? ctx->time : 0;
1514 }
1515
1516 static enum event_type_t get_event_type(struct perf_event *event)
1517 {
1518         struct perf_event_context *ctx = event->ctx;
1519         enum event_type_t event_type;
1520
1521         lockdep_assert_held(&ctx->lock);
1522
1523         /*
1524          * It's 'group type', really, because if our group leader is
1525          * pinned, so are we.
1526          */
1527         if (event->group_leader != event)
1528                 event = event->group_leader;
1529
1530         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1531         if (!ctx->task)
1532                 event_type |= EVENT_CPU;
1533
1534         return event_type;
1535 }
1536
1537 /*
1538  * Helper function to initialize event group nodes.
1539  */
1540 static void init_event_group(struct perf_event *event)
1541 {
1542         RB_CLEAR_NODE(&event->group_node);
1543         event->group_index = 0;
1544 }
1545
1546 /*
1547  * Extract pinned or flexible groups from the context
1548  * based on event attrs bits.
1549  */
1550 static struct perf_event_groups *
1551 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1552 {
1553         if (event->attr.pinned)
1554                 return &ctx->pinned_groups;
1555         else
1556                 return &ctx->flexible_groups;
1557 }
1558
1559 /*
1560  * Helper function to initializes perf_event_group trees.
1561  */
1562 static void perf_event_groups_init(struct perf_event_groups *groups)
1563 {
1564         groups->tree = RB_ROOT;
1565         groups->index = 0;
1566 }
1567
1568 /*
1569  * Compare function for event groups;
1570  *
1571  * Implements complex key that first sorts by CPU and then by virtual index
1572  * which provides ordering when rotating groups for the same CPU.
1573  */
1574 static bool
1575 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1576 {
1577         if (left->cpu < right->cpu)
1578                 return true;
1579         if (left->cpu > right->cpu)
1580                 return false;
1581
1582 #ifdef CONFIG_CGROUP_PERF
1583         if (left->cgrp != right->cgrp) {
1584                 if (!left->cgrp || !left->cgrp->css.cgroup) {
1585                         /*
1586                          * Left has no cgroup but right does, no cgroups come
1587                          * first.
1588                          */
1589                         return true;
1590                 }
1591                 if (!right->cgrp || !right->cgrp->css.cgroup) {
1592                         /*
1593                          * Right has no cgroup but left does, no cgroups come
1594                          * first.
1595                          */
1596                         return false;
1597                 }
1598                 /* Two dissimilar cgroups, order by id. */
1599                 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1600                         return true;
1601
1602                 return false;
1603         }
1604 #endif
1605
1606         if (left->group_index < right->group_index)
1607                 return true;
1608         if (left->group_index > right->group_index)
1609                 return false;
1610
1611         return false;
1612 }
1613
1614 /*
1615  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1616  * key (see perf_event_groups_less). This places it last inside the CPU
1617  * subtree.
1618  */
1619 static void
1620 perf_event_groups_insert(struct perf_event_groups *groups,
1621                          struct perf_event *event)
1622 {
1623         struct perf_event *node_event;
1624         struct rb_node *parent;
1625         struct rb_node **node;
1626
1627         event->group_index = ++groups->index;
1628
1629         node = &groups->tree.rb_node;
1630         parent = *node;
1631
1632         while (*node) {
1633                 parent = *node;
1634                 node_event = container_of(*node, struct perf_event, group_node);
1635
1636                 if (perf_event_groups_less(event, node_event))
1637                         node = &parent->rb_left;
1638                 else
1639                         node = &parent->rb_right;
1640         }
1641
1642         rb_link_node(&event->group_node, parent, node);
1643         rb_insert_color(&event->group_node, &groups->tree);
1644 }
1645
1646 /*
1647  * Helper function to insert event into the pinned or flexible groups.
1648  */
1649 static void
1650 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1651 {
1652         struct perf_event_groups *groups;
1653
1654         groups = get_event_groups(event, ctx);
1655         perf_event_groups_insert(groups, event);
1656 }
1657
1658 /*
1659  * Delete a group from a tree.
1660  */
1661 static void
1662 perf_event_groups_delete(struct perf_event_groups *groups,
1663                          struct perf_event *event)
1664 {
1665         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1666                      RB_EMPTY_ROOT(&groups->tree));
1667
1668         rb_erase(&event->group_node, &groups->tree);
1669         init_event_group(event);
1670 }
1671
1672 /*
1673  * Helper function to delete event from its groups.
1674  */
1675 static void
1676 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1677 {
1678         struct perf_event_groups *groups;
1679
1680         groups = get_event_groups(event, ctx);
1681         perf_event_groups_delete(groups, event);
1682 }
1683
1684 /*
1685  * Get the leftmost event in the cpu/cgroup subtree.
1686  */
1687 static struct perf_event *
1688 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1689                         struct cgroup *cgrp)
1690 {
1691         struct perf_event *node_event = NULL, *match = NULL;
1692         struct rb_node *node = groups->tree.rb_node;
1693 #ifdef CONFIG_CGROUP_PERF
1694         u64 node_cgrp_id, cgrp_id = 0;
1695
1696         if (cgrp)
1697                 cgrp_id = cgrp->kn->id;
1698 #endif
1699
1700         while (node) {
1701                 node_event = container_of(node, struct perf_event, group_node);
1702
1703                 if (cpu < node_event->cpu) {
1704                         node = node->rb_left;
1705                         continue;
1706                 }
1707                 if (cpu > node_event->cpu) {
1708                         node = node->rb_right;
1709                         continue;
1710                 }
1711 #ifdef CONFIG_CGROUP_PERF
1712                 node_cgrp_id = 0;
1713                 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1714                         node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1715
1716                 if (cgrp_id < node_cgrp_id) {
1717                         node = node->rb_left;
1718                         continue;
1719                 }
1720                 if (cgrp_id > node_cgrp_id) {
1721                         node = node->rb_right;
1722                         continue;
1723                 }
1724 #endif
1725                 match = node_event;
1726                 node = node->rb_left;
1727         }
1728
1729         return match;
1730 }
1731
1732 /*
1733  * Like rb_entry_next_safe() for the @cpu subtree.
1734  */
1735 static struct perf_event *
1736 perf_event_groups_next(struct perf_event *event)
1737 {
1738         struct perf_event *next;
1739 #ifdef CONFIG_CGROUP_PERF
1740         u64 curr_cgrp_id = 0;
1741         u64 next_cgrp_id = 0;
1742 #endif
1743
1744         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1745         if (next == NULL || next->cpu != event->cpu)
1746                 return NULL;
1747
1748 #ifdef CONFIG_CGROUP_PERF
1749         if (event->cgrp && event->cgrp->css.cgroup)
1750                 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1751
1752         if (next->cgrp && next->cgrp->css.cgroup)
1753                 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1754
1755         if (curr_cgrp_id != next_cgrp_id)
1756                 return NULL;
1757 #endif
1758         return next;
1759 }
1760
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)                       \
1765         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1766                                 typeof(*event), group_node); event;     \
1767                 event = rb_entry_safe(rb_next(&event->group_node),      \
1768                                 typeof(*event), group_node))
1769
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777         lockdep_assert_held(&ctx->lock);
1778
1779         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780         event->attach_state |= PERF_ATTACH_CONTEXT;
1781
1782         event->tstamp = perf_event_time(event);
1783
1784         /*
1785          * If we're a stand alone event or group leader, we go to the context
1786          * list, group events are kept attached to the group so that
1787          * perf_group_detach can, at all times, locate all siblings.
1788          */
1789         if (event->group_leader == event) {
1790                 event->group_caps = event->event_caps;
1791                 add_event_to_groups(event, ctx);
1792         }
1793
1794         list_update_cgroup_event(event, ctx, true);
1795
1796         list_add_rcu(&event->event_entry, &ctx->event_list);
1797         ctx->nr_events++;
1798         if (event->attr.inherit_stat)
1799                 ctx->nr_stat++;
1800
1801         ctx->generation++;
1802 }
1803
1804 /*
1805  * Initialize event state based on the perf_event_attr::disabled.
1806  */
1807 static inline void perf_event__state_init(struct perf_event *event)
1808 {
1809         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1810                                               PERF_EVENT_STATE_INACTIVE;
1811 }
1812
1813 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1814 {
1815         int entry = sizeof(u64); /* value */
1816         int size = 0;
1817         int nr = 1;
1818
1819         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1820                 size += sizeof(u64);
1821
1822         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1823                 size += sizeof(u64);
1824
1825         if (event->attr.read_format & PERF_FORMAT_ID)
1826                 entry += sizeof(u64);
1827
1828         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1829                 nr += nr_siblings;
1830                 size += sizeof(u64);
1831         }
1832
1833         size += entry * nr;
1834         event->read_size = size;
1835 }
1836
1837 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1838 {
1839         struct perf_sample_data *data;
1840         u16 size = 0;
1841
1842         if (sample_type & PERF_SAMPLE_IP)
1843                 size += sizeof(data->ip);
1844
1845         if (sample_type & PERF_SAMPLE_ADDR)
1846                 size += sizeof(data->addr);
1847
1848         if (sample_type & PERF_SAMPLE_PERIOD)
1849                 size += sizeof(data->period);
1850
1851         if (sample_type & PERF_SAMPLE_WEIGHT)
1852                 size += sizeof(data->weight);
1853
1854         if (sample_type & PERF_SAMPLE_READ)
1855                 size += event->read_size;
1856
1857         if (sample_type & PERF_SAMPLE_DATA_SRC)
1858                 size += sizeof(data->data_src.val);
1859
1860         if (sample_type & PERF_SAMPLE_TRANSACTION)
1861                 size += sizeof(data->txn);
1862
1863         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1864                 size += sizeof(data->phys_addr);
1865
1866         if (sample_type & PERF_SAMPLE_CGROUP)
1867                 size += sizeof(data->cgroup);
1868
1869         event->header_size = size;
1870 }
1871
1872 /*
1873  * Called at perf_event creation and when events are attached/detached from a
1874  * group.
1875  */
1876 static void perf_event__header_size(struct perf_event *event)
1877 {
1878         __perf_event_read_size(event,
1879                                event->group_leader->nr_siblings);
1880         __perf_event_header_size(event, event->attr.sample_type);
1881 }
1882
1883 static void perf_event__id_header_size(struct perf_event *event)
1884 {
1885         struct perf_sample_data *data;
1886         u64 sample_type = event->attr.sample_type;
1887         u16 size = 0;
1888
1889         if (sample_type & PERF_SAMPLE_TID)
1890                 size += sizeof(data->tid_entry);
1891
1892         if (sample_type & PERF_SAMPLE_TIME)
1893                 size += sizeof(data->time);
1894
1895         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1896                 size += sizeof(data->id);
1897
1898         if (sample_type & PERF_SAMPLE_ID)
1899                 size += sizeof(data->id);
1900
1901         if (sample_type & PERF_SAMPLE_STREAM_ID)
1902                 size += sizeof(data->stream_id);
1903
1904         if (sample_type & PERF_SAMPLE_CPU)
1905                 size += sizeof(data->cpu_entry);
1906
1907         event->id_header_size = size;
1908 }
1909
1910 static bool perf_event_validate_size(struct perf_event *event)
1911 {
1912         /*
1913          * The values computed here will be over-written when we actually
1914          * attach the event.
1915          */
1916         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1917         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1918         perf_event__id_header_size(event);
1919
1920         /*
1921          * Sum the lot; should not exceed the 64k limit we have on records.
1922          * Conservative limit to allow for callchains and other variable fields.
1923          */
1924         if (event->read_size + event->header_size +
1925             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1926                 return false;
1927
1928         return true;
1929 }
1930
1931 static void perf_group_attach(struct perf_event *event)
1932 {
1933         struct perf_event *group_leader = event->group_leader, *pos;
1934
1935         lockdep_assert_held(&event->ctx->lock);
1936
1937         /*
1938          * We can have double attach due to group movement in perf_event_open.
1939          */
1940         if (event->attach_state & PERF_ATTACH_GROUP)
1941                 return;
1942
1943         event->attach_state |= PERF_ATTACH_GROUP;
1944
1945         if (group_leader == event)
1946                 return;
1947
1948         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1949
1950         group_leader->group_caps &= event->event_caps;
1951
1952         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1953         group_leader->nr_siblings++;
1954
1955         perf_event__header_size(group_leader);
1956
1957         for_each_sibling_event(pos, group_leader)
1958                 perf_event__header_size(pos);
1959 }
1960
1961 /*
1962  * Remove an event from the lists for its context.
1963  * Must be called with ctx->mutex and ctx->lock held.
1964  */
1965 static void
1966 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1967 {
1968         WARN_ON_ONCE(event->ctx != ctx);
1969         lockdep_assert_held(&ctx->lock);
1970
1971         /*
1972          * We can have double detach due to exit/hot-unplug + close.
1973          */
1974         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1975                 return;
1976
1977         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1978
1979         list_update_cgroup_event(event, ctx, false);
1980
1981         ctx->nr_events--;
1982         if (event->attr.inherit_stat)
1983                 ctx->nr_stat--;
1984
1985         list_del_rcu(&event->event_entry);
1986
1987         if (event->group_leader == event)
1988                 del_event_from_groups(event, ctx);
1989
1990         /*
1991          * If event was in error state, then keep it
1992          * that way, otherwise bogus counts will be
1993          * returned on read(). The only way to get out
1994          * of error state is by explicit re-enabling
1995          * of the event
1996          */
1997         if (event->state > PERF_EVENT_STATE_OFF)
1998                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1999
2000         ctx->generation++;
2001 }
2002
2003 static int
2004 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2005 {
2006         if (!has_aux(aux_event))
2007                 return 0;
2008
2009         if (!event->pmu->aux_output_match)
2010                 return 0;
2011
2012         return event->pmu->aux_output_match(aux_event);
2013 }
2014
2015 static void put_event(struct perf_event *event);
2016 static void event_sched_out(struct perf_event *event,
2017                             struct perf_cpu_context *cpuctx,
2018                             struct perf_event_context *ctx);
2019
2020 static void perf_put_aux_event(struct perf_event *event)
2021 {
2022         struct perf_event_context *ctx = event->ctx;
2023         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2024         struct perf_event *iter;
2025
2026         /*
2027          * If event uses aux_event tear down the link
2028          */
2029         if (event->aux_event) {
2030                 iter = event->aux_event;
2031                 event->aux_event = NULL;
2032                 put_event(iter);
2033                 return;
2034         }
2035
2036         /*
2037          * If the event is an aux_event, tear down all links to
2038          * it from other events.
2039          */
2040         for_each_sibling_event(iter, event->group_leader) {
2041                 if (iter->aux_event != event)
2042                         continue;
2043
2044                 iter->aux_event = NULL;
2045                 put_event(event);
2046
2047                 /*
2048                  * If it's ACTIVE, schedule it out and put it into ERROR
2049                  * state so that we don't try to schedule it again. Note
2050                  * that perf_event_enable() will clear the ERROR status.
2051                  */
2052                 event_sched_out(iter, cpuctx, ctx);
2053                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2054         }
2055 }
2056
2057 static bool perf_need_aux_event(struct perf_event *event)
2058 {
2059         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2060 }
2061
2062 static int perf_get_aux_event(struct perf_event *event,
2063                               struct perf_event *group_leader)
2064 {
2065         /*
2066          * Our group leader must be an aux event if we want to be
2067          * an aux_output. This way, the aux event will precede its
2068          * aux_output events in the group, and therefore will always
2069          * schedule first.
2070          */
2071         if (!group_leader)
2072                 return 0;
2073
2074         /*
2075          * aux_output and aux_sample_size are mutually exclusive.
2076          */
2077         if (event->attr.aux_output && event->attr.aux_sample_size)
2078                 return 0;
2079
2080         if (event->attr.aux_output &&
2081             !perf_aux_output_match(event, group_leader))
2082                 return 0;
2083
2084         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2085                 return 0;
2086
2087         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2088                 return 0;
2089
2090         /*
2091          * Link aux_outputs to their aux event; this is undone in
2092          * perf_group_detach() by perf_put_aux_event(). When the
2093          * group in torn down, the aux_output events loose their
2094          * link to the aux_event and can't schedule any more.
2095          */
2096         event->aux_event = group_leader;
2097
2098         return 1;
2099 }
2100
2101 static inline struct list_head *get_event_list(struct perf_event *event)
2102 {
2103         struct perf_event_context *ctx = event->ctx;
2104         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2105 }
2106
2107 static void perf_group_detach(struct perf_event *event)
2108 {
2109         struct perf_event *sibling, *tmp;
2110         struct perf_event_context *ctx = event->ctx;
2111
2112         lockdep_assert_held(&ctx->lock);
2113
2114         /*
2115          * We can have double detach due to exit/hot-unplug + close.
2116          */
2117         if (!(event->attach_state & PERF_ATTACH_GROUP))
2118                 return;
2119
2120         event->attach_state &= ~PERF_ATTACH_GROUP;
2121
2122         perf_put_aux_event(event);
2123
2124         /*
2125          * If this is a sibling, remove it from its group.
2126          */
2127         if (event->group_leader != event) {
2128                 list_del_init(&event->sibling_list);
2129                 event->group_leader->nr_siblings--;
2130                 goto out;
2131         }
2132
2133         /*
2134          * If this was a group event with sibling events then
2135          * upgrade the siblings to singleton events by adding them
2136          * to whatever list we are on.
2137          */
2138         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2139
2140                 sibling->group_leader = sibling;
2141                 list_del_init(&sibling->sibling_list);
2142
2143                 /* Inherit group flags from the previous leader */
2144                 sibling->group_caps = event->group_caps;
2145
2146                 if (!RB_EMPTY_NODE(&event->group_node)) {
2147                         add_event_to_groups(sibling, event->ctx);
2148
2149                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2150                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2151                 }
2152
2153                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2154         }
2155
2156 out:
2157         perf_event__header_size(event->group_leader);
2158
2159         for_each_sibling_event(tmp, event->group_leader)
2160                 perf_event__header_size(tmp);
2161 }
2162
2163 static bool is_orphaned_event(struct perf_event *event)
2164 {
2165         return event->state == PERF_EVENT_STATE_DEAD;
2166 }
2167
2168 static inline int __pmu_filter_match(struct perf_event *event)
2169 {
2170         struct pmu *pmu = event->pmu;
2171         return pmu->filter_match ? pmu->filter_match(event) : 1;
2172 }
2173
2174 /*
2175  * Check whether we should attempt to schedule an event group based on
2176  * PMU-specific filtering. An event group can consist of HW and SW events,
2177  * potentially with a SW leader, so we must check all the filters, to
2178  * determine whether a group is schedulable:
2179  */
2180 static inline int pmu_filter_match(struct perf_event *event)
2181 {
2182         struct perf_event *sibling;
2183
2184         if (!__pmu_filter_match(event))
2185                 return 0;
2186
2187         for_each_sibling_event(sibling, event) {
2188                 if (!__pmu_filter_match(sibling))
2189                         return 0;
2190         }
2191
2192         return 1;
2193 }
2194
2195 static inline int
2196 event_filter_match(struct perf_event *event)
2197 {
2198         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2199                perf_cgroup_match(event) && pmu_filter_match(event);
2200 }
2201
2202 static void
2203 event_sched_out(struct perf_event *event,
2204                   struct perf_cpu_context *cpuctx,
2205                   struct perf_event_context *ctx)
2206 {
2207         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2208
2209         WARN_ON_ONCE(event->ctx != ctx);
2210         lockdep_assert_held(&ctx->lock);
2211
2212         if (event->state != PERF_EVENT_STATE_ACTIVE)
2213                 return;
2214
2215         /*
2216          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2217          * we can schedule events _OUT_ individually through things like
2218          * __perf_remove_from_context().
2219          */
2220         list_del_init(&event->active_list);
2221
2222         perf_pmu_disable(event->pmu);
2223
2224         event->pmu->del(event, 0);
2225         event->oncpu = -1;
2226
2227         if (READ_ONCE(event->pending_disable) >= 0) {
2228                 WRITE_ONCE(event->pending_disable, -1);
2229                 state = PERF_EVENT_STATE_OFF;
2230         }
2231         perf_event_set_state(event, state);
2232
2233         if (!is_software_event(event))
2234                 cpuctx->active_oncpu--;
2235         if (!--ctx->nr_active)
2236                 perf_event_ctx_deactivate(ctx);
2237         if (event->attr.freq && event->attr.sample_freq)
2238                 ctx->nr_freq--;
2239         if (event->attr.exclusive || !cpuctx->active_oncpu)
2240                 cpuctx->exclusive = 0;
2241
2242         perf_pmu_enable(event->pmu);
2243 }
2244
2245 static void
2246 group_sched_out(struct perf_event *group_event,
2247                 struct perf_cpu_context *cpuctx,
2248                 struct perf_event_context *ctx)
2249 {
2250         struct perf_event *event;
2251
2252         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2253                 return;
2254
2255         perf_pmu_disable(ctx->pmu);
2256
2257         event_sched_out(group_event, cpuctx, ctx);
2258
2259         /*
2260          * Schedule out siblings (if any):
2261          */
2262         for_each_sibling_event(event, group_event)
2263                 event_sched_out(event, cpuctx, ctx);
2264
2265         perf_pmu_enable(ctx->pmu);
2266
2267         if (group_event->attr.exclusive)
2268                 cpuctx->exclusive = 0;
2269 }
2270
2271 #define DETACH_GROUP    0x01UL
2272
2273 /*
2274  * Cross CPU call to remove a performance event
2275  *
2276  * We disable the event on the hardware level first. After that we
2277  * remove it from the context list.
2278  */
2279 static void
2280 __perf_remove_from_context(struct perf_event *event,
2281                            struct perf_cpu_context *cpuctx,
2282                            struct perf_event_context *ctx,
2283                            void *info)
2284 {
2285         unsigned long flags = (unsigned long)info;
2286
2287         if (ctx->is_active & EVENT_TIME) {
2288                 update_context_time(ctx);
2289                 update_cgrp_time_from_cpuctx(cpuctx);
2290         }
2291
2292         event_sched_out(event, cpuctx, ctx);
2293         if (flags & DETACH_GROUP)
2294                 perf_group_detach(event);
2295         list_del_event(event, ctx);
2296
2297         if (!ctx->nr_events && ctx->is_active) {
2298                 ctx->is_active = 0;
2299                 ctx->rotate_necessary = 0;
2300                 if (ctx->task) {
2301                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2302                         cpuctx->task_ctx = NULL;
2303                 }
2304         }
2305 }
2306
2307 /*
2308  * Remove the event from a task's (or a CPU's) list of events.
2309  *
2310  * If event->ctx is a cloned context, callers must make sure that
2311  * every task struct that event->ctx->task could possibly point to
2312  * remains valid.  This is OK when called from perf_release since
2313  * that only calls us on the top-level context, which can't be a clone.
2314  * When called from perf_event_exit_task, it's OK because the
2315  * context has been detached from its task.
2316  */
2317 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2318 {
2319         struct perf_event_context *ctx = event->ctx;
2320
2321         lockdep_assert_held(&ctx->mutex);
2322
2323         event_function_call(event, __perf_remove_from_context, (void *)flags);
2324
2325         /*
2326          * The above event_function_call() can NO-OP when it hits
2327          * TASK_TOMBSTONE. In that case we must already have been detached
2328          * from the context (by perf_event_exit_event()) but the grouping
2329          * might still be in-tact.
2330          */
2331         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2332         if ((flags & DETACH_GROUP) &&
2333             (event->attach_state & PERF_ATTACH_GROUP)) {
2334                 /*
2335                  * Since in that case we cannot possibly be scheduled, simply
2336                  * detach now.
2337                  */
2338                 raw_spin_lock_irq(&ctx->lock);
2339                 perf_group_detach(event);
2340                 raw_spin_unlock_irq(&ctx->lock);
2341         }
2342 }
2343
2344 /*
2345  * Cross CPU call to disable a performance event
2346  */
2347 static void __perf_event_disable(struct perf_event *event,
2348                                  struct perf_cpu_context *cpuctx,
2349                                  struct perf_event_context *ctx,
2350                                  void *info)
2351 {
2352         if (event->state < PERF_EVENT_STATE_INACTIVE)
2353                 return;
2354
2355         if (ctx->is_active & EVENT_TIME) {
2356                 update_context_time(ctx);
2357                 update_cgrp_time_from_event(event);
2358         }
2359
2360         if (event == event->group_leader)
2361                 group_sched_out(event, cpuctx, ctx);
2362         else
2363                 event_sched_out(event, cpuctx, ctx);
2364
2365         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2366 }
2367
2368 /*
2369  * Disable an event.
2370  *
2371  * If event->ctx is a cloned context, callers must make sure that
2372  * every task struct that event->ctx->task could possibly point to
2373  * remains valid.  This condition is satisfied when called through
2374  * perf_event_for_each_child or perf_event_for_each because they
2375  * hold the top-level event's child_mutex, so any descendant that
2376  * goes to exit will block in perf_event_exit_event().
2377  *
2378  * When called from perf_pending_event it's OK because event->ctx
2379  * is the current context on this CPU and preemption is disabled,
2380  * hence we can't get into perf_event_task_sched_out for this context.
2381  */
2382 static void _perf_event_disable(struct perf_event *event)
2383 {
2384         struct perf_event_context *ctx = event->ctx;
2385
2386         raw_spin_lock_irq(&ctx->lock);
2387         if (event->state <= PERF_EVENT_STATE_OFF) {
2388                 raw_spin_unlock_irq(&ctx->lock);
2389                 return;
2390         }
2391         raw_spin_unlock_irq(&ctx->lock);
2392
2393         event_function_call(event, __perf_event_disable, NULL);
2394 }
2395
2396 void perf_event_disable_local(struct perf_event *event)
2397 {
2398         event_function_local(event, __perf_event_disable, NULL);
2399 }
2400
2401 /*
2402  * Strictly speaking kernel users cannot create groups and therefore this
2403  * interface does not need the perf_event_ctx_lock() magic.
2404  */
2405 void perf_event_disable(struct perf_event *event)
2406 {
2407         struct perf_event_context *ctx;
2408
2409         ctx = perf_event_ctx_lock(event);
2410         _perf_event_disable(event);
2411         perf_event_ctx_unlock(event, ctx);
2412 }
2413 EXPORT_SYMBOL_GPL(perf_event_disable);
2414
2415 void perf_event_disable_inatomic(struct perf_event *event)
2416 {
2417         WRITE_ONCE(event->pending_disable, smp_processor_id());
2418         /* can fail, see perf_pending_event_disable() */
2419         irq_work_queue(&event->pending);
2420 }
2421
2422 static void perf_set_shadow_time(struct perf_event *event,
2423                                  struct perf_event_context *ctx)
2424 {
2425         /*
2426          * use the correct time source for the time snapshot
2427          *
2428          * We could get by without this by leveraging the
2429          * fact that to get to this function, the caller
2430          * has most likely already called update_context_time()
2431          * and update_cgrp_time_xx() and thus both timestamp
2432          * are identical (or very close). Given that tstamp is,
2433          * already adjusted for cgroup, we could say that:
2434          *    tstamp - ctx->timestamp
2435          * is equivalent to
2436          *    tstamp - cgrp->timestamp.
2437          *
2438          * Then, in perf_output_read(), the calculation would
2439          * work with no changes because:
2440          * - event is guaranteed scheduled in
2441          * - no scheduled out in between
2442          * - thus the timestamp would be the same
2443          *
2444          * But this is a bit hairy.
2445          *
2446          * So instead, we have an explicit cgroup call to remain
2447          * within the time time source all along. We believe it
2448          * is cleaner and simpler to understand.
2449          */
2450         if (is_cgroup_event(event))
2451                 perf_cgroup_set_shadow_time(event, event->tstamp);
2452         else
2453                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2454 }
2455
2456 #define MAX_INTERRUPTS (~0ULL)
2457
2458 static void perf_log_throttle(struct perf_event *event, int enable);
2459 static void perf_log_itrace_start(struct perf_event *event);
2460
2461 static int
2462 event_sched_in(struct perf_event *event,
2463                  struct perf_cpu_context *cpuctx,
2464                  struct perf_event_context *ctx)
2465 {
2466         int ret = 0;
2467
2468         WARN_ON_ONCE(event->ctx != ctx);
2469
2470         lockdep_assert_held(&ctx->lock);
2471
2472         if (event->state <= PERF_EVENT_STATE_OFF)
2473                 return 0;
2474
2475         WRITE_ONCE(event->oncpu, smp_processor_id());
2476         /*
2477          * Order event::oncpu write to happen before the ACTIVE state is
2478          * visible. This allows perf_event_{stop,read}() to observe the correct
2479          * ->oncpu if it sees ACTIVE.
2480          */
2481         smp_wmb();
2482         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2483
2484         /*
2485          * Unthrottle events, since we scheduled we might have missed several
2486          * ticks already, also for a heavily scheduling task there is little
2487          * guarantee it'll get a tick in a timely manner.
2488          */
2489         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2490                 perf_log_throttle(event, 1);
2491                 event->hw.interrupts = 0;
2492         }
2493
2494         perf_pmu_disable(event->pmu);
2495
2496         perf_set_shadow_time(event, ctx);
2497
2498         perf_log_itrace_start(event);
2499
2500         if (event->pmu->add(event, PERF_EF_START)) {
2501                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2502                 event->oncpu = -1;
2503                 ret = -EAGAIN;
2504                 goto out;
2505         }
2506
2507         if (!is_software_event(event))
2508                 cpuctx->active_oncpu++;
2509         if (!ctx->nr_active++)
2510                 perf_event_ctx_activate(ctx);
2511         if (event->attr.freq && event->attr.sample_freq)
2512                 ctx->nr_freq++;
2513
2514         if (event->attr.exclusive)
2515                 cpuctx->exclusive = 1;
2516
2517 out:
2518         perf_pmu_enable(event->pmu);
2519
2520         return ret;
2521 }
2522
2523 static int
2524 group_sched_in(struct perf_event *group_event,
2525                struct perf_cpu_context *cpuctx,
2526                struct perf_event_context *ctx)
2527 {
2528         struct perf_event *event, *partial_group = NULL;
2529         struct pmu *pmu = ctx->pmu;
2530
2531         if (group_event->state == PERF_EVENT_STATE_OFF)
2532                 return 0;
2533
2534         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2535
2536         if (event_sched_in(group_event, cpuctx, ctx)) {
2537                 pmu->cancel_txn(pmu);
2538                 perf_mux_hrtimer_restart(cpuctx);
2539                 return -EAGAIN;
2540         }
2541
2542         /*
2543          * Schedule in siblings as one group (if any):
2544          */
2545         for_each_sibling_event(event, group_event) {
2546                 if (event_sched_in(event, cpuctx, ctx)) {
2547                         partial_group = event;
2548                         goto group_error;
2549                 }
2550         }
2551
2552         if (!pmu->commit_txn(pmu))
2553                 return 0;
2554
2555 group_error:
2556         /*
2557          * Groups can be scheduled in as one unit only, so undo any
2558          * partial group before returning:
2559          * The events up to the failed event are scheduled out normally.
2560          */
2561         for_each_sibling_event(event, group_event) {
2562                 if (event == partial_group)
2563                         break;
2564
2565                 event_sched_out(event, cpuctx, ctx);
2566         }
2567         event_sched_out(group_event, cpuctx, ctx);
2568
2569         pmu->cancel_txn(pmu);
2570
2571         perf_mux_hrtimer_restart(cpuctx);
2572
2573         return -EAGAIN;
2574 }
2575
2576 /*
2577  * Work out whether we can put this event group on the CPU now.
2578  */
2579 static int group_can_go_on(struct perf_event *event,
2580                            struct perf_cpu_context *cpuctx,
2581                            int can_add_hw)
2582 {
2583         /*
2584          * Groups consisting entirely of software events can always go on.
2585          */
2586         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2587                 return 1;
2588         /*
2589          * If an exclusive group is already on, no other hardware
2590          * events can go on.
2591          */
2592         if (cpuctx->exclusive)
2593                 return 0;
2594         /*
2595          * If this group is exclusive and there are already
2596          * events on the CPU, it can't go on.
2597          */
2598         if (event->attr.exclusive && cpuctx->active_oncpu)
2599                 return 0;
2600         /*
2601          * Otherwise, try to add it if all previous groups were able
2602          * to go on.
2603          */
2604         return can_add_hw;
2605 }
2606
2607 static void add_event_to_ctx(struct perf_event *event,
2608                                struct perf_event_context *ctx)
2609 {
2610         list_add_event(event, ctx);
2611         perf_group_attach(event);
2612 }
2613
2614 static void ctx_sched_out(struct perf_event_context *ctx,
2615                           struct perf_cpu_context *cpuctx,
2616                           enum event_type_t event_type);
2617 static void
2618 ctx_sched_in(struct perf_event_context *ctx,
2619              struct perf_cpu_context *cpuctx,
2620              enum event_type_t event_type,
2621              struct task_struct *task);
2622
2623 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2624                                struct perf_event_context *ctx,
2625                                enum event_type_t event_type)
2626 {
2627         if (!cpuctx->task_ctx)
2628                 return;
2629
2630         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2631                 return;
2632
2633         ctx_sched_out(ctx, cpuctx, event_type);
2634 }
2635
2636 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2637                                 struct perf_event_context *ctx,
2638                                 struct task_struct *task)
2639 {
2640         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2641         if (ctx)
2642                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2643         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2644         if (ctx)
2645                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2646 }
2647
2648 /*
2649  * We want to maintain the following priority of scheduling:
2650  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2651  *  - task pinned (EVENT_PINNED)
2652  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2653  *  - task flexible (EVENT_FLEXIBLE).
2654  *
2655  * In order to avoid unscheduling and scheduling back in everything every
2656  * time an event is added, only do it for the groups of equal priority and
2657  * below.
2658  *
2659  * This can be called after a batch operation on task events, in which case
2660  * event_type is a bit mask of the types of events involved. For CPU events,
2661  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2662  */
2663 static void ctx_resched(struct perf_cpu_context *cpuctx,
2664                         struct perf_event_context *task_ctx,
2665                         enum event_type_t event_type)
2666 {
2667         enum event_type_t ctx_event_type;
2668         bool cpu_event = !!(event_type & EVENT_CPU);
2669
2670         /*
2671          * If pinned groups are involved, flexible groups also need to be
2672          * scheduled out.
2673          */
2674         if (event_type & EVENT_PINNED)
2675                 event_type |= EVENT_FLEXIBLE;
2676
2677         ctx_event_type = event_type & EVENT_ALL;
2678
2679         perf_pmu_disable(cpuctx->ctx.pmu);
2680         if (task_ctx)
2681                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2682
2683         /*
2684          * Decide which cpu ctx groups to schedule out based on the types
2685          * of events that caused rescheduling:
2686          *  - EVENT_CPU: schedule out corresponding groups;
2687          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2688          *  - otherwise, do nothing more.
2689          */
2690         if (cpu_event)
2691                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2692         else if (ctx_event_type & EVENT_PINNED)
2693                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2694
2695         perf_event_sched_in(cpuctx, task_ctx, current);
2696         perf_pmu_enable(cpuctx->ctx.pmu);
2697 }
2698
2699 void perf_pmu_resched(struct pmu *pmu)
2700 {
2701         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2702         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2703
2704         perf_ctx_lock(cpuctx, task_ctx);
2705         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2706         perf_ctx_unlock(cpuctx, task_ctx);
2707 }
2708
2709 /*
2710  * Cross CPU call to install and enable a performance event
2711  *
2712  * Very similar to remote_function() + event_function() but cannot assume that
2713  * things like ctx->is_active and cpuctx->task_ctx are set.
2714  */
2715 static int  __perf_install_in_context(void *info)
2716 {
2717         struct perf_event *event = info;
2718         struct perf_event_context *ctx = event->ctx;
2719         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2720         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2721         bool reprogram = true;
2722         int ret = 0;
2723
2724         raw_spin_lock(&cpuctx->ctx.lock);
2725         if (ctx->task) {
2726                 raw_spin_lock(&ctx->lock);
2727                 task_ctx = ctx;
2728
2729                 reprogram = (ctx->task == current);
2730
2731                 /*
2732                  * If the task is running, it must be running on this CPU,
2733                  * otherwise we cannot reprogram things.
2734                  *
2735                  * If its not running, we don't care, ctx->lock will
2736                  * serialize against it becoming runnable.
2737                  */
2738                 if (task_curr(ctx->task) && !reprogram) {
2739                         ret = -ESRCH;
2740                         goto unlock;
2741                 }
2742
2743                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2744         } else if (task_ctx) {
2745                 raw_spin_lock(&task_ctx->lock);
2746         }
2747
2748 #ifdef CONFIG_CGROUP_PERF
2749         if (is_cgroup_event(event)) {
2750                 /*
2751                  * If the current cgroup doesn't match the event's
2752                  * cgroup, we should not try to schedule it.
2753                  */
2754                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2755                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2756                                         event->cgrp->css.cgroup);
2757         }
2758 #endif
2759
2760         if (reprogram) {
2761                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2762                 add_event_to_ctx(event, ctx);
2763                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2764         } else {
2765                 add_event_to_ctx(event, ctx);
2766         }
2767
2768 unlock:
2769         perf_ctx_unlock(cpuctx, task_ctx);
2770
2771         return ret;
2772 }
2773
2774 static bool exclusive_event_installable(struct perf_event *event,
2775                                         struct perf_event_context *ctx);
2776
2777 /*
2778  * Attach a performance event to a context.
2779  *
2780  * Very similar to event_function_call, see comment there.
2781  */
2782 static void
2783 perf_install_in_context(struct perf_event_context *ctx,
2784                         struct perf_event *event,
2785                         int cpu)
2786 {
2787         struct task_struct *task = READ_ONCE(ctx->task);
2788
2789         lockdep_assert_held(&ctx->mutex);
2790
2791         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2792
2793         if (event->cpu != -1)
2794                 event->cpu = cpu;
2795
2796         /*
2797          * Ensures that if we can observe event->ctx, both the event and ctx
2798          * will be 'complete'. See perf_iterate_sb_cpu().
2799          */
2800         smp_store_release(&event->ctx, ctx);
2801
2802         /*
2803          * perf_event_attr::disabled events will not run and can be initialized
2804          * without IPI. Except when this is the first event for the context, in
2805          * that case we need the magic of the IPI to set ctx->is_active.
2806          *
2807          * The IOC_ENABLE that is sure to follow the creation of a disabled
2808          * event will issue the IPI and reprogram the hardware.
2809          */
2810         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2811                 raw_spin_lock_irq(&ctx->lock);
2812                 if (ctx->task == TASK_TOMBSTONE) {
2813                         raw_spin_unlock_irq(&ctx->lock);
2814                         return;
2815                 }
2816                 add_event_to_ctx(event, ctx);
2817                 raw_spin_unlock_irq(&ctx->lock);
2818                 return;
2819         }
2820
2821         if (!task) {
2822                 cpu_function_call(cpu, __perf_install_in_context, event);
2823                 return;
2824         }
2825
2826         /*
2827          * Should not happen, we validate the ctx is still alive before calling.
2828          */
2829         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2830                 return;
2831
2832         /*
2833          * Installing events is tricky because we cannot rely on ctx->is_active
2834          * to be set in case this is the nr_events 0 -> 1 transition.
2835          *
2836          * Instead we use task_curr(), which tells us if the task is running.
2837          * However, since we use task_curr() outside of rq::lock, we can race
2838          * against the actual state. This means the result can be wrong.
2839          *
2840          * If we get a false positive, we retry, this is harmless.
2841          *
2842          * If we get a false negative, things are complicated. If we are after
2843          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2844          * value must be correct. If we're before, it doesn't matter since
2845          * perf_event_context_sched_in() will program the counter.
2846          *
2847          * However, this hinges on the remote context switch having observed
2848          * our task->perf_event_ctxp[] store, such that it will in fact take
2849          * ctx::lock in perf_event_context_sched_in().
2850          *
2851          * We do this by task_function_call(), if the IPI fails to hit the task
2852          * we know any future context switch of task must see the
2853          * perf_event_ctpx[] store.
2854          */
2855
2856         /*
2857          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2858          * task_cpu() load, such that if the IPI then does not find the task
2859          * running, a future context switch of that task must observe the
2860          * store.
2861          */
2862         smp_mb();
2863 again:
2864         if (!task_function_call(task, __perf_install_in_context, event))
2865                 return;
2866
2867         raw_spin_lock_irq(&ctx->lock);
2868         task = ctx->task;
2869         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2870                 /*
2871                  * Cannot happen because we already checked above (which also
2872                  * cannot happen), and we hold ctx->mutex, which serializes us
2873                  * against perf_event_exit_task_context().
2874                  */
2875                 raw_spin_unlock_irq(&ctx->lock);
2876                 return;
2877         }
2878         /*
2879          * If the task is not running, ctx->lock will avoid it becoming so,
2880          * thus we can safely install the event.
2881          */
2882         if (task_curr(task)) {
2883                 raw_spin_unlock_irq(&ctx->lock);
2884                 goto again;
2885         }
2886         add_event_to_ctx(event, ctx);
2887         raw_spin_unlock_irq(&ctx->lock);
2888 }
2889
2890 /*
2891  * Cross CPU call to enable a performance event
2892  */
2893 static void __perf_event_enable(struct perf_event *event,
2894                                 struct perf_cpu_context *cpuctx,
2895                                 struct perf_event_context *ctx,
2896                                 void *info)
2897 {
2898         struct perf_event *leader = event->group_leader;
2899         struct perf_event_context *task_ctx;
2900
2901         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2902             event->state <= PERF_EVENT_STATE_ERROR)
2903                 return;
2904
2905         if (ctx->is_active)
2906                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2907
2908         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2909
2910         if (!ctx->is_active)
2911                 return;
2912
2913         if (!event_filter_match(event)) {
2914                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2915                 return;
2916         }
2917
2918         /*
2919          * If the event is in a group and isn't the group leader,
2920          * then don't put it on unless the group is on.
2921          */
2922         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2923                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2924                 return;
2925         }
2926
2927         task_ctx = cpuctx->task_ctx;
2928         if (ctx->task)
2929                 WARN_ON_ONCE(task_ctx != ctx);
2930
2931         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2932 }
2933
2934 /*
2935  * Enable an event.
2936  *
2937  * If event->ctx is a cloned context, callers must make sure that
2938  * every task struct that event->ctx->task could possibly point to
2939  * remains valid.  This condition is satisfied when called through
2940  * perf_event_for_each_child or perf_event_for_each as described
2941  * for perf_event_disable.
2942  */
2943 static void _perf_event_enable(struct perf_event *event)
2944 {
2945         struct perf_event_context *ctx = event->ctx;
2946
2947         raw_spin_lock_irq(&ctx->lock);
2948         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2949             event->state <  PERF_EVENT_STATE_ERROR) {
2950                 raw_spin_unlock_irq(&ctx->lock);
2951                 return;
2952         }
2953
2954         /*
2955          * If the event is in error state, clear that first.
2956          *
2957          * That way, if we see the event in error state below, we know that it
2958          * has gone back into error state, as distinct from the task having
2959          * been scheduled away before the cross-call arrived.
2960          */
2961         if (event->state == PERF_EVENT_STATE_ERROR)
2962                 event->state = PERF_EVENT_STATE_OFF;
2963         raw_spin_unlock_irq(&ctx->lock);
2964
2965         event_function_call(event, __perf_event_enable, NULL);
2966 }
2967
2968 /*
2969  * See perf_event_disable();
2970  */
2971 void perf_event_enable(struct perf_event *event)
2972 {
2973         struct perf_event_context *ctx;
2974
2975         ctx = perf_event_ctx_lock(event);
2976         _perf_event_enable(event);
2977         perf_event_ctx_unlock(event, ctx);
2978 }
2979 EXPORT_SYMBOL_GPL(perf_event_enable);
2980
2981 struct stop_event_data {
2982         struct perf_event       *event;
2983         unsigned int            restart;
2984 };
2985
2986 static int __perf_event_stop(void *info)
2987 {
2988         struct stop_event_data *sd = info;
2989         struct perf_event *event = sd->event;
2990
2991         /* if it's already INACTIVE, do nothing */
2992         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2993                 return 0;
2994
2995         /* matches smp_wmb() in event_sched_in() */
2996         smp_rmb();
2997
2998         /*
2999          * There is a window with interrupts enabled before we get here,
3000          * so we need to check again lest we try to stop another CPU's event.
3001          */
3002         if (READ_ONCE(event->oncpu) != smp_processor_id())
3003                 return -EAGAIN;
3004
3005         event->pmu->stop(event, PERF_EF_UPDATE);
3006
3007         /*
3008          * May race with the actual stop (through perf_pmu_output_stop()),
3009          * but it is only used for events with AUX ring buffer, and such
3010          * events will refuse to restart because of rb::aux_mmap_count==0,
3011          * see comments in perf_aux_output_begin().
3012          *
3013          * Since this is happening on an event-local CPU, no trace is lost
3014          * while restarting.
3015          */
3016         if (sd->restart)
3017                 event->pmu->start(event, 0);
3018
3019         return 0;
3020 }
3021
3022 static int perf_event_stop(struct perf_event *event, int restart)
3023 {
3024         struct stop_event_data sd = {
3025                 .event          = event,
3026                 .restart        = restart,
3027         };
3028         int ret = 0;
3029
3030         do {
3031                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3032                         return 0;
3033
3034                 /* matches smp_wmb() in event_sched_in() */
3035                 smp_rmb();
3036
3037                 /*
3038                  * We only want to restart ACTIVE events, so if the event goes
3039                  * inactive here (event->oncpu==-1), there's nothing more to do;
3040                  * fall through with ret==-ENXIO.
3041                  */
3042                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3043                                         __perf_event_stop, &sd);
3044         } while (ret == -EAGAIN);
3045
3046         return ret;
3047 }
3048
3049 /*
3050  * In order to contain the amount of racy and tricky in the address filter
3051  * configuration management, it is a two part process:
3052  *
3053  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3054  *      we update the addresses of corresponding vmas in
3055  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3056  * (p2) when an event is scheduled in (pmu::add), it calls
3057  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3058  *      if the generation has changed since the previous call.
3059  *
3060  * If (p1) happens while the event is active, we restart it to force (p2).
3061  *
3062  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3063  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3064  *     ioctl;
3065  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3066  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
3067  *     for reading;
3068  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3069  *     of exec.
3070  */
3071 void perf_event_addr_filters_sync(struct perf_event *event)
3072 {
3073         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3074
3075         if (!has_addr_filter(event))
3076                 return;
3077
3078         raw_spin_lock(&ifh->lock);
3079         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3080                 event->pmu->addr_filters_sync(event);
3081                 event->hw.addr_filters_gen = event->addr_filters_gen;
3082         }
3083         raw_spin_unlock(&ifh->lock);
3084 }
3085 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3086
3087 static int _perf_event_refresh(struct perf_event *event, int refresh)
3088 {
3089         /*
3090          * not supported on inherited events
3091          */
3092         if (event->attr.inherit || !is_sampling_event(event))
3093                 return -EINVAL;
3094
3095         atomic_add(refresh, &event->event_limit);
3096         _perf_event_enable(event);
3097
3098         return 0;
3099 }
3100
3101 /*
3102  * See perf_event_disable()
3103  */
3104 int perf_event_refresh(struct perf_event *event, int refresh)
3105 {
3106         struct perf_event_context *ctx;
3107         int ret;
3108
3109         ctx = perf_event_ctx_lock(event);
3110         ret = _perf_event_refresh(event, refresh);
3111         perf_event_ctx_unlock(event, ctx);
3112
3113         return ret;
3114 }
3115 EXPORT_SYMBOL_GPL(perf_event_refresh);
3116
3117 static int perf_event_modify_breakpoint(struct perf_event *bp,
3118                                          struct perf_event_attr *attr)
3119 {
3120         int err;
3121
3122         _perf_event_disable(bp);
3123
3124         err = modify_user_hw_breakpoint_check(bp, attr, true);
3125
3126         if (!bp->attr.disabled)
3127                 _perf_event_enable(bp);
3128
3129         return err;
3130 }
3131
3132 static int perf_event_modify_attr(struct perf_event *event,
3133                                   struct perf_event_attr *attr)
3134 {
3135         if (event->attr.type != attr->type)
3136                 return -EINVAL;
3137
3138         switch (event->attr.type) {
3139         case PERF_TYPE_BREAKPOINT:
3140                 return perf_event_modify_breakpoint(event, attr);
3141         default:
3142                 /* Place holder for future additions. */
3143                 return -EOPNOTSUPP;
3144         }
3145 }
3146
3147 static void ctx_sched_out(struct perf_event_context *ctx,
3148                           struct perf_cpu_context *cpuctx,
3149                           enum event_type_t event_type)
3150 {
3151         struct perf_event *event, *tmp;
3152         int is_active = ctx->is_active;
3153
3154         lockdep_assert_held(&ctx->lock);
3155
3156         if (likely(!ctx->nr_events)) {
3157                 /*
3158                  * See __perf_remove_from_context().
3159                  */
3160                 WARN_ON_ONCE(ctx->is_active);
3161                 if (ctx->task)
3162                         WARN_ON_ONCE(cpuctx->task_ctx);
3163                 return;
3164         }
3165
3166         ctx->is_active &= ~event_type;
3167         if (!(ctx->is_active & EVENT_ALL))
3168                 ctx->is_active = 0;
3169
3170         if (ctx->task) {
3171                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3172                 if (!ctx->is_active)
3173                         cpuctx->task_ctx = NULL;
3174         }
3175
3176         /*
3177          * Always update time if it was set; not only when it changes.
3178          * Otherwise we can 'forget' to update time for any but the last
3179          * context we sched out. For example:
3180          *
3181          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3182          *   ctx_sched_out(.event_type = EVENT_PINNED)
3183          *
3184          * would only update time for the pinned events.
3185          */
3186         if (is_active & EVENT_TIME) {
3187                 /* update (and stop) ctx time */
3188                 update_context_time(ctx);
3189                 update_cgrp_time_from_cpuctx(cpuctx);
3190         }
3191
3192         is_active ^= ctx->is_active; /* changed bits */
3193
3194         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3195                 return;
3196
3197         perf_pmu_disable(ctx->pmu);
3198         if (is_active & EVENT_PINNED) {
3199                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3200                         group_sched_out(event, cpuctx, ctx);
3201         }
3202
3203         if (is_active & EVENT_FLEXIBLE) {
3204                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3205                         group_sched_out(event, cpuctx, ctx);
3206
3207                 /*
3208                  * Since we cleared EVENT_FLEXIBLE, also clear
3209                  * rotate_necessary, is will be reset by
3210                  * ctx_flexible_sched_in() when needed.
3211                  */
3212                 ctx->rotate_necessary = 0;
3213         }
3214         perf_pmu_enable(ctx->pmu);
3215 }
3216
3217 /*
3218  * Test whether two contexts are equivalent, i.e. whether they have both been
3219  * cloned from the same version of the same context.
3220  *
3221  * Equivalence is measured using a generation number in the context that is
3222  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3223  * and list_del_event().
3224  */
3225 static int context_equiv(struct perf_event_context *ctx1,
3226                          struct perf_event_context *ctx2)
3227 {
3228         lockdep_assert_held(&ctx1->lock);
3229         lockdep_assert_held(&ctx2->lock);
3230
3231         /* Pinning disables the swap optimization */
3232         if (ctx1->pin_count || ctx2->pin_count)
3233                 return 0;
3234
3235         /* If ctx1 is the parent of ctx2 */
3236         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3237                 return 1;
3238
3239         /* If ctx2 is the parent of ctx1 */
3240         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3241                 return 1;
3242
3243         /*
3244          * If ctx1 and ctx2 have the same parent; we flatten the parent
3245          * hierarchy, see perf_event_init_context().
3246          */
3247         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3248                         ctx1->parent_gen == ctx2->parent_gen)
3249                 return 1;
3250
3251         /* Unmatched */
3252         return 0;
3253 }
3254
3255 static void __perf_event_sync_stat(struct perf_event *event,
3256                                      struct perf_event *next_event)
3257 {
3258         u64 value;
3259
3260         if (!event->attr.inherit_stat)
3261                 return;
3262
3263         /*
3264          * Update the event value, we cannot use perf_event_read()
3265          * because we're in the middle of a context switch and have IRQs
3266          * disabled, which upsets smp_call_function_single(), however
3267          * we know the event must be on the current CPU, therefore we
3268          * don't need to use it.
3269          */
3270         if (event->state == PERF_EVENT_STATE_ACTIVE)
3271                 event->pmu->read(event);
3272
3273         perf_event_update_time(event);
3274
3275         /*
3276          * In order to keep per-task stats reliable we need to flip the event
3277          * values when we flip the contexts.
3278          */
3279         value = local64_read(&next_event->count);
3280         value = local64_xchg(&event->count, value);
3281         local64_set(&next_event->count, value);
3282
3283         swap(event->total_time_enabled, next_event->total_time_enabled);
3284         swap(event->total_time_running, next_event->total_time_running);
3285
3286         /*
3287          * Since we swizzled the values, update the user visible data too.
3288          */
3289         perf_event_update_userpage(event);
3290         perf_event_update_userpage(next_event);
3291 }
3292
3293 static void perf_event_sync_stat(struct perf_event_context *ctx,
3294                                    struct perf_event_context *next_ctx)
3295 {
3296         struct perf_event *event, *next_event;
3297
3298         if (!ctx->nr_stat)
3299                 return;
3300
3301         update_context_time(ctx);
3302
3303         event = list_first_entry(&ctx->event_list,
3304                                    struct perf_event, event_entry);
3305
3306         next_event = list_first_entry(&next_ctx->event_list,
3307                                         struct perf_event, event_entry);
3308
3309         while (&event->event_entry != &ctx->event_list &&
3310                &next_event->event_entry != &next_ctx->event_list) {
3311
3312                 __perf_event_sync_stat(event, next_event);
3313
3314                 event = list_next_entry(event, event_entry);
3315                 next_event = list_next_entry(next_event, event_entry);
3316         }
3317 }
3318
3319 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3320                                          struct task_struct *next)
3321 {
3322         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3323         struct perf_event_context *next_ctx;
3324         struct perf_event_context *parent, *next_parent;
3325         struct perf_cpu_context *cpuctx;
3326         int do_switch = 1;
3327
3328         if (likely(!ctx))
3329                 return;
3330
3331         cpuctx = __get_cpu_context(ctx);
3332         if (!cpuctx->task_ctx)
3333                 return;
3334
3335         rcu_read_lock();
3336         next_ctx = next->perf_event_ctxp[ctxn];
3337         if (!next_ctx)
3338                 goto unlock;
3339
3340         parent = rcu_dereference(ctx->parent_ctx);
3341         next_parent = rcu_dereference(next_ctx->parent_ctx);
3342
3343         /* If neither context have a parent context; they cannot be clones. */
3344         if (!parent && !next_parent)
3345                 goto unlock;
3346
3347         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3348                 /*
3349                  * Looks like the two contexts are clones, so we might be
3350                  * able to optimize the context switch.  We lock both
3351                  * contexts and check that they are clones under the
3352                  * lock (including re-checking that neither has been
3353                  * uncloned in the meantime).  It doesn't matter which
3354                  * order we take the locks because no other cpu could
3355                  * be trying to lock both of these tasks.
3356                  */
3357                 raw_spin_lock(&ctx->lock);
3358                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3359                 if (context_equiv(ctx, next_ctx)) {
3360                         struct pmu *pmu = ctx->pmu;
3361
3362                         WRITE_ONCE(ctx->task, next);
3363                         WRITE_ONCE(next_ctx->task, task);
3364
3365                         /*
3366                          * PMU specific parts of task perf context can require
3367                          * additional synchronization. As an example of such
3368                          * synchronization see implementation details of Intel
3369                          * LBR call stack data profiling;
3370                          */
3371                         if (pmu->swap_task_ctx)
3372                                 pmu->swap_task_ctx(ctx, next_ctx);
3373                         else
3374                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3375
3376                         /*
3377                          * RCU_INIT_POINTER here is safe because we've not
3378                          * modified the ctx and the above modification of
3379                          * ctx->task and ctx->task_ctx_data are immaterial
3380                          * since those values are always verified under
3381                          * ctx->lock which we're now holding.
3382                          */
3383                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3384                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3385
3386                         do_switch = 0;
3387
3388                         perf_event_sync_stat(ctx, next_ctx);
3389                 }
3390                 raw_spin_unlock(&next_ctx->lock);
3391                 raw_spin_unlock(&ctx->lock);
3392         }
3393 unlock:
3394         rcu_read_unlock();
3395
3396         if (do_switch) {
3397                 raw_spin_lock(&ctx->lock);
3398                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3399                 raw_spin_unlock(&ctx->lock);
3400         }
3401 }
3402
3403 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3404
3405 void perf_sched_cb_dec(struct pmu *pmu)
3406 {
3407         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3408
3409         this_cpu_dec(perf_sched_cb_usages);
3410
3411         if (!--cpuctx->sched_cb_usage)
3412                 list_del(&cpuctx->sched_cb_entry);
3413 }
3414
3415
3416 void perf_sched_cb_inc(struct pmu *pmu)
3417 {
3418         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3419
3420         if (!cpuctx->sched_cb_usage++)
3421                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3422
3423         this_cpu_inc(perf_sched_cb_usages);
3424 }
3425
3426 /*
3427  * This function provides the context switch callback to the lower code
3428  * layer. It is invoked ONLY when the context switch callback is enabled.
3429  *
3430  * This callback is relevant even to per-cpu events; for example multi event
3431  * PEBS requires this to provide PID/TID information. This requires we flush
3432  * all queued PEBS records before we context switch to a new task.
3433  */
3434 static void perf_pmu_sched_task(struct task_struct *prev,
3435                                 struct task_struct *next,
3436                                 bool sched_in)
3437 {
3438         struct perf_cpu_context *cpuctx;
3439         struct pmu *pmu;
3440
3441         if (prev == next)
3442                 return;
3443
3444         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3445                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3446
3447                 if (WARN_ON_ONCE(!pmu->sched_task))
3448                         continue;
3449
3450                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3451                 perf_pmu_disable(pmu);
3452
3453                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3454
3455                 perf_pmu_enable(pmu);
3456                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3457         }
3458 }
3459
3460 static void perf_event_switch(struct task_struct *task,
3461                               struct task_struct *next_prev, bool sched_in);
3462
3463 #define for_each_task_context_nr(ctxn)                                  \
3464         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3465
3466 /*
3467  * Called from scheduler to remove the events of the current task,
3468  * with interrupts disabled.
3469  *
3470  * We stop each event and update the event value in event->count.
3471  *
3472  * This does not protect us against NMI, but disable()
3473  * sets the disabled bit in the control field of event _before_
3474  * accessing the event control register. If a NMI hits, then it will
3475  * not restart the event.
3476  */
3477 void __perf_event_task_sched_out(struct task_struct *task,
3478                                  struct task_struct *next)
3479 {
3480         int ctxn;
3481
3482         if (__this_cpu_read(perf_sched_cb_usages))
3483                 perf_pmu_sched_task(task, next, false);
3484
3485         if (atomic_read(&nr_switch_events))
3486                 perf_event_switch(task, next, false);
3487
3488         for_each_task_context_nr(ctxn)
3489                 perf_event_context_sched_out(task, ctxn, next);
3490
3491         /*
3492          * if cgroup events exist on this CPU, then we need
3493          * to check if we have to switch out PMU state.
3494          * cgroup event are system-wide mode only
3495          */
3496         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3497                 perf_cgroup_sched_out(task, next);
3498 }
3499
3500 /*
3501  * Called with IRQs disabled
3502  */
3503 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3504                               enum event_type_t event_type)
3505 {
3506         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3507 }
3508
3509 static bool perf_less_group_idx(const void *l, const void *r)
3510 {
3511         const struct perf_event *le = l, *re = r;
3512
3513         return le->group_index < re->group_index;
3514 }
3515
3516 static void swap_ptr(void *l, void *r)
3517 {
3518         void **lp = l, **rp = r;
3519
3520         swap(*lp, *rp);
3521 }
3522
3523 static const struct min_heap_callbacks perf_min_heap = {
3524         .elem_size = sizeof(struct perf_event *),
3525         .less = perf_less_group_idx,
3526         .swp = swap_ptr,
3527 };
3528
3529 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3530 {
3531         struct perf_event **itrs = heap->data;
3532
3533         if (event) {
3534                 itrs[heap->nr] = event;
3535                 heap->nr++;
3536         }
3537 }
3538
3539 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3540                                 struct perf_event_groups *groups, int cpu,
3541                                 int (*func)(struct perf_event *, void *),
3542                                 void *data)
3543 {
3544 #ifdef CONFIG_CGROUP_PERF
3545         struct cgroup_subsys_state *css = NULL;
3546 #endif
3547         /* Space for per CPU and/or any CPU event iterators. */
3548         struct perf_event *itrs[2];
3549         struct min_heap event_heap;
3550         struct perf_event **evt;
3551         int ret;
3552
3553         if (cpuctx) {
3554                 event_heap = (struct min_heap){
3555                         .data = cpuctx->heap,
3556                         .nr = 0,
3557                         .size = cpuctx->heap_size,
3558                 };
3559
3560                 lockdep_assert_held(&cpuctx->ctx.lock);
3561
3562 #ifdef CONFIG_CGROUP_PERF
3563                 if (cpuctx->cgrp)
3564                         css = &cpuctx->cgrp->css;
3565 #endif
3566         } else {
3567                 event_heap = (struct min_heap){
3568                         .data = itrs,
3569                         .nr = 0,
3570                         .size = ARRAY_SIZE(itrs),
3571                 };
3572                 /* Events not within a CPU context may be on any CPU. */
3573                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3574         }
3575         evt = event_heap.data;
3576
3577         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3578
3579 #ifdef CONFIG_CGROUP_PERF
3580         for (; css; css = css->parent)
3581                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3582 #endif
3583
3584         min_heapify_all(&event_heap, &perf_min_heap);
3585
3586         while (event_heap.nr) {
3587                 ret = func(*evt, data);
3588                 if (ret)
3589                         return ret;
3590
3591                 *evt = perf_event_groups_next(*evt);
3592                 if (*evt)
3593                         min_heapify(&event_heap, 0, &perf_min_heap);
3594                 else
3595                         min_heap_pop(&event_heap, &perf_min_heap);
3596         }
3597
3598         return 0;
3599 }
3600
3601 static int merge_sched_in(struct perf_event *event, void *data)
3602 {
3603         struct perf_event_context *ctx = event->ctx;
3604         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3605         int *can_add_hw = data;
3606
3607         if (event->state <= PERF_EVENT_STATE_OFF)
3608                 return 0;
3609
3610         if (!event_filter_match(event))
3611                 return 0;
3612
3613         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3614                 if (!group_sched_in(event, cpuctx, ctx))
3615                         list_add_tail(&event->active_list, get_event_list(event));
3616         }
3617
3618         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3619                 if (event->attr.pinned)
3620                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3621
3622                 *can_add_hw = 0;
3623                 ctx->rotate_necessary = 1;
3624         }
3625
3626         return 0;
3627 }
3628
3629 static void
3630 ctx_pinned_sched_in(struct perf_event_context *ctx,
3631                     struct perf_cpu_context *cpuctx)
3632 {
3633         int can_add_hw = 1;
3634
3635         if (ctx != &cpuctx->ctx)
3636                 cpuctx = NULL;
3637
3638         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3639                            smp_processor_id(),
3640                            merge_sched_in, &can_add_hw);
3641 }
3642
3643 static void
3644 ctx_flexible_sched_in(struct perf_event_context *ctx,
3645                       struct perf_cpu_context *cpuctx)
3646 {
3647         int can_add_hw = 1;
3648
3649         if (ctx != &cpuctx->ctx)
3650                 cpuctx = NULL;
3651
3652         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3653                            smp_processor_id(),
3654                            merge_sched_in, &can_add_hw);
3655 }
3656
3657 static void
3658 ctx_sched_in(struct perf_event_context *ctx,
3659              struct perf_cpu_context *cpuctx,
3660              enum event_type_t event_type,
3661              struct task_struct *task)
3662 {
3663         int is_active = ctx->is_active;
3664         u64 now;
3665
3666         lockdep_assert_held(&ctx->lock);
3667
3668         if (likely(!ctx->nr_events))
3669                 return;
3670
3671         ctx->is_active |= (event_type | EVENT_TIME);
3672         if (ctx->task) {
3673                 if (!is_active)
3674                         cpuctx->task_ctx = ctx;
3675                 else
3676                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3677         }
3678
3679         is_active ^= ctx->is_active; /* changed bits */
3680
3681         if (is_active & EVENT_TIME) {
3682                 /* start ctx time */
3683                 now = perf_clock();
3684                 ctx->timestamp = now;
3685                 perf_cgroup_set_timestamp(task, ctx);
3686         }
3687
3688         /*
3689          * First go through the list and put on any pinned groups
3690          * in order to give them the best chance of going on.
3691          */
3692         if (is_active & EVENT_PINNED)
3693                 ctx_pinned_sched_in(ctx, cpuctx);
3694
3695         /* Then walk through the lower prio flexible groups */
3696         if (is_active & EVENT_FLEXIBLE)
3697                 ctx_flexible_sched_in(ctx, cpuctx);
3698 }
3699
3700 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3701                              enum event_type_t event_type,
3702                              struct task_struct *task)
3703 {
3704         struct perf_event_context *ctx = &cpuctx->ctx;
3705
3706         ctx_sched_in(ctx, cpuctx, event_type, task);
3707 }
3708
3709 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3710                                         struct task_struct *task)
3711 {
3712         struct perf_cpu_context *cpuctx;
3713
3714         cpuctx = __get_cpu_context(ctx);
3715         if (cpuctx->task_ctx == ctx)
3716                 return;
3717
3718         perf_ctx_lock(cpuctx, ctx);
3719         /*
3720          * We must check ctx->nr_events while holding ctx->lock, such
3721          * that we serialize against perf_install_in_context().
3722          */
3723         if (!ctx->nr_events)
3724                 goto unlock;
3725
3726         perf_pmu_disable(ctx->pmu);
3727         /*
3728          * We want to keep the following priority order:
3729          * cpu pinned (that don't need to move), task pinned,
3730          * cpu flexible, task flexible.
3731          *
3732          * However, if task's ctx is not carrying any pinned
3733          * events, no need to flip the cpuctx's events around.
3734          */
3735         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3736                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3737         perf_event_sched_in(cpuctx, ctx, task);
3738         perf_pmu_enable(ctx->pmu);
3739
3740 unlock:
3741         perf_ctx_unlock(cpuctx, ctx);
3742 }
3743
3744 /*
3745  * Called from scheduler to add the events of the current task
3746  * with interrupts disabled.
3747  *
3748  * We restore the event value and then enable it.
3749  *
3750  * This does not protect us against NMI, but enable()
3751  * sets the enabled bit in the control field of event _before_
3752  * accessing the event control register. If a NMI hits, then it will
3753  * keep the event running.
3754  */
3755 void __perf_event_task_sched_in(struct task_struct *prev,
3756                                 struct task_struct *task)
3757 {
3758         struct perf_event_context *ctx;
3759         int ctxn;
3760
3761         /*
3762          * If cgroup events exist on this CPU, then we need to check if we have
3763          * to switch in PMU state; cgroup event are system-wide mode only.
3764          *
3765          * Since cgroup events are CPU events, we must schedule these in before
3766          * we schedule in the task events.
3767          */
3768         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3769                 perf_cgroup_sched_in(prev, task);
3770
3771         for_each_task_context_nr(ctxn) {
3772                 ctx = task->perf_event_ctxp[ctxn];
3773                 if (likely(!ctx))
3774                         continue;
3775
3776                 perf_event_context_sched_in(ctx, task);
3777         }
3778
3779         if (atomic_read(&nr_switch_events))
3780                 perf_event_switch(task, prev, true);
3781
3782         if (__this_cpu_read(perf_sched_cb_usages))
3783                 perf_pmu_sched_task(prev, task, true);
3784 }
3785
3786 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3787 {
3788         u64 frequency = event->attr.sample_freq;
3789         u64 sec = NSEC_PER_SEC;
3790         u64 divisor, dividend;
3791
3792         int count_fls, nsec_fls, frequency_fls, sec_fls;
3793
3794         count_fls = fls64(count);
3795         nsec_fls = fls64(nsec);
3796         frequency_fls = fls64(frequency);
3797         sec_fls = 30;
3798
3799         /*
3800          * We got @count in @nsec, with a target of sample_freq HZ
3801          * the target period becomes:
3802          *
3803          *             @count * 10^9
3804          * period = -------------------
3805          *          @nsec * sample_freq
3806          *
3807          */
3808
3809         /*
3810          * Reduce accuracy by one bit such that @a and @b converge
3811          * to a similar magnitude.
3812          */
3813 #define REDUCE_FLS(a, b)                \
3814 do {                                    \
3815         if (a##_fls > b##_fls) {        \
3816                 a >>= 1;                \
3817                 a##_fls--;              \
3818         } else {                        \
3819                 b >>= 1;                \
3820                 b##_fls--;              \
3821         }                               \
3822 } while (0)
3823
3824         /*
3825          * Reduce accuracy until either term fits in a u64, then proceed with
3826          * the other, so that finally we can do a u64/u64 division.
3827          */
3828         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3829                 REDUCE_FLS(nsec, frequency);
3830                 REDUCE_FLS(sec, count);
3831         }
3832
3833         if (count_fls + sec_fls > 64) {
3834                 divisor = nsec * frequency;
3835
3836                 while (count_fls + sec_fls > 64) {
3837                         REDUCE_FLS(count, sec);
3838                         divisor >>= 1;
3839                 }
3840
3841                 dividend = count * sec;
3842         } else {
3843                 dividend = count * sec;
3844
3845                 while (nsec_fls + frequency_fls > 64) {
3846                         REDUCE_FLS(nsec, frequency);
3847                         dividend >>= 1;
3848                 }
3849
3850                 divisor = nsec * frequency;
3851         }
3852
3853         if (!divisor)
3854                 return dividend;
3855
3856         return div64_u64(dividend, divisor);
3857 }
3858
3859 static DEFINE_PER_CPU(int, perf_throttled_count);
3860 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3861
3862 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3863 {
3864         struct hw_perf_event *hwc = &event->hw;
3865         s64 period, sample_period;
3866         s64 delta;
3867
3868         period = perf_calculate_period(event, nsec, count);
3869
3870         delta = (s64)(period - hwc->sample_period);
3871         delta = (delta + 7) / 8; /* low pass filter */
3872
3873         sample_period = hwc->sample_period + delta;
3874
3875         if (!sample_period)
3876                 sample_period = 1;
3877
3878         hwc->sample_period = sample_period;
3879
3880         if (local64_read(&hwc->period_left) > 8*sample_period) {
3881                 if (disable)
3882                         event->pmu->stop(event, PERF_EF_UPDATE);
3883
3884                 local64_set(&hwc->period_left, 0);
3885
3886                 if (disable)
3887                         event->pmu->start(event, PERF_EF_RELOAD);
3888         }
3889 }
3890
3891 /*
3892  * combine freq adjustment with unthrottling to avoid two passes over the
3893  * events. At the same time, make sure, having freq events does not change
3894  * the rate of unthrottling as that would introduce bias.
3895  */
3896 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3897                                            int needs_unthr)
3898 {
3899         struct perf_event *event;
3900         struct hw_perf_event *hwc;
3901         u64 now, period = TICK_NSEC;
3902         s64 delta;
3903
3904         /*
3905          * only need to iterate over all events iff:
3906          * - context have events in frequency mode (needs freq adjust)
3907          * - there are events to unthrottle on this cpu
3908          */
3909         if (!(ctx->nr_freq || needs_unthr))
3910                 return;
3911
3912         raw_spin_lock(&ctx->lock);
3913         perf_pmu_disable(ctx->pmu);
3914
3915         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3916                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3917                         continue;
3918
3919                 if (!event_filter_match(event))
3920                         continue;
3921
3922                 perf_pmu_disable(event->pmu);
3923
3924                 hwc = &event->hw;
3925
3926                 if (hwc->interrupts == MAX_INTERRUPTS) {
3927                         hwc->interrupts = 0;
3928                         perf_log_throttle(event, 1);
3929                         event->pmu->start(event, 0);
3930                 }
3931
3932                 if (!event->attr.freq || !event->attr.sample_freq)
3933                         goto next;
3934
3935                 /*
3936                  * stop the event and update event->count
3937                  */
3938                 event->pmu->stop(event, PERF_EF_UPDATE);
3939
3940                 now = local64_read(&event->count);
3941                 delta = now - hwc->freq_count_stamp;
3942                 hwc->freq_count_stamp = now;
3943
3944                 /*
3945                  * restart the event
3946                  * reload only if value has changed
3947                  * we have stopped the event so tell that
3948                  * to perf_adjust_period() to avoid stopping it
3949                  * twice.
3950                  */
3951                 if (delta > 0)
3952                         perf_adjust_period(event, period, delta, false);
3953
3954                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3955         next:
3956                 perf_pmu_enable(event->pmu);
3957         }
3958
3959         perf_pmu_enable(ctx->pmu);
3960         raw_spin_unlock(&ctx->lock);
3961 }
3962
3963 /*
3964  * Move @event to the tail of the @ctx's elegible events.
3965  */
3966 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3967 {
3968         /*
3969          * Rotate the first entry last of non-pinned groups. Rotation might be
3970          * disabled by the inheritance code.
3971          */
3972         if (ctx->rotate_disable)
3973                 return;
3974
3975         perf_event_groups_delete(&ctx->flexible_groups, event);
3976         perf_event_groups_insert(&ctx->flexible_groups, event);
3977 }
3978
3979 /* pick an event from the flexible_groups to rotate */
3980 static inline struct perf_event *
3981 ctx_event_to_rotate(struct perf_event_context *ctx)
3982 {
3983         struct perf_event *event;
3984
3985         /* pick the first active flexible event */
3986         event = list_first_entry_or_null(&ctx->flexible_active,
3987                                          struct perf_event, active_list);
3988
3989         /* if no active flexible event, pick the first event */
3990         if (!event) {
3991                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3992                                       typeof(*event), group_node);
3993         }
3994
3995         /*
3996          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
3997          * finds there are unschedulable events, it will set it again.
3998          */
3999         ctx->rotate_necessary = 0;
4000
4001         return event;
4002 }
4003
4004 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4005 {
4006         struct perf_event *cpu_event = NULL, *task_event = NULL;
4007         struct perf_event_context *task_ctx = NULL;
4008         int cpu_rotate, task_rotate;
4009
4010         /*
4011          * Since we run this from IRQ context, nobody can install new
4012          * events, thus the event count values are stable.
4013          */
4014
4015         cpu_rotate = cpuctx->ctx.rotate_necessary;
4016         task_ctx = cpuctx->task_ctx;
4017         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4018
4019         if (!(cpu_rotate || task_rotate))
4020                 return false;
4021
4022         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4023         perf_pmu_disable(cpuctx->ctx.pmu);
4024
4025         if (task_rotate)
4026                 task_event = ctx_event_to_rotate(task_ctx);
4027         if (cpu_rotate)
4028                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4029
4030         /*
4031          * As per the order given at ctx_resched() first 'pop' task flexible
4032          * and then, if needed CPU flexible.
4033          */
4034         if (task_event || (task_ctx && cpu_event))
4035                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4036         if (cpu_event)
4037                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4038
4039         if (task_event)
4040                 rotate_ctx(task_ctx, task_event);
4041         if (cpu_event)
4042                 rotate_ctx(&cpuctx->ctx, cpu_event);
4043
4044         perf_event_sched_in(cpuctx, task_ctx, current);
4045
4046         perf_pmu_enable(cpuctx->ctx.pmu);
4047         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4048
4049         return true;
4050 }
4051
4052 void perf_event_task_tick(void)
4053 {
4054         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4055         struct perf_event_context *ctx, *tmp;
4056         int throttled;
4057
4058         lockdep_assert_irqs_disabled();
4059
4060         __this_cpu_inc(perf_throttled_seq);
4061         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4062         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4063
4064         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4065                 perf_adjust_freq_unthr_context(ctx, throttled);
4066 }
4067
4068 static int event_enable_on_exec(struct perf_event *event,
4069                                 struct perf_event_context *ctx)
4070 {
4071         if (!event->attr.enable_on_exec)
4072                 return 0;
4073
4074         event->attr.enable_on_exec = 0;
4075         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4076                 return 0;
4077
4078         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4079
4080         return 1;
4081 }
4082
4083 /*
4084  * Enable all of a task's events that have been marked enable-on-exec.
4085  * This expects task == current.
4086  */
4087 static void perf_event_enable_on_exec(int ctxn)
4088 {
4089         struct perf_event_context *ctx, *clone_ctx = NULL;
4090         enum event_type_t event_type = 0;
4091         struct perf_cpu_context *cpuctx;
4092         struct perf_event *event;
4093         unsigned long flags;
4094         int enabled = 0;
4095
4096         local_irq_save(flags);
4097         ctx = current->perf_event_ctxp[ctxn];
4098         if (!ctx || !ctx->nr_events)
4099                 goto out;
4100
4101         cpuctx = __get_cpu_context(ctx);
4102         perf_ctx_lock(cpuctx, ctx);
4103         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4104         list_for_each_entry(event, &ctx->event_list, event_entry) {
4105                 enabled |= event_enable_on_exec(event, ctx);
4106                 event_type |= get_event_type(event);
4107         }
4108
4109         /*
4110          * Unclone and reschedule this context if we enabled any event.
4111          */
4112         if (enabled) {
4113                 clone_ctx = unclone_ctx(ctx);
4114                 ctx_resched(cpuctx, ctx, event_type);
4115         } else {
4116                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4117         }
4118         perf_ctx_unlock(cpuctx, ctx);
4119
4120 out:
4121         local_irq_restore(flags);
4122
4123         if (clone_ctx)
4124                 put_ctx(clone_ctx);
4125 }
4126
4127 struct perf_read_data {
4128         struct perf_event *event;
4129         bool group;
4130         int ret;
4131 };
4132
4133 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4134 {
4135         u16 local_pkg, event_pkg;
4136
4137         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4138                 int local_cpu = smp_processor_id();
4139
4140                 event_pkg = topology_physical_package_id(event_cpu);
4141                 local_pkg = topology_physical_package_id(local_cpu);
4142
4143                 if (event_pkg == local_pkg)
4144                         return local_cpu;
4145         }
4146
4147         return event_cpu;
4148 }
4149
4150 /*
4151  * Cross CPU call to read the hardware event
4152  */
4153 static void __perf_event_read(void *info)
4154 {
4155         struct perf_read_data *data = info;
4156         struct perf_event *sub, *event = data->event;
4157         struct perf_event_context *ctx = event->ctx;
4158         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4159         struct pmu *pmu = event->pmu;
4160
4161         /*
4162          * If this is a task context, we need to check whether it is
4163          * the current task context of this cpu.  If not it has been
4164          * scheduled out before the smp call arrived.  In that case
4165          * event->count would have been updated to a recent sample
4166          * when the event was scheduled out.
4167          */
4168         if (ctx->task && cpuctx->task_ctx != ctx)
4169                 return;
4170
4171         raw_spin_lock(&ctx->lock);
4172         if (ctx->is_active & EVENT_TIME) {
4173                 update_context_time(ctx);
4174                 update_cgrp_time_from_event(event);
4175         }
4176
4177         perf_event_update_time(event);
4178         if (data->group)
4179                 perf_event_update_sibling_time(event);
4180
4181         if (event->state != PERF_EVENT_STATE_ACTIVE)
4182                 goto unlock;
4183
4184         if (!data->group) {
4185                 pmu->read(event);
4186                 data->ret = 0;
4187                 goto unlock;
4188         }
4189
4190         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4191
4192         pmu->read(event);
4193
4194         for_each_sibling_event(sub, event) {
4195                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4196                         /*
4197                          * Use sibling's PMU rather than @event's since
4198                          * sibling could be on different (eg: software) PMU.
4199                          */
4200                         sub->pmu->read(sub);
4201                 }
4202         }
4203
4204         data->ret = pmu->commit_txn(pmu);
4205
4206 unlock:
4207         raw_spin_unlock(&ctx->lock);
4208 }
4209
4210 static inline u64 perf_event_count(struct perf_event *event)
4211 {
4212         return local64_read(&event->count) + atomic64_read(&event->child_count);
4213 }
4214
4215 /*
4216  * NMI-safe method to read a local event, that is an event that
4217  * is:
4218  *   - either for the current task, or for this CPU
4219  *   - does not have inherit set, for inherited task events
4220  *     will not be local and we cannot read them atomically
4221  *   - must not have a pmu::count method
4222  */
4223 int perf_event_read_local(struct perf_event *event, u64 *value,
4224                           u64 *enabled, u64 *running)
4225 {
4226         unsigned long flags;
4227         int ret = 0;
4228
4229         /*
4230          * Disabling interrupts avoids all counter scheduling (context
4231          * switches, timer based rotation and IPIs).
4232          */
4233         local_irq_save(flags);
4234
4235         /*
4236          * It must not be an event with inherit set, we cannot read
4237          * all child counters from atomic context.
4238          */
4239         if (event->attr.inherit) {
4240                 ret = -EOPNOTSUPP;
4241                 goto out;
4242         }
4243
4244         /* If this is a per-task event, it must be for current */
4245         if ((event->attach_state & PERF_ATTACH_TASK) &&
4246             event->hw.target != current) {
4247                 ret = -EINVAL;
4248                 goto out;
4249         }
4250
4251         /* If this is a per-CPU event, it must be for this CPU */
4252         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4253             event->cpu != smp_processor_id()) {
4254                 ret = -EINVAL;
4255                 goto out;
4256         }
4257
4258         /* If this is a pinned event it must be running on this CPU */
4259         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4260                 ret = -EBUSY;
4261                 goto out;
4262         }
4263
4264         /*
4265          * If the event is currently on this CPU, its either a per-task event,
4266          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4267          * oncpu == -1).
4268          */
4269         if (event->oncpu == smp_processor_id())
4270                 event->pmu->read(event);
4271
4272         *value = local64_read(&event->count);
4273         if (enabled || running) {
4274                 u64 now = event->shadow_ctx_time + perf_clock();
4275                 u64 __enabled, __running;
4276
4277                 __perf_update_times(event, now, &__enabled, &__running);
4278                 if (enabled)
4279                         *enabled = __enabled;
4280                 if (running)
4281                         *running = __running;
4282         }
4283 out:
4284         local_irq_restore(flags);
4285
4286         return ret;
4287 }
4288
4289 static int perf_event_read(struct perf_event *event, bool group)
4290 {
4291         enum perf_event_state state = READ_ONCE(event->state);
4292         int event_cpu, ret = 0;
4293
4294         /*
4295          * If event is enabled and currently active on a CPU, update the
4296          * value in the event structure:
4297          */
4298 again:
4299         if (state == PERF_EVENT_STATE_ACTIVE) {
4300                 struct perf_read_data data;
4301
4302                 /*
4303                  * Orders the ->state and ->oncpu loads such that if we see
4304                  * ACTIVE we must also see the right ->oncpu.
4305                  *
4306                  * Matches the smp_wmb() from event_sched_in().
4307                  */
4308                 smp_rmb();
4309
4310                 event_cpu = READ_ONCE(event->oncpu);
4311                 if ((unsigned)event_cpu >= nr_cpu_ids)
4312                         return 0;
4313
4314                 data = (struct perf_read_data){
4315                         .event = event,
4316                         .group = group,
4317                         .ret = 0,
4318                 };
4319
4320                 preempt_disable();
4321                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4322
4323                 /*
4324                  * Purposely ignore the smp_call_function_single() return
4325                  * value.
4326                  *
4327                  * If event_cpu isn't a valid CPU it means the event got
4328                  * scheduled out and that will have updated the event count.
4329                  *
4330                  * Therefore, either way, we'll have an up-to-date event count
4331                  * after this.
4332                  */
4333                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4334                 preempt_enable();
4335                 ret = data.ret;
4336
4337         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4338                 struct perf_event_context *ctx = event->ctx;
4339                 unsigned long flags;
4340
4341                 raw_spin_lock_irqsave(&ctx->lock, flags);
4342                 state = event->state;
4343                 if (state != PERF_EVENT_STATE_INACTIVE) {
4344                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4345                         goto again;
4346                 }
4347
4348                 /*
4349                  * May read while context is not active (e.g., thread is
4350                  * blocked), in that case we cannot update context time
4351                  */
4352                 if (ctx->is_active & EVENT_TIME) {
4353                         update_context_time(ctx);
4354                         update_cgrp_time_from_event(event);
4355                 }
4356
4357                 perf_event_update_time(event);
4358                 if (group)
4359                         perf_event_update_sibling_time(event);
4360                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4361         }
4362
4363         return ret;
4364 }
4365
4366 /*
4367  * Initialize the perf_event context in a task_struct:
4368  */
4369 static void __perf_event_init_context(struct perf_event_context *ctx)
4370 {
4371         raw_spin_lock_init(&ctx->lock);
4372         mutex_init(&ctx->mutex);
4373         INIT_LIST_HEAD(&ctx->active_ctx_list);
4374         perf_event_groups_init(&ctx->pinned_groups);
4375         perf_event_groups_init(&ctx->flexible_groups);
4376         INIT_LIST_HEAD(&ctx->event_list);
4377         INIT_LIST_HEAD(&ctx->pinned_active);
4378         INIT_LIST_HEAD(&ctx->flexible_active);
4379         refcount_set(&ctx->refcount, 1);
4380 }
4381
4382 static struct perf_event_context *
4383 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4384 {
4385         struct perf_event_context *ctx;
4386
4387         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4388         if (!ctx)
4389                 return NULL;
4390
4391         __perf_event_init_context(ctx);
4392         if (task)
4393                 ctx->task = get_task_struct(task);
4394         ctx->pmu = pmu;
4395
4396         return ctx;
4397 }
4398
4399 static struct task_struct *
4400 find_lively_task_by_vpid(pid_t vpid)
4401 {
4402         struct task_struct *task;
4403
4404         rcu_read_lock();
4405         if (!vpid)
4406                 task = current;
4407         else
4408                 task = find_task_by_vpid(vpid);
4409         if (task)
4410                 get_task_struct(task);
4411         rcu_read_unlock();
4412
4413         if (!task)
4414                 return ERR_PTR(-ESRCH);
4415
4416         return task;
4417 }
4418
4419 /*
4420  * Returns a matching context with refcount and pincount.
4421  */
4422 static struct perf_event_context *
4423 find_get_context(struct pmu *pmu, struct task_struct *task,
4424                 struct perf_event *event)
4425 {
4426         struct perf_event_context *ctx, *clone_ctx = NULL;
4427         struct perf_cpu_context *cpuctx;
4428         void *task_ctx_data = NULL;
4429         unsigned long flags;
4430         int ctxn, err;
4431         int cpu = event->cpu;
4432
4433         if (!task) {
4434                 /* Must be root to operate on a CPU event: */
4435                 err = perf_allow_cpu(&event->attr);
4436                 if (err)
4437                         return ERR_PTR(err);
4438
4439                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4440                 ctx = &cpuctx->ctx;
4441                 get_ctx(ctx);
4442                 ++ctx->pin_count;
4443
4444                 return ctx;
4445         }
4446
4447         err = -EINVAL;
4448         ctxn = pmu->task_ctx_nr;
4449         if (ctxn < 0)
4450                 goto errout;
4451
4452         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4453                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4454                 if (!task_ctx_data) {
4455                         err = -ENOMEM;
4456                         goto errout;
4457                 }
4458         }
4459
4460 retry:
4461         ctx = perf_lock_task_context(task, ctxn, &flags);
4462         if (ctx) {
4463                 clone_ctx = unclone_ctx(ctx);
4464                 ++ctx->pin_count;
4465
4466                 if (task_ctx_data && !ctx->task_ctx_data) {
4467                         ctx->task_ctx_data = task_ctx_data;
4468                         task_ctx_data = NULL;
4469                 }
4470                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4471
4472                 if (clone_ctx)
4473                         put_ctx(clone_ctx);
4474         } else {
4475                 ctx = alloc_perf_context(pmu, task);
4476                 err = -ENOMEM;
4477                 if (!ctx)
4478                         goto errout;
4479
4480                 if (task_ctx_data) {
4481                         ctx->task_ctx_data = task_ctx_data;
4482                         task_ctx_data = NULL;
4483                 }
4484
4485                 err = 0;
4486                 mutex_lock(&task->perf_event_mutex);
4487                 /*
4488                  * If it has already passed perf_event_exit_task().
4489                  * we must see PF_EXITING, it takes this mutex too.
4490                  */
4491                 if (task->flags & PF_EXITING)
4492                         err = -ESRCH;
4493                 else if (task->perf_event_ctxp[ctxn])
4494                         err = -EAGAIN;
4495                 else {
4496                         get_ctx(ctx);
4497                         ++ctx->pin_count;
4498                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4499                 }
4500                 mutex_unlock(&task->perf_event_mutex);
4501
4502                 if (unlikely(err)) {
4503                         put_ctx(ctx);
4504
4505                         if (err == -EAGAIN)
4506                                 goto retry;
4507                         goto errout;
4508                 }
4509         }
4510
4511         kfree(task_ctx_data);
4512         return ctx;
4513
4514 errout:
4515         kfree(task_ctx_data);
4516         return ERR_PTR(err);
4517 }
4518
4519 static void perf_event_free_filter(struct perf_event *event);
4520 static void perf_event_free_bpf_prog(struct perf_event *event);
4521
4522 static void free_event_rcu(struct rcu_head *head)
4523 {
4524         struct perf_event *event;
4525
4526         event = container_of(head, struct perf_event, rcu_head);
4527         if (event->ns)
4528                 put_pid_ns(event->ns);
4529         perf_event_free_filter(event);
4530         kfree(event);
4531 }
4532
4533 static void ring_buffer_attach(struct perf_event *event,
4534                                struct perf_buffer *rb);
4535
4536 static void detach_sb_event(struct perf_event *event)
4537 {
4538         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4539
4540         raw_spin_lock(&pel->lock);
4541         list_del_rcu(&event->sb_list);
4542         raw_spin_unlock(&pel->lock);
4543 }
4544
4545 static bool is_sb_event(struct perf_event *event)
4546 {
4547         struct perf_event_attr *attr = &event->attr;
4548
4549         if (event->parent)
4550                 return false;
4551
4552         if (event->attach_state & PERF_ATTACH_TASK)
4553                 return false;
4554
4555         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4556             attr->comm || attr->comm_exec ||
4557             attr->task || attr->ksymbol ||
4558             attr->context_switch ||
4559             attr->bpf_event)
4560                 return true;
4561         return false;
4562 }
4563
4564 static void unaccount_pmu_sb_event(struct perf_event *event)
4565 {
4566         if (is_sb_event(event))
4567                 detach_sb_event(event);
4568 }
4569
4570 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4571 {
4572         if (event->parent)
4573                 return;
4574
4575         if (is_cgroup_event(event))
4576                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4577 }
4578
4579 #ifdef CONFIG_NO_HZ_FULL
4580 static DEFINE_SPINLOCK(nr_freq_lock);
4581 #endif
4582
4583 static void unaccount_freq_event_nohz(void)
4584 {
4585 #ifdef CONFIG_NO_HZ_FULL
4586         spin_lock(&nr_freq_lock);
4587         if (atomic_dec_and_test(&nr_freq_events))
4588                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4589         spin_unlock(&nr_freq_lock);
4590 #endif
4591 }
4592
4593 static void unaccount_freq_event(void)
4594 {
4595         if (tick_nohz_full_enabled())
4596                 unaccount_freq_event_nohz();
4597         else
4598                 atomic_dec(&nr_freq_events);
4599 }
4600
4601 static void unaccount_event(struct perf_event *event)
4602 {
4603         bool dec = false;
4604
4605         if (event->parent)
4606                 return;
4607
4608         if (event->attach_state & PERF_ATTACH_TASK)
4609                 dec = true;
4610         if (event->attr.mmap || event->attr.mmap_data)
4611                 atomic_dec(&nr_mmap_events);
4612         if (event->attr.comm)
4613                 atomic_dec(&nr_comm_events);
4614         if (event->attr.namespaces)
4615                 atomic_dec(&nr_namespaces_events);
4616         if (event->attr.cgroup)
4617                 atomic_dec(&nr_cgroup_events);
4618         if (event->attr.task)
4619                 atomic_dec(&nr_task_events);
4620         if (event->attr.freq)
4621                 unaccount_freq_event();
4622         if (event->attr.context_switch) {
4623                 dec = true;
4624                 atomic_dec(&nr_switch_events);
4625         }
4626         if (is_cgroup_event(event))
4627                 dec = true;
4628         if (has_branch_stack(event))
4629                 dec = true;
4630         if (event->attr.ksymbol)
4631                 atomic_dec(&nr_ksymbol_events);
4632         if (event->attr.bpf_event)
4633                 atomic_dec(&nr_bpf_events);
4634
4635         if (dec) {
4636                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4637                         schedule_delayed_work(&perf_sched_work, HZ);
4638         }
4639
4640         unaccount_event_cpu(event, event->cpu);
4641
4642         unaccount_pmu_sb_event(event);
4643 }
4644
4645 static void perf_sched_delayed(struct work_struct *work)
4646 {
4647         mutex_lock(&perf_sched_mutex);
4648         if (atomic_dec_and_test(&perf_sched_count))
4649                 static_branch_disable(&perf_sched_events);
4650         mutex_unlock(&perf_sched_mutex);
4651 }
4652
4653 /*
4654  * The following implement mutual exclusion of events on "exclusive" pmus
4655  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4656  * at a time, so we disallow creating events that might conflict, namely:
4657  *
4658  *  1) cpu-wide events in the presence of per-task events,
4659  *  2) per-task events in the presence of cpu-wide events,
4660  *  3) two matching events on the same context.
4661  *
4662  * The former two cases are handled in the allocation path (perf_event_alloc(),
4663  * _free_event()), the latter -- before the first perf_install_in_context().
4664  */
4665 static int exclusive_event_init(struct perf_event *event)
4666 {
4667         struct pmu *pmu = event->pmu;
4668
4669         if (!is_exclusive_pmu(pmu))
4670                 return 0;
4671
4672         /*
4673          * Prevent co-existence of per-task and cpu-wide events on the
4674          * same exclusive pmu.
4675          *
4676          * Negative pmu::exclusive_cnt means there are cpu-wide
4677          * events on this "exclusive" pmu, positive means there are
4678          * per-task events.
4679          *
4680          * Since this is called in perf_event_alloc() path, event::ctx
4681          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4682          * to mean "per-task event", because unlike other attach states it
4683          * never gets cleared.
4684          */
4685         if (event->attach_state & PERF_ATTACH_TASK) {
4686                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4687                         return -EBUSY;
4688         } else {
4689                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4690                         return -EBUSY;
4691         }
4692
4693         return 0;
4694 }
4695
4696 static void exclusive_event_destroy(struct perf_event *event)
4697 {
4698         struct pmu *pmu = event->pmu;
4699
4700         if (!is_exclusive_pmu(pmu))
4701                 return;
4702
4703         /* see comment in exclusive_event_init() */
4704         if (event->attach_state & PERF_ATTACH_TASK)
4705                 atomic_dec(&pmu->exclusive_cnt);
4706         else
4707                 atomic_inc(&pmu->exclusive_cnt);
4708 }
4709
4710 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4711 {
4712         if ((e1->pmu == e2->pmu) &&
4713             (e1->cpu == e2->cpu ||
4714              e1->cpu == -1 ||
4715              e2->cpu == -1))
4716                 return true;
4717         return false;
4718 }
4719
4720 static bool exclusive_event_installable(struct perf_event *event,
4721                                         struct perf_event_context *ctx)
4722 {
4723         struct perf_event *iter_event;
4724         struct pmu *pmu = event->pmu;
4725
4726         lockdep_assert_held(&ctx->mutex);
4727
4728         if (!is_exclusive_pmu(pmu))
4729                 return true;
4730
4731         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4732                 if (exclusive_event_match(iter_event, event))
4733                         return false;
4734         }
4735
4736         return true;
4737 }
4738
4739 static void perf_addr_filters_splice(struct perf_event *event,
4740                                        struct list_head *head);
4741
4742 static void _free_event(struct perf_event *event)
4743 {
4744         irq_work_sync(&event->pending);
4745
4746         unaccount_event(event);
4747
4748         security_perf_event_free(event);
4749
4750         if (event->rb) {
4751                 /*
4752                  * Can happen when we close an event with re-directed output.
4753                  *
4754                  * Since we have a 0 refcount, perf_mmap_close() will skip
4755                  * over us; possibly making our ring_buffer_put() the last.
4756                  */
4757                 mutex_lock(&event->mmap_mutex);
4758                 ring_buffer_attach(event, NULL);
4759                 mutex_unlock(&event->mmap_mutex);
4760         }
4761
4762         if (is_cgroup_event(event))
4763                 perf_detach_cgroup(event);
4764
4765         if (!event->parent) {
4766                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4767                         put_callchain_buffers();
4768         }
4769
4770         perf_event_free_bpf_prog(event);
4771         perf_addr_filters_splice(event, NULL);
4772         kfree(event->addr_filter_ranges);
4773
4774         if (event->destroy)
4775                 event->destroy(event);
4776
4777         /*
4778          * Must be after ->destroy(), due to uprobe_perf_close() using
4779          * hw.target.
4780          */
4781         if (event->hw.target)
4782                 put_task_struct(event->hw.target);
4783
4784         /*
4785          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4786          * all task references must be cleaned up.
4787          */
4788         if (event->ctx)
4789                 put_ctx(event->ctx);
4790
4791         exclusive_event_destroy(event);
4792         module_put(event->pmu->module);
4793
4794         call_rcu(&event->rcu_head, free_event_rcu);
4795 }
4796
4797 /*
4798  * Used to free events which have a known refcount of 1, such as in error paths
4799  * where the event isn't exposed yet and inherited events.
4800  */
4801 static void free_event(struct perf_event *event)
4802 {
4803         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4804                                 "unexpected event refcount: %ld; ptr=%p\n",
4805                                 atomic_long_read(&event->refcount), event)) {
4806                 /* leak to avoid use-after-free */
4807                 return;
4808         }
4809
4810         _free_event(event);
4811 }
4812
4813 /*
4814  * Remove user event from the owner task.
4815  */
4816 static void perf_remove_from_owner(struct perf_event *event)
4817 {
4818         struct task_struct *owner;
4819
4820         rcu_read_lock();
4821         /*
4822          * Matches the smp_store_release() in perf_event_exit_task(). If we
4823          * observe !owner it means the list deletion is complete and we can
4824          * indeed free this event, otherwise we need to serialize on
4825          * owner->perf_event_mutex.
4826          */
4827         owner = READ_ONCE(event->owner);
4828         if (owner) {
4829                 /*
4830                  * Since delayed_put_task_struct() also drops the last
4831                  * task reference we can safely take a new reference
4832                  * while holding the rcu_read_lock().
4833                  */
4834                 get_task_struct(owner);
4835         }
4836         rcu_read_unlock();
4837
4838         if (owner) {
4839                 /*
4840                  * If we're here through perf_event_exit_task() we're already
4841                  * holding ctx->mutex which would be an inversion wrt. the
4842                  * normal lock order.
4843                  *
4844                  * However we can safely take this lock because its the child
4845                  * ctx->mutex.
4846                  */
4847                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4848
4849                 /*
4850                  * We have to re-check the event->owner field, if it is cleared
4851                  * we raced with perf_event_exit_task(), acquiring the mutex
4852                  * ensured they're done, and we can proceed with freeing the
4853                  * event.
4854                  */
4855                 if (event->owner) {
4856                         list_del_init(&event->owner_entry);
4857                         smp_store_release(&event->owner, NULL);
4858                 }
4859                 mutex_unlock(&owner->perf_event_mutex);
4860                 put_task_struct(owner);
4861         }
4862 }
4863
4864 static void put_event(struct perf_event *event)
4865 {
4866         if (!atomic_long_dec_and_test(&event->refcount))
4867                 return;
4868
4869         _free_event(event);
4870 }
4871
4872 /*
4873  * Kill an event dead; while event:refcount will preserve the event
4874  * object, it will not preserve its functionality. Once the last 'user'
4875  * gives up the object, we'll destroy the thing.
4876  */
4877 int perf_event_release_kernel(struct perf_event *event)
4878 {
4879         struct perf_event_context *ctx = event->ctx;
4880         struct perf_event *child, *tmp;
4881         LIST_HEAD(free_list);
4882
4883         /*
4884          * If we got here through err_file: fput(event_file); we will not have
4885          * attached to a context yet.
4886          */
4887         if (!ctx) {
4888                 WARN_ON_ONCE(event->attach_state &
4889                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4890                 goto no_ctx;
4891         }
4892
4893         if (!is_kernel_event(event))
4894                 perf_remove_from_owner(event);
4895
4896         ctx = perf_event_ctx_lock(event);
4897         WARN_ON_ONCE(ctx->parent_ctx);
4898         perf_remove_from_context(event, DETACH_GROUP);
4899
4900         raw_spin_lock_irq(&ctx->lock);
4901         /*
4902          * Mark this event as STATE_DEAD, there is no external reference to it
4903          * anymore.
4904          *
4905          * Anybody acquiring event->child_mutex after the below loop _must_
4906          * also see this, most importantly inherit_event() which will avoid
4907          * placing more children on the list.
4908          *
4909          * Thus this guarantees that we will in fact observe and kill _ALL_
4910          * child events.
4911          */
4912         event->state = PERF_EVENT_STATE_DEAD;
4913         raw_spin_unlock_irq(&ctx->lock);
4914
4915         perf_event_ctx_unlock(event, ctx);
4916
4917 again:
4918         mutex_lock(&event->child_mutex);
4919         list_for_each_entry(child, &event->child_list, child_list) {
4920
4921                 /*
4922                  * Cannot change, child events are not migrated, see the
4923                  * comment with perf_event_ctx_lock_nested().
4924                  */
4925                 ctx = READ_ONCE(child->ctx);
4926                 /*
4927                  * Since child_mutex nests inside ctx::mutex, we must jump
4928                  * through hoops. We start by grabbing a reference on the ctx.
4929                  *
4930                  * Since the event cannot get freed while we hold the
4931                  * child_mutex, the context must also exist and have a !0
4932                  * reference count.
4933                  */
4934                 get_ctx(ctx);
4935
4936                 /*
4937                  * Now that we have a ctx ref, we can drop child_mutex, and
4938                  * acquire ctx::mutex without fear of it going away. Then we
4939                  * can re-acquire child_mutex.
4940                  */
4941                 mutex_unlock(&event->child_mutex);
4942                 mutex_lock(&ctx->mutex);
4943                 mutex_lock(&event->child_mutex);
4944
4945                 /*
4946                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4947                  * state, if child is still the first entry, it didn't get freed
4948                  * and we can continue doing so.
4949                  */
4950                 tmp = list_first_entry_or_null(&event->child_list,
4951                                                struct perf_event, child_list);
4952                 if (tmp == child) {
4953                         perf_remove_from_context(child, DETACH_GROUP);
4954                         list_move(&child->child_list, &free_list);
4955                         /*
4956                          * This matches the refcount bump in inherit_event();
4957                          * this can't be the last reference.
4958                          */
4959                         put_event(event);
4960                 }
4961
4962                 mutex_unlock(&event->child_mutex);
4963                 mutex_unlock(&ctx->mutex);
4964                 put_ctx(ctx);
4965                 goto again;
4966         }
4967         mutex_unlock(&event->child_mutex);
4968
4969         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4970                 void *var = &child->ctx->refcount;
4971
4972                 list_del(&child->child_list);
4973                 free_event(child);
4974
4975                 /*
4976                  * Wake any perf_event_free_task() waiting for this event to be
4977                  * freed.
4978                  */
4979                 smp_mb(); /* pairs with wait_var_event() */
4980                 wake_up_var(var);
4981         }
4982
4983 no_ctx:
4984         put_event(event); /* Must be the 'last' reference */
4985         return 0;
4986 }
4987 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4988
4989 /*
4990  * Called when the last reference to the file is gone.
4991  */
4992 static int perf_release(struct inode *inode, struct file *file)
4993 {
4994         perf_event_release_kernel(file->private_data);
4995         return 0;
4996 }
4997
4998 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4999 {
5000         struct perf_event *child;
5001         u64 total = 0;
5002
5003         *enabled = 0;
5004         *running = 0;
5005
5006         mutex_lock(&event->child_mutex);
5007
5008         (void)perf_event_read(event, false);
5009         total += perf_event_count(event);
5010
5011         *enabled += event->total_time_enabled +
5012                         atomic64_read(&event->child_total_time_enabled);
5013         *running += event->total_time_running +
5014                         atomic64_read(&event->child_total_time_running);
5015
5016         list_for_each_entry(child, &event->child_list, child_list) {
5017                 (void)perf_event_read(child, false);
5018                 total += perf_event_count(child);
5019                 *enabled += child->total_time_enabled;
5020                 *running += child->total_time_running;
5021         }
5022         mutex_unlock(&event->child_mutex);
5023
5024         return total;
5025 }
5026
5027 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5028 {
5029         struct perf_event_context *ctx;
5030         u64 count;
5031
5032         ctx = perf_event_ctx_lock(event);
5033         count = __perf_event_read_value(event, enabled, running);
5034         perf_event_ctx_unlock(event, ctx);
5035
5036         return count;
5037 }
5038 EXPORT_SYMBOL_GPL(perf_event_read_value);
5039
5040 static int __perf_read_group_add(struct perf_event *leader,
5041                                         u64 read_format, u64 *values)
5042 {
5043         struct perf_event_context *ctx = leader->ctx;
5044         struct perf_event *sub;
5045         unsigned long flags;
5046         int n = 1; /* skip @nr */
5047         int ret;
5048
5049         ret = perf_event_read(leader, true);
5050         if (ret)
5051                 return ret;
5052
5053         raw_spin_lock_irqsave(&ctx->lock, flags);
5054
5055         /*
5056          * Since we co-schedule groups, {enabled,running} times of siblings
5057          * will be identical to those of the leader, so we only publish one
5058          * set.
5059          */
5060         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5061                 values[n++] += leader->total_time_enabled +
5062                         atomic64_read(&leader->child_total_time_enabled);
5063         }
5064
5065         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5066                 values[n++] += leader->total_time_running +
5067                         atomic64_read(&leader->child_total_time_running);
5068         }
5069
5070         /*
5071          * Write {count,id} tuples for every sibling.
5072          */
5073         values[n++] += perf_event_count(leader);
5074         if (read_format & PERF_FORMAT_ID)
5075                 values[n++] = primary_event_id(leader);
5076
5077         for_each_sibling_event(sub, leader) {
5078                 values[n++] += perf_event_count(sub);
5079                 if (read_format & PERF_FORMAT_ID)
5080                         values[n++] = primary_event_id(sub);
5081         }
5082
5083         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5084         return 0;
5085 }
5086
5087 static int perf_read_group(struct perf_event *event,
5088                                    u64 read_format, char __user *buf)
5089 {
5090         struct perf_event *leader = event->group_leader, *child;
5091         struct perf_event_context *ctx = leader->ctx;
5092         int ret;
5093         u64 *values;
5094
5095         lockdep_assert_held(&ctx->mutex);
5096
5097         values = kzalloc(event->read_size, GFP_KERNEL);
5098         if (!values)
5099                 return -ENOMEM;
5100
5101         values[0] = 1 + leader->nr_siblings;
5102
5103         /*
5104          * By locking the child_mutex of the leader we effectively
5105          * lock the child list of all siblings.. XXX explain how.
5106          */
5107         mutex_lock(&leader->child_mutex);
5108
5109         ret = __perf_read_group_add(leader, read_format, values);
5110         if (ret)
5111                 goto unlock;
5112
5113         list_for_each_entry(child, &leader->child_list, child_list) {
5114                 ret = __perf_read_group_add(child, read_format, values);
5115                 if (ret)
5116                         goto unlock;
5117         }
5118
5119         mutex_unlock(&leader->child_mutex);
5120
5121         ret = event->read_size;
5122         if (copy_to_user(buf, values, event->read_size))
5123                 ret = -EFAULT;
5124         goto out;
5125
5126 unlock:
5127         mutex_unlock(&leader->child_mutex);
5128 out:
5129         kfree(values);
5130         return ret;
5131 }
5132
5133 static int perf_read_one(struct perf_event *event,
5134                                  u64 read_format, char __user *buf)
5135 {
5136         u64 enabled, running;
5137         u64 values[4];
5138         int n = 0;
5139
5140         values[n++] = __perf_event_read_value(event, &enabled, &running);
5141         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5142                 values[n++] = enabled;
5143         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5144                 values[n++] = running;
5145         if (read_format & PERF_FORMAT_ID)
5146                 values[n++] = primary_event_id(event);
5147
5148         if (copy_to_user(buf, values, n * sizeof(u64)))
5149                 return -EFAULT;
5150
5151         return n * sizeof(u64);
5152 }
5153
5154 static bool is_event_hup(struct perf_event *event)
5155 {
5156         bool no_children;
5157
5158         if (event->state > PERF_EVENT_STATE_EXIT)
5159                 return false;
5160
5161         mutex_lock(&event->child_mutex);
5162         no_children = list_empty(&event->child_list);
5163         mutex_unlock(&event->child_mutex);
5164         return no_children;
5165 }
5166
5167 /*
5168  * Read the performance event - simple non blocking version for now
5169  */
5170 static ssize_t
5171 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5172 {
5173         u64 read_format = event->attr.read_format;
5174         int ret;
5175
5176         /*
5177          * Return end-of-file for a read on an event that is in
5178          * error state (i.e. because it was pinned but it couldn't be
5179          * scheduled on to the CPU at some point).
5180          */
5181         if (event->state == PERF_EVENT_STATE_ERROR)
5182                 return 0;
5183
5184         if (count < event->read_size)
5185                 return -ENOSPC;
5186
5187         WARN_ON_ONCE(event->ctx->parent_ctx);
5188         if (read_format & PERF_FORMAT_GROUP)
5189                 ret = perf_read_group(event, read_format, buf);
5190         else
5191                 ret = perf_read_one(event, read_format, buf);
5192
5193         return ret;
5194 }
5195
5196 static ssize_t
5197 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5198 {
5199         struct perf_event *event = file->private_data;
5200         struct perf_event_context *ctx;
5201         int ret;
5202
5203         ret = security_perf_event_read(event);
5204         if (ret)
5205                 return ret;
5206
5207         ctx = perf_event_ctx_lock(event);
5208         ret = __perf_read(event, buf, count);
5209         perf_event_ctx_unlock(event, ctx);
5210
5211         return ret;
5212 }
5213
5214 static __poll_t perf_poll(struct file *file, poll_table *wait)
5215 {
5216         struct perf_event *event = file->private_data;
5217         struct perf_buffer *rb;
5218         __poll_t events = EPOLLHUP;
5219
5220         poll_wait(file, &event->waitq, wait);
5221
5222         if (is_event_hup(event))
5223                 return events;
5224
5225         /*
5226          * Pin the event->rb by taking event->mmap_mutex; otherwise
5227          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5228          */
5229         mutex_lock(&event->mmap_mutex);
5230         rb = event->rb;
5231         if (rb)
5232                 events = atomic_xchg(&rb->poll, 0);
5233         mutex_unlock(&event->mmap_mutex);
5234         return events;
5235 }
5236
5237 static void _perf_event_reset(struct perf_event *event)
5238 {
5239         (void)perf_event_read(event, false);
5240         local64_set(&event->count, 0);
5241         perf_event_update_userpage(event);
5242 }
5243
5244 /* Assume it's not an event with inherit set. */
5245 u64 perf_event_pause(struct perf_event *event, bool reset)
5246 {
5247         struct perf_event_context *ctx;
5248         u64 count;
5249
5250         ctx = perf_event_ctx_lock(event);
5251         WARN_ON_ONCE(event->attr.inherit);
5252         _perf_event_disable(event);
5253         count = local64_read(&event->count);
5254         if (reset)
5255                 local64_set(&event->count, 0);
5256         perf_event_ctx_unlock(event, ctx);
5257
5258         return count;
5259 }
5260 EXPORT_SYMBOL_GPL(perf_event_pause);
5261
5262 /*
5263  * Holding the top-level event's child_mutex means that any
5264  * descendant process that has inherited this event will block
5265  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5266  * task existence requirements of perf_event_enable/disable.
5267  */
5268 static void perf_event_for_each_child(struct perf_event *event,
5269                                         void (*func)(struct perf_event *))
5270 {
5271         struct perf_event *child;
5272
5273         WARN_ON_ONCE(event->ctx->parent_ctx);
5274
5275         mutex_lock(&event->child_mutex);
5276         func(event);
5277         list_for_each_entry(child, &event->child_list, child_list)
5278                 func(child);
5279         mutex_unlock(&event->child_mutex);
5280 }
5281
5282 static void perf_event_for_each(struct perf_event *event,
5283                                   void (*func)(struct perf_event *))
5284 {
5285         struct perf_event_context *ctx = event->ctx;
5286         struct perf_event *sibling;
5287
5288         lockdep_assert_held(&ctx->mutex);
5289
5290         event = event->group_leader;
5291
5292         perf_event_for_each_child(event, func);
5293         for_each_sibling_event(sibling, event)
5294                 perf_event_for_each_child(sibling, func);
5295 }
5296
5297 static void __perf_event_period(struct perf_event *event,
5298                                 struct perf_cpu_context *cpuctx,
5299                                 struct perf_event_context *ctx,
5300                                 void *info)
5301 {
5302         u64 value = *((u64 *)info);
5303         bool active;
5304
5305         if (event->attr.freq) {
5306                 event->attr.sample_freq = value;
5307         } else {
5308                 event->attr.sample_period = value;
5309                 event->hw.sample_period = value;
5310         }
5311
5312         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5313         if (active) {
5314                 perf_pmu_disable(ctx->pmu);
5315                 /*
5316                  * We could be throttled; unthrottle now to avoid the tick
5317                  * trying to unthrottle while we already re-started the event.
5318                  */
5319                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5320                         event->hw.interrupts = 0;
5321                         perf_log_throttle(event, 1);
5322                 }
5323                 event->pmu->stop(event, PERF_EF_UPDATE);
5324         }
5325
5326         local64_set(&event->hw.period_left, 0);
5327
5328         if (active) {
5329                 event->pmu->start(event, PERF_EF_RELOAD);
5330                 perf_pmu_enable(ctx->pmu);
5331         }
5332 }
5333
5334 static int perf_event_check_period(struct perf_event *event, u64 value)
5335 {
5336         return event->pmu->check_period(event, value);
5337 }
5338
5339 static int _perf_event_period(struct perf_event *event, u64 value)
5340 {
5341         if (!is_sampling_event(event))
5342                 return -EINVAL;
5343
5344         if (!value)
5345                 return -EINVAL;
5346
5347         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5348                 return -EINVAL;
5349
5350         if (perf_event_check_period(event, value))
5351                 return -EINVAL;
5352
5353         if (!event->attr.freq && (value & (1ULL << 63)))
5354                 return -EINVAL;
5355
5356         event_function_call(event, __perf_event_period, &value);
5357
5358         return 0;
5359 }
5360
5361 int perf_event_period(struct perf_event *event, u64 value)
5362 {
5363         struct perf_event_context *ctx;
5364         int ret;
5365
5366         ctx = perf_event_ctx_lock(event);
5367         ret = _perf_event_period(event, value);
5368         perf_event_ctx_unlock(event, ctx);
5369
5370         return ret;
5371 }
5372 EXPORT_SYMBOL_GPL(perf_event_period);
5373
5374 static const struct file_operations perf_fops;
5375
5376 static inline int perf_fget_light(int fd, struct fd *p)
5377 {
5378         struct fd f = fdget(fd);
5379         if (!f.file)
5380                 return -EBADF;
5381
5382         if (f.file->f_op != &perf_fops) {
5383                 fdput(f);
5384                 return -EBADF;
5385         }
5386         *p = f;
5387         return 0;
5388 }
5389
5390 static int perf_event_set_output(struct perf_event *event,
5391                                  struct perf_event *output_event);
5392 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5393 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5394 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5395                           struct perf_event_attr *attr);
5396
5397 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5398 {
5399         void (*func)(struct perf_event *);
5400         u32 flags = arg;
5401
5402         switch (cmd) {
5403         case PERF_EVENT_IOC_ENABLE:
5404                 func = _perf_event_enable;
5405                 break;
5406         case PERF_EVENT_IOC_DISABLE:
5407                 func = _perf_event_disable;
5408                 break;
5409         case PERF_EVENT_IOC_RESET:
5410                 func = _perf_event_reset;
5411                 break;
5412
5413         case PERF_EVENT_IOC_REFRESH:
5414                 return _perf_event_refresh(event, arg);
5415
5416         case PERF_EVENT_IOC_PERIOD:
5417         {
5418                 u64 value;
5419
5420                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5421                         return -EFAULT;
5422
5423                 return _perf_event_period(event, value);
5424         }
5425         case PERF_EVENT_IOC_ID:
5426         {
5427                 u64 id = primary_event_id(event);
5428
5429                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5430                         return -EFAULT;
5431                 return 0;
5432         }
5433
5434         case PERF_EVENT_IOC_SET_OUTPUT:
5435         {
5436                 int ret;
5437                 if (arg != -1) {
5438                         struct perf_event *output_event;
5439                         struct fd output;
5440                         ret = perf_fget_light(arg, &output);
5441                         if (ret)
5442                                 return ret;
5443                         output_event = output.file->private_data;
5444                         ret = perf_event_set_output(event, output_event);
5445                         fdput(output);
5446                 } else {
5447                         ret = perf_event_set_output(event, NULL);
5448                 }
5449                 return ret;
5450         }
5451
5452         case PERF_EVENT_IOC_SET_FILTER:
5453                 return perf_event_set_filter(event, (void __user *)arg);
5454
5455         case PERF_EVENT_IOC_SET_BPF:
5456                 return perf_event_set_bpf_prog(event, arg);
5457
5458         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5459                 struct perf_buffer *rb;
5460
5461                 rcu_read_lock();
5462                 rb = rcu_dereference(event->rb);
5463                 if (!rb || !rb->nr_pages) {
5464                         rcu_read_unlock();
5465                         return -EINVAL;
5466                 }
5467                 rb_toggle_paused(rb, !!arg);
5468                 rcu_read_unlock();
5469                 return 0;
5470         }
5471
5472         case PERF_EVENT_IOC_QUERY_BPF:
5473                 return perf_event_query_prog_array(event, (void __user *)arg);
5474
5475         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5476                 struct perf_event_attr new_attr;
5477                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5478                                          &new_attr);
5479
5480                 if (err)
5481                         return err;
5482
5483                 return perf_event_modify_attr(event,  &new_attr);
5484         }
5485         default:
5486                 return -ENOTTY;
5487         }
5488
5489         if (flags & PERF_IOC_FLAG_GROUP)
5490                 perf_event_for_each(event, func);
5491         else
5492                 perf_event_for_each_child(event, func);
5493
5494         return 0;
5495 }
5496
5497 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5498 {
5499         struct perf_event *event = file->private_data;
5500         struct perf_event_context *ctx;
5501         long ret;
5502
5503         /* Treat ioctl like writes as it is likely a mutating operation. */
5504         ret = security_perf_event_write(event);
5505         if (ret)
5506                 return ret;
5507
5508         ctx = perf_event_ctx_lock(event);
5509         ret = _perf_ioctl(event, cmd, arg);
5510         perf_event_ctx_unlock(event, ctx);
5511
5512         return ret;
5513 }
5514
5515 #ifdef CONFIG_COMPAT
5516 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5517                                 unsigned long arg)
5518 {
5519         switch (_IOC_NR(cmd)) {
5520         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5521         case _IOC_NR(PERF_EVENT_IOC_ID):
5522         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5523         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5524                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5525                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5526                         cmd &= ~IOCSIZE_MASK;
5527                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5528                 }
5529                 break;
5530         }
5531         return perf_ioctl(file, cmd, arg);
5532 }
5533 #else
5534 # define perf_compat_ioctl NULL
5535 #endif
5536
5537 int perf_event_task_enable(void)
5538 {
5539         struct perf_event_context *ctx;
5540         struct perf_event *event;
5541
5542         mutex_lock(&current->perf_event_mutex);
5543         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5544                 ctx = perf_event_ctx_lock(event);
5545                 perf_event_for_each_child(event, _perf_event_enable);
5546                 perf_event_ctx_unlock(event, ctx);
5547         }
5548         mutex_unlock(&current->perf_event_mutex);
5549
5550         return 0;
5551 }
5552
5553 int perf_event_task_disable(void)
5554 {
5555         struct perf_event_context *ctx;
5556         struct perf_event *event;
5557
5558         mutex_lock(&current->perf_event_mutex);
5559         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5560                 ctx = perf_event_ctx_lock(event);
5561                 perf_event_for_each_child(event, _perf_event_disable);
5562                 perf_event_ctx_unlock(event, ctx);
5563         }
5564         mutex_unlock(&current->perf_event_mutex);
5565
5566         return 0;
5567 }
5568
5569 static int perf_event_index(struct perf_event *event)
5570 {
5571         if (event->hw.state & PERF_HES_STOPPED)
5572                 return 0;
5573
5574         if (event->state != PERF_EVENT_STATE_ACTIVE)
5575                 return 0;
5576
5577         return event->pmu->event_idx(event);
5578 }
5579
5580 static void calc_timer_values(struct perf_event *event,
5581                                 u64 *now,
5582                                 u64 *enabled,
5583                                 u64 *running)
5584 {
5585         u64 ctx_time;
5586
5587         *now = perf_clock();
5588         ctx_time = event->shadow_ctx_time + *now;
5589         __perf_update_times(event, ctx_time, enabled, running);
5590 }
5591
5592 static void perf_event_init_userpage(struct perf_event *event)
5593 {
5594         struct perf_event_mmap_page *userpg;
5595         struct perf_buffer *rb;
5596
5597         rcu_read_lock();
5598         rb = rcu_dereference(event->rb);
5599         if (!rb)
5600                 goto unlock;
5601
5602         userpg = rb->user_page;
5603
5604         /* Allow new userspace to detect that bit 0 is deprecated */
5605         userpg->cap_bit0_is_deprecated = 1;
5606         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5607         userpg->data_offset = PAGE_SIZE;
5608         userpg->data_size = perf_data_size(rb);
5609
5610 unlock:
5611         rcu_read_unlock();
5612 }
5613
5614 void __weak arch_perf_update_userpage(
5615         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5616 {
5617 }
5618
5619 /*
5620  * Callers need to ensure there can be no nesting of this function, otherwise
5621  * the seqlock logic goes bad. We can not serialize this because the arch
5622  * code calls this from NMI context.
5623  */
5624 void perf_event_update_userpage(struct perf_event *event)
5625 {
5626         struct perf_event_mmap_page *userpg;
5627         struct perf_buffer *rb;
5628         u64 enabled, running, now;
5629
5630         rcu_read_lock();
5631         rb = rcu_dereference(event->rb);
5632         if (!rb)
5633                 goto unlock;
5634
5635         /*
5636          * compute total_time_enabled, total_time_running
5637          * based on snapshot values taken when the event
5638          * was last scheduled in.
5639          *
5640          * we cannot simply called update_context_time()
5641          * because of locking issue as we can be called in
5642          * NMI context
5643          */
5644         calc_timer_values(event, &now, &enabled, &running);
5645
5646         userpg = rb->user_page;
5647         /*
5648          * Disable preemption to guarantee consistent time stamps are stored to
5649          * the user page.
5650          */
5651         preempt_disable();
5652         ++userpg->lock;
5653         barrier();
5654         userpg->index = perf_event_index(event);
5655         userpg->offset = perf_event_count(event);
5656         if (userpg->index)
5657                 userpg->offset -= local64_read(&event->hw.prev_count);
5658
5659         userpg->time_enabled = enabled +
5660                         atomic64_read(&event->child_total_time_enabled);
5661
5662         userpg->time_running = running +
5663                         atomic64_read(&event->child_total_time_running);
5664
5665         arch_perf_update_userpage(event, userpg, now);
5666
5667         barrier();
5668         ++userpg->lock;
5669         preempt_enable();
5670 unlock:
5671         rcu_read_unlock();
5672 }
5673 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5674
5675 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5676 {
5677         struct perf_event *event = vmf->vma->vm_file->private_data;
5678         struct perf_buffer *rb;
5679         vm_fault_t ret = VM_FAULT_SIGBUS;
5680
5681         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5682                 if (vmf->pgoff == 0)
5683                         ret = 0;
5684                 return ret;
5685         }
5686
5687         rcu_read_lock();
5688         rb = rcu_dereference(event->rb);
5689         if (!rb)
5690                 goto unlock;
5691
5692         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5693                 goto unlock;
5694
5695         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5696         if (!vmf->page)
5697                 goto unlock;
5698
5699         get_page(vmf->page);
5700         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5701         vmf->page->index   = vmf->pgoff;
5702
5703         ret = 0;
5704 unlock:
5705         rcu_read_unlock();
5706
5707         return ret;
5708 }
5709
5710 static void ring_buffer_attach(struct perf_event *event,
5711                                struct perf_buffer *rb)
5712 {
5713         struct perf_buffer *old_rb = NULL;
5714         unsigned long flags;
5715
5716         if (event->rb) {
5717                 /*
5718                  * Should be impossible, we set this when removing
5719                  * event->rb_entry and wait/clear when adding event->rb_entry.
5720                  */
5721                 WARN_ON_ONCE(event->rcu_pending);
5722
5723                 old_rb = event->rb;
5724                 spin_lock_irqsave(&old_rb->event_lock, flags);
5725                 list_del_rcu(&event->rb_entry);
5726                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5727
5728                 event->rcu_batches = get_state_synchronize_rcu();
5729                 event->rcu_pending = 1;
5730         }
5731
5732         if (rb) {
5733                 if (event->rcu_pending) {
5734                         cond_synchronize_rcu(event->rcu_batches);
5735                         event->rcu_pending = 0;
5736                 }
5737
5738                 spin_lock_irqsave(&rb->event_lock, flags);
5739                 list_add_rcu(&event->rb_entry, &rb->event_list);
5740                 spin_unlock_irqrestore(&rb->event_lock, flags);
5741         }
5742
5743         /*
5744          * Avoid racing with perf_mmap_close(AUX): stop the event
5745          * before swizzling the event::rb pointer; if it's getting
5746          * unmapped, its aux_mmap_count will be 0 and it won't
5747          * restart. See the comment in __perf_pmu_output_stop().
5748          *
5749          * Data will inevitably be lost when set_output is done in
5750          * mid-air, but then again, whoever does it like this is
5751          * not in for the data anyway.
5752          */
5753         if (has_aux(event))
5754                 perf_event_stop(event, 0);
5755
5756         rcu_assign_pointer(event->rb, rb);
5757
5758         if (old_rb) {
5759                 ring_buffer_put(old_rb);
5760                 /*
5761                  * Since we detached before setting the new rb, so that we
5762                  * could attach the new rb, we could have missed a wakeup.
5763                  * Provide it now.
5764                  */
5765                 wake_up_all(&event->waitq);
5766         }
5767 }
5768
5769 static void ring_buffer_wakeup(struct perf_event *event)
5770 {
5771         struct perf_buffer *rb;
5772
5773         rcu_read_lock();
5774         rb = rcu_dereference(event->rb);
5775         if (rb) {
5776                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5777                         wake_up_all(&event->waitq);
5778         }
5779         rcu_read_unlock();
5780 }
5781
5782 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5783 {
5784         struct perf_buffer *rb;
5785
5786         rcu_read_lock();
5787         rb = rcu_dereference(event->rb);
5788         if (rb) {
5789                 if (!refcount_inc_not_zero(&rb->refcount))
5790                         rb = NULL;
5791         }
5792         rcu_read_unlock();
5793
5794         return rb;
5795 }
5796
5797 void ring_buffer_put(struct perf_buffer *rb)
5798 {
5799         if (!refcount_dec_and_test(&rb->refcount))
5800                 return;
5801
5802         WARN_ON_ONCE(!list_empty(&rb->event_list));
5803
5804         call_rcu(&rb->rcu_head, rb_free_rcu);
5805 }
5806
5807 static void perf_mmap_open(struct vm_area_struct *vma)
5808 {
5809         struct perf_event *event = vma->vm_file->private_data;
5810
5811         atomic_inc(&event->mmap_count);
5812         atomic_inc(&event->rb->mmap_count);
5813
5814         if (vma->vm_pgoff)
5815                 atomic_inc(&event->rb->aux_mmap_count);
5816
5817         if (event->pmu->event_mapped)
5818                 event->pmu->event_mapped(event, vma->vm_mm);
5819 }
5820
5821 static void perf_pmu_output_stop(struct perf_event *event);
5822
5823 /*
5824  * A buffer can be mmap()ed multiple times; either directly through the same
5825  * event, or through other events by use of perf_event_set_output().
5826  *
5827  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5828  * the buffer here, where we still have a VM context. This means we need
5829  * to detach all events redirecting to us.
5830  */
5831 static void perf_mmap_close(struct vm_area_struct *vma)
5832 {
5833         struct perf_event *event = vma->vm_file->private_data;
5834
5835         struct perf_buffer *rb = ring_buffer_get(event);
5836         struct user_struct *mmap_user = rb->mmap_user;
5837         int mmap_locked = rb->mmap_locked;
5838         unsigned long size = perf_data_size(rb);
5839
5840         if (event->pmu->event_unmapped)
5841                 event->pmu->event_unmapped(event, vma->vm_mm);
5842
5843         /*
5844          * rb->aux_mmap_count will always drop before rb->mmap_count and
5845          * event->mmap_count, so it is ok to use event->mmap_mutex to
5846          * serialize with perf_mmap here.
5847          */
5848         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5849             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5850                 /*
5851                  * Stop all AUX events that are writing to this buffer,
5852                  * so that we can free its AUX pages and corresponding PMU
5853                  * data. Note that after rb::aux_mmap_count dropped to zero,
5854                  * they won't start any more (see perf_aux_output_begin()).
5855                  */
5856                 perf_pmu_output_stop(event);
5857
5858                 /* now it's safe to free the pages */
5859                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5860                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5861
5862                 /* this has to be the last one */
5863                 rb_free_aux(rb);
5864                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5865
5866                 mutex_unlock(&event->mmap_mutex);
5867         }
5868
5869         atomic_dec(&rb->mmap_count);
5870
5871         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5872                 goto out_put;
5873
5874         ring_buffer_attach(event, NULL);
5875         mutex_unlock(&event->mmap_mutex);
5876
5877         /* If there's still other mmap()s of this buffer, we're done. */
5878         if (atomic_read(&rb->mmap_count))
5879                 goto out_put;
5880
5881         /*
5882          * No other mmap()s, detach from all other events that might redirect
5883          * into the now unreachable buffer. Somewhat complicated by the
5884          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5885          */
5886 again:
5887         rcu_read_lock();
5888         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5889                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5890                         /*
5891                          * This event is en-route to free_event() which will
5892                          * detach it and remove it from the list.
5893                          */
5894                         continue;
5895                 }
5896                 rcu_read_unlock();
5897
5898                 mutex_lock(&event->mmap_mutex);
5899                 /*
5900                  * Check we didn't race with perf_event_set_output() which can
5901                  * swizzle the rb from under us while we were waiting to
5902                  * acquire mmap_mutex.
5903                  *
5904                  * If we find a different rb; ignore this event, a next
5905                  * iteration will no longer find it on the list. We have to
5906                  * still restart the iteration to make sure we're not now
5907                  * iterating the wrong list.
5908                  */
5909                 if (event->rb == rb)
5910                         ring_buffer_attach(event, NULL);
5911
5912                 mutex_unlock(&event->mmap_mutex);
5913                 put_event(event);
5914
5915                 /*
5916                  * Restart the iteration; either we're on the wrong list or
5917                  * destroyed its integrity by doing a deletion.
5918                  */
5919                 goto again;
5920         }
5921         rcu_read_unlock();
5922
5923         /*
5924          * It could be there's still a few 0-ref events on the list; they'll
5925          * get cleaned up by free_event() -- they'll also still have their
5926          * ref on the rb and will free it whenever they are done with it.
5927          *
5928          * Aside from that, this buffer is 'fully' detached and unmapped,
5929          * undo the VM accounting.
5930          */
5931
5932         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5933                         &mmap_user->locked_vm);
5934         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5935         free_uid(mmap_user);
5936
5937 out_put:
5938         ring_buffer_put(rb); /* could be last */
5939 }
5940
5941 static const struct vm_operations_struct perf_mmap_vmops = {
5942         .open           = perf_mmap_open,
5943         .close          = perf_mmap_close, /* non mergeable */
5944         .fault          = perf_mmap_fault,
5945         .page_mkwrite   = perf_mmap_fault,
5946 };
5947
5948 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5949 {
5950         struct perf_event *event = file->private_data;
5951         unsigned long user_locked, user_lock_limit;
5952         struct user_struct *user = current_user();
5953         struct perf_buffer *rb = NULL;
5954         unsigned long locked, lock_limit;
5955         unsigned long vma_size;
5956         unsigned long nr_pages;
5957         long user_extra = 0, extra = 0;
5958         int ret = 0, flags = 0;
5959
5960         /*
5961          * Don't allow mmap() of inherited per-task counters. This would
5962          * create a performance issue due to all children writing to the
5963          * same rb.
5964          */
5965         if (event->cpu == -1 && event->attr.inherit)
5966                 return -EINVAL;
5967
5968         if (!(vma->vm_flags & VM_SHARED))
5969                 return -EINVAL;
5970
5971         ret = security_perf_event_read(event);
5972         if (ret)
5973                 return ret;
5974
5975         vma_size = vma->vm_end - vma->vm_start;
5976
5977         if (vma->vm_pgoff == 0) {
5978                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5979         } else {
5980                 /*
5981                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5982                  * mapped, all subsequent mappings should have the same size
5983                  * and offset. Must be above the normal perf buffer.
5984                  */
5985                 u64 aux_offset, aux_size;
5986
5987                 if (!event->rb)
5988                         return -EINVAL;
5989
5990                 nr_pages = vma_size / PAGE_SIZE;
5991
5992                 mutex_lock(&event->mmap_mutex);
5993                 ret = -EINVAL;
5994
5995                 rb = event->rb;
5996                 if (!rb)
5997                         goto aux_unlock;
5998
5999                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6000                 aux_size = READ_ONCE(rb->user_page->aux_size);
6001
6002                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6003                         goto aux_unlock;
6004
6005                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6006                         goto aux_unlock;
6007
6008                 /* already mapped with a different offset */
6009                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6010                         goto aux_unlock;
6011
6012                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6013                         goto aux_unlock;
6014
6015                 /* already mapped with a different size */
6016                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6017                         goto aux_unlock;
6018
6019                 if (!is_power_of_2(nr_pages))
6020                         goto aux_unlock;
6021
6022                 if (!atomic_inc_not_zero(&rb->mmap_count))
6023                         goto aux_unlock;
6024
6025                 if (rb_has_aux(rb)) {
6026                         atomic_inc(&rb->aux_mmap_count);
6027                         ret = 0;
6028                         goto unlock;
6029                 }
6030
6031                 atomic_set(&rb->aux_mmap_count, 1);
6032                 user_extra = nr_pages;
6033
6034                 goto accounting;
6035         }
6036
6037         /*
6038          * If we have rb pages ensure they're a power-of-two number, so we
6039          * can do bitmasks instead of modulo.
6040          */
6041         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6042                 return -EINVAL;
6043
6044         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6045                 return -EINVAL;
6046
6047         WARN_ON_ONCE(event->ctx->parent_ctx);
6048 again:
6049         mutex_lock(&event->mmap_mutex);
6050         if (event->rb) {
6051                 if (event->rb->nr_pages != nr_pages) {
6052                         ret = -EINVAL;
6053                         goto unlock;
6054                 }
6055
6056                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6057                         /*
6058                          * Raced against perf_mmap_close() through
6059                          * perf_event_set_output(). Try again, hope for better
6060                          * luck.
6061                          */
6062                         mutex_unlock(&event->mmap_mutex);
6063                         goto again;
6064                 }
6065
6066                 goto unlock;
6067         }
6068
6069         user_extra = nr_pages + 1;
6070
6071 accounting:
6072         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6073
6074         /*
6075          * Increase the limit linearly with more CPUs:
6076          */
6077         user_lock_limit *= num_online_cpus();
6078
6079         user_locked = atomic_long_read(&user->locked_vm);
6080
6081         /*
6082          * sysctl_perf_event_mlock may have changed, so that
6083          *     user->locked_vm > user_lock_limit
6084          */
6085         if (user_locked > user_lock_limit)
6086                 user_locked = user_lock_limit;
6087         user_locked += user_extra;
6088
6089         if (user_locked > user_lock_limit) {
6090                 /*
6091                  * charge locked_vm until it hits user_lock_limit;
6092                  * charge the rest from pinned_vm
6093                  */
6094                 extra = user_locked - user_lock_limit;
6095                 user_extra -= extra;
6096         }
6097
6098         lock_limit = rlimit(RLIMIT_MEMLOCK);
6099         lock_limit >>= PAGE_SHIFT;
6100         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6101
6102         if ((locked > lock_limit) && perf_is_paranoid() &&
6103                 !capable(CAP_IPC_LOCK)) {
6104                 ret = -EPERM;
6105                 goto unlock;
6106         }
6107
6108         WARN_ON(!rb && event->rb);
6109
6110         if (vma->vm_flags & VM_WRITE)
6111                 flags |= RING_BUFFER_WRITABLE;
6112
6113         if (!rb) {
6114                 rb = rb_alloc(nr_pages,
6115                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6116                               event->cpu, flags);
6117
6118                 if (!rb) {
6119                         ret = -ENOMEM;
6120                         goto unlock;
6121                 }
6122
6123                 atomic_set(&rb->mmap_count, 1);
6124                 rb->mmap_user = get_current_user();
6125                 rb->mmap_locked = extra;
6126
6127                 ring_buffer_attach(event, rb);
6128
6129                 perf_event_init_userpage(event);
6130                 perf_event_update_userpage(event);
6131         } else {
6132                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6133                                    event->attr.aux_watermark, flags);
6134                 if (!ret)
6135                         rb->aux_mmap_locked = extra;
6136         }
6137
6138 unlock:
6139         if (!ret) {
6140                 atomic_long_add(user_extra, &user->locked_vm);
6141                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6142
6143                 atomic_inc(&event->mmap_count);
6144         } else if (rb) {
6145                 atomic_dec(&rb->mmap_count);
6146         }
6147 aux_unlock:
6148         mutex_unlock(&event->mmap_mutex);
6149
6150         /*
6151          * Since pinned accounting is per vm we cannot allow fork() to copy our
6152          * vma.
6153          */
6154         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6155         vma->vm_ops = &perf_mmap_vmops;
6156
6157         if (event->pmu->event_mapped)
6158                 event->pmu->event_mapped(event, vma->vm_mm);
6159
6160         return ret;
6161 }
6162
6163 static int perf_fasync(int fd, struct file *filp, int on)
6164 {
6165         struct inode *inode = file_inode(filp);
6166         struct perf_event *event = filp->private_data;
6167         int retval;
6168
6169         inode_lock(inode);
6170         retval = fasync_helper(fd, filp, on, &event->fasync);
6171         inode_unlock(inode);
6172
6173         if (retval < 0)
6174                 return retval;
6175
6176         return 0;
6177 }
6178
6179 static const struct file_operations perf_fops = {
6180         .llseek                 = no_llseek,
6181         .release                = perf_release,
6182         .read                   = perf_read,
6183         .poll                   = perf_poll,
6184         .unlocked_ioctl         = perf_ioctl,
6185         .compat_ioctl           = perf_compat_ioctl,
6186         .mmap                   = perf_mmap,
6187         .fasync                 = perf_fasync,
6188 };
6189
6190 /*
6191  * Perf event wakeup
6192  *
6193  * If there's data, ensure we set the poll() state and publish everything
6194  * to user-space before waking everybody up.
6195  */
6196
6197 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6198 {
6199         /* only the parent has fasync state */
6200         if (event->parent)
6201                 event = event->parent;
6202         return &event->fasync;
6203 }
6204
6205 void perf_event_wakeup(struct perf_event *event)
6206 {
6207         ring_buffer_wakeup(event);
6208
6209         if (event->pending_kill) {
6210                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6211                 event->pending_kill = 0;
6212         }
6213 }
6214
6215 static void perf_pending_event_disable(struct perf_event *event)
6216 {
6217         int cpu = READ_ONCE(event->pending_disable);
6218
6219         if (cpu < 0)
6220                 return;
6221
6222         if (cpu == smp_processor_id()) {
6223                 WRITE_ONCE(event->pending_disable, -1);
6224                 perf_event_disable_local(event);
6225                 return;
6226         }
6227
6228         /*
6229          *  CPU-A                       CPU-B
6230          *
6231          *  perf_event_disable_inatomic()
6232          *    @pending_disable = CPU-A;
6233          *    irq_work_queue();
6234          *
6235          *  sched-out
6236          *    @pending_disable = -1;
6237          *
6238          *                              sched-in
6239          *                              perf_event_disable_inatomic()
6240          *                                @pending_disable = CPU-B;
6241          *                                irq_work_queue(); // FAILS
6242          *
6243          *  irq_work_run()
6244          *    perf_pending_event()
6245          *
6246          * But the event runs on CPU-B and wants disabling there.
6247          */
6248         irq_work_queue_on(&event->pending, cpu);
6249 }
6250
6251 static void perf_pending_event(struct irq_work *entry)
6252 {
6253         struct perf_event *event = container_of(entry, struct perf_event, pending);
6254         int rctx;
6255
6256         rctx = perf_swevent_get_recursion_context();
6257         /*
6258          * If we 'fail' here, that's OK, it means recursion is already disabled
6259          * and we won't recurse 'further'.
6260          */
6261
6262         perf_pending_event_disable(event);
6263
6264         if (event->pending_wakeup) {
6265                 event->pending_wakeup = 0;
6266                 perf_event_wakeup(event);
6267         }
6268
6269         if (rctx >= 0)
6270                 perf_swevent_put_recursion_context(rctx);
6271 }
6272
6273 /*
6274  * We assume there is only KVM supporting the callbacks.
6275  * Later on, we might change it to a list if there is
6276  * another virtualization implementation supporting the callbacks.
6277  */
6278 struct perf_guest_info_callbacks *perf_guest_cbs;
6279
6280 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6281 {
6282         perf_guest_cbs = cbs;
6283         return 0;
6284 }
6285 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6286
6287 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6288 {
6289         perf_guest_cbs = NULL;
6290         return 0;
6291 }
6292 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6293
6294 static void
6295 perf_output_sample_regs(struct perf_output_handle *handle,
6296                         struct pt_regs *regs, u64 mask)
6297 {
6298         int bit;
6299         DECLARE_BITMAP(_mask, 64);
6300
6301         bitmap_from_u64(_mask, mask);
6302         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6303                 u64 val;
6304
6305                 val = perf_reg_value(regs, bit);
6306                 perf_output_put(handle, val);
6307         }
6308 }
6309
6310 static void perf_sample_regs_user(struct perf_regs *regs_user,
6311                                   struct pt_regs *regs,
6312                                   struct pt_regs *regs_user_copy)
6313 {
6314         if (user_mode(regs)) {
6315                 regs_user->abi = perf_reg_abi(current);
6316                 regs_user->regs = regs;
6317         } else if (!(current->flags & PF_KTHREAD)) {
6318                 perf_get_regs_user(regs_user, regs, regs_user_copy);
6319         } else {
6320                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6321                 regs_user->regs = NULL;
6322         }
6323 }
6324
6325 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6326                                   struct pt_regs *regs)
6327 {
6328         regs_intr->regs = regs;
6329         regs_intr->abi  = perf_reg_abi(current);
6330 }
6331
6332
6333 /*
6334  * Get remaining task size from user stack pointer.
6335  *
6336  * It'd be better to take stack vma map and limit this more
6337  * precisely, but there's no way to get it safely under interrupt,
6338  * so using TASK_SIZE as limit.
6339  */
6340 static u64 perf_ustack_task_size(struct pt_regs *regs)
6341 {
6342         unsigned long addr = perf_user_stack_pointer(regs);
6343
6344         if (!addr || addr >= TASK_SIZE)
6345                 return 0;
6346
6347         return TASK_SIZE - addr;
6348 }
6349
6350 static u16
6351 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6352                         struct pt_regs *regs)
6353 {
6354         u64 task_size;
6355
6356         /* No regs, no stack pointer, no dump. */
6357         if (!regs)
6358                 return 0;
6359
6360         /*
6361          * Check if we fit in with the requested stack size into the:
6362          * - TASK_SIZE
6363          *   If we don't, we limit the size to the TASK_SIZE.
6364          *
6365          * - remaining sample size
6366          *   If we don't, we customize the stack size to
6367          *   fit in to the remaining sample size.
6368          */
6369
6370         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6371         stack_size = min(stack_size, (u16) task_size);
6372
6373         /* Current header size plus static size and dynamic size. */
6374         header_size += 2 * sizeof(u64);
6375
6376         /* Do we fit in with the current stack dump size? */
6377         if ((u16) (header_size + stack_size) < header_size) {
6378                 /*
6379                  * If we overflow the maximum size for the sample,
6380                  * we customize the stack dump size to fit in.
6381                  */
6382                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6383                 stack_size = round_up(stack_size, sizeof(u64));
6384         }
6385
6386         return stack_size;
6387 }
6388
6389 static void
6390 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6391                           struct pt_regs *regs)
6392 {
6393         /* Case of a kernel thread, nothing to dump */
6394         if (!regs) {
6395                 u64 size = 0;
6396                 perf_output_put(handle, size);
6397         } else {
6398                 unsigned long sp;
6399                 unsigned int rem;
6400                 u64 dyn_size;
6401                 mm_segment_t fs;
6402
6403                 /*
6404                  * We dump:
6405                  * static size
6406                  *   - the size requested by user or the best one we can fit
6407                  *     in to the sample max size
6408                  * data
6409                  *   - user stack dump data
6410                  * dynamic size
6411                  *   - the actual dumped size
6412                  */
6413
6414                 /* Static size. */
6415                 perf_output_put(handle, dump_size);
6416
6417                 /* Data. */
6418                 sp = perf_user_stack_pointer(regs);
6419                 fs = get_fs();
6420                 set_fs(USER_DS);
6421                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6422                 set_fs(fs);
6423                 dyn_size = dump_size - rem;
6424
6425                 perf_output_skip(handle, rem);
6426
6427                 /* Dynamic size. */
6428                 perf_output_put(handle, dyn_size);
6429         }
6430 }
6431
6432 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6433                                           struct perf_sample_data *data,
6434                                           size_t size)
6435 {
6436         struct perf_event *sampler = event->aux_event;
6437         struct perf_buffer *rb;
6438
6439         data->aux_size = 0;
6440
6441         if (!sampler)
6442                 goto out;
6443
6444         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6445                 goto out;
6446
6447         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6448                 goto out;
6449
6450         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6451         if (!rb)
6452                 goto out;
6453
6454         /*
6455          * If this is an NMI hit inside sampling code, don't take
6456          * the sample. See also perf_aux_sample_output().
6457          */
6458         if (READ_ONCE(rb->aux_in_sampling)) {
6459                 data->aux_size = 0;
6460         } else {
6461                 size = min_t(size_t, size, perf_aux_size(rb));
6462                 data->aux_size = ALIGN(size, sizeof(u64));
6463         }
6464         ring_buffer_put(rb);
6465
6466 out:
6467         return data->aux_size;
6468 }
6469
6470 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6471                            struct perf_event *event,
6472                            struct perf_output_handle *handle,
6473                            unsigned long size)
6474 {
6475         unsigned long flags;
6476         long ret;
6477
6478         /*
6479          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6480          * paths. If we start calling them in NMI context, they may race with
6481          * the IRQ ones, that is, for example, re-starting an event that's just
6482          * been stopped, which is why we're using a separate callback that
6483          * doesn't change the event state.
6484          *
6485          * IRQs need to be disabled to prevent IPIs from racing with us.
6486          */
6487         local_irq_save(flags);
6488         /*
6489          * Guard against NMI hits inside the critical section;
6490          * see also perf_prepare_sample_aux().
6491          */
6492         WRITE_ONCE(rb->aux_in_sampling, 1);
6493         barrier();
6494
6495         ret = event->pmu->snapshot_aux(event, handle, size);
6496
6497         barrier();
6498         WRITE_ONCE(rb->aux_in_sampling, 0);
6499         local_irq_restore(flags);
6500
6501         return ret;
6502 }
6503
6504 static void perf_aux_sample_output(struct perf_event *event,
6505                                    struct perf_output_handle *handle,
6506                                    struct perf_sample_data *data)
6507 {
6508         struct perf_event *sampler = event->aux_event;
6509         struct perf_buffer *rb;
6510         unsigned long pad;
6511         long size;
6512
6513         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6514                 return;
6515
6516         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6517         if (!rb)
6518                 return;
6519
6520         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6521
6522         /*
6523          * An error here means that perf_output_copy() failed (returned a
6524          * non-zero surplus that it didn't copy), which in its current
6525          * enlightened implementation is not possible. If that changes, we'd
6526          * like to know.
6527          */
6528         if (WARN_ON_ONCE(size < 0))
6529                 goto out_put;
6530
6531         /*
6532          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6533          * perf_prepare_sample_aux(), so should not be more than that.
6534          */
6535         pad = data->aux_size - size;
6536         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6537                 pad = 8;
6538
6539         if (pad) {
6540                 u64 zero = 0;
6541                 perf_output_copy(handle, &zero, pad);
6542         }
6543
6544 out_put:
6545         ring_buffer_put(rb);
6546 }
6547
6548 static void __perf_event_header__init_id(struct perf_event_header *header,
6549                                          struct perf_sample_data *data,
6550                                          struct perf_event *event)
6551 {
6552         u64 sample_type = event->attr.sample_type;
6553
6554         data->type = sample_type;
6555         header->size += event->id_header_size;
6556
6557         if (sample_type & PERF_SAMPLE_TID) {
6558                 /* namespace issues */
6559                 data->tid_entry.pid = perf_event_pid(event, current);
6560                 data->tid_entry.tid = perf_event_tid(event, current);
6561         }
6562
6563         if (sample_type & PERF_SAMPLE_TIME)
6564                 data->time = perf_event_clock(event);
6565
6566         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6567                 data->id = primary_event_id(event);
6568
6569         if (sample_type & PERF_SAMPLE_STREAM_ID)
6570                 data->stream_id = event->id;
6571
6572         if (sample_type & PERF_SAMPLE_CPU) {
6573                 data->cpu_entry.cpu      = raw_smp_processor_id();
6574                 data->cpu_entry.reserved = 0;
6575         }
6576 }
6577
6578 void perf_event_header__init_id(struct perf_event_header *header,
6579                                 struct perf_sample_data *data,
6580                                 struct perf_event *event)
6581 {
6582         if (event->attr.sample_id_all)
6583                 __perf_event_header__init_id(header, data, event);
6584 }
6585
6586 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6587                                            struct perf_sample_data *data)
6588 {
6589         u64 sample_type = data->type;
6590
6591         if (sample_type & PERF_SAMPLE_TID)
6592                 perf_output_put(handle, data->tid_entry);
6593
6594         if (sample_type & PERF_SAMPLE_TIME)
6595                 perf_output_put(handle, data->time);
6596
6597         if (sample_type & PERF_SAMPLE_ID)
6598                 perf_output_put(handle, data->id);
6599
6600         if (sample_type & PERF_SAMPLE_STREAM_ID)
6601                 perf_output_put(handle, data->stream_id);
6602
6603         if (sample_type & PERF_SAMPLE_CPU)
6604                 perf_output_put(handle, data->cpu_entry);
6605
6606         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6607                 perf_output_put(handle, data->id);
6608 }
6609
6610 void perf_event__output_id_sample(struct perf_event *event,
6611                                   struct perf_output_handle *handle,
6612                                   struct perf_sample_data *sample)
6613 {
6614         if (event->attr.sample_id_all)
6615                 __perf_event__output_id_sample(handle, sample);
6616 }
6617
6618 static void perf_output_read_one(struct perf_output_handle *handle,
6619                                  struct perf_event *event,
6620                                  u64 enabled, u64 running)
6621 {
6622         u64 read_format = event->attr.read_format;
6623         u64 values[4];
6624         int n = 0;
6625
6626         values[n++] = perf_event_count(event);
6627         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6628                 values[n++] = enabled +
6629                         atomic64_read(&event->child_total_time_enabled);
6630         }
6631         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6632                 values[n++] = running +
6633                         atomic64_read(&event->child_total_time_running);
6634         }
6635         if (read_format & PERF_FORMAT_ID)
6636                 values[n++] = primary_event_id(event);
6637
6638         __output_copy(handle, values, n * sizeof(u64));
6639 }
6640
6641 static void perf_output_read_group(struct perf_output_handle *handle,
6642                             struct perf_event *event,
6643                             u64 enabled, u64 running)
6644 {
6645         struct perf_event *leader = event->group_leader, *sub;
6646         u64 read_format = event->attr.read_format;
6647         u64 values[5];
6648         int n = 0;
6649
6650         values[n++] = 1 + leader->nr_siblings;
6651
6652         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6653                 values[n++] = enabled;
6654
6655         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6656                 values[n++] = running;
6657
6658         if ((leader != event) &&
6659             (leader->state == PERF_EVENT_STATE_ACTIVE))
6660                 leader->pmu->read(leader);
6661
6662         values[n++] = perf_event_count(leader);
6663         if (read_format & PERF_FORMAT_ID)
6664                 values[n++] = primary_event_id(leader);
6665
6666         __output_copy(handle, values, n * sizeof(u64));
6667
6668         for_each_sibling_event(sub, leader) {
6669                 n = 0;
6670
6671                 if ((sub != event) &&
6672                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6673                         sub->pmu->read(sub);
6674
6675                 values[n++] = perf_event_count(sub);
6676                 if (read_format & PERF_FORMAT_ID)
6677                         values[n++] = primary_event_id(sub);
6678
6679                 __output_copy(handle, values, n * sizeof(u64));
6680         }
6681 }
6682
6683 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6684                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6685
6686 /*
6687  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6688  *
6689  * The problem is that its both hard and excessively expensive to iterate the
6690  * child list, not to mention that its impossible to IPI the children running
6691  * on another CPU, from interrupt/NMI context.
6692  */
6693 static void perf_output_read(struct perf_output_handle *handle,
6694                              struct perf_event *event)
6695 {
6696         u64 enabled = 0, running = 0, now;
6697         u64 read_format = event->attr.read_format;
6698
6699         /*
6700          * compute total_time_enabled, total_time_running
6701          * based on snapshot values taken when the event
6702          * was last scheduled in.
6703          *
6704          * we cannot simply called update_context_time()
6705          * because of locking issue as we are called in
6706          * NMI context
6707          */
6708         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6709                 calc_timer_values(event, &now, &enabled, &running);
6710
6711         if (event->attr.read_format & PERF_FORMAT_GROUP)
6712                 perf_output_read_group(handle, event, enabled, running);
6713         else
6714                 perf_output_read_one(handle, event, enabled, running);
6715 }
6716
6717 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6718 {
6719         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6720 }
6721
6722 void perf_output_sample(struct perf_output_handle *handle,
6723                         struct perf_event_header *header,
6724                         struct perf_sample_data *data,
6725                         struct perf_event *event)
6726 {
6727         u64 sample_type = data->type;
6728
6729         perf_output_put(handle, *header);
6730
6731         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6732                 perf_output_put(handle, data->id);
6733
6734         if (sample_type & PERF_SAMPLE_IP)
6735                 perf_output_put(handle, data->ip);
6736
6737         if (sample_type & PERF_SAMPLE_TID)
6738                 perf_output_put(handle, data->tid_entry);
6739
6740         if (sample_type & PERF_SAMPLE_TIME)
6741                 perf_output_put(handle, data->time);
6742
6743         if (sample_type & PERF_SAMPLE_ADDR)
6744                 perf_output_put(handle, data->addr);
6745
6746         if (sample_type & PERF_SAMPLE_ID)
6747                 perf_output_put(handle, data->id);
6748
6749         if (sample_type & PERF_SAMPLE_STREAM_ID)
6750                 perf_output_put(handle, data->stream_id);
6751
6752         if (sample_type & PERF_SAMPLE_CPU)
6753                 perf_output_put(handle, data->cpu_entry);
6754
6755         if (sample_type & PERF_SAMPLE_PERIOD)
6756                 perf_output_put(handle, data->period);
6757
6758         if (sample_type & PERF_SAMPLE_READ)
6759                 perf_output_read(handle, event);
6760
6761         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6762                 int size = 1;
6763
6764                 size += data->callchain->nr;
6765                 size *= sizeof(u64);
6766                 __output_copy(handle, data->callchain, size);
6767         }
6768
6769         if (sample_type & PERF_SAMPLE_RAW) {
6770                 struct perf_raw_record *raw = data->raw;
6771
6772                 if (raw) {
6773                         struct perf_raw_frag *frag = &raw->frag;
6774
6775                         perf_output_put(handle, raw->size);
6776                         do {
6777                                 if (frag->copy) {
6778                                         __output_custom(handle, frag->copy,
6779                                                         frag->data, frag->size);
6780                                 } else {
6781                                         __output_copy(handle, frag->data,
6782                                                       frag->size);
6783                                 }
6784                                 if (perf_raw_frag_last(frag))
6785                                         break;
6786                                 frag = frag->next;
6787                         } while (1);
6788                         if (frag->pad)
6789                                 __output_skip(handle, NULL, frag->pad);
6790                 } else {
6791                         struct {
6792                                 u32     size;
6793                                 u32     data;
6794                         } raw = {
6795                                 .size = sizeof(u32),
6796                                 .data = 0,
6797                         };
6798                         perf_output_put(handle, raw);
6799                 }
6800         }
6801
6802         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6803                 if (data->br_stack) {
6804                         size_t size;
6805
6806                         size = data->br_stack->nr
6807                              * sizeof(struct perf_branch_entry);
6808
6809                         perf_output_put(handle, data->br_stack->nr);
6810                         if (perf_sample_save_hw_index(event))
6811                                 perf_output_put(handle, data->br_stack->hw_idx);
6812                         perf_output_copy(handle, data->br_stack->entries, size);
6813                 } else {
6814                         /*
6815                          * we always store at least the value of nr
6816                          */
6817                         u64 nr = 0;
6818                         perf_output_put(handle, nr);
6819                 }
6820         }
6821
6822         if (sample_type & PERF_SAMPLE_REGS_USER) {
6823                 u64 abi = data->regs_user.abi;
6824
6825                 /*
6826                  * If there are no regs to dump, notice it through
6827                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6828                  */
6829                 perf_output_put(handle, abi);
6830
6831                 if (abi) {
6832                         u64 mask = event->attr.sample_regs_user;
6833                         perf_output_sample_regs(handle,
6834                                                 data->regs_user.regs,
6835                                                 mask);
6836                 }
6837         }
6838
6839         if (sample_type & PERF_SAMPLE_STACK_USER) {
6840                 perf_output_sample_ustack(handle,
6841                                           data->stack_user_size,
6842                                           data->regs_user.regs);
6843         }
6844
6845         if (sample_type & PERF_SAMPLE_WEIGHT)
6846                 perf_output_put(handle, data->weight);
6847
6848         if (sample_type & PERF_SAMPLE_DATA_SRC)
6849                 perf_output_put(handle, data->data_src.val);
6850
6851         if (sample_type & PERF_SAMPLE_TRANSACTION)
6852                 perf_output_put(handle, data->txn);
6853
6854         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6855                 u64 abi = data->regs_intr.abi;
6856                 /*
6857                  * If there are no regs to dump, notice it through
6858                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6859                  */
6860                 perf_output_put(handle, abi);
6861
6862                 if (abi) {
6863                         u64 mask = event->attr.sample_regs_intr;
6864
6865                         perf_output_sample_regs(handle,
6866                                                 data->regs_intr.regs,
6867                                                 mask);
6868                 }
6869         }
6870
6871         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6872                 perf_output_put(handle, data->phys_addr);
6873
6874         if (sample_type & PERF_SAMPLE_CGROUP)
6875                 perf_output_put(handle, data->cgroup);
6876
6877         if (sample_type & PERF_SAMPLE_AUX) {
6878                 perf_output_put(handle, data->aux_size);
6879
6880                 if (data->aux_size)
6881                         perf_aux_sample_output(event, handle, data);
6882         }
6883
6884         if (!event->attr.watermark) {
6885                 int wakeup_events = event->attr.wakeup_events;
6886
6887                 if (wakeup_events) {
6888                         struct perf_buffer *rb = handle->rb;
6889                         int events = local_inc_return(&rb->events);
6890
6891                         if (events >= wakeup_events) {
6892                                 local_sub(wakeup_events, &rb->events);
6893                                 local_inc(&rb->wakeup);
6894                         }
6895                 }
6896         }
6897 }
6898
6899 static u64 perf_virt_to_phys(u64 virt)
6900 {
6901         u64 phys_addr = 0;
6902         struct page *p = NULL;
6903
6904         if (!virt)
6905                 return 0;
6906
6907         if (virt >= TASK_SIZE) {
6908                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6909                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6910                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6911                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6912         } else {
6913                 /*
6914                  * Walking the pages tables for user address.
6915                  * Interrupts are disabled, so it prevents any tear down
6916                  * of the page tables.
6917                  * Try IRQ-safe __get_user_pages_fast first.
6918                  * If failed, leave phys_addr as 0.
6919                  */
6920                 if ((current->mm != NULL) &&
6921                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6922                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6923
6924                 if (p)
6925                         put_page(p);
6926         }
6927
6928         return phys_addr;
6929 }
6930
6931 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6932
6933 struct perf_callchain_entry *
6934 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6935 {
6936         bool kernel = !event->attr.exclude_callchain_kernel;
6937         bool user   = !event->attr.exclude_callchain_user;
6938         /* Disallow cross-task user callchains. */
6939         bool crosstask = event->ctx->task && event->ctx->task != current;
6940         const u32 max_stack = event->attr.sample_max_stack;
6941         struct perf_callchain_entry *callchain;
6942
6943         if (!kernel && !user)
6944                 return &__empty_callchain;
6945
6946         callchain = get_perf_callchain(regs, 0, kernel, user,
6947                                        max_stack, crosstask, true);
6948         return callchain ?: &__empty_callchain;
6949 }
6950
6951 void perf_prepare_sample(struct perf_event_header *header,
6952                          struct perf_sample_data *data,
6953                          struct perf_event *event,
6954                          struct pt_regs *regs)
6955 {
6956         u64 sample_type = event->attr.sample_type;
6957
6958         header->type = PERF_RECORD_SAMPLE;
6959         header->size = sizeof(*header) + event->header_size;
6960
6961         header->misc = 0;
6962         header->misc |= perf_misc_flags(regs);
6963
6964         __perf_event_header__init_id(header, data, event);
6965
6966         if (sample_type & PERF_SAMPLE_IP)
6967                 data->ip = perf_instruction_pointer(regs);
6968
6969         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6970                 int size = 1;
6971
6972                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6973                         data->callchain = perf_callchain(event, regs);
6974
6975                 size += data->callchain->nr;
6976
6977                 header->size += size * sizeof(u64);
6978         }
6979
6980         if (sample_type & PERF_SAMPLE_RAW) {
6981                 struct perf_raw_record *raw = data->raw;
6982                 int size;
6983
6984                 if (raw) {
6985                         struct perf_raw_frag *frag = &raw->frag;
6986                         u32 sum = 0;
6987
6988                         do {
6989                                 sum += frag->size;
6990                                 if (perf_raw_frag_last(frag))
6991                                         break;
6992                                 frag = frag->next;
6993                         } while (1);
6994
6995                         size = round_up(sum + sizeof(u32), sizeof(u64));
6996                         raw->size = size - sizeof(u32);
6997                         frag->pad = raw->size - sum;
6998                 } else {
6999                         size = sizeof(u64);
7000                 }
7001
7002                 header->size += size;
7003         }
7004
7005         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7006                 int size = sizeof(u64); /* nr */
7007                 if (data->br_stack) {
7008                         if (perf_sample_save_hw_index(event))
7009                                 size += sizeof(u64);
7010
7011                         size += data->br_stack->nr
7012                               * sizeof(struct perf_branch_entry);
7013                 }
7014                 header->size += size;
7015         }
7016
7017         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7018                 perf_sample_regs_user(&data->regs_user, regs,
7019                                       &data->regs_user_copy);
7020
7021         if (sample_type & PERF_SAMPLE_REGS_USER) {
7022                 /* regs dump ABI info */
7023                 int size = sizeof(u64);
7024
7025                 if (data->regs_user.regs) {
7026                         u64 mask = event->attr.sample_regs_user;
7027                         size += hweight64(mask) * sizeof(u64);
7028                 }
7029
7030                 header->size += size;
7031         }
7032
7033         if (sample_type & PERF_SAMPLE_STACK_USER) {
7034                 /*
7035                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7036                  * processed as the last one or have additional check added
7037                  * in case new sample type is added, because we could eat
7038                  * up the rest of the sample size.
7039                  */
7040                 u16 stack_size = event->attr.sample_stack_user;
7041                 u16 size = sizeof(u64);
7042
7043                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7044                                                      data->regs_user.regs);
7045
7046                 /*
7047                  * If there is something to dump, add space for the dump
7048                  * itself and for the field that tells the dynamic size,
7049                  * which is how many have been actually dumped.
7050                  */
7051                 if (stack_size)
7052                         size += sizeof(u64) + stack_size;
7053
7054                 data->stack_user_size = stack_size;
7055                 header->size += size;
7056         }
7057
7058         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7059                 /* regs dump ABI info */
7060                 int size = sizeof(u64);
7061
7062                 perf_sample_regs_intr(&data->regs_intr, regs);
7063
7064                 if (data->regs_intr.regs) {
7065                         u64 mask = event->attr.sample_regs_intr;
7066
7067                         size += hweight64(mask) * sizeof(u64);
7068                 }
7069
7070                 header->size += size;
7071         }
7072
7073         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7074                 data->phys_addr = perf_virt_to_phys(data->addr);
7075
7076 #ifdef CONFIG_CGROUP_PERF
7077         if (sample_type & PERF_SAMPLE_CGROUP) {
7078                 struct cgroup *cgrp;
7079
7080                 /* protected by RCU */
7081                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7082                 data->cgroup = cgroup_id(cgrp);
7083         }
7084 #endif
7085
7086         if (sample_type & PERF_SAMPLE_AUX) {
7087                 u64 size;
7088
7089                 header->size += sizeof(u64); /* size */
7090
7091                 /*
7092                  * Given the 16bit nature of header::size, an AUX sample can
7093                  * easily overflow it, what with all the preceding sample bits.
7094                  * Make sure this doesn't happen by using up to U16_MAX bytes
7095                  * per sample in total (rounded down to 8 byte boundary).
7096                  */
7097                 size = min_t(size_t, U16_MAX - header->size,
7098                              event->attr.aux_sample_size);
7099                 size = rounddown(size, 8);
7100                 size = perf_prepare_sample_aux(event, data, size);
7101
7102                 WARN_ON_ONCE(size + header->size > U16_MAX);
7103                 header->size += size;
7104         }
7105         /*
7106          * If you're adding more sample types here, you likely need to do
7107          * something about the overflowing header::size, like repurpose the
7108          * lowest 3 bits of size, which should be always zero at the moment.
7109          * This raises a more important question, do we really need 512k sized
7110          * samples and why, so good argumentation is in order for whatever you
7111          * do here next.
7112          */
7113         WARN_ON_ONCE(header->size & 7);
7114 }
7115
7116 static __always_inline int
7117 __perf_event_output(struct perf_event *event,
7118                     struct perf_sample_data *data,
7119                     struct pt_regs *regs,
7120                     int (*output_begin)(struct perf_output_handle *,
7121                                         struct perf_event *,
7122                                         unsigned int))
7123 {
7124         struct perf_output_handle handle;
7125         struct perf_event_header header;
7126         int err;
7127
7128         /* protect the callchain buffers */
7129         rcu_read_lock();
7130
7131         perf_prepare_sample(&header, data, event, regs);
7132
7133         err = output_begin(&handle, event, header.size);
7134         if (err)
7135                 goto exit;
7136
7137         perf_output_sample(&handle, &header, data, event);
7138
7139         perf_output_end(&handle);
7140
7141 exit:
7142         rcu_read_unlock();
7143         return err;
7144 }
7145
7146 void
7147 perf_event_output_forward(struct perf_event *event,
7148                          struct perf_sample_data *data,
7149                          struct pt_regs *regs)
7150 {
7151         __perf_event_output(event, data, regs, perf_output_begin_forward);
7152 }
7153
7154 void
7155 perf_event_output_backward(struct perf_event *event,
7156                            struct perf_sample_data *data,
7157                            struct pt_regs *regs)
7158 {
7159         __perf_event_output(event, data, regs, perf_output_begin_backward);
7160 }
7161
7162 int
7163 perf_event_output(struct perf_event *event,
7164                   struct perf_sample_data *data,
7165                   struct pt_regs *regs)
7166 {
7167         return __perf_event_output(event, data, regs, perf_output_begin);
7168 }
7169
7170 /*
7171  * read event_id
7172  */
7173
7174 struct perf_read_event {
7175         struct perf_event_header        header;
7176
7177         u32                             pid;
7178         u32                             tid;
7179 };
7180
7181 static void
7182 perf_event_read_event(struct perf_event *event,
7183                         struct task_struct *task)
7184 {
7185         struct perf_output_handle handle;
7186         struct perf_sample_data sample;
7187         struct perf_read_event read_event = {
7188                 .header = {
7189                         .type = PERF_RECORD_READ,
7190                         .misc = 0,
7191                         .size = sizeof(read_event) + event->read_size,
7192                 },
7193                 .pid = perf_event_pid(event, task),
7194                 .tid = perf_event_tid(event, task),
7195         };
7196         int ret;
7197
7198         perf_event_header__init_id(&read_event.header, &sample, event);
7199         ret = perf_output_begin(&handle, event, read_event.header.size);
7200         if (ret)
7201                 return;
7202
7203         perf_output_put(&handle, read_event);
7204         perf_output_read(&handle, event);
7205         perf_event__output_id_sample(event, &handle, &sample);
7206
7207         perf_output_end(&handle);
7208 }
7209
7210 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7211
7212 static void
7213 perf_iterate_ctx(struct perf_event_context *ctx,
7214                    perf_iterate_f output,
7215                    void *data, bool all)
7216 {
7217         struct perf_event *event;
7218
7219         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7220                 if (!all) {
7221                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7222                                 continue;
7223                         if (!event_filter_match(event))
7224                                 continue;
7225                 }
7226
7227                 output(event, data);
7228         }
7229 }
7230
7231 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7232 {
7233         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7234         struct perf_event *event;
7235
7236         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7237                 /*
7238                  * Skip events that are not fully formed yet; ensure that
7239                  * if we observe event->ctx, both event and ctx will be
7240                  * complete enough. See perf_install_in_context().
7241                  */
7242                 if (!smp_load_acquire(&event->ctx))
7243                         continue;
7244
7245                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7246                         continue;
7247                 if (!event_filter_match(event))
7248                         continue;
7249                 output(event, data);
7250         }
7251 }
7252
7253 /*
7254  * Iterate all events that need to receive side-band events.
7255  *
7256  * For new callers; ensure that account_pmu_sb_event() includes
7257  * your event, otherwise it might not get delivered.
7258  */
7259 static void
7260 perf_iterate_sb(perf_iterate_f output, void *data,
7261                struct perf_event_context *task_ctx)
7262 {
7263         struct perf_event_context *ctx;
7264         int ctxn;
7265
7266         rcu_read_lock();
7267         preempt_disable();
7268
7269         /*
7270          * If we have task_ctx != NULL we only notify the task context itself.
7271          * The task_ctx is set only for EXIT events before releasing task
7272          * context.
7273          */
7274         if (task_ctx) {
7275                 perf_iterate_ctx(task_ctx, output, data, false);
7276                 goto done;
7277         }
7278
7279         perf_iterate_sb_cpu(output, data);
7280
7281         for_each_task_context_nr(ctxn) {
7282                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7283                 if (ctx)
7284                         perf_iterate_ctx(ctx, output, data, false);
7285         }
7286 done:
7287         preempt_enable();
7288         rcu_read_unlock();
7289 }
7290
7291 /*
7292  * Clear all file-based filters at exec, they'll have to be
7293  * re-instated when/if these objects are mmapped again.
7294  */
7295 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7296 {
7297         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7298         struct perf_addr_filter *filter;
7299         unsigned int restart = 0, count = 0;
7300         unsigned long flags;
7301
7302         if (!has_addr_filter(event))
7303                 return;
7304
7305         raw_spin_lock_irqsave(&ifh->lock, flags);
7306         list_for_each_entry(filter, &ifh->list, entry) {
7307                 if (filter->path.dentry) {
7308                         event->addr_filter_ranges[count].start = 0;
7309                         event->addr_filter_ranges[count].size = 0;
7310                         restart++;
7311                 }
7312
7313                 count++;
7314         }
7315
7316         if (restart)
7317                 event->addr_filters_gen++;
7318         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7319
7320         if (restart)
7321                 perf_event_stop(event, 1);
7322 }
7323
7324 void perf_event_exec(void)
7325 {
7326         struct perf_event_context *ctx;
7327         int ctxn;
7328
7329         rcu_read_lock();
7330         for_each_task_context_nr(ctxn) {
7331                 ctx = current->perf_event_ctxp[ctxn];
7332                 if (!ctx)
7333                         continue;
7334
7335                 perf_event_enable_on_exec(ctxn);
7336
7337                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7338                                    true);
7339         }
7340         rcu_read_unlock();
7341 }
7342
7343 struct remote_output {
7344         struct perf_buffer      *rb;
7345         int                     err;
7346 };
7347
7348 static void __perf_event_output_stop(struct perf_event *event, void *data)
7349 {
7350         struct perf_event *parent = event->parent;
7351         struct remote_output *ro = data;
7352         struct perf_buffer *rb = ro->rb;
7353         struct stop_event_data sd = {
7354                 .event  = event,
7355         };
7356
7357         if (!has_aux(event))
7358                 return;
7359
7360         if (!parent)
7361                 parent = event;
7362
7363         /*
7364          * In case of inheritance, it will be the parent that links to the
7365          * ring-buffer, but it will be the child that's actually using it.
7366          *
7367          * We are using event::rb to determine if the event should be stopped,
7368          * however this may race with ring_buffer_attach() (through set_output),
7369          * which will make us skip the event that actually needs to be stopped.
7370          * So ring_buffer_attach() has to stop an aux event before re-assigning
7371          * its rb pointer.
7372          */
7373         if (rcu_dereference(parent->rb) == rb)
7374                 ro->err = __perf_event_stop(&sd);
7375 }
7376
7377 static int __perf_pmu_output_stop(void *info)
7378 {
7379         struct perf_event *event = info;
7380         struct pmu *pmu = event->ctx->pmu;
7381         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7382         struct remote_output ro = {
7383                 .rb     = event->rb,
7384         };
7385
7386         rcu_read_lock();
7387         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7388         if (cpuctx->task_ctx)
7389                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7390                                    &ro, false);
7391         rcu_read_unlock();
7392
7393         return ro.err;
7394 }
7395
7396 static void perf_pmu_output_stop(struct perf_event *event)
7397 {
7398         struct perf_event *iter;
7399         int err, cpu;
7400
7401 restart:
7402         rcu_read_lock();
7403         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7404                 /*
7405                  * For per-CPU events, we need to make sure that neither they
7406                  * nor their children are running; for cpu==-1 events it's
7407                  * sufficient to stop the event itself if it's active, since
7408                  * it can't have children.
7409                  */
7410                 cpu = iter->cpu;
7411                 if (cpu == -1)
7412                         cpu = READ_ONCE(iter->oncpu);
7413
7414                 if (cpu == -1)
7415                         continue;
7416
7417                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7418                 if (err == -EAGAIN) {
7419                         rcu_read_unlock();
7420                         goto restart;
7421                 }
7422         }
7423         rcu_read_unlock();
7424 }
7425
7426 /*
7427  * task tracking -- fork/exit
7428  *
7429  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7430  */
7431
7432 struct perf_task_event {
7433         struct task_struct              *task;
7434         struct perf_event_context       *task_ctx;
7435
7436         struct {
7437                 struct perf_event_header        header;
7438
7439                 u32                             pid;
7440                 u32                             ppid;
7441                 u32                             tid;
7442                 u32                             ptid;
7443                 u64                             time;
7444         } event_id;
7445 };
7446
7447 static int perf_event_task_match(struct perf_event *event)
7448 {
7449         return event->attr.comm  || event->attr.mmap ||
7450                event->attr.mmap2 || event->attr.mmap_data ||
7451                event->attr.task;
7452 }
7453
7454 static void perf_event_task_output(struct perf_event *event,
7455                                    void *data)
7456 {
7457         struct perf_task_event *task_event = data;
7458         struct perf_output_handle handle;
7459         struct perf_sample_data sample;
7460         struct task_struct *task = task_event->task;
7461         int ret, size = task_event->event_id.header.size;
7462
7463         if (!perf_event_task_match(event))
7464                 return;
7465
7466         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7467
7468         ret = perf_output_begin(&handle, event,
7469                                 task_event->event_id.header.size);
7470         if (ret)
7471                 goto out;
7472
7473         task_event->event_id.pid = perf_event_pid(event, task);
7474         task_event->event_id.ppid = perf_event_pid(event, current);
7475
7476         task_event->event_id.tid = perf_event_tid(event, task);
7477         task_event->event_id.ptid = perf_event_tid(event, current);
7478
7479         task_event->event_id.time = perf_event_clock(event);
7480
7481         perf_output_put(&handle, task_event->event_id);
7482
7483         perf_event__output_id_sample(event, &handle, &sample);
7484
7485         perf_output_end(&handle);
7486 out:
7487         task_event->event_id.header.size = size;
7488 }
7489
7490 static void perf_event_task(struct task_struct *task,
7491                               struct perf_event_context *task_ctx,
7492                               int new)
7493 {
7494         struct perf_task_event task_event;
7495
7496         if (!atomic_read(&nr_comm_events) &&
7497             !atomic_read(&nr_mmap_events) &&
7498             !atomic_read(&nr_task_events))
7499                 return;
7500
7501         task_event = (struct perf_task_event){
7502                 .task     = task,
7503                 .task_ctx = task_ctx,
7504                 .event_id    = {
7505                         .header = {
7506                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7507                                 .misc = 0,
7508                                 .size = sizeof(task_event.event_id),
7509                         },
7510                         /* .pid  */
7511                         /* .ppid */
7512                         /* .tid  */
7513                         /* .ptid */
7514                         /* .time */
7515                 },
7516         };
7517
7518         perf_iterate_sb(perf_event_task_output,
7519                        &task_event,
7520                        task_ctx);
7521 }
7522
7523 void perf_event_fork(struct task_struct *task)
7524 {
7525         perf_event_task(task, NULL, 1);
7526         perf_event_namespaces(task);
7527 }
7528
7529 /*
7530  * comm tracking
7531  */
7532
7533 struct perf_comm_event {
7534         struct task_struct      *task;
7535         char                    *comm;
7536         int                     comm_size;
7537
7538         struct {
7539                 struct perf_event_header        header;
7540
7541                 u32                             pid;
7542                 u32                             tid;
7543         } event_id;
7544 };
7545
7546 static int perf_event_comm_match(struct perf_event *event)
7547 {
7548         return event->attr.comm;
7549 }
7550
7551 static void perf_event_comm_output(struct perf_event *event,
7552                                    void *data)
7553 {
7554         struct perf_comm_event *comm_event = data;
7555         struct perf_output_handle handle;
7556         struct perf_sample_data sample;
7557         int size = comm_event->event_id.header.size;
7558         int ret;
7559
7560         if (!perf_event_comm_match(event))
7561                 return;
7562
7563         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7564         ret = perf_output_begin(&handle, event,
7565                                 comm_event->event_id.header.size);
7566
7567         if (ret)
7568                 goto out;
7569
7570         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7571         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7572
7573         perf_output_put(&handle, comm_event->event_id);
7574         __output_copy(&handle, comm_event->comm,
7575                                    comm_event->comm_size);
7576
7577         perf_event__output_id_sample(event, &handle, &sample);
7578
7579         perf_output_end(&handle);
7580 out:
7581         comm_event->event_id.header.size = size;
7582 }
7583
7584 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7585 {
7586         char comm[TASK_COMM_LEN];
7587         unsigned int size;
7588
7589         memset(comm, 0, sizeof(comm));
7590         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7591         size = ALIGN(strlen(comm)+1, sizeof(u64));
7592
7593         comm_event->comm = comm;
7594         comm_event->comm_size = size;
7595
7596         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7597
7598         perf_iterate_sb(perf_event_comm_output,
7599                        comm_event,
7600                        NULL);
7601 }
7602
7603 void perf_event_comm(struct task_struct *task, bool exec)
7604 {
7605         struct perf_comm_event comm_event;
7606
7607         if (!atomic_read(&nr_comm_events))
7608                 return;
7609
7610         comm_event = (struct perf_comm_event){
7611                 .task   = task,
7612                 /* .comm      */
7613                 /* .comm_size */
7614                 .event_id  = {
7615                         .header = {
7616                                 .type = PERF_RECORD_COMM,
7617                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7618                                 /* .size */
7619                         },
7620                         /* .pid */
7621                         /* .tid */
7622                 },
7623         };
7624
7625         perf_event_comm_event(&comm_event);
7626 }
7627
7628 /*
7629  * namespaces tracking
7630  */
7631
7632 struct perf_namespaces_event {
7633         struct task_struct              *task;
7634
7635         struct {
7636                 struct perf_event_header        header;
7637
7638                 u32                             pid;
7639                 u32                             tid;
7640                 u64                             nr_namespaces;
7641                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7642         } event_id;
7643 };
7644
7645 static int perf_event_namespaces_match(struct perf_event *event)
7646 {
7647         return event->attr.namespaces;
7648 }
7649
7650 static void perf_event_namespaces_output(struct perf_event *event,
7651                                          void *data)
7652 {
7653         struct perf_namespaces_event *namespaces_event = data;
7654         struct perf_output_handle handle;
7655         struct perf_sample_data sample;
7656         u16 header_size = namespaces_event->event_id.header.size;
7657         int ret;
7658
7659         if (!perf_event_namespaces_match(event))
7660                 return;
7661
7662         perf_event_header__init_id(&namespaces_event->event_id.header,
7663                                    &sample, event);
7664         ret = perf_output_begin(&handle, event,
7665                                 namespaces_event->event_id.header.size);
7666         if (ret)
7667                 goto out;
7668
7669         namespaces_event->event_id.pid = perf_event_pid(event,
7670                                                         namespaces_event->task);
7671         namespaces_event->event_id.tid = perf_event_tid(event,
7672                                                         namespaces_event->task);
7673
7674         perf_output_put(&handle, namespaces_event->event_id);
7675
7676         perf_event__output_id_sample(event, &handle, &sample);
7677
7678         perf_output_end(&handle);
7679 out:
7680         namespaces_event->event_id.header.size = header_size;
7681 }
7682
7683 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7684                                    struct task_struct *task,
7685                                    const struct proc_ns_operations *ns_ops)
7686 {
7687         struct path ns_path;
7688         struct inode *ns_inode;
7689         int error;
7690
7691         error = ns_get_path(&ns_path, task, ns_ops);
7692         if (!error) {
7693                 ns_inode = ns_path.dentry->d_inode;
7694                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7695                 ns_link_info->ino = ns_inode->i_ino;
7696                 path_put(&ns_path);
7697         }
7698 }
7699
7700 void perf_event_namespaces(struct task_struct *task)
7701 {
7702         struct perf_namespaces_event namespaces_event;
7703         struct perf_ns_link_info *ns_link_info;
7704
7705         if (!atomic_read(&nr_namespaces_events))
7706                 return;
7707
7708         namespaces_event = (struct perf_namespaces_event){
7709                 .task   = task,
7710                 .event_id  = {
7711                         .header = {
7712                                 .type = PERF_RECORD_NAMESPACES,
7713                                 .misc = 0,
7714                                 .size = sizeof(namespaces_event.event_id),
7715                         },
7716                         /* .pid */
7717                         /* .tid */
7718                         .nr_namespaces = NR_NAMESPACES,
7719                         /* .link_info[NR_NAMESPACES] */
7720                 },
7721         };
7722
7723         ns_link_info = namespaces_event.event_id.link_info;
7724
7725         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7726                                task, &mntns_operations);
7727
7728 #ifdef CONFIG_USER_NS
7729         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7730                                task, &userns_operations);
7731 #endif
7732 #ifdef CONFIG_NET_NS
7733         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7734                                task, &netns_operations);
7735 #endif
7736 #ifdef CONFIG_UTS_NS
7737         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7738                                task, &utsns_operations);
7739 #endif
7740 #ifdef CONFIG_IPC_NS
7741         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7742                                task, &ipcns_operations);
7743 #endif
7744 #ifdef CONFIG_PID_NS
7745         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7746                                task, &pidns_operations);
7747 #endif
7748 #ifdef CONFIG_CGROUPS
7749         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7750                                task, &cgroupns_operations);
7751 #endif
7752
7753         perf_iterate_sb(perf_event_namespaces_output,
7754                         &namespaces_event,
7755                         NULL);
7756 }
7757
7758 /*
7759  * cgroup tracking
7760  */
7761 #ifdef CONFIG_CGROUP_PERF
7762
7763 struct perf_cgroup_event {
7764         char                            *path;
7765         int                             path_size;
7766         struct {
7767                 struct perf_event_header        header;
7768                 u64                             id;
7769                 char                            path[];
7770         } event_id;
7771 };
7772
7773 static int perf_event_cgroup_match(struct perf_event *event)
7774 {
7775         return event->attr.cgroup;
7776 }
7777
7778 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7779 {
7780         struct perf_cgroup_event *cgroup_event = data;
7781         struct perf_output_handle handle;
7782         struct perf_sample_data sample;
7783         u16 header_size = cgroup_event->event_id.header.size;
7784         int ret;
7785
7786         if (!perf_event_cgroup_match(event))
7787                 return;
7788
7789         perf_event_header__init_id(&cgroup_event->event_id.header,
7790                                    &sample, event);
7791         ret = perf_output_begin(&handle, event,
7792                                 cgroup_event->event_id.header.size);
7793         if (ret)
7794                 goto out;
7795
7796         perf_output_put(&handle, cgroup_event->event_id);
7797         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7798
7799         perf_event__output_id_sample(event, &handle, &sample);
7800
7801         perf_output_end(&handle);
7802 out:
7803         cgroup_event->event_id.header.size = header_size;
7804 }
7805
7806 static void perf_event_cgroup(struct cgroup *cgrp)
7807 {
7808         struct perf_cgroup_event cgroup_event;
7809         char path_enomem[16] = "//enomem";
7810         char *pathname;
7811         size_t size;
7812
7813         if (!atomic_read(&nr_cgroup_events))
7814                 return;
7815
7816         cgroup_event = (struct perf_cgroup_event){
7817                 .event_id  = {
7818                         .header = {
7819                                 .type = PERF_RECORD_CGROUP,
7820                                 .misc = 0,
7821                                 .size = sizeof(cgroup_event.event_id),
7822                         },
7823                         .id = cgroup_id(cgrp),
7824                 },
7825         };
7826
7827         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7828         if (pathname == NULL) {
7829                 cgroup_event.path = path_enomem;
7830         } else {
7831                 /* just to be sure to have enough space for alignment */
7832                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7833                 cgroup_event.path = pathname;
7834         }
7835
7836         /*
7837          * Since our buffer works in 8 byte units we need to align our string
7838          * size to a multiple of 8. However, we must guarantee the tail end is
7839          * zero'd out to avoid leaking random bits to userspace.
7840          */
7841         size = strlen(cgroup_event.path) + 1;
7842         while (!IS_ALIGNED(size, sizeof(u64)))
7843                 cgroup_event.path[size++] = '\0';
7844
7845         cgroup_event.event_id.header.size += size;
7846         cgroup_event.path_size = size;
7847
7848         perf_iterate_sb(perf_event_cgroup_output,
7849                         &cgroup_event,
7850                         NULL);
7851
7852         kfree(pathname);
7853 }
7854
7855 #endif
7856
7857 /*
7858  * mmap tracking
7859  */
7860
7861 struct perf_mmap_event {
7862         struct vm_area_struct   *vma;
7863
7864         const char              *file_name;
7865         int                     file_size;
7866         int                     maj, min;
7867         u64                     ino;
7868         u64                     ino_generation;
7869         u32                     prot, flags;
7870
7871         struct {
7872                 struct perf_event_header        header;
7873
7874                 u32                             pid;
7875                 u32                             tid;
7876                 u64                             start;
7877                 u64                             len;
7878                 u64                             pgoff;
7879         } event_id;
7880 };
7881
7882 static int perf_event_mmap_match(struct perf_event *event,
7883                                  void *data)
7884 {
7885         struct perf_mmap_event *mmap_event = data;
7886         struct vm_area_struct *vma = mmap_event->vma;
7887         int executable = vma->vm_flags & VM_EXEC;
7888
7889         return (!executable && event->attr.mmap_data) ||
7890                (executable && (event->attr.mmap || event->attr.mmap2));
7891 }
7892
7893 static void perf_event_mmap_output(struct perf_event *event,
7894                                    void *data)
7895 {
7896         struct perf_mmap_event *mmap_event = data;
7897         struct perf_output_handle handle;
7898         struct perf_sample_data sample;
7899         int size = mmap_event->event_id.header.size;
7900         u32 type = mmap_event->event_id.header.type;
7901         int ret;
7902
7903         if (!perf_event_mmap_match(event, data))
7904                 return;
7905
7906         if (event->attr.mmap2) {
7907                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7908                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7909                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7910                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7911                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7912                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7913                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7914         }
7915
7916         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7917         ret = perf_output_begin(&handle, event,
7918                                 mmap_event->event_id.header.size);
7919         if (ret)
7920                 goto out;
7921
7922         mmap_event->event_id.pid = perf_event_pid(event, current);
7923         mmap_event->event_id.tid = perf_event_tid(event, current);
7924
7925         perf_output_put(&handle, mmap_event->event_id);
7926
7927         if (event->attr.mmap2) {
7928                 perf_output_put(&handle, mmap_event->maj);
7929                 perf_output_put(&handle, mmap_event->min);
7930                 perf_output_put(&handle, mmap_event->ino);
7931                 perf_output_put(&handle, mmap_event->ino_generation);
7932                 perf_output_put(&handle, mmap_event->prot);
7933                 perf_output_put(&handle, mmap_event->flags);
7934         }
7935
7936         __output_copy(&handle, mmap_event->file_name,
7937                                    mmap_event->file_size);
7938
7939         perf_event__output_id_sample(event, &handle, &sample);
7940
7941         perf_output_end(&handle);
7942 out:
7943         mmap_event->event_id.header.size = size;
7944         mmap_event->event_id.header.type = type;
7945 }
7946
7947 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7948 {
7949         struct vm_area_struct *vma = mmap_event->vma;
7950         struct file *file = vma->vm_file;
7951         int maj = 0, min = 0;
7952         u64 ino = 0, gen = 0;
7953         u32 prot = 0, flags = 0;
7954         unsigned int size;
7955         char tmp[16];
7956         char *buf = NULL;
7957         char *name;
7958
7959         if (vma->vm_flags & VM_READ)
7960                 prot |= PROT_READ;
7961         if (vma->vm_flags & VM_WRITE)
7962                 prot |= PROT_WRITE;
7963         if (vma->vm_flags & VM_EXEC)
7964                 prot |= PROT_EXEC;
7965
7966         if (vma->vm_flags & VM_MAYSHARE)
7967                 flags = MAP_SHARED;
7968         else
7969                 flags = MAP_PRIVATE;
7970
7971         if (vma->vm_flags & VM_DENYWRITE)
7972                 flags |= MAP_DENYWRITE;
7973         if (vma->vm_flags & VM_MAYEXEC)
7974                 flags |= MAP_EXECUTABLE;
7975         if (vma->vm_flags & VM_LOCKED)
7976                 flags |= MAP_LOCKED;
7977         if (is_vm_hugetlb_page(vma))
7978                 flags |= MAP_HUGETLB;
7979
7980         if (file) {
7981                 struct inode *inode;
7982                 dev_t dev;
7983
7984                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7985                 if (!buf) {
7986                         name = "//enomem";
7987                         goto cpy_name;
7988                 }
7989                 /*
7990                  * d_path() works from the end of the rb backwards, so we
7991                  * need to add enough zero bytes after the string to handle
7992                  * the 64bit alignment we do later.
7993                  */
7994                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7995                 if (IS_ERR(name)) {
7996                         name = "//toolong";
7997                         goto cpy_name;
7998                 }
7999                 inode = file_inode(vma->vm_file);
8000                 dev = inode->i_sb->s_dev;
8001                 ino = inode->i_ino;
8002                 gen = inode->i_generation;
8003                 maj = MAJOR(dev);
8004                 min = MINOR(dev);
8005
8006                 goto got_name;
8007         } else {
8008                 if (vma->vm_ops && vma->vm_ops->name) {
8009                         name = (char *) vma->vm_ops->name(vma);
8010                         if (name)
8011                                 goto cpy_name;
8012                 }
8013
8014                 name = (char *)arch_vma_name(vma);
8015                 if (name)
8016                         goto cpy_name;
8017
8018                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8019                                 vma->vm_end >= vma->vm_mm->brk) {
8020                         name = "[heap]";
8021                         goto cpy_name;
8022                 }
8023                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8024                                 vma->vm_end >= vma->vm_mm->start_stack) {
8025                         name = "[stack]";
8026                         goto cpy_name;
8027                 }
8028
8029                 name = "//anon";
8030                 goto cpy_name;
8031         }
8032
8033 cpy_name:
8034         strlcpy(tmp, name, sizeof(tmp));
8035         name = tmp;
8036 got_name:
8037         /*
8038          * Since our buffer works in 8 byte units we need to align our string
8039          * size to a multiple of 8. However, we must guarantee the tail end is
8040          * zero'd out to avoid leaking random bits to userspace.
8041          */
8042         size = strlen(name)+1;
8043         while (!IS_ALIGNED(size, sizeof(u64)))
8044                 name[size++] = '\0';
8045
8046         mmap_event->file_name = name;
8047         mmap_event->file_size = size;
8048         mmap_event->maj = maj;
8049         mmap_event->min = min;
8050         mmap_event->ino = ino;
8051         mmap_event->ino_generation = gen;
8052         mmap_event->prot = prot;
8053         mmap_event->flags = flags;
8054
8055         if (!(vma->vm_flags & VM_EXEC))
8056                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8057
8058         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8059
8060         perf_iterate_sb(perf_event_mmap_output,
8061                        mmap_event,
8062                        NULL);
8063
8064         kfree(buf);
8065 }
8066
8067 /*
8068  * Check whether inode and address range match filter criteria.
8069  */
8070 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8071                                      struct file *file, unsigned long offset,
8072                                      unsigned long size)
8073 {
8074         /* d_inode(NULL) won't be equal to any mapped user-space file */
8075         if (!filter->path.dentry)
8076                 return false;
8077
8078         if (d_inode(filter->path.dentry) != file_inode(file))
8079                 return false;
8080
8081         if (filter->offset > offset + size)
8082                 return false;
8083
8084         if (filter->offset + filter->size < offset)
8085                 return false;
8086
8087         return true;
8088 }
8089
8090 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8091                                         struct vm_area_struct *vma,
8092                                         struct perf_addr_filter_range *fr)
8093 {
8094         unsigned long vma_size = vma->vm_end - vma->vm_start;
8095         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8096         struct file *file = vma->vm_file;
8097
8098         if (!perf_addr_filter_match(filter, file, off, vma_size))
8099                 return false;
8100
8101         if (filter->offset < off) {
8102                 fr->start = vma->vm_start;
8103                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8104         } else {
8105                 fr->start = vma->vm_start + filter->offset - off;
8106                 fr->size = min(vma->vm_end - fr->start, filter->size);
8107         }
8108
8109         return true;
8110 }
8111
8112 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8113 {
8114         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8115         struct vm_area_struct *vma = data;
8116         struct perf_addr_filter *filter;
8117         unsigned int restart = 0, count = 0;
8118         unsigned long flags;
8119
8120         if (!has_addr_filter(event))
8121                 return;
8122
8123         if (!vma->vm_file)
8124                 return;
8125
8126         raw_spin_lock_irqsave(&ifh->lock, flags);
8127         list_for_each_entry(filter, &ifh->list, entry) {
8128                 if (perf_addr_filter_vma_adjust(filter, vma,
8129                                                 &event->addr_filter_ranges[count]))
8130                         restart++;
8131
8132                 count++;
8133         }
8134
8135         if (restart)
8136                 event->addr_filters_gen++;
8137         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8138
8139         if (restart)
8140                 perf_event_stop(event, 1);
8141 }
8142
8143 /*
8144  * Adjust all task's events' filters to the new vma
8145  */
8146 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8147 {
8148         struct perf_event_context *ctx;
8149         int ctxn;
8150
8151         /*
8152          * Data tracing isn't supported yet and as such there is no need
8153          * to keep track of anything that isn't related to executable code:
8154          */
8155         if (!(vma->vm_flags & VM_EXEC))
8156                 return;
8157
8158         rcu_read_lock();
8159         for_each_task_context_nr(ctxn) {
8160                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8161                 if (!ctx)
8162                         continue;
8163
8164                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8165         }
8166         rcu_read_unlock();
8167 }
8168
8169 void perf_event_mmap(struct vm_area_struct *vma)
8170 {
8171         struct perf_mmap_event mmap_event;
8172
8173         if (!atomic_read(&nr_mmap_events))
8174                 return;
8175
8176         mmap_event = (struct perf_mmap_event){
8177                 .vma    = vma,
8178                 /* .file_name */
8179                 /* .file_size */
8180                 .event_id  = {
8181                         .header = {
8182                                 .type = PERF_RECORD_MMAP,
8183                                 .misc = PERF_RECORD_MISC_USER,
8184                                 /* .size */
8185                         },
8186                         /* .pid */
8187                         /* .tid */
8188                         .start  = vma->vm_start,
8189                         .len    = vma->vm_end - vma->vm_start,
8190                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8191                 },
8192                 /* .maj (attr_mmap2 only) */
8193                 /* .min (attr_mmap2 only) */
8194                 /* .ino (attr_mmap2 only) */
8195                 /* .ino_generation (attr_mmap2 only) */
8196                 /* .prot (attr_mmap2 only) */
8197                 /* .flags (attr_mmap2 only) */
8198         };
8199
8200         perf_addr_filters_adjust(vma);
8201         perf_event_mmap_event(&mmap_event);
8202 }
8203
8204 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8205                           unsigned long size, u64 flags)
8206 {
8207         struct perf_output_handle handle;
8208         struct perf_sample_data sample;
8209         struct perf_aux_event {
8210                 struct perf_event_header        header;
8211                 u64                             offset;
8212                 u64                             size;
8213                 u64                             flags;
8214         } rec = {
8215                 .header = {
8216                         .type = PERF_RECORD_AUX,
8217                         .misc = 0,
8218                         .size = sizeof(rec),
8219                 },
8220                 .offset         = head,
8221                 .size           = size,
8222                 .flags          = flags,
8223         };
8224         int ret;
8225
8226         perf_event_header__init_id(&rec.header, &sample, event);
8227         ret = perf_output_begin(&handle, event, rec.header.size);
8228
8229         if (ret)
8230                 return;
8231
8232         perf_output_put(&handle, rec);
8233         perf_event__output_id_sample(event, &handle, &sample);
8234
8235         perf_output_end(&handle);
8236 }
8237
8238 /*
8239  * Lost/dropped samples logging
8240  */
8241 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8242 {
8243         struct perf_output_handle handle;
8244         struct perf_sample_data sample;
8245         int ret;
8246
8247         struct {
8248                 struct perf_event_header        header;
8249                 u64                             lost;
8250         } lost_samples_event = {
8251                 .header = {
8252                         .type = PERF_RECORD_LOST_SAMPLES,
8253                         .misc = 0,
8254                         .size = sizeof(lost_samples_event),
8255                 },
8256                 .lost           = lost,
8257         };
8258
8259         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8260
8261         ret = perf_output_begin(&handle, event,
8262                                 lost_samples_event.header.size);
8263         if (ret)
8264                 return;
8265
8266         perf_output_put(&handle, lost_samples_event);
8267         perf_event__output_id_sample(event, &handle, &sample);
8268         perf_output_end(&handle);
8269 }
8270
8271 /*
8272  * context_switch tracking
8273  */
8274
8275 struct perf_switch_event {
8276         struct task_struct      *task;
8277         struct task_struct      *next_prev;
8278
8279         struct {
8280                 struct perf_event_header        header;
8281                 u32                             next_prev_pid;
8282                 u32                             next_prev_tid;
8283         } event_id;
8284 };
8285
8286 static int perf_event_switch_match(struct perf_event *event)
8287 {
8288         return event->attr.context_switch;
8289 }
8290
8291 static void perf_event_switch_output(struct perf_event *event, void *data)
8292 {
8293         struct perf_switch_event *se = data;
8294         struct perf_output_handle handle;
8295         struct perf_sample_data sample;
8296         int ret;
8297
8298         if (!perf_event_switch_match(event))
8299                 return;
8300
8301         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8302         if (event->ctx->task) {
8303                 se->event_id.header.type = PERF_RECORD_SWITCH;
8304                 se->event_id.header.size = sizeof(se->event_id.header);
8305         } else {
8306                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8307                 se->event_id.header.size = sizeof(se->event_id);
8308                 se->event_id.next_prev_pid =
8309                                         perf_event_pid(event, se->next_prev);
8310                 se->event_id.next_prev_tid =
8311                                         perf_event_tid(event, se->next_prev);
8312         }
8313
8314         perf_event_header__init_id(&se->event_id.header, &sample, event);
8315
8316         ret = perf_output_begin(&handle, event, se->event_id.header.size);
8317         if (ret)
8318                 return;
8319
8320         if (event->ctx->task)
8321                 perf_output_put(&handle, se->event_id.header);
8322         else
8323                 perf_output_put(&handle, se->event_id);
8324
8325         perf_event__output_id_sample(event, &handle, &sample);
8326
8327         perf_output_end(&handle);
8328 }
8329
8330 static void perf_event_switch(struct task_struct *task,
8331                               struct task_struct *next_prev, bool sched_in)
8332 {
8333         struct perf_switch_event switch_event;
8334
8335         /* N.B. caller checks nr_switch_events != 0 */
8336
8337         switch_event = (struct perf_switch_event){
8338                 .task           = task,
8339                 .next_prev      = next_prev,
8340                 .event_id       = {
8341                         .header = {
8342                                 /* .type */
8343                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8344                                 /* .size */
8345                         },
8346                         /* .next_prev_pid */
8347                         /* .next_prev_tid */
8348                 },
8349         };
8350
8351         if (!sched_in && task->state == TASK_RUNNING)
8352                 switch_event.event_id.header.misc |=
8353                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8354
8355         perf_iterate_sb(perf_event_switch_output,
8356                        &switch_event,
8357                        NULL);
8358 }
8359
8360 /*
8361  * IRQ throttle logging
8362  */
8363
8364 static void perf_log_throttle(struct perf_event *event, int enable)
8365 {
8366         struct perf_output_handle handle;
8367         struct perf_sample_data sample;
8368         int ret;
8369
8370         struct {
8371                 struct perf_event_header        header;
8372                 u64                             time;
8373                 u64                             id;
8374                 u64                             stream_id;
8375         } throttle_event = {
8376                 .header = {
8377                         .type = PERF_RECORD_THROTTLE,
8378                         .misc = 0,
8379                         .size = sizeof(throttle_event),
8380                 },
8381                 .time           = perf_event_clock(event),
8382                 .id             = primary_event_id(event),
8383                 .stream_id      = event->id,
8384         };
8385
8386         if (enable)
8387                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8388
8389         perf_event_header__init_id(&throttle_event.header, &sample, event);
8390
8391         ret = perf_output_begin(&handle, event,
8392                                 throttle_event.header.size);
8393         if (ret)
8394                 return;
8395
8396         perf_output_put(&handle, throttle_event);
8397         perf_event__output_id_sample(event, &handle, &sample);
8398         perf_output_end(&handle);
8399 }
8400
8401 /*
8402  * ksymbol register/unregister tracking
8403  */
8404
8405 struct perf_ksymbol_event {
8406         const char      *name;
8407         int             name_len;
8408         struct {
8409                 struct perf_event_header        header;
8410                 u64                             addr;
8411                 u32                             len;
8412                 u16                             ksym_type;
8413                 u16                             flags;
8414         } event_id;
8415 };
8416
8417 static int perf_event_ksymbol_match(struct perf_event *event)
8418 {
8419         return event->attr.ksymbol;
8420 }
8421
8422 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8423 {
8424         struct perf_ksymbol_event *ksymbol_event = data;
8425         struct perf_output_handle handle;
8426         struct perf_sample_data sample;
8427         int ret;
8428
8429         if (!perf_event_ksymbol_match(event))
8430                 return;
8431
8432         perf_event_header__init_id(&ksymbol_event->event_id.header,
8433                                    &sample, event);
8434         ret = perf_output_begin(&handle, event,
8435                                 ksymbol_event->event_id.header.size);
8436         if (ret)
8437                 return;
8438
8439         perf_output_put(&handle, ksymbol_event->event_id);
8440         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8441         perf_event__output_id_sample(event, &handle, &sample);
8442
8443         perf_output_end(&handle);
8444 }
8445
8446 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8447                         const char *sym)
8448 {
8449         struct perf_ksymbol_event ksymbol_event;
8450         char name[KSYM_NAME_LEN];
8451         u16 flags = 0;
8452         int name_len;
8453
8454         if (!atomic_read(&nr_ksymbol_events))
8455                 return;
8456
8457         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8458             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8459                 goto err;
8460
8461         strlcpy(name, sym, KSYM_NAME_LEN);
8462         name_len = strlen(name) + 1;
8463         while (!IS_ALIGNED(name_len, sizeof(u64)))
8464                 name[name_len++] = '\0';
8465         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8466
8467         if (unregister)
8468                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8469
8470         ksymbol_event = (struct perf_ksymbol_event){
8471                 .name = name,
8472                 .name_len = name_len,
8473                 .event_id = {
8474                         .header = {
8475                                 .type = PERF_RECORD_KSYMBOL,
8476                                 .size = sizeof(ksymbol_event.event_id) +
8477                                         name_len,
8478                         },
8479                         .addr = addr,
8480                         .len = len,
8481                         .ksym_type = ksym_type,
8482                         .flags = flags,
8483                 },
8484         };
8485
8486         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8487         return;
8488 err:
8489         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8490 }
8491
8492 /*
8493  * bpf program load/unload tracking
8494  */
8495
8496 struct perf_bpf_event {
8497         struct bpf_prog *prog;
8498         struct {
8499                 struct perf_event_header        header;
8500                 u16                             type;
8501                 u16                             flags;
8502                 u32                             id;
8503                 u8                              tag[BPF_TAG_SIZE];
8504         } event_id;
8505 };
8506
8507 static int perf_event_bpf_match(struct perf_event *event)
8508 {
8509         return event->attr.bpf_event;
8510 }
8511
8512 static void perf_event_bpf_output(struct perf_event *event, void *data)
8513 {
8514         struct perf_bpf_event *bpf_event = data;
8515         struct perf_output_handle handle;
8516         struct perf_sample_data sample;
8517         int ret;
8518
8519         if (!perf_event_bpf_match(event))
8520                 return;
8521
8522         perf_event_header__init_id(&bpf_event->event_id.header,
8523                                    &sample, event);
8524         ret = perf_output_begin(&handle, event,
8525                                 bpf_event->event_id.header.size);
8526         if (ret)
8527                 return;
8528
8529         perf_output_put(&handle, bpf_event->event_id);
8530         perf_event__output_id_sample(event, &handle, &sample);
8531
8532         perf_output_end(&handle);
8533 }
8534
8535 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8536                                          enum perf_bpf_event_type type)
8537 {
8538         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8539         int i;
8540
8541         if (prog->aux->func_cnt == 0) {
8542                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8543                                    (u64)(unsigned long)prog->bpf_func,
8544                                    prog->jited_len, unregister,
8545                                    prog->aux->ksym.name);
8546         } else {
8547                 for (i = 0; i < prog->aux->func_cnt; i++) {
8548                         struct bpf_prog *subprog = prog->aux->func[i];
8549
8550                         perf_event_ksymbol(
8551                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8552                                 (u64)(unsigned long)subprog->bpf_func,
8553                                 subprog->jited_len, unregister,
8554                                 prog->aux->ksym.name);
8555                 }
8556         }
8557 }
8558
8559 void perf_event_bpf_event(struct bpf_prog *prog,
8560                           enum perf_bpf_event_type type,
8561                           u16 flags)
8562 {
8563         struct perf_bpf_event bpf_event;
8564
8565         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8566             type >= PERF_BPF_EVENT_MAX)
8567                 return;
8568
8569         switch (type) {
8570         case PERF_BPF_EVENT_PROG_LOAD:
8571         case PERF_BPF_EVENT_PROG_UNLOAD:
8572                 if (atomic_read(&nr_ksymbol_events))
8573                         perf_event_bpf_emit_ksymbols(prog, type);
8574                 break;
8575         default:
8576                 break;
8577         }
8578
8579         if (!atomic_read(&nr_bpf_events))
8580                 return;
8581
8582         bpf_event = (struct perf_bpf_event){
8583                 .prog = prog,
8584                 .event_id = {
8585                         .header = {
8586                                 .type = PERF_RECORD_BPF_EVENT,
8587                                 .size = sizeof(bpf_event.event_id),
8588                         },
8589                         .type = type,
8590                         .flags = flags,
8591                         .id = prog->aux->id,
8592                 },
8593         };
8594
8595         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8596
8597         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8598         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8599 }
8600
8601 void perf_event_itrace_started(struct perf_event *event)
8602 {
8603         event->attach_state |= PERF_ATTACH_ITRACE;
8604 }
8605
8606 static void perf_log_itrace_start(struct perf_event *event)
8607 {
8608         struct perf_output_handle handle;
8609         struct perf_sample_data sample;
8610         struct perf_aux_event {
8611                 struct perf_event_header        header;
8612                 u32                             pid;
8613                 u32                             tid;
8614         } rec;
8615         int ret;
8616
8617         if (event->parent)
8618                 event = event->parent;
8619
8620         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8621             event->attach_state & PERF_ATTACH_ITRACE)
8622                 return;
8623
8624         rec.header.type = PERF_RECORD_ITRACE_START;
8625         rec.header.misc = 0;
8626         rec.header.size = sizeof(rec);
8627         rec.pid = perf_event_pid(event, current);
8628         rec.tid = perf_event_tid(event, current);
8629
8630         perf_event_header__init_id(&rec.header, &sample, event);
8631         ret = perf_output_begin(&handle, event, rec.header.size);
8632
8633         if (ret)
8634                 return;
8635
8636         perf_output_put(&handle, rec);
8637         perf_event__output_id_sample(event, &handle, &sample);
8638
8639         perf_output_end(&handle);
8640 }
8641
8642 static int
8643 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8644 {
8645         struct hw_perf_event *hwc = &event->hw;
8646         int ret = 0;
8647         u64 seq;
8648
8649         seq = __this_cpu_read(perf_throttled_seq);
8650         if (seq != hwc->interrupts_seq) {
8651                 hwc->interrupts_seq = seq;
8652                 hwc->interrupts = 1;
8653         } else {
8654                 hwc->interrupts++;
8655                 if (unlikely(throttle
8656                              && hwc->interrupts >= max_samples_per_tick)) {
8657                         __this_cpu_inc(perf_throttled_count);
8658                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8659                         hwc->interrupts = MAX_INTERRUPTS;
8660                         perf_log_throttle(event, 0);
8661                         ret = 1;
8662                 }
8663         }
8664
8665         if (event->attr.freq) {
8666                 u64 now = perf_clock();
8667                 s64 delta = now - hwc->freq_time_stamp;
8668
8669                 hwc->freq_time_stamp = now;
8670
8671                 if (delta > 0 && delta < 2*TICK_NSEC)
8672                         perf_adjust_period(event, delta, hwc->last_period, true);
8673         }
8674
8675         return ret;
8676 }
8677
8678 int perf_event_account_interrupt(struct perf_event *event)
8679 {
8680         return __perf_event_account_interrupt(event, 1);
8681 }
8682
8683 /*
8684  * Generic event overflow handling, sampling.
8685  */
8686
8687 static int __perf_event_overflow(struct perf_event *event,
8688                                    int throttle, struct perf_sample_data *data,
8689                                    struct pt_regs *regs)
8690 {
8691         int events = atomic_read(&event->event_limit);
8692         int ret = 0;
8693
8694         /*
8695          * Non-sampling counters might still use the PMI to fold short
8696          * hardware counters, ignore those.
8697          */
8698         if (unlikely(!is_sampling_event(event)))
8699                 return 0;
8700
8701         ret = __perf_event_account_interrupt(event, throttle);
8702
8703         /*
8704          * XXX event_limit might not quite work as expected on inherited
8705          * events
8706          */
8707
8708         event->pending_kill = POLL_IN;
8709         if (events && atomic_dec_and_test(&event->event_limit)) {
8710                 ret = 1;
8711                 event->pending_kill = POLL_HUP;
8712
8713                 perf_event_disable_inatomic(event);
8714         }
8715
8716         READ_ONCE(event->overflow_handler)(event, data, regs);
8717
8718         if (*perf_event_fasync(event) && event->pending_kill) {
8719                 event->pending_wakeup = 1;
8720                 irq_work_queue(&event->pending);
8721         }
8722
8723         return ret;
8724 }
8725
8726 int perf_event_overflow(struct perf_event *event,
8727                           struct perf_sample_data *data,
8728                           struct pt_regs *regs)
8729 {
8730         return __perf_event_overflow(event, 1, data, regs);
8731 }
8732
8733 /*
8734  * Generic software event infrastructure
8735  */
8736
8737 struct swevent_htable {
8738         struct swevent_hlist            *swevent_hlist;
8739         struct mutex                    hlist_mutex;
8740         int                             hlist_refcount;
8741
8742         /* Recursion avoidance in each contexts */
8743         int                             recursion[PERF_NR_CONTEXTS];
8744 };
8745
8746 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8747
8748 /*
8749  * We directly increment event->count and keep a second value in
8750  * event->hw.period_left to count intervals. This period event
8751  * is kept in the range [-sample_period, 0] so that we can use the
8752  * sign as trigger.
8753  */
8754
8755 u64 perf_swevent_set_period(struct perf_event *event)
8756 {
8757         struct hw_perf_event *hwc = &event->hw;
8758         u64 period = hwc->last_period;
8759         u64 nr, offset;
8760         s64 old, val;
8761
8762         hwc->last_period = hwc->sample_period;
8763
8764 again:
8765         old = val = local64_read(&hwc->period_left);
8766         if (val < 0)
8767                 return 0;
8768
8769         nr = div64_u64(period + val, period);
8770         offset = nr * period;
8771         val -= offset;
8772         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8773                 goto again;
8774
8775         return nr;
8776 }
8777
8778 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8779                                     struct perf_sample_data *data,
8780                                     struct pt_regs *regs)
8781 {
8782         struct hw_perf_event *hwc = &event->hw;
8783         int throttle = 0;
8784
8785         if (!overflow)
8786                 overflow = perf_swevent_set_period(event);
8787
8788         if (hwc->interrupts == MAX_INTERRUPTS)
8789                 return;
8790
8791         for (; overflow; overflow--) {
8792                 if (__perf_event_overflow(event, throttle,
8793                                             data, regs)) {
8794                         /*
8795                          * We inhibit the overflow from happening when
8796                          * hwc->interrupts == MAX_INTERRUPTS.
8797                          */
8798                         break;
8799                 }
8800                 throttle = 1;
8801         }
8802 }
8803
8804 static void perf_swevent_event(struct perf_event *event, u64 nr,
8805                                struct perf_sample_data *data,
8806                                struct pt_regs *regs)
8807 {
8808         struct hw_perf_event *hwc = &event->hw;
8809
8810         local64_add(nr, &event->count);
8811
8812         if (!regs)
8813                 return;
8814
8815         if (!is_sampling_event(event))
8816                 return;
8817
8818         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8819                 data->period = nr;
8820                 return perf_swevent_overflow(event, 1, data, regs);
8821         } else
8822                 data->period = event->hw.last_period;
8823
8824         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8825                 return perf_swevent_overflow(event, 1, data, regs);
8826
8827         if (local64_add_negative(nr, &hwc->period_left))
8828                 return;
8829
8830         perf_swevent_overflow(event, 0, data, regs);
8831 }
8832
8833 static int perf_exclude_event(struct perf_event *event,
8834                               struct pt_regs *regs)
8835 {
8836         if (event->hw.state & PERF_HES_STOPPED)
8837                 return 1;
8838
8839         if (regs) {
8840                 if (event->attr.exclude_user && user_mode(regs))
8841                         return 1;
8842
8843                 if (event->attr.exclude_kernel && !user_mode(regs))
8844                         return 1;
8845         }
8846
8847         return 0;
8848 }
8849
8850 static int perf_swevent_match(struct perf_event *event,
8851                                 enum perf_type_id type,
8852                                 u32 event_id,
8853                                 struct perf_sample_data *data,
8854                                 struct pt_regs *regs)
8855 {
8856         if (event->attr.type != type)
8857                 return 0;
8858
8859         if (event->attr.config != event_id)
8860                 return 0;
8861
8862         if (perf_exclude_event(event, regs))
8863                 return 0;
8864
8865         return 1;
8866 }
8867
8868 static inline u64 swevent_hash(u64 type, u32 event_id)
8869 {
8870         u64 val = event_id | (type << 32);
8871
8872         return hash_64(val, SWEVENT_HLIST_BITS);
8873 }
8874
8875 static inline struct hlist_head *
8876 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8877 {
8878         u64 hash = swevent_hash(type, event_id);
8879
8880         return &hlist->heads[hash];
8881 }
8882
8883 /* For the read side: events when they trigger */
8884 static inline struct hlist_head *
8885 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8886 {
8887         struct swevent_hlist *hlist;
8888
8889         hlist = rcu_dereference(swhash->swevent_hlist);
8890         if (!hlist)
8891                 return NULL;
8892
8893         return __find_swevent_head(hlist, type, event_id);
8894 }
8895
8896 /* For the event head insertion and removal in the hlist */
8897 static inline struct hlist_head *
8898 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8899 {
8900         struct swevent_hlist *hlist;
8901         u32 event_id = event->attr.config;
8902         u64 type = event->attr.type;
8903
8904         /*
8905          * Event scheduling is always serialized against hlist allocation
8906          * and release. Which makes the protected version suitable here.
8907          * The context lock guarantees that.
8908          */
8909         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8910                                           lockdep_is_held(&event->ctx->lock));
8911         if (!hlist)
8912                 return NULL;
8913
8914         return __find_swevent_head(hlist, type, event_id);
8915 }
8916
8917 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8918                                     u64 nr,
8919                                     struct perf_sample_data *data,
8920                                     struct pt_regs *regs)
8921 {
8922         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8923         struct perf_event *event;
8924         struct hlist_head *head;
8925
8926         rcu_read_lock();
8927         head = find_swevent_head_rcu(swhash, type, event_id);
8928         if (!head)
8929                 goto end;
8930
8931         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8932                 if (perf_swevent_match(event, type, event_id, data, regs))
8933                         perf_swevent_event(event, nr, data, regs);
8934         }
8935 end:
8936         rcu_read_unlock();
8937 }
8938
8939 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8940
8941 int perf_swevent_get_recursion_context(void)
8942 {
8943         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8944
8945         return get_recursion_context(swhash->recursion);
8946 }
8947 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8948
8949 void perf_swevent_put_recursion_context(int rctx)
8950 {
8951         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8952
8953         put_recursion_context(swhash->recursion, rctx);
8954 }
8955
8956 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8957 {
8958         struct perf_sample_data data;
8959
8960         if (WARN_ON_ONCE(!regs))
8961                 return;
8962
8963         perf_sample_data_init(&data, addr, 0);
8964         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8965 }
8966
8967 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8968 {
8969         int rctx;
8970
8971         preempt_disable_notrace();
8972         rctx = perf_swevent_get_recursion_context();
8973         if (unlikely(rctx < 0))
8974                 goto fail;
8975
8976         ___perf_sw_event(event_id, nr, regs, addr);
8977
8978         perf_swevent_put_recursion_context(rctx);
8979 fail:
8980         preempt_enable_notrace();
8981 }
8982
8983 static void perf_swevent_read(struct perf_event *event)
8984 {
8985 }
8986
8987 static int perf_swevent_add(struct perf_event *event, int flags)
8988 {
8989         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8990         struct hw_perf_event *hwc = &event->hw;
8991         struct hlist_head *head;
8992
8993         if (is_sampling_event(event)) {
8994                 hwc->last_period = hwc->sample_period;
8995                 perf_swevent_set_period(event);
8996         }
8997
8998         hwc->state = !(flags & PERF_EF_START);
8999
9000         head = find_swevent_head(swhash, event);
9001         if (WARN_ON_ONCE(!head))
9002                 return -EINVAL;
9003
9004         hlist_add_head_rcu(&event->hlist_entry, head);
9005         perf_event_update_userpage(event);
9006
9007         return 0;
9008 }
9009
9010 static void perf_swevent_del(struct perf_event *event, int flags)
9011 {
9012         hlist_del_rcu(&event->hlist_entry);
9013 }
9014
9015 static void perf_swevent_start(struct perf_event *event, int flags)
9016 {
9017         event->hw.state = 0;
9018 }
9019
9020 static void perf_swevent_stop(struct perf_event *event, int flags)
9021 {
9022         event->hw.state = PERF_HES_STOPPED;
9023 }
9024
9025 /* Deref the hlist from the update side */
9026 static inline struct swevent_hlist *
9027 swevent_hlist_deref(struct swevent_htable *swhash)
9028 {
9029         return rcu_dereference_protected(swhash->swevent_hlist,
9030                                          lockdep_is_held(&swhash->hlist_mutex));
9031 }
9032
9033 static void swevent_hlist_release(struct swevent_htable *swhash)
9034 {
9035         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9036
9037         if (!hlist)
9038                 return;
9039
9040         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9041         kfree_rcu(hlist, rcu_head);
9042 }
9043
9044 static void swevent_hlist_put_cpu(int cpu)
9045 {
9046         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9047
9048         mutex_lock(&swhash->hlist_mutex);
9049
9050         if (!--swhash->hlist_refcount)
9051                 swevent_hlist_release(swhash);
9052
9053         mutex_unlock(&swhash->hlist_mutex);
9054 }
9055
9056 static void swevent_hlist_put(void)
9057 {
9058         int cpu;
9059
9060         for_each_possible_cpu(cpu)
9061                 swevent_hlist_put_cpu(cpu);
9062 }
9063
9064 static int swevent_hlist_get_cpu(int cpu)
9065 {
9066         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9067         int err = 0;
9068
9069         mutex_lock(&swhash->hlist_mutex);
9070         if (!swevent_hlist_deref(swhash) &&
9071             cpumask_test_cpu(cpu, perf_online_mask)) {
9072                 struct swevent_hlist *hlist;
9073
9074                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9075                 if (!hlist) {
9076                         err = -ENOMEM;
9077                         goto exit;
9078                 }
9079                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9080         }
9081         swhash->hlist_refcount++;
9082 exit:
9083         mutex_unlock(&swhash->hlist_mutex);
9084
9085         return err;
9086 }
9087
9088 static int swevent_hlist_get(void)
9089 {
9090         int err, cpu, failed_cpu;
9091
9092         mutex_lock(&pmus_lock);
9093         for_each_possible_cpu(cpu) {
9094                 err = swevent_hlist_get_cpu(cpu);
9095                 if (err) {
9096                         failed_cpu = cpu;
9097                         goto fail;
9098                 }
9099         }
9100         mutex_unlock(&pmus_lock);
9101         return 0;
9102 fail:
9103         for_each_possible_cpu(cpu) {
9104                 if (cpu == failed_cpu)
9105                         break;
9106                 swevent_hlist_put_cpu(cpu);
9107         }
9108         mutex_unlock(&pmus_lock);
9109         return err;
9110 }
9111
9112 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9113
9114 static void sw_perf_event_destroy(struct perf_event *event)
9115 {
9116         u64 event_id = event->attr.config;
9117
9118         WARN_ON(event->parent);
9119
9120         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9121         swevent_hlist_put();
9122 }
9123
9124 static int perf_swevent_init(struct perf_event *event)
9125 {
9126         u64 event_id = event->attr.config;
9127
9128         if (event->attr.type != PERF_TYPE_SOFTWARE)
9129                 return -ENOENT;
9130
9131         /*
9132          * no branch sampling for software events
9133          */
9134         if (has_branch_stack(event))
9135                 return -EOPNOTSUPP;
9136
9137         switch (event_id) {
9138         case PERF_COUNT_SW_CPU_CLOCK:
9139         case PERF_COUNT_SW_TASK_CLOCK:
9140                 return -ENOENT;
9141
9142         default:
9143                 break;
9144         }
9145
9146         if (event_id >= PERF_COUNT_SW_MAX)
9147                 return -ENOENT;
9148
9149         if (!event->parent) {
9150                 int err;
9151
9152                 err = swevent_hlist_get();
9153                 if (err)
9154                         return err;
9155
9156                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9157                 event->destroy = sw_perf_event_destroy;
9158         }
9159
9160         return 0;
9161 }
9162
9163 static struct pmu perf_swevent = {
9164         .task_ctx_nr    = perf_sw_context,
9165
9166         .capabilities   = PERF_PMU_CAP_NO_NMI,
9167
9168         .event_init     = perf_swevent_init,
9169         .add            = perf_swevent_add,
9170         .del            = perf_swevent_del,
9171         .start          = perf_swevent_start,
9172         .stop           = perf_swevent_stop,
9173         .read           = perf_swevent_read,
9174 };
9175
9176 #ifdef CONFIG_EVENT_TRACING
9177
9178 static int perf_tp_filter_match(struct perf_event *event,
9179                                 struct perf_sample_data *data)
9180 {
9181         void *record = data->raw->frag.data;
9182
9183         /* only top level events have filters set */
9184         if (event->parent)
9185                 event = event->parent;
9186
9187         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9188                 return 1;
9189         return 0;
9190 }
9191
9192 static int perf_tp_event_match(struct perf_event *event,
9193                                 struct perf_sample_data *data,
9194                                 struct pt_regs *regs)
9195 {
9196         if (event->hw.state & PERF_HES_STOPPED)
9197                 return 0;
9198         /*
9199          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9200          */
9201         if (event->attr.exclude_kernel && !user_mode(regs))
9202                 return 0;
9203
9204         if (!perf_tp_filter_match(event, data))
9205                 return 0;
9206
9207         return 1;
9208 }
9209
9210 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9211                                struct trace_event_call *call, u64 count,
9212                                struct pt_regs *regs, struct hlist_head *head,
9213                                struct task_struct *task)
9214 {
9215         if (bpf_prog_array_valid(call)) {
9216                 *(struct pt_regs **)raw_data = regs;
9217                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9218                         perf_swevent_put_recursion_context(rctx);
9219                         return;
9220                 }
9221         }
9222         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9223                       rctx, task);
9224 }
9225 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9226
9227 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9228                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9229                    struct task_struct *task)
9230 {
9231         struct perf_sample_data data;
9232         struct perf_event *event;
9233
9234         struct perf_raw_record raw = {
9235                 .frag = {
9236                         .size = entry_size,
9237                         .data = record,
9238                 },
9239         };
9240
9241         perf_sample_data_init(&data, 0, 0);
9242         data.raw = &raw;
9243
9244         perf_trace_buf_update(record, event_type);
9245
9246         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9247                 if (perf_tp_event_match(event, &data, regs))
9248                         perf_swevent_event(event, count, &data, regs);
9249         }
9250
9251         /*
9252          * If we got specified a target task, also iterate its context and
9253          * deliver this event there too.
9254          */
9255         if (task && task != current) {
9256                 struct perf_event_context *ctx;
9257                 struct trace_entry *entry = record;
9258
9259                 rcu_read_lock();
9260                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9261                 if (!ctx)
9262                         goto unlock;
9263
9264                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9265                         if (event->cpu != smp_processor_id())
9266                                 continue;
9267                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9268                                 continue;
9269                         if (event->attr.config != entry->type)
9270                                 continue;
9271                         if (perf_tp_event_match(event, &data, regs))
9272                                 perf_swevent_event(event, count, &data, regs);
9273                 }
9274 unlock:
9275                 rcu_read_unlock();
9276         }
9277
9278         perf_swevent_put_recursion_context(rctx);
9279 }
9280 EXPORT_SYMBOL_GPL(perf_tp_event);
9281
9282 static void tp_perf_event_destroy(struct perf_event *event)
9283 {
9284         perf_trace_destroy(event);
9285 }
9286
9287 static int perf_tp_event_init(struct perf_event *event)
9288 {
9289         int err;
9290
9291         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9292                 return -ENOENT;
9293
9294         /*
9295          * no branch sampling for tracepoint events
9296          */
9297         if (has_branch_stack(event))
9298                 return -EOPNOTSUPP;
9299
9300         err = perf_trace_init(event);
9301         if (err)
9302                 return err;
9303
9304         event->destroy = tp_perf_event_destroy;
9305
9306         return 0;
9307 }
9308
9309 static struct pmu perf_tracepoint = {
9310         .task_ctx_nr    = perf_sw_context,
9311
9312         .event_init     = perf_tp_event_init,
9313         .add            = perf_trace_add,
9314         .del            = perf_trace_del,
9315         .start          = perf_swevent_start,
9316         .stop           = perf_swevent_stop,
9317         .read           = perf_swevent_read,
9318 };
9319
9320 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9321 /*
9322  * Flags in config, used by dynamic PMU kprobe and uprobe
9323  * The flags should match following PMU_FORMAT_ATTR().
9324  *
9325  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9326  *                               if not set, create kprobe/uprobe
9327  *
9328  * The following values specify a reference counter (or semaphore in the
9329  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9330  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9331  *
9332  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9333  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9334  */
9335 enum perf_probe_config {
9336         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9337         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9338         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9339 };
9340
9341 PMU_FORMAT_ATTR(retprobe, "config:0");
9342 #endif
9343
9344 #ifdef CONFIG_KPROBE_EVENTS
9345 static struct attribute *kprobe_attrs[] = {
9346         &format_attr_retprobe.attr,
9347         NULL,
9348 };
9349
9350 static struct attribute_group kprobe_format_group = {
9351         .name = "format",
9352         .attrs = kprobe_attrs,
9353 };
9354
9355 static const struct attribute_group *kprobe_attr_groups[] = {
9356         &kprobe_format_group,
9357         NULL,
9358 };
9359
9360 static int perf_kprobe_event_init(struct perf_event *event);
9361 static struct pmu perf_kprobe = {
9362         .task_ctx_nr    = perf_sw_context,
9363         .event_init     = perf_kprobe_event_init,
9364         .add            = perf_trace_add,
9365         .del            = perf_trace_del,
9366         .start          = perf_swevent_start,
9367         .stop           = perf_swevent_stop,
9368         .read           = perf_swevent_read,
9369         .attr_groups    = kprobe_attr_groups,
9370 };
9371
9372 static int perf_kprobe_event_init(struct perf_event *event)
9373 {
9374         int err;
9375         bool is_retprobe;
9376
9377         if (event->attr.type != perf_kprobe.type)
9378                 return -ENOENT;
9379
9380         if (!capable(CAP_SYS_ADMIN))
9381                 return -EACCES;
9382
9383         /*
9384          * no branch sampling for probe events
9385          */
9386         if (has_branch_stack(event))
9387                 return -EOPNOTSUPP;
9388
9389         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9390         err = perf_kprobe_init(event, is_retprobe);
9391         if (err)
9392                 return err;
9393
9394         event->destroy = perf_kprobe_destroy;
9395
9396         return 0;
9397 }
9398 #endif /* CONFIG_KPROBE_EVENTS */
9399
9400 #ifdef CONFIG_UPROBE_EVENTS
9401 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9402
9403 static struct attribute *uprobe_attrs[] = {
9404         &format_attr_retprobe.attr,
9405         &format_attr_ref_ctr_offset.attr,
9406         NULL,
9407 };
9408
9409 static struct attribute_group uprobe_format_group = {
9410         .name = "format",
9411         .attrs = uprobe_attrs,
9412 };
9413
9414 static const struct attribute_group *uprobe_attr_groups[] = {
9415         &uprobe_format_group,
9416         NULL,
9417 };
9418
9419 static int perf_uprobe_event_init(struct perf_event *event);
9420 static struct pmu perf_uprobe = {
9421         .task_ctx_nr    = perf_sw_context,
9422         .event_init     = perf_uprobe_event_init,
9423         .add            = perf_trace_add,
9424         .del            = perf_trace_del,
9425         .start          = perf_swevent_start,
9426         .stop           = perf_swevent_stop,
9427         .read           = perf_swevent_read,
9428         .attr_groups    = uprobe_attr_groups,
9429 };
9430
9431 static int perf_uprobe_event_init(struct perf_event *event)
9432 {
9433         int err;
9434         unsigned long ref_ctr_offset;
9435         bool is_retprobe;
9436
9437         if (event->attr.type != perf_uprobe.type)
9438                 return -ENOENT;
9439
9440         if (!capable(CAP_SYS_ADMIN))
9441                 return -EACCES;
9442
9443         /*
9444          * no branch sampling for probe events
9445          */
9446         if (has_branch_stack(event))
9447                 return -EOPNOTSUPP;
9448
9449         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9450         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9451         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9452         if (err)
9453                 return err;
9454
9455         event->destroy = perf_uprobe_destroy;
9456
9457         return 0;
9458 }
9459 #endif /* CONFIG_UPROBE_EVENTS */
9460
9461 static inline void perf_tp_register(void)
9462 {
9463         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9464 #ifdef CONFIG_KPROBE_EVENTS
9465         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9466 #endif
9467 #ifdef CONFIG_UPROBE_EVENTS
9468         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9469 #endif
9470 }
9471
9472 static void perf_event_free_filter(struct perf_event *event)
9473 {
9474         ftrace_profile_free_filter(event);
9475 }
9476
9477 #ifdef CONFIG_BPF_SYSCALL
9478 static void bpf_overflow_handler(struct perf_event *event,
9479                                  struct perf_sample_data *data,
9480                                  struct pt_regs *regs)
9481 {
9482         struct bpf_perf_event_data_kern ctx = {
9483                 .data = data,
9484                 .event = event,
9485         };
9486         int ret = 0;
9487
9488         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9489         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9490                 goto out;
9491         rcu_read_lock();
9492         ret = BPF_PROG_RUN(event->prog, &ctx);
9493         rcu_read_unlock();
9494 out:
9495         __this_cpu_dec(bpf_prog_active);
9496         if (!ret)
9497                 return;
9498
9499         event->orig_overflow_handler(event, data, regs);
9500 }
9501
9502 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9503 {
9504         struct bpf_prog *prog;
9505
9506         if (event->overflow_handler_context)
9507                 /* hw breakpoint or kernel counter */
9508                 return -EINVAL;
9509
9510         if (event->prog)
9511                 return -EEXIST;
9512
9513         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9514         if (IS_ERR(prog))
9515                 return PTR_ERR(prog);
9516
9517         event->prog = prog;
9518         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9519         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9520         return 0;
9521 }
9522
9523 static void perf_event_free_bpf_handler(struct perf_event *event)
9524 {
9525         struct bpf_prog *prog = event->prog;
9526
9527         if (!prog)
9528                 return;
9529
9530         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9531         event->prog = NULL;
9532         bpf_prog_put(prog);
9533 }
9534 #else
9535 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9536 {
9537         return -EOPNOTSUPP;
9538 }
9539 static void perf_event_free_bpf_handler(struct perf_event *event)
9540 {
9541 }
9542 #endif
9543
9544 /*
9545  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9546  * with perf_event_open()
9547  */
9548 static inline bool perf_event_is_tracing(struct perf_event *event)
9549 {
9550         if (event->pmu == &perf_tracepoint)
9551                 return true;
9552 #ifdef CONFIG_KPROBE_EVENTS
9553         if (event->pmu == &perf_kprobe)
9554                 return true;
9555 #endif
9556 #ifdef CONFIG_UPROBE_EVENTS
9557         if (event->pmu == &perf_uprobe)
9558                 return true;
9559 #endif
9560         return false;
9561 }
9562
9563 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9564 {
9565         bool is_kprobe, is_tracepoint, is_syscall_tp;
9566         struct bpf_prog *prog;
9567         int ret;
9568
9569         if (!perf_event_is_tracing(event))
9570                 return perf_event_set_bpf_handler(event, prog_fd);
9571
9572         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9573         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9574         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9575         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9576                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9577                 return -EINVAL;
9578
9579         prog = bpf_prog_get(prog_fd);
9580         if (IS_ERR(prog))
9581                 return PTR_ERR(prog);
9582
9583         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9584             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9585             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9586                 /* valid fd, but invalid bpf program type */
9587                 bpf_prog_put(prog);
9588                 return -EINVAL;
9589         }
9590
9591         /* Kprobe override only works for kprobes, not uprobes. */
9592         if (prog->kprobe_override &&
9593             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9594                 bpf_prog_put(prog);
9595                 return -EINVAL;
9596         }
9597
9598         if (is_tracepoint || is_syscall_tp) {
9599                 int off = trace_event_get_offsets(event->tp_event);
9600
9601                 if (prog->aux->max_ctx_offset > off) {
9602                         bpf_prog_put(prog);
9603                         return -EACCES;
9604                 }
9605         }
9606
9607         ret = perf_event_attach_bpf_prog(event, prog);
9608         if (ret)
9609                 bpf_prog_put(prog);
9610         return ret;
9611 }
9612
9613 static void perf_event_free_bpf_prog(struct perf_event *event)
9614 {
9615         if (!perf_event_is_tracing(event)) {
9616                 perf_event_free_bpf_handler(event);
9617                 return;
9618         }
9619         perf_event_detach_bpf_prog(event);
9620 }
9621
9622 #else
9623
9624 static inline void perf_tp_register(void)
9625 {
9626 }
9627
9628 static void perf_event_free_filter(struct perf_event *event)
9629 {
9630 }
9631
9632 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9633 {
9634         return -ENOENT;
9635 }
9636
9637 static void perf_event_free_bpf_prog(struct perf_event *event)
9638 {
9639 }
9640 #endif /* CONFIG_EVENT_TRACING */
9641
9642 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9643 void perf_bp_event(struct perf_event *bp, void *data)
9644 {
9645         struct perf_sample_data sample;
9646         struct pt_regs *regs = data;
9647
9648         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9649
9650         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9651                 perf_swevent_event(bp, 1, &sample, regs);
9652 }
9653 #endif
9654
9655 /*
9656  * Allocate a new address filter
9657  */
9658 static struct perf_addr_filter *
9659 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9660 {
9661         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9662         struct perf_addr_filter *filter;
9663
9664         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9665         if (!filter)
9666                 return NULL;
9667
9668         INIT_LIST_HEAD(&filter->entry);
9669         list_add_tail(&filter->entry, filters);
9670
9671         return filter;
9672 }
9673
9674 static void free_filters_list(struct list_head *filters)
9675 {
9676         struct perf_addr_filter *filter, *iter;
9677
9678         list_for_each_entry_safe(filter, iter, filters, entry) {
9679                 path_put(&filter->path);
9680                 list_del(&filter->entry);
9681                 kfree(filter);
9682         }
9683 }
9684
9685 /*
9686  * Free existing address filters and optionally install new ones
9687  */
9688 static void perf_addr_filters_splice(struct perf_event *event,
9689                                      struct list_head *head)
9690 {
9691         unsigned long flags;
9692         LIST_HEAD(list);
9693
9694         if (!has_addr_filter(event))
9695                 return;
9696
9697         /* don't bother with children, they don't have their own filters */
9698         if (event->parent)
9699                 return;
9700
9701         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9702
9703         list_splice_init(&event->addr_filters.list, &list);
9704         if (head)
9705                 list_splice(head, &event->addr_filters.list);
9706
9707         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9708
9709         free_filters_list(&list);
9710 }
9711
9712 /*
9713  * Scan through mm's vmas and see if one of them matches the
9714  * @filter; if so, adjust filter's address range.
9715  * Called with mm::mmap_sem down for reading.
9716  */
9717 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9718                                    struct mm_struct *mm,
9719                                    struct perf_addr_filter_range *fr)
9720 {
9721         struct vm_area_struct *vma;
9722
9723         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9724                 if (!vma->vm_file)
9725                         continue;
9726
9727                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9728                         return;
9729         }
9730 }
9731
9732 /*
9733  * Update event's address range filters based on the
9734  * task's existing mappings, if any.
9735  */
9736 static void perf_event_addr_filters_apply(struct perf_event *event)
9737 {
9738         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9739         struct task_struct *task = READ_ONCE(event->ctx->task);
9740         struct perf_addr_filter *filter;
9741         struct mm_struct *mm = NULL;
9742         unsigned int count = 0;
9743         unsigned long flags;
9744
9745         /*
9746          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9747          * will stop on the parent's child_mutex that our caller is also holding
9748          */
9749         if (task == TASK_TOMBSTONE)
9750                 return;
9751
9752         if (ifh->nr_file_filters) {
9753                 mm = get_task_mm(event->ctx->task);
9754                 if (!mm)
9755                         goto restart;
9756
9757                 down_read(&mm->mmap_sem);
9758         }
9759
9760         raw_spin_lock_irqsave(&ifh->lock, flags);
9761         list_for_each_entry(filter, &ifh->list, entry) {
9762                 if (filter->path.dentry) {
9763                         /*
9764                          * Adjust base offset if the filter is associated to a
9765                          * binary that needs to be mapped:
9766                          */
9767                         event->addr_filter_ranges[count].start = 0;
9768                         event->addr_filter_ranges[count].size = 0;
9769
9770                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9771                 } else {
9772                         event->addr_filter_ranges[count].start = filter->offset;
9773                         event->addr_filter_ranges[count].size  = filter->size;
9774                 }
9775
9776                 count++;
9777         }
9778
9779         event->addr_filters_gen++;
9780         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9781
9782         if (ifh->nr_file_filters) {
9783                 up_read(&mm->mmap_sem);
9784
9785                 mmput(mm);
9786         }
9787
9788 restart:
9789         perf_event_stop(event, 1);
9790 }
9791
9792 /*
9793  * Address range filtering: limiting the data to certain
9794  * instruction address ranges. Filters are ioctl()ed to us from
9795  * userspace as ascii strings.
9796  *
9797  * Filter string format:
9798  *
9799  * ACTION RANGE_SPEC
9800  * where ACTION is one of the
9801  *  * "filter": limit the trace to this region
9802  *  * "start": start tracing from this address
9803  *  * "stop": stop tracing at this address/region;
9804  * RANGE_SPEC is
9805  *  * for kernel addresses: <start address>[/<size>]
9806  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9807  *
9808  * if <size> is not specified or is zero, the range is treated as a single
9809  * address; not valid for ACTION=="filter".
9810  */
9811 enum {
9812         IF_ACT_NONE = -1,
9813         IF_ACT_FILTER,
9814         IF_ACT_START,
9815         IF_ACT_STOP,
9816         IF_SRC_FILE,
9817         IF_SRC_KERNEL,
9818         IF_SRC_FILEADDR,
9819         IF_SRC_KERNELADDR,
9820 };
9821
9822 enum {
9823         IF_STATE_ACTION = 0,
9824         IF_STATE_SOURCE,
9825         IF_STATE_END,
9826 };
9827
9828 static const match_table_t if_tokens = {
9829         { IF_ACT_FILTER,        "filter" },
9830         { IF_ACT_START,         "start" },
9831         { IF_ACT_STOP,          "stop" },
9832         { IF_SRC_FILE,          "%u/%u@%s" },
9833         { IF_SRC_KERNEL,        "%u/%u" },
9834         { IF_SRC_FILEADDR,      "%u@%s" },
9835         { IF_SRC_KERNELADDR,    "%u" },
9836         { IF_ACT_NONE,          NULL },
9837 };
9838
9839 /*
9840  * Address filter string parser
9841  */
9842 static int
9843 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9844                              struct list_head *filters)
9845 {
9846         struct perf_addr_filter *filter = NULL;
9847         char *start, *orig, *filename = NULL;
9848         substring_t args[MAX_OPT_ARGS];
9849         int state = IF_STATE_ACTION, token;
9850         unsigned int kernel = 0;
9851         int ret = -EINVAL;
9852
9853         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9854         if (!fstr)
9855                 return -ENOMEM;
9856
9857         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9858                 static const enum perf_addr_filter_action_t actions[] = {
9859                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9860                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9861                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9862                 };
9863                 ret = -EINVAL;
9864
9865                 if (!*start)
9866                         continue;
9867
9868                 /* filter definition begins */
9869                 if (state == IF_STATE_ACTION) {
9870                         filter = perf_addr_filter_new(event, filters);
9871                         if (!filter)
9872                                 goto fail;
9873                 }
9874
9875                 token = match_token(start, if_tokens, args);
9876                 switch (token) {
9877                 case IF_ACT_FILTER:
9878                 case IF_ACT_START:
9879                 case IF_ACT_STOP:
9880                         if (state != IF_STATE_ACTION)
9881                                 goto fail;
9882
9883                         filter->action = actions[token];
9884                         state = IF_STATE_SOURCE;
9885                         break;
9886
9887                 case IF_SRC_KERNELADDR:
9888                 case IF_SRC_KERNEL:
9889                         kernel = 1;
9890                         /* fall through */
9891
9892                 case IF_SRC_FILEADDR:
9893                 case IF_SRC_FILE:
9894                         if (state != IF_STATE_SOURCE)
9895                                 goto fail;
9896
9897                         *args[0].to = 0;
9898                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9899                         if (ret)
9900                                 goto fail;
9901
9902                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9903                                 *args[1].to = 0;
9904                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9905                                 if (ret)
9906                                         goto fail;
9907                         }
9908
9909                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9910                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9911
9912                                 filename = match_strdup(&args[fpos]);
9913                                 if (!filename) {
9914                                         ret = -ENOMEM;
9915                                         goto fail;
9916                                 }
9917                         }
9918
9919                         state = IF_STATE_END;
9920                         break;
9921
9922                 default:
9923                         goto fail;
9924                 }
9925
9926                 /*
9927                  * Filter definition is fully parsed, validate and install it.
9928                  * Make sure that it doesn't contradict itself or the event's
9929                  * attribute.
9930                  */
9931                 if (state == IF_STATE_END) {
9932                         ret = -EINVAL;
9933                         if (kernel && event->attr.exclude_kernel)
9934                                 goto fail;
9935
9936                         /*
9937                          * ACTION "filter" must have a non-zero length region
9938                          * specified.
9939                          */
9940                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9941                             !filter->size)
9942                                 goto fail;
9943
9944                         if (!kernel) {
9945                                 if (!filename)
9946                                         goto fail;
9947
9948                                 /*
9949                                  * For now, we only support file-based filters
9950                                  * in per-task events; doing so for CPU-wide
9951                                  * events requires additional context switching
9952                                  * trickery, since same object code will be
9953                                  * mapped at different virtual addresses in
9954                                  * different processes.
9955                                  */
9956                                 ret = -EOPNOTSUPP;
9957                                 if (!event->ctx->task)
9958                                         goto fail_free_name;
9959
9960                                 /* look up the path and grab its inode */
9961                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9962                                                 &filter->path);
9963                                 if (ret)
9964                                         goto fail_free_name;
9965
9966                                 kfree(filename);
9967                                 filename = NULL;
9968
9969                                 ret = -EINVAL;
9970                                 if (!filter->path.dentry ||
9971                                     !S_ISREG(d_inode(filter->path.dentry)
9972                                              ->i_mode))
9973                                         goto fail;
9974
9975                                 event->addr_filters.nr_file_filters++;
9976                         }
9977
9978                         /* ready to consume more filters */
9979                         state = IF_STATE_ACTION;
9980                         filter = NULL;
9981                 }
9982         }
9983
9984         if (state != IF_STATE_ACTION)
9985                 goto fail;
9986
9987         kfree(orig);
9988
9989         return 0;
9990
9991 fail_free_name:
9992         kfree(filename);
9993 fail:
9994         free_filters_list(filters);
9995         kfree(orig);
9996
9997         return ret;
9998 }
9999
10000 static int
10001 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10002 {
10003         LIST_HEAD(filters);
10004         int ret;
10005
10006         /*
10007          * Since this is called in perf_ioctl() path, we're already holding
10008          * ctx::mutex.
10009          */
10010         lockdep_assert_held(&event->ctx->mutex);
10011
10012         if (WARN_ON_ONCE(event->parent))
10013                 return -EINVAL;
10014
10015         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10016         if (ret)
10017                 goto fail_clear_files;
10018
10019         ret = event->pmu->addr_filters_validate(&filters);
10020         if (ret)
10021                 goto fail_free_filters;
10022
10023         /* remove existing filters, if any */
10024         perf_addr_filters_splice(event, &filters);
10025
10026         /* install new filters */
10027         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10028
10029         return ret;
10030
10031 fail_free_filters:
10032         free_filters_list(&filters);
10033
10034 fail_clear_files:
10035         event->addr_filters.nr_file_filters = 0;
10036
10037         return ret;
10038 }
10039
10040 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10041 {
10042         int ret = -EINVAL;
10043         char *filter_str;
10044
10045         filter_str = strndup_user(arg, PAGE_SIZE);
10046         if (IS_ERR(filter_str))
10047                 return PTR_ERR(filter_str);
10048
10049 #ifdef CONFIG_EVENT_TRACING
10050         if (perf_event_is_tracing(event)) {
10051                 struct perf_event_context *ctx = event->ctx;
10052
10053                 /*
10054                  * Beware, here be dragons!!
10055                  *
10056                  * the tracepoint muck will deadlock against ctx->mutex, but
10057                  * the tracepoint stuff does not actually need it. So
10058                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10059                  * already have a reference on ctx.
10060                  *
10061                  * This can result in event getting moved to a different ctx,
10062                  * but that does not affect the tracepoint state.
10063                  */
10064                 mutex_unlock(&ctx->mutex);
10065                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10066                 mutex_lock(&ctx->mutex);
10067         } else
10068 #endif
10069         if (has_addr_filter(event))
10070                 ret = perf_event_set_addr_filter(event, filter_str);
10071
10072         kfree(filter_str);
10073         return ret;
10074 }
10075
10076 /*
10077  * hrtimer based swevent callback
10078  */
10079
10080 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10081 {
10082         enum hrtimer_restart ret = HRTIMER_RESTART;
10083         struct perf_sample_data data;
10084         struct pt_regs *regs;
10085         struct perf_event *event;
10086         u64 period;
10087
10088         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10089
10090         if (event->state != PERF_EVENT_STATE_ACTIVE)
10091                 return HRTIMER_NORESTART;
10092
10093         event->pmu->read(event);
10094
10095         perf_sample_data_init(&data, 0, event->hw.last_period);
10096         regs = get_irq_regs();
10097
10098         if (regs && !perf_exclude_event(event, regs)) {
10099                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10100                         if (__perf_event_overflow(event, 1, &data, regs))
10101                                 ret = HRTIMER_NORESTART;
10102         }
10103
10104         period = max_t(u64, 10000, event->hw.sample_period);
10105         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10106
10107         return ret;
10108 }
10109
10110 static void perf_swevent_start_hrtimer(struct perf_event *event)
10111 {
10112         struct hw_perf_event *hwc = &event->hw;
10113         s64 period;
10114
10115         if (!is_sampling_event(event))
10116                 return;
10117
10118         period = local64_read(&hwc->period_left);
10119         if (period) {
10120                 if (period < 0)
10121                         period = 10000;
10122
10123                 local64_set(&hwc->period_left, 0);
10124         } else {
10125                 period = max_t(u64, 10000, hwc->sample_period);
10126         }
10127         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10128                       HRTIMER_MODE_REL_PINNED_HARD);
10129 }
10130
10131 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10132 {
10133         struct hw_perf_event *hwc = &event->hw;
10134
10135         if (is_sampling_event(event)) {
10136                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10137                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10138
10139                 hrtimer_cancel(&hwc->hrtimer);
10140         }
10141 }
10142
10143 static void perf_swevent_init_hrtimer(struct perf_event *event)
10144 {
10145         struct hw_perf_event *hwc = &event->hw;
10146
10147         if (!is_sampling_event(event))
10148                 return;
10149
10150         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10151         hwc->hrtimer.function = perf_swevent_hrtimer;
10152
10153         /*
10154          * Since hrtimers have a fixed rate, we can do a static freq->period
10155          * mapping and avoid the whole period adjust feedback stuff.
10156          */
10157         if (event->attr.freq) {
10158                 long freq = event->attr.sample_freq;
10159
10160                 event->attr.sample_period = NSEC_PER_SEC / freq;
10161                 hwc->sample_period = event->attr.sample_period;
10162                 local64_set(&hwc->period_left, hwc->sample_period);
10163                 hwc->last_period = hwc->sample_period;
10164                 event->attr.freq = 0;
10165         }
10166 }
10167
10168 /*
10169  * Software event: cpu wall time clock
10170  */
10171
10172 static void cpu_clock_event_update(struct perf_event *event)
10173 {
10174         s64 prev;
10175         u64 now;
10176
10177         now = local_clock();
10178         prev = local64_xchg(&event->hw.prev_count, now);
10179         local64_add(now - prev, &event->count);
10180 }
10181
10182 static void cpu_clock_event_start(struct perf_event *event, int flags)
10183 {
10184         local64_set(&event->hw.prev_count, local_clock());
10185         perf_swevent_start_hrtimer(event);
10186 }
10187
10188 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10189 {
10190         perf_swevent_cancel_hrtimer(event);
10191         cpu_clock_event_update(event);
10192 }
10193
10194 static int cpu_clock_event_add(struct perf_event *event, int flags)
10195 {
10196         if (flags & PERF_EF_START)
10197                 cpu_clock_event_start(event, flags);
10198         perf_event_update_userpage(event);
10199
10200         return 0;
10201 }
10202
10203 static void cpu_clock_event_del(struct perf_event *event, int flags)
10204 {
10205         cpu_clock_event_stop(event, flags);
10206 }
10207
10208 static void cpu_clock_event_read(struct perf_event *event)
10209 {
10210         cpu_clock_event_update(event);
10211 }
10212
10213 static int cpu_clock_event_init(struct perf_event *event)
10214 {
10215         if (event->attr.type != PERF_TYPE_SOFTWARE)
10216                 return -ENOENT;
10217
10218         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10219                 return -ENOENT;
10220
10221         /*
10222          * no branch sampling for software events
10223          */
10224         if (has_branch_stack(event))
10225                 return -EOPNOTSUPP;
10226
10227         perf_swevent_init_hrtimer(event);
10228
10229         return 0;
10230 }
10231
10232 static struct pmu perf_cpu_clock = {
10233         .task_ctx_nr    = perf_sw_context,
10234
10235         .capabilities   = PERF_PMU_CAP_NO_NMI,
10236
10237         .event_init     = cpu_clock_event_init,
10238         .add            = cpu_clock_event_add,
10239         .del            = cpu_clock_event_del,
10240         .start          = cpu_clock_event_start,
10241         .stop           = cpu_clock_event_stop,
10242         .read           = cpu_clock_event_read,
10243 };
10244
10245 /*
10246  * Software event: task time clock
10247  */
10248
10249 static void task_clock_event_update(struct perf_event *event, u64 now)
10250 {
10251         u64 prev;
10252         s64 delta;
10253
10254         prev = local64_xchg(&event->hw.prev_count, now);
10255         delta = now - prev;
10256         local64_add(delta, &event->count);
10257 }
10258
10259 static void task_clock_event_start(struct perf_event *event, int flags)
10260 {
10261         local64_set(&event->hw.prev_count, event->ctx->time);
10262         perf_swevent_start_hrtimer(event);
10263 }
10264
10265 static void task_clock_event_stop(struct perf_event *event, int flags)
10266 {
10267         perf_swevent_cancel_hrtimer(event);
10268         task_clock_event_update(event, event->ctx->time);
10269 }
10270
10271 static int task_clock_event_add(struct perf_event *event, int flags)
10272 {
10273         if (flags & PERF_EF_START)
10274                 task_clock_event_start(event, flags);
10275         perf_event_update_userpage(event);
10276
10277         return 0;
10278 }
10279
10280 static void task_clock_event_del(struct perf_event *event, int flags)
10281 {
10282         task_clock_event_stop(event, PERF_EF_UPDATE);
10283 }
10284
10285 static void task_clock_event_read(struct perf_event *event)
10286 {
10287         u64 now = perf_clock();
10288         u64 delta = now - event->ctx->timestamp;
10289         u64 time = event->ctx->time + delta;
10290
10291         task_clock_event_update(event, time);
10292 }
10293
10294 static int task_clock_event_init(struct perf_event *event)
10295 {
10296         if (event->attr.type != PERF_TYPE_SOFTWARE)
10297                 return -ENOENT;
10298
10299         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10300                 return -ENOENT;
10301
10302         /*
10303          * no branch sampling for software events
10304          */
10305         if (has_branch_stack(event))
10306                 return -EOPNOTSUPP;
10307
10308         perf_swevent_init_hrtimer(event);
10309
10310         return 0;
10311 }
10312
10313 static struct pmu perf_task_clock = {
10314         .task_ctx_nr    = perf_sw_context,
10315
10316         .capabilities   = PERF_PMU_CAP_NO_NMI,
10317
10318         .event_init     = task_clock_event_init,
10319         .add            = task_clock_event_add,
10320         .del            = task_clock_event_del,
10321         .start          = task_clock_event_start,
10322         .stop           = task_clock_event_stop,
10323         .read           = task_clock_event_read,
10324 };
10325
10326 static void perf_pmu_nop_void(struct pmu *pmu)
10327 {
10328 }
10329
10330 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10331 {
10332 }
10333
10334 static int perf_pmu_nop_int(struct pmu *pmu)
10335 {
10336         return 0;
10337 }
10338
10339 static int perf_event_nop_int(struct perf_event *event, u64 value)
10340 {
10341         return 0;
10342 }
10343
10344 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10345
10346 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10347 {
10348         __this_cpu_write(nop_txn_flags, flags);
10349
10350         if (flags & ~PERF_PMU_TXN_ADD)
10351                 return;
10352
10353         perf_pmu_disable(pmu);
10354 }
10355
10356 static int perf_pmu_commit_txn(struct pmu *pmu)
10357 {
10358         unsigned int flags = __this_cpu_read(nop_txn_flags);
10359
10360         __this_cpu_write(nop_txn_flags, 0);
10361
10362         if (flags & ~PERF_PMU_TXN_ADD)
10363                 return 0;
10364
10365         perf_pmu_enable(pmu);
10366         return 0;
10367 }
10368
10369 static void perf_pmu_cancel_txn(struct pmu *pmu)
10370 {
10371         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10372
10373         __this_cpu_write(nop_txn_flags, 0);
10374
10375         if (flags & ~PERF_PMU_TXN_ADD)
10376                 return;
10377
10378         perf_pmu_enable(pmu);
10379 }
10380
10381 static int perf_event_idx_default(struct perf_event *event)
10382 {
10383         return 0;
10384 }
10385
10386 /*
10387  * Ensures all contexts with the same task_ctx_nr have the same
10388  * pmu_cpu_context too.
10389  */
10390 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10391 {
10392         struct pmu *pmu;
10393
10394         if (ctxn < 0)
10395                 return NULL;
10396
10397         list_for_each_entry(pmu, &pmus, entry) {
10398                 if (pmu->task_ctx_nr == ctxn)
10399                         return pmu->pmu_cpu_context;
10400         }
10401
10402         return NULL;
10403 }
10404
10405 static void free_pmu_context(struct pmu *pmu)
10406 {
10407         /*
10408          * Static contexts such as perf_sw_context have a global lifetime
10409          * and may be shared between different PMUs. Avoid freeing them
10410          * when a single PMU is going away.
10411          */
10412         if (pmu->task_ctx_nr > perf_invalid_context)
10413                 return;
10414
10415         free_percpu(pmu->pmu_cpu_context);
10416 }
10417
10418 /*
10419  * Let userspace know that this PMU supports address range filtering:
10420  */
10421 static ssize_t nr_addr_filters_show(struct device *dev,
10422                                     struct device_attribute *attr,
10423                                     char *page)
10424 {
10425         struct pmu *pmu = dev_get_drvdata(dev);
10426
10427         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10428 }
10429 DEVICE_ATTR_RO(nr_addr_filters);
10430
10431 static struct idr pmu_idr;
10432
10433 static ssize_t
10434 type_show(struct device *dev, struct device_attribute *attr, char *page)
10435 {
10436         struct pmu *pmu = dev_get_drvdata(dev);
10437
10438         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10439 }
10440 static DEVICE_ATTR_RO(type);
10441
10442 static ssize_t
10443 perf_event_mux_interval_ms_show(struct device *dev,
10444                                 struct device_attribute *attr,
10445                                 char *page)
10446 {
10447         struct pmu *pmu = dev_get_drvdata(dev);
10448
10449         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10450 }
10451
10452 static DEFINE_MUTEX(mux_interval_mutex);
10453
10454 static ssize_t
10455 perf_event_mux_interval_ms_store(struct device *dev,
10456                                  struct device_attribute *attr,
10457                                  const char *buf, size_t count)
10458 {
10459         struct pmu *pmu = dev_get_drvdata(dev);
10460         int timer, cpu, ret;
10461
10462         ret = kstrtoint(buf, 0, &timer);
10463         if (ret)
10464                 return ret;
10465
10466         if (timer < 1)
10467                 return -EINVAL;
10468
10469         /* same value, noting to do */
10470         if (timer == pmu->hrtimer_interval_ms)
10471                 return count;
10472
10473         mutex_lock(&mux_interval_mutex);
10474         pmu->hrtimer_interval_ms = timer;
10475
10476         /* update all cpuctx for this PMU */
10477         cpus_read_lock();
10478         for_each_online_cpu(cpu) {
10479                 struct perf_cpu_context *cpuctx;
10480                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10481                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10482
10483                 cpu_function_call(cpu,
10484                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10485         }
10486         cpus_read_unlock();
10487         mutex_unlock(&mux_interval_mutex);
10488
10489         return count;
10490 }
10491 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10492
10493 static struct attribute *pmu_dev_attrs[] = {
10494         &dev_attr_type.attr,
10495         &dev_attr_perf_event_mux_interval_ms.attr,
10496         NULL,
10497 };
10498 ATTRIBUTE_GROUPS(pmu_dev);
10499
10500 static int pmu_bus_running;
10501 static struct bus_type pmu_bus = {
10502         .name           = "event_source",
10503         .dev_groups     = pmu_dev_groups,
10504 };
10505
10506 static void pmu_dev_release(struct device *dev)
10507 {
10508         kfree(dev);
10509 }
10510
10511 static int pmu_dev_alloc(struct pmu *pmu)
10512 {
10513         int ret = -ENOMEM;
10514
10515         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10516         if (!pmu->dev)
10517                 goto out;
10518
10519         pmu->dev->groups = pmu->attr_groups;
10520         device_initialize(pmu->dev);
10521         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10522         if (ret)
10523                 goto free_dev;
10524
10525         dev_set_drvdata(pmu->dev, pmu);
10526         pmu->dev->bus = &pmu_bus;
10527         pmu->dev->release = pmu_dev_release;
10528         ret = device_add(pmu->dev);
10529         if (ret)
10530                 goto free_dev;
10531
10532         /* For PMUs with address filters, throw in an extra attribute: */
10533         if (pmu->nr_addr_filters)
10534                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10535
10536         if (ret)
10537                 goto del_dev;
10538
10539         if (pmu->attr_update)
10540                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10541
10542         if (ret)
10543                 goto del_dev;
10544
10545 out:
10546         return ret;
10547
10548 del_dev:
10549         device_del(pmu->dev);
10550
10551 free_dev:
10552         put_device(pmu->dev);
10553         goto out;
10554 }
10555
10556 static struct lock_class_key cpuctx_mutex;
10557 static struct lock_class_key cpuctx_lock;
10558
10559 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10560 {
10561         int cpu, ret, max = PERF_TYPE_MAX;
10562
10563         mutex_lock(&pmus_lock);
10564         ret = -ENOMEM;
10565         pmu->pmu_disable_count = alloc_percpu(int);
10566         if (!pmu->pmu_disable_count)
10567                 goto unlock;
10568
10569         pmu->type = -1;
10570         if (!name)
10571                 goto skip_type;
10572         pmu->name = name;
10573
10574         if (type != PERF_TYPE_SOFTWARE) {
10575                 if (type >= 0)
10576                         max = type;
10577
10578                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10579                 if (ret < 0)
10580                         goto free_pdc;
10581
10582                 WARN_ON(type >= 0 && ret != type);
10583
10584                 type = ret;
10585         }
10586         pmu->type = type;
10587
10588         if (pmu_bus_running) {
10589                 ret = pmu_dev_alloc(pmu);
10590                 if (ret)
10591                         goto free_idr;
10592         }
10593
10594 skip_type:
10595         if (pmu->task_ctx_nr == perf_hw_context) {
10596                 static int hw_context_taken = 0;
10597
10598                 /*
10599                  * Other than systems with heterogeneous CPUs, it never makes
10600                  * sense for two PMUs to share perf_hw_context. PMUs which are
10601                  * uncore must use perf_invalid_context.
10602                  */
10603                 if (WARN_ON_ONCE(hw_context_taken &&
10604                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10605                         pmu->task_ctx_nr = perf_invalid_context;
10606
10607                 hw_context_taken = 1;
10608         }
10609
10610         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10611         if (pmu->pmu_cpu_context)
10612                 goto got_cpu_context;
10613
10614         ret = -ENOMEM;
10615         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10616         if (!pmu->pmu_cpu_context)
10617                 goto free_dev;
10618
10619         for_each_possible_cpu(cpu) {
10620                 struct perf_cpu_context *cpuctx;
10621
10622                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10623                 __perf_event_init_context(&cpuctx->ctx);
10624                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10625                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10626                 cpuctx->ctx.pmu = pmu;
10627                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10628
10629                 __perf_mux_hrtimer_init(cpuctx, cpu);
10630
10631                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10632                 cpuctx->heap = cpuctx->heap_default;
10633         }
10634
10635 got_cpu_context:
10636         if (!pmu->start_txn) {
10637                 if (pmu->pmu_enable) {
10638                         /*
10639                          * If we have pmu_enable/pmu_disable calls, install
10640                          * transaction stubs that use that to try and batch
10641                          * hardware accesses.
10642                          */
10643                         pmu->start_txn  = perf_pmu_start_txn;
10644                         pmu->commit_txn = perf_pmu_commit_txn;
10645                         pmu->cancel_txn = perf_pmu_cancel_txn;
10646                 } else {
10647                         pmu->start_txn  = perf_pmu_nop_txn;
10648                         pmu->commit_txn = perf_pmu_nop_int;
10649                         pmu->cancel_txn = perf_pmu_nop_void;
10650                 }
10651         }
10652
10653         if (!pmu->pmu_enable) {
10654                 pmu->pmu_enable  = perf_pmu_nop_void;
10655                 pmu->pmu_disable = perf_pmu_nop_void;
10656         }
10657
10658         if (!pmu->check_period)
10659                 pmu->check_period = perf_event_nop_int;
10660
10661         if (!pmu->event_idx)
10662                 pmu->event_idx = perf_event_idx_default;
10663
10664         /*
10665          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10666          * since these cannot be in the IDR. This way the linear search
10667          * is fast, provided a valid software event is provided.
10668          */
10669         if (type == PERF_TYPE_SOFTWARE || !name)
10670                 list_add_rcu(&pmu->entry, &pmus);
10671         else
10672                 list_add_tail_rcu(&pmu->entry, &pmus);
10673
10674         atomic_set(&pmu->exclusive_cnt, 0);
10675         ret = 0;
10676 unlock:
10677         mutex_unlock(&pmus_lock);
10678
10679         return ret;
10680
10681 free_dev:
10682         device_del(pmu->dev);
10683         put_device(pmu->dev);
10684
10685 free_idr:
10686         if (pmu->type != PERF_TYPE_SOFTWARE)
10687                 idr_remove(&pmu_idr, pmu->type);
10688
10689 free_pdc:
10690         free_percpu(pmu->pmu_disable_count);
10691         goto unlock;
10692 }
10693 EXPORT_SYMBOL_GPL(perf_pmu_register);
10694
10695 void perf_pmu_unregister(struct pmu *pmu)
10696 {
10697         mutex_lock(&pmus_lock);
10698         list_del_rcu(&pmu->entry);
10699
10700         /*
10701          * We dereference the pmu list under both SRCU and regular RCU, so
10702          * synchronize against both of those.
10703          */
10704         synchronize_srcu(&pmus_srcu);
10705         synchronize_rcu();
10706
10707         free_percpu(pmu->pmu_disable_count);
10708         if (pmu->type != PERF_TYPE_SOFTWARE)
10709                 idr_remove(&pmu_idr, pmu->type);
10710         if (pmu_bus_running) {
10711                 if (pmu->nr_addr_filters)
10712                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10713                 device_del(pmu->dev);
10714                 put_device(pmu->dev);
10715         }
10716         free_pmu_context(pmu);
10717         mutex_unlock(&pmus_lock);
10718 }
10719 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10720
10721 static inline bool has_extended_regs(struct perf_event *event)
10722 {
10723         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10724                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10725 }
10726
10727 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10728 {
10729         struct perf_event_context *ctx = NULL;
10730         int ret;
10731
10732         if (!try_module_get(pmu->module))
10733                 return -ENODEV;
10734
10735         /*
10736          * A number of pmu->event_init() methods iterate the sibling_list to,
10737          * for example, validate if the group fits on the PMU. Therefore,
10738          * if this is a sibling event, acquire the ctx->mutex to protect
10739          * the sibling_list.
10740          */
10741         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10742                 /*
10743                  * This ctx->mutex can nest when we're called through
10744                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10745                  */
10746                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10747                                                  SINGLE_DEPTH_NESTING);
10748                 BUG_ON(!ctx);
10749         }
10750
10751         event->pmu = pmu;
10752         ret = pmu->event_init(event);
10753
10754         if (ctx)
10755                 perf_event_ctx_unlock(event->group_leader, ctx);
10756
10757         if (!ret) {
10758                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10759                     has_extended_regs(event))
10760                         ret = -EOPNOTSUPP;
10761
10762                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10763                     event_has_any_exclude_flag(event))
10764                         ret = -EINVAL;
10765
10766                 if (ret && event->destroy)
10767                         event->destroy(event);
10768         }
10769
10770         if (ret)
10771                 module_put(pmu->module);
10772
10773         return ret;
10774 }
10775
10776 static struct pmu *perf_init_event(struct perf_event *event)
10777 {
10778         int idx, type, ret;
10779         struct pmu *pmu;
10780
10781         idx = srcu_read_lock(&pmus_srcu);
10782
10783         /* Try parent's PMU first: */
10784         if (event->parent && event->parent->pmu) {
10785                 pmu = event->parent->pmu;
10786                 ret = perf_try_init_event(pmu, event);
10787                 if (!ret)
10788                         goto unlock;
10789         }
10790
10791         /*
10792          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10793          * are often aliases for PERF_TYPE_RAW.
10794          */
10795         type = event->attr.type;
10796         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10797                 type = PERF_TYPE_RAW;
10798
10799 again:
10800         rcu_read_lock();
10801         pmu = idr_find(&pmu_idr, type);
10802         rcu_read_unlock();
10803         if (pmu) {
10804                 ret = perf_try_init_event(pmu, event);
10805                 if (ret == -ENOENT && event->attr.type != type) {
10806                         type = event->attr.type;
10807                         goto again;
10808                 }
10809
10810                 if (ret)
10811                         pmu = ERR_PTR(ret);
10812
10813                 goto unlock;
10814         }
10815
10816         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10817                 ret = perf_try_init_event(pmu, event);
10818                 if (!ret)
10819                         goto unlock;
10820
10821                 if (ret != -ENOENT) {
10822                         pmu = ERR_PTR(ret);
10823                         goto unlock;
10824                 }
10825         }
10826         pmu = ERR_PTR(-ENOENT);
10827 unlock:
10828         srcu_read_unlock(&pmus_srcu, idx);
10829
10830         return pmu;
10831 }
10832
10833 static void attach_sb_event(struct perf_event *event)
10834 {
10835         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10836
10837         raw_spin_lock(&pel->lock);
10838         list_add_rcu(&event->sb_list, &pel->list);
10839         raw_spin_unlock(&pel->lock);
10840 }
10841
10842 /*
10843  * We keep a list of all !task (and therefore per-cpu) events
10844  * that need to receive side-band records.
10845  *
10846  * This avoids having to scan all the various PMU per-cpu contexts
10847  * looking for them.
10848  */
10849 static void account_pmu_sb_event(struct perf_event *event)
10850 {
10851         if (is_sb_event(event))
10852                 attach_sb_event(event);
10853 }
10854
10855 static void account_event_cpu(struct perf_event *event, int cpu)
10856 {
10857         if (event->parent)
10858                 return;
10859
10860         if (is_cgroup_event(event))
10861                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10862 }
10863
10864 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10865 static void account_freq_event_nohz(void)
10866 {
10867 #ifdef CONFIG_NO_HZ_FULL
10868         /* Lock so we don't race with concurrent unaccount */
10869         spin_lock(&nr_freq_lock);
10870         if (atomic_inc_return(&nr_freq_events) == 1)
10871                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10872         spin_unlock(&nr_freq_lock);
10873 #endif
10874 }
10875
10876 static void account_freq_event(void)
10877 {
10878         if (tick_nohz_full_enabled())
10879                 account_freq_event_nohz();
10880         else
10881                 atomic_inc(&nr_freq_events);
10882 }
10883
10884
10885 static void account_event(struct perf_event *event)
10886 {
10887         bool inc = false;
10888
10889         if (event->parent)
10890                 return;
10891
10892         if (event->attach_state & PERF_ATTACH_TASK)
10893                 inc = true;
10894         if (event->attr.mmap || event->attr.mmap_data)
10895                 atomic_inc(&nr_mmap_events);
10896         if (event->attr.comm)
10897                 atomic_inc(&nr_comm_events);
10898         if (event->attr.namespaces)
10899                 atomic_inc(&nr_namespaces_events);
10900         if (event->attr.cgroup)
10901                 atomic_inc(&nr_cgroup_events);
10902         if (event->attr.task)
10903                 atomic_inc(&nr_task_events);
10904         if (event->attr.freq)
10905                 account_freq_event();
10906         if (event->attr.context_switch) {
10907                 atomic_inc(&nr_switch_events);
10908                 inc = true;
10909         }
10910         if (has_branch_stack(event))
10911                 inc = true;
10912         if (is_cgroup_event(event))
10913                 inc = true;
10914         if (event->attr.ksymbol)
10915                 atomic_inc(&nr_ksymbol_events);
10916         if (event->attr.bpf_event)
10917                 atomic_inc(&nr_bpf_events);
10918
10919         if (inc) {
10920                 /*
10921                  * We need the mutex here because static_branch_enable()
10922                  * must complete *before* the perf_sched_count increment
10923                  * becomes visible.
10924                  */
10925                 if (atomic_inc_not_zero(&perf_sched_count))
10926                         goto enabled;
10927
10928                 mutex_lock(&perf_sched_mutex);
10929                 if (!atomic_read(&perf_sched_count)) {
10930                         static_branch_enable(&perf_sched_events);
10931                         /*
10932                          * Guarantee that all CPUs observe they key change and
10933                          * call the perf scheduling hooks before proceeding to
10934                          * install events that need them.
10935                          */
10936                         synchronize_rcu();
10937                 }
10938                 /*
10939                  * Now that we have waited for the sync_sched(), allow further
10940                  * increments to by-pass the mutex.
10941                  */
10942                 atomic_inc(&perf_sched_count);
10943                 mutex_unlock(&perf_sched_mutex);
10944         }
10945 enabled:
10946
10947         account_event_cpu(event, event->cpu);
10948
10949         account_pmu_sb_event(event);
10950 }
10951
10952 /*
10953  * Allocate and initialize an event structure
10954  */
10955 static struct perf_event *
10956 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10957                  struct task_struct *task,
10958                  struct perf_event *group_leader,
10959                  struct perf_event *parent_event,
10960                  perf_overflow_handler_t overflow_handler,
10961                  void *context, int cgroup_fd)
10962 {
10963         struct pmu *pmu;
10964         struct perf_event *event;
10965         struct hw_perf_event *hwc;
10966         long err = -EINVAL;
10967
10968         if ((unsigned)cpu >= nr_cpu_ids) {
10969                 if (!task || cpu != -1)
10970                         return ERR_PTR(-EINVAL);
10971         }
10972
10973         event = kzalloc(sizeof(*event), GFP_KERNEL);
10974         if (!event)
10975                 return ERR_PTR(-ENOMEM);
10976
10977         /*
10978          * Single events are their own group leaders, with an
10979          * empty sibling list:
10980          */
10981         if (!group_leader)
10982                 group_leader = event;
10983
10984         mutex_init(&event->child_mutex);
10985         INIT_LIST_HEAD(&event->child_list);
10986
10987         INIT_LIST_HEAD(&event->event_entry);
10988         INIT_LIST_HEAD(&event->sibling_list);
10989         INIT_LIST_HEAD(&event->active_list);
10990         init_event_group(event);
10991         INIT_LIST_HEAD(&event->rb_entry);
10992         INIT_LIST_HEAD(&event->active_entry);
10993         INIT_LIST_HEAD(&event->addr_filters.list);
10994         INIT_HLIST_NODE(&event->hlist_entry);
10995
10996
10997         init_waitqueue_head(&event->waitq);
10998         event->pending_disable = -1;
10999         init_irq_work(&event->pending, perf_pending_event);
11000
11001         mutex_init(&event->mmap_mutex);
11002         raw_spin_lock_init(&event->addr_filters.lock);
11003
11004         atomic_long_set(&event->refcount, 1);
11005         event->cpu              = cpu;
11006         event->attr             = *attr;
11007         event->group_leader     = group_leader;
11008         event->pmu              = NULL;
11009         event->oncpu            = -1;
11010
11011         event->parent           = parent_event;
11012
11013         event->ns               = get_pid_ns(task_active_pid_ns(current));
11014         event->id               = atomic64_inc_return(&perf_event_id);
11015
11016         event->state            = PERF_EVENT_STATE_INACTIVE;
11017
11018         if (task) {
11019                 event->attach_state = PERF_ATTACH_TASK;
11020                 /*
11021                  * XXX pmu::event_init needs to know what task to account to
11022                  * and we cannot use the ctx information because we need the
11023                  * pmu before we get a ctx.
11024                  */
11025                 event->hw.target = get_task_struct(task);
11026         }
11027
11028         event->clock = &local_clock;
11029         if (parent_event)
11030                 event->clock = parent_event->clock;
11031
11032         if (!overflow_handler && parent_event) {
11033                 overflow_handler = parent_event->overflow_handler;
11034                 context = parent_event->overflow_handler_context;
11035 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11036                 if (overflow_handler == bpf_overflow_handler) {
11037                         struct bpf_prog *prog = parent_event->prog;
11038
11039                         bpf_prog_inc(prog);
11040                         event->prog = prog;
11041                         event->orig_overflow_handler =
11042                                 parent_event->orig_overflow_handler;
11043                 }
11044 #endif
11045         }
11046
11047         if (overflow_handler) {
11048                 event->overflow_handler = overflow_handler;
11049                 event->overflow_handler_context = context;
11050         } else if (is_write_backward(event)){
11051                 event->overflow_handler = perf_event_output_backward;
11052                 event->overflow_handler_context = NULL;
11053         } else {
11054                 event->overflow_handler = perf_event_output_forward;
11055                 event->overflow_handler_context = NULL;
11056         }
11057
11058         perf_event__state_init(event);
11059
11060         pmu = NULL;
11061
11062         hwc = &event->hw;
11063         hwc->sample_period = attr->sample_period;
11064         if (attr->freq && attr->sample_freq)
11065                 hwc->sample_period = 1;
11066         hwc->last_period = hwc->sample_period;
11067
11068         local64_set(&hwc->period_left, hwc->sample_period);
11069
11070         /*
11071          * We currently do not support PERF_SAMPLE_READ on inherited events.
11072          * See perf_output_read().
11073          */
11074         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11075                 goto err_ns;
11076
11077         if (!has_branch_stack(event))
11078                 event->attr.branch_sample_type = 0;
11079
11080         pmu = perf_init_event(event);
11081         if (IS_ERR(pmu)) {
11082                 err = PTR_ERR(pmu);
11083                 goto err_ns;
11084         }
11085
11086         /*
11087          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11088          * be different on other CPUs in the uncore mask.
11089          */
11090         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11091                 err = -EINVAL;
11092                 goto err_pmu;
11093         }
11094
11095         if (event->attr.aux_output &&
11096             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11097                 err = -EOPNOTSUPP;
11098                 goto err_pmu;
11099         }
11100
11101         if (cgroup_fd != -1) {
11102                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11103                 if (err)
11104                         goto err_pmu;
11105         }
11106
11107         err = exclusive_event_init(event);
11108         if (err)
11109                 goto err_pmu;
11110
11111         if (has_addr_filter(event)) {
11112                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11113                                                     sizeof(struct perf_addr_filter_range),
11114                                                     GFP_KERNEL);
11115                 if (!event->addr_filter_ranges) {
11116                         err = -ENOMEM;
11117                         goto err_per_task;
11118                 }
11119
11120                 /*
11121                  * Clone the parent's vma offsets: they are valid until exec()
11122                  * even if the mm is not shared with the parent.
11123                  */
11124                 if (event->parent) {
11125                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11126
11127                         raw_spin_lock_irq(&ifh->lock);
11128                         memcpy(event->addr_filter_ranges,
11129                                event->parent->addr_filter_ranges,
11130                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11131                         raw_spin_unlock_irq(&ifh->lock);
11132                 }
11133
11134                 /* force hw sync on the address filters */
11135                 event->addr_filters_gen = 1;
11136         }
11137
11138         if (!event->parent) {
11139                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11140                         err = get_callchain_buffers(attr->sample_max_stack);
11141                         if (err)
11142                                 goto err_addr_filters;
11143                 }
11144         }
11145
11146         err = security_perf_event_alloc(event);
11147         if (err)
11148                 goto err_callchain_buffer;
11149
11150         /* symmetric to unaccount_event() in _free_event() */
11151         account_event(event);
11152
11153         return event;
11154
11155 err_callchain_buffer:
11156         if (!event->parent) {
11157                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11158                         put_callchain_buffers();
11159         }
11160 err_addr_filters:
11161         kfree(event->addr_filter_ranges);
11162
11163 err_per_task:
11164         exclusive_event_destroy(event);
11165
11166 err_pmu:
11167         if (is_cgroup_event(event))
11168                 perf_detach_cgroup(event);
11169         if (event->destroy)
11170                 event->destroy(event);
11171         module_put(pmu->module);
11172 err_ns:
11173         if (event->ns)
11174                 put_pid_ns(event->ns);
11175         if (event->hw.target)
11176                 put_task_struct(event->hw.target);
11177         kfree(event);
11178
11179         return ERR_PTR(err);
11180 }
11181
11182 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11183                           struct perf_event_attr *attr)
11184 {
11185         u32 size;
11186         int ret;
11187
11188         /* Zero the full structure, so that a short copy will be nice. */
11189         memset(attr, 0, sizeof(*attr));
11190
11191         ret = get_user(size, &uattr->size);
11192         if (ret)
11193                 return ret;
11194
11195         /* ABI compatibility quirk: */
11196         if (!size)
11197                 size = PERF_ATTR_SIZE_VER0;
11198         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11199                 goto err_size;
11200
11201         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11202         if (ret) {
11203                 if (ret == -E2BIG)
11204                         goto err_size;
11205                 return ret;
11206         }
11207
11208         attr->size = size;
11209
11210         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11211                 return -EINVAL;
11212
11213         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11214                 return -EINVAL;
11215
11216         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11217                 return -EINVAL;
11218
11219         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11220                 u64 mask = attr->branch_sample_type;
11221
11222                 /* only using defined bits */
11223                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11224                         return -EINVAL;
11225
11226                 /* at least one branch bit must be set */
11227                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11228                         return -EINVAL;
11229
11230                 /* propagate priv level, when not set for branch */
11231                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11232
11233                         /* exclude_kernel checked on syscall entry */
11234                         if (!attr->exclude_kernel)
11235                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11236
11237                         if (!attr->exclude_user)
11238                                 mask |= PERF_SAMPLE_BRANCH_USER;
11239
11240                         if (!attr->exclude_hv)
11241                                 mask |= PERF_SAMPLE_BRANCH_HV;
11242                         /*
11243                          * adjust user setting (for HW filter setup)
11244                          */
11245                         attr->branch_sample_type = mask;
11246                 }
11247                 /* privileged levels capture (kernel, hv): check permissions */
11248                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11249                         ret = perf_allow_kernel(attr);
11250                         if (ret)
11251                                 return ret;
11252                 }
11253         }
11254
11255         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11256                 ret = perf_reg_validate(attr->sample_regs_user);
11257                 if (ret)
11258                         return ret;
11259         }
11260
11261         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11262                 if (!arch_perf_have_user_stack_dump())
11263                         return -ENOSYS;
11264
11265                 /*
11266                  * We have __u32 type for the size, but so far
11267                  * we can only use __u16 as maximum due to the
11268                  * __u16 sample size limit.
11269                  */
11270                 if (attr->sample_stack_user >= USHRT_MAX)
11271                         return -EINVAL;
11272                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11273                         return -EINVAL;
11274         }
11275
11276         if (!attr->sample_max_stack)
11277                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11278
11279         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11280                 ret = perf_reg_validate(attr->sample_regs_intr);
11281
11282 #ifndef CONFIG_CGROUP_PERF
11283         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11284                 return -EINVAL;
11285 #endif
11286
11287 out:
11288         return ret;
11289
11290 err_size:
11291         put_user(sizeof(*attr), &uattr->size);
11292         ret = -E2BIG;
11293         goto out;
11294 }
11295
11296 static int
11297 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11298 {
11299         struct perf_buffer *rb = NULL;
11300         int ret = -EINVAL;
11301
11302         if (!output_event)
11303                 goto set;
11304
11305         /* don't allow circular references */
11306         if (event == output_event)
11307                 goto out;
11308
11309         /*
11310          * Don't allow cross-cpu buffers
11311          */
11312         if (output_event->cpu != event->cpu)
11313                 goto out;
11314
11315         /*
11316          * If its not a per-cpu rb, it must be the same task.
11317          */
11318         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11319                 goto out;
11320
11321         /*
11322          * Mixing clocks in the same buffer is trouble you don't need.
11323          */
11324         if (output_event->clock != event->clock)
11325                 goto out;
11326
11327         /*
11328          * Either writing ring buffer from beginning or from end.
11329          * Mixing is not allowed.
11330          */
11331         if (is_write_backward(output_event) != is_write_backward(event))
11332                 goto out;
11333
11334         /*
11335          * If both events generate aux data, they must be on the same PMU
11336          */
11337         if (has_aux(event) && has_aux(output_event) &&
11338             event->pmu != output_event->pmu)
11339                 goto out;
11340
11341 set:
11342         mutex_lock(&event->mmap_mutex);
11343         /* Can't redirect output if we've got an active mmap() */
11344         if (atomic_read(&event->mmap_count))
11345                 goto unlock;
11346
11347         if (output_event) {
11348                 /* get the rb we want to redirect to */
11349                 rb = ring_buffer_get(output_event);
11350                 if (!rb)
11351                         goto unlock;
11352         }
11353
11354         ring_buffer_attach(event, rb);
11355
11356         ret = 0;
11357 unlock:
11358         mutex_unlock(&event->mmap_mutex);
11359
11360 out:
11361         return ret;
11362 }
11363
11364 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11365 {
11366         if (b < a)
11367                 swap(a, b);
11368
11369         mutex_lock(a);
11370         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11371 }
11372
11373 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11374 {
11375         bool nmi_safe = false;
11376
11377         switch (clk_id) {
11378         case CLOCK_MONOTONIC:
11379                 event->clock = &ktime_get_mono_fast_ns;
11380                 nmi_safe = true;
11381                 break;
11382
11383         case CLOCK_MONOTONIC_RAW:
11384                 event->clock = &ktime_get_raw_fast_ns;
11385                 nmi_safe = true;
11386                 break;
11387
11388         case CLOCK_REALTIME:
11389                 event->clock = &ktime_get_real_ns;
11390                 break;
11391
11392         case CLOCK_BOOTTIME:
11393                 event->clock = &ktime_get_boottime_ns;
11394                 break;
11395
11396         case CLOCK_TAI:
11397                 event->clock = &ktime_get_clocktai_ns;
11398                 break;
11399
11400         default:
11401                 return -EINVAL;
11402         }
11403
11404         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11405                 return -EINVAL;
11406
11407         return 0;
11408 }
11409
11410 /*
11411  * Variation on perf_event_ctx_lock_nested(), except we take two context
11412  * mutexes.
11413  */
11414 static struct perf_event_context *
11415 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11416                              struct perf_event_context *ctx)
11417 {
11418         struct perf_event_context *gctx;
11419
11420 again:
11421         rcu_read_lock();
11422         gctx = READ_ONCE(group_leader->ctx);
11423         if (!refcount_inc_not_zero(&gctx->refcount)) {
11424                 rcu_read_unlock();
11425                 goto again;
11426         }
11427         rcu_read_unlock();
11428
11429         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11430
11431         if (group_leader->ctx != gctx) {
11432                 mutex_unlock(&ctx->mutex);
11433                 mutex_unlock(&gctx->mutex);
11434                 put_ctx(gctx);
11435                 goto again;
11436         }
11437
11438         return gctx;
11439 }
11440
11441 /**
11442  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11443  *
11444  * @attr_uptr:  event_id type attributes for monitoring/sampling
11445  * @pid:                target pid
11446  * @cpu:                target cpu
11447  * @group_fd:           group leader event fd
11448  */
11449 SYSCALL_DEFINE5(perf_event_open,
11450                 struct perf_event_attr __user *, attr_uptr,
11451                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11452 {
11453         struct perf_event *group_leader = NULL, *output_event = NULL;
11454         struct perf_event *event, *sibling;
11455         struct perf_event_attr attr;
11456         struct perf_event_context *ctx, *uninitialized_var(gctx);
11457         struct file *event_file = NULL;
11458         struct fd group = {NULL, 0};
11459         struct task_struct *task = NULL;
11460         struct pmu *pmu;
11461         int event_fd;
11462         int move_group = 0;
11463         int err;
11464         int f_flags = O_RDWR;
11465         int cgroup_fd = -1;
11466
11467         /* for future expandability... */
11468         if (flags & ~PERF_FLAG_ALL)
11469                 return -EINVAL;
11470
11471         /* Do we allow access to perf_event_open(2) ? */
11472         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11473         if (err)
11474                 return err;
11475
11476         err = perf_copy_attr(attr_uptr, &attr);
11477         if (err)
11478                 return err;
11479
11480         if (!attr.exclude_kernel) {
11481                 err = perf_allow_kernel(&attr);
11482                 if (err)
11483                         return err;
11484         }
11485
11486         if (attr.namespaces) {
11487                 if (!capable(CAP_SYS_ADMIN))
11488                         return -EACCES;
11489         }
11490
11491         if (attr.freq) {
11492                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11493                         return -EINVAL;
11494         } else {
11495                 if (attr.sample_period & (1ULL << 63))
11496                         return -EINVAL;
11497         }
11498
11499         /* Only privileged users can get physical addresses */
11500         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11501                 err = perf_allow_kernel(&attr);
11502                 if (err)
11503                         return err;
11504         }
11505
11506         err = security_locked_down(LOCKDOWN_PERF);
11507         if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11508                 /* REGS_INTR can leak data, lockdown must prevent this */
11509                 return err;
11510
11511         err = 0;
11512
11513         /*
11514          * In cgroup mode, the pid argument is used to pass the fd
11515          * opened to the cgroup directory in cgroupfs. The cpu argument
11516          * designates the cpu on which to monitor threads from that
11517          * cgroup.
11518          */
11519         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11520                 return -EINVAL;
11521
11522         if (flags & PERF_FLAG_FD_CLOEXEC)
11523                 f_flags |= O_CLOEXEC;
11524
11525         event_fd = get_unused_fd_flags(f_flags);
11526         if (event_fd < 0)
11527                 return event_fd;
11528
11529         if (group_fd != -1) {
11530                 err = perf_fget_light(group_fd, &group);
11531                 if (err)
11532                         goto err_fd;
11533                 group_leader = group.file->private_data;
11534                 if (flags & PERF_FLAG_FD_OUTPUT)
11535                         output_event = group_leader;
11536                 if (flags & PERF_FLAG_FD_NO_GROUP)
11537                         group_leader = NULL;
11538         }
11539
11540         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11541                 task = find_lively_task_by_vpid(pid);
11542                 if (IS_ERR(task)) {
11543                         err = PTR_ERR(task);
11544                         goto err_group_fd;
11545                 }
11546         }
11547
11548         if (task && group_leader &&
11549             group_leader->attr.inherit != attr.inherit) {
11550                 err = -EINVAL;
11551                 goto err_task;
11552         }
11553
11554         if (task) {
11555                 err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11556                 if (err)
11557                         goto err_task;
11558
11559                 /*
11560                  * Reuse ptrace permission checks for now.
11561                  *
11562                  * We must hold exec_update_mutex across this and any potential
11563                  * perf_install_in_context() call for this new event to
11564                  * serialize against exec() altering our credentials (and the
11565                  * perf_event_exit_task() that could imply).
11566                  */
11567                 err = -EACCES;
11568                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11569                         goto err_cred;
11570         }
11571
11572         if (flags & PERF_FLAG_PID_CGROUP)
11573                 cgroup_fd = pid;
11574
11575         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11576                                  NULL, NULL, cgroup_fd);
11577         if (IS_ERR(event)) {
11578                 err = PTR_ERR(event);
11579                 goto err_cred;
11580         }
11581
11582         if (is_sampling_event(event)) {
11583                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11584                         err = -EOPNOTSUPP;
11585                         goto err_alloc;
11586                 }
11587         }
11588
11589         /*
11590          * Special case software events and allow them to be part of
11591          * any hardware group.
11592          */
11593         pmu = event->pmu;
11594
11595         if (attr.use_clockid) {
11596                 err = perf_event_set_clock(event, attr.clockid);
11597                 if (err)
11598                         goto err_alloc;
11599         }
11600
11601         if (pmu->task_ctx_nr == perf_sw_context)
11602                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11603
11604         if (group_leader) {
11605                 if (is_software_event(event) &&
11606                     !in_software_context(group_leader)) {
11607                         /*
11608                          * If the event is a sw event, but the group_leader
11609                          * is on hw context.
11610                          *
11611                          * Allow the addition of software events to hw
11612                          * groups, this is safe because software events
11613                          * never fail to schedule.
11614                          */
11615                         pmu = group_leader->ctx->pmu;
11616                 } else if (!is_software_event(event) &&
11617                            is_software_event(group_leader) &&
11618                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11619                         /*
11620                          * In case the group is a pure software group, and we
11621                          * try to add a hardware event, move the whole group to
11622                          * the hardware context.
11623                          */
11624                         move_group = 1;
11625                 }
11626         }
11627
11628         /*
11629          * Get the target context (task or percpu):
11630          */
11631         ctx = find_get_context(pmu, task, event);
11632         if (IS_ERR(ctx)) {
11633                 err = PTR_ERR(ctx);
11634                 goto err_alloc;
11635         }
11636
11637         /*
11638          * Look up the group leader (we will attach this event to it):
11639          */
11640         if (group_leader) {
11641                 err = -EINVAL;
11642
11643                 /*
11644                  * Do not allow a recursive hierarchy (this new sibling
11645                  * becoming part of another group-sibling):
11646                  */
11647                 if (group_leader->group_leader != group_leader)
11648                         goto err_context;
11649
11650                 /* All events in a group should have the same clock */
11651                 if (group_leader->clock != event->clock)
11652                         goto err_context;
11653
11654                 /*
11655                  * Make sure we're both events for the same CPU;
11656                  * grouping events for different CPUs is broken; since
11657                  * you can never concurrently schedule them anyhow.
11658                  */
11659                 if (group_leader->cpu != event->cpu)
11660                         goto err_context;
11661
11662                 /*
11663                  * Make sure we're both on the same task, or both
11664                  * per-CPU events.
11665                  */
11666                 if (group_leader->ctx->task != ctx->task)
11667                         goto err_context;
11668
11669                 /*
11670                  * Do not allow to attach to a group in a different task
11671                  * or CPU context. If we're moving SW events, we'll fix
11672                  * this up later, so allow that.
11673                  */
11674                 if (!move_group && group_leader->ctx != ctx)
11675                         goto err_context;
11676
11677                 /*
11678                  * Only a group leader can be exclusive or pinned
11679                  */
11680                 if (attr.exclusive || attr.pinned)
11681                         goto err_context;
11682         }
11683
11684         if (output_event) {
11685                 err = perf_event_set_output(event, output_event);
11686                 if (err)
11687                         goto err_context;
11688         }
11689
11690         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11691                                         f_flags);
11692         if (IS_ERR(event_file)) {
11693                 err = PTR_ERR(event_file);
11694                 event_file = NULL;
11695                 goto err_context;
11696         }
11697
11698         if (move_group) {
11699                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11700
11701                 if (gctx->task == TASK_TOMBSTONE) {
11702                         err = -ESRCH;
11703                         goto err_locked;
11704                 }
11705
11706                 /*
11707                  * Check if we raced against another sys_perf_event_open() call
11708                  * moving the software group underneath us.
11709                  */
11710                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11711                         /*
11712                          * If someone moved the group out from under us, check
11713                          * if this new event wound up on the same ctx, if so
11714                          * its the regular !move_group case, otherwise fail.
11715                          */
11716                         if (gctx != ctx) {
11717                                 err = -EINVAL;
11718                                 goto err_locked;
11719                         } else {
11720                                 perf_event_ctx_unlock(group_leader, gctx);
11721                                 move_group = 0;
11722                         }
11723                 }
11724
11725                 /*
11726                  * Failure to create exclusive events returns -EBUSY.
11727                  */
11728                 err = -EBUSY;
11729                 if (!exclusive_event_installable(group_leader, ctx))
11730                         goto err_locked;
11731
11732                 for_each_sibling_event(sibling, group_leader) {
11733                         if (!exclusive_event_installable(sibling, ctx))
11734                                 goto err_locked;
11735                 }
11736         } else {
11737                 mutex_lock(&ctx->mutex);
11738         }
11739
11740         if (ctx->task == TASK_TOMBSTONE) {
11741                 err = -ESRCH;
11742                 goto err_locked;
11743         }
11744
11745         if (!perf_event_validate_size(event)) {
11746                 err = -E2BIG;
11747                 goto err_locked;
11748         }
11749
11750         if (!task) {
11751                 /*
11752                  * Check if the @cpu we're creating an event for is online.
11753                  *
11754                  * We use the perf_cpu_context::ctx::mutex to serialize against
11755                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11756                  */
11757                 struct perf_cpu_context *cpuctx =
11758                         container_of(ctx, struct perf_cpu_context, ctx);
11759
11760                 if (!cpuctx->online) {
11761                         err = -ENODEV;
11762                         goto err_locked;
11763                 }
11764         }
11765
11766         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11767                 err = -EINVAL;
11768                 goto err_locked;
11769         }
11770
11771         /*
11772          * Must be under the same ctx::mutex as perf_install_in_context(),
11773          * because we need to serialize with concurrent event creation.
11774          */
11775         if (!exclusive_event_installable(event, ctx)) {
11776                 err = -EBUSY;
11777                 goto err_locked;
11778         }
11779
11780         WARN_ON_ONCE(ctx->parent_ctx);
11781
11782         /*
11783          * This is the point on no return; we cannot fail hereafter. This is
11784          * where we start modifying current state.
11785          */
11786
11787         if (move_group) {
11788                 /*
11789                  * See perf_event_ctx_lock() for comments on the details
11790                  * of swizzling perf_event::ctx.
11791                  */
11792                 perf_remove_from_context(group_leader, 0);
11793                 put_ctx(gctx);
11794
11795                 for_each_sibling_event(sibling, group_leader) {
11796                         perf_remove_from_context(sibling, 0);
11797                         put_ctx(gctx);
11798                 }
11799
11800                 /*
11801                  * Wait for everybody to stop referencing the events through
11802                  * the old lists, before installing it on new lists.
11803                  */
11804                 synchronize_rcu();
11805
11806                 /*
11807                  * Install the group siblings before the group leader.
11808                  *
11809                  * Because a group leader will try and install the entire group
11810                  * (through the sibling list, which is still in-tact), we can
11811                  * end up with siblings installed in the wrong context.
11812                  *
11813                  * By installing siblings first we NO-OP because they're not
11814                  * reachable through the group lists.
11815                  */
11816                 for_each_sibling_event(sibling, group_leader) {
11817                         perf_event__state_init(sibling);
11818                         perf_install_in_context(ctx, sibling, sibling->cpu);
11819                         get_ctx(ctx);
11820                 }
11821
11822                 /*
11823                  * Removing from the context ends up with disabled
11824                  * event. What we want here is event in the initial
11825                  * startup state, ready to be add into new context.
11826                  */
11827                 perf_event__state_init(group_leader);
11828                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11829                 get_ctx(ctx);
11830         }
11831
11832         /*
11833          * Precalculate sample_data sizes; do while holding ctx::mutex such
11834          * that we're serialized against further additions and before
11835          * perf_install_in_context() which is the point the event is active and
11836          * can use these values.
11837          */
11838         perf_event__header_size(event);
11839         perf_event__id_header_size(event);
11840
11841         event->owner = current;
11842
11843         perf_install_in_context(ctx, event, event->cpu);
11844         perf_unpin_context(ctx);
11845
11846         if (move_group)
11847                 perf_event_ctx_unlock(group_leader, gctx);
11848         mutex_unlock(&ctx->mutex);
11849
11850         if (task) {
11851                 mutex_unlock(&task->signal->exec_update_mutex);
11852                 put_task_struct(task);
11853         }
11854
11855         mutex_lock(&current->perf_event_mutex);
11856         list_add_tail(&event->owner_entry, &current->perf_event_list);
11857         mutex_unlock(&current->perf_event_mutex);
11858
11859         /*
11860          * Drop the reference on the group_event after placing the
11861          * new event on the sibling_list. This ensures destruction
11862          * of the group leader will find the pointer to itself in
11863          * perf_group_detach().
11864          */
11865         fdput(group);
11866         fd_install(event_fd, event_file);
11867         return event_fd;
11868
11869 err_locked:
11870         if (move_group)
11871                 perf_event_ctx_unlock(group_leader, gctx);
11872         mutex_unlock(&ctx->mutex);
11873 /* err_file: */
11874         fput(event_file);
11875 err_context:
11876         perf_unpin_context(ctx);
11877         put_ctx(ctx);
11878 err_alloc:
11879         /*
11880          * If event_file is set, the fput() above will have called ->release()
11881          * and that will take care of freeing the event.
11882          */
11883         if (!event_file)
11884                 free_event(event);
11885 err_cred:
11886         if (task)
11887                 mutex_unlock(&task->signal->exec_update_mutex);
11888 err_task:
11889         if (task)
11890                 put_task_struct(task);
11891 err_group_fd:
11892         fdput(group);
11893 err_fd:
11894         put_unused_fd(event_fd);
11895         return err;
11896 }
11897
11898 /**
11899  * perf_event_create_kernel_counter
11900  *
11901  * @attr: attributes of the counter to create
11902  * @cpu: cpu in which the counter is bound
11903  * @task: task to profile (NULL for percpu)
11904  */
11905 struct perf_event *
11906 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11907                                  struct task_struct *task,
11908                                  perf_overflow_handler_t overflow_handler,
11909                                  void *context)
11910 {
11911         struct perf_event_context *ctx;
11912         struct perf_event *event;
11913         int err;
11914
11915         /*
11916          * Grouping is not supported for kernel events, neither is 'AUX',
11917          * make sure the caller's intentions are adjusted.
11918          */
11919         if (attr->aux_output)
11920                 return ERR_PTR(-EINVAL);
11921
11922         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11923                                  overflow_handler, context, -1);
11924         if (IS_ERR(event)) {
11925                 err = PTR_ERR(event);
11926                 goto err;
11927         }
11928
11929         /* Mark owner so we could distinguish it from user events. */
11930         event->owner = TASK_TOMBSTONE;
11931
11932         /*
11933          * Get the target context (task or percpu):
11934          */
11935         ctx = find_get_context(event->pmu, task, event);
11936         if (IS_ERR(ctx)) {
11937                 err = PTR_ERR(ctx);
11938                 goto err_free;
11939         }
11940
11941         WARN_ON_ONCE(ctx->parent_ctx);
11942         mutex_lock(&ctx->mutex);
11943         if (ctx->task == TASK_TOMBSTONE) {
11944                 err = -ESRCH;
11945                 goto err_unlock;
11946         }
11947
11948         if (!task) {
11949                 /*
11950                  * Check if the @cpu we're creating an event for is online.
11951                  *
11952                  * We use the perf_cpu_context::ctx::mutex to serialize against
11953                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11954                  */
11955                 struct perf_cpu_context *cpuctx =
11956                         container_of(ctx, struct perf_cpu_context, ctx);
11957                 if (!cpuctx->online) {
11958                         err = -ENODEV;
11959                         goto err_unlock;
11960                 }
11961         }
11962
11963         if (!exclusive_event_installable(event, ctx)) {
11964                 err = -EBUSY;
11965                 goto err_unlock;
11966         }
11967
11968         perf_install_in_context(ctx, event, event->cpu);
11969         perf_unpin_context(ctx);
11970         mutex_unlock(&ctx->mutex);
11971
11972         return event;
11973
11974 err_unlock:
11975         mutex_unlock(&ctx->mutex);
11976         perf_unpin_context(ctx);
11977         put_ctx(ctx);
11978 err_free:
11979         free_event(event);
11980 err:
11981         return ERR_PTR(err);
11982 }
11983 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11984
11985 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11986 {
11987         struct perf_event_context *src_ctx;
11988         struct perf_event_context *dst_ctx;
11989         struct perf_event *event, *tmp;
11990         LIST_HEAD(events);
11991
11992         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11993         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11994
11995         /*
11996          * See perf_event_ctx_lock() for comments on the details
11997          * of swizzling perf_event::ctx.
11998          */
11999         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12000         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12001                                  event_entry) {
12002                 perf_remove_from_context(event, 0);
12003                 unaccount_event_cpu(event, src_cpu);
12004                 put_ctx(src_ctx);
12005                 list_add(&event->migrate_entry, &events);
12006         }
12007
12008         /*
12009          * Wait for the events to quiesce before re-instating them.
12010          */
12011         synchronize_rcu();
12012
12013         /*
12014          * Re-instate events in 2 passes.
12015          *
12016          * Skip over group leaders and only install siblings on this first
12017          * pass, siblings will not get enabled without a leader, however a
12018          * leader will enable its siblings, even if those are still on the old
12019          * context.
12020          */
12021         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12022                 if (event->group_leader == event)
12023                         continue;
12024
12025                 list_del(&event->migrate_entry);
12026                 if (event->state >= PERF_EVENT_STATE_OFF)
12027                         event->state = PERF_EVENT_STATE_INACTIVE;
12028                 account_event_cpu(event, dst_cpu);
12029                 perf_install_in_context(dst_ctx, event, dst_cpu);
12030                 get_ctx(dst_ctx);
12031         }
12032
12033         /*
12034          * Once all the siblings are setup properly, install the group leaders
12035          * to make it go.
12036          */
12037         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12038                 list_del(&event->migrate_entry);
12039                 if (event->state >= PERF_EVENT_STATE_OFF)
12040                         event->state = PERF_EVENT_STATE_INACTIVE;
12041                 account_event_cpu(event, dst_cpu);
12042                 perf_install_in_context(dst_ctx, event, dst_cpu);
12043                 get_ctx(dst_ctx);
12044         }
12045         mutex_unlock(&dst_ctx->mutex);
12046         mutex_unlock(&src_ctx->mutex);
12047 }
12048 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12049
12050 static void sync_child_event(struct perf_event *child_event,
12051                                struct task_struct *child)
12052 {
12053         struct perf_event *parent_event = child_event->parent;
12054         u64 child_val;
12055
12056         if (child_event->attr.inherit_stat)
12057                 perf_event_read_event(child_event, child);
12058
12059         child_val = perf_event_count(child_event);
12060
12061         /*
12062          * Add back the child's count to the parent's count:
12063          */
12064         atomic64_add(child_val, &parent_event->child_count);
12065         atomic64_add(child_event->total_time_enabled,
12066                      &parent_event->child_total_time_enabled);
12067         atomic64_add(child_event->total_time_running,
12068                      &parent_event->child_total_time_running);
12069 }
12070
12071 static void
12072 perf_event_exit_event(struct perf_event *child_event,
12073                       struct perf_event_context *child_ctx,
12074                       struct task_struct *child)
12075 {
12076         struct perf_event *parent_event = child_event->parent;
12077
12078         /*
12079          * Do not destroy the 'original' grouping; because of the context
12080          * switch optimization the original events could've ended up in a
12081          * random child task.
12082          *
12083          * If we were to destroy the original group, all group related
12084          * operations would cease to function properly after this random
12085          * child dies.
12086          *
12087          * Do destroy all inherited groups, we don't care about those
12088          * and being thorough is better.
12089          */
12090         raw_spin_lock_irq(&child_ctx->lock);
12091         WARN_ON_ONCE(child_ctx->is_active);
12092
12093         if (parent_event)
12094                 perf_group_detach(child_event);
12095         list_del_event(child_event, child_ctx);
12096         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12097         raw_spin_unlock_irq(&child_ctx->lock);
12098
12099         /*
12100          * Parent events are governed by their filedesc, retain them.
12101          */
12102         if (!parent_event) {
12103                 perf_event_wakeup(child_event);
12104                 return;
12105         }
12106         /*
12107          * Child events can be cleaned up.
12108          */
12109
12110         sync_child_event(child_event, child);
12111
12112         /*
12113          * Remove this event from the parent's list
12114          */
12115         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12116         mutex_lock(&parent_event->child_mutex);
12117         list_del_init(&child_event->child_list);
12118         mutex_unlock(&parent_event->child_mutex);
12119
12120         /*
12121          * Kick perf_poll() for is_event_hup().
12122          */
12123         perf_event_wakeup(parent_event);
12124         free_event(child_event);
12125         put_event(parent_event);
12126 }
12127
12128 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12129 {
12130         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12131         struct perf_event *child_event, *next;
12132
12133         WARN_ON_ONCE(child != current);
12134
12135         child_ctx = perf_pin_task_context(child, ctxn);
12136         if (!child_ctx)
12137                 return;
12138
12139         /*
12140          * In order to reduce the amount of tricky in ctx tear-down, we hold
12141          * ctx::mutex over the entire thing. This serializes against almost
12142          * everything that wants to access the ctx.
12143          *
12144          * The exception is sys_perf_event_open() /
12145          * perf_event_create_kernel_count() which does find_get_context()
12146          * without ctx::mutex (it cannot because of the move_group double mutex
12147          * lock thing). See the comments in perf_install_in_context().
12148          */
12149         mutex_lock(&child_ctx->mutex);
12150
12151         /*
12152          * In a single ctx::lock section, de-schedule the events and detach the
12153          * context from the task such that we cannot ever get it scheduled back
12154          * in.
12155          */
12156         raw_spin_lock_irq(&child_ctx->lock);
12157         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12158
12159         /*
12160          * Now that the context is inactive, destroy the task <-> ctx relation
12161          * and mark the context dead.
12162          */
12163         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12164         put_ctx(child_ctx); /* cannot be last */
12165         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12166         put_task_struct(current); /* cannot be last */
12167
12168         clone_ctx = unclone_ctx(child_ctx);
12169         raw_spin_unlock_irq(&child_ctx->lock);
12170
12171         if (clone_ctx)
12172                 put_ctx(clone_ctx);
12173
12174         /*
12175          * Report the task dead after unscheduling the events so that we
12176          * won't get any samples after PERF_RECORD_EXIT. We can however still
12177          * get a few PERF_RECORD_READ events.
12178          */
12179         perf_event_task(child, child_ctx, 0);
12180
12181         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12182                 perf_event_exit_event(child_event, child_ctx, child);
12183
12184         mutex_unlock(&child_ctx->mutex);
12185
12186         put_ctx(child_ctx);
12187 }
12188
12189 /*
12190  * When a child task exits, feed back event values to parent events.
12191  *
12192  * Can be called with exec_update_mutex held when called from
12193  * install_exec_creds().
12194  */
12195 void perf_event_exit_task(struct task_struct *child)
12196 {
12197         struct perf_event *event, *tmp;
12198         int ctxn;
12199
12200         mutex_lock(&child->perf_event_mutex);
12201         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12202                                  owner_entry) {
12203                 list_del_init(&event->owner_entry);
12204
12205                 /*
12206                  * Ensure the list deletion is visible before we clear
12207                  * the owner, closes a race against perf_release() where
12208                  * we need to serialize on the owner->perf_event_mutex.
12209                  */
12210                 smp_store_release(&event->owner, NULL);
12211         }
12212         mutex_unlock(&child->perf_event_mutex);
12213
12214         for_each_task_context_nr(ctxn)
12215                 perf_event_exit_task_context(child, ctxn);
12216
12217         /*
12218          * The perf_event_exit_task_context calls perf_event_task
12219          * with child's task_ctx, which generates EXIT events for
12220          * child contexts and sets child->perf_event_ctxp[] to NULL.
12221          * At this point we need to send EXIT events to cpu contexts.
12222          */
12223         perf_event_task(child, NULL, 0);
12224 }
12225
12226 static void perf_free_event(struct perf_event *event,
12227                             struct perf_event_context *ctx)
12228 {
12229         struct perf_event *parent = event->parent;
12230
12231         if (WARN_ON_ONCE(!parent))
12232                 return;
12233
12234         mutex_lock(&parent->child_mutex);
12235         list_del_init(&event->child_list);
12236         mutex_unlock(&parent->child_mutex);
12237
12238         put_event(parent);
12239
12240         raw_spin_lock_irq(&ctx->lock);
12241         perf_group_detach(event);
12242         list_del_event(event, ctx);
12243         raw_spin_unlock_irq(&ctx->lock);
12244         free_event(event);
12245 }
12246
12247 /*
12248  * Free a context as created by inheritance by perf_event_init_task() below,
12249  * used by fork() in case of fail.
12250  *
12251  * Even though the task has never lived, the context and events have been
12252  * exposed through the child_list, so we must take care tearing it all down.
12253  */
12254 void perf_event_free_task(struct task_struct *task)
12255 {
12256         struct perf_event_context *ctx;
12257         struct perf_event *event, *tmp;
12258         int ctxn;
12259
12260         for_each_task_context_nr(ctxn) {
12261                 ctx = task->perf_event_ctxp[ctxn];
12262                 if (!ctx)
12263                         continue;
12264
12265                 mutex_lock(&ctx->mutex);
12266                 raw_spin_lock_irq(&ctx->lock);
12267                 /*
12268                  * Destroy the task <-> ctx relation and mark the context dead.
12269                  *
12270                  * This is important because even though the task hasn't been
12271                  * exposed yet the context has been (through child_list).
12272                  */
12273                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12274                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12275                 put_task_struct(task); /* cannot be last */
12276                 raw_spin_unlock_irq(&ctx->lock);
12277
12278                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12279                         perf_free_event(event, ctx);
12280
12281                 mutex_unlock(&ctx->mutex);
12282
12283                 /*
12284                  * perf_event_release_kernel() could've stolen some of our
12285                  * child events and still have them on its free_list. In that
12286                  * case we must wait for these events to have been freed (in
12287                  * particular all their references to this task must've been
12288                  * dropped).
12289                  *
12290                  * Without this copy_process() will unconditionally free this
12291                  * task (irrespective of its reference count) and
12292                  * _free_event()'s put_task_struct(event->hw.target) will be a
12293                  * use-after-free.
12294                  *
12295                  * Wait for all events to drop their context reference.
12296                  */
12297                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12298                 put_ctx(ctx); /* must be last */
12299         }
12300 }
12301
12302 void perf_event_delayed_put(struct task_struct *task)
12303 {
12304         int ctxn;
12305
12306         for_each_task_context_nr(ctxn)
12307                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12308 }
12309
12310 struct file *perf_event_get(unsigned int fd)
12311 {
12312         struct file *file = fget(fd);
12313         if (!file)
12314                 return ERR_PTR(-EBADF);
12315
12316         if (file->f_op != &perf_fops) {
12317                 fput(file);
12318                 return ERR_PTR(-EBADF);
12319         }
12320
12321         return file;
12322 }
12323
12324 const struct perf_event *perf_get_event(struct file *file)
12325 {
12326         if (file->f_op != &perf_fops)
12327                 return ERR_PTR(-EINVAL);
12328
12329         return file->private_data;
12330 }
12331
12332 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12333 {
12334         if (!event)
12335                 return ERR_PTR(-EINVAL);
12336
12337         return &event->attr;
12338 }
12339
12340 /*
12341  * Inherit an event from parent task to child task.
12342  *
12343  * Returns:
12344  *  - valid pointer on success
12345  *  - NULL for orphaned events
12346  *  - IS_ERR() on error
12347  */
12348 static struct perf_event *
12349 inherit_event(struct perf_event *parent_event,
12350               struct task_struct *parent,
12351               struct perf_event_context *parent_ctx,
12352               struct task_struct *child,
12353               struct perf_event *group_leader,
12354               struct perf_event_context *child_ctx)
12355 {
12356         enum perf_event_state parent_state = parent_event->state;
12357         struct perf_event *child_event;
12358         unsigned long flags;
12359
12360         /*
12361          * Instead of creating recursive hierarchies of events,
12362          * we link inherited events back to the original parent,
12363          * which has a filp for sure, which we use as the reference
12364          * count:
12365          */
12366         if (parent_event->parent)
12367                 parent_event = parent_event->parent;
12368
12369         child_event = perf_event_alloc(&parent_event->attr,
12370                                            parent_event->cpu,
12371                                            child,
12372                                            group_leader, parent_event,
12373                                            NULL, NULL, -1);
12374         if (IS_ERR(child_event))
12375                 return child_event;
12376
12377
12378         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12379             !child_ctx->task_ctx_data) {
12380                 struct pmu *pmu = child_event->pmu;
12381
12382                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12383                                                    GFP_KERNEL);
12384                 if (!child_ctx->task_ctx_data) {
12385                         free_event(child_event);
12386                         return ERR_PTR(-ENOMEM);
12387                 }
12388         }
12389
12390         /*
12391          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12392          * must be under the same lock in order to serialize against
12393          * perf_event_release_kernel(), such that either we must observe
12394          * is_orphaned_event() or they will observe us on the child_list.
12395          */
12396         mutex_lock(&parent_event->child_mutex);
12397         if (is_orphaned_event(parent_event) ||
12398             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12399                 mutex_unlock(&parent_event->child_mutex);
12400                 /* task_ctx_data is freed with child_ctx */
12401                 free_event(child_event);
12402                 return NULL;
12403         }
12404
12405         get_ctx(child_ctx);
12406
12407         /*
12408          * Make the child state follow the state of the parent event,
12409          * not its attr.disabled bit.  We hold the parent's mutex,
12410          * so we won't race with perf_event_{en, dis}able_family.
12411          */
12412         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12413                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12414         else
12415                 child_event->state = PERF_EVENT_STATE_OFF;
12416
12417         if (parent_event->attr.freq) {
12418                 u64 sample_period = parent_event->hw.sample_period;
12419                 struct hw_perf_event *hwc = &child_event->hw;
12420
12421                 hwc->sample_period = sample_period;
12422                 hwc->last_period   = sample_period;
12423
12424                 local64_set(&hwc->period_left, sample_period);
12425         }
12426
12427         child_event->ctx = child_ctx;
12428         child_event->overflow_handler = parent_event->overflow_handler;
12429         child_event->overflow_handler_context
12430                 = parent_event->overflow_handler_context;
12431
12432         /*
12433          * Precalculate sample_data sizes
12434          */
12435         perf_event__header_size(child_event);
12436         perf_event__id_header_size(child_event);
12437
12438         /*
12439          * Link it up in the child's context:
12440          */
12441         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12442         add_event_to_ctx(child_event, child_ctx);
12443         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12444
12445         /*
12446          * Link this into the parent event's child list
12447          */
12448         list_add_tail(&child_event->child_list, &parent_event->child_list);
12449         mutex_unlock(&parent_event->child_mutex);
12450
12451         return child_event;
12452 }
12453
12454 /*
12455  * Inherits an event group.
12456  *
12457  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12458  * This matches with perf_event_release_kernel() removing all child events.
12459  *
12460  * Returns:
12461  *  - 0 on success
12462  *  - <0 on error
12463  */
12464 static int inherit_group(struct perf_event *parent_event,
12465               struct task_struct *parent,
12466               struct perf_event_context *parent_ctx,
12467               struct task_struct *child,
12468               struct perf_event_context *child_ctx)
12469 {
12470         struct perf_event *leader;
12471         struct perf_event *sub;
12472         struct perf_event *child_ctr;
12473
12474         leader = inherit_event(parent_event, parent, parent_ctx,
12475                                  child, NULL, child_ctx);
12476         if (IS_ERR(leader))
12477                 return PTR_ERR(leader);
12478         /*
12479          * @leader can be NULL here because of is_orphaned_event(). In this
12480          * case inherit_event() will create individual events, similar to what
12481          * perf_group_detach() would do anyway.
12482          */
12483         for_each_sibling_event(sub, parent_event) {
12484                 child_ctr = inherit_event(sub, parent, parent_ctx,
12485                                             child, leader, child_ctx);
12486                 if (IS_ERR(child_ctr))
12487                         return PTR_ERR(child_ctr);
12488
12489                 if (sub->aux_event == parent_event && child_ctr &&
12490                     !perf_get_aux_event(child_ctr, leader))
12491                         return -EINVAL;
12492         }
12493         return 0;
12494 }
12495
12496 /*
12497  * Creates the child task context and tries to inherit the event-group.
12498  *
12499  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12500  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12501  * consistent with perf_event_release_kernel() removing all child events.
12502  *
12503  * Returns:
12504  *  - 0 on success
12505  *  - <0 on error
12506  */
12507 static int
12508 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12509                    struct perf_event_context *parent_ctx,
12510                    struct task_struct *child, int ctxn,
12511                    int *inherited_all)
12512 {
12513         int ret;
12514         struct perf_event_context *child_ctx;
12515
12516         if (!event->attr.inherit) {
12517                 *inherited_all = 0;
12518                 return 0;
12519         }
12520
12521         child_ctx = child->perf_event_ctxp[ctxn];
12522         if (!child_ctx) {
12523                 /*
12524                  * This is executed from the parent task context, so
12525                  * inherit events that have been marked for cloning.
12526                  * First allocate and initialize a context for the
12527                  * child.
12528                  */
12529                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12530                 if (!child_ctx)
12531                         return -ENOMEM;
12532
12533                 child->perf_event_ctxp[ctxn] = child_ctx;
12534         }
12535
12536         ret = inherit_group(event, parent, parent_ctx,
12537                             child, child_ctx);
12538
12539         if (ret)
12540                 *inherited_all = 0;
12541
12542         return ret;
12543 }
12544
12545 /*
12546  * Initialize the perf_event context in task_struct
12547  */
12548 static int perf_event_init_context(struct task_struct *child, int ctxn)
12549 {
12550         struct perf_event_context *child_ctx, *parent_ctx;
12551         struct perf_event_context *cloned_ctx;
12552         struct perf_event *event;
12553         struct task_struct *parent = current;
12554         int inherited_all = 1;
12555         unsigned long flags;
12556         int ret = 0;
12557
12558         if (likely(!parent->perf_event_ctxp[ctxn]))
12559                 return 0;
12560
12561         /*
12562          * If the parent's context is a clone, pin it so it won't get
12563          * swapped under us.
12564          */
12565         parent_ctx = perf_pin_task_context(parent, ctxn);
12566         if (!parent_ctx)
12567                 return 0;
12568
12569         /*
12570          * No need to check if parent_ctx != NULL here; since we saw
12571          * it non-NULL earlier, the only reason for it to become NULL
12572          * is if we exit, and since we're currently in the middle of
12573          * a fork we can't be exiting at the same time.
12574          */
12575
12576         /*
12577          * Lock the parent list. No need to lock the child - not PID
12578          * hashed yet and not running, so nobody can access it.
12579          */
12580         mutex_lock(&parent_ctx->mutex);
12581
12582         /*
12583          * We dont have to disable NMIs - we are only looking at
12584          * the list, not manipulating it:
12585          */
12586         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12587                 ret = inherit_task_group(event, parent, parent_ctx,
12588                                          child, ctxn, &inherited_all);
12589                 if (ret)
12590                         goto out_unlock;
12591         }
12592
12593         /*
12594          * We can't hold ctx->lock when iterating the ->flexible_group list due
12595          * to allocations, but we need to prevent rotation because
12596          * rotate_ctx() will change the list from interrupt context.
12597          */
12598         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12599         parent_ctx->rotate_disable = 1;
12600         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12601
12602         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12603                 ret = inherit_task_group(event, parent, parent_ctx,
12604                                          child, ctxn, &inherited_all);
12605                 if (ret)
12606                         goto out_unlock;
12607         }
12608
12609         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12610         parent_ctx->rotate_disable = 0;
12611
12612         child_ctx = child->perf_event_ctxp[ctxn];
12613
12614         if (child_ctx && inherited_all) {
12615                 /*
12616                  * Mark the child context as a clone of the parent
12617                  * context, or of whatever the parent is a clone of.
12618                  *
12619                  * Note that if the parent is a clone, the holding of
12620                  * parent_ctx->lock avoids it from being uncloned.
12621                  */
12622                 cloned_ctx = parent_ctx->parent_ctx;
12623                 if (cloned_ctx) {
12624                         child_ctx->parent_ctx = cloned_ctx;
12625                         child_ctx->parent_gen = parent_ctx->parent_gen;
12626                 } else {
12627                         child_ctx->parent_ctx = parent_ctx;
12628                         child_ctx->parent_gen = parent_ctx->generation;
12629                 }
12630                 get_ctx(child_ctx->parent_ctx);
12631         }
12632
12633         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12634 out_unlock:
12635         mutex_unlock(&parent_ctx->mutex);
12636
12637         perf_unpin_context(parent_ctx);
12638         put_ctx(parent_ctx);
12639
12640         return ret;
12641 }
12642
12643 /*
12644  * Initialize the perf_event context in task_struct
12645  */
12646 int perf_event_init_task(struct task_struct *child)
12647 {
12648         int ctxn, ret;
12649
12650         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12651         mutex_init(&child->perf_event_mutex);
12652         INIT_LIST_HEAD(&child->perf_event_list);
12653
12654         for_each_task_context_nr(ctxn) {
12655                 ret = perf_event_init_context(child, ctxn);
12656                 if (ret) {
12657                         perf_event_free_task(child);
12658                         return ret;
12659                 }
12660         }
12661
12662         return 0;
12663 }
12664
12665 static void __init perf_event_init_all_cpus(void)
12666 {
12667         struct swevent_htable *swhash;
12668         int cpu;
12669
12670         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12671
12672         for_each_possible_cpu(cpu) {
12673                 swhash = &per_cpu(swevent_htable, cpu);
12674                 mutex_init(&swhash->hlist_mutex);
12675                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12676
12677                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12678                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12679
12680 #ifdef CONFIG_CGROUP_PERF
12681                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12682 #endif
12683                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12684         }
12685 }
12686
12687 static void perf_swevent_init_cpu(unsigned int cpu)
12688 {
12689         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12690
12691         mutex_lock(&swhash->hlist_mutex);
12692         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12693                 struct swevent_hlist *hlist;
12694
12695                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12696                 WARN_ON(!hlist);
12697                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12698         }
12699         mutex_unlock(&swhash->hlist_mutex);
12700 }
12701
12702 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12703 static void __perf_event_exit_context(void *__info)
12704 {
12705         struct perf_event_context *ctx = __info;
12706         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12707         struct perf_event *event;
12708
12709         raw_spin_lock(&ctx->lock);
12710         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12711         list_for_each_entry(event, &ctx->event_list, event_entry)
12712                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12713         raw_spin_unlock(&ctx->lock);
12714 }
12715
12716 static void perf_event_exit_cpu_context(int cpu)
12717 {
12718         struct perf_cpu_context *cpuctx;
12719         struct perf_event_context *ctx;
12720         struct pmu *pmu;
12721
12722         mutex_lock(&pmus_lock);
12723         list_for_each_entry(pmu, &pmus, entry) {
12724                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12725                 ctx = &cpuctx->ctx;
12726
12727                 mutex_lock(&ctx->mutex);
12728                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12729                 cpuctx->online = 0;
12730                 mutex_unlock(&ctx->mutex);
12731         }
12732         cpumask_clear_cpu(cpu, perf_online_mask);
12733         mutex_unlock(&pmus_lock);
12734 }
12735 #else
12736
12737 static void perf_event_exit_cpu_context(int cpu) { }
12738
12739 #endif
12740
12741 int perf_event_init_cpu(unsigned int cpu)
12742 {
12743         struct perf_cpu_context *cpuctx;
12744         struct perf_event_context *ctx;
12745         struct pmu *pmu;
12746
12747         perf_swevent_init_cpu(cpu);
12748
12749         mutex_lock(&pmus_lock);
12750         cpumask_set_cpu(cpu, perf_online_mask);
12751         list_for_each_entry(pmu, &pmus, entry) {
12752                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12753                 ctx = &cpuctx->ctx;
12754
12755                 mutex_lock(&ctx->mutex);
12756                 cpuctx->online = 1;
12757                 mutex_unlock(&ctx->mutex);
12758         }
12759         mutex_unlock(&pmus_lock);
12760
12761         return 0;
12762 }
12763
12764 int perf_event_exit_cpu(unsigned int cpu)
12765 {
12766         perf_event_exit_cpu_context(cpu);
12767         return 0;
12768 }
12769
12770 static int
12771 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12772 {
12773         int cpu;
12774
12775         for_each_online_cpu(cpu)
12776                 perf_event_exit_cpu(cpu);
12777
12778         return NOTIFY_OK;
12779 }
12780
12781 /*
12782  * Run the perf reboot notifier at the very last possible moment so that
12783  * the generic watchdog code runs as long as possible.
12784  */
12785 static struct notifier_block perf_reboot_notifier = {
12786         .notifier_call = perf_reboot,
12787         .priority = INT_MIN,
12788 };
12789
12790 void __init perf_event_init(void)
12791 {
12792         int ret;
12793
12794         idr_init(&pmu_idr);
12795
12796         perf_event_init_all_cpus();
12797         init_srcu_struct(&pmus_srcu);
12798         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12799         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12800         perf_pmu_register(&perf_task_clock, NULL, -1);
12801         perf_tp_register();
12802         perf_event_init_cpu(smp_processor_id());
12803         register_reboot_notifier(&perf_reboot_notifier);
12804
12805         ret = init_hw_breakpoint();
12806         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12807
12808         /*
12809          * Build time assertion that we keep the data_head at the intended
12810          * location.  IOW, validation we got the __reserved[] size right.
12811          */
12812         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12813                      != 1024);
12814 }
12815
12816 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12817                               char *page)
12818 {
12819         struct perf_pmu_events_attr *pmu_attr =
12820                 container_of(attr, struct perf_pmu_events_attr, attr);
12821
12822         if (pmu_attr->event_str)
12823                 return sprintf(page, "%s\n", pmu_attr->event_str);
12824
12825         return 0;
12826 }
12827 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12828
12829 static int __init perf_event_sysfs_init(void)
12830 {
12831         struct pmu *pmu;
12832         int ret;
12833
12834         mutex_lock(&pmus_lock);
12835
12836         ret = bus_register(&pmu_bus);
12837         if (ret)
12838                 goto unlock;
12839
12840         list_for_each_entry(pmu, &pmus, entry) {
12841                 if (!pmu->name || pmu->type < 0)
12842                         continue;
12843
12844                 ret = pmu_dev_alloc(pmu);
12845                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12846         }
12847         pmu_bus_running = 1;
12848         ret = 0;
12849
12850 unlock:
12851         mutex_unlock(&pmus_lock);
12852
12853         return ret;
12854 }
12855 device_initcall(perf_event_sysfs_init);
12856
12857 #ifdef CONFIG_CGROUP_PERF
12858 static struct cgroup_subsys_state *
12859 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12860 {
12861         struct perf_cgroup *jc;
12862
12863         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12864         if (!jc)
12865                 return ERR_PTR(-ENOMEM);
12866
12867         jc->info = alloc_percpu(struct perf_cgroup_info);
12868         if (!jc->info) {
12869                 kfree(jc);
12870                 return ERR_PTR(-ENOMEM);
12871         }
12872
12873         return &jc->css;
12874 }
12875
12876 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12877 {
12878         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12879
12880         free_percpu(jc->info);
12881         kfree(jc);
12882 }
12883
12884 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
12885 {
12886         perf_event_cgroup(css->cgroup);
12887         return 0;
12888 }
12889
12890 static int __perf_cgroup_move(void *info)
12891 {
12892         struct task_struct *task = info;
12893         rcu_read_lock();
12894         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12895         rcu_read_unlock();
12896         return 0;
12897 }
12898
12899 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12900 {
12901         struct task_struct *task;
12902         struct cgroup_subsys_state *css;
12903
12904         cgroup_taskset_for_each(task, css, tset)
12905                 task_function_call(task, __perf_cgroup_move, task);
12906 }
12907
12908 struct cgroup_subsys perf_event_cgrp_subsys = {
12909         .css_alloc      = perf_cgroup_css_alloc,
12910         .css_free       = perf_cgroup_css_free,
12911         .css_online     = perf_cgroup_css_online,
12912         .attach         = perf_cgroup_attach,
12913         /*
12914          * Implicitly enable on dfl hierarchy so that perf events can
12915          * always be filtered by cgroup2 path as long as perf_event
12916          * controller is not mounted on a legacy hierarchy.
12917          */
12918         .implicit_on_dfl = true,
12919         .threaded       = true,
12920 };
12921 #endif /* CONFIG_CGROUP_PERF */