perf: Fix the nr_addr_filters fix
[platform/kernel/linux-starfive.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66         struct task_struct      *p;
67         remote_function_f       func;
68         void                    *info;
69         int                     ret;
70 };
71
72 static void remote_function(void *data)
73 {
74         struct remote_function_call *tfc = data;
75         struct task_struct *p = tfc->p;
76
77         if (p) {
78                 /* -EAGAIN */
79                 if (task_cpu(p) != smp_processor_id())
80                         return;
81
82                 /*
83                  * Now that we're on right CPU with IRQs disabled, we can test
84                  * if we hit the right task without races.
85                  */
86
87                 tfc->ret = -ESRCH; /* No such (running) process */
88                 if (p != current)
89                         return;
90         }
91
92         tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:          the task to evaluate
98  * @func:       the function to be called
99  * @info:       the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111         struct remote_function_call data = {
112                 .p      = p,
113                 .func   = func,
114                 .info   = info,
115                 .ret    = -EAGAIN,
116         };
117         int ret;
118
119         for (;;) {
120                 ret = smp_call_function_single(task_cpu(p), remote_function,
121                                                &data, 1);
122                 if (!ret)
123                         ret = data.ret;
124
125                 if (ret != -EAGAIN)
126                         break;
127
128                 cond_resched();
129         }
130
131         return ret;
132 }
133
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:        target cpu to queue this function
137  * @func:       the function to be called
138  * @info:       the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146         struct remote_function_call data = {
147                 .p      = NULL,
148                 .func   = func,
149                 .info   = info,
150                 .ret    = -ENXIO, /* No such CPU */
151         };
152
153         smp_call_function_single(cpu, remote_function, &data, 1);
154
155         return data.ret;
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185         lockdep_assert_irqs_disabled();
186         return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209                         struct perf_event_context *, void *);
210
211 struct event_function_struct {
212         struct perf_event *event;
213         event_f func;
214         void *data;
215 };
216
217 static int event_function(void *info)
218 {
219         struct event_function_struct *efs = info;
220         struct perf_event *event = efs->event;
221         struct perf_event_context *ctx = event->ctx;
222         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223         struct perf_event_context *task_ctx = cpuctx->task_ctx;
224         int ret = 0;
225
226         lockdep_assert_irqs_disabled();
227
228         perf_ctx_lock(cpuctx, task_ctx);
229         /*
230          * Since we do the IPI call without holding ctx->lock things can have
231          * changed, double check we hit the task we set out to hit.
232          */
233         if (ctx->task) {
234                 if (ctx->task != current) {
235                         ret = -ESRCH;
236                         goto unlock;
237                 }
238
239                 /*
240                  * We only use event_function_call() on established contexts,
241                  * and event_function() is only ever called when active (or
242                  * rather, we'll have bailed in task_function_call() or the
243                  * above ctx->task != current test), therefore we must have
244                  * ctx->is_active here.
245                  */
246                 WARN_ON_ONCE(!ctx->is_active);
247                 /*
248                  * And since we have ctx->is_active, cpuctx->task_ctx must
249                  * match.
250                  */
251                 WARN_ON_ONCE(task_ctx != ctx);
252         } else {
253                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254         }
255
256         efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258         perf_ctx_unlock(cpuctx, task_ctx);
259
260         return ret;
261 }
262
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265         struct perf_event_context *ctx = event->ctx;
266         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267         struct event_function_struct efs = {
268                 .event = event,
269                 .func = func,
270                 .data = data,
271         };
272
273         if (!event->parent) {
274                 /*
275                  * If this is a !child event, we must hold ctx::mutex to
276                  * stabilize the event->ctx relation. See
277                  * perf_event_ctx_lock().
278                  */
279                 lockdep_assert_held(&ctx->mutex);
280         }
281
282         if (!task) {
283                 cpu_function_call(event->cpu, event_function, &efs);
284                 return;
285         }
286
287         if (task == TASK_TOMBSTONE)
288                 return;
289
290 again:
291         if (!task_function_call(task, event_function, &efs))
292                 return;
293
294         raw_spin_lock_irq(&ctx->lock);
295         /*
296          * Reload the task pointer, it might have been changed by
297          * a concurrent perf_event_context_sched_out().
298          */
299         task = ctx->task;
300         if (task == TASK_TOMBSTONE) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 return;
303         }
304         if (ctx->is_active) {
305                 raw_spin_unlock_irq(&ctx->lock);
306                 goto again;
307         }
308         func(event, NULL, ctx, data);
309         raw_spin_unlock_irq(&ctx->lock);
310 }
311
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318         struct perf_event_context *ctx = event->ctx;
319         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320         struct task_struct *task = READ_ONCE(ctx->task);
321         struct perf_event_context *task_ctx = NULL;
322
323         lockdep_assert_irqs_disabled();
324
325         if (task) {
326                 if (task == TASK_TOMBSTONE)
327                         return;
328
329                 task_ctx = ctx;
330         }
331
332         perf_ctx_lock(cpuctx, task_ctx);
333
334         task = ctx->task;
335         if (task == TASK_TOMBSTONE)
336                 goto unlock;
337
338         if (task) {
339                 /*
340                  * We must be either inactive or active and the right task,
341                  * otherwise we're screwed, since we cannot IPI to somewhere
342                  * else.
343                  */
344                 if (ctx->is_active) {
345                         if (WARN_ON_ONCE(task != current))
346                                 goto unlock;
347
348                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349                                 goto unlock;
350                 }
351         } else {
352                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353         }
354
355         func(event, cpuctx, ctx, data);
356 unlock:
357         perf_ctx_unlock(cpuctx, task_ctx);
358 }
359
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361                        PERF_FLAG_FD_OUTPUT  |\
362                        PERF_FLAG_PID_CGROUP |\
363                        PERF_FLAG_FD_CLOEXEC)
364
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369         (PERF_SAMPLE_BRANCH_KERNEL |\
370          PERF_SAMPLE_BRANCH_HV)
371
372 enum event_type_t {
373         EVENT_FLEXIBLE = 0x1,
374         EVENT_PINNED = 0x2,
375         EVENT_TIME = 0x4,
376         /* see ctx_resched() for details */
377         EVENT_CPU = 0x8,
378         EVENT_CGROUP = 0x10,
379         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381
382 /*
383  * perf_sched_events : >0 events exist
384  */
385
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE         100000
428 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
430
431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
435
436 static int perf_sample_allowed_ns __read_mostly =
437         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438
439 static void update_perf_cpu_limits(void)
440 {
441         u64 tmp = perf_sample_period_ns;
442
443         tmp *= sysctl_perf_cpu_time_max_percent;
444         tmp = div_u64(tmp, 100);
445         if (!tmp)
446                 tmp = 1;
447
448         WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452
453 int perf_proc_update_handler(struct ctl_table *table, int write,
454                 void *buffer, size_t *lenp, loff_t *ppos)
455 {
456         int ret;
457         int perf_cpu = sysctl_perf_cpu_time_max_percent;
458         /*
459          * If throttling is disabled don't allow the write:
460          */
461         if (write && (perf_cpu == 100 || perf_cpu == 0))
462                 return -EINVAL;
463
464         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465         if (ret || !write)
466                 return ret;
467
468         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470         update_perf_cpu_limits();
471
472         return 0;
473 }
474
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478                 void *buffer, size_t *lenp, loff_t *ppos)
479 {
480         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481
482         if (ret || !write)
483                 return ret;
484
485         if (sysctl_perf_cpu_time_max_percent == 100 ||
486             sysctl_perf_cpu_time_max_percent == 0) {
487                 printk(KERN_WARNING
488                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489                 WRITE_ONCE(perf_sample_allowed_ns, 0);
490         } else {
491                 update_perf_cpu_limits();
492         }
493
494         return 0;
495 }
496
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505
506 static u64 __report_avg;
507 static u64 __report_allowed;
508
509 static void perf_duration_warn(struct irq_work *w)
510 {
511         printk_ratelimited(KERN_INFO
512                 "perf: interrupt took too long (%lld > %lld), lowering "
513                 "kernel.perf_event_max_sample_rate to %d\n",
514                 __report_avg, __report_allowed,
515                 sysctl_perf_event_sample_rate);
516 }
517
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523         u64 running_len;
524         u64 avg_len;
525         u32 max;
526
527         if (max_len == 0)
528                 return;
529
530         /* Decay the counter by 1 average sample. */
531         running_len = __this_cpu_read(running_sample_length);
532         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533         running_len += sample_len_ns;
534         __this_cpu_write(running_sample_length, running_len);
535
536         /*
537          * Note: this will be biased artifically low until we have
538          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539          * from having to maintain a count.
540          */
541         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542         if (avg_len <= max_len)
543                 return;
544
545         __report_avg = avg_len;
546         __report_allowed = max_len;
547
548         /*
549          * Compute a throttle threshold 25% below the current duration.
550          */
551         avg_len += avg_len / 4;
552         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553         if (avg_len < max)
554                 max /= (u32)avg_len;
555         else
556                 max = 1;
557
558         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559         WRITE_ONCE(max_samples_per_tick, max);
560
561         sysctl_perf_event_sample_rate = max * HZ;
562         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563
564         if (!irq_work_queue(&perf_duration_work)) {
565                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566                              "kernel.perf_event_max_sample_rate to %d\n",
567                              __report_avg, __report_allowed,
568                              sysctl_perf_event_sample_rate);
569         }
570 }
571
572 static atomic64_t perf_event_id;
573
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576
577 void __weak perf_event_print_debug(void)        { }
578
579 static inline u64 perf_clock(void)
580 {
581         return local_clock();
582 }
583
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586         return event->clock();
587 }
588
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614         struct perf_event *leader = event->group_leader;
615
616         if (leader->state <= PERF_EVENT_STATE_OFF)
617                 return leader->state;
618
619         return event->state;
620 }
621
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625         enum perf_event_state state = __perf_effective_state(event);
626         u64 delta = now - event->tstamp;
627
628         *enabled = event->total_time_enabled;
629         if (state >= PERF_EVENT_STATE_INACTIVE)
630                 *enabled += delta;
631
632         *running = event->total_time_running;
633         if (state >= PERF_EVENT_STATE_ACTIVE)
634                 *running += delta;
635 }
636
637 static void perf_event_update_time(struct perf_event *event)
638 {
639         u64 now = perf_event_time(event);
640
641         __perf_update_times(event, now, &event->total_time_enabled,
642                                         &event->total_time_running);
643         event->tstamp = now;
644 }
645
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648         struct perf_event *sibling;
649
650         for_each_sibling_event(sibling, leader)
651                 perf_event_update_time(sibling);
652 }
653
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657         if (event->state == state)
658                 return;
659
660         perf_event_update_time(event);
661         /*
662          * If a group leader gets enabled/disabled all its siblings
663          * are affected too.
664          */
665         if ((event->state < 0) ^ (state < 0))
666                 perf_event_update_sibling_time(event);
667
668         WRITE_ONCE(event->state, state);
669 }
670
671 /*
672  * UP store-release, load-acquire
673  */
674
675 #define __store_release(ptr, val)                                       \
676 do {                                                                    \
677         barrier();                                                      \
678         WRITE_ONCE(*(ptr), (val));                                      \
679 } while (0)
680
681 #define __load_acquire(ptr)                                             \
682 ({                                                                      \
683         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
684         barrier();                                                      \
685         ___p;                                                           \
686 })
687
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690         struct perf_event_pmu_context *pmu_ctx;
691
692         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693                 if (cgroup && !pmu_ctx->nr_cgroups)
694                         continue;
695                 perf_pmu_disable(pmu_ctx->pmu);
696         }
697 }
698
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701         struct perf_event_pmu_context *pmu_ctx;
702
703         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704                 if (cgroup && !pmu_ctx->nr_cgroups)
705                         continue;
706                 perf_pmu_enable(pmu_ctx->pmu);
707         }
708 }
709
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712
713 #ifdef CONFIG_CGROUP_PERF
714
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719
720         /* @event doesn't care about cgroup */
721         if (!event->cgrp)
722                 return true;
723
724         /* wants specific cgroup scope but @cpuctx isn't associated with any */
725         if (!cpuctx->cgrp)
726                 return false;
727
728         /*
729          * Cgroup scoping is recursive.  An event enabled for a cgroup is
730          * also enabled for all its descendant cgroups.  If @cpuctx's
731          * cgroup is a descendant of @event's (the test covers identity
732          * case), it's a match.
733          */
734         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735                                     event->cgrp->css.cgroup);
736 }
737
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740         css_put(&event->cgrp->css);
741         event->cgrp = NULL;
742 }
743
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746         return event->cgrp != NULL;
747 }
748
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751         struct perf_cgroup_info *t;
752
753         t = per_cpu_ptr(event->cgrp->info, event->cpu);
754         return t->time;
755 }
756
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759         struct perf_cgroup_info *t;
760
761         t = per_cpu_ptr(event->cgrp->info, event->cpu);
762         if (!__load_acquire(&t->active))
763                 return t->time;
764         now += READ_ONCE(t->timeoffset);
765         return now;
766 }
767
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770         if (adv)
771                 info->time += now - info->timestamp;
772         info->timestamp = now;
773         /*
774          * see update_context_time()
775          */
776         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781         struct perf_cgroup *cgrp = cpuctx->cgrp;
782         struct cgroup_subsys_state *css;
783         struct perf_cgroup_info *info;
784
785         if (cgrp) {
786                 u64 now = perf_clock();
787
788                 for (css = &cgrp->css; css; css = css->parent) {
789                         cgrp = container_of(css, struct perf_cgroup, css);
790                         info = this_cpu_ptr(cgrp->info);
791
792                         __update_cgrp_time(info, now, true);
793                         if (final)
794                                 __store_release(&info->active, 0);
795                 }
796         }
797 }
798
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801         struct perf_cgroup_info *info;
802
803         /*
804          * ensure we access cgroup data only when needed and
805          * when we know the cgroup is pinned (css_get)
806          */
807         if (!is_cgroup_event(event))
808                 return;
809
810         info = this_cpu_ptr(event->cgrp->info);
811         /*
812          * Do not update time when cgroup is not active
813          */
814         if (info->active)
815                 __update_cgrp_time(info, perf_clock(), true);
816 }
817
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821         struct perf_event_context *ctx = &cpuctx->ctx;
822         struct perf_cgroup *cgrp = cpuctx->cgrp;
823         struct perf_cgroup_info *info;
824         struct cgroup_subsys_state *css;
825
826         /*
827          * ctx->lock held by caller
828          * ensure we do not access cgroup data
829          * unless we have the cgroup pinned (css_get)
830          */
831         if (!cgrp)
832                 return;
833
834         WARN_ON_ONCE(!ctx->nr_cgroups);
835
836         for (css = &cgrp->css; css; css = css->parent) {
837                 cgrp = container_of(css, struct perf_cgroup, css);
838                 info = this_cpu_ptr(cgrp->info);
839                 __update_cgrp_time(info, ctx->timestamp, false);
840                 __store_release(&info->active, 1);
841         }
842 }
843
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850         struct perf_cgroup *cgrp;
851
852         /*
853          * cpuctx->cgrp is set when the first cgroup event enabled,
854          * and is cleared when the last cgroup event disabled.
855          */
856         if (READ_ONCE(cpuctx->cgrp) == NULL)
857                 return;
858
859         WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860
861         cgrp = perf_cgroup_from_task(task, NULL);
862         if (READ_ONCE(cpuctx->cgrp) == cgrp)
863                 return;
864
865         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866         perf_ctx_disable(&cpuctx->ctx, true);
867
868         ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869         /*
870          * must not be done before ctxswout due
871          * to update_cgrp_time_from_cpuctx() in
872          * ctx_sched_out()
873          */
874         cpuctx->cgrp = cgrp;
875         /*
876          * set cgrp before ctxsw in to allow
877          * perf_cgroup_set_timestamp() in ctx_sched_in()
878          * to not have to pass task around
879          */
880         ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881
882         perf_ctx_enable(&cpuctx->ctx, true);
883         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887                                 struct cgroup_subsys_state *css)
888 {
889         struct perf_cpu_context *cpuctx;
890         struct perf_event **storage;
891         int cpu, heap_size, ret = 0;
892
893         /*
894          * Allow storage to have sufficent space for an iterator for each
895          * possibly nested cgroup plus an iterator for events with no cgroup.
896          */
897         for (heap_size = 1; css; css = css->parent)
898                 heap_size++;
899
900         for_each_possible_cpu(cpu) {
901                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902                 if (heap_size <= cpuctx->heap_size)
903                         continue;
904
905                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906                                        GFP_KERNEL, cpu_to_node(cpu));
907                 if (!storage) {
908                         ret = -ENOMEM;
909                         break;
910                 }
911
912                 raw_spin_lock_irq(&cpuctx->ctx.lock);
913                 if (cpuctx->heap_size < heap_size) {
914                         swap(cpuctx->heap, storage);
915                         if (storage == cpuctx->heap_default)
916                                 storage = NULL;
917                         cpuctx->heap_size = heap_size;
918                 }
919                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
920
921                 kfree(storage);
922         }
923
924         return ret;
925 }
926
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928                                       struct perf_event_attr *attr,
929                                       struct perf_event *group_leader)
930 {
931         struct perf_cgroup *cgrp;
932         struct cgroup_subsys_state *css;
933         struct fd f = fdget(fd);
934         int ret = 0;
935
936         if (!f.file)
937                 return -EBADF;
938
939         css = css_tryget_online_from_dir(f.file->f_path.dentry,
940                                          &perf_event_cgrp_subsys);
941         if (IS_ERR(css)) {
942                 ret = PTR_ERR(css);
943                 goto out;
944         }
945
946         ret = perf_cgroup_ensure_storage(event, css);
947         if (ret)
948                 goto out;
949
950         cgrp = container_of(css, struct perf_cgroup, css);
951         event->cgrp = cgrp;
952
953         /*
954          * all events in a group must monitor
955          * the same cgroup because a task belongs
956          * to only one perf cgroup at a time
957          */
958         if (group_leader && group_leader->cgrp != cgrp) {
959                 perf_detach_cgroup(event);
960                 ret = -EINVAL;
961         }
962 out:
963         fdput(f);
964         return ret;
965 }
966
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970         struct perf_cpu_context *cpuctx;
971
972         if (!is_cgroup_event(event))
973                 return;
974
975         event->pmu_ctx->nr_cgroups++;
976
977         /*
978          * Because cgroup events are always per-cpu events,
979          * @ctx == &cpuctx->ctx.
980          */
981         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982
983         if (ctx->nr_cgroups++)
984                 return;
985
986         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992         struct perf_cpu_context *cpuctx;
993
994         if (!is_cgroup_event(event))
995                 return;
996
997         event->pmu_ctx->nr_cgroups--;
998
999         /*
1000          * Because cgroup events are always per-cpu events,
1001          * @ctx == &cpuctx->ctx.
1002          */
1003         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005         if (--ctx->nr_cgroups)
1006                 return;
1007
1008         cpuctx->cgrp = NULL;
1009 }
1010
1011 #else /* !CONFIG_CGROUP_PERF */
1012
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016         return true;
1017 }
1018
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024         return 0;
1025 }
1026
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032                                                 bool final)
1033 {
1034 }
1035
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037                                       struct perf_event_attr *attr,
1038                                       struct perf_event *group_leader)
1039 {
1040         return -EINVAL;
1041 }
1042
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050         return 0;
1051 }
1052
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055         return 0;
1056 }
1057
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083         struct perf_cpu_pmu_context *cpc;
1084         bool rotations;
1085
1086         lockdep_assert_irqs_disabled();
1087
1088         cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089         rotations = perf_rotate_context(cpc);
1090
1091         raw_spin_lock(&cpc->hrtimer_lock);
1092         if (rotations)
1093                 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094         else
1095                 cpc->hrtimer_active = 0;
1096         raw_spin_unlock(&cpc->hrtimer_lock);
1097
1098         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103         struct hrtimer *timer = &cpc->hrtimer;
1104         struct pmu *pmu = cpc->epc.pmu;
1105         u64 interval;
1106
1107         /*
1108          * check default is sane, if not set then force to
1109          * default interval (1/tick)
1110          */
1111         interval = pmu->hrtimer_interval_ms;
1112         if (interval < 1)
1113                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114
1115         cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116
1117         raw_spin_lock_init(&cpc->hrtimer_lock);
1118         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119         timer->function = perf_mux_hrtimer_handler;
1120 }
1121
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124         struct hrtimer *timer = &cpc->hrtimer;
1125         unsigned long flags;
1126
1127         raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128         if (!cpc->hrtimer_active) {
1129                 cpc->hrtimer_active = 1;
1130                 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132         }
1133         raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134
1135         return 0;
1136 }
1137
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140         return perf_mux_hrtimer_restart(arg);
1141 }
1142
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146         if (!(*count)++)
1147                 pmu->pmu_disable(pmu);
1148 }
1149
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153         if (!--(*count))
1154                 pmu->pmu_enable(pmu);
1155 }
1156
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159         WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164         refcount_inc(&ctx->refcount);
1165 }
1166
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169         if (pmu->task_ctx_cache)
1170                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171
1172         return NULL;
1173 }
1174
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177         if (pmu->task_ctx_cache && task_ctx_data)
1178                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183         struct perf_event_context *ctx;
1184
1185         ctx = container_of(head, struct perf_event_context, rcu_head);
1186         kfree(ctx);
1187 }
1188
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191         if (refcount_dec_and_test(&ctx->refcount)) {
1192                 if (ctx->parent_ctx)
1193                         put_ctx(ctx->parent_ctx);
1194                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195                         put_task_struct(ctx->task);
1196                 call_rcu(&ctx->rcu_head, free_ctx);
1197         }
1198 }
1199
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()    [ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()                   [ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()         [ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event() [ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *      task_struct::perf_event_mutex
1255  *        perf_event_context::mutex
1256  *          perf_event::child_mutex;
1257  *            perf_event_context::lock
1258  *          perf_event::mmap_mutex
1259  *          mmap_lock
1260  *            perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *        cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269         struct perf_event_context *ctx;
1270
1271 again:
1272         rcu_read_lock();
1273         ctx = READ_ONCE(event->ctx);
1274         if (!refcount_inc_not_zero(&ctx->refcount)) {
1275                 rcu_read_unlock();
1276                 goto again;
1277         }
1278         rcu_read_unlock();
1279
1280         mutex_lock_nested(&ctx->mutex, nesting);
1281         if (event->ctx != ctx) {
1282                 mutex_unlock(&ctx->mutex);
1283                 put_ctx(ctx);
1284                 goto again;
1285         }
1286
1287         return ctx;
1288 }
1289
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293         return perf_event_ctx_lock_nested(event, 0);
1294 }
1295
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297                                   struct perf_event_context *ctx)
1298 {
1299         mutex_unlock(&ctx->mutex);
1300         put_ctx(ctx);
1301 }
1302
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312
1313         lockdep_assert_held(&ctx->lock);
1314
1315         if (parent_ctx)
1316                 ctx->parent_ctx = NULL;
1317         ctx->generation++;
1318
1319         return parent_ctx;
1320 }
1321
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323                                 enum pid_type type)
1324 {
1325         u32 nr;
1326         /*
1327          * only top level events have the pid namespace they were created in
1328          */
1329         if (event->parent)
1330                 event = event->parent;
1331
1332         nr = __task_pid_nr_ns(p, type, event->ns);
1333         /* avoid -1 if it is idle thread or runs in another ns */
1334         if (!nr && !pid_alive(p))
1335                 nr = -1;
1336         return nr;
1337 }
1338
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346         return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355         u64 id = event->id;
1356
1357         if (event->parent)
1358                 id = event->parent->id;
1359
1360         return id;
1361 }
1362
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372         struct perf_event_context *ctx;
1373
1374 retry:
1375         /*
1376          * One of the few rules of preemptible RCU is that one cannot do
1377          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378          * part of the read side critical section was irqs-enabled -- see
1379          * rcu_read_unlock_special().
1380          *
1381          * Since ctx->lock nests under rq->lock we must ensure the entire read
1382          * side critical section has interrupts disabled.
1383          */
1384         local_irq_save(*flags);
1385         rcu_read_lock();
1386         ctx = rcu_dereference(task->perf_event_ctxp);
1387         if (ctx) {
1388                 /*
1389                  * If this context is a clone of another, it might
1390                  * get swapped for another underneath us by
1391                  * perf_event_task_sched_out, though the
1392                  * rcu_read_lock() protects us from any context
1393                  * getting freed.  Lock the context and check if it
1394                  * got swapped before we could get the lock, and retry
1395                  * if so.  If we locked the right context, then it
1396                  * can't get swapped on us any more.
1397                  */
1398                 raw_spin_lock(&ctx->lock);
1399                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400                         raw_spin_unlock(&ctx->lock);
1401                         rcu_read_unlock();
1402                         local_irq_restore(*flags);
1403                         goto retry;
1404                 }
1405
1406                 if (ctx->task == TASK_TOMBSTONE ||
1407                     !refcount_inc_not_zero(&ctx->refcount)) {
1408                         raw_spin_unlock(&ctx->lock);
1409                         ctx = NULL;
1410                 } else {
1411                         WARN_ON_ONCE(ctx->task != task);
1412                 }
1413         }
1414         rcu_read_unlock();
1415         if (!ctx)
1416                 local_irq_restore(*flags);
1417         return ctx;
1418 }
1419
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428         struct perf_event_context *ctx;
1429         unsigned long flags;
1430
1431         ctx = perf_lock_task_context(task, &flags);
1432         if (ctx) {
1433                 ++ctx->pin_count;
1434                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435         }
1436         return ctx;
1437 }
1438
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441         unsigned long flags;
1442
1443         raw_spin_lock_irqsave(&ctx->lock, flags);
1444         --ctx->pin_count;
1445         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453         u64 now = perf_clock();
1454
1455         lockdep_assert_held(&ctx->lock);
1456
1457         if (adv)
1458                 ctx->time += now - ctx->timestamp;
1459         ctx->timestamp = now;
1460
1461         /*
1462          * The above: time' = time + (now - timestamp), can be re-arranged
1463          * into: time` = now + (time - timestamp), which gives a single value
1464          * offset to compute future time without locks on.
1465          *
1466          * See perf_event_time_now(), which can be used from NMI context where
1467          * it's (obviously) not possible to acquire ctx->lock in order to read
1468          * both the above values in a consistent manner.
1469          */
1470         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475         __update_context_time(ctx, true);
1476 }
1477
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480         struct perf_event_context *ctx = event->ctx;
1481
1482         if (unlikely(!ctx))
1483                 return 0;
1484
1485         if (is_cgroup_event(event))
1486                 return perf_cgroup_event_time(event);
1487
1488         return ctx->time;
1489 }
1490
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493         struct perf_event_context *ctx = event->ctx;
1494
1495         if (unlikely(!ctx))
1496                 return 0;
1497
1498         if (is_cgroup_event(event))
1499                 return perf_cgroup_event_time_now(event, now);
1500
1501         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502                 return ctx->time;
1503
1504         now += READ_ONCE(ctx->timeoffset);
1505         return now;
1506 }
1507
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510         struct perf_event_context *ctx = event->ctx;
1511         enum event_type_t event_type;
1512
1513         lockdep_assert_held(&ctx->lock);
1514
1515         /*
1516          * It's 'group type', really, because if our group leader is
1517          * pinned, so are we.
1518          */
1519         if (event->group_leader != event)
1520                 event = event->group_leader;
1521
1522         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523         if (!ctx->task)
1524                 event_type |= EVENT_CPU;
1525
1526         return event_type;
1527 }
1528
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534         RB_CLEAR_NODE(&event->group_node);
1535         event->group_index = 0;
1536 }
1537
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545         if (event->attr.pinned)
1546                 return &ctx->pinned_groups;
1547         else
1548                 return &ctx->flexible_groups;
1549 }
1550
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556         groups->tree = RB_ROOT;
1557         groups->index = 0;
1558 }
1559
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562         struct cgroup *cgroup = NULL;
1563
1564 #ifdef CONFIG_CGROUP_PERF
1565         if (event->cgrp)
1566                 cgroup = event->cgrp->css.cgroup;
1567 #endif
1568
1569         return cgroup;
1570 }
1571
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580                       const struct cgroup *left_cgroup, const u64 left_group_index,
1581                       const struct perf_event *right)
1582 {
1583         if (left_cpu < right->cpu)
1584                 return -1;
1585         if (left_cpu > right->cpu)
1586                 return 1;
1587
1588         if (left_pmu) {
1589                 if (left_pmu < right->pmu_ctx->pmu)
1590                         return -1;
1591                 if (left_pmu > right->pmu_ctx->pmu)
1592                         return 1;
1593         }
1594
1595 #ifdef CONFIG_CGROUP_PERF
1596         {
1597                 const struct cgroup *right_cgroup = event_cgroup(right);
1598
1599                 if (left_cgroup != right_cgroup) {
1600                         if (!left_cgroup) {
1601                                 /*
1602                                  * Left has no cgroup but right does, no
1603                                  * cgroups come first.
1604                                  */
1605                                 return -1;
1606                         }
1607                         if (!right_cgroup) {
1608                                 /*
1609                                  * Right has no cgroup but left does, no
1610                                  * cgroups come first.
1611                                  */
1612                                 return 1;
1613                         }
1614                         /* Two dissimilar cgroups, order by id. */
1615                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616                                 return -1;
1617
1618                         return 1;
1619                 }
1620         }
1621 #endif
1622
1623         if (left_group_index < right->group_index)
1624                 return -1;
1625         if (left_group_index > right->group_index)
1626                 return 1;
1627
1628         return 0;
1629 }
1630
1631 #define __node_2_pe(node) \
1632         rb_entry((node), struct perf_event, group_node)
1633
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636         struct perf_event *e = __node_2_pe(a);
1637         return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638                                      e->group_index, __node_2_pe(b)) < 0;
1639 }
1640
1641 struct __group_key {
1642         int cpu;
1643         struct pmu *pmu;
1644         struct cgroup *cgroup;
1645 };
1646
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649         const struct __group_key *a = key;
1650         const struct perf_event *b = __node_2_pe(node);
1651
1652         /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653         return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659         const struct __group_key *a = key;
1660         const struct perf_event *b = __node_2_pe(node);
1661
1662         /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663         return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664                                      b->group_index, b);
1665 }
1666
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674                          struct perf_event *event)
1675 {
1676         event->group_index = ++groups->index;
1677
1678         rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687         struct perf_event_groups *groups;
1688
1689         groups = get_event_groups(event, ctx);
1690         perf_event_groups_insert(groups, event);
1691 }
1692
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698                          struct perf_event *event)
1699 {
1700         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701                      RB_EMPTY_ROOT(&groups->tree));
1702
1703         rb_erase(&event->group_node, &groups->tree);
1704         init_event_group(event);
1705 }
1706
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713         struct perf_event_groups *groups;
1714
1715         groups = get_event_groups(event, ctx);
1716         perf_event_groups_delete(groups, event);
1717 }
1718
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724                         struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726         struct __group_key key = {
1727                 .cpu = cpu,
1728                 .pmu = pmu,
1729                 .cgroup = cgrp,
1730         };
1731         struct rb_node *node;
1732
1733         node = rb_find_first(&key, &groups->tree, __group_cmp);
1734         if (node)
1735                 return __node_2_pe(node);
1736
1737         return NULL;
1738 }
1739
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743         struct __group_key key = {
1744                 .cpu = event->cpu,
1745                 .pmu = pmu,
1746                 .cgroup = event_cgroup(event),
1747         };
1748         struct rb_node *next;
1749
1750         next = rb_next_match(&key, &event->group_node, __group_cmp);
1751         if (next)
1752                 return __node_2_pe(next);
1753
1754         return NULL;
1755 }
1756
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)          \
1758         for (event = perf_event_groups_first(groups, cpu, pmu, NULL);   \
1759              event; event = perf_event_groups_next(event, pmu))
1760
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)                       \
1765         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1766                                 typeof(*event), group_node); event;     \
1767                 event = rb_entry_safe(rb_next(&event->group_node),      \
1768                                 typeof(*event), group_node))
1769
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777         lockdep_assert_held(&ctx->lock);
1778
1779         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780         event->attach_state |= PERF_ATTACH_CONTEXT;
1781
1782         event->tstamp = perf_event_time(event);
1783
1784         /*
1785          * If we're a stand alone event or group leader, we go to the context
1786          * list, group events are kept attached to the group so that
1787          * perf_group_detach can, at all times, locate all siblings.
1788          */
1789         if (event->group_leader == event) {
1790                 event->group_caps = event->event_caps;
1791                 add_event_to_groups(event, ctx);
1792         }
1793
1794         list_add_rcu(&event->event_entry, &ctx->event_list);
1795         ctx->nr_events++;
1796         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797                 ctx->nr_user++;
1798         if (event->attr.inherit_stat)
1799                 ctx->nr_stat++;
1800
1801         if (event->state > PERF_EVENT_STATE_OFF)
1802                 perf_cgroup_event_enable(event, ctx);
1803
1804         ctx->generation++;
1805         event->pmu_ctx->nr_events++;
1806 }
1807
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814                                               PERF_EVENT_STATE_INACTIVE;
1815 }
1816
1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819         int entry = sizeof(u64); /* value */
1820         int size = 0;
1821         int nr = 1;
1822
1823         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824                 size += sizeof(u64);
1825
1826         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827                 size += sizeof(u64);
1828
1829         if (read_format & PERF_FORMAT_ID)
1830                 entry += sizeof(u64);
1831
1832         if (read_format & PERF_FORMAT_LOST)
1833                 entry += sizeof(u64);
1834
1835         if (read_format & PERF_FORMAT_GROUP) {
1836                 nr += nr_siblings;
1837                 size += sizeof(u64);
1838         }
1839
1840         /*
1841          * Since perf_event_validate_size() limits this to 16k and inhibits
1842          * adding more siblings, this will never overflow.
1843          */
1844         return size + nr * entry;
1845 }
1846
1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849         struct perf_sample_data *data;
1850         u16 size = 0;
1851
1852         if (sample_type & PERF_SAMPLE_IP)
1853                 size += sizeof(data->ip);
1854
1855         if (sample_type & PERF_SAMPLE_ADDR)
1856                 size += sizeof(data->addr);
1857
1858         if (sample_type & PERF_SAMPLE_PERIOD)
1859                 size += sizeof(data->period);
1860
1861         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862                 size += sizeof(data->weight.full);
1863
1864         if (sample_type & PERF_SAMPLE_READ)
1865                 size += event->read_size;
1866
1867         if (sample_type & PERF_SAMPLE_DATA_SRC)
1868                 size += sizeof(data->data_src.val);
1869
1870         if (sample_type & PERF_SAMPLE_TRANSACTION)
1871                 size += sizeof(data->txn);
1872
1873         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874                 size += sizeof(data->phys_addr);
1875
1876         if (sample_type & PERF_SAMPLE_CGROUP)
1877                 size += sizeof(data->cgroup);
1878
1879         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880                 size += sizeof(data->data_page_size);
1881
1882         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883                 size += sizeof(data->code_page_size);
1884
1885         event->header_size = size;
1886 }
1887
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894         event->read_size =
1895                 __perf_event_read_size(event->attr.read_format,
1896                                        event->group_leader->nr_siblings);
1897         __perf_event_header_size(event, event->attr.sample_type);
1898 }
1899
1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902         struct perf_sample_data *data;
1903         u64 sample_type = event->attr.sample_type;
1904         u16 size = 0;
1905
1906         if (sample_type & PERF_SAMPLE_TID)
1907                 size += sizeof(data->tid_entry);
1908
1909         if (sample_type & PERF_SAMPLE_TIME)
1910                 size += sizeof(data->time);
1911
1912         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913                 size += sizeof(data->id);
1914
1915         if (sample_type & PERF_SAMPLE_ID)
1916                 size += sizeof(data->id);
1917
1918         if (sample_type & PERF_SAMPLE_STREAM_ID)
1919                 size += sizeof(data->stream_id);
1920
1921         if (sample_type & PERF_SAMPLE_CPU)
1922                 size += sizeof(data->cpu_entry);
1923
1924         event->id_header_size = size;
1925 }
1926
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940         struct perf_event *sibling, *group_leader = event->group_leader;
1941
1942         if (__perf_event_read_size(event->attr.read_format,
1943                                    group_leader->nr_siblings + 1) > 16*1024)
1944                 return false;
1945
1946         if (__perf_event_read_size(group_leader->attr.read_format,
1947                                    group_leader->nr_siblings + 1) > 16*1024)
1948                 return false;
1949
1950         /*
1951          * When creating a new group leader, group_leader->ctx is initialized
1952          * after the size has been validated, but we cannot safely use
1953          * for_each_sibling_event() until group_leader->ctx is set. A new group
1954          * leader cannot have any siblings yet, so we can safely skip checking
1955          * the non-existent siblings.
1956          */
1957         if (event == group_leader)
1958                 return true;
1959
1960         for_each_sibling_event(sibling, group_leader) {
1961                 if (__perf_event_read_size(sibling->attr.read_format,
1962                                            group_leader->nr_siblings + 1) > 16*1024)
1963                         return false;
1964         }
1965
1966         return true;
1967 }
1968
1969 static void perf_group_attach(struct perf_event *event)
1970 {
1971         struct perf_event *group_leader = event->group_leader, *pos;
1972
1973         lockdep_assert_held(&event->ctx->lock);
1974
1975         /*
1976          * We can have double attach due to group movement (move_group) in
1977          * perf_event_open().
1978          */
1979         if (event->attach_state & PERF_ATTACH_GROUP)
1980                 return;
1981
1982         event->attach_state |= PERF_ATTACH_GROUP;
1983
1984         if (group_leader == event)
1985                 return;
1986
1987         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988
1989         group_leader->group_caps &= event->event_caps;
1990
1991         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992         group_leader->nr_siblings++;
1993         group_leader->group_generation++;
1994
1995         perf_event__header_size(group_leader);
1996
1997         for_each_sibling_event(pos, group_leader)
1998                 perf_event__header_size(pos);
1999 }
2000
2001 /*
2002  * Remove an event from the lists for its context.
2003  * Must be called with ctx->mutex and ctx->lock held.
2004  */
2005 static void
2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2007 {
2008         WARN_ON_ONCE(event->ctx != ctx);
2009         lockdep_assert_held(&ctx->lock);
2010
2011         /*
2012          * We can have double detach due to exit/hot-unplug + close.
2013          */
2014         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2015                 return;
2016
2017         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018
2019         ctx->nr_events--;
2020         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021                 ctx->nr_user--;
2022         if (event->attr.inherit_stat)
2023                 ctx->nr_stat--;
2024
2025         list_del_rcu(&event->event_entry);
2026
2027         if (event->group_leader == event)
2028                 del_event_from_groups(event, ctx);
2029
2030         /*
2031          * If event was in error state, then keep it
2032          * that way, otherwise bogus counts will be
2033          * returned on read(). The only way to get out
2034          * of error state is by explicit re-enabling
2035          * of the event
2036          */
2037         if (event->state > PERF_EVENT_STATE_OFF) {
2038                 perf_cgroup_event_disable(event, ctx);
2039                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2040         }
2041
2042         ctx->generation++;
2043         event->pmu_ctx->nr_events--;
2044 }
2045
2046 static int
2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048 {
2049         if (!has_aux(aux_event))
2050                 return 0;
2051
2052         if (!event->pmu->aux_output_match)
2053                 return 0;
2054
2055         return event->pmu->aux_output_match(aux_event);
2056 }
2057
2058 static void put_event(struct perf_event *event);
2059 static void event_sched_out(struct perf_event *event,
2060                             struct perf_event_context *ctx);
2061
2062 static void perf_put_aux_event(struct perf_event *event)
2063 {
2064         struct perf_event_context *ctx = event->ctx;
2065         struct perf_event *iter;
2066
2067         /*
2068          * If event uses aux_event tear down the link
2069          */
2070         if (event->aux_event) {
2071                 iter = event->aux_event;
2072                 event->aux_event = NULL;
2073                 put_event(iter);
2074                 return;
2075         }
2076
2077         /*
2078          * If the event is an aux_event, tear down all links to
2079          * it from other events.
2080          */
2081         for_each_sibling_event(iter, event->group_leader) {
2082                 if (iter->aux_event != event)
2083                         continue;
2084
2085                 iter->aux_event = NULL;
2086                 put_event(event);
2087
2088                 /*
2089                  * If it's ACTIVE, schedule it out and put it into ERROR
2090                  * state so that we don't try to schedule it again. Note
2091                  * that perf_event_enable() will clear the ERROR status.
2092                  */
2093                 event_sched_out(iter, ctx);
2094                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095         }
2096 }
2097
2098 static bool perf_need_aux_event(struct perf_event *event)
2099 {
2100         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101 }
2102
2103 static int perf_get_aux_event(struct perf_event *event,
2104                               struct perf_event *group_leader)
2105 {
2106         /*
2107          * Our group leader must be an aux event if we want to be
2108          * an aux_output. This way, the aux event will precede its
2109          * aux_output events in the group, and therefore will always
2110          * schedule first.
2111          */
2112         if (!group_leader)
2113                 return 0;
2114
2115         /*
2116          * aux_output and aux_sample_size are mutually exclusive.
2117          */
2118         if (event->attr.aux_output && event->attr.aux_sample_size)
2119                 return 0;
2120
2121         if (event->attr.aux_output &&
2122             !perf_aux_output_match(event, group_leader))
2123                 return 0;
2124
2125         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2126                 return 0;
2127
2128         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129                 return 0;
2130
2131         /*
2132          * Link aux_outputs to their aux event; this is undone in
2133          * perf_group_detach() by perf_put_aux_event(). When the
2134          * group in torn down, the aux_output events loose their
2135          * link to the aux_event and can't schedule any more.
2136          */
2137         event->aux_event = group_leader;
2138
2139         return 1;
2140 }
2141
2142 static inline struct list_head *get_event_list(struct perf_event *event)
2143 {
2144         return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145                                     &event->pmu_ctx->flexible_active;
2146 }
2147
2148 /*
2149  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150  * cannot exist on their own, schedule them out and move them into the ERROR
2151  * state. Also see _perf_event_enable(), it will not be able to recover
2152  * this ERROR state.
2153  */
2154 static inline void perf_remove_sibling_event(struct perf_event *event)
2155 {
2156         event_sched_out(event, event->ctx);
2157         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158 }
2159
2160 static void perf_group_detach(struct perf_event *event)
2161 {
2162         struct perf_event *leader = event->group_leader;
2163         struct perf_event *sibling, *tmp;
2164         struct perf_event_context *ctx = event->ctx;
2165
2166         lockdep_assert_held(&ctx->lock);
2167
2168         /*
2169          * We can have double detach due to exit/hot-unplug + close.
2170          */
2171         if (!(event->attach_state & PERF_ATTACH_GROUP))
2172                 return;
2173
2174         event->attach_state &= ~PERF_ATTACH_GROUP;
2175
2176         perf_put_aux_event(event);
2177
2178         /*
2179          * If this is a sibling, remove it from its group.
2180          */
2181         if (leader != event) {
2182                 list_del_init(&event->sibling_list);
2183                 event->group_leader->nr_siblings--;
2184                 event->group_leader->group_generation++;
2185                 goto out;
2186         }
2187
2188         /*
2189          * If this was a group event with sibling events then
2190          * upgrade the siblings to singleton events by adding them
2191          * to whatever list we are on.
2192          */
2193         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194
2195                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196                         perf_remove_sibling_event(sibling);
2197
2198                 sibling->group_leader = sibling;
2199                 list_del_init(&sibling->sibling_list);
2200
2201                 /* Inherit group flags from the previous leader */
2202                 sibling->group_caps = event->group_caps;
2203
2204                 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2205                         add_event_to_groups(sibling, event->ctx);
2206
2207                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2209                 }
2210
2211                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2212         }
2213
2214 out:
2215         for_each_sibling_event(tmp, leader)
2216                 perf_event__header_size(tmp);
2217
2218         perf_event__header_size(leader);
2219 }
2220
2221 static void sync_child_event(struct perf_event *child_event);
2222
2223 static void perf_child_detach(struct perf_event *event)
2224 {
2225         struct perf_event *parent_event = event->parent;
2226
2227         if (!(event->attach_state & PERF_ATTACH_CHILD))
2228                 return;
2229
2230         event->attach_state &= ~PERF_ATTACH_CHILD;
2231
2232         if (WARN_ON_ONCE(!parent_event))
2233                 return;
2234
2235         lockdep_assert_held(&parent_event->child_mutex);
2236
2237         sync_child_event(event);
2238         list_del_init(&event->child_list);
2239 }
2240
2241 static bool is_orphaned_event(struct perf_event *event)
2242 {
2243         return event->state == PERF_EVENT_STATE_DEAD;
2244 }
2245
2246 static inline int
2247 event_filter_match(struct perf_event *event)
2248 {
2249         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2250                perf_cgroup_match(event);
2251 }
2252
2253 static void
2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2255 {
2256         struct perf_event_pmu_context *epc = event->pmu_ctx;
2257         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2258         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2259
2260         // XXX cpc serialization, probably per-cpu IRQ disabled
2261
2262         WARN_ON_ONCE(event->ctx != ctx);
2263         lockdep_assert_held(&ctx->lock);
2264
2265         if (event->state != PERF_EVENT_STATE_ACTIVE)
2266                 return;
2267
2268         /*
2269          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270          * we can schedule events _OUT_ individually through things like
2271          * __perf_remove_from_context().
2272          */
2273         list_del_init(&event->active_list);
2274
2275         perf_pmu_disable(event->pmu);
2276
2277         event->pmu->del(event, 0);
2278         event->oncpu = -1;
2279
2280         if (event->pending_disable) {
2281                 event->pending_disable = 0;
2282                 perf_cgroup_event_disable(event, ctx);
2283                 state = PERF_EVENT_STATE_OFF;
2284         }
2285
2286         if (event->pending_sigtrap) {
2287                 bool dec = true;
2288
2289                 event->pending_sigtrap = 0;
2290                 if (state != PERF_EVENT_STATE_OFF &&
2291                     !event->pending_work) {
2292                         event->pending_work = 1;
2293                         dec = false;
2294                         WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2295                         task_work_add(current, &event->pending_task, TWA_RESUME);
2296                 }
2297                 if (dec)
2298                         local_dec(&event->ctx->nr_pending);
2299         }
2300
2301         perf_event_set_state(event, state);
2302
2303         if (!is_software_event(event))
2304                 cpc->active_oncpu--;
2305         if (event->attr.freq && event->attr.sample_freq)
2306                 ctx->nr_freq--;
2307         if (event->attr.exclusive || !cpc->active_oncpu)
2308                 cpc->exclusive = 0;
2309
2310         perf_pmu_enable(event->pmu);
2311 }
2312
2313 static void
2314 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2315 {
2316         struct perf_event *event;
2317
2318         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2319                 return;
2320
2321         perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2322
2323         event_sched_out(group_event, ctx);
2324
2325         /*
2326          * Schedule out siblings (if any):
2327          */
2328         for_each_sibling_event(event, group_event)
2329                 event_sched_out(event, ctx);
2330 }
2331
2332 #define DETACH_GROUP    0x01UL
2333 #define DETACH_CHILD    0x02UL
2334 #define DETACH_DEAD     0x04UL
2335
2336 /*
2337  * Cross CPU call to remove a performance event
2338  *
2339  * We disable the event on the hardware level first. After that we
2340  * remove it from the context list.
2341  */
2342 static void
2343 __perf_remove_from_context(struct perf_event *event,
2344                            struct perf_cpu_context *cpuctx,
2345                            struct perf_event_context *ctx,
2346                            void *info)
2347 {
2348         struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2349         unsigned long flags = (unsigned long)info;
2350
2351         if (ctx->is_active & EVENT_TIME) {
2352                 update_context_time(ctx);
2353                 update_cgrp_time_from_cpuctx(cpuctx, false);
2354         }
2355
2356         /*
2357          * Ensure event_sched_out() switches to OFF, at the very least
2358          * this avoids raising perf_pending_task() at this time.
2359          */
2360         if (flags & DETACH_DEAD)
2361                 event->pending_disable = 1;
2362         event_sched_out(event, ctx);
2363         if (flags & DETACH_GROUP)
2364                 perf_group_detach(event);
2365         if (flags & DETACH_CHILD)
2366                 perf_child_detach(event);
2367         list_del_event(event, ctx);
2368         if (flags & DETACH_DEAD)
2369                 event->state = PERF_EVENT_STATE_DEAD;
2370
2371         if (!pmu_ctx->nr_events) {
2372                 pmu_ctx->rotate_necessary = 0;
2373
2374                 if (ctx->task && ctx->is_active) {
2375                         struct perf_cpu_pmu_context *cpc;
2376
2377                         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2378                         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2379                         cpc->task_epc = NULL;
2380                 }
2381         }
2382
2383         if (!ctx->nr_events && ctx->is_active) {
2384                 if (ctx == &cpuctx->ctx)
2385                         update_cgrp_time_from_cpuctx(cpuctx, true);
2386
2387                 ctx->is_active = 0;
2388                 if (ctx->task) {
2389                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2390                         cpuctx->task_ctx = NULL;
2391                 }
2392         }
2393 }
2394
2395 /*
2396  * Remove the event from a task's (or a CPU's) list of events.
2397  *
2398  * If event->ctx is a cloned context, callers must make sure that
2399  * every task struct that event->ctx->task could possibly point to
2400  * remains valid.  This is OK when called from perf_release since
2401  * that only calls us on the top-level context, which can't be a clone.
2402  * When called from perf_event_exit_task, it's OK because the
2403  * context has been detached from its task.
2404  */
2405 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2406 {
2407         struct perf_event_context *ctx = event->ctx;
2408
2409         lockdep_assert_held(&ctx->mutex);
2410
2411         /*
2412          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2413          * to work in the face of TASK_TOMBSTONE, unlike every other
2414          * event_function_call() user.
2415          */
2416         raw_spin_lock_irq(&ctx->lock);
2417         if (!ctx->is_active) {
2418                 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2419                                            ctx, (void *)flags);
2420                 raw_spin_unlock_irq(&ctx->lock);
2421                 return;
2422         }
2423         raw_spin_unlock_irq(&ctx->lock);
2424
2425         event_function_call(event, __perf_remove_from_context, (void *)flags);
2426 }
2427
2428 /*
2429  * Cross CPU call to disable a performance event
2430  */
2431 static void __perf_event_disable(struct perf_event *event,
2432                                  struct perf_cpu_context *cpuctx,
2433                                  struct perf_event_context *ctx,
2434                                  void *info)
2435 {
2436         if (event->state < PERF_EVENT_STATE_INACTIVE)
2437                 return;
2438
2439         if (ctx->is_active & EVENT_TIME) {
2440                 update_context_time(ctx);
2441                 update_cgrp_time_from_event(event);
2442         }
2443
2444         perf_pmu_disable(event->pmu_ctx->pmu);
2445
2446         if (event == event->group_leader)
2447                 group_sched_out(event, ctx);
2448         else
2449                 event_sched_out(event, ctx);
2450
2451         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2452         perf_cgroup_event_disable(event, ctx);
2453
2454         perf_pmu_enable(event->pmu_ctx->pmu);
2455 }
2456
2457 /*
2458  * Disable an event.
2459  *
2460  * If event->ctx is a cloned context, callers must make sure that
2461  * every task struct that event->ctx->task could possibly point to
2462  * remains valid.  This condition is satisfied when called through
2463  * perf_event_for_each_child or perf_event_for_each because they
2464  * hold the top-level event's child_mutex, so any descendant that
2465  * goes to exit will block in perf_event_exit_event().
2466  *
2467  * When called from perf_pending_irq it's OK because event->ctx
2468  * is the current context on this CPU and preemption is disabled,
2469  * hence we can't get into perf_event_task_sched_out for this context.
2470  */
2471 static void _perf_event_disable(struct perf_event *event)
2472 {
2473         struct perf_event_context *ctx = event->ctx;
2474
2475         raw_spin_lock_irq(&ctx->lock);
2476         if (event->state <= PERF_EVENT_STATE_OFF) {
2477                 raw_spin_unlock_irq(&ctx->lock);
2478                 return;
2479         }
2480         raw_spin_unlock_irq(&ctx->lock);
2481
2482         event_function_call(event, __perf_event_disable, NULL);
2483 }
2484
2485 void perf_event_disable_local(struct perf_event *event)
2486 {
2487         event_function_local(event, __perf_event_disable, NULL);
2488 }
2489
2490 /*
2491  * Strictly speaking kernel users cannot create groups and therefore this
2492  * interface does not need the perf_event_ctx_lock() magic.
2493  */
2494 void perf_event_disable(struct perf_event *event)
2495 {
2496         struct perf_event_context *ctx;
2497
2498         ctx = perf_event_ctx_lock(event);
2499         _perf_event_disable(event);
2500         perf_event_ctx_unlock(event, ctx);
2501 }
2502 EXPORT_SYMBOL_GPL(perf_event_disable);
2503
2504 void perf_event_disable_inatomic(struct perf_event *event)
2505 {
2506         event->pending_disable = 1;
2507         irq_work_queue(&event->pending_irq);
2508 }
2509
2510 #define MAX_INTERRUPTS (~0ULL)
2511
2512 static void perf_log_throttle(struct perf_event *event, int enable);
2513 static void perf_log_itrace_start(struct perf_event *event);
2514
2515 static int
2516 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2517 {
2518         struct perf_event_pmu_context *epc = event->pmu_ctx;
2519         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2520         int ret = 0;
2521
2522         WARN_ON_ONCE(event->ctx != ctx);
2523
2524         lockdep_assert_held(&ctx->lock);
2525
2526         if (event->state <= PERF_EVENT_STATE_OFF)
2527                 return 0;
2528
2529         WRITE_ONCE(event->oncpu, smp_processor_id());
2530         /*
2531          * Order event::oncpu write to happen before the ACTIVE state is
2532          * visible. This allows perf_event_{stop,read}() to observe the correct
2533          * ->oncpu if it sees ACTIVE.
2534          */
2535         smp_wmb();
2536         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2537
2538         /*
2539          * Unthrottle events, since we scheduled we might have missed several
2540          * ticks already, also for a heavily scheduling task there is little
2541          * guarantee it'll get a tick in a timely manner.
2542          */
2543         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2544                 perf_log_throttle(event, 1);
2545                 event->hw.interrupts = 0;
2546         }
2547
2548         perf_pmu_disable(event->pmu);
2549
2550         perf_log_itrace_start(event);
2551
2552         if (event->pmu->add(event, PERF_EF_START)) {
2553                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2554                 event->oncpu = -1;
2555                 ret = -EAGAIN;
2556                 goto out;
2557         }
2558
2559         if (!is_software_event(event))
2560                 cpc->active_oncpu++;
2561         if (event->attr.freq && event->attr.sample_freq)
2562                 ctx->nr_freq++;
2563
2564         if (event->attr.exclusive)
2565                 cpc->exclusive = 1;
2566
2567 out:
2568         perf_pmu_enable(event->pmu);
2569
2570         return ret;
2571 }
2572
2573 static int
2574 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2575 {
2576         struct perf_event *event, *partial_group = NULL;
2577         struct pmu *pmu = group_event->pmu_ctx->pmu;
2578
2579         if (group_event->state == PERF_EVENT_STATE_OFF)
2580                 return 0;
2581
2582         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2583
2584         if (event_sched_in(group_event, ctx))
2585                 goto error;
2586
2587         /*
2588          * Schedule in siblings as one group (if any):
2589          */
2590         for_each_sibling_event(event, group_event) {
2591                 if (event_sched_in(event, ctx)) {
2592                         partial_group = event;
2593                         goto group_error;
2594                 }
2595         }
2596
2597         if (!pmu->commit_txn(pmu))
2598                 return 0;
2599
2600 group_error:
2601         /*
2602          * Groups can be scheduled in as one unit only, so undo any
2603          * partial group before returning:
2604          * The events up to the failed event are scheduled out normally.
2605          */
2606         for_each_sibling_event(event, group_event) {
2607                 if (event == partial_group)
2608                         break;
2609
2610                 event_sched_out(event, ctx);
2611         }
2612         event_sched_out(group_event, ctx);
2613
2614 error:
2615         pmu->cancel_txn(pmu);
2616         return -EAGAIN;
2617 }
2618
2619 /*
2620  * Work out whether we can put this event group on the CPU now.
2621  */
2622 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2623 {
2624         struct perf_event_pmu_context *epc = event->pmu_ctx;
2625         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2626
2627         /*
2628          * Groups consisting entirely of software events can always go on.
2629          */
2630         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2631                 return 1;
2632         /*
2633          * If an exclusive group is already on, no other hardware
2634          * events can go on.
2635          */
2636         if (cpc->exclusive)
2637                 return 0;
2638         /*
2639          * If this group is exclusive and there are already
2640          * events on the CPU, it can't go on.
2641          */
2642         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2643                 return 0;
2644         /*
2645          * Otherwise, try to add it if all previous groups were able
2646          * to go on.
2647          */
2648         return can_add_hw;
2649 }
2650
2651 static void add_event_to_ctx(struct perf_event *event,
2652                                struct perf_event_context *ctx)
2653 {
2654         list_add_event(event, ctx);
2655         perf_group_attach(event);
2656 }
2657
2658 static void task_ctx_sched_out(struct perf_event_context *ctx,
2659                                 enum event_type_t event_type)
2660 {
2661         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2662
2663         if (!cpuctx->task_ctx)
2664                 return;
2665
2666         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2667                 return;
2668
2669         ctx_sched_out(ctx, event_type);
2670 }
2671
2672 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2673                                 struct perf_event_context *ctx)
2674 {
2675         ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2676         if (ctx)
2677                  ctx_sched_in(ctx, EVENT_PINNED);
2678         ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2679         if (ctx)
2680                  ctx_sched_in(ctx, EVENT_FLEXIBLE);
2681 }
2682
2683 /*
2684  * We want to maintain the following priority of scheduling:
2685  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2686  *  - task pinned (EVENT_PINNED)
2687  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2688  *  - task flexible (EVENT_FLEXIBLE).
2689  *
2690  * In order to avoid unscheduling and scheduling back in everything every
2691  * time an event is added, only do it for the groups of equal priority and
2692  * below.
2693  *
2694  * This can be called after a batch operation on task events, in which case
2695  * event_type is a bit mask of the types of events involved. For CPU events,
2696  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2697  */
2698 /*
2699  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2700  * event to the context or enabling existing event in the context. We can
2701  * probably optimize it by rescheduling only affected pmu_ctx.
2702  */
2703 static void ctx_resched(struct perf_cpu_context *cpuctx,
2704                         struct perf_event_context *task_ctx,
2705                         enum event_type_t event_type)
2706 {
2707         bool cpu_event = !!(event_type & EVENT_CPU);
2708
2709         /*
2710          * If pinned groups are involved, flexible groups also need to be
2711          * scheduled out.
2712          */
2713         if (event_type & EVENT_PINNED)
2714                 event_type |= EVENT_FLEXIBLE;
2715
2716         event_type &= EVENT_ALL;
2717
2718         perf_ctx_disable(&cpuctx->ctx, false);
2719         if (task_ctx) {
2720                 perf_ctx_disable(task_ctx, false);
2721                 task_ctx_sched_out(task_ctx, event_type);
2722         }
2723
2724         /*
2725          * Decide which cpu ctx groups to schedule out based on the types
2726          * of events that caused rescheduling:
2727          *  - EVENT_CPU: schedule out corresponding groups;
2728          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2729          *  - otherwise, do nothing more.
2730          */
2731         if (cpu_event)
2732                 ctx_sched_out(&cpuctx->ctx, event_type);
2733         else if (event_type & EVENT_PINNED)
2734                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2735
2736         perf_event_sched_in(cpuctx, task_ctx);
2737
2738         perf_ctx_enable(&cpuctx->ctx, false);
2739         if (task_ctx)
2740                 perf_ctx_enable(task_ctx, false);
2741 }
2742
2743 void perf_pmu_resched(struct pmu *pmu)
2744 {
2745         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2746         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2747
2748         perf_ctx_lock(cpuctx, task_ctx);
2749         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2750         perf_ctx_unlock(cpuctx, task_ctx);
2751 }
2752
2753 /*
2754  * Cross CPU call to install and enable a performance event
2755  *
2756  * Very similar to remote_function() + event_function() but cannot assume that
2757  * things like ctx->is_active and cpuctx->task_ctx are set.
2758  */
2759 static int  __perf_install_in_context(void *info)
2760 {
2761         struct perf_event *event = info;
2762         struct perf_event_context *ctx = event->ctx;
2763         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2764         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2765         bool reprogram = true;
2766         int ret = 0;
2767
2768         raw_spin_lock(&cpuctx->ctx.lock);
2769         if (ctx->task) {
2770                 raw_spin_lock(&ctx->lock);
2771                 task_ctx = ctx;
2772
2773                 reprogram = (ctx->task == current);
2774
2775                 /*
2776                  * If the task is running, it must be running on this CPU,
2777                  * otherwise we cannot reprogram things.
2778                  *
2779                  * If its not running, we don't care, ctx->lock will
2780                  * serialize against it becoming runnable.
2781                  */
2782                 if (task_curr(ctx->task) && !reprogram) {
2783                         ret = -ESRCH;
2784                         goto unlock;
2785                 }
2786
2787                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2788         } else if (task_ctx) {
2789                 raw_spin_lock(&task_ctx->lock);
2790         }
2791
2792 #ifdef CONFIG_CGROUP_PERF
2793         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2794                 /*
2795                  * If the current cgroup doesn't match the event's
2796                  * cgroup, we should not try to schedule it.
2797                  */
2798                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2799                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2800                                         event->cgrp->css.cgroup);
2801         }
2802 #endif
2803
2804         if (reprogram) {
2805                 ctx_sched_out(ctx, EVENT_TIME);
2806                 add_event_to_ctx(event, ctx);
2807                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2808         } else {
2809                 add_event_to_ctx(event, ctx);
2810         }
2811
2812 unlock:
2813         perf_ctx_unlock(cpuctx, task_ctx);
2814
2815         return ret;
2816 }
2817
2818 static bool exclusive_event_installable(struct perf_event *event,
2819                                         struct perf_event_context *ctx);
2820
2821 /*
2822  * Attach a performance event to a context.
2823  *
2824  * Very similar to event_function_call, see comment there.
2825  */
2826 static void
2827 perf_install_in_context(struct perf_event_context *ctx,
2828                         struct perf_event *event,
2829                         int cpu)
2830 {
2831         struct task_struct *task = READ_ONCE(ctx->task);
2832
2833         lockdep_assert_held(&ctx->mutex);
2834
2835         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2836
2837         if (event->cpu != -1)
2838                 WARN_ON_ONCE(event->cpu != cpu);
2839
2840         /*
2841          * Ensures that if we can observe event->ctx, both the event and ctx
2842          * will be 'complete'. See perf_iterate_sb_cpu().
2843          */
2844         smp_store_release(&event->ctx, ctx);
2845
2846         /*
2847          * perf_event_attr::disabled events will not run and can be initialized
2848          * without IPI. Except when this is the first event for the context, in
2849          * that case we need the magic of the IPI to set ctx->is_active.
2850          *
2851          * The IOC_ENABLE that is sure to follow the creation of a disabled
2852          * event will issue the IPI and reprogram the hardware.
2853          */
2854         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2855             ctx->nr_events && !is_cgroup_event(event)) {
2856                 raw_spin_lock_irq(&ctx->lock);
2857                 if (ctx->task == TASK_TOMBSTONE) {
2858                         raw_spin_unlock_irq(&ctx->lock);
2859                         return;
2860                 }
2861                 add_event_to_ctx(event, ctx);
2862                 raw_spin_unlock_irq(&ctx->lock);
2863                 return;
2864         }
2865
2866         if (!task) {
2867                 cpu_function_call(cpu, __perf_install_in_context, event);
2868                 return;
2869         }
2870
2871         /*
2872          * Should not happen, we validate the ctx is still alive before calling.
2873          */
2874         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2875                 return;
2876
2877         /*
2878          * Installing events is tricky because we cannot rely on ctx->is_active
2879          * to be set in case this is the nr_events 0 -> 1 transition.
2880          *
2881          * Instead we use task_curr(), which tells us if the task is running.
2882          * However, since we use task_curr() outside of rq::lock, we can race
2883          * against the actual state. This means the result can be wrong.
2884          *
2885          * If we get a false positive, we retry, this is harmless.
2886          *
2887          * If we get a false negative, things are complicated. If we are after
2888          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2889          * value must be correct. If we're before, it doesn't matter since
2890          * perf_event_context_sched_in() will program the counter.
2891          *
2892          * However, this hinges on the remote context switch having observed
2893          * our task->perf_event_ctxp[] store, such that it will in fact take
2894          * ctx::lock in perf_event_context_sched_in().
2895          *
2896          * We do this by task_function_call(), if the IPI fails to hit the task
2897          * we know any future context switch of task must see the
2898          * perf_event_ctpx[] store.
2899          */
2900
2901         /*
2902          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2903          * task_cpu() load, such that if the IPI then does not find the task
2904          * running, a future context switch of that task must observe the
2905          * store.
2906          */
2907         smp_mb();
2908 again:
2909         if (!task_function_call(task, __perf_install_in_context, event))
2910                 return;
2911
2912         raw_spin_lock_irq(&ctx->lock);
2913         task = ctx->task;
2914         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2915                 /*
2916                  * Cannot happen because we already checked above (which also
2917                  * cannot happen), and we hold ctx->mutex, which serializes us
2918                  * against perf_event_exit_task_context().
2919                  */
2920                 raw_spin_unlock_irq(&ctx->lock);
2921                 return;
2922         }
2923         /*
2924          * If the task is not running, ctx->lock will avoid it becoming so,
2925          * thus we can safely install the event.
2926          */
2927         if (task_curr(task)) {
2928                 raw_spin_unlock_irq(&ctx->lock);
2929                 goto again;
2930         }
2931         add_event_to_ctx(event, ctx);
2932         raw_spin_unlock_irq(&ctx->lock);
2933 }
2934
2935 /*
2936  * Cross CPU call to enable a performance event
2937  */
2938 static void __perf_event_enable(struct perf_event *event,
2939                                 struct perf_cpu_context *cpuctx,
2940                                 struct perf_event_context *ctx,
2941                                 void *info)
2942 {
2943         struct perf_event *leader = event->group_leader;
2944         struct perf_event_context *task_ctx;
2945
2946         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2947             event->state <= PERF_EVENT_STATE_ERROR)
2948                 return;
2949
2950         if (ctx->is_active)
2951                 ctx_sched_out(ctx, EVENT_TIME);
2952
2953         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2954         perf_cgroup_event_enable(event, ctx);
2955
2956         if (!ctx->is_active)
2957                 return;
2958
2959         if (!event_filter_match(event)) {
2960                 ctx_sched_in(ctx, EVENT_TIME);
2961                 return;
2962         }
2963
2964         /*
2965          * If the event is in a group and isn't the group leader,
2966          * then don't put it on unless the group is on.
2967          */
2968         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2969                 ctx_sched_in(ctx, EVENT_TIME);
2970                 return;
2971         }
2972
2973         task_ctx = cpuctx->task_ctx;
2974         if (ctx->task)
2975                 WARN_ON_ONCE(task_ctx != ctx);
2976
2977         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2978 }
2979
2980 /*
2981  * Enable an event.
2982  *
2983  * If event->ctx is a cloned context, callers must make sure that
2984  * every task struct that event->ctx->task could possibly point to
2985  * remains valid.  This condition is satisfied when called through
2986  * perf_event_for_each_child or perf_event_for_each as described
2987  * for perf_event_disable.
2988  */
2989 static void _perf_event_enable(struct perf_event *event)
2990 {
2991         struct perf_event_context *ctx = event->ctx;
2992
2993         raw_spin_lock_irq(&ctx->lock);
2994         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2995             event->state <  PERF_EVENT_STATE_ERROR) {
2996 out:
2997                 raw_spin_unlock_irq(&ctx->lock);
2998                 return;
2999         }
3000
3001         /*
3002          * If the event is in error state, clear that first.
3003          *
3004          * That way, if we see the event in error state below, we know that it
3005          * has gone back into error state, as distinct from the task having
3006          * been scheduled away before the cross-call arrived.
3007          */
3008         if (event->state == PERF_EVENT_STATE_ERROR) {
3009                 /*
3010                  * Detached SIBLING events cannot leave ERROR state.
3011                  */
3012                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3013                     event->group_leader == event)
3014                         goto out;
3015
3016                 event->state = PERF_EVENT_STATE_OFF;
3017         }
3018         raw_spin_unlock_irq(&ctx->lock);
3019
3020         event_function_call(event, __perf_event_enable, NULL);
3021 }
3022
3023 /*
3024  * See perf_event_disable();
3025  */
3026 void perf_event_enable(struct perf_event *event)
3027 {
3028         struct perf_event_context *ctx;
3029
3030         ctx = perf_event_ctx_lock(event);
3031         _perf_event_enable(event);
3032         perf_event_ctx_unlock(event, ctx);
3033 }
3034 EXPORT_SYMBOL_GPL(perf_event_enable);
3035
3036 struct stop_event_data {
3037         struct perf_event       *event;
3038         unsigned int            restart;
3039 };
3040
3041 static int __perf_event_stop(void *info)
3042 {
3043         struct stop_event_data *sd = info;
3044         struct perf_event *event = sd->event;
3045
3046         /* if it's already INACTIVE, do nothing */
3047         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3048                 return 0;
3049
3050         /* matches smp_wmb() in event_sched_in() */
3051         smp_rmb();
3052
3053         /*
3054          * There is a window with interrupts enabled before we get here,
3055          * so we need to check again lest we try to stop another CPU's event.
3056          */
3057         if (READ_ONCE(event->oncpu) != smp_processor_id())
3058                 return -EAGAIN;
3059
3060         event->pmu->stop(event, PERF_EF_UPDATE);
3061
3062         /*
3063          * May race with the actual stop (through perf_pmu_output_stop()),
3064          * but it is only used for events with AUX ring buffer, and such
3065          * events will refuse to restart because of rb::aux_mmap_count==0,
3066          * see comments in perf_aux_output_begin().
3067          *
3068          * Since this is happening on an event-local CPU, no trace is lost
3069          * while restarting.
3070          */
3071         if (sd->restart)
3072                 event->pmu->start(event, 0);
3073
3074         return 0;
3075 }
3076
3077 static int perf_event_stop(struct perf_event *event, int restart)
3078 {
3079         struct stop_event_data sd = {
3080                 .event          = event,
3081                 .restart        = restart,
3082         };
3083         int ret = 0;
3084
3085         do {
3086                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3087                         return 0;
3088
3089                 /* matches smp_wmb() in event_sched_in() */
3090                 smp_rmb();
3091
3092                 /*
3093                  * We only want to restart ACTIVE events, so if the event goes
3094                  * inactive here (event->oncpu==-1), there's nothing more to do;
3095                  * fall through with ret==-ENXIO.
3096                  */
3097                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3098                                         __perf_event_stop, &sd);
3099         } while (ret == -EAGAIN);
3100
3101         return ret;
3102 }
3103
3104 /*
3105  * In order to contain the amount of racy and tricky in the address filter
3106  * configuration management, it is a two part process:
3107  *
3108  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3109  *      we update the addresses of corresponding vmas in
3110  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3111  * (p2) when an event is scheduled in (pmu::add), it calls
3112  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3113  *      if the generation has changed since the previous call.
3114  *
3115  * If (p1) happens while the event is active, we restart it to force (p2).
3116  *
3117  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3118  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3119  *     ioctl;
3120  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3121  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3122  *     for reading;
3123  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3124  *     of exec.
3125  */
3126 void perf_event_addr_filters_sync(struct perf_event *event)
3127 {
3128         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3129
3130         if (!has_addr_filter(event))
3131                 return;
3132
3133         raw_spin_lock(&ifh->lock);
3134         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3135                 event->pmu->addr_filters_sync(event);
3136                 event->hw.addr_filters_gen = event->addr_filters_gen;
3137         }
3138         raw_spin_unlock(&ifh->lock);
3139 }
3140 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3141
3142 static int _perf_event_refresh(struct perf_event *event, int refresh)
3143 {
3144         /*
3145          * not supported on inherited events
3146          */
3147         if (event->attr.inherit || !is_sampling_event(event))
3148                 return -EINVAL;
3149
3150         atomic_add(refresh, &event->event_limit);
3151         _perf_event_enable(event);
3152
3153         return 0;
3154 }
3155
3156 /*
3157  * See perf_event_disable()
3158  */
3159 int perf_event_refresh(struct perf_event *event, int refresh)
3160 {
3161         struct perf_event_context *ctx;
3162         int ret;
3163
3164         ctx = perf_event_ctx_lock(event);
3165         ret = _perf_event_refresh(event, refresh);
3166         perf_event_ctx_unlock(event, ctx);
3167
3168         return ret;
3169 }
3170 EXPORT_SYMBOL_GPL(perf_event_refresh);
3171
3172 static int perf_event_modify_breakpoint(struct perf_event *bp,
3173                                          struct perf_event_attr *attr)
3174 {
3175         int err;
3176
3177         _perf_event_disable(bp);
3178
3179         err = modify_user_hw_breakpoint_check(bp, attr, true);
3180
3181         if (!bp->attr.disabled)
3182                 _perf_event_enable(bp);
3183
3184         return err;
3185 }
3186
3187 /*
3188  * Copy event-type-independent attributes that may be modified.
3189  */
3190 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3191                                         const struct perf_event_attr *from)
3192 {
3193         to->sig_data = from->sig_data;
3194 }
3195
3196 static int perf_event_modify_attr(struct perf_event *event,
3197                                   struct perf_event_attr *attr)
3198 {
3199         int (*func)(struct perf_event *, struct perf_event_attr *);
3200         struct perf_event *child;
3201         int err;
3202
3203         if (event->attr.type != attr->type)
3204                 return -EINVAL;
3205
3206         switch (event->attr.type) {
3207         case PERF_TYPE_BREAKPOINT:
3208                 func = perf_event_modify_breakpoint;
3209                 break;
3210         default:
3211                 /* Place holder for future additions. */
3212                 return -EOPNOTSUPP;
3213         }
3214
3215         WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217         mutex_lock(&event->child_mutex);
3218         /*
3219          * Event-type-independent attributes must be copied before event-type
3220          * modification, which will validate that final attributes match the
3221          * source attributes after all relevant attributes have been copied.
3222          */
3223         perf_event_modify_copy_attr(&event->attr, attr);
3224         err = func(event, attr);
3225         if (err)
3226                 goto out;
3227         list_for_each_entry(child, &event->child_list, child_list) {
3228                 perf_event_modify_copy_attr(&child->attr, attr);
3229                 err = func(child, attr);
3230                 if (err)
3231                         goto out;
3232         }
3233 out:
3234         mutex_unlock(&event->child_mutex);
3235         return err;
3236 }
3237
3238 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3239                                 enum event_type_t event_type)
3240 {
3241         struct perf_event_context *ctx = pmu_ctx->ctx;
3242         struct perf_event *event, *tmp;
3243         struct pmu *pmu = pmu_ctx->pmu;
3244
3245         if (ctx->task && !ctx->is_active) {
3246                 struct perf_cpu_pmu_context *cpc;
3247
3248                 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3249                 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3250                 cpc->task_epc = NULL;
3251         }
3252
3253         if (!event_type)
3254                 return;
3255
3256         perf_pmu_disable(pmu);
3257         if (event_type & EVENT_PINNED) {
3258                 list_for_each_entry_safe(event, tmp,
3259                                          &pmu_ctx->pinned_active,
3260                                          active_list)
3261                         group_sched_out(event, ctx);
3262         }
3263
3264         if (event_type & EVENT_FLEXIBLE) {
3265                 list_for_each_entry_safe(event, tmp,
3266                                          &pmu_ctx->flexible_active,
3267                                          active_list)
3268                         group_sched_out(event, ctx);
3269                 /*
3270                  * Since we cleared EVENT_FLEXIBLE, also clear
3271                  * rotate_necessary, is will be reset by
3272                  * ctx_flexible_sched_in() when needed.
3273                  */
3274                 pmu_ctx->rotate_necessary = 0;
3275         }
3276         perf_pmu_enable(pmu);
3277 }
3278
3279 static void
3280 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3281 {
3282         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3283         struct perf_event_pmu_context *pmu_ctx;
3284         int is_active = ctx->is_active;
3285         bool cgroup = event_type & EVENT_CGROUP;
3286
3287         event_type &= ~EVENT_CGROUP;
3288
3289         lockdep_assert_held(&ctx->lock);
3290
3291         if (likely(!ctx->nr_events)) {
3292                 /*
3293                  * See __perf_remove_from_context().
3294                  */
3295                 WARN_ON_ONCE(ctx->is_active);
3296                 if (ctx->task)
3297                         WARN_ON_ONCE(cpuctx->task_ctx);
3298                 return;
3299         }
3300
3301         /*
3302          * Always update time if it was set; not only when it changes.
3303          * Otherwise we can 'forget' to update time for any but the last
3304          * context we sched out. For example:
3305          *
3306          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3307          *   ctx_sched_out(.event_type = EVENT_PINNED)
3308          *
3309          * would only update time for the pinned events.
3310          */
3311         if (is_active & EVENT_TIME) {
3312                 /* update (and stop) ctx time */
3313                 update_context_time(ctx);
3314                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3315                 /*
3316                  * CPU-release for the below ->is_active store,
3317                  * see __load_acquire() in perf_event_time_now()
3318                  */
3319                 barrier();
3320         }
3321
3322         ctx->is_active &= ~event_type;
3323         if (!(ctx->is_active & EVENT_ALL))
3324                 ctx->is_active = 0;
3325
3326         if (ctx->task) {
3327                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3328                 if (!ctx->is_active)
3329                         cpuctx->task_ctx = NULL;
3330         }
3331
3332         is_active ^= ctx->is_active; /* changed bits */
3333
3334         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3335                 if (cgroup && !pmu_ctx->nr_cgroups)
3336                         continue;
3337                 __pmu_ctx_sched_out(pmu_ctx, is_active);
3338         }
3339 }
3340
3341 /*
3342  * Test whether two contexts are equivalent, i.e. whether they have both been
3343  * cloned from the same version of the same context.
3344  *
3345  * Equivalence is measured using a generation number in the context that is
3346  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3347  * and list_del_event().
3348  */
3349 static int context_equiv(struct perf_event_context *ctx1,
3350                          struct perf_event_context *ctx2)
3351 {
3352         lockdep_assert_held(&ctx1->lock);
3353         lockdep_assert_held(&ctx2->lock);
3354
3355         /* Pinning disables the swap optimization */
3356         if (ctx1->pin_count || ctx2->pin_count)
3357                 return 0;
3358
3359         /* If ctx1 is the parent of ctx2 */
3360         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3361                 return 1;
3362
3363         /* If ctx2 is the parent of ctx1 */
3364         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3365                 return 1;
3366
3367         /*
3368          * If ctx1 and ctx2 have the same parent; we flatten the parent
3369          * hierarchy, see perf_event_init_context().
3370          */
3371         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3372                         ctx1->parent_gen == ctx2->parent_gen)
3373                 return 1;
3374
3375         /* Unmatched */
3376         return 0;
3377 }
3378
3379 static void __perf_event_sync_stat(struct perf_event *event,
3380                                      struct perf_event *next_event)
3381 {
3382         u64 value;
3383
3384         if (!event->attr.inherit_stat)
3385                 return;
3386
3387         /*
3388          * Update the event value, we cannot use perf_event_read()
3389          * because we're in the middle of a context switch and have IRQs
3390          * disabled, which upsets smp_call_function_single(), however
3391          * we know the event must be on the current CPU, therefore we
3392          * don't need to use it.
3393          */
3394         if (event->state == PERF_EVENT_STATE_ACTIVE)
3395                 event->pmu->read(event);
3396
3397         perf_event_update_time(event);
3398
3399         /*
3400          * In order to keep per-task stats reliable we need to flip the event
3401          * values when we flip the contexts.
3402          */
3403         value = local64_read(&next_event->count);
3404         value = local64_xchg(&event->count, value);
3405         local64_set(&next_event->count, value);
3406
3407         swap(event->total_time_enabled, next_event->total_time_enabled);
3408         swap(event->total_time_running, next_event->total_time_running);
3409
3410         /*
3411          * Since we swizzled the values, update the user visible data too.
3412          */
3413         perf_event_update_userpage(event);
3414         perf_event_update_userpage(next_event);
3415 }
3416
3417 static void perf_event_sync_stat(struct perf_event_context *ctx,
3418                                    struct perf_event_context *next_ctx)
3419 {
3420         struct perf_event *event, *next_event;
3421
3422         if (!ctx->nr_stat)
3423                 return;
3424
3425         update_context_time(ctx);
3426
3427         event = list_first_entry(&ctx->event_list,
3428                                    struct perf_event, event_entry);
3429
3430         next_event = list_first_entry(&next_ctx->event_list,
3431                                         struct perf_event, event_entry);
3432
3433         while (&event->event_entry != &ctx->event_list &&
3434                &next_event->event_entry != &next_ctx->event_list) {
3435
3436                 __perf_event_sync_stat(event, next_event);
3437
3438                 event = list_next_entry(event, event_entry);
3439                 next_event = list_next_entry(next_event, event_entry);
3440         }
3441 }
3442
3443 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)    \
3444         for (pos1 = list_first_entry(head1, typeof(*pos1), member),     \
3445              pos2 = list_first_entry(head2, typeof(*pos2), member);     \
3446              !list_entry_is_head(pos1, head1, member) &&                \
3447              !list_entry_is_head(pos2, head2, member);                  \
3448              pos1 = list_next_entry(pos1, member),                      \
3449              pos2 = list_next_entry(pos2, member))
3450
3451 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3452                                           struct perf_event_context *next_ctx)
3453 {
3454         struct perf_event_pmu_context *prev_epc, *next_epc;
3455
3456         if (!prev_ctx->nr_task_data)
3457                 return;
3458
3459         double_list_for_each_entry(prev_epc, next_epc,
3460                                    &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3461                                    pmu_ctx_entry) {
3462
3463                 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3464                         continue;
3465
3466                 /*
3467                  * PMU specific parts of task perf context can require
3468                  * additional synchronization. As an example of such
3469                  * synchronization see implementation details of Intel
3470                  * LBR call stack data profiling;
3471                  */
3472                 if (prev_epc->pmu->swap_task_ctx)
3473                         prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3474                 else
3475                         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3476         }
3477 }
3478
3479 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3480 {
3481         struct perf_event_pmu_context *pmu_ctx;
3482         struct perf_cpu_pmu_context *cpc;
3483
3484         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3485                 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3486
3487                 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3488                         pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3489         }
3490 }
3491
3492 static void
3493 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3494 {
3495         struct perf_event_context *ctx = task->perf_event_ctxp;
3496         struct perf_event_context *next_ctx;
3497         struct perf_event_context *parent, *next_parent;
3498         int do_switch = 1;
3499
3500         if (likely(!ctx))
3501                 return;
3502
3503         rcu_read_lock();
3504         next_ctx = rcu_dereference(next->perf_event_ctxp);
3505         if (!next_ctx)
3506                 goto unlock;
3507
3508         parent = rcu_dereference(ctx->parent_ctx);
3509         next_parent = rcu_dereference(next_ctx->parent_ctx);
3510
3511         /* If neither context have a parent context; they cannot be clones. */
3512         if (!parent && !next_parent)
3513                 goto unlock;
3514
3515         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3516                 /*
3517                  * Looks like the two contexts are clones, so we might be
3518                  * able to optimize the context switch.  We lock both
3519                  * contexts and check that they are clones under the
3520                  * lock (including re-checking that neither has been
3521                  * uncloned in the meantime).  It doesn't matter which
3522                  * order we take the locks because no other cpu could
3523                  * be trying to lock both of these tasks.
3524                  */
3525                 raw_spin_lock(&ctx->lock);
3526                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3527                 if (context_equiv(ctx, next_ctx)) {
3528
3529                         perf_ctx_disable(ctx, false);
3530
3531                         /* PMIs are disabled; ctx->nr_pending is stable. */
3532                         if (local_read(&ctx->nr_pending) ||
3533                             local_read(&next_ctx->nr_pending)) {
3534                                 /*
3535                                  * Must not swap out ctx when there's pending
3536                                  * events that rely on the ctx->task relation.
3537                                  */
3538                                 raw_spin_unlock(&next_ctx->lock);
3539                                 rcu_read_unlock();
3540                                 goto inside_switch;
3541                         }
3542
3543                         WRITE_ONCE(ctx->task, next);
3544                         WRITE_ONCE(next_ctx->task, task);
3545
3546                         perf_ctx_sched_task_cb(ctx, false);
3547                         perf_event_swap_task_ctx_data(ctx, next_ctx);
3548
3549                         perf_ctx_enable(ctx, false);
3550
3551                         /*
3552                          * RCU_INIT_POINTER here is safe because we've not
3553                          * modified the ctx and the above modification of
3554                          * ctx->task and ctx->task_ctx_data are immaterial
3555                          * since those values are always verified under
3556                          * ctx->lock which we're now holding.
3557                          */
3558                         RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3559                         RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3560
3561                         do_switch = 0;
3562
3563                         perf_event_sync_stat(ctx, next_ctx);
3564                 }
3565                 raw_spin_unlock(&next_ctx->lock);
3566                 raw_spin_unlock(&ctx->lock);
3567         }
3568 unlock:
3569         rcu_read_unlock();
3570
3571         if (do_switch) {
3572                 raw_spin_lock(&ctx->lock);
3573                 perf_ctx_disable(ctx, false);
3574
3575 inside_switch:
3576                 perf_ctx_sched_task_cb(ctx, false);
3577                 task_ctx_sched_out(ctx, EVENT_ALL);
3578
3579                 perf_ctx_enable(ctx, false);
3580                 raw_spin_unlock(&ctx->lock);
3581         }
3582 }
3583
3584 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3585 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3586
3587 void perf_sched_cb_dec(struct pmu *pmu)
3588 {
3589         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3590
3591         this_cpu_dec(perf_sched_cb_usages);
3592         barrier();
3593
3594         if (!--cpc->sched_cb_usage)
3595                 list_del(&cpc->sched_cb_entry);
3596 }
3597
3598
3599 void perf_sched_cb_inc(struct pmu *pmu)
3600 {
3601         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3602
3603         if (!cpc->sched_cb_usage++)
3604                 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3605
3606         barrier();
3607         this_cpu_inc(perf_sched_cb_usages);
3608 }
3609
3610 /*
3611  * This function provides the context switch callback to the lower code
3612  * layer. It is invoked ONLY when the context switch callback is enabled.
3613  *
3614  * This callback is relevant even to per-cpu events; for example multi event
3615  * PEBS requires this to provide PID/TID information. This requires we flush
3616  * all queued PEBS records before we context switch to a new task.
3617  */
3618 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3619 {
3620         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3621         struct pmu *pmu;
3622
3623         pmu = cpc->epc.pmu;
3624
3625         /* software PMUs will not have sched_task */
3626         if (WARN_ON_ONCE(!pmu->sched_task))
3627                 return;
3628
3629         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3630         perf_pmu_disable(pmu);
3631
3632         pmu->sched_task(cpc->task_epc, sched_in);
3633
3634         perf_pmu_enable(pmu);
3635         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3636 }
3637
3638 static void perf_pmu_sched_task(struct task_struct *prev,
3639                                 struct task_struct *next,
3640                                 bool sched_in)
3641 {
3642         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3643         struct perf_cpu_pmu_context *cpc;
3644
3645         /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3646         if (prev == next || cpuctx->task_ctx)
3647                 return;
3648
3649         list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3650                 __perf_pmu_sched_task(cpc, sched_in);
3651 }
3652
3653 static void perf_event_switch(struct task_struct *task,
3654                               struct task_struct *next_prev, bool sched_in);
3655
3656 /*
3657  * Called from scheduler to remove the events of the current task,
3658  * with interrupts disabled.
3659  *
3660  * We stop each event and update the event value in event->count.
3661  *
3662  * This does not protect us against NMI, but disable()
3663  * sets the disabled bit in the control field of event _before_
3664  * accessing the event control register. If a NMI hits, then it will
3665  * not restart the event.
3666  */
3667 void __perf_event_task_sched_out(struct task_struct *task,
3668                                  struct task_struct *next)
3669 {
3670         if (__this_cpu_read(perf_sched_cb_usages))
3671                 perf_pmu_sched_task(task, next, false);
3672
3673         if (atomic_read(&nr_switch_events))
3674                 perf_event_switch(task, next, false);
3675
3676         perf_event_context_sched_out(task, next);
3677
3678         /*
3679          * if cgroup events exist on this CPU, then we need
3680          * to check if we have to switch out PMU state.
3681          * cgroup event are system-wide mode only
3682          */
3683         perf_cgroup_switch(next);
3684 }
3685
3686 static bool perf_less_group_idx(const void *l, const void *r)
3687 {
3688         const struct perf_event *le = *(const struct perf_event **)l;
3689         const struct perf_event *re = *(const struct perf_event **)r;
3690
3691         return le->group_index < re->group_index;
3692 }
3693
3694 static void swap_ptr(void *l, void *r)
3695 {
3696         void **lp = l, **rp = r;
3697
3698         swap(*lp, *rp);
3699 }
3700
3701 static const struct min_heap_callbacks perf_min_heap = {
3702         .elem_size = sizeof(struct perf_event *),
3703         .less = perf_less_group_idx,
3704         .swp = swap_ptr,
3705 };
3706
3707 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3708 {
3709         struct perf_event **itrs = heap->data;
3710
3711         if (event) {
3712                 itrs[heap->nr] = event;
3713                 heap->nr++;
3714         }
3715 }
3716
3717 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3718 {
3719         struct perf_cpu_pmu_context *cpc;
3720
3721         if (!pmu_ctx->ctx->task)
3722                 return;
3723
3724         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3725         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3726         cpc->task_epc = pmu_ctx;
3727 }
3728
3729 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3730                                 struct perf_event_groups *groups, int cpu,
3731                                 struct pmu *pmu,
3732                                 int (*func)(struct perf_event *, void *),
3733                                 void *data)
3734 {
3735 #ifdef CONFIG_CGROUP_PERF
3736         struct cgroup_subsys_state *css = NULL;
3737 #endif
3738         struct perf_cpu_context *cpuctx = NULL;
3739         /* Space for per CPU and/or any CPU event iterators. */
3740         struct perf_event *itrs[2];
3741         struct min_heap event_heap;
3742         struct perf_event **evt;
3743         int ret;
3744
3745         if (pmu->filter && pmu->filter(pmu, cpu))
3746                 return 0;
3747
3748         if (!ctx->task) {
3749                 cpuctx = this_cpu_ptr(&perf_cpu_context);
3750                 event_heap = (struct min_heap){
3751                         .data = cpuctx->heap,
3752                         .nr = 0,
3753                         .size = cpuctx->heap_size,
3754                 };
3755
3756                 lockdep_assert_held(&cpuctx->ctx.lock);
3757
3758 #ifdef CONFIG_CGROUP_PERF
3759                 if (cpuctx->cgrp)
3760                         css = &cpuctx->cgrp->css;
3761 #endif
3762         } else {
3763                 event_heap = (struct min_heap){
3764                         .data = itrs,
3765                         .nr = 0,
3766                         .size = ARRAY_SIZE(itrs),
3767                 };
3768                 /* Events not within a CPU context may be on any CPU. */
3769                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3770         }
3771         evt = event_heap.data;
3772
3773         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3774
3775 #ifdef CONFIG_CGROUP_PERF
3776         for (; css; css = css->parent)
3777                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3778 #endif
3779
3780         if (event_heap.nr) {
3781                 __link_epc((*evt)->pmu_ctx);
3782                 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3783         }
3784
3785         min_heapify_all(&event_heap, &perf_min_heap);
3786
3787         while (event_heap.nr) {
3788                 ret = func(*evt, data);
3789                 if (ret)
3790                         return ret;
3791
3792                 *evt = perf_event_groups_next(*evt, pmu);
3793                 if (*evt)
3794                         min_heapify(&event_heap, 0, &perf_min_heap);
3795                 else
3796                         min_heap_pop(&event_heap, &perf_min_heap);
3797         }
3798
3799         return 0;
3800 }
3801
3802 /*
3803  * Because the userpage is strictly per-event (there is no concept of context,
3804  * so there cannot be a context indirection), every userpage must be updated
3805  * when context time starts :-(
3806  *
3807  * IOW, we must not miss EVENT_TIME edges.
3808  */
3809 static inline bool event_update_userpage(struct perf_event *event)
3810 {
3811         if (likely(!atomic_read(&event->mmap_count)))
3812                 return false;
3813
3814         perf_event_update_time(event);
3815         perf_event_update_userpage(event);
3816
3817         return true;
3818 }
3819
3820 static inline void group_update_userpage(struct perf_event *group_event)
3821 {
3822         struct perf_event *event;
3823
3824         if (!event_update_userpage(group_event))
3825                 return;
3826
3827         for_each_sibling_event(event, group_event)
3828                 event_update_userpage(event);
3829 }
3830
3831 static int merge_sched_in(struct perf_event *event, void *data)
3832 {
3833         struct perf_event_context *ctx = event->ctx;
3834         int *can_add_hw = data;
3835
3836         if (event->state <= PERF_EVENT_STATE_OFF)
3837                 return 0;
3838
3839         if (!event_filter_match(event))
3840                 return 0;
3841
3842         if (group_can_go_on(event, *can_add_hw)) {
3843                 if (!group_sched_in(event, ctx))
3844                         list_add_tail(&event->active_list, get_event_list(event));
3845         }
3846
3847         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3848                 *can_add_hw = 0;
3849                 if (event->attr.pinned) {
3850                         perf_cgroup_event_disable(event, ctx);
3851                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3852                 } else {
3853                         struct perf_cpu_pmu_context *cpc;
3854
3855                         event->pmu_ctx->rotate_necessary = 1;
3856                         cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3857                         perf_mux_hrtimer_restart(cpc);
3858                         group_update_userpage(event);
3859                 }
3860         }
3861
3862         return 0;
3863 }
3864
3865 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3866                                 struct perf_event_groups *groups,
3867                                 struct pmu *pmu)
3868 {
3869         int can_add_hw = 1;
3870         visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3871                            merge_sched_in, &can_add_hw);
3872 }
3873
3874 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3875                                 struct perf_event_groups *groups,
3876                                 bool cgroup)
3877 {
3878         struct perf_event_pmu_context *pmu_ctx;
3879
3880         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3881                 if (cgroup && !pmu_ctx->nr_cgroups)
3882                         continue;
3883                 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3884         }
3885 }
3886
3887 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3888                                struct pmu *pmu)
3889 {
3890         pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3891 }
3892
3893 static void
3894 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3895 {
3896         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3897         int is_active = ctx->is_active;
3898         bool cgroup = event_type & EVENT_CGROUP;
3899
3900         event_type &= ~EVENT_CGROUP;
3901
3902         lockdep_assert_held(&ctx->lock);
3903
3904         if (likely(!ctx->nr_events))
3905                 return;
3906
3907         if (!(is_active & EVENT_TIME)) {
3908                 /* start ctx time */
3909                 __update_context_time(ctx, false);
3910                 perf_cgroup_set_timestamp(cpuctx);
3911                 /*
3912                  * CPU-release for the below ->is_active store,
3913                  * see __load_acquire() in perf_event_time_now()
3914                  */
3915                 barrier();
3916         }
3917
3918         ctx->is_active |= (event_type | EVENT_TIME);
3919         if (ctx->task) {
3920                 if (!is_active)
3921                         cpuctx->task_ctx = ctx;
3922                 else
3923                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3924         }
3925
3926         is_active ^= ctx->is_active; /* changed bits */
3927
3928         /*
3929          * First go through the list and put on any pinned groups
3930          * in order to give them the best chance of going on.
3931          */
3932         if (is_active & EVENT_PINNED)
3933                 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3934
3935         /* Then walk through the lower prio flexible groups */
3936         if (is_active & EVENT_FLEXIBLE)
3937                 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3938 }
3939
3940 static void perf_event_context_sched_in(struct task_struct *task)
3941 {
3942         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3943         struct perf_event_context *ctx;
3944
3945         rcu_read_lock();
3946         ctx = rcu_dereference(task->perf_event_ctxp);
3947         if (!ctx)
3948                 goto rcu_unlock;
3949
3950         if (cpuctx->task_ctx == ctx) {
3951                 perf_ctx_lock(cpuctx, ctx);
3952                 perf_ctx_disable(ctx, false);
3953
3954                 perf_ctx_sched_task_cb(ctx, true);
3955
3956                 perf_ctx_enable(ctx, false);
3957                 perf_ctx_unlock(cpuctx, ctx);
3958                 goto rcu_unlock;
3959         }
3960
3961         perf_ctx_lock(cpuctx, ctx);
3962         /*
3963          * We must check ctx->nr_events while holding ctx->lock, such
3964          * that we serialize against perf_install_in_context().
3965          */
3966         if (!ctx->nr_events)
3967                 goto unlock;
3968
3969         perf_ctx_disable(ctx, false);
3970         /*
3971          * We want to keep the following priority order:
3972          * cpu pinned (that don't need to move), task pinned,
3973          * cpu flexible, task flexible.
3974          *
3975          * However, if task's ctx is not carrying any pinned
3976          * events, no need to flip the cpuctx's events around.
3977          */
3978         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3979                 perf_ctx_disable(&cpuctx->ctx, false);
3980                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3981         }
3982
3983         perf_event_sched_in(cpuctx, ctx);
3984
3985         perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3986
3987         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3988                 perf_ctx_enable(&cpuctx->ctx, false);
3989
3990         perf_ctx_enable(ctx, false);
3991
3992 unlock:
3993         perf_ctx_unlock(cpuctx, ctx);
3994 rcu_unlock:
3995         rcu_read_unlock();
3996 }
3997
3998 /*
3999  * Called from scheduler to add the events of the current task
4000  * with interrupts disabled.
4001  *
4002  * We restore the event value and then enable it.
4003  *
4004  * This does not protect us against NMI, but enable()
4005  * sets the enabled bit in the control field of event _before_
4006  * accessing the event control register. If a NMI hits, then it will
4007  * keep the event running.
4008  */
4009 void __perf_event_task_sched_in(struct task_struct *prev,
4010                                 struct task_struct *task)
4011 {
4012         perf_event_context_sched_in(task);
4013
4014         if (atomic_read(&nr_switch_events))
4015                 perf_event_switch(task, prev, true);
4016
4017         if (__this_cpu_read(perf_sched_cb_usages))
4018                 perf_pmu_sched_task(prev, task, true);
4019 }
4020
4021 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4022 {
4023         u64 frequency = event->attr.sample_freq;
4024         u64 sec = NSEC_PER_SEC;
4025         u64 divisor, dividend;
4026
4027         int count_fls, nsec_fls, frequency_fls, sec_fls;
4028
4029         count_fls = fls64(count);
4030         nsec_fls = fls64(nsec);
4031         frequency_fls = fls64(frequency);
4032         sec_fls = 30;
4033
4034         /*
4035          * We got @count in @nsec, with a target of sample_freq HZ
4036          * the target period becomes:
4037          *
4038          *             @count * 10^9
4039          * period = -------------------
4040          *          @nsec * sample_freq
4041          *
4042          */
4043
4044         /*
4045          * Reduce accuracy by one bit such that @a and @b converge
4046          * to a similar magnitude.
4047          */
4048 #define REDUCE_FLS(a, b)                \
4049 do {                                    \
4050         if (a##_fls > b##_fls) {        \
4051                 a >>= 1;                \
4052                 a##_fls--;              \
4053         } else {                        \
4054                 b >>= 1;                \
4055                 b##_fls--;              \
4056         }                               \
4057 } while (0)
4058
4059         /*
4060          * Reduce accuracy until either term fits in a u64, then proceed with
4061          * the other, so that finally we can do a u64/u64 division.
4062          */
4063         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4064                 REDUCE_FLS(nsec, frequency);
4065                 REDUCE_FLS(sec, count);
4066         }
4067
4068         if (count_fls + sec_fls > 64) {
4069                 divisor = nsec * frequency;
4070
4071                 while (count_fls + sec_fls > 64) {
4072                         REDUCE_FLS(count, sec);
4073                         divisor >>= 1;
4074                 }
4075
4076                 dividend = count * sec;
4077         } else {
4078                 dividend = count * sec;
4079
4080                 while (nsec_fls + frequency_fls > 64) {
4081                         REDUCE_FLS(nsec, frequency);
4082                         dividend >>= 1;
4083                 }
4084
4085                 divisor = nsec * frequency;
4086         }
4087
4088         if (!divisor)
4089                 return dividend;
4090
4091         return div64_u64(dividend, divisor);
4092 }
4093
4094 static DEFINE_PER_CPU(int, perf_throttled_count);
4095 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4096
4097 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4098 {
4099         struct hw_perf_event *hwc = &event->hw;
4100         s64 period, sample_period;
4101         s64 delta;
4102
4103         period = perf_calculate_period(event, nsec, count);
4104
4105         delta = (s64)(period - hwc->sample_period);
4106         delta = (delta + 7) / 8; /* low pass filter */
4107
4108         sample_period = hwc->sample_period + delta;
4109
4110         if (!sample_period)
4111                 sample_period = 1;
4112
4113         hwc->sample_period = sample_period;
4114
4115         if (local64_read(&hwc->period_left) > 8*sample_period) {
4116                 if (disable)
4117                         event->pmu->stop(event, PERF_EF_UPDATE);
4118
4119                 local64_set(&hwc->period_left, 0);
4120
4121                 if (disable)
4122                         event->pmu->start(event, PERF_EF_RELOAD);
4123         }
4124 }
4125
4126 /*
4127  * combine freq adjustment with unthrottling to avoid two passes over the
4128  * events. At the same time, make sure, having freq events does not change
4129  * the rate of unthrottling as that would introduce bias.
4130  */
4131 static void
4132 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4133 {
4134         struct perf_event *event;
4135         struct hw_perf_event *hwc;
4136         u64 now, period = TICK_NSEC;
4137         s64 delta;
4138
4139         /*
4140          * only need to iterate over all events iff:
4141          * - context have events in frequency mode (needs freq adjust)
4142          * - there are events to unthrottle on this cpu
4143          */
4144         if (!(ctx->nr_freq || unthrottle))
4145                 return;
4146
4147         raw_spin_lock(&ctx->lock);
4148
4149         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4150                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4151                         continue;
4152
4153                 // XXX use visit thingy to avoid the -1,cpu match
4154                 if (!event_filter_match(event))
4155                         continue;
4156
4157                 perf_pmu_disable(event->pmu);
4158
4159                 hwc = &event->hw;
4160
4161                 if (hwc->interrupts == MAX_INTERRUPTS) {
4162                         hwc->interrupts = 0;
4163                         perf_log_throttle(event, 1);
4164                         event->pmu->start(event, 0);
4165                 }
4166
4167                 if (!event->attr.freq || !event->attr.sample_freq)
4168                         goto next;
4169
4170                 /*
4171                  * stop the event and update event->count
4172                  */
4173                 event->pmu->stop(event, PERF_EF_UPDATE);
4174
4175                 now = local64_read(&event->count);
4176                 delta = now - hwc->freq_count_stamp;
4177                 hwc->freq_count_stamp = now;
4178
4179                 /*
4180                  * restart the event
4181                  * reload only if value has changed
4182                  * we have stopped the event so tell that
4183                  * to perf_adjust_period() to avoid stopping it
4184                  * twice.
4185                  */
4186                 if (delta > 0)
4187                         perf_adjust_period(event, period, delta, false);
4188
4189                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4190         next:
4191                 perf_pmu_enable(event->pmu);
4192         }
4193
4194         raw_spin_unlock(&ctx->lock);
4195 }
4196
4197 /*
4198  * Move @event to the tail of the @ctx's elegible events.
4199  */
4200 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4201 {
4202         /*
4203          * Rotate the first entry last of non-pinned groups. Rotation might be
4204          * disabled by the inheritance code.
4205          */
4206         if (ctx->rotate_disable)
4207                 return;
4208
4209         perf_event_groups_delete(&ctx->flexible_groups, event);
4210         perf_event_groups_insert(&ctx->flexible_groups, event);
4211 }
4212
4213 /* pick an event from the flexible_groups to rotate */
4214 static inline struct perf_event *
4215 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4216 {
4217         struct perf_event *event;
4218         struct rb_node *node;
4219         struct rb_root *tree;
4220         struct __group_key key = {
4221                 .pmu = pmu_ctx->pmu,
4222         };
4223
4224         /* pick the first active flexible event */
4225         event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4226                                          struct perf_event, active_list);
4227         if (event)
4228                 goto out;
4229
4230         /* if no active flexible event, pick the first event */
4231         tree = &pmu_ctx->ctx->flexible_groups.tree;
4232
4233         if (!pmu_ctx->ctx->task) {
4234                 key.cpu = smp_processor_id();
4235
4236                 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4237                 if (node)
4238                         event = __node_2_pe(node);
4239                 goto out;
4240         }
4241
4242         key.cpu = -1;
4243         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4244         if (node) {
4245                 event = __node_2_pe(node);
4246                 goto out;
4247         }
4248
4249         key.cpu = smp_processor_id();
4250         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4251         if (node)
4252                 event = __node_2_pe(node);
4253
4254 out:
4255         /*
4256          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4257          * finds there are unschedulable events, it will set it again.
4258          */
4259         pmu_ctx->rotate_necessary = 0;
4260
4261         return event;
4262 }
4263
4264 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4265 {
4266         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4267         struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4268         struct perf_event *cpu_event = NULL, *task_event = NULL;
4269         int cpu_rotate, task_rotate;
4270         struct pmu *pmu;
4271
4272         /*
4273          * Since we run this from IRQ context, nobody can install new
4274          * events, thus the event count values are stable.
4275          */
4276
4277         cpu_epc = &cpc->epc;
4278         pmu = cpu_epc->pmu;
4279         task_epc = cpc->task_epc;
4280
4281         cpu_rotate = cpu_epc->rotate_necessary;
4282         task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4283
4284         if (!(cpu_rotate || task_rotate))
4285                 return false;
4286
4287         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4288         perf_pmu_disable(pmu);
4289
4290         if (task_rotate)
4291                 task_event = ctx_event_to_rotate(task_epc);
4292         if (cpu_rotate)
4293                 cpu_event = ctx_event_to_rotate(cpu_epc);
4294
4295         /*
4296          * As per the order given at ctx_resched() first 'pop' task flexible
4297          * and then, if needed CPU flexible.
4298          */
4299         if (task_event || (task_epc && cpu_event)) {
4300                 update_context_time(task_epc->ctx);
4301                 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4302         }
4303
4304         if (cpu_event) {
4305                 update_context_time(&cpuctx->ctx);
4306                 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4307                 rotate_ctx(&cpuctx->ctx, cpu_event);
4308                 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4309         }
4310
4311         if (task_event)
4312                 rotate_ctx(task_epc->ctx, task_event);
4313
4314         if (task_event || (task_epc && cpu_event))
4315                 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4316
4317         perf_pmu_enable(pmu);
4318         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4319
4320         return true;
4321 }
4322
4323 void perf_event_task_tick(void)
4324 {
4325         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4326         struct perf_event_context *ctx;
4327         int throttled;
4328
4329         lockdep_assert_irqs_disabled();
4330
4331         __this_cpu_inc(perf_throttled_seq);
4332         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4333         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4334
4335         perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4336
4337         rcu_read_lock();
4338         ctx = rcu_dereference(current->perf_event_ctxp);
4339         if (ctx)
4340                 perf_adjust_freq_unthr_context(ctx, !!throttled);
4341         rcu_read_unlock();
4342 }
4343
4344 static int event_enable_on_exec(struct perf_event *event,
4345                                 struct perf_event_context *ctx)
4346 {
4347         if (!event->attr.enable_on_exec)
4348                 return 0;
4349
4350         event->attr.enable_on_exec = 0;
4351         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4352                 return 0;
4353
4354         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4355
4356         return 1;
4357 }
4358
4359 /*
4360  * Enable all of a task's events that have been marked enable-on-exec.
4361  * This expects task == current.
4362  */
4363 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4364 {
4365         struct perf_event_context *clone_ctx = NULL;
4366         enum event_type_t event_type = 0;
4367         struct perf_cpu_context *cpuctx;
4368         struct perf_event *event;
4369         unsigned long flags;
4370         int enabled = 0;
4371
4372         local_irq_save(flags);
4373         if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4374                 goto out;
4375
4376         if (!ctx->nr_events)
4377                 goto out;
4378
4379         cpuctx = this_cpu_ptr(&perf_cpu_context);
4380         perf_ctx_lock(cpuctx, ctx);
4381         ctx_sched_out(ctx, EVENT_TIME);
4382
4383         list_for_each_entry(event, &ctx->event_list, event_entry) {
4384                 enabled |= event_enable_on_exec(event, ctx);
4385                 event_type |= get_event_type(event);
4386         }
4387
4388         /*
4389          * Unclone and reschedule this context if we enabled any event.
4390          */
4391         if (enabled) {
4392                 clone_ctx = unclone_ctx(ctx);
4393                 ctx_resched(cpuctx, ctx, event_type);
4394         } else {
4395                 ctx_sched_in(ctx, EVENT_TIME);
4396         }
4397         perf_ctx_unlock(cpuctx, ctx);
4398
4399 out:
4400         local_irq_restore(flags);
4401
4402         if (clone_ctx)
4403                 put_ctx(clone_ctx);
4404 }
4405
4406 static void perf_remove_from_owner(struct perf_event *event);
4407 static void perf_event_exit_event(struct perf_event *event,
4408                                   struct perf_event_context *ctx);
4409
4410 /*
4411  * Removes all events from the current task that have been marked
4412  * remove-on-exec, and feeds their values back to parent events.
4413  */
4414 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4415 {
4416         struct perf_event_context *clone_ctx = NULL;
4417         struct perf_event *event, *next;
4418         unsigned long flags;
4419         bool modified = false;
4420
4421         mutex_lock(&ctx->mutex);
4422
4423         if (WARN_ON_ONCE(ctx->task != current))
4424                 goto unlock;
4425
4426         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4427                 if (!event->attr.remove_on_exec)
4428                         continue;
4429
4430                 if (!is_kernel_event(event))
4431                         perf_remove_from_owner(event);
4432
4433                 modified = true;
4434
4435                 perf_event_exit_event(event, ctx);
4436         }
4437
4438         raw_spin_lock_irqsave(&ctx->lock, flags);
4439         if (modified)
4440                 clone_ctx = unclone_ctx(ctx);
4441         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4442
4443 unlock:
4444         mutex_unlock(&ctx->mutex);
4445
4446         if (clone_ctx)
4447                 put_ctx(clone_ctx);
4448 }
4449
4450 struct perf_read_data {
4451         struct perf_event *event;
4452         bool group;
4453         int ret;
4454 };
4455
4456 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4457 {
4458         u16 local_pkg, event_pkg;
4459
4460         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4461                 int local_cpu = smp_processor_id();
4462
4463                 event_pkg = topology_physical_package_id(event_cpu);
4464                 local_pkg = topology_physical_package_id(local_cpu);
4465
4466                 if (event_pkg == local_pkg)
4467                         return local_cpu;
4468         }
4469
4470         return event_cpu;
4471 }
4472
4473 /*
4474  * Cross CPU call to read the hardware event
4475  */
4476 static void __perf_event_read(void *info)
4477 {
4478         struct perf_read_data *data = info;
4479         struct perf_event *sub, *event = data->event;
4480         struct perf_event_context *ctx = event->ctx;
4481         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4482         struct pmu *pmu = event->pmu;
4483
4484         /*
4485          * If this is a task context, we need to check whether it is
4486          * the current task context of this cpu.  If not it has been
4487          * scheduled out before the smp call arrived.  In that case
4488          * event->count would have been updated to a recent sample
4489          * when the event was scheduled out.
4490          */
4491         if (ctx->task && cpuctx->task_ctx != ctx)
4492                 return;
4493
4494         raw_spin_lock(&ctx->lock);
4495         if (ctx->is_active & EVENT_TIME) {
4496                 update_context_time(ctx);
4497                 update_cgrp_time_from_event(event);
4498         }
4499
4500         perf_event_update_time(event);
4501         if (data->group)
4502                 perf_event_update_sibling_time(event);
4503
4504         if (event->state != PERF_EVENT_STATE_ACTIVE)
4505                 goto unlock;
4506
4507         if (!data->group) {
4508                 pmu->read(event);
4509                 data->ret = 0;
4510                 goto unlock;
4511         }
4512
4513         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4514
4515         pmu->read(event);
4516
4517         for_each_sibling_event(sub, event) {
4518                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4519                         /*
4520                          * Use sibling's PMU rather than @event's since
4521                          * sibling could be on different (eg: software) PMU.
4522                          */
4523                         sub->pmu->read(sub);
4524                 }
4525         }
4526
4527         data->ret = pmu->commit_txn(pmu);
4528
4529 unlock:
4530         raw_spin_unlock(&ctx->lock);
4531 }
4532
4533 static inline u64 perf_event_count(struct perf_event *event)
4534 {
4535         return local64_read(&event->count) + atomic64_read(&event->child_count);
4536 }
4537
4538 static void calc_timer_values(struct perf_event *event,
4539                                 u64 *now,
4540                                 u64 *enabled,
4541                                 u64 *running)
4542 {
4543         u64 ctx_time;
4544
4545         *now = perf_clock();
4546         ctx_time = perf_event_time_now(event, *now);
4547         __perf_update_times(event, ctx_time, enabled, running);
4548 }
4549
4550 /*
4551  * NMI-safe method to read a local event, that is an event that
4552  * is:
4553  *   - either for the current task, or for this CPU
4554  *   - does not have inherit set, for inherited task events
4555  *     will not be local and we cannot read them atomically
4556  *   - must not have a pmu::count method
4557  */
4558 int perf_event_read_local(struct perf_event *event, u64 *value,
4559                           u64 *enabled, u64 *running)
4560 {
4561         unsigned long flags;
4562         int ret = 0;
4563
4564         /*
4565          * Disabling interrupts avoids all counter scheduling (context
4566          * switches, timer based rotation and IPIs).
4567          */
4568         local_irq_save(flags);
4569
4570         /*
4571          * It must not be an event with inherit set, we cannot read
4572          * all child counters from atomic context.
4573          */
4574         if (event->attr.inherit) {
4575                 ret = -EOPNOTSUPP;
4576                 goto out;
4577         }
4578
4579         /* If this is a per-task event, it must be for current */
4580         if ((event->attach_state & PERF_ATTACH_TASK) &&
4581             event->hw.target != current) {
4582                 ret = -EINVAL;
4583                 goto out;
4584         }
4585
4586         /* If this is a per-CPU event, it must be for this CPU */
4587         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4588             event->cpu != smp_processor_id()) {
4589                 ret = -EINVAL;
4590                 goto out;
4591         }
4592
4593         /* If this is a pinned event it must be running on this CPU */
4594         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4595                 ret = -EBUSY;
4596                 goto out;
4597         }
4598
4599         /*
4600          * If the event is currently on this CPU, its either a per-task event,
4601          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4602          * oncpu == -1).
4603          */
4604         if (event->oncpu == smp_processor_id())
4605                 event->pmu->read(event);
4606
4607         *value = local64_read(&event->count);
4608         if (enabled || running) {
4609                 u64 __enabled, __running, __now;
4610
4611                 calc_timer_values(event, &__now, &__enabled, &__running);
4612                 if (enabled)
4613                         *enabled = __enabled;
4614                 if (running)
4615                         *running = __running;
4616         }
4617 out:
4618         local_irq_restore(flags);
4619
4620         return ret;
4621 }
4622
4623 static int perf_event_read(struct perf_event *event, bool group)
4624 {
4625         enum perf_event_state state = READ_ONCE(event->state);
4626         int event_cpu, ret = 0;
4627
4628         /*
4629          * If event is enabled and currently active on a CPU, update the
4630          * value in the event structure:
4631          */
4632 again:
4633         if (state == PERF_EVENT_STATE_ACTIVE) {
4634                 struct perf_read_data data;
4635
4636                 /*
4637                  * Orders the ->state and ->oncpu loads such that if we see
4638                  * ACTIVE we must also see the right ->oncpu.
4639                  *
4640                  * Matches the smp_wmb() from event_sched_in().
4641                  */
4642                 smp_rmb();
4643
4644                 event_cpu = READ_ONCE(event->oncpu);
4645                 if ((unsigned)event_cpu >= nr_cpu_ids)
4646                         return 0;
4647
4648                 data = (struct perf_read_data){
4649                         .event = event,
4650                         .group = group,
4651                         .ret = 0,
4652                 };
4653
4654                 preempt_disable();
4655                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4656
4657                 /*
4658                  * Purposely ignore the smp_call_function_single() return
4659                  * value.
4660                  *
4661                  * If event_cpu isn't a valid CPU it means the event got
4662                  * scheduled out and that will have updated the event count.
4663                  *
4664                  * Therefore, either way, we'll have an up-to-date event count
4665                  * after this.
4666                  */
4667                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4668                 preempt_enable();
4669                 ret = data.ret;
4670
4671         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4672                 struct perf_event_context *ctx = event->ctx;
4673                 unsigned long flags;
4674
4675                 raw_spin_lock_irqsave(&ctx->lock, flags);
4676                 state = event->state;
4677                 if (state != PERF_EVENT_STATE_INACTIVE) {
4678                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4679                         goto again;
4680                 }
4681
4682                 /*
4683                  * May read while context is not active (e.g., thread is
4684                  * blocked), in that case we cannot update context time
4685                  */
4686                 if (ctx->is_active & EVENT_TIME) {
4687                         update_context_time(ctx);
4688                         update_cgrp_time_from_event(event);
4689                 }
4690
4691                 perf_event_update_time(event);
4692                 if (group)
4693                         perf_event_update_sibling_time(event);
4694                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4695         }
4696
4697         return ret;
4698 }
4699
4700 /*
4701  * Initialize the perf_event context in a task_struct:
4702  */
4703 static void __perf_event_init_context(struct perf_event_context *ctx)
4704 {
4705         raw_spin_lock_init(&ctx->lock);
4706         mutex_init(&ctx->mutex);
4707         INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4708         perf_event_groups_init(&ctx->pinned_groups);
4709         perf_event_groups_init(&ctx->flexible_groups);
4710         INIT_LIST_HEAD(&ctx->event_list);
4711         refcount_set(&ctx->refcount, 1);
4712 }
4713
4714 static void
4715 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4716 {
4717         epc->pmu = pmu;
4718         INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4719         INIT_LIST_HEAD(&epc->pinned_active);
4720         INIT_LIST_HEAD(&epc->flexible_active);
4721         atomic_set(&epc->refcount, 1);
4722 }
4723
4724 static struct perf_event_context *
4725 alloc_perf_context(struct task_struct *task)
4726 {
4727         struct perf_event_context *ctx;
4728
4729         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4730         if (!ctx)
4731                 return NULL;
4732
4733         __perf_event_init_context(ctx);
4734         if (task)
4735                 ctx->task = get_task_struct(task);
4736
4737         return ctx;
4738 }
4739
4740 static struct task_struct *
4741 find_lively_task_by_vpid(pid_t vpid)
4742 {
4743         struct task_struct *task;
4744
4745         rcu_read_lock();
4746         if (!vpid)
4747                 task = current;
4748         else
4749                 task = find_task_by_vpid(vpid);
4750         if (task)
4751                 get_task_struct(task);
4752         rcu_read_unlock();
4753
4754         if (!task)
4755                 return ERR_PTR(-ESRCH);
4756
4757         return task;
4758 }
4759
4760 /*
4761  * Returns a matching context with refcount and pincount.
4762  */
4763 static struct perf_event_context *
4764 find_get_context(struct task_struct *task, struct perf_event *event)
4765 {
4766         struct perf_event_context *ctx, *clone_ctx = NULL;
4767         struct perf_cpu_context *cpuctx;
4768         unsigned long flags;
4769         int err;
4770
4771         if (!task) {
4772                 /* Must be root to operate on a CPU event: */
4773                 err = perf_allow_cpu(&event->attr);
4774                 if (err)
4775                         return ERR_PTR(err);
4776
4777                 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4778                 ctx = &cpuctx->ctx;
4779                 get_ctx(ctx);
4780                 raw_spin_lock_irqsave(&ctx->lock, flags);
4781                 ++ctx->pin_count;
4782                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4783
4784                 return ctx;
4785         }
4786
4787         err = -EINVAL;
4788 retry:
4789         ctx = perf_lock_task_context(task, &flags);
4790         if (ctx) {
4791                 clone_ctx = unclone_ctx(ctx);
4792                 ++ctx->pin_count;
4793
4794                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4795
4796                 if (clone_ctx)
4797                         put_ctx(clone_ctx);
4798         } else {
4799                 ctx = alloc_perf_context(task);
4800                 err = -ENOMEM;
4801                 if (!ctx)
4802                         goto errout;
4803
4804                 err = 0;
4805                 mutex_lock(&task->perf_event_mutex);
4806                 /*
4807                  * If it has already passed perf_event_exit_task().
4808                  * we must see PF_EXITING, it takes this mutex too.
4809                  */
4810                 if (task->flags & PF_EXITING)
4811                         err = -ESRCH;
4812                 else if (task->perf_event_ctxp)
4813                         err = -EAGAIN;
4814                 else {
4815                         get_ctx(ctx);
4816                         ++ctx->pin_count;
4817                         rcu_assign_pointer(task->perf_event_ctxp, ctx);
4818                 }
4819                 mutex_unlock(&task->perf_event_mutex);
4820
4821                 if (unlikely(err)) {
4822                         put_ctx(ctx);
4823
4824                         if (err == -EAGAIN)
4825                                 goto retry;
4826                         goto errout;
4827                 }
4828         }
4829
4830         return ctx;
4831
4832 errout:
4833         return ERR_PTR(err);
4834 }
4835
4836 static struct perf_event_pmu_context *
4837 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4838                      struct perf_event *event)
4839 {
4840         struct perf_event_pmu_context *new = NULL, *epc;
4841         void *task_ctx_data = NULL;
4842
4843         if (!ctx->task) {
4844                 /*
4845                  * perf_pmu_migrate_context() / __perf_pmu_install_event()
4846                  * relies on the fact that find_get_pmu_context() cannot fail
4847                  * for CPU contexts.
4848                  */
4849                 struct perf_cpu_pmu_context *cpc;
4850
4851                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4852                 epc = &cpc->epc;
4853                 raw_spin_lock_irq(&ctx->lock);
4854                 if (!epc->ctx) {
4855                         atomic_set(&epc->refcount, 1);
4856                         epc->embedded = 1;
4857                         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4858                         epc->ctx = ctx;
4859                 } else {
4860                         WARN_ON_ONCE(epc->ctx != ctx);
4861                         atomic_inc(&epc->refcount);
4862                 }
4863                 raw_spin_unlock_irq(&ctx->lock);
4864                 return epc;
4865         }
4866
4867         new = kzalloc(sizeof(*epc), GFP_KERNEL);
4868         if (!new)
4869                 return ERR_PTR(-ENOMEM);
4870
4871         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4872                 task_ctx_data = alloc_task_ctx_data(pmu);
4873                 if (!task_ctx_data) {
4874                         kfree(new);
4875                         return ERR_PTR(-ENOMEM);
4876                 }
4877         }
4878
4879         __perf_init_event_pmu_context(new, pmu);
4880
4881         /*
4882          * XXX
4883          *
4884          * lockdep_assert_held(&ctx->mutex);
4885          *
4886          * can't because perf_event_init_task() doesn't actually hold the
4887          * child_ctx->mutex.
4888          */
4889
4890         raw_spin_lock_irq(&ctx->lock);
4891         list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4892                 if (epc->pmu == pmu) {
4893                         WARN_ON_ONCE(epc->ctx != ctx);
4894                         atomic_inc(&epc->refcount);
4895                         goto found_epc;
4896                 }
4897         }
4898
4899         epc = new;
4900         new = NULL;
4901
4902         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4903         epc->ctx = ctx;
4904
4905 found_epc:
4906         if (task_ctx_data && !epc->task_ctx_data) {
4907                 epc->task_ctx_data = task_ctx_data;
4908                 task_ctx_data = NULL;
4909                 ctx->nr_task_data++;
4910         }
4911         raw_spin_unlock_irq(&ctx->lock);
4912
4913         free_task_ctx_data(pmu, task_ctx_data);
4914         kfree(new);
4915
4916         return epc;
4917 }
4918
4919 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4920 {
4921         WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4922 }
4923
4924 static void free_epc_rcu(struct rcu_head *head)
4925 {
4926         struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4927
4928         kfree(epc->task_ctx_data);
4929         kfree(epc);
4930 }
4931
4932 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4933 {
4934         struct perf_event_context *ctx = epc->ctx;
4935         unsigned long flags;
4936
4937         /*
4938          * XXX
4939          *
4940          * lockdep_assert_held(&ctx->mutex);
4941          *
4942          * can't because of the call-site in _free_event()/put_event()
4943          * which isn't always called under ctx->mutex.
4944          */
4945         if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4946                 return;
4947
4948         WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4949
4950         list_del_init(&epc->pmu_ctx_entry);
4951         epc->ctx = NULL;
4952
4953         WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4954         WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4955
4956         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4957
4958         if (epc->embedded)
4959                 return;
4960
4961         call_rcu(&epc->rcu_head, free_epc_rcu);
4962 }
4963
4964 static void perf_event_free_filter(struct perf_event *event);
4965
4966 static void free_event_rcu(struct rcu_head *head)
4967 {
4968         struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4969
4970         if (event->ns)
4971                 put_pid_ns(event->ns);
4972         perf_event_free_filter(event);
4973         kmem_cache_free(perf_event_cache, event);
4974 }
4975
4976 static void ring_buffer_attach(struct perf_event *event,
4977                                struct perf_buffer *rb);
4978
4979 static void detach_sb_event(struct perf_event *event)
4980 {
4981         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4982
4983         raw_spin_lock(&pel->lock);
4984         list_del_rcu(&event->sb_list);
4985         raw_spin_unlock(&pel->lock);
4986 }
4987
4988 static bool is_sb_event(struct perf_event *event)
4989 {
4990         struct perf_event_attr *attr = &event->attr;
4991
4992         if (event->parent)
4993                 return false;
4994
4995         if (event->attach_state & PERF_ATTACH_TASK)
4996                 return false;
4997
4998         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4999             attr->comm || attr->comm_exec ||
5000             attr->task || attr->ksymbol ||
5001             attr->context_switch || attr->text_poke ||
5002             attr->bpf_event)
5003                 return true;
5004         return false;
5005 }
5006
5007 static void unaccount_pmu_sb_event(struct perf_event *event)
5008 {
5009         if (is_sb_event(event))
5010                 detach_sb_event(event);
5011 }
5012
5013 #ifdef CONFIG_NO_HZ_FULL
5014 static DEFINE_SPINLOCK(nr_freq_lock);
5015 #endif
5016
5017 static void unaccount_freq_event_nohz(void)
5018 {
5019 #ifdef CONFIG_NO_HZ_FULL
5020         spin_lock(&nr_freq_lock);
5021         if (atomic_dec_and_test(&nr_freq_events))
5022                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5023         spin_unlock(&nr_freq_lock);
5024 #endif
5025 }
5026
5027 static void unaccount_freq_event(void)
5028 {
5029         if (tick_nohz_full_enabled())
5030                 unaccount_freq_event_nohz();
5031         else
5032                 atomic_dec(&nr_freq_events);
5033 }
5034
5035 static void unaccount_event(struct perf_event *event)
5036 {
5037         bool dec = false;
5038
5039         if (event->parent)
5040                 return;
5041
5042         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5043                 dec = true;
5044         if (event->attr.mmap || event->attr.mmap_data)
5045                 atomic_dec(&nr_mmap_events);
5046         if (event->attr.build_id)
5047                 atomic_dec(&nr_build_id_events);
5048         if (event->attr.comm)
5049                 atomic_dec(&nr_comm_events);
5050         if (event->attr.namespaces)
5051                 atomic_dec(&nr_namespaces_events);
5052         if (event->attr.cgroup)
5053                 atomic_dec(&nr_cgroup_events);
5054         if (event->attr.task)
5055                 atomic_dec(&nr_task_events);
5056         if (event->attr.freq)
5057                 unaccount_freq_event();
5058         if (event->attr.context_switch) {
5059                 dec = true;
5060                 atomic_dec(&nr_switch_events);
5061         }
5062         if (is_cgroup_event(event))
5063                 dec = true;
5064         if (has_branch_stack(event))
5065                 dec = true;
5066         if (event->attr.ksymbol)
5067                 atomic_dec(&nr_ksymbol_events);
5068         if (event->attr.bpf_event)
5069                 atomic_dec(&nr_bpf_events);
5070         if (event->attr.text_poke)
5071                 atomic_dec(&nr_text_poke_events);
5072
5073         if (dec) {
5074                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5075                         schedule_delayed_work(&perf_sched_work, HZ);
5076         }
5077
5078         unaccount_pmu_sb_event(event);
5079 }
5080
5081 static void perf_sched_delayed(struct work_struct *work)
5082 {
5083         mutex_lock(&perf_sched_mutex);
5084         if (atomic_dec_and_test(&perf_sched_count))
5085                 static_branch_disable(&perf_sched_events);
5086         mutex_unlock(&perf_sched_mutex);
5087 }
5088
5089 /*
5090  * The following implement mutual exclusion of events on "exclusive" pmus
5091  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5092  * at a time, so we disallow creating events that might conflict, namely:
5093  *
5094  *  1) cpu-wide events in the presence of per-task events,
5095  *  2) per-task events in the presence of cpu-wide events,
5096  *  3) two matching events on the same perf_event_context.
5097  *
5098  * The former two cases are handled in the allocation path (perf_event_alloc(),
5099  * _free_event()), the latter -- before the first perf_install_in_context().
5100  */
5101 static int exclusive_event_init(struct perf_event *event)
5102 {
5103         struct pmu *pmu = event->pmu;
5104
5105         if (!is_exclusive_pmu(pmu))
5106                 return 0;
5107
5108         /*
5109          * Prevent co-existence of per-task and cpu-wide events on the
5110          * same exclusive pmu.
5111          *
5112          * Negative pmu::exclusive_cnt means there are cpu-wide
5113          * events on this "exclusive" pmu, positive means there are
5114          * per-task events.
5115          *
5116          * Since this is called in perf_event_alloc() path, event::ctx
5117          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5118          * to mean "per-task event", because unlike other attach states it
5119          * never gets cleared.
5120          */
5121         if (event->attach_state & PERF_ATTACH_TASK) {
5122                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5123                         return -EBUSY;
5124         } else {
5125                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5126                         return -EBUSY;
5127         }
5128
5129         return 0;
5130 }
5131
5132 static void exclusive_event_destroy(struct perf_event *event)
5133 {
5134         struct pmu *pmu = event->pmu;
5135
5136         if (!is_exclusive_pmu(pmu))
5137                 return;
5138
5139         /* see comment in exclusive_event_init() */
5140         if (event->attach_state & PERF_ATTACH_TASK)
5141                 atomic_dec(&pmu->exclusive_cnt);
5142         else
5143                 atomic_inc(&pmu->exclusive_cnt);
5144 }
5145
5146 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5147 {
5148         if ((e1->pmu == e2->pmu) &&
5149             (e1->cpu == e2->cpu ||
5150              e1->cpu == -1 ||
5151              e2->cpu == -1))
5152                 return true;
5153         return false;
5154 }
5155
5156 static bool exclusive_event_installable(struct perf_event *event,
5157                                         struct perf_event_context *ctx)
5158 {
5159         struct perf_event *iter_event;
5160         struct pmu *pmu = event->pmu;
5161
5162         lockdep_assert_held(&ctx->mutex);
5163
5164         if (!is_exclusive_pmu(pmu))
5165                 return true;
5166
5167         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5168                 if (exclusive_event_match(iter_event, event))
5169                         return false;
5170         }
5171
5172         return true;
5173 }
5174
5175 static void perf_addr_filters_splice(struct perf_event *event,
5176                                        struct list_head *head);
5177
5178 static void _free_event(struct perf_event *event)
5179 {
5180         irq_work_sync(&event->pending_irq);
5181
5182         unaccount_event(event);
5183
5184         security_perf_event_free(event);
5185
5186         if (event->rb) {
5187                 /*
5188                  * Can happen when we close an event with re-directed output.
5189                  *
5190                  * Since we have a 0 refcount, perf_mmap_close() will skip
5191                  * over us; possibly making our ring_buffer_put() the last.
5192                  */
5193                 mutex_lock(&event->mmap_mutex);
5194                 ring_buffer_attach(event, NULL);
5195                 mutex_unlock(&event->mmap_mutex);
5196         }
5197
5198         if (is_cgroup_event(event))
5199                 perf_detach_cgroup(event);
5200
5201         if (!event->parent) {
5202                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5203                         put_callchain_buffers();
5204         }
5205
5206         perf_event_free_bpf_prog(event);
5207         perf_addr_filters_splice(event, NULL);
5208         kfree(event->addr_filter_ranges);
5209
5210         if (event->destroy)
5211                 event->destroy(event);
5212
5213         /*
5214          * Must be after ->destroy(), due to uprobe_perf_close() using
5215          * hw.target.
5216          */
5217         if (event->hw.target)
5218                 put_task_struct(event->hw.target);
5219
5220         if (event->pmu_ctx)
5221                 put_pmu_ctx(event->pmu_ctx);
5222
5223         /*
5224          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5225          * all task references must be cleaned up.
5226          */
5227         if (event->ctx)
5228                 put_ctx(event->ctx);
5229
5230         exclusive_event_destroy(event);
5231         module_put(event->pmu->module);
5232
5233         call_rcu(&event->rcu_head, free_event_rcu);
5234 }
5235
5236 /*
5237  * Used to free events which have a known refcount of 1, such as in error paths
5238  * where the event isn't exposed yet and inherited events.
5239  */
5240 static void free_event(struct perf_event *event)
5241 {
5242         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5243                                 "unexpected event refcount: %ld; ptr=%p\n",
5244                                 atomic_long_read(&event->refcount), event)) {
5245                 /* leak to avoid use-after-free */
5246                 return;
5247         }
5248
5249         _free_event(event);
5250 }
5251
5252 /*
5253  * Remove user event from the owner task.
5254  */
5255 static void perf_remove_from_owner(struct perf_event *event)
5256 {
5257         struct task_struct *owner;
5258
5259         rcu_read_lock();
5260         /*
5261          * Matches the smp_store_release() in perf_event_exit_task(). If we
5262          * observe !owner it means the list deletion is complete and we can
5263          * indeed free this event, otherwise we need to serialize on
5264          * owner->perf_event_mutex.
5265          */
5266         owner = READ_ONCE(event->owner);
5267         if (owner) {
5268                 /*
5269                  * Since delayed_put_task_struct() also drops the last
5270                  * task reference we can safely take a new reference
5271                  * while holding the rcu_read_lock().
5272                  */
5273                 get_task_struct(owner);
5274         }
5275         rcu_read_unlock();
5276
5277         if (owner) {
5278                 /*
5279                  * If we're here through perf_event_exit_task() we're already
5280                  * holding ctx->mutex which would be an inversion wrt. the
5281                  * normal lock order.
5282                  *
5283                  * However we can safely take this lock because its the child
5284                  * ctx->mutex.
5285                  */
5286                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5287
5288                 /*
5289                  * We have to re-check the event->owner field, if it is cleared
5290                  * we raced with perf_event_exit_task(), acquiring the mutex
5291                  * ensured they're done, and we can proceed with freeing the
5292                  * event.
5293                  */
5294                 if (event->owner) {
5295                         list_del_init(&event->owner_entry);
5296                         smp_store_release(&event->owner, NULL);
5297                 }
5298                 mutex_unlock(&owner->perf_event_mutex);
5299                 put_task_struct(owner);
5300         }
5301 }
5302
5303 static void put_event(struct perf_event *event)
5304 {
5305         if (!atomic_long_dec_and_test(&event->refcount))
5306                 return;
5307
5308         _free_event(event);
5309 }
5310
5311 /*
5312  * Kill an event dead; while event:refcount will preserve the event
5313  * object, it will not preserve its functionality. Once the last 'user'
5314  * gives up the object, we'll destroy the thing.
5315  */
5316 int perf_event_release_kernel(struct perf_event *event)
5317 {
5318         struct perf_event_context *ctx = event->ctx;
5319         struct perf_event *child, *tmp;
5320         LIST_HEAD(free_list);
5321
5322         /*
5323          * If we got here through err_alloc: free_event(event); we will not
5324          * have attached to a context yet.
5325          */
5326         if (!ctx) {
5327                 WARN_ON_ONCE(event->attach_state &
5328                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5329                 goto no_ctx;
5330         }
5331
5332         if (!is_kernel_event(event))
5333                 perf_remove_from_owner(event);
5334
5335         ctx = perf_event_ctx_lock(event);
5336         WARN_ON_ONCE(ctx->parent_ctx);
5337
5338         /*
5339          * Mark this event as STATE_DEAD, there is no external reference to it
5340          * anymore.
5341          *
5342          * Anybody acquiring event->child_mutex after the below loop _must_
5343          * also see this, most importantly inherit_event() which will avoid
5344          * placing more children on the list.
5345          *
5346          * Thus this guarantees that we will in fact observe and kill _ALL_
5347          * child events.
5348          */
5349         perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5350
5351         perf_event_ctx_unlock(event, ctx);
5352
5353 again:
5354         mutex_lock(&event->child_mutex);
5355         list_for_each_entry(child, &event->child_list, child_list) {
5356
5357                 /*
5358                  * Cannot change, child events are not migrated, see the
5359                  * comment with perf_event_ctx_lock_nested().
5360                  */
5361                 ctx = READ_ONCE(child->ctx);
5362                 /*
5363                  * Since child_mutex nests inside ctx::mutex, we must jump
5364                  * through hoops. We start by grabbing a reference on the ctx.
5365                  *
5366                  * Since the event cannot get freed while we hold the
5367                  * child_mutex, the context must also exist and have a !0
5368                  * reference count.
5369                  */
5370                 get_ctx(ctx);
5371
5372                 /*
5373                  * Now that we have a ctx ref, we can drop child_mutex, and
5374                  * acquire ctx::mutex without fear of it going away. Then we
5375                  * can re-acquire child_mutex.
5376                  */
5377                 mutex_unlock(&event->child_mutex);
5378                 mutex_lock(&ctx->mutex);
5379                 mutex_lock(&event->child_mutex);
5380
5381                 /*
5382                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5383                  * state, if child is still the first entry, it didn't get freed
5384                  * and we can continue doing so.
5385                  */
5386                 tmp = list_first_entry_or_null(&event->child_list,
5387                                                struct perf_event, child_list);
5388                 if (tmp == child) {
5389                         perf_remove_from_context(child, DETACH_GROUP);
5390                         list_move(&child->child_list, &free_list);
5391                         /*
5392                          * This matches the refcount bump in inherit_event();
5393                          * this can't be the last reference.
5394                          */
5395                         put_event(event);
5396                 }
5397
5398                 mutex_unlock(&event->child_mutex);
5399                 mutex_unlock(&ctx->mutex);
5400                 put_ctx(ctx);
5401                 goto again;
5402         }
5403         mutex_unlock(&event->child_mutex);
5404
5405         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5406                 void *var = &child->ctx->refcount;
5407
5408                 list_del(&child->child_list);
5409                 free_event(child);
5410
5411                 /*
5412                  * Wake any perf_event_free_task() waiting for this event to be
5413                  * freed.
5414                  */
5415                 smp_mb(); /* pairs with wait_var_event() */
5416                 wake_up_var(var);
5417         }
5418
5419 no_ctx:
5420         put_event(event); /* Must be the 'last' reference */
5421         return 0;
5422 }
5423 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5424
5425 /*
5426  * Called when the last reference to the file is gone.
5427  */
5428 static int perf_release(struct inode *inode, struct file *file)
5429 {
5430         perf_event_release_kernel(file->private_data);
5431         return 0;
5432 }
5433
5434 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5435 {
5436         struct perf_event *child;
5437         u64 total = 0;
5438
5439         *enabled = 0;
5440         *running = 0;
5441
5442         mutex_lock(&event->child_mutex);
5443
5444         (void)perf_event_read(event, false);
5445         total += perf_event_count(event);
5446
5447         *enabled += event->total_time_enabled +
5448                         atomic64_read(&event->child_total_time_enabled);
5449         *running += event->total_time_running +
5450                         atomic64_read(&event->child_total_time_running);
5451
5452         list_for_each_entry(child, &event->child_list, child_list) {
5453                 (void)perf_event_read(child, false);
5454                 total += perf_event_count(child);
5455                 *enabled += child->total_time_enabled;
5456                 *running += child->total_time_running;
5457         }
5458         mutex_unlock(&event->child_mutex);
5459
5460         return total;
5461 }
5462
5463 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5464 {
5465         struct perf_event_context *ctx;
5466         u64 count;
5467
5468         ctx = perf_event_ctx_lock(event);
5469         count = __perf_event_read_value(event, enabled, running);
5470         perf_event_ctx_unlock(event, ctx);
5471
5472         return count;
5473 }
5474 EXPORT_SYMBOL_GPL(perf_event_read_value);
5475
5476 static int __perf_read_group_add(struct perf_event *leader,
5477                                         u64 read_format, u64 *values)
5478 {
5479         struct perf_event_context *ctx = leader->ctx;
5480         struct perf_event *sub, *parent;
5481         unsigned long flags;
5482         int n = 1; /* skip @nr */
5483         int ret;
5484
5485         ret = perf_event_read(leader, true);
5486         if (ret)
5487                 return ret;
5488
5489         raw_spin_lock_irqsave(&ctx->lock, flags);
5490         /*
5491          * Verify the grouping between the parent and child (inherited)
5492          * events is still in tact.
5493          *
5494          * Specifically:
5495          *  - leader->ctx->lock pins leader->sibling_list
5496          *  - parent->child_mutex pins parent->child_list
5497          *  - parent->ctx->mutex pins parent->sibling_list
5498          *
5499          * Because parent->ctx != leader->ctx (and child_list nests inside
5500          * ctx->mutex), group destruction is not atomic between children, also
5501          * see perf_event_release_kernel(). Additionally, parent can grow the
5502          * group.
5503          *
5504          * Therefore it is possible to have parent and child groups in a
5505          * different configuration and summing over such a beast makes no sense
5506          * what so ever.
5507          *
5508          * Reject this.
5509          */
5510         parent = leader->parent;
5511         if (parent &&
5512             (parent->group_generation != leader->group_generation ||
5513              parent->nr_siblings != leader->nr_siblings)) {
5514                 ret = -ECHILD;
5515                 goto unlock;
5516         }
5517
5518         /*
5519          * Since we co-schedule groups, {enabled,running} times of siblings
5520          * will be identical to those of the leader, so we only publish one
5521          * set.
5522          */
5523         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5524                 values[n++] += leader->total_time_enabled +
5525                         atomic64_read(&leader->child_total_time_enabled);
5526         }
5527
5528         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5529                 values[n++] += leader->total_time_running +
5530                         atomic64_read(&leader->child_total_time_running);
5531         }
5532
5533         /*
5534          * Write {count,id} tuples for every sibling.
5535          */
5536         values[n++] += perf_event_count(leader);
5537         if (read_format & PERF_FORMAT_ID)
5538                 values[n++] = primary_event_id(leader);
5539         if (read_format & PERF_FORMAT_LOST)
5540                 values[n++] = atomic64_read(&leader->lost_samples);
5541
5542         for_each_sibling_event(sub, leader) {
5543                 values[n++] += perf_event_count(sub);
5544                 if (read_format & PERF_FORMAT_ID)
5545                         values[n++] = primary_event_id(sub);
5546                 if (read_format & PERF_FORMAT_LOST)
5547                         values[n++] = atomic64_read(&sub->lost_samples);
5548         }
5549
5550 unlock:
5551         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5552         return ret;
5553 }
5554
5555 static int perf_read_group(struct perf_event *event,
5556                                    u64 read_format, char __user *buf)
5557 {
5558         struct perf_event *leader = event->group_leader, *child;
5559         struct perf_event_context *ctx = leader->ctx;
5560         int ret;
5561         u64 *values;
5562
5563         lockdep_assert_held(&ctx->mutex);
5564
5565         values = kzalloc(event->read_size, GFP_KERNEL);
5566         if (!values)
5567                 return -ENOMEM;
5568
5569         values[0] = 1 + leader->nr_siblings;
5570
5571         mutex_lock(&leader->child_mutex);
5572
5573         ret = __perf_read_group_add(leader, read_format, values);
5574         if (ret)
5575                 goto unlock;
5576
5577         list_for_each_entry(child, &leader->child_list, child_list) {
5578                 ret = __perf_read_group_add(child, read_format, values);
5579                 if (ret)
5580                         goto unlock;
5581         }
5582
5583         mutex_unlock(&leader->child_mutex);
5584
5585         ret = event->read_size;
5586         if (copy_to_user(buf, values, event->read_size))
5587                 ret = -EFAULT;
5588         goto out;
5589
5590 unlock:
5591         mutex_unlock(&leader->child_mutex);
5592 out:
5593         kfree(values);
5594         return ret;
5595 }
5596
5597 static int perf_read_one(struct perf_event *event,
5598                                  u64 read_format, char __user *buf)
5599 {
5600         u64 enabled, running;
5601         u64 values[5];
5602         int n = 0;
5603
5604         values[n++] = __perf_event_read_value(event, &enabled, &running);
5605         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5606                 values[n++] = enabled;
5607         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5608                 values[n++] = running;
5609         if (read_format & PERF_FORMAT_ID)
5610                 values[n++] = primary_event_id(event);
5611         if (read_format & PERF_FORMAT_LOST)
5612                 values[n++] = atomic64_read(&event->lost_samples);
5613
5614         if (copy_to_user(buf, values, n * sizeof(u64)))
5615                 return -EFAULT;
5616
5617         return n * sizeof(u64);
5618 }
5619
5620 static bool is_event_hup(struct perf_event *event)
5621 {
5622         bool no_children;
5623
5624         if (event->state > PERF_EVENT_STATE_EXIT)
5625                 return false;
5626
5627         mutex_lock(&event->child_mutex);
5628         no_children = list_empty(&event->child_list);
5629         mutex_unlock(&event->child_mutex);
5630         return no_children;
5631 }
5632
5633 /*
5634  * Read the performance event - simple non blocking version for now
5635  */
5636 static ssize_t
5637 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5638 {
5639         u64 read_format = event->attr.read_format;
5640         int ret;
5641
5642         /*
5643          * Return end-of-file for a read on an event that is in
5644          * error state (i.e. because it was pinned but it couldn't be
5645          * scheduled on to the CPU at some point).
5646          */
5647         if (event->state == PERF_EVENT_STATE_ERROR)
5648                 return 0;
5649
5650         if (count < event->read_size)
5651                 return -ENOSPC;
5652
5653         WARN_ON_ONCE(event->ctx->parent_ctx);
5654         if (read_format & PERF_FORMAT_GROUP)
5655                 ret = perf_read_group(event, read_format, buf);
5656         else
5657                 ret = perf_read_one(event, read_format, buf);
5658
5659         return ret;
5660 }
5661
5662 static ssize_t
5663 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5664 {
5665         struct perf_event *event = file->private_data;
5666         struct perf_event_context *ctx;
5667         int ret;
5668
5669         ret = security_perf_event_read(event);
5670         if (ret)
5671                 return ret;
5672
5673         ctx = perf_event_ctx_lock(event);
5674         ret = __perf_read(event, buf, count);
5675         perf_event_ctx_unlock(event, ctx);
5676
5677         return ret;
5678 }
5679
5680 static __poll_t perf_poll(struct file *file, poll_table *wait)
5681 {
5682         struct perf_event *event = file->private_data;
5683         struct perf_buffer *rb;
5684         __poll_t events = EPOLLHUP;
5685
5686         poll_wait(file, &event->waitq, wait);
5687
5688         if (is_event_hup(event))
5689                 return events;
5690
5691         /*
5692          * Pin the event->rb by taking event->mmap_mutex; otherwise
5693          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5694          */
5695         mutex_lock(&event->mmap_mutex);
5696         rb = event->rb;
5697         if (rb)
5698                 events = atomic_xchg(&rb->poll, 0);
5699         mutex_unlock(&event->mmap_mutex);
5700         return events;
5701 }
5702
5703 static void _perf_event_reset(struct perf_event *event)
5704 {
5705         (void)perf_event_read(event, false);
5706         local64_set(&event->count, 0);
5707         perf_event_update_userpage(event);
5708 }
5709
5710 /* Assume it's not an event with inherit set. */
5711 u64 perf_event_pause(struct perf_event *event, bool reset)
5712 {
5713         struct perf_event_context *ctx;
5714         u64 count;
5715
5716         ctx = perf_event_ctx_lock(event);
5717         WARN_ON_ONCE(event->attr.inherit);
5718         _perf_event_disable(event);
5719         count = local64_read(&event->count);
5720         if (reset)
5721                 local64_set(&event->count, 0);
5722         perf_event_ctx_unlock(event, ctx);
5723
5724         return count;
5725 }
5726 EXPORT_SYMBOL_GPL(perf_event_pause);
5727
5728 /*
5729  * Holding the top-level event's child_mutex means that any
5730  * descendant process that has inherited this event will block
5731  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5732  * task existence requirements of perf_event_enable/disable.
5733  */
5734 static void perf_event_for_each_child(struct perf_event *event,
5735                                         void (*func)(struct perf_event *))
5736 {
5737         struct perf_event *child;
5738
5739         WARN_ON_ONCE(event->ctx->parent_ctx);
5740
5741         mutex_lock(&event->child_mutex);
5742         func(event);
5743         list_for_each_entry(child, &event->child_list, child_list)
5744                 func(child);
5745         mutex_unlock(&event->child_mutex);
5746 }
5747
5748 static void perf_event_for_each(struct perf_event *event,
5749                                   void (*func)(struct perf_event *))
5750 {
5751         struct perf_event_context *ctx = event->ctx;
5752         struct perf_event *sibling;
5753
5754         lockdep_assert_held(&ctx->mutex);
5755
5756         event = event->group_leader;
5757
5758         perf_event_for_each_child(event, func);
5759         for_each_sibling_event(sibling, event)
5760                 perf_event_for_each_child(sibling, func);
5761 }
5762
5763 static void __perf_event_period(struct perf_event *event,
5764                                 struct perf_cpu_context *cpuctx,
5765                                 struct perf_event_context *ctx,
5766                                 void *info)
5767 {
5768         u64 value = *((u64 *)info);
5769         bool active;
5770
5771         if (event->attr.freq) {
5772                 event->attr.sample_freq = value;
5773         } else {
5774                 event->attr.sample_period = value;
5775                 event->hw.sample_period = value;
5776         }
5777
5778         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5779         if (active) {
5780                 perf_pmu_disable(event->pmu);
5781                 /*
5782                  * We could be throttled; unthrottle now to avoid the tick
5783                  * trying to unthrottle while we already re-started the event.
5784                  */
5785                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5786                         event->hw.interrupts = 0;
5787                         perf_log_throttle(event, 1);
5788                 }
5789                 event->pmu->stop(event, PERF_EF_UPDATE);
5790         }
5791
5792         local64_set(&event->hw.period_left, 0);
5793
5794         if (active) {
5795                 event->pmu->start(event, PERF_EF_RELOAD);
5796                 perf_pmu_enable(event->pmu);
5797         }
5798 }
5799
5800 static int perf_event_check_period(struct perf_event *event, u64 value)
5801 {
5802         return event->pmu->check_period(event, value);
5803 }
5804
5805 static int _perf_event_period(struct perf_event *event, u64 value)
5806 {
5807         if (!is_sampling_event(event))
5808                 return -EINVAL;
5809
5810         if (!value)
5811                 return -EINVAL;
5812
5813         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5814                 return -EINVAL;
5815
5816         if (perf_event_check_period(event, value))
5817                 return -EINVAL;
5818
5819         if (!event->attr.freq && (value & (1ULL << 63)))
5820                 return -EINVAL;
5821
5822         event_function_call(event, __perf_event_period, &value);
5823
5824         return 0;
5825 }
5826
5827 int perf_event_period(struct perf_event *event, u64 value)
5828 {
5829         struct perf_event_context *ctx;
5830         int ret;
5831
5832         ctx = perf_event_ctx_lock(event);
5833         ret = _perf_event_period(event, value);
5834         perf_event_ctx_unlock(event, ctx);
5835
5836         return ret;
5837 }
5838 EXPORT_SYMBOL_GPL(perf_event_period);
5839
5840 static const struct file_operations perf_fops;
5841
5842 static inline int perf_fget_light(int fd, struct fd *p)
5843 {
5844         struct fd f = fdget(fd);
5845         if (!f.file)
5846                 return -EBADF;
5847
5848         if (f.file->f_op != &perf_fops) {
5849                 fdput(f);
5850                 return -EBADF;
5851         }
5852         *p = f;
5853         return 0;
5854 }
5855
5856 static int perf_event_set_output(struct perf_event *event,
5857                                  struct perf_event *output_event);
5858 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5859 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5860                           struct perf_event_attr *attr);
5861
5862 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5863 {
5864         void (*func)(struct perf_event *);
5865         u32 flags = arg;
5866
5867         switch (cmd) {
5868         case PERF_EVENT_IOC_ENABLE:
5869                 func = _perf_event_enable;
5870                 break;
5871         case PERF_EVENT_IOC_DISABLE:
5872                 func = _perf_event_disable;
5873                 break;
5874         case PERF_EVENT_IOC_RESET:
5875                 func = _perf_event_reset;
5876                 break;
5877
5878         case PERF_EVENT_IOC_REFRESH:
5879                 return _perf_event_refresh(event, arg);
5880
5881         case PERF_EVENT_IOC_PERIOD:
5882         {
5883                 u64 value;
5884
5885                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5886                         return -EFAULT;
5887
5888                 return _perf_event_period(event, value);
5889         }
5890         case PERF_EVENT_IOC_ID:
5891         {
5892                 u64 id = primary_event_id(event);
5893
5894                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5895                         return -EFAULT;
5896                 return 0;
5897         }
5898
5899         case PERF_EVENT_IOC_SET_OUTPUT:
5900         {
5901                 int ret;
5902                 if (arg != -1) {
5903                         struct perf_event *output_event;
5904                         struct fd output;
5905                         ret = perf_fget_light(arg, &output);
5906                         if (ret)
5907                                 return ret;
5908                         output_event = output.file->private_data;
5909                         ret = perf_event_set_output(event, output_event);
5910                         fdput(output);
5911                 } else {
5912                         ret = perf_event_set_output(event, NULL);
5913                 }
5914                 return ret;
5915         }
5916
5917         case PERF_EVENT_IOC_SET_FILTER:
5918                 return perf_event_set_filter(event, (void __user *)arg);
5919
5920         case PERF_EVENT_IOC_SET_BPF:
5921         {
5922                 struct bpf_prog *prog;
5923                 int err;
5924
5925                 prog = bpf_prog_get(arg);
5926                 if (IS_ERR(prog))
5927                         return PTR_ERR(prog);
5928
5929                 err = perf_event_set_bpf_prog(event, prog, 0);
5930                 if (err) {
5931                         bpf_prog_put(prog);
5932                         return err;
5933                 }
5934
5935                 return 0;
5936         }
5937
5938         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5939                 struct perf_buffer *rb;
5940
5941                 rcu_read_lock();
5942                 rb = rcu_dereference(event->rb);
5943                 if (!rb || !rb->nr_pages) {
5944                         rcu_read_unlock();
5945                         return -EINVAL;
5946                 }
5947                 rb_toggle_paused(rb, !!arg);
5948                 rcu_read_unlock();
5949                 return 0;
5950         }
5951
5952         case PERF_EVENT_IOC_QUERY_BPF:
5953                 return perf_event_query_prog_array(event, (void __user *)arg);
5954
5955         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5956                 struct perf_event_attr new_attr;
5957                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5958                                          &new_attr);
5959
5960                 if (err)
5961                         return err;
5962
5963                 return perf_event_modify_attr(event,  &new_attr);
5964         }
5965         default:
5966                 return -ENOTTY;
5967         }
5968
5969         if (flags & PERF_IOC_FLAG_GROUP)
5970                 perf_event_for_each(event, func);
5971         else
5972                 perf_event_for_each_child(event, func);
5973
5974         return 0;
5975 }
5976
5977 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5978 {
5979         struct perf_event *event = file->private_data;
5980         struct perf_event_context *ctx;
5981         long ret;
5982
5983         /* Treat ioctl like writes as it is likely a mutating operation. */
5984         ret = security_perf_event_write(event);
5985         if (ret)
5986                 return ret;
5987
5988         ctx = perf_event_ctx_lock(event);
5989         ret = _perf_ioctl(event, cmd, arg);
5990         perf_event_ctx_unlock(event, ctx);
5991
5992         return ret;
5993 }
5994
5995 #ifdef CONFIG_COMPAT
5996 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5997                                 unsigned long arg)
5998 {
5999         switch (_IOC_NR(cmd)) {
6000         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6001         case _IOC_NR(PERF_EVENT_IOC_ID):
6002         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6003         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6004                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6005                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6006                         cmd &= ~IOCSIZE_MASK;
6007                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6008                 }
6009                 break;
6010         }
6011         return perf_ioctl(file, cmd, arg);
6012 }
6013 #else
6014 # define perf_compat_ioctl NULL
6015 #endif
6016
6017 int perf_event_task_enable(void)
6018 {
6019         struct perf_event_context *ctx;
6020         struct perf_event *event;
6021
6022         mutex_lock(&current->perf_event_mutex);
6023         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6024                 ctx = perf_event_ctx_lock(event);
6025                 perf_event_for_each_child(event, _perf_event_enable);
6026                 perf_event_ctx_unlock(event, ctx);
6027         }
6028         mutex_unlock(&current->perf_event_mutex);
6029
6030         return 0;
6031 }
6032
6033 int perf_event_task_disable(void)
6034 {
6035         struct perf_event_context *ctx;
6036         struct perf_event *event;
6037
6038         mutex_lock(&current->perf_event_mutex);
6039         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6040                 ctx = perf_event_ctx_lock(event);
6041                 perf_event_for_each_child(event, _perf_event_disable);
6042                 perf_event_ctx_unlock(event, ctx);
6043         }
6044         mutex_unlock(&current->perf_event_mutex);
6045
6046         return 0;
6047 }
6048
6049 static int perf_event_index(struct perf_event *event)
6050 {
6051         if (event->hw.state & PERF_HES_STOPPED)
6052                 return 0;
6053
6054         if (event->state != PERF_EVENT_STATE_ACTIVE)
6055                 return 0;
6056
6057         return event->pmu->event_idx(event);
6058 }
6059
6060 static void perf_event_init_userpage(struct perf_event *event)
6061 {
6062         struct perf_event_mmap_page *userpg;
6063         struct perf_buffer *rb;
6064
6065         rcu_read_lock();
6066         rb = rcu_dereference(event->rb);
6067         if (!rb)
6068                 goto unlock;
6069
6070         userpg = rb->user_page;
6071
6072         /* Allow new userspace to detect that bit 0 is deprecated */
6073         userpg->cap_bit0_is_deprecated = 1;
6074         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6075         userpg->data_offset = PAGE_SIZE;
6076         userpg->data_size = perf_data_size(rb);
6077
6078 unlock:
6079         rcu_read_unlock();
6080 }
6081
6082 void __weak arch_perf_update_userpage(
6083         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6084 {
6085 }
6086
6087 /*
6088  * Callers need to ensure there can be no nesting of this function, otherwise
6089  * the seqlock logic goes bad. We can not serialize this because the arch
6090  * code calls this from NMI context.
6091  */
6092 void perf_event_update_userpage(struct perf_event *event)
6093 {
6094         struct perf_event_mmap_page *userpg;
6095         struct perf_buffer *rb;
6096         u64 enabled, running, now;
6097
6098         rcu_read_lock();
6099         rb = rcu_dereference(event->rb);
6100         if (!rb)
6101                 goto unlock;
6102
6103         /*
6104          * compute total_time_enabled, total_time_running
6105          * based on snapshot values taken when the event
6106          * was last scheduled in.
6107          *
6108          * we cannot simply called update_context_time()
6109          * because of locking issue as we can be called in
6110          * NMI context
6111          */
6112         calc_timer_values(event, &now, &enabled, &running);
6113
6114         userpg = rb->user_page;
6115         /*
6116          * Disable preemption to guarantee consistent time stamps are stored to
6117          * the user page.
6118          */
6119         preempt_disable();
6120         ++userpg->lock;
6121         barrier();
6122         userpg->index = perf_event_index(event);
6123         userpg->offset = perf_event_count(event);
6124         if (userpg->index)
6125                 userpg->offset -= local64_read(&event->hw.prev_count);
6126
6127         userpg->time_enabled = enabled +
6128                         atomic64_read(&event->child_total_time_enabled);
6129
6130         userpg->time_running = running +
6131                         atomic64_read(&event->child_total_time_running);
6132
6133         arch_perf_update_userpage(event, userpg, now);
6134
6135         barrier();
6136         ++userpg->lock;
6137         preempt_enable();
6138 unlock:
6139         rcu_read_unlock();
6140 }
6141 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6142
6143 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6144 {
6145         struct perf_event *event = vmf->vma->vm_file->private_data;
6146         struct perf_buffer *rb;
6147         vm_fault_t ret = VM_FAULT_SIGBUS;
6148
6149         if (vmf->flags & FAULT_FLAG_MKWRITE) {
6150                 if (vmf->pgoff == 0)
6151                         ret = 0;
6152                 return ret;
6153         }
6154
6155         rcu_read_lock();
6156         rb = rcu_dereference(event->rb);
6157         if (!rb)
6158                 goto unlock;
6159
6160         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6161                 goto unlock;
6162
6163         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6164         if (!vmf->page)
6165                 goto unlock;
6166
6167         get_page(vmf->page);
6168         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6169         vmf->page->index   = vmf->pgoff;
6170
6171         ret = 0;
6172 unlock:
6173         rcu_read_unlock();
6174
6175         return ret;
6176 }
6177
6178 static void ring_buffer_attach(struct perf_event *event,
6179                                struct perf_buffer *rb)
6180 {
6181         struct perf_buffer *old_rb = NULL;
6182         unsigned long flags;
6183
6184         WARN_ON_ONCE(event->parent);
6185
6186         if (event->rb) {
6187                 /*
6188                  * Should be impossible, we set this when removing
6189                  * event->rb_entry and wait/clear when adding event->rb_entry.
6190                  */
6191                 WARN_ON_ONCE(event->rcu_pending);
6192
6193                 old_rb = event->rb;
6194                 spin_lock_irqsave(&old_rb->event_lock, flags);
6195                 list_del_rcu(&event->rb_entry);
6196                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6197
6198                 event->rcu_batches = get_state_synchronize_rcu();
6199                 event->rcu_pending = 1;
6200         }
6201
6202         if (rb) {
6203                 if (event->rcu_pending) {
6204                         cond_synchronize_rcu(event->rcu_batches);
6205                         event->rcu_pending = 0;
6206                 }
6207
6208                 spin_lock_irqsave(&rb->event_lock, flags);
6209                 list_add_rcu(&event->rb_entry, &rb->event_list);
6210                 spin_unlock_irqrestore(&rb->event_lock, flags);
6211         }
6212
6213         /*
6214          * Avoid racing with perf_mmap_close(AUX): stop the event
6215          * before swizzling the event::rb pointer; if it's getting
6216          * unmapped, its aux_mmap_count will be 0 and it won't
6217          * restart. See the comment in __perf_pmu_output_stop().
6218          *
6219          * Data will inevitably be lost when set_output is done in
6220          * mid-air, but then again, whoever does it like this is
6221          * not in for the data anyway.
6222          */
6223         if (has_aux(event))
6224                 perf_event_stop(event, 0);
6225
6226         rcu_assign_pointer(event->rb, rb);
6227
6228         if (old_rb) {
6229                 ring_buffer_put(old_rb);
6230                 /*
6231                  * Since we detached before setting the new rb, so that we
6232                  * could attach the new rb, we could have missed a wakeup.
6233                  * Provide it now.
6234                  */
6235                 wake_up_all(&event->waitq);
6236         }
6237 }
6238
6239 static void ring_buffer_wakeup(struct perf_event *event)
6240 {
6241         struct perf_buffer *rb;
6242
6243         if (event->parent)
6244                 event = event->parent;
6245
6246         rcu_read_lock();
6247         rb = rcu_dereference(event->rb);
6248         if (rb) {
6249                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6250                         wake_up_all(&event->waitq);
6251         }
6252         rcu_read_unlock();
6253 }
6254
6255 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6256 {
6257         struct perf_buffer *rb;
6258
6259         if (event->parent)
6260                 event = event->parent;
6261
6262         rcu_read_lock();
6263         rb = rcu_dereference(event->rb);
6264         if (rb) {
6265                 if (!refcount_inc_not_zero(&rb->refcount))
6266                         rb = NULL;
6267         }
6268         rcu_read_unlock();
6269
6270         return rb;
6271 }
6272
6273 void ring_buffer_put(struct perf_buffer *rb)
6274 {
6275         if (!refcount_dec_and_test(&rb->refcount))
6276                 return;
6277
6278         WARN_ON_ONCE(!list_empty(&rb->event_list));
6279
6280         call_rcu(&rb->rcu_head, rb_free_rcu);
6281 }
6282
6283 static void perf_mmap_open(struct vm_area_struct *vma)
6284 {
6285         struct perf_event *event = vma->vm_file->private_data;
6286
6287         atomic_inc(&event->mmap_count);
6288         atomic_inc(&event->rb->mmap_count);
6289
6290         if (vma->vm_pgoff)
6291                 atomic_inc(&event->rb->aux_mmap_count);
6292
6293         if (event->pmu->event_mapped)
6294                 event->pmu->event_mapped(event, vma->vm_mm);
6295 }
6296
6297 static void perf_pmu_output_stop(struct perf_event *event);
6298
6299 /*
6300  * A buffer can be mmap()ed multiple times; either directly through the same
6301  * event, or through other events by use of perf_event_set_output().
6302  *
6303  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6304  * the buffer here, where we still have a VM context. This means we need
6305  * to detach all events redirecting to us.
6306  */
6307 static void perf_mmap_close(struct vm_area_struct *vma)
6308 {
6309         struct perf_event *event = vma->vm_file->private_data;
6310         struct perf_buffer *rb = ring_buffer_get(event);
6311         struct user_struct *mmap_user = rb->mmap_user;
6312         int mmap_locked = rb->mmap_locked;
6313         unsigned long size = perf_data_size(rb);
6314         bool detach_rest = false;
6315
6316         if (event->pmu->event_unmapped)
6317                 event->pmu->event_unmapped(event, vma->vm_mm);
6318
6319         /*
6320          * rb->aux_mmap_count will always drop before rb->mmap_count and
6321          * event->mmap_count, so it is ok to use event->mmap_mutex to
6322          * serialize with perf_mmap here.
6323          */
6324         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6325             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6326                 /*
6327                  * Stop all AUX events that are writing to this buffer,
6328                  * so that we can free its AUX pages and corresponding PMU
6329                  * data. Note that after rb::aux_mmap_count dropped to zero,
6330                  * they won't start any more (see perf_aux_output_begin()).
6331                  */
6332                 perf_pmu_output_stop(event);
6333
6334                 /* now it's safe to free the pages */
6335                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6336                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6337
6338                 /* this has to be the last one */
6339                 rb_free_aux(rb);
6340                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6341
6342                 mutex_unlock(&event->mmap_mutex);
6343         }
6344
6345         if (atomic_dec_and_test(&rb->mmap_count))
6346                 detach_rest = true;
6347
6348         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6349                 goto out_put;
6350
6351         ring_buffer_attach(event, NULL);
6352         mutex_unlock(&event->mmap_mutex);
6353
6354         /* If there's still other mmap()s of this buffer, we're done. */
6355         if (!detach_rest)
6356                 goto out_put;
6357
6358         /*
6359          * No other mmap()s, detach from all other events that might redirect
6360          * into the now unreachable buffer. Somewhat complicated by the
6361          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6362          */
6363 again:
6364         rcu_read_lock();
6365         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6366                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6367                         /*
6368                          * This event is en-route to free_event() which will
6369                          * detach it and remove it from the list.
6370                          */
6371                         continue;
6372                 }
6373                 rcu_read_unlock();
6374
6375                 mutex_lock(&event->mmap_mutex);
6376                 /*
6377                  * Check we didn't race with perf_event_set_output() which can
6378                  * swizzle the rb from under us while we were waiting to
6379                  * acquire mmap_mutex.
6380                  *
6381                  * If we find a different rb; ignore this event, a next
6382                  * iteration will no longer find it on the list. We have to
6383                  * still restart the iteration to make sure we're not now
6384                  * iterating the wrong list.
6385                  */
6386                 if (event->rb == rb)
6387                         ring_buffer_attach(event, NULL);
6388
6389                 mutex_unlock(&event->mmap_mutex);
6390                 put_event(event);
6391
6392                 /*
6393                  * Restart the iteration; either we're on the wrong list or
6394                  * destroyed its integrity by doing a deletion.
6395                  */
6396                 goto again;
6397         }
6398         rcu_read_unlock();
6399
6400         /*
6401          * It could be there's still a few 0-ref events on the list; they'll
6402          * get cleaned up by free_event() -- they'll also still have their
6403          * ref on the rb and will free it whenever they are done with it.
6404          *
6405          * Aside from that, this buffer is 'fully' detached and unmapped,
6406          * undo the VM accounting.
6407          */
6408
6409         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6410                         &mmap_user->locked_vm);
6411         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6412         free_uid(mmap_user);
6413
6414 out_put:
6415         ring_buffer_put(rb); /* could be last */
6416 }
6417
6418 static const struct vm_operations_struct perf_mmap_vmops = {
6419         .open           = perf_mmap_open,
6420         .close          = perf_mmap_close, /* non mergeable */
6421         .fault          = perf_mmap_fault,
6422         .page_mkwrite   = perf_mmap_fault,
6423 };
6424
6425 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6426 {
6427         struct perf_event *event = file->private_data;
6428         unsigned long user_locked, user_lock_limit;
6429         struct user_struct *user = current_user();
6430         struct perf_buffer *rb = NULL;
6431         unsigned long locked, lock_limit;
6432         unsigned long vma_size;
6433         unsigned long nr_pages;
6434         long user_extra = 0, extra = 0;
6435         int ret = 0, flags = 0;
6436
6437         /*
6438          * Don't allow mmap() of inherited per-task counters. This would
6439          * create a performance issue due to all children writing to the
6440          * same rb.
6441          */
6442         if (event->cpu == -1 && event->attr.inherit)
6443                 return -EINVAL;
6444
6445         if (!(vma->vm_flags & VM_SHARED))
6446                 return -EINVAL;
6447
6448         ret = security_perf_event_read(event);
6449         if (ret)
6450                 return ret;
6451
6452         vma_size = vma->vm_end - vma->vm_start;
6453
6454         if (vma->vm_pgoff == 0) {
6455                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6456         } else {
6457                 /*
6458                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6459                  * mapped, all subsequent mappings should have the same size
6460                  * and offset. Must be above the normal perf buffer.
6461                  */
6462                 u64 aux_offset, aux_size;
6463
6464                 if (!event->rb)
6465                         return -EINVAL;
6466
6467                 nr_pages = vma_size / PAGE_SIZE;
6468
6469                 mutex_lock(&event->mmap_mutex);
6470                 ret = -EINVAL;
6471
6472                 rb = event->rb;
6473                 if (!rb)
6474                         goto aux_unlock;
6475
6476                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6477                 aux_size = READ_ONCE(rb->user_page->aux_size);
6478
6479                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6480                         goto aux_unlock;
6481
6482                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6483                         goto aux_unlock;
6484
6485                 /* already mapped with a different offset */
6486                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6487                         goto aux_unlock;
6488
6489                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6490                         goto aux_unlock;
6491
6492                 /* already mapped with a different size */
6493                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6494                         goto aux_unlock;
6495
6496                 if (!is_power_of_2(nr_pages))
6497                         goto aux_unlock;
6498
6499                 if (!atomic_inc_not_zero(&rb->mmap_count))
6500                         goto aux_unlock;
6501
6502                 if (rb_has_aux(rb)) {
6503                         atomic_inc(&rb->aux_mmap_count);
6504                         ret = 0;
6505                         goto unlock;
6506                 }
6507
6508                 atomic_set(&rb->aux_mmap_count, 1);
6509                 user_extra = nr_pages;
6510
6511                 goto accounting;
6512         }
6513
6514         /*
6515          * If we have rb pages ensure they're a power-of-two number, so we
6516          * can do bitmasks instead of modulo.
6517          */
6518         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6519                 return -EINVAL;
6520
6521         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6522                 return -EINVAL;
6523
6524         WARN_ON_ONCE(event->ctx->parent_ctx);
6525 again:
6526         mutex_lock(&event->mmap_mutex);
6527         if (event->rb) {
6528                 if (data_page_nr(event->rb) != nr_pages) {
6529                         ret = -EINVAL;
6530                         goto unlock;
6531                 }
6532
6533                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6534                         /*
6535                          * Raced against perf_mmap_close(); remove the
6536                          * event and try again.
6537                          */
6538                         ring_buffer_attach(event, NULL);
6539                         mutex_unlock(&event->mmap_mutex);
6540                         goto again;
6541                 }
6542
6543                 goto unlock;
6544         }
6545
6546         user_extra = nr_pages + 1;
6547
6548 accounting:
6549         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6550
6551         /*
6552          * Increase the limit linearly with more CPUs:
6553          */
6554         user_lock_limit *= num_online_cpus();
6555
6556         user_locked = atomic_long_read(&user->locked_vm);
6557
6558         /*
6559          * sysctl_perf_event_mlock may have changed, so that
6560          *     user->locked_vm > user_lock_limit
6561          */
6562         if (user_locked > user_lock_limit)
6563                 user_locked = user_lock_limit;
6564         user_locked += user_extra;
6565
6566         if (user_locked > user_lock_limit) {
6567                 /*
6568                  * charge locked_vm until it hits user_lock_limit;
6569                  * charge the rest from pinned_vm
6570                  */
6571                 extra = user_locked - user_lock_limit;
6572                 user_extra -= extra;
6573         }
6574
6575         lock_limit = rlimit(RLIMIT_MEMLOCK);
6576         lock_limit >>= PAGE_SHIFT;
6577         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6578
6579         if ((locked > lock_limit) && perf_is_paranoid() &&
6580                 !capable(CAP_IPC_LOCK)) {
6581                 ret = -EPERM;
6582                 goto unlock;
6583         }
6584
6585         WARN_ON(!rb && event->rb);
6586
6587         if (vma->vm_flags & VM_WRITE)
6588                 flags |= RING_BUFFER_WRITABLE;
6589
6590         if (!rb) {
6591                 rb = rb_alloc(nr_pages,
6592                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6593                               event->cpu, flags);
6594
6595                 if (!rb) {
6596                         ret = -ENOMEM;
6597                         goto unlock;
6598                 }
6599
6600                 atomic_set(&rb->mmap_count, 1);
6601                 rb->mmap_user = get_current_user();
6602                 rb->mmap_locked = extra;
6603
6604                 ring_buffer_attach(event, rb);
6605
6606                 perf_event_update_time(event);
6607                 perf_event_init_userpage(event);
6608                 perf_event_update_userpage(event);
6609         } else {
6610                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6611                                    event->attr.aux_watermark, flags);
6612                 if (!ret)
6613                         rb->aux_mmap_locked = extra;
6614         }
6615
6616 unlock:
6617         if (!ret) {
6618                 atomic_long_add(user_extra, &user->locked_vm);
6619                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6620
6621                 atomic_inc(&event->mmap_count);
6622         } else if (rb) {
6623                 atomic_dec(&rb->mmap_count);
6624         }
6625 aux_unlock:
6626         mutex_unlock(&event->mmap_mutex);
6627
6628         /*
6629          * Since pinned accounting is per vm we cannot allow fork() to copy our
6630          * vma.
6631          */
6632         vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6633         vma->vm_ops = &perf_mmap_vmops;
6634
6635         if (event->pmu->event_mapped)
6636                 event->pmu->event_mapped(event, vma->vm_mm);
6637
6638         return ret;
6639 }
6640
6641 static int perf_fasync(int fd, struct file *filp, int on)
6642 {
6643         struct inode *inode = file_inode(filp);
6644         struct perf_event *event = filp->private_data;
6645         int retval;
6646
6647         inode_lock(inode);
6648         retval = fasync_helper(fd, filp, on, &event->fasync);
6649         inode_unlock(inode);
6650
6651         if (retval < 0)
6652                 return retval;
6653
6654         return 0;
6655 }
6656
6657 static const struct file_operations perf_fops = {
6658         .llseek                 = no_llseek,
6659         .release                = perf_release,
6660         .read                   = perf_read,
6661         .poll                   = perf_poll,
6662         .unlocked_ioctl         = perf_ioctl,
6663         .compat_ioctl           = perf_compat_ioctl,
6664         .mmap                   = perf_mmap,
6665         .fasync                 = perf_fasync,
6666 };
6667
6668 /*
6669  * Perf event wakeup
6670  *
6671  * If there's data, ensure we set the poll() state and publish everything
6672  * to user-space before waking everybody up.
6673  */
6674
6675 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6676 {
6677         /* only the parent has fasync state */
6678         if (event->parent)
6679                 event = event->parent;
6680         return &event->fasync;
6681 }
6682
6683 void perf_event_wakeup(struct perf_event *event)
6684 {
6685         ring_buffer_wakeup(event);
6686
6687         if (event->pending_kill) {
6688                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6689                 event->pending_kill = 0;
6690         }
6691 }
6692
6693 static void perf_sigtrap(struct perf_event *event)
6694 {
6695         /*
6696          * We'd expect this to only occur if the irq_work is delayed and either
6697          * ctx->task or current has changed in the meantime. This can be the
6698          * case on architectures that do not implement arch_irq_work_raise().
6699          */
6700         if (WARN_ON_ONCE(event->ctx->task != current))
6701                 return;
6702
6703         /*
6704          * Both perf_pending_task() and perf_pending_irq() can race with the
6705          * task exiting.
6706          */
6707         if (current->flags & PF_EXITING)
6708                 return;
6709
6710         send_sig_perf((void __user *)event->pending_addr,
6711                       event->orig_type, event->attr.sig_data);
6712 }
6713
6714 /*
6715  * Deliver the pending work in-event-context or follow the context.
6716  */
6717 static void __perf_pending_irq(struct perf_event *event)
6718 {
6719         int cpu = READ_ONCE(event->oncpu);
6720
6721         /*
6722          * If the event isn't running; we done. event_sched_out() will have
6723          * taken care of things.
6724          */
6725         if (cpu < 0)
6726                 return;
6727
6728         /*
6729          * Yay, we hit home and are in the context of the event.
6730          */
6731         if (cpu == smp_processor_id()) {
6732                 if (event->pending_sigtrap) {
6733                         event->pending_sigtrap = 0;
6734                         perf_sigtrap(event);
6735                         local_dec(&event->ctx->nr_pending);
6736                 }
6737                 if (event->pending_disable) {
6738                         event->pending_disable = 0;
6739                         perf_event_disable_local(event);
6740                 }
6741                 return;
6742         }
6743
6744         /*
6745          *  CPU-A                       CPU-B
6746          *
6747          *  perf_event_disable_inatomic()
6748          *    @pending_disable = CPU-A;
6749          *    irq_work_queue();
6750          *
6751          *  sched-out
6752          *    @pending_disable = -1;
6753          *
6754          *                              sched-in
6755          *                              perf_event_disable_inatomic()
6756          *                                @pending_disable = CPU-B;
6757          *                                irq_work_queue(); // FAILS
6758          *
6759          *  irq_work_run()
6760          *    perf_pending_irq()
6761          *
6762          * But the event runs on CPU-B and wants disabling there.
6763          */
6764         irq_work_queue_on(&event->pending_irq, cpu);
6765 }
6766
6767 static void perf_pending_irq(struct irq_work *entry)
6768 {
6769         struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6770         int rctx;
6771
6772         /*
6773          * If we 'fail' here, that's OK, it means recursion is already disabled
6774          * and we won't recurse 'further'.
6775          */
6776         rctx = perf_swevent_get_recursion_context();
6777
6778         /*
6779          * The wakeup isn't bound to the context of the event -- it can happen
6780          * irrespective of where the event is.
6781          */
6782         if (event->pending_wakeup) {
6783                 event->pending_wakeup = 0;
6784                 perf_event_wakeup(event);
6785         }
6786
6787         __perf_pending_irq(event);
6788
6789         if (rctx >= 0)
6790                 perf_swevent_put_recursion_context(rctx);
6791 }
6792
6793 static void perf_pending_task(struct callback_head *head)
6794 {
6795         struct perf_event *event = container_of(head, struct perf_event, pending_task);
6796         int rctx;
6797
6798         /*
6799          * If we 'fail' here, that's OK, it means recursion is already disabled
6800          * and we won't recurse 'further'.
6801          */
6802         preempt_disable_notrace();
6803         rctx = perf_swevent_get_recursion_context();
6804
6805         if (event->pending_work) {
6806                 event->pending_work = 0;
6807                 perf_sigtrap(event);
6808                 local_dec(&event->ctx->nr_pending);
6809         }
6810
6811         if (rctx >= 0)
6812                 perf_swevent_put_recursion_context(rctx);
6813         preempt_enable_notrace();
6814
6815         put_event(event);
6816 }
6817
6818 #ifdef CONFIG_GUEST_PERF_EVENTS
6819 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6820
6821 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6822 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6823 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6824
6825 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6826 {
6827         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6828                 return;
6829
6830         rcu_assign_pointer(perf_guest_cbs, cbs);
6831         static_call_update(__perf_guest_state, cbs->state);
6832         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6833
6834         /* Implementing ->handle_intel_pt_intr is optional. */
6835         if (cbs->handle_intel_pt_intr)
6836                 static_call_update(__perf_guest_handle_intel_pt_intr,
6837                                    cbs->handle_intel_pt_intr);
6838 }
6839 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6840
6841 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6842 {
6843         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6844                 return;
6845
6846         rcu_assign_pointer(perf_guest_cbs, NULL);
6847         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6848         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6849         static_call_update(__perf_guest_handle_intel_pt_intr,
6850                            (void *)&__static_call_return0);
6851         synchronize_rcu();
6852 }
6853 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6854 #endif
6855
6856 static void
6857 perf_output_sample_regs(struct perf_output_handle *handle,
6858                         struct pt_regs *regs, u64 mask)
6859 {
6860         int bit;
6861         DECLARE_BITMAP(_mask, 64);
6862
6863         bitmap_from_u64(_mask, mask);
6864         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6865                 u64 val;
6866
6867                 val = perf_reg_value(regs, bit);
6868                 perf_output_put(handle, val);
6869         }
6870 }
6871
6872 static void perf_sample_regs_user(struct perf_regs *regs_user,
6873                                   struct pt_regs *regs)
6874 {
6875         if (user_mode(regs)) {
6876                 regs_user->abi = perf_reg_abi(current);
6877                 regs_user->regs = regs;
6878         } else if (!(current->flags & PF_KTHREAD)) {
6879                 perf_get_regs_user(regs_user, regs);
6880         } else {
6881                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6882                 regs_user->regs = NULL;
6883         }
6884 }
6885
6886 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6887                                   struct pt_regs *regs)
6888 {
6889         regs_intr->regs = regs;
6890         regs_intr->abi  = perf_reg_abi(current);
6891 }
6892
6893
6894 /*
6895  * Get remaining task size from user stack pointer.
6896  *
6897  * It'd be better to take stack vma map and limit this more
6898  * precisely, but there's no way to get it safely under interrupt,
6899  * so using TASK_SIZE as limit.
6900  */
6901 static u64 perf_ustack_task_size(struct pt_regs *regs)
6902 {
6903         unsigned long addr = perf_user_stack_pointer(regs);
6904
6905         if (!addr || addr >= TASK_SIZE)
6906                 return 0;
6907
6908         return TASK_SIZE - addr;
6909 }
6910
6911 static u16
6912 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6913                         struct pt_regs *regs)
6914 {
6915         u64 task_size;
6916
6917         /* No regs, no stack pointer, no dump. */
6918         if (!regs)
6919                 return 0;
6920
6921         /*
6922          * Check if we fit in with the requested stack size into the:
6923          * - TASK_SIZE
6924          *   If we don't, we limit the size to the TASK_SIZE.
6925          *
6926          * - remaining sample size
6927          *   If we don't, we customize the stack size to
6928          *   fit in to the remaining sample size.
6929          */
6930
6931         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6932         stack_size = min(stack_size, (u16) task_size);
6933
6934         /* Current header size plus static size and dynamic size. */
6935         header_size += 2 * sizeof(u64);
6936
6937         /* Do we fit in with the current stack dump size? */
6938         if ((u16) (header_size + stack_size) < header_size) {
6939                 /*
6940                  * If we overflow the maximum size for the sample,
6941                  * we customize the stack dump size to fit in.
6942                  */
6943                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6944                 stack_size = round_up(stack_size, sizeof(u64));
6945         }
6946
6947         return stack_size;
6948 }
6949
6950 static void
6951 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6952                           struct pt_regs *regs)
6953 {
6954         /* Case of a kernel thread, nothing to dump */
6955         if (!regs) {
6956                 u64 size = 0;
6957                 perf_output_put(handle, size);
6958         } else {
6959                 unsigned long sp;
6960                 unsigned int rem;
6961                 u64 dyn_size;
6962
6963                 /*
6964                  * We dump:
6965                  * static size
6966                  *   - the size requested by user or the best one we can fit
6967                  *     in to the sample max size
6968                  * data
6969                  *   - user stack dump data
6970                  * dynamic size
6971                  *   - the actual dumped size
6972                  */
6973
6974                 /* Static size. */
6975                 perf_output_put(handle, dump_size);
6976
6977                 /* Data. */
6978                 sp = perf_user_stack_pointer(regs);
6979                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6980                 dyn_size = dump_size - rem;
6981
6982                 perf_output_skip(handle, rem);
6983
6984                 /* Dynamic size. */
6985                 perf_output_put(handle, dyn_size);
6986         }
6987 }
6988
6989 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6990                                           struct perf_sample_data *data,
6991                                           size_t size)
6992 {
6993         struct perf_event *sampler = event->aux_event;
6994         struct perf_buffer *rb;
6995
6996         data->aux_size = 0;
6997
6998         if (!sampler)
6999                 goto out;
7000
7001         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7002                 goto out;
7003
7004         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7005                 goto out;
7006
7007         rb = ring_buffer_get(sampler);
7008         if (!rb)
7009                 goto out;
7010
7011         /*
7012          * If this is an NMI hit inside sampling code, don't take
7013          * the sample. See also perf_aux_sample_output().
7014          */
7015         if (READ_ONCE(rb->aux_in_sampling)) {
7016                 data->aux_size = 0;
7017         } else {
7018                 size = min_t(size_t, size, perf_aux_size(rb));
7019                 data->aux_size = ALIGN(size, sizeof(u64));
7020         }
7021         ring_buffer_put(rb);
7022
7023 out:
7024         return data->aux_size;
7025 }
7026
7027 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7028                                  struct perf_event *event,
7029                                  struct perf_output_handle *handle,
7030                                  unsigned long size)
7031 {
7032         unsigned long flags;
7033         long ret;
7034
7035         /*
7036          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7037          * paths. If we start calling them in NMI context, they may race with
7038          * the IRQ ones, that is, for example, re-starting an event that's just
7039          * been stopped, which is why we're using a separate callback that
7040          * doesn't change the event state.
7041          *
7042          * IRQs need to be disabled to prevent IPIs from racing with us.
7043          */
7044         local_irq_save(flags);
7045         /*
7046          * Guard against NMI hits inside the critical section;
7047          * see also perf_prepare_sample_aux().
7048          */
7049         WRITE_ONCE(rb->aux_in_sampling, 1);
7050         barrier();
7051
7052         ret = event->pmu->snapshot_aux(event, handle, size);
7053
7054         barrier();
7055         WRITE_ONCE(rb->aux_in_sampling, 0);
7056         local_irq_restore(flags);
7057
7058         return ret;
7059 }
7060
7061 static void perf_aux_sample_output(struct perf_event *event,
7062                                    struct perf_output_handle *handle,
7063                                    struct perf_sample_data *data)
7064 {
7065         struct perf_event *sampler = event->aux_event;
7066         struct perf_buffer *rb;
7067         unsigned long pad;
7068         long size;
7069
7070         if (WARN_ON_ONCE(!sampler || !data->aux_size))
7071                 return;
7072
7073         rb = ring_buffer_get(sampler);
7074         if (!rb)
7075                 return;
7076
7077         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7078
7079         /*
7080          * An error here means that perf_output_copy() failed (returned a
7081          * non-zero surplus that it didn't copy), which in its current
7082          * enlightened implementation is not possible. If that changes, we'd
7083          * like to know.
7084          */
7085         if (WARN_ON_ONCE(size < 0))
7086                 goto out_put;
7087
7088         /*
7089          * The pad comes from ALIGN()ing data->aux_size up to u64 in
7090          * perf_prepare_sample_aux(), so should not be more than that.
7091          */
7092         pad = data->aux_size - size;
7093         if (WARN_ON_ONCE(pad >= sizeof(u64)))
7094                 pad = 8;
7095
7096         if (pad) {
7097                 u64 zero = 0;
7098                 perf_output_copy(handle, &zero, pad);
7099         }
7100
7101 out_put:
7102         ring_buffer_put(rb);
7103 }
7104
7105 /*
7106  * A set of common sample data types saved even for non-sample records
7107  * when event->attr.sample_id_all is set.
7108  */
7109 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |       \
7110                              PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |   \
7111                              PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7112
7113 static void __perf_event_header__init_id(struct perf_sample_data *data,
7114                                          struct perf_event *event,
7115                                          u64 sample_type)
7116 {
7117         data->type = event->attr.sample_type;
7118         data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7119
7120         if (sample_type & PERF_SAMPLE_TID) {
7121                 /* namespace issues */
7122                 data->tid_entry.pid = perf_event_pid(event, current);
7123                 data->tid_entry.tid = perf_event_tid(event, current);
7124         }
7125
7126         if (sample_type & PERF_SAMPLE_TIME)
7127                 data->time = perf_event_clock(event);
7128
7129         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7130                 data->id = primary_event_id(event);
7131
7132         if (sample_type & PERF_SAMPLE_STREAM_ID)
7133                 data->stream_id = event->id;
7134
7135         if (sample_type & PERF_SAMPLE_CPU) {
7136                 data->cpu_entry.cpu      = raw_smp_processor_id();
7137                 data->cpu_entry.reserved = 0;
7138         }
7139 }
7140
7141 void perf_event_header__init_id(struct perf_event_header *header,
7142                                 struct perf_sample_data *data,
7143                                 struct perf_event *event)
7144 {
7145         if (event->attr.sample_id_all) {
7146                 header->size += event->id_header_size;
7147                 __perf_event_header__init_id(data, event, event->attr.sample_type);
7148         }
7149 }
7150
7151 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7152                                            struct perf_sample_data *data)
7153 {
7154         u64 sample_type = data->type;
7155
7156         if (sample_type & PERF_SAMPLE_TID)
7157                 perf_output_put(handle, data->tid_entry);
7158
7159         if (sample_type & PERF_SAMPLE_TIME)
7160                 perf_output_put(handle, data->time);
7161
7162         if (sample_type & PERF_SAMPLE_ID)
7163                 perf_output_put(handle, data->id);
7164
7165         if (sample_type & PERF_SAMPLE_STREAM_ID)
7166                 perf_output_put(handle, data->stream_id);
7167
7168         if (sample_type & PERF_SAMPLE_CPU)
7169                 perf_output_put(handle, data->cpu_entry);
7170
7171         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7172                 perf_output_put(handle, data->id);
7173 }
7174
7175 void perf_event__output_id_sample(struct perf_event *event,
7176                                   struct perf_output_handle *handle,
7177                                   struct perf_sample_data *sample)
7178 {
7179         if (event->attr.sample_id_all)
7180                 __perf_event__output_id_sample(handle, sample);
7181 }
7182
7183 static void perf_output_read_one(struct perf_output_handle *handle,
7184                                  struct perf_event *event,
7185                                  u64 enabled, u64 running)
7186 {
7187         u64 read_format = event->attr.read_format;
7188         u64 values[5];
7189         int n = 0;
7190
7191         values[n++] = perf_event_count(event);
7192         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7193                 values[n++] = enabled +
7194                         atomic64_read(&event->child_total_time_enabled);
7195         }
7196         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7197                 values[n++] = running +
7198                         atomic64_read(&event->child_total_time_running);
7199         }
7200         if (read_format & PERF_FORMAT_ID)
7201                 values[n++] = primary_event_id(event);
7202         if (read_format & PERF_FORMAT_LOST)
7203                 values[n++] = atomic64_read(&event->lost_samples);
7204
7205         __output_copy(handle, values, n * sizeof(u64));
7206 }
7207
7208 static void perf_output_read_group(struct perf_output_handle *handle,
7209                             struct perf_event *event,
7210                             u64 enabled, u64 running)
7211 {
7212         struct perf_event *leader = event->group_leader, *sub;
7213         u64 read_format = event->attr.read_format;
7214         unsigned long flags;
7215         u64 values[6];
7216         int n = 0;
7217
7218         /*
7219          * Disabling interrupts avoids all counter scheduling
7220          * (context switches, timer based rotation and IPIs).
7221          */
7222         local_irq_save(flags);
7223
7224         values[n++] = 1 + leader->nr_siblings;
7225
7226         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7227                 values[n++] = enabled;
7228
7229         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7230                 values[n++] = running;
7231
7232         if ((leader != event) &&
7233             (leader->state == PERF_EVENT_STATE_ACTIVE))
7234                 leader->pmu->read(leader);
7235
7236         values[n++] = perf_event_count(leader);
7237         if (read_format & PERF_FORMAT_ID)
7238                 values[n++] = primary_event_id(leader);
7239         if (read_format & PERF_FORMAT_LOST)
7240                 values[n++] = atomic64_read(&leader->lost_samples);
7241
7242         __output_copy(handle, values, n * sizeof(u64));
7243
7244         for_each_sibling_event(sub, leader) {
7245                 n = 0;
7246
7247                 if ((sub != event) &&
7248                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7249                         sub->pmu->read(sub);
7250
7251                 values[n++] = perf_event_count(sub);
7252                 if (read_format & PERF_FORMAT_ID)
7253                         values[n++] = primary_event_id(sub);
7254                 if (read_format & PERF_FORMAT_LOST)
7255                         values[n++] = atomic64_read(&sub->lost_samples);
7256
7257                 __output_copy(handle, values, n * sizeof(u64));
7258         }
7259
7260         local_irq_restore(flags);
7261 }
7262
7263 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7264                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7265
7266 /*
7267  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7268  *
7269  * The problem is that its both hard and excessively expensive to iterate the
7270  * child list, not to mention that its impossible to IPI the children running
7271  * on another CPU, from interrupt/NMI context.
7272  */
7273 static void perf_output_read(struct perf_output_handle *handle,
7274                              struct perf_event *event)
7275 {
7276         u64 enabled = 0, running = 0, now;
7277         u64 read_format = event->attr.read_format;
7278
7279         /*
7280          * compute total_time_enabled, total_time_running
7281          * based on snapshot values taken when the event
7282          * was last scheduled in.
7283          *
7284          * we cannot simply called update_context_time()
7285          * because of locking issue as we are called in
7286          * NMI context
7287          */
7288         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7289                 calc_timer_values(event, &now, &enabled, &running);
7290
7291         if (event->attr.read_format & PERF_FORMAT_GROUP)
7292                 perf_output_read_group(handle, event, enabled, running);
7293         else
7294                 perf_output_read_one(handle, event, enabled, running);
7295 }
7296
7297 void perf_output_sample(struct perf_output_handle *handle,
7298                         struct perf_event_header *header,
7299                         struct perf_sample_data *data,
7300                         struct perf_event *event)
7301 {
7302         u64 sample_type = data->type;
7303
7304         perf_output_put(handle, *header);
7305
7306         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7307                 perf_output_put(handle, data->id);
7308
7309         if (sample_type & PERF_SAMPLE_IP)
7310                 perf_output_put(handle, data->ip);
7311
7312         if (sample_type & PERF_SAMPLE_TID)
7313                 perf_output_put(handle, data->tid_entry);
7314
7315         if (sample_type & PERF_SAMPLE_TIME)
7316                 perf_output_put(handle, data->time);
7317
7318         if (sample_type & PERF_SAMPLE_ADDR)
7319                 perf_output_put(handle, data->addr);
7320
7321         if (sample_type & PERF_SAMPLE_ID)
7322                 perf_output_put(handle, data->id);
7323
7324         if (sample_type & PERF_SAMPLE_STREAM_ID)
7325                 perf_output_put(handle, data->stream_id);
7326
7327         if (sample_type & PERF_SAMPLE_CPU)
7328                 perf_output_put(handle, data->cpu_entry);
7329
7330         if (sample_type & PERF_SAMPLE_PERIOD)
7331                 perf_output_put(handle, data->period);
7332
7333         if (sample_type & PERF_SAMPLE_READ)
7334                 perf_output_read(handle, event);
7335
7336         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7337                 int size = 1;
7338
7339                 size += data->callchain->nr;
7340                 size *= sizeof(u64);
7341                 __output_copy(handle, data->callchain, size);
7342         }
7343
7344         if (sample_type & PERF_SAMPLE_RAW) {
7345                 struct perf_raw_record *raw = data->raw;
7346
7347                 if (raw) {
7348                         struct perf_raw_frag *frag = &raw->frag;
7349
7350                         perf_output_put(handle, raw->size);
7351                         do {
7352                                 if (frag->copy) {
7353                                         __output_custom(handle, frag->copy,
7354                                                         frag->data, frag->size);
7355                                 } else {
7356                                         __output_copy(handle, frag->data,
7357                                                       frag->size);
7358                                 }
7359                                 if (perf_raw_frag_last(frag))
7360                                         break;
7361                                 frag = frag->next;
7362                         } while (1);
7363                         if (frag->pad)
7364                                 __output_skip(handle, NULL, frag->pad);
7365                 } else {
7366                         struct {
7367                                 u32     size;
7368                                 u32     data;
7369                         } raw = {
7370                                 .size = sizeof(u32),
7371                                 .data = 0,
7372                         };
7373                         perf_output_put(handle, raw);
7374                 }
7375         }
7376
7377         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7378                 if (data->br_stack) {
7379                         size_t size;
7380
7381                         size = data->br_stack->nr
7382                              * sizeof(struct perf_branch_entry);
7383
7384                         perf_output_put(handle, data->br_stack->nr);
7385                         if (branch_sample_hw_index(event))
7386                                 perf_output_put(handle, data->br_stack->hw_idx);
7387                         perf_output_copy(handle, data->br_stack->entries, size);
7388                 } else {
7389                         /*
7390                          * we always store at least the value of nr
7391                          */
7392                         u64 nr = 0;
7393                         perf_output_put(handle, nr);
7394                 }
7395         }
7396
7397         if (sample_type & PERF_SAMPLE_REGS_USER) {
7398                 u64 abi = data->regs_user.abi;
7399
7400                 /*
7401                  * If there are no regs to dump, notice it through
7402                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7403                  */
7404                 perf_output_put(handle, abi);
7405
7406                 if (abi) {
7407                         u64 mask = event->attr.sample_regs_user;
7408                         perf_output_sample_regs(handle,
7409                                                 data->regs_user.regs,
7410                                                 mask);
7411                 }
7412         }
7413
7414         if (sample_type & PERF_SAMPLE_STACK_USER) {
7415                 perf_output_sample_ustack(handle,
7416                                           data->stack_user_size,
7417                                           data->regs_user.regs);
7418         }
7419
7420         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7421                 perf_output_put(handle, data->weight.full);
7422
7423         if (sample_type & PERF_SAMPLE_DATA_SRC)
7424                 perf_output_put(handle, data->data_src.val);
7425
7426         if (sample_type & PERF_SAMPLE_TRANSACTION)
7427                 perf_output_put(handle, data->txn);
7428
7429         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7430                 u64 abi = data->regs_intr.abi;
7431                 /*
7432                  * If there are no regs to dump, notice it through
7433                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7434                  */
7435                 perf_output_put(handle, abi);
7436
7437                 if (abi) {
7438                         u64 mask = event->attr.sample_regs_intr;
7439
7440                         perf_output_sample_regs(handle,
7441                                                 data->regs_intr.regs,
7442                                                 mask);
7443                 }
7444         }
7445
7446         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7447                 perf_output_put(handle, data->phys_addr);
7448
7449         if (sample_type & PERF_SAMPLE_CGROUP)
7450                 perf_output_put(handle, data->cgroup);
7451
7452         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7453                 perf_output_put(handle, data->data_page_size);
7454
7455         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7456                 perf_output_put(handle, data->code_page_size);
7457
7458         if (sample_type & PERF_SAMPLE_AUX) {
7459                 perf_output_put(handle, data->aux_size);
7460
7461                 if (data->aux_size)
7462                         perf_aux_sample_output(event, handle, data);
7463         }
7464
7465         if (!event->attr.watermark) {
7466                 int wakeup_events = event->attr.wakeup_events;
7467
7468                 if (wakeup_events) {
7469                         struct perf_buffer *rb = handle->rb;
7470                         int events = local_inc_return(&rb->events);
7471
7472                         if (events >= wakeup_events) {
7473                                 local_sub(wakeup_events, &rb->events);
7474                                 local_inc(&rb->wakeup);
7475                         }
7476                 }
7477         }
7478 }
7479
7480 static u64 perf_virt_to_phys(u64 virt)
7481 {
7482         u64 phys_addr = 0;
7483
7484         if (!virt)
7485                 return 0;
7486
7487         if (virt >= TASK_SIZE) {
7488                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7489                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7490                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7491                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7492         } else {
7493                 /*
7494                  * Walking the pages tables for user address.
7495                  * Interrupts are disabled, so it prevents any tear down
7496                  * of the page tables.
7497                  * Try IRQ-safe get_user_page_fast_only first.
7498                  * If failed, leave phys_addr as 0.
7499                  */
7500                 if (current->mm != NULL) {
7501                         struct page *p;
7502
7503                         pagefault_disable();
7504                         if (get_user_page_fast_only(virt, 0, &p)) {
7505                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7506                                 put_page(p);
7507                         }
7508                         pagefault_enable();
7509                 }
7510         }
7511
7512         return phys_addr;
7513 }
7514
7515 /*
7516  * Return the pagetable size of a given virtual address.
7517  */
7518 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7519 {
7520         u64 size = 0;
7521
7522 #ifdef CONFIG_HAVE_FAST_GUP
7523         pgd_t *pgdp, pgd;
7524         p4d_t *p4dp, p4d;
7525         pud_t *pudp, pud;
7526         pmd_t *pmdp, pmd;
7527         pte_t *ptep, pte;
7528
7529         pgdp = pgd_offset(mm, addr);
7530         pgd = READ_ONCE(*pgdp);
7531         if (pgd_none(pgd))
7532                 return 0;
7533
7534         if (pgd_leaf(pgd))
7535                 return pgd_leaf_size(pgd);
7536
7537         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7538         p4d = READ_ONCE(*p4dp);
7539         if (!p4d_present(p4d))
7540                 return 0;
7541
7542         if (p4d_leaf(p4d))
7543                 return p4d_leaf_size(p4d);
7544
7545         pudp = pud_offset_lockless(p4dp, p4d, addr);
7546         pud = READ_ONCE(*pudp);
7547         if (!pud_present(pud))
7548                 return 0;
7549
7550         if (pud_leaf(pud))
7551                 return pud_leaf_size(pud);
7552
7553         pmdp = pmd_offset_lockless(pudp, pud, addr);
7554 again:
7555         pmd = pmdp_get_lockless(pmdp);
7556         if (!pmd_present(pmd))
7557                 return 0;
7558
7559         if (pmd_leaf(pmd))
7560                 return pmd_leaf_size(pmd);
7561
7562         ptep = pte_offset_map(&pmd, addr);
7563         if (!ptep)
7564                 goto again;
7565
7566         pte = ptep_get_lockless(ptep);
7567         if (pte_present(pte))
7568                 size = pte_leaf_size(pte);
7569         pte_unmap(ptep);
7570 #endif /* CONFIG_HAVE_FAST_GUP */
7571
7572         return size;
7573 }
7574
7575 static u64 perf_get_page_size(unsigned long addr)
7576 {
7577         struct mm_struct *mm;
7578         unsigned long flags;
7579         u64 size;
7580
7581         if (!addr)
7582                 return 0;
7583
7584         /*
7585          * Software page-table walkers must disable IRQs,
7586          * which prevents any tear down of the page tables.
7587          */
7588         local_irq_save(flags);
7589
7590         mm = current->mm;
7591         if (!mm) {
7592                 /*
7593                  * For kernel threads and the like, use init_mm so that
7594                  * we can find kernel memory.
7595                  */
7596                 mm = &init_mm;
7597         }
7598
7599         size = perf_get_pgtable_size(mm, addr);
7600
7601         local_irq_restore(flags);
7602
7603         return size;
7604 }
7605
7606 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7607
7608 struct perf_callchain_entry *
7609 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7610 {
7611         bool kernel = !event->attr.exclude_callchain_kernel;
7612         bool user   = !event->attr.exclude_callchain_user;
7613         /* Disallow cross-task user callchains. */
7614         bool crosstask = event->ctx->task && event->ctx->task != current;
7615         const u32 max_stack = event->attr.sample_max_stack;
7616         struct perf_callchain_entry *callchain;
7617
7618         if (!kernel && !user)
7619                 return &__empty_callchain;
7620
7621         callchain = get_perf_callchain(regs, 0, kernel, user,
7622                                        max_stack, crosstask, true);
7623         return callchain ?: &__empty_callchain;
7624 }
7625
7626 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7627 {
7628         return d * !!(flags & s);
7629 }
7630
7631 void perf_prepare_sample(struct perf_sample_data *data,
7632                          struct perf_event *event,
7633                          struct pt_regs *regs)
7634 {
7635         u64 sample_type = event->attr.sample_type;
7636         u64 filtered_sample_type;
7637
7638         /*
7639          * Add the sample flags that are dependent to others.  And clear the
7640          * sample flags that have already been done by the PMU driver.
7641          */
7642         filtered_sample_type = sample_type;
7643         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7644                                            PERF_SAMPLE_IP);
7645         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7646                                            PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7647         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7648                                            PERF_SAMPLE_REGS_USER);
7649         filtered_sample_type &= ~data->sample_flags;
7650
7651         if (filtered_sample_type == 0) {
7652                 /* Make sure it has the correct data->type for output */
7653                 data->type = event->attr.sample_type;
7654                 return;
7655         }
7656
7657         __perf_event_header__init_id(data, event, filtered_sample_type);
7658
7659         if (filtered_sample_type & PERF_SAMPLE_IP) {
7660                 data->ip = perf_instruction_pointer(regs);
7661                 data->sample_flags |= PERF_SAMPLE_IP;
7662         }
7663
7664         if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7665                 perf_sample_save_callchain(data, event, regs);
7666
7667         if (filtered_sample_type & PERF_SAMPLE_RAW) {
7668                 data->raw = NULL;
7669                 data->dyn_size += sizeof(u64);
7670                 data->sample_flags |= PERF_SAMPLE_RAW;
7671         }
7672
7673         if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7674                 data->br_stack = NULL;
7675                 data->dyn_size += sizeof(u64);
7676                 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7677         }
7678
7679         if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7680                 perf_sample_regs_user(&data->regs_user, regs);
7681
7682         /*
7683          * It cannot use the filtered_sample_type here as REGS_USER can be set
7684          * by STACK_USER (using __cond_set() above) and we don't want to update
7685          * the dyn_size if it's not requested by users.
7686          */
7687         if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7688                 /* regs dump ABI info */
7689                 int size = sizeof(u64);
7690
7691                 if (data->regs_user.regs) {
7692                         u64 mask = event->attr.sample_regs_user;
7693                         size += hweight64(mask) * sizeof(u64);
7694                 }
7695
7696                 data->dyn_size += size;
7697                 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7698         }
7699
7700         if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7701                 /*
7702                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7703                  * processed as the last one or have additional check added
7704                  * in case new sample type is added, because we could eat
7705                  * up the rest of the sample size.
7706                  */
7707                 u16 stack_size = event->attr.sample_stack_user;
7708                 u16 header_size = perf_sample_data_size(data, event);
7709                 u16 size = sizeof(u64);
7710
7711                 stack_size = perf_sample_ustack_size(stack_size, header_size,
7712                                                      data->regs_user.regs);
7713
7714                 /*
7715                  * If there is something to dump, add space for the dump
7716                  * itself and for the field that tells the dynamic size,
7717                  * which is how many have been actually dumped.
7718                  */
7719                 if (stack_size)
7720                         size += sizeof(u64) + stack_size;
7721
7722                 data->stack_user_size = stack_size;
7723                 data->dyn_size += size;
7724                 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7725         }
7726
7727         if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7728                 data->weight.full = 0;
7729                 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7730         }
7731
7732         if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7733                 data->data_src.val = PERF_MEM_NA;
7734                 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7735         }
7736
7737         if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7738                 data->txn = 0;
7739                 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7740         }
7741
7742         if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7743                 data->addr = 0;
7744                 data->sample_flags |= PERF_SAMPLE_ADDR;
7745         }
7746
7747         if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7748                 /* regs dump ABI info */
7749                 int size = sizeof(u64);
7750
7751                 perf_sample_regs_intr(&data->regs_intr, regs);
7752
7753                 if (data->regs_intr.regs) {
7754                         u64 mask = event->attr.sample_regs_intr;
7755
7756                         size += hweight64(mask) * sizeof(u64);
7757                 }
7758
7759                 data->dyn_size += size;
7760                 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7761         }
7762
7763         if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7764                 data->phys_addr = perf_virt_to_phys(data->addr);
7765                 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7766         }
7767
7768 #ifdef CONFIG_CGROUP_PERF
7769         if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7770                 struct cgroup *cgrp;
7771
7772                 /* protected by RCU */
7773                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7774                 data->cgroup = cgroup_id(cgrp);
7775                 data->sample_flags |= PERF_SAMPLE_CGROUP;
7776         }
7777 #endif
7778
7779         /*
7780          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7781          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7782          * but the value will not dump to the userspace.
7783          */
7784         if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7785                 data->data_page_size = perf_get_page_size(data->addr);
7786                 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7787         }
7788
7789         if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7790                 data->code_page_size = perf_get_page_size(data->ip);
7791                 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7792         }
7793
7794         if (filtered_sample_type & PERF_SAMPLE_AUX) {
7795                 u64 size;
7796                 u16 header_size = perf_sample_data_size(data, event);
7797
7798                 header_size += sizeof(u64); /* size */
7799
7800                 /*
7801                  * Given the 16bit nature of header::size, an AUX sample can
7802                  * easily overflow it, what with all the preceding sample bits.
7803                  * Make sure this doesn't happen by using up to U16_MAX bytes
7804                  * per sample in total (rounded down to 8 byte boundary).
7805                  */
7806                 size = min_t(size_t, U16_MAX - header_size,
7807                              event->attr.aux_sample_size);
7808                 size = rounddown(size, 8);
7809                 size = perf_prepare_sample_aux(event, data, size);
7810
7811                 WARN_ON_ONCE(size + header_size > U16_MAX);
7812                 data->dyn_size += size + sizeof(u64); /* size above */
7813                 data->sample_flags |= PERF_SAMPLE_AUX;
7814         }
7815 }
7816
7817 void perf_prepare_header(struct perf_event_header *header,
7818                          struct perf_sample_data *data,
7819                          struct perf_event *event,
7820                          struct pt_regs *regs)
7821 {
7822         header->type = PERF_RECORD_SAMPLE;
7823         header->size = perf_sample_data_size(data, event);
7824         header->misc = perf_misc_flags(regs);
7825
7826         /*
7827          * If you're adding more sample types here, you likely need to do
7828          * something about the overflowing header::size, like repurpose the
7829          * lowest 3 bits of size, which should be always zero at the moment.
7830          * This raises a more important question, do we really need 512k sized
7831          * samples and why, so good argumentation is in order for whatever you
7832          * do here next.
7833          */
7834         WARN_ON_ONCE(header->size & 7);
7835 }
7836
7837 static __always_inline int
7838 __perf_event_output(struct perf_event *event,
7839                     struct perf_sample_data *data,
7840                     struct pt_regs *regs,
7841                     int (*output_begin)(struct perf_output_handle *,
7842                                         struct perf_sample_data *,
7843                                         struct perf_event *,
7844                                         unsigned int))
7845 {
7846         struct perf_output_handle handle;
7847         struct perf_event_header header;
7848         int err;
7849
7850         /* protect the callchain buffers */
7851         rcu_read_lock();
7852
7853         perf_prepare_sample(data, event, regs);
7854         perf_prepare_header(&header, data, event, regs);
7855
7856         err = output_begin(&handle, data, event, header.size);
7857         if (err)
7858                 goto exit;
7859
7860         perf_output_sample(&handle, &header, data, event);
7861
7862         perf_output_end(&handle);
7863
7864 exit:
7865         rcu_read_unlock();
7866         return err;
7867 }
7868
7869 void
7870 perf_event_output_forward(struct perf_event *event,
7871                          struct perf_sample_data *data,
7872                          struct pt_regs *regs)
7873 {
7874         __perf_event_output(event, data, regs, perf_output_begin_forward);
7875 }
7876
7877 void
7878 perf_event_output_backward(struct perf_event *event,
7879                            struct perf_sample_data *data,
7880                            struct pt_regs *regs)
7881 {
7882         __perf_event_output(event, data, regs, perf_output_begin_backward);
7883 }
7884
7885 int
7886 perf_event_output(struct perf_event *event,
7887                   struct perf_sample_data *data,
7888                   struct pt_regs *regs)
7889 {
7890         return __perf_event_output(event, data, regs, perf_output_begin);
7891 }
7892
7893 /*
7894  * read event_id
7895  */
7896
7897 struct perf_read_event {
7898         struct perf_event_header        header;
7899
7900         u32                             pid;
7901         u32                             tid;
7902 };
7903
7904 static void
7905 perf_event_read_event(struct perf_event *event,
7906                         struct task_struct *task)
7907 {
7908         struct perf_output_handle handle;
7909         struct perf_sample_data sample;
7910         struct perf_read_event read_event = {
7911                 .header = {
7912                         .type = PERF_RECORD_READ,
7913                         .misc = 0,
7914                         .size = sizeof(read_event) + event->read_size,
7915                 },
7916                 .pid = perf_event_pid(event, task),
7917                 .tid = perf_event_tid(event, task),
7918         };
7919         int ret;
7920
7921         perf_event_header__init_id(&read_event.header, &sample, event);
7922         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7923         if (ret)
7924                 return;
7925
7926         perf_output_put(&handle, read_event);
7927         perf_output_read(&handle, event);
7928         perf_event__output_id_sample(event, &handle, &sample);
7929
7930         perf_output_end(&handle);
7931 }
7932
7933 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7934
7935 static void
7936 perf_iterate_ctx(struct perf_event_context *ctx,
7937                    perf_iterate_f output,
7938                    void *data, bool all)
7939 {
7940         struct perf_event *event;
7941
7942         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7943                 if (!all) {
7944                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7945                                 continue;
7946                         if (!event_filter_match(event))
7947                                 continue;
7948                 }
7949
7950                 output(event, data);
7951         }
7952 }
7953
7954 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7955 {
7956         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7957         struct perf_event *event;
7958
7959         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7960                 /*
7961                  * Skip events that are not fully formed yet; ensure that
7962                  * if we observe event->ctx, both event and ctx will be
7963                  * complete enough. See perf_install_in_context().
7964                  */
7965                 if (!smp_load_acquire(&event->ctx))
7966                         continue;
7967
7968                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7969                         continue;
7970                 if (!event_filter_match(event))
7971                         continue;
7972                 output(event, data);
7973         }
7974 }
7975
7976 /*
7977  * Iterate all events that need to receive side-band events.
7978  *
7979  * For new callers; ensure that account_pmu_sb_event() includes
7980  * your event, otherwise it might not get delivered.
7981  */
7982 static void
7983 perf_iterate_sb(perf_iterate_f output, void *data,
7984                struct perf_event_context *task_ctx)
7985 {
7986         struct perf_event_context *ctx;
7987
7988         rcu_read_lock();
7989         preempt_disable();
7990
7991         /*
7992          * If we have task_ctx != NULL we only notify the task context itself.
7993          * The task_ctx is set only for EXIT events before releasing task
7994          * context.
7995          */
7996         if (task_ctx) {
7997                 perf_iterate_ctx(task_ctx, output, data, false);
7998                 goto done;
7999         }
8000
8001         perf_iterate_sb_cpu(output, data);
8002
8003         ctx = rcu_dereference(current->perf_event_ctxp);
8004         if (ctx)
8005                 perf_iterate_ctx(ctx, output, data, false);
8006 done:
8007         preempt_enable();
8008         rcu_read_unlock();
8009 }
8010
8011 /*
8012  * Clear all file-based filters at exec, they'll have to be
8013  * re-instated when/if these objects are mmapped again.
8014  */
8015 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8016 {
8017         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8018         struct perf_addr_filter *filter;
8019         unsigned int restart = 0, count = 0;
8020         unsigned long flags;
8021
8022         if (!has_addr_filter(event))
8023                 return;
8024
8025         raw_spin_lock_irqsave(&ifh->lock, flags);
8026         list_for_each_entry(filter, &ifh->list, entry) {
8027                 if (filter->path.dentry) {
8028                         event->addr_filter_ranges[count].start = 0;
8029                         event->addr_filter_ranges[count].size = 0;
8030                         restart++;
8031                 }
8032
8033                 count++;
8034         }
8035
8036         if (restart)
8037                 event->addr_filters_gen++;
8038         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8039
8040         if (restart)
8041                 perf_event_stop(event, 1);
8042 }
8043
8044 void perf_event_exec(void)
8045 {
8046         struct perf_event_context *ctx;
8047
8048         ctx = perf_pin_task_context(current);
8049         if (!ctx)
8050                 return;
8051
8052         perf_event_enable_on_exec(ctx);
8053         perf_event_remove_on_exec(ctx);
8054         perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8055
8056         perf_unpin_context(ctx);
8057         put_ctx(ctx);
8058 }
8059
8060 struct remote_output {
8061         struct perf_buffer      *rb;
8062         int                     err;
8063 };
8064
8065 static void __perf_event_output_stop(struct perf_event *event, void *data)
8066 {
8067         struct perf_event *parent = event->parent;
8068         struct remote_output *ro = data;
8069         struct perf_buffer *rb = ro->rb;
8070         struct stop_event_data sd = {
8071                 .event  = event,
8072         };
8073
8074         if (!has_aux(event))
8075                 return;
8076
8077         if (!parent)
8078                 parent = event;
8079
8080         /*
8081          * In case of inheritance, it will be the parent that links to the
8082          * ring-buffer, but it will be the child that's actually using it.
8083          *
8084          * We are using event::rb to determine if the event should be stopped,
8085          * however this may race with ring_buffer_attach() (through set_output),
8086          * which will make us skip the event that actually needs to be stopped.
8087          * So ring_buffer_attach() has to stop an aux event before re-assigning
8088          * its rb pointer.
8089          */
8090         if (rcu_dereference(parent->rb) == rb)
8091                 ro->err = __perf_event_stop(&sd);
8092 }
8093
8094 static int __perf_pmu_output_stop(void *info)
8095 {
8096         struct perf_event *event = info;
8097         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8098         struct remote_output ro = {
8099                 .rb     = event->rb,
8100         };
8101
8102         rcu_read_lock();
8103         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8104         if (cpuctx->task_ctx)
8105                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8106                                    &ro, false);
8107         rcu_read_unlock();
8108
8109         return ro.err;
8110 }
8111
8112 static void perf_pmu_output_stop(struct perf_event *event)
8113 {
8114         struct perf_event *iter;
8115         int err, cpu;
8116
8117 restart:
8118         rcu_read_lock();
8119         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8120                 /*
8121                  * For per-CPU events, we need to make sure that neither they
8122                  * nor their children are running; for cpu==-1 events it's
8123                  * sufficient to stop the event itself if it's active, since
8124                  * it can't have children.
8125                  */
8126                 cpu = iter->cpu;
8127                 if (cpu == -1)
8128                         cpu = READ_ONCE(iter->oncpu);
8129
8130                 if (cpu == -1)
8131                         continue;
8132
8133                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8134                 if (err == -EAGAIN) {
8135                         rcu_read_unlock();
8136                         goto restart;
8137                 }
8138         }
8139         rcu_read_unlock();
8140 }
8141
8142 /*
8143  * task tracking -- fork/exit
8144  *
8145  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8146  */
8147
8148 struct perf_task_event {
8149         struct task_struct              *task;
8150         struct perf_event_context       *task_ctx;
8151
8152         struct {
8153                 struct perf_event_header        header;
8154
8155                 u32                             pid;
8156                 u32                             ppid;
8157                 u32                             tid;
8158                 u32                             ptid;
8159                 u64                             time;
8160         } event_id;
8161 };
8162
8163 static int perf_event_task_match(struct perf_event *event)
8164 {
8165         return event->attr.comm  || event->attr.mmap ||
8166                event->attr.mmap2 || event->attr.mmap_data ||
8167                event->attr.task;
8168 }
8169
8170 static void perf_event_task_output(struct perf_event *event,
8171                                    void *data)
8172 {
8173         struct perf_task_event *task_event = data;
8174         struct perf_output_handle handle;
8175         struct perf_sample_data sample;
8176         struct task_struct *task = task_event->task;
8177         int ret, size = task_event->event_id.header.size;
8178
8179         if (!perf_event_task_match(event))
8180                 return;
8181
8182         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8183
8184         ret = perf_output_begin(&handle, &sample, event,
8185                                 task_event->event_id.header.size);
8186         if (ret)
8187                 goto out;
8188
8189         task_event->event_id.pid = perf_event_pid(event, task);
8190         task_event->event_id.tid = perf_event_tid(event, task);
8191
8192         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8193                 task_event->event_id.ppid = perf_event_pid(event,
8194                                                         task->real_parent);
8195                 task_event->event_id.ptid = perf_event_pid(event,
8196                                                         task->real_parent);
8197         } else {  /* PERF_RECORD_FORK */
8198                 task_event->event_id.ppid = perf_event_pid(event, current);
8199                 task_event->event_id.ptid = perf_event_tid(event, current);
8200         }
8201
8202         task_event->event_id.time = perf_event_clock(event);
8203
8204         perf_output_put(&handle, task_event->event_id);
8205
8206         perf_event__output_id_sample(event, &handle, &sample);
8207
8208         perf_output_end(&handle);
8209 out:
8210         task_event->event_id.header.size = size;
8211 }
8212
8213 static void perf_event_task(struct task_struct *task,
8214                               struct perf_event_context *task_ctx,
8215                               int new)
8216 {
8217         struct perf_task_event task_event;
8218
8219         if (!atomic_read(&nr_comm_events) &&
8220             !atomic_read(&nr_mmap_events) &&
8221             !atomic_read(&nr_task_events))
8222                 return;
8223
8224         task_event = (struct perf_task_event){
8225                 .task     = task,
8226                 .task_ctx = task_ctx,
8227                 .event_id    = {
8228                         .header = {
8229                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8230                                 .misc = 0,
8231                                 .size = sizeof(task_event.event_id),
8232                         },
8233                         /* .pid  */
8234                         /* .ppid */
8235                         /* .tid  */
8236                         /* .ptid */
8237                         /* .time */
8238                 },
8239         };
8240
8241         perf_iterate_sb(perf_event_task_output,
8242                        &task_event,
8243                        task_ctx);
8244 }
8245
8246 void perf_event_fork(struct task_struct *task)
8247 {
8248         perf_event_task(task, NULL, 1);
8249         perf_event_namespaces(task);
8250 }
8251
8252 /*
8253  * comm tracking
8254  */
8255
8256 struct perf_comm_event {
8257         struct task_struct      *task;
8258         char                    *comm;
8259         int                     comm_size;
8260
8261         struct {
8262                 struct perf_event_header        header;
8263
8264                 u32                             pid;
8265                 u32                             tid;
8266         } event_id;
8267 };
8268
8269 static int perf_event_comm_match(struct perf_event *event)
8270 {
8271         return event->attr.comm;
8272 }
8273
8274 static void perf_event_comm_output(struct perf_event *event,
8275                                    void *data)
8276 {
8277         struct perf_comm_event *comm_event = data;
8278         struct perf_output_handle handle;
8279         struct perf_sample_data sample;
8280         int size = comm_event->event_id.header.size;
8281         int ret;
8282
8283         if (!perf_event_comm_match(event))
8284                 return;
8285
8286         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8287         ret = perf_output_begin(&handle, &sample, event,
8288                                 comm_event->event_id.header.size);
8289
8290         if (ret)
8291                 goto out;
8292
8293         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8294         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8295
8296         perf_output_put(&handle, comm_event->event_id);
8297         __output_copy(&handle, comm_event->comm,
8298                                    comm_event->comm_size);
8299
8300         perf_event__output_id_sample(event, &handle, &sample);
8301
8302         perf_output_end(&handle);
8303 out:
8304         comm_event->event_id.header.size = size;
8305 }
8306
8307 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8308 {
8309         char comm[TASK_COMM_LEN];
8310         unsigned int size;
8311
8312         memset(comm, 0, sizeof(comm));
8313         strscpy(comm, comm_event->task->comm, sizeof(comm));
8314         size = ALIGN(strlen(comm)+1, sizeof(u64));
8315
8316         comm_event->comm = comm;
8317         comm_event->comm_size = size;
8318
8319         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8320
8321         perf_iterate_sb(perf_event_comm_output,
8322                        comm_event,
8323                        NULL);
8324 }
8325
8326 void perf_event_comm(struct task_struct *task, bool exec)
8327 {
8328         struct perf_comm_event comm_event;
8329
8330         if (!atomic_read(&nr_comm_events))
8331                 return;
8332
8333         comm_event = (struct perf_comm_event){
8334                 .task   = task,
8335                 /* .comm      */
8336                 /* .comm_size */
8337                 .event_id  = {
8338                         .header = {
8339                                 .type = PERF_RECORD_COMM,
8340                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8341                                 /* .size */
8342                         },
8343                         /* .pid */
8344                         /* .tid */
8345                 },
8346         };
8347
8348         perf_event_comm_event(&comm_event);
8349 }
8350
8351 /*
8352  * namespaces tracking
8353  */
8354
8355 struct perf_namespaces_event {
8356         struct task_struct              *task;
8357
8358         struct {
8359                 struct perf_event_header        header;
8360
8361                 u32                             pid;
8362                 u32                             tid;
8363                 u64                             nr_namespaces;
8364                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8365         } event_id;
8366 };
8367
8368 static int perf_event_namespaces_match(struct perf_event *event)
8369 {
8370         return event->attr.namespaces;
8371 }
8372
8373 static void perf_event_namespaces_output(struct perf_event *event,
8374                                          void *data)
8375 {
8376         struct perf_namespaces_event *namespaces_event = data;
8377         struct perf_output_handle handle;
8378         struct perf_sample_data sample;
8379         u16 header_size = namespaces_event->event_id.header.size;
8380         int ret;
8381
8382         if (!perf_event_namespaces_match(event))
8383                 return;
8384
8385         perf_event_header__init_id(&namespaces_event->event_id.header,
8386                                    &sample, event);
8387         ret = perf_output_begin(&handle, &sample, event,
8388                                 namespaces_event->event_id.header.size);
8389         if (ret)
8390                 goto out;
8391
8392         namespaces_event->event_id.pid = perf_event_pid(event,
8393                                                         namespaces_event->task);
8394         namespaces_event->event_id.tid = perf_event_tid(event,
8395                                                         namespaces_event->task);
8396
8397         perf_output_put(&handle, namespaces_event->event_id);
8398
8399         perf_event__output_id_sample(event, &handle, &sample);
8400
8401         perf_output_end(&handle);
8402 out:
8403         namespaces_event->event_id.header.size = header_size;
8404 }
8405
8406 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8407                                    struct task_struct *task,
8408                                    const struct proc_ns_operations *ns_ops)
8409 {
8410         struct path ns_path;
8411         struct inode *ns_inode;
8412         int error;
8413
8414         error = ns_get_path(&ns_path, task, ns_ops);
8415         if (!error) {
8416                 ns_inode = ns_path.dentry->d_inode;
8417                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8418                 ns_link_info->ino = ns_inode->i_ino;
8419                 path_put(&ns_path);
8420         }
8421 }
8422
8423 void perf_event_namespaces(struct task_struct *task)
8424 {
8425         struct perf_namespaces_event namespaces_event;
8426         struct perf_ns_link_info *ns_link_info;
8427
8428         if (!atomic_read(&nr_namespaces_events))
8429                 return;
8430
8431         namespaces_event = (struct perf_namespaces_event){
8432                 .task   = task,
8433                 .event_id  = {
8434                         .header = {
8435                                 .type = PERF_RECORD_NAMESPACES,
8436                                 .misc = 0,
8437                                 .size = sizeof(namespaces_event.event_id),
8438                         },
8439                         /* .pid */
8440                         /* .tid */
8441                         .nr_namespaces = NR_NAMESPACES,
8442                         /* .link_info[NR_NAMESPACES] */
8443                 },
8444         };
8445
8446         ns_link_info = namespaces_event.event_id.link_info;
8447
8448         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8449                                task, &mntns_operations);
8450
8451 #ifdef CONFIG_USER_NS
8452         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8453                                task, &userns_operations);
8454 #endif
8455 #ifdef CONFIG_NET_NS
8456         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8457                                task, &netns_operations);
8458 #endif
8459 #ifdef CONFIG_UTS_NS
8460         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8461                                task, &utsns_operations);
8462 #endif
8463 #ifdef CONFIG_IPC_NS
8464         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8465                                task, &ipcns_operations);
8466 #endif
8467 #ifdef CONFIG_PID_NS
8468         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8469                                task, &pidns_operations);
8470 #endif
8471 #ifdef CONFIG_CGROUPS
8472         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8473                                task, &cgroupns_operations);
8474 #endif
8475
8476         perf_iterate_sb(perf_event_namespaces_output,
8477                         &namespaces_event,
8478                         NULL);
8479 }
8480
8481 /*
8482  * cgroup tracking
8483  */
8484 #ifdef CONFIG_CGROUP_PERF
8485
8486 struct perf_cgroup_event {
8487         char                            *path;
8488         int                             path_size;
8489         struct {
8490                 struct perf_event_header        header;
8491                 u64                             id;
8492                 char                            path[];
8493         } event_id;
8494 };
8495
8496 static int perf_event_cgroup_match(struct perf_event *event)
8497 {
8498         return event->attr.cgroup;
8499 }
8500
8501 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8502 {
8503         struct perf_cgroup_event *cgroup_event = data;
8504         struct perf_output_handle handle;
8505         struct perf_sample_data sample;
8506         u16 header_size = cgroup_event->event_id.header.size;
8507         int ret;
8508
8509         if (!perf_event_cgroup_match(event))
8510                 return;
8511
8512         perf_event_header__init_id(&cgroup_event->event_id.header,
8513                                    &sample, event);
8514         ret = perf_output_begin(&handle, &sample, event,
8515                                 cgroup_event->event_id.header.size);
8516         if (ret)
8517                 goto out;
8518
8519         perf_output_put(&handle, cgroup_event->event_id);
8520         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8521
8522         perf_event__output_id_sample(event, &handle, &sample);
8523
8524         perf_output_end(&handle);
8525 out:
8526         cgroup_event->event_id.header.size = header_size;
8527 }
8528
8529 static void perf_event_cgroup(struct cgroup *cgrp)
8530 {
8531         struct perf_cgroup_event cgroup_event;
8532         char path_enomem[16] = "//enomem";
8533         char *pathname;
8534         size_t size;
8535
8536         if (!atomic_read(&nr_cgroup_events))
8537                 return;
8538
8539         cgroup_event = (struct perf_cgroup_event){
8540                 .event_id  = {
8541                         .header = {
8542                                 .type = PERF_RECORD_CGROUP,
8543                                 .misc = 0,
8544                                 .size = sizeof(cgroup_event.event_id),
8545                         },
8546                         .id = cgroup_id(cgrp),
8547                 },
8548         };
8549
8550         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8551         if (pathname == NULL) {
8552                 cgroup_event.path = path_enomem;
8553         } else {
8554                 /* just to be sure to have enough space for alignment */
8555                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8556                 cgroup_event.path = pathname;
8557         }
8558
8559         /*
8560          * Since our buffer works in 8 byte units we need to align our string
8561          * size to a multiple of 8. However, we must guarantee the tail end is
8562          * zero'd out to avoid leaking random bits to userspace.
8563          */
8564         size = strlen(cgroup_event.path) + 1;
8565         while (!IS_ALIGNED(size, sizeof(u64)))
8566                 cgroup_event.path[size++] = '\0';
8567
8568         cgroup_event.event_id.header.size += size;
8569         cgroup_event.path_size = size;
8570
8571         perf_iterate_sb(perf_event_cgroup_output,
8572                         &cgroup_event,
8573                         NULL);
8574
8575         kfree(pathname);
8576 }
8577
8578 #endif
8579
8580 /*
8581  * mmap tracking
8582  */
8583
8584 struct perf_mmap_event {
8585         struct vm_area_struct   *vma;
8586
8587         const char              *file_name;
8588         int                     file_size;
8589         int                     maj, min;
8590         u64                     ino;
8591         u64                     ino_generation;
8592         u32                     prot, flags;
8593         u8                      build_id[BUILD_ID_SIZE_MAX];
8594         u32                     build_id_size;
8595
8596         struct {
8597                 struct perf_event_header        header;
8598
8599                 u32                             pid;
8600                 u32                             tid;
8601                 u64                             start;
8602                 u64                             len;
8603                 u64                             pgoff;
8604         } event_id;
8605 };
8606
8607 static int perf_event_mmap_match(struct perf_event *event,
8608                                  void *data)
8609 {
8610         struct perf_mmap_event *mmap_event = data;
8611         struct vm_area_struct *vma = mmap_event->vma;
8612         int executable = vma->vm_flags & VM_EXEC;
8613
8614         return (!executable && event->attr.mmap_data) ||
8615                (executable && (event->attr.mmap || event->attr.mmap2));
8616 }
8617
8618 static void perf_event_mmap_output(struct perf_event *event,
8619                                    void *data)
8620 {
8621         struct perf_mmap_event *mmap_event = data;
8622         struct perf_output_handle handle;
8623         struct perf_sample_data sample;
8624         int size = mmap_event->event_id.header.size;
8625         u32 type = mmap_event->event_id.header.type;
8626         bool use_build_id;
8627         int ret;
8628
8629         if (!perf_event_mmap_match(event, data))
8630                 return;
8631
8632         if (event->attr.mmap2) {
8633                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8634                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8635                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8636                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8637                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8638                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8639                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8640         }
8641
8642         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8643         ret = perf_output_begin(&handle, &sample, event,
8644                                 mmap_event->event_id.header.size);
8645         if (ret)
8646                 goto out;
8647
8648         mmap_event->event_id.pid = perf_event_pid(event, current);
8649         mmap_event->event_id.tid = perf_event_tid(event, current);
8650
8651         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8652
8653         if (event->attr.mmap2 && use_build_id)
8654                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8655
8656         perf_output_put(&handle, mmap_event->event_id);
8657
8658         if (event->attr.mmap2) {
8659                 if (use_build_id) {
8660                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8661
8662                         __output_copy(&handle, size, 4);
8663                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8664                 } else {
8665                         perf_output_put(&handle, mmap_event->maj);
8666                         perf_output_put(&handle, mmap_event->min);
8667                         perf_output_put(&handle, mmap_event->ino);
8668                         perf_output_put(&handle, mmap_event->ino_generation);
8669                 }
8670                 perf_output_put(&handle, mmap_event->prot);
8671                 perf_output_put(&handle, mmap_event->flags);
8672         }
8673
8674         __output_copy(&handle, mmap_event->file_name,
8675                                    mmap_event->file_size);
8676
8677         perf_event__output_id_sample(event, &handle, &sample);
8678
8679         perf_output_end(&handle);
8680 out:
8681         mmap_event->event_id.header.size = size;
8682         mmap_event->event_id.header.type = type;
8683 }
8684
8685 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8686 {
8687         struct vm_area_struct *vma = mmap_event->vma;
8688         struct file *file = vma->vm_file;
8689         int maj = 0, min = 0;
8690         u64 ino = 0, gen = 0;
8691         u32 prot = 0, flags = 0;
8692         unsigned int size;
8693         char tmp[16];
8694         char *buf = NULL;
8695         char *name = NULL;
8696
8697         if (vma->vm_flags & VM_READ)
8698                 prot |= PROT_READ;
8699         if (vma->vm_flags & VM_WRITE)
8700                 prot |= PROT_WRITE;
8701         if (vma->vm_flags & VM_EXEC)
8702                 prot |= PROT_EXEC;
8703
8704         if (vma->vm_flags & VM_MAYSHARE)
8705                 flags = MAP_SHARED;
8706         else
8707                 flags = MAP_PRIVATE;
8708
8709         if (vma->vm_flags & VM_LOCKED)
8710                 flags |= MAP_LOCKED;
8711         if (is_vm_hugetlb_page(vma))
8712                 flags |= MAP_HUGETLB;
8713
8714         if (file) {
8715                 struct inode *inode;
8716                 dev_t dev;
8717
8718                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8719                 if (!buf) {
8720                         name = "//enomem";
8721                         goto cpy_name;
8722                 }
8723                 /*
8724                  * d_path() works from the end of the rb backwards, so we
8725                  * need to add enough zero bytes after the string to handle
8726                  * the 64bit alignment we do later.
8727                  */
8728                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8729                 if (IS_ERR(name)) {
8730                         name = "//toolong";
8731                         goto cpy_name;
8732                 }
8733                 inode = file_inode(vma->vm_file);
8734                 dev = inode->i_sb->s_dev;
8735                 ino = inode->i_ino;
8736                 gen = inode->i_generation;
8737                 maj = MAJOR(dev);
8738                 min = MINOR(dev);
8739
8740                 goto got_name;
8741         } else {
8742                 if (vma->vm_ops && vma->vm_ops->name)
8743                         name = (char *) vma->vm_ops->name(vma);
8744                 if (!name)
8745                         name = (char *)arch_vma_name(vma);
8746                 if (!name) {
8747                         if (vma_is_initial_heap(vma))
8748                                 name = "[heap]";
8749                         else if (vma_is_initial_stack(vma))
8750                                 name = "[stack]";
8751                         else
8752                                 name = "//anon";
8753                 }
8754         }
8755
8756 cpy_name:
8757         strscpy(tmp, name, sizeof(tmp));
8758         name = tmp;
8759 got_name:
8760         /*
8761          * Since our buffer works in 8 byte units we need to align our string
8762          * size to a multiple of 8. However, we must guarantee the tail end is
8763          * zero'd out to avoid leaking random bits to userspace.
8764          */
8765         size = strlen(name)+1;
8766         while (!IS_ALIGNED(size, sizeof(u64)))
8767                 name[size++] = '\0';
8768
8769         mmap_event->file_name = name;
8770         mmap_event->file_size = size;
8771         mmap_event->maj = maj;
8772         mmap_event->min = min;
8773         mmap_event->ino = ino;
8774         mmap_event->ino_generation = gen;
8775         mmap_event->prot = prot;
8776         mmap_event->flags = flags;
8777
8778         if (!(vma->vm_flags & VM_EXEC))
8779                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8780
8781         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8782
8783         if (atomic_read(&nr_build_id_events))
8784                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8785
8786         perf_iterate_sb(perf_event_mmap_output,
8787                        mmap_event,
8788                        NULL);
8789
8790         kfree(buf);
8791 }
8792
8793 /*
8794  * Check whether inode and address range match filter criteria.
8795  */
8796 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8797                                      struct file *file, unsigned long offset,
8798                                      unsigned long size)
8799 {
8800         /* d_inode(NULL) won't be equal to any mapped user-space file */
8801         if (!filter->path.dentry)
8802                 return false;
8803
8804         if (d_inode(filter->path.dentry) != file_inode(file))
8805                 return false;
8806
8807         if (filter->offset > offset + size)
8808                 return false;
8809
8810         if (filter->offset + filter->size < offset)
8811                 return false;
8812
8813         return true;
8814 }
8815
8816 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8817                                         struct vm_area_struct *vma,
8818                                         struct perf_addr_filter_range *fr)
8819 {
8820         unsigned long vma_size = vma->vm_end - vma->vm_start;
8821         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8822         struct file *file = vma->vm_file;
8823
8824         if (!perf_addr_filter_match(filter, file, off, vma_size))
8825                 return false;
8826
8827         if (filter->offset < off) {
8828                 fr->start = vma->vm_start;
8829                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8830         } else {
8831                 fr->start = vma->vm_start + filter->offset - off;
8832                 fr->size = min(vma->vm_end - fr->start, filter->size);
8833         }
8834
8835         return true;
8836 }
8837
8838 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8839 {
8840         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8841         struct vm_area_struct *vma = data;
8842         struct perf_addr_filter *filter;
8843         unsigned int restart = 0, count = 0;
8844         unsigned long flags;
8845
8846         if (!has_addr_filter(event))
8847                 return;
8848
8849         if (!vma->vm_file)
8850                 return;
8851
8852         raw_spin_lock_irqsave(&ifh->lock, flags);
8853         list_for_each_entry(filter, &ifh->list, entry) {
8854                 if (perf_addr_filter_vma_adjust(filter, vma,
8855                                                 &event->addr_filter_ranges[count]))
8856                         restart++;
8857
8858                 count++;
8859         }
8860
8861         if (restart)
8862                 event->addr_filters_gen++;
8863         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8864
8865         if (restart)
8866                 perf_event_stop(event, 1);
8867 }
8868
8869 /*
8870  * Adjust all task's events' filters to the new vma
8871  */
8872 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8873 {
8874         struct perf_event_context *ctx;
8875
8876         /*
8877          * Data tracing isn't supported yet and as such there is no need
8878          * to keep track of anything that isn't related to executable code:
8879          */
8880         if (!(vma->vm_flags & VM_EXEC))
8881                 return;
8882
8883         rcu_read_lock();
8884         ctx = rcu_dereference(current->perf_event_ctxp);
8885         if (ctx)
8886                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8887         rcu_read_unlock();
8888 }
8889
8890 void perf_event_mmap(struct vm_area_struct *vma)
8891 {
8892         struct perf_mmap_event mmap_event;
8893
8894         if (!atomic_read(&nr_mmap_events))
8895                 return;
8896
8897         mmap_event = (struct perf_mmap_event){
8898                 .vma    = vma,
8899                 /* .file_name */
8900                 /* .file_size */
8901                 .event_id  = {
8902                         .header = {
8903                                 .type = PERF_RECORD_MMAP,
8904                                 .misc = PERF_RECORD_MISC_USER,
8905                                 /* .size */
8906                         },
8907                         /* .pid */
8908                         /* .tid */
8909                         .start  = vma->vm_start,
8910                         .len    = vma->vm_end - vma->vm_start,
8911                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8912                 },
8913                 /* .maj (attr_mmap2 only) */
8914                 /* .min (attr_mmap2 only) */
8915                 /* .ino (attr_mmap2 only) */
8916                 /* .ino_generation (attr_mmap2 only) */
8917                 /* .prot (attr_mmap2 only) */
8918                 /* .flags (attr_mmap2 only) */
8919         };
8920
8921         perf_addr_filters_adjust(vma);
8922         perf_event_mmap_event(&mmap_event);
8923 }
8924
8925 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8926                           unsigned long size, u64 flags)
8927 {
8928         struct perf_output_handle handle;
8929         struct perf_sample_data sample;
8930         struct perf_aux_event {
8931                 struct perf_event_header        header;
8932                 u64                             offset;
8933                 u64                             size;
8934                 u64                             flags;
8935         } rec = {
8936                 .header = {
8937                         .type = PERF_RECORD_AUX,
8938                         .misc = 0,
8939                         .size = sizeof(rec),
8940                 },
8941                 .offset         = head,
8942                 .size           = size,
8943                 .flags          = flags,
8944         };
8945         int ret;
8946
8947         perf_event_header__init_id(&rec.header, &sample, event);
8948         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8949
8950         if (ret)
8951                 return;
8952
8953         perf_output_put(&handle, rec);
8954         perf_event__output_id_sample(event, &handle, &sample);
8955
8956         perf_output_end(&handle);
8957 }
8958
8959 /*
8960  * Lost/dropped samples logging
8961  */
8962 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8963 {
8964         struct perf_output_handle handle;
8965         struct perf_sample_data sample;
8966         int ret;
8967
8968         struct {
8969                 struct perf_event_header        header;
8970                 u64                             lost;
8971         } lost_samples_event = {
8972                 .header = {
8973                         .type = PERF_RECORD_LOST_SAMPLES,
8974                         .misc = 0,
8975                         .size = sizeof(lost_samples_event),
8976                 },
8977                 .lost           = lost,
8978         };
8979
8980         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8981
8982         ret = perf_output_begin(&handle, &sample, event,
8983                                 lost_samples_event.header.size);
8984         if (ret)
8985                 return;
8986
8987         perf_output_put(&handle, lost_samples_event);
8988         perf_event__output_id_sample(event, &handle, &sample);
8989         perf_output_end(&handle);
8990 }
8991
8992 /*
8993  * context_switch tracking
8994  */
8995
8996 struct perf_switch_event {
8997         struct task_struct      *task;
8998         struct task_struct      *next_prev;
8999
9000         struct {
9001                 struct perf_event_header        header;
9002                 u32                             next_prev_pid;
9003                 u32                             next_prev_tid;
9004         } event_id;
9005 };
9006
9007 static int perf_event_switch_match(struct perf_event *event)
9008 {
9009         return event->attr.context_switch;
9010 }
9011
9012 static void perf_event_switch_output(struct perf_event *event, void *data)
9013 {
9014         struct perf_switch_event *se = data;
9015         struct perf_output_handle handle;
9016         struct perf_sample_data sample;
9017         int ret;
9018
9019         if (!perf_event_switch_match(event))
9020                 return;
9021
9022         /* Only CPU-wide events are allowed to see next/prev pid/tid */
9023         if (event->ctx->task) {
9024                 se->event_id.header.type = PERF_RECORD_SWITCH;
9025                 se->event_id.header.size = sizeof(se->event_id.header);
9026         } else {
9027                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9028                 se->event_id.header.size = sizeof(se->event_id);
9029                 se->event_id.next_prev_pid =
9030                                         perf_event_pid(event, se->next_prev);
9031                 se->event_id.next_prev_tid =
9032                                         perf_event_tid(event, se->next_prev);
9033         }
9034
9035         perf_event_header__init_id(&se->event_id.header, &sample, event);
9036
9037         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9038         if (ret)
9039                 return;
9040
9041         if (event->ctx->task)
9042                 perf_output_put(&handle, se->event_id.header);
9043         else
9044                 perf_output_put(&handle, se->event_id);
9045
9046         perf_event__output_id_sample(event, &handle, &sample);
9047
9048         perf_output_end(&handle);
9049 }
9050
9051 static void perf_event_switch(struct task_struct *task,
9052                               struct task_struct *next_prev, bool sched_in)
9053 {
9054         struct perf_switch_event switch_event;
9055
9056         /* N.B. caller checks nr_switch_events != 0 */
9057
9058         switch_event = (struct perf_switch_event){
9059                 .task           = task,
9060                 .next_prev      = next_prev,
9061                 .event_id       = {
9062                         .header = {
9063                                 /* .type */
9064                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9065                                 /* .size */
9066                         },
9067                         /* .next_prev_pid */
9068                         /* .next_prev_tid */
9069                 },
9070         };
9071
9072         if (!sched_in && task->on_rq) {
9073                 switch_event.event_id.header.misc |=
9074                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9075         }
9076
9077         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9078 }
9079
9080 /*
9081  * IRQ throttle logging
9082  */
9083
9084 static void perf_log_throttle(struct perf_event *event, int enable)
9085 {
9086         struct perf_output_handle handle;
9087         struct perf_sample_data sample;
9088         int ret;
9089
9090         struct {
9091                 struct perf_event_header        header;
9092                 u64                             time;
9093                 u64                             id;
9094                 u64                             stream_id;
9095         } throttle_event = {
9096                 .header = {
9097                         .type = PERF_RECORD_THROTTLE,
9098                         .misc = 0,
9099                         .size = sizeof(throttle_event),
9100                 },
9101                 .time           = perf_event_clock(event),
9102                 .id             = primary_event_id(event),
9103                 .stream_id      = event->id,
9104         };
9105
9106         if (enable)
9107                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9108
9109         perf_event_header__init_id(&throttle_event.header, &sample, event);
9110
9111         ret = perf_output_begin(&handle, &sample, event,
9112                                 throttle_event.header.size);
9113         if (ret)
9114                 return;
9115
9116         perf_output_put(&handle, throttle_event);
9117         perf_event__output_id_sample(event, &handle, &sample);
9118         perf_output_end(&handle);
9119 }
9120
9121 /*
9122  * ksymbol register/unregister tracking
9123  */
9124
9125 struct perf_ksymbol_event {
9126         const char      *name;
9127         int             name_len;
9128         struct {
9129                 struct perf_event_header        header;
9130                 u64                             addr;
9131                 u32                             len;
9132                 u16                             ksym_type;
9133                 u16                             flags;
9134         } event_id;
9135 };
9136
9137 static int perf_event_ksymbol_match(struct perf_event *event)
9138 {
9139         return event->attr.ksymbol;
9140 }
9141
9142 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9143 {
9144         struct perf_ksymbol_event *ksymbol_event = data;
9145         struct perf_output_handle handle;
9146         struct perf_sample_data sample;
9147         int ret;
9148
9149         if (!perf_event_ksymbol_match(event))
9150                 return;
9151
9152         perf_event_header__init_id(&ksymbol_event->event_id.header,
9153                                    &sample, event);
9154         ret = perf_output_begin(&handle, &sample, event,
9155                                 ksymbol_event->event_id.header.size);
9156         if (ret)
9157                 return;
9158
9159         perf_output_put(&handle, ksymbol_event->event_id);
9160         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9161         perf_event__output_id_sample(event, &handle, &sample);
9162
9163         perf_output_end(&handle);
9164 }
9165
9166 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9167                         const char *sym)
9168 {
9169         struct perf_ksymbol_event ksymbol_event;
9170         char name[KSYM_NAME_LEN];
9171         u16 flags = 0;
9172         int name_len;
9173
9174         if (!atomic_read(&nr_ksymbol_events))
9175                 return;
9176
9177         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9178             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9179                 goto err;
9180
9181         strscpy(name, sym, KSYM_NAME_LEN);
9182         name_len = strlen(name) + 1;
9183         while (!IS_ALIGNED(name_len, sizeof(u64)))
9184                 name[name_len++] = '\0';
9185         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9186
9187         if (unregister)
9188                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9189
9190         ksymbol_event = (struct perf_ksymbol_event){
9191                 .name = name,
9192                 .name_len = name_len,
9193                 .event_id = {
9194                         .header = {
9195                                 .type = PERF_RECORD_KSYMBOL,
9196                                 .size = sizeof(ksymbol_event.event_id) +
9197                                         name_len,
9198                         },
9199                         .addr = addr,
9200                         .len = len,
9201                         .ksym_type = ksym_type,
9202                         .flags = flags,
9203                 },
9204         };
9205
9206         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9207         return;
9208 err:
9209         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9210 }
9211
9212 /*
9213  * bpf program load/unload tracking
9214  */
9215
9216 struct perf_bpf_event {
9217         struct bpf_prog *prog;
9218         struct {
9219                 struct perf_event_header        header;
9220                 u16                             type;
9221                 u16                             flags;
9222                 u32                             id;
9223                 u8                              tag[BPF_TAG_SIZE];
9224         } event_id;
9225 };
9226
9227 static int perf_event_bpf_match(struct perf_event *event)
9228 {
9229         return event->attr.bpf_event;
9230 }
9231
9232 static void perf_event_bpf_output(struct perf_event *event, void *data)
9233 {
9234         struct perf_bpf_event *bpf_event = data;
9235         struct perf_output_handle handle;
9236         struct perf_sample_data sample;
9237         int ret;
9238
9239         if (!perf_event_bpf_match(event))
9240                 return;
9241
9242         perf_event_header__init_id(&bpf_event->event_id.header,
9243                                    &sample, event);
9244         ret = perf_output_begin(&handle, &sample, event,
9245                                 bpf_event->event_id.header.size);
9246         if (ret)
9247                 return;
9248
9249         perf_output_put(&handle, bpf_event->event_id);
9250         perf_event__output_id_sample(event, &handle, &sample);
9251
9252         perf_output_end(&handle);
9253 }
9254
9255 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9256                                          enum perf_bpf_event_type type)
9257 {
9258         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9259         int i;
9260
9261         if (prog->aux->func_cnt == 0) {
9262                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9263                                    (u64)(unsigned long)prog->bpf_func,
9264                                    prog->jited_len, unregister,
9265                                    prog->aux->ksym.name);
9266         } else {
9267                 for (i = 0; i < prog->aux->func_cnt; i++) {
9268                         struct bpf_prog *subprog = prog->aux->func[i];
9269
9270                         perf_event_ksymbol(
9271                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9272                                 (u64)(unsigned long)subprog->bpf_func,
9273                                 subprog->jited_len, unregister,
9274                                 subprog->aux->ksym.name);
9275                 }
9276         }
9277 }
9278
9279 void perf_event_bpf_event(struct bpf_prog *prog,
9280                           enum perf_bpf_event_type type,
9281                           u16 flags)
9282 {
9283         struct perf_bpf_event bpf_event;
9284
9285         if (type <= PERF_BPF_EVENT_UNKNOWN ||
9286             type >= PERF_BPF_EVENT_MAX)
9287                 return;
9288
9289         switch (type) {
9290         case PERF_BPF_EVENT_PROG_LOAD:
9291         case PERF_BPF_EVENT_PROG_UNLOAD:
9292                 if (atomic_read(&nr_ksymbol_events))
9293                         perf_event_bpf_emit_ksymbols(prog, type);
9294                 break;
9295         default:
9296                 break;
9297         }
9298
9299         if (!atomic_read(&nr_bpf_events))
9300                 return;
9301
9302         bpf_event = (struct perf_bpf_event){
9303                 .prog = prog,
9304                 .event_id = {
9305                         .header = {
9306                                 .type = PERF_RECORD_BPF_EVENT,
9307                                 .size = sizeof(bpf_event.event_id),
9308                         },
9309                         .type = type,
9310                         .flags = flags,
9311                         .id = prog->aux->id,
9312                 },
9313         };
9314
9315         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9316
9317         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9318         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9319 }
9320
9321 struct perf_text_poke_event {
9322         const void              *old_bytes;
9323         const void              *new_bytes;
9324         size_t                  pad;
9325         u16                     old_len;
9326         u16                     new_len;
9327
9328         struct {
9329                 struct perf_event_header        header;
9330
9331                 u64                             addr;
9332         } event_id;
9333 };
9334
9335 static int perf_event_text_poke_match(struct perf_event *event)
9336 {
9337         return event->attr.text_poke;
9338 }
9339
9340 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9341 {
9342         struct perf_text_poke_event *text_poke_event = data;
9343         struct perf_output_handle handle;
9344         struct perf_sample_data sample;
9345         u64 padding = 0;
9346         int ret;
9347
9348         if (!perf_event_text_poke_match(event))
9349                 return;
9350
9351         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9352
9353         ret = perf_output_begin(&handle, &sample, event,
9354                                 text_poke_event->event_id.header.size);
9355         if (ret)
9356                 return;
9357
9358         perf_output_put(&handle, text_poke_event->event_id);
9359         perf_output_put(&handle, text_poke_event->old_len);
9360         perf_output_put(&handle, text_poke_event->new_len);
9361
9362         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9363         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9364
9365         if (text_poke_event->pad)
9366                 __output_copy(&handle, &padding, text_poke_event->pad);
9367
9368         perf_event__output_id_sample(event, &handle, &sample);
9369
9370         perf_output_end(&handle);
9371 }
9372
9373 void perf_event_text_poke(const void *addr, const void *old_bytes,
9374                           size_t old_len, const void *new_bytes, size_t new_len)
9375 {
9376         struct perf_text_poke_event text_poke_event;
9377         size_t tot, pad;
9378
9379         if (!atomic_read(&nr_text_poke_events))
9380                 return;
9381
9382         tot  = sizeof(text_poke_event.old_len) + old_len;
9383         tot += sizeof(text_poke_event.new_len) + new_len;
9384         pad  = ALIGN(tot, sizeof(u64)) - tot;
9385
9386         text_poke_event = (struct perf_text_poke_event){
9387                 .old_bytes    = old_bytes,
9388                 .new_bytes    = new_bytes,
9389                 .pad          = pad,
9390                 .old_len      = old_len,
9391                 .new_len      = new_len,
9392                 .event_id  = {
9393                         .header = {
9394                                 .type = PERF_RECORD_TEXT_POKE,
9395                                 .misc = PERF_RECORD_MISC_KERNEL,
9396                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9397                         },
9398                         .addr = (unsigned long)addr,
9399                 },
9400         };
9401
9402         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9403 }
9404
9405 void perf_event_itrace_started(struct perf_event *event)
9406 {
9407         event->attach_state |= PERF_ATTACH_ITRACE;
9408 }
9409
9410 static void perf_log_itrace_start(struct perf_event *event)
9411 {
9412         struct perf_output_handle handle;
9413         struct perf_sample_data sample;
9414         struct perf_aux_event {
9415                 struct perf_event_header        header;
9416                 u32                             pid;
9417                 u32                             tid;
9418         } rec;
9419         int ret;
9420
9421         if (event->parent)
9422                 event = event->parent;
9423
9424         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9425             event->attach_state & PERF_ATTACH_ITRACE)
9426                 return;
9427
9428         rec.header.type = PERF_RECORD_ITRACE_START;
9429         rec.header.misc = 0;
9430         rec.header.size = sizeof(rec);
9431         rec.pid = perf_event_pid(event, current);
9432         rec.tid = perf_event_tid(event, current);
9433
9434         perf_event_header__init_id(&rec.header, &sample, event);
9435         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9436
9437         if (ret)
9438                 return;
9439
9440         perf_output_put(&handle, rec);
9441         perf_event__output_id_sample(event, &handle, &sample);
9442
9443         perf_output_end(&handle);
9444 }
9445
9446 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9447 {
9448         struct perf_output_handle handle;
9449         struct perf_sample_data sample;
9450         struct perf_aux_event {
9451                 struct perf_event_header        header;
9452                 u64                             hw_id;
9453         } rec;
9454         int ret;
9455
9456         if (event->parent)
9457                 event = event->parent;
9458
9459         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9460         rec.header.misc = 0;
9461         rec.header.size = sizeof(rec);
9462         rec.hw_id       = hw_id;
9463
9464         perf_event_header__init_id(&rec.header, &sample, event);
9465         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9466
9467         if (ret)
9468                 return;
9469
9470         perf_output_put(&handle, rec);
9471         perf_event__output_id_sample(event, &handle, &sample);
9472
9473         perf_output_end(&handle);
9474 }
9475 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9476
9477 static int
9478 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9479 {
9480         struct hw_perf_event *hwc = &event->hw;
9481         int ret = 0;
9482         u64 seq;
9483
9484         seq = __this_cpu_read(perf_throttled_seq);
9485         if (seq != hwc->interrupts_seq) {
9486                 hwc->interrupts_seq = seq;
9487                 hwc->interrupts = 1;
9488         } else {
9489                 hwc->interrupts++;
9490                 if (unlikely(throttle &&
9491                              hwc->interrupts > max_samples_per_tick)) {
9492                         __this_cpu_inc(perf_throttled_count);
9493                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9494                         hwc->interrupts = MAX_INTERRUPTS;
9495                         perf_log_throttle(event, 0);
9496                         ret = 1;
9497                 }
9498         }
9499
9500         if (event->attr.freq) {
9501                 u64 now = perf_clock();
9502                 s64 delta = now - hwc->freq_time_stamp;
9503
9504                 hwc->freq_time_stamp = now;
9505
9506                 if (delta > 0 && delta < 2*TICK_NSEC)
9507                         perf_adjust_period(event, delta, hwc->last_period, true);
9508         }
9509
9510         return ret;
9511 }
9512
9513 int perf_event_account_interrupt(struct perf_event *event)
9514 {
9515         return __perf_event_account_interrupt(event, 1);
9516 }
9517
9518 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9519 {
9520         /*
9521          * Due to interrupt latency (AKA "skid"), we may enter the
9522          * kernel before taking an overflow, even if the PMU is only
9523          * counting user events.
9524          */
9525         if (event->attr.exclude_kernel && !user_mode(regs))
9526                 return false;
9527
9528         return true;
9529 }
9530
9531 /*
9532  * Generic event overflow handling, sampling.
9533  */
9534
9535 static int __perf_event_overflow(struct perf_event *event,
9536                                  int throttle, struct perf_sample_data *data,
9537                                  struct pt_regs *regs)
9538 {
9539         int events = atomic_read(&event->event_limit);
9540         int ret = 0;
9541
9542         /*
9543          * Non-sampling counters might still use the PMI to fold short
9544          * hardware counters, ignore those.
9545          */
9546         if (unlikely(!is_sampling_event(event)))
9547                 return 0;
9548
9549         ret = __perf_event_account_interrupt(event, throttle);
9550
9551         /*
9552          * XXX event_limit might not quite work as expected on inherited
9553          * events
9554          */
9555
9556         event->pending_kill = POLL_IN;
9557         if (events && atomic_dec_and_test(&event->event_limit)) {
9558                 ret = 1;
9559                 event->pending_kill = POLL_HUP;
9560                 perf_event_disable_inatomic(event);
9561         }
9562
9563         if (event->attr.sigtrap) {
9564                 /*
9565                  * The desired behaviour of sigtrap vs invalid samples is a bit
9566                  * tricky; on the one hand, one should not loose the SIGTRAP if
9567                  * it is the first event, on the other hand, we should also not
9568                  * trigger the WARN or override the data address.
9569                  */
9570                 bool valid_sample = sample_is_allowed(event, regs);
9571                 unsigned int pending_id = 1;
9572
9573                 if (regs)
9574                         pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9575                 if (!event->pending_sigtrap) {
9576                         event->pending_sigtrap = pending_id;
9577                         local_inc(&event->ctx->nr_pending);
9578                 } else if (event->attr.exclude_kernel && valid_sample) {
9579                         /*
9580                          * Should not be able to return to user space without
9581                          * consuming pending_sigtrap; with exceptions:
9582                          *
9583                          *  1. Where !exclude_kernel, events can overflow again
9584                          *     in the kernel without returning to user space.
9585                          *
9586                          *  2. Events that can overflow again before the IRQ-
9587                          *     work without user space progress (e.g. hrtimer).
9588                          *     To approximate progress (with false negatives),
9589                          *     check 32-bit hash of the current IP.
9590                          */
9591                         WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9592                 }
9593
9594                 event->pending_addr = 0;
9595                 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9596                         event->pending_addr = data->addr;
9597                 irq_work_queue(&event->pending_irq);
9598         }
9599
9600         READ_ONCE(event->overflow_handler)(event, data, regs);
9601
9602         if (*perf_event_fasync(event) && event->pending_kill) {
9603                 event->pending_wakeup = 1;
9604                 irq_work_queue(&event->pending_irq);
9605         }
9606
9607         return ret;
9608 }
9609
9610 int perf_event_overflow(struct perf_event *event,
9611                         struct perf_sample_data *data,
9612                         struct pt_regs *regs)
9613 {
9614         return __perf_event_overflow(event, 1, data, regs);
9615 }
9616
9617 /*
9618  * Generic software event infrastructure
9619  */
9620
9621 struct swevent_htable {
9622         struct swevent_hlist            *swevent_hlist;
9623         struct mutex                    hlist_mutex;
9624         int                             hlist_refcount;
9625
9626         /* Recursion avoidance in each contexts */
9627         int                             recursion[PERF_NR_CONTEXTS];
9628 };
9629
9630 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9631
9632 /*
9633  * We directly increment event->count and keep a second value in
9634  * event->hw.period_left to count intervals. This period event
9635  * is kept in the range [-sample_period, 0] so that we can use the
9636  * sign as trigger.
9637  */
9638
9639 u64 perf_swevent_set_period(struct perf_event *event)
9640 {
9641         struct hw_perf_event *hwc = &event->hw;
9642         u64 period = hwc->last_period;
9643         u64 nr, offset;
9644         s64 old, val;
9645
9646         hwc->last_period = hwc->sample_period;
9647
9648         old = local64_read(&hwc->period_left);
9649         do {
9650                 val = old;
9651                 if (val < 0)
9652                         return 0;
9653
9654                 nr = div64_u64(period + val, period);
9655                 offset = nr * period;
9656                 val -= offset;
9657         } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9658
9659         return nr;
9660 }
9661
9662 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9663                                     struct perf_sample_data *data,
9664                                     struct pt_regs *regs)
9665 {
9666         struct hw_perf_event *hwc = &event->hw;
9667         int throttle = 0;
9668
9669         if (!overflow)
9670                 overflow = perf_swevent_set_period(event);
9671
9672         if (hwc->interrupts == MAX_INTERRUPTS)
9673                 return;
9674
9675         for (; overflow; overflow--) {
9676                 if (__perf_event_overflow(event, throttle,
9677                                             data, regs)) {
9678                         /*
9679                          * We inhibit the overflow from happening when
9680                          * hwc->interrupts == MAX_INTERRUPTS.
9681                          */
9682                         break;
9683                 }
9684                 throttle = 1;
9685         }
9686 }
9687
9688 static void perf_swevent_event(struct perf_event *event, u64 nr,
9689                                struct perf_sample_data *data,
9690                                struct pt_regs *regs)
9691 {
9692         struct hw_perf_event *hwc = &event->hw;
9693
9694         local64_add(nr, &event->count);
9695
9696         if (!regs)
9697                 return;
9698
9699         if (!is_sampling_event(event))
9700                 return;
9701
9702         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9703                 data->period = nr;
9704                 return perf_swevent_overflow(event, 1, data, regs);
9705         } else
9706                 data->period = event->hw.last_period;
9707
9708         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9709                 return perf_swevent_overflow(event, 1, data, regs);
9710
9711         if (local64_add_negative(nr, &hwc->period_left))
9712                 return;
9713
9714         perf_swevent_overflow(event, 0, data, regs);
9715 }
9716
9717 static int perf_exclude_event(struct perf_event *event,
9718                               struct pt_regs *regs)
9719 {
9720         if (event->hw.state & PERF_HES_STOPPED)
9721                 return 1;
9722
9723         if (regs) {
9724                 if (event->attr.exclude_user && user_mode(regs))
9725                         return 1;
9726
9727                 if (event->attr.exclude_kernel && !user_mode(regs))
9728                         return 1;
9729         }
9730
9731         return 0;
9732 }
9733
9734 static int perf_swevent_match(struct perf_event *event,
9735                                 enum perf_type_id type,
9736                                 u32 event_id,
9737                                 struct perf_sample_data *data,
9738                                 struct pt_regs *regs)
9739 {
9740         if (event->attr.type != type)
9741                 return 0;
9742
9743         if (event->attr.config != event_id)
9744                 return 0;
9745
9746         if (perf_exclude_event(event, regs))
9747                 return 0;
9748
9749         return 1;
9750 }
9751
9752 static inline u64 swevent_hash(u64 type, u32 event_id)
9753 {
9754         u64 val = event_id | (type << 32);
9755
9756         return hash_64(val, SWEVENT_HLIST_BITS);
9757 }
9758
9759 static inline struct hlist_head *
9760 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9761 {
9762         u64 hash = swevent_hash(type, event_id);
9763
9764         return &hlist->heads[hash];
9765 }
9766
9767 /* For the read side: events when they trigger */
9768 static inline struct hlist_head *
9769 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9770 {
9771         struct swevent_hlist *hlist;
9772
9773         hlist = rcu_dereference(swhash->swevent_hlist);
9774         if (!hlist)
9775                 return NULL;
9776
9777         return __find_swevent_head(hlist, type, event_id);
9778 }
9779
9780 /* For the event head insertion and removal in the hlist */
9781 static inline struct hlist_head *
9782 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9783 {
9784         struct swevent_hlist *hlist;
9785         u32 event_id = event->attr.config;
9786         u64 type = event->attr.type;
9787
9788         /*
9789          * Event scheduling is always serialized against hlist allocation
9790          * and release. Which makes the protected version suitable here.
9791          * The context lock guarantees that.
9792          */
9793         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9794                                           lockdep_is_held(&event->ctx->lock));
9795         if (!hlist)
9796                 return NULL;
9797
9798         return __find_swevent_head(hlist, type, event_id);
9799 }
9800
9801 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9802                                     u64 nr,
9803                                     struct perf_sample_data *data,
9804                                     struct pt_regs *regs)
9805 {
9806         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9807         struct perf_event *event;
9808         struct hlist_head *head;
9809
9810         rcu_read_lock();
9811         head = find_swevent_head_rcu(swhash, type, event_id);
9812         if (!head)
9813                 goto end;
9814
9815         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9816                 if (perf_swevent_match(event, type, event_id, data, regs))
9817                         perf_swevent_event(event, nr, data, regs);
9818         }
9819 end:
9820         rcu_read_unlock();
9821 }
9822
9823 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9824
9825 int perf_swevent_get_recursion_context(void)
9826 {
9827         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9828
9829         return get_recursion_context(swhash->recursion);
9830 }
9831 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9832
9833 void perf_swevent_put_recursion_context(int rctx)
9834 {
9835         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9836
9837         put_recursion_context(swhash->recursion, rctx);
9838 }
9839
9840 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9841 {
9842         struct perf_sample_data data;
9843
9844         if (WARN_ON_ONCE(!regs))
9845                 return;
9846
9847         perf_sample_data_init(&data, addr, 0);
9848         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9849 }
9850
9851 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9852 {
9853         int rctx;
9854
9855         preempt_disable_notrace();
9856         rctx = perf_swevent_get_recursion_context();
9857         if (unlikely(rctx < 0))
9858                 goto fail;
9859
9860         ___perf_sw_event(event_id, nr, regs, addr);
9861
9862         perf_swevent_put_recursion_context(rctx);
9863 fail:
9864         preempt_enable_notrace();
9865 }
9866
9867 static void perf_swevent_read(struct perf_event *event)
9868 {
9869 }
9870
9871 static int perf_swevent_add(struct perf_event *event, int flags)
9872 {
9873         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9874         struct hw_perf_event *hwc = &event->hw;
9875         struct hlist_head *head;
9876
9877         if (is_sampling_event(event)) {
9878                 hwc->last_period = hwc->sample_period;
9879                 perf_swevent_set_period(event);
9880         }
9881
9882         hwc->state = !(flags & PERF_EF_START);
9883
9884         head = find_swevent_head(swhash, event);
9885         if (WARN_ON_ONCE(!head))
9886                 return -EINVAL;
9887
9888         hlist_add_head_rcu(&event->hlist_entry, head);
9889         perf_event_update_userpage(event);
9890
9891         return 0;
9892 }
9893
9894 static void perf_swevent_del(struct perf_event *event, int flags)
9895 {
9896         hlist_del_rcu(&event->hlist_entry);
9897 }
9898
9899 static void perf_swevent_start(struct perf_event *event, int flags)
9900 {
9901         event->hw.state = 0;
9902 }
9903
9904 static void perf_swevent_stop(struct perf_event *event, int flags)
9905 {
9906         event->hw.state = PERF_HES_STOPPED;
9907 }
9908
9909 /* Deref the hlist from the update side */
9910 static inline struct swevent_hlist *
9911 swevent_hlist_deref(struct swevent_htable *swhash)
9912 {
9913         return rcu_dereference_protected(swhash->swevent_hlist,
9914                                          lockdep_is_held(&swhash->hlist_mutex));
9915 }
9916
9917 static void swevent_hlist_release(struct swevent_htable *swhash)
9918 {
9919         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9920
9921         if (!hlist)
9922                 return;
9923
9924         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9925         kfree_rcu(hlist, rcu_head);
9926 }
9927
9928 static void swevent_hlist_put_cpu(int cpu)
9929 {
9930         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9931
9932         mutex_lock(&swhash->hlist_mutex);
9933
9934         if (!--swhash->hlist_refcount)
9935                 swevent_hlist_release(swhash);
9936
9937         mutex_unlock(&swhash->hlist_mutex);
9938 }
9939
9940 static void swevent_hlist_put(void)
9941 {
9942         int cpu;
9943
9944         for_each_possible_cpu(cpu)
9945                 swevent_hlist_put_cpu(cpu);
9946 }
9947
9948 static int swevent_hlist_get_cpu(int cpu)
9949 {
9950         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9951         int err = 0;
9952
9953         mutex_lock(&swhash->hlist_mutex);
9954         if (!swevent_hlist_deref(swhash) &&
9955             cpumask_test_cpu(cpu, perf_online_mask)) {
9956                 struct swevent_hlist *hlist;
9957
9958                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9959                 if (!hlist) {
9960                         err = -ENOMEM;
9961                         goto exit;
9962                 }
9963                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9964         }
9965         swhash->hlist_refcount++;
9966 exit:
9967         mutex_unlock(&swhash->hlist_mutex);
9968
9969         return err;
9970 }
9971
9972 static int swevent_hlist_get(void)
9973 {
9974         int err, cpu, failed_cpu;
9975
9976         mutex_lock(&pmus_lock);
9977         for_each_possible_cpu(cpu) {
9978                 err = swevent_hlist_get_cpu(cpu);
9979                 if (err) {
9980                         failed_cpu = cpu;
9981                         goto fail;
9982                 }
9983         }
9984         mutex_unlock(&pmus_lock);
9985         return 0;
9986 fail:
9987         for_each_possible_cpu(cpu) {
9988                 if (cpu == failed_cpu)
9989                         break;
9990                 swevent_hlist_put_cpu(cpu);
9991         }
9992         mutex_unlock(&pmus_lock);
9993         return err;
9994 }
9995
9996 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9997
9998 static void sw_perf_event_destroy(struct perf_event *event)
9999 {
10000         u64 event_id = event->attr.config;
10001
10002         WARN_ON(event->parent);
10003
10004         static_key_slow_dec(&perf_swevent_enabled[event_id]);
10005         swevent_hlist_put();
10006 }
10007
10008 static struct pmu perf_cpu_clock; /* fwd declaration */
10009 static struct pmu perf_task_clock;
10010
10011 static int perf_swevent_init(struct perf_event *event)
10012 {
10013         u64 event_id = event->attr.config;
10014
10015         if (event->attr.type != PERF_TYPE_SOFTWARE)
10016                 return -ENOENT;
10017
10018         /*
10019          * no branch sampling for software events
10020          */
10021         if (has_branch_stack(event))
10022                 return -EOPNOTSUPP;
10023
10024         switch (event_id) {
10025         case PERF_COUNT_SW_CPU_CLOCK:
10026                 event->attr.type = perf_cpu_clock.type;
10027                 return -ENOENT;
10028         case PERF_COUNT_SW_TASK_CLOCK:
10029                 event->attr.type = perf_task_clock.type;
10030                 return -ENOENT;
10031
10032         default:
10033                 break;
10034         }
10035
10036         if (event_id >= PERF_COUNT_SW_MAX)
10037                 return -ENOENT;
10038
10039         if (!event->parent) {
10040                 int err;
10041
10042                 err = swevent_hlist_get();
10043                 if (err)
10044                         return err;
10045
10046                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10047                 event->destroy = sw_perf_event_destroy;
10048         }
10049
10050         return 0;
10051 }
10052
10053 static struct pmu perf_swevent = {
10054         .task_ctx_nr    = perf_sw_context,
10055
10056         .capabilities   = PERF_PMU_CAP_NO_NMI,
10057
10058         .event_init     = perf_swevent_init,
10059         .add            = perf_swevent_add,
10060         .del            = perf_swevent_del,
10061         .start          = perf_swevent_start,
10062         .stop           = perf_swevent_stop,
10063         .read           = perf_swevent_read,
10064 };
10065
10066 #ifdef CONFIG_EVENT_TRACING
10067
10068 static void tp_perf_event_destroy(struct perf_event *event)
10069 {
10070         perf_trace_destroy(event);
10071 }
10072
10073 static int perf_tp_event_init(struct perf_event *event)
10074 {
10075         int err;
10076
10077         if (event->attr.type != PERF_TYPE_TRACEPOINT)
10078                 return -ENOENT;
10079
10080         /*
10081          * no branch sampling for tracepoint events
10082          */
10083         if (has_branch_stack(event))
10084                 return -EOPNOTSUPP;
10085
10086         err = perf_trace_init(event);
10087         if (err)
10088                 return err;
10089
10090         event->destroy = tp_perf_event_destroy;
10091
10092         return 0;
10093 }
10094
10095 static struct pmu perf_tracepoint = {
10096         .task_ctx_nr    = perf_sw_context,
10097
10098         .event_init     = perf_tp_event_init,
10099         .add            = perf_trace_add,
10100         .del            = perf_trace_del,
10101         .start          = perf_swevent_start,
10102         .stop           = perf_swevent_stop,
10103         .read           = perf_swevent_read,
10104 };
10105
10106 static int perf_tp_filter_match(struct perf_event *event,
10107                                 struct perf_sample_data *data)
10108 {
10109         void *record = data->raw->frag.data;
10110
10111         /* only top level events have filters set */
10112         if (event->parent)
10113                 event = event->parent;
10114
10115         if (likely(!event->filter) || filter_match_preds(event->filter, record))
10116                 return 1;
10117         return 0;
10118 }
10119
10120 static int perf_tp_event_match(struct perf_event *event,
10121                                 struct perf_sample_data *data,
10122                                 struct pt_regs *regs)
10123 {
10124         if (event->hw.state & PERF_HES_STOPPED)
10125                 return 0;
10126         /*
10127          * If exclude_kernel, only trace user-space tracepoints (uprobes)
10128          */
10129         if (event->attr.exclude_kernel && !user_mode(regs))
10130                 return 0;
10131
10132         if (!perf_tp_filter_match(event, data))
10133                 return 0;
10134
10135         return 1;
10136 }
10137
10138 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10139                                struct trace_event_call *call, u64 count,
10140                                struct pt_regs *regs, struct hlist_head *head,
10141                                struct task_struct *task)
10142 {
10143         if (bpf_prog_array_valid(call)) {
10144                 *(struct pt_regs **)raw_data = regs;
10145                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10146                         perf_swevent_put_recursion_context(rctx);
10147                         return;
10148                 }
10149         }
10150         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10151                       rctx, task);
10152 }
10153 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10154
10155 static void __perf_tp_event_target_task(u64 count, void *record,
10156                                         struct pt_regs *regs,
10157                                         struct perf_sample_data *data,
10158                                         struct perf_event *event)
10159 {
10160         struct trace_entry *entry = record;
10161
10162         if (event->attr.config != entry->type)
10163                 return;
10164         /* Cannot deliver synchronous signal to other task. */
10165         if (event->attr.sigtrap)
10166                 return;
10167         if (perf_tp_event_match(event, data, regs))
10168                 perf_swevent_event(event, count, data, regs);
10169 }
10170
10171 static void perf_tp_event_target_task(u64 count, void *record,
10172                                       struct pt_regs *regs,
10173                                       struct perf_sample_data *data,
10174                                       struct perf_event_context *ctx)
10175 {
10176         unsigned int cpu = smp_processor_id();
10177         struct pmu *pmu = &perf_tracepoint;
10178         struct perf_event *event, *sibling;
10179
10180         perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10181                 __perf_tp_event_target_task(count, record, regs, data, event);
10182                 for_each_sibling_event(sibling, event)
10183                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10184         }
10185
10186         perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10187                 __perf_tp_event_target_task(count, record, regs, data, event);
10188                 for_each_sibling_event(sibling, event)
10189                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10190         }
10191 }
10192
10193 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10194                    struct pt_regs *regs, struct hlist_head *head, int rctx,
10195                    struct task_struct *task)
10196 {
10197         struct perf_sample_data data;
10198         struct perf_event *event;
10199
10200         struct perf_raw_record raw = {
10201                 .frag = {
10202                         .size = entry_size,
10203                         .data = record,
10204                 },
10205         };
10206
10207         perf_sample_data_init(&data, 0, 0);
10208         perf_sample_save_raw_data(&data, &raw);
10209
10210         perf_trace_buf_update(record, event_type);
10211
10212         hlist_for_each_entry_rcu(event, head, hlist_entry) {
10213                 if (perf_tp_event_match(event, &data, regs)) {
10214                         perf_swevent_event(event, count, &data, regs);
10215
10216                         /*
10217                          * Here use the same on-stack perf_sample_data,
10218                          * some members in data are event-specific and
10219                          * need to be re-computed for different sweveents.
10220                          * Re-initialize data->sample_flags safely to avoid
10221                          * the problem that next event skips preparing data
10222                          * because data->sample_flags is set.
10223                          */
10224                         perf_sample_data_init(&data, 0, 0);
10225                         perf_sample_save_raw_data(&data, &raw);
10226                 }
10227         }
10228
10229         /*
10230          * If we got specified a target task, also iterate its context and
10231          * deliver this event there too.
10232          */
10233         if (task && task != current) {
10234                 struct perf_event_context *ctx;
10235
10236                 rcu_read_lock();
10237                 ctx = rcu_dereference(task->perf_event_ctxp);
10238                 if (!ctx)
10239                         goto unlock;
10240
10241                 raw_spin_lock(&ctx->lock);
10242                 perf_tp_event_target_task(count, record, regs, &data, ctx);
10243                 raw_spin_unlock(&ctx->lock);
10244 unlock:
10245                 rcu_read_unlock();
10246         }
10247
10248         perf_swevent_put_recursion_context(rctx);
10249 }
10250 EXPORT_SYMBOL_GPL(perf_tp_event);
10251
10252 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10253 /*
10254  * Flags in config, used by dynamic PMU kprobe and uprobe
10255  * The flags should match following PMU_FORMAT_ATTR().
10256  *
10257  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10258  *                               if not set, create kprobe/uprobe
10259  *
10260  * The following values specify a reference counter (or semaphore in the
10261  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10262  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10263  *
10264  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
10265  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
10266  */
10267 enum perf_probe_config {
10268         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10269         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10270         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10271 };
10272
10273 PMU_FORMAT_ATTR(retprobe, "config:0");
10274 #endif
10275
10276 #ifdef CONFIG_KPROBE_EVENTS
10277 static struct attribute *kprobe_attrs[] = {
10278         &format_attr_retprobe.attr,
10279         NULL,
10280 };
10281
10282 static struct attribute_group kprobe_format_group = {
10283         .name = "format",
10284         .attrs = kprobe_attrs,
10285 };
10286
10287 static const struct attribute_group *kprobe_attr_groups[] = {
10288         &kprobe_format_group,
10289         NULL,
10290 };
10291
10292 static int perf_kprobe_event_init(struct perf_event *event);
10293 static struct pmu perf_kprobe = {
10294         .task_ctx_nr    = perf_sw_context,
10295         .event_init     = perf_kprobe_event_init,
10296         .add            = perf_trace_add,
10297         .del            = perf_trace_del,
10298         .start          = perf_swevent_start,
10299         .stop           = perf_swevent_stop,
10300         .read           = perf_swevent_read,
10301         .attr_groups    = kprobe_attr_groups,
10302 };
10303
10304 static int perf_kprobe_event_init(struct perf_event *event)
10305 {
10306         int err;
10307         bool is_retprobe;
10308
10309         if (event->attr.type != perf_kprobe.type)
10310                 return -ENOENT;
10311
10312         if (!perfmon_capable())
10313                 return -EACCES;
10314
10315         /*
10316          * no branch sampling for probe events
10317          */
10318         if (has_branch_stack(event))
10319                 return -EOPNOTSUPP;
10320
10321         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10322         err = perf_kprobe_init(event, is_retprobe);
10323         if (err)
10324                 return err;
10325
10326         event->destroy = perf_kprobe_destroy;
10327
10328         return 0;
10329 }
10330 #endif /* CONFIG_KPROBE_EVENTS */
10331
10332 #ifdef CONFIG_UPROBE_EVENTS
10333 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10334
10335 static struct attribute *uprobe_attrs[] = {
10336         &format_attr_retprobe.attr,
10337         &format_attr_ref_ctr_offset.attr,
10338         NULL,
10339 };
10340
10341 static struct attribute_group uprobe_format_group = {
10342         .name = "format",
10343         .attrs = uprobe_attrs,
10344 };
10345
10346 static const struct attribute_group *uprobe_attr_groups[] = {
10347         &uprobe_format_group,
10348         NULL,
10349 };
10350
10351 static int perf_uprobe_event_init(struct perf_event *event);
10352 static struct pmu perf_uprobe = {
10353         .task_ctx_nr    = perf_sw_context,
10354         .event_init     = perf_uprobe_event_init,
10355         .add            = perf_trace_add,
10356         .del            = perf_trace_del,
10357         .start          = perf_swevent_start,
10358         .stop           = perf_swevent_stop,
10359         .read           = perf_swevent_read,
10360         .attr_groups    = uprobe_attr_groups,
10361 };
10362
10363 static int perf_uprobe_event_init(struct perf_event *event)
10364 {
10365         int err;
10366         unsigned long ref_ctr_offset;
10367         bool is_retprobe;
10368
10369         if (event->attr.type != perf_uprobe.type)
10370                 return -ENOENT;
10371
10372         if (!perfmon_capable())
10373                 return -EACCES;
10374
10375         /*
10376          * no branch sampling for probe events
10377          */
10378         if (has_branch_stack(event))
10379                 return -EOPNOTSUPP;
10380
10381         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10382         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10383         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10384         if (err)
10385                 return err;
10386
10387         event->destroy = perf_uprobe_destroy;
10388
10389         return 0;
10390 }
10391 #endif /* CONFIG_UPROBE_EVENTS */
10392
10393 static inline void perf_tp_register(void)
10394 {
10395         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10396 #ifdef CONFIG_KPROBE_EVENTS
10397         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10398 #endif
10399 #ifdef CONFIG_UPROBE_EVENTS
10400         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10401 #endif
10402 }
10403
10404 static void perf_event_free_filter(struct perf_event *event)
10405 {
10406         ftrace_profile_free_filter(event);
10407 }
10408
10409 #ifdef CONFIG_BPF_SYSCALL
10410 static void bpf_overflow_handler(struct perf_event *event,
10411                                  struct perf_sample_data *data,
10412                                  struct pt_regs *regs)
10413 {
10414         struct bpf_perf_event_data_kern ctx = {
10415                 .data = data,
10416                 .event = event,
10417         };
10418         struct bpf_prog *prog;
10419         int ret = 0;
10420
10421         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10422         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10423                 goto out;
10424         rcu_read_lock();
10425         prog = READ_ONCE(event->prog);
10426         if (prog) {
10427                 perf_prepare_sample(data, event, regs);
10428                 ret = bpf_prog_run(prog, &ctx);
10429         }
10430         rcu_read_unlock();
10431 out:
10432         __this_cpu_dec(bpf_prog_active);
10433         if (!ret)
10434                 return;
10435
10436         event->orig_overflow_handler(event, data, regs);
10437 }
10438
10439 static int perf_event_set_bpf_handler(struct perf_event *event,
10440                                       struct bpf_prog *prog,
10441                                       u64 bpf_cookie)
10442 {
10443         if (event->overflow_handler_context)
10444                 /* hw breakpoint or kernel counter */
10445                 return -EINVAL;
10446
10447         if (event->prog)
10448                 return -EEXIST;
10449
10450         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10451                 return -EINVAL;
10452
10453         if (event->attr.precise_ip &&
10454             prog->call_get_stack &&
10455             (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10456              event->attr.exclude_callchain_kernel ||
10457              event->attr.exclude_callchain_user)) {
10458                 /*
10459                  * On perf_event with precise_ip, calling bpf_get_stack()
10460                  * may trigger unwinder warnings and occasional crashes.
10461                  * bpf_get_[stack|stackid] works around this issue by using
10462                  * callchain attached to perf_sample_data. If the
10463                  * perf_event does not full (kernel and user) callchain
10464                  * attached to perf_sample_data, do not allow attaching BPF
10465                  * program that calls bpf_get_[stack|stackid].
10466                  */
10467                 return -EPROTO;
10468         }
10469
10470         event->prog = prog;
10471         event->bpf_cookie = bpf_cookie;
10472         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10473         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10474         return 0;
10475 }
10476
10477 static void perf_event_free_bpf_handler(struct perf_event *event)
10478 {
10479         struct bpf_prog *prog = event->prog;
10480
10481         if (!prog)
10482                 return;
10483
10484         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10485         event->prog = NULL;
10486         bpf_prog_put(prog);
10487 }
10488 #else
10489 static int perf_event_set_bpf_handler(struct perf_event *event,
10490                                       struct bpf_prog *prog,
10491                                       u64 bpf_cookie)
10492 {
10493         return -EOPNOTSUPP;
10494 }
10495 static void perf_event_free_bpf_handler(struct perf_event *event)
10496 {
10497 }
10498 #endif
10499
10500 /*
10501  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10502  * with perf_event_open()
10503  */
10504 static inline bool perf_event_is_tracing(struct perf_event *event)
10505 {
10506         if (event->pmu == &perf_tracepoint)
10507                 return true;
10508 #ifdef CONFIG_KPROBE_EVENTS
10509         if (event->pmu == &perf_kprobe)
10510                 return true;
10511 #endif
10512 #ifdef CONFIG_UPROBE_EVENTS
10513         if (event->pmu == &perf_uprobe)
10514                 return true;
10515 #endif
10516         return false;
10517 }
10518
10519 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10520                             u64 bpf_cookie)
10521 {
10522         bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10523
10524         if (!perf_event_is_tracing(event))
10525                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10526
10527         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10528         is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10529         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10530         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10531         if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10532                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10533                 return -EINVAL;
10534
10535         if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10536             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10537             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10538                 return -EINVAL;
10539
10540         if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10541                 /* only uprobe programs are allowed to be sleepable */
10542                 return -EINVAL;
10543
10544         /* Kprobe override only works for kprobes, not uprobes. */
10545         if (prog->kprobe_override && !is_kprobe)
10546                 return -EINVAL;
10547
10548         if (is_tracepoint || is_syscall_tp) {
10549                 int off = trace_event_get_offsets(event->tp_event);
10550
10551                 if (prog->aux->max_ctx_offset > off)
10552                         return -EACCES;
10553         }
10554
10555         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10556 }
10557
10558 void perf_event_free_bpf_prog(struct perf_event *event)
10559 {
10560         if (!perf_event_is_tracing(event)) {
10561                 perf_event_free_bpf_handler(event);
10562                 return;
10563         }
10564         perf_event_detach_bpf_prog(event);
10565 }
10566
10567 #else
10568
10569 static inline void perf_tp_register(void)
10570 {
10571 }
10572
10573 static void perf_event_free_filter(struct perf_event *event)
10574 {
10575 }
10576
10577 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10578                             u64 bpf_cookie)
10579 {
10580         return -ENOENT;
10581 }
10582
10583 void perf_event_free_bpf_prog(struct perf_event *event)
10584 {
10585 }
10586 #endif /* CONFIG_EVENT_TRACING */
10587
10588 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10589 void perf_bp_event(struct perf_event *bp, void *data)
10590 {
10591         struct perf_sample_data sample;
10592         struct pt_regs *regs = data;
10593
10594         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10595
10596         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10597                 perf_swevent_event(bp, 1, &sample, regs);
10598 }
10599 #endif
10600
10601 /*
10602  * Allocate a new address filter
10603  */
10604 static struct perf_addr_filter *
10605 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10606 {
10607         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10608         struct perf_addr_filter *filter;
10609
10610         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10611         if (!filter)
10612                 return NULL;
10613
10614         INIT_LIST_HEAD(&filter->entry);
10615         list_add_tail(&filter->entry, filters);
10616
10617         return filter;
10618 }
10619
10620 static void free_filters_list(struct list_head *filters)
10621 {
10622         struct perf_addr_filter *filter, *iter;
10623
10624         list_for_each_entry_safe(filter, iter, filters, entry) {
10625                 path_put(&filter->path);
10626                 list_del(&filter->entry);
10627                 kfree(filter);
10628         }
10629 }
10630
10631 /*
10632  * Free existing address filters and optionally install new ones
10633  */
10634 static void perf_addr_filters_splice(struct perf_event *event,
10635                                      struct list_head *head)
10636 {
10637         unsigned long flags;
10638         LIST_HEAD(list);
10639
10640         if (!has_addr_filter(event))
10641                 return;
10642
10643         /* don't bother with children, they don't have their own filters */
10644         if (event->parent)
10645                 return;
10646
10647         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10648
10649         list_splice_init(&event->addr_filters.list, &list);
10650         if (head)
10651                 list_splice(head, &event->addr_filters.list);
10652
10653         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10654
10655         free_filters_list(&list);
10656 }
10657
10658 /*
10659  * Scan through mm's vmas and see if one of them matches the
10660  * @filter; if so, adjust filter's address range.
10661  * Called with mm::mmap_lock down for reading.
10662  */
10663 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10664                                    struct mm_struct *mm,
10665                                    struct perf_addr_filter_range *fr)
10666 {
10667         struct vm_area_struct *vma;
10668         VMA_ITERATOR(vmi, mm, 0);
10669
10670         for_each_vma(vmi, vma) {
10671                 if (!vma->vm_file)
10672                         continue;
10673
10674                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10675                         return;
10676         }
10677 }
10678
10679 /*
10680  * Update event's address range filters based on the
10681  * task's existing mappings, if any.
10682  */
10683 static void perf_event_addr_filters_apply(struct perf_event *event)
10684 {
10685         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10686         struct task_struct *task = READ_ONCE(event->ctx->task);
10687         struct perf_addr_filter *filter;
10688         struct mm_struct *mm = NULL;
10689         unsigned int count = 0;
10690         unsigned long flags;
10691
10692         /*
10693          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10694          * will stop on the parent's child_mutex that our caller is also holding
10695          */
10696         if (task == TASK_TOMBSTONE)
10697                 return;
10698
10699         if (ifh->nr_file_filters) {
10700                 mm = get_task_mm(task);
10701                 if (!mm)
10702                         goto restart;
10703
10704                 mmap_read_lock(mm);
10705         }
10706
10707         raw_spin_lock_irqsave(&ifh->lock, flags);
10708         list_for_each_entry(filter, &ifh->list, entry) {
10709                 if (filter->path.dentry) {
10710                         /*
10711                          * Adjust base offset if the filter is associated to a
10712                          * binary that needs to be mapped:
10713                          */
10714                         event->addr_filter_ranges[count].start = 0;
10715                         event->addr_filter_ranges[count].size = 0;
10716
10717                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10718                 } else {
10719                         event->addr_filter_ranges[count].start = filter->offset;
10720                         event->addr_filter_ranges[count].size  = filter->size;
10721                 }
10722
10723                 count++;
10724         }
10725
10726         event->addr_filters_gen++;
10727         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10728
10729         if (ifh->nr_file_filters) {
10730                 mmap_read_unlock(mm);
10731
10732                 mmput(mm);
10733         }
10734
10735 restart:
10736         perf_event_stop(event, 1);
10737 }
10738
10739 /*
10740  * Address range filtering: limiting the data to certain
10741  * instruction address ranges. Filters are ioctl()ed to us from
10742  * userspace as ascii strings.
10743  *
10744  * Filter string format:
10745  *
10746  * ACTION RANGE_SPEC
10747  * where ACTION is one of the
10748  *  * "filter": limit the trace to this region
10749  *  * "start": start tracing from this address
10750  *  * "stop": stop tracing at this address/region;
10751  * RANGE_SPEC is
10752  *  * for kernel addresses: <start address>[/<size>]
10753  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10754  *
10755  * if <size> is not specified or is zero, the range is treated as a single
10756  * address; not valid for ACTION=="filter".
10757  */
10758 enum {
10759         IF_ACT_NONE = -1,
10760         IF_ACT_FILTER,
10761         IF_ACT_START,
10762         IF_ACT_STOP,
10763         IF_SRC_FILE,
10764         IF_SRC_KERNEL,
10765         IF_SRC_FILEADDR,
10766         IF_SRC_KERNELADDR,
10767 };
10768
10769 enum {
10770         IF_STATE_ACTION = 0,
10771         IF_STATE_SOURCE,
10772         IF_STATE_END,
10773 };
10774
10775 static const match_table_t if_tokens = {
10776         { IF_ACT_FILTER,        "filter" },
10777         { IF_ACT_START,         "start" },
10778         { IF_ACT_STOP,          "stop" },
10779         { IF_SRC_FILE,          "%u/%u@%s" },
10780         { IF_SRC_KERNEL,        "%u/%u" },
10781         { IF_SRC_FILEADDR,      "%u@%s" },
10782         { IF_SRC_KERNELADDR,    "%u" },
10783         { IF_ACT_NONE,          NULL },
10784 };
10785
10786 /*
10787  * Address filter string parser
10788  */
10789 static int
10790 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10791                              struct list_head *filters)
10792 {
10793         struct perf_addr_filter *filter = NULL;
10794         char *start, *orig, *filename = NULL;
10795         substring_t args[MAX_OPT_ARGS];
10796         int state = IF_STATE_ACTION, token;
10797         unsigned int kernel = 0;
10798         int ret = -EINVAL;
10799
10800         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10801         if (!fstr)
10802                 return -ENOMEM;
10803
10804         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10805                 static const enum perf_addr_filter_action_t actions[] = {
10806                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10807                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10808                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10809                 };
10810                 ret = -EINVAL;
10811
10812                 if (!*start)
10813                         continue;
10814
10815                 /* filter definition begins */
10816                 if (state == IF_STATE_ACTION) {
10817                         filter = perf_addr_filter_new(event, filters);
10818                         if (!filter)
10819                                 goto fail;
10820                 }
10821
10822                 token = match_token(start, if_tokens, args);
10823                 switch (token) {
10824                 case IF_ACT_FILTER:
10825                 case IF_ACT_START:
10826                 case IF_ACT_STOP:
10827                         if (state != IF_STATE_ACTION)
10828                                 goto fail;
10829
10830                         filter->action = actions[token];
10831                         state = IF_STATE_SOURCE;
10832                         break;
10833
10834                 case IF_SRC_KERNELADDR:
10835                 case IF_SRC_KERNEL:
10836                         kernel = 1;
10837                         fallthrough;
10838
10839                 case IF_SRC_FILEADDR:
10840                 case IF_SRC_FILE:
10841                         if (state != IF_STATE_SOURCE)
10842                                 goto fail;
10843
10844                         *args[0].to = 0;
10845                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10846                         if (ret)
10847                                 goto fail;
10848
10849                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10850                                 *args[1].to = 0;
10851                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10852                                 if (ret)
10853                                         goto fail;
10854                         }
10855
10856                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10857                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10858
10859                                 kfree(filename);
10860                                 filename = match_strdup(&args[fpos]);
10861                                 if (!filename) {
10862                                         ret = -ENOMEM;
10863                                         goto fail;
10864                                 }
10865                         }
10866
10867                         state = IF_STATE_END;
10868                         break;
10869
10870                 default:
10871                         goto fail;
10872                 }
10873
10874                 /*
10875                  * Filter definition is fully parsed, validate and install it.
10876                  * Make sure that it doesn't contradict itself or the event's
10877                  * attribute.
10878                  */
10879                 if (state == IF_STATE_END) {
10880                         ret = -EINVAL;
10881
10882                         /*
10883                          * ACTION "filter" must have a non-zero length region
10884                          * specified.
10885                          */
10886                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10887                             !filter->size)
10888                                 goto fail;
10889
10890                         if (!kernel) {
10891                                 if (!filename)
10892                                         goto fail;
10893
10894                                 /*
10895                                  * For now, we only support file-based filters
10896                                  * in per-task events; doing so for CPU-wide
10897                                  * events requires additional context switching
10898                                  * trickery, since same object code will be
10899                                  * mapped at different virtual addresses in
10900                                  * different processes.
10901                                  */
10902                                 ret = -EOPNOTSUPP;
10903                                 if (!event->ctx->task)
10904                                         goto fail;
10905
10906                                 /* look up the path and grab its inode */
10907                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10908                                                 &filter->path);
10909                                 if (ret)
10910                                         goto fail;
10911
10912                                 ret = -EINVAL;
10913                                 if (!filter->path.dentry ||
10914                                     !S_ISREG(d_inode(filter->path.dentry)
10915                                              ->i_mode))
10916                                         goto fail;
10917
10918                                 event->addr_filters.nr_file_filters++;
10919                         }
10920
10921                         /* ready to consume more filters */
10922                         kfree(filename);
10923                         filename = NULL;
10924                         state = IF_STATE_ACTION;
10925                         filter = NULL;
10926                         kernel = 0;
10927                 }
10928         }
10929
10930         if (state != IF_STATE_ACTION)
10931                 goto fail;
10932
10933         kfree(filename);
10934         kfree(orig);
10935
10936         return 0;
10937
10938 fail:
10939         kfree(filename);
10940         free_filters_list(filters);
10941         kfree(orig);
10942
10943         return ret;
10944 }
10945
10946 static int
10947 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10948 {
10949         LIST_HEAD(filters);
10950         int ret;
10951
10952         /*
10953          * Since this is called in perf_ioctl() path, we're already holding
10954          * ctx::mutex.
10955          */
10956         lockdep_assert_held(&event->ctx->mutex);
10957
10958         if (WARN_ON_ONCE(event->parent))
10959                 return -EINVAL;
10960
10961         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10962         if (ret)
10963                 goto fail_clear_files;
10964
10965         ret = event->pmu->addr_filters_validate(&filters);
10966         if (ret)
10967                 goto fail_free_filters;
10968
10969         /* remove existing filters, if any */
10970         perf_addr_filters_splice(event, &filters);
10971
10972         /* install new filters */
10973         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10974
10975         return ret;
10976
10977 fail_free_filters:
10978         free_filters_list(&filters);
10979
10980 fail_clear_files:
10981         event->addr_filters.nr_file_filters = 0;
10982
10983         return ret;
10984 }
10985
10986 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10987 {
10988         int ret = -EINVAL;
10989         char *filter_str;
10990
10991         filter_str = strndup_user(arg, PAGE_SIZE);
10992         if (IS_ERR(filter_str))
10993                 return PTR_ERR(filter_str);
10994
10995 #ifdef CONFIG_EVENT_TRACING
10996         if (perf_event_is_tracing(event)) {
10997                 struct perf_event_context *ctx = event->ctx;
10998
10999                 /*
11000                  * Beware, here be dragons!!
11001                  *
11002                  * the tracepoint muck will deadlock against ctx->mutex, but
11003                  * the tracepoint stuff does not actually need it. So
11004                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11005                  * already have a reference on ctx.
11006                  *
11007                  * This can result in event getting moved to a different ctx,
11008                  * but that does not affect the tracepoint state.
11009                  */
11010                 mutex_unlock(&ctx->mutex);
11011                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11012                 mutex_lock(&ctx->mutex);
11013         } else
11014 #endif
11015         if (has_addr_filter(event))
11016                 ret = perf_event_set_addr_filter(event, filter_str);
11017
11018         kfree(filter_str);
11019         return ret;
11020 }
11021
11022 /*
11023  * hrtimer based swevent callback
11024  */
11025
11026 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11027 {
11028         enum hrtimer_restart ret = HRTIMER_RESTART;
11029         struct perf_sample_data data;
11030         struct pt_regs *regs;
11031         struct perf_event *event;
11032         u64 period;
11033
11034         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11035
11036         if (event->state != PERF_EVENT_STATE_ACTIVE)
11037                 return HRTIMER_NORESTART;
11038
11039         event->pmu->read(event);
11040
11041         perf_sample_data_init(&data, 0, event->hw.last_period);
11042         regs = get_irq_regs();
11043
11044         if (regs && !perf_exclude_event(event, regs)) {
11045                 if (!(event->attr.exclude_idle && is_idle_task(current)))
11046                         if (__perf_event_overflow(event, 1, &data, regs))
11047                                 ret = HRTIMER_NORESTART;
11048         }
11049
11050         period = max_t(u64, 10000, event->hw.sample_period);
11051         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11052
11053         return ret;
11054 }
11055
11056 static void perf_swevent_start_hrtimer(struct perf_event *event)
11057 {
11058         struct hw_perf_event *hwc = &event->hw;
11059         s64 period;
11060
11061         if (!is_sampling_event(event))
11062                 return;
11063
11064         period = local64_read(&hwc->period_left);
11065         if (period) {
11066                 if (period < 0)
11067                         period = 10000;
11068
11069                 local64_set(&hwc->period_left, 0);
11070         } else {
11071                 period = max_t(u64, 10000, hwc->sample_period);
11072         }
11073         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11074                       HRTIMER_MODE_REL_PINNED_HARD);
11075 }
11076
11077 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11078 {
11079         struct hw_perf_event *hwc = &event->hw;
11080
11081         if (is_sampling_event(event)) {
11082                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11083                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11084
11085                 hrtimer_cancel(&hwc->hrtimer);
11086         }
11087 }
11088
11089 static void perf_swevent_init_hrtimer(struct perf_event *event)
11090 {
11091         struct hw_perf_event *hwc = &event->hw;
11092
11093         if (!is_sampling_event(event))
11094                 return;
11095
11096         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11097         hwc->hrtimer.function = perf_swevent_hrtimer;
11098
11099         /*
11100          * Since hrtimers have a fixed rate, we can do a static freq->period
11101          * mapping and avoid the whole period adjust feedback stuff.
11102          */
11103         if (event->attr.freq) {
11104                 long freq = event->attr.sample_freq;
11105
11106                 event->attr.sample_period = NSEC_PER_SEC / freq;
11107                 hwc->sample_period = event->attr.sample_period;
11108                 local64_set(&hwc->period_left, hwc->sample_period);
11109                 hwc->last_period = hwc->sample_period;
11110                 event->attr.freq = 0;
11111         }
11112 }
11113
11114 /*
11115  * Software event: cpu wall time clock
11116  */
11117
11118 static void cpu_clock_event_update(struct perf_event *event)
11119 {
11120         s64 prev;
11121         u64 now;
11122
11123         now = local_clock();
11124         prev = local64_xchg(&event->hw.prev_count, now);
11125         local64_add(now - prev, &event->count);
11126 }
11127
11128 static void cpu_clock_event_start(struct perf_event *event, int flags)
11129 {
11130         local64_set(&event->hw.prev_count, local_clock());
11131         perf_swevent_start_hrtimer(event);
11132 }
11133
11134 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11135 {
11136         perf_swevent_cancel_hrtimer(event);
11137         cpu_clock_event_update(event);
11138 }
11139
11140 static int cpu_clock_event_add(struct perf_event *event, int flags)
11141 {
11142         if (flags & PERF_EF_START)
11143                 cpu_clock_event_start(event, flags);
11144         perf_event_update_userpage(event);
11145
11146         return 0;
11147 }
11148
11149 static void cpu_clock_event_del(struct perf_event *event, int flags)
11150 {
11151         cpu_clock_event_stop(event, flags);
11152 }
11153
11154 static void cpu_clock_event_read(struct perf_event *event)
11155 {
11156         cpu_clock_event_update(event);
11157 }
11158
11159 static int cpu_clock_event_init(struct perf_event *event)
11160 {
11161         if (event->attr.type != perf_cpu_clock.type)
11162                 return -ENOENT;
11163
11164         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11165                 return -ENOENT;
11166
11167         /*
11168          * no branch sampling for software events
11169          */
11170         if (has_branch_stack(event))
11171                 return -EOPNOTSUPP;
11172
11173         perf_swevent_init_hrtimer(event);
11174
11175         return 0;
11176 }
11177
11178 static struct pmu perf_cpu_clock = {
11179         .task_ctx_nr    = perf_sw_context,
11180
11181         .capabilities   = PERF_PMU_CAP_NO_NMI,
11182         .dev            = PMU_NULL_DEV,
11183
11184         .event_init     = cpu_clock_event_init,
11185         .add            = cpu_clock_event_add,
11186         .del            = cpu_clock_event_del,
11187         .start          = cpu_clock_event_start,
11188         .stop           = cpu_clock_event_stop,
11189         .read           = cpu_clock_event_read,
11190 };
11191
11192 /*
11193  * Software event: task time clock
11194  */
11195
11196 static void task_clock_event_update(struct perf_event *event, u64 now)
11197 {
11198         u64 prev;
11199         s64 delta;
11200
11201         prev = local64_xchg(&event->hw.prev_count, now);
11202         delta = now - prev;
11203         local64_add(delta, &event->count);
11204 }
11205
11206 static void task_clock_event_start(struct perf_event *event, int flags)
11207 {
11208         local64_set(&event->hw.prev_count, event->ctx->time);
11209         perf_swevent_start_hrtimer(event);
11210 }
11211
11212 static void task_clock_event_stop(struct perf_event *event, int flags)
11213 {
11214         perf_swevent_cancel_hrtimer(event);
11215         task_clock_event_update(event, event->ctx->time);
11216 }
11217
11218 static int task_clock_event_add(struct perf_event *event, int flags)
11219 {
11220         if (flags & PERF_EF_START)
11221                 task_clock_event_start(event, flags);
11222         perf_event_update_userpage(event);
11223
11224         return 0;
11225 }
11226
11227 static void task_clock_event_del(struct perf_event *event, int flags)
11228 {
11229         task_clock_event_stop(event, PERF_EF_UPDATE);
11230 }
11231
11232 static void task_clock_event_read(struct perf_event *event)
11233 {
11234         u64 now = perf_clock();
11235         u64 delta = now - event->ctx->timestamp;
11236         u64 time = event->ctx->time + delta;
11237
11238         task_clock_event_update(event, time);
11239 }
11240
11241 static int task_clock_event_init(struct perf_event *event)
11242 {
11243         if (event->attr.type != perf_task_clock.type)
11244                 return -ENOENT;
11245
11246         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11247                 return -ENOENT;
11248
11249         /*
11250          * no branch sampling for software events
11251          */
11252         if (has_branch_stack(event))
11253                 return -EOPNOTSUPP;
11254
11255         perf_swevent_init_hrtimer(event);
11256
11257         return 0;
11258 }
11259
11260 static struct pmu perf_task_clock = {
11261         .task_ctx_nr    = perf_sw_context,
11262
11263         .capabilities   = PERF_PMU_CAP_NO_NMI,
11264         .dev            = PMU_NULL_DEV,
11265
11266         .event_init     = task_clock_event_init,
11267         .add            = task_clock_event_add,
11268         .del            = task_clock_event_del,
11269         .start          = task_clock_event_start,
11270         .stop           = task_clock_event_stop,
11271         .read           = task_clock_event_read,
11272 };
11273
11274 static void perf_pmu_nop_void(struct pmu *pmu)
11275 {
11276 }
11277
11278 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11279 {
11280 }
11281
11282 static int perf_pmu_nop_int(struct pmu *pmu)
11283 {
11284         return 0;
11285 }
11286
11287 static int perf_event_nop_int(struct perf_event *event, u64 value)
11288 {
11289         return 0;
11290 }
11291
11292 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11293
11294 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11295 {
11296         __this_cpu_write(nop_txn_flags, flags);
11297
11298         if (flags & ~PERF_PMU_TXN_ADD)
11299                 return;
11300
11301         perf_pmu_disable(pmu);
11302 }
11303
11304 static int perf_pmu_commit_txn(struct pmu *pmu)
11305 {
11306         unsigned int flags = __this_cpu_read(nop_txn_flags);
11307
11308         __this_cpu_write(nop_txn_flags, 0);
11309
11310         if (flags & ~PERF_PMU_TXN_ADD)
11311                 return 0;
11312
11313         perf_pmu_enable(pmu);
11314         return 0;
11315 }
11316
11317 static void perf_pmu_cancel_txn(struct pmu *pmu)
11318 {
11319         unsigned int flags =  __this_cpu_read(nop_txn_flags);
11320
11321         __this_cpu_write(nop_txn_flags, 0);
11322
11323         if (flags & ~PERF_PMU_TXN_ADD)
11324                 return;
11325
11326         perf_pmu_enable(pmu);
11327 }
11328
11329 static int perf_event_idx_default(struct perf_event *event)
11330 {
11331         return 0;
11332 }
11333
11334 static void free_pmu_context(struct pmu *pmu)
11335 {
11336         free_percpu(pmu->cpu_pmu_context);
11337 }
11338
11339 /*
11340  * Let userspace know that this PMU supports address range filtering:
11341  */
11342 static ssize_t nr_addr_filters_show(struct device *dev,
11343                                     struct device_attribute *attr,
11344                                     char *page)
11345 {
11346         struct pmu *pmu = dev_get_drvdata(dev);
11347
11348         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11349 }
11350 DEVICE_ATTR_RO(nr_addr_filters);
11351
11352 static struct idr pmu_idr;
11353
11354 static ssize_t
11355 type_show(struct device *dev, struct device_attribute *attr, char *page)
11356 {
11357         struct pmu *pmu = dev_get_drvdata(dev);
11358
11359         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11360 }
11361 static DEVICE_ATTR_RO(type);
11362
11363 static ssize_t
11364 perf_event_mux_interval_ms_show(struct device *dev,
11365                                 struct device_attribute *attr,
11366                                 char *page)
11367 {
11368         struct pmu *pmu = dev_get_drvdata(dev);
11369
11370         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11371 }
11372
11373 static DEFINE_MUTEX(mux_interval_mutex);
11374
11375 static ssize_t
11376 perf_event_mux_interval_ms_store(struct device *dev,
11377                                  struct device_attribute *attr,
11378                                  const char *buf, size_t count)
11379 {
11380         struct pmu *pmu = dev_get_drvdata(dev);
11381         int timer, cpu, ret;
11382
11383         ret = kstrtoint(buf, 0, &timer);
11384         if (ret)
11385                 return ret;
11386
11387         if (timer < 1)
11388                 return -EINVAL;
11389
11390         /* same value, noting to do */
11391         if (timer == pmu->hrtimer_interval_ms)
11392                 return count;
11393
11394         mutex_lock(&mux_interval_mutex);
11395         pmu->hrtimer_interval_ms = timer;
11396
11397         /* update all cpuctx for this PMU */
11398         cpus_read_lock();
11399         for_each_online_cpu(cpu) {
11400                 struct perf_cpu_pmu_context *cpc;
11401                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11402                 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11403
11404                 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11405         }
11406         cpus_read_unlock();
11407         mutex_unlock(&mux_interval_mutex);
11408
11409         return count;
11410 }
11411 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11412
11413 static struct attribute *pmu_dev_attrs[] = {
11414         &dev_attr_type.attr,
11415         &dev_attr_perf_event_mux_interval_ms.attr,
11416         &dev_attr_nr_addr_filters.attr,
11417         NULL,
11418 };
11419
11420 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11421 {
11422         struct device *dev = kobj_to_dev(kobj);
11423         struct pmu *pmu = dev_get_drvdata(dev);
11424
11425         if (n == 2 && !pmu->nr_addr_filters)
11426                 return 0;
11427
11428         return a->mode;
11429 }
11430
11431 static struct attribute_group pmu_dev_attr_group = {
11432         .is_visible = pmu_dev_is_visible,
11433         .attrs = pmu_dev_attrs,
11434 };
11435
11436 static const struct attribute_group *pmu_dev_groups[] = {
11437         &pmu_dev_attr_group,
11438         NULL,
11439 };
11440
11441 static int pmu_bus_running;
11442 static struct bus_type pmu_bus = {
11443         .name           = "event_source",
11444         .dev_groups     = pmu_dev_groups,
11445 };
11446
11447 static void pmu_dev_release(struct device *dev)
11448 {
11449         kfree(dev);
11450 }
11451
11452 static int pmu_dev_alloc(struct pmu *pmu)
11453 {
11454         int ret = -ENOMEM;
11455
11456         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11457         if (!pmu->dev)
11458                 goto out;
11459
11460         pmu->dev->groups = pmu->attr_groups;
11461         device_initialize(pmu->dev);
11462
11463         dev_set_drvdata(pmu->dev, pmu);
11464         pmu->dev->bus = &pmu_bus;
11465         pmu->dev->parent = pmu->parent;
11466         pmu->dev->release = pmu_dev_release;
11467
11468         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11469         if (ret)
11470                 goto free_dev;
11471
11472         ret = device_add(pmu->dev);
11473         if (ret)
11474                 goto free_dev;
11475
11476         if (pmu->attr_update) {
11477                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11478                 if (ret)
11479                         goto del_dev;
11480         }
11481
11482 out:
11483         return ret;
11484
11485 del_dev:
11486         device_del(pmu->dev);
11487
11488 free_dev:
11489         put_device(pmu->dev);
11490         goto out;
11491 }
11492
11493 static struct lock_class_key cpuctx_mutex;
11494 static struct lock_class_key cpuctx_lock;
11495
11496 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11497 {
11498         int cpu, ret, max = PERF_TYPE_MAX;
11499
11500         mutex_lock(&pmus_lock);
11501         ret = -ENOMEM;
11502         pmu->pmu_disable_count = alloc_percpu(int);
11503         if (!pmu->pmu_disable_count)
11504                 goto unlock;
11505
11506         pmu->type = -1;
11507         if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11508                 ret = -EINVAL;
11509                 goto free_pdc;
11510         }
11511
11512         pmu->name = name;
11513
11514         if (type >= 0)
11515                 max = type;
11516
11517         ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11518         if (ret < 0)
11519                 goto free_pdc;
11520
11521         WARN_ON(type >= 0 && ret != type);
11522
11523         type = ret;
11524         pmu->type = type;
11525
11526         if (pmu_bus_running && !pmu->dev) {
11527                 ret = pmu_dev_alloc(pmu);
11528                 if (ret)
11529                         goto free_idr;
11530         }
11531
11532         ret = -ENOMEM;
11533         pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11534         if (!pmu->cpu_pmu_context)
11535                 goto free_dev;
11536
11537         for_each_possible_cpu(cpu) {
11538                 struct perf_cpu_pmu_context *cpc;
11539
11540                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11541                 __perf_init_event_pmu_context(&cpc->epc, pmu);
11542                 __perf_mux_hrtimer_init(cpc, cpu);
11543         }
11544
11545         if (!pmu->start_txn) {
11546                 if (pmu->pmu_enable) {
11547                         /*
11548                          * If we have pmu_enable/pmu_disable calls, install
11549                          * transaction stubs that use that to try and batch
11550                          * hardware accesses.
11551                          */
11552                         pmu->start_txn  = perf_pmu_start_txn;
11553                         pmu->commit_txn = perf_pmu_commit_txn;
11554                         pmu->cancel_txn = perf_pmu_cancel_txn;
11555                 } else {
11556                         pmu->start_txn  = perf_pmu_nop_txn;
11557                         pmu->commit_txn = perf_pmu_nop_int;
11558                         pmu->cancel_txn = perf_pmu_nop_void;
11559                 }
11560         }
11561
11562         if (!pmu->pmu_enable) {
11563                 pmu->pmu_enable  = perf_pmu_nop_void;
11564                 pmu->pmu_disable = perf_pmu_nop_void;
11565         }
11566
11567         if (!pmu->check_period)
11568                 pmu->check_period = perf_event_nop_int;
11569
11570         if (!pmu->event_idx)
11571                 pmu->event_idx = perf_event_idx_default;
11572
11573         list_add_rcu(&pmu->entry, &pmus);
11574         atomic_set(&pmu->exclusive_cnt, 0);
11575         ret = 0;
11576 unlock:
11577         mutex_unlock(&pmus_lock);
11578
11579         return ret;
11580
11581 free_dev:
11582         if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11583                 device_del(pmu->dev);
11584                 put_device(pmu->dev);
11585         }
11586
11587 free_idr:
11588         idr_remove(&pmu_idr, pmu->type);
11589
11590 free_pdc:
11591         free_percpu(pmu->pmu_disable_count);
11592         goto unlock;
11593 }
11594 EXPORT_SYMBOL_GPL(perf_pmu_register);
11595
11596 void perf_pmu_unregister(struct pmu *pmu)
11597 {
11598         mutex_lock(&pmus_lock);
11599         list_del_rcu(&pmu->entry);
11600
11601         /*
11602          * We dereference the pmu list under both SRCU and regular RCU, so
11603          * synchronize against both of those.
11604          */
11605         synchronize_srcu(&pmus_srcu);
11606         synchronize_rcu();
11607
11608         free_percpu(pmu->pmu_disable_count);
11609         idr_remove(&pmu_idr, pmu->type);
11610         if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11611                 if (pmu->nr_addr_filters)
11612                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11613                 device_del(pmu->dev);
11614                 put_device(pmu->dev);
11615         }
11616         free_pmu_context(pmu);
11617         mutex_unlock(&pmus_lock);
11618 }
11619 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11620
11621 static inline bool has_extended_regs(struct perf_event *event)
11622 {
11623         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11624                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11625 }
11626
11627 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11628 {
11629         struct perf_event_context *ctx = NULL;
11630         int ret;
11631
11632         if (!try_module_get(pmu->module))
11633                 return -ENODEV;
11634
11635         /*
11636          * A number of pmu->event_init() methods iterate the sibling_list to,
11637          * for example, validate if the group fits on the PMU. Therefore,
11638          * if this is a sibling event, acquire the ctx->mutex to protect
11639          * the sibling_list.
11640          */
11641         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11642                 /*
11643                  * This ctx->mutex can nest when we're called through
11644                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11645                  */
11646                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11647                                                  SINGLE_DEPTH_NESTING);
11648                 BUG_ON(!ctx);
11649         }
11650
11651         event->pmu = pmu;
11652         ret = pmu->event_init(event);
11653
11654         if (ctx)
11655                 perf_event_ctx_unlock(event->group_leader, ctx);
11656
11657         if (!ret) {
11658                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11659                     has_extended_regs(event))
11660                         ret = -EOPNOTSUPP;
11661
11662                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11663                     event_has_any_exclude_flag(event))
11664                         ret = -EINVAL;
11665
11666                 if (ret && event->destroy)
11667                         event->destroy(event);
11668         }
11669
11670         if (ret)
11671                 module_put(pmu->module);
11672
11673         return ret;
11674 }
11675
11676 static struct pmu *perf_init_event(struct perf_event *event)
11677 {
11678         bool extended_type = false;
11679         int idx, type, ret;
11680         struct pmu *pmu;
11681
11682         idx = srcu_read_lock(&pmus_srcu);
11683
11684         /*
11685          * Save original type before calling pmu->event_init() since certain
11686          * pmus overwrites event->attr.type to forward event to another pmu.
11687          */
11688         event->orig_type = event->attr.type;
11689
11690         /* Try parent's PMU first: */
11691         if (event->parent && event->parent->pmu) {
11692                 pmu = event->parent->pmu;
11693                 ret = perf_try_init_event(pmu, event);
11694                 if (!ret)
11695                         goto unlock;
11696         }
11697
11698         /*
11699          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11700          * are often aliases for PERF_TYPE_RAW.
11701          */
11702         type = event->attr.type;
11703         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11704                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11705                 if (!type) {
11706                         type = PERF_TYPE_RAW;
11707                 } else {
11708                         extended_type = true;
11709                         event->attr.config &= PERF_HW_EVENT_MASK;
11710                 }
11711         }
11712
11713 again:
11714         rcu_read_lock();
11715         pmu = idr_find(&pmu_idr, type);
11716         rcu_read_unlock();
11717         if (pmu) {
11718                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11719                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11720                         goto fail;
11721
11722                 ret = perf_try_init_event(pmu, event);
11723                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11724                         type = event->attr.type;
11725                         goto again;
11726                 }
11727
11728                 if (ret)
11729                         pmu = ERR_PTR(ret);
11730
11731                 goto unlock;
11732         }
11733
11734         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11735                 ret = perf_try_init_event(pmu, event);
11736                 if (!ret)
11737                         goto unlock;
11738
11739                 if (ret != -ENOENT) {
11740                         pmu = ERR_PTR(ret);
11741                         goto unlock;
11742                 }
11743         }
11744 fail:
11745         pmu = ERR_PTR(-ENOENT);
11746 unlock:
11747         srcu_read_unlock(&pmus_srcu, idx);
11748
11749         return pmu;
11750 }
11751
11752 static void attach_sb_event(struct perf_event *event)
11753 {
11754         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11755
11756         raw_spin_lock(&pel->lock);
11757         list_add_rcu(&event->sb_list, &pel->list);
11758         raw_spin_unlock(&pel->lock);
11759 }
11760
11761 /*
11762  * We keep a list of all !task (and therefore per-cpu) events
11763  * that need to receive side-band records.
11764  *
11765  * This avoids having to scan all the various PMU per-cpu contexts
11766  * looking for them.
11767  */
11768 static void account_pmu_sb_event(struct perf_event *event)
11769 {
11770         if (is_sb_event(event))
11771                 attach_sb_event(event);
11772 }
11773
11774 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11775 static void account_freq_event_nohz(void)
11776 {
11777 #ifdef CONFIG_NO_HZ_FULL
11778         /* Lock so we don't race with concurrent unaccount */
11779         spin_lock(&nr_freq_lock);
11780         if (atomic_inc_return(&nr_freq_events) == 1)
11781                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11782         spin_unlock(&nr_freq_lock);
11783 #endif
11784 }
11785
11786 static void account_freq_event(void)
11787 {
11788         if (tick_nohz_full_enabled())
11789                 account_freq_event_nohz();
11790         else
11791                 atomic_inc(&nr_freq_events);
11792 }
11793
11794
11795 static void account_event(struct perf_event *event)
11796 {
11797         bool inc = false;
11798
11799         if (event->parent)
11800                 return;
11801
11802         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11803                 inc = true;
11804         if (event->attr.mmap || event->attr.mmap_data)
11805                 atomic_inc(&nr_mmap_events);
11806         if (event->attr.build_id)
11807                 atomic_inc(&nr_build_id_events);
11808         if (event->attr.comm)
11809                 atomic_inc(&nr_comm_events);
11810         if (event->attr.namespaces)
11811                 atomic_inc(&nr_namespaces_events);
11812         if (event->attr.cgroup)
11813                 atomic_inc(&nr_cgroup_events);
11814         if (event->attr.task)
11815                 atomic_inc(&nr_task_events);
11816         if (event->attr.freq)
11817                 account_freq_event();
11818         if (event->attr.context_switch) {
11819                 atomic_inc(&nr_switch_events);
11820                 inc = true;
11821         }
11822         if (has_branch_stack(event))
11823                 inc = true;
11824         if (is_cgroup_event(event))
11825                 inc = true;
11826         if (event->attr.ksymbol)
11827                 atomic_inc(&nr_ksymbol_events);
11828         if (event->attr.bpf_event)
11829                 atomic_inc(&nr_bpf_events);
11830         if (event->attr.text_poke)
11831                 atomic_inc(&nr_text_poke_events);
11832
11833         if (inc) {
11834                 /*
11835                  * We need the mutex here because static_branch_enable()
11836                  * must complete *before* the perf_sched_count increment
11837                  * becomes visible.
11838                  */
11839                 if (atomic_inc_not_zero(&perf_sched_count))
11840                         goto enabled;
11841
11842                 mutex_lock(&perf_sched_mutex);
11843                 if (!atomic_read(&perf_sched_count)) {
11844                         static_branch_enable(&perf_sched_events);
11845                         /*
11846                          * Guarantee that all CPUs observe they key change and
11847                          * call the perf scheduling hooks before proceeding to
11848                          * install events that need them.
11849                          */
11850                         synchronize_rcu();
11851                 }
11852                 /*
11853                  * Now that we have waited for the sync_sched(), allow further
11854                  * increments to by-pass the mutex.
11855                  */
11856                 atomic_inc(&perf_sched_count);
11857                 mutex_unlock(&perf_sched_mutex);
11858         }
11859 enabled:
11860
11861         account_pmu_sb_event(event);
11862 }
11863
11864 /*
11865  * Allocate and initialize an event structure
11866  */
11867 static struct perf_event *
11868 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11869                  struct task_struct *task,
11870                  struct perf_event *group_leader,
11871                  struct perf_event *parent_event,
11872                  perf_overflow_handler_t overflow_handler,
11873                  void *context, int cgroup_fd)
11874 {
11875         struct pmu *pmu;
11876         struct perf_event *event;
11877         struct hw_perf_event *hwc;
11878         long err = -EINVAL;
11879         int node;
11880
11881         if ((unsigned)cpu >= nr_cpu_ids) {
11882                 if (!task || cpu != -1)
11883                         return ERR_PTR(-EINVAL);
11884         }
11885         if (attr->sigtrap && !task) {
11886                 /* Requires a task: avoid signalling random tasks. */
11887                 return ERR_PTR(-EINVAL);
11888         }
11889
11890         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11891         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11892                                       node);
11893         if (!event)
11894                 return ERR_PTR(-ENOMEM);
11895
11896         /*
11897          * Single events are their own group leaders, with an
11898          * empty sibling list:
11899          */
11900         if (!group_leader)
11901                 group_leader = event;
11902
11903         mutex_init(&event->child_mutex);
11904         INIT_LIST_HEAD(&event->child_list);
11905
11906         INIT_LIST_HEAD(&event->event_entry);
11907         INIT_LIST_HEAD(&event->sibling_list);
11908         INIT_LIST_HEAD(&event->active_list);
11909         init_event_group(event);
11910         INIT_LIST_HEAD(&event->rb_entry);
11911         INIT_LIST_HEAD(&event->active_entry);
11912         INIT_LIST_HEAD(&event->addr_filters.list);
11913         INIT_HLIST_NODE(&event->hlist_entry);
11914
11915
11916         init_waitqueue_head(&event->waitq);
11917         init_irq_work(&event->pending_irq, perf_pending_irq);
11918         init_task_work(&event->pending_task, perf_pending_task);
11919
11920         mutex_init(&event->mmap_mutex);
11921         raw_spin_lock_init(&event->addr_filters.lock);
11922
11923         atomic_long_set(&event->refcount, 1);
11924         event->cpu              = cpu;
11925         event->attr             = *attr;
11926         event->group_leader     = group_leader;
11927         event->pmu              = NULL;
11928         event->oncpu            = -1;
11929
11930         event->parent           = parent_event;
11931
11932         event->ns               = get_pid_ns(task_active_pid_ns(current));
11933         event->id               = atomic64_inc_return(&perf_event_id);
11934
11935         event->state            = PERF_EVENT_STATE_INACTIVE;
11936
11937         if (parent_event)
11938                 event->event_caps = parent_event->event_caps;
11939
11940         if (task) {
11941                 event->attach_state = PERF_ATTACH_TASK;
11942                 /*
11943                  * XXX pmu::event_init needs to know what task to account to
11944                  * and we cannot use the ctx information because we need the
11945                  * pmu before we get a ctx.
11946                  */
11947                 event->hw.target = get_task_struct(task);
11948         }
11949
11950         event->clock = &local_clock;
11951         if (parent_event)
11952                 event->clock = parent_event->clock;
11953
11954         if (!overflow_handler && parent_event) {
11955                 overflow_handler = parent_event->overflow_handler;
11956                 context = parent_event->overflow_handler_context;
11957 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11958                 if (overflow_handler == bpf_overflow_handler) {
11959                         struct bpf_prog *prog = parent_event->prog;
11960
11961                         bpf_prog_inc(prog);
11962                         event->prog = prog;
11963                         event->orig_overflow_handler =
11964                                 parent_event->orig_overflow_handler;
11965                 }
11966 #endif
11967         }
11968
11969         if (overflow_handler) {
11970                 event->overflow_handler = overflow_handler;
11971                 event->overflow_handler_context = context;
11972         } else if (is_write_backward(event)){
11973                 event->overflow_handler = perf_event_output_backward;
11974                 event->overflow_handler_context = NULL;
11975         } else {
11976                 event->overflow_handler = perf_event_output_forward;
11977                 event->overflow_handler_context = NULL;
11978         }
11979
11980         perf_event__state_init(event);
11981
11982         pmu = NULL;
11983
11984         hwc = &event->hw;
11985         hwc->sample_period = attr->sample_period;
11986         if (attr->freq && attr->sample_freq)
11987                 hwc->sample_period = 1;
11988         hwc->last_period = hwc->sample_period;
11989
11990         local64_set(&hwc->period_left, hwc->sample_period);
11991
11992         /*
11993          * We currently do not support PERF_SAMPLE_READ on inherited events.
11994          * See perf_output_read().
11995          */
11996         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11997                 goto err_ns;
11998
11999         if (!has_branch_stack(event))
12000                 event->attr.branch_sample_type = 0;
12001
12002         pmu = perf_init_event(event);
12003         if (IS_ERR(pmu)) {
12004                 err = PTR_ERR(pmu);
12005                 goto err_ns;
12006         }
12007
12008         /*
12009          * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12010          * events (they don't make sense as the cgroup will be different
12011          * on other CPUs in the uncore mask).
12012          */
12013         if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12014                 err = -EINVAL;
12015                 goto err_pmu;
12016         }
12017
12018         if (event->attr.aux_output &&
12019             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12020                 err = -EOPNOTSUPP;
12021                 goto err_pmu;
12022         }
12023
12024         if (cgroup_fd != -1) {
12025                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12026                 if (err)
12027                         goto err_pmu;
12028         }
12029
12030         err = exclusive_event_init(event);
12031         if (err)
12032                 goto err_pmu;
12033
12034         if (has_addr_filter(event)) {
12035                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12036                                                     sizeof(struct perf_addr_filter_range),
12037                                                     GFP_KERNEL);
12038                 if (!event->addr_filter_ranges) {
12039                         err = -ENOMEM;
12040                         goto err_per_task;
12041                 }
12042
12043                 /*
12044                  * Clone the parent's vma offsets: they are valid until exec()
12045                  * even if the mm is not shared with the parent.
12046                  */
12047                 if (event->parent) {
12048                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12049
12050                         raw_spin_lock_irq(&ifh->lock);
12051                         memcpy(event->addr_filter_ranges,
12052                                event->parent->addr_filter_ranges,
12053                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12054                         raw_spin_unlock_irq(&ifh->lock);
12055                 }
12056
12057                 /* force hw sync on the address filters */
12058                 event->addr_filters_gen = 1;
12059         }
12060
12061         if (!event->parent) {
12062                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12063                         err = get_callchain_buffers(attr->sample_max_stack);
12064                         if (err)
12065                                 goto err_addr_filters;
12066                 }
12067         }
12068
12069         err = security_perf_event_alloc(event);
12070         if (err)
12071                 goto err_callchain_buffer;
12072
12073         /* symmetric to unaccount_event() in _free_event() */
12074         account_event(event);
12075
12076         return event;
12077
12078 err_callchain_buffer:
12079         if (!event->parent) {
12080                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12081                         put_callchain_buffers();
12082         }
12083 err_addr_filters:
12084         kfree(event->addr_filter_ranges);
12085
12086 err_per_task:
12087         exclusive_event_destroy(event);
12088
12089 err_pmu:
12090         if (is_cgroup_event(event))
12091                 perf_detach_cgroup(event);
12092         if (event->destroy)
12093                 event->destroy(event);
12094         module_put(pmu->module);
12095 err_ns:
12096         if (event->hw.target)
12097                 put_task_struct(event->hw.target);
12098         call_rcu(&event->rcu_head, free_event_rcu);
12099
12100         return ERR_PTR(err);
12101 }
12102
12103 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12104                           struct perf_event_attr *attr)
12105 {
12106         u32 size;
12107         int ret;
12108
12109         /* Zero the full structure, so that a short copy will be nice. */
12110         memset(attr, 0, sizeof(*attr));
12111
12112         ret = get_user(size, &uattr->size);
12113         if (ret)
12114                 return ret;
12115
12116         /* ABI compatibility quirk: */
12117         if (!size)
12118                 size = PERF_ATTR_SIZE_VER0;
12119         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12120                 goto err_size;
12121
12122         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12123         if (ret) {
12124                 if (ret == -E2BIG)
12125                         goto err_size;
12126                 return ret;
12127         }
12128
12129         attr->size = size;
12130
12131         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12132                 return -EINVAL;
12133
12134         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12135                 return -EINVAL;
12136
12137         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12138                 return -EINVAL;
12139
12140         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12141                 u64 mask = attr->branch_sample_type;
12142
12143                 /* only using defined bits */
12144                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12145                         return -EINVAL;
12146
12147                 /* at least one branch bit must be set */
12148                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12149                         return -EINVAL;
12150
12151                 /* propagate priv level, when not set for branch */
12152                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12153
12154                         /* exclude_kernel checked on syscall entry */
12155                         if (!attr->exclude_kernel)
12156                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12157
12158                         if (!attr->exclude_user)
12159                                 mask |= PERF_SAMPLE_BRANCH_USER;
12160
12161                         if (!attr->exclude_hv)
12162                                 mask |= PERF_SAMPLE_BRANCH_HV;
12163                         /*
12164                          * adjust user setting (for HW filter setup)
12165                          */
12166                         attr->branch_sample_type = mask;
12167                 }
12168                 /* privileged levels capture (kernel, hv): check permissions */
12169                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12170                         ret = perf_allow_kernel(attr);
12171                         if (ret)
12172                                 return ret;
12173                 }
12174         }
12175
12176         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12177                 ret = perf_reg_validate(attr->sample_regs_user);
12178                 if (ret)
12179                         return ret;
12180         }
12181
12182         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12183                 if (!arch_perf_have_user_stack_dump())
12184                         return -ENOSYS;
12185
12186                 /*
12187                  * We have __u32 type for the size, but so far
12188                  * we can only use __u16 as maximum due to the
12189                  * __u16 sample size limit.
12190                  */
12191                 if (attr->sample_stack_user >= USHRT_MAX)
12192                         return -EINVAL;
12193                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12194                         return -EINVAL;
12195         }
12196
12197         if (!attr->sample_max_stack)
12198                 attr->sample_max_stack = sysctl_perf_event_max_stack;
12199
12200         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12201                 ret = perf_reg_validate(attr->sample_regs_intr);
12202
12203 #ifndef CONFIG_CGROUP_PERF
12204         if (attr->sample_type & PERF_SAMPLE_CGROUP)
12205                 return -EINVAL;
12206 #endif
12207         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12208             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12209                 return -EINVAL;
12210
12211         if (!attr->inherit && attr->inherit_thread)
12212                 return -EINVAL;
12213
12214         if (attr->remove_on_exec && attr->enable_on_exec)
12215                 return -EINVAL;
12216
12217         if (attr->sigtrap && !attr->remove_on_exec)
12218                 return -EINVAL;
12219
12220 out:
12221         return ret;
12222
12223 err_size:
12224         put_user(sizeof(*attr), &uattr->size);
12225         ret = -E2BIG;
12226         goto out;
12227 }
12228
12229 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12230 {
12231         if (b < a)
12232                 swap(a, b);
12233
12234         mutex_lock(a);
12235         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12236 }
12237
12238 static int
12239 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12240 {
12241         struct perf_buffer *rb = NULL;
12242         int ret = -EINVAL;
12243
12244         if (!output_event) {
12245                 mutex_lock(&event->mmap_mutex);
12246                 goto set;
12247         }
12248
12249         /* don't allow circular references */
12250         if (event == output_event)
12251                 goto out;
12252
12253         /*
12254          * Don't allow cross-cpu buffers
12255          */
12256         if (output_event->cpu != event->cpu)
12257                 goto out;
12258
12259         /*
12260          * If its not a per-cpu rb, it must be the same task.
12261          */
12262         if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12263                 goto out;
12264
12265         /*
12266          * Mixing clocks in the same buffer is trouble you don't need.
12267          */
12268         if (output_event->clock != event->clock)
12269                 goto out;
12270
12271         /*
12272          * Either writing ring buffer from beginning or from end.
12273          * Mixing is not allowed.
12274          */
12275         if (is_write_backward(output_event) != is_write_backward(event))
12276                 goto out;
12277
12278         /*
12279          * If both events generate aux data, they must be on the same PMU
12280          */
12281         if (has_aux(event) && has_aux(output_event) &&
12282             event->pmu != output_event->pmu)
12283                 goto out;
12284
12285         /*
12286          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12287          * output_event is already on rb->event_list, and the list iteration
12288          * restarts after every removal, it is guaranteed this new event is
12289          * observed *OR* if output_event is already removed, it's guaranteed we
12290          * observe !rb->mmap_count.
12291          */
12292         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12293 set:
12294         /* Can't redirect output if we've got an active mmap() */
12295         if (atomic_read(&event->mmap_count))
12296                 goto unlock;
12297
12298         if (output_event) {
12299                 /* get the rb we want to redirect to */
12300                 rb = ring_buffer_get(output_event);
12301                 if (!rb)
12302                         goto unlock;
12303
12304                 /* did we race against perf_mmap_close() */
12305                 if (!atomic_read(&rb->mmap_count)) {
12306                         ring_buffer_put(rb);
12307                         goto unlock;
12308                 }
12309         }
12310
12311         ring_buffer_attach(event, rb);
12312
12313         ret = 0;
12314 unlock:
12315         mutex_unlock(&event->mmap_mutex);
12316         if (output_event)
12317                 mutex_unlock(&output_event->mmap_mutex);
12318
12319 out:
12320         return ret;
12321 }
12322
12323 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12324 {
12325         bool nmi_safe = false;
12326
12327         switch (clk_id) {
12328         case CLOCK_MONOTONIC:
12329                 event->clock = &ktime_get_mono_fast_ns;
12330                 nmi_safe = true;
12331                 break;
12332
12333         case CLOCK_MONOTONIC_RAW:
12334                 event->clock = &ktime_get_raw_fast_ns;
12335                 nmi_safe = true;
12336                 break;
12337
12338         case CLOCK_REALTIME:
12339                 event->clock = &ktime_get_real_ns;
12340                 break;
12341
12342         case CLOCK_BOOTTIME:
12343                 event->clock = &ktime_get_boottime_ns;
12344                 break;
12345
12346         case CLOCK_TAI:
12347                 event->clock = &ktime_get_clocktai_ns;
12348                 break;
12349
12350         default:
12351                 return -EINVAL;
12352         }
12353
12354         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12355                 return -EINVAL;
12356
12357         return 0;
12358 }
12359
12360 static bool
12361 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12362 {
12363         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12364         bool is_capable = perfmon_capable();
12365
12366         if (attr->sigtrap) {
12367                 /*
12368                  * perf_event_attr::sigtrap sends signals to the other task.
12369                  * Require the current task to also have CAP_KILL.
12370                  */
12371                 rcu_read_lock();
12372                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12373                 rcu_read_unlock();
12374
12375                 /*
12376                  * If the required capabilities aren't available, checks for
12377                  * ptrace permissions: upgrade to ATTACH, since sending signals
12378                  * can effectively change the target task.
12379                  */
12380                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12381         }
12382
12383         /*
12384          * Preserve ptrace permission check for backwards compatibility. The
12385          * ptrace check also includes checks that the current task and other
12386          * task have matching uids, and is therefore not done here explicitly.
12387          */
12388         return is_capable || ptrace_may_access(task, ptrace_mode);
12389 }
12390
12391 /**
12392  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12393  *
12394  * @attr_uptr:  event_id type attributes for monitoring/sampling
12395  * @pid:                target pid
12396  * @cpu:                target cpu
12397  * @group_fd:           group leader event fd
12398  * @flags:              perf event open flags
12399  */
12400 SYSCALL_DEFINE5(perf_event_open,
12401                 struct perf_event_attr __user *, attr_uptr,
12402                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12403 {
12404         struct perf_event *group_leader = NULL, *output_event = NULL;
12405         struct perf_event_pmu_context *pmu_ctx;
12406         struct perf_event *event, *sibling;
12407         struct perf_event_attr attr;
12408         struct perf_event_context *ctx;
12409         struct file *event_file = NULL;
12410         struct fd group = {NULL, 0};
12411         struct task_struct *task = NULL;
12412         struct pmu *pmu;
12413         int event_fd;
12414         int move_group = 0;
12415         int err;
12416         int f_flags = O_RDWR;
12417         int cgroup_fd = -1;
12418
12419         /* for future expandability... */
12420         if (flags & ~PERF_FLAG_ALL)
12421                 return -EINVAL;
12422
12423         err = perf_copy_attr(attr_uptr, &attr);
12424         if (err)
12425                 return err;
12426
12427         /* Do we allow access to perf_event_open(2) ? */
12428         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12429         if (err)
12430                 return err;
12431
12432         if (!attr.exclude_kernel) {
12433                 err = perf_allow_kernel(&attr);
12434                 if (err)
12435                         return err;
12436         }
12437
12438         if (attr.namespaces) {
12439                 if (!perfmon_capable())
12440                         return -EACCES;
12441         }
12442
12443         if (attr.freq) {
12444                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12445                         return -EINVAL;
12446         } else {
12447                 if (attr.sample_period & (1ULL << 63))
12448                         return -EINVAL;
12449         }
12450
12451         /* Only privileged users can get physical addresses */
12452         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12453                 err = perf_allow_kernel(&attr);
12454                 if (err)
12455                         return err;
12456         }
12457
12458         /* REGS_INTR can leak data, lockdown must prevent this */
12459         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12460                 err = security_locked_down(LOCKDOWN_PERF);
12461                 if (err)
12462                         return err;
12463         }
12464
12465         /*
12466          * In cgroup mode, the pid argument is used to pass the fd
12467          * opened to the cgroup directory in cgroupfs. The cpu argument
12468          * designates the cpu on which to monitor threads from that
12469          * cgroup.
12470          */
12471         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12472                 return -EINVAL;
12473
12474         if (flags & PERF_FLAG_FD_CLOEXEC)
12475                 f_flags |= O_CLOEXEC;
12476
12477         event_fd = get_unused_fd_flags(f_flags);
12478         if (event_fd < 0)
12479                 return event_fd;
12480
12481         if (group_fd != -1) {
12482                 err = perf_fget_light(group_fd, &group);
12483                 if (err)
12484                         goto err_fd;
12485                 group_leader = group.file->private_data;
12486                 if (flags & PERF_FLAG_FD_OUTPUT)
12487                         output_event = group_leader;
12488                 if (flags & PERF_FLAG_FD_NO_GROUP)
12489                         group_leader = NULL;
12490         }
12491
12492         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12493                 task = find_lively_task_by_vpid(pid);
12494                 if (IS_ERR(task)) {
12495                         err = PTR_ERR(task);
12496                         goto err_group_fd;
12497                 }
12498         }
12499
12500         if (task && group_leader &&
12501             group_leader->attr.inherit != attr.inherit) {
12502                 err = -EINVAL;
12503                 goto err_task;
12504         }
12505
12506         if (flags & PERF_FLAG_PID_CGROUP)
12507                 cgroup_fd = pid;
12508
12509         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12510                                  NULL, NULL, cgroup_fd);
12511         if (IS_ERR(event)) {
12512                 err = PTR_ERR(event);
12513                 goto err_task;
12514         }
12515
12516         if (is_sampling_event(event)) {
12517                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12518                         err = -EOPNOTSUPP;
12519                         goto err_alloc;
12520                 }
12521         }
12522
12523         /*
12524          * Special case software events and allow them to be part of
12525          * any hardware group.
12526          */
12527         pmu = event->pmu;
12528
12529         if (attr.use_clockid) {
12530                 err = perf_event_set_clock(event, attr.clockid);
12531                 if (err)
12532                         goto err_alloc;
12533         }
12534
12535         if (pmu->task_ctx_nr == perf_sw_context)
12536                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12537
12538         if (task) {
12539                 err = down_read_interruptible(&task->signal->exec_update_lock);
12540                 if (err)
12541                         goto err_alloc;
12542
12543                 /*
12544                  * We must hold exec_update_lock across this and any potential
12545                  * perf_install_in_context() call for this new event to
12546                  * serialize against exec() altering our credentials (and the
12547                  * perf_event_exit_task() that could imply).
12548                  */
12549                 err = -EACCES;
12550                 if (!perf_check_permission(&attr, task))
12551                         goto err_cred;
12552         }
12553
12554         /*
12555          * Get the target context (task or percpu):
12556          */
12557         ctx = find_get_context(task, event);
12558         if (IS_ERR(ctx)) {
12559                 err = PTR_ERR(ctx);
12560                 goto err_cred;
12561         }
12562
12563         mutex_lock(&ctx->mutex);
12564
12565         if (ctx->task == TASK_TOMBSTONE) {
12566                 err = -ESRCH;
12567                 goto err_locked;
12568         }
12569
12570         if (!task) {
12571                 /*
12572                  * Check if the @cpu we're creating an event for is online.
12573                  *
12574                  * We use the perf_cpu_context::ctx::mutex to serialize against
12575                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12576                  */
12577                 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12578
12579                 if (!cpuctx->online) {
12580                         err = -ENODEV;
12581                         goto err_locked;
12582                 }
12583         }
12584
12585         if (group_leader) {
12586                 err = -EINVAL;
12587
12588                 /*
12589                  * Do not allow a recursive hierarchy (this new sibling
12590                  * becoming part of another group-sibling):
12591                  */
12592                 if (group_leader->group_leader != group_leader)
12593                         goto err_locked;
12594
12595                 /* All events in a group should have the same clock */
12596                 if (group_leader->clock != event->clock)
12597                         goto err_locked;
12598
12599                 /*
12600                  * Make sure we're both events for the same CPU;
12601                  * grouping events for different CPUs is broken; since
12602                  * you can never concurrently schedule them anyhow.
12603                  */
12604                 if (group_leader->cpu != event->cpu)
12605                         goto err_locked;
12606
12607                 /*
12608                  * Make sure we're both on the same context; either task or cpu.
12609                  */
12610                 if (group_leader->ctx != ctx)
12611                         goto err_locked;
12612
12613                 /*
12614                  * Only a group leader can be exclusive or pinned
12615                  */
12616                 if (attr.exclusive || attr.pinned)
12617                         goto err_locked;
12618
12619                 if (is_software_event(event) &&
12620                     !in_software_context(group_leader)) {
12621                         /*
12622                          * If the event is a sw event, but the group_leader
12623                          * is on hw context.
12624                          *
12625                          * Allow the addition of software events to hw
12626                          * groups, this is safe because software events
12627                          * never fail to schedule.
12628                          *
12629                          * Note the comment that goes with struct
12630                          * perf_event_pmu_context.
12631                          */
12632                         pmu = group_leader->pmu_ctx->pmu;
12633                 } else if (!is_software_event(event)) {
12634                         if (is_software_event(group_leader) &&
12635                             (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12636                                 /*
12637                                  * In case the group is a pure software group, and we
12638                                  * try to add a hardware event, move the whole group to
12639                                  * the hardware context.
12640                                  */
12641                                 move_group = 1;
12642                         }
12643
12644                         /* Don't allow group of multiple hw events from different pmus */
12645                         if (!in_software_context(group_leader) &&
12646                             group_leader->pmu_ctx->pmu != pmu)
12647                                 goto err_locked;
12648                 }
12649         }
12650
12651         /*
12652          * Now that we're certain of the pmu; find the pmu_ctx.
12653          */
12654         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12655         if (IS_ERR(pmu_ctx)) {
12656                 err = PTR_ERR(pmu_ctx);
12657                 goto err_locked;
12658         }
12659         event->pmu_ctx = pmu_ctx;
12660
12661         if (output_event) {
12662                 err = perf_event_set_output(event, output_event);
12663                 if (err)
12664                         goto err_context;
12665         }
12666
12667         if (!perf_event_validate_size(event)) {
12668                 err = -E2BIG;
12669                 goto err_context;
12670         }
12671
12672         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12673                 err = -EINVAL;
12674                 goto err_context;
12675         }
12676
12677         /*
12678          * Must be under the same ctx::mutex as perf_install_in_context(),
12679          * because we need to serialize with concurrent event creation.
12680          */
12681         if (!exclusive_event_installable(event, ctx)) {
12682                 err = -EBUSY;
12683                 goto err_context;
12684         }
12685
12686         WARN_ON_ONCE(ctx->parent_ctx);
12687
12688         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12689         if (IS_ERR(event_file)) {
12690                 err = PTR_ERR(event_file);
12691                 event_file = NULL;
12692                 goto err_context;
12693         }
12694
12695         /*
12696          * This is the point on no return; we cannot fail hereafter. This is
12697          * where we start modifying current state.
12698          */
12699
12700         if (move_group) {
12701                 perf_remove_from_context(group_leader, 0);
12702                 put_pmu_ctx(group_leader->pmu_ctx);
12703
12704                 for_each_sibling_event(sibling, group_leader) {
12705                         perf_remove_from_context(sibling, 0);
12706                         put_pmu_ctx(sibling->pmu_ctx);
12707                 }
12708
12709                 /*
12710                  * Install the group siblings before the group leader.
12711                  *
12712                  * Because a group leader will try and install the entire group
12713                  * (through the sibling list, which is still in-tact), we can
12714                  * end up with siblings installed in the wrong context.
12715                  *
12716                  * By installing siblings first we NO-OP because they're not
12717                  * reachable through the group lists.
12718                  */
12719                 for_each_sibling_event(sibling, group_leader) {
12720                         sibling->pmu_ctx = pmu_ctx;
12721                         get_pmu_ctx(pmu_ctx);
12722                         perf_event__state_init(sibling);
12723                         perf_install_in_context(ctx, sibling, sibling->cpu);
12724                 }
12725
12726                 /*
12727                  * Removing from the context ends up with disabled
12728                  * event. What we want here is event in the initial
12729                  * startup state, ready to be add into new context.
12730                  */
12731                 group_leader->pmu_ctx = pmu_ctx;
12732                 get_pmu_ctx(pmu_ctx);
12733                 perf_event__state_init(group_leader);
12734                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12735         }
12736
12737         /*
12738          * Precalculate sample_data sizes; do while holding ctx::mutex such
12739          * that we're serialized against further additions and before
12740          * perf_install_in_context() which is the point the event is active and
12741          * can use these values.
12742          */
12743         perf_event__header_size(event);
12744         perf_event__id_header_size(event);
12745
12746         event->owner = current;
12747
12748         perf_install_in_context(ctx, event, event->cpu);
12749         perf_unpin_context(ctx);
12750
12751         mutex_unlock(&ctx->mutex);
12752
12753         if (task) {
12754                 up_read(&task->signal->exec_update_lock);
12755                 put_task_struct(task);
12756         }
12757
12758         mutex_lock(&current->perf_event_mutex);
12759         list_add_tail(&event->owner_entry, &current->perf_event_list);
12760         mutex_unlock(&current->perf_event_mutex);
12761
12762         /*
12763          * Drop the reference on the group_event after placing the
12764          * new event on the sibling_list. This ensures destruction
12765          * of the group leader will find the pointer to itself in
12766          * perf_group_detach().
12767          */
12768         fdput(group);
12769         fd_install(event_fd, event_file);
12770         return event_fd;
12771
12772 err_context:
12773         put_pmu_ctx(event->pmu_ctx);
12774         event->pmu_ctx = NULL; /* _free_event() */
12775 err_locked:
12776         mutex_unlock(&ctx->mutex);
12777         perf_unpin_context(ctx);
12778         put_ctx(ctx);
12779 err_cred:
12780         if (task)
12781                 up_read(&task->signal->exec_update_lock);
12782 err_alloc:
12783         free_event(event);
12784 err_task:
12785         if (task)
12786                 put_task_struct(task);
12787 err_group_fd:
12788         fdput(group);
12789 err_fd:
12790         put_unused_fd(event_fd);
12791         return err;
12792 }
12793
12794 /**
12795  * perf_event_create_kernel_counter
12796  *
12797  * @attr: attributes of the counter to create
12798  * @cpu: cpu in which the counter is bound
12799  * @task: task to profile (NULL for percpu)
12800  * @overflow_handler: callback to trigger when we hit the event
12801  * @context: context data could be used in overflow_handler callback
12802  */
12803 struct perf_event *
12804 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12805                                  struct task_struct *task,
12806                                  perf_overflow_handler_t overflow_handler,
12807                                  void *context)
12808 {
12809         struct perf_event_pmu_context *pmu_ctx;
12810         struct perf_event_context *ctx;
12811         struct perf_event *event;
12812         struct pmu *pmu;
12813         int err;
12814
12815         /*
12816          * Grouping is not supported for kernel events, neither is 'AUX',
12817          * make sure the caller's intentions are adjusted.
12818          */
12819         if (attr->aux_output)
12820                 return ERR_PTR(-EINVAL);
12821
12822         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12823                                  overflow_handler, context, -1);
12824         if (IS_ERR(event)) {
12825                 err = PTR_ERR(event);
12826                 goto err;
12827         }
12828
12829         /* Mark owner so we could distinguish it from user events. */
12830         event->owner = TASK_TOMBSTONE;
12831         pmu = event->pmu;
12832
12833         if (pmu->task_ctx_nr == perf_sw_context)
12834                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12835
12836         /*
12837          * Get the target context (task or percpu):
12838          */
12839         ctx = find_get_context(task, event);
12840         if (IS_ERR(ctx)) {
12841                 err = PTR_ERR(ctx);
12842                 goto err_alloc;
12843         }
12844
12845         WARN_ON_ONCE(ctx->parent_ctx);
12846         mutex_lock(&ctx->mutex);
12847         if (ctx->task == TASK_TOMBSTONE) {
12848                 err = -ESRCH;
12849                 goto err_unlock;
12850         }
12851
12852         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12853         if (IS_ERR(pmu_ctx)) {
12854                 err = PTR_ERR(pmu_ctx);
12855                 goto err_unlock;
12856         }
12857         event->pmu_ctx = pmu_ctx;
12858
12859         if (!task) {
12860                 /*
12861                  * Check if the @cpu we're creating an event for is online.
12862                  *
12863                  * We use the perf_cpu_context::ctx::mutex to serialize against
12864                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12865                  */
12866                 struct perf_cpu_context *cpuctx =
12867                         container_of(ctx, struct perf_cpu_context, ctx);
12868                 if (!cpuctx->online) {
12869                         err = -ENODEV;
12870                         goto err_pmu_ctx;
12871                 }
12872         }
12873
12874         if (!exclusive_event_installable(event, ctx)) {
12875                 err = -EBUSY;
12876                 goto err_pmu_ctx;
12877         }
12878
12879         perf_install_in_context(ctx, event, event->cpu);
12880         perf_unpin_context(ctx);
12881         mutex_unlock(&ctx->mutex);
12882
12883         return event;
12884
12885 err_pmu_ctx:
12886         put_pmu_ctx(pmu_ctx);
12887         event->pmu_ctx = NULL; /* _free_event() */
12888 err_unlock:
12889         mutex_unlock(&ctx->mutex);
12890         perf_unpin_context(ctx);
12891         put_ctx(ctx);
12892 err_alloc:
12893         free_event(event);
12894 err:
12895         return ERR_PTR(err);
12896 }
12897 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12898
12899 static void __perf_pmu_remove(struct perf_event_context *ctx,
12900                               int cpu, struct pmu *pmu,
12901                               struct perf_event_groups *groups,
12902                               struct list_head *events)
12903 {
12904         struct perf_event *event, *sibling;
12905
12906         perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12907                 perf_remove_from_context(event, 0);
12908                 put_pmu_ctx(event->pmu_ctx);
12909                 list_add(&event->migrate_entry, events);
12910
12911                 for_each_sibling_event(sibling, event) {
12912                         perf_remove_from_context(sibling, 0);
12913                         put_pmu_ctx(sibling->pmu_ctx);
12914                         list_add(&sibling->migrate_entry, events);
12915                 }
12916         }
12917 }
12918
12919 static void __perf_pmu_install_event(struct pmu *pmu,
12920                                      struct perf_event_context *ctx,
12921                                      int cpu, struct perf_event *event)
12922 {
12923         struct perf_event_pmu_context *epc;
12924         struct perf_event_context *old_ctx = event->ctx;
12925
12926         get_ctx(ctx); /* normally find_get_context() */
12927
12928         event->cpu = cpu;
12929         epc = find_get_pmu_context(pmu, ctx, event);
12930         event->pmu_ctx = epc;
12931
12932         if (event->state >= PERF_EVENT_STATE_OFF)
12933                 event->state = PERF_EVENT_STATE_INACTIVE;
12934         perf_install_in_context(ctx, event, cpu);
12935
12936         /*
12937          * Now that event->ctx is updated and visible, put the old ctx.
12938          */
12939         put_ctx(old_ctx);
12940 }
12941
12942 static void __perf_pmu_install(struct perf_event_context *ctx,
12943                                int cpu, struct pmu *pmu, struct list_head *events)
12944 {
12945         struct perf_event *event, *tmp;
12946
12947         /*
12948          * Re-instate events in 2 passes.
12949          *
12950          * Skip over group leaders and only install siblings on this first
12951          * pass, siblings will not get enabled without a leader, however a
12952          * leader will enable its siblings, even if those are still on the old
12953          * context.
12954          */
12955         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12956                 if (event->group_leader == event)
12957                         continue;
12958
12959                 list_del(&event->migrate_entry);
12960                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12961         }
12962
12963         /*
12964          * Once all the siblings are setup properly, install the group leaders
12965          * to make it go.
12966          */
12967         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12968                 list_del(&event->migrate_entry);
12969                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12970         }
12971 }
12972
12973 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12974 {
12975         struct perf_event_context *src_ctx, *dst_ctx;
12976         LIST_HEAD(events);
12977
12978         /*
12979          * Since per-cpu context is persistent, no need to grab an extra
12980          * reference.
12981          */
12982         src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12983         dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12984
12985         /*
12986          * See perf_event_ctx_lock() for comments on the details
12987          * of swizzling perf_event::ctx.
12988          */
12989         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12990
12991         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12992         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12993
12994         if (!list_empty(&events)) {
12995                 /*
12996                  * Wait for the events to quiesce before re-instating them.
12997                  */
12998                 synchronize_rcu();
12999
13000                 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13001         }
13002
13003         mutex_unlock(&dst_ctx->mutex);
13004         mutex_unlock(&src_ctx->mutex);
13005 }
13006 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13007
13008 static void sync_child_event(struct perf_event *child_event)
13009 {
13010         struct perf_event *parent_event = child_event->parent;
13011         u64 child_val;
13012
13013         if (child_event->attr.inherit_stat) {
13014                 struct task_struct *task = child_event->ctx->task;
13015
13016                 if (task && task != TASK_TOMBSTONE)
13017                         perf_event_read_event(child_event, task);
13018         }
13019
13020         child_val = perf_event_count(child_event);
13021
13022         /*
13023          * Add back the child's count to the parent's count:
13024          */
13025         atomic64_add(child_val, &parent_event->child_count);
13026         atomic64_add(child_event->total_time_enabled,
13027                      &parent_event->child_total_time_enabled);
13028         atomic64_add(child_event->total_time_running,
13029                      &parent_event->child_total_time_running);
13030 }
13031
13032 static void
13033 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13034 {
13035         struct perf_event *parent_event = event->parent;
13036         unsigned long detach_flags = 0;
13037
13038         if (parent_event) {
13039                 /*
13040                  * Do not destroy the 'original' grouping; because of the
13041                  * context switch optimization the original events could've
13042                  * ended up in a random child task.
13043                  *
13044                  * If we were to destroy the original group, all group related
13045                  * operations would cease to function properly after this
13046                  * random child dies.
13047                  *
13048                  * Do destroy all inherited groups, we don't care about those
13049                  * and being thorough is better.
13050                  */
13051                 detach_flags = DETACH_GROUP | DETACH_CHILD;
13052                 mutex_lock(&parent_event->child_mutex);
13053         }
13054
13055         perf_remove_from_context(event, detach_flags);
13056
13057         raw_spin_lock_irq(&ctx->lock);
13058         if (event->state > PERF_EVENT_STATE_EXIT)
13059                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13060         raw_spin_unlock_irq(&ctx->lock);
13061
13062         /*
13063          * Child events can be freed.
13064          */
13065         if (parent_event) {
13066                 mutex_unlock(&parent_event->child_mutex);
13067                 /*
13068                  * Kick perf_poll() for is_event_hup();
13069                  */
13070                 perf_event_wakeup(parent_event);
13071                 free_event(event);
13072                 put_event(parent_event);
13073                 return;
13074         }
13075
13076         /*
13077          * Parent events are governed by their filedesc, retain them.
13078          */
13079         perf_event_wakeup(event);
13080 }
13081
13082 static void perf_event_exit_task_context(struct task_struct *child)
13083 {
13084         struct perf_event_context *child_ctx, *clone_ctx = NULL;
13085         struct perf_event *child_event, *next;
13086
13087         WARN_ON_ONCE(child != current);
13088
13089         child_ctx = perf_pin_task_context(child);
13090         if (!child_ctx)
13091                 return;
13092
13093         /*
13094          * In order to reduce the amount of tricky in ctx tear-down, we hold
13095          * ctx::mutex over the entire thing. This serializes against almost
13096          * everything that wants to access the ctx.
13097          *
13098          * The exception is sys_perf_event_open() /
13099          * perf_event_create_kernel_count() which does find_get_context()
13100          * without ctx::mutex (it cannot because of the move_group double mutex
13101          * lock thing). See the comments in perf_install_in_context().
13102          */
13103         mutex_lock(&child_ctx->mutex);
13104
13105         /*
13106          * In a single ctx::lock section, de-schedule the events and detach the
13107          * context from the task such that we cannot ever get it scheduled back
13108          * in.
13109          */
13110         raw_spin_lock_irq(&child_ctx->lock);
13111         task_ctx_sched_out(child_ctx, EVENT_ALL);
13112
13113         /*
13114          * Now that the context is inactive, destroy the task <-> ctx relation
13115          * and mark the context dead.
13116          */
13117         RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13118         put_ctx(child_ctx); /* cannot be last */
13119         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13120         put_task_struct(current); /* cannot be last */
13121
13122         clone_ctx = unclone_ctx(child_ctx);
13123         raw_spin_unlock_irq(&child_ctx->lock);
13124
13125         if (clone_ctx)
13126                 put_ctx(clone_ctx);
13127
13128         /*
13129          * Report the task dead after unscheduling the events so that we
13130          * won't get any samples after PERF_RECORD_EXIT. We can however still
13131          * get a few PERF_RECORD_READ events.
13132          */
13133         perf_event_task(child, child_ctx, 0);
13134
13135         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13136                 perf_event_exit_event(child_event, child_ctx);
13137
13138         mutex_unlock(&child_ctx->mutex);
13139
13140         put_ctx(child_ctx);
13141 }
13142
13143 /*
13144  * When a child task exits, feed back event values to parent events.
13145  *
13146  * Can be called with exec_update_lock held when called from
13147  * setup_new_exec().
13148  */
13149 void perf_event_exit_task(struct task_struct *child)
13150 {
13151         struct perf_event *event, *tmp;
13152
13153         mutex_lock(&child->perf_event_mutex);
13154         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13155                                  owner_entry) {
13156                 list_del_init(&event->owner_entry);
13157
13158                 /*
13159                  * Ensure the list deletion is visible before we clear
13160                  * the owner, closes a race against perf_release() where
13161                  * we need to serialize on the owner->perf_event_mutex.
13162                  */
13163                 smp_store_release(&event->owner, NULL);
13164         }
13165         mutex_unlock(&child->perf_event_mutex);
13166
13167         perf_event_exit_task_context(child);
13168
13169         /*
13170          * The perf_event_exit_task_context calls perf_event_task
13171          * with child's task_ctx, which generates EXIT events for
13172          * child contexts and sets child->perf_event_ctxp[] to NULL.
13173          * At this point we need to send EXIT events to cpu contexts.
13174          */
13175         perf_event_task(child, NULL, 0);
13176 }
13177
13178 static void perf_free_event(struct perf_event *event,
13179                             struct perf_event_context *ctx)
13180 {
13181         struct perf_event *parent = event->parent;
13182
13183         if (WARN_ON_ONCE(!parent))
13184                 return;
13185
13186         mutex_lock(&parent->child_mutex);
13187         list_del_init(&event->child_list);
13188         mutex_unlock(&parent->child_mutex);
13189
13190         put_event(parent);
13191
13192         raw_spin_lock_irq(&ctx->lock);
13193         perf_group_detach(event);
13194         list_del_event(event, ctx);
13195         raw_spin_unlock_irq(&ctx->lock);
13196         free_event(event);
13197 }
13198
13199 /*
13200  * Free a context as created by inheritance by perf_event_init_task() below,
13201  * used by fork() in case of fail.
13202  *
13203  * Even though the task has never lived, the context and events have been
13204  * exposed through the child_list, so we must take care tearing it all down.
13205  */
13206 void perf_event_free_task(struct task_struct *task)
13207 {
13208         struct perf_event_context *ctx;
13209         struct perf_event *event, *tmp;
13210
13211         ctx = rcu_access_pointer(task->perf_event_ctxp);
13212         if (!ctx)
13213                 return;
13214
13215         mutex_lock(&ctx->mutex);
13216         raw_spin_lock_irq(&ctx->lock);
13217         /*
13218          * Destroy the task <-> ctx relation and mark the context dead.
13219          *
13220          * This is important because even though the task hasn't been
13221          * exposed yet the context has been (through child_list).
13222          */
13223         RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13224         WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13225         put_task_struct(task); /* cannot be last */
13226         raw_spin_unlock_irq(&ctx->lock);
13227
13228
13229         list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13230                 perf_free_event(event, ctx);
13231
13232         mutex_unlock(&ctx->mutex);
13233
13234         /*
13235          * perf_event_release_kernel() could've stolen some of our
13236          * child events and still have them on its free_list. In that
13237          * case we must wait for these events to have been freed (in
13238          * particular all their references to this task must've been
13239          * dropped).
13240          *
13241          * Without this copy_process() will unconditionally free this
13242          * task (irrespective of its reference count) and
13243          * _free_event()'s put_task_struct(event->hw.target) will be a
13244          * use-after-free.
13245          *
13246          * Wait for all events to drop their context reference.
13247          */
13248         wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13249         put_ctx(ctx); /* must be last */
13250 }
13251
13252 void perf_event_delayed_put(struct task_struct *task)
13253 {
13254         WARN_ON_ONCE(task->perf_event_ctxp);
13255 }
13256
13257 struct file *perf_event_get(unsigned int fd)
13258 {
13259         struct file *file = fget(fd);
13260         if (!file)
13261                 return ERR_PTR(-EBADF);
13262
13263         if (file->f_op != &perf_fops) {
13264                 fput(file);
13265                 return ERR_PTR(-EBADF);
13266         }
13267
13268         return file;
13269 }
13270
13271 const struct perf_event *perf_get_event(struct file *file)
13272 {
13273         if (file->f_op != &perf_fops)
13274                 return ERR_PTR(-EINVAL);
13275
13276         return file->private_data;
13277 }
13278
13279 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13280 {
13281         if (!event)
13282                 return ERR_PTR(-EINVAL);
13283
13284         return &event->attr;
13285 }
13286
13287 /*
13288  * Inherit an event from parent task to child task.
13289  *
13290  * Returns:
13291  *  - valid pointer on success
13292  *  - NULL for orphaned events
13293  *  - IS_ERR() on error
13294  */
13295 static struct perf_event *
13296 inherit_event(struct perf_event *parent_event,
13297               struct task_struct *parent,
13298               struct perf_event_context *parent_ctx,
13299               struct task_struct *child,
13300               struct perf_event *group_leader,
13301               struct perf_event_context *child_ctx)
13302 {
13303         enum perf_event_state parent_state = parent_event->state;
13304         struct perf_event_pmu_context *pmu_ctx;
13305         struct perf_event *child_event;
13306         unsigned long flags;
13307
13308         /*
13309          * Instead of creating recursive hierarchies of events,
13310          * we link inherited events back to the original parent,
13311          * which has a filp for sure, which we use as the reference
13312          * count:
13313          */
13314         if (parent_event->parent)
13315                 parent_event = parent_event->parent;
13316
13317         child_event = perf_event_alloc(&parent_event->attr,
13318                                            parent_event->cpu,
13319                                            child,
13320                                            group_leader, parent_event,
13321                                            NULL, NULL, -1);
13322         if (IS_ERR(child_event))
13323                 return child_event;
13324
13325         pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13326         if (IS_ERR(pmu_ctx)) {
13327                 free_event(child_event);
13328                 return ERR_CAST(pmu_ctx);
13329         }
13330         child_event->pmu_ctx = pmu_ctx;
13331
13332         /*
13333          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13334          * must be under the same lock in order to serialize against
13335          * perf_event_release_kernel(), such that either we must observe
13336          * is_orphaned_event() or they will observe us on the child_list.
13337          */
13338         mutex_lock(&parent_event->child_mutex);
13339         if (is_orphaned_event(parent_event) ||
13340             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13341                 mutex_unlock(&parent_event->child_mutex);
13342                 /* task_ctx_data is freed with child_ctx */
13343                 free_event(child_event);
13344                 return NULL;
13345         }
13346
13347         get_ctx(child_ctx);
13348
13349         /*
13350          * Make the child state follow the state of the parent event,
13351          * not its attr.disabled bit.  We hold the parent's mutex,
13352          * so we won't race with perf_event_{en, dis}able_family.
13353          */
13354         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13355                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13356         else
13357                 child_event->state = PERF_EVENT_STATE_OFF;
13358
13359         if (parent_event->attr.freq) {
13360                 u64 sample_period = parent_event->hw.sample_period;
13361                 struct hw_perf_event *hwc = &child_event->hw;
13362
13363                 hwc->sample_period = sample_period;
13364                 hwc->last_period   = sample_period;
13365
13366                 local64_set(&hwc->period_left, sample_period);
13367         }
13368
13369         child_event->ctx = child_ctx;
13370         child_event->overflow_handler = parent_event->overflow_handler;
13371         child_event->overflow_handler_context
13372                 = parent_event->overflow_handler_context;
13373
13374         /*
13375          * Precalculate sample_data sizes
13376          */
13377         perf_event__header_size(child_event);
13378         perf_event__id_header_size(child_event);
13379
13380         /*
13381          * Link it up in the child's context:
13382          */
13383         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13384         add_event_to_ctx(child_event, child_ctx);
13385         child_event->attach_state |= PERF_ATTACH_CHILD;
13386         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13387
13388         /*
13389          * Link this into the parent event's child list
13390          */
13391         list_add_tail(&child_event->child_list, &parent_event->child_list);
13392         mutex_unlock(&parent_event->child_mutex);
13393
13394         return child_event;
13395 }
13396
13397 /*
13398  * Inherits an event group.
13399  *
13400  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13401  * This matches with perf_event_release_kernel() removing all child events.
13402  *
13403  * Returns:
13404  *  - 0 on success
13405  *  - <0 on error
13406  */
13407 static int inherit_group(struct perf_event *parent_event,
13408               struct task_struct *parent,
13409               struct perf_event_context *parent_ctx,
13410               struct task_struct *child,
13411               struct perf_event_context *child_ctx)
13412 {
13413         struct perf_event *leader;
13414         struct perf_event *sub;
13415         struct perf_event *child_ctr;
13416
13417         leader = inherit_event(parent_event, parent, parent_ctx,
13418                                  child, NULL, child_ctx);
13419         if (IS_ERR(leader))
13420                 return PTR_ERR(leader);
13421         /*
13422          * @leader can be NULL here because of is_orphaned_event(). In this
13423          * case inherit_event() will create individual events, similar to what
13424          * perf_group_detach() would do anyway.
13425          */
13426         for_each_sibling_event(sub, parent_event) {
13427                 child_ctr = inherit_event(sub, parent, parent_ctx,
13428                                             child, leader, child_ctx);
13429                 if (IS_ERR(child_ctr))
13430                         return PTR_ERR(child_ctr);
13431
13432                 if (sub->aux_event == parent_event && child_ctr &&
13433                     !perf_get_aux_event(child_ctr, leader))
13434                         return -EINVAL;
13435         }
13436         if (leader)
13437                 leader->group_generation = parent_event->group_generation;
13438         return 0;
13439 }
13440
13441 /*
13442  * Creates the child task context and tries to inherit the event-group.
13443  *
13444  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13445  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13446  * consistent with perf_event_release_kernel() removing all child events.
13447  *
13448  * Returns:
13449  *  - 0 on success
13450  *  - <0 on error
13451  */
13452 static int
13453 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13454                    struct perf_event_context *parent_ctx,
13455                    struct task_struct *child,
13456                    u64 clone_flags, int *inherited_all)
13457 {
13458         struct perf_event_context *child_ctx;
13459         int ret;
13460
13461         if (!event->attr.inherit ||
13462             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13463             /* Do not inherit if sigtrap and signal handlers were cleared. */
13464             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13465                 *inherited_all = 0;
13466                 return 0;
13467         }
13468
13469         child_ctx = child->perf_event_ctxp;
13470         if (!child_ctx) {
13471                 /*
13472                  * This is executed from the parent task context, so
13473                  * inherit events that have been marked for cloning.
13474                  * First allocate and initialize a context for the
13475                  * child.
13476                  */
13477                 child_ctx = alloc_perf_context(child);
13478                 if (!child_ctx)
13479                         return -ENOMEM;
13480
13481                 child->perf_event_ctxp = child_ctx;
13482         }
13483
13484         ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13485         if (ret)
13486                 *inherited_all = 0;
13487
13488         return ret;
13489 }
13490
13491 /*
13492  * Initialize the perf_event context in task_struct
13493  */
13494 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13495 {
13496         struct perf_event_context *child_ctx, *parent_ctx;
13497         struct perf_event_context *cloned_ctx;
13498         struct perf_event *event;
13499         struct task_struct *parent = current;
13500         int inherited_all = 1;
13501         unsigned long flags;
13502         int ret = 0;
13503
13504         if (likely(!parent->perf_event_ctxp))
13505                 return 0;
13506
13507         /*
13508          * If the parent's context is a clone, pin it so it won't get
13509          * swapped under us.
13510          */
13511         parent_ctx = perf_pin_task_context(parent);
13512         if (!parent_ctx)
13513                 return 0;
13514
13515         /*
13516          * No need to check if parent_ctx != NULL here; since we saw
13517          * it non-NULL earlier, the only reason for it to become NULL
13518          * is if we exit, and since we're currently in the middle of
13519          * a fork we can't be exiting at the same time.
13520          */
13521
13522         /*
13523          * Lock the parent list. No need to lock the child - not PID
13524          * hashed yet and not running, so nobody can access it.
13525          */
13526         mutex_lock(&parent_ctx->mutex);
13527
13528         /*
13529          * We dont have to disable NMIs - we are only looking at
13530          * the list, not manipulating it:
13531          */
13532         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13533                 ret = inherit_task_group(event, parent, parent_ctx,
13534                                          child, clone_flags, &inherited_all);
13535                 if (ret)
13536                         goto out_unlock;
13537         }
13538
13539         /*
13540          * We can't hold ctx->lock when iterating the ->flexible_group list due
13541          * to allocations, but we need to prevent rotation because
13542          * rotate_ctx() will change the list from interrupt context.
13543          */
13544         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13545         parent_ctx->rotate_disable = 1;
13546         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13547
13548         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13549                 ret = inherit_task_group(event, parent, parent_ctx,
13550                                          child, clone_flags, &inherited_all);
13551                 if (ret)
13552                         goto out_unlock;
13553         }
13554
13555         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13556         parent_ctx->rotate_disable = 0;
13557
13558         child_ctx = child->perf_event_ctxp;
13559
13560         if (child_ctx && inherited_all) {
13561                 /*
13562                  * Mark the child context as a clone of the parent
13563                  * context, or of whatever the parent is a clone of.
13564                  *
13565                  * Note that if the parent is a clone, the holding of
13566                  * parent_ctx->lock avoids it from being uncloned.
13567                  */
13568                 cloned_ctx = parent_ctx->parent_ctx;
13569                 if (cloned_ctx) {
13570                         child_ctx->parent_ctx = cloned_ctx;
13571                         child_ctx->parent_gen = parent_ctx->parent_gen;
13572                 } else {
13573                         child_ctx->parent_ctx = parent_ctx;
13574                         child_ctx->parent_gen = parent_ctx->generation;
13575                 }
13576                 get_ctx(child_ctx->parent_ctx);
13577         }
13578
13579         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13580 out_unlock:
13581         mutex_unlock(&parent_ctx->mutex);
13582
13583         perf_unpin_context(parent_ctx);
13584         put_ctx(parent_ctx);
13585
13586         return ret;
13587 }
13588
13589 /*
13590  * Initialize the perf_event context in task_struct
13591  */
13592 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13593 {
13594         int ret;
13595
13596         child->perf_event_ctxp = NULL;
13597         mutex_init(&child->perf_event_mutex);
13598         INIT_LIST_HEAD(&child->perf_event_list);
13599
13600         ret = perf_event_init_context(child, clone_flags);
13601         if (ret) {
13602                 perf_event_free_task(child);
13603                 return ret;
13604         }
13605
13606         return 0;
13607 }
13608
13609 static void __init perf_event_init_all_cpus(void)
13610 {
13611         struct swevent_htable *swhash;
13612         struct perf_cpu_context *cpuctx;
13613         int cpu;
13614
13615         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13616
13617         for_each_possible_cpu(cpu) {
13618                 swhash = &per_cpu(swevent_htable, cpu);
13619                 mutex_init(&swhash->hlist_mutex);
13620
13621                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13622                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13623
13624                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13625
13626                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13627                 __perf_event_init_context(&cpuctx->ctx);
13628                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13629                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13630                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13631                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13632                 cpuctx->heap = cpuctx->heap_default;
13633         }
13634 }
13635
13636 static void perf_swevent_init_cpu(unsigned int cpu)
13637 {
13638         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13639
13640         mutex_lock(&swhash->hlist_mutex);
13641         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13642                 struct swevent_hlist *hlist;
13643
13644                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13645                 WARN_ON(!hlist);
13646                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13647         }
13648         mutex_unlock(&swhash->hlist_mutex);
13649 }
13650
13651 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13652 static void __perf_event_exit_context(void *__info)
13653 {
13654         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13655         struct perf_event_context *ctx = __info;
13656         struct perf_event *event;
13657
13658         raw_spin_lock(&ctx->lock);
13659         ctx_sched_out(ctx, EVENT_TIME);
13660         list_for_each_entry(event, &ctx->event_list, event_entry)
13661                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13662         raw_spin_unlock(&ctx->lock);
13663 }
13664
13665 static void perf_event_exit_cpu_context(int cpu)
13666 {
13667         struct perf_cpu_context *cpuctx;
13668         struct perf_event_context *ctx;
13669
13670         // XXX simplify cpuctx->online
13671         mutex_lock(&pmus_lock);
13672         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13673         ctx = &cpuctx->ctx;
13674
13675         mutex_lock(&ctx->mutex);
13676         smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13677         cpuctx->online = 0;
13678         mutex_unlock(&ctx->mutex);
13679         cpumask_clear_cpu(cpu, perf_online_mask);
13680         mutex_unlock(&pmus_lock);
13681 }
13682 #else
13683
13684 static void perf_event_exit_cpu_context(int cpu) { }
13685
13686 #endif
13687
13688 int perf_event_init_cpu(unsigned int cpu)
13689 {
13690         struct perf_cpu_context *cpuctx;
13691         struct perf_event_context *ctx;
13692
13693         perf_swevent_init_cpu(cpu);
13694
13695         mutex_lock(&pmus_lock);
13696         cpumask_set_cpu(cpu, perf_online_mask);
13697         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13698         ctx = &cpuctx->ctx;
13699
13700         mutex_lock(&ctx->mutex);
13701         cpuctx->online = 1;
13702         mutex_unlock(&ctx->mutex);
13703         mutex_unlock(&pmus_lock);
13704
13705         return 0;
13706 }
13707
13708 int perf_event_exit_cpu(unsigned int cpu)
13709 {
13710         perf_event_exit_cpu_context(cpu);
13711         return 0;
13712 }
13713
13714 static int
13715 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13716 {
13717         int cpu;
13718
13719         for_each_online_cpu(cpu)
13720                 perf_event_exit_cpu(cpu);
13721
13722         return NOTIFY_OK;
13723 }
13724
13725 /*
13726  * Run the perf reboot notifier at the very last possible moment so that
13727  * the generic watchdog code runs as long as possible.
13728  */
13729 static struct notifier_block perf_reboot_notifier = {
13730         .notifier_call = perf_reboot,
13731         .priority = INT_MIN,
13732 };
13733
13734 void __init perf_event_init(void)
13735 {
13736         int ret;
13737
13738         idr_init(&pmu_idr);
13739
13740         perf_event_init_all_cpus();
13741         init_srcu_struct(&pmus_srcu);
13742         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13743         perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13744         perf_pmu_register(&perf_task_clock, "task_clock", -1);
13745         perf_tp_register();
13746         perf_event_init_cpu(smp_processor_id());
13747         register_reboot_notifier(&perf_reboot_notifier);
13748
13749         ret = init_hw_breakpoint();
13750         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13751
13752         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13753
13754         /*
13755          * Build time assertion that we keep the data_head at the intended
13756          * location.  IOW, validation we got the __reserved[] size right.
13757          */
13758         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13759                      != 1024);
13760 }
13761
13762 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13763                               char *page)
13764 {
13765         struct perf_pmu_events_attr *pmu_attr =
13766                 container_of(attr, struct perf_pmu_events_attr, attr);
13767
13768         if (pmu_attr->event_str)
13769                 return sprintf(page, "%s\n", pmu_attr->event_str);
13770
13771         return 0;
13772 }
13773 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13774
13775 static int __init perf_event_sysfs_init(void)
13776 {
13777         struct pmu *pmu;
13778         int ret;
13779
13780         mutex_lock(&pmus_lock);
13781
13782         ret = bus_register(&pmu_bus);
13783         if (ret)
13784                 goto unlock;
13785
13786         list_for_each_entry(pmu, &pmus, entry) {
13787                 if (pmu->dev)
13788                         continue;
13789
13790                 ret = pmu_dev_alloc(pmu);
13791                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13792         }
13793         pmu_bus_running = 1;
13794         ret = 0;
13795
13796 unlock:
13797         mutex_unlock(&pmus_lock);
13798
13799         return ret;
13800 }
13801 device_initcall(perf_event_sysfs_init);
13802
13803 #ifdef CONFIG_CGROUP_PERF
13804 static struct cgroup_subsys_state *
13805 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13806 {
13807         struct perf_cgroup *jc;
13808
13809         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13810         if (!jc)
13811                 return ERR_PTR(-ENOMEM);
13812
13813         jc->info = alloc_percpu(struct perf_cgroup_info);
13814         if (!jc->info) {
13815                 kfree(jc);
13816                 return ERR_PTR(-ENOMEM);
13817         }
13818
13819         return &jc->css;
13820 }
13821
13822 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13823 {
13824         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13825
13826         free_percpu(jc->info);
13827         kfree(jc);
13828 }
13829
13830 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13831 {
13832         perf_event_cgroup(css->cgroup);
13833         return 0;
13834 }
13835
13836 static int __perf_cgroup_move(void *info)
13837 {
13838         struct task_struct *task = info;
13839
13840         preempt_disable();
13841         perf_cgroup_switch(task);
13842         preempt_enable();
13843
13844         return 0;
13845 }
13846
13847 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13848 {
13849         struct task_struct *task;
13850         struct cgroup_subsys_state *css;
13851
13852         cgroup_taskset_for_each(task, css, tset)
13853                 task_function_call(task, __perf_cgroup_move, task);
13854 }
13855
13856 struct cgroup_subsys perf_event_cgrp_subsys = {
13857         .css_alloc      = perf_cgroup_css_alloc,
13858         .css_free       = perf_cgroup_css_free,
13859         .css_online     = perf_cgroup_css_online,
13860         .attach         = perf_cgroup_attach,
13861         /*
13862          * Implicitly enable on dfl hierarchy so that perf events can
13863          * always be filtered by cgroup2 path as long as perf_event
13864          * controller is not mounted on a legacy hierarchy.
13865          */
13866         .implicit_on_dfl = true,
13867         .threaded       = true,
13868 };
13869 #endif /* CONFIG_CGROUP_PERF */
13870
13871 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);