f42f7c7a8f84416c3fcd85d062ae18d024d16996
[platform/kernel/linux-rpi.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         WARN_ON_ONCE(!irqs_disabled());
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         WARN_ON_ONCE(!irqs_disabled());
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590         struct perf_event_context *ctx = event->ctx;
591         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593         /* @event doesn't care about cgroup */
594         if (!event->cgrp)
595                 return true;
596
597         /* wants specific cgroup scope but @cpuctx isn't associated with any */
598         if (!cpuctx->cgrp)
599                 return false;
600
601         /*
602          * Cgroup scoping is recursive.  An event enabled for a cgroup is
603          * also enabled for all its descendant cgroups.  If @cpuctx's
604          * cgroup is a descendant of @event's (the test covers identity
605          * case), it's a match.
606          */
607         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608                                     event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613         css_put(&event->cgrp->css);
614         event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619         return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624         struct perf_cgroup_info *t;
625
626         t = per_cpu_ptr(event->cgrp->info, event->cpu);
627         return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632         struct perf_cgroup_info *info;
633         u64 now;
634
635         now = perf_clock();
636
637         info = this_cpu_ptr(cgrp->info);
638
639         info->time += now - info->timestamp;
640         info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646         if (cgrp_out)
647                 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652         struct perf_cgroup *cgrp;
653
654         /*
655          * ensure we access cgroup data only when needed and
656          * when we know the cgroup is pinned (css_get)
657          */
658         if (!is_cgroup_event(event))
659                 return;
660
661         cgrp = perf_cgroup_from_task(current, event->ctx);
662         /*
663          * Do not update time when cgroup is not active
664          */
665        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
666                 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671                           struct perf_event_context *ctx)
672 {
673         struct perf_cgroup *cgrp;
674         struct perf_cgroup_info *info;
675
676         /*
677          * ctx->lock held by caller
678          * ensure we do not access cgroup data
679          * unless we have the cgroup pinned (css_get)
680          */
681         if (!task || !ctx->nr_cgroups)
682                 return;
683
684         cgrp = perf_cgroup_from_task(task, ctx);
685         info = this_cpu_ptr(cgrp->info);
686         info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
693
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702         struct perf_cpu_context *cpuctx;
703         struct list_head *list;
704         unsigned long flags;
705
706         /*
707          * Disable interrupts and preemption to avoid this CPU's
708          * cgrp_cpuctx_entry to change under us.
709          */
710         local_irq_save(flags);
711
712         list = this_cpu_ptr(&cgrp_cpuctx_list);
713         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717                 perf_pmu_disable(cpuctx->ctx.pmu);
718
719                 if (mode & PERF_CGROUP_SWOUT) {
720                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721                         /*
722                          * must not be done before ctxswout due
723                          * to event_filter_match() in event_sched_out()
724                          */
725                         cpuctx->cgrp = NULL;
726                 }
727
728                 if (mode & PERF_CGROUP_SWIN) {
729                         WARN_ON_ONCE(cpuctx->cgrp);
730                         /*
731                          * set cgrp before ctxsw in to allow
732                          * event_filter_match() to not have to pass
733                          * task around
734                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
735                          * because cgorup events are only per-cpu
736                          */
737                         cpuctx->cgrp = perf_cgroup_from_task(task,
738                                                              &cpuctx->ctx);
739                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740                 }
741                 perf_pmu_enable(cpuctx->ctx.pmu);
742                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743         }
744
745         local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749                                          struct task_struct *next)
750 {
751         struct perf_cgroup *cgrp1;
752         struct perf_cgroup *cgrp2 = NULL;
753
754         rcu_read_lock();
755         /*
756          * we come here when we know perf_cgroup_events > 0
757          * we do not need to pass the ctx here because we know
758          * we are holding the rcu lock
759          */
760         cgrp1 = perf_cgroup_from_task(task, NULL);
761         cgrp2 = perf_cgroup_from_task(next, NULL);
762
763         /*
764          * only schedule out current cgroup events if we know
765          * that we are switching to a different cgroup. Otherwise,
766          * do no touch the cgroup events.
767          */
768         if (cgrp1 != cgrp2)
769                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771         rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775                                         struct task_struct *task)
776 {
777         struct perf_cgroup *cgrp1;
778         struct perf_cgroup *cgrp2 = NULL;
779
780         rcu_read_lock();
781         /*
782          * we come here when we know perf_cgroup_events > 0
783          * we do not need to pass the ctx here because we know
784          * we are holding the rcu lock
785          */
786         cgrp1 = perf_cgroup_from_task(task, NULL);
787         cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789         /*
790          * only need to schedule in cgroup events if we are changing
791          * cgroup during ctxsw. Cgroup events were not scheduled
792          * out of ctxsw out if that was not the case.
793          */
794         if (cgrp1 != cgrp2)
795                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797         rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801                                       struct perf_event_attr *attr,
802                                       struct perf_event *group_leader)
803 {
804         struct perf_cgroup *cgrp;
805         struct cgroup_subsys_state *css;
806         struct fd f = fdget(fd);
807         int ret = 0;
808
809         if (!f.file)
810                 return -EBADF;
811
812         css = css_tryget_online_from_dir(f.file->f_path.dentry,
813                                          &perf_event_cgrp_subsys);
814         if (IS_ERR(css)) {
815                 ret = PTR_ERR(css);
816                 goto out;
817         }
818
819         cgrp = container_of(css, struct perf_cgroup, css);
820         event->cgrp = cgrp;
821
822         /*
823          * all events in a group must monitor
824          * the same cgroup because a task belongs
825          * to only one perf cgroup at a time
826          */
827         if (group_leader && group_leader->cgrp != cgrp) {
828                 perf_detach_cgroup(event);
829                 ret = -EINVAL;
830         }
831 out:
832         fdput(f);
833         return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839         struct perf_cgroup_info *t;
840         t = per_cpu_ptr(event->cgrp->info, event->cpu);
841         event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847         /*
848          * when the current task's perf cgroup does not match
849          * the event's, we need to remember to call the
850          * perf_mark_enable() function the first time a task with
851          * a matching perf cgroup is scheduled in.
852          */
853         if (is_cgroup_event(event) && !perf_cgroup_match(event))
854                 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859                          struct perf_event_context *ctx)
860 {
861         struct perf_event *sub;
862         u64 tstamp = perf_event_time(event);
863
864         if (!event->cgrp_defer_enabled)
865                 return;
866
867         event->cgrp_defer_enabled = 0;
868
869         event->tstamp_enabled = tstamp - event->total_time_enabled;
870         list_for_each_entry(sub, &event->sibling_list, group_entry) {
871                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873                         sub->cgrp_defer_enabled = 0;
874                 }
875         }
876 }
877
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884                          struct perf_event_context *ctx, bool add)
885 {
886         struct perf_cpu_context *cpuctx;
887         struct list_head *cpuctx_entry;
888
889         if (!is_cgroup_event(event))
890                 return;
891
892         if (add && ctx->nr_cgroups++)
893                 return;
894         else if (!add && --ctx->nr_cgroups)
895                 return;
896         /*
897          * Because cgroup events are always per-cpu events,
898          * this will always be called from the right CPU.
899          */
900         cpuctx = __get_cpu_context(ctx);
901         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903         if (add) {
904                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
905
906                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
907                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
908                         cpuctx->cgrp = cgrp;
909         } else {
910                 list_del(cpuctx_entry);
911                 cpuctx->cgrp = NULL;
912         }
913 }
914
915 #else /* !CONFIG_CGROUP_PERF */
916
917 static inline bool
918 perf_cgroup_match(struct perf_event *event)
919 {
920         return true;
921 }
922
923 static inline void perf_detach_cgroup(struct perf_event *event)
924 {}
925
926 static inline int is_cgroup_event(struct perf_event *event)
927 {
928         return 0;
929 }
930
931 static inline void update_cgrp_time_from_event(struct perf_event *event)
932 {
933 }
934
935 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
936 {
937 }
938
939 static inline void perf_cgroup_sched_out(struct task_struct *task,
940                                          struct task_struct *next)
941 {
942 }
943
944 static inline void perf_cgroup_sched_in(struct task_struct *prev,
945                                         struct task_struct *task)
946 {
947 }
948
949 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
950                                       struct perf_event_attr *attr,
951                                       struct perf_event *group_leader)
952 {
953         return -EINVAL;
954 }
955
956 static inline void
957 perf_cgroup_set_timestamp(struct task_struct *task,
958                           struct perf_event_context *ctx)
959 {
960 }
961
962 void
963 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
964 {
965 }
966
967 static inline void
968 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
969 {
970 }
971
972 static inline u64 perf_cgroup_event_time(struct perf_event *event)
973 {
974         return 0;
975 }
976
977 static inline void
978 perf_cgroup_defer_enabled(struct perf_event *event)
979 {
980 }
981
982 static inline void
983 perf_cgroup_mark_enabled(struct perf_event *event,
984                          struct perf_event_context *ctx)
985 {
986 }
987
988 static inline void
989 list_update_cgroup_event(struct perf_event *event,
990                          struct perf_event_context *ctx, bool add)
991 {
992 }
993
994 #endif
995
996 /*
997  * set default to be dependent on timer tick just
998  * like original code
999  */
1000 #define PERF_CPU_HRTIMER (1000 / HZ)
1001 /*
1002  * function must be called with interrupts disabled
1003  */
1004 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1005 {
1006         struct perf_cpu_context *cpuctx;
1007         int rotations = 0;
1008
1009         WARN_ON(!irqs_disabled());
1010
1011         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1012         rotations = perf_rotate_context(cpuctx);
1013
1014         raw_spin_lock(&cpuctx->hrtimer_lock);
1015         if (rotations)
1016                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1017         else
1018                 cpuctx->hrtimer_active = 0;
1019         raw_spin_unlock(&cpuctx->hrtimer_lock);
1020
1021         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1022 }
1023
1024 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1025 {
1026         struct hrtimer *timer = &cpuctx->hrtimer;
1027         struct pmu *pmu = cpuctx->ctx.pmu;
1028         u64 interval;
1029
1030         /* no multiplexing needed for SW PMU */
1031         if (pmu->task_ctx_nr == perf_sw_context)
1032                 return;
1033
1034         /*
1035          * check default is sane, if not set then force to
1036          * default interval (1/tick)
1037          */
1038         interval = pmu->hrtimer_interval_ms;
1039         if (interval < 1)
1040                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1041
1042         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1043
1044         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1045         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1046         timer->function = perf_mux_hrtimer_handler;
1047 }
1048
1049 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1050 {
1051         struct hrtimer *timer = &cpuctx->hrtimer;
1052         struct pmu *pmu = cpuctx->ctx.pmu;
1053         unsigned long flags;
1054
1055         /* not for SW PMU */
1056         if (pmu->task_ctx_nr == perf_sw_context)
1057                 return 0;
1058
1059         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1060         if (!cpuctx->hrtimer_active) {
1061                 cpuctx->hrtimer_active = 1;
1062                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1063                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1064         }
1065         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1066
1067         return 0;
1068 }
1069
1070 void perf_pmu_disable(struct pmu *pmu)
1071 {
1072         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1073         if (!(*count)++)
1074                 pmu->pmu_disable(pmu);
1075 }
1076
1077 void perf_pmu_enable(struct pmu *pmu)
1078 {
1079         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1080         if (!--(*count))
1081                 pmu->pmu_enable(pmu);
1082 }
1083
1084 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1085
1086 /*
1087  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1088  * perf_event_task_tick() are fully serialized because they're strictly cpu
1089  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1090  * disabled, while perf_event_task_tick is called from IRQ context.
1091  */
1092 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1093 {
1094         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1095
1096         WARN_ON(!irqs_disabled());
1097
1098         WARN_ON(!list_empty(&ctx->active_ctx_list));
1099
1100         list_add(&ctx->active_ctx_list, head);
1101 }
1102
1103 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1104 {
1105         WARN_ON(!irqs_disabled());
1106
1107         WARN_ON(list_empty(&ctx->active_ctx_list));
1108
1109         list_del_init(&ctx->active_ctx_list);
1110 }
1111
1112 static void get_ctx(struct perf_event_context *ctx)
1113 {
1114         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1115 }
1116
1117 static void free_ctx(struct rcu_head *head)
1118 {
1119         struct perf_event_context *ctx;
1120
1121         ctx = container_of(head, struct perf_event_context, rcu_head);
1122         kfree(ctx->task_ctx_data);
1123         kfree(ctx);
1124 }
1125
1126 static void put_ctx(struct perf_event_context *ctx)
1127 {
1128         if (atomic_dec_and_test(&ctx->refcount)) {
1129                 if (ctx->parent_ctx)
1130                         put_ctx(ctx->parent_ctx);
1131                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1132                         put_task_struct(ctx->task);
1133                 call_rcu(&ctx->rcu_head, free_ctx);
1134         }
1135 }
1136
1137 /*
1138  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1139  * perf_pmu_migrate_context() we need some magic.
1140  *
1141  * Those places that change perf_event::ctx will hold both
1142  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1143  *
1144  * Lock ordering is by mutex address. There are two other sites where
1145  * perf_event_context::mutex nests and those are:
1146  *
1147  *  - perf_event_exit_task_context()    [ child , 0 ]
1148  *      perf_event_exit_event()
1149  *        put_event()                   [ parent, 1 ]
1150  *
1151  *  - perf_event_init_context()         [ parent, 0 ]
1152  *      inherit_task_group()
1153  *        inherit_group()
1154  *          inherit_event()
1155  *            perf_event_alloc()
1156  *              perf_init_event()
1157  *                perf_try_init_event() [ child , 1 ]
1158  *
1159  * While it appears there is an obvious deadlock here -- the parent and child
1160  * nesting levels are inverted between the two. This is in fact safe because
1161  * life-time rules separate them. That is an exiting task cannot fork, and a
1162  * spawning task cannot (yet) exit.
1163  *
1164  * But remember that that these are parent<->child context relations, and
1165  * migration does not affect children, therefore these two orderings should not
1166  * interact.
1167  *
1168  * The change in perf_event::ctx does not affect children (as claimed above)
1169  * because the sys_perf_event_open() case will install a new event and break
1170  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1171  * concerned with cpuctx and that doesn't have children.
1172  *
1173  * The places that change perf_event::ctx will issue:
1174  *
1175  *   perf_remove_from_context();
1176  *   synchronize_rcu();
1177  *   perf_install_in_context();
1178  *
1179  * to affect the change. The remove_from_context() + synchronize_rcu() should
1180  * quiesce the event, after which we can install it in the new location. This
1181  * means that only external vectors (perf_fops, prctl) can perturb the event
1182  * while in transit. Therefore all such accessors should also acquire
1183  * perf_event_context::mutex to serialize against this.
1184  *
1185  * However; because event->ctx can change while we're waiting to acquire
1186  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1187  * function.
1188  *
1189  * Lock order:
1190  *    cred_guard_mutex
1191  *      task_struct::perf_event_mutex
1192  *        perf_event_context::mutex
1193  *          perf_event::child_mutex;
1194  *            perf_event_context::lock
1195  *          perf_event::mmap_mutex
1196  *          mmap_sem
1197  */
1198 static struct perf_event_context *
1199 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1200 {
1201         struct perf_event_context *ctx;
1202
1203 again:
1204         rcu_read_lock();
1205         ctx = ACCESS_ONCE(event->ctx);
1206         if (!atomic_inc_not_zero(&ctx->refcount)) {
1207                 rcu_read_unlock();
1208                 goto again;
1209         }
1210         rcu_read_unlock();
1211
1212         mutex_lock_nested(&ctx->mutex, nesting);
1213         if (event->ctx != ctx) {
1214                 mutex_unlock(&ctx->mutex);
1215                 put_ctx(ctx);
1216                 goto again;
1217         }
1218
1219         return ctx;
1220 }
1221
1222 static inline struct perf_event_context *
1223 perf_event_ctx_lock(struct perf_event *event)
1224 {
1225         return perf_event_ctx_lock_nested(event, 0);
1226 }
1227
1228 static void perf_event_ctx_unlock(struct perf_event *event,
1229                                   struct perf_event_context *ctx)
1230 {
1231         mutex_unlock(&ctx->mutex);
1232         put_ctx(ctx);
1233 }
1234
1235 /*
1236  * This must be done under the ctx->lock, such as to serialize against
1237  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1238  * calling scheduler related locks and ctx->lock nests inside those.
1239  */
1240 static __must_check struct perf_event_context *
1241 unclone_ctx(struct perf_event_context *ctx)
1242 {
1243         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1244
1245         lockdep_assert_held(&ctx->lock);
1246
1247         if (parent_ctx)
1248                 ctx->parent_ctx = NULL;
1249         ctx->generation++;
1250
1251         return parent_ctx;
1252 }
1253
1254 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1255                                 enum pid_type type)
1256 {
1257         u32 nr;
1258         /*
1259          * only top level events have the pid namespace they were created in
1260          */
1261         if (event->parent)
1262                 event = event->parent;
1263
1264         nr = __task_pid_nr_ns(p, type, event->ns);
1265         /* avoid -1 if it is idle thread or runs in another ns */
1266         if (!nr && !pid_alive(p))
1267                 nr = -1;
1268         return nr;
1269 }
1270
1271 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1272 {
1273         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1274 }
1275
1276 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1277 {
1278         return perf_event_pid_type(event, p, PIDTYPE_PID);
1279 }
1280
1281 /*
1282  * If we inherit events we want to return the parent event id
1283  * to userspace.
1284  */
1285 static u64 primary_event_id(struct perf_event *event)
1286 {
1287         u64 id = event->id;
1288
1289         if (event->parent)
1290                 id = event->parent->id;
1291
1292         return id;
1293 }
1294
1295 /*
1296  * Get the perf_event_context for a task and lock it.
1297  *
1298  * This has to cope with with the fact that until it is locked,
1299  * the context could get moved to another task.
1300  */
1301 static struct perf_event_context *
1302 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1303 {
1304         struct perf_event_context *ctx;
1305
1306 retry:
1307         /*
1308          * One of the few rules of preemptible RCU is that one cannot do
1309          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1310          * part of the read side critical section was irqs-enabled -- see
1311          * rcu_read_unlock_special().
1312          *
1313          * Since ctx->lock nests under rq->lock we must ensure the entire read
1314          * side critical section has interrupts disabled.
1315          */
1316         local_irq_save(*flags);
1317         rcu_read_lock();
1318         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1319         if (ctx) {
1320                 /*
1321                  * If this context is a clone of another, it might
1322                  * get swapped for another underneath us by
1323                  * perf_event_task_sched_out, though the
1324                  * rcu_read_lock() protects us from any context
1325                  * getting freed.  Lock the context and check if it
1326                  * got swapped before we could get the lock, and retry
1327                  * if so.  If we locked the right context, then it
1328                  * can't get swapped on us any more.
1329                  */
1330                 raw_spin_lock(&ctx->lock);
1331                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1332                         raw_spin_unlock(&ctx->lock);
1333                         rcu_read_unlock();
1334                         local_irq_restore(*flags);
1335                         goto retry;
1336                 }
1337
1338                 if (ctx->task == TASK_TOMBSTONE ||
1339                     !atomic_inc_not_zero(&ctx->refcount)) {
1340                         raw_spin_unlock(&ctx->lock);
1341                         ctx = NULL;
1342                 } else {
1343                         WARN_ON_ONCE(ctx->task != task);
1344                 }
1345         }
1346         rcu_read_unlock();
1347         if (!ctx)
1348                 local_irq_restore(*flags);
1349         return ctx;
1350 }
1351
1352 /*
1353  * Get the context for a task and increment its pin_count so it
1354  * can't get swapped to another task.  This also increments its
1355  * reference count so that the context can't get freed.
1356  */
1357 static struct perf_event_context *
1358 perf_pin_task_context(struct task_struct *task, int ctxn)
1359 {
1360         struct perf_event_context *ctx;
1361         unsigned long flags;
1362
1363         ctx = perf_lock_task_context(task, ctxn, &flags);
1364         if (ctx) {
1365                 ++ctx->pin_count;
1366                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1367         }
1368         return ctx;
1369 }
1370
1371 static void perf_unpin_context(struct perf_event_context *ctx)
1372 {
1373         unsigned long flags;
1374
1375         raw_spin_lock_irqsave(&ctx->lock, flags);
1376         --ctx->pin_count;
1377         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1378 }
1379
1380 /*
1381  * Update the record of the current time in a context.
1382  */
1383 static void update_context_time(struct perf_event_context *ctx)
1384 {
1385         u64 now = perf_clock();
1386
1387         ctx->time += now - ctx->timestamp;
1388         ctx->timestamp = now;
1389 }
1390
1391 static u64 perf_event_time(struct perf_event *event)
1392 {
1393         struct perf_event_context *ctx = event->ctx;
1394
1395         if (is_cgroup_event(event))
1396                 return perf_cgroup_event_time(event);
1397
1398         return ctx ? ctx->time : 0;
1399 }
1400
1401 /*
1402  * Update the total_time_enabled and total_time_running fields for a event.
1403  */
1404 static void update_event_times(struct perf_event *event)
1405 {
1406         struct perf_event_context *ctx = event->ctx;
1407         u64 run_end;
1408
1409         lockdep_assert_held(&ctx->lock);
1410
1411         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1412             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1413                 return;
1414
1415         /*
1416          * in cgroup mode, time_enabled represents
1417          * the time the event was enabled AND active
1418          * tasks were in the monitored cgroup. This is
1419          * independent of the activity of the context as
1420          * there may be a mix of cgroup and non-cgroup events.
1421          *
1422          * That is why we treat cgroup events differently
1423          * here.
1424          */
1425         if (is_cgroup_event(event))
1426                 run_end = perf_cgroup_event_time(event);
1427         else if (ctx->is_active)
1428                 run_end = ctx->time;
1429         else
1430                 run_end = event->tstamp_stopped;
1431
1432         event->total_time_enabled = run_end - event->tstamp_enabled;
1433
1434         if (event->state == PERF_EVENT_STATE_INACTIVE)
1435                 run_end = event->tstamp_stopped;
1436         else
1437                 run_end = perf_event_time(event);
1438
1439         event->total_time_running = run_end - event->tstamp_running;
1440
1441 }
1442
1443 /*
1444  * Update total_time_enabled and total_time_running for all events in a group.
1445  */
1446 static void update_group_times(struct perf_event *leader)
1447 {
1448         struct perf_event *event;
1449
1450         update_event_times(leader);
1451         list_for_each_entry(event, &leader->sibling_list, group_entry)
1452                 update_event_times(event);
1453 }
1454
1455 static enum event_type_t get_event_type(struct perf_event *event)
1456 {
1457         struct perf_event_context *ctx = event->ctx;
1458         enum event_type_t event_type;
1459
1460         lockdep_assert_held(&ctx->lock);
1461
1462         /*
1463          * It's 'group type', really, because if our group leader is
1464          * pinned, so are we.
1465          */
1466         if (event->group_leader != event)
1467                 event = event->group_leader;
1468
1469         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1470         if (!ctx->task)
1471                 event_type |= EVENT_CPU;
1472
1473         return event_type;
1474 }
1475
1476 static struct list_head *
1477 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479         if (event->attr.pinned)
1480                 return &ctx->pinned_groups;
1481         else
1482                 return &ctx->flexible_groups;
1483 }
1484
1485 /*
1486  * Add a event from the lists for its context.
1487  * Must be called with ctx->mutex and ctx->lock held.
1488  */
1489 static void
1490 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1491 {
1492         lockdep_assert_held(&ctx->lock);
1493
1494         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1495         event->attach_state |= PERF_ATTACH_CONTEXT;
1496
1497         /*
1498          * If we're a stand alone event or group leader, we go to the context
1499          * list, group events are kept attached to the group so that
1500          * perf_group_detach can, at all times, locate all siblings.
1501          */
1502         if (event->group_leader == event) {
1503                 struct list_head *list;
1504
1505                 event->group_caps = event->event_caps;
1506
1507                 list = ctx_group_list(event, ctx);
1508                 list_add_tail(&event->group_entry, list);
1509         }
1510
1511         list_update_cgroup_event(event, ctx, true);
1512
1513         list_add_rcu(&event->event_entry, &ctx->event_list);
1514         ctx->nr_events++;
1515         if (event->attr.inherit_stat)
1516                 ctx->nr_stat++;
1517
1518         ctx->generation++;
1519 }
1520
1521 /*
1522  * Initialize event state based on the perf_event_attr::disabled.
1523  */
1524 static inline void perf_event__state_init(struct perf_event *event)
1525 {
1526         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1527                                               PERF_EVENT_STATE_INACTIVE;
1528 }
1529
1530 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1531 {
1532         int entry = sizeof(u64); /* value */
1533         int size = 0;
1534         int nr = 1;
1535
1536         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1537                 size += sizeof(u64);
1538
1539         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1540                 size += sizeof(u64);
1541
1542         if (event->attr.read_format & PERF_FORMAT_ID)
1543                 entry += sizeof(u64);
1544
1545         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1546                 nr += nr_siblings;
1547                 size += sizeof(u64);
1548         }
1549
1550         size += entry * nr;
1551         event->read_size = size;
1552 }
1553
1554 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1555 {
1556         struct perf_sample_data *data;
1557         u16 size = 0;
1558
1559         if (sample_type & PERF_SAMPLE_IP)
1560                 size += sizeof(data->ip);
1561
1562         if (sample_type & PERF_SAMPLE_ADDR)
1563                 size += sizeof(data->addr);
1564
1565         if (sample_type & PERF_SAMPLE_PERIOD)
1566                 size += sizeof(data->period);
1567
1568         if (sample_type & PERF_SAMPLE_WEIGHT)
1569                 size += sizeof(data->weight);
1570
1571         if (sample_type & PERF_SAMPLE_READ)
1572                 size += event->read_size;
1573
1574         if (sample_type & PERF_SAMPLE_DATA_SRC)
1575                 size += sizeof(data->data_src.val);
1576
1577         if (sample_type & PERF_SAMPLE_TRANSACTION)
1578                 size += sizeof(data->txn);
1579
1580         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1581                 size += sizeof(data->phys_addr);
1582
1583         event->header_size = size;
1584 }
1585
1586 /*
1587  * Called at perf_event creation and when events are attached/detached from a
1588  * group.
1589  */
1590 static void perf_event__header_size(struct perf_event *event)
1591 {
1592         __perf_event_read_size(event,
1593                                event->group_leader->nr_siblings);
1594         __perf_event_header_size(event, event->attr.sample_type);
1595 }
1596
1597 static void perf_event__id_header_size(struct perf_event *event)
1598 {
1599         struct perf_sample_data *data;
1600         u64 sample_type = event->attr.sample_type;
1601         u16 size = 0;
1602
1603         if (sample_type & PERF_SAMPLE_TID)
1604                 size += sizeof(data->tid_entry);
1605
1606         if (sample_type & PERF_SAMPLE_TIME)
1607                 size += sizeof(data->time);
1608
1609         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1610                 size += sizeof(data->id);
1611
1612         if (sample_type & PERF_SAMPLE_ID)
1613                 size += sizeof(data->id);
1614
1615         if (sample_type & PERF_SAMPLE_STREAM_ID)
1616                 size += sizeof(data->stream_id);
1617
1618         if (sample_type & PERF_SAMPLE_CPU)
1619                 size += sizeof(data->cpu_entry);
1620
1621         event->id_header_size = size;
1622 }
1623
1624 static bool perf_event_validate_size(struct perf_event *event)
1625 {
1626         /*
1627          * The values computed here will be over-written when we actually
1628          * attach the event.
1629          */
1630         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1631         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1632         perf_event__id_header_size(event);
1633
1634         /*
1635          * Sum the lot; should not exceed the 64k limit we have on records.
1636          * Conservative limit to allow for callchains and other variable fields.
1637          */
1638         if (event->read_size + event->header_size +
1639             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1640                 return false;
1641
1642         return true;
1643 }
1644
1645 static void perf_group_attach(struct perf_event *event)
1646 {
1647         struct perf_event *group_leader = event->group_leader, *pos;
1648
1649         lockdep_assert_held(&event->ctx->lock);
1650
1651         /*
1652          * We can have double attach due to group movement in perf_event_open.
1653          */
1654         if (event->attach_state & PERF_ATTACH_GROUP)
1655                 return;
1656
1657         event->attach_state |= PERF_ATTACH_GROUP;
1658
1659         if (group_leader == event)
1660                 return;
1661
1662         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1663
1664         group_leader->group_caps &= event->event_caps;
1665
1666         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1667         group_leader->nr_siblings++;
1668
1669         perf_event__header_size(group_leader);
1670
1671         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1672                 perf_event__header_size(pos);
1673 }
1674
1675 /*
1676  * Remove a event from the lists for its context.
1677  * Must be called with ctx->mutex and ctx->lock held.
1678  */
1679 static void
1680 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1681 {
1682         WARN_ON_ONCE(event->ctx != ctx);
1683         lockdep_assert_held(&ctx->lock);
1684
1685         /*
1686          * We can have double detach due to exit/hot-unplug + close.
1687          */
1688         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1689                 return;
1690
1691         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1692
1693         list_update_cgroup_event(event, ctx, false);
1694
1695         ctx->nr_events--;
1696         if (event->attr.inherit_stat)
1697                 ctx->nr_stat--;
1698
1699         list_del_rcu(&event->event_entry);
1700
1701         if (event->group_leader == event)
1702                 list_del_init(&event->group_entry);
1703
1704         update_group_times(event);
1705
1706         /*
1707          * If event was in error state, then keep it
1708          * that way, otherwise bogus counts will be
1709          * returned on read(). The only way to get out
1710          * of error state is by explicit re-enabling
1711          * of the event
1712          */
1713         if (event->state > PERF_EVENT_STATE_OFF)
1714                 event->state = PERF_EVENT_STATE_OFF;
1715
1716         ctx->generation++;
1717 }
1718
1719 static void perf_group_detach(struct perf_event *event)
1720 {
1721         struct perf_event *sibling, *tmp;
1722         struct list_head *list = NULL;
1723
1724         lockdep_assert_held(&event->ctx->lock);
1725
1726         /*
1727          * We can have double detach due to exit/hot-unplug + close.
1728          */
1729         if (!(event->attach_state & PERF_ATTACH_GROUP))
1730                 return;
1731
1732         event->attach_state &= ~PERF_ATTACH_GROUP;
1733
1734         /*
1735          * If this is a sibling, remove it from its group.
1736          */
1737         if (event->group_leader != event) {
1738                 list_del_init(&event->group_entry);
1739                 event->group_leader->nr_siblings--;
1740                 goto out;
1741         }
1742
1743         if (!list_empty(&event->group_entry))
1744                 list = &event->group_entry;
1745
1746         /*
1747          * If this was a group event with sibling events then
1748          * upgrade the siblings to singleton events by adding them
1749          * to whatever list we are on.
1750          */
1751         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1752                 if (list)
1753                         list_move_tail(&sibling->group_entry, list);
1754                 sibling->group_leader = sibling;
1755
1756                 /* Inherit group flags from the previous leader */
1757                 sibling->group_caps = event->group_caps;
1758
1759                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1760         }
1761
1762 out:
1763         perf_event__header_size(event->group_leader);
1764
1765         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1766                 perf_event__header_size(tmp);
1767 }
1768
1769 static bool is_orphaned_event(struct perf_event *event)
1770 {
1771         return event->state == PERF_EVENT_STATE_DEAD;
1772 }
1773
1774 static inline int __pmu_filter_match(struct perf_event *event)
1775 {
1776         struct pmu *pmu = event->pmu;
1777         return pmu->filter_match ? pmu->filter_match(event) : 1;
1778 }
1779
1780 /*
1781  * Check whether we should attempt to schedule an event group based on
1782  * PMU-specific filtering. An event group can consist of HW and SW events,
1783  * potentially with a SW leader, so we must check all the filters, to
1784  * determine whether a group is schedulable:
1785  */
1786 static inline int pmu_filter_match(struct perf_event *event)
1787 {
1788         struct perf_event *child;
1789
1790         if (!__pmu_filter_match(event))
1791                 return 0;
1792
1793         list_for_each_entry(child, &event->sibling_list, group_entry) {
1794                 if (!__pmu_filter_match(child))
1795                         return 0;
1796         }
1797
1798         return 1;
1799 }
1800
1801 static inline int
1802 event_filter_match(struct perf_event *event)
1803 {
1804         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1805                perf_cgroup_match(event) && pmu_filter_match(event);
1806 }
1807
1808 static void
1809 event_sched_out(struct perf_event *event,
1810                   struct perf_cpu_context *cpuctx,
1811                   struct perf_event_context *ctx)
1812 {
1813         u64 tstamp = perf_event_time(event);
1814         u64 delta;
1815
1816         WARN_ON_ONCE(event->ctx != ctx);
1817         lockdep_assert_held(&ctx->lock);
1818
1819         /*
1820          * An event which could not be activated because of
1821          * filter mismatch still needs to have its timings
1822          * maintained, otherwise bogus information is return
1823          * via read() for time_enabled, time_running:
1824          */
1825         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1826             !event_filter_match(event)) {
1827                 delta = tstamp - event->tstamp_stopped;
1828                 event->tstamp_running += delta;
1829                 event->tstamp_stopped = tstamp;
1830         }
1831
1832         if (event->state != PERF_EVENT_STATE_ACTIVE)
1833                 return;
1834
1835         perf_pmu_disable(event->pmu);
1836
1837         event->tstamp_stopped = tstamp;
1838         event->pmu->del(event, 0);
1839         event->oncpu = -1;
1840         event->state = PERF_EVENT_STATE_INACTIVE;
1841         if (event->pending_disable) {
1842                 event->pending_disable = 0;
1843                 event->state = PERF_EVENT_STATE_OFF;
1844         }
1845
1846         if (!is_software_event(event))
1847                 cpuctx->active_oncpu--;
1848         if (!--ctx->nr_active)
1849                 perf_event_ctx_deactivate(ctx);
1850         if (event->attr.freq && event->attr.sample_freq)
1851                 ctx->nr_freq--;
1852         if (event->attr.exclusive || !cpuctx->active_oncpu)
1853                 cpuctx->exclusive = 0;
1854
1855         perf_pmu_enable(event->pmu);
1856 }
1857
1858 static void
1859 group_sched_out(struct perf_event *group_event,
1860                 struct perf_cpu_context *cpuctx,
1861                 struct perf_event_context *ctx)
1862 {
1863         struct perf_event *event;
1864         int state = group_event->state;
1865
1866         perf_pmu_disable(ctx->pmu);
1867
1868         event_sched_out(group_event, cpuctx, ctx);
1869
1870         /*
1871          * Schedule out siblings (if any):
1872          */
1873         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1874                 event_sched_out(event, cpuctx, ctx);
1875
1876         perf_pmu_enable(ctx->pmu);
1877
1878         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1879                 cpuctx->exclusive = 0;
1880 }
1881
1882 #define DETACH_GROUP    0x01UL
1883
1884 /*
1885  * Cross CPU call to remove a performance event
1886  *
1887  * We disable the event on the hardware level first. After that we
1888  * remove it from the context list.
1889  */
1890 static void
1891 __perf_remove_from_context(struct perf_event *event,
1892                            struct perf_cpu_context *cpuctx,
1893                            struct perf_event_context *ctx,
1894                            void *info)
1895 {
1896         unsigned long flags = (unsigned long)info;
1897
1898         event_sched_out(event, cpuctx, ctx);
1899         if (flags & DETACH_GROUP)
1900                 perf_group_detach(event);
1901         list_del_event(event, ctx);
1902
1903         if (!ctx->nr_events && ctx->is_active) {
1904                 ctx->is_active = 0;
1905                 if (ctx->task) {
1906                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1907                         cpuctx->task_ctx = NULL;
1908                 }
1909         }
1910 }
1911
1912 /*
1913  * Remove the event from a task's (or a CPU's) list of events.
1914  *
1915  * If event->ctx is a cloned context, callers must make sure that
1916  * every task struct that event->ctx->task could possibly point to
1917  * remains valid.  This is OK when called from perf_release since
1918  * that only calls us on the top-level context, which can't be a clone.
1919  * When called from perf_event_exit_task, it's OK because the
1920  * context has been detached from its task.
1921  */
1922 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1923 {
1924         struct perf_event_context *ctx = event->ctx;
1925
1926         lockdep_assert_held(&ctx->mutex);
1927
1928         event_function_call(event, __perf_remove_from_context, (void *)flags);
1929
1930         /*
1931          * The above event_function_call() can NO-OP when it hits
1932          * TASK_TOMBSTONE. In that case we must already have been detached
1933          * from the context (by perf_event_exit_event()) but the grouping
1934          * might still be in-tact.
1935          */
1936         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1937         if ((flags & DETACH_GROUP) &&
1938             (event->attach_state & PERF_ATTACH_GROUP)) {
1939                 /*
1940                  * Since in that case we cannot possibly be scheduled, simply
1941                  * detach now.
1942                  */
1943                 raw_spin_lock_irq(&ctx->lock);
1944                 perf_group_detach(event);
1945                 raw_spin_unlock_irq(&ctx->lock);
1946         }
1947 }
1948
1949 /*
1950  * Cross CPU call to disable a performance event
1951  */
1952 static void __perf_event_disable(struct perf_event *event,
1953                                  struct perf_cpu_context *cpuctx,
1954                                  struct perf_event_context *ctx,
1955                                  void *info)
1956 {
1957         if (event->state < PERF_EVENT_STATE_INACTIVE)
1958                 return;
1959
1960         update_context_time(ctx);
1961         update_cgrp_time_from_event(event);
1962         update_group_times(event);
1963         if (event == event->group_leader)
1964                 group_sched_out(event, cpuctx, ctx);
1965         else
1966                 event_sched_out(event, cpuctx, ctx);
1967         event->state = PERF_EVENT_STATE_OFF;
1968 }
1969
1970 /*
1971  * Disable a event.
1972  *
1973  * If event->ctx is a cloned context, callers must make sure that
1974  * every task struct that event->ctx->task could possibly point to
1975  * remains valid.  This condition is satisifed when called through
1976  * perf_event_for_each_child or perf_event_for_each because they
1977  * hold the top-level event's child_mutex, so any descendant that
1978  * goes to exit will block in perf_event_exit_event().
1979  *
1980  * When called from perf_pending_event it's OK because event->ctx
1981  * is the current context on this CPU and preemption is disabled,
1982  * hence we can't get into perf_event_task_sched_out for this context.
1983  */
1984 static void _perf_event_disable(struct perf_event *event)
1985 {
1986         struct perf_event_context *ctx = event->ctx;
1987
1988         raw_spin_lock_irq(&ctx->lock);
1989         if (event->state <= PERF_EVENT_STATE_OFF) {
1990                 raw_spin_unlock_irq(&ctx->lock);
1991                 return;
1992         }
1993         raw_spin_unlock_irq(&ctx->lock);
1994
1995         event_function_call(event, __perf_event_disable, NULL);
1996 }
1997
1998 void perf_event_disable_local(struct perf_event *event)
1999 {
2000         event_function_local(event, __perf_event_disable, NULL);
2001 }
2002
2003 /*
2004  * Strictly speaking kernel users cannot create groups and therefore this
2005  * interface does not need the perf_event_ctx_lock() magic.
2006  */
2007 void perf_event_disable(struct perf_event *event)
2008 {
2009         struct perf_event_context *ctx;
2010
2011         ctx = perf_event_ctx_lock(event);
2012         _perf_event_disable(event);
2013         perf_event_ctx_unlock(event, ctx);
2014 }
2015 EXPORT_SYMBOL_GPL(perf_event_disable);
2016
2017 void perf_event_disable_inatomic(struct perf_event *event)
2018 {
2019         event->pending_disable = 1;
2020         irq_work_queue(&event->pending);
2021 }
2022
2023 static void perf_set_shadow_time(struct perf_event *event,
2024                                  struct perf_event_context *ctx,
2025                                  u64 tstamp)
2026 {
2027         /*
2028          * use the correct time source for the time snapshot
2029          *
2030          * We could get by without this by leveraging the
2031          * fact that to get to this function, the caller
2032          * has most likely already called update_context_time()
2033          * and update_cgrp_time_xx() and thus both timestamp
2034          * are identical (or very close). Given that tstamp is,
2035          * already adjusted for cgroup, we could say that:
2036          *    tstamp - ctx->timestamp
2037          * is equivalent to
2038          *    tstamp - cgrp->timestamp.
2039          *
2040          * Then, in perf_output_read(), the calculation would
2041          * work with no changes because:
2042          * - event is guaranteed scheduled in
2043          * - no scheduled out in between
2044          * - thus the timestamp would be the same
2045          *
2046          * But this is a bit hairy.
2047          *
2048          * So instead, we have an explicit cgroup call to remain
2049          * within the time time source all along. We believe it
2050          * is cleaner and simpler to understand.
2051          */
2052         if (is_cgroup_event(event))
2053                 perf_cgroup_set_shadow_time(event, tstamp);
2054         else
2055                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2056 }
2057
2058 #define MAX_INTERRUPTS (~0ULL)
2059
2060 static void perf_log_throttle(struct perf_event *event, int enable);
2061 static void perf_log_itrace_start(struct perf_event *event);
2062
2063 static int
2064 event_sched_in(struct perf_event *event,
2065                  struct perf_cpu_context *cpuctx,
2066                  struct perf_event_context *ctx)
2067 {
2068         u64 tstamp = perf_event_time(event);
2069         int ret = 0;
2070
2071         lockdep_assert_held(&ctx->lock);
2072
2073         if (event->state <= PERF_EVENT_STATE_OFF)
2074                 return 0;
2075
2076         WRITE_ONCE(event->oncpu, smp_processor_id());
2077         /*
2078          * Order event::oncpu write to happen before the ACTIVE state
2079          * is visible.
2080          */
2081         smp_wmb();
2082         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2083
2084         /*
2085          * Unthrottle events, since we scheduled we might have missed several
2086          * ticks already, also for a heavily scheduling task there is little
2087          * guarantee it'll get a tick in a timely manner.
2088          */
2089         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2090                 perf_log_throttle(event, 1);
2091                 event->hw.interrupts = 0;
2092         }
2093
2094         /*
2095          * The new state must be visible before we turn it on in the hardware:
2096          */
2097         smp_wmb();
2098
2099         perf_pmu_disable(event->pmu);
2100
2101         perf_set_shadow_time(event, ctx, tstamp);
2102
2103         perf_log_itrace_start(event);
2104
2105         if (event->pmu->add(event, PERF_EF_START)) {
2106                 event->state = PERF_EVENT_STATE_INACTIVE;
2107                 event->oncpu = -1;
2108                 ret = -EAGAIN;
2109                 goto out;
2110         }
2111
2112         event->tstamp_running += tstamp - event->tstamp_stopped;
2113
2114         if (!is_software_event(event))
2115                 cpuctx->active_oncpu++;
2116         if (!ctx->nr_active++)
2117                 perf_event_ctx_activate(ctx);
2118         if (event->attr.freq && event->attr.sample_freq)
2119                 ctx->nr_freq++;
2120
2121         if (event->attr.exclusive)
2122                 cpuctx->exclusive = 1;
2123
2124 out:
2125         perf_pmu_enable(event->pmu);
2126
2127         return ret;
2128 }
2129
2130 static int
2131 group_sched_in(struct perf_event *group_event,
2132                struct perf_cpu_context *cpuctx,
2133                struct perf_event_context *ctx)
2134 {
2135         struct perf_event *event, *partial_group = NULL;
2136         struct pmu *pmu = ctx->pmu;
2137         u64 now = ctx->time;
2138         bool simulate = false;
2139
2140         if (group_event->state == PERF_EVENT_STATE_OFF)
2141                 return 0;
2142
2143         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2144
2145         if (event_sched_in(group_event, cpuctx, ctx)) {
2146                 pmu->cancel_txn(pmu);
2147                 perf_mux_hrtimer_restart(cpuctx);
2148                 return -EAGAIN;
2149         }
2150
2151         /*
2152          * Schedule in siblings as one group (if any):
2153          */
2154         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2155                 if (event_sched_in(event, cpuctx, ctx)) {
2156                         partial_group = event;
2157                         goto group_error;
2158                 }
2159         }
2160
2161         if (!pmu->commit_txn(pmu))
2162                 return 0;
2163
2164 group_error:
2165         /*
2166          * Groups can be scheduled in as one unit only, so undo any
2167          * partial group before returning:
2168          * The events up to the failed event are scheduled out normally,
2169          * tstamp_stopped will be updated.
2170          *
2171          * The failed events and the remaining siblings need to have
2172          * their timings updated as if they had gone thru event_sched_in()
2173          * and event_sched_out(). This is required to get consistent timings
2174          * across the group. This also takes care of the case where the group
2175          * could never be scheduled by ensuring tstamp_stopped is set to mark
2176          * the time the event was actually stopped, such that time delta
2177          * calculation in update_event_times() is correct.
2178          */
2179         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2180                 if (event == partial_group)
2181                         simulate = true;
2182
2183                 if (simulate) {
2184                         event->tstamp_running += now - event->tstamp_stopped;
2185                         event->tstamp_stopped = now;
2186                 } else {
2187                         event_sched_out(event, cpuctx, ctx);
2188                 }
2189         }
2190         event_sched_out(group_event, cpuctx, ctx);
2191
2192         pmu->cancel_txn(pmu);
2193
2194         perf_mux_hrtimer_restart(cpuctx);
2195
2196         return -EAGAIN;
2197 }
2198
2199 /*
2200  * Work out whether we can put this event group on the CPU now.
2201  */
2202 static int group_can_go_on(struct perf_event *event,
2203                            struct perf_cpu_context *cpuctx,
2204                            int can_add_hw)
2205 {
2206         /*
2207          * Groups consisting entirely of software events can always go on.
2208          */
2209         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2210                 return 1;
2211         /*
2212          * If an exclusive group is already on, no other hardware
2213          * events can go on.
2214          */
2215         if (cpuctx->exclusive)
2216                 return 0;
2217         /*
2218          * If this group is exclusive and there are already
2219          * events on the CPU, it can't go on.
2220          */
2221         if (event->attr.exclusive && cpuctx->active_oncpu)
2222                 return 0;
2223         /*
2224          * Otherwise, try to add it if all previous groups were able
2225          * to go on.
2226          */
2227         return can_add_hw;
2228 }
2229
2230 /*
2231  * Complement to update_event_times(). This computes the tstamp_* values to
2232  * continue 'enabled' state from @now, and effectively discards the time
2233  * between the prior tstamp_stopped and now (as we were in the OFF state, or
2234  * just switched (context) time base).
2235  *
2236  * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2237  * cannot have been scheduled in yet. And going into INACTIVE state means
2238  * '@event->tstamp_stopped = @now'.
2239  *
2240  * Thus given the rules of update_event_times():
2241  *
2242  *   total_time_enabled = tstamp_stopped - tstamp_enabled
2243  *   total_time_running = tstamp_stopped - tstamp_running
2244  *
2245  * We can insert 'tstamp_stopped == now' and reverse them to compute new
2246  * tstamp_* values.
2247  */
2248 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2249 {
2250         WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2251
2252         event->tstamp_stopped = now;
2253         event->tstamp_enabled = now - event->total_time_enabled;
2254         event->tstamp_running = now - event->total_time_running;
2255 }
2256
2257 static void add_event_to_ctx(struct perf_event *event,
2258                                struct perf_event_context *ctx)
2259 {
2260         u64 tstamp = perf_event_time(event);
2261
2262         list_add_event(event, ctx);
2263         perf_group_attach(event);
2264         /*
2265          * We can be called with event->state == STATE_OFF when we create with
2266          * .disabled = 1. In that case the IOC_ENABLE will call this function.
2267          */
2268         if (event->state == PERF_EVENT_STATE_INACTIVE)
2269                 __perf_event_enable_time(event, tstamp);
2270 }
2271
2272 static void ctx_sched_out(struct perf_event_context *ctx,
2273                           struct perf_cpu_context *cpuctx,
2274                           enum event_type_t event_type);
2275 static void
2276 ctx_sched_in(struct perf_event_context *ctx,
2277              struct perf_cpu_context *cpuctx,
2278              enum event_type_t event_type,
2279              struct task_struct *task);
2280
2281 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2282                                struct perf_event_context *ctx,
2283                                enum event_type_t event_type)
2284 {
2285         if (!cpuctx->task_ctx)
2286                 return;
2287
2288         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2289                 return;
2290
2291         ctx_sched_out(ctx, cpuctx, event_type);
2292 }
2293
2294 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2295                                 struct perf_event_context *ctx,
2296                                 struct task_struct *task)
2297 {
2298         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2299         if (ctx)
2300                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2301         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2302         if (ctx)
2303                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2304 }
2305
2306 /*
2307  * We want to maintain the following priority of scheduling:
2308  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2309  *  - task pinned (EVENT_PINNED)
2310  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2311  *  - task flexible (EVENT_FLEXIBLE).
2312  *
2313  * In order to avoid unscheduling and scheduling back in everything every
2314  * time an event is added, only do it for the groups of equal priority and
2315  * below.
2316  *
2317  * This can be called after a batch operation on task events, in which case
2318  * event_type is a bit mask of the types of events involved. For CPU events,
2319  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2320  */
2321 static void ctx_resched(struct perf_cpu_context *cpuctx,
2322                         struct perf_event_context *task_ctx,
2323                         enum event_type_t event_type)
2324 {
2325         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2326         bool cpu_event = !!(event_type & EVENT_CPU);
2327
2328         /*
2329          * If pinned groups are involved, flexible groups also need to be
2330          * scheduled out.
2331          */
2332         if (event_type & EVENT_PINNED)
2333                 event_type |= EVENT_FLEXIBLE;
2334
2335         perf_pmu_disable(cpuctx->ctx.pmu);
2336         if (task_ctx)
2337                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2338
2339         /*
2340          * Decide which cpu ctx groups to schedule out based on the types
2341          * of events that caused rescheduling:
2342          *  - EVENT_CPU: schedule out corresponding groups;
2343          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2344          *  - otherwise, do nothing more.
2345          */
2346         if (cpu_event)
2347                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2348         else if (ctx_event_type & EVENT_PINNED)
2349                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2350
2351         perf_event_sched_in(cpuctx, task_ctx, current);
2352         perf_pmu_enable(cpuctx->ctx.pmu);
2353 }
2354
2355 /*
2356  * Cross CPU call to install and enable a performance event
2357  *
2358  * Very similar to remote_function() + event_function() but cannot assume that
2359  * things like ctx->is_active and cpuctx->task_ctx are set.
2360  */
2361 static int  __perf_install_in_context(void *info)
2362 {
2363         struct perf_event *event = info;
2364         struct perf_event_context *ctx = event->ctx;
2365         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2366         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2367         bool reprogram = true;
2368         int ret = 0;
2369
2370         raw_spin_lock(&cpuctx->ctx.lock);
2371         if (ctx->task) {
2372                 raw_spin_lock(&ctx->lock);
2373                 task_ctx = ctx;
2374
2375                 reprogram = (ctx->task == current);
2376
2377                 /*
2378                  * If the task is running, it must be running on this CPU,
2379                  * otherwise we cannot reprogram things.
2380                  *
2381                  * If its not running, we don't care, ctx->lock will
2382                  * serialize against it becoming runnable.
2383                  */
2384                 if (task_curr(ctx->task) && !reprogram) {
2385                         ret = -ESRCH;
2386                         goto unlock;
2387                 }
2388
2389                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2390         } else if (task_ctx) {
2391                 raw_spin_lock(&task_ctx->lock);
2392         }
2393
2394         if (reprogram) {
2395                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2396                 add_event_to_ctx(event, ctx);
2397                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2398         } else {
2399                 add_event_to_ctx(event, ctx);
2400         }
2401
2402 unlock:
2403         perf_ctx_unlock(cpuctx, task_ctx);
2404
2405         return ret;
2406 }
2407
2408 /*
2409  * Attach a performance event to a context.
2410  *
2411  * Very similar to event_function_call, see comment there.
2412  */
2413 static void
2414 perf_install_in_context(struct perf_event_context *ctx,
2415                         struct perf_event *event,
2416                         int cpu)
2417 {
2418         struct task_struct *task = READ_ONCE(ctx->task);
2419
2420         lockdep_assert_held(&ctx->mutex);
2421
2422         if (event->cpu != -1)
2423                 event->cpu = cpu;
2424
2425         /*
2426          * Ensures that if we can observe event->ctx, both the event and ctx
2427          * will be 'complete'. See perf_iterate_sb_cpu().
2428          */
2429         smp_store_release(&event->ctx, ctx);
2430
2431         if (!task) {
2432                 cpu_function_call(cpu, __perf_install_in_context, event);
2433                 return;
2434         }
2435
2436         /*
2437          * Should not happen, we validate the ctx is still alive before calling.
2438          */
2439         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2440                 return;
2441
2442         /*
2443          * Installing events is tricky because we cannot rely on ctx->is_active
2444          * to be set in case this is the nr_events 0 -> 1 transition.
2445          *
2446          * Instead we use task_curr(), which tells us if the task is running.
2447          * However, since we use task_curr() outside of rq::lock, we can race
2448          * against the actual state. This means the result can be wrong.
2449          *
2450          * If we get a false positive, we retry, this is harmless.
2451          *
2452          * If we get a false negative, things are complicated. If we are after
2453          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2454          * value must be correct. If we're before, it doesn't matter since
2455          * perf_event_context_sched_in() will program the counter.
2456          *
2457          * However, this hinges on the remote context switch having observed
2458          * our task->perf_event_ctxp[] store, such that it will in fact take
2459          * ctx::lock in perf_event_context_sched_in().
2460          *
2461          * We do this by task_function_call(), if the IPI fails to hit the task
2462          * we know any future context switch of task must see the
2463          * perf_event_ctpx[] store.
2464          */
2465
2466         /*
2467          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2468          * task_cpu() load, such that if the IPI then does not find the task
2469          * running, a future context switch of that task must observe the
2470          * store.
2471          */
2472         smp_mb();
2473 again:
2474         if (!task_function_call(task, __perf_install_in_context, event))
2475                 return;
2476
2477         raw_spin_lock_irq(&ctx->lock);
2478         task = ctx->task;
2479         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2480                 /*
2481                  * Cannot happen because we already checked above (which also
2482                  * cannot happen), and we hold ctx->mutex, which serializes us
2483                  * against perf_event_exit_task_context().
2484                  */
2485                 raw_spin_unlock_irq(&ctx->lock);
2486                 return;
2487         }
2488         /*
2489          * If the task is not running, ctx->lock will avoid it becoming so,
2490          * thus we can safely install the event.
2491          */
2492         if (task_curr(task)) {
2493                 raw_spin_unlock_irq(&ctx->lock);
2494                 goto again;
2495         }
2496         add_event_to_ctx(event, ctx);
2497         raw_spin_unlock_irq(&ctx->lock);
2498 }
2499
2500 /*
2501  * Put a event into inactive state and update time fields.
2502  * Enabling the leader of a group effectively enables all
2503  * the group members that aren't explicitly disabled, so we
2504  * have to update their ->tstamp_enabled also.
2505  * Note: this works for group members as well as group leaders
2506  * since the non-leader members' sibling_lists will be empty.
2507  */
2508 static void __perf_event_mark_enabled(struct perf_event *event)
2509 {
2510         struct perf_event *sub;
2511         u64 tstamp = perf_event_time(event);
2512
2513         event->state = PERF_EVENT_STATE_INACTIVE;
2514         __perf_event_enable_time(event, tstamp);
2515         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2516                 /* XXX should not be > INACTIVE if event isn't */
2517                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2518                         __perf_event_enable_time(sub, tstamp);
2519         }
2520 }
2521
2522 /*
2523  * Cross CPU call to enable a performance event
2524  */
2525 static void __perf_event_enable(struct perf_event *event,
2526                                 struct perf_cpu_context *cpuctx,
2527                                 struct perf_event_context *ctx,
2528                                 void *info)
2529 {
2530         struct perf_event *leader = event->group_leader;
2531         struct perf_event_context *task_ctx;
2532
2533         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534             event->state <= PERF_EVENT_STATE_ERROR)
2535                 return;
2536
2537         if (ctx->is_active)
2538                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2539
2540         __perf_event_mark_enabled(event);
2541
2542         if (!ctx->is_active)
2543                 return;
2544
2545         if (!event_filter_match(event)) {
2546                 if (is_cgroup_event(event))
2547                         perf_cgroup_defer_enabled(event);
2548                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2549                 return;
2550         }
2551
2552         /*
2553          * If the event is in a group and isn't the group leader,
2554          * then don't put it on unless the group is on.
2555          */
2556         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2557                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2558                 return;
2559         }
2560
2561         task_ctx = cpuctx->task_ctx;
2562         if (ctx->task)
2563                 WARN_ON_ONCE(task_ctx != ctx);
2564
2565         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2566 }
2567
2568 /*
2569  * Enable a event.
2570  *
2571  * If event->ctx is a cloned context, callers must make sure that
2572  * every task struct that event->ctx->task could possibly point to
2573  * remains valid.  This condition is satisfied when called through
2574  * perf_event_for_each_child or perf_event_for_each as described
2575  * for perf_event_disable.
2576  */
2577 static void _perf_event_enable(struct perf_event *event)
2578 {
2579         struct perf_event_context *ctx = event->ctx;
2580
2581         raw_spin_lock_irq(&ctx->lock);
2582         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2583             event->state <  PERF_EVENT_STATE_ERROR) {
2584                 raw_spin_unlock_irq(&ctx->lock);
2585                 return;
2586         }
2587
2588         /*
2589          * If the event is in error state, clear that first.
2590          *
2591          * That way, if we see the event in error state below, we know that it
2592          * has gone back into error state, as distinct from the task having
2593          * been scheduled away before the cross-call arrived.
2594          */
2595         if (event->state == PERF_EVENT_STATE_ERROR)
2596                 event->state = PERF_EVENT_STATE_OFF;
2597         raw_spin_unlock_irq(&ctx->lock);
2598
2599         event_function_call(event, __perf_event_enable, NULL);
2600 }
2601
2602 /*
2603  * See perf_event_disable();
2604  */
2605 void perf_event_enable(struct perf_event *event)
2606 {
2607         struct perf_event_context *ctx;
2608
2609         ctx = perf_event_ctx_lock(event);
2610         _perf_event_enable(event);
2611         perf_event_ctx_unlock(event, ctx);
2612 }
2613 EXPORT_SYMBOL_GPL(perf_event_enable);
2614
2615 struct stop_event_data {
2616         struct perf_event       *event;
2617         unsigned int            restart;
2618 };
2619
2620 static int __perf_event_stop(void *info)
2621 {
2622         struct stop_event_data *sd = info;
2623         struct perf_event *event = sd->event;
2624
2625         /* if it's already INACTIVE, do nothing */
2626         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2627                 return 0;
2628
2629         /* matches smp_wmb() in event_sched_in() */
2630         smp_rmb();
2631
2632         /*
2633          * There is a window with interrupts enabled before we get here,
2634          * so we need to check again lest we try to stop another CPU's event.
2635          */
2636         if (READ_ONCE(event->oncpu) != smp_processor_id())
2637                 return -EAGAIN;
2638
2639         event->pmu->stop(event, PERF_EF_UPDATE);
2640
2641         /*
2642          * May race with the actual stop (through perf_pmu_output_stop()),
2643          * but it is only used for events with AUX ring buffer, and such
2644          * events will refuse to restart because of rb::aux_mmap_count==0,
2645          * see comments in perf_aux_output_begin().
2646          *
2647          * Since this is happening on a event-local CPU, no trace is lost
2648          * while restarting.
2649          */
2650         if (sd->restart)
2651                 event->pmu->start(event, 0);
2652
2653         return 0;
2654 }
2655
2656 static int perf_event_stop(struct perf_event *event, int restart)
2657 {
2658         struct stop_event_data sd = {
2659                 .event          = event,
2660                 .restart        = restart,
2661         };
2662         int ret = 0;
2663
2664         do {
2665                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2666                         return 0;
2667
2668                 /* matches smp_wmb() in event_sched_in() */
2669                 smp_rmb();
2670
2671                 /*
2672                  * We only want to restart ACTIVE events, so if the event goes
2673                  * inactive here (event->oncpu==-1), there's nothing more to do;
2674                  * fall through with ret==-ENXIO.
2675                  */
2676                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2677                                         __perf_event_stop, &sd);
2678         } while (ret == -EAGAIN);
2679
2680         return ret;
2681 }
2682
2683 /*
2684  * In order to contain the amount of racy and tricky in the address filter
2685  * configuration management, it is a two part process:
2686  *
2687  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2688  *      we update the addresses of corresponding vmas in
2689  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2690  * (p2) when an event is scheduled in (pmu::add), it calls
2691  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2692  *      if the generation has changed since the previous call.
2693  *
2694  * If (p1) happens while the event is active, we restart it to force (p2).
2695  *
2696  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2697  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2698  *     ioctl;
2699  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2700  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2701  *     for reading;
2702  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2703  *     of exec.
2704  */
2705 void perf_event_addr_filters_sync(struct perf_event *event)
2706 {
2707         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2708
2709         if (!has_addr_filter(event))
2710                 return;
2711
2712         raw_spin_lock(&ifh->lock);
2713         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2714                 event->pmu->addr_filters_sync(event);
2715                 event->hw.addr_filters_gen = event->addr_filters_gen;
2716         }
2717         raw_spin_unlock(&ifh->lock);
2718 }
2719 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2720
2721 static int _perf_event_refresh(struct perf_event *event, int refresh)
2722 {
2723         /*
2724          * not supported on inherited events
2725          */
2726         if (event->attr.inherit || !is_sampling_event(event))
2727                 return -EINVAL;
2728
2729         atomic_add(refresh, &event->event_limit);
2730         _perf_event_enable(event);
2731
2732         return 0;
2733 }
2734
2735 /*
2736  * See perf_event_disable()
2737  */
2738 int perf_event_refresh(struct perf_event *event, int refresh)
2739 {
2740         struct perf_event_context *ctx;
2741         int ret;
2742
2743         ctx = perf_event_ctx_lock(event);
2744         ret = _perf_event_refresh(event, refresh);
2745         perf_event_ctx_unlock(event, ctx);
2746
2747         return ret;
2748 }
2749 EXPORT_SYMBOL_GPL(perf_event_refresh);
2750
2751 static void ctx_sched_out(struct perf_event_context *ctx,
2752                           struct perf_cpu_context *cpuctx,
2753                           enum event_type_t event_type)
2754 {
2755         int is_active = ctx->is_active;
2756         struct perf_event *event;
2757
2758         lockdep_assert_held(&ctx->lock);
2759
2760         if (likely(!ctx->nr_events)) {
2761                 /*
2762                  * See __perf_remove_from_context().
2763                  */
2764                 WARN_ON_ONCE(ctx->is_active);
2765                 if (ctx->task)
2766                         WARN_ON_ONCE(cpuctx->task_ctx);
2767                 return;
2768         }
2769
2770         ctx->is_active &= ~event_type;
2771         if (!(ctx->is_active & EVENT_ALL))
2772                 ctx->is_active = 0;
2773
2774         if (ctx->task) {
2775                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2776                 if (!ctx->is_active)
2777                         cpuctx->task_ctx = NULL;
2778         }
2779
2780         /*
2781          * Always update time if it was set; not only when it changes.
2782          * Otherwise we can 'forget' to update time for any but the last
2783          * context we sched out. For example:
2784          *
2785          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2786          *   ctx_sched_out(.event_type = EVENT_PINNED)
2787          *
2788          * would only update time for the pinned events.
2789          */
2790         if (is_active & EVENT_TIME) {
2791                 /* update (and stop) ctx time */
2792                 update_context_time(ctx);
2793                 update_cgrp_time_from_cpuctx(cpuctx);
2794         }
2795
2796         is_active ^= ctx->is_active; /* changed bits */
2797
2798         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2799                 return;
2800
2801         perf_pmu_disable(ctx->pmu);
2802         if (is_active & EVENT_PINNED) {
2803                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2804                         group_sched_out(event, cpuctx, ctx);
2805         }
2806
2807         if (is_active & EVENT_FLEXIBLE) {
2808                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2809                         group_sched_out(event, cpuctx, ctx);
2810         }
2811         perf_pmu_enable(ctx->pmu);
2812 }
2813
2814 /*
2815  * Test whether two contexts are equivalent, i.e. whether they have both been
2816  * cloned from the same version of the same context.
2817  *
2818  * Equivalence is measured using a generation number in the context that is
2819  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2820  * and list_del_event().
2821  */
2822 static int context_equiv(struct perf_event_context *ctx1,
2823                          struct perf_event_context *ctx2)
2824 {
2825         lockdep_assert_held(&ctx1->lock);
2826         lockdep_assert_held(&ctx2->lock);
2827
2828         /* Pinning disables the swap optimization */
2829         if (ctx1->pin_count || ctx2->pin_count)
2830                 return 0;
2831
2832         /* If ctx1 is the parent of ctx2 */
2833         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2834                 return 1;
2835
2836         /* If ctx2 is the parent of ctx1 */
2837         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2838                 return 1;
2839
2840         /*
2841          * If ctx1 and ctx2 have the same parent; we flatten the parent
2842          * hierarchy, see perf_event_init_context().
2843          */
2844         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2845                         ctx1->parent_gen == ctx2->parent_gen)
2846                 return 1;
2847
2848         /* Unmatched */
2849         return 0;
2850 }
2851
2852 static void __perf_event_sync_stat(struct perf_event *event,
2853                                      struct perf_event *next_event)
2854 {
2855         u64 value;
2856
2857         if (!event->attr.inherit_stat)
2858                 return;
2859
2860         /*
2861          * Update the event value, we cannot use perf_event_read()
2862          * because we're in the middle of a context switch and have IRQs
2863          * disabled, which upsets smp_call_function_single(), however
2864          * we know the event must be on the current CPU, therefore we
2865          * don't need to use it.
2866          */
2867         switch (event->state) {
2868         case PERF_EVENT_STATE_ACTIVE:
2869                 event->pmu->read(event);
2870                 /* fall-through */
2871
2872         case PERF_EVENT_STATE_INACTIVE:
2873                 update_event_times(event);
2874                 break;
2875
2876         default:
2877                 break;
2878         }
2879
2880         /*
2881          * In order to keep per-task stats reliable we need to flip the event
2882          * values when we flip the contexts.
2883          */
2884         value = local64_read(&next_event->count);
2885         value = local64_xchg(&event->count, value);
2886         local64_set(&next_event->count, value);
2887
2888         swap(event->total_time_enabled, next_event->total_time_enabled);
2889         swap(event->total_time_running, next_event->total_time_running);
2890
2891         /*
2892          * Since we swizzled the values, update the user visible data too.
2893          */
2894         perf_event_update_userpage(event);
2895         perf_event_update_userpage(next_event);
2896 }
2897
2898 static void perf_event_sync_stat(struct perf_event_context *ctx,
2899                                    struct perf_event_context *next_ctx)
2900 {
2901         struct perf_event *event, *next_event;
2902
2903         if (!ctx->nr_stat)
2904                 return;
2905
2906         update_context_time(ctx);
2907
2908         event = list_first_entry(&ctx->event_list,
2909                                    struct perf_event, event_entry);
2910
2911         next_event = list_first_entry(&next_ctx->event_list,
2912                                         struct perf_event, event_entry);
2913
2914         while (&event->event_entry != &ctx->event_list &&
2915                &next_event->event_entry != &next_ctx->event_list) {
2916
2917                 __perf_event_sync_stat(event, next_event);
2918
2919                 event = list_next_entry(event, event_entry);
2920                 next_event = list_next_entry(next_event, event_entry);
2921         }
2922 }
2923
2924 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2925                                          struct task_struct *next)
2926 {
2927         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2928         struct perf_event_context *next_ctx;
2929         struct perf_event_context *parent, *next_parent;
2930         struct perf_cpu_context *cpuctx;
2931         int do_switch = 1;
2932
2933         if (likely(!ctx))
2934                 return;
2935
2936         cpuctx = __get_cpu_context(ctx);
2937         if (!cpuctx->task_ctx)
2938                 return;
2939
2940         rcu_read_lock();
2941         next_ctx = next->perf_event_ctxp[ctxn];
2942         if (!next_ctx)
2943                 goto unlock;
2944
2945         parent = rcu_dereference(ctx->parent_ctx);
2946         next_parent = rcu_dereference(next_ctx->parent_ctx);
2947
2948         /* If neither context have a parent context; they cannot be clones. */
2949         if (!parent && !next_parent)
2950                 goto unlock;
2951
2952         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2953                 /*
2954                  * Looks like the two contexts are clones, so we might be
2955                  * able to optimize the context switch.  We lock both
2956                  * contexts and check that they are clones under the
2957                  * lock (including re-checking that neither has been
2958                  * uncloned in the meantime).  It doesn't matter which
2959                  * order we take the locks because no other cpu could
2960                  * be trying to lock both of these tasks.
2961                  */
2962                 raw_spin_lock(&ctx->lock);
2963                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2964                 if (context_equiv(ctx, next_ctx)) {
2965                         WRITE_ONCE(ctx->task, next);
2966                         WRITE_ONCE(next_ctx->task, task);
2967
2968                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2969
2970                         /*
2971                          * RCU_INIT_POINTER here is safe because we've not
2972                          * modified the ctx and the above modification of
2973                          * ctx->task and ctx->task_ctx_data are immaterial
2974                          * since those values are always verified under
2975                          * ctx->lock which we're now holding.
2976                          */
2977                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2978                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2979
2980                         do_switch = 0;
2981
2982                         perf_event_sync_stat(ctx, next_ctx);
2983                 }
2984                 raw_spin_unlock(&next_ctx->lock);
2985                 raw_spin_unlock(&ctx->lock);
2986         }
2987 unlock:
2988         rcu_read_unlock();
2989
2990         if (do_switch) {
2991                 raw_spin_lock(&ctx->lock);
2992                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2993                 raw_spin_unlock(&ctx->lock);
2994         }
2995 }
2996
2997 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2998
2999 void perf_sched_cb_dec(struct pmu *pmu)
3000 {
3001         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3002
3003         this_cpu_dec(perf_sched_cb_usages);
3004
3005         if (!--cpuctx->sched_cb_usage)
3006                 list_del(&cpuctx->sched_cb_entry);
3007 }
3008
3009
3010 void perf_sched_cb_inc(struct pmu *pmu)
3011 {
3012         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3013
3014         if (!cpuctx->sched_cb_usage++)
3015                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3016
3017         this_cpu_inc(perf_sched_cb_usages);
3018 }
3019
3020 /*
3021  * This function provides the context switch callback to the lower code
3022  * layer. It is invoked ONLY when the context switch callback is enabled.
3023  *
3024  * This callback is relevant even to per-cpu events; for example multi event
3025  * PEBS requires this to provide PID/TID information. This requires we flush
3026  * all queued PEBS records before we context switch to a new task.
3027  */
3028 static void perf_pmu_sched_task(struct task_struct *prev,
3029                                 struct task_struct *next,
3030                                 bool sched_in)
3031 {
3032         struct perf_cpu_context *cpuctx;
3033         struct pmu *pmu;
3034
3035         if (prev == next)
3036                 return;
3037
3038         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3039                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3040
3041                 if (WARN_ON_ONCE(!pmu->sched_task))
3042                         continue;
3043
3044                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3045                 perf_pmu_disable(pmu);
3046
3047                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3048
3049                 perf_pmu_enable(pmu);
3050                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3051         }
3052 }
3053
3054 static void perf_event_switch(struct task_struct *task,
3055                               struct task_struct *next_prev, bool sched_in);
3056
3057 #define for_each_task_context_nr(ctxn)                                  \
3058         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3059
3060 /*
3061  * Called from scheduler to remove the events of the current task,
3062  * with interrupts disabled.
3063  *
3064  * We stop each event and update the event value in event->count.
3065  *
3066  * This does not protect us against NMI, but disable()
3067  * sets the disabled bit in the control field of event _before_
3068  * accessing the event control register. If a NMI hits, then it will
3069  * not restart the event.
3070  */
3071 void __perf_event_task_sched_out(struct task_struct *task,
3072                                  struct task_struct *next)
3073 {
3074         int ctxn;
3075
3076         if (__this_cpu_read(perf_sched_cb_usages))
3077                 perf_pmu_sched_task(task, next, false);
3078
3079         if (atomic_read(&nr_switch_events))
3080                 perf_event_switch(task, next, false);
3081
3082         for_each_task_context_nr(ctxn)
3083                 perf_event_context_sched_out(task, ctxn, next);
3084
3085         /*
3086          * if cgroup events exist on this CPU, then we need
3087          * to check if we have to switch out PMU state.
3088          * cgroup event are system-wide mode only
3089          */
3090         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3091                 perf_cgroup_sched_out(task, next);
3092 }
3093
3094 /*
3095  * Called with IRQs disabled
3096  */
3097 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3098                               enum event_type_t event_type)
3099 {
3100         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3101 }
3102
3103 static void
3104 ctx_pinned_sched_in(struct perf_event_context *ctx,
3105                     struct perf_cpu_context *cpuctx)
3106 {
3107         struct perf_event *event;
3108
3109         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3110                 if (event->state <= PERF_EVENT_STATE_OFF)
3111                         continue;
3112                 if (!event_filter_match(event))
3113                         continue;
3114
3115                 /* may need to reset tstamp_enabled */
3116                 if (is_cgroup_event(event))
3117                         perf_cgroup_mark_enabled(event, ctx);
3118
3119                 if (group_can_go_on(event, cpuctx, 1))
3120                         group_sched_in(event, cpuctx, ctx);
3121
3122                 /*
3123                  * If this pinned group hasn't been scheduled,
3124                  * put it in error state.
3125                  */
3126                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3127                         update_group_times(event);
3128                         event->state = PERF_EVENT_STATE_ERROR;
3129                 }
3130         }
3131 }
3132
3133 static void
3134 ctx_flexible_sched_in(struct perf_event_context *ctx,
3135                       struct perf_cpu_context *cpuctx)
3136 {
3137         struct perf_event *event;
3138         int can_add_hw = 1;
3139
3140         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3141                 /* Ignore events in OFF or ERROR state */
3142                 if (event->state <= PERF_EVENT_STATE_OFF)
3143                         continue;
3144                 /*
3145                  * Listen to the 'cpu' scheduling filter constraint
3146                  * of events:
3147                  */
3148                 if (!event_filter_match(event))
3149                         continue;
3150
3151                 /* may need to reset tstamp_enabled */
3152                 if (is_cgroup_event(event))
3153                         perf_cgroup_mark_enabled(event, ctx);
3154
3155                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3156                         if (group_sched_in(event, cpuctx, ctx))
3157                                 can_add_hw = 0;
3158                 }
3159         }
3160 }
3161
3162 static void
3163 ctx_sched_in(struct perf_event_context *ctx,
3164              struct perf_cpu_context *cpuctx,
3165              enum event_type_t event_type,
3166              struct task_struct *task)
3167 {
3168         int is_active = ctx->is_active;
3169         u64 now;
3170
3171         lockdep_assert_held(&ctx->lock);
3172
3173         if (likely(!ctx->nr_events))
3174                 return;
3175
3176         ctx->is_active |= (event_type | EVENT_TIME);
3177         if (ctx->task) {
3178                 if (!is_active)
3179                         cpuctx->task_ctx = ctx;
3180                 else
3181                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3182         }
3183
3184         is_active ^= ctx->is_active; /* changed bits */
3185
3186         if (is_active & EVENT_TIME) {
3187                 /* start ctx time */
3188                 now = perf_clock();
3189                 ctx->timestamp = now;
3190                 perf_cgroup_set_timestamp(task, ctx);
3191         }
3192
3193         /*
3194          * First go through the list and put on any pinned groups
3195          * in order to give them the best chance of going on.
3196          */
3197         if (is_active & EVENT_PINNED)
3198                 ctx_pinned_sched_in(ctx, cpuctx);
3199
3200         /* Then walk through the lower prio flexible groups */
3201         if (is_active & EVENT_FLEXIBLE)
3202                 ctx_flexible_sched_in(ctx, cpuctx);
3203 }
3204
3205 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3206                              enum event_type_t event_type,
3207                              struct task_struct *task)
3208 {
3209         struct perf_event_context *ctx = &cpuctx->ctx;
3210
3211         ctx_sched_in(ctx, cpuctx, event_type, task);
3212 }
3213
3214 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3215                                         struct task_struct *task)
3216 {
3217         struct perf_cpu_context *cpuctx;
3218
3219         cpuctx = __get_cpu_context(ctx);
3220         if (cpuctx->task_ctx == ctx)
3221                 return;
3222
3223         perf_ctx_lock(cpuctx, ctx);
3224         /*
3225          * We must check ctx->nr_events while holding ctx->lock, such
3226          * that we serialize against perf_install_in_context().
3227          */
3228         if (!ctx->nr_events)
3229                 goto unlock;
3230
3231         perf_pmu_disable(ctx->pmu);
3232         /*
3233          * We want to keep the following priority order:
3234          * cpu pinned (that don't need to move), task pinned,
3235          * cpu flexible, task flexible.
3236          *
3237          * However, if task's ctx is not carrying any pinned
3238          * events, no need to flip the cpuctx's events around.
3239          */
3240         if (!list_empty(&ctx->pinned_groups))
3241                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3242         perf_event_sched_in(cpuctx, ctx, task);
3243         perf_pmu_enable(ctx->pmu);
3244
3245 unlock:
3246         perf_ctx_unlock(cpuctx, ctx);
3247 }
3248
3249 /*
3250  * Called from scheduler to add the events of the current task
3251  * with interrupts disabled.
3252  *
3253  * We restore the event value and then enable it.
3254  *
3255  * This does not protect us against NMI, but enable()
3256  * sets the enabled bit in the control field of event _before_
3257  * accessing the event control register. If a NMI hits, then it will
3258  * keep the event running.
3259  */
3260 void __perf_event_task_sched_in(struct task_struct *prev,
3261                                 struct task_struct *task)
3262 {
3263         struct perf_event_context *ctx;
3264         int ctxn;
3265
3266         /*
3267          * If cgroup events exist on this CPU, then we need to check if we have
3268          * to switch in PMU state; cgroup event are system-wide mode only.
3269          *
3270          * Since cgroup events are CPU events, we must schedule these in before
3271          * we schedule in the task events.
3272          */
3273         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3274                 perf_cgroup_sched_in(prev, task);
3275
3276         for_each_task_context_nr(ctxn) {
3277                 ctx = task->perf_event_ctxp[ctxn];
3278                 if (likely(!ctx))
3279                         continue;
3280
3281                 perf_event_context_sched_in(ctx, task);
3282         }
3283
3284         if (atomic_read(&nr_switch_events))
3285                 perf_event_switch(task, prev, true);
3286
3287         if (__this_cpu_read(perf_sched_cb_usages))
3288                 perf_pmu_sched_task(prev, task, true);
3289 }
3290
3291 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3292 {
3293         u64 frequency = event->attr.sample_freq;
3294         u64 sec = NSEC_PER_SEC;
3295         u64 divisor, dividend;
3296
3297         int count_fls, nsec_fls, frequency_fls, sec_fls;
3298
3299         count_fls = fls64(count);
3300         nsec_fls = fls64(nsec);
3301         frequency_fls = fls64(frequency);
3302         sec_fls = 30;
3303
3304         /*
3305          * We got @count in @nsec, with a target of sample_freq HZ
3306          * the target period becomes:
3307          *
3308          *             @count * 10^9
3309          * period = -------------------
3310          *          @nsec * sample_freq
3311          *
3312          */
3313
3314         /*
3315          * Reduce accuracy by one bit such that @a and @b converge
3316          * to a similar magnitude.
3317          */
3318 #define REDUCE_FLS(a, b)                \
3319 do {                                    \
3320         if (a##_fls > b##_fls) {        \
3321                 a >>= 1;                \
3322                 a##_fls--;              \
3323         } else {                        \
3324                 b >>= 1;                \
3325                 b##_fls--;              \
3326         }                               \
3327 } while (0)
3328
3329         /*
3330          * Reduce accuracy until either term fits in a u64, then proceed with
3331          * the other, so that finally we can do a u64/u64 division.
3332          */
3333         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3334                 REDUCE_FLS(nsec, frequency);
3335                 REDUCE_FLS(sec, count);
3336         }
3337
3338         if (count_fls + sec_fls > 64) {
3339                 divisor = nsec * frequency;
3340
3341                 while (count_fls + sec_fls > 64) {
3342                         REDUCE_FLS(count, sec);
3343                         divisor >>= 1;
3344                 }
3345
3346                 dividend = count * sec;
3347         } else {
3348                 dividend = count * sec;
3349
3350                 while (nsec_fls + frequency_fls > 64) {
3351                         REDUCE_FLS(nsec, frequency);
3352                         dividend >>= 1;
3353                 }
3354
3355                 divisor = nsec * frequency;
3356         }
3357
3358         if (!divisor)
3359                 return dividend;
3360
3361         return div64_u64(dividend, divisor);
3362 }
3363
3364 static DEFINE_PER_CPU(int, perf_throttled_count);
3365 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3366
3367 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3368 {
3369         struct hw_perf_event *hwc = &event->hw;
3370         s64 period, sample_period;
3371         s64 delta;
3372
3373         period = perf_calculate_period(event, nsec, count);
3374
3375         delta = (s64)(period - hwc->sample_period);
3376         delta = (delta + 7) / 8; /* low pass filter */
3377
3378         sample_period = hwc->sample_period + delta;
3379
3380         if (!sample_period)
3381                 sample_period = 1;
3382
3383         hwc->sample_period = sample_period;
3384
3385         if (local64_read(&hwc->period_left) > 8*sample_period) {
3386                 if (disable)
3387                         event->pmu->stop(event, PERF_EF_UPDATE);
3388
3389                 local64_set(&hwc->period_left, 0);
3390
3391                 if (disable)
3392                         event->pmu->start(event, PERF_EF_RELOAD);
3393         }
3394 }
3395
3396 /*
3397  * combine freq adjustment with unthrottling to avoid two passes over the
3398  * events. At the same time, make sure, having freq events does not change
3399  * the rate of unthrottling as that would introduce bias.
3400  */
3401 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3402                                            int needs_unthr)
3403 {
3404         struct perf_event *event;
3405         struct hw_perf_event *hwc;
3406         u64 now, period = TICK_NSEC;
3407         s64 delta;
3408
3409         /*
3410          * only need to iterate over all events iff:
3411          * - context have events in frequency mode (needs freq adjust)
3412          * - there are events to unthrottle on this cpu
3413          */
3414         if (!(ctx->nr_freq || needs_unthr))
3415                 return;
3416
3417         raw_spin_lock(&ctx->lock);
3418         perf_pmu_disable(ctx->pmu);
3419
3420         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3421                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3422                         continue;
3423
3424                 if (!event_filter_match(event))
3425                         continue;
3426
3427                 perf_pmu_disable(event->pmu);
3428
3429                 hwc = &event->hw;
3430
3431                 if (hwc->interrupts == MAX_INTERRUPTS) {
3432                         hwc->interrupts = 0;
3433                         perf_log_throttle(event, 1);
3434                         event->pmu->start(event, 0);
3435                 }
3436
3437                 if (!event->attr.freq || !event->attr.sample_freq)
3438                         goto next;
3439
3440                 /*
3441                  * stop the event and update event->count
3442                  */
3443                 event->pmu->stop(event, PERF_EF_UPDATE);
3444
3445                 now = local64_read(&event->count);
3446                 delta = now - hwc->freq_count_stamp;
3447                 hwc->freq_count_stamp = now;
3448
3449                 /*
3450                  * restart the event
3451                  * reload only if value has changed
3452                  * we have stopped the event so tell that
3453                  * to perf_adjust_period() to avoid stopping it
3454                  * twice.
3455                  */
3456                 if (delta > 0)
3457                         perf_adjust_period(event, period, delta, false);
3458
3459                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3460         next:
3461                 perf_pmu_enable(event->pmu);
3462         }
3463
3464         perf_pmu_enable(ctx->pmu);
3465         raw_spin_unlock(&ctx->lock);
3466 }
3467
3468 /*
3469  * Round-robin a context's events:
3470  */
3471 static void rotate_ctx(struct perf_event_context *ctx)
3472 {
3473         /*
3474          * Rotate the first entry last of non-pinned groups. Rotation might be
3475          * disabled by the inheritance code.
3476          */
3477         if (!ctx->rotate_disable)
3478                 list_rotate_left(&ctx->flexible_groups);
3479 }
3480
3481 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3482 {
3483         struct perf_event_context *ctx = NULL;
3484         int rotate = 0;
3485
3486         if (cpuctx->ctx.nr_events) {
3487                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3488                         rotate = 1;
3489         }
3490
3491         ctx = cpuctx->task_ctx;
3492         if (ctx && ctx->nr_events) {
3493                 if (ctx->nr_events != ctx->nr_active)
3494                         rotate = 1;
3495         }
3496
3497         if (!rotate)
3498                 goto done;
3499
3500         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3501         perf_pmu_disable(cpuctx->ctx.pmu);
3502
3503         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3504         if (ctx)
3505                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3506
3507         rotate_ctx(&cpuctx->ctx);
3508         if (ctx)
3509                 rotate_ctx(ctx);
3510
3511         perf_event_sched_in(cpuctx, ctx, current);
3512
3513         perf_pmu_enable(cpuctx->ctx.pmu);
3514         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3515 done:
3516
3517         return rotate;
3518 }
3519
3520 void perf_event_task_tick(void)
3521 {
3522         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3523         struct perf_event_context *ctx, *tmp;
3524         int throttled;
3525
3526         WARN_ON(!irqs_disabled());
3527
3528         __this_cpu_inc(perf_throttled_seq);
3529         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3530         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3531
3532         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3533                 perf_adjust_freq_unthr_context(ctx, throttled);
3534 }
3535
3536 static int event_enable_on_exec(struct perf_event *event,
3537                                 struct perf_event_context *ctx)
3538 {
3539         if (!event->attr.enable_on_exec)
3540                 return 0;
3541
3542         event->attr.enable_on_exec = 0;
3543         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3544                 return 0;
3545
3546         __perf_event_mark_enabled(event);
3547
3548         return 1;
3549 }
3550
3551 /*
3552  * Enable all of a task's events that have been marked enable-on-exec.
3553  * This expects task == current.
3554  */
3555 static void perf_event_enable_on_exec(int ctxn)
3556 {
3557         struct perf_event_context *ctx, *clone_ctx = NULL;
3558         enum event_type_t event_type = 0;
3559         struct perf_cpu_context *cpuctx;
3560         struct perf_event *event;
3561         unsigned long flags;
3562         int enabled = 0;
3563
3564         local_irq_save(flags);
3565         ctx = current->perf_event_ctxp[ctxn];
3566         if (!ctx || !ctx->nr_events)
3567                 goto out;
3568
3569         cpuctx = __get_cpu_context(ctx);
3570         perf_ctx_lock(cpuctx, ctx);
3571         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3572         list_for_each_entry(event, &ctx->event_list, event_entry) {
3573                 enabled |= event_enable_on_exec(event, ctx);
3574                 event_type |= get_event_type(event);
3575         }
3576
3577         /*
3578          * Unclone and reschedule this context if we enabled any event.
3579          */
3580         if (enabled) {
3581                 clone_ctx = unclone_ctx(ctx);
3582                 ctx_resched(cpuctx, ctx, event_type);
3583         } else {
3584                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3585         }
3586         perf_ctx_unlock(cpuctx, ctx);
3587
3588 out:
3589         local_irq_restore(flags);
3590
3591         if (clone_ctx)
3592                 put_ctx(clone_ctx);
3593 }
3594
3595 struct perf_read_data {
3596         struct perf_event *event;
3597         bool group;
3598         int ret;
3599 };
3600
3601 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3602 {
3603         u16 local_pkg, event_pkg;
3604
3605         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3606                 int local_cpu = smp_processor_id();
3607
3608                 event_pkg = topology_physical_package_id(event_cpu);
3609                 local_pkg = topology_physical_package_id(local_cpu);
3610
3611                 if (event_pkg == local_pkg)
3612                         return local_cpu;
3613         }
3614
3615         return event_cpu;
3616 }
3617
3618 /*
3619  * Cross CPU call to read the hardware event
3620  */
3621 static void __perf_event_read(void *info)
3622 {
3623         struct perf_read_data *data = info;
3624         struct perf_event *sub, *event = data->event;
3625         struct perf_event_context *ctx = event->ctx;
3626         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3627         struct pmu *pmu = event->pmu;
3628
3629         /*
3630          * If this is a task context, we need to check whether it is
3631          * the current task context of this cpu.  If not it has been
3632          * scheduled out before the smp call arrived.  In that case
3633          * event->count would have been updated to a recent sample
3634          * when the event was scheduled out.
3635          */
3636         if (ctx->task && cpuctx->task_ctx != ctx)
3637                 return;
3638
3639         raw_spin_lock(&ctx->lock);
3640         if (ctx->is_active) {
3641                 update_context_time(ctx);
3642                 update_cgrp_time_from_event(event);
3643         }
3644
3645         update_event_times(event);
3646         if (event->state != PERF_EVENT_STATE_ACTIVE)
3647                 goto unlock;
3648
3649         if (!data->group) {
3650                 pmu->read(event);
3651                 data->ret = 0;
3652                 goto unlock;
3653         }
3654
3655         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3656
3657         pmu->read(event);
3658
3659         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3660                 update_event_times(sub);
3661                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3662                         /*
3663                          * Use sibling's PMU rather than @event's since
3664                          * sibling could be on different (eg: software) PMU.
3665                          */
3666                         sub->pmu->read(sub);
3667                 }
3668         }
3669
3670         data->ret = pmu->commit_txn(pmu);
3671
3672 unlock:
3673         raw_spin_unlock(&ctx->lock);
3674 }
3675
3676 static inline u64 perf_event_count(struct perf_event *event)
3677 {
3678         return local64_read(&event->count) + atomic64_read(&event->child_count);
3679 }
3680
3681 /*
3682  * NMI-safe method to read a local event, that is an event that
3683  * is:
3684  *   - either for the current task, or for this CPU
3685  *   - does not have inherit set, for inherited task events
3686  *     will not be local and we cannot read them atomically
3687  *   - must not have a pmu::count method
3688  */
3689 int perf_event_read_local(struct perf_event *event, u64 *value)
3690 {
3691         unsigned long flags;
3692         int ret = 0;
3693
3694         /*
3695          * Disabling interrupts avoids all counter scheduling (context
3696          * switches, timer based rotation and IPIs).
3697          */
3698         local_irq_save(flags);
3699
3700         /*
3701          * It must not be an event with inherit set, we cannot read
3702          * all child counters from atomic context.
3703          */
3704         if (event->attr.inherit) {
3705                 ret = -EOPNOTSUPP;
3706                 goto out;
3707         }
3708
3709         /* If this is a per-task event, it must be for current */
3710         if ((event->attach_state & PERF_ATTACH_TASK) &&
3711             event->hw.target != current) {
3712                 ret = -EINVAL;
3713                 goto out;
3714         }
3715
3716         /* If this is a per-CPU event, it must be for this CPU */
3717         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3718             event->cpu != smp_processor_id()) {
3719                 ret = -EINVAL;
3720                 goto out;
3721         }
3722
3723         /*
3724          * If the event is currently on this CPU, its either a per-task event,
3725          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3726          * oncpu == -1).
3727          */
3728         if (event->oncpu == smp_processor_id())
3729                 event->pmu->read(event);
3730
3731         *value = local64_read(&event->count);
3732 out:
3733         local_irq_restore(flags);
3734
3735         return ret;
3736 }
3737
3738 static int perf_event_read(struct perf_event *event, bool group)
3739 {
3740         int event_cpu, ret = 0;
3741
3742         /*
3743          * If event is enabled and currently active on a CPU, update the
3744          * value in the event structure:
3745          */
3746         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3747                 struct perf_read_data data = {
3748                         .event = event,
3749                         .group = group,
3750                         .ret = 0,
3751                 };
3752
3753                 event_cpu = READ_ONCE(event->oncpu);
3754                 if ((unsigned)event_cpu >= nr_cpu_ids)
3755                         return 0;
3756
3757                 preempt_disable();
3758                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3759
3760                 /*
3761                  * Purposely ignore the smp_call_function_single() return
3762                  * value.
3763                  *
3764                  * If event_cpu isn't a valid CPU it means the event got
3765                  * scheduled out and that will have updated the event count.
3766                  *
3767                  * Therefore, either way, we'll have an up-to-date event count
3768                  * after this.
3769                  */
3770                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3771                 preempt_enable();
3772                 ret = data.ret;
3773         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3774                 struct perf_event_context *ctx = event->ctx;
3775                 unsigned long flags;
3776
3777                 raw_spin_lock_irqsave(&ctx->lock, flags);
3778                 /*
3779                  * may read while context is not active
3780                  * (e.g., thread is blocked), in that case
3781                  * we cannot update context time
3782                  */
3783                 if (ctx->is_active) {
3784                         update_context_time(ctx);
3785                         update_cgrp_time_from_event(event);
3786                 }
3787                 if (group)
3788                         update_group_times(event);
3789                 else
3790                         update_event_times(event);
3791                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3792         }
3793
3794         return ret;
3795 }
3796
3797 /*
3798  * Initialize the perf_event context in a task_struct:
3799  */
3800 static void __perf_event_init_context(struct perf_event_context *ctx)
3801 {
3802         raw_spin_lock_init(&ctx->lock);
3803         mutex_init(&ctx->mutex);
3804         INIT_LIST_HEAD(&ctx->active_ctx_list);
3805         INIT_LIST_HEAD(&ctx->pinned_groups);
3806         INIT_LIST_HEAD(&ctx->flexible_groups);
3807         INIT_LIST_HEAD(&ctx->event_list);
3808         atomic_set(&ctx->refcount, 1);
3809 }
3810
3811 static struct perf_event_context *
3812 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3813 {
3814         struct perf_event_context *ctx;
3815
3816         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3817         if (!ctx)
3818                 return NULL;
3819
3820         __perf_event_init_context(ctx);
3821         if (task) {
3822                 ctx->task = task;
3823                 get_task_struct(task);
3824         }
3825         ctx->pmu = pmu;
3826
3827         return ctx;
3828 }
3829
3830 static struct task_struct *
3831 find_lively_task_by_vpid(pid_t vpid)
3832 {
3833         struct task_struct *task;
3834
3835         rcu_read_lock();
3836         if (!vpid)
3837                 task = current;
3838         else
3839                 task = find_task_by_vpid(vpid);
3840         if (task)
3841                 get_task_struct(task);
3842         rcu_read_unlock();
3843
3844         if (!task)
3845                 return ERR_PTR(-ESRCH);
3846
3847         return task;
3848 }
3849
3850 /*
3851  * Returns a matching context with refcount and pincount.
3852  */
3853 static struct perf_event_context *
3854 find_get_context(struct pmu *pmu, struct task_struct *task,
3855                 struct perf_event *event)
3856 {
3857         struct perf_event_context *ctx, *clone_ctx = NULL;
3858         struct perf_cpu_context *cpuctx;
3859         void *task_ctx_data = NULL;
3860         unsigned long flags;
3861         int ctxn, err;
3862         int cpu = event->cpu;
3863
3864         if (!task) {
3865                 /* Must be root to operate on a CPU event: */
3866                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3867                         return ERR_PTR(-EACCES);
3868
3869                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3870                 ctx = &cpuctx->ctx;
3871                 get_ctx(ctx);
3872                 ++ctx->pin_count;
3873
3874                 return ctx;
3875         }
3876
3877         err = -EINVAL;
3878         ctxn = pmu->task_ctx_nr;
3879         if (ctxn < 0)
3880                 goto errout;
3881
3882         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3883                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3884                 if (!task_ctx_data) {
3885                         err = -ENOMEM;
3886                         goto errout;
3887                 }
3888         }
3889
3890 retry:
3891         ctx = perf_lock_task_context(task, ctxn, &flags);
3892         if (ctx) {
3893                 clone_ctx = unclone_ctx(ctx);
3894                 ++ctx->pin_count;
3895
3896                 if (task_ctx_data && !ctx->task_ctx_data) {
3897                         ctx->task_ctx_data = task_ctx_data;
3898                         task_ctx_data = NULL;
3899                 }
3900                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3901
3902                 if (clone_ctx)
3903                         put_ctx(clone_ctx);
3904         } else {
3905                 ctx = alloc_perf_context(pmu, task);
3906                 err = -ENOMEM;
3907                 if (!ctx)
3908                         goto errout;
3909
3910                 if (task_ctx_data) {
3911                         ctx->task_ctx_data = task_ctx_data;
3912                         task_ctx_data = NULL;
3913                 }
3914
3915                 err = 0;
3916                 mutex_lock(&task->perf_event_mutex);
3917                 /*
3918                  * If it has already passed perf_event_exit_task().
3919                  * we must see PF_EXITING, it takes this mutex too.
3920                  */
3921                 if (task->flags & PF_EXITING)
3922                         err = -ESRCH;
3923                 else if (task->perf_event_ctxp[ctxn])
3924                         err = -EAGAIN;
3925                 else {
3926                         get_ctx(ctx);
3927                         ++ctx->pin_count;
3928                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3929                 }
3930                 mutex_unlock(&task->perf_event_mutex);
3931
3932                 if (unlikely(err)) {
3933                         put_ctx(ctx);
3934
3935                         if (err == -EAGAIN)
3936                                 goto retry;
3937                         goto errout;
3938                 }
3939         }
3940
3941         kfree(task_ctx_data);
3942         return ctx;
3943
3944 errout:
3945         kfree(task_ctx_data);
3946         return ERR_PTR(err);
3947 }
3948
3949 static void perf_event_free_filter(struct perf_event *event);
3950 static void perf_event_free_bpf_prog(struct perf_event *event);
3951
3952 static void free_event_rcu(struct rcu_head *head)
3953 {
3954         struct perf_event *event;
3955
3956         event = container_of(head, struct perf_event, rcu_head);
3957         if (event->ns)
3958                 put_pid_ns(event->ns);
3959         perf_event_free_filter(event);
3960         kfree(event);
3961 }
3962
3963 static void ring_buffer_attach(struct perf_event *event,
3964                                struct ring_buffer *rb);
3965
3966 static void detach_sb_event(struct perf_event *event)
3967 {
3968         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3969
3970         raw_spin_lock(&pel->lock);
3971         list_del_rcu(&event->sb_list);
3972         raw_spin_unlock(&pel->lock);
3973 }
3974
3975 static bool is_sb_event(struct perf_event *event)
3976 {
3977         struct perf_event_attr *attr = &event->attr;
3978
3979         if (event->parent)
3980                 return false;
3981
3982         if (event->attach_state & PERF_ATTACH_TASK)
3983                 return false;
3984
3985         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3986             attr->comm || attr->comm_exec ||
3987             attr->task ||
3988             attr->context_switch)
3989                 return true;
3990         return false;
3991 }
3992
3993 static void unaccount_pmu_sb_event(struct perf_event *event)
3994 {
3995         if (is_sb_event(event))
3996                 detach_sb_event(event);
3997 }
3998
3999 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4000 {
4001         if (event->parent)
4002                 return;
4003
4004         if (is_cgroup_event(event))
4005                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4006 }
4007
4008 #ifdef CONFIG_NO_HZ_FULL
4009 static DEFINE_SPINLOCK(nr_freq_lock);
4010 #endif
4011
4012 static void unaccount_freq_event_nohz(void)
4013 {
4014 #ifdef CONFIG_NO_HZ_FULL
4015         spin_lock(&nr_freq_lock);
4016         if (atomic_dec_and_test(&nr_freq_events))
4017                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4018         spin_unlock(&nr_freq_lock);
4019 #endif
4020 }
4021
4022 static void unaccount_freq_event(void)
4023 {
4024         if (tick_nohz_full_enabled())
4025                 unaccount_freq_event_nohz();
4026         else
4027                 atomic_dec(&nr_freq_events);
4028 }
4029
4030 static void unaccount_event(struct perf_event *event)
4031 {
4032         bool dec = false;
4033
4034         if (event->parent)
4035                 return;
4036
4037         if (event->attach_state & PERF_ATTACH_TASK)
4038                 dec = true;
4039         if (event->attr.mmap || event->attr.mmap_data)
4040                 atomic_dec(&nr_mmap_events);
4041         if (event->attr.comm)
4042                 atomic_dec(&nr_comm_events);
4043         if (event->attr.namespaces)
4044                 atomic_dec(&nr_namespaces_events);
4045         if (event->attr.task)
4046                 atomic_dec(&nr_task_events);
4047         if (event->attr.freq)
4048                 unaccount_freq_event();
4049         if (event->attr.context_switch) {
4050                 dec = true;
4051                 atomic_dec(&nr_switch_events);
4052         }
4053         if (is_cgroup_event(event))
4054                 dec = true;
4055         if (has_branch_stack(event))
4056                 dec = true;
4057
4058         if (dec) {
4059                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4060                         schedule_delayed_work(&perf_sched_work, HZ);
4061         }
4062
4063         unaccount_event_cpu(event, event->cpu);
4064
4065         unaccount_pmu_sb_event(event);
4066 }
4067
4068 static void perf_sched_delayed(struct work_struct *work)
4069 {
4070         mutex_lock(&perf_sched_mutex);
4071         if (atomic_dec_and_test(&perf_sched_count))
4072                 static_branch_disable(&perf_sched_events);
4073         mutex_unlock(&perf_sched_mutex);
4074 }
4075
4076 /*
4077  * The following implement mutual exclusion of events on "exclusive" pmus
4078  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4079  * at a time, so we disallow creating events that might conflict, namely:
4080  *
4081  *  1) cpu-wide events in the presence of per-task events,
4082  *  2) per-task events in the presence of cpu-wide events,
4083  *  3) two matching events on the same context.
4084  *
4085  * The former two cases are handled in the allocation path (perf_event_alloc(),
4086  * _free_event()), the latter -- before the first perf_install_in_context().
4087  */
4088 static int exclusive_event_init(struct perf_event *event)
4089 {
4090         struct pmu *pmu = event->pmu;
4091
4092         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4093                 return 0;
4094
4095         /*
4096          * Prevent co-existence of per-task and cpu-wide events on the
4097          * same exclusive pmu.
4098          *
4099          * Negative pmu::exclusive_cnt means there are cpu-wide
4100          * events on this "exclusive" pmu, positive means there are
4101          * per-task events.
4102          *
4103          * Since this is called in perf_event_alloc() path, event::ctx
4104          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4105          * to mean "per-task event", because unlike other attach states it
4106          * never gets cleared.
4107          */
4108         if (event->attach_state & PERF_ATTACH_TASK) {
4109                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4110                         return -EBUSY;
4111         } else {
4112                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4113                         return -EBUSY;
4114         }
4115
4116         return 0;
4117 }
4118
4119 static void exclusive_event_destroy(struct perf_event *event)
4120 {
4121         struct pmu *pmu = event->pmu;
4122
4123         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4124                 return;
4125
4126         /* see comment in exclusive_event_init() */
4127         if (event->attach_state & PERF_ATTACH_TASK)
4128                 atomic_dec(&pmu->exclusive_cnt);
4129         else
4130                 atomic_inc(&pmu->exclusive_cnt);
4131 }
4132
4133 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4134 {
4135         if ((e1->pmu == e2->pmu) &&
4136             (e1->cpu == e2->cpu ||
4137              e1->cpu == -1 ||
4138              e2->cpu == -1))
4139                 return true;
4140         return false;
4141 }
4142
4143 /* Called under the same ctx::mutex as perf_install_in_context() */
4144 static bool exclusive_event_installable(struct perf_event *event,
4145                                         struct perf_event_context *ctx)
4146 {
4147         struct perf_event *iter_event;
4148         struct pmu *pmu = event->pmu;
4149
4150         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4151                 return true;
4152
4153         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4154                 if (exclusive_event_match(iter_event, event))
4155                         return false;
4156         }
4157
4158         return true;
4159 }
4160
4161 static void perf_addr_filters_splice(struct perf_event *event,
4162                                        struct list_head *head);
4163
4164 static void _free_event(struct perf_event *event)
4165 {
4166         irq_work_sync(&event->pending);
4167
4168         unaccount_event(event);
4169
4170         if (event->rb) {
4171                 /*
4172                  * Can happen when we close an event with re-directed output.
4173                  *
4174                  * Since we have a 0 refcount, perf_mmap_close() will skip
4175                  * over us; possibly making our ring_buffer_put() the last.
4176                  */
4177                 mutex_lock(&event->mmap_mutex);
4178                 ring_buffer_attach(event, NULL);
4179                 mutex_unlock(&event->mmap_mutex);
4180         }
4181
4182         if (is_cgroup_event(event))
4183                 perf_detach_cgroup(event);
4184
4185         if (!event->parent) {
4186                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4187                         put_callchain_buffers();
4188         }
4189
4190         perf_event_free_bpf_prog(event);
4191         perf_addr_filters_splice(event, NULL);
4192         kfree(event->addr_filters_offs);
4193
4194         if (event->destroy)
4195                 event->destroy(event);
4196
4197         if (event->ctx)
4198                 put_ctx(event->ctx);
4199
4200         exclusive_event_destroy(event);
4201         module_put(event->pmu->module);
4202
4203         call_rcu(&event->rcu_head, free_event_rcu);
4204 }
4205
4206 /*
4207  * Used to free events which have a known refcount of 1, such as in error paths
4208  * where the event isn't exposed yet and inherited events.
4209  */
4210 static void free_event(struct perf_event *event)
4211 {
4212         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4213                                 "unexpected event refcount: %ld; ptr=%p\n",
4214                                 atomic_long_read(&event->refcount), event)) {
4215                 /* leak to avoid use-after-free */
4216                 return;
4217         }
4218
4219         _free_event(event);
4220 }
4221
4222 /*
4223  * Remove user event from the owner task.
4224  */
4225 static void perf_remove_from_owner(struct perf_event *event)
4226 {
4227         struct task_struct *owner;
4228
4229         rcu_read_lock();
4230         /*
4231          * Matches the smp_store_release() in perf_event_exit_task(). If we
4232          * observe !owner it means the list deletion is complete and we can
4233          * indeed free this event, otherwise we need to serialize on
4234          * owner->perf_event_mutex.
4235          */
4236         owner = READ_ONCE(event->owner);
4237         if (owner) {
4238                 /*
4239                  * Since delayed_put_task_struct() also drops the last
4240                  * task reference we can safely take a new reference
4241                  * while holding the rcu_read_lock().
4242                  */
4243                 get_task_struct(owner);
4244         }
4245         rcu_read_unlock();
4246
4247         if (owner) {
4248                 /*
4249                  * If we're here through perf_event_exit_task() we're already
4250                  * holding ctx->mutex which would be an inversion wrt. the
4251                  * normal lock order.
4252                  *
4253                  * However we can safely take this lock because its the child
4254                  * ctx->mutex.
4255                  */
4256                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4257
4258                 /*
4259                  * We have to re-check the event->owner field, if it is cleared
4260                  * we raced with perf_event_exit_task(), acquiring the mutex
4261                  * ensured they're done, and we can proceed with freeing the
4262                  * event.
4263                  */
4264                 if (event->owner) {
4265                         list_del_init(&event->owner_entry);
4266                         smp_store_release(&event->owner, NULL);
4267                 }
4268                 mutex_unlock(&owner->perf_event_mutex);
4269                 put_task_struct(owner);
4270         }
4271 }
4272
4273 static void put_event(struct perf_event *event)
4274 {
4275         if (!atomic_long_dec_and_test(&event->refcount))
4276                 return;
4277
4278         _free_event(event);
4279 }
4280
4281 /*
4282  * Kill an event dead; while event:refcount will preserve the event
4283  * object, it will not preserve its functionality. Once the last 'user'
4284  * gives up the object, we'll destroy the thing.
4285  */
4286 int perf_event_release_kernel(struct perf_event *event)
4287 {
4288         struct perf_event_context *ctx = event->ctx;
4289         struct perf_event *child, *tmp;
4290
4291         /*
4292          * If we got here through err_file: fput(event_file); we will not have
4293          * attached to a context yet.
4294          */
4295         if (!ctx) {
4296                 WARN_ON_ONCE(event->attach_state &
4297                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4298                 goto no_ctx;
4299         }
4300
4301         if (!is_kernel_event(event))
4302                 perf_remove_from_owner(event);
4303
4304         ctx = perf_event_ctx_lock(event);
4305         WARN_ON_ONCE(ctx->parent_ctx);
4306         perf_remove_from_context(event, DETACH_GROUP);
4307
4308         raw_spin_lock_irq(&ctx->lock);
4309         /*
4310          * Mark this event as STATE_DEAD, there is no external reference to it
4311          * anymore.
4312          *
4313          * Anybody acquiring event->child_mutex after the below loop _must_
4314          * also see this, most importantly inherit_event() which will avoid
4315          * placing more children on the list.
4316          *
4317          * Thus this guarantees that we will in fact observe and kill _ALL_
4318          * child events.
4319          */
4320         event->state = PERF_EVENT_STATE_DEAD;
4321         raw_spin_unlock_irq(&ctx->lock);
4322
4323         perf_event_ctx_unlock(event, ctx);
4324
4325 again:
4326         mutex_lock(&event->child_mutex);
4327         list_for_each_entry(child, &event->child_list, child_list) {
4328
4329                 /*
4330                  * Cannot change, child events are not migrated, see the
4331                  * comment with perf_event_ctx_lock_nested().
4332                  */
4333                 ctx = READ_ONCE(child->ctx);
4334                 /*
4335                  * Since child_mutex nests inside ctx::mutex, we must jump
4336                  * through hoops. We start by grabbing a reference on the ctx.
4337                  *
4338                  * Since the event cannot get freed while we hold the
4339                  * child_mutex, the context must also exist and have a !0
4340                  * reference count.
4341                  */
4342                 get_ctx(ctx);
4343
4344                 /*
4345                  * Now that we have a ctx ref, we can drop child_mutex, and
4346                  * acquire ctx::mutex without fear of it going away. Then we
4347                  * can re-acquire child_mutex.
4348                  */
4349                 mutex_unlock(&event->child_mutex);
4350                 mutex_lock(&ctx->mutex);
4351                 mutex_lock(&event->child_mutex);
4352
4353                 /*
4354                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4355                  * state, if child is still the first entry, it didn't get freed
4356                  * and we can continue doing so.
4357                  */
4358                 tmp = list_first_entry_or_null(&event->child_list,
4359                                                struct perf_event, child_list);
4360                 if (tmp == child) {
4361                         perf_remove_from_context(child, DETACH_GROUP);
4362                         list_del(&child->child_list);
4363                         free_event(child);
4364                         /*
4365                          * This matches the refcount bump in inherit_event();
4366                          * this can't be the last reference.
4367                          */
4368                         put_event(event);
4369                 }
4370
4371                 mutex_unlock(&event->child_mutex);
4372                 mutex_unlock(&ctx->mutex);
4373                 put_ctx(ctx);
4374                 goto again;
4375         }
4376         mutex_unlock(&event->child_mutex);
4377
4378 no_ctx:
4379         put_event(event); /* Must be the 'last' reference */
4380         return 0;
4381 }
4382 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4383
4384 /*
4385  * Called when the last reference to the file is gone.
4386  */
4387 static int perf_release(struct inode *inode, struct file *file)
4388 {
4389         perf_event_release_kernel(file->private_data);
4390         return 0;
4391 }
4392
4393 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4394 {
4395         struct perf_event *child;
4396         u64 total = 0;
4397
4398         *enabled = 0;
4399         *running = 0;
4400
4401         mutex_lock(&event->child_mutex);
4402
4403         (void)perf_event_read(event, false);
4404         total += perf_event_count(event);
4405
4406         *enabled += event->total_time_enabled +
4407                         atomic64_read(&event->child_total_time_enabled);
4408         *running += event->total_time_running +
4409                         atomic64_read(&event->child_total_time_running);
4410
4411         list_for_each_entry(child, &event->child_list, child_list) {
4412                 (void)perf_event_read(child, false);
4413                 total += perf_event_count(child);
4414                 *enabled += child->total_time_enabled;
4415                 *running += child->total_time_running;
4416         }
4417         mutex_unlock(&event->child_mutex);
4418
4419         return total;
4420 }
4421 EXPORT_SYMBOL_GPL(perf_event_read_value);
4422
4423 static int __perf_read_group_add(struct perf_event *leader,
4424                                         u64 read_format, u64 *values)
4425 {
4426         struct perf_event_context *ctx = leader->ctx;
4427         struct perf_event *sub;
4428         unsigned long flags;
4429         int n = 1; /* skip @nr */
4430         int ret;
4431
4432         ret = perf_event_read(leader, true);
4433         if (ret)
4434                 return ret;
4435
4436         raw_spin_lock_irqsave(&ctx->lock, flags);
4437
4438         /*
4439          * Since we co-schedule groups, {enabled,running} times of siblings
4440          * will be identical to those of the leader, so we only publish one
4441          * set.
4442          */
4443         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4444                 values[n++] += leader->total_time_enabled +
4445                         atomic64_read(&leader->child_total_time_enabled);
4446         }
4447
4448         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4449                 values[n++] += leader->total_time_running +
4450                         atomic64_read(&leader->child_total_time_running);
4451         }
4452
4453         /*
4454          * Write {count,id} tuples for every sibling.
4455          */
4456         values[n++] += perf_event_count(leader);
4457         if (read_format & PERF_FORMAT_ID)
4458                 values[n++] = primary_event_id(leader);
4459
4460         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4461                 values[n++] += perf_event_count(sub);
4462                 if (read_format & PERF_FORMAT_ID)
4463                         values[n++] = primary_event_id(sub);
4464         }
4465
4466         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4467         return 0;
4468 }
4469
4470 static int perf_read_group(struct perf_event *event,
4471                                    u64 read_format, char __user *buf)
4472 {
4473         struct perf_event *leader = event->group_leader, *child;
4474         struct perf_event_context *ctx = leader->ctx;
4475         int ret;
4476         u64 *values;
4477
4478         lockdep_assert_held(&ctx->mutex);
4479
4480         values = kzalloc(event->read_size, GFP_KERNEL);
4481         if (!values)
4482                 return -ENOMEM;
4483
4484         values[0] = 1 + leader->nr_siblings;
4485
4486         /*
4487          * By locking the child_mutex of the leader we effectively
4488          * lock the child list of all siblings.. XXX explain how.
4489          */
4490         mutex_lock(&leader->child_mutex);
4491
4492         ret = __perf_read_group_add(leader, read_format, values);
4493         if (ret)
4494                 goto unlock;
4495
4496         list_for_each_entry(child, &leader->child_list, child_list) {
4497                 ret = __perf_read_group_add(child, read_format, values);
4498                 if (ret)
4499                         goto unlock;
4500         }
4501
4502         mutex_unlock(&leader->child_mutex);
4503
4504         ret = event->read_size;
4505         if (copy_to_user(buf, values, event->read_size))
4506                 ret = -EFAULT;
4507         goto out;
4508
4509 unlock:
4510         mutex_unlock(&leader->child_mutex);
4511 out:
4512         kfree(values);
4513         return ret;
4514 }
4515
4516 static int perf_read_one(struct perf_event *event,
4517                                  u64 read_format, char __user *buf)
4518 {
4519         u64 enabled, running;
4520         u64 values[4];
4521         int n = 0;
4522
4523         values[n++] = perf_event_read_value(event, &enabled, &running);
4524         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4525                 values[n++] = enabled;
4526         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4527                 values[n++] = running;
4528         if (read_format & PERF_FORMAT_ID)
4529                 values[n++] = primary_event_id(event);
4530
4531         if (copy_to_user(buf, values, n * sizeof(u64)))
4532                 return -EFAULT;
4533
4534         return n * sizeof(u64);
4535 }
4536
4537 static bool is_event_hup(struct perf_event *event)
4538 {
4539         bool no_children;
4540
4541         if (event->state > PERF_EVENT_STATE_EXIT)
4542                 return false;
4543
4544         mutex_lock(&event->child_mutex);
4545         no_children = list_empty(&event->child_list);
4546         mutex_unlock(&event->child_mutex);
4547         return no_children;
4548 }
4549
4550 /*
4551  * Read the performance event - simple non blocking version for now
4552  */
4553 static ssize_t
4554 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4555 {
4556         u64 read_format = event->attr.read_format;
4557         int ret;
4558
4559         /*
4560          * Return end-of-file for a read on a event that is in
4561          * error state (i.e. because it was pinned but it couldn't be
4562          * scheduled on to the CPU at some point).
4563          */
4564         if (event->state == PERF_EVENT_STATE_ERROR)
4565                 return 0;
4566
4567         if (count < event->read_size)
4568                 return -ENOSPC;
4569
4570         WARN_ON_ONCE(event->ctx->parent_ctx);
4571         if (read_format & PERF_FORMAT_GROUP)
4572                 ret = perf_read_group(event, read_format, buf);
4573         else
4574                 ret = perf_read_one(event, read_format, buf);
4575
4576         return ret;
4577 }
4578
4579 static ssize_t
4580 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4581 {
4582         struct perf_event *event = file->private_data;
4583         struct perf_event_context *ctx;
4584         int ret;
4585
4586         ctx = perf_event_ctx_lock(event);
4587         ret = __perf_read(event, buf, count);
4588         perf_event_ctx_unlock(event, ctx);
4589
4590         return ret;
4591 }
4592
4593 static unsigned int perf_poll(struct file *file, poll_table *wait)
4594 {
4595         struct perf_event *event = file->private_data;
4596         struct ring_buffer *rb;
4597         unsigned int events = POLLHUP;
4598
4599         poll_wait(file, &event->waitq, wait);
4600
4601         if (is_event_hup(event))
4602                 return events;
4603
4604         /*
4605          * Pin the event->rb by taking event->mmap_mutex; otherwise
4606          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4607          */
4608         mutex_lock(&event->mmap_mutex);
4609         rb = event->rb;
4610         if (rb)
4611                 events = atomic_xchg(&rb->poll, 0);
4612         mutex_unlock(&event->mmap_mutex);
4613         return events;
4614 }
4615
4616 static void _perf_event_reset(struct perf_event *event)
4617 {
4618         (void)perf_event_read(event, false);
4619         local64_set(&event->count, 0);
4620         perf_event_update_userpage(event);
4621 }
4622
4623 /*
4624  * Holding the top-level event's child_mutex means that any
4625  * descendant process that has inherited this event will block
4626  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4627  * task existence requirements of perf_event_enable/disable.
4628  */
4629 static void perf_event_for_each_child(struct perf_event *event,
4630                                         void (*func)(struct perf_event *))
4631 {
4632         struct perf_event *child;
4633
4634         WARN_ON_ONCE(event->ctx->parent_ctx);
4635
4636         mutex_lock(&event->child_mutex);
4637         func(event);
4638         list_for_each_entry(child, &event->child_list, child_list)
4639                 func(child);
4640         mutex_unlock(&event->child_mutex);
4641 }
4642
4643 static void perf_event_for_each(struct perf_event *event,
4644                                   void (*func)(struct perf_event *))
4645 {
4646         struct perf_event_context *ctx = event->ctx;
4647         struct perf_event *sibling;
4648
4649         lockdep_assert_held(&ctx->mutex);
4650
4651         event = event->group_leader;
4652
4653         perf_event_for_each_child(event, func);
4654         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4655                 perf_event_for_each_child(sibling, func);
4656 }
4657
4658 static void __perf_event_period(struct perf_event *event,
4659                                 struct perf_cpu_context *cpuctx,
4660                                 struct perf_event_context *ctx,
4661                                 void *info)
4662 {
4663         u64 value = *((u64 *)info);
4664         bool active;
4665
4666         if (event->attr.freq) {
4667                 event->attr.sample_freq = value;
4668         } else {
4669                 event->attr.sample_period = value;
4670                 event->hw.sample_period = value;
4671         }
4672
4673         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4674         if (active) {
4675                 perf_pmu_disable(ctx->pmu);
4676                 /*
4677                  * We could be throttled; unthrottle now to avoid the tick
4678                  * trying to unthrottle while we already re-started the event.
4679                  */
4680                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4681                         event->hw.interrupts = 0;
4682                         perf_log_throttle(event, 1);
4683                 }
4684                 event->pmu->stop(event, PERF_EF_UPDATE);
4685         }
4686
4687         local64_set(&event->hw.period_left, 0);
4688
4689         if (active) {
4690                 event->pmu->start(event, PERF_EF_RELOAD);
4691                 perf_pmu_enable(ctx->pmu);
4692         }
4693 }
4694
4695 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4696 {
4697         u64 value;
4698
4699         if (!is_sampling_event(event))
4700                 return -EINVAL;
4701
4702         if (copy_from_user(&value, arg, sizeof(value)))
4703                 return -EFAULT;
4704
4705         if (!value)
4706                 return -EINVAL;
4707
4708         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4709                 return -EINVAL;
4710
4711         event_function_call(event, __perf_event_period, &value);
4712
4713         return 0;
4714 }
4715
4716 static const struct file_operations perf_fops;
4717
4718 static inline int perf_fget_light(int fd, struct fd *p)
4719 {
4720         struct fd f = fdget(fd);
4721         if (!f.file)
4722                 return -EBADF;
4723
4724         if (f.file->f_op != &perf_fops) {
4725                 fdput(f);
4726                 return -EBADF;
4727         }
4728         *p = f;
4729         return 0;
4730 }
4731
4732 static int perf_event_set_output(struct perf_event *event,
4733                                  struct perf_event *output_event);
4734 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4735 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4736
4737 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4738 {
4739         void (*func)(struct perf_event *);
4740         u32 flags = arg;
4741
4742         switch (cmd) {
4743         case PERF_EVENT_IOC_ENABLE:
4744                 func = _perf_event_enable;
4745                 break;
4746         case PERF_EVENT_IOC_DISABLE:
4747                 func = _perf_event_disable;
4748                 break;
4749         case PERF_EVENT_IOC_RESET:
4750                 func = _perf_event_reset;
4751                 break;
4752
4753         case PERF_EVENT_IOC_REFRESH:
4754                 return _perf_event_refresh(event, arg);
4755
4756         case PERF_EVENT_IOC_PERIOD:
4757                 return perf_event_period(event, (u64 __user *)arg);
4758
4759         case PERF_EVENT_IOC_ID:
4760         {
4761                 u64 id = primary_event_id(event);
4762
4763                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4764                         return -EFAULT;
4765                 return 0;
4766         }
4767
4768         case PERF_EVENT_IOC_SET_OUTPUT:
4769         {
4770                 int ret;
4771                 if (arg != -1) {
4772                         struct perf_event *output_event;
4773                         struct fd output;
4774                         ret = perf_fget_light(arg, &output);
4775                         if (ret)
4776                                 return ret;
4777                         output_event = output.file->private_data;
4778                         ret = perf_event_set_output(event, output_event);
4779                         fdput(output);
4780                 } else {
4781                         ret = perf_event_set_output(event, NULL);
4782                 }
4783                 return ret;
4784         }
4785
4786         case PERF_EVENT_IOC_SET_FILTER:
4787                 return perf_event_set_filter(event, (void __user *)arg);
4788
4789         case PERF_EVENT_IOC_SET_BPF:
4790                 return perf_event_set_bpf_prog(event, arg);
4791
4792         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4793                 struct ring_buffer *rb;
4794
4795                 rcu_read_lock();
4796                 rb = rcu_dereference(event->rb);
4797                 if (!rb || !rb->nr_pages) {
4798                         rcu_read_unlock();
4799                         return -EINVAL;
4800                 }
4801                 rb_toggle_paused(rb, !!arg);
4802                 rcu_read_unlock();
4803                 return 0;
4804         }
4805         default:
4806                 return -ENOTTY;
4807         }
4808
4809         if (flags & PERF_IOC_FLAG_GROUP)
4810                 perf_event_for_each(event, func);
4811         else
4812                 perf_event_for_each_child(event, func);
4813
4814         return 0;
4815 }
4816
4817 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4818 {
4819         struct perf_event *event = file->private_data;
4820         struct perf_event_context *ctx;
4821         long ret;
4822
4823         ctx = perf_event_ctx_lock(event);
4824         ret = _perf_ioctl(event, cmd, arg);
4825         perf_event_ctx_unlock(event, ctx);
4826
4827         return ret;
4828 }
4829
4830 #ifdef CONFIG_COMPAT
4831 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4832                                 unsigned long arg)
4833 {
4834         switch (_IOC_NR(cmd)) {
4835         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4836         case _IOC_NR(PERF_EVENT_IOC_ID):
4837                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4838                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4839                         cmd &= ~IOCSIZE_MASK;
4840                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4841                 }
4842                 break;
4843         }
4844         return perf_ioctl(file, cmd, arg);
4845 }
4846 #else
4847 # define perf_compat_ioctl NULL
4848 #endif
4849
4850 int perf_event_task_enable(void)
4851 {
4852         struct perf_event_context *ctx;
4853         struct perf_event *event;
4854
4855         mutex_lock(&current->perf_event_mutex);
4856         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4857                 ctx = perf_event_ctx_lock(event);
4858                 perf_event_for_each_child(event, _perf_event_enable);
4859                 perf_event_ctx_unlock(event, ctx);
4860         }
4861         mutex_unlock(&current->perf_event_mutex);
4862
4863         return 0;
4864 }
4865
4866 int perf_event_task_disable(void)
4867 {
4868         struct perf_event_context *ctx;
4869         struct perf_event *event;
4870
4871         mutex_lock(&current->perf_event_mutex);
4872         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4873                 ctx = perf_event_ctx_lock(event);
4874                 perf_event_for_each_child(event, _perf_event_disable);
4875                 perf_event_ctx_unlock(event, ctx);
4876         }
4877         mutex_unlock(&current->perf_event_mutex);
4878
4879         return 0;
4880 }
4881
4882 static int perf_event_index(struct perf_event *event)
4883 {
4884         if (event->hw.state & PERF_HES_STOPPED)
4885                 return 0;
4886
4887         if (event->state != PERF_EVENT_STATE_ACTIVE)
4888                 return 0;
4889
4890         return event->pmu->event_idx(event);
4891 }
4892
4893 static void calc_timer_values(struct perf_event *event,
4894                                 u64 *now,
4895                                 u64 *enabled,
4896                                 u64 *running)
4897 {
4898         u64 ctx_time;
4899
4900         *now = perf_clock();
4901         ctx_time = event->shadow_ctx_time + *now;
4902         *enabled = ctx_time - event->tstamp_enabled;
4903         *running = ctx_time - event->tstamp_running;
4904 }
4905
4906 static void perf_event_init_userpage(struct perf_event *event)
4907 {
4908         struct perf_event_mmap_page *userpg;
4909         struct ring_buffer *rb;
4910
4911         rcu_read_lock();
4912         rb = rcu_dereference(event->rb);
4913         if (!rb)
4914                 goto unlock;
4915
4916         userpg = rb->user_page;
4917
4918         /* Allow new userspace to detect that bit 0 is deprecated */
4919         userpg->cap_bit0_is_deprecated = 1;
4920         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4921         userpg->data_offset = PAGE_SIZE;
4922         userpg->data_size = perf_data_size(rb);
4923
4924 unlock:
4925         rcu_read_unlock();
4926 }
4927
4928 void __weak arch_perf_update_userpage(
4929         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4930 {
4931 }
4932
4933 /*
4934  * Callers need to ensure there can be no nesting of this function, otherwise
4935  * the seqlock logic goes bad. We can not serialize this because the arch
4936  * code calls this from NMI context.
4937  */
4938 void perf_event_update_userpage(struct perf_event *event)
4939 {
4940         struct perf_event_mmap_page *userpg;
4941         struct ring_buffer *rb;
4942         u64 enabled, running, now;
4943
4944         rcu_read_lock();
4945         rb = rcu_dereference(event->rb);
4946         if (!rb)
4947                 goto unlock;
4948
4949         /*
4950          * compute total_time_enabled, total_time_running
4951          * based on snapshot values taken when the event
4952          * was last scheduled in.
4953          *
4954          * we cannot simply called update_context_time()
4955          * because of locking issue as we can be called in
4956          * NMI context
4957          */
4958         calc_timer_values(event, &now, &enabled, &running);
4959
4960         userpg = rb->user_page;
4961         /*
4962          * Disable preemption so as to not let the corresponding user-space
4963          * spin too long if we get preempted.
4964          */
4965         preempt_disable();
4966         ++userpg->lock;
4967         barrier();
4968         userpg->index = perf_event_index(event);
4969         userpg->offset = perf_event_count(event);
4970         if (userpg->index)
4971                 userpg->offset -= local64_read(&event->hw.prev_count);
4972
4973         userpg->time_enabled = enabled +
4974                         atomic64_read(&event->child_total_time_enabled);
4975
4976         userpg->time_running = running +
4977                         atomic64_read(&event->child_total_time_running);
4978
4979         arch_perf_update_userpage(event, userpg, now);
4980
4981         barrier();
4982         ++userpg->lock;
4983         preempt_enable();
4984 unlock:
4985         rcu_read_unlock();
4986 }
4987
4988 static int perf_mmap_fault(struct vm_fault *vmf)
4989 {
4990         struct perf_event *event = vmf->vma->vm_file->private_data;
4991         struct ring_buffer *rb;
4992         int ret = VM_FAULT_SIGBUS;
4993
4994         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4995                 if (vmf->pgoff == 0)
4996                         ret = 0;
4997                 return ret;
4998         }
4999
5000         rcu_read_lock();
5001         rb = rcu_dereference(event->rb);
5002         if (!rb)
5003                 goto unlock;
5004
5005         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5006                 goto unlock;
5007
5008         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5009         if (!vmf->page)
5010                 goto unlock;
5011
5012         get_page(vmf->page);
5013         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5014         vmf->page->index   = vmf->pgoff;
5015
5016         ret = 0;
5017 unlock:
5018         rcu_read_unlock();
5019
5020         return ret;
5021 }
5022
5023 static void ring_buffer_attach(struct perf_event *event,
5024                                struct ring_buffer *rb)
5025 {
5026         struct ring_buffer *old_rb = NULL;
5027         unsigned long flags;
5028
5029         if (event->rb) {
5030                 /*
5031                  * Should be impossible, we set this when removing
5032                  * event->rb_entry and wait/clear when adding event->rb_entry.
5033                  */
5034                 WARN_ON_ONCE(event->rcu_pending);
5035
5036                 old_rb = event->rb;
5037                 spin_lock_irqsave(&old_rb->event_lock, flags);
5038                 list_del_rcu(&event->rb_entry);
5039                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5040
5041                 event->rcu_batches = get_state_synchronize_rcu();
5042                 event->rcu_pending = 1;
5043         }
5044
5045         if (rb) {
5046                 if (event->rcu_pending) {
5047                         cond_synchronize_rcu(event->rcu_batches);
5048                         event->rcu_pending = 0;
5049                 }
5050
5051                 spin_lock_irqsave(&rb->event_lock, flags);
5052                 list_add_rcu(&event->rb_entry, &rb->event_list);
5053                 spin_unlock_irqrestore(&rb->event_lock, flags);
5054         }
5055
5056         /*
5057          * Avoid racing with perf_mmap_close(AUX): stop the event
5058          * before swizzling the event::rb pointer; if it's getting
5059          * unmapped, its aux_mmap_count will be 0 and it won't
5060          * restart. See the comment in __perf_pmu_output_stop().
5061          *
5062          * Data will inevitably be lost when set_output is done in
5063          * mid-air, but then again, whoever does it like this is
5064          * not in for the data anyway.
5065          */
5066         if (has_aux(event))
5067                 perf_event_stop(event, 0);
5068
5069         rcu_assign_pointer(event->rb, rb);
5070
5071         if (old_rb) {
5072                 ring_buffer_put(old_rb);
5073                 /*
5074                  * Since we detached before setting the new rb, so that we
5075                  * could attach the new rb, we could have missed a wakeup.
5076                  * Provide it now.
5077                  */
5078                 wake_up_all(&event->waitq);
5079         }
5080 }
5081
5082 static void ring_buffer_wakeup(struct perf_event *event)
5083 {
5084         struct ring_buffer *rb;
5085
5086         rcu_read_lock();
5087         rb = rcu_dereference(event->rb);
5088         if (rb) {
5089                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5090                         wake_up_all(&event->waitq);
5091         }
5092         rcu_read_unlock();
5093 }
5094
5095 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5096 {
5097         struct ring_buffer *rb;
5098
5099         rcu_read_lock();
5100         rb = rcu_dereference(event->rb);
5101         if (rb) {
5102                 if (!atomic_inc_not_zero(&rb->refcount))
5103                         rb = NULL;
5104         }
5105         rcu_read_unlock();
5106
5107         return rb;
5108 }
5109
5110 void ring_buffer_put(struct ring_buffer *rb)
5111 {
5112         if (!atomic_dec_and_test(&rb->refcount))
5113                 return;
5114
5115         WARN_ON_ONCE(!list_empty(&rb->event_list));
5116
5117         call_rcu(&rb->rcu_head, rb_free_rcu);
5118 }
5119
5120 static void perf_mmap_open(struct vm_area_struct *vma)
5121 {
5122         struct perf_event *event = vma->vm_file->private_data;
5123
5124         atomic_inc(&event->mmap_count);
5125         atomic_inc(&event->rb->mmap_count);
5126
5127         if (vma->vm_pgoff)
5128                 atomic_inc(&event->rb->aux_mmap_count);
5129
5130         if (event->pmu->event_mapped)
5131                 event->pmu->event_mapped(event, vma->vm_mm);
5132 }
5133
5134 static void perf_pmu_output_stop(struct perf_event *event);
5135
5136 /*
5137  * A buffer can be mmap()ed multiple times; either directly through the same
5138  * event, or through other events by use of perf_event_set_output().
5139  *
5140  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5141  * the buffer here, where we still have a VM context. This means we need
5142  * to detach all events redirecting to us.
5143  */
5144 static void perf_mmap_close(struct vm_area_struct *vma)
5145 {
5146         struct perf_event *event = vma->vm_file->private_data;
5147
5148         struct ring_buffer *rb = ring_buffer_get(event);
5149         struct user_struct *mmap_user = rb->mmap_user;
5150         int mmap_locked = rb->mmap_locked;
5151         unsigned long size = perf_data_size(rb);
5152
5153         if (event->pmu->event_unmapped)
5154                 event->pmu->event_unmapped(event, vma->vm_mm);
5155
5156         /*
5157          * rb->aux_mmap_count will always drop before rb->mmap_count and
5158          * event->mmap_count, so it is ok to use event->mmap_mutex to
5159          * serialize with perf_mmap here.
5160          */
5161         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5162             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5163                 /*
5164                  * Stop all AUX events that are writing to this buffer,
5165                  * so that we can free its AUX pages and corresponding PMU
5166                  * data. Note that after rb::aux_mmap_count dropped to zero,
5167                  * they won't start any more (see perf_aux_output_begin()).
5168                  */
5169                 perf_pmu_output_stop(event);
5170
5171                 /* now it's safe to free the pages */
5172                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5173                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5174
5175                 /* this has to be the last one */
5176                 rb_free_aux(rb);
5177                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5178
5179                 mutex_unlock(&event->mmap_mutex);
5180         }
5181
5182         atomic_dec(&rb->mmap_count);
5183
5184         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5185                 goto out_put;
5186
5187         ring_buffer_attach(event, NULL);
5188         mutex_unlock(&event->mmap_mutex);
5189
5190         /* If there's still other mmap()s of this buffer, we're done. */
5191         if (atomic_read(&rb->mmap_count))
5192                 goto out_put;
5193
5194         /*
5195          * No other mmap()s, detach from all other events that might redirect
5196          * into the now unreachable buffer. Somewhat complicated by the
5197          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5198          */
5199 again:
5200         rcu_read_lock();
5201         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5202                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5203                         /*
5204                          * This event is en-route to free_event() which will
5205                          * detach it and remove it from the list.
5206                          */
5207                         continue;
5208                 }
5209                 rcu_read_unlock();
5210
5211                 mutex_lock(&event->mmap_mutex);
5212                 /*
5213                  * Check we didn't race with perf_event_set_output() which can
5214                  * swizzle the rb from under us while we were waiting to
5215                  * acquire mmap_mutex.
5216                  *
5217                  * If we find a different rb; ignore this event, a next
5218                  * iteration will no longer find it on the list. We have to
5219                  * still restart the iteration to make sure we're not now
5220                  * iterating the wrong list.
5221                  */
5222                 if (event->rb == rb)
5223                         ring_buffer_attach(event, NULL);
5224
5225                 mutex_unlock(&event->mmap_mutex);
5226                 put_event(event);
5227
5228                 /*
5229                  * Restart the iteration; either we're on the wrong list or
5230                  * destroyed its integrity by doing a deletion.
5231                  */
5232                 goto again;
5233         }
5234         rcu_read_unlock();
5235
5236         /*
5237          * It could be there's still a few 0-ref events on the list; they'll
5238          * get cleaned up by free_event() -- they'll also still have their
5239          * ref on the rb and will free it whenever they are done with it.
5240          *
5241          * Aside from that, this buffer is 'fully' detached and unmapped,
5242          * undo the VM accounting.
5243          */
5244
5245         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5246         vma->vm_mm->pinned_vm -= mmap_locked;
5247         free_uid(mmap_user);
5248
5249 out_put:
5250         ring_buffer_put(rb); /* could be last */
5251 }
5252
5253 static const struct vm_operations_struct perf_mmap_vmops = {
5254         .open           = perf_mmap_open,
5255         .close          = perf_mmap_close, /* non mergable */
5256         .fault          = perf_mmap_fault,
5257         .page_mkwrite   = perf_mmap_fault,
5258 };
5259
5260 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5261 {
5262         struct perf_event *event = file->private_data;
5263         unsigned long user_locked, user_lock_limit;
5264         struct user_struct *user = current_user();
5265         unsigned long locked, lock_limit;
5266         struct ring_buffer *rb = NULL;
5267         unsigned long vma_size;
5268         unsigned long nr_pages;
5269         long user_extra = 0, extra = 0;
5270         int ret = 0, flags = 0;
5271
5272         /*
5273          * Don't allow mmap() of inherited per-task counters. This would
5274          * create a performance issue due to all children writing to the
5275          * same rb.
5276          */
5277         if (event->cpu == -1 && event->attr.inherit)
5278                 return -EINVAL;
5279
5280         if (!(vma->vm_flags & VM_SHARED))
5281                 return -EINVAL;
5282
5283         vma_size = vma->vm_end - vma->vm_start;
5284
5285         if (vma->vm_pgoff == 0) {
5286                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5287         } else {
5288                 /*
5289                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5290                  * mapped, all subsequent mappings should have the same size
5291                  * and offset. Must be above the normal perf buffer.
5292                  */
5293                 u64 aux_offset, aux_size;
5294
5295                 if (!event->rb)
5296                         return -EINVAL;
5297
5298                 nr_pages = vma_size / PAGE_SIZE;
5299
5300                 mutex_lock(&event->mmap_mutex);
5301                 ret = -EINVAL;
5302
5303                 rb = event->rb;
5304                 if (!rb)
5305                         goto aux_unlock;
5306
5307                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5308                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5309
5310                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5311                         goto aux_unlock;
5312
5313                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5314                         goto aux_unlock;
5315
5316                 /* already mapped with a different offset */
5317                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5318                         goto aux_unlock;
5319
5320                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5321                         goto aux_unlock;
5322
5323                 /* already mapped with a different size */
5324                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5325                         goto aux_unlock;
5326
5327                 if (!is_power_of_2(nr_pages))
5328                         goto aux_unlock;
5329
5330                 if (!atomic_inc_not_zero(&rb->mmap_count))
5331                         goto aux_unlock;
5332
5333                 if (rb_has_aux(rb)) {
5334                         atomic_inc(&rb->aux_mmap_count);
5335                         ret = 0;
5336                         goto unlock;
5337                 }
5338
5339                 atomic_set(&rb->aux_mmap_count, 1);
5340                 user_extra = nr_pages;
5341
5342                 goto accounting;
5343         }
5344
5345         /*
5346          * If we have rb pages ensure they're a power-of-two number, so we
5347          * can do bitmasks instead of modulo.
5348          */
5349         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5350                 return -EINVAL;
5351
5352         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5353                 return -EINVAL;
5354
5355         WARN_ON_ONCE(event->ctx->parent_ctx);
5356 again:
5357         mutex_lock(&event->mmap_mutex);
5358         if (event->rb) {
5359                 if (event->rb->nr_pages != nr_pages) {
5360                         ret = -EINVAL;
5361                         goto unlock;
5362                 }
5363
5364                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5365                         /*
5366                          * Raced against perf_mmap_close() through
5367                          * perf_event_set_output(). Try again, hope for better
5368                          * luck.
5369                          */
5370                         mutex_unlock(&event->mmap_mutex);
5371                         goto again;
5372                 }
5373
5374                 goto unlock;
5375         }
5376
5377         user_extra = nr_pages + 1;
5378
5379 accounting:
5380         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5381
5382         /*
5383          * Increase the limit linearly with more CPUs:
5384          */
5385         user_lock_limit *= num_online_cpus();
5386
5387         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5388
5389         if (user_locked > user_lock_limit)
5390                 extra = user_locked - user_lock_limit;
5391
5392         lock_limit = rlimit(RLIMIT_MEMLOCK);
5393         lock_limit >>= PAGE_SHIFT;
5394         locked = vma->vm_mm->pinned_vm + extra;
5395
5396         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5397                 !capable(CAP_IPC_LOCK)) {
5398                 ret = -EPERM;
5399                 goto unlock;
5400         }
5401
5402         WARN_ON(!rb && event->rb);
5403
5404         if (vma->vm_flags & VM_WRITE)
5405                 flags |= RING_BUFFER_WRITABLE;
5406
5407         if (!rb) {
5408                 rb = rb_alloc(nr_pages,
5409                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5410                               event->cpu, flags);
5411
5412                 if (!rb) {
5413                         ret = -ENOMEM;
5414                         goto unlock;
5415                 }
5416
5417                 atomic_set(&rb->mmap_count, 1);
5418                 rb->mmap_user = get_current_user();
5419                 rb->mmap_locked = extra;
5420
5421                 ring_buffer_attach(event, rb);
5422
5423                 perf_event_init_userpage(event);
5424                 perf_event_update_userpage(event);
5425         } else {
5426                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5427                                    event->attr.aux_watermark, flags);
5428                 if (!ret)
5429                         rb->aux_mmap_locked = extra;
5430         }
5431
5432 unlock:
5433         if (!ret) {
5434                 atomic_long_add(user_extra, &user->locked_vm);
5435                 vma->vm_mm->pinned_vm += extra;
5436
5437                 atomic_inc(&event->mmap_count);
5438         } else if (rb) {
5439                 atomic_dec(&rb->mmap_count);
5440         }
5441 aux_unlock:
5442         mutex_unlock(&event->mmap_mutex);
5443
5444         /*
5445          * Since pinned accounting is per vm we cannot allow fork() to copy our
5446          * vma.
5447          */
5448         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5449         vma->vm_ops = &perf_mmap_vmops;
5450
5451         if (event->pmu->event_mapped)
5452                 event->pmu->event_mapped(event, vma->vm_mm);
5453
5454         return ret;
5455 }
5456
5457 static int perf_fasync(int fd, struct file *filp, int on)
5458 {
5459         struct inode *inode = file_inode(filp);
5460         struct perf_event *event = filp->private_data;
5461         int retval;
5462
5463         inode_lock(inode);
5464         retval = fasync_helper(fd, filp, on, &event->fasync);
5465         inode_unlock(inode);
5466
5467         if (retval < 0)
5468                 return retval;
5469
5470         return 0;
5471 }
5472
5473 static const struct file_operations perf_fops = {
5474         .llseek                 = no_llseek,
5475         .release                = perf_release,
5476         .read                   = perf_read,
5477         .poll                   = perf_poll,
5478         .unlocked_ioctl         = perf_ioctl,
5479         .compat_ioctl           = perf_compat_ioctl,
5480         .mmap                   = perf_mmap,
5481         .fasync                 = perf_fasync,
5482 };
5483
5484 /*
5485  * Perf event wakeup
5486  *
5487  * If there's data, ensure we set the poll() state and publish everything
5488  * to user-space before waking everybody up.
5489  */
5490
5491 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5492 {
5493         /* only the parent has fasync state */
5494         if (event->parent)
5495                 event = event->parent;
5496         return &event->fasync;
5497 }
5498
5499 void perf_event_wakeup(struct perf_event *event)
5500 {
5501         ring_buffer_wakeup(event);
5502
5503         if (event->pending_kill) {
5504                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5505                 event->pending_kill = 0;
5506         }
5507 }
5508
5509 static void perf_pending_event(struct irq_work *entry)
5510 {
5511         struct perf_event *event = container_of(entry,
5512                         struct perf_event, pending);
5513         int rctx;
5514
5515         rctx = perf_swevent_get_recursion_context();
5516         /*
5517          * If we 'fail' here, that's OK, it means recursion is already disabled
5518          * and we won't recurse 'further'.
5519          */
5520
5521         if (event->pending_disable) {
5522                 event->pending_disable = 0;
5523                 perf_event_disable_local(event);
5524         }
5525
5526         if (event->pending_wakeup) {
5527                 event->pending_wakeup = 0;
5528                 perf_event_wakeup(event);
5529         }
5530
5531         if (rctx >= 0)
5532                 perf_swevent_put_recursion_context(rctx);
5533 }
5534
5535 /*
5536  * We assume there is only KVM supporting the callbacks.
5537  * Later on, we might change it to a list if there is
5538  * another virtualization implementation supporting the callbacks.
5539  */
5540 struct perf_guest_info_callbacks *perf_guest_cbs;
5541
5542 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5543 {
5544         perf_guest_cbs = cbs;
5545         return 0;
5546 }
5547 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5548
5549 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5550 {
5551         perf_guest_cbs = NULL;
5552         return 0;
5553 }
5554 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5555
5556 static void
5557 perf_output_sample_regs(struct perf_output_handle *handle,
5558                         struct pt_regs *regs, u64 mask)
5559 {
5560         int bit;
5561         DECLARE_BITMAP(_mask, 64);
5562
5563         bitmap_from_u64(_mask, mask);
5564         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5565                 u64 val;
5566
5567                 val = perf_reg_value(regs, bit);
5568                 perf_output_put(handle, val);
5569         }
5570 }
5571
5572 static void perf_sample_regs_user(struct perf_regs *regs_user,
5573                                   struct pt_regs *regs,
5574                                   struct pt_regs *regs_user_copy)
5575 {
5576         if (user_mode(regs)) {
5577                 regs_user->abi = perf_reg_abi(current);
5578                 regs_user->regs = regs;
5579         } else if (current->mm) {
5580                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5581         } else {
5582                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5583                 regs_user->regs = NULL;
5584         }
5585 }
5586
5587 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5588                                   struct pt_regs *regs)
5589 {
5590         regs_intr->regs = regs;
5591         regs_intr->abi  = perf_reg_abi(current);
5592 }
5593
5594
5595 /*
5596  * Get remaining task size from user stack pointer.
5597  *
5598  * It'd be better to take stack vma map and limit this more
5599  * precisly, but there's no way to get it safely under interrupt,
5600  * so using TASK_SIZE as limit.
5601  */
5602 static u64 perf_ustack_task_size(struct pt_regs *regs)
5603 {
5604         unsigned long addr = perf_user_stack_pointer(regs);
5605
5606         if (!addr || addr >= TASK_SIZE)
5607                 return 0;
5608
5609         return TASK_SIZE - addr;
5610 }
5611
5612 static u16
5613 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5614                         struct pt_regs *regs)
5615 {
5616         u64 task_size;
5617
5618         /* No regs, no stack pointer, no dump. */
5619         if (!regs)
5620                 return 0;
5621
5622         /*
5623          * Check if we fit in with the requested stack size into the:
5624          * - TASK_SIZE
5625          *   If we don't, we limit the size to the TASK_SIZE.
5626          *
5627          * - remaining sample size
5628          *   If we don't, we customize the stack size to
5629          *   fit in to the remaining sample size.
5630          */
5631
5632         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5633         stack_size = min(stack_size, (u16) task_size);
5634
5635         /* Current header size plus static size and dynamic size. */
5636         header_size += 2 * sizeof(u64);
5637
5638         /* Do we fit in with the current stack dump size? */
5639         if ((u16) (header_size + stack_size) < header_size) {
5640                 /*
5641                  * If we overflow the maximum size for the sample,
5642                  * we customize the stack dump size to fit in.
5643                  */
5644                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5645                 stack_size = round_up(stack_size, sizeof(u64));
5646         }
5647
5648         return stack_size;
5649 }
5650
5651 static void
5652 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5653                           struct pt_regs *regs)
5654 {
5655         /* Case of a kernel thread, nothing to dump */
5656         if (!regs) {
5657                 u64 size = 0;
5658                 perf_output_put(handle, size);
5659         } else {
5660                 unsigned long sp;
5661                 unsigned int rem;
5662                 u64 dyn_size;
5663
5664                 /*
5665                  * We dump:
5666                  * static size
5667                  *   - the size requested by user or the best one we can fit
5668                  *     in to the sample max size
5669                  * data
5670                  *   - user stack dump data
5671                  * dynamic size
5672                  *   - the actual dumped size
5673                  */
5674
5675                 /* Static size. */
5676                 perf_output_put(handle, dump_size);
5677
5678                 /* Data. */
5679                 sp = perf_user_stack_pointer(regs);
5680                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5681                 dyn_size = dump_size - rem;
5682
5683                 perf_output_skip(handle, rem);
5684
5685                 /* Dynamic size. */
5686                 perf_output_put(handle, dyn_size);
5687         }
5688 }
5689
5690 static void __perf_event_header__init_id(struct perf_event_header *header,
5691                                          struct perf_sample_data *data,
5692                                          struct perf_event *event)
5693 {
5694         u64 sample_type = event->attr.sample_type;
5695
5696         data->type = sample_type;
5697         header->size += event->id_header_size;
5698
5699         if (sample_type & PERF_SAMPLE_TID) {
5700                 /* namespace issues */
5701                 data->tid_entry.pid = perf_event_pid(event, current);
5702                 data->tid_entry.tid = perf_event_tid(event, current);
5703         }
5704
5705         if (sample_type & PERF_SAMPLE_TIME)
5706                 data->time = perf_event_clock(event);
5707
5708         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5709                 data->id = primary_event_id(event);
5710
5711         if (sample_type & PERF_SAMPLE_STREAM_ID)
5712                 data->stream_id = event->id;
5713
5714         if (sample_type & PERF_SAMPLE_CPU) {
5715                 data->cpu_entry.cpu      = raw_smp_processor_id();
5716                 data->cpu_entry.reserved = 0;
5717         }
5718 }
5719
5720 void perf_event_header__init_id(struct perf_event_header *header,
5721                                 struct perf_sample_data *data,
5722                                 struct perf_event *event)
5723 {
5724         if (event->attr.sample_id_all)
5725                 __perf_event_header__init_id(header, data, event);
5726 }
5727
5728 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5729                                            struct perf_sample_data *data)
5730 {
5731         u64 sample_type = data->type;
5732
5733         if (sample_type & PERF_SAMPLE_TID)
5734                 perf_output_put(handle, data->tid_entry);
5735
5736         if (sample_type & PERF_SAMPLE_TIME)
5737                 perf_output_put(handle, data->time);
5738
5739         if (sample_type & PERF_SAMPLE_ID)
5740                 perf_output_put(handle, data->id);
5741
5742         if (sample_type & PERF_SAMPLE_STREAM_ID)
5743                 perf_output_put(handle, data->stream_id);
5744
5745         if (sample_type & PERF_SAMPLE_CPU)
5746                 perf_output_put(handle, data->cpu_entry);
5747
5748         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5749                 perf_output_put(handle, data->id);
5750 }
5751
5752 void perf_event__output_id_sample(struct perf_event *event,
5753                                   struct perf_output_handle *handle,
5754                                   struct perf_sample_data *sample)
5755 {
5756         if (event->attr.sample_id_all)
5757                 __perf_event__output_id_sample(handle, sample);
5758 }
5759
5760 static void perf_output_read_one(struct perf_output_handle *handle,
5761                                  struct perf_event *event,
5762                                  u64 enabled, u64 running)
5763 {
5764         u64 read_format = event->attr.read_format;
5765         u64 values[4];
5766         int n = 0;
5767
5768         values[n++] = perf_event_count(event);
5769         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5770                 values[n++] = enabled +
5771                         atomic64_read(&event->child_total_time_enabled);
5772         }
5773         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5774                 values[n++] = running +
5775                         atomic64_read(&event->child_total_time_running);
5776         }
5777         if (read_format & PERF_FORMAT_ID)
5778                 values[n++] = primary_event_id(event);
5779
5780         __output_copy(handle, values, n * sizeof(u64));
5781 }
5782
5783 static void perf_output_read_group(struct perf_output_handle *handle,
5784                             struct perf_event *event,
5785                             u64 enabled, u64 running)
5786 {
5787         struct perf_event *leader = event->group_leader, *sub;
5788         u64 read_format = event->attr.read_format;
5789         u64 values[5];
5790         int n = 0;
5791
5792         values[n++] = 1 + leader->nr_siblings;
5793
5794         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5795                 values[n++] = enabled;
5796
5797         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5798                 values[n++] = running;
5799
5800         if (leader != event)
5801                 leader->pmu->read(leader);
5802
5803         values[n++] = perf_event_count(leader);
5804         if (read_format & PERF_FORMAT_ID)
5805                 values[n++] = primary_event_id(leader);
5806
5807         __output_copy(handle, values, n * sizeof(u64));
5808
5809         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5810                 n = 0;
5811
5812                 if ((sub != event) &&
5813                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5814                         sub->pmu->read(sub);
5815
5816                 values[n++] = perf_event_count(sub);
5817                 if (read_format & PERF_FORMAT_ID)
5818                         values[n++] = primary_event_id(sub);
5819
5820                 __output_copy(handle, values, n * sizeof(u64));
5821         }
5822 }
5823
5824 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5825                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5826
5827 /*
5828  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5829  *
5830  * The problem is that its both hard and excessively expensive to iterate the
5831  * child list, not to mention that its impossible to IPI the children running
5832  * on another CPU, from interrupt/NMI context.
5833  */
5834 static void perf_output_read(struct perf_output_handle *handle,
5835                              struct perf_event *event)
5836 {
5837         u64 enabled = 0, running = 0, now;
5838         u64 read_format = event->attr.read_format;
5839
5840         /*
5841          * compute total_time_enabled, total_time_running
5842          * based on snapshot values taken when the event
5843          * was last scheduled in.
5844          *
5845          * we cannot simply called update_context_time()
5846          * because of locking issue as we are called in
5847          * NMI context
5848          */
5849         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5850                 calc_timer_values(event, &now, &enabled, &running);
5851
5852         if (event->attr.read_format & PERF_FORMAT_GROUP)
5853                 perf_output_read_group(handle, event, enabled, running);
5854         else
5855                 perf_output_read_one(handle, event, enabled, running);
5856 }
5857
5858 void perf_output_sample(struct perf_output_handle *handle,
5859                         struct perf_event_header *header,
5860                         struct perf_sample_data *data,
5861                         struct perf_event *event)
5862 {
5863         u64 sample_type = data->type;
5864
5865         perf_output_put(handle, *header);
5866
5867         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5868                 perf_output_put(handle, data->id);
5869
5870         if (sample_type & PERF_SAMPLE_IP)
5871                 perf_output_put(handle, data->ip);
5872
5873         if (sample_type & PERF_SAMPLE_TID)
5874                 perf_output_put(handle, data->tid_entry);
5875
5876         if (sample_type & PERF_SAMPLE_TIME)
5877                 perf_output_put(handle, data->time);
5878
5879         if (sample_type & PERF_SAMPLE_ADDR)
5880                 perf_output_put(handle, data->addr);
5881
5882         if (sample_type & PERF_SAMPLE_ID)
5883                 perf_output_put(handle, data->id);
5884
5885         if (sample_type & PERF_SAMPLE_STREAM_ID)
5886                 perf_output_put(handle, data->stream_id);
5887
5888         if (sample_type & PERF_SAMPLE_CPU)
5889                 perf_output_put(handle, data->cpu_entry);
5890
5891         if (sample_type & PERF_SAMPLE_PERIOD)
5892                 perf_output_put(handle, data->period);
5893
5894         if (sample_type & PERF_SAMPLE_READ)
5895                 perf_output_read(handle, event);
5896
5897         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5898                 if (data->callchain) {
5899                         int size = 1;
5900
5901                         if (data->callchain)
5902                                 size += data->callchain->nr;
5903
5904                         size *= sizeof(u64);
5905
5906                         __output_copy(handle, data->callchain, size);
5907                 } else {
5908                         u64 nr = 0;
5909                         perf_output_put(handle, nr);
5910                 }
5911         }
5912
5913         if (sample_type & PERF_SAMPLE_RAW) {
5914                 struct perf_raw_record *raw = data->raw;
5915
5916                 if (raw) {
5917                         struct perf_raw_frag *frag = &raw->frag;
5918
5919                         perf_output_put(handle, raw->size);
5920                         do {
5921                                 if (frag->copy) {
5922                                         __output_custom(handle, frag->copy,
5923                                                         frag->data, frag->size);
5924                                 } else {
5925                                         __output_copy(handle, frag->data,
5926                                                       frag->size);
5927                                 }
5928                                 if (perf_raw_frag_last(frag))
5929                                         break;
5930                                 frag = frag->next;
5931                         } while (1);
5932                         if (frag->pad)
5933                                 __output_skip(handle, NULL, frag->pad);
5934                 } else {
5935                         struct {
5936                                 u32     size;
5937                                 u32     data;
5938                         } raw = {
5939                                 .size = sizeof(u32),
5940                                 .data = 0,
5941                         };
5942                         perf_output_put(handle, raw);
5943                 }
5944         }
5945
5946         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5947                 if (data->br_stack) {
5948                         size_t size;
5949
5950                         size = data->br_stack->nr
5951                              * sizeof(struct perf_branch_entry);
5952
5953                         perf_output_put(handle, data->br_stack->nr);
5954                         perf_output_copy(handle, data->br_stack->entries, size);
5955                 } else {
5956                         /*
5957                          * we always store at least the value of nr
5958                          */
5959                         u64 nr = 0;
5960                         perf_output_put(handle, nr);
5961                 }
5962         }
5963
5964         if (sample_type & PERF_SAMPLE_REGS_USER) {
5965                 u64 abi = data->regs_user.abi;
5966
5967                 /*
5968                  * If there are no regs to dump, notice it through
5969                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5970                  */
5971                 perf_output_put(handle, abi);
5972
5973                 if (abi) {
5974                         u64 mask = event->attr.sample_regs_user;
5975                         perf_output_sample_regs(handle,
5976                                                 data->regs_user.regs,
5977                                                 mask);
5978                 }
5979         }
5980
5981         if (sample_type & PERF_SAMPLE_STACK_USER) {
5982                 perf_output_sample_ustack(handle,
5983                                           data->stack_user_size,
5984                                           data->regs_user.regs);
5985         }
5986
5987         if (sample_type & PERF_SAMPLE_WEIGHT)
5988                 perf_output_put(handle, data->weight);
5989
5990         if (sample_type & PERF_SAMPLE_DATA_SRC)
5991                 perf_output_put(handle, data->data_src.val);
5992
5993         if (sample_type & PERF_SAMPLE_TRANSACTION)
5994                 perf_output_put(handle, data->txn);
5995
5996         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5997                 u64 abi = data->regs_intr.abi;
5998                 /*
5999                  * If there are no regs to dump, notice it through
6000                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6001                  */
6002                 perf_output_put(handle, abi);
6003
6004                 if (abi) {
6005                         u64 mask = event->attr.sample_regs_intr;
6006
6007                         perf_output_sample_regs(handle,
6008                                                 data->regs_intr.regs,
6009                                                 mask);
6010                 }
6011         }
6012
6013         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6014                 perf_output_put(handle, data->phys_addr);
6015
6016         if (!event->attr.watermark) {
6017                 int wakeup_events = event->attr.wakeup_events;
6018
6019                 if (wakeup_events) {
6020                         struct ring_buffer *rb = handle->rb;
6021                         int events = local_inc_return(&rb->events);
6022
6023                         if (events >= wakeup_events) {
6024                                 local_sub(wakeup_events, &rb->events);
6025                                 local_inc(&rb->wakeup);
6026                         }
6027                 }
6028         }
6029 }
6030
6031 static u64 perf_virt_to_phys(u64 virt)
6032 {
6033         u64 phys_addr = 0;
6034         struct page *p = NULL;
6035
6036         if (!virt)
6037                 return 0;
6038
6039         if (virt >= TASK_SIZE) {
6040                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6041                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6042                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6043                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6044         } else {
6045                 /*
6046                  * Walking the pages tables for user address.
6047                  * Interrupts are disabled, so it prevents any tear down
6048                  * of the page tables.
6049                  * Try IRQ-safe __get_user_pages_fast first.
6050                  * If failed, leave phys_addr as 0.
6051                  */
6052                 if ((current->mm != NULL) &&
6053                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6054                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6055
6056                 if (p)
6057                         put_page(p);
6058         }
6059
6060         return phys_addr;
6061 }
6062
6063 void perf_prepare_sample(struct perf_event_header *header,
6064                          struct perf_sample_data *data,
6065                          struct perf_event *event,
6066                          struct pt_regs *regs)
6067 {
6068         u64 sample_type = event->attr.sample_type;
6069
6070         header->type = PERF_RECORD_SAMPLE;
6071         header->size = sizeof(*header) + event->header_size;
6072
6073         header->misc = 0;
6074         header->misc |= perf_misc_flags(regs);
6075
6076         __perf_event_header__init_id(header, data, event);
6077
6078         if (sample_type & PERF_SAMPLE_IP)
6079                 data->ip = perf_instruction_pointer(regs);
6080
6081         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6082                 int size = 1;
6083
6084                 data->callchain = perf_callchain(event, regs);
6085
6086                 if (data->callchain)
6087                         size += data->callchain->nr;
6088
6089                 header->size += size * sizeof(u64);
6090         }
6091
6092         if (sample_type & PERF_SAMPLE_RAW) {
6093                 struct perf_raw_record *raw = data->raw;
6094                 int size;
6095
6096                 if (raw) {
6097                         struct perf_raw_frag *frag = &raw->frag;
6098                         u32 sum = 0;
6099
6100                         do {
6101                                 sum += frag->size;
6102                                 if (perf_raw_frag_last(frag))
6103                                         break;
6104                                 frag = frag->next;
6105                         } while (1);
6106
6107                         size = round_up(sum + sizeof(u32), sizeof(u64));
6108                         raw->size = size - sizeof(u32);
6109                         frag->pad = raw->size - sum;
6110                 } else {
6111                         size = sizeof(u64);
6112                 }
6113
6114                 header->size += size;
6115         }
6116
6117         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6118                 int size = sizeof(u64); /* nr */
6119                 if (data->br_stack) {
6120                         size += data->br_stack->nr
6121                               * sizeof(struct perf_branch_entry);
6122                 }
6123                 header->size += size;
6124         }
6125
6126         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6127                 perf_sample_regs_user(&data->regs_user, regs,
6128                                       &data->regs_user_copy);
6129
6130         if (sample_type & PERF_SAMPLE_REGS_USER) {
6131                 /* regs dump ABI info */
6132                 int size = sizeof(u64);
6133
6134                 if (data->regs_user.regs) {
6135                         u64 mask = event->attr.sample_regs_user;
6136                         size += hweight64(mask) * sizeof(u64);
6137                 }
6138
6139                 header->size += size;
6140         }
6141
6142         if (sample_type & PERF_SAMPLE_STACK_USER) {
6143                 /*
6144                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6145                  * processed as the last one or have additional check added
6146                  * in case new sample type is added, because we could eat
6147                  * up the rest of the sample size.
6148                  */
6149                 u16 stack_size = event->attr.sample_stack_user;
6150                 u16 size = sizeof(u64);
6151
6152                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6153                                                      data->regs_user.regs);
6154
6155                 /*
6156                  * If there is something to dump, add space for the dump
6157                  * itself and for the field that tells the dynamic size,
6158                  * which is how many have been actually dumped.
6159                  */
6160                 if (stack_size)
6161                         size += sizeof(u64) + stack_size;
6162
6163                 data->stack_user_size = stack_size;
6164                 header->size += size;
6165         }
6166
6167         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6168                 /* regs dump ABI info */
6169                 int size = sizeof(u64);
6170
6171                 perf_sample_regs_intr(&data->regs_intr, regs);
6172
6173                 if (data->regs_intr.regs) {
6174                         u64 mask = event->attr.sample_regs_intr;
6175
6176                         size += hweight64(mask) * sizeof(u64);
6177                 }
6178
6179                 header->size += size;
6180         }
6181
6182         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6183                 data->phys_addr = perf_virt_to_phys(data->addr);
6184 }
6185
6186 static void __always_inline
6187 __perf_event_output(struct perf_event *event,
6188                     struct perf_sample_data *data,
6189                     struct pt_regs *regs,
6190                     int (*output_begin)(struct perf_output_handle *,
6191                                         struct perf_event *,
6192                                         unsigned int))
6193 {
6194         struct perf_output_handle handle;
6195         struct perf_event_header header;
6196
6197         /* protect the callchain buffers */
6198         rcu_read_lock();
6199
6200         perf_prepare_sample(&header, data, event, regs);
6201
6202         if (output_begin(&handle, event, header.size))
6203                 goto exit;
6204
6205         perf_output_sample(&handle, &header, data, event);
6206
6207         perf_output_end(&handle);
6208
6209 exit:
6210         rcu_read_unlock();
6211 }
6212
6213 void
6214 perf_event_output_forward(struct perf_event *event,
6215                          struct perf_sample_data *data,
6216                          struct pt_regs *regs)
6217 {
6218         __perf_event_output(event, data, regs, perf_output_begin_forward);
6219 }
6220
6221 void
6222 perf_event_output_backward(struct perf_event *event,
6223                            struct perf_sample_data *data,
6224                            struct pt_regs *regs)
6225 {
6226         __perf_event_output(event, data, regs, perf_output_begin_backward);
6227 }
6228
6229 void
6230 perf_event_output(struct perf_event *event,
6231                   struct perf_sample_data *data,
6232                   struct pt_regs *regs)
6233 {
6234         __perf_event_output(event, data, regs, perf_output_begin);
6235 }
6236
6237 /*
6238  * read event_id
6239  */
6240
6241 struct perf_read_event {
6242         struct perf_event_header        header;
6243
6244         u32                             pid;
6245         u32                             tid;
6246 };
6247
6248 static void
6249 perf_event_read_event(struct perf_event *event,
6250                         struct task_struct *task)
6251 {
6252         struct perf_output_handle handle;
6253         struct perf_sample_data sample;
6254         struct perf_read_event read_event = {
6255                 .header = {
6256                         .type = PERF_RECORD_READ,
6257                         .misc = 0,
6258                         .size = sizeof(read_event) + event->read_size,
6259                 },
6260                 .pid = perf_event_pid(event, task),
6261                 .tid = perf_event_tid(event, task),
6262         };
6263         int ret;
6264
6265         perf_event_header__init_id(&read_event.header, &sample, event);
6266         ret = perf_output_begin(&handle, event, read_event.header.size);
6267         if (ret)
6268                 return;
6269
6270         perf_output_put(&handle, read_event);
6271         perf_output_read(&handle, event);
6272         perf_event__output_id_sample(event, &handle, &sample);
6273
6274         perf_output_end(&handle);
6275 }
6276
6277 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6278
6279 static void
6280 perf_iterate_ctx(struct perf_event_context *ctx,
6281                    perf_iterate_f output,
6282                    void *data, bool all)
6283 {
6284         struct perf_event *event;
6285
6286         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6287                 if (!all) {
6288                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6289                                 continue;
6290                         if (!event_filter_match(event))
6291                                 continue;
6292                 }
6293
6294                 output(event, data);
6295         }
6296 }
6297
6298 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6299 {
6300         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6301         struct perf_event *event;
6302
6303         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6304                 /*
6305                  * Skip events that are not fully formed yet; ensure that
6306                  * if we observe event->ctx, both event and ctx will be
6307                  * complete enough. See perf_install_in_context().
6308                  */
6309                 if (!smp_load_acquire(&event->ctx))
6310                         continue;
6311
6312                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6313                         continue;
6314                 if (!event_filter_match(event))
6315                         continue;
6316                 output(event, data);
6317         }
6318 }
6319
6320 /*
6321  * Iterate all events that need to receive side-band events.
6322  *
6323  * For new callers; ensure that account_pmu_sb_event() includes
6324  * your event, otherwise it might not get delivered.
6325  */
6326 static void
6327 perf_iterate_sb(perf_iterate_f output, void *data,
6328                struct perf_event_context *task_ctx)
6329 {
6330         struct perf_event_context *ctx;
6331         int ctxn;
6332
6333         rcu_read_lock();
6334         preempt_disable();
6335
6336         /*
6337          * If we have task_ctx != NULL we only notify the task context itself.
6338          * The task_ctx is set only for EXIT events before releasing task
6339          * context.
6340          */
6341         if (task_ctx) {
6342                 perf_iterate_ctx(task_ctx, output, data, false);
6343                 goto done;
6344         }
6345
6346         perf_iterate_sb_cpu(output, data);
6347
6348         for_each_task_context_nr(ctxn) {
6349                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6350                 if (ctx)
6351                         perf_iterate_ctx(ctx, output, data, false);
6352         }
6353 done:
6354         preempt_enable();
6355         rcu_read_unlock();
6356 }
6357
6358 /*
6359  * Clear all file-based filters at exec, they'll have to be
6360  * re-instated when/if these objects are mmapped again.
6361  */
6362 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6363 {
6364         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6365         struct perf_addr_filter *filter;
6366         unsigned int restart = 0, count = 0;
6367         unsigned long flags;
6368
6369         if (!has_addr_filter(event))
6370                 return;
6371
6372         raw_spin_lock_irqsave(&ifh->lock, flags);
6373         list_for_each_entry(filter, &ifh->list, entry) {
6374                 if (filter->inode) {
6375                         event->addr_filters_offs[count] = 0;
6376                         restart++;
6377                 }
6378
6379                 count++;
6380         }
6381
6382         if (restart)
6383                 event->addr_filters_gen++;
6384         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6385
6386         if (restart)
6387                 perf_event_stop(event, 1);
6388 }
6389
6390 void perf_event_exec(void)
6391 {
6392         struct perf_event_context *ctx;
6393         int ctxn;
6394
6395         rcu_read_lock();
6396         for_each_task_context_nr(ctxn) {
6397                 ctx = current->perf_event_ctxp[ctxn];
6398                 if (!ctx)
6399                         continue;
6400
6401                 perf_event_enable_on_exec(ctxn);
6402
6403                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6404                                    true);
6405         }
6406         rcu_read_unlock();
6407 }
6408
6409 struct remote_output {
6410         struct ring_buffer      *rb;
6411         int                     err;
6412 };
6413
6414 static void __perf_event_output_stop(struct perf_event *event, void *data)
6415 {
6416         struct perf_event *parent = event->parent;
6417         struct remote_output *ro = data;
6418         struct ring_buffer *rb = ro->rb;
6419         struct stop_event_data sd = {
6420                 .event  = event,
6421         };
6422
6423         if (!has_aux(event))
6424                 return;
6425
6426         if (!parent)
6427                 parent = event;
6428
6429         /*
6430          * In case of inheritance, it will be the parent that links to the
6431          * ring-buffer, but it will be the child that's actually using it.
6432          *
6433          * We are using event::rb to determine if the event should be stopped,
6434          * however this may race with ring_buffer_attach() (through set_output),
6435          * which will make us skip the event that actually needs to be stopped.
6436          * So ring_buffer_attach() has to stop an aux event before re-assigning
6437          * its rb pointer.
6438          */
6439         if (rcu_dereference(parent->rb) == rb)
6440                 ro->err = __perf_event_stop(&sd);
6441 }
6442
6443 static int __perf_pmu_output_stop(void *info)
6444 {
6445         struct perf_event *event = info;
6446         struct pmu *pmu = event->pmu;
6447         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6448         struct remote_output ro = {
6449                 .rb     = event->rb,
6450         };
6451
6452         rcu_read_lock();
6453         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6454         if (cpuctx->task_ctx)
6455                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6456                                    &ro, false);
6457         rcu_read_unlock();
6458
6459         return ro.err;
6460 }
6461
6462 static void perf_pmu_output_stop(struct perf_event *event)
6463 {
6464         struct perf_event *iter;
6465         int err, cpu;
6466
6467 restart:
6468         rcu_read_lock();
6469         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6470                 /*
6471                  * For per-CPU events, we need to make sure that neither they
6472                  * nor their children are running; for cpu==-1 events it's
6473                  * sufficient to stop the event itself if it's active, since
6474                  * it can't have children.
6475                  */
6476                 cpu = iter->cpu;
6477                 if (cpu == -1)
6478                         cpu = READ_ONCE(iter->oncpu);
6479
6480                 if (cpu == -1)
6481                         continue;
6482
6483                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6484                 if (err == -EAGAIN) {
6485                         rcu_read_unlock();
6486                         goto restart;
6487                 }
6488         }
6489         rcu_read_unlock();
6490 }
6491
6492 /*
6493  * task tracking -- fork/exit
6494  *
6495  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6496  */
6497
6498 struct perf_task_event {
6499         struct task_struct              *task;
6500         struct perf_event_context       *task_ctx;
6501
6502         struct {
6503                 struct perf_event_header        header;
6504
6505                 u32                             pid;
6506                 u32                             ppid;
6507                 u32                             tid;
6508                 u32                             ptid;
6509                 u64                             time;
6510         } event_id;
6511 };
6512
6513 static int perf_event_task_match(struct perf_event *event)
6514 {
6515         return event->attr.comm  || event->attr.mmap ||
6516                event->attr.mmap2 || event->attr.mmap_data ||
6517                event->attr.task;
6518 }
6519
6520 static void perf_event_task_output(struct perf_event *event,
6521                                    void *data)
6522 {
6523         struct perf_task_event *task_event = data;
6524         struct perf_output_handle handle;
6525         struct perf_sample_data sample;
6526         struct task_struct *task = task_event->task;
6527         int ret, size = task_event->event_id.header.size;
6528
6529         if (!perf_event_task_match(event))
6530                 return;
6531
6532         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6533
6534         ret = perf_output_begin(&handle, event,
6535                                 task_event->event_id.header.size);
6536         if (ret)
6537                 goto out;
6538
6539         task_event->event_id.pid = perf_event_pid(event, task);
6540         task_event->event_id.ppid = perf_event_pid(event, current);
6541
6542         task_event->event_id.tid = perf_event_tid(event, task);
6543         task_event->event_id.ptid = perf_event_tid(event, current);
6544
6545         task_event->event_id.time = perf_event_clock(event);
6546
6547         perf_output_put(&handle, task_event->event_id);
6548
6549         perf_event__output_id_sample(event, &handle, &sample);
6550
6551         perf_output_end(&handle);
6552 out:
6553         task_event->event_id.header.size = size;
6554 }
6555
6556 static void perf_event_task(struct task_struct *task,
6557                               struct perf_event_context *task_ctx,
6558                               int new)
6559 {
6560         struct perf_task_event task_event;
6561
6562         if (!atomic_read(&nr_comm_events) &&
6563             !atomic_read(&nr_mmap_events) &&
6564             !atomic_read(&nr_task_events))
6565                 return;
6566
6567         task_event = (struct perf_task_event){
6568                 .task     = task,
6569                 .task_ctx = task_ctx,
6570                 .event_id    = {
6571                         .header = {
6572                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6573                                 .misc = 0,
6574                                 .size = sizeof(task_event.event_id),
6575                         },
6576                         /* .pid  */
6577                         /* .ppid */
6578                         /* .tid  */
6579                         /* .ptid */
6580                         /* .time */
6581                 },
6582         };
6583
6584         perf_iterate_sb(perf_event_task_output,
6585                        &task_event,
6586                        task_ctx);
6587 }
6588
6589 void perf_event_fork(struct task_struct *task)
6590 {
6591         perf_event_task(task, NULL, 1);
6592         perf_event_namespaces(task);
6593 }
6594
6595 /*
6596  * comm tracking
6597  */
6598
6599 struct perf_comm_event {
6600         struct task_struct      *task;
6601         char                    *comm;
6602         int                     comm_size;
6603
6604         struct {
6605                 struct perf_event_header        header;
6606
6607                 u32                             pid;
6608                 u32                             tid;
6609         } event_id;
6610 };
6611
6612 static int perf_event_comm_match(struct perf_event *event)
6613 {
6614         return event->attr.comm;
6615 }
6616
6617 static void perf_event_comm_output(struct perf_event *event,
6618                                    void *data)
6619 {
6620         struct perf_comm_event *comm_event = data;
6621         struct perf_output_handle handle;
6622         struct perf_sample_data sample;
6623         int size = comm_event->event_id.header.size;
6624         int ret;
6625
6626         if (!perf_event_comm_match(event))
6627                 return;
6628
6629         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6630         ret = perf_output_begin(&handle, event,
6631                                 comm_event->event_id.header.size);
6632
6633         if (ret)
6634                 goto out;
6635
6636         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6637         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6638
6639         perf_output_put(&handle, comm_event->event_id);
6640         __output_copy(&handle, comm_event->comm,
6641                                    comm_event->comm_size);
6642
6643         perf_event__output_id_sample(event, &handle, &sample);
6644
6645         perf_output_end(&handle);
6646 out:
6647         comm_event->event_id.header.size = size;
6648 }
6649
6650 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6651 {
6652         char comm[TASK_COMM_LEN];
6653         unsigned int size;
6654
6655         memset(comm, 0, sizeof(comm));
6656         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6657         size = ALIGN(strlen(comm)+1, sizeof(u64));
6658
6659         comm_event->comm = comm;
6660         comm_event->comm_size = size;
6661
6662         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6663
6664         perf_iterate_sb(perf_event_comm_output,
6665                        comm_event,
6666                        NULL);
6667 }
6668
6669 void perf_event_comm(struct task_struct *task, bool exec)
6670 {
6671         struct perf_comm_event comm_event;
6672
6673         if (!atomic_read(&nr_comm_events))
6674                 return;
6675
6676         comm_event = (struct perf_comm_event){
6677                 .task   = task,
6678                 /* .comm      */
6679                 /* .comm_size */
6680                 .event_id  = {
6681                         .header = {
6682                                 .type = PERF_RECORD_COMM,
6683                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6684                                 /* .size */
6685                         },
6686                         /* .pid */
6687                         /* .tid */
6688                 },
6689         };
6690
6691         perf_event_comm_event(&comm_event);
6692 }
6693
6694 /*
6695  * namespaces tracking
6696  */
6697
6698 struct perf_namespaces_event {
6699         struct task_struct              *task;
6700
6701         struct {
6702                 struct perf_event_header        header;
6703
6704                 u32                             pid;
6705                 u32                             tid;
6706                 u64                             nr_namespaces;
6707                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6708         } event_id;
6709 };
6710
6711 static int perf_event_namespaces_match(struct perf_event *event)
6712 {
6713         return event->attr.namespaces;
6714 }
6715
6716 static void perf_event_namespaces_output(struct perf_event *event,
6717                                          void *data)
6718 {
6719         struct perf_namespaces_event *namespaces_event = data;
6720         struct perf_output_handle handle;
6721         struct perf_sample_data sample;
6722         u16 header_size = namespaces_event->event_id.header.size;
6723         int ret;
6724
6725         if (!perf_event_namespaces_match(event))
6726                 return;
6727
6728         perf_event_header__init_id(&namespaces_event->event_id.header,
6729                                    &sample, event);
6730         ret = perf_output_begin(&handle, event,
6731                                 namespaces_event->event_id.header.size);
6732         if (ret)
6733                 goto out;
6734
6735         namespaces_event->event_id.pid = perf_event_pid(event,
6736                                                         namespaces_event->task);
6737         namespaces_event->event_id.tid = perf_event_tid(event,
6738                                                         namespaces_event->task);
6739
6740         perf_output_put(&handle, namespaces_event->event_id);
6741
6742         perf_event__output_id_sample(event, &handle, &sample);
6743
6744         perf_output_end(&handle);
6745 out:
6746         namespaces_event->event_id.header.size = header_size;
6747 }
6748
6749 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6750                                    struct task_struct *task,
6751                                    const struct proc_ns_operations *ns_ops)
6752 {
6753         struct path ns_path;
6754         struct inode *ns_inode;
6755         void *error;
6756
6757         error = ns_get_path(&ns_path, task, ns_ops);
6758         if (!error) {
6759                 ns_inode = ns_path.dentry->d_inode;
6760                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6761                 ns_link_info->ino = ns_inode->i_ino;
6762                 path_put(&ns_path);
6763         }
6764 }
6765
6766 void perf_event_namespaces(struct task_struct *task)
6767 {
6768         struct perf_namespaces_event namespaces_event;
6769         struct perf_ns_link_info *ns_link_info;
6770
6771         if (!atomic_read(&nr_namespaces_events))
6772                 return;
6773
6774         namespaces_event = (struct perf_namespaces_event){
6775                 .task   = task,
6776                 .event_id  = {
6777                         .header = {
6778                                 .type = PERF_RECORD_NAMESPACES,
6779                                 .misc = 0,
6780                                 .size = sizeof(namespaces_event.event_id),
6781                         },
6782                         /* .pid */
6783                         /* .tid */
6784                         .nr_namespaces = NR_NAMESPACES,
6785                         /* .link_info[NR_NAMESPACES] */
6786                 },
6787         };
6788
6789         ns_link_info = namespaces_event.event_id.link_info;
6790
6791         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6792                                task, &mntns_operations);
6793
6794 #ifdef CONFIG_USER_NS
6795         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6796                                task, &userns_operations);
6797 #endif
6798 #ifdef CONFIG_NET_NS
6799         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6800                                task, &netns_operations);
6801 #endif
6802 #ifdef CONFIG_UTS_NS
6803         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6804                                task, &utsns_operations);
6805 #endif
6806 #ifdef CONFIG_IPC_NS
6807         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6808                                task, &ipcns_operations);
6809 #endif
6810 #ifdef CONFIG_PID_NS
6811         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6812                                task, &pidns_operations);
6813 #endif
6814 #ifdef CONFIG_CGROUPS
6815         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6816                                task, &cgroupns_operations);
6817 #endif
6818
6819         perf_iterate_sb(perf_event_namespaces_output,
6820                         &namespaces_event,
6821                         NULL);
6822 }
6823
6824 /*
6825  * mmap tracking
6826  */
6827
6828 struct perf_mmap_event {
6829         struct vm_area_struct   *vma;
6830
6831         const char              *file_name;
6832         int                     file_size;
6833         int                     maj, min;
6834         u64                     ino;
6835         u64                     ino_generation;
6836         u32                     prot, flags;
6837
6838         struct {
6839                 struct perf_event_header        header;
6840
6841                 u32                             pid;
6842                 u32                             tid;
6843                 u64                             start;
6844                 u64                             len;
6845                 u64                             pgoff;
6846         } event_id;
6847 };
6848
6849 static int perf_event_mmap_match(struct perf_event *event,
6850                                  void *data)
6851 {
6852         struct perf_mmap_event *mmap_event = data;
6853         struct vm_area_struct *vma = mmap_event->vma;
6854         int executable = vma->vm_flags & VM_EXEC;
6855
6856         return (!executable && event->attr.mmap_data) ||
6857                (executable && (event->attr.mmap || event->attr.mmap2));
6858 }
6859
6860 static void perf_event_mmap_output(struct perf_event *event,
6861                                    void *data)
6862 {
6863         struct perf_mmap_event *mmap_event = data;
6864         struct perf_output_handle handle;
6865         struct perf_sample_data sample;
6866         int size = mmap_event->event_id.header.size;
6867         int ret;
6868
6869         if (!perf_event_mmap_match(event, data))
6870                 return;
6871
6872         if (event->attr.mmap2) {
6873                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6874                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6875                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6876                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6877                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6878                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6879                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6880         }
6881
6882         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6883         ret = perf_output_begin(&handle, event,
6884                                 mmap_event->event_id.header.size);
6885         if (ret)
6886                 goto out;
6887
6888         mmap_event->event_id.pid = perf_event_pid(event, current);
6889         mmap_event->event_id.tid = perf_event_tid(event, current);
6890
6891         perf_output_put(&handle, mmap_event->event_id);
6892
6893         if (event->attr.mmap2) {
6894                 perf_output_put(&handle, mmap_event->maj);
6895                 perf_output_put(&handle, mmap_event->min);
6896                 perf_output_put(&handle, mmap_event->ino);
6897                 perf_output_put(&handle, mmap_event->ino_generation);
6898                 perf_output_put(&handle, mmap_event->prot);
6899                 perf_output_put(&handle, mmap_event->flags);
6900         }
6901
6902         __output_copy(&handle, mmap_event->file_name,
6903                                    mmap_event->file_size);
6904
6905         perf_event__output_id_sample(event, &handle, &sample);
6906
6907         perf_output_end(&handle);
6908 out:
6909         mmap_event->event_id.header.size = size;
6910 }
6911
6912 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6913 {
6914         struct vm_area_struct *vma = mmap_event->vma;
6915         struct file *file = vma->vm_file;
6916         int maj = 0, min = 0;
6917         u64 ino = 0, gen = 0;
6918         u32 prot = 0, flags = 0;
6919         unsigned int size;
6920         char tmp[16];
6921         char *buf = NULL;
6922         char *name;
6923
6924         if (vma->vm_flags & VM_READ)
6925                 prot |= PROT_READ;
6926         if (vma->vm_flags & VM_WRITE)
6927                 prot |= PROT_WRITE;
6928         if (vma->vm_flags & VM_EXEC)
6929                 prot |= PROT_EXEC;
6930
6931         if (vma->vm_flags & VM_MAYSHARE)
6932                 flags = MAP_SHARED;
6933         else
6934                 flags = MAP_PRIVATE;
6935
6936         if (vma->vm_flags & VM_DENYWRITE)
6937                 flags |= MAP_DENYWRITE;
6938         if (vma->vm_flags & VM_MAYEXEC)
6939                 flags |= MAP_EXECUTABLE;
6940         if (vma->vm_flags & VM_LOCKED)
6941                 flags |= MAP_LOCKED;
6942         if (vma->vm_flags & VM_HUGETLB)
6943                 flags |= MAP_HUGETLB;
6944
6945         if (file) {
6946                 struct inode *inode;
6947                 dev_t dev;
6948
6949                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6950                 if (!buf) {
6951                         name = "//enomem";
6952                         goto cpy_name;
6953                 }
6954                 /*
6955                  * d_path() works from the end of the rb backwards, so we
6956                  * need to add enough zero bytes after the string to handle
6957                  * the 64bit alignment we do later.
6958                  */
6959                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6960                 if (IS_ERR(name)) {
6961                         name = "//toolong";
6962                         goto cpy_name;
6963                 }
6964                 inode = file_inode(vma->vm_file);
6965                 dev = inode->i_sb->s_dev;
6966                 ino = inode->i_ino;
6967                 gen = inode->i_generation;
6968                 maj = MAJOR(dev);
6969                 min = MINOR(dev);
6970
6971                 goto got_name;
6972         } else {
6973                 if (vma->vm_ops && vma->vm_ops->name) {
6974                         name = (char *) vma->vm_ops->name(vma);
6975                         if (name)
6976                                 goto cpy_name;
6977                 }
6978
6979                 name = (char *)arch_vma_name(vma);
6980                 if (name)
6981                         goto cpy_name;
6982
6983                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6984                                 vma->vm_end >= vma->vm_mm->brk) {
6985                         name = "[heap]";
6986                         goto cpy_name;
6987                 }
6988                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6989                                 vma->vm_end >= vma->vm_mm->start_stack) {
6990                         name = "[stack]";
6991                         goto cpy_name;
6992                 }
6993
6994                 name = "//anon";
6995                 goto cpy_name;
6996         }
6997
6998 cpy_name:
6999         strlcpy(tmp, name, sizeof(tmp));
7000         name = tmp;
7001 got_name:
7002         /*
7003          * Since our buffer works in 8 byte units we need to align our string
7004          * size to a multiple of 8. However, we must guarantee the tail end is
7005          * zero'd out to avoid leaking random bits to userspace.
7006          */
7007         size = strlen(name)+1;
7008         while (!IS_ALIGNED(size, sizeof(u64)))
7009                 name[size++] = '\0';
7010
7011         mmap_event->file_name = name;
7012         mmap_event->file_size = size;
7013         mmap_event->maj = maj;
7014         mmap_event->min = min;
7015         mmap_event->ino = ino;
7016         mmap_event->ino_generation = gen;
7017         mmap_event->prot = prot;
7018         mmap_event->flags = flags;
7019
7020         if (!(vma->vm_flags & VM_EXEC))
7021                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7022
7023         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7024
7025         perf_iterate_sb(perf_event_mmap_output,
7026                        mmap_event,
7027                        NULL);
7028
7029         kfree(buf);
7030 }
7031
7032 /*
7033  * Check whether inode and address range match filter criteria.
7034  */
7035 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7036                                      struct file *file, unsigned long offset,
7037                                      unsigned long size)
7038 {
7039         if (filter->inode != file_inode(file))
7040                 return false;
7041
7042         if (filter->offset > offset + size)
7043                 return false;
7044
7045         if (filter->offset + filter->size < offset)
7046                 return false;
7047
7048         return true;
7049 }
7050
7051 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7052 {
7053         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7054         struct vm_area_struct *vma = data;
7055         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7056         struct file *file = vma->vm_file;
7057         struct perf_addr_filter *filter;
7058         unsigned int restart = 0, count = 0;
7059
7060         if (!has_addr_filter(event))
7061                 return;
7062
7063         if (!file)
7064                 return;
7065
7066         raw_spin_lock_irqsave(&ifh->lock, flags);
7067         list_for_each_entry(filter, &ifh->list, entry) {
7068                 if (perf_addr_filter_match(filter, file, off,
7069                                              vma->vm_end - vma->vm_start)) {
7070                         event->addr_filters_offs[count] = vma->vm_start;
7071                         restart++;
7072                 }
7073
7074                 count++;
7075         }
7076
7077         if (restart)
7078                 event->addr_filters_gen++;
7079         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7080
7081         if (restart)
7082                 perf_event_stop(event, 1);
7083 }
7084
7085 /*
7086  * Adjust all task's events' filters to the new vma
7087  */
7088 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7089 {
7090         struct perf_event_context *ctx;
7091         int ctxn;
7092
7093         /*
7094          * Data tracing isn't supported yet and as such there is no need
7095          * to keep track of anything that isn't related to executable code:
7096          */
7097         if (!(vma->vm_flags & VM_EXEC))
7098                 return;
7099
7100         rcu_read_lock();
7101         for_each_task_context_nr(ctxn) {
7102                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7103                 if (!ctx)
7104                         continue;
7105
7106                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7107         }
7108         rcu_read_unlock();
7109 }
7110
7111 void perf_event_mmap(struct vm_area_struct *vma)
7112 {
7113         struct perf_mmap_event mmap_event;
7114
7115         if (!atomic_read(&nr_mmap_events))
7116                 return;
7117
7118         mmap_event = (struct perf_mmap_event){
7119                 .vma    = vma,
7120                 /* .file_name */
7121                 /* .file_size */
7122                 .event_id  = {
7123                         .header = {
7124                                 .type = PERF_RECORD_MMAP,
7125                                 .misc = PERF_RECORD_MISC_USER,
7126                                 /* .size */
7127                         },
7128                         /* .pid */
7129                         /* .tid */
7130                         .start  = vma->vm_start,
7131                         .len    = vma->vm_end - vma->vm_start,
7132                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7133                 },
7134                 /* .maj (attr_mmap2 only) */
7135                 /* .min (attr_mmap2 only) */
7136                 /* .ino (attr_mmap2 only) */
7137                 /* .ino_generation (attr_mmap2 only) */
7138                 /* .prot (attr_mmap2 only) */
7139                 /* .flags (attr_mmap2 only) */
7140         };
7141
7142         perf_addr_filters_adjust(vma);
7143         perf_event_mmap_event(&mmap_event);
7144 }
7145
7146 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7147                           unsigned long size, u64 flags)
7148 {
7149         struct perf_output_handle handle;
7150         struct perf_sample_data sample;
7151         struct perf_aux_event {
7152                 struct perf_event_header        header;
7153                 u64                             offset;
7154                 u64                             size;
7155                 u64                             flags;
7156         } rec = {
7157                 .header = {
7158                         .type = PERF_RECORD_AUX,
7159                         .misc = 0,
7160                         .size = sizeof(rec),
7161                 },
7162                 .offset         = head,
7163                 .size           = size,
7164                 .flags          = flags,
7165         };
7166         int ret;
7167
7168         perf_event_header__init_id(&rec.header, &sample, event);
7169         ret = perf_output_begin(&handle, event, rec.header.size);
7170
7171         if (ret)
7172                 return;
7173
7174         perf_output_put(&handle, rec);
7175         perf_event__output_id_sample(event, &handle, &sample);
7176
7177         perf_output_end(&handle);
7178 }
7179
7180 /*
7181  * Lost/dropped samples logging
7182  */
7183 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7184 {
7185         struct perf_output_handle handle;
7186         struct perf_sample_data sample;
7187         int ret;
7188
7189         struct {
7190                 struct perf_event_header        header;
7191                 u64                             lost;
7192         } lost_samples_event = {
7193                 .header = {
7194                         .type = PERF_RECORD_LOST_SAMPLES,
7195                         .misc = 0,
7196                         .size = sizeof(lost_samples_event),
7197                 },
7198                 .lost           = lost,
7199         };
7200
7201         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7202
7203         ret = perf_output_begin(&handle, event,
7204                                 lost_samples_event.header.size);
7205         if (ret)
7206                 return;
7207
7208         perf_output_put(&handle, lost_samples_event);
7209         perf_event__output_id_sample(event, &handle, &sample);
7210         perf_output_end(&handle);
7211 }
7212
7213 /*
7214  * context_switch tracking
7215  */
7216
7217 struct perf_switch_event {
7218         struct task_struct      *task;
7219         struct task_struct      *next_prev;
7220
7221         struct {
7222                 struct perf_event_header        header;
7223                 u32                             next_prev_pid;
7224                 u32                             next_prev_tid;
7225         } event_id;
7226 };
7227
7228 static int perf_event_switch_match(struct perf_event *event)
7229 {
7230         return event->attr.context_switch;
7231 }
7232
7233 static void perf_event_switch_output(struct perf_event *event, void *data)
7234 {
7235         struct perf_switch_event *se = data;
7236         struct perf_output_handle handle;
7237         struct perf_sample_data sample;
7238         int ret;
7239
7240         if (!perf_event_switch_match(event))
7241                 return;
7242
7243         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7244         if (event->ctx->task) {
7245                 se->event_id.header.type = PERF_RECORD_SWITCH;
7246                 se->event_id.header.size = sizeof(se->event_id.header);
7247         } else {
7248                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7249                 se->event_id.header.size = sizeof(se->event_id);
7250                 se->event_id.next_prev_pid =
7251                                         perf_event_pid(event, se->next_prev);
7252                 se->event_id.next_prev_tid =
7253                                         perf_event_tid(event, se->next_prev);
7254         }
7255
7256         perf_event_header__init_id(&se->event_id.header, &sample, event);
7257
7258         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7259         if (ret)
7260                 return;
7261
7262         if (event->ctx->task)
7263                 perf_output_put(&handle, se->event_id.header);
7264         else
7265                 perf_output_put(&handle, se->event_id);
7266
7267         perf_event__output_id_sample(event, &handle, &sample);
7268
7269         perf_output_end(&handle);
7270 }
7271
7272 static void perf_event_switch(struct task_struct *task,
7273                               struct task_struct *next_prev, bool sched_in)
7274 {
7275         struct perf_switch_event switch_event;
7276
7277         /* N.B. caller checks nr_switch_events != 0 */
7278
7279         switch_event = (struct perf_switch_event){
7280                 .task           = task,
7281                 .next_prev      = next_prev,
7282                 .event_id       = {
7283                         .header = {
7284                                 /* .type */
7285                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7286                                 /* .size */
7287                         },
7288                         /* .next_prev_pid */
7289                         /* .next_prev_tid */
7290                 },
7291         };
7292
7293         perf_iterate_sb(perf_event_switch_output,
7294                        &switch_event,
7295                        NULL);
7296 }
7297
7298 /*
7299  * IRQ throttle logging
7300  */
7301
7302 static void perf_log_throttle(struct perf_event *event, int enable)
7303 {
7304         struct perf_output_handle handle;
7305         struct perf_sample_data sample;
7306         int ret;
7307
7308         struct {
7309                 struct perf_event_header        header;
7310                 u64                             time;
7311                 u64                             id;
7312                 u64                             stream_id;
7313         } throttle_event = {
7314                 .header = {
7315                         .type = PERF_RECORD_THROTTLE,
7316                         .misc = 0,
7317                         .size = sizeof(throttle_event),
7318                 },
7319                 .time           = perf_event_clock(event),
7320                 .id             = primary_event_id(event),
7321                 .stream_id      = event->id,
7322         };
7323
7324         if (enable)
7325                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7326
7327         perf_event_header__init_id(&throttle_event.header, &sample, event);
7328
7329         ret = perf_output_begin(&handle, event,
7330                                 throttle_event.header.size);
7331         if (ret)
7332                 return;
7333
7334         perf_output_put(&handle, throttle_event);
7335         perf_event__output_id_sample(event, &handle, &sample);
7336         perf_output_end(&handle);
7337 }
7338
7339 void perf_event_itrace_started(struct perf_event *event)
7340 {
7341         event->attach_state |= PERF_ATTACH_ITRACE;
7342 }
7343
7344 static void perf_log_itrace_start(struct perf_event *event)
7345 {
7346         struct perf_output_handle handle;
7347         struct perf_sample_data sample;
7348         struct perf_aux_event {
7349                 struct perf_event_header        header;
7350                 u32                             pid;
7351                 u32                             tid;
7352         } rec;
7353         int ret;
7354
7355         if (event->parent)
7356                 event = event->parent;
7357
7358         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7359             event->attach_state & PERF_ATTACH_ITRACE)
7360                 return;
7361
7362         rec.header.type = PERF_RECORD_ITRACE_START;
7363         rec.header.misc = 0;
7364         rec.header.size = sizeof(rec);
7365         rec.pid = perf_event_pid(event, current);
7366         rec.tid = perf_event_tid(event, current);
7367
7368         perf_event_header__init_id(&rec.header, &sample, event);
7369         ret = perf_output_begin(&handle, event, rec.header.size);
7370
7371         if (ret)
7372                 return;
7373
7374         perf_output_put(&handle, rec);
7375         perf_event__output_id_sample(event, &handle, &sample);
7376
7377         perf_output_end(&handle);
7378 }
7379
7380 static int
7381 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7382 {
7383         struct hw_perf_event *hwc = &event->hw;
7384         int ret = 0;
7385         u64 seq;
7386
7387         seq = __this_cpu_read(perf_throttled_seq);
7388         if (seq != hwc->interrupts_seq) {
7389                 hwc->interrupts_seq = seq;
7390                 hwc->interrupts = 1;
7391         } else {
7392                 hwc->interrupts++;
7393                 if (unlikely(throttle
7394                              && hwc->interrupts >= max_samples_per_tick)) {
7395                         __this_cpu_inc(perf_throttled_count);
7396                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7397                         hwc->interrupts = MAX_INTERRUPTS;
7398                         perf_log_throttle(event, 0);
7399                         ret = 1;
7400                 }
7401         }
7402
7403         if (event->attr.freq) {
7404                 u64 now = perf_clock();
7405                 s64 delta = now - hwc->freq_time_stamp;
7406
7407                 hwc->freq_time_stamp = now;
7408
7409                 if (delta > 0 && delta < 2*TICK_NSEC)
7410                         perf_adjust_period(event, delta, hwc->last_period, true);
7411         }
7412
7413         return ret;
7414 }
7415
7416 int perf_event_account_interrupt(struct perf_event *event)
7417 {
7418         return __perf_event_account_interrupt(event, 1);
7419 }
7420
7421 /*
7422  * Generic event overflow handling, sampling.
7423  */
7424
7425 static int __perf_event_overflow(struct perf_event *event,
7426                                    int throttle, struct perf_sample_data *data,
7427                                    struct pt_regs *regs)
7428 {
7429         int events = atomic_read(&event->event_limit);
7430         int ret = 0;
7431
7432         /*
7433          * Non-sampling counters might still use the PMI to fold short
7434          * hardware counters, ignore those.
7435          */
7436         if (unlikely(!is_sampling_event(event)))
7437                 return 0;
7438
7439         ret = __perf_event_account_interrupt(event, throttle);
7440
7441         /*
7442          * XXX event_limit might not quite work as expected on inherited
7443          * events
7444          */
7445
7446         event->pending_kill = POLL_IN;
7447         if (events && atomic_dec_and_test(&event->event_limit)) {
7448                 ret = 1;
7449                 event->pending_kill = POLL_HUP;
7450
7451                 perf_event_disable_inatomic(event);
7452         }
7453
7454         READ_ONCE(event->overflow_handler)(event, data, regs);
7455
7456         if (*perf_event_fasync(event) && event->pending_kill) {
7457                 event->pending_wakeup = 1;
7458                 irq_work_queue(&event->pending);
7459         }
7460
7461         return ret;
7462 }
7463
7464 int perf_event_overflow(struct perf_event *event,
7465                           struct perf_sample_data *data,
7466                           struct pt_regs *regs)
7467 {
7468         return __perf_event_overflow(event, 1, data, regs);
7469 }
7470
7471 /*
7472  * Generic software event infrastructure
7473  */
7474
7475 struct swevent_htable {
7476         struct swevent_hlist            *swevent_hlist;
7477         struct mutex                    hlist_mutex;
7478         int                             hlist_refcount;
7479
7480         /* Recursion avoidance in each contexts */
7481         int                             recursion[PERF_NR_CONTEXTS];
7482 };
7483
7484 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7485
7486 /*
7487  * We directly increment event->count and keep a second value in
7488  * event->hw.period_left to count intervals. This period event
7489  * is kept in the range [-sample_period, 0] so that we can use the
7490  * sign as trigger.
7491  */
7492
7493 u64 perf_swevent_set_period(struct perf_event *event)
7494 {
7495         struct hw_perf_event *hwc = &event->hw;
7496         u64 period = hwc->last_period;
7497         u64 nr, offset;
7498         s64 old, val;
7499
7500         hwc->last_period = hwc->sample_period;
7501
7502 again:
7503         old = val = local64_read(&hwc->period_left);
7504         if (val < 0)
7505                 return 0;
7506
7507         nr = div64_u64(period + val, period);
7508         offset = nr * period;
7509         val -= offset;
7510         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7511                 goto again;
7512
7513         return nr;
7514 }
7515
7516 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7517                                     struct perf_sample_data *data,
7518                                     struct pt_regs *regs)
7519 {
7520         struct hw_perf_event *hwc = &event->hw;
7521         int throttle = 0;
7522
7523         if (!overflow)
7524                 overflow = perf_swevent_set_period(event);
7525
7526         if (hwc->interrupts == MAX_INTERRUPTS)
7527                 return;
7528
7529         for (; overflow; overflow--) {
7530                 if (__perf_event_overflow(event, throttle,
7531                                             data, regs)) {
7532                         /*
7533                          * We inhibit the overflow from happening when
7534                          * hwc->interrupts == MAX_INTERRUPTS.
7535                          */
7536                         break;
7537                 }
7538                 throttle = 1;
7539         }
7540 }
7541
7542 static void perf_swevent_event(struct perf_event *event, u64 nr,
7543                                struct perf_sample_data *data,
7544                                struct pt_regs *regs)
7545 {
7546         struct hw_perf_event *hwc = &event->hw;
7547
7548         local64_add(nr, &event->count);
7549
7550         if (!regs)
7551                 return;
7552
7553         if (!is_sampling_event(event))
7554                 return;
7555
7556         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7557                 data->period = nr;
7558                 return perf_swevent_overflow(event, 1, data, regs);
7559         } else
7560                 data->period = event->hw.last_period;
7561
7562         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7563                 return perf_swevent_overflow(event, 1, data, regs);
7564
7565         if (local64_add_negative(nr, &hwc->period_left))
7566                 return;
7567
7568         perf_swevent_overflow(event, 0, data, regs);
7569 }
7570
7571 static int perf_exclude_event(struct perf_event *event,
7572                               struct pt_regs *regs)
7573 {
7574         if (event->hw.state & PERF_HES_STOPPED)
7575                 return 1;
7576
7577         if (regs) {
7578                 if (event->attr.exclude_user && user_mode(regs))
7579                         return 1;
7580
7581                 if (event->attr.exclude_kernel && !user_mode(regs))
7582                         return 1;
7583         }
7584
7585         return 0;
7586 }
7587
7588 static int perf_swevent_match(struct perf_event *event,
7589                                 enum perf_type_id type,
7590                                 u32 event_id,
7591                                 struct perf_sample_data *data,
7592                                 struct pt_regs *regs)
7593 {
7594         if (event->attr.type != type)
7595                 return 0;
7596
7597         if (event->attr.config != event_id)
7598                 return 0;
7599
7600         if (perf_exclude_event(event, regs))
7601                 return 0;
7602
7603         return 1;
7604 }
7605
7606 static inline u64 swevent_hash(u64 type, u32 event_id)
7607 {
7608         u64 val = event_id | (type << 32);
7609
7610         return hash_64(val, SWEVENT_HLIST_BITS);
7611 }
7612
7613 static inline struct hlist_head *
7614 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7615 {
7616         u64 hash = swevent_hash(type, event_id);
7617
7618         return &hlist->heads[hash];
7619 }
7620
7621 /* For the read side: events when they trigger */
7622 static inline struct hlist_head *
7623 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7624 {
7625         struct swevent_hlist *hlist;
7626
7627         hlist = rcu_dereference(swhash->swevent_hlist);
7628         if (!hlist)
7629                 return NULL;
7630
7631         return __find_swevent_head(hlist, type, event_id);
7632 }
7633
7634 /* For the event head insertion and removal in the hlist */
7635 static inline struct hlist_head *
7636 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7637 {
7638         struct swevent_hlist *hlist;
7639         u32 event_id = event->attr.config;
7640         u64 type = event->attr.type;
7641
7642         /*
7643          * Event scheduling is always serialized against hlist allocation
7644          * and release. Which makes the protected version suitable here.
7645          * The context lock guarantees that.
7646          */
7647         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7648                                           lockdep_is_held(&event->ctx->lock));
7649         if (!hlist)
7650                 return NULL;
7651
7652         return __find_swevent_head(hlist, type, event_id);
7653 }
7654
7655 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7656                                     u64 nr,
7657                                     struct perf_sample_data *data,
7658                                     struct pt_regs *regs)
7659 {
7660         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7661         struct perf_event *event;
7662         struct hlist_head *head;
7663
7664         rcu_read_lock();
7665         head = find_swevent_head_rcu(swhash, type, event_id);
7666         if (!head)
7667                 goto end;
7668
7669         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7670                 if (perf_swevent_match(event, type, event_id, data, regs))
7671                         perf_swevent_event(event, nr, data, regs);
7672         }
7673 end:
7674         rcu_read_unlock();
7675 }
7676
7677 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7678
7679 int perf_swevent_get_recursion_context(void)
7680 {
7681         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7682
7683         return get_recursion_context(swhash->recursion);
7684 }
7685 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7686
7687 void perf_swevent_put_recursion_context(int rctx)
7688 {
7689         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7690
7691         put_recursion_context(swhash->recursion, rctx);
7692 }
7693
7694 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7695 {
7696         struct perf_sample_data data;
7697
7698         if (WARN_ON_ONCE(!regs))
7699                 return;
7700
7701         perf_sample_data_init(&data, addr, 0);
7702         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7703 }
7704
7705 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7706 {
7707         int rctx;
7708
7709         preempt_disable_notrace();
7710         rctx = perf_swevent_get_recursion_context();
7711         if (unlikely(rctx < 0))
7712                 goto fail;
7713
7714         ___perf_sw_event(event_id, nr, regs, addr);
7715
7716         perf_swevent_put_recursion_context(rctx);
7717 fail:
7718         preempt_enable_notrace();
7719 }
7720
7721 static void perf_swevent_read(struct perf_event *event)
7722 {
7723 }
7724
7725 static int perf_swevent_add(struct perf_event *event, int flags)
7726 {
7727         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7728         struct hw_perf_event *hwc = &event->hw;
7729         struct hlist_head *head;
7730
7731         if (is_sampling_event(event)) {
7732                 hwc->last_period = hwc->sample_period;
7733                 perf_swevent_set_period(event);
7734         }
7735
7736         hwc->state = !(flags & PERF_EF_START);
7737
7738         head = find_swevent_head(swhash, event);
7739         if (WARN_ON_ONCE(!head))
7740                 return -EINVAL;
7741
7742         hlist_add_head_rcu(&event->hlist_entry, head);
7743         perf_event_update_userpage(event);
7744
7745         return 0;
7746 }
7747
7748 static void perf_swevent_del(struct perf_event *event, int flags)
7749 {
7750         hlist_del_rcu(&event->hlist_entry);
7751 }
7752
7753 static void perf_swevent_start(struct perf_event *event, int flags)
7754 {
7755         event->hw.state = 0;
7756 }
7757
7758 static void perf_swevent_stop(struct perf_event *event, int flags)
7759 {
7760         event->hw.state = PERF_HES_STOPPED;
7761 }
7762
7763 /* Deref the hlist from the update side */
7764 static inline struct swevent_hlist *
7765 swevent_hlist_deref(struct swevent_htable *swhash)
7766 {
7767         return rcu_dereference_protected(swhash->swevent_hlist,
7768                                          lockdep_is_held(&swhash->hlist_mutex));
7769 }
7770
7771 static void swevent_hlist_release(struct swevent_htable *swhash)
7772 {
7773         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7774
7775         if (!hlist)
7776                 return;
7777
7778         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7779         kfree_rcu(hlist, rcu_head);
7780 }
7781
7782 static void swevent_hlist_put_cpu(int cpu)
7783 {
7784         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7785
7786         mutex_lock(&swhash->hlist_mutex);
7787
7788         if (!--swhash->hlist_refcount)
7789                 swevent_hlist_release(swhash);
7790
7791         mutex_unlock(&swhash->hlist_mutex);
7792 }
7793
7794 static void swevent_hlist_put(void)
7795 {
7796         int cpu;
7797
7798         for_each_possible_cpu(cpu)
7799                 swevent_hlist_put_cpu(cpu);
7800 }
7801
7802 static int swevent_hlist_get_cpu(int cpu)
7803 {
7804         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7805         int err = 0;
7806
7807         mutex_lock(&swhash->hlist_mutex);
7808         if (!swevent_hlist_deref(swhash) &&
7809             cpumask_test_cpu(cpu, perf_online_mask)) {
7810                 struct swevent_hlist *hlist;
7811
7812                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7813                 if (!hlist) {
7814                         err = -ENOMEM;
7815                         goto exit;
7816                 }
7817                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7818         }
7819         swhash->hlist_refcount++;
7820 exit:
7821         mutex_unlock(&swhash->hlist_mutex);
7822
7823         return err;
7824 }
7825
7826 static int swevent_hlist_get(void)
7827 {
7828         int err, cpu, failed_cpu;
7829
7830         mutex_lock(&pmus_lock);
7831         for_each_possible_cpu(cpu) {
7832                 err = swevent_hlist_get_cpu(cpu);
7833                 if (err) {
7834                         failed_cpu = cpu;
7835                         goto fail;
7836                 }
7837         }
7838         mutex_unlock(&pmus_lock);
7839         return 0;
7840 fail:
7841         for_each_possible_cpu(cpu) {
7842                 if (cpu == failed_cpu)
7843                         break;
7844                 swevent_hlist_put_cpu(cpu);
7845         }
7846         mutex_unlock(&pmus_lock);
7847         return err;
7848 }
7849
7850 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7851
7852 static void sw_perf_event_destroy(struct perf_event *event)
7853 {
7854         u64 event_id = event->attr.config;
7855
7856         WARN_ON(event->parent);
7857
7858         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7859         swevent_hlist_put();
7860 }
7861
7862 static int perf_swevent_init(struct perf_event *event)
7863 {
7864         u64 event_id = event->attr.config;
7865
7866         if (event->attr.type != PERF_TYPE_SOFTWARE)
7867                 return -ENOENT;
7868
7869         /*
7870          * no branch sampling for software events
7871          */
7872         if (has_branch_stack(event))
7873                 return -EOPNOTSUPP;
7874
7875         switch (event_id) {
7876         case PERF_COUNT_SW_CPU_CLOCK:
7877         case PERF_COUNT_SW_TASK_CLOCK:
7878                 return -ENOENT;
7879
7880         default:
7881                 break;
7882         }
7883
7884         if (event_id >= PERF_COUNT_SW_MAX)
7885                 return -ENOENT;
7886
7887         if (!event->parent) {
7888                 int err;
7889
7890                 err = swevent_hlist_get();
7891                 if (err)
7892                         return err;
7893
7894                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7895                 event->destroy = sw_perf_event_destroy;
7896         }
7897
7898         return 0;
7899 }
7900
7901 static struct pmu perf_swevent = {
7902         .task_ctx_nr    = perf_sw_context,
7903
7904         .capabilities   = PERF_PMU_CAP_NO_NMI,
7905
7906         .event_init     = perf_swevent_init,
7907         .add            = perf_swevent_add,
7908         .del            = perf_swevent_del,
7909         .start          = perf_swevent_start,
7910         .stop           = perf_swevent_stop,
7911         .read           = perf_swevent_read,
7912 };
7913
7914 #ifdef CONFIG_EVENT_TRACING
7915
7916 static int perf_tp_filter_match(struct perf_event *event,
7917                                 struct perf_sample_data *data)
7918 {
7919         void *record = data->raw->frag.data;
7920
7921         /* only top level events have filters set */
7922         if (event->parent)
7923                 event = event->parent;
7924
7925         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7926                 return 1;
7927         return 0;
7928 }
7929
7930 static int perf_tp_event_match(struct perf_event *event,
7931                                 struct perf_sample_data *data,
7932                                 struct pt_regs *regs)
7933 {
7934         if (event->hw.state & PERF_HES_STOPPED)
7935                 return 0;
7936         /*
7937          * All tracepoints are from kernel-space.
7938          */
7939         if (event->attr.exclude_kernel)
7940                 return 0;
7941
7942         if (!perf_tp_filter_match(event, data))
7943                 return 0;
7944
7945         return 1;
7946 }
7947
7948 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7949                                struct trace_event_call *call, u64 count,
7950                                struct pt_regs *regs, struct hlist_head *head,
7951                                struct task_struct *task)
7952 {
7953         struct bpf_prog *prog = call->prog;
7954
7955         if (prog) {
7956                 *(struct pt_regs **)raw_data = regs;
7957                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7958                         perf_swevent_put_recursion_context(rctx);
7959                         return;
7960                 }
7961         }
7962         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7963                       rctx, task, NULL);
7964 }
7965 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7966
7967 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7968                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7969                    struct task_struct *task, struct perf_event *event)
7970 {
7971         struct perf_sample_data data;
7972
7973         struct perf_raw_record raw = {
7974                 .frag = {
7975                         .size = entry_size,
7976                         .data = record,
7977                 },
7978         };
7979
7980         perf_sample_data_init(&data, 0, 0);
7981         data.raw = &raw;
7982
7983         perf_trace_buf_update(record, event_type);
7984
7985         /* Use the given event instead of the hlist */
7986         if (event) {
7987                 if (perf_tp_event_match(event, &data, regs))
7988                         perf_swevent_event(event, count, &data, regs);
7989         } else {
7990                 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7991                         if (perf_tp_event_match(event, &data, regs))
7992                                 perf_swevent_event(event, count, &data, regs);
7993                 }
7994         }
7995
7996         /*
7997          * If we got specified a target task, also iterate its context and
7998          * deliver this event there too.
7999          */
8000         if (task && task != current) {
8001                 struct perf_event_context *ctx;
8002                 struct trace_entry *entry = record;
8003
8004                 rcu_read_lock();
8005                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8006                 if (!ctx)
8007                         goto unlock;
8008
8009                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8010                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8011                                 continue;
8012                         if (event->attr.config != entry->type)
8013                                 continue;
8014                         if (perf_tp_event_match(event, &data, regs))
8015                                 perf_swevent_event(event, count, &data, regs);
8016                 }
8017 unlock:
8018                 rcu_read_unlock();
8019         }
8020
8021         perf_swevent_put_recursion_context(rctx);
8022 }
8023 EXPORT_SYMBOL_GPL(perf_tp_event);
8024
8025 static void tp_perf_event_destroy(struct perf_event *event)
8026 {
8027         perf_trace_destroy(event);
8028 }
8029
8030 static int perf_tp_event_init(struct perf_event *event)
8031 {
8032         int err;
8033
8034         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8035                 return -ENOENT;
8036
8037         /*
8038          * no branch sampling for tracepoint events
8039          */
8040         if (has_branch_stack(event))
8041                 return -EOPNOTSUPP;
8042
8043         err = perf_trace_init(event);
8044         if (err)
8045                 return err;
8046
8047         event->destroy = tp_perf_event_destroy;
8048
8049         return 0;
8050 }
8051
8052 static struct pmu perf_tracepoint = {
8053         .task_ctx_nr    = perf_sw_context,
8054
8055         .event_init     = perf_tp_event_init,
8056         .add            = perf_trace_add,
8057         .del            = perf_trace_del,
8058         .start          = perf_swevent_start,
8059         .stop           = perf_swevent_stop,
8060         .read           = perf_swevent_read,
8061 };
8062
8063 static inline void perf_tp_register(void)
8064 {
8065         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8066 }
8067
8068 static void perf_event_free_filter(struct perf_event *event)
8069 {
8070         ftrace_profile_free_filter(event);
8071 }
8072
8073 #ifdef CONFIG_BPF_SYSCALL
8074 static void bpf_overflow_handler(struct perf_event *event,
8075                                  struct perf_sample_data *data,
8076                                  struct pt_regs *regs)
8077 {
8078         struct bpf_perf_event_data_kern ctx = {
8079                 .data = data,
8080                 .regs = regs,
8081         };
8082         int ret = 0;
8083
8084         preempt_disable();
8085         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8086                 goto out;
8087         rcu_read_lock();
8088         ret = BPF_PROG_RUN(event->prog, &ctx);
8089         rcu_read_unlock();
8090 out:
8091         __this_cpu_dec(bpf_prog_active);
8092         preempt_enable();
8093         if (!ret)
8094                 return;
8095
8096         event->orig_overflow_handler(event, data, regs);
8097 }
8098
8099 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8100 {
8101         struct bpf_prog *prog;
8102
8103         if (event->overflow_handler_context)
8104                 /* hw breakpoint or kernel counter */
8105                 return -EINVAL;
8106
8107         if (event->prog)
8108                 return -EEXIST;
8109
8110         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8111         if (IS_ERR(prog))
8112                 return PTR_ERR(prog);
8113
8114         event->prog = prog;
8115         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8116         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8117         return 0;
8118 }
8119
8120 static void perf_event_free_bpf_handler(struct perf_event *event)
8121 {
8122         struct bpf_prog *prog = event->prog;
8123
8124         if (!prog)
8125                 return;
8126
8127         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8128         event->prog = NULL;
8129         bpf_prog_put(prog);
8130 }
8131 #else
8132 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8133 {
8134         return -EOPNOTSUPP;
8135 }
8136 static void perf_event_free_bpf_handler(struct perf_event *event)
8137 {
8138 }
8139 #endif
8140
8141 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8142 {
8143         bool is_kprobe, is_tracepoint, is_syscall_tp;
8144         struct bpf_prog *prog;
8145
8146         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8147                 return perf_event_set_bpf_handler(event, prog_fd);
8148
8149         if (event->tp_event->prog)
8150                 return -EEXIST;
8151
8152         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8153         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8154         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8155         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8156                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8157                 return -EINVAL;
8158
8159         prog = bpf_prog_get(prog_fd);
8160         if (IS_ERR(prog))
8161                 return PTR_ERR(prog);
8162
8163         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8164             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8165             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8166                 /* valid fd, but invalid bpf program type */
8167                 bpf_prog_put(prog);
8168                 return -EINVAL;
8169         }
8170
8171         if (is_tracepoint || is_syscall_tp) {
8172                 int off = trace_event_get_offsets(event->tp_event);
8173
8174                 if (prog->aux->max_ctx_offset > off) {
8175                         bpf_prog_put(prog);
8176                         return -EACCES;
8177                 }
8178         }
8179         event->tp_event->prog = prog;
8180         event->tp_event->bpf_prog_owner = event;
8181
8182         return 0;
8183 }
8184
8185 static void perf_event_free_bpf_prog(struct perf_event *event)
8186 {
8187         struct bpf_prog *prog;
8188
8189         perf_event_free_bpf_handler(event);
8190
8191         if (!event->tp_event)
8192                 return;
8193
8194         prog = event->tp_event->prog;
8195         if (prog && event->tp_event->bpf_prog_owner == event) {
8196                 event->tp_event->prog = NULL;
8197                 bpf_prog_put(prog);
8198         }
8199 }
8200
8201 #else
8202
8203 static inline void perf_tp_register(void)
8204 {
8205 }
8206
8207 static void perf_event_free_filter(struct perf_event *event)
8208 {
8209 }
8210
8211 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8212 {
8213         return -ENOENT;
8214 }
8215
8216 static void perf_event_free_bpf_prog(struct perf_event *event)
8217 {
8218 }
8219 #endif /* CONFIG_EVENT_TRACING */
8220
8221 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8222 void perf_bp_event(struct perf_event *bp, void *data)
8223 {
8224         struct perf_sample_data sample;
8225         struct pt_regs *regs = data;
8226
8227         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8228
8229         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8230                 perf_swevent_event(bp, 1, &sample, regs);
8231 }
8232 #endif
8233
8234 /*
8235  * Allocate a new address filter
8236  */
8237 static struct perf_addr_filter *
8238 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8239 {
8240         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8241         struct perf_addr_filter *filter;
8242
8243         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8244         if (!filter)
8245                 return NULL;
8246
8247         INIT_LIST_HEAD(&filter->entry);
8248         list_add_tail(&filter->entry, filters);
8249
8250         return filter;
8251 }
8252
8253 static void free_filters_list(struct list_head *filters)
8254 {
8255         struct perf_addr_filter *filter, *iter;
8256
8257         list_for_each_entry_safe(filter, iter, filters, entry) {
8258                 if (filter->inode)
8259                         iput(filter->inode);
8260                 list_del(&filter->entry);
8261                 kfree(filter);
8262         }
8263 }
8264
8265 /*
8266  * Free existing address filters and optionally install new ones
8267  */
8268 static void perf_addr_filters_splice(struct perf_event *event,
8269                                      struct list_head *head)
8270 {
8271         unsigned long flags;
8272         LIST_HEAD(list);
8273
8274         if (!has_addr_filter(event))
8275                 return;
8276
8277         /* don't bother with children, they don't have their own filters */
8278         if (event->parent)
8279                 return;
8280
8281         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8282
8283         list_splice_init(&event->addr_filters.list, &list);
8284         if (head)
8285                 list_splice(head, &event->addr_filters.list);
8286
8287         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8288
8289         free_filters_list(&list);
8290 }
8291
8292 /*
8293  * Scan through mm's vmas and see if one of them matches the
8294  * @filter; if so, adjust filter's address range.
8295  * Called with mm::mmap_sem down for reading.
8296  */
8297 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8298                                             struct mm_struct *mm)
8299 {
8300         struct vm_area_struct *vma;
8301
8302         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8303                 struct file *file = vma->vm_file;
8304                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8305                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8306
8307                 if (!file)
8308                         continue;
8309
8310                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8311                         continue;
8312
8313                 return vma->vm_start;
8314         }
8315
8316         return 0;
8317 }
8318
8319 /*
8320  * Update event's address range filters based on the
8321  * task's existing mappings, if any.
8322  */
8323 static void perf_event_addr_filters_apply(struct perf_event *event)
8324 {
8325         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8326         struct task_struct *task = READ_ONCE(event->ctx->task);
8327         struct perf_addr_filter *filter;
8328         struct mm_struct *mm = NULL;
8329         unsigned int count = 0;
8330         unsigned long flags;
8331
8332         /*
8333          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8334          * will stop on the parent's child_mutex that our caller is also holding
8335          */
8336         if (task == TASK_TOMBSTONE)
8337                 return;
8338
8339         if (!ifh->nr_file_filters)
8340                 return;
8341
8342         mm = get_task_mm(event->ctx->task);
8343         if (!mm)
8344                 goto restart;
8345
8346         down_read(&mm->mmap_sem);
8347
8348         raw_spin_lock_irqsave(&ifh->lock, flags);
8349         list_for_each_entry(filter, &ifh->list, entry) {
8350                 event->addr_filters_offs[count] = 0;
8351
8352                 /*
8353                  * Adjust base offset if the filter is associated to a binary
8354                  * that needs to be mapped:
8355                  */
8356                 if (filter->inode)
8357                         event->addr_filters_offs[count] =
8358                                 perf_addr_filter_apply(filter, mm);
8359
8360                 count++;
8361         }
8362
8363         event->addr_filters_gen++;
8364         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8365
8366         up_read(&mm->mmap_sem);
8367
8368         mmput(mm);
8369
8370 restart:
8371         perf_event_stop(event, 1);
8372 }
8373
8374 /*
8375  * Address range filtering: limiting the data to certain
8376  * instruction address ranges. Filters are ioctl()ed to us from
8377  * userspace as ascii strings.
8378  *
8379  * Filter string format:
8380  *
8381  * ACTION RANGE_SPEC
8382  * where ACTION is one of the
8383  *  * "filter": limit the trace to this region
8384  *  * "start": start tracing from this address
8385  *  * "stop": stop tracing at this address/region;
8386  * RANGE_SPEC is
8387  *  * for kernel addresses: <start address>[/<size>]
8388  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8389  *
8390  * if <size> is not specified, the range is treated as a single address.
8391  */
8392 enum {
8393         IF_ACT_NONE = -1,
8394         IF_ACT_FILTER,
8395         IF_ACT_START,
8396         IF_ACT_STOP,
8397         IF_SRC_FILE,
8398         IF_SRC_KERNEL,
8399         IF_SRC_FILEADDR,
8400         IF_SRC_KERNELADDR,
8401 };
8402
8403 enum {
8404         IF_STATE_ACTION = 0,
8405         IF_STATE_SOURCE,
8406         IF_STATE_END,
8407 };
8408
8409 static const match_table_t if_tokens = {
8410         { IF_ACT_FILTER,        "filter" },
8411         { IF_ACT_START,         "start" },
8412         { IF_ACT_STOP,          "stop" },
8413         { IF_SRC_FILE,          "%u/%u@%s" },
8414         { IF_SRC_KERNEL,        "%u/%u" },
8415         { IF_SRC_FILEADDR,      "%u@%s" },
8416         { IF_SRC_KERNELADDR,    "%u" },
8417         { IF_ACT_NONE,          NULL },
8418 };
8419
8420 /*
8421  * Address filter string parser
8422  */
8423 static int
8424 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8425                              struct list_head *filters)
8426 {
8427         struct perf_addr_filter *filter = NULL;
8428         char *start, *orig, *filename = NULL;
8429         struct path path;
8430         substring_t args[MAX_OPT_ARGS];
8431         int state = IF_STATE_ACTION, token;
8432         unsigned int kernel = 0;
8433         int ret = -EINVAL;
8434
8435         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8436         if (!fstr)
8437                 return -ENOMEM;
8438
8439         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8440                 ret = -EINVAL;
8441
8442                 if (!*start)
8443                         continue;
8444
8445                 /* filter definition begins */
8446                 if (state == IF_STATE_ACTION) {
8447                         filter = perf_addr_filter_new(event, filters);
8448                         if (!filter)
8449                                 goto fail;
8450                 }
8451
8452                 token = match_token(start, if_tokens, args);
8453                 switch (token) {
8454                 case IF_ACT_FILTER:
8455                 case IF_ACT_START:
8456                         filter->filter = 1;
8457
8458                 case IF_ACT_STOP:
8459                         if (state != IF_STATE_ACTION)
8460                                 goto fail;
8461
8462                         state = IF_STATE_SOURCE;
8463                         break;
8464
8465                 case IF_SRC_KERNELADDR:
8466                 case IF_SRC_KERNEL:
8467                         kernel = 1;
8468
8469                 case IF_SRC_FILEADDR:
8470                 case IF_SRC_FILE:
8471                         if (state != IF_STATE_SOURCE)
8472                                 goto fail;
8473
8474                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8475                                 filter->range = 1;
8476
8477                         *args[0].to = 0;
8478                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8479                         if (ret)
8480                                 goto fail;
8481
8482                         if (filter->range) {
8483                                 *args[1].to = 0;
8484                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8485                                 if (ret)
8486                                         goto fail;
8487                         }
8488
8489                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8490                                 int fpos = filter->range ? 2 : 1;
8491
8492                                 filename = match_strdup(&args[fpos]);
8493                                 if (!filename) {
8494                                         ret = -ENOMEM;
8495                                         goto fail;
8496                                 }
8497                         }
8498
8499                         state = IF_STATE_END;
8500                         break;
8501
8502                 default:
8503                         goto fail;
8504                 }
8505
8506                 /*
8507                  * Filter definition is fully parsed, validate and install it.
8508                  * Make sure that it doesn't contradict itself or the event's
8509                  * attribute.
8510                  */
8511                 if (state == IF_STATE_END) {
8512                         ret = -EINVAL;
8513                         if (kernel && event->attr.exclude_kernel)
8514                                 goto fail;
8515
8516                         if (!kernel) {
8517                                 if (!filename)
8518                                         goto fail;
8519
8520                                 /*
8521                                  * For now, we only support file-based filters
8522                                  * in per-task events; doing so for CPU-wide
8523                                  * events requires additional context switching
8524                                  * trickery, since same object code will be
8525                                  * mapped at different virtual addresses in
8526                                  * different processes.
8527                                  */
8528                                 ret = -EOPNOTSUPP;
8529                                 if (!event->ctx->task)
8530                                         goto fail_free_name;
8531
8532                                 /* look up the path and grab its inode */
8533                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8534                                 if (ret)
8535                                         goto fail_free_name;
8536
8537                                 filter->inode = igrab(d_inode(path.dentry));
8538                                 path_put(&path);
8539                                 kfree(filename);
8540                                 filename = NULL;
8541
8542                                 ret = -EINVAL;
8543                                 if (!filter->inode ||
8544                                     !S_ISREG(filter->inode->i_mode))
8545                                         /* free_filters_list() will iput() */
8546                                         goto fail;
8547
8548                                 event->addr_filters.nr_file_filters++;
8549                         }
8550
8551                         /* ready to consume more filters */
8552                         state = IF_STATE_ACTION;
8553                         filter = NULL;
8554                 }
8555         }
8556
8557         if (state != IF_STATE_ACTION)
8558                 goto fail;
8559
8560         kfree(orig);
8561
8562         return 0;
8563
8564 fail_free_name:
8565         kfree(filename);
8566 fail:
8567         free_filters_list(filters);
8568         kfree(orig);
8569
8570         return ret;
8571 }
8572
8573 static int
8574 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8575 {
8576         LIST_HEAD(filters);
8577         int ret;
8578
8579         /*
8580          * Since this is called in perf_ioctl() path, we're already holding
8581          * ctx::mutex.
8582          */
8583         lockdep_assert_held(&event->ctx->mutex);
8584
8585         if (WARN_ON_ONCE(event->parent))
8586                 return -EINVAL;
8587
8588         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8589         if (ret)
8590                 goto fail_clear_files;
8591
8592         ret = event->pmu->addr_filters_validate(&filters);
8593         if (ret)
8594                 goto fail_free_filters;
8595
8596         /* remove existing filters, if any */
8597         perf_addr_filters_splice(event, &filters);
8598
8599         /* install new filters */
8600         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8601
8602         return ret;
8603
8604 fail_free_filters:
8605         free_filters_list(&filters);
8606
8607 fail_clear_files:
8608         event->addr_filters.nr_file_filters = 0;
8609
8610         return ret;
8611 }
8612
8613 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8614 {
8615         char *filter_str;
8616         int ret = -EINVAL;
8617
8618         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8619             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8620             !has_addr_filter(event))
8621                 return -EINVAL;
8622
8623         filter_str = strndup_user(arg, PAGE_SIZE);
8624         if (IS_ERR(filter_str))
8625                 return PTR_ERR(filter_str);
8626
8627         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8628             event->attr.type == PERF_TYPE_TRACEPOINT)
8629                 ret = ftrace_profile_set_filter(event, event->attr.config,
8630                                                 filter_str);
8631         else if (has_addr_filter(event))
8632                 ret = perf_event_set_addr_filter(event, filter_str);
8633
8634         kfree(filter_str);
8635         return ret;
8636 }
8637
8638 /*
8639  * hrtimer based swevent callback
8640  */
8641
8642 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8643 {
8644         enum hrtimer_restart ret = HRTIMER_RESTART;
8645         struct perf_sample_data data;
8646         struct pt_regs *regs;
8647         struct perf_event *event;
8648         u64 period;
8649
8650         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8651
8652         if (event->state != PERF_EVENT_STATE_ACTIVE)
8653                 return HRTIMER_NORESTART;
8654
8655         event->pmu->read(event);
8656
8657         perf_sample_data_init(&data, 0, event->hw.last_period);
8658         regs = get_irq_regs();
8659
8660         if (regs && !perf_exclude_event(event, regs)) {
8661                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8662                         if (__perf_event_overflow(event, 1, &data, regs))
8663                                 ret = HRTIMER_NORESTART;
8664         }
8665
8666         period = max_t(u64, 10000, event->hw.sample_period);
8667         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8668
8669         return ret;
8670 }
8671
8672 static void perf_swevent_start_hrtimer(struct perf_event *event)
8673 {
8674         struct hw_perf_event *hwc = &event->hw;
8675         s64 period;
8676
8677         if (!is_sampling_event(event))
8678                 return;
8679
8680         period = local64_read(&hwc->period_left);
8681         if (period) {
8682                 if (period < 0)
8683                         period = 10000;
8684
8685                 local64_set(&hwc->period_left, 0);
8686         } else {
8687                 period = max_t(u64, 10000, hwc->sample_period);
8688         }
8689         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8690                       HRTIMER_MODE_REL_PINNED);
8691 }
8692
8693 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8694 {
8695         struct hw_perf_event *hwc = &event->hw;
8696
8697         if (is_sampling_event(event)) {
8698                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8699                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8700
8701                 hrtimer_cancel(&hwc->hrtimer);
8702         }
8703 }
8704
8705 static void perf_swevent_init_hrtimer(struct perf_event *event)
8706 {
8707         struct hw_perf_event *hwc = &event->hw;
8708
8709         if (!is_sampling_event(event))
8710                 return;
8711
8712         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8713         hwc->hrtimer.function = perf_swevent_hrtimer;
8714
8715         /*
8716          * Since hrtimers have a fixed rate, we can do a static freq->period
8717          * mapping and avoid the whole period adjust feedback stuff.
8718          */
8719         if (event->attr.freq) {
8720                 long freq = event->attr.sample_freq;
8721
8722                 event->attr.sample_period = NSEC_PER_SEC / freq;
8723                 hwc->sample_period = event->attr.sample_period;
8724                 local64_set(&hwc->period_left, hwc->sample_period);
8725                 hwc->last_period = hwc->sample_period;
8726                 event->attr.freq = 0;
8727         }
8728 }
8729
8730 /*
8731  * Software event: cpu wall time clock
8732  */
8733
8734 static void cpu_clock_event_update(struct perf_event *event)
8735 {
8736         s64 prev;
8737         u64 now;
8738
8739         now = local_clock();
8740         prev = local64_xchg(&event->hw.prev_count, now);
8741         local64_add(now - prev, &event->count);
8742 }
8743
8744 static void cpu_clock_event_start(struct perf_event *event, int flags)
8745 {
8746         local64_set(&event->hw.prev_count, local_clock());
8747         perf_swevent_start_hrtimer(event);
8748 }
8749
8750 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8751 {
8752         perf_swevent_cancel_hrtimer(event);
8753         cpu_clock_event_update(event);
8754 }
8755
8756 static int cpu_clock_event_add(struct perf_event *event, int flags)
8757 {
8758         if (flags & PERF_EF_START)
8759                 cpu_clock_event_start(event, flags);
8760         perf_event_update_userpage(event);
8761
8762         return 0;
8763 }
8764
8765 static void cpu_clock_event_del(struct perf_event *event, int flags)
8766 {
8767         cpu_clock_event_stop(event, flags);
8768 }
8769
8770 static void cpu_clock_event_read(struct perf_event *event)
8771 {
8772         cpu_clock_event_update(event);
8773 }
8774
8775 static int cpu_clock_event_init(struct perf_event *event)
8776 {
8777         if (event->attr.type != PERF_TYPE_SOFTWARE)
8778                 return -ENOENT;
8779
8780         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8781                 return -ENOENT;
8782
8783         /*
8784          * no branch sampling for software events
8785          */
8786         if (has_branch_stack(event))
8787                 return -EOPNOTSUPP;
8788
8789         perf_swevent_init_hrtimer(event);
8790
8791         return 0;
8792 }
8793
8794 static struct pmu perf_cpu_clock = {
8795         .task_ctx_nr    = perf_sw_context,
8796
8797         .capabilities   = PERF_PMU_CAP_NO_NMI,
8798
8799         .event_init     = cpu_clock_event_init,
8800         .add            = cpu_clock_event_add,
8801         .del            = cpu_clock_event_del,
8802         .start          = cpu_clock_event_start,
8803         .stop           = cpu_clock_event_stop,
8804         .read           = cpu_clock_event_read,
8805 };
8806
8807 /*
8808  * Software event: task time clock
8809  */
8810
8811 static void task_clock_event_update(struct perf_event *event, u64 now)
8812 {
8813         u64 prev;
8814         s64 delta;
8815
8816         prev = local64_xchg(&event->hw.prev_count, now);
8817         delta = now - prev;
8818         local64_add(delta, &event->count);
8819 }
8820
8821 static void task_clock_event_start(struct perf_event *event, int flags)
8822 {
8823         local64_set(&event->hw.prev_count, event->ctx->time);
8824         perf_swevent_start_hrtimer(event);
8825 }
8826
8827 static void task_clock_event_stop(struct perf_event *event, int flags)
8828 {
8829         perf_swevent_cancel_hrtimer(event);
8830         task_clock_event_update(event, event->ctx->time);
8831 }
8832
8833 static int task_clock_event_add(struct perf_event *event, int flags)
8834 {
8835         if (flags & PERF_EF_START)
8836                 task_clock_event_start(event, flags);
8837         perf_event_update_userpage(event);
8838
8839         return 0;
8840 }
8841
8842 static void task_clock_event_del(struct perf_event *event, int flags)
8843 {
8844         task_clock_event_stop(event, PERF_EF_UPDATE);
8845 }
8846
8847 static void task_clock_event_read(struct perf_event *event)
8848 {
8849         u64 now = perf_clock();
8850         u64 delta = now - event->ctx->timestamp;
8851         u64 time = event->ctx->time + delta;
8852
8853         task_clock_event_update(event, time);
8854 }
8855
8856 static int task_clock_event_init(struct perf_event *event)
8857 {
8858         if (event->attr.type != PERF_TYPE_SOFTWARE)
8859                 return -ENOENT;
8860
8861         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8862                 return -ENOENT;
8863
8864         /*
8865          * no branch sampling for software events
8866          */
8867         if (has_branch_stack(event))
8868                 return -EOPNOTSUPP;
8869
8870         perf_swevent_init_hrtimer(event);
8871
8872         return 0;
8873 }
8874
8875 static struct pmu perf_task_clock = {
8876         .task_ctx_nr    = perf_sw_context,
8877
8878         .capabilities   = PERF_PMU_CAP_NO_NMI,
8879
8880         .event_init     = task_clock_event_init,
8881         .add            = task_clock_event_add,
8882         .del            = task_clock_event_del,
8883         .start          = task_clock_event_start,
8884         .stop           = task_clock_event_stop,
8885         .read           = task_clock_event_read,
8886 };
8887
8888 static void perf_pmu_nop_void(struct pmu *pmu)
8889 {
8890 }
8891
8892 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8893 {
8894 }
8895
8896 static int perf_pmu_nop_int(struct pmu *pmu)
8897 {
8898         return 0;
8899 }
8900
8901 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8902
8903 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8904 {
8905         __this_cpu_write(nop_txn_flags, flags);
8906
8907         if (flags & ~PERF_PMU_TXN_ADD)
8908                 return;
8909
8910         perf_pmu_disable(pmu);
8911 }
8912
8913 static int perf_pmu_commit_txn(struct pmu *pmu)
8914 {
8915         unsigned int flags = __this_cpu_read(nop_txn_flags);
8916
8917         __this_cpu_write(nop_txn_flags, 0);
8918
8919         if (flags & ~PERF_PMU_TXN_ADD)
8920                 return 0;
8921
8922         perf_pmu_enable(pmu);
8923         return 0;
8924 }
8925
8926 static void perf_pmu_cancel_txn(struct pmu *pmu)
8927 {
8928         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8929
8930         __this_cpu_write(nop_txn_flags, 0);
8931
8932         if (flags & ~PERF_PMU_TXN_ADD)
8933                 return;
8934
8935         perf_pmu_enable(pmu);
8936 }
8937
8938 static int perf_event_idx_default(struct perf_event *event)
8939 {
8940         return 0;
8941 }
8942
8943 /*
8944  * Ensures all contexts with the same task_ctx_nr have the same
8945  * pmu_cpu_context too.
8946  */
8947 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8948 {
8949         struct pmu *pmu;
8950
8951         if (ctxn < 0)
8952                 return NULL;
8953
8954         list_for_each_entry(pmu, &pmus, entry) {
8955                 if (pmu->task_ctx_nr == ctxn)
8956                         return pmu->pmu_cpu_context;
8957         }
8958
8959         return NULL;
8960 }
8961
8962 static void free_pmu_context(struct pmu *pmu)
8963 {
8964         /*
8965          * Static contexts such as perf_sw_context have a global lifetime
8966          * and may be shared between different PMUs. Avoid freeing them
8967          * when a single PMU is going away.
8968          */
8969         if (pmu->task_ctx_nr > perf_invalid_context)
8970                 return;
8971
8972         mutex_lock(&pmus_lock);
8973         free_percpu(pmu->pmu_cpu_context);
8974         mutex_unlock(&pmus_lock);
8975 }
8976
8977 /*
8978  * Let userspace know that this PMU supports address range filtering:
8979  */
8980 static ssize_t nr_addr_filters_show(struct device *dev,
8981                                     struct device_attribute *attr,
8982                                     char *page)
8983 {
8984         struct pmu *pmu = dev_get_drvdata(dev);
8985
8986         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8987 }
8988 DEVICE_ATTR_RO(nr_addr_filters);
8989
8990 static struct idr pmu_idr;
8991
8992 static ssize_t
8993 type_show(struct device *dev, struct device_attribute *attr, char *page)
8994 {
8995         struct pmu *pmu = dev_get_drvdata(dev);
8996
8997         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8998 }
8999 static DEVICE_ATTR_RO(type);
9000
9001 static ssize_t
9002 perf_event_mux_interval_ms_show(struct device *dev,
9003                                 struct device_attribute *attr,
9004                                 char *page)
9005 {
9006         struct pmu *pmu = dev_get_drvdata(dev);
9007
9008         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9009 }
9010
9011 static DEFINE_MUTEX(mux_interval_mutex);
9012
9013 static ssize_t
9014 perf_event_mux_interval_ms_store(struct device *dev,
9015                                  struct device_attribute *attr,
9016                                  const char *buf, size_t count)
9017 {
9018         struct pmu *pmu = dev_get_drvdata(dev);
9019         int timer, cpu, ret;
9020
9021         ret = kstrtoint(buf, 0, &timer);
9022         if (ret)
9023                 return ret;
9024
9025         if (timer < 1)
9026                 return -EINVAL;
9027
9028         /* same value, noting to do */
9029         if (timer == pmu->hrtimer_interval_ms)
9030                 return count;
9031
9032         mutex_lock(&mux_interval_mutex);
9033         pmu->hrtimer_interval_ms = timer;
9034
9035         /* update all cpuctx for this PMU */
9036         cpus_read_lock();
9037         for_each_online_cpu(cpu) {
9038                 struct perf_cpu_context *cpuctx;
9039                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9040                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9041
9042                 cpu_function_call(cpu,
9043                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9044         }
9045         cpus_read_unlock();
9046         mutex_unlock(&mux_interval_mutex);
9047
9048         return count;
9049 }
9050 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9051
9052 static struct attribute *pmu_dev_attrs[] = {
9053         &dev_attr_type.attr,
9054         &dev_attr_perf_event_mux_interval_ms.attr,
9055         NULL,
9056 };
9057 ATTRIBUTE_GROUPS(pmu_dev);
9058
9059 static int pmu_bus_running;
9060 static struct bus_type pmu_bus = {
9061         .name           = "event_source",
9062         .dev_groups     = pmu_dev_groups,
9063 };
9064
9065 static void pmu_dev_release(struct device *dev)
9066 {
9067         kfree(dev);
9068 }
9069
9070 static int pmu_dev_alloc(struct pmu *pmu)
9071 {
9072         int ret = -ENOMEM;
9073
9074         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9075         if (!pmu->dev)
9076                 goto out;
9077
9078         pmu->dev->groups = pmu->attr_groups;
9079         device_initialize(pmu->dev);
9080         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9081         if (ret)
9082                 goto free_dev;
9083
9084         dev_set_drvdata(pmu->dev, pmu);
9085         pmu->dev->bus = &pmu_bus;
9086         pmu->dev->release = pmu_dev_release;
9087         ret = device_add(pmu->dev);
9088         if (ret)
9089                 goto free_dev;
9090
9091         /* For PMUs with address filters, throw in an extra attribute: */
9092         if (pmu->nr_addr_filters)
9093                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9094
9095         if (ret)
9096                 goto del_dev;
9097
9098 out:
9099         return ret;
9100
9101 del_dev:
9102         device_del(pmu->dev);
9103
9104 free_dev:
9105         put_device(pmu->dev);
9106         goto out;
9107 }
9108
9109 static struct lock_class_key cpuctx_mutex;
9110 static struct lock_class_key cpuctx_lock;
9111
9112 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9113 {
9114         int cpu, ret;
9115
9116         mutex_lock(&pmus_lock);
9117         ret = -ENOMEM;
9118         pmu->pmu_disable_count = alloc_percpu(int);
9119         if (!pmu->pmu_disable_count)
9120                 goto unlock;
9121
9122         pmu->type = -1;
9123         if (!name)
9124                 goto skip_type;
9125         pmu->name = name;
9126
9127         if (type < 0) {
9128                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9129                 if (type < 0) {
9130                         ret = type;
9131                         goto free_pdc;
9132                 }
9133         }
9134         pmu->type = type;
9135
9136         if (pmu_bus_running) {
9137                 ret = pmu_dev_alloc(pmu);
9138                 if (ret)
9139                         goto free_idr;
9140         }
9141
9142 skip_type:
9143         if (pmu->task_ctx_nr == perf_hw_context) {
9144                 static int hw_context_taken = 0;
9145
9146                 /*
9147                  * Other than systems with heterogeneous CPUs, it never makes
9148                  * sense for two PMUs to share perf_hw_context. PMUs which are
9149                  * uncore must use perf_invalid_context.
9150                  */
9151                 if (WARN_ON_ONCE(hw_context_taken &&
9152                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9153                         pmu->task_ctx_nr = perf_invalid_context;
9154
9155                 hw_context_taken = 1;
9156         }
9157
9158         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9159         if (pmu->pmu_cpu_context)
9160                 goto got_cpu_context;
9161
9162         ret = -ENOMEM;
9163         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9164         if (!pmu->pmu_cpu_context)
9165                 goto free_dev;
9166
9167         for_each_possible_cpu(cpu) {
9168                 struct perf_cpu_context *cpuctx;
9169
9170                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9171                 __perf_event_init_context(&cpuctx->ctx);
9172                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9173                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9174                 cpuctx->ctx.pmu = pmu;
9175                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9176
9177                 __perf_mux_hrtimer_init(cpuctx, cpu);
9178         }
9179
9180 got_cpu_context:
9181         if (!pmu->start_txn) {
9182                 if (pmu->pmu_enable) {
9183                         /*
9184                          * If we have pmu_enable/pmu_disable calls, install
9185                          * transaction stubs that use that to try and batch
9186                          * hardware accesses.
9187                          */
9188                         pmu->start_txn  = perf_pmu_start_txn;
9189                         pmu->commit_txn = perf_pmu_commit_txn;
9190                         pmu->cancel_txn = perf_pmu_cancel_txn;
9191                 } else {
9192                         pmu->start_txn  = perf_pmu_nop_txn;
9193                         pmu->commit_txn = perf_pmu_nop_int;
9194                         pmu->cancel_txn = perf_pmu_nop_void;
9195                 }
9196         }
9197
9198         if (!pmu->pmu_enable) {
9199                 pmu->pmu_enable  = perf_pmu_nop_void;
9200                 pmu->pmu_disable = perf_pmu_nop_void;
9201         }
9202
9203         if (!pmu->event_idx)
9204                 pmu->event_idx = perf_event_idx_default;
9205
9206         list_add_rcu(&pmu->entry, &pmus);
9207         atomic_set(&pmu->exclusive_cnt, 0);
9208         ret = 0;
9209 unlock:
9210         mutex_unlock(&pmus_lock);
9211
9212         return ret;
9213
9214 free_dev:
9215         device_del(pmu->dev);
9216         put_device(pmu->dev);
9217
9218 free_idr:
9219         if (pmu->type >= PERF_TYPE_MAX)
9220                 idr_remove(&pmu_idr, pmu->type);
9221
9222 free_pdc:
9223         free_percpu(pmu->pmu_disable_count);
9224         goto unlock;
9225 }
9226 EXPORT_SYMBOL_GPL(perf_pmu_register);
9227
9228 void perf_pmu_unregister(struct pmu *pmu)
9229 {
9230         int remove_device;
9231
9232         mutex_lock(&pmus_lock);
9233         remove_device = pmu_bus_running;
9234         list_del_rcu(&pmu->entry);
9235         mutex_unlock(&pmus_lock);
9236
9237         /*
9238          * We dereference the pmu list under both SRCU and regular RCU, so
9239          * synchronize against both of those.
9240          */
9241         synchronize_srcu(&pmus_srcu);
9242         synchronize_rcu();
9243
9244         free_percpu(pmu->pmu_disable_count);
9245         if (pmu->type >= PERF_TYPE_MAX)
9246                 idr_remove(&pmu_idr, pmu->type);
9247         if (remove_device) {
9248                 if (pmu->nr_addr_filters)
9249                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9250                 device_del(pmu->dev);
9251                 put_device(pmu->dev);
9252         }
9253         free_pmu_context(pmu);
9254 }
9255 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9256
9257 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9258 {
9259         struct perf_event_context *ctx = NULL;
9260         int ret;
9261
9262         if (!try_module_get(pmu->module))
9263                 return -ENODEV;
9264
9265         if (event->group_leader != event) {
9266                 /*
9267                  * This ctx->mutex can nest when we're called through
9268                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9269                  */
9270                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9271                                                  SINGLE_DEPTH_NESTING);
9272                 BUG_ON(!ctx);
9273         }
9274
9275         event->pmu = pmu;
9276         ret = pmu->event_init(event);
9277
9278         if (ctx)
9279                 perf_event_ctx_unlock(event->group_leader, ctx);
9280
9281         if (ret)
9282                 module_put(pmu->module);
9283
9284         return ret;
9285 }
9286
9287 static struct pmu *perf_init_event(struct perf_event *event)
9288 {
9289         struct pmu *pmu;
9290         int idx;
9291         int ret;
9292
9293         idx = srcu_read_lock(&pmus_srcu);
9294
9295         /* Try parent's PMU first: */
9296         if (event->parent && event->parent->pmu) {
9297                 pmu = event->parent->pmu;
9298                 ret = perf_try_init_event(pmu, event);
9299                 if (!ret)
9300                         goto unlock;
9301         }
9302
9303         rcu_read_lock();
9304         pmu = idr_find(&pmu_idr, event->attr.type);
9305         rcu_read_unlock();
9306         if (pmu) {
9307                 ret = perf_try_init_event(pmu, event);
9308                 if (ret)
9309                         pmu = ERR_PTR(ret);
9310                 goto unlock;
9311         }
9312
9313         list_for_each_entry_rcu(pmu, &pmus, entry) {
9314                 ret = perf_try_init_event(pmu, event);
9315                 if (!ret)
9316                         goto unlock;
9317
9318                 if (ret != -ENOENT) {
9319                         pmu = ERR_PTR(ret);
9320                         goto unlock;
9321                 }
9322         }
9323         pmu = ERR_PTR(-ENOENT);
9324 unlock:
9325         srcu_read_unlock(&pmus_srcu, idx);
9326
9327         return pmu;
9328 }
9329
9330 static void attach_sb_event(struct perf_event *event)
9331 {
9332         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9333
9334         raw_spin_lock(&pel->lock);
9335         list_add_rcu(&event->sb_list, &pel->list);
9336         raw_spin_unlock(&pel->lock);
9337 }
9338
9339 /*
9340  * We keep a list of all !task (and therefore per-cpu) events
9341  * that need to receive side-band records.
9342  *
9343  * This avoids having to scan all the various PMU per-cpu contexts
9344  * looking for them.
9345  */
9346 static void account_pmu_sb_event(struct perf_event *event)
9347 {
9348         if (is_sb_event(event))
9349                 attach_sb_event(event);
9350 }
9351
9352 static void account_event_cpu(struct perf_event *event, int cpu)
9353 {
9354         if (event->parent)
9355                 return;
9356
9357         if (is_cgroup_event(event))
9358                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9359 }
9360
9361 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9362 static void account_freq_event_nohz(void)
9363 {
9364 #ifdef CONFIG_NO_HZ_FULL
9365         /* Lock so we don't race with concurrent unaccount */
9366         spin_lock(&nr_freq_lock);
9367         if (atomic_inc_return(&nr_freq_events) == 1)
9368                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9369         spin_unlock(&nr_freq_lock);
9370 #endif
9371 }
9372
9373 static void account_freq_event(void)
9374 {
9375         if (tick_nohz_full_enabled())
9376                 account_freq_event_nohz();
9377         else
9378                 atomic_inc(&nr_freq_events);
9379 }
9380
9381
9382 static void account_event(struct perf_event *event)
9383 {
9384         bool inc = false;
9385
9386         if (event->parent)
9387                 return;
9388
9389         if (event->attach_state & PERF_ATTACH_TASK)
9390                 inc = true;
9391         if (event->attr.mmap || event->attr.mmap_data)
9392                 atomic_inc(&nr_mmap_events);
9393         if (event->attr.comm)
9394                 atomic_inc(&nr_comm_events);
9395         if (event->attr.namespaces)
9396                 atomic_inc(&nr_namespaces_events);
9397         if (event->attr.task)
9398                 atomic_inc(&nr_task_events);
9399         if (event->attr.freq)
9400                 account_freq_event();
9401         if (event->attr.context_switch) {
9402                 atomic_inc(&nr_switch_events);
9403                 inc = true;
9404         }
9405         if (has_branch_stack(event))
9406                 inc = true;
9407         if (is_cgroup_event(event))
9408                 inc = true;
9409
9410         if (inc) {
9411                 if (atomic_inc_not_zero(&perf_sched_count))
9412                         goto enabled;
9413
9414                 mutex_lock(&perf_sched_mutex);
9415                 if (!atomic_read(&perf_sched_count)) {
9416                         static_branch_enable(&perf_sched_events);
9417                         /*
9418                          * Guarantee that all CPUs observe they key change and
9419                          * call the perf scheduling hooks before proceeding to
9420                          * install events that need them.
9421                          */
9422                         synchronize_sched();
9423                 }
9424                 /*
9425                  * Now that we have waited for the sync_sched(), allow further
9426                  * increments to by-pass the mutex.
9427                  */
9428                 atomic_inc(&perf_sched_count);
9429                 mutex_unlock(&perf_sched_mutex);
9430         }
9431 enabled:
9432
9433         account_event_cpu(event, event->cpu);
9434
9435         account_pmu_sb_event(event);
9436 }
9437
9438 /*
9439  * Allocate and initialize a event structure
9440  */
9441 static struct perf_event *
9442 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9443                  struct task_struct *task,
9444                  struct perf_event *group_leader,
9445                  struct perf_event *parent_event,
9446                  perf_overflow_handler_t overflow_handler,
9447                  void *context, int cgroup_fd)
9448 {
9449         struct pmu *pmu;
9450         struct perf_event *event;
9451         struct hw_perf_event *hwc;
9452         long err = -EINVAL;
9453
9454         if ((unsigned)cpu >= nr_cpu_ids) {
9455                 if (!task || cpu != -1)
9456                         return ERR_PTR(-EINVAL);
9457         }
9458
9459         event = kzalloc(sizeof(*event), GFP_KERNEL);
9460         if (!event)
9461                 return ERR_PTR(-ENOMEM);
9462
9463         /*
9464          * Single events are their own group leaders, with an
9465          * empty sibling list:
9466          */
9467         if (!group_leader)
9468                 group_leader = event;
9469
9470         mutex_init(&event->child_mutex);
9471         INIT_LIST_HEAD(&event->child_list);
9472
9473         INIT_LIST_HEAD(&event->group_entry);
9474         INIT_LIST_HEAD(&event->event_entry);
9475         INIT_LIST_HEAD(&event->sibling_list);
9476         INIT_LIST_HEAD(&event->rb_entry);
9477         INIT_LIST_HEAD(&event->active_entry);
9478         INIT_LIST_HEAD(&event->addr_filters.list);
9479         INIT_HLIST_NODE(&event->hlist_entry);
9480
9481
9482         init_waitqueue_head(&event->waitq);
9483         init_irq_work(&event->pending, perf_pending_event);
9484
9485         mutex_init(&event->mmap_mutex);
9486         raw_spin_lock_init(&event->addr_filters.lock);
9487
9488         atomic_long_set(&event->refcount, 1);
9489         event->cpu              = cpu;
9490         event->attr             = *attr;
9491         event->group_leader     = group_leader;
9492         event->pmu              = NULL;
9493         event->oncpu            = -1;
9494
9495         event->parent           = parent_event;
9496
9497         event->ns               = get_pid_ns(task_active_pid_ns(current));
9498         event->id               = atomic64_inc_return(&perf_event_id);
9499
9500         event->state            = PERF_EVENT_STATE_INACTIVE;
9501
9502         if (task) {
9503                 event->attach_state = PERF_ATTACH_TASK;
9504                 /*
9505                  * XXX pmu::event_init needs to know what task to account to
9506                  * and we cannot use the ctx information because we need the
9507                  * pmu before we get a ctx.
9508                  */
9509                 event->hw.target = task;
9510         }
9511
9512         event->clock = &local_clock;
9513         if (parent_event)
9514                 event->clock = parent_event->clock;
9515
9516         if (!overflow_handler && parent_event) {
9517                 overflow_handler = parent_event->overflow_handler;
9518                 context = parent_event->overflow_handler_context;
9519 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9520                 if (overflow_handler == bpf_overflow_handler) {
9521                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9522
9523                         if (IS_ERR(prog)) {
9524                                 err = PTR_ERR(prog);
9525                                 goto err_ns;
9526                         }
9527                         event->prog = prog;
9528                         event->orig_overflow_handler =
9529                                 parent_event->orig_overflow_handler;
9530                 }
9531 #endif
9532         }
9533
9534         if (overflow_handler) {
9535                 event->overflow_handler = overflow_handler;
9536                 event->overflow_handler_context = context;
9537         } else if (is_write_backward(event)){
9538                 event->overflow_handler = perf_event_output_backward;
9539                 event->overflow_handler_context = NULL;
9540         } else {
9541                 event->overflow_handler = perf_event_output_forward;
9542                 event->overflow_handler_context = NULL;
9543         }
9544
9545         perf_event__state_init(event);
9546
9547         pmu = NULL;
9548
9549         hwc = &event->hw;
9550         hwc->sample_period = attr->sample_period;
9551         if (attr->freq && attr->sample_freq)
9552                 hwc->sample_period = 1;
9553         hwc->last_period = hwc->sample_period;
9554
9555         local64_set(&hwc->period_left, hwc->sample_period);
9556
9557         /*
9558          * We currently do not support PERF_SAMPLE_READ on inherited events.
9559          * See perf_output_read().
9560          */
9561         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9562                 goto err_ns;
9563
9564         if (!has_branch_stack(event))
9565                 event->attr.branch_sample_type = 0;
9566
9567         if (cgroup_fd != -1) {
9568                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9569                 if (err)
9570                         goto err_ns;
9571         }
9572
9573         pmu = perf_init_event(event);
9574         if (IS_ERR(pmu)) {
9575                 err = PTR_ERR(pmu);
9576                 goto err_ns;
9577         }
9578
9579         err = exclusive_event_init(event);
9580         if (err)
9581                 goto err_pmu;
9582
9583         if (has_addr_filter(event)) {
9584                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9585                                                    sizeof(unsigned long),
9586                                                    GFP_KERNEL);
9587                 if (!event->addr_filters_offs) {
9588                         err = -ENOMEM;
9589                         goto err_per_task;
9590                 }
9591
9592                 /* force hw sync on the address filters */
9593                 event->addr_filters_gen = 1;
9594         }
9595
9596         if (!event->parent) {
9597                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9598                         err = get_callchain_buffers(attr->sample_max_stack);
9599                         if (err)
9600                                 goto err_addr_filters;
9601                 }
9602         }
9603
9604         /* symmetric to unaccount_event() in _free_event() */
9605         account_event(event);
9606
9607         return event;
9608
9609 err_addr_filters:
9610         kfree(event->addr_filters_offs);
9611
9612 err_per_task:
9613         exclusive_event_destroy(event);
9614
9615 err_pmu:
9616         if (event->destroy)
9617                 event->destroy(event);
9618         module_put(pmu->module);
9619 err_ns:
9620         if (is_cgroup_event(event))
9621                 perf_detach_cgroup(event);
9622         if (event->ns)
9623                 put_pid_ns(event->ns);
9624         kfree(event);
9625
9626         return ERR_PTR(err);
9627 }
9628
9629 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9630                           struct perf_event_attr *attr)
9631 {
9632         u32 size;
9633         int ret;
9634
9635         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9636                 return -EFAULT;
9637
9638         /*
9639          * zero the full structure, so that a short copy will be nice.
9640          */
9641         memset(attr, 0, sizeof(*attr));
9642
9643         ret = get_user(size, &uattr->size);
9644         if (ret)
9645                 return ret;
9646
9647         if (size > PAGE_SIZE)   /* silly large */
9648                 goto err_size;
9649
9650         if (!size)              /* abi compat */
9651                 size = PERF_ATTR_SIZE_VER0;
9652
9653         if (size < PERF_ATTR_SIZE_VER0)
9654                 goto err_size;
9655
9656         /*
9657          * If we're handed a bigger struct than we know of,
9658          * ensure all the unknown bits are 0 - i.e. new
9659          * user-space does not rely on any kernel feature
9660          * extensions we dont know about yet.
9661          */
9662         if (size > sizeof(*attr)) {
9663                 unsigned char __user *addr;
9664                 unsigned char __user *end;
9665                 unsigned char val;
9666
9667                 addr = (void __user *)uattr + sizeof(*attr);
9668                 end  = (void __user *)uattr + size;
9669
9670                 for (; addr < end; addr++) {
9671                         ret = get_user(val, addr);
9672                         if (ret)
9673                                 return ret;
9674                         if (val)
9675                                 goto err_size;
9676                 }
9677                 size = sizeof(*attr);
9678         }
9679
9680         ret = copy_from_user(attr, uattr, size);
9681         if (ret)
9682                 return -EFAULT;
9683
9684         attr->size = size;
9685
9686         if (attr->__reserved_1)
9687                 return -EINVAL;
9688
9689         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9690                 return -EINVAL;
9691
9692         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9693                 return -EINVAL;
9694
9695         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9696                 u64 mask = attr->branch_sample_type;
9697
9698                 /* only using defined bits */
9699                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9700                         return -EINVAL;
9701
9702                 /* at least one branch bit must be set */
9703                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9704                         return -EINVAL;
9705
9706                 /* propagate priv level, when not set for branch */
9707                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9708
9709                         /* exclude_kernel checked on syscall entry */
9710                         if (!attr->exclude_kernel)
9711                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9712
9713                         if (!attr->exclude_user)
9714                                 mask |= PERF_SAMPLE_BRANCH_USER;
9715
9716                         if (!attr->exclude_hv)
9717                                 mask |= PERF_SAMPLE_BRANCH_HV;
9718                         /*
9719                          * adjust user setting (for HW filter setup)
9720                          */
9721                         attr->branch_sample_type = mask;
9722                 }
9723                 /* privileged levels capture (kernel, hv): check permissions */
9724                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9725                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9726                         return -EACCES;
9727         }
9728
9729         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9730                 ret = perf_reg_validate(attr->sample_regs_user);
9731                 if (ret)
9732                         return ret;
9733         }
9734
9735         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9736                 if (!arch_perf_have_user_stack_dump())
9737                         return -ENOSYS;
9738
9739                 /*
9740                  * We have __u32 type for the size, but so far
9741                  * we can only use __u16 as maximum due to the
9742                  * __u16 sample size limit.
9743                  */
9744                 if (attr->sample_stack_user >= USHRT_MAX)
9745                         ret = -EINVAL;
9746                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9747                         ret = -EINVAL;
9748         }
9749
9750         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9751                 ret = perf_reg_validate(attr->sample_regs_intr);
9752 out:
9753         return ret;
9754
9755 err_size:
9756         put_user(sizeof(*attr), &uattr->size);
9757         ret = -E2BIG;
9758         goto out;
9759 }
9760
9761 static int
9762 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9763 {
9764         struct ring_buffer *rb = NULL;
9765         int ret = -EINVAL;
9766
9767         if (!output_event)
9768                 goto set;
9769
9770         /* don't allow circular references */
9771         if (event == output_event)
9772                 goto out;
9773
9774         /*
9775          * Don't allow cross-cpu buffers
9776          */
9777         if (output_event->cpu != event->cpu)
9778                 goto out;
9779
9780         /*
9781          * If its not a per-cpu rb, it must be the same task.
9782          */
9783         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9784                 goto out;
9785
9786         /*
9787          * Mixing clocks in the same buffer is trouble you don't need.
9788          */
9789         if (output_event->clock != event->clock)
9790                 goto out;
9791
9792         /*
9793          * Either writing ring buffer from beginning or from end.
9794          * Mixing is not allowed.
9795          */
9796         if (is_write_backward(output_event) != is_write_backward(event))
9797                 goto out;
9798
9799         /*
9800          * If both events generate aux data, they must be on the same PMU
9801          */
9802         if (has_aux(event) && has_aux(output_event) &&
9803             event->pmu != output_event->pmu)
9804                 goto out;
9805
9806 set:
9807         mutex_lock(&event->mmap_mutex);
9808         /* Can't redirect output if we've got an active mmap() */
9809         if (atomic_read(&event->mmap_count))
9810                 goto unlock;
9811
9812         if (output_event) {
9813                 /* get the rb we want to redirect to */
9814                 rb = ring_buffer_get(output_event);
9815                 if (!rb)
9816                         goto unlock;
9817         }
9818
9819         ring_buffer_attach(event, rb);
9820
9821         ret = 0;
9822 unlock:
9823         mutex_unlock(&event->mmap_mutex);
9824
9825 out:
9826         return ret;
9827 }
9828
9829 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9830 {
9831         if (b < a)
9832                 swap(a, b);
9833
9834         mutex_lock(a);
9835         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9836 }
9837
9838 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9839 {
9840         bool nmi_safe = false;
9841
9842         switch (clk_id) {
9843         case CLOCK_MONOTONIC:
9844                 event->clock = &ktime_get_mono_fast_ns;
9845                 nmi_safe = true;
9846                 break;
9847
9848         case CLOCK_MONOTONIC_RAW:
9849                 event->clock = &ktime_get_raw_fast_ns;
9850                 nmi_safe = true;
9851                 break;
9852
9853         case CLOCK_REALTIME:
9854                 event->clock = &ktime_get_real_ns;
9855                 break;
9856
9857         case CLOCK_BOOTTIME:
9858                 event->clock = &ktime_get_boot_ns;
9859                 break;
9860
9861         case CLOCK_TAI:
9862                 event->clock = &ktime_get_tai_ns;
9863                 break;
9864
9865         default:
9866                 return -EINVAL;
9867         }
9868
9869         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9870                 return -EINVAL;
9871
9872         return 0;
9873 }
9874
9875 /*
9876  * Variation on perf_event_ctx_lock_nested(), except we take two context
9877  * mutexes.
9878  */
9879 static struct perf_event_context *
9880 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9881                              struct perf_event_context *ctx)
9882 {
9883         struct perf_event_context *gctx;
9884
9885 again:
9886         rcu_read_lock();
9887         gctx = READ_ONCE(group_leader->ctx);
9888         if (!atomic_inc_not_zero(&gctx->refcount)) {
9889                 rcu_read_unlock();
9890                 goto again;
9891         }
9892         rcu_read_unlock();
9893
9894         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9895
9896         if (group_leader->ctx != gctx) {
9897                 mutex_unlock(&ctx->mutex);
9898                 mutex_unlock(&gctx->mutex);
9899                 put_ctx(gctx);
9900                 goto again;
9901         }
9902
9903         return gctx;
9904 }
9905
9906 /**
9907  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9908  *
9909  * @attr_uptr:  event_id type attributes for monitoring/sampling
9910  * @pid:                target pid
9911  * @cpu:                target cpu
9912  * @group_fd:           group leader event fd
9913  */
9914 SYSCALL_DEFINE5(perf_event_open,
9915                 struct perf_event_attr __user *, attr_uptr,
9916                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9917 {
9918         struct perf_event *group_leader = NULL, *output_event = NULL;
9919         struct perf_event *event, *sibling;
9920         struct perf_event_attr attr;
9921         struct perf_event_context *ctx, *uninitialized_var(gctx);
9922         struct file *event_file = NULL;
9923         struct fd group = {NULL, 0};
9924         struct task_struct *task = NULL;
9925         struct pmu *pmu;
9926         int event_fd;
9927         int move_group = 0;
9928         int err;
9929         int f_flags = O_RDWR;
9930         int cgroup_fd = -1;
9931
9932         /* for future expandability... */
9933         if (flags & ~PERF_FLAG_ALL)
9934                 return -EINVAL;
9935
9936         err = perf_copy_attr(attr_uptr, &attr);
9937         if (err)
9938                 return err;
9939
9940         if (!attr.exclude_kernel) {
9941                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9942                         return -EACCES;
9943         }
9944
9945         if (attr.namespaces) {
9946                 if (!capable(CAP_SYS_ADMIN))
9947                         return -EACCES;
9948         }
9949
9950         if (attr.freq) {
9951                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9952                         return -EINVAL;
9953         } else {
9954                 if (attr.sample_period & (1ULL << 63))
9955                         return -EINVAL;
9956         }
9957
9958         /* Only privileged users can get physical addresses */
9959         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9960             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9961                 return -EACCES;
9962
9963         if (!attr.sample_max_stack)
9964                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9965
9966         /*
9967          * In cgroup mode, the pid argument is used to pass the fd
9968          * opened to the cgroup directory in cgroupfs. The cpu argument
9969          * designates the cpu on which to monitor threads from that
9970          * cgroup.
9971          */
9972         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9973                 return -EINVAL;
9974
9975         if (flags & PERF_FLAG_FD_CLOEXEC)
9976                 f_flags |= O_CLOEXEC;
9977
9978         event_fd = get_unused_fd_flags(f_flags);
9979         if (event_fd < 0)
9980                 return event_fd;
9981
9982         if (group_fd != -1) {
9983                 err = perf_fget_light(group_fd, &group);
9984                 if (err)
9985                         goto err_fd;
9986                 group_leader = group.file->private_data;
9987                 if (flags & PERF_FLAG_FD_OUTPUT)
9988                         output_event = group_leader;
9989                 if (flags & PERF_FLAG_FD_NO_GROUP)
9990                         group_leader = NULL;
9991         }
9992
9993         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9994                 task = find_lively_task_by_vpid(pid);
9995                 if (IS_ERR(task)) {
9996                         err = PTR_ERR(task);
9997                         goto err_group_fd;
9998                 }
9999         }
10000
10001         if (task && group_leader &&
10002             group_leader->attr.inherit != attr.inherit) {
10003                 err = -EINVAL;
10004                 goto err_task;
10005         }
10006
10007         if (task) {
10008                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10009                 if (err)
10010                         goto err_task;
10011
10012                 /*
10013                  * Reuse ptrace permission checks for now.
10014                  *
10015                  * We must hold cred_guard_mutex across this and any potential
10016                  * perf_install_in_context() call for this new event to
10017                  * serialize against exec() altering our credentials (and the
10018                  * perf_event_exit_task() that could imply).
10019                  */
10020                 err = -EACCES;
10021                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10022                         goto err_cred;
10023         }
10024
10025         if (flags & PERF_FLAG_PID_CGROUP)
10026                 cgroup_fd = pid;
10027
10028         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10029                                  NULL, NULL, cgroup_fd);
10030         if (IS_ERR(event)) {
10031                 err = PTR_ERR(event);
10032                 goto err_cred;
10033         }
10034
10035         if (is_sampling_event(event)) {
10036                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10037                         err = -EOPNOTSUPP;
10038                         goto err_alloc;
10039                 }
10040         }
10041
10042         /*
10043          * Special case software events and allow them to be part of
10044          * any hardware group.
10045          */
10046         pmu = event->pmu;
10047
10048         if (attr.use_clockid) {
10049                 err = perf_event_set_clock(event, attr.clockid);
10050                 if (err)
10051                         goto err_alloc;
10052         }
10053
10054         if (pmu->task_ctx_nr == perf_sw_context)
10055                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10056
10057         if (group_leader &&
10058             (is_software_event(event) != is_software_event(group_leader))) {
10059                 if (is_software_event(event)) {
10060                         /*
10061                          * If event and group_leader are not both a software
10062                          * event, and event is, then group leader is not.
10063                          *
10064                          * Allow the addition of software events to !software
10065                          * groups, this is safe because software events never
10066                          * fail to schedule.
10067                          */
10068                         pmu = group_leader->pmu;
10069                 } else if (is_software_event(group_leader) &&
10070                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10071                         /*
10072                          * In case the group is a pure software group, and we
10073                          * try to add a hardware event, move the whole group to
10074                          * the hardware context.
10075                          */
10076                         move_group = 1;
10077                 }
10078         }
10079
10080         /*
10081          * Get the target context (task or percpu):
10082          */
10083         ctx = find_get_context(pmu, task, event);
10084         if (IS_ERR(ctx)) {
10085                 err = PTR_ERR(ctx);
10086                 goto err_alloc;
10087         }
10088
10089         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10090                 err = -EBUSY;
10091                 goto err_context;
10092         }
10093
10094         /*
10095          * Look up the group leader (we will attach this event to it):
10096          */
10097         if (group_leader) {
10098                 err = -EINVAL;
10099
10100                 /*
10101                  * Do not allow a recursive hierarchy (this new sibling
10102                  * becoming part of another group-sibling):
10103                  */
10104                 if (group_leader->group_leader != group_leader)
10105                         goto err_context;
10106
10107                 /* All events in a group should have the same clock */
10108                 if (group_leader->clock != event->clock)
10109                         goto err_context;
10110
10111                 /*
10112                  * Make sure we're both events for the same CPU;
10113                  * grouping events for different CPUs is broken; since
10114                  * you can never concurrently schedule them anyhow.
10115                  */
10116                 if (group_leader->cpu != event->cpu)
10117                         goto err_context;
10118
10119                 /*
10120                  * Make sure we're both on the same task, or both
10121                  * per-CPU events.
10122                  */
10123                 if (group_leader->ctx->task != ctx->task)
10124                         goto err_context;
10125
10126                 /*
10127                  * Do not allow to attach to a group in a different task
10128                  * or CPU context. If we're moving SW events, we'll fix
10129                  * this up later, so allow that.
10130                  */
10131                 if (!move_group && group_leader->ctx != ctx)
10132                         goto err_context;
10133
10134                 /*
10135                  * Only a group leader can be exclusive or pinned
10136                  */
10137                 if (attr.exclusive || attr.pinned)
10138                         goto err_context;
10139         }
10140
10141         if (output_event) {
10142                 err = perf_event_set_output(event, output_event);
10143                 if (err)
10144                         goto err_context;
10145         }
10146
10147         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10148                                         f_flags);
10149         if (IS_ERR(event_file)) {
10150                 err = PTR_ERR(event_file);
10151                 event_file = NULL;
10152                 goto err_context;
10153         }
10154
10155         if (move_group) {
10156                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10157
10158                 if (gctx->task == TASK_TOMBSTONE) {
10159                         err = -ESRCH;
10160                         goto err_locked;
10161                 }
10162
10163                 /*
10164                  * Check if we raced against another sys_perf_event_open() call
10165                  * moving the software group underneath us.
10166                  */
10167                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10168                         /*
10169                          * If someone moved the group out from under us, check
10170                          * if this new event wound up on the same ctx, if so
10171                          * its the regular !move_group case, otherwise fail.
10172                          */
10173                         if (gctx != ctx) {
10174                                 err = -EINVAL;
10175                                 goto err_locked;
10176                         } else {
10177                                 perf_event_ctx_unlock(group_leader, gctx);
10178                                 move_group = 0;
10179                         }
10180                 }
10181         } else {
10182                 mutex_lock(&ctx->mutex);
10183         }
10184
10185         if (ctx->task == TASK_TOMBSTONE) {
10186                 err = -ESRCH;
10187                 goto err_locked;
10188         }
10189
10190         if (!perf_event_validate_size(event)) {
10191                 err = -E2BIG;
10192                 goto err_locked;
10193         }
10194
10195         if (!task) {
10196                 /*
10197                  * Check if the @cpu we're creating an event for is online.
10198                  *
10199                  * We use the perf_cpu_context::ctx::mutex to serialize against
10200                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10201                  */
10202                 struct perf_cpu_context *cpuctx =
10203                         container_of(ctx, struct perf_cpu_context, ctx);
10204
10205                 if (!cpuctx->online) {
10206                         err = -ENODEV;
10207                         goto err_locked;
10208                 }
10209         }
10210
10211
10212         /*
10213          * Must be under the same ctx::mutex as perf_install_in_context(),
10214          * because we need to serialize with concurrent event creation.
10215          */
10216         if (!exclusive_event_installable(event, ctx)) {
10217                 /* exclusive and group stuff are assumed mutually exclusive */
10218                 WARN_ON_ONCE(move_group);
10219
10220                 err = -EBUSY;
10221                 goto err_locked;
10222         }
10223
10224         WARN_ON_ONCE(ctx->parent_ctx);
10225
10226         /*
10227          * This is the point on no return; we cannot fail hereafter. This is
10228          * where we start modifying current state.
10229          */
10230
10231         if (move_group) {
10232                 /*
10233                  * See perf_event_ctx_lock() for comments on the details
10234                  * of swizzling perf_event::ctx.
10235                  */
10236                 perf_remove_from_context(group_leader, 0);
10237                 put_ctx(gctx);
10238
10239                 list_for_each_entry(sibling, &group_leader->sibling_list,
10240                                     group_entry) {
10241                         perf_remove_from_context(sibling, 0);
10242                         put_ctx(gctx);
10243                 }
10244
10245                 /*
10246                  * Wait for everybody to stop referencing the events through
10247                  * the old lists, before installing it on new lists.
10248                  */
10249                 synchronize_rcu();
10250
10251                 /*
10252                  * Install the group siblings before the group leader.
10253                  *
10254                  * Because a group leader will try and install the entire group
10255                  * (through the sibling list, which is still in-tact), we can
10256                  * end up with siblings installed in the wrong context.
10257                  *
10258                  * By installing siblings first we NO-OP because they're not
10259                  * reachable through the group lists.
10260                  */
10261                 list_for_each_entry(sibling, &group_leader->sibling_list,
10262                                     group_entry) {
10263                         perf_event__state_init(sibling);
10264                         perf_install_in_context(ctx, sibling, sibling->cpu);
10265                         get_ctx(ctx);
10266                 }
10267
10268                 /*
10269                  * Removing from the context ends up with disabled
10270                  * event. What we want here is event in the initial
10271                  * startup state, ready to be add into new context.
10272                  */
10273                 perf_event__state_init(group_leader);
10274                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10275                 get_ctx(ctx);
10276         }
10277
10278         /*
10279          * Precalculate sample_data sizes; do while holding ctx::mutex such
10280          * that we're serialized against further additions and before
10281          * perf_install_in_context() which is the point the event is active and
10282          * can use these values.
10283          */
10284         perf_event__header_size(event);
10285         perf_event__id_header_size(event);
10286
10287         event->owner = current;
10288
10289         perf_install_in_context(ctx, event, event->cpu);
10290         perf_unpin_context(ctx);
10291
10292         if (move_group)
10293                 perf_event_ctx_unlock(group_leader, gctx);
10294         mutex_unlock(&ctx->mutex);
10295
10296         if (task) {
10297                 mutex_unlock(&task->signal->cred_guard_mutex);
10298                 put_task_struct(task);
10299         }
10300
10301         mutex_lock(&current->perf_event_mutex);
10302         list_add_tail(&event->owner_entry, &current->perf_event_list);
10303         mutex_unlock(&current->perf_event_mutex);
10304
10305         /*
10306          * Drop the reference on the group_event after placing the
10307          * new event on the sibling_list. This ensures destruction
10308          * of the group leader will find the pointer to itself in
10309          * perf_group_detach().
10310          */
10311         fdput(group);
10312         fd_install(event_fd, event_file);
10313         return event_fd;
10314
10315 err_locked:
10316         if (move_group)
10317                 perf_event_ctx_unlock(group_leader, gctx);
10318         mutex_unlock(&ctx->mutex);
10319 /* err_file: */
10320         fput(event_file);
10321 err_context:
10322         perf_unpin_context(ctx);
10323         put_ctx(ctx);
10324 err_alloc:
10325         /*
10326          * If event_file is set, the fput() above will have called ->release()
10327          * and that will take care of freeing the event.
10328          */
10329         if (!event_file)
10330                 free_event(event);
10331 err_cred:
10332         if (task)
10333                 mutex_unlock(&task->signal->cred_guard_mutex);
10334 err_task:
10335         if (task)
10336                 put_task_struct(task);
10337 err_group_fd:
10338         fdput(group);
10339 err_fd:
10340         put_unused_fd(event_fd);
10341         return err;
10342 }
10343
10344 /**
10345  * perf_event_create_kernel_counter
10346  *
10347  * @attr: attributes of the counter to create
10348  * @cpu: cpu in which the counter is bound
10349  * @task: task to profile (NULL for percpu)
10350  */
10351 struct perf_event *
10352 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10353                                  struct task_struct *task,
10354                                  perf_overflow_handler_t overflow_handler,
10355                                  void *context)
10356 {
10357         struct perf_event_context *ctx;
10358         struct perf_event *event;
10359         int err;
10360
10361         /*
10362          * Get the target context (task or percpu):
10363          */
10364
10365         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10366                                  overflow_handler, context, -1);
10367         if (IS_ERR(event)) {
10368                 err = PTR_ERR(event);
10369                 goto err;
10370         }
10371
10372         /* Mark owner so we could distinguish it from user events. */
10373         event->owner = TASK_TOMBSTONE;
10374
10375         ctx = find_get_context(event->pmu, task, event);
10376         if (IS_ERR(ctx)) {
10377                 err = PTR_ERR(ctx);
10378                 goto err_free;
10379         }
10380
10381         WARN_ON_ONCE(ctx->parent_ctx);
10382         mutex_lock(&ctx->mutex);
10383         if (ctx->task == TASK_TOMBSTONE) {
10384                 err = -ESRCH;
10385                 goto err_unlock;
10386         }
10387
10388         if (!task) {
10389                 /*
10390                  * Check if the @cpu we're creating an event for is online.
10391                  *
10392                  * We use the perf_cpu_context::ctx::mutex to serialize against
10393                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10394                  */
10395                 struct perf_cpu_context *cpuctx =
10396                         container_of(ctx, struct perf_cpu_context, ctx);
10397                 if (!cpuctx->online) {
10398                         err = -ENODEV;
10399                         goto err_unlock;
10400                 }
10401         }
10402
10403         if (!exclusive_event_installable(event, ctx)) {
10404                 err = -EBUSY;
10405                 goto err_unlock;
10406         }
10407
10408         perf_install_in_context(ctx, event, cpu);
10409         perf_unpin_context(ctx);
10410         mutex_unlock(&ctx->mutex);
10411
10412         return event;
10413
10414 err_unlock:
10415         mutex_unlock(&ctx->mutex);
10416         perf_unpin_context(ctx);
10417         put_ctx(ctx);
10418 err_free:
10419         free_event(event);
10420 err:
10421         return ERR_PTR(err);
10422 }
10423 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10424
10425 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10426 {
10427         struct perf_event_context *src_ctx;
10428         struct perf_event_context *dst_ctx;
10429         struct perf_event *event, *tmp;
10430         LIST_HEAD(events);
10431
10432         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10433         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10434
10435         /*
10436          * See perf_event_ctx_lock() for comments on the details
10437          * of swizzling perf_event::ctx.
10438          */
10439         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10440         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10441                                  event_entry) {
10442                 perf_remove_from_context(event, 0);
10443                 unaccount_event_cpu(event, src_cpu);
10444                 put_ctx(src_ctx);
10445                 list_add(&event->migrate_entry, &events);
10446         }
10447
10448         /*
10449          * Wait for the events to quiesce before re-instating them.
10450          */
10451         synchronize_rcu();
10452
10453         /*
10454          * Re-instate events in 2 passes.
10455          *
10456          * Skip over group leaders and only install siblings on this first
10457          * pass, siblings will not get enabled without a leader, however a
10458          * leader will enable its siblings, even if those are still on the old
10459          * context.
10460          */
10461         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10462                 if (event->group_leader == event)
10463                         continue;
10464
10465                 list_del(&event->migrate_entry);
10466                 if (event->state >= PERF_EVENT_STATE_OFF)
10467                         event->state = PERF_EVENT_STATE_INACTIVE;
10468                 account_event_cpu(event, dst_cpu);
10469                 perf_install_in_context(dst_ctx, event, dst_cpu);
10470                 get_ctx(dst_ctx);
10471         }
10472
10473         /*
10474          * Once all the siblings are setup properly, install the group leaders
10475          * to make it go.
10476          */
10477         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10478                 list_del(&event->migrate_entry);
10479                 if (event->state >= PERF_EVENT_STATE_OFF)
10480                         event->state = PERF_EVENT_STATE_INACTIVE;
10481                 account_event_cpu(event, dst_cpu);
10482                 perf_install_in_context(dst_ctx, event, dst_cpu);
10483                 get_ctx(dst_ctx);
10484         }
10485         mutex_unlock(&dst_ctx->mutex);
10486         mutex_unlock(&src_ctx->mutex);
10487 }
10488 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10489
10490 static void sync_child_event(struct perf_event *child_event,
10491                                struct task_struct *child)
10492 {
10493         struct perf_event *parent_event = child_event->parent;
10494         u64 child_val;
10495
10496         if (child_event->attr.inherit_stat)
10497                 perf_event_read_event(child_event, child);
10498
10499         child_val = perf_event_count(child_event);
10500
10501         /*
10502          * Add back the child's count to the parent's count:
10503          */
10504         atomic64_add(child_val, &parent_event->child_count);
10505         atomic64_add(child_event->total_time_enabled,
10506                      &parent_event->child_total_time_enabled);
10507         atomic64_add(child_event->total_time_running,
10508                      &parent_event->child_total_time_running);
10509 }
10510
10511 static void
10512 perf_event_exit_event(struct perf_event *child_event,
10513                       struct perf_event_context *child_ctx,
10514                       struct task_struct *child)
10515 {
10516         struct perf_event *parent_event = child_event->parent;
10517
10518         /*
10519          * Do not destroy the 'original' grouping; because of the context
10520          * switch optimization the original events could've ended up in a
10521          * random child task.
10522          *
10523          * If we were to destroy the original group, all group related
10524          * operations would cease to function properly after this random
10525          * child dies.
10526          *
10527          * Do destroy all inherited groups, we don't care about those
10528          * and being thorough is better.
10529          */
10530         raw_spin_lock_irq(&child_ctx->lock);
10531         WARN_ON_ONCE(child_ctx->is_active);
10532
10533         if (parent_event)
10534                 perf_group_detach(child_event);
10535         list_del_event(child_event, child_ctx);
10536         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10537         raw_spin_unlock_irq(&child_ctx->lock);
10538
10539         /*
10540          * Parent events are governed by their filedesc, retain them.
10541          */
10542         if (!parent_event) {
10543                 perf_event_wakeup(child_event);
10544                 return;
10545         }
10546         /*
10547          * Child events can be cleaned up.
10548          */
10549
10550         sync_child_event(child_event, child);
10551
10552         /*
10553          * Remove this event from the parent's list
10554          */
10555         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10556         mutex_lock(&parent_event->child_mutex);
10557         list_del_init(&child_event->child_list);
10558         mutex_unlock(&parent_event->child_mutex);
10559
10560         /*
10561          * Kick perf_poll() for is_event_hup().
10562          */
10563         perf_event_wakeup(parent_event);
10564         free_event(child_event);
10565         put_event(parent_event);
10566 }
10567
10568 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10569 {
10570         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10571         struct perf_event *child_event, *next;
10572
10573         WARN_ON_ONCE(child != current);
10574
10575         child_ctx = perf_pin_task_context(child, ctxn);
10576         if (!child_ctx)
10577                 return;
10578
10579         /*
10580          * In order to reduce the amount of tricky in ctx tear-down, we hold
10581          * ctx::mutex over the entire thing. This serializes against almost
10582          * everything that wants to access the ctx.
10583          *
10584          * The exception is sys_perf_event_open() /
10585          * perf_event_create_kernel_count() which does find_get_context()
10586          * without ctx::mutex (it cannot because of the move_group double mutex
10587          * lock thing). See the comments in perf_install_in_context().
10588          */
10589         mutex_lock(&child_ctx->mutex);
10590
10591         /*
10592          * In a single ctx::lock section, de-schedule the events and detach the
10593          * context from the task such that we cannot ever get it scheduled back
10594          * in.
10595          */
10596         raw_spin_lock_irq(&child_ctx->lock);
10597         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10598
10599         /*
10600          * Now that the context is inactive, destroy the task <-> ctx relation
10601          * and mark the context dead.
10602          */
10603         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10604         put_ctx(child_ctx); /* cannot be last */
10605         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10606         put_task_struct(current); /* cannot be last */
10607
10608         clone_ctx = unclone_ctx(child_ctx);
10609         raw_spin_unlock_irq(&child_ctx->lock);
10610
10611         if (clone_ctx)
10612                 put_ctx(clone_ctx);
10613
10614         /*
10615          * Report the task dead after unscheduling the events so that we
10616          * won't get any samples after PERF_RECORD_EXIT. We can however still
10617          * get a few PERF_RECORD_READ events.
10618          */
10619         perf_event_task(child, child_ctx, 0);
10620
10621         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10622                 perf_event_exit_event(child_event, child_ctx, child);
10623
10624         mutex_unlock(&child_ctx->mutex);
10625
10626         put_ctx(child_ctx);
10627 }
10628
10629 /*
10630  * When a child task exits, feed back event values to parent events.
10631  *
10632  * Can be called with cred_guard_mutex held when called from
10633  * install_exec_creds().
10634  */
10635 void perf_event_exit_task(struct task_struct *child)
10636 {
10637         struct perf_event *event, *tmp;
10638         int ctxn;
10639
10640         mutex_lock(&child->perf_event_mutex);
10641         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10642                                  owner_entry) {
10643                 list_del_init(&event->owner_entry);
10644
10645                 /*
10646                  * Ensure the list deletion is visible before we clear
10647                  * the owner, closes a race against perf_release() where
10648                  * we need to serialize on the owner->perf_event_mutex.
10649                  */
10650                 smp_store_release(&event->owner, NULL);
10651         }
10652         mutex_unlock(&child->perf_event_mutex);
10653
10654         for_each_task_context_nr(ctxn)
10655                 perf_event_exit_task_context(child, ctxn);
10656
10657         /*
10658          * The perf_event_exit_task_context calls perf_event_task
10659          * with child's task_ctx, which generates EXIT events for
10660          * child contexts and sets child->perf_event_ctxp[] to NULL.
10661          * At this point we need to send EXIT events to cpu contexts.
10662          */
10663         perf_event_task(child, NULL, 0);
10664 }
10665
10666 static void perf_free_event(struct perf_event *event,
10667                             struct perf_event_context *ctx)
10668 {
10669         struct perf_event *parent = event->parent;
10670
10671         if (WARN_ON_ONCE(!parent))
10672                 return;
10673
10674         mutex_lock(&parent->child_mutex);
10675         list_del_init(&event->child_list);
10676         mutex_unlock(&parent->child_mutex);
10677
10678         put_event(parent);
10679
10680         raw_spin_lock_irq(&ctx->lock);
10681         perf_group_detach(event);
10682         list_del_event(event, ctx);
10683         raw_spin_unlock_irq(&ctx->lock);
10684         free_event(event);
10685 }
10686
10687 /*
10688  * Free an unexposed, unused context as created by inheritance by
10689  * perf_event_init_task below, used by fork() in case of fail.
10690  *
10691  * Not all locks are strictly required, but take them anyway to be nice and
10692  * help out with the lockdep assertions.
10693  */
10694 void perf_event_free_task(struct task_struct *task)
10695 {
10696         struct perf_event_context *ctx;
10697         struct perf_event *event, *tmp;
10698         int ctxn;
10699
10700         for_each_task_context_nr(ctxn) {
10701                 ctx = task->perf_event_ctxp[ctxn];
10702                 if (!ctx)
10703                         continue;
10704
10705                 mutex_lock(&ctx->mutex);
10706                 raw_spin_lock_irq(&ctx->lock);
10707                 /*
10708                  * Destroy the task <-> ctx relation and mark the context dead.
10709                  *
10710                  * This is important because even though the task hasn't been
10711                  * exposed yet the context has been (through child_list).
10712                  */
10713                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10714                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10715                 put_task_struct(task); /* cannot be last */
10716                 raw_spin_unlock_irq(&ctx->lock);
10717
10718                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10719                         perf_free_event(event, ctx);
10720
10721                 mutex_unlock(&ctx->mutex);
10722                 put_ctx(ctx);
10723         }
10724 }
10725
10726 void perf_event_delayed_put(struct task_struct *task)
10727 {
10728         int ctxn;
10729
10730         for_each_task_context_nr(ctxn)
10731                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10732 }
10733
10734 struct file *perf_event_get(unsigned int fd)
10735 {
10736         struct file *file;
10737
10738         file = fget_raw(fd);
10739         if (!file)
10740                 return ERR_PTR(-EBADF);
10741
10742         if (file->f_op != &perf_fops) {
10743                 fput(file);
10744                 return ERR_PTR(-EBADF);
10745         }
10746
10747         return file;
10748 }
10749
10750 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10751 {
10752         if (!event)
10753                 return ERR_PTR(-EINVAL);
10754
10755         return &event->attr;
10756 }
10757
10758 /*
10759  * Inherit a event from parent task to child task.
10760  *
10761  * Returns:
10762  *  - valid pointer on success
10763  *  - NULL for orphaned events
10764  *  - IS_ERR() on error
10765  */
10766 static struct perf_event *
10767 inherit_event(struct perf_event *parent_event,
10768               struct task_struct *parent,
10769               struct perf_event_context *parent_ctx,
10770               struct task_struct *child,
10771               struct perf_event *group_leader,
10772               struct perf_event_context *child_ctx)
10773 {
10774         enum perf_event_active_state parent_state = parent_event->state;
10775         struct perf_event *child_event;
10776         unsigned long flags;
10777
10778         /*
10779          * Instead of creating recursive hierarchies of events,
10780          * we link inherited events back to the original parent,
10781          * which has a filp for sure, which we use as the reference
10782          * count:
10783          */
10784         if (parent_event->parent)
10785                 parent_event = parent_event->parent;
10786
10787         child_event = perf_event_alloc(&parent_event->attr,
10788                                            parent_event->cpu,
10789                                            child,
10790                                            group_leader, parent_event,
10791                                            NULL, NULL, -1);
10792         if (IS_ERR(child_event))
10793                 return child_event;
10794
10795         /*
10796          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10797          * must be under the same lock in order to serialize against
10798          * perf_event_release_kernel(), such that either we must observe
10799          * is_orphaned_event() or they will observe us on the child_list.
10800          */
10801         mutex_lock(&parent_event->child_mutex);
10802         if (is_orphaned_event(parent_event) ||
10803             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10804                 mutex_unlock(&parent_event->child_mutex);
10805                 free_event(child_event);
10806                 return NULL;
10807         }
10808
10809         get_ctx(child_ctx);
10810
10811         /*
10812          * Make the child state follow the state of the parent event,
10813          * not its attr.disabled bit.  We hold the parent's mutex,
10814          * so we won't race with perf_event_{en, dis}able_family.
10815          */
10816         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10817                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10818         else
10819                 child_event->state = PERF_EVENT_STATE_OFF;
10820
10821         if (parent_event->attr.freq) {
10822                 u64 sample_period = parent_event->hw.sample_period;
10823                 struct hw_perf_event *hwc = &child_event->hw;
10824
10825                 hwc->sample_period = sample_period;
10826                 hwc->last_period   = sample_period;
10827
10828                 local64_set(&hwc->period_left, sample_period);
10829         }
10830
10831         child_event->ctx = child_ctx;
10832         child_event->overflow_handler = parent_event->overflow_handler;
10833         child_event->overflow_handler_context
10834                 = parent_event->overflow_handler_context;
10835
10836         /*
10837          * Precalculate sample_data sizes
10838          */
10839         perf_event__header_size(child_event);
10840         perf_event__id_header_size(child_event);
10841
10842         /*
10843          * Link it up in the child's context:
10844          */
10845         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10846         add_event_to_ctx(child_event, child_ctx);
10847         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10848
10849         /*
10850          * Link this into the parent event's child list
10851          */
10852         list_add_tail(&child_event->child_list, &parent_event->child_list);
10853         mutex_unlock(&parent_event->child_mutex);
10854
10855         return child_event;
10856 }
10857
10858 /*
10859  * Inherits an event group.
10860  *
10861  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10862  * This matches with perf_event_release_kernel() removing all child events.
10863  *
10864  * Returns:
10865  *  - 0 on success
10866  *  - <0 on error
10867  */
10868 static int inherit_group(struct perf_event *parent_event,
10869               struct task_struct *parent,
10870               struct perf_event_context *parent_ctx,
10871               struct task_struct *child,
10872               struct perf_event_context *child_ctx)
10873 {
10874         struct perf_event *leader;
10875         struct perf_event *sub;
10876         struct perf_event *child_ctr;
10877
10878         leader = inherit_event(parent_event, parent, parent_ctx,
10879                                  child, NULL, child_ctx);
10880         if (IS_ERR(leader))
10881                 return PTR_ERR(leader);
10882         /*
10883          * @leader can be NULL here because of is_orphaned_event(). In this
10884          * case inherit_event() will create individual events, similar to what
10885          * perf_group_detach() would do anyway.
10886          */
10887         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10888                 child_ctr = inherit_event(sub, parent, parent_ctx,
10889                                             child, leader, child_ctx);
10890                 if (IS_ERR(child_ctr))
10891                         return PTR_ERR(child_ctr);
10892         }
10893         return 0;
10894 }
10895
10896 /*
10897  * Creates the child task context and tries to inherit the event-group.
10898  *
10899  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10900  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10901  * consistent with perf_event_release_kernel() removing all child events.
10902  *
10903  * Returns:
10904  *  - 0 on success
10905  *  - <0 on error
10906  */
10907 static int
10908 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10909                    struct perf_event_context *parent_ctx,
10910                    struct task_struct *child, int ctxn,
10911                    int *inherited_all)
10912 {
10913         int ret;
10914         struct perf_event_context *child_ctx;
10915
10916         if (!event->attr.inherit) {
10917                 *inherited_all = 0;
10918                 return 0;
10919         }
10920
10921         child_ctx = child->perf_event_ctxp[ctxn];
10922         if (!child_ctx) {
10923                 /*
10924                  * This is executed from the parent task context, so
10925                  * inherit events that have been marked for cloning.
10926                  * First allocate and initialize a context for the
10927                  * child.
10928                  */
10929                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10930                 if (!child_ctx)
10931                         return -ENOMEM;
10932
10933                 child->perf_event_ctxp[ctxn] = child_ctx;
10934         }
10935
10936         ret = inherit_group(event, parent, parent_ctx,
10937                             child, child_ctx);
10938
10939         if (ret)
10940                 *inherited_all = 0;
10941
10942         return ret;
10943 }
10944
10945 /*
10946  * Initialize the perf_event context in task_struct
10947  */
10948 static int perf_event_init_context(struct task_struct *child, int ctxn)
10949 {
10950         struct perf_event_context *child_ctx, *parent_ctx;
10951         struct perf_event_context *cloned_ctx;
10952         struct perf_event *event;
10953         struct task_struct *parent = current;
10954         int inherited_all = 1;
10955         unsigned long flags;
10956         int ret = 0;
10957
10958         if (likely(!parent->perf_event_ctxp[ctxn]))
10959                 return 0;
10960
10961         /*
10962          * If the parent's context is a clone, pin it so it won't get
10963          * swapped under us.
10964          */
10965         parent_ctx = perf_pin_task_context(parent, ctxn);
10966         if (!parent_ctx)
10967                 return 0;
10968
10969         /*
10970          * No need to check if parent_ctx != NULL here; since we saw
10971          * it non-NULL earlier, the only reason for it to become NULL
10972          * is if we exit, and since we're currently in the middle of
10973          * a fork we can't be exiting at the same time.
10974          */
10975
10976         /*
10977          * Lock the parent list. No need to lock the child - not PID
10978          * hashed yet and not running, so nobody can access it.
10979          */
10980         mutex_lock(&parent_ctx->mutex);
10981
10982         /*
10983          * We dont have to disable NMIs - we are only looking at
10984          * the list, not manipulating it:
10985          */
10986         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10987                 ret = inherit_task_group(event, parent, parent_ctx,
10988                                          child, ctxn, &inherited_all);
10989                 if (ret)
10990                         goto out_unlock;
10991         }
10992
10993         /*
10994          * We can't hold ctx->lock when iterating the ->flexible_group list due
10995          * to allocations, but we need to prevent rotation because
10996          * rotate_ctx() will change the list from interrupt context.
10997          */
10998         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10999         parent_ctx->rotate_disable = 1;
11000         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11001
11002         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
11003                 ret = inherit_task_group(event, parent, parent_ctx,
11004                                          child, ctxn, &inherited_all);
11005                 if (ret)
11006                         goto out_unlock;
11007         }
11008
11009         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11010         parent_ctx->rotate_disable = 0;
11011
11012         child_ctx = child->perf_event_ctxp[ctxn];
11013
11014         if (child_ctx && inherited_all) {
11015                 /*
11016                  * Mark the child context as a clone of the parent
11017                  * context, or of whatever the parent is a clone of.
11018                  *
11019                  * Note that if the parent is a clone, the holding of
11020                  * parent_ctx->lock avoids it from being uncloned.
11021                  */
11022                 cloned_ctx = parent_ctx->parent_ctx;
11023                 if (cloned_ctx) {
11024                         child_ctx->parent_ctx = cloned_ctx;
11025                         child_ctx->parent_gen = parent_ctx->parent_gen;
11026                 } else {
11027                         child_ctx->parent_ctx = parent_ctx;
11028                         child_ctx->parent_gen = parent_ctx->generation;
11029                 }
11030                 get_ctx(child_ctx->parent_ctx);
11031         }
11032
11033         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11034 out_unlock:
11035         mutex_unlock(&parent_ctx->mutex);
11036
11037         perf_unpin_context(parent_ctx);
11038         put_ctx(parent_ctx);
11039
11040         return ret;
11041 }
11042
11043 /*
11044  * Initialize the perf_event context in task_struct
11045  */
11046 int perf_event_init_task(struct task_struct *child)
11047 {
11048         int ctxn, ret;
11049
11050         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11051         mutex_init(&child->perf_event_mutex);
11052         INIT_LIST_HEAD(&child->perf_event_list);
11053
11054         for_each_task_context_nr(ctxn) {
11055                 ret = perf_event_init_context(child, ctxn);
11056                 if (ret) {
11057                         perf_event_free_task(child);
11058                         return ret;
11059                 }
11060         }
11061
11062         return 0;
11063 }
11064
11065 static void __init perf_event_init_all_cpus(void)
11066 {
11067         struct swevent_htable *swhash;
11068         int cpu;
11069
11070         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11071
11072         for_each_possible_cpu(cpu) {
11073                 swhash = &per_cpu(swevent_htable, cpu);
11074                 mutex_init(&swhash->hlist_mutex);
11075                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11076
11077                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11078                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11079
11080 #ifdef CONFIG_CGROUP_PERF
11081                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11082 #endif
11083                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11084         }
11085 }
11086
11087 void perf_swevent_init_cpu(unsigned int cpu)
11088 {
11089         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11090
11091         mutex_lock(&swhash->hlist_mutex);
11092         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11093                 struct swevent_hlist *hlist;
11094
11095                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11096                 WARN_ON(!hlist);
11097                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11098         }
11099         mutex_unlock(&swhash->hlist_mutex);
11100 }
11101
11102 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11103 static void __perf_event_exit_context(void *__info)
11104 {
11105         struct perf_event_context *ctx = __info;
11106         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11107         struct perf_event *event;
11108
11109         raw_spin_lock(&ctx->lock);
11110         list_for_each_entry(event, &ctx->event_list, event_entry)
11111                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11112         raw_spin_unlock(&ctx->lock);
11113 }
11114
11115 static void perf_event_exit_cpu_context(int cpu)
11116 {
11117         struct perf_cpu_context *cpuctx;
11118         struct perf_event_context *ctx;
11119         struct pmu *pmu;
11120
11121         mutex_lock(&pmus_lock);
11122         list_for_each_entry(pmu, &pmus, entry) {
11123                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11124                 ctx = &cpuctx->ctx;
11125
11126                 mutex_lock(&ctx->mutex);
11127                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11128                 cpuctx->online = 0;
11129                 mutex_unlock(&ctx->mutex);
11130         }
11131         cpumask_clear_cpu(cpu, perf_online_mask);
11132         mutex_unlock(&pmus_lock);
11133 }
11134 #else
11135
11136 static void perf_event_exit_cpu_context(int cpu) { }
11137
11138 #endif
11139
11140 int perf_event_init_cpu(unsigned int cpu)
11141 {
11142         struct perf_cpu_context *cpuctx;
11143         struct perf_event_context *ctx;
11144         struct pmu *pmu;
11145
11146         perf_swevent_init_cpu(cpu);
11147
11148         mutex_lock(&pmus_lock);
11149         cpumask_set_cpu(cpu, perf_online_mask);
11150         list_for_each_entry(pmu, &pmus, entry) {
11151                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11152                 ctx = &cpuctx->ctx;
11153
11154                 mutex_lock(&ctx->mutex);
11155                 cpuctx->online = 1;
11156                 mutex_unlock(&ctx->mutex);
11157         }
11158         mutex_unlock(&pmus_lock);
11159
11160         return 0;
11161 }
11162
11163 int perf_event_exit_cpu(unsigned int cpu)
11164 {
11165         perf_event_exit_cpu_context(cpu);
11166         return 0;
11167 }
11168
11169 static int
11170 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11171 {
11172         int cpu;
11173
11174         for_each_online_cpu(cpu)
11175                 perf_event_exit_cpu(cpu);
11176
11177         return NOTIFY_OK;
11178 }
11179
11180 /*
11181  * Run the perf reboot notifier at the very last possible moment so that
11182  * the generic watchdog code runs as long as possible.
11183  */
11184 static struct notifier_block perf_reboot_notifier = {
11185         .notifier_call = perf_reboot,
11186         .priority = INT_MIN,
11187 };
11188
11189 void __init perf_event_init(void)
11190 {
11191         int ret;
11192
11193         idr_init(&pmu_idr);
11194
11195         perf_event_init_all_cpus();
11196         init_srcu_struct(&pmus_srcu);
11197         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11198         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11199         perf_pmu_register(&perf_task_clock, NULL, -1);
11200         perf_tp_register();
11201         perf_event_init_cpu(smp_processor_id());
11202         register_reboot_notifier(&perf_reboot_notifier);
11203
11204         ret = init_hw_breakpoint();
11205         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11206
11207         /*
11208          * Build time assertion that we keep the data_head at the intended
11209          * location.  IOW, validation we got the __reserved[] size right.
11210          */
11211         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11212                      != 1024);
11213 }
11214
11215 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11216                               char *page)
11217 {
11218         struct perf_pmu_events_attr *pmu_attr =
11219                 container_of(attr, struct perf_pmu_events_attr, attr);
11220
11221         if (pmu_attr->event_str)
11222                 return sprintf(page, "%s\n", pmu_attr->event_str);
11223
11224         return 0;
11225 }
11226 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11227
11228 static int __init perf_event_sysfs_init(void)
11229 {
11230         struct pmu *pmu;
11231         int ret;
11232
11233         mutex_lock(&pmus_lock);
11234
11235         ret = bus_register(&pmu_bus);
11236         if (ret)
11237                 goto unlock;
11238
11239         list_for_each_entry(pmu, &pmus, entry) {
11240                 if (!pmu->name || pmu->type < 0)
11241                         continue;
11242
11243                 ret = pmu_dev_alloc(pmu);
11244                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11245         }
11246         pmu_bus_running = 1;
11247         ret = 0;
11248
11249 unlock:
11250         mutex_unlock(&pmus_lock);
11251
11252         return ret;
11253 }
11254 device_initcall(perf_event_sysfs_init);
11255
11256 #ifdef CONFIG_CGROUP_PERF
11257 static struct cgroup_subsys_state *
11258 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11259 {
11260         struct perf_cgroup *jc;
11261
11262         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11263         if (!jc)
11264                 return ERR_PTR(-ENOMEM);
11265
11266         jc->info = alloc_percpu(struct perf_cgroup_info);
11267         if (!jc->info) {
11268                 kfree(jc);
11269                 return ERR_PTR(-ENOMEM);
11270         }
11271
11272         return &jc->css;
11273 }
11274
11275 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11276 {
11277         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11278
11279         free_percpu(jc->info);
11280         kfree(jc);
11281 }
11282
11283 static int __perf_cgroup_move(void *info)
11284 {
11285         struct task_struct *task = info;
11286         rcu_read_lock();
11287         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11288         rcu_read_unlock();
11289         return 0;
11290 }
11291
11292 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11293 {
11294         struct task_struct *task;
11295         struct cgroup_subsys_state *css;
11296
11297         cgroup_taskset_for_each(task, css, tset)
11298                 task_function_call(task, __perf_cgroup_move, task);
11299 }
11300
11301 struct cgroup_subsys perf_event_cgrp_subsys = {
11302         .css_alloc      = perf_cgroup_css_alloc,
11303         .css_free       = perf_cgroup_css_free,
11304         .attach         = perf_cgroup_attach,
11305         /*
11306          * Implicitly enable on dfl hierarchy so that perf events can
11307          * always be filtered by cgroup2 path as long as perf_event
11308          * controller is not mounted on a legacy hierarchy.
11309          */
11310         .implicit_on_dfl = true,
11311         .threaded       = true,
11312 };
11313 #endif /* CONFIG_CGROUP_PERF */