e8979c72514be4d67cb792c3a78f5cb2bec448e9
[platform/kernel/linux-rpi.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret;
440         int perf_cpu = sysctl_perf_cpu_time_max_percent;
441         /*
442          * If throttling is disabled don't allow the write:
443          */
444         if (write && (perf_cpu == 100 || perf_cpu == 0))
445                 return -EINVAL;
446
447         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
448         if (ret || !write)
449                 return ret;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         for_each_sibling_event(sibling, leader)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp = cpuctx->cgrp;
728         struct cgroup_subsys_state *css;
729
730         if (cgrp) {
731                 for (css = &cgrp->css; css; css = css->parent) {
732                         cgrp = container_of(css, struct perf_cgroup, css);
733                         __update_cgrp_time(cgrp);
734                 }
735         }
736 }
737
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740         struct perf_cgroup *cgrp;
741
742         /*
743          * ensure we access cgroup data only when needed and
744          * when we know the cgroup is pinned (css_get)
745          */
746         if (!is_cgroup_event(event))
747                 return;
748
749         cgrp = perf_cgroup_from_task(current, event->ctx);
750         /*
751          * Do not update time when cgroup is not active
752          */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754                 __update_cgrp_time(event->cgrp);
755 }
756
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759                           struct perf_event_context *ctx)
760 {
761         struct perf_cgroup *cgrp;
762         struct perf_cgroup_info *info;
763         struct cgroup_subsys_state *css;
764
765         /*
766          * ctx->lock held by caller
767          * ensure we do not access cgroup data
768          * unless we have the cgroup pinned (css_get)
769          */
770         if (!task || !ctx->nr_cgroups)
771                 return;
772
773         cgrp = perf_cgroup_from_task(task, ctx);
774
775         for (css = &cgrp->css; css; css = css->parent) {
776                 cgrp = container_of(css, struct perf_cgroup, css);
777                 info = this_cpu_ptr(cgrp->info);
778                 info->timestamp = ctx->timestamp;
779         }
780 }
781
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
784 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
786
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795         struct perf_cpu_context *cpuctx;
796         struct list_head *list;
797         unsigned long flags;
798
799         /*
800          * Disable interrupts and preemption to avoid this CPU's
801          * cgrp_cpuctx_entry to change under us.
802          */
803         local_irq_save(flags);
804
805         list = this_cpu_ptr(&cgrp_cpuctx_list);
806         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808
809                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810                 perf_pmu_disable(cpuctx->ctx.pmu);
811
812                 if (mode & PERF_CGROUP_SWOUT) {
813                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814                         /*
815                          * must not be done before ctxswout due
816                          * to event_filter_match() in event_sched_out()
817                          */
818                         cpuctx->cgrp = NULL;
819                 }
820
821                 if (mode & PERF_CGROUP_SWIN) {
822                         WARN_ON_ONCE(cpuctx->cgrp);
823                         /*
824                          * set cgrp before ctxsw in to allow
825                          * event_filter_match() to not have to pass
826                          * task around
827                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
828                          * because cgorup events are only per-cpu
829                          */
830                         cpuctx->cgrp = perf_cgroup_from_task(task,
831                                                              &cpuctx->ctx);
832                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833                 }
834                 perf_pmu_enable(cpuctx->ctx.pmu);
835                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836         }
837
838         local_irq_restore(flags);
839 }
840
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842                                          struct task_struct *next)
843 {
844         struct perf_cgroup *cgrp1;
845         struct perf_cgroup *cgrp2 = NULL;
846
847         rcu_read_lock();
848         /*
849          * we come here when we know perf_cgroup_events > 0
850          * we do not need to pass the ctx here because we know
851          * we are holding the rcu lock
852          */
853         cgrp1 = perf_cgroup_from_task(task, NULL);
854         cgrp2 = perf_cgroup_from_task(next, NULL);
855
856         /*
857          * only schedule out current cgroup events if we know
858          * that we are switching to a different cgroup. Otherwise,
859          * do no touch the cgroup events.
860          */
861         if (cgrp1 != cgrp2)
862                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863
864         rcu_read_unlock();
865 }
866
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868                                         struct task_struct *task)
869 {
870         struct perf_cgroup *cgrp1;
871         struct perf_cgroup *cgrp2 = NULL;
872
873         rcu_read_lock();
874         /*
875          * we come here when we know perf_cgroup_events > 0
876          * we do not need to pass the ctx here because we know
877          * we are holding the rcu lock
878          */
879         cgrp1 = perf_cgroup_from_task(task, NULL);
880         cgrp2 = perf_cgroup_from_task(prev, NULL);
881
882         /*
883          * only need to schedule in cgroup events if we are changing
884          * cgroup during ctxsw. Cgroup events were not scheduled
885          * out of ctxsw out if that was not the case.
886          */
887         if (cgrp1 != cgrp2)
888                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889
890         rcu_read_unlock();
891 }
892
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894                                       struct perf_event_attr *attr,
895                                       struct perf_event *group_leader)
896 {
897         struct perf_cgroup *cgrp;
898         struct cgroup_subsys_state *css;
899         struct fd f = fdget(fd);
900         int ret = 0;
901
902         if (!f.file)
903                 return -EBADF;
904
905         css = css_tryget_online_from_dir(f.file->f_path.dentry,
906                                          &perf_event_cgrp_subsys);
907         if (IS_ERR(css)) {
908                 ret = PTR_ERR(css);
909                 goto out;
910         }
911
912         cgrp = container_of(css, struct perf_cgroup, css);
913         event->cgrp = cgrp;
914
915         /*
916          * all events in a group must monitor
917          * the same cgroup because a task belongs
918          * to only one perf cgroup at a time
919          */
920         if (group_leader && group_leader->cgrp != cgrp) {
921                 perf_detach_cgroup(event);
922                 ret = -EINVAL;
923         }
924 out:
925         fdput(f);
926         return ret;
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932         struct perf_cgroup_info *t;
933         t = per_cpu_ptr(event->cgrp->info, event->cpu);
934         event->shadow_ctx_time = now - t->timestamp;
935 }
936
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943                          struct perf_event_context *ctx, bool add)
944 {
945         struct perf_cpu_context *cpuctx;
946         struct list_head *cpuctx_entry;
947
948         if (!is_cgroup_event(event))
949                 return;
950
951         /*
952          * Because cgroup events are always per-cpu events,
953          * this will always be called from the right CPU.
954          */
955         cpuctx = __get_cpu_context(ctx);
956
957         /*
958          * Since setting cpuctx->cgrp is conditional on the current @cgrp
959          * matching the event's cgroup, we must do this for every new event,
960          * because if the first would mismatch, the second would not try again
961          * and we would leave cpuctx->cgrp unset.
962          */
963         if (add && !cpuctx->cgrp) {
964                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
966                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967                         cpuctx->cgrp = cgrp;
968         }
969
970         if (add && ctx->nr_cgroups++)
971                 return;
972         else if (!add && --ctx->nr_cgroups)
973                 return;
974
975         /* no cgroup running */
976         if (!add)
977                 cpuctx->cgrp = NULL;
978
979         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980         if (add)
981                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982         else
983                 list_del(cpuctx_entry);
984 }
985
986 #else /* !CONFIG_CGROUP_PERF */
987
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991         return true;
992 }
993
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999         return 0;
1000 }
1001
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011                                          struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016                                         struct task_struct *task)
1017 {
1018 }
1019
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021                                       struct perf_event_attr *attr,
1022                                       struct perf_event *group_leader)
1023 {
1024         return -EINVAL;
1025 }
1026
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029                           struct perf_event_context *ctx)
1030 {
1031 }
1032
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045         return 0;
1046 }
1047
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050                          struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053
1054 #endif
1055
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066         struct perf_cpu_context *cpuctx;
1067         bool rotations;
1068
1069         lockdep_assert_irqs_disabled();
1070
1071         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072         rotations = perf_rotate_context(cpuctx);
1073
1074         raw_spin_lock(&cpuctx->hrtimer_lock);
1075         if (rotations)
1076                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077         else
1078                 cpuctx->hrtimer_active = 0;
1079         raw_spin_unlock(&cpuctx->hrtimer_lock);
1080
1081         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086         struct hrtimer *timer = &cpuctx->hrtimer;
1087         struct pmu *pmu = cpuctx->ctx.pmu;
1088         u64 interval;
1089
1090         /* no multiplexing needed for SW PMU */
1091         if (pmu->task_ctx_nr == perf_sw_context)
1092                 return;
1093
1094         /*
1095          * check default is sane, if not set then force to
1096          * default interval (1/tick)
1097          */
1098         interval = pmu->hrtimer_interval_ms;
1099         if (interval < 1)
1100                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101
1102         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103
1104         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106         timer->function = perf_mux_hrtimer_handler;
1107 }
1108
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111         struct hrtimer *timer = &cpuctx->hrtimer;
1112         struct pmu *pmu = cpuctx->ctx.pmu;
1113         unsigned long flags;
1114
1115         /* not for SW PMU */
1116         if (pmu->task_ctx_nr == perf_sw_context)
1117                 return 0;
1118
1119         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120         if (!cpuctx->hrtimer_active) {
1121                 cpuctx->hrtimer_active = 1;
1122                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124         }
1125         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126
1127         return 0;
1128 }
1129
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133         if (!(*count)++)
1134                 pmu->pmu_disable(pmu);
1135 }
1136
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140         if (!--(*count))
1141                 pmu->pmu_enable(pmu);
1142 }
1143
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155
1156         lockdep_assert_irqs_disabled();
1157
1158         WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160         list_add(&ctx->active_ctx_list, head);
1161 }
1162
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165         lockdep_assert_irqs_disabled();
1166
1167         WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169         list_del_init(&ctx->active_ctx_list);
1170 }
1171
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179         struct perf_event_context *ctx;
1180
1181         ctx = container_of(head, struct perf_event_context, rcu_head);
1182         kfree(ctx->task_ctx_data);
1183         kfree(ctx);
1184 }
1185
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188         if (atomic_dec_and_test(&ctx->refcount)) {
1189                 if (ctx->parent_ctx)
1190                         put_ctx(ctx->parent_ctx);
1191                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192                         put_task_struct(ctx->task);
1193                 call_rcu(&ctx->rcu_head, free_ctx);
1194         }
1195 }
1196
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()    [ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()                   [ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()         [ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event() [ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *      task_struct::perf_event_mutex
1252  *        perf_event_context::mutex
1253  *          perf_event::child_mutex;
1254  *            perf_event_context::lock
1255  *          perf_event::mmap_mutex
1256  *          mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *        cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265         struct perf_event_context *ctx;
1266
1267 again:
1268         rcu_read_lock();
1269         ctx = READ_ONCE(event->ctx);
1270         if (!atomic_inc_not_zero(&ctx->refcount)) {
1271                 rcu_read_unlock();
1272                 goto again;
1273         }
1274         rcu_read_unlock();
1275
1276         mutex_lock_nested(&ctx->mutex, nesting);
1277         if (event->ctx != ctx) {
1278                 mutex_unlock(&ctx->mutex);
1279                 put_ctx(ctx);
1280                 goto again;
1281         }
1282
1283         return ctx;
1284 }
1285
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289         return perf_event_ctx_lock_nested(event, 0);
1290 }
1291
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293                                   struct perf_event_context *ctx)
1294 {
1295         mutex_unlock(&ctx->mutex);
1296         put_ctx(ctx);
1297 }
1298
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309         lockdep_assert_held(&ctx->lock);
1310
1311         if (parent_ctx)
1312                 ctx->parent_ctx = NULL;
1313         ctx->generation++;
1314
1315         return parent_ctx;
1316 }
1317
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319                                 enum pid_type type)
1320 {
1321         u32 nr;
1322         /*
1323          * only top level events have the pid namespace they were created in
1324          */
1325         if (event->parent)
1326                 event = event->parent;
1327
1328         nr = __task_pid_nr_ns(p, type, event->ns);
1329         /* avoid -1 if it is idle thread or runs in another ns */
1330         if (!nr && !pid_alive(p))
1331                 nr = -1;
1332         return nr;
1333 }
1334
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1338 }
1339
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342         return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351         u64 id = event->id;
1352
1353         if (event->parent)
1354                 id = event->parent->id;
1355
1356         return id;
1357 }
1358
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368         struct perf_event_context *ctx;
1369
1370 retry:
1371         /*
1372          * One of the few rules of preemptible RCU is that one cannot do
1373          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374          * part of the read side critical section was irqs-enabled -- see
1375          * rcu_read_unlock_special().
1376          *
1377          * Since ctx->lock nests under rq->lock we must ensure the entire read
1378          * side critical section has interrupts disabled.
1379          */
1380         local_irq_save(*flags);
1381         rcu_read_lock();
1382         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383         if (ctx) {
1384                 /*
1385                  * If this context is a clone of another, it might
1386                  * get swapped for another underneath us by
1387                  * perf_event_task_sched_out, though the
1388                  * rcu_read_lock() protects us from any context
1389                  * getting freed.  Lock the context and check if it
1390                  * got swapped before we could get the lock, and retry
1391                  * if so.  If we locked the right context, then it
1392                  * can't get swapped on us any more.
1393                  */
1394                 raw_spin_lock(&ctx->lock);
1395                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396                         raw_spin_unlock(&ctx->lock);
1397                         rcu_read_unlock();
1398                         local_irq_restore(*flags);
1399                         goto retry;
1400                 }
1401
1402                 if (ctx->task == TASK_TOMBSTONE ||
1403                     !atomic_inc_not_zero(&ctx->refcount)) {
1404                         raw_spin_unlock(&ctx->lock);
1405                         ctx = NULL;
1406                 } else {
1407                         WARN_ON_ONCE(ctx->task != task);
1408                 }
1409         }
1410         rcu_read_unlock();
1411         if (!ctx)
1412                 local_irq_restore(*flags);
1413         return ctx;
1414 }
1415
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424         struct perf_event_context *ctx;
1425         unsigned long flags;
1426
1427         ctx = perf_lock_task_context(task, ctxn, &flags);
1428         if (ctx) {
1429                 ++ctx->pin_count;
1430                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431         }
1432         return ctx;
1433 }
1434
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437         unsigned long flags;
1438
1439         raw_spin_lock_irqsave(&ctx->lock, flags);
1440         --ctx->pin_count;
1441         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449         u64 now = perf_clock();
1450
1451         ctx->time += now - ctx->timestamp;
1452         ctx->timestamp = now;
1453 }
1454
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457         struct perf_event_context *ctx = event->ctx;
1458
1459         if (is_cgroup_event(event))
1460                 return perf_cgroup_event_time(event);
1461
1462         return ctx ? ctx->time : 0;
1463 }
1464
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467         struct perf_event_context *ctx = event->ctx;
1468         enum event_type_t event_type;
1469
1470         lockdep_assert_held(&ctx->lock);
1471
1472         /*
1473          * It's 'group type', really, because if our group leader is
1474          * pinned, so are we.
1475          */
1476         if (event->group_leader != event)
1477                 event = event->group_leader;
1478
1479         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480         if (!ctx->task)
1481                 event_type |= EVENT_CPU;
1482
1483         return event_type;
1484 }
1485
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491         RB_CLEAR_NODE(&event->group_node);
1492         event->group_index = 0;
1493 }
1494
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502         if (event->attr.pinned)
1503                 return &ctx->pinned_groups;
1504         else
1505                 return &ctx->flexible_groups;
1506 }
1507
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513         groups->tree = RB_ROOT;
1514         groups->index = 0;
1515 }
1516
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526         if (left->cpu < right->cpu)
1527                 return true;
1528         if (left->cpu > right->cpu)
1529                 return false;
1530
1531         if (left->group_index < right->group_index)
1532                 return true;
1533         if (left->group_index > right->group_index)
1534                 return false;
1535
1536         return false;
1537 }
1538
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546                          struct perf_event *event)
1547 {
1548         struct perf_event *node_event;
1549         struct rb_node *parent;
1550         struct rb_node **node;
1551
1552         event->group_index = ++groups->index;
1553
1554         node = &groups->tree.rb_node;
1555         parent = *node;
1556
1557         while (*node) {
1558                 parent = *node;
1559                 node_event = container_of(*node, struct perf_event, group_node);
1560
1561                 if (perf_event_groups_less(event, node_event))
1562                         node = &parent->rb_left;
1563                 else
1564                         node = &parent->rb_right;
1565         }
1566
1567         rb_link_node(&event->group_node, parent, node);
1568         rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577         struct perf_event_groups *groups;
1578
1579         groups = get_event_groups(event, ctx);
1580         perf_event_groups_insert(groups, event);
1581 }
1582
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588                          struct perf_event *event)
1589 {
1590         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591                      RB_EMPTY_ROOT(&groups->tree));
1592
1593         rb_erase(&event->group_node, &groups->tree);
1594         init_event_group(event);
1595 }
1596
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603         struct perf_event_groups *groups;
1604
1605         groups = get_event_groups(event, ctx);
1606         perf_event_groups_delete(groups, event);
1607 }
1608
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615         struct perf_event *node_event = NULL, *match = NULL;
1616         struct rb_node *node = groups->tree.rb_node;
1617
1618         while (node) {
1619                 node_event = container_of(node, struct perf_event, group_node);
1620
1621                 if (cpu < node_event->cpu) {
1622                         node = node->rb_left;
1623                 } else if (cpu > node_event->cpu) {
1624                         node = node->rb_right;
1625                 } else {
1626                         match = node_event;
1627                         node = node->rb_left;
1628                 }
1629         }
1630
1631         return match;
1632 }
1633
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640         struct perf_event *next;
1641
1642         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643         if (next && next->cpu == event->cpu)
1644                 return next;
1645
1646         return NULL;
1647 }
1648
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)                       \
1653         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1654                                 typeof(*event), group_node); event;     \
1655                 event = rb_entry_safe(rb_next(&event->group_node),      \
1656                                 typeof(*event), group_node))
1657
1658 /*
1659  * Add an event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665         lockdep_assert_held(&ctx->lock);
1666
1667         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668         event->attach_state |= PERF_ATTACH_CONTEXT;
1669
1670         event->tstamp = perf_event_time(event);
1671
1672         /*
1673          * If we're a stand alone event or group leader, we go to the context
1674          * list, group events are kept attached to the group so that
1675          * perf_group_detach can, at all times, locate all siblings.
1676          */
1677         if (event->group_leader == event) {
1678                 event->group_caps = event->event_caps;
1679                 add_event_to_groups(event, ctx);
1680         }
1681
1682         list_update_cgroup_event(event, ctx, true);
1683
1684         list_add_rcu(&event->event_entry, &ctx->event_list);
1685         ctx->nr_events++;
1686         if (event->attr.inherit_stat)
1687                 ctx->nr_stat++;
1688
1689         ctx->generation++;
1690 }
1691
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698                                               PERF_EVENT_STATE_INACTIVE;
1699 }
1700
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703         int entry = sizeof(u64); /* value */
1704         int size = 0;
1705         int nr = 1;
1706
1707         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708                 size += sizeof(u64);
1709
1710         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711                 size += sizeof(u64);
1712
1713         if (event->attr.read_format & PERF_FORMAT_ID)
1714                 entry += sizeof(u64);
1715
1716         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717                 nr += nr_siblings;
1718                 size += sizeof(u64);
1719         }
1720
1721         size += entry * nr;
1722         event->read_size = size;
1723 }
1724
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727         struct perf_sample_data *data;
1728         u16 size = 0;
1729
1730         if (sample_type & PERF_SAMPLE_IP)
1731                 size += sizeof(data->ip);
1732
1733         if (sample_type & PERF_SAMPLE_ADDR)
1734                 size += sizeof(data->addr);
1735
1736         if (sample_type & PERF_SAMPLE_PERIOD)
1737                 size += sizeof(data->period);
1738
1739         if (sample_type & PERF_SAMPLE_WEIGHT)
1740                 size += sizeof(data->weight);
1741
1742         if (sample_type & PERF_SAMPLE_READ)
1743                 size += event->read_size;
1744
1745         if (sample_type & PERF_SAMPLE_DATA_SRC)
1746                 size += sizeof(data->data_src.val);
1747
1748         if (sample_type & PERF_SAMPLE_TRANSACTION)
1749                 size += sizeof(data->txn);
1750
1751         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752                 size += sizeof(data->phys_addr);
1753
1754         event->header_size = size;
1755 }
1756
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763         __perf_event_read_size(event,
1764                                event->group_leader->nr_siblings);
1765         __perf_event_header_size(event, event->attr.sample_type);
1766 }
1767
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770         struct perf_sample_data *data;
1771         u64 sample_type = event->attr.sample_type;
1772         u16 size = 0;
1773
1774         if (sample_type & PERF_SAMPLE_TID)
1775                 size += sizeof(data->tid_entry);
1776
1777         if (sample_type & PERF_SAMPLE_TIME)
1778                 size += sizeof(data->time);
1779
1780         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781                 size += sizeof(data->id);
1782
1783         if (sample_type & PERF_SAMPLE_ID)
1784                 size += sizeof(data->id);
1785
1786         if (sample_type & PERF_SAMPLE_STREAM_ID)
1787                 size += sizeof(data->stream_id);
1788
1789         if (sample_type & PERF_SAMPLE_CPU)
1790                 size += sizeof(data->cpu_entry);
1791
1792         event->id_header_size = size;
1793 }
1794
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797         /*
1798          * The values computed here will be over-written when we actually
1799          * attach the event.
1800          */
1801         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803         perf_event__id_header_size(event);
1804
1805         /*
1806          * Sum the lot; should not exceed the 64k limit we have on records.
1807          * Conservative limit to allow for callchains and other variable fields.
1808          */
1809         if (event->read_size + event->header_size +
1810             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811                 return false;
1812
1813         return true;
1814 }
1815
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818         struct perf_event *group_leader = event->group_leader, *pos;
1819
1820         lockdep_assert_held(&event->ctx->lock);
1821
1822         /*
1823          * We can have double attach due to group movement in perf_event_open.
1824          */
1825         if (event->attach_state & PERF_ATTACH_GROUP)
1826                 return;
1827
1828         event->attach_state |= PERF_ATTACH_GROUP;
1829
1830         if (group_leader == event)
1831                 return;
1832
1833         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
1835         group_leader->group_caps &= event->event_caps;
1836
1837         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838         group_leader->nr_siblings++;
1839
1840         perf_event__header_size(group_leader);
1841
1842         for_each_sibling_event(pos, group_leader)
1843                 perf_event__header_size(pos);
1844 }
1845
1846 /*
1847  * Remove an event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853         WARN_ON_ONCE(event->ctx != ctx);
1854         lockdep_assert_held(&ctx->lock);
1855
1856         /*
1857          * We can have double detach due to exit/hot-unplug + close.
1858          */
1859         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860                 return;
1861
1862         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
1864         list_update_cgroup_event(event, ctx, false);
1865
1866         ctx->nr_events--;
1867         if (event->attr.inherit_stat)
1868                 ctx->nr_stat--;
1869
1870         list_del_rcu(&event->event_entry);
1871
1872         if (event->group_leader == event)
1873                 del_event_from_groups(event, ctx);
1874
1875         /*
1876          * If event was in error state, then keep it
1877          * that way, otherwise bogus counts will be
1878          * returned on read(). The only way to get out
1879          * of error state is by explicit re-enabling
1880          * of the event
1881          */
1882         if (event->state > PERF_EVENT_STATE_OFF)
1883                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884
1885         ctx->generation++;
1886 }
1887
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890         struct perf_event *sibling, *tmp;
1891         struct perf_event_context *ctx = event->ctx;
1892
1893         lockdep_assert_held(&ctx->lock);
1894
1895         /*
1896          * We can have double detach due to exit/hot-unplug + close.
1897          */
1898         if (!(event->attach_state & PERF_ATTACH_GROUP))
1899                 return;
1900
1901         event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903         /*
1904          * If this is a sibling, remove it from its group.
1905          */
1906         if (event->group_leader != event) {
1907                 list_del_init(&event->sibling_list);
1908                 event->group_leader->nr_siblings--;
1909                 goto out;
1910         }
1911
1912         /*
1913          * If this was a group event with sibling events then
1914          * upgrade the siblings to singleton events by adding them
1915          * to whatever list we are on.
1916          */
1917         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918
1919                 sibling->group_leader = sibling;
1920                 list_del_init(&sibling->sibling_list);
1921
1922                 /* Inherit group flags from the previous leader */
1923                 sibling->group_caps = event->group_caps;
1924
1925                 if (!RB_EMPTY_NODE(&event->group_node)) {
1926                         add_event_to_groups(sibling, event->ctx);
1927
1928                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929                                 struct list_head *list = sibling->attr.pinned ?
1930                                         &ctx->pinned_active : &ctx->flexible_active;
1931
1932                                 list_add_tail(&sibling->active_list, list);
1933                         }
1934                 }
1935
1936                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1937         }
1938
1939 out:
1940         perf_event__header_size(event->group_leader);
1941
1942         for_each_sibling_event(tmp, event->group_leader)
1943                 perf_event__header_size(tmp);
1944 }
1945
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948         return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953         struct pmu *pmu = event->pmu;
1954         return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965         struct perf_event *sibling;
1966
1967         if (!__pmu_filter_match(event))
1968                 return 0;
1969
1970         for_each_sibling_event(sibling, event) {
1971                 if (!__pmu_filter_match(sibling))
1972                         return 0;
1973         }
1974
1975         return 1;
1976 }
1977
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982                perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984
1985 static void
1986 event_sched_out(struct perf_event *event,
1987                   struct perf_cpu_context *cpuctx,
1988                   struct perf_event_context *ctx)
1989 {
1990         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991
1992         WARN_ON_ONCE(event->ctx != ctx);
1993         lockdep_assert_held(&ctx->lock);
1994
1995         if (event->state != PERF_EVENT_STATE_ACTIVE)
1996                 return;
1997
1998         /*
1999          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000          * we can schedule events _OUT_ individually through things like
2001          * __perf_remove_from_context().
2002          */
2003         list_del_init(&event->active_list);
2004
2005         perf_pmu_disable(event->pmu);
2006
2007         event->pmu->del(event, 0);
2008         event->oncpu = -1;
2009
2010         if (READ_ONCE(event->pending_disable) >= 0) {
2011                 WRITE_ONCE(event->pending_disable, -1);
2012                 state = PERF_EVENT_STATE_OFF;
2013         }
2014         perf_event_set_state(event, state);
2015
2016         if (!is_software_event(event))
2017                 cpuctx->active_oncpu--;
2018         if (!--ctx->nr_active)
2019                 perf_event_ctx_deactivate(ctx);
2020         if (event->attr.freq && event->attr.sample_freq)
2021                 ctx->nr_freq--;
2022         if (event->attr.exclusive || !cpuctx->active_oncpu)
2023                 cpuctx->exclusive = 0;
2024
2025         perf_pmu_enable(event->pmu);
2026 }
2027
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030                 struct perf_cpu_context *cpuctx,
2031                 struct perf_event_context *ctx)
2032 {
2033         struct perf_event *event;
2034
2035         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036                 return;
2037
2038         perf_pmu_disable(ctx->pmu);
2039
2040         event_sched_out(group_event, cpuctx, ctx);
2041
2042         /*
2043          * Schedule out siblings (if any):
2044          */
2045         for_each_sibling_event(event, group_event)
2046                 event_sched_out(event, cpuctx, ctx);
2047
2048         perf_pmu_enable(ctx->pmu);
2049
2050         if (group_event->attr.exclusive)
2051                 cpuctx->exclusive = 0;
2052 }
2053
2054 #define DETACH_GROUP    0x01UL
2055
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064                            struct perf_cpu_context *cpuctx,
2065                            struct perf_event_context *ctx,
2066                            void *info)
2067 {
2068         unsigned long flags = (unsigned long)info;
2069
2070         if (ctx->is_active & EVENT_TIME) {
2071                 update_context_time(ctx);
2072                 update_cgrp_time_from_cpuctx(cpuctx);
2073         }
2074
2075         event_sched_out(event, cpuctx, ctx);
2076         if (flags & DETACH_GROUP)
2077                 perf_group_detach(event);
2078         list_del_event(event, ctx);
2079
2080         if (!ctx->nr_events && ctx->is_active) {
2081                 ctx->is_active = 0;
2082                 if (ctx->task) {
2083                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084                         cpuctx->task_ctx = NULL;
2085                 }
2086         }
2087 }
2088
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101         struct perf_event_context *ctx = event->ctx;
2102
2103         lockdep_assert_held(&ctx->mutex);
2104
2105         event_function_call(event, __perf_remove_from_context, (void *)flags);
2106
2107         /*
2108          * The above event_function_call() can NO-OP when it hits
2109          * TASK_TOMBSTONE. In that case we must already have been detached
2110          * from the context (by perf_event_exit_event()) but the grouping
2111          * might still be in-tact.
2112          */
2113         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114         if ((flags & DETACH_GROUP) &&
2115             (event->attach_state & PERF_ATTACH_GROUP)) {
2116                 /*
2117                  * Since in that case we cannot possibly be scheduled, simply
2118                  * detach now.
2119                  */
2120                 raw_spin_lock_irq(&ctx->lock);
2121                 perf_group_detach(event);
2122                 raw_spin_unlock_irq(&ctx->lock);
2123         }
2124 }
2125
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130                                  struct perf_cpu_context *cpuctx,
2131                                  struct perf_event_context *ctx,
2132                                  void *info)
2133 {
2134         if (event->state < PERF_EVENT_STATE_INACTIVE)
2135                 return;
2136
2137         if (ctx->is_active & EVENT_TIME) {
2138                 update_context_time(ctx);
2139                 update_cgrp_time_from_event(event);
2140         }
2141
2142         if (event == event->group_leader)
2143                 group_sched_out(event, cpuctx, ctx);
2144         else
2145                 event_sched_out(event, cpuctx, ctx);
2146
2147         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149
2150 /*
2151  * Disable an event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166         struct perf_event_context *ctx = event->ctx;
2167
2168         raw_spin_lock_irq(&ctx->lock);
2169         if (event->state <= PERF_EVENT_STATE_OFF) {
2170                 raw_spin_unlock_irq(&ctx->lock);
2171                 return;
2172         }
2173         raw_spin_unlock_irq(&ctx->lock);
2174
2175         event_function_call(event, __perf_event_disable, NULL);
2176 }
2177
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180         event_function_local(event, __perf_event_disable, NULL);
2181 }
2182
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189         struct perf_event_context *ctx;
2190
2191         ctx = perf_event_ctx_lock(event);
2192         _perf_event_disable(event);
2193         perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199         WRITE_ONCE(event->pending_disable, smp_processor_id());
2200         /* can fail, see perf_pending_event_disable() */
2201         irq_work_queue(&event->pending);
2202 }
2203
2204 static void perf_set_shadow_time(struct perf_event *event,
2205                                  struct perf_event_context *ctx)
2206 {
2207         /*
2208          * use the correct time source for the time snapshot
2209          *
2210          * We could get by without this by leveraging the
2211          * fact that to get to this function, the caller
2212          * has most likely already called update_context_time()
2213          * and update_cgrp_time_xx() and thus both timestamp
2214          * are identical (or very close). Given that tstamp is,
2215          * already adjusted for cgroup, we could say that:
2216          *    tstamp - ctx->timestamp
2217          * is equivalent to
2218          *    tstamp - cgrp->timestamp.
2219          *
2220          * Then, in perf_output_read(), the calculation would
2221          * work with no changes because:
2222          * - event is guaranteed scheduled in
2223          * - no scheduled out in between
2224          * - thus the timestamp would be the same
2225          *
2226          * But this is a bit hairy.
2227          *
2228          * So instead, we have an explicit cgroup call to remain
2229          * within the time time source all along. We believe it
2230          * is cleaner and simpler to understand.
2231          */
2232         if (is_cgroup_event(event))
2233                 perf_cgroup_set_shadow_time(event, event->tstamp);
2234         else
2235                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2236 }
2237
2238 #define MAX_INTERRUPTS (~0ULL)
2239
2240 static void perf_log_throttle(struct perf_event *event, int enable);
2241 static void perf_log_itrace_start(struct perf_event *event);
2242
2243 static int
2244 event_sched_in(struct perf_event *event,
2245                  struct perf_cpu_context *cpuctx,
2246                  struct perf_event_context *ctx)
2247 {
2248         int ret = 0;
2249
2250         lockdep_assert_held(&ctx->lock);
2251
2252         if (event->state <= PERF_EVENT_STATE_OFF)
2253                 return 0;
2254
2255         WRITE_ONCE(event->oncpu, smp_processor_id());
2256         /*
2257          * Order event::oncpu write to happen before the ACTIVE state is
2258          * visible. This allows perf_event_{stop,read}() to observe the correct
2259          * ->oncpu if it sees ACTIVE.
2260          */
2261         smp_wmb();
2262         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2263
2264         /*
2265          * Unthrottle events, since we scheduled we might have missed several
2266          * ticks already, also for a heavily scheduling task there is little
2267          * guarantee it'll get a tick in a timely manner.
2268          */
2269         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2270                 perf_log_throttle(event, 1);
2271                 event->hw.interrupts = 0;
2272         }
2273
2274         perf_pmu_disable(event->pmu);
2275
2276         perf_set_shadow_time(event, ctx);
2277
2278         perf_log_itrace_start(event);
2279
2280         if (event->pmu->add(event, PERF_EF_START)) {
2281                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2282                 event->oncpu = -1;
2283                 ret = -EAGAIN;
2284                 goto out;
2285         }
2286
2287         if (!is_software_event(event))
2288                 cpuctx->active_oncpu++;
2289         if (!ctx->nr_active++)
2290                 perf_event_ctx_activate(ctx);
2291         if (event->attr.freq && event->attr.sample_freq)
2292                 ctx->nr_freq++;
2293
2294         if (event->attr.exclusive)
2295                 cpuctx->exclusive = 1;
2296
2297 out:
2298         perf_pmu_enable(event->pmu);
2299
2300         return ret;
2301 }
2302
2303 static int
2304 group_sched_in(struct perf_event *group_event,
2305                struct perf_cpu_context *cpuctx,
2306                struct perf_event_context *ctx)
2307 {
2308         struct perf_event *event, *partial_group = NULL;
2309         struct pmu *pmu = ctx->pmu;
2310
2311         if (group_event->state == PERF_EVENT_STATE_OFF)
2312                 return 0;
2313
2314         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2315
2316         if (event_sched_in(group_event, cpuctx, ctx)) {
2317                 pmu->cancel_txn(pmu);
2318                 perf_mux_hrtimer_restart(cpuctx);
2319                 return -EAGAIN;
2320         }
2321
2322         /*
2323          * Schedule in siblings as one group (if any):
2324          */
2325         for_each_sibling_event(event, group_event) {
2326                 if (event_sched_in(event, cpuctx, ctx)) {
2327                         partial_group = event;
2328                         goto group_error;
2329                 }
2330         }
2331
2332         if (!pmu->commit_txn(pmu))
2333                 return 0;
2334
2335 group_error:
2336         /*
2337          * Groups can be scheduled in as one unit only, so undo any
2338          * partial group before returning:
2339          * The events up to the failed event are scheduled out normally.
2340          */
2341         for_each_sibling_event(event, group_event) {
2342                 if (event == partial_group)
2343                         break;
2344
2345                 event_sched_out(event, cpuctx, ctx);
2346         }
2347         event_sched_out(group_event, cpuctx, ctx);
2348
2349         pmu->cancel_txn(pmu);
2350
2351         perf_mux_hrtimer_restart(cpuctx);
2352
2353         return -EAGAIN;
2354 }
2355
2356 /*
2357  * Work out whether we can put this event group on the CPU now.
2358  */
2359 static int group_can_go_on(struct perf_event *event,
2360                            struct perf_cpu_context *cpuctx,
2361                            int can_add_hw)
2362 {
2363         /*
2364          * Groups consisting entirely of software events can always go on.
2365          */
2366         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2367                 return 1;
2368         /*
2369          * If an exclusive group is already on, no other hardware
2370          * events can go on.
2371          */
2372         if (cpuctx->exclusive)
2373                 return 0;
2374         /*
2375          * If this group is exclusive and there are already
2376          * events on the CPU, it can't go on.
2377          */
2378         if (event->attr.exclusive && cpuctx->active_oncpu)
2379                 return 0;
2380         /*
2381          * Otherwise, try to add it if all previous groups were able
2382          * to go on.
2383          */
2384         return can_add_hw;
2385 }
2386
2387 static void add_event_to_ctx(struct perf_event *event,
2388                                struct perf_event_context *ctx)
2389 {
2390         list_add_event(event, ctx);
2391         perf_group_attach(event);
2392 }
2393
2394 static void ctx_sched_out(struct perf_event_context *ctx,
2395                           struct perf_cpu_context *cpuctx,
2396                           enum event_type_t event_type);
2397 static void
2398 ctx_sched_in(struct perf_event_context *ctx,
2399              struct perf_cpu_context *cpuctx,
2400              enum event_type_t event_type,
2401              struct task_struct *task);
2402
2403 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2404                                struct perf_event_context *ctx,
2405                                enum event_type_t event_type)
2406 {
2407         if (!cpuctx->task_ctx)
2408                 return;
2409
2410         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2411                 return;
2412
2413         ctx_sched_out(ctx, cpuctx, event_type);
2414 }
2415
2416 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2417                                 struct perf_event_context *ctx,
2418                                 struct task_struct *task)
2419 {
2420         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2421         if (ctx)
2422                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2423         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2424         if (ctx)
2425                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2426 }
2427
2428 /*
2429  * We want to maintain the following priority of scheduling:
2430  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2431  *  - task pinned (EVENT_PINNED)
2432  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2433  *  - task flexible (EVENT_FLEXIBLE).
2434  *
2435  * In order to avoid unscheduling and scheduling back in everything every
2436  * time an event is added, only do it for the groups of equal priority and
2437  * below.
2438  *
2439  * This can be called after a batch operation on task events, in which case
2440  * event_type is a bit mask of the types of events involved. For CPU events,
2441  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2442  */
2443 static void ctx_resched(struct perf_cpu_context *cpuctx,
2444                         struct perf_event_context *task_ctx,
2445                         enum event_type_t event_type)
2446 {
2447         enum event_type_t ctx_event_type;
2448         bool cpu_event = !!(event_type & EVENT_CPU);
2449
2450         /*
2451          * If pinned groups are involved, flexible groups also need to be
2452          * scheduled out.
2453          */
2454         if (event_type & EVENT_PINNED)
2455                 event_type |= EVENT_FLEXIBLE;
2456
2457         ctx_event_type = event_type & EVENT_ALL;
2458
2459         perf_pmu_disable(cpuctx->ctx.pmu);
2460         if (task_ctx)
2461                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2462
2463         /*
2464          * Decide which cpu ctx groups to schedule out based on the types
2465          * of events that caused rescheduling:
2466          *  - EVENT_CPU: schedule out corresponding groups;
2467          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2468          *  - otherwise, do nothing more.
2469          */
2470         if (cpu_event)
2471                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2472         else if (ctx_event_type & EVENT_PINNED)
2473                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2474
2475         perf_event_sched_in(cpuctx, task_ctx, current);
2476         perf_pmu_enable(cpuctx->ctx.pmu);
2477 }
2478
2479 /*
2480  * Cross CPU call to install and enable a performance event
2481  *
2482  * Very similar to remote_function() + event_function() but cannot assume that
2483  * things like ctx->is_active and cpuctx->task_ctx are set.
2484  */
2485 static int  __perf_install_in_context(void *info)
2486 {
2487         struct perf_event *event = info;
2488         struct perf_event_context *ctx = event->ctx;
2489         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2490         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2491         bool reprogram = true;
2492         int ret = 0;
2493
2494         raw_spin_lock(&cpuctx->ctx.lock);
2495         if (ctx->task) {
2496                 raw_spin_lock(&ctx->lock);
2497                 task_ctx = ctx;
2498
2499                 reprogram = (ctx->task == current);
2500
2501                 /*
2502                  * If the task is running, it must be running on this CPU,
2503                  * otherwise we cannot reprogram things.
2504                  *
2505                  * If its not running, we don't care, ctx->lock will
2506                  * serialize against it becoming runnable.
2507                  */
2508                 if (task_curr(ctx->task) && !reprogram) {
2509                         ret = -ESRCH;
2510                         goto unlock;
2511                 }
2512
2513                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2514         } else if (task_ctx) {
2515                 raw_spin_lock(&task_ctx->lock);
2516         }
2517
2518 #ifdef CONFIG_CGROUP_PERF
2519         if (is_cgroup_event(event)) {
2520                 /*
2521                  * If the current cgroup doesn't match the event's
2522                  * cgroup, we should not try to schedule it.
2523                  */
2524                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2525                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2526                                         event->cgrp->css.cgroup);
2527         }
2528 #endif
2529
2530         if (reprogram) {
2531                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2532                 add_event_to_ctx(event, ctx);
2533                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2534         } else {
2535                 add_event_to_ctx(event, ctx);
2536         }
2537
2538 unlock:
2539         perf_ctx_unlock(cpuctx, task_ctx);
2540
2541         return ret;
2542 }
2543
2544 static bool exclusive_event_installable(struct perf_event *event,
2545                                         struct perf_event_context *ctx);
2546
2547 /*
2548  * Attach a performance event to a context.
2549  *
2550  * Very similar to event_function_call, see comment there.
2551  */
2552 static void
2553 perf_install_in_context(struct perf_event_context *ctx,
2554                         struct perf_event *event,
2555                         int cpu)
2556 {
2557         struct task_struct *task = READ_ONCE(ctx->task);
2558
2559         lockdep_assert_held(&ctx->mutex);
2560
2561         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2562
2563         if (event->cpu != -1)
2564                 event->cpu = cpu;
2565
2566         /*
2567          * Ensures that if we can observe event->ctx, both the event and ctx
2568          * will be 'complete'. See perf_iterate_sb_cpu().
2569          */
2570         smp_store_release(&event->ctx, ctx);
2571
2572         if (!task) {
2573                 cpu_function_call(cpu, __perf_install_in_context, event);
2574                 return;
2575         }
2576
2577         /*
2578          * Should not happen, we validate the ctx is still alive before calling.
2579          */
2580         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2581                 return;
2582
2583         /*
2584          * Installing events is tricky because we cannot rely on ctx->is_active
2585          * to be set in case this is the nr_events 0 -> 1 transition.
2586          *
2587          * Instead we use task_curr(), which tells us if the task is running.
2588          * However, since we use task_curr() outside of rq::lock, we can race
2589          * against the actual state. This means the result can be wrong.
2590          *
2591          * If we get a false positive, we retry, this is harmless.
2592          *
2593          * If we get a false negative, things are complicated. If we are after
2594          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2595          * value must be correct. If we're before, it doesn't matter since
2596          * perf_event_context_sched_in() will program the counter.
2597          *
2598          * However, this hinges on the remote context switch having observed
2599          * our task->perf_event_ctxp[] store, such that it will in fact take
2600          * ctx::lock in perf_event_context_sched_in().
2601          *
2602          * We do this by task_function_call(), if the IPI fails to hit the task
2603          * we know any future context switch of task must see the
2604          * perf_event_ctpx[] store.
2605          */
2606
2607         /*
2608          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2609          * task_cpu() load, such that if the IPI then does not find the task
2610          * running, a future context switch of that task must observe the
2611          * store.
2612          */
2613         smp_mb();
2614 again:
2615         if (!task_function_call(task, __perf_install_in_context, event))
2616                 return;
2617
2618         raw_spin_lock_irq(&ctx->lock);
2619         task = ctx->task;
2620         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2621                 /*
2622                  * Cannot happen because we already checked above (which also
2623                  * cannot happen), and we hold ctx->mutex, which serializes us
2624                  * against perf_event_exit_task_context().
2625                  */
2626                 raw_spin_unlock_irq(&ctx->lock);
2627                 return;
2628         }
2629         /*
2630          * If the task is not running, ctx->lock will avoid it becoming so,
2631          * thus we can safely install the event.
2632          */
2633         if (task_curr(task)) {
2634                 raw_spin_unlock_irq(&ctx->lock);
2635                 goto again;
2636         }
2637         add_event_to_ctx(event, ctx);
2638         raw_spin_unlock_irq(&ctx->lock);
2639 }
2640
2641 /*
2642  * Cross CPU call to enable a performance event
2643  */
2644 static void __perf_event_enable(struct perf_event *event,
2645                                 struct perf_cpu_context *cpuctx,
2646                                 struct perf_event_context *ctx,
2647                                 void *info)
2648 {
2649         struct perf_event *leader = event->group_leader;
2650         struct perf_event_context *task_ctx;
2651
2652         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2653             event->state <= PERF_EVENT_STATE_ERROR)
2654                 return;
2655
2656         if (ctx->is_active)
2657                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2658
2659         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2660
2661         if (!ctx->is_active)
2662                 return;
2663
2664         if (!event_filter_match(event)) {
2665                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2666                 return;
2667         }
2668
2669         /*
2670          * If the event is in a group and isn't the group leader,
2671          * then don't put it on unless the group is on.
2672          */
2673         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2674                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2675                 return;
2676         }
2677
2678         task_ctx = cpuctx->task_ctx;
2679         if (ctx->task)
2680                 WARN_ON_ONCE(task_ctx != ctx);
2681
2682         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2683 }
2684
2685 /*
2686  * Enable an event.
2687  *
2688  * If event->ctx is a cloned context, callers must make sure that
2689  * every task struct that event->ctx->task could possibly point to
2690  * remains valid.  This condition is satisfied when called through
2691  * perf_event_for_each_child or perf_event_for_each as described
2692  * for perf_event_disable.
2693  */
2694 static void _perf_event_enable(struct perf_event *event)
2695 {
2696         struct perf_event_context *ctx = event->ctx;
2697
2698         raw_spin_lock_irq(&ctx->lock);
2699         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2700             event->state <  PERF_EVENT_STATE_ERROR) {
2701                 raw_spin_unlock_irq(&ctx->lock);
2702                 return;
2703         }
2704
2705         /*
2706          * If the event is in error state, clear that first.
2707          *
2708          * That way, if we see the event in error state below, we know that it
2709          * has gone back into error state, as distinct from the task having
2710          * been scheduled away before the cross-call arrived.
2711          */
2712         if (event->state == PERF_EVENT_STATE_ERROR)
2713                 event->state = PERF_EVENT_STATE_OFF;
2714         raw_spin_unlock_irq(&ctx->lock);
2715
2716         event_function_call(event, __perf_event_enable, NULL);
2717 }
2718
2719 /*
2720  * See perf_event_disable();
2721  */
2722 void perf_event_enable(struct perf_event *event)
2723 {
2724         struct perf_event_context *ctx;
2725
2726         ctx = perf_event_ctx_lock(event);
2727         _perf_event_enable(event);
2728         perf_event_ctx_unlock(event, ctx);
2729 }
2730 EXPORT_SYMBOL_GPL(perf_event_enable);
2731
2732 struct stop_event_data {
2733         struct perf_event       *event;
2734         unsigned int            restart;
2735 };
2736
2737 static int __perf_event_stop(void *info)
2738 {
2739         struct stop_event_data *sd = info;
2740         struct perf_event *event = sd->event;
2741
2742         /* if it's already INACTIVE, do nothing */
2743         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2744                 return 0;
2745
2746         /* matches smp_wmb() in event_sched_in() */
2747         smp_rmb();
2748
2749         /*
2750          * There is a window with interrupts enabled before we get here,
2751          * so we need to check again lest we try to stop another CPU's event.
2752          */
2753         if (READ_ONCE(event->oncpu) != smp_processor_id())
2754                 return -EAGAIN;
2755
2756         event->pmu->stop(event, PERF_EF_UPDATE);
2757
2758         /*
2759          * May race with the actual stop (through perf_pmu_output_stop()),
2760          * but it is only used for events with AUX ring buffer, and such
2761          * events will refuse to restart because of rb::aux_mmap_count==0,
2762          * see comments in perf_aux_output_begin().
2763          *
2764          * Since this is happening on an event-local CPU, no trace is lost
2765          * while restarting.
2766          */
2767         if (sd->restart)
2768                 event->pmu->start(event, 0);
2769
2770         return 0;
2771 }
2772
2773 static int perf_event_stop(struct perf_event *event, int restart)
2774 {
2775         struct stop_event_data sd = {
2776                 .event          = event,
2777                 .restart        = restart,
2778         };
2779         int ret = 0;
2780
2781         do {
2782                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2783                         return 0;
2784
2785                 /* matches smp_wmb() in event_sched_in() */
2786                 smp_rmb();
2787
2788                 /*
2789                  * We only want to restart ACTIVE events, so if the event goes
2790                  * inactive here (event->oncpu==-1), there's nothing more to do;
2791                  * fall through with ret==-ENXIO.
2792                  */
2793                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2794                                         __perf_event_stop, &sd);
2795         } while (ret == -EAGAIN);
2796
2797         return ret;
2798 }
2799
2800 /*
2801  * In order to contain the amount of racy and tricky in the address filter
2802  * configuration management, it is a two part process:
2803  *
2804  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2805  *      we update the addresses of corresponding vmas in
2806  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2807  * (p2) when an event is scheduled in (pmu::add), it calls
2808  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2809  *      if the generation has changed since the previous call.
2810  *
2811  * If (p1) happens while the event is active, we restart it to force (p2).
2812  *
2813  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2814  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2815  *     ioctl;
2816  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2817  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2818  *     for reading;
2819  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2820  *     of exec.
2821  */
2822 void perf_event_addr_filters_sync(struct perf_event *event)
2823 {
2824         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2825
2826         if (!has_addr_filter(event))
2827                 return;
2828
2829         raw_spin_lock(&ifh->lock);
2830         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2831                 event->pmu->addr_filters_sync(event);
2832                 event->hw.addr_filters_gen = event->addr_filters_gen;
2833         }
2834         raw_spin_unlock(&ifh->lock);
2835 }
2836 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2837
2838 static int _perf_event_refresh(struct perf_event *event, int refresh)
2839 {
2840         /*
2841          * not supported on inherited events
2842          */
2843         if (event->attr.inherit || !is_sampling_event(event))
2844                 return -EINVAL;
2845
2846         atomic_add(refresh, &event->event_limit);
2847         _perf_event_enable(event);
2848
2849         return 0;
2850 }
2851
2852 /*
2853  * See perf_event_disable()
2854  */
2855 int perf_event_refresh(struct perf_event *event, int refresh)
2856 {
2857         struct perf_event_context *ctx;
2858         int ret;
2859
2860         ctx = perf_event_ctx_lock(event);
2861         ret = _perf_event_refresh(event, refresh);
2862         perf_event_ctx_unlock(event, ctx);
2863
2864         return ret;
2865 }
2866 EXPORT_SYMBOL_GPL(perf_event_refresh);
2867
2868 static int perf_event_modify_breakpoint(struct perf_event *bp,
2869                                          struct perf_event_attr *attr)
2870 {
2871         int err;
2872
2873         _perf_event_disable(bp);
2874
2875         err = modify_user_hw_breakpoint_check(bp, attr, true);
2876
2877         if (!bp->attr.disabled)
2878                 _perf_event_enable(bp);
2879
2880         return err;
2881 }
2882
2883 static int perf_event_modify_attr(struct perf_event *event,
2884                                   struct perf_event_attr *attr)
2885 {
2886         if (event->attr.type != attr->type)
2887                 return -EINVAL;
2888
2889         switch (event->attr.type) {
2890         case PERF_TYPE_BREAKPOINT:
2891                 return perf_event_modify_breakpoint(event, attr);
2892         default:
2893                 /* Place holder for future additions. */
2894                 return -EOPNOTSUPP;
2895         }
2896 }
2897
2898 static void ctx_sched_out(struct perf_event_context *ctx,
2899                           struct perf_cpu_context *cpuctx,
2900                           enum event_type_t event_type)
2901 {
2902         struct perf_event *event, *tmp;
2903         int is_active = ctx->is_active;
2904
2905         lockdep_assert_held(&ctx->lock);
2906
2907         if (likely(!ctx->nr_events)) {
2908                 /*
2909                  * See __perf_remove_from_context().
2910                  */
2911                 WARN_ON_ONCE(ctx->is_active);
2912                 if (ctx->task)
2913                         WARN_ON_ONCE(cpuctx->task_ctx);
2914                 return;
2915         }
2916
2917         ctx->is_active &= ~event_type;
2918         if (!(ctx->is_active & EVENT_ALL))
2919                 ctx->is_active = 0;
2920
2921         if (ctx->task) {
2922                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2923                 if (!ctx->is_active)
2924                         cpuctx->task_ctx = NULL;
2925         }
2926
2927         /*
2928          * Always update time if it was set; not only when it changes.
2929          * Otherwise we can 'forget' to update time for any but the last
2930          * context we sched out. For example:
2931          *
2932          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2933          *   ctx_sched_out(.event_type = EVENT_PINNED)
2934          *
2935          * would only update time for the pinned events.
2936          */
2937         if (is_active & EVENT_TIME) {
2938                 /* update (and stop) ctx time */
2939                 update_context_time(ctx);
2940                 update_cgrp_time_from_cpuctx(cpuctx);
2941         }
2942
2943         is_active ^= ctx->is_active; /* changed bits */
2944
2945         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2946                 return;
2947
2948         perf_pmu_disable(ctx->pmu);
2949         if (is_active & EVENT_PINNED) {
2950                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2951                         group_sched_out(event, cpuctx, ctx);
2952         }
2953
2954         if (is_active & EVENT_FLEXIBLE) {
2955                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2956                         group_sched_out(event, cpuctx, ctx);
2957         }
2958         perf_pmu_enable(ctx->pmu);
2959 }
2960
2961 /*
2962  * Test whether two contexts are equivalent, i.e. whether they have both been
2963  * cloned from the same version of the same context.
2964  *
2965  * Equivalence is measured using a generation number in the context that is
2966  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2967  * and list_del_event().
2968  */
2969 static int context_equiv(struct perf_event_context *ctx1,
2970                          struct perf_event_context *ctx2)
2971 {
2972         lockdep_assert_held(&ctx1->lock);
2973         lockdep_assert_held(&ctx2->lock);
2974
2975         /* Pinning disables the swap optimization */
2976         if (ctx1->pin_count || ctx2->pin_count)
2977                 return 0;
2978
2979         /* If ctx1 is the parent of ctx2 */
2980         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2981                 return 1;
2982
2983         /* If ctx2 is the parent of ctx1 */
2984         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2985                 return 1;
2986
2987         /*
2988          * If ctx1 and ctx2 have the same parent; we flatten the parent
2989          * hierarchy, see perf_event_init_context().
2990          */
2991         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2992                         ctx1->parent_gen == ctx2->parent_gen)
2993                 return 1;
2994
2995         /* Unmatched */
2996         return 0;
2997 }
2998
2999 static void __perf_event_sync_stat(struct perf_event *event,
3000                                      struct perf_event *next_event)
3001 {
3002         u64 value;
3003
3004         if (!event->attr.inherit_stat)
3005                 return;
3006
3007         /*
3008          * Update the event value, we cannot use perf_event_read()
3009          * because we're in the middle of a context switch and have IRQs
3010          * disabled, which upsets smp_call_function_single(), however
3011          * we know the event must be on the current CPU, therefore we
3012          * don't need to use it.
3013          */
3014         if (event->state == PERF_EVENT_STATE_ACTIVE)
3015                 event->pmu->read(event);
3016
3017         perf_event_update_time(event);
3018
3019         /*
3020          * In order to keep per-task stats reliable we need to flip the event
3021          * values when we flip the contexts.
3022          */
3023         value = local64_read(&next_event->count);
3024         value = local64_xchg(&event->count, value);
3025         local64_set(&next_event->count, value);
3026
3027         swap(event->total_time_enabled, next_event->total_time_enabled);
3028         swap(event->total_time_running, next_event->total_time_running);
3029
3030         /*
3031          * Since we swizzled the values, update the user visible data too.
3032          */
3033         perf_event_update_userpage(event);
3034         perf_event_update_userpage(next_event);
3035 }
3036
3037 static void perf_event_sync_stat(struct perf_event_context *ctx,
3038                                    struct perf_event_context *next_ctx)
3039 {
3040         struct perf_event *event, *next_event;
3041
3042         if (!ctx->nr_stat)
3043                 return;
3044
3045         update_context_time(ctx);
3046
3047         event = list_first_entry(&ctx->event_list,
3048                                    struct perf_event, event_entry);
3049
3050         next_event = list_first_entry(&next_ctx->event_list,
3051                                         struct perf_event, event_entry);
3052
3053         while (&event->event_entry != &ctx->event_list &&
3054                &next_event->event_entry != &next_ctx->event_list) {
3055
3056                 __perf_event_sync_stat(event, next_event);
3057
3058                 event = list_next_entry(event, event_entry);
3059                 next_event = list_next_entry(next_event, event_entry);
3060         }
3061 }
3062
3063 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3064                                          struct task_struct *next)
3065 {
3066         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3067         struct perf_event_context *next_ctx;
3068         struct perf_event_context *parent, *next_parent;
3069         struct perf_cpu_context *cpuctx;
3070         int do_switch = 1;
3071
3072         if (likely(!ctx))
3073                 return;
3074
3075         cpuctx = __get_cpu_context(ctx);
3076         if (!cpuctx->task_ctx)
3077                 return;
3078
3079         rcu_read_lock();
3080         next_ctx = next->perf_event_ctxp[ctxn];
3081         if (!next_ctx)
3082                 goto unlock;
3083
3084         parent = rcu_dereference(ctx->parent_ctx);
3085         next_parent = rcu_dereference(next_ctx->parent_ctx);
3086
3087         /* If neither context have a parent context; they cannot be clones. */
3088         if (!parent && !next_parent)
3089                 goto unlock;
3090
3091         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3092                 /*
3093                  * Looks like the two contexts are clones, so we might be
3094                  * able to optimize the context switch.  We lock both
3095                  * contexts and check that they are clones under the
3096                  * lock (including re-checking that neither has been
3097                  * uncloned in the meantime).  It doesn't matter which
3098                  * order we take the locks because no other cpu could
3099                  * be trying to lock both of these tasks.
3100                  */
3101                 raw_spin_lock(&ctx->lock);
3102                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3103                 if (context_equiv(ctx, next_ctx)) {
3104                         WRITE_ONCE(ctx->task, next);
3105                         WRITE_ONCE(next_ctx->task, task);
3106
3107                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3108
3109                         /*
3110                          * RCU_INIT_POINTER here is safe because we've not
3111                          * modified the ctx and the above modification of
3112                          * ctx->task and ctx->task_ctx_data are immaterial
3113                          * since those values are always verified under
3114                          * ctx->lock which we're now holding.
3115                          */
3116                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3117                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3118
3119                         do_switch = 0;
3120
3121                         perf_event_sync_stat(ctx, next_ctx);
3122                 }
3123                 raw_spin_unlock(&next_ctx->lock);
3124                 raw_spin_unlock(&ctx->lock);
3125         }
3126 unlock:
3127         rcu_read_unlock();
3128
3129         if (do_switch) {
3130                 raw_spin_lock(&ctx->lock);
3131                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3132                 raw_spin_unlock(&ctx->lock);
3133         }
3134 }
3135
3136 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3137
3138 void perf_sched_cb_dec(struct pmu *pmu)
3139 {
3140         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3141
3142         this_cpu_dec(perf_sched_cb_usages);
3143
3144         if (!--cpuctx->sched_cb_usage)
3145                 list_del(&cpuctx->sched_cb_entry);
3146 }
3147
3148
3149 void perf_sched_cb_inc(struct pmu *pmu)
3150 {
3151         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3152
3153         if (!cpuctx->sched_cb_usage++)
3154                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3155
3156         this_cpu_inc(perf_sched_cb_usages);
3157 }
3158
3159 /*
3160  * This function provides the context switch callback to the lower code
3161  * layer. It is invoked ONLY when the context switch callback is enabled.
3162  *
3163  * This callback is relevant even to per-cpu events; for example multi event
3164  * PEBS requires this to provide PID/TID information. This requires we flush
3165  * all queued PEBS records before we context switch to a new task.
3166  */
3167 static void perf_pmu_sched_task(struct task_struct *prev,
3168                                 struct task_struct *next,
3169                                 bool sched_in)
3170 {
3171         struct perf_cpu_context *cpuctx;
3172         struct pmu *pmu;
3173
3174         if (prev == next)
3175                 return;
3176
3177         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3178                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3179
3180                 if (WARN_ON_ONCE(!pmu->sched_task))
3181                         continue;
3182
3183                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3184                 perf_pmu_disable(pmu);
3185
3186                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3187
3188                 perf_pmu_enable(pmu);
3189                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3190         }
3191 }
3192
3193 static void perf_event_switch(struct task_struct *task,
3194                               struct task_struct *next_prev, bool sched_in);
3195
3196 #define for_each_task_context_nr(ctxn)                                  \
3197         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3198
3199 /*
3200  * Called from scheduler to remove the events of the current task,
3201  * with interrupts disabled.
3202  *
3203  * We stop each event and update the event value in event->count.
3204  *
3205  * This does not protect us against NMI, but disable()
3206  * sets the disabled bit in the control field of event _before_
3207  * accessing the event control register. If a NMI hits, then it will
3208  * not restart the event.
3209  */
3210 void __perf_event_task_sched_out(struct task_struct *task,
3211                                  struct task_struct *next)
3212 {
3213         int ctxn;
3214
3215         if (__this_cpu_read(perf_sched_cb_usages))
3216                 perf_pmu_sched_task(task, next, false);
3217
3218         if (atomic_read(&nr_switch_events))
3219                 perf_event_switch(task, next, false);
3220
3221         for_each_task_context_nr(ctxn)
3222                 perf_event_context_sched_out(task, ctxn, next);
3223
3224         /*
3225          * if cgroup events exist on this CPU, then we need
3226          * to check if we have to switch out PMU state.
3227          * cgroup event are system-wide mode only
3228          */
3229         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3230                 perf_cgroup_sched_out(task, next);
3231 }
3232
3233 /*
3234  * Called with IRQs disabled
3235  */
3236 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3237                               enum event_type_t event_type)
3238 {
3239         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3240 }
3241
3242 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3243                               int (*func)(struct perf_event *, void *), void *data)
3244 {
3245         struct perf_event **evt, *evt1, *evt2;
3246         int ret;
3247
3248         evt1 = perf_event_groups_first(groups, -1);
3249         evt2 = perf_event_groups_first(groups, cpu);
3250
3251         while (evt1 || evt2) {
3252                 if (evt1 && evt2) {
3253                         if (evt1->group_index < evt2->group_index)
3254                                 evt = &evt1;
3255                         else
3256                                 evt = &evt2;
3257                 } else if (evt1) {
3258                         evt = &evt1;
3259                 } else {
3260                         evt = &evt2;
3261                 }
3262
3263                 ret = func(*evt, data);
3264                 if (ret)
3265                         return ret;
3266
3267                 *evt = perf_event_groups_next(*evt);
3268         }
3269
3270         return 0;
3271 }
3272
3273 struct sched_in_data {
3274         struct perf_event_context *ctx;
3275         struct perf_cpu_context *cpuctx;
3276         int can_add_hw;
3277 };
3278
3279 static int pinned_sched_in(struct perf_event *event, void *data)
3280 {
3281         struct sched_in_data *sid = data;
3282
3283         if (event->state <= PERF_EVENT_STATE_OFF)
3284                 return 0;
3285
3286         if (!event_filter_match(event))
3287                 return 0;
3288
3289         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3290                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3291                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3292         }
3293
3294         /*
3295          * If this pinned group hasn't been scheduled,
3296          * put it in error state.
3297          */
3298         if (event->state == PERF_EVENT_STATE_INACTIVE)
3299                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3300
3301         return 0;
3302 }
3303
3304 static int flexible_sched_in(struct perf_event *event, void *data)
3305 {
3306         struct sched_in_data *sid = data;
3307
3308         if (event->state <= PERF_EVENT_STATE_OFF)
3309                 return 0;
3310
3311         if (!event_filter_match(event))
3312                 return 0;
3313
3314         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3315                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3316                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3317                 else
3318                         sid->can_add_hw = 0;
3319         }
3320
3321         return 0;
3322 }
3323
3324 static void
3325 ctx_pinned_sched_in(struct perf_event_context *ctx,
3326                     struct perf_cpu_context *cpuctx)
3327 {
3328         struct sched_in_data sid = {
3329                 .ctx = ctx,
3330                 .cpuctx = cpuctx,
3331                 .can_add_hw = 1,
3332         };
3333
3334         visit_groups_merge(&ctx->pinned_groups,
3335                            smp_processor_id(),
3336                            pinned_sched_in, &sid);
3337 }
3338
3339 static void
3340 ctx_flexible_sched_in(struct perf_event_context *ctx,
3341                       struct perf_cpu_context *cpuctx)
3342 {
3343         struct sched_in_data sid = {
3344                 .ctx = ctx,
3345                 .cpuctx = cpuctx,
3346                 .can_add_hw = 1,
3347         };
3348
3349         visit_groups_merge(&ctx->flexible_groups,
3350                            smp_processor_id(),
3351                            flexible_sched_in, &sid);
3352 }
3353
3354 static void
3355 ctx_sched_in(struct perf_event_context *ctx,
3356              struct perf_cpu_context *cpuctx,
3357              enum event_type_t event_type,
3358              struct task_struct *task)
3359 {
3360         int is_active = ctx->is_active;
3361         u64 now;
3362
3363         lockdep_assert_held(&ctx->lock);
3364
3365         if (likely(!ctx->nr_events))
3366                 return;
3367
3368         ctx->is_active |= (event_type | EVENT_TIME);
3369         if (ctx->task) {
3370                 if (!is_active)
3371                         cpuctx->task_ctx = ctx;
3372                 else
3373                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3374         }
3375
3376         is_active ^= ctx->is_active; /* changed bits */
3377
3378         if (is_active & EVENT_TIME) {
3379                 /* start ctx time */
3380                 now = perf_clock();
3381                 ctx->timestamp = now;
3382                 perf_cgroup_set_timestamp(task, ctx);
3383         }
3384
3385         /*
3386          * First go through the list and put on any pinned groups
3387          * in order to give them the best chance of going on.
3388          */
3389         if (is_active & EVENT_PINNED)
3390                 ctx_pinned_sched_in(ctx, cpuctx);
3391
3392         /* Then walk through the lower prio flexible groups */
3393         if (is_active & EVENT_FLEXIBLE)
3394                 ctx_flexible_sched_in(ctx, cpuctx);
3395 }
3396
3397 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3398                              enum event_type_t event_type,
3399                              struct task_struct *task)
3400 {
3401         struct perf_event_context *ctx = &cpuctx->ctx;
3402
3403         ctx_sched_in(ctx, cpuctx, event_type, task);
3404 }
3405
3406 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3407                                         struct task_struct *task)
3408 {
3409         struct perf_cpu_context *cpuctx;
3410
3411         cpuctx = __get_cpu_context(ctx);
3412         if (cpuctx->task_ctx == ctx)
3413                 return;
3414
3415         perf_ctx_lock(cpuctx, ctx);
3416         /*
3417          * We must check ctx->nr_events while holding ctx->lock, such
3418          * that we serialize against perf_install_in_context().
3419          */
3420         if (!ctx->nr_events)
3421                 goto unlock;
3422
3423         perf_pmu_disable(ctx->pmu);
3424         /*
3425          * We want to keep the following priority order:
3426          * cpu pinned (that don't need to move), task pinned,
3427          * cpu flexible, task flexible.
3428          *
3429          * However, if task's ctx is not carrying any pinned
3430          * events, no need to flip the cpuctx's events around.
3431          */
3432         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3433                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3434         perf_event_sched_in(cpuctx, ctx, task);
3435         perf_pmu_enable(ctx->pmu);
3436
3437 unlock:
3438         perf_ctx_unlock(cpuctx, ctx);
3439 }
3440
3441 /*
3442  * Called from scheduler to add the events of the current task
3443  * with interrupts disabled.
3444  *
3445  * We restore the event value and then enable it.
3446  *
3447  * This does not protect us against NMI, but enable()
3448  * sets the enabled bit in the control field of event _before_
3449  * accessing the event control register. If a NMI hits, then it will
3450  * keep the event running.
3451  */
3452 void __perf_event_task_sched_in(struct task_struct *prev,
3453                                 struct task_struct *task)
3454 {
3455         struct perf_event_context *ctx;
3456         int ctxn;
3457
3458         /*
3459          * If cgroup events exist on this CPU, then we need to check if we have
3460          * to switch in PMU state; cgroup event are system-wide mode only.
3461          *
3462          * Since cgroup events are CPU events, we must schedule these in before
3463          * we schedule in the task events.
3464          */
3465         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3466                 perf_cgroup_sched_in(prev, task);
3467
3468         for_each_task_context_nr(ctxn) {
3469                 ctx = task->perf_event_ctxp[ctxn];
3470                 if (likely(!ctx))
3471                         continue;
3472
3473                 perf_event_context_sched_in(ctx, task);
3474         }
3475
3476         if (atomic_read(&nr_switch_events))
3477                 perf_event_switch(task, prev, true);
3478
3479         if (__this_cpu_read(perf_sched_cb_usages))
3480                 perf_pmu_sched_task(prev, task, true);
3481 }
3482
3483 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3484 {
3485         u64 frequency = event->attr.sample_freq;
3486         u64 sec = NSEC_PER_SEC;
3487         u64 divisor, dividend;
3488
3489         int count_fls, nsec_fls, frequency_fls, sec_fls;
3490
3491         count_fls = fls64(count);
3492         nsec_fls = fls64(nsec);
3493         frequency_fls = fls64(frequency);
3494         sec_fls = 30;
3495
3496         /*
3497          * We got @count in @nsec, with a target of sample_freq HZ
3498          * the target period becomes:
3499          *
3500          *             @count * 10^9
3501          * period = -------------------
3502          *          @nsec * sample_freq
3503          *
3504          */
3505
3506         /*
3507          * Reduce accuracy by one bit such that @a and @b converge
3508          * to a similar magnitude.
3509          */
3510 #define REDUCE_FLS(a, b)                \
3511 do {                                    \
3512         if (a##_fls > b##_fls) {        \
3513                 a >>= 1;                \
3514                 a##_fls--;              \
3515         } else {                        \
3516                 b >>= 1;                \
3517                 b##_fls--;              \
3518         }                               \
3519 } while (0)
3520
3521         /*
3522          * Reduce accuracy until either term fits in a u64, then proceed with
3523          * the other, so that finally we can do a u64/u64 division.
3524          */
3525         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3526                 REDUCE_FLS(nsec, frequency);
3527                 REDUCE_FLS(sec, count);
3528         }
3529
3530         if (count_fls + sec_fls > 64) {
3531                 divisor = nsec * frequency;
3532
3533                 while (count_fls + sec_fls > 64) {
3534                         REDUCE_FLS(count, sec);
3535                         divisor >>= 1;
3536                 }
3537
3538                 dividend = count * sec;
3539         } else {
3540                 dividend = count * sec;
3541
3542                 while (nsec_fls + frequency_fls > 64) {
3543                         REDUCE_FLS(nsec, frequency);
3544                         dividend >>= 1;
3545                 }
3546
3547                 divisor = nsec * frequency;
3548         }
3549
3550         if (!divisor)
3551                 return dividend;
3552
3553         return div64_u64(dividend, divisor);
3554 }
3555
3556 static DEFINE_PER_CPU(int, perf_throttled_count);
3557 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3558
3559 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3560 {
3561         struct hw_perf_event *hwc = &event->hw;
3562         s64 period, sample_period;
3563         s64 delta;
3564
3565         period = perf_calculate_period(event, nsec, count);
3566
3567         delta = (s64)(period - hwc->sample_period);
3568         delta = (delta + 7) / 8; /* low pass filter */
3569
3570         sample_period = hwc->sample_period + delta;
3571
3572         if (!sample_period)
3573                 sample_period = 1;
3574
3575         hwc->sample_period = sample_period;
3576
3577         if (local64_read(&hwc->period_left) > 8*sample_period) {
3578                 if (disable)
3579                         event->pmu->stop(event, PERF_EF_UPDATE);
3580
3581                 local64_set(&hwc->period_left, 0);
3582
3583                 if (disable)
3584                         event->pmu->start(event, PERF_EF_RELOAD);
3585         }
3586 }
3587
3588 /*
3589  * combine freq adjustment with unthrottling to avoid two passes over the
3590  * events. At the same time, make sure, having freq events does not change
3591  * the rate of unthrottling as that would introduce bias.
3592  */
3593 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3594                                            int needs_unthr)
3595 {
3596         struct perf_event *event;
3597         struct hw_perf_event *hwc;
3598         u64 now, period = TICK_NSEC;
3599         s64 delta;
3600
3601         /*
3602          * only need to iterate over all events iff:
3603          * - context have events in frequency mode (needs freq adjust)
3604          * - there are events to unthrottle on this cpu
3605          */
3606         if (!(ctx->nr_freq || needs_unthr))
3607                 return;
3608
3609         raw_spin_lock(&ctx->lock);
3610         perf_pmu_disable(ctx->pmu);
3611
3612         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3613                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3614                         continue;
3615
3616                 if (!event_filter_match(event))
3617                         continue;
3618
3619                 perf_pmu_disable(event->pmu);
3620
3621                 hwc = &event->hw;
3622
3623                 if (hwc->interrupts == MAX_INTERRUPTS) {
3624                         hwc->interrupts = 0;
3625                         perf_log_throttle(event, 1);
3626                         event->pmu->start(event, 0);
3627                 }
3628
3629                 if (!event->attr.freq || !event->attr.sample_freq)
3630                         goto next;
3631
3632                 /*
3633                  * stop the event and update event->count
3634                  */
3635                 event->pmu->stop(event, PERF_EF_UPDATE);
3636
3637                 now = local64_read(&event->count);
3638                 delta = now - hwc->freq_count_stamp;
3639                 hwc->freq_count_stamp = now;
3640
3641                 /*
3642                  * restart the event
3643                  * reload only if value has changed
3644                  * we have stopped the event so tell that
3645                  * to perf_adjust_period() to avoid stopping it
3646                  * twice.
3647                  */
3648                 if (delta > 0)
3649                         perf_adjust_period(event, period, delta, false);
3650
3651                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3652         next:
3653                 perf_pmu_enable(event->pmu);
3654         }
3655
3656         perf_pmu_enable(ctx->pmu);
3657         raw_spin_unlock(&ctx->lock);
3658 }
3659
3660 /*
3661  * Move @event to the tail of the @ctx's elegible events.
3662  */
3663 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3664 {
3665         /*
3666          * Rotate the first entry last of non-pinned groups. Rotation might be
3667          * disabled by the inheritance code.
3668          */
3669         if (ctx->rotate_disable)
3670                 return;
3671
3672         perf_event_groups_delete(&ctx->flexible_groups, event);
3673         perf_event_groups_insert(&ctx->flexible_groups, event);
3674 }
3675
3676 static inline struct perf_event *
3677 ctx_first_active(struct perf_event_context *ctx)
3678 {
3679         return list_first_entry_or_null(&ctx->flexible_active,
3680                                         struct perf_event, active_list);
3681 }
3682
3683 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3684 {
3685         struct perf_event *cpu_event = NULL, *task_event = NULL;
3686         bool cpu_rotate = false, task_rotate = false;
3687         struct perf_event_context *ctx = NULL;
3688
3689         /*
3690          * Since we run this from IRQ context, nobody can install new
3691          * events, thus the event count values are stable.
3692          */
3693
3694         if (cpuctx->ctx.nr_events) {
3695                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3696                         cpu_rotate = true;
3697         }
3698
3699         ctx = cpuctx->task_ctx;
3700         if (ctx && ctx->nr_events) {
3701                 if (ctx->nr_events != ctx->nr_active)
3702                         task_rotate = true;
3703         }
3704
3705         if (!(cpu_rotate || task_rotate))
3706                 return false;
3707
3708         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3709         perf_pmu_disable(cpuctx->ctx.pmu);
3710
3711         if (task_rotate)
3712                 task_event = ctx_first_active(ctx);
3713         if (cpu_rotate)
3714                 cpu_event = ctx_first_active(&cpuctx->ctx);
3715
3716         /*
3717          * As per the order given at ctx_resched() first 'pop' task flexible
3718          * and then, if needed CPU flexible.
3719          */
3720         if (task_event || (ctx && cpu_event))
3721                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3722         if (cpu_event)
3723                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3724
3725         if (task_event)
3726                 rotate_ctx(ctx, task_event);
3727         if (cpu_event)
3728                 rotate_ctx(&cpuctx->ctx, cpu_event);
3729
3730         perf_event_sched_in(cpuctx, ctx, current);
3731
3732         perf_pmu_enable(cpuctx->ctx.pmu);
3733         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3734
3735         return true;
3736 }
3737
3738 void perf_event_task_tick(void)
3739 {
3740         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3741         struct perf_event_context *ctx, *tmp;
3742         int throttled;
3743
3744         lockdep_assert_irqs_disabled();
3745
3746         __this_cpu_inc(perf_throttled_seq);
3747         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3748         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3749
3750         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3751                 perf_adjust_freq_unthr_context(ctx, throttled);
3752 }
3753
3754 static int event_enable_on_exec(struct perf_event *event,
3755                                 struct perf_event_context *ctx)
3756 {
3757         if (!event->attr.enable_on_exec)
3758                 return 0;
3759
3760         event->attr.enable_on_exec = 0;
3761         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3762                 return 0;
3763
3764         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3765
3766         return 1;
3767 }
3768
3769 /*
3770  * Enable all of a task's events that have been marked enable-on-exec.
3771  * This expects task == current.
3772  */
3773 static void perf_event_enable_on_exec(int ctxn)
3774 {
3775         struct perf_event_context *ctx, *clone_ctx = NULL;
3776         enum event_type_t event_type = 0;
3777         struct perf_cpu_context *cpuctx;
3778         struct perf_event *event;
3779         unsigned long flags;
3780         int enabled = 0;
3781
3782         local_irq_save(flags);
3783         ctx = current->perf_event_ctxp[ctxn];
3784         if (!ctx || !ctx->nr_events)
3785                 goto out;
3786
3787         cpuctx = __get_cpu_context(ctx);
3788         perf_ctx_lock(cpuctx, ctx);
3789         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3790         list_for_each_entry(event, &ctx->event_list, event_entry) {
3791                 enabled |= event_enable_on_exec(event, ctx);
3792                 event_type |= get_event_type(event);
3793         }
3794
3795         /*
3796          * Unclone and reschedule this context if we enabled any event.
3797          */
3798         if (enabled) {
3799                 clone_ctx = unclone_ctx(ctx);
3800                 ctx_resched(cpuctx, ctx, event_type);
3801         } else {
3802                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3803         }
3804         perf_ctx_unlock(cpuctx, ctx);
3805
3806 out:
3807         local_irq_restore(flags);
3808
3809         if (clone_ctx)
3810                 put_ctx(clone_ctx);
3811 }
3812
3813 struct perf_read_data {
3814         struct perf_event *event;
3815         bool group;
3816         int ret;
3817 };
3818
3819 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3820 {
3821         u16 local_pkg, event_pkg;
3822
3823         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3824                 int local_cpu = smp_processor_id();
3825
3826                 event_pkg = topology_physical_package_id(event_cpu);
3827                 local_pkg = topology_physical_package_id(local_cpu);
3828
3829                 if (event_pkg == local_pkg)
3830                         return local_cpu;
3831         }
3832
3833         return event_cpu;
3834 }
3835
3836 /*
3837  * Cross CPU call to read the hardware event
3838  */
3839 static void __perf_event_read(void *info)
3840 {
3841         struct perf_read_data *data = info;
3842         struct perf_event *sub, *event = data->event;
3843         struct perf_event_context *ctx = event->ctx;
3844         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3845         struct pmu *pmu = event->pmu;
3846
3847         /*
3848          * If this is a task context, we need to check whether it is
3849          * the current task context of this cpu.  If not it has been
3850          * scheduled out before the smp call arrived.  In that case
3851          * event->count would have been updated to a recent sample
3852          * when the event was scheduled out.
3853          */
3854         if (ctx->task && cpuctx->task_ctx != ctx)
3855                 return;
3856
3857         raw_spin_lock(&ctx->lock);
3858         if (ctx->is_active & EVENT_TIME) {
3859                 update_context_time(ctx);
3860                 update_cgrp_time_from_event(event);
3861         }
3862
3863         perf_event_update_time(event);
3864         if (data->group)
3865                 perf_event_update_sibling_time(event);
3866
3867         if (event->state != PERF_EVENT_STATE_ACTIVE)
3868                 goto unlock;
3869
3870         if (!data->group) {
3871                 pmu->read(event);
3872                 data->ret = 0;
3873                 goto unlock;
3874         }
3875
3876         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3877
3878         pmu->read(event);
3879
3880         for_each_sibling_event(sub, event) {
3881                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3882                         /*
3883                          * Use sibling's PMU rather than @event's since
3884                          * sibling could be on different (eg: software) PMU.
3885                          */
3886                         sub->pmu->read(sub);
3887                 }
3888         }
3889
3890         data->ret = pmu->commit_txn(pmu);
3891
3892 unlock:
3893         raw_spin_unlock(&ctx->lock);
3894 }
3895
3896 static inline u64 perf_event_count(struct perf_event *event)
3897 {
3898         return local64_read(&event->count) + atomic64_read(&event->child_count);
3899 }
3900
3901 /*
3902  * NMI-safe method to read a local event, that is an event that
3903  * is:
3904  *   - either for the current task, or for this CPU
3905  *   - does not have inherit set, for inherited task events
3906  *     will not be local and we cannot read them atomically
3907  *   - must not have a pmu::count method
3908  */
3909 int perf_event_read_local(struct perf_event *event, u64 *value,
3910                           u64 *enabled, u64 *running)
3911 {
3912         unsigned long flags;
3913         int ret = 0;
3914
3915         /*
3916          * Disabling interrupts avoids all counter scheduling (context
3917          * switches, timer based rotation and IPIs).
3918          */
3919         local_irq_save(flags);
3920
3921         /*
3922          * It must not be an event with inherit set, we cannot read
3923          * all child counters from atomic context.
3924          */
3925         if (event->attr.inherit) {
3926                 ret = -EOPNOTSUPP;
3927                 goto out;
3928         }
3929
3930         /* If this is a per-task event, it must be for current */
3931         if ((event->attach_state & PERF_ATTACH_TASK) &&
3932             event->hw.target != current) {
3933                 ret = -EINVAL;
3934                 goto out;
3935         }
3936
3937         /* If this is a per-CPU event, it must be for this CPU */
3938         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3939             event->cpu != smp_processor_id()) {
3940                 ret = -EINVAL;
3941                 goto out;
3942         }
3943
3944         /* If this is a pinned event it must be running on this CPU */
3945         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3946                 ret = -EBUSY;
3947                 goto out;
3948         }
3949
3950         /*
3951          * If the event is currently on this CPU, its either a per-task event,
3952          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3953          * oncpu == -1).
3954          */
3955         if (event->oncpu == smp_processor_id())
3956                 event->pmu->read(event);
3957
3958         *value = local64_read(&event->count);
3959         if (enabled || running) {
3960                 u64 now = event->shadow_ctx_time + perf_clock();
3961                 u64 __enabled, __running;
3962
3963                 __perf_update_times(event, now, &__enabled, &__running);
3964                 if (enabled)
3965                         *enabled = __enabled;
3966                 if (running)
3967                         *running = __running;
3968         }
3969 out:
3970         local_irq_restore(flags);
3971
3972         return ret;
3973 }
3974
3975 static int perf_event_read(struct perf_event *event, bool group)
3976 {
3977         enum perf_event_state state = READ_ONCE(event->state);
3978         int event_cpu, ret = 0;
3979
3980         /*
3981          * If event is enabled and currently active on a CPU, update the
3982          * value in the event structure:
3983          */
3984 again:
3985         if (state == PERF_EVENT_STATE_ACTIVE) {
3986                 struct perf_read_data data;
3987
3988                 /*
3989                  * Orders the ->state and ->oncpu loads such that if we see
3990                  * ACTIVE we must also see the right ->oncpu.
3991                  *
3992                  * Matches the smp_wmb() from event_sched_in().
3993                  */
3994                 smp_rmb();
3995
3996                 event_cpu = READ_ONCE(event->oncpu);
3997                 if ((unsigned)event_cpu >= nr_cpu_ids)
3998                         return 0;
3999
4000                 data = (struct perf_read_data){
4001                         .event = event,
4002                         .group = group,
4003                         .ret = 0,
4004                 };
4005
4006                 preempt_disable();
4007                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4008
4009                 /*
4010                  * Purposely ignore the smp_call_function_single() return
4011                  * value.
4012                  *
4013                  * If event_cpu isn't a valid CPU it means the event got
4014                  * scheduled out and that will have updated the event count.
4015                  *
4016                  * Therefore, either way, we'll have an up-to-date event count
4017                  * after this.
4018                  */
4019                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4020                 preempt_enable();
4021                 ret = data.ret;
4022
4023         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4024                 struct perf_event_context *ctx = event->ctx;
4025                 unsigned long flags;
4026
4027                 raw_spin_lock_irqsave(&ctx->lock, flags);
4028                 state = event->state;
4029                 if (state != PERF_EVENT_STATE_INACTIVE) {
4030                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4031                         goto again;
4032                 }
4033
4034                 /*
4035                  * May read while context is not active (e.g., thread is
4036                  * blocked), in that case we cannot update context time
4037                  */
4038                 if (ctx->is_active & EVENT_TIME) {
4039                         update_context_time(ctx);
4040                         update_cgrp_time_from_event(event);
4041                 }
4042
4043                 perf_event_update_time(event);
4044                 if (group)
4045                         perf_event_update_sibling_time(event);
4046                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4047         }
4048
4049         return ret;
4050 }
4051
4052 /*
4053  * Initialize the perf_event context in a task_struct:
4054  */
4055 static void __perf_event_init_context(struct perf_event_context *ctx)
4056 {
4057         raw_spin_lock_init(&ctx->lock);
4058         mutex_init(&ctx->mutex);
4059         INIT_LIST_HEAD(&ctx->active_ctx_list);
4060         perf_event_groups_init(&ctx->pinned_groups);
4061         perf_event_groups_init(&ctx->flexible_groups);
4062         INIT_LIST_HEAD(&ctx->event_list);
4063         INIT_LIST_HEAD(&ctx->pinned_active);
4064         INIT_LIST_HEAD(&ctx->flexible_active);
4065         atomic_set(&ctx->refcount, 1);
4066 }
4067
4068 static struct perf_event_context *
4069 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4070 {
4071         struct perf_event_context *ctx;
4072
4073         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4074         if (!ctx)
4075                 return NULL;
4076
4077         __perf_event_init_context(ctx);
4078         if (task) {
4079                 ctx->task = task;
4080                 get_task_struct(task);
4081         }
4082         ctx->pmu = pmu;
4083
4084         return ctx;
4085 }
4086
4087 static struct task_struct *
4088 find_lively_task_by_vpid(pid_t vpid)
4089 {
4090         struct task_struct *task;
4091
4092         rcu_read_lock();
4093         if (!vpid)
4094                 task = current;
4095         else
4096                 task = find_task_by_vpid(vpid);
4097         if (task)
4098                 get_task_struct(task);
4099         rcu_read_unlock();
4100
4101         if (!task)
4102                 return ERR_PTR(-ESRCH);
4103
4104         return task;
4105 }
4106
4107 /*
4108  * Returns a matching context with refcount and pincount.
4109  */
4110 static struct perf_event_context *
4111 find_get_context(struct pmu *pmu, struct task_struct *task,
4112                 struct perf_event *event)
4113 {
4114         struct perf_event_context *ctx, *clone_ctx = NULL;
4115         struct perf_cpu_context *cpuctx;
4116         void *task_ctx_data = NULL;
4117         unsigned long flags;
4118         int ctxn, err;
4119         int cpu = event->cpu;
4120
4121         if (!task) {
4122                 /* Must be root to operate on a CPU event: */
4123                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4124                         return ERR_PTR(-EACCES);
4125
4126                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4127                 ctx = &cpuctx->ctx;
4128                 get_ctx(ctx);
4129                 ++ctx->pin_count;
4130
4131                 return ctx;
4132         }
4133
4134         err = -EINVAL;
4135         ctxn = pmu->task_ctx_nr;
4136         if (ctxn < 0)
4137                 goto errout;
4138
4139         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4140                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4141                 if (!task_ctx_data) {
4142                         err = -ENOMEM;
4143                         goto errout;
4144                 }
4145         }
4146
4147 retry:
4148         ctx = perf_lock_task_context(task, ctxn, &flags);
4149         if (ctx) {
4150                 clone_ctx = unclone_ctx(ctx);
4151                 ++ctx->pin_count;
4152
4153                 if (task_ctx_data && !ctx->task_ctx_data) {
4154                         ctx->task_ctx_data = task_ctx_data;
4155                         task_ctx_data = NULL;
4156                 }
4157                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4158
4159                 if (clone_ctx)
4160                         put_ctx(clone_ctx);
4161         } else {
4162                 ctx = alloc_perf_context(pmu, task);
4163                 err = -ENOMEM;
4164                 if (!ctx)
4165                         goto errout;
4166
4167                 if (task_ctx_data) {
4168                         ctx->task_ctx_data = task_ctx_data;
4169                         task_ctx_data = NULL;
4170                 }
4171
4172                 err = 0;
4173                 mutex_lock(&task->perf_event_mutex);
4174                 /*
4175                  * If it has already passed perf_event_exit_task().
4176                  * we must see PF_EXITING, it takes this mutex too.
4177                  */
4178                 if (task->flags & PF_EXITING)
4179                         err = -ESRCH;
4180                 else if (task->perf_event_ctxp[ctxn])
4181                         err = -EAGAIN;
4182                 else {
4183                         get_ctx(ctx);
4184                         ++ctx->pin_count;
4185                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4186                 }
4187                 mutex_unlock(&task->perf_event_mutex);
4188
4189                 if (unlikely(err)) {
4190                         put_ctx(ctx);
4191
4192                         if (err == -EAGAIN)
4193                                 goto retry;
4194                         goto errout;
4195                 }
4196         }
4197
4198         kfree(task_ctx_data);
4199         return ctx;
4200
4201 errout:
4202         kfree(task_ctx_data);
4203         return ERR_PTR(err);
4204 }
4205
4206 static void perf_event_free_filter(struct perf_event *event);
4207 static void perf_event_free_bpf_prog(struct perf_event *event);
4208
4209 static void free_event_rcu(struct rcu_head *head)
4210 {
4211         struct perf_event *event;
4212
4213         event = container_of(head, struct perf_event, rcu_head);
4214         if (event->ns)
4215                 put_pid_ns(event->ns);
4216         perf_event_free_filter(event);
4217         kfree(event);
4218 }
4219
4220 static void ring_buffer_attach(struct perf_event *event,
4221                                struct ring_buffer *rb);
4222
4223 static void detach_sb_event(struct perf_event *event)
4224 {
4225         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4226
4227         raw_spin_lock(&pel->lock);
4228         list_del_rcu(&event->sb_list);
4229         raw_spin_unlock(&pel->lock);
4230 }
4231
4232 static bool is_sb_event(struct perf_event *event)
4233 {
4234         struct perf_event_attr *attr = &event->attr;
4235
4236         if (event->parent)
4237                 return false;
4238
4239         if (event->attach_state & PERF_ATTACH_TASK)
4240                 return false;
4241
4242         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4243             attr->comm || attr->comm_exec ||
4244             attr->task ||
4245             attr->context_switch)
4246                 return true;
4247         return false;
4248 }
4249
4250 static void unaccount_pmu_sb_event(struct perf_event *event)
4251 {
4252         if (is_sb_event(event))
4253                 detach_sb_event(event);
4254 }
4255
4256 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4257 {
4258         if (event->parent)
4259                 return;
4260
4261         if (is_cgroup_event(event))
4262                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4263 }
4264
4265 #ifdef CONFIG_NO_HZ_FULL
4266 static DEFINE_SPINLOCK(nr_freq_lock);
4267 #endif
4268
4269 static void unaccount_freq_event_nohz(void)
4270 {
4271 #ifdef CONFIG_NO_HZ_FULL
4272         spin_lock(&nr_freq_lock);
4273         if (atomic_dec_and_test(&nr_freq_events))
4274                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4275         spin_unlock(&nr_freq_lock);
4276 #endif
4277 }
4278
4279 static void unaccount_freq_event(void)
4280 {
4281         if (tick_nohz_full_enabled())
4282                 unaccount_freq_event_nohz();
4283         else
4284                 atomic_dec(&nr_freq_events);
4285 }
4286
4287 static void unaccount_event(struct perf_event *event)
4288 {
4289         bool dec = false;
4290
4291         if (event->parent)
4292                 return;
4293
4294         if (event->attach_state & PERF_ATTACH_TASK)
4295                 dec = true;
4296         if (event->attr.mmap || event->attr.mmap_data)
4297                 atomic_dec(&nr_mmap_events);
4298         if (event->attr.comm)
4299                 atomic_dec(&nr_comm_events);
4300         if (event->attr.namespaces)
4301                 atomic_dec(&nr_namespaces_events);
4302         if (event->attr.task)
4303                 atomic_dec(&nr_task_events);
4304         if (event->attr.freq)
4305                 unaccount_freq_event();
4306         if (event->attr.context_switch) {
4307                 dec = true;
4308                 atomic_dec(&nr_switch_events);
4309         }
4310         if (is_cgroup_event(event))
4311                 dec = true;
4312         if (has_branch_stack(event))
4313                 dec = true;
4314
4315         if (dec) {
4316                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4317                         schedule_delayed_work(&perf_sched_work, HZ);
4318         }
4319
4320         unaccount_event_cpu(event, event->cpu);
4321
4322         unaccount_pmu_sb_event(event);
4323 }
4324
4325 static void perf_sched_delayed(struct work_struct *work)
4326 {
4327         mutex_lock(&perf_sched_mutex);
4328         if (atomic_dec_and_test(&perf_sched_count))
4329                 static_branch_disable(&perf_sched_events);
4330         mutex_unlock(&perf_sched_mutex);
4331 }
4332
4333 /*
4334  * The following implement mutual exclusion of events on "exclusive" pmus
4335  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4336  * at a time, so we disallow creating events that might conflict, namely:
4337  *
4338  *  1) cpu-wide events in the presence of per-task events,
4339  *  2) per-task events in the presence of cpu-wide events,
4340  *  3) two matching events on the same context.
4341  *
4342  * The former two cases are handled in the allocation path (perf_event_alloc(),
4343  * _free_event()), the latter -- before the first perf_install_in_context().
4344  */
4345 static int exclusive_event_init(struct perf_event *event)
4346 {
4347         struct pmu *pmu = event->pmu;
4348
4349         if (!is_exclusive_pmu(pmu))
4350                 return 0;
4351
4352         /*
4353          * Prevent co-existence of per-task and cpu-wide events on the
4354          * same exclusive pmu.
4355          *
4356          * Negative pmu::exclusive_cnt means there are cpu-wide
4357          * events on this "exclusive" pmu, positive means there are
4358          * per-task events.
4359          *
4360          * Since this is called in perf_event_alloc() path, event::ctx
4361          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4362          * to mean "per-task event", because unlike other attach states it
4363          * never gets cleared.
4364          */
4365         if (event->attach_state & PERF_ATTACH_TASK) {
4366                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4367                         return -EBUSY;
4368         } else {
4369                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4370                         return -EBUSY;
4371         }
4372
4373         return 0;
4374 }
4375
4376 static void exclusive_event_destroy(struct perf_event *event)
4377 {
4378         struct pmu *pmu = event->pmu;
4379
4380         if (!is_exclusive_pmu(pmu))
4381                 return;
4382
4383         /* see comment in exclusive_event_init() */
4384         if (event->attach_state & PERF_ATTACH_TASK)
4385                 atomic_dec(&pmu->exclusive_cnt);
4386         else
4387                 atomic_inc(&pmu->exclusive_cnt);
4388 }
4389
4390 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4391 {
4392         if ((e1->pmu == e2->pmu) &&
4393             (e1->cpu == e2->cpu ||
4394              e1->cpu == -1 ||
4395              e2->cpu == -1))
4396                 return true;
4397         return false;
4398 }
4399
4400 static bool exclusive_event_installable(struct perf_event *event,
4401                                         struct perf_event_context *ctx)
4402 {
4403         struct perf_event *iter_event;
4404         struct pmu *pmu = event->pmu;
4405
4406         lockdep_assert_held(&ctx->mutex);
4407
4408         if (!is_exclusive_pmu(pmu))
4409                 return true;
4410
4411         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4412                 if (exclusive_event_match(iter_event, event))
4413                         return false;
4414         }
4415
4416         return true;
4417 }
4418
4419 static void perf_addr_filters_splice(struct perf_event *event,
4420                                        struct list_head *head);
4421
4422 static void _free_event(struct perf_event *event)
4423 {
4424         irq_work_sync(&event->pending);
4425
4426         unaccount_event(event);
4427
4428         if (event->rb) {
4429                 /*
4430                  * Can happen when we close an event with re-directed output.
4431                  *
4432                  * Since we have a 0 refcount, perf_mmap_close() will skip
4433                  * over us; possibly making our ring_buffer_put() the last.
4434                  */
4435                 mutex_lock(&event->mmap_mutex);
4436                 ring_buffer_attach(event, NULL);
4437                 mutex_unlock(&event->mmap_mutex);
4438         }
4439
4440         if (is_cgroup_event(event))
4441                 perf_detach_cgroup(event);
4442
4443         if (!event->parent) {
4444                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4445                         put_callchain_buffers();
4446         }
4447
4448         perf_event_free_bpf_prog(event);
4449         perf_addr_filters_splice(event, NULL);
4450         kfree(event->addr_filters_offs);
4451
4452         if (event->destroy)
4453                 event->destroy(event);
4454
4455         /*
4456          * Must be after ->destroy(), due to uprobe_perf_close() using
4457          * hw.target.
4458          */
4459         if (event->hw.target)
4460                 put_task_struct(event->hw.target);
4461
4462         /*
4463          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4464          * all task references must be cleaned up.
4465          */
4466         if (event->ctx)
4467                 put_ctx(event->ctx);
4468
4469         exclusive_event_destroy(event);
4470         module_put(event->pmu->module);
4471
4472         call_rcu(&event->rcu_head, free_event_rcu);
4473 }
4474
4475 /*
4476  * Used to free events which have a known refcount of 1, such as in error paths
4477  * where the event isn't exposed yet and inherited events.
4478  */
4479 static void free_event(struct perf_event *event)
4480 {
4481         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4482                                 "unexpected event refcount: %ld; ptr=%p\n",
4483                                 atomic_long_read(&event->refcount), event)) {
4484                 /* leak to avoid use-after-free */
4485                 return;
4486         }
4487
4488         _free_event(event);
4489 }
4490
4491 /*
4492  * Remove user event from the owner task.
4493  */
4494 static void perf_remove_from_owner(struct perf_event *event)
4495 {
4496         struct task_struct *owner;
4497
4498         rcu_read_lock();
4499         /*
4500          * Matches the smp_store_release() in perf_event_exit_task(). If we
4501          * observe !owner it means the list deletion is complete and we can
4502          * indeed free this event, otherwise we need to serialize on
4503          * owner->perf_event_mutex.
4504          */
4505         owner = READ_ONCE(event->owner);
4506         if (owner) {
4507                 /*
4508                  * Since delayed_put_task_struct() also drops the last
4509                  * task reference we can safely take a new reference
4510                  * while holding the rcu_read_lock().
4511                  */
4512                 get_task_struct(owner);
4513         }
4514         rcu_read_unlock();
4515
4516         if (owner) {
4517                 /*
4518                  * If we're here through perf_event_exit_task() we're already
4519                  * holding ctx->mutex which would be an inversion wrt. the
4520                  * normal lock order.
4521                  *
4522                  * However we can safely take this lock because its the child
4523                  * ctx->mutex.
4524                  */
4525                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4526
4527                 /*
4528                  * We have to re-check the event->owner field, if it is cleared
4529                  * we raced with perf_event_exit_task(), acquiring the mutex
4530                  * ensured they're done, and we can proceed with freeing the
4531                  * event.
4532                  */
4533                 if (event->owner) {
4534                         list_del_init(&event->owner_entry);
4535                         smp_store_release(&event->owner, NULL);
4536                 }
4537                 mutex_unlock(&owner->perf_event_mutex);
4538                 put_task_struct(owner);
4539         }
4540 }
4541
4542 static void put_event(struct perf_event *event)
4543 {
4544         if (!atomic_long_dec_and_test(&event->refcount))
4545                 return;
4546
4547         _free_event(event);
4548 }
4549
4550 /*
4551  * Kill an event dead; while event:refcount will preserve the event
4552  * object, it will not preserve its functionality. Once the last 'user'
4553  * gives up the object, we'll destroy the thing.
4554  */
4555 int perf_event_release_kernel(struct perf_event *event)
4556 {
4557         struct perf_event_context *ctx = event->ctx;
4558         struct perf_event *child, *tmp;
4559         LIST_HEAD(free_list);
4560
4561         /*
4562          * If we got here through err_file: fput(event_file); we will not have
4563          * attached to a context yet.
4564          */
4565         if (!ctx) {
4566                 WARN_ON_ONCE(event->attach_state &
4567                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4568                 goto no_ctx;
4569         }
4570
4571         if (!is_kernel_event(event))
4572                 perf_remove_from_owner(event);
4573
4574         ctx = perf_event_ctx_lock(event);
4575         WARN_ON_ONCE(ctx->parent_ctx);
4576         perf_remove_from_context(event, DETACH_GROUP);
4577
4578         raw_spin_lock_irq(&ctx->lock);
4579         /*
4580          * Mark this event as STATE_DEAD, there is no external reference to it
4581          * anymore.
4582          *
4583          * Anybody acquiring event->child_mutex after the below loop _must_
4584          * also see this, most importantly inherit_event() which will avoid
4585          * placing more children on the list.
4586          *
4587          * Thus this guarantees that we will in fact observe and kill _ALL_
4588          * child events.
4589          */
4590         event->state = PERF_EVENT_STATE_DEAD;
4591         raw_spin_unlock_irq(&ctx->lock);
4592
4593         perf_event_ctx_unlock(event, ctx);
4594
4595 again:
4596         mutex_lock(&event->child_mutex);
4597         list_for_each_entry(child, &event->child_list, child_list) {
4598
4599                 /*
4600                  * Cannot change, child events are not migrated, see the
4601                  * comment with perf_event_ctx_lock_nested().
4602                  */
4603                 ctx = READ_ONCE(child->ctx);
4604                 /*
4605                  * Since child_mutex nests inside ctx::mutex, we must jump
4606                  * through hoops. We start by grabbing a reference on the ctx.
4607                  *
4608                  * Since the event cannot get freed while we hold the
4609                  * child_mutex, the context must also exist and have a !0
4610                  * reference count.
4611                  */
4612                 get_ctx(ctx);
4613
4614                 /*
4615                  * Now that we have a ctx ref, we can drop child_mutex, and
4616                  * acquire ctx::mutex without fear of it going away. Then we
4617                  * can re-acquire child_mutex.
4618                  */
4619                 mutex_unlock(&event->child_mutex);
4620                 mutex_lock(&ctx->mutex);
4621                 mutex_lock(&event->child_mutex);
4622
4623                 /*
4624                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4625                  * state, if child is still the first entry, it didn't get freed
4626                  * and we can continue doing so.
4627                  */
4628                 tmp = list_first_entry_or_null(&event->child_list,
4629                                                struct perf_event, child_list);
4630                 if (tmp == child) {
4631                         perf_remove_from_context(child, DETACH_GROUP);
4632                         list_move(&child->child_list, &free_list);
4633                         /*
4634                          * This matches the refcount bump in inherit_event();
4635                          * this can't be the last reference.
4636                          */
4637                         put_event(event);
4638                 }
4639
4640                 mutex_unlock(&event->child_mutex);
4641                 mutex_unlock(&ctx->mutex);
4642                 put_ctx(ctx);
4643                 goto again;
4644         }
4645         mutex_unlock(&event->child_mutex);
4646
4647         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4648                 void *var = &child->ctx->refcount;
4649
4650                 list_del(&child->child_list);
4651                 free_event(child);
4652
4653                 /*
4654                  * Wake any perf_event_free_task() waiting for this event to be
4655                  * freed.
4656                  */
4657                 smp_mb(); /* pairs with wait_var_event() */
4658                 wake_up_var(var);
4659         }
4660
4661 no_ctx:
4662         put_event(event); /* Must be the 'last' reference */
4663         return 0;
4664 }
4665 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4666
4667 /*
4668  * Called when the last reference to the file is gone.
4669  */
4670 static int perf_release(struct inode *inode, struct file *file)
4671 {
4672         perf_event_release_kernel(file->private_data);
4673         return 0;
4674 }
4675
4676 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4677 {
4678         struct perf_event *child;
4679         u64 total = 0;
4680
4681         *enabled = 0;
4682         *running = 0;
4683
4684         mutex_lock(&event->child_mutex);
4685
4686         (void)perf_event_read(event, false);
4687         total += perf_event_count(event);
4688
4689         *enabled += event->total_time_enabled +
4690                         atomic64_read(&event->child_total_time_enabled);
4691         *running += event->total_time_running +
4692                         atomic64_read(&event->child_total_time_running);
4693
4694         list_for_each_entry(child, &event->child_list, child_list) {
4695                 (void)perf_event_read(child, false);
4696                 total += perf_event_count(child);
4697                 *enabled += child->total_time_enabled;
4698                 *running += child->total_time_running;
4699         }
4700         mutex_unlock(&event->child_mutex);
4701
4702         return total;
4703 }
4704
4705 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4706 {
4707         struct perf_event_context *ctx;
4708         u64 count;
4709
4710         ctx = perf_event_ctx_lock(event);
4711         count = __perf_event_read_value(event, enabled, running);
4712         perf_event_ctx_unlock(event, ctx);
4713
4714         return count;
4715 }
4716 EXPORT_SYMBOL_GPL(perf_event_read_value);
4717
4718 static int __perf_read_group_add(struct perf_event *leader,
4719                                         u64 read_format, u64 *values)
4720 {
4721         struct perf_event_context *ctx = leader->ctx;
4722         struct perf_event *sub;
4723         unsigned long flags;
4724         int n = 1; /* skip @nr */
4725         int ret;
4726
4727         ret = perf_event_read(leader, true);
4728         if (ret)
4729                 return ret;
4730
4731         raw_spin_lock_irqsave(&ctx->lock, flags);
4732
4733         /*
4734          * Since we co-schedule groups, {enabled,running} times of siblings
4735          * will be identical to those of the leader, so we only publish one
4736          * set.
4737          */
4738         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4739                 values[n++] += leader->total_time_enabled +
4740                         atomic64_read(&leader->child_total_time_enabled);
4741         }
4742
4743         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4744                 values[n++] += leader->total_time_running +
4745                         atomic64_read(&leader->child_total_time_running);
4746         }
4747
4748         /*
4749          * Write {count,id} tuples for every sibling.
4750          */
4751         values[n++] += perf_event_count(leader);
4752         if (read_format & PERF_FORMAT_ID)
4753                 values[n++] = primary_event_id(leader);
4754
4755         for_each_sibling_event(sub, leader) {
4756                 values[n++] += perf_event_count(sub);
4757                 if (read_format & PERF_FORMAT_ID)
4758                         values[n++] = primary_event_id(sub);
4759         }
4760
4761         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4762         return 0;
4763 }
4764
4765 static int perf_read_group(struct perf_event *event,
4766                                    u64 read_format, char __user *buf)
4767 {
4768         struct perf_event *leader = event->group_leader, *child;
4769         struct perf_event_context *ctx = leader->ctx;
4770         int ret;
4771         u64 *values;
4772
4773         lockdep_assert_held(&ctx->mutex);
4774
4775         values = kzalloc(event->read_size, GFP_KERNEL);
4776         if (!values)
4777                 return -ENOMEM;
4778
4779         values[0] = 1 + leader->nr_siblings;
4780
4781         /*
4782          * By locking the child_mutex of the leader we effectively
4783          * lock the child list of all siblings.. XXX explain how.
4784          */
4785         mutex_lock(&leader->child_mutex);
4786
4787         ret = __perf_read_group_add(leader, read_format, values);
4788         if (ret)
4789                 goto unlock;
4790
4791         list_for_each_entry(child, &leader->child_list, child_list) {
4792                 ret = __perf_read_group_add(child, read_format, values);
4793                 if (ret)
4794                         goto unlock;
4795         }
4796
4797         mutex_unlock(&leader->child_mutex);
4798
4799         ret = event->read_size;
4800         if (copy_to_user(buf, values, event->read_size))
4801                 ret = -EFAULT;
4802         goto out;
4803
4804 unlock:
4805         mutex_unlock(&leader->child_mutex);
4806 out:
4807         kfree(values);
4808         return ret;
4809 }
4810
4811 static int perf_read_one(struct perf_event *event,
4812                                  u64 read_format, char __user *buf)
4813 {
4814         u64 enabled, running;
4815         u64 values[4];
4816         int n = 0;
4817
4818         values[n++] = __perf_event_read_value(event, &enabled, &running);
4819         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4820                 values[n++] = enabled;
4821         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4822                 values[n++] = running;
4823         if (read_format & PERF_FORMAT_ID)
4824                 values[n++] = primary_event_id(event);
4825
4826         if (copy_to_user(buf, values, n * sizeof(u64)))
4827                 return -EFAULT;
4828
4829         return n * sizeof(u64);
4830 }
4831
4832 static bool is_event_hup(struct perf_event *event)
4833 {
4834         bool no_children;
4835
4836         if (event->state > PERF_EVENT_STATE_EXIT)
4837                 return false;
4838
4839         mutex_lock(&event->child_mutex);
4840         no_children = list_empty(&event->child_list);
4841         mutex_unlock(&event->child_mutex);
4842         return no_children;
4843 }
4844
4845 /*
4846  * Read the performance event - simple non blocking version for now
4847  */
4848 static ssize_t
4849 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4850 {
4851         u64 read_format = event->attr.read_format;
4852         int ret;
4853
4854         /*
4855          * Return end-of-file for a read on an event that is in
4856          * error state (i.e. because it was pinned but it couldn't be
4857          * scheduled on to the CPU at some point).
4858          */
4859         if (event->state == PERF_EVENT_STATE_ERROR)
4860                 return 0;
4861
4862         if (count < event->read_size)
4863                 return -ENOSPC;
4864
4865         WARN_ON_ONCE(event->ctx->parent_ctx);
4866         if (read_format & PERF_FORMAT_GROUP)
4867                 ret = perf_read_group(event, read_format, buf);
4868         else
4869                 ret = perf_read_one(event, read_format, buf);
4870
4871         return ret;
4872 }
4873
4874 static ssize_t
4875 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4876 {
4877         struct perf_event *event = file->private_data;
4878         struct perf_event_context *ctx;
4879         int ret;
4880
4881         ctx = perf_event_ctx_lock(event);
4882         ret = __perf_read(event, buf, count);
4883         perf_event_ctx_unlock(event, ctx);
4884
4885         return ret;
4886 }
4887
4888 static __poll_t perf_poll(struct file *file, poll_table *wait)
4889 {
4890         struct perf_event *event = file->private_data;
4891         struct ring_buffer *rb;
4892         __poll_t events = EPOLLHUP;
4893
4894         poll_wait(file, &event->waitq, wait);
4895
4896         if (is_event_hup(event))
4897                 return events;
4898
4899         /*
4900          * Pin the event->rb by taking event->mmap_mutex; otherwise
4901          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4902          */
4903         mutex_lock(&event->mmap_mutex);
4904         rb = event->rb;
4905         if (rb)
4906                 events = atomic_xchg(&rb->poll, 0);
4907         mutex_unlock(&event->mmap_mutex);
4908         return events;
4909 }
4910
4911 static void _perf_event_reset(struct perf_event *event)
4912 {
4913         (void)perf_event_read(event, false);
4914         local64_set(&event->count, 0);
4915         perf_event_update_userpage(event);
4916 }
4917
4918 /*
4919  * Holding the top-level event's child_mutex means that any
4920  * descendant process that has inherited this event will block
4921  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4922  * task existence requirements of perf_event_enable/disable.
4923  */
4924 static void perf_event_for_each_child(struct perf_event *event,
4925                                         void (*func)(struct perf_event *))
4926 {
4927         struct perf_event *child;
4928
4929         WARN_ON_ONCE(event->ctx->parent_ctx);
4930
4931         mutex_lock(&event->child_mutex);
4932         func(event);
4933         list_for_each_entry(child, &event->child_list, child_list)
4934                 func(child);
4935         mutex_unlock(&event->child_mutex);
4936 }
4937
4938 static void perf_event_for_each(struct perf_event *event,
4939                                   void (*func)(struct perf_event *))
4940 {
4941         struct perf_event_context *ctx = event->ctx;
4942         struct perf_event *sibling;
4943
4944         lockdep_assert_held(&ctx->mutex);
4945
4946         event = event->group_leader;
4947
4948         perf_event_for_each_child(event, func);
4949         for_each_sibling_event(sibling, event)
4950                 perf_event_for_each_child(sibling, func);
4951 }
4952
4953 static void __perf_event_period(struct perf_event *event,
4954                                 struct perf_cpu_context *cpuctx,
4955                                 struct perf_event_context *ctx,
4956                                 void *info)
4957 {
4958         u64 value = *((u64 *)info);
4959         bool active;
4960
4961         if (event->attr.freq) {
4962                 event->attr.sample_freq = value;
4963         } else {
4964                 event->attr.sample_period = value;
4965                 event->hw.sample_period = value;
4966         }
4967
4968         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4969         if (active) {
4970                 perf_pmu_disable(ctx->pmu);
4971                 /*
4972                  * We could be throttled; unthrottle now to avoid the tick
4973                  * trying to unthrottle while we already re-started the event.
4974                  */
4975                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4976                         event->hw.interrupts = 0;
4977                         perf_log_throttle(event, 1);
4978                 }
4979                 event->pmu->stop(event, PERF_EF_UPDATE);
4980         }
4981
4982         local64_set(&event->hw.period_left, 0);
4983
4984         if (active) {
4985                 event->pmu->start(event, PERF_EF_RELOAD);
4986                 perf_pmu_enable(ctx->pmu);
4987         }
4988 }
4989
4990 static int perf_event_check_period(struct perf_event *event, u64 value)
4991 {
4992         return event->pmu->check_period(event, value);
4993 }
4994
4995 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4996 {
4997         u64 value;
4998
4999         if (!is_sampling_event(event))
5000                 return -EINVAL;
5001
5002         if (copy_from_user(&value, arg, sizeof(value)))
5003                 return -EFAULT;
5004
5005         if (!value)
5006                 return -EINVAL;
5007
5008         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5009                 return -EINVAL;
5010
5011         if (perf_event_check_period(event, value))
5012                 return -EINVAL;
5013
5014         event_function_call(event, __perf_event_period, &value);
5015
5016         return 0;
5017 }
5018
5019 static const struct file_operations perf_fops;
5020
5021 static inline int perf_fget_light(int fd, struct fd *p)
5022 {
5023         struct fd f = fdget(fd);
5024         if (!f.file)
5025                 return -EBADF;
5026
5027         if (f.file->f_op != &perf_fops) {
5028                 fdput(f);
5029                 return -EBADF;
5030         }
5031         *p = f;
5032         return 0;
5033 }
5034
5035 static int perf_event_set_output(struct perf_event *event,
5036                                  struct perf_event *output_event);
5037 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5038 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5039 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5040                           struct perf_event_attr *attr);
5041
5042 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5043 {
5044         void (*func)(struct perf_event *);
5045         u32 flags = arg;
5046
5047         switch (cmd) {
5048         case PERF_EVENT_IOC_ENABLE:
5049                 func = _perf_event_enable;
5050                 break;
5051         case PERF_EVENT_IOC_DISABLE:
5052                 func = _perf_event_disable;
5053                 break;
5054         case PERF_EVENT_IOC_RESET:
5055                 func = _perf_event_reset;
5056                 break;
5057
5058         case PERF_EVENT_IOC_REFRESH:
5059                 return _perf_event_refresh(event, arg);
5060
5061         case PERF_EVENT_IOC_PERIOD:
5062                 return perf_event_period(event, (u64 __user *)arg);
5063
5064         case PERF_EVENT_IOC_ID:
5065         {
5066                 u64 id = primary_event_id(event);
5067
5068                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5069                         return -EFAULT;
5070                 return 0;
5071         }
5072
5073         case PERF_EVENT_IOC_SET_OUTPUT:
5074         {
5075                 int ret;
5076                 if (arg != -1) {
5077                         struct perf_event *output_event;
5078                         struct fd output;
5079                         ret = perf_fget_light(arg, &output);
5080                         if (ret)
5081                                 return ret;
5082                         output_event = output.file->private_data;
5083                         ret = perf_event_set_output(event, output_event);
5084                         fdput(output);
5085                 } else {
5086                         ret = perf_event_set_output(event, NULL);
5087                 }
5088                 return ret;
5089         }
5090
5091         case PERF_EVENT_IOC_SET_FILTER:
5092                 return perf_event_set_filter(event, (void __user *)arg);
5093
5094         case PERF_EVENT_IOC_SET_BPF:
5095                 return perf_event_set_bpf_prog(event, arg);
5096
5097         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5098                 struct ring_buffer *rb;
5099
5100                 rcu_read_lock();
5101                 rb = rcu_dereference(event->rb);
5102                 if (!rb || !rb->nr_pages) {
5103                         rcu_read_unlock();
5104                         return -EINVAL;
5105                 }
5106                 rb_toggle_paused(rb, !!arg);
5107                 rcu_read_unlock();
5108                 return 0;
5109         }
5110
5111         case PERF_EVENT_IOC_QUERY_BPF:
5112                 return perf_event_query_prog_array(event, (void __user *)arg);
5113
5114         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5115                 struct perf_event_attr new_attr;
5116                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5117                                          &new_attr);
5118
5119                 if (err)
5120                         return err;
5121
5122                 return perf_event_modify_attr(event,  &new_attr);
5123         }
5124         default:
5125                 return -ENOTTY;
5126         }
5127
5128         if (flags & PERF_IOC_FLAG_GROUP)
5129                 perf_event_for_each(event, func);
5130         else
5131                 perf_event_for_each_child(event, func);
5132
5133         return 0;
5134 }
5135
5136 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5137 {
5138         struct perf_event *event = file->private_data;
5139         struct perf_event_context *ctx;
5140         long ret;
5141
5142         ctx = perf_event_ctx_lock(event);
5143         ret = _perf_ioctl(event, cmd, arg);
5144         perf_event_ctx_unlock(event, ctx);
5145
5146         return ret;
5147 }
5148
5149 #ifdef CONFIG_COMPAT
5150 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5151                                 unsigned long arg)
5152 {
5153         switch (_IOC_NR(cmd)) {
5154         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5155         case _IOC_NR(PERF_EVENT_IOC_ID):
5156         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5157         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5158                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5159                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5160                         cmd &= ~IOCSIZE_MASK;
5161                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5162                 }
5163                 break;
5164         }
5165         return perf_ioctl(file, cmd, arg);
5166 }
5167 #else
5168 # define perf_compat_ioctl NULL
5169 #endif
5170
5171 int perf_event_task_enable(void)
5172 {
5173         struct perf_event_context *ctx;
5174         struct perf_event *event;
5175
5176         mutex_lock(&current->perf_event_mutex);
5177         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5178                 ctx = perf_event_ctx_lock(event);
5179                 perf_event_for_each_child(event, _perf_event_enable);
5180                 perf_event_ctx_unlock(event, ctx);
5181         }
5182         mutex_unlock(&current->perf_event_mutex);
5183
5184         return 0;
5185 }
5186
5187 int perf_event_task_disable(void)
5188 {
5189         struct perf_event_context *ctx;
5190         struct perf_event *event;
5191
5192         mutex_lock(&current->perf_event_mutex);
5193         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5194                 ctx = perf_event_ctx_lock(event);
5195                 perf_event_for_each_child(event, _perf_event_disable);
5196                 perf_event_ctx_unlock(event, ctx);
5197         }
5198         mutex_unlock(&current->perf_event_mutex);
5199
5200         return 0;
5201 }
5202
5203 static int perf_event_index(struct perf_event *event)
5204 {
5205         if (event->hw.state & PERF_HES_STOPPED)
5206                 return 0;
5207
5208         if (event->state != PERF_EVENT_STATE_ACTIVE)
5209                 return 0;
5210
5211         return event->pmu->event_idx(event);
5212 }
5213
5214 static void calc_timer_values(struct perf_event *event,
5215                                 u64 *now,
5216                                 u64 *enabled,
5217                                 u64 *running)
5218 {
5219         u64 ctx_time;
5220
5221         *now = perf_clock();
5222         ctx_time = event->shadow_ctx_time + *now;
5223         __perf_update_times(event, ctx_time, enabled, running);
5224 }
5225
5226 static void perf_event_init_userpage(struct perf_event *event)
5227 {
5228         struct perf_event_mmap_page *userpg;
5229         struct ring_buffer *rb;
5230
5231         rcu_read_lock();
5232         rb = rcu_dereference(event->rb);
5233         if (!rb)
5234                 goto unlock;
5235
5236         userpg = rb->user_page;
5237
5238         /* Allow new userspace to detect that bit 0 is deprecated */
5239         userpg->cap_bit0_is_deprecated = 1;
5240         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5241         userpg->data_offset = PAGE_SIZE;
5242         userpg->data_size = perf_data_size(rb);
5243
5244 unlock:
5245         rcu_read_unlock();
5246 }
5247
5248 void __weak arch_perf_update_userpage(
5249         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5250 {
5251 }
5252
5253 /*
5254  * Callers need to ensure there can be no nesting of this function, otherwise
5255  * the seqlock logic goes bad. We can not serialize this because the arch
5256  * code calls this from NMI context.
5257  */
5258 void perf_event_update_userpage(struct perf_event *event)
5259 {
5260         struct perf_event_mmap_page *userpg;
5261         struct ring_buffer *rb;
5262         u64 enabled, running, now;
5263
5264         rcu_read_lock();
5265         rb = rcu_dereference(event->rb);
5266         if (!rb)
5267                 goto unlock;
5268
5269         /*
5270          * compute total_time_enabled, total_time_running
5271          * based on snapshot values taken when the event
5272          * was last scheduled in.
5273          *
5274          * we cannot simply called update_context_time()
5275          * because of locking issue as we can be called in
5276          * NMI context
5277          */
5278         calc_timer_values(event, &now, &enabled, &running);
5279
5280         userpg = rb->user_page;
5281         /*
5282          * Disable preemption to guarantee consistent time stamps are stored to
5283          * the user page.
5284          */
5285         preempt_disable();
5286         ++userpg->lock;
5287         barrier();
5288         userpg->index = perf_event_index(event);
5289         userpg->offset = perf_event_count(event);
5290         if (userpg->index)
5291                 userpg->offset -= local64_read(&event->hw.prev_count);
5292
5293         userpg->time_enabled = enabled +
5294                         atomic64_read(&event->child_total_time_enabled);
5295
5296         userpg->time_running = running +
5297                         atomic64_read(&event->child_total_time_running);
5298
5299         arch_perf_update_userpage(event, userpg, now);
5300
5301         barrier();
5302         ++userpg->lock;
5303         preempt_enable();
5304 unlock:
5305         rcu_read_unlock();
5306 }
5307 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5308
5309 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5310 {
5311         struct perf_event *event = vmf->vma->vm_file->private_data;
5312         struct ring_buffer *rb;
5313         vm_fault_t ret = VM_FAULT_SIGBUS;
5314
5315         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5316                 if (vmf->pgoff == 0)
5317                         ret = 0;
5318                 return ret;
5319         }
5320
5321         rcu_read_lock();
5322         rb = rcu_dereference(event->rb);
5323         if (!rb)
5324                 goto unlock;
5325
5326         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5327                 goto unlock;
5328
5329         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5330         if (!vmf->page)
5331                 goto unlock;
5332
5333         get_page(vmf->page);
5334         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5335         vmf->page->index   = vmf->pgoff;
5336
5337         ret = 0;
5338 unlock:
5339         rcu_read_unlock();
5340
5341         return ret;
5342 }
5343
5344 static void ring_buffer_attach(struct perf_event *event,
5345                                struct ring_buffer *rb)
5346 {
5347         struct ring_buffer *old_rb = NULL;
5348         unsigned long flags;
5349
5350         if (event->rb) {
5351                 /*
5352                  * Should be impossible, we set this when removing
5353                  * event->rb_entry and wait/clear when adding event->rb_entry.
5354                  */
5355                 WARN_ON_ONCE(event->rcu_pending);
5356
5357                 old_rb = event->rb;
5358                 spin_lock_irqsave(&old_rb->event_lock, flags);
5359                 list_del_rcu(&event->rb_entry);
5360                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5361
5362                 event->rcu_batches = get_state_synchronize_rcu();
5363                 event->rcu_pending = 1;
5364         }
5365
5366         if (rb) {
5367                 if (event->rcu_pending) {
5368                         cond_synchronize_rcu(event->rcu_batches);
5369                         event->rcu_pending = 0;
5370                 }
5371
5372                 spin_lock_irqsave(&rb->event_lock, flags);
5373                 list_add_rcu(&event->rb_entry, &rb->event_list);
5374                 spin_unlock_irqrestore(&rb->event_lock, flags);
5375         }
5376
5377         /*
5378          * Avoid racing with perf_mmap_close(AUX): stop the event
5379          * before swizzling the event::rb pointer; if it's getting
5380          * unmapped, its aux_mmap_count will be 0 and it won't
5381          * restart. See the comment in __perf_pmu_output_stop().
5382          *
5383          * Data will inevitably be lost when set_output is done in
5384          * mid-air, but then again, whoever does it like this is
5385          * not in for the data anyway.
5386          */
5387         if (has_aux(event))
5388                 perf_event_stop(event, 0);
5389
5390         rcu_assign_pointer(event->rb, rb);
5391
5392         if (old_rb) {
5393                 ring_buffer_put(old_rb);
5394                 /*
5395                  * Since we detached before setting the new rb, so that we
5396                  * could attach the new rb, we could have missed a wakeup.
5397                  * Provide it now.
5398                  */
5399                 wake_up_all(&event->waitq);
5400         }
5401 }
5402
5403 static void ring_buffer_wakeup(struct perf_event *event)
5404 {
5405         struct ring_buffer *rb;
5406
5407         rcu_read_lock();
5408         rb = rcu_dereference(event->rb);
5409         if (rb) {
5410                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5411                         wake_up_all(&event->waitq);
5412         }
5413         rcu_read_unlock();
5414 }
5415
5416 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5417 {
5418         struct ring_buffer *rb;
5419
5420         rcu_read_lock();
5421         rb = rcu_dereference(event->rb);
5422         if (rb) {
5423                 if (!atomic_inc_not_zero(&rb->refcount))
5424                         rb = NULL;
5425         }
5426         rcu_read_unlock();
5427
5428         return rb;
5429 }
5430
5431 void ring_buffer_put(struct ring_buffer *rb)
5432 {
5433         if (!atomic_dec_and_test(&rb->refcount))
5434                 return;
5435
5436         WARN_ON_ONCE(!list_empty(&rb->event_list));
5437
5438         call_rcu(&rb->rcu_head, rb_free_rcu);
5439 }
5440
5441 static void perf_mmap_open(struct vm_area_struct *vma)
5442 {
5443         struct perf_event *event = vma->vm_file->private_data;
5444
5445         atomic_inc(&event->mmap_count);
5446         atomic_inc(&event->rb->mmap_count);
5447
5448         if (vma->vm_pgoff)
5449                 atomic_inc(&event->rb->aux_mmap_count);
5450
5451         if (event->pmu->event_mapped)
5452                 event->pmu->event_mapped(event, vma->vm_mm);
5453 }
5454
5455 static void perf_pmu_output_stop(struct perf_event *event);
5456
5457 /*
5458  * A buffer can be mmap()ed multiple times; either directly through the same
5459  * event, or through other events by use of perf_event_set_output().
5460  *
5461  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5462  * the buffer here, where we still have a VM context. This means we need
5463  * to detach all events redirecting to us.
5464  */
5465 static void perf_mmap_close(struct vm_area_struct *vma)
5466 {
5467         struct perf_event *event = vma->vm_file->private_data;
5468
5469         struct ring_buffer *rb = ring_buffer_get(event);
5470         struct user_struct *mmap_user = rb->mmap_user;
5471         int mmap_locked = rb->mmap_locked;
5472         unsigned long size = perf_data_size(rb);
5473
5474         if (event->pmu->event_unmapped)
5475                 event->pmu->event_unmapped(event, vma->vm_mm);
5476
5477         /*
5478          * rb->aux_mmap_count will always drop before rb->mmap_count and
5479          * event->mmap_count, so it is ok to use event->mmap_mutex to
5480          * serialize with perf_mmap here.
5481          */
5482         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5483             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5484                 /*
5485                  * Stop all AUX events that are writing to this buffer,
5486                  * so that we can free its AUX pages and corresponding PMU
5487                  * data. Note that after rb::aux_mmap_count dropped to zero,
5488                  * they won't start any more (see perf_aux_output_begin()).
5489                  */
5490                 perf_pmu_output_stop(event);
5491
5492                 /* now it's safe to free the pages */
5493                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5494                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5495
5496                 /* this has to be the last one */
5497                 rb_free_aux(rb);
5498                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5499
5500                 mutex_unlock(&event->mmap_mutex);
5501         }
5502
5503         atomic_dec(&rb->mmap_count);
5504
5505         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5506                 goto out_put;
5507
5508         ring_buffer_attach(event, NULL);
5509         mutex_unlock(&event->mmap_mutex);
5510
5511         /* If there's still other mmap()s of this buffer, we're done. */
5512         if (atomic_read(&rb->mmap_count))
5513                 goto out_put;
5514
5515         /*
5516          * No other mmap()s, detach from all other events that might redirect
5517          * into the now unreachable buffer. Somewhat complicated by the
5518          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5519          */
5520 again:
5521         rcu_read_lock();
5522         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5523                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5524                         /*
5525                          * This event is en-route to free_event() which will
5526                          * detach it and remove it from the list.
5527                          */
5528                         continue;
5529                 }
5530                 rcu_read_unlock();
5531
5532                 mutex_lock(&event->mmap_mutex);
5533                 /*
5534                  * Check we didn't race with perf_event_set_output() which can
5535                  * swizzle the rb from under us while we were waiting to
5536                  * acquire mmap_mutex.
5537                  *
5538                  * If we find a different rb; ignore this event, a next
5539                  * iteration will no longer find it on the list. We have to
5540                  * still restart the iteration to make sure we're not now
5541                  * iterating the wrong list.
5542                  */
5543                 if (event->rb == rb)
5544                         ring_buffer_attach(event, NULL);
5545
5546                 mutex_unlock(&event->mmap_mutex);
5547                 put_event(event);
5548
5549                 /*
5550                  * Restart the iteration; either we're on the wrong list or
5551                  * destroyed its integrity by doing a deletion.
5552                  */
5553                 goto again;
5554         }
5555         rcu_read_unlock();
5556
5557         /*
5558          * It could be there's still a few 0-ref events on the list; they'll
5559          * get cleaned up by free_event() -- they'll also still have their
5560          * ref on the rb and will free it whenever they are done with it.
5561          *
5562          * Aside from that, this buffer is 'fully' detached and unmapped,
5563          * undo the VM accounting.
5564          */
5565
5566         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5567         vma->vm_mm->pinned_vm -= mmap_locked;
5568         free_uid(mmap_user);
5569
5570 out_put:
5571         ring_buffer_put(rb); /* could be last */
5572 }
5573
5574 static const struct vm_operations_struct perf_mmap_vmops = {
5575         .open           = perf_mmap_open,
5576         .close          = perf_mmap_close, /* non mergable */
5577         .fault          = perf_mmap_fault,
5578         .page_mkwrite   = perf_mmap_fault,
5579 };
5580
5581 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5582 {
5583         struct perf_event *event = file->private_data;
5584         unsigned long user_locked, user_lock_limit;
5585         struct user_struct *user = current_user();
5586         unsigned long locked, lock_limit;
5587         struct ring_buffer *rb = NULL;
5588         unsigned long vma_size;
5589         unsigned long nr_pages;
5590         long user_extra = 0, extra = 0;
5591         int ret = 0, flags = 0;
5592
5593         /*
5594          * Don't allow mmap() of inherited per-task counters. This would
5595          * create a performance issue due to all children writing to the
5596          * same rb.
5597          */
5598         if (event->cpu == -1 && event->attr.inherit)
5599                 return -EINVAL;
5600
5601         if (!(vma->vm_flags & VM_SHARED))
5602                 return -EINVAL;
5603
5604         vma_size = vma->vm_end - vma->vm_start;
5605
5606         if (vma->vm_pgoff == 0) {
5607                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5608         } else {
5609                 /*
5610                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5611                  * mapped, all subsequent mappings should have the same size
5612                  * and offset. Must be above the normal perf buffer.
5613                  */
5614                 u64 aux_offset, aux_size;
5615
5616                 if (!event->rb)
5617                         return -EINVAL;
5618
5619                 nr_pages = vma_size / PAGE_SIZE;
5620
5621                 mutex_lock(&event->mmap_mutex);
5622                 ret = -EINVAL;
5623
5624                 rb = event->rb;
5625                 if (!rb)
5626                         goto aux_unlock;
5627
5628                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5629                 aux_size = READ_ONCE(rb->user_page->aux_size);
5630
5631                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5632                         goto aux_unlock;
5633
5634                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5635                         goto aux_unlock;
5636
5637                 /* already mapped with a different offset */
5638                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5639                         goto aux_unlock;
5640
5641                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5642                         goto aux_unlock;
5643
5644                 /* already mapped with a different size */
5645                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5646                         goto aux_unlock;
5647
5648                 if (!is_power_of_2(nr_pages))
5649                         goto aux_unlock;
5650
5651                 if (!atomic_inc_not_zero(&rb->mmap_count))
5652                         goto aux_unlock;
5653
5654                 if (rb_has_aux(rb)) {
5655                         atomic_inc(&rb->aux_mmap_count);
5656                         ret = 0;
5657                         goto unlock;
5658                 }
5659
5660                 atomic_set(&rb->aux_mmap_count, 1);
5661                 user_extra = nr_pages;
5662
5663                 goto accounting;
5664         }
5665
5666         /*
5667          * If we have rb pages ensure they're a power-of-two number, so we
5668          * can do bitmasks instead of modulo.
5669          */
5670         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5671                 return -EINVAL;
5672
5673         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5674                 return -EINVAL;
5675
5676         WARN_ON_ONCE(event->ctx->parent_ctx);
5677 again:
5678         mutex_lock(&event->mmap_mutex);
5679         if (event->rb) {
5680                 if (event->rb->nr_pages != nr_pages) {
5681                         ret = -EINVAL;
5682                         goto unlock;
5683                 }
5684
5685                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5686                         /*
5687                          * Raced against perf_mmap_close() through
5688                          * perf_event_set_output(). Try again, hope for better
5689                          * luck.
5690                          */
5691                         mutex_unlock(&event->mmap_mutex);
5692                         goto again;
5693                 }
5694
5695                 goto unlock;
5696         }
5697
5698         user_extra = nr_pages + 1;
5699
5700 accounting:
5701         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5702
5703         /*
5704          * Increase the limit linearly with more CPUs:
5705          */
5706         user_lock_limit *= num_online_cpus();
5707
5708         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5709
5710         if (user_locked > user_lock_limit)
5711                 extra = user_locked - user_lock_limit;
5712
5713         lock_limit = rlimit(RLIMIT_MEMLOCK);
5714         lock_limit >>= PAGE_SHIFT;
5715         locked = vma->vm_mm->pinned_vm + extra;
5716
5717         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5718                 !capable(CAP_IPC_LOCK)) {
5719                 ret = -EPERM;
5720                 goto unlock;
5721         }
5722
5723         WARN_ON(!rb && event->rb);
5724
5725         if (vma->vm_flags & VM_WRITE)
5726                 flags |= RING_BUFFER_WRITABLE;
5727
5728         if (!rb) {
5729                 rb = rb_alloc(nr_pages,
5730                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5731                               event->cpu, flags);
5732
5733                 if (!rb) {
5734                         ret = -ENOMEM;
5735                         goto unlock;
5736                 }
5737
5738                 atomic_set(&rb->mmap_count, 1);
5739                 rb->mmap_user = get_current_user();
5740                 rb->mmap_locked = extra;
5741
5742                 ring_buffer_attach(event, rb);
5743
5744                 perf_event_init_userpage(event);
5745                 perf_event_update_userpage(event);
5746         } else {
5747                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5748                                    event->attr.aux_watermark, flags);
5749                 if (!ret)
5750                         rb->aux_mmap_locked = extra;
5751         }
5752
5753 unlock:
5754         if (!ret) {
5755                 atomic_long_add(user_extra, &user->locked_vm);
5756                 vma->vm_mm->pinned_vm += extra;
5757
5758                 atomic_inc(&event->mmap_count);
5759         } else if (rb) {
5760                 atomic_dec(&rb->mmap_count);
5761         }
5762 aux_unlock:
5763         mutex_unlock(&event->mmap_mutex);
5764
5765         /*
5766          * Since pinned accounting is per vm we cannot allow fork() to copy our
5767          * vma.
5768          */
5769         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5770         vma->vm_ops = &perf_mmap_vmops;
5771
5772         if (event->pmu->event_mapped)
5773                 event->pmu->event_mapped(event, vma->vm_mm);
5774
5775         return ret;
5776 }
5777
5778 static int perf_fasync(int fd, struct file *filp, int on)
5779 {
5780         struct inode *inode = file_inode(filp);
5781         struct perf_event *event = filp->private_data;
5782         int retval;
5783
5784         inode_lock(inode);
5785         retval = fasync_helper(fd, filp, on, &event->fasync);
5786         inode_unlock(inode);
5787
5788         if (retval < 0)
5789                 return retval;
5790
5791         return 0;
5792 }
5793
5794 static const struct file_operations perf_fops = {
5795         .llseek                 = no_llseek,
5796         .release                = perf_release,
5797         .read                   = perf_read,
5798         .poll                   = perf_poll,
5799         .unlocked_ioctl         = perf_ioctl,
5800         .compat_ioctl           = perf_compat_ioctl,
5801         .mmap                   = perf_mmap,
5802         .fasync                 = perf_fasync,
5803 };
5804
5805 /*
5806  * Perf event wakeup
5807  *
5808  * If there's data, ensure we set the poll() state and publish everything
5809  * to user-space before waking everybody up.
5810  */
5811
5812 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5813 {
5814         /* only the parent has fasync state */
5815         if (event->parent)
5816                 event = event->parent;
5817         return &event->fasync;
5818 }
5819
5820 void perf_event_wakeup(struct perf_event *event)
5821 {
5822         ring_buffer_wakeup(event);
5823
5824         if (event->pending_kill) {
5825                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5826                 event->pending_kill = 0;
5827         }
5828 }
5829
5830 static void perf_pending_event_disable(struct perf_event *event)
5831 {
5832         int cpu = READ_ONCE(event->pending_disable);
5833
5834         if (cpu < 0)
5835                 return;
5836
5837         if (cpu == smp_processor_id()) {
5838                 WRITE_ONCE(event->pending_disable, -1);
5839                 perf_event_disable_local(event);
5840                 return;
5841         }
5842
5843         /*
5844          *  CPU-A                       CPU-B
5845          *
5846          *  perf_event_disable_inatomic()
5847          *    @pending_disable = CPU-A;
5848          *    irq_work_queue();
5849          *
5850          *  sched-out
5851          *    @pending_disable = -1;
5852          *
5853          *                              sched-in
5854          *                              perf_event_disable_inatomic()
5855          *                                @pending_disable = CPU-B;
5856          *                                irq_work_queue(); // FAILS
5857          *
5858          *  irq_work_run()
5859          *    perf_pending_event()
5860          *
5861          * But the event runs on CPU-B and wants disabling there.
5862          */
5863         irq_work_queue_on(&event->pending, cpu);
5864 }
5865
5866 static void perf_pending_event(struct irq_work *entry)
5867 {
5868         struct perf_event *event = container_of(entry, struct perf_event, pending);
5869         int rctx;
5870
5871         rctx = perf_swevent_get_recursion_context();
5872         /*
5873          * If we 'fail' here, that's OK, it means recursion is already disabled
5874          * and we won't recurse 'further'.
5875          */
5876
5877         perf_pending_event_disable(event);
5878
5879         if (event->pending_wakeup) {
5880                 event->pending_wakeup = 0;
5881                 perf_event_wakeup(event);
5882         }
5883
5884         if (rctx >= 0)
5885                 perf_swevent_put_recursion_context(rctx);
5886 }
5887
5888 /*
5889  * We assume there is only KVM supporting the callbacks.
5890  * Later on, we might change it to a list if there is
5891  * another virtualization implementation supporting the callbacks.
5892  */
5893 struct perf_guest_info_callbacks *perf_guest_cbs;
5894
5895 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5896 {
5897         perf_guest_cbs = cbs;
5898         return 0;
5899 }
5900 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5901
5902 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5903 {
5904         perf_guest_cbs = NULL;
5905         return 0;
5906 }
5907 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5908
5909 static void
5910 perf_output_sample_regs(struct perf_output_handle *handle,
5911                         struct pt_regs *regs, u64 mask)
5912 {
5913         int bit;
5914         DECLARE_BITMAP(_mask, 64);
5915
5916         bitmap_from_u64(_mask, mask);
5917         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5918                 u64 val;
5919
5920                 val = perf_reg_value(regs, bit);
5921                 perf_output_put(handle, val);
5922         }
5923 }
5924
5925 static void perf_sample_regs_user(struct perf_regs *regs_user,
5926                                   struct pt_regs *regs,
5927                                   struct pt_regs *regs_user_copy)
5928 {
5929         if (user_mode(regs)) {
5930                 regs_user->abi = perf_reg_abi(current);
5931                 regs_user->regs = regs;
5932         } else if (!(current->flags & PF_KTHREAD)) {
5933                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5934         } else {
5935                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5936                 regs_user->regs = NULL;
5937         }
5938 }
5939
5940 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5941                                   struct pt_regs *regs)
5942 {
5943         regs_intr->regs = regs;
5944         regs_intr->abi  = perf_reg_abi(current);
5945 }
5946
5947
5948 /*
5949  * Get remaining task size from user stack pointer.
5950  *
5951  * It'd be better to take stack vma map and limit this more
5952  * precisly, but there's no way to get it safely under interrupt,
5953  * so using TASK_SIZE as limit.
5954  */
5955 static u64 perf_ustack_task_size(struct pt_regs *regs)
5956 {
5957         unsigned long addr = perf_user_stack_pointer(regs);
5958
5959         if (!addr || addr >= TASK_SIZE)
5960                 return 0;
5961
5962         return TASK_SIZE - addr;
5963 }
5964
5965 static u16
5966 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5967                         struct pt_regs *regs)
5968 {
5969         u64 task_size;
5970
5971         /* No regs, no stack pointer, no dump. */
5972         if (!regs)
5973                 return 0;
5974
5975         /*
5976          * Check if we fit in with the requested stack size into the:
5977          * - TASK_SIZE
5978          *   If we don't, we limit the size to the TASK_SIZE.
5979          *
5980          * - remaining sample size
5981          *   If we don't, we customize the stack size to
5982          *   fit in to the remaining sample size.
5983          */
5984
5985         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5986         stack_size = min(stack_size, (u16) task_size);
5987
5988         /* Current header size plus static size and dynamic size. */
5989         header_size += 2 * sizeof(u64);
5990
5991         /* Do we fit in with the current stack dump size? */
5992         if ((u16) (header_size + stack_size) < header_size) {
5993                 /*
5994                  * If we overflow the maximum size for the sample,
5995                  * we customize the stack dump size to fit in.
5996                  */
5997                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5998                 stack_size = round_up(stack_size, sizeof(u64));
5999         }
6000
6001         return stack_size;
6002 }
6003
6004 static void
6005 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6006                           struct pt_regs *regs)
6007 {
6008         /* Case of a kernel thread, nothing to dump */
6009         if (!regs) {
6010                 u64 size = 0;
6011                 perf_output_put(handle, size);
6012         } else {
6013                 unsigned long sp;
6014                 unsigned int rem;
6015                 u64 dyn_size;
6016                 mm_segment_t fs;
6017
6018                 /*
6019                  * We dump:
6020                  * static size
6021                  *   - the size requested by user or the best one we can fit
6022                  *     in to the sample max size
6023                  * data
6024                  *   - user stack dump data
6025                  * dynamic size
6026                  *   - the actual dumped size
6027                  */
6028
6029                 /* Static size. */
6030                 perf_output_put(handle, dump_size);
6031
6032                 /* Data. */
6033                 sp = perf_user_stack_pointer(regs);
6034                 fs = get_fs();
6035                 set_fs(USER_DS);
6036                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6037                 set_fs(fs);
6038                 dyn_size = dump_size - rem;
6039
6040                 perf_output_skip(handle, rem);
6041
6042                 /* Dynamic size. */
6043                 perf_output_put(handle, dyn_size);
6044         }
6045 }
6046
6047 static void __perf_event_header__init_id(struct perf_event_header *header,
6048                                          struct perf_sample_data *data,
6049                                          struct perf_event *event)
6050 {
6051         u64 sample_type = event->attr.sample_type;
6052
6053         data->type = sample_type;
6054         header->size += event->id_header_size;
6055
6056         if (sample_type & PERF_SAMPLE_TID) {
6057                 /* namespace issues */
6058                 data->tid_entry.pid = perf_event_pid(event, current);
6059                 data->tid_entry.tid = perf_event_tid(event, current);
6060         }
6061
6062         if (sample_type & PERF_SAMPLE_TIME)
6063                 data->time = perf_event_clock(event);
6064
6065         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6066                 data->id = primary_event_id(event);
6067
6068         if (sample_type & PERF_SAMPLE_STREAM_ID)
6069                 data->stream_id = event->id;
6070
6071         if (sample_type & PERF_SAMPLE_CPU) {
6072                 data->cpu_entry.cpu      = raw_smp_processor_id();
6073                 data->cpu_entry.reserved = 0;
6074         }
6075 }
6076
6077 void perf_event_header__init_id(struct perf_event_header *header,
6078                                 struct perf_sample_data *data,
6079                                 struct perf_event *event)
6080 {
6081         if (event->attr.sample_id_all)
6082                 __perf_event_header__init_id(header, data, event);
6083 }
6084
6085 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6086                                            struct perf_sample_data *data)
6087 {
6088         u64 sample_type = data->type;
6089
6090         if (sample_type & PERF_SAMPLE_TID)
6091                 perf_output_put(handle, data->tid_entry);
6092
6093         if (sample_type & PERF_SAMPLE_TIME)
6094                 perf_output_put(handle, data->time);
6095
6096         if (sample_type & PERF_SAMPLE_ID)
6097                 perf_output_put(handle, data->id);
6098
6099         if (sample_type & PERF_SAMPLE_STREAM_ID)
6100                 perf_output_put(handle, data->stream_id);
6101
6102         if (sample_type & PERF_SAMPLE_CPU)
6103                 perf_output_put(handle, data->cpu_entry);
6104
6105         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6106                 perf_output_put(handle, data->id);
6107 }
6108
6109 void perf_event__output_id_sample(struct perf_event *event,
6110                                   struct perf_output_handle *handle,
6111                                   struct perf_sample_data *sample)
6112 {
6113         if (event->attr.sample_id_all)
6114                 __perf_event__output_id_sample(handle, sample);
6115 }
6116
6117 static void perf_output_read_one(struct perf_output_handle *handle,
6118                                  struct perf_event *event,
6119                                  u64 enabled, u64 running)
6120 {
6121         u64 read_format = event->attr.read_format;
6122         u64 values[4];
6123         int n = 0;
6124
6125         values[n++] = perf_event_count(event);
6126         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6127                 values[n++] = enabled +
6128                         atomic64_read(&event->child_total_time_enabled);
6129         }
6130         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6131                 values[n++] = running +
6132                         atomic64_read(&event->child_total_time_running);
6133         }
6134         if (read_format & PERF_FORMAT_ID)
6135                 values[n++] = primary_event_id(event);
6136
6137         __output_copy(handle, values, n * sizeof(u64));
6138 }
6139
6140 static void perf_output_read_group(struct perf_output_handle *handle,
6141                             struct perf_event *event,
6142                             u64 enabled, u64 running)
6143 {
6144         struct perf_event *leader = event->group_leader, *sub;
6145         u64 read_format = event->attr.read_format;
6146         u64 values[5];
6147         int n = 0;
6148
6149         values[n++] = 1 + leader->nr_siblings;
6150
6151         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6152                 values[n++] = enabled;
6153
6154         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6155                 values[n++] = running;
6156
6157         if ((leader != event) &&
6158             (leader->state == PERF_EVENT_STATE_ACTIVE))
6159                 leader->pmu->read(leader);
6160
6161         values[n++] = perf_event_count(leader);
6162         if (read_format & PERF_FORMAT_ID)
6163                 values[n++] = primary_event_id(leader);
6164
6165         __output_copy(handle, values, n * sizeof(u64));
6166
6167         for_each_sibling_event(sub, leader) {
6168                 n = 0;
6169
6170                 if ((sub != event) &&
6171                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6172                         sub->pmu->read(sub);
6173
6174                 values[n++] = perf_event_count(sub);
6175                 if (read_format & PERF_FORMAT_ID)
6176                         values[n++] = primary_event_id(sub);
6177
6178                 __output_copy(handle, values, n * sizeof(u64));
6179         }
6180 }
6181
6182 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6183                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6184
6185 /*
6186  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6187  *
6188  * The problem is that its both hard and excessively expensive to iterate the
6189  * child list, not to mention that its impossible to IPI the children running
6190  * on another CPU, from interrupt/NMI context.
6191  */
6192 static void perf_output_read(struct perf_output_handle *handle,
6193                              struct perf_event *event)
6194 {
6195         u64 enabled = 0, running = 0, now;
6196         u64 read_format = event->attr.read_format;
6197
6198         /*
6199          * compute total_time_enabled, total_time_running
6200          * based on snapshot values taken when the event
6201          * was last scheduled in.
6202          *
6203          * we cannot simply called update_context_time()
6204          * because of locking issue as we are called in
6205          * NMI context
6206          */
6207         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6208                 calc_timer_values(event, &now, &enabled, &running);
6209
6210         if (event->attr.read_format & PERF_FORMAT_GROUP)
6211                 perf_output_read_group(handle, event, enabled, running);
6212         else
6213                 perf_output_read_one(handle, event, enabled, running);
6214 }
6215
6216 void perf_output_sample(struct perf_output_handle *handle,
6217                         struct perf_event_header *header,
6218                         struct perf_sample_data *data,
6219                         struct perf_event *event)
6220 {
6221         u64 sample_type = data->type;
6222
6223         perf_output_put(handle, *header);
6224
6225         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6226                 perf_output_put(handle, data->id);
6227
6228         if (sample_type & PERF_SAMPLE_IP)
6229                 perf_output_put(handle, data->ip);
6230
6231         if (sample_type & PERF_SAMPLE_TID)
6232                 perf_output_put(handle, data->tid_entry);
6233
6234         if (sample_type & PERF_SAMPLE_TIME)
6235                 perf_output_put(handle, data->time);
6236
6237         if (sample_type & PERF_SAMPLE_ADDR)
6238                 perf_output_put(handle, data->addr);
6239
6240         if (sample_type & PERF_SAMPLE_ID)
6241                 perf_output_put(handle, data->id);
6242
6243         if (sample_type & PERF_SAMPLE_STREAM_ID)
6244                 perf_output_put(handle, data->stream_id);
6245
6246         if (sample_type & PERF_SAMPLE_CPU)
6247                 perf_output_put(handle, data->cpu_entry);
6248
6249         if (sample_type & PERF_SAMPLE_PERIOD)
6250                 perf_output_put(handle, data->period);
6251
6252         if (sample_type & PERF_SAMPLE_READ)
6253                 perf_output_read(handle, event);
6254
6255         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6256                 int size = 1;
6257
6258                 size += data->callchain->nr;
6259                 size *= sizeof(u64);
6260                 __output_copy(handle, data->callchain, size);
6261         }
6262
6263         if (sample_type & PERF_SAMPLE_RAW) {
6264                 struct perf_raw_record *raw = data->raw;
6265
6266                 if (raw) {
6267                         struct perf_raw_frag *frag = &raw->frag;
6268
6269                         perf_output_put(handle, raw->size);
6270                         do {
6271                                 if (frag->copy) {
6272                                         __output_custom(handle, frag->copy,
6273                                                         frag->data, frag->size);
6274                                 } else {
6275                                         __output_copy(handle, frag->data,
6276                                                       frag->size);
6277                                 }
6278                                 if (perf_raw_frag_last(frag))
6279                                         break;
6280                                 frag = frag->next;
6281                         } while (1);
6282                         if (frag->pad)
6283                                 __output_skip(handle, NULL, frag->pad);
6284                 } else {
6285                         struct {
6286                                 u32     size;
6287                                 u32     data;
6288                         } raw = {
6289                                 .size = sizeof(u32),
6290                                 .data = 0,
6291                         };
6292                         perf_output_put(handle, raw);
6293                 }
6294         }
6295
6296         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6297                 if (data->br_stack) {
6298                         size_t size;
6299
6300                         size = data->br_stack->nr
6301                              * sizeof(struct perf_branch_entry);
6302
6303                         perf_output_put(handle, data->br_stack->nr);
6304                         perf_output_copy(handle, data->br_stack->entries, size);
6305                 } else {
6306                         /*
6307                          * we always store at least the value of nr
6308                          */
6309                         u64 nr = 0;
6310                         perf_output_put(handle, nr);
6311                 }
6312         }
6313
6314         if (sample_type & PERF_SAMPLE_REGS_USER) {
6315                 u64 abi = data->regs_user.abi;
6316
6317                 /*
6318                  * If there are no regs to dump, notice it through
6319                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6320                  */
6321                 perf_output_put(handle, abi);
6322
6323                 if (abi) {
6324                         u64 mask = event->attr.sample_regs_user;
6325                         perf_output_sample_regs(handle,
6326                                                 data->regs_user.regs,
6327                                                 mask);
6328                 }
6329         }
6330
6331         if (sample_type & PERF_SAMPLE_STACK_USER) {
6332                 perf_output_sample_ustack(handle,
6333                                           data->stack_user_size,
6334                                           data->regs_user.regs);
6335         }
6336
6337         if (sample_type & PERF_SAMPLE_WEIGHT)
6338                 perf_output_put(handle, data->weight);
6339
6340         if (sample_type & PERF_SAMPLE_DATA_SRC)
6341                 perf_output_put(handle, data->data_src.val);
6342
6343         if (sample_type & PERF_SAMPLE_TRANSACTION)
6344                 perf_output_put(handle, data->txn);
6345
6346         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6347                 u64 abi = data->regs_intr.abi;
6348                 /*
6349                  * If there are no regs to dump, notice it through
6350                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6351                  */
6352                 perf_output_put(handle, abi);
6353
6354                 if (abi) {
6355                         u64 mask = event->attr.sample_regs_intr;
6356
6357                         perf_output_sample_regs(handle,
6358                                                 data->regs_intr.regs,
6359                                                 mask);
6360                 }
6361         }
6362
6363         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6364                 perf_output_put(handle, data->phys_addr);
6365
6366         if (!event->attr.watermark) {
6367                 int wakeup_events = event->attr.wakeup_events;
6368
6369                 if (wakeup_events) {
6370                         struct ring_buffer *rb = handle->rb;
6371                         int events = local_inc_return(&rb->events);
6372
6373                         if (events >= wakeup_events) {
6374                                 local_sub(wakeup_events, &rb->events);
6375                                 local_inc(&rb->wakeup);
6376                         }
6377                 }
6378         }
6379 }
6380
6381 static u64 perf_virt_to_phys(u64 virt)
6382 {
6383         u64 phys_addr = 0;
6384         struct page *p = NULL;
6385
6386         if (!virt)
6387                 return 0;
6388
6389         if (virt >= TASK_SIZE) {
6390                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6391                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6392                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6393                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6394         } else {
6395                 /*
6396                  * Walking the pages tables for user address.
6397                  * Interrupts are disabled, so it prevents any tear down
6398                  * of the page tables.
6399                  * Try IRQ-safe __get_user_pages_fast first.
6400                  * If failed, leave phys_addr as 0.
6401                  */
6402                 if ((current->mm != NULL) &&
6403                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6404                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6405
6406                 if (p)
6407                         put_page(p);
6408         }
6409
6410         return phys_addr;
6411 }
6412
6413 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6414
6415 struct perf_callchain_entry *
6416 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6417 {
6418         bool kernel = !event->attr.exclude_callchain_kernel;
6419         bool user   = !event->attr.exclude_callchain_user;
6420         /* Disallow cross-task user callchains. */
6421         bool crosstask = event->ctx->task && event->ctx->task != current;
6422         const u32 max_stack = event->attr.sample_max_stack;
6423         struct perf_callchain_entry *callchain;
6424
6425         if (!kernel && !user)
6426                 return &__empty_callchain;
6427
6428         callchain = get_perf_callchain(regs, 0, kernel, user,
6429                                        max_stack, crosstask, true);
6430         return callchain ?: &__empty_callchain;
6431 }
6432
6433 void perf_prepare_sample(struct perf_event_header *header,
6434                          struct perf_sample_data *data,
6435                          struct perf_event *event,
6436                          struct pt_regs *regs)
6437 {
6438         u64 sample_type = event->attr.sample_type;
6439
6440         header->type = PERF_RECORD_SAMPLE;
6441         header->size = sizeof(*header) + event->header_size;
6442
6443         header->misc = 0;
6444         header->misc |= perf_misc_flags(regs);
6445
6446         __perf_event_header__init_id(header, data, event);
6447
6448         if (sample_type & PERF_SAMPLE_IP)
6449                 data->ip = perf_instruction_pointer(regs);
6450
6451         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6452                 int size = 1;
6453
6454                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6455                         data->callchain = perf_callchain(event, regs);
6456
6457                 size += data->callchain->nr;
6458
6459                 header->size += size * sizeof(u64);
6460         }
6461
6462         if (sample_type & PERF_SAMPLE_RAW) {
6463                 struct perf_raw_record *raw = data->raw;
6464                 int size;
6465
6466                 if (raw) {
6467                         struct perf_raw_frag *frag = &raw->frag;
6468                         u32 sum = 0;
6469
6470                         do {
6471                                 sum += frag->size;
6472                                 if (perf_raw_frag_last(frag))
6473                                         break;
6474                                 frag = frag->next;
6475                         } while (1);
6476
6477                         size = round_up(sum + sizeof(u32), sizeof(u64));
6478                         raw->size = size - sizeof(u32);
6479                         frag->pad = raw->size - sum;
6480                 } else {
6481                         size = sizeof(u64);
6482                 }
6483
6484                 header->size += size;
6485         }
6486
6487         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6488                 int size = sizeof(u64); /* nr */
6489                 if (data->br_stack) {
6490                         size += data->br_stack->nr
6491                               * sizeof(struct perf_branch_entry);
6492                 }
6493                 header->size += size;
6494         }
6495
6496         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6497                 perf_sample_regs_user(&data->regs_user, regs,
6498                                       &data->regs_user_copy);
6499
6500         if (sample_type & PERF_SAMPLE_REGS_USER) {
6501                 /* regs dump ABI info */
6502                 int size = sizeof(u64);
6503
6504                 if (data->regs_user.regs) {
6505                         u64 mask = event->attr.sample_regs_user;
6506                         size += hweight64(mask) * sizeof(u64);
6507                 }
6508
6509                 header->size += size;
6510         }
6511
6512         if (sample_type & PERF_SAMPLE_STACK_USER) {
6513                 /*
6514                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6515                  * processed as the last one or have additional check added
6516                  * in case new sample type is added, because we could eat
6517                  * up the rest of the sample size.
6518                  */
6519                 u16 stack_size = event->attr.sample_stack_user;
6520                 u16 size = sizeof(u64);
6521
6522                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6523                                                      data->regs_user.regs);
6524
6525                 /*
6526                  * If there is something to dump, add space for the dump
6527                  * itself and for the field that tells the dynamic size,
6528                  * which is how many have been actually dumped.
6529                  */
6530                 if (stack_size)
6531                         size += sizeof(u64) + stack_size;
6532
6533                 data->stack_user_size = stack_size;
6534                 header->size += size;
6535         }
6536
6537         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6538                 /* regs dump ABI info */
6539                 int size = sizeof(u64);
6540
6541                 perf_sample_regs_intr(&data->regs_intr, regs);
6542
6543                 if (data->regs_intr.regs) {
6544                         u64 mask = event->attr.sample_regs_intr;
6545
6546                         size += hweight64(mask) * sizeof(u64);
6547                 }
6548
6549                 header->size += size;
6550         }
6551
6552         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6553                 data->phys_addr = perf_virt_to_phys(data->addr);
6554 }
6555
6556 static __always_inline void
6557 __perf_event_output(struct perf_event *event,
6558                     struct perf_sample_data *data,
6559                     struct pt_regs *regs,
6560                     int (*output_begin)(struct perf_output_handle *,
6561                                         struct perf_event *,
6562                                         unsigned int))
6563 {
6564         struct perf_output_handle handle;
6565         struct perf_event_header header;
6566
6567         /* protect the callchain buffers */
6568         rcu_read_lock();
6569
6570         perf_prepare_sample(&header, data, event, regs);
6571
6572         if (output_begin(&handle, event, header.size))
6573                 goto exit;
6574
6575         perf_output_sample(&handle, &header, data, event);
6576
6577         perf_output_end(&handle);
6578
6579 exit:
6580         rcu_read_unlock();
6581 }
6582
6583 void
6584 perf_event_output_forward(struct perf_event *event,
6585                          struct perf_sample_data *data,
6586                          struct pt_regs *regs)
6587 {
6588         __perf_event_output(event, data, regs, perf_output_begin_forward);
6589 }
6590
6591 void
6592 perf_event_output_backward(struct perf_event *event,
6593                            struct perf_sample_data *data,
6594                            struct pt_regs *regs)
6595 {
6596         __perf_event_output(event, data, regs, perf_output_begin_backward);
6597 }
6598
6599 void
6600 perf_event_output(struct perf_event *event,
6601                   struct perf_sample_data *data,
6602                   struct pt_regs *regs)
6603 {
6604         __perf_event_output(event, data, regs, perf_output_begin);
6605 }
6606
6607 /*
6608  * read event_id
6609  */
6610
6611 struct perf_read_event {
6612         struct perf_event_header        header;
6613
6614         u32                             pid;
6615         u32                             tid;
6616 };
6617
6618 static void
6619 perf_event_read_event(struct perf_event *event,
6620                         struct task_struct *task)
6621 {
6622         struct perf_output_handle handle;
6623         struct perf_sample_data sample;
6624         struct perf_read_event read_event = {
6625                 .header = {
6626                         .type = PERF_RECORD_READ,
6627                         .misc = 0,
6628                         .size = sizeof(read_event) + event->read_size,
6629                 },
6630                 .pid = perf_event_pid(event, task),
6631                 .tid = perf_event_tid(event, task),
6632         };
6633         int ret;
6634
6635         perf_event_header__init_id(&read_event.header, &sample, event);
6636         ret = perf_output_begin(&handle, event, read_event.header.size);
6637         if (ret)
6638                 return;
6639
6640         perf_output_put(&handle, read_event);
6641         perf_output_read(&handle, event);
6642         perf_event__output_id_sample(event, &handle, &sample);
6643
6644         perf_output_end(&handle);
6645 }
6646
6647 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6648
6649 static void
6650 perf_iterate_ctx(struct perf_event_context *ctx,
6651                    perf_iterate_f output,
6652                    void *data, bool all)
6653 {
6654         struct perf_event *event;
6655
6656         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6657                 if (!all) {
6658                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6659                                 continue;
6660                         if (!event_filter_match(event))
6661                                 continue;
6662                 }
6663
6664                 output(event, data);
6665         }
6666 }
6667
6668 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6669 {
6670         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6671         struct perf_event *event;
6672
6673         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6674                 /*
6675                  * Skip events that are not fully formed yet; ensure that
6676                  * if we observe event->ctx, both event and ctx will be
6677                  * complete enough. See perf_install_in_context().
6678                  */
6679                 if (!smp_load_acquire(&event->ctx))
6680                         continue;
6681
6682                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6683                         continue;
6684                 if (!event_filter_match(event))
6685                         continue;
6686                 output(event, data);
6687         }
6688 }
6689
6690 /*
6691  * Iterate all events that need to receive side-band events.
6692  *
6693  * For new callers; ensure that account_pmu_sb_event() includes
6694  * your event, otherwise it might not get delivered.
6695  */
6696 static void
6697 perf_iterate_sb(perf_iterate_f output, void *data,
6698                struct perf_event_context *task_ctx)
6699 {
6700         struct perf_event_context *ctx;
6701         int ctxn;
6702
6703         rcu_read_lock();
6704         preempt_disable();
6705
6706         /*
6707          * If we have task_ctx != NULL we only notify the task context itself.
6708          * The task_ctx is set only for EXIT events before releasing task
6709          * context.
6710          */
6711         if (task_ctx) {
6712                 perf_iterate_ctx(task_ctx, output, data, false);
6713                 goto done;
6714         }
6715
6716         perf_iterate_sb_cpu(output, data);
6717
6718         for_each_task_context_nr(ctxn) {
6719                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6720                 if (ctx)
6721                         perf_iterate_ctx(ctx, output, data, false);
6722         }
6723 done:
6724         preempt_enable();
6725         rcu_read_unlock();
6726 }
6727
6728 /*
6729  * Clear all file-based filters at exec, they'll have to be
6730  * re-instated when/if these objects are mmapped again.
6731  */
6732 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6733 {
6734         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6735         struct perf_addr_filter *filter;
6736         unsigned int restart = 0, count = 0;
6737         unsigned long flags;
6738
6739         if (!has_addr_filter(event))
6740                 return;
6741
6742         raw_spin_lock_irqsave(&ifh->lock, flags);
6743         list_for_each_entry(filter, &ifh->list, entry) {
6744                 if (filter->path.dentry) {
6745                         event->addr_filters_offs[count] = 0;
6746                         restart++;
6747                 }
6748
6749                 count++;
6750         }
6751
6752         if (restart)
6753                 event->addr_filters_gen++;
6754         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6755
6756         if (restart)
6757                 perf_event_stop(event, 1);
6758 }
6759
6760 void perf_event_exec(void)
6761 {
6762         struct perf_event_context *ctx;
6763         int ctxn;
6764
6765         rcu_read_lock();
6766         for_each_task_context_nr(ctxn) {
6767                 ctx = current->perf_event_ctxp[ctxn];
6768                 if (!ctx)
6769                         continue;
6770
6771                 perf_event_enable_on_exec(ctxn);
6772
6773                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6774                                    true);
6775         }
6776         rcu_read_unlock();
6777 }
6778
6779 struct remote_output {
6780         struct ring_buffer      *rb;
6781         int                     err;
6782 };
6783
6784 static void __perf_event_output_stop(struct perf_event *event, void *data)
6785 {
6786         struct perf_event *parent = event->parent;
6787         struct remote_output *ro = data;
6788         struct ring_buffer *rb = ro->rb;
6789         struct stop_event_data sd = {
6790                 .event  = event,
6791         };
6792
6793         if (!has_aux(event))
6794                 return;
6795
6796         if (!parent)
6797                 parent = event;
6798
6799         /*
6800          * In case of inheritance, it will be the parent that links to the
6801          * ring-buffer, but it will be the child that's actually using it.
6802          *
6803          * We are using event::rb to determine if the event should be stopped,
6804          * however this may race with ring_buffer_attach() (through set_output),
6805          * which will make us skip the event that actually needs to be stopped.
6806          * So ring_buffer_attach() has to stop an aux event before re-assigning
6807          * its rb pointer.
6808          */
6809         if (rcu_dereference(parent->rb) == rb)
6810                 ro->err = __perf_event_stop(&sd);
6811 }
6812
6813 static int __perf_pmu_output_stop(void *info)
6814 {
6815         struct perf_event *event = info;
6816         struct pmu *pmu = event->pmu;
6817         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6818         struct remote_output ro = {
6819                 .rb     = event->rb,
6820         };
6821
6822         rcu_read_lock();
6823         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6824         if (cpuctx->task_ctx)
6825                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6826                                    &ro, false);
6827         rcu_read_unlock();
6828
6829         return ro.err;
6830 }
6831
6832 static void perf_pmu_output_stop(struct perf_event *event)
6833 {
6834         struct perf_event *iter;
6835         int err, cpu;
6836
6837 restart:
6838         rcu_read_lock();
6839         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6840                 /*
6841                  * For per-CPU events, we need to make sure that neither they
6842                  * nor their children are running; for cpu==-1 events it's
6843                  * sufficient to stop the event itself if it's active, since
6844                  * it can't have children.
6845                  */
6846                 cpu = iter->cpu;
6847                 if (cpu == -1)
6848                         cpu = READ_ONCE(iter->oncpu);
6849
6850                 if (cpu == -1)
6851                         continue;
6852
6853                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6854                 if (err == -EAGAIN) {
6855                         rcu_read_unlock();
6856                         goto restart;
6857                 }
6858         }
6859         rcu_read_unlock();
6860 }
6861
6862 /*
6863  * task tracking -- fork/exit
6864  *
6865  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6866  */
6867
6868 struct perf_task_event {
6869         struct task_struct              *task;
6870         struct perf_event_context       *task_ctx;
6871
6872         struct {
6873                 struct perf_event_header        header;
6874
6875                 u32                             pid;
6876                 u32                             ppid;
6877                 u32                             tid;
6878                 u32                             ptid;
6879                 u64                             time;
6880         } event_id;
6881 };
6882
6883 static int perf_event_task_match(struct perf_event *event)
6884 {
6885         return event->attr.comm  || event->attr.mmap ||
6886                event->attr.mmap2 || event->attr.mmap_data ||
6887                event->attr.task;
6888 }
6889
6890 static void perf_event_task_output(struct perf_event *event,
6891                                    void *data)
6892 {
6893         struct perf_task_event *task_event = data;
6894         struct perf_output_handle handle;
6895         struct perf_sample_data sample;
6896         struct task_struct *task = task_event->task;
6897         int ret, size = task_event->event_id.header.size;
6898
6899         if (!perf_event_task_match(event))
6900                 return;
6901
6902         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6903
6904         ret = perf_output_begin(&handle, event,
6905                                 task_event->event_id.header.size);
6906         if (ret)
6907                 goto out;
6908
6909         task_event->event_id.pid = perf_event_pid(event, task);
6910         task_event->event_id.ppid = perf_event_pid(event, current);
6911
6912         task_event->event_id.tid = perf_event_tid(event, task);
6913         task_event->event_id.ptid = perf_event_tid(event, current);
6914
6915         task_event->event_id.time = perf_event_clock(event);
6916
6917         perf_output_put(&handle, task_event->event_id);
6918
6919         perf_event__output_id_sample(event, &handle, &sample);
6920
6921         perf_output_end(&handle);
6922 out:
6923         task_event->event_id.header.size = size;
6924 }
6925
6926 static void perf_event_task(struct task_struct *task,
6927                               struct perf_event_context *task_ctx,
6928                               int new)
6929 {
6930         struct perf_task_event task_event;
6931
6932         if (!atomic_read(&nr_comm_events) &&
6933             !atomic_read(&nr_mmap_events) &&
6934             !atomic_read(&nr_task_events))
6935                 return;
6936
6937         task_event = (struct perf_task_event){
6938                 .task     = task,
6939                 .task_ctx = task_ctx,
6940                 .event_id    = {
6941                         .header = {
6942                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6943                                 .misc = 0,
6944                                 .size = sizeof(task_event.event_id),
6945                         },
6946                         /* .pid  */
6947                         /* .ppid */
6948                         /* .tid  */
6949                         /* .ptid */
6950                         /* .time */
6951                 },
6952         };
6953
6954         perf_iterate_sb(perf_event_task_output,
6955                        &task_event,
6956                        task_ctx);
6957 }
6958
6959 void perf_event_fork(struct task_struct *task)
6960 {
6961         perf_event_task(task, NULL, 1);
6962         perf_event_namespaces(task);
6963 }
6964
6965 /*
6966  * comm tracking
6967  */
6968
6969 struct perf_comm_event {
6970         struct task_struct      *task;
6971         char                    *comm;
6972         int                     comm_size;
6973
6974         struct {
6975                 struct perf_event_header        header;
6976
6977                 u32                             pid;
6978                 u32                             tid;
6979         } event_id;
6980 };
6981
6982 static int perf_event_comm_match(struct perf_event *event)
6983 {
6984         return event->attr.comm;
6985 }
6986
6987 static void perf_event_comm_output(struct perf_event *event,
6988                                    void *data)
6989 {
6990         struct perf_comm_event *comm_event = data;
6991         struct perf_output_handle handle;
6992         struct perf_sample_data sample;
6993         int size = comm_event->event_id.header.size;
6994         int ret;
6995
6996         if (!perf_event_comm_match(event))
6997                 return;
6998
6999         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7000         ret = perf_output_begin(&handle, event,
7001                                 comm_event->event_id.header.size);
7002
7003         if (ret)
7004                 goto out;
7005
7006         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7007         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7008
7009         perf_output_put(&handle, comm_event->event_id);
7010         __output_copy(&handle, comm_event->comm,
7011                                    comm_event->comm_size);
7012
7013         perf_event__output_id_sample(event, &handle, &sample);
7014
7015         perf_output_end(&handle);
7016 out:
7017         comm_event->event_id.header.size = size;
7018 }
7019
7020 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7021 {
7022         char comm[TASK_COMM_LEN];
7023         unsigned int size;
7024
7025         memset(comm, 0, sizeof(comm));
7026         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7027         size = ALIGN(strlen(comm)+1, sizeof(u64));
7028
7029         comm_event->comm = comm;
7030         comm_event->comm_size = size;
7031
7032         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7033
7034         perf_iterate_sb(perf_event_comm_output,
7035                        comm_event,
7036                        NULL);
7037 }
7038
7039 void perf_event_comm(struct task_struct *task, bool exec)
7040 {
7041         struct perf_comm_event comm_event;
7042
7043         if (!atomic_read(&nr_comm_events))
7044                 return;
7045
7046         comm_event = (struct perf_comm_event){
7047                 .task   = task,
7048                 /* .comm      */
7049                 /* .comm_size */
7050                 .event_id  = {
7051                         .header = {
7052                                 .type = PERF_RECORD_COMM,
7053                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7054                                 /* .size */
7055                         },
7056                         /* .pid */
7057                         /* .tid */
7058                 },
7059         };
7060
7061         perf_event_comm_event(&comm_event);
7062 }
7063
7064 /*
7065  * namespaces tracking
7066  */
7067
7068 struct perf_namespaces_event {
7069         struct task_struct              *task;
7070
7071         struct {
7072                 struct perf_event_header        header;
7073
7074                 u32                             pid;
7075                 u32                             tid;
7076                 u64                             nr_namespaces;
7077                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7078         } event_id;
7079 };
7080
7081 static int perf_event_namespaces_match(struct perf_event *event)
7082 {
7083         return event->attr.namespaces;
7084 }
7085
7086 static void perf_event_namespaces_output(struct perf_event *event,
7087                                          void *data)
7088 {
7089         struct perf_namespaces_event *namespaces_event = data;
7090         struct perf_output_handle handle;
7091         struct perf_sample_data sample;
7092         u16 header_size = namespaces_event->event_id.header.size;
7093         int ret;
7094
7095         if (!perf_event_namespaces_match(event))
7096                 return;
7097
7098         perf_event_header__init_id(&namespaces_event->event_id.header,
7099                                    &sample, event);
7100         ret = perf_output_begin(&handle, event,
7101                                 namespaces_event->event_id.header.size);
7102         if (ret)
7103                 goto out;
7104
7105         namespaces_event->event_id.pid = perf_event_pid(event,
7106                                                         namespaces_event->task);
7107         namespaces_event->event_id.tid = perf_event_tid(event,
7108                                                         namespaces_event->task);
7109
7110         perf_output_put(&handle, namespaces_event->event_id);
7111
7112         perf_event__output_id_sample(event, &handle, &sample);
7113
7114         perf_output_end(&handle);
7115 out:
7116         namespaces_event->event_id.header.size = header_size;
7117 }
7118
7119 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7120                                    struct task_struct *task,
7121                                    const struct proc_ns_operations *ns_ops)
7122 {
7123         struct path ns_path;
7124         struct inode *ns_inode;
7125         void *error;
7126
7127         error = ns_get_path(&ns_path, task, ns_ops);
7128         if (!error) {
7129                 ns_inode = ns_path.dentry->d_inode;
7130                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7131                 ns_link_info->ino = ns_inode->i_ino;
7132                 path_put(&ns_path);
7133         }
7134 }
7135
7136 void perf_event_namespaces(struct task_struct *task)
7137 {
7138         struct perf_namespaces_event namespaces_event;
7139         struct perf_ns_link_info *ns_link_info;
7140
7141         if (!atomic_read(&nr_namespaces_events))
7142                 return;
7143
7144         namespaces_event = (struct perf_namespaces_event){
7145                 .task   = task,
7146                 .event_id  = {
7147                         .header = {
7148                                 .type = PERF_RECORD_NAMESPACES,
7149                                 .misc = 0,
7150                                 .size = sizeof(namespaces_event.event_id),
7151                         },
7152                         /* .pid */
7153                         /* .tid */
7154                         .nr_namespaces = NR_NAMESPACES,
7155                         /* .link_info[NR_NAMESPACES] */
7156                 },
7157         };
7158
7159         ns_link_info = namespaces_event.event_id.link_info;
7160
7161         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7162                                task, &mntns_operations);
7163
7164 #ifdef CONFIG_USER_NS
7165         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7166                                task, &userns_operations);
7167 #endif
7168 #ifdef CONFIG_NET_NS
7169         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7170                                task, &netns_operations);
7171 #endif
7172 #ifdef CONFIG_UTS_NS
7173         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7174                                task, &utsns_operations);
7175 #endif
7176 #ifdef CONFIG_IPC_NS
7177         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7178                                task, &ipcns_operations);
7179 #endif
7180 #ifdef CONFIG_PID_NS
7181         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7182                                task, &pidns_operations);
7183 #endif
7184 #ifdef CONFIG_CGROUPS
7185         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7186                                task, &cgroupns_operations);
7187 #endif
7188
7189         perf_iterate_sb(perf_event_namespaces_output,
7190                         &namespaces_event,
7191                         NULL);
7192 }
7193
7194 /*
7195  * mmap tracking
7196  */
7197
7198 struct perf_mmap_event {
7199         struct vm_area_struct   *vma;
7200
7201         const char              *file_name;
7202         int                     file_size;
7203         int                     maj, min;
7204         u64                     ino;
7205         u64                     ino_generation;
7206         u32                     prot, flags;
7207
7208         struct {
7209                 struct perf_event_header        header;
7210
7211                 u32                             pid;
7212                 u32                             tid;
7213                 u64                             start;
7214                 u64                             len;
7215                 u64                             pgoff;
7216         } event_id;
7217 };
7218
7219 static int perf_event_mmap_match(struct perf_event *event,
7220                                  void *data)
7221 {
7222         struct perf_mmap_event *mmap_event = data;
7223         struct vm_area_struct *vma = mmap_event->vma;
7224         int executable = vma->vm_flags & VM_EXEC;
7225
7226         return (!executable && event->attr.mmap_data) ||
7227                (executable && (event->attr.mmap || event->attr.mmap2));
7228 }
7229
7230 static void perf_event_mmap_output(struct perf_event *event,
7231                                    void *data)
7232 {
7233         struct perf_mmap_event *mmap_event = data;
7234         struct perf_output_handle handle;
7235         struct perf_sample_data sample;
7236         int size = mmap_event->event_id.header.size;
7237         u32 type = mmap_event->event_id.header.type;
7238         int ret;
7239
7240         if (!perf_event_mmap_match(event, data))
7241                 return;
7242
7243         if (event->attr.mmap2) {
7244                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7245                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7246                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7247                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7248                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7249                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7250                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7251         }
7252
7253         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7254         ret = perf_output_begin(&handle, event,
7255                                 mmap_event->event_id.header.size);
7256         if (ret)
7257                 goto out;
7258
7259         mmap_event->event_id.pid = perf_event_pid(event, current);
7260         mmap_event->event_id.tid = perf_event_tid(event, current);
7261
7262         perf_output_put(&handle, mmap_event->event_id);
7263
7264         if (event->attr.mmap2) {
7265                 perf_output_put(&handle, mmap_event->maj);
7266                 perf_output_put(&handle, mmap_event->min);
7267                 perf_output_put(&handle, mmap_event->ino);
7268                 perf_output_put(&handle, mmap_event->ino_generation);
7269                 perf_output_put(&handle, mmap_event->prot);
7270                 perf_output_put(&handle, mmap_event->flags);
7271         }
7272
7273         __output_copy(&handle, mmap_event->file_name,
7274                                    mmap_event->file_size);
7275
7276         perf_event__output_id_sample(event, &handle, &sample);
7277
7278         perf_output_end(&handle);
7279 out:
7280         mmap_event->event_id.header.size = size;
7281         mmap_event->event_id.header.type = type;
7282 }
7283
7284 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7285 {
7286         struct vm_area_struct *vma = mmap_event->vma;
7287         struct file *file = vma->vm_file;
7288         int maj = 0, min = 0;
7289         u64 ino = 0, gen = 0;
7290         u32 prot = 0, flags = 0;
7291         unsigned int size;
7292         char tmp[16];
7293         char *buf = NULL;
7294         char *name;
7295
7296         if (vma->vm_flags & VM_READ)
7297                 prot |= PROT_READ;
7298         if (vma->vm_flags & VM_WRITE)
7299                 prot |= PROT_WRITE;
7300         if (vma->vm_flags & VM_EXEC)
7301                 prot |= PROT_EXEC;
7302
7303         if (vma->vm_flags & VM_MAYSHARE)
7304                 flags = MAP_SHARED;
7305         else
7306                 flags = MAP_PRIVATE;
7307
7308         if (vma->vm_flags & VM_DENYWRITE)
7309                 flags |= MAP_DENYWRITE;
7310         if (vma->vm_flags & VM_MAYEXEC)
7311                 flags |= MAP_EXECUTABLE;
7312         if (vma->vm_flags & VM_LOCKED)
7313                 flags |= MAP_LOCKED;
7314         if (vma->vm_flags & VM_HUGETLB)
7315                 flags |= MAP_HUGETLB;
7316
7317         if (file) {
7318                 struct inode *inode;
7319                 dev_t dev;
7320
7321                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7322                 if (!buf) {
7323                         name = "//enomem";
7324                         goto cpy_name;
7325                 }
7326                 /*
7327                  * d_path() works from the end of the rb backwards, so we
7328                  * need to add enough zero bytes after the string to handle
7329                  * the 64bit alignment we do later.
7330                  */
7331                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7332                 if (IS_ERR(name)) {
7333                         name = "//toolong";
7334                         goto cpy_name;
7335                 }
7336                 inode = file_inode(vma->vm_file);
7337                 dev = inode->i_sb->s_dev;
7338                 ino = inode->i_ino;
7339                 gen = inode->i_generation;
7340                 maj = MAJOR(dev);
7341                 min = MINOR(dev);
7342
7343                 goto got_name;
7344         } else {
7345                 if (vma->vm_ops && vma->vm_ops->name) {
7346                         name = (char *) vma->vm_ops->name(vma);
7347                         if (name)
7348                                 goto cpy_name;
7349                 }
7350
7351                 name = (char *)arch_vma_name(vma);
7352                 if (name)
7353                         goto cpy_name;
7354
7355                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7356                                 vma->vm_end >= vma->vm_mm->brk) {
7357                         name = "[heap]";
7358                         goto cpy_name;
7359                 }
7360                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7361                                 vma->vm_end >= vma->vm_mm->start_stack) {
7362                         name = "[stack]";
7363                         goto cpy_name;
7364                 }
7365
7366                 name = "//anon";
7367                 goto cpy_name;
7368         }
7369
7370 cpy_name:
7371         strlcpy(tmp, name, sizeof(tmp));
7372         name = tmp;
7373 got_name:
7374         /*
7375          * Since our buffer works in 8 byte units we need to align our string
7376          * size to a multiple of 8. However, we must guarantee the tail end is
7377          * zero'd out to avoid leaking random bits to userspace.
7378          */
7379         size = strlen(name)+1;
7380         while (!IS_ALIGNED(size, sizeof(u64)))
7381                 name[size++] = '\0';
7382
7383         mmap_event->file_name = name;
7384         mmap_event->file_size = size;
7385         mmap_event->maj = maj;
7386         mmap_event->min = min;
7387         mmap_event->ino = ino;
7388         mmap_event->ino_generation = gen;
7389         mmap_event->prot = prot;
7390         mmap_event->flags = flags;
7391
7392         if (!(vma->vm_flags & VM_EXEC))
7393                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7394
7395         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7396
7397         perf_iterate_sb(perf_event_mmap_output,
7398                        mmap_event,
7399                        NULL);
7400
7401         kfree(buf);
7402 }
7403
7404 /*
7405  * Check whether inode and address range match filter criteria.
7406  */
7407 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7408                                      struct file *file, unsigned long offset,
7409                                      unsigned long size)
7410 {
7411         /* d_inode(NULL) won't be equal to any mapped user-space file */
7412         if (!filter->path.dentry)
7413                 return false;
7414
7415         if (d_inode(filter->path.dentry) != file_inode(file))
7416                 return false;
7417
7418         if (filter->offset > offset + size)
7419                 return false;
7420
7421         if (filter->offset + filter->size < offset)
7422                 return false;
7423
7424         return true;
7425 }
7426
7427 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7428 {
7429         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7430         struct vm_area_struct *vma = data;
7431         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7432         struct file *file = vma->vm_file;
7433         struct perf_addr_filter *filter;
7434         unsigned int restart = 0, count = 0;
7435
7436         if (!has_addr_filter(event))
7437                 return;
7438
7439         if (!file)
7440                 return;
7441
7442         raw_spin_lock_irqsave(&ifh->lock, flags);
7443         list_for_each_entry(filter, &ifh->list, entry) {
7444                 if (perf_addr_filter_match(filter, file, off,
7445                                              vma->vm_end - vma->vm_start)) {
7446                         event->addr_filters_offs[count] = vma->vm_start;
7447                         restart++;
7448                 }
7449
7450                 count++;
7451         }
7452
7453         if (restart)
7454                 event->addr_filters_gen++;
7455         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7456
7457         if (restart)
7458                 perf_event_stop(event, 1);
7459 }
7460
7461 /*
7462  * Adjust all task's events' filters to the new vma
7463  */
7464 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7465 {
7466         struct perf_event_context *ctx;
7467         int ctxn;
7468
7469         /*
7470          * Data tracing isn't supported yet and as such there is no need
7471          * to keep track of anything that isn't related to executable code:
7472          */
7473         if (!(vma->vm_flags & VM_EXEC))
7474                 return;
7475
7476         rcu_read_lock();
7477         for_each_task_context_nr(ctxn) {
7478                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7479                 if (!ctx)
7480                         continue;
7481
7482                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7483         }
7484         rcu_read_unlock();
7485 }
7486
7487 void perf_event_mmap(struct vm_area_struct *vma)
7488 {
7489         struct perf_mmap_event mmap_event;
7490
7491         if (!atomic_read(&nr_mmap_events))
7492                 return;
7493
7494         mmap_event = (struct perf_mmap_event){
7495                 .vma    = vma,
7496                 /* .file_name */
7497                 /* .file_size */
7498                 .event_id  = {
7499                         .header = {
7500                                 .type = PERF_RECORD_MMAP,
7501                                 .misc = PERF_RECORD_MISC_USER,
7502                                 /* .size */
7503                         },
7504                         /* .pid */
7505                         /* .tid */
7506                         .start  = vma->vm_start,
7507                         .len    = vma->vm_end - vma->vm_start,
7508                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7509                 },
7510                 /* .maj (attr_mmap2 only) */
7511                 /* .min (attr_mmap2 only) */
7512                 /* .ino (attr_mmap2 only) */
7513                 /* .ino_generation (attr_mmap2 only) */
7514                 /* .prot (attr_mmap2 only) */
7515                 /* .flags (attr_mmap2 only) */
7516         };
7517
7518         perf_addr_filters_adjust(vma);
7519         perf_event_mmap_event(&mmap_event);
7520 }
7521
7522 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7523                           unsigned long size, u64 flags)
7524 {
7525         struct perf_output_handle handle;
7526         struct perf_sample_data sample;
7527         struct perf_aux_event {
7528                 struct perf_event_header        header;
7529                 u64                             offset;
7530                 u64                             size;
7531                 u64                             flags;
7532         } rec = {
7533                 .header = {
7534                         .type = PERF_RECORD_AUX,
7535                         .misc = 0,
7536                         .size = sizeof(rec),
7537                 },
7538                 .offset         = head,
7539                 .size           = size,
7540                 .flags          = flags,
7541         };
7542         int ret;
7543
7544         perf_event_header__init_id(&rec.header, &sample, event);
7545         ret = perf_output_begin(&handle, event, rec.header.size);
7546
7547         if (ret)
7548                 return;
7549
7550         perf_output_put(&handle, rec);
7551         perf_event__output_id_sample(event, &handle, &sample);
7552
7553         perf_output_end(&handle);
7554 }
7555
7556 /*
7557  * Lost/dropped samples logging
7558  */
7559 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7560 {
7561         struct perf_output_handle handle;
7562         struct perf_sample_data sample;
7563         int ret;
7564
7565         struct {
7566                 struct perf_event_header        header;
7567                 u64                             lost;
7568         } lost_samples_event = {
7569                 .header = {
7570                         .type = PERF_RECORD_LOST_SAMPLES,
7571                         .misc = 0,
7572                         .size = sizeof(lost_samples_event),
7573                 },
7574                 .lost           = lost,
7575         };
7576
7577         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7578
7579         ret = perf_output_begin(&handle, event,
7580                                 lost_samples_event.header.size);
7581         if (ret)
7582                 return;
7583
7584         perf_output_put(&handle, lost_samples_event);
7585         perf_event__output_id_sample(event, &handle, &sample);
7586         perf_output_end(&handle);
7587 }
7588
7589 /*
7590  * context_switch tracking
7591  */
7592
7593 struct perf_switch_event {
7594         struct task_struct      *task;
7595         struct task_struct      *next_prev;
7596
7597         struct {
7598                 struct perf_event_header        header;
7599                 u32                             next_prev_pid;
7600                 u32                             next_prev_tid;
7601         } event_id;
7602 };
7603
7604 static int perf_event_switch_match(struct perf_event *event)
7605 {
7606         return event->attr.context_switch;
7607 }
7608
7609 static void perf_event_switch_output(struct perf_event *event, void *data)
7610 {
7611         struct perf_switch_event *se = data;
7612         struct perf_output_handle handle;
7613         struct perf_sample_data sample;
7614         int ret;
7615
7616         if (!perf_event_switch_match(event))
7617                 return;
7618
7619         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7620         if (event->ctx->task) {
7621                 se->event_id.header.type = PERF_RECORD_SWITCH;
7622                 se->event_id.header.size = sizeof(se->event_id.header);
7623         } else {
7624                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7625                 se->event_id.header.size = sizeof(se->event_id);
7626                 se->event_id.next_prev_pid =
7627                                         perf_event_pid(event, se->next_prev);
7628                 se->event_id.next_prev_tid =
7629                                         perf_event_tid(event, se->next_prev);
7630         }
7631
7632         perf_event_header__init_id(&se->event_id.header, &sample, event);
7633
7634         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7635         if (ret)
7636                 return;
7637
7638         if (event->ctx->task)
7639                 perf_output_put(&handle, se->event_id.header);
7640         else
7641                 perf_output_put(&handle, se->event_id);
7642
7643         perf_event__output_id_sample(event, &handle, &sample);
7644
7645         perf_output_end(&handle);
7646 }
7647
7648 static void perf_event_switch(struct task_struct *task,
7649                               struct task_struct *next_prev, bool sched_in)
7650 {
7651         struct perf_switch_event switch_event;
7652
7653         /* N.B. caller checks nr_switch_events != 0 */
7654
7655         switch_event = (struct perf_switch_event){
7656                 .task           = task,
7657                 .next_prev      = next_prev,
7658                 .event_id       = {
7659                         .header = {
7660                                 /* .type */
7661                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7662                                 /* .size */
7663                         },
7664                         /* .next_prev_pid */
7665                         /* .next_prev_tid */
7666                 },
7667         };
7668
7669         if (!sched_in && task->state == TASK_RUNNING)
7670                 switch_event.event_id.header.misc |=
7671                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7672
7673         perf_iterate_sb(perf_event_switch_output,
7674                        &switch_event,
7675                        NULL);
7676 }
7677
7678 /*
7679  * IRQ throttle logging
7680  */
7681
7682 static void perf_log_throttle(struct perf_event *event, int enable)
7683 {
7684         struct perf_output_handle handle;
7685         struct perf_sample_data sample;
7686         int ret;
7687
7688         struct {
7689                 struct perf_event_header        header;
7690                 u64                             time;
7691                 u64                             id;
7692                 u64                             stream_id;
7693         } throttle_event = {
7694                 .header = {
7695                         .type = PERF_RECORD_THROTTLE,
7696                         .misc = 0,
7697                         .size = sizeof(throttle_event),
7698                 },
7699                 .time           = perf_event_clock(event),
7700                 .id             = primary_event_id(event),
7701                 .stream_id      = event->id,
7702         };
7703
7704         if (enable)
7705                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7706
7707         perf_event_header__init_id(&throttle_event.header, &sample, event);
7708
7709         ret = perf_output_begin(&handle, event,
7710                                 throttle_event.header.size);
7711         if (ret)
7712                 return;
7713
7714         perf_output_put(&handle, throttle_event);
7715         perf_event__output_id_sample(event, &handle, &sample);
7716         perf_output_end(&handle);
7717 }
7718
7719 void perf_event_itrace_started(struct perf_event *event)
7720 {
7721         event->attach_state |= PERF_ATTACH_ITRACE;
7722 }
7723
7724 static void perf_log_itrace_start(struct perf_event *event)
7725 {
7726         struct perf_output_handle handle;
7727         struct perf_sample_data sample;
7728         struct perf_aux_event {
7729                 struct perf_event_header        header;
7730                 u32                             pid;
7731                 u32                             tid;
7732         } rec;
7733         int ret;
7734
7735         if (event->parent)
7736                 event = event->parent;
7737
7738         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7739             event->attach_state & PERF_ATTACH_ITRACE)
7740                 return;
7741
7742         rec.header.type = PERF_RECORD_ITRACE_START;
7743         rec.header.misc = 0;
7744         rec.header.size = sizeof(rec);
7745         rec.pid = perf_event_pid(event, current);
7746         rec.tid = perf_event_tid(event, current);
7747
7748         perf_event_header__init_id(&rec.header, &sample, event);
7749         ret = perf_output_begin(&handle, event, rec.header.size);
7750
7751         if (ret)
7752                 return;
7753
7754         perf_output_put(&handle, rec);
7755         perf_event__output_id_sample(event, &handle, &sample);
7756
7757         perf_output_end(&handle);
7758 }
7759
7760 static int
7761 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7762 {
7763         struct hw_perf_event *hwc = &event->hw;
7764         int ret = 0;
7765         u64 seq;
7766
7767         seq = __this_cpu_read(perf_throttled_seq);
7768         if (seq != hwc->interrupts_seq) {
7769                 hwc->interrupts_seq = seq;
7770                 hwc->interrupts = 1;
7771         } else {
7772                 hwc->interrupts++;
7773                 if (unlikely(throttle
7774                              && hwc->interrupts >= max_samples_per_tick)) {
7775                         __this_cpu_inc(perf_throttled_count);
7776                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7777                         hwc->interrupts = MAX_INTERRUPTS;
7778                         perf_log_throttle(event, 0);
7779                         ret = 1;
7780                 }
7781         }
7782
7783         if (event->attr.freq) {
7784                 u64 now = perf_clock();
7785                 s64 delta = now - hwc->freq_time_stamp;
7786
7787                 hwc->freq_time_stamp = now;
7788
7789                 if (delta > 0 && delta < 2*TICK_NSEC)
7790                         perf_adjust_period(event, delta, hwc->last_period, true);
7791         }
7792
7793         return ret;
7794 }
7795
7796 int perf_event_account_interrupt(struct perf_event *event)
7797 {
7798         return __perf_event_account_interrupt(event, 1);
7799 }
7800
7801 /*
7802  * Generic event overflow handling, sampling.
7803  */
7804
7805 static int __perf_event_overflow(struct perf_event *event,
7806                                    int throttle, struct perf_sample_data *data,
7807                                    struct pt_regs *regs)
7808 {
7809         int events = atomic_read(&event->event_limit);
7810         int ret = 0;
7811
7812         /*
7813          * Non-sampling counters might still use the PMI to fold short
7814          * hardware counters, ignore those.
7815          */
7816         if (unlikely(!is_sampling_event(event)))
7817                 return 0;
7818
7819         ret = __perf_event_account_interrupt(event, throttle);
7820
7821         /*
7822          * XXX event_limit might not quite work as expected on inherited
7823          * events
7824          */
7825
7826         event->pending_kill = POLL_IN;
7827         if (events && atomic_dec_and_test(&event->event_limit)) {
7828                 ret = 1;
7829                 event->pending_kill = POLL_HUP;
7830
7831                 perf_event_disable_inatomic(event);
7832         }
7833
7834         READ_ONCE(event->overflow_handler)(event, data, regs);
7835
7836         if (*perf_event_fasync(event) && event->pending_kill) {
7837                 event->pending_wakeup = 1;
7838                 irq_work_queue(&event->pending);
7839         }
7840
7841         return ret;
7842 }
7843
7844 int perf_event_overflow(struct perf_event *event,
7845                           struct perf_sample_data *data,
7846                           struct pt_regs *regs)
7847 {
7848         return __perf_event_overflow(event, 1, data, regs);
7849 }
7850
7851 /*
7852  * Generic software event infrastructure
7853  */
7854
7855 struct swevent_htable {
7856         struct swevent_hlist            *swevent_hlist;
7857         struct mutex                    hlist_mutex;
7858         int                             hlist_refcount;
7859
7860         /* Recursion avoidance in each contexts */
7861         int                             recursion[PERF_NR_CONTEXTS];
7862 };
7863
7864 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7865
7866 /*
7867  * We directly increment event->count and keep a second value in
7868  * event->hw.period_left to count intervals. This period event
7869  * is kept in the range [-sample_period, 0] so that we can use the
7870  * sign as trigger.
7871  */
7872
7873 u64 perf_swevent_set_period(struct perf_event *event)
7874 {
7875         struct hw_perf_event *hwc = &event->hw;
7876         u64 period = hwc->last_period;
7877         u64 nr, offset;
7878         s64 old, val;
7879
7880         hwc->last_period = hwc->sample_period;
7881
7882 again:
7883         old = val = local64_read(&hwc->period_left);
7884         if (val < 0)
7885                 return 0;
7886
7887         nr = div64_u64(period + val, period);
7888         offset = nr * period;
7889         val -= offset;
7890         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7891                 goto again;
7892
7893         return nr;
7894 }
7895
7896 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7897                                     struct perf_sample_data *data,
7898                                     struct pt_regs *regs)
7899 {
7900         struct hw_perf_event *hwc = &event->hw;
7901         int throttle = 0;
7902
7903         if (!overflow)
7904                 overflow = perf_swevent_set_period(event);
7905
7906         if (hwc->interrupts == MAX_INTERRUPTS)
7907                 return;
7908
7909         for (; overflow; overflow--) {
7910                 if (__perf_event_overflow(event, throttle,
7911                                             data, regs)) {
7912                         /*
7913                          * We inhibit the overflow from happening when
7914                          * hwc->interrupts == MAX_INTERRUPTS.
7915                          */
7916                         break;
7917                 }
7918                 throttle = 1;
7919         }
7920 }
7921
7922 static void perf_swevent_event(struct perf_event *event, u64 nr,
7923                                struct perf_sample_data *data,
7924                                struct pt_regs *regs)
7925 {
7926         struct hw_perf_event *hwc = &event->hw;
7927
7928         local64_add(nr, &event->count);
7929
7930         if (!regs)
7931                 return;
7932
7933         if (!is_sampling_event(event))
7934                 return;
7935
7936         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7937                 data->period = nr;
7938                 return perf_swevent_overflow(event, 1, data, regs);
7939         } else
7940                 data->period = event->hw.last_period;
7941
7942         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7943                 return perf_swevent_overflow(event, 1, data, regs);
7944
7945         if (local64_add_negative(nr, &hwc->period_left))
7946                 return;
7947
7948         perf_swevent_overflow(event, 0, data, regs);
7949 }
7950
7951 static int perf_exclude_event(struct perf_event *event,
7952                               struct pt_regs *regs)
7953 {
7954         if (event->hw.state & PERF_HES_STOPPED)
7955                 return 1;
7956
7957         if (regs) {
7958                 if (event->attr.exclude_user && user_mode(regs))
7959                         return 1;
7960
7961                 if (event->attr.exclude_kernel && !user_mode(regs))
7962                         return 1;
7963         }
7964
7965         return 0;
7966 }
7967
7968 static int perf_swevent_match(struct perf_event *event,
7969                                 enum perf_type_id type,
7970                                 u32 event_id,
7971                                 struct perf_sample_data *data,
7972                                 struct pt_regs *regs)
7973 {
7974         if (event->attr.type != type)
7975                 return 0;
7976
7977         if (event->attr.config != event_id)
7978                 return 0;
7979
7980         if (perf_exclude_event(event, regs))
7981                 return 0;
7982
7983         return 1;
7984 }
7985
7986 static inline u64 swevent_hash(u64 type, u32 event_id)
7987 {
7988         u64 val = event_id | (type << 32);
7989
7990         return hash_64(val, SWEVENT_HLIST_BITS);
7991 }
7992
7993 static inline struct hlist_head *
7994 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7995 {
7996         u64 hash = swevent_hash(type, event_id);
7997
7998         return &hlist->heads[hash];
7999 }
8000
8001 /* For the read side: events when they trigger */
8002 static inline struct hlist_head *
8003 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8004 {
8005         struct swevent_hlist *hlist;
8006
8007         hlist = rcu_dereference(swhash->swevent_hlist);
8008         if (!hlist)
8009                 return NULL;
8010
8011         return __find_swevent_head(hlist, type, event_id);
8012 }
8013
8014 /* For the event head insertion and removal in the hlist */
8015 static inline struct hlist_head *
8016 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8017 {
8018         struct swevent_hlist *hlist;
8019         u32 event_id = event->attr.config;
8020         u64 type = event->attr.type;
8021
8022         /*
8023          * Event scheduling is always serialized against hlist allocation
8024          * and release. Which makes the protected version suitable here.
8025          * The context lock guarantees that.
8026          */
8027         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8028                                           lockdep_is_held(&event->ctx->lock));
8029         if (!hlist)
8030                 return NULL;
8031
8032         return __find_swevent_head(hlist, type, event_id);
8033 }
8034
8035 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8036                                     u64 nr,
8037                                     struct perf_sample_data *data,
8038                                     struct pt_regs *regs)
8039 {
8040         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8041         struct perf_event *event;
8042         struct hlist_head *head;
8043
8044         rcu_read_lock();
8045         head = find_swevent_head_rcu(swhash, type, event_id);
8046         if (!head)
8047                 goto end;
8048
8049         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8050                 if (perf_swevent_match(event, type, event_id, data, regs))
8051                         perf_swevent_event(event, nr, data, regs);
8052         }
8053 end:
8054         rcu_read_unlock();
8055 }
8056
8057 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8058
8059 int perf_swevent_get_recursion_context(void)
8060 {
8061         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8062
8063         return get_recursion_context(swhash->recursion);
8064 }
8065 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8066
8067 void perf_swevent_put_recursion_context(int rctx)
8068 {
8069         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8070
8071         put_recursion_context(swhash->recursion, rctx);
8072 }
8073
8074 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8075 {
8076         struct perf_sample_data data;
8077
8078         if (WARN_ON_ONCE(!regs))
8079                 return;
8080
8081         perf_sample_data_init(&data, addr, 0);
8082         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8083 }
8084
8085 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8086 {
8087         int rctx;
8088
8089         preempt_disable_notrace();
8090         rctx = perf_swevent_get_recursion_context();
8091         if (unlikely(rctx < 0))
8092                 goto fail;
8093
8094         ___perf_sw_event(event_id, nr, regs, addr);
8095
8096         perf_swevent_put_recursion_context(rctx);
8097 fail:
8098         preempt_enable_notrace();
8099 }
8100
8101 static void perf_swevent_read(struct perf_event *event)
8102 {
8103 }
8104
8105 static int perf_swevent_add(struct perf_event *event, int flags)
8106 {
8107         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8108         struct hw_perf_event *hwc = &event->hw;
8109         struct hlist_head *head;
8110
8111         if (is_sampling_event(event)) {
8112                 hwc->last_period = hwc->sample_period;
8113                 perf_swevent_set_period(event);
8114         }
8115
8116         hwc->state = !(flags & PERF_EF_START);
8117
8118         head = find_swevent_head(swhash, event);
8119         if (WARN_ON_ONCE(!head))
8120                 return -EINVAL;
8121
8122         hlist_add_head_rcu(&event->hlist_entry, head);
8123         perf_event_update_userpage(event);
8124
8125         return 0;
8126 }
8127
8128 static void perf_swevent_del(struct perf_event *event, int flags)
8129 {
8130         hlist_del_rcu(&event->hlist_entry);
8131 }
8132
8133 static void perf_swevent_start(struct perf_event *event, int flags)
8134 {
8135         event->hw.state = 0;
8136 }
8137
8138 static void perf_swevent_stop(struct perf_event *event, int flags)
8139 {
8140         event->hw.state = PERF_HES_STOPPED;
8141 }
8142
8143 /* Deref the hlist from the update side */
8144 static inline struct swevent_hlist *
8145 swevent_hlist_deref(struct swevent_htable *swhash)
8146 {
8147         return rcu_dereference_protected(swhash->swevent_hlist,
8148                                          lockdep_is_held(&swhash->hlist_mutex));
8149 }
8150
8151 static void swevent_hlist_release(struct swevent_htable *swhash)
8152 {
8153         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8154
8155         if (!hlist)
8156                 return;
8157
8158         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8159         kfree_rcu(hlist, rcu_head);
8160 }
8161
8162 static void swevent_hlist_put_cpu(int cpu)
8163 {
8164         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8165
8166         mutex_lock(&swhash->hlist_mutex);
8167
8168         if (!--swhash->hlist_refcount)
8169                 swevent_hlist_release(swhash);
8170
8171         mutex_unlock(&swhash->hlist_mutex);
8172 }
8173
8174 static void swevent_hlist_put(void)
8175 {
8176         int cpu;
8177
8178         for_each_possible_cpu(cpu)
8179                 swevent_hlist_put_cpu(cpu);
8180 }
8181
8182 static int swevent_hlist_get_cpu(int cpu)
8183 {
8184         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8185         int err = 0;
8186
8187         mutex_lock(&swhash->hlist_mutex);
8188         if (!swevent_hlist_deref(swhash) &&
8189             cpumask_test_cpu(cpu, perf_online_mask)) {
8190                 struct swevent_hlist *hlist;
8191
8192                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8193                 if (!hlist) {
8194                         err = -ENOMEM;
8195                         goto exit;
8196                 }
8197                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8198         }
8199         swhash->hlist_refcount++;
8200 exit:
8201         mutex_unlock(&swhash->hlist_mutex);
8202
8203         return err;
8204 }
8205
8206 static int swevent_hlist_get(void)
8207 {
8208         int err, cpu, failed_cpu;
8209
8210         mutex_lock(&pmus_lock);
8211         for_each_possible_cpu(cpu) {
8212                 err = swevent_hlist_get_cpu(cpu);
8213                 if (err) {
8214                         failed_cpu = cpu;
8215                         goto fail;
8216                 }
8217         }
8218         mutex_unlock(&pmus_lock);
8219         return 0;
8220 fail:
8221         for_each_possible_cpu(cpu) {
8222                 if (cpu == failed_cpu)
8223                         break;
8224                 swevent_hlist_put_cpu(cpu);
8225         }
8226         mutex_unlock(&pmus_lock);
8227         return err;
8228 }
8229
8230 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8231
8232 static void sw_perf_event_destroy(struct perf_event *event)
8233 {
8234         u64 event_id = event->attr.config;
8235
8236         WARN_ON(event->parent);
8237
8238         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8239         swevent_hlist_put();
8240 }
8241
8242 static int perf_swevent_init(struct perf_event *event)
8243 {
8244         u64 event_id = event->attr.config;
8245
8246         if (event->attr.type != PERF_TYPE_SOFTWARE)
8247                 return -ENOENT;
8248
8249         /*
8250          * no branch sampling for software events
8251          */
8252         if (has_branch_stack(event))
8253                 return -EOPNOTSUPP;
8254
8255         switch (event_id) {
8256         case PERF_COUNT_SW_CPU_CLOCK:
8257         case PERF_COUNT_SW_TASK_CLOCK:
8258                 return -ENOENT;
8259
8260         default:
8261                 break;
8262         }
8263
8264         if (event_id >= PERF_COUNT_SW_MAX)
8265                 return -ENOENT;
8266
8267         if (!event->parent) {
8268                 int err;
8269
8270                 err = swevent_hlist_get();
8271                 if (err)
8272                         return err;
8273
8274                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8275                 event->destroy = sw_perf_event_destroy;
8276         }
8277
8278         return 0;
8279 }
8280
8281 static struct pmu perf_swevent = {
8282         .task_ctx_nr    = perf_sw_context,
8283
8284         .capabilities   = PERF_PMU_CAP_NO_NMI,
8285
8286         .event_init     = perf_swevent_init,
8287         .add            = perf_swevent_add,
8288         .del            = perf_swevent_del,
8289         .start          = perf_swevent_start,
8290         .stop           = perf_swevent_stop,
8291         .read           = perf_swevent_read,
8292 };
8293
8294 #ifdef CONFIG_EVENT_TRACING
8295
8296 static int perf_tp_filter_match(struct perf_event *event,
8297                                 struct perf_sample_data *data)
8298 {
8299         void *record = data->raw->frag.data;
8300
8301         /* only top level events have filters set */
8302         if (event->parent)
8303                 event = event->parent;
8304
8305         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8306                 return 1;
8307         return 0;
8308 }
8309
8310 static int perf_tp_event_match(struct perf_event *event,
8311                                 struct perf_sample_data *data,
8312                                 struct pt_regs *regs)
8313 {
8314         if (event->hw.state & PERF_HES_STOPPED)
8315                 return 0;
8316         /*
8317          * All tracepoints are from kernel-space.
8318          */
8319         if (event->attr.exclude_kernel)
8320                 return 0;
8321
8322         if (!perf_tp_filter_match(event, data))
8323                 return 0;
8324
8325         return 1;
8326 }
8327
8328 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8329                                struct trace_event_call *call, u64 count,
8330                                struct pt_regs *regs, struct hlist_head *head,
8331                                struct task_struct *task)
8332 {
8333         if (bpf_prog_array_valid(call)) {
8334                 *(struct pt_regs **)raw_data = regs;
8335                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8336                         perf_swevent_put_recursion_context(rctx);
8337                         return;
8338                 }
8339         }
8340         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8341                       rctx, task);
8342 }
8343 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8344
8345 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8346                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8347                    struct task_struct *task)
8348 {
8349         struct perf_sample_data data;
8350         struct perf_event *event;
8351
8352         struct perf_raw_record raw = {
8353                 .frag = {
8354                         .size = entry_size,
8355                         .data = record,
8356                 },
8357         };
8358
8359         perf_sample_data_init(&data, 0, 0);
8360         data.raw = &raw;
8361
8362         perf_trace_buf_update(record, event_type);
8363
8364         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8365                 if (perf_tp_event_match(event, &data, regs))
8366                         perf_swevent_event(event, count, &data, regs);
8367         }
8368
8369         /*
8370          * If we got specified a target task, also iterate its context and
8371          * deliver this event there too.
8372          */
8373         if (task && task != current) {
8374                 struct perf_event_context *ctx;
8375                 struct trace_entry *entry = record;
8376
8377                 rcu_read_lock();
8378                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8379                 if (!ctx)
8380                         goto unlock;
8381
8382                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8383                         if (event->cpu != smp_processor_id())
8384                                 continue;
8385                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8386                                 continue;
8387                         if (event->attr.config != entry->type)
8388                                 continue;
8389                         if (perf_tp_event_match(event, &data, regs))
8390                                 perf_swevent_event(event, count, &data, regs);
8391                 }
8392 unlock:
8393                 rcu_read_unlock();
8394         }
8395
8396         perf_swevent_put_recursion_context(rctx);
8397 }
8398 EXPORT_SYMBOL_GPL(perf_tp_event);
8399
8400 static void tp_perf_event_destroy(struct perf_event *event)
8401 {
8402         perf_trace_destroy(event);
8403 }
8404
8405 static int perf_tp_event_init(struct perf_event *event)
8406 {
8407         int err;
8408
8409         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8410                 return -ENOENT;
8411
8412         /*
8413          * no branch sampling for tracepoint events
8414          */
8415         if (has_branch_stack(event))
8416                 return -EOPNOTSUPP;
8417
8418         err = perf_trace_init(event);
8419         if (err)
8420                 return err;
8421
8422         event->destroy = tp_perf_event_destroy;
8423
8424         return 0;
8425 }
8426
8427 static struct pmu perf_tracepoint = {
8428         .task_ctx_nr    = perf_sw_context,
8429
8430         .event_init     = perf_tp_event_init,
8431         .add            = perf_trace_add,
8432         .del            = perf_trace_del,
8433         .start          = perf_swevent_start,
8434         .stop           = perf_swevent_stop,
8435         .read           = perf_swevent_read,
8436 };
8437
8438 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8439 /*
8440  * Flags in config, used by dynamic PMU kprobe and uprobe
8441  * The flags should match following PMU_FORMAT_ATTR().
8442  *
8443  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8444  *                               if not set, create kprobe/uprobe
8445  */
8446 enum perf_probe_config {
8447         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8448 };
8449
8450 PMU_FORMAT_ATTR(retprobe, "config:0");
8451
8452 static struct attribute *probe_attrs[] = {
8453         &format_attr_retprobe.attr,
8454         NULL,
8455 };
8456
8457 static struct attribute_group probe_format_group = {
8458         .name = "format",
8459         .attrs = probe_attrs,
8460 };
8461
8462 static const struct attribute_group *probe_attr_groups[] = {
8463         &probe_format_group,
8464         NULL,
8465 };
8466 #endif
8467
8468 #ifdef CONFIG_KPROBE_EVENTS
8469 static int perf_kprobe_event_init(struct perf_event *event);
8470 static struct pmu perf_kprobe = {
8471         .task_ctx_nr    = perf_sw_context,
8472         .event_init     = perf_kprobe_event_init,
8473         .add            = perf_trace_add,
8474         .del            = perf_trace_del,
8475         .start          = perf_swevent_start,
8476         .stop           = perf_swevent_stop,
8477         .read           = perf_swevent_read,
8478         .attr_groups    = probe_attr_groups,
8479 };
8480
8481 static int perf_kprobe_event_init(struct perf_event *event)
8482 {
8483         int err;
8484         bool is_retprobe;
8485
8486         if (event->attr.type != perf_kprobe.type)
8487                 return -ENOENT;
8488
8489         if (!capable(CAP_SYS_ADMIN))
8490                 return -EACCES;
8491
8492         /*
8493          * no branch sampling for probe events
8494          */
8495         if (has_branch_stack(event))
8496                 return -EOPNOTSUPP;
8497
8498         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8499         err = perf_kprobe_init(event, is_retprobe);
8500         if (err)
8501                 return err;
8502
8503         event->destroy = perf_kprobe_destroy;
8504
8505         return 0;
8506 }
8507 #endif /* CONFIG_KPROBE_EVENTS */
8508
8509 #ifdef CONFIG_UPROBE_EVENTS
8510 static int perf_uprobe_event_init(struct perf_event *event);
8511 static struct pmu perf_uprobe = {
8512         .task_ctx_nr    = perf_sw_context,
8513         .event_init     = perf_uprobe_event_init,
8514         .add            = perf_trace_add,
8515         .del            = perf_trace_del,
8516         .start          = perf_swevent_start,
8517         .stop           = perf_swevent_stop,
8518         .read           = perf_swevent_read,
8519         .attr_groups    = probe_attr_groups,
8520 };
8521
8522 static int perf_uprobe_event_init(struct perf_event *event)
8523 {
8524         int err;
8525         bool is_retprobe;
8526
8527         if (event->attr.type != perf_uprobe.type)
8528                 return -ENOENT;
8529
8530         if (!capable(CAP_SYS_ADMIN))
8531                 return -EACCES;
8532
8533         /*
8534          * no branch sampling for probe events
8535          */
8536         if (has_branch_stack(event))
8537                 return -EOPNOTSUPP;
8538
8539         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8540         err = perf_uprobe_init(event, is_retprobe);
8541         if (err)
8542                 return err;
8543
8544         event->destroy = perf_uprobe_destroy;
8545
8546         return 0;
8547 }
8548 #endif /* CONFIG_UPROBE_EVENTS */
8549
8550 static inline void perf_tp_register(void)
8551 {
8552         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8553 #ifdef CONFIG_KPROBE_EVENTS
8554         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8555 #endif
8556 #ifdef CONFIG_UPROBE_EVENTS
8557         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8558 #endif
8559 }
8560
8561 static void perf_event_free_filter(struct perf_event *event)
8562 {
8563         ftrace_profile_free_filter(event);
8564 }
8565
8566 #ifdef CONFIG_BPF_SYSCALL
8567 static void bpf_overflow_handler(struct perf_event *event,
8568                                  struct perf_sample_data *data,
8569                                  struct pt_regs *regs)
8570 {
8571         struct bpf_perf_event_data_kern ctx = {
8572                 .data = data,
8573                 .event = event,
8574         };
8575         int ret = 0;
8576
8577         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8578         preempt_disable();
8579         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8580                 goto out;
8581         rcu_read_lock();
8582         ret = BPF_PROG_RUN(event->prog, &ctx);
8583         rcu_read_unlock();
8584 out:
8585         __this_cpu_dec(bpf_prog_active);
8586         preempt_enable();
8587         if (!ret)
8588                 return;
8589
8590         event->orig_overflow_handler(event, data, regs);
8591 }
8592
8593 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8594 {
8595         struct bpf_prog *prog;
8596
8597         if (event->overflow_handler_context)
8598                 /* hw breakpoint or kernel counter */
8599                 return -EINVAL;
8600
8601         if (event->prog)
8602                 return -EEXIST;
8603
8604         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8605         if (IS_ERR(prog))
8606                 return PTR_ERR(prog);
8607
8608         event->prog = prog;
8609         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8610         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8611         return 0;
8612 }
8613
8614 static void perf_event_free_bpf_handler(struct perf_event *event)
8615 {
8616         struct bpf_prog *prog = event->prog;
8617
8618         if (!prog)
8619                 return;
8620
8621         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8622         event->prog = NULL;
8623         bpf_prog_put(prog);
8624 }
8625 #else
8626 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8627 {
8628         return -EOPNOTSUPP;
8629 }
8630 static void perf_event_free_bpf_handler(struct perf_event *event)
8631 {
8632 }
8633 #endif
8634
8635 /*
8636  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8637  * with perf_event_open()
8638  */
8639 static inline bool perf_event_is_tracing(struct perf_event *event)
8640 {
8641         if (event->pmu == &perf_tracepoint)
8642                 return true;
8643 #ifdef CONFIG_KPROBE_EVENTS
8644         if (event->pmu == &perf_kprobe)
8645                 return true;
8646 #endif
8647 #ifdef CONFIG_UPROBE_EVENTS
8648         if (event->pmu == &perf_uprobe)
8649                 return true;
8650 #endif
8651         return false;
8652 }
8653
8654 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8655 {
8656         bool is_kprobe, is_tracepoint, is_syscall_tp;
8657         struct bpf_prog *prog;
8658         int ret;
8659
8660         if (!perf_event_is_tracing(event))
8661                 return perf_event_set_bpf_handler(event, prog_fd);
8662
8663         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8664         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8665         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8666         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8667                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8668                 return -EINVAL;
8669
8670         prog = bpf_prog_get(prog_fd);
8671         if (IS_ERR(prog))
8672                 return PTR_ERR(prog);
8673
8674         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8675             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8676             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8677                 /* valid fd, but invalid bpf program type */
8678                 bpf_prog_put(prog);
8679                 return -EINVAL;
8680         }
8681
8682         /* Kprobe override only works for kprobes, not uprobes. */
8683         if (prog->kprobe_override &&
8684             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8685                 bpf_prog_put(prog);
8686                 return -EINVAL;
8687         }
8688
8689         if (is_tracepoint || is_syscall_tp) {
8690                 int off = trace_event_get_offsets(event->tp_event);
8691
8692                 if (prog->aux->max_ctx_offset > off) {
8693                         bpf_prog_put(prog);
8694                         return -EACCES;
8695                 }
8696         }
8697
8698         ret = perf_event_attach_bpf_prog(event, prog);
8699         if (ret)
8700                 bpf_prog_put(prog);
8701         return ret;
8702 }
8703
8704 static void perf_event_free_bpf_prog(struct perf_event *event)
8705 {
8706         if (!perf_event_is_tracing(event)) {
8707                 perf_event_free_bpf_handler(event);
8708                 return;
8709         }
8710         perf_event_detach_bpf_prog(event);
8711 }
8712
8713 #else
8714
8715 static inline void perf_tp_register(void)
8716 {
8717 }
8718
8719 static void perf_event_free_filter(struct perf_event *event)
8720 {
8721 }
8722
8723 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8724 {
8725         return -ENOENT;
8726 }
8727
8728 static void perf_event_free_bpf_prog(struct perf_event *event)
8729 {
8730 }
8731 #endif /* CONFIG_EVENT_TRACING */
8732
8733 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8734 void perf_bp_event(struct perf_event *bp, void *data)
8735 {
8736         struct perf_sample_data sample;
8737         struct pt_regs *regs = data;
8738
8739         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8740
8741         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8742                 perf_swevent_event(bp, 1, &sample, regs);
8743 }
8744 #endif
8745
8746 /*
8747  * Allocate a new address filter
8748  */
8749 static struct perf_addr_filter *
8750 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8751 {
8752         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8753         struct perf_addr_filter *filter;
8754
8755         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8756         if (!filter)
8757                 return NULL;
8758
8759         INIT_LIST_HEAD(&filter->entry);
8760         list_add_tail(&filter->entry, filters);
8761
8762         return filter;
8763 }
8764
8765 static void free_filters_list(struct list_head *filters)
8766 {
8767         struct perf_addr_filter *filter, *iter;
8768
8769         list_for_each_entry_safe(filter, iter, filters, entry) {
8770                 path_put(&filter->path);
8771                 list_del(&filter->entry);
8772                 kfree(filter);
8773         }
8774 }
8775
8776 /*
8777  * Free existing address filters and optionally install new ones
8778  */
8779 static void perf_addr_filters_splice(struct perf_event *event,
8780                                      struct list_head *head)
8781 {
8782         unsigned long flags;
8783         LIST_HEAD(list);
8784
8785         if (!has_addr_filter(event))
8786                 return;
8787
8788         /* don't bother with children, they don't have their own filters */
8789         if (event->parent)
8790                 return;
8791
8792         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8793
8794         list_splice_init(&event->addr_filters.list, &list);
8795         if (head)
8796                 list_splice(head, &event->addr_filters.list);
8797
8798         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8799
8800         free_filters_list(&list);
8801 }
8802
8803 /*
8804  * Scan through mm's vmas and see if one of them matches the
8805  * @filter; if so, adjust filter's address range.
8806  * Called with mm::mmap_sem down for reading.
8807  */
8808 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8809                                             struct mm_struct *mm)
8810 {
8811         struct vm_area_struct *vma;
8812
8813         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8814                 struct file *file = vma->vm_file;
8815                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8816                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8817
8818                 if (!file)
8819                         continue;
8820
8821                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8822                         continue;
8823
8824                 return vma->vm_start;
8825         }
8826
8827         return 0;
8828 }
8829
8830 /*
8831  * Update event's address range filters based on the
8832  * task's existing mappings, if any.
8833  */
8834 static void perf_event_addr_filters_apply(struct perf_event *event)
8835 {
8836         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8837         struct task_struct *task = READ_ONCE(event->ctx->task);
8838         struct perf_addr_filter *filter;
8839         struct mm_struct *mm = NULL;
8840         unsigned int count = 0;
8841         unsigned long flags;
8842
8843         /*
8844          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8845          * will stop on the parent's child_mutex that our caller is also holding
8846          */
8847         if (task == TASK_TOMBSTONE)
8848                 return;
8849
8850         if (!ifh->nr_file_filters)
8851                 return;
8852
8853         mm = get_task_mm(event->ctx->task);
8854         if (!mm)
8855                 goto restart;
8856
8857         down_read(&mm->mmap_sem);
8858
8859         raw_spin_lock_irqsave(&ifh->lock, flags);
8860         list_for_each_entry(filter, &ifh->list, entry) {
8861                 event->addr_filters_offs[count] = 0;
8862
8863                 /*
8864                  * Adjust base offset if the filter is associated to a binary
8865                  * that needs to be mapped:
8866                  */
8867                 if (filter->path.dentry)
8868                         event->addr_filters_offs[count] =
8869                                 perf_addr_filter_apply(filter, mm);
8870
8871                 count++;
8872         }
8873
8874         event->addr_filters_gen++;
8875         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8876
8877         up_read(&mm->mmap_sem);
8878
8879         mmput(mm);
8880
8881 restart:
8882         perf_event_stop(event, 1);
8883 }
8884
8885 /*
8886  * Address range filtering: limiting the data to certain
8887  * instruction address ranges. Filters are ioctl()ed to us from
8888  * userspace as ascii strings.
8889  *
8890  * Filter string format:
8891  *
8892  * ACTION RANGE_SPEC
8893  * where ACTION is one of the
8894  *  * "filter": limit the trace to this region
8895  *  * "start": start tracing from this address
8896  *  * "stop": stop tracing at this address/region;
8897  * RANGE_SPEC is
8898  *  * for kernel addresses: <start address>[/<size>]
8899  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8900  *
8901  * if <size> is not specified or is zero, the range is treated as a single
8902  * address; not valid for ACTION=="filter".
8903  */
8904 enum {
8905         IF_ACT_NONE = -1,
8906         IF_ACT_FILTER,
8907         IF_ACT_START,
8908         IF_ACT_STOP,
8909         IF_SRC_FILE,
8910         IF_SRC_KERNEL,
8911         IF_SRC_FILEADDR,
8912         IF_SRC_KERNELADDR,
8913 };
8914
8915 enum {
8916         IF_STATE_ACTION = 0,
8917         IF_STATE_SOURCE,
8918         IF_STATE_END,
8919 };
8920
8921 static const match_table_t if_tokens = {
8922         { IF_ACT_FILTER,        "filter" },
8923         { IF_ACT_START,         "start" },
8924         { IF_ACT_STOP,          "stop" },
8925         { IF_SRC_FILE,          "%u/%u@%s" },
8926         { IF_SRC_KERNEL,        "%u/%u" },
8927         { IF_SRC_FILEADDR,      "%u@%s" },
8928         { IF_SRC_KERNELADDR,    "%u" },
8929         { IF_ACT_NONE,          NULL },
8930 };
8931
8932 /*
8933  * Address filter string parser
8934  */
8935 static int
8936 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8937                              struct list_head *filters)
8938 {
8939         struct perf_addr_filter *filter = NULL;
8940         char *start, *orig, *filename = NULL;
8941         substring_t args[MAX_OPT_ARGS];
8942         int state = IF_STATE_ACTION, token;
8943         unsigned int kernel = 0;
8944         int ret = -EINVAL;
8945
8946         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8947         if (!fstr)
8948                 return -ENOMEM;
8949
8950         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8951                 static const enum perf_addr_filter_action_t actions[] = {
8952                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8953                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
8954                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
8955                 };
8956                 ret = -EINVAL;
8957
8958                 if (!*start)
8959                         continue;
8960
8961                 /* filter definition begins */
8962                 if (state == IF_STATE_ACTION) {
8963                         filter = perf_addr_filter_new(event, filters);
8964                         if (!filter)
8965                                 goto fail;
8966                 }
8967
8968                 token = match_token(start, if_tokens, args);
8969                 switch (token) {
8970                 case IF_ACT_FILTER:
8971                 case IF_ACT_START:
8972                 case IF_ACT_STOP:
8973                         if (state != IF_STATE_ACTION)
8974                                 goto fail;
8975
8976                         filter->action = actions[token];
8977                         state = IF_STATE_SOURCE;
8978                         break;
8979
8980                 case IF_SRC_KERNELADDR:
8981                 case IF_SRC_KERNEL:
8982                         kernel = 1;
8983
8984                 case IF_SRC_FILEADDR:
8985                 case IF_SRC_FILE:
8986                         if (state != IF_STATE_SOURCE)
8987                                 goto fail;
8988
8989                         *args[0].to = 0;
8990                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8991                         if (ret)
8992                                 goto fail;
8993
8994                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8995                                 *args[1].to = 0;
8996                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8997                                 if (ret)
8998                                         goto fail;
8999                         }
9000
9001                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9002                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9003
9004                                 filename = match_strdup(&args[fpos]);
9005                                 if (!filename) {
9006                                         ret = -ENOMEM;
9007                                         goto fail;
9008                                 }
9009                         }
9010
9011                         state = IF_STATE_END;
9012                         break;
9013
9014                 default:
9015                         goto fail;
9016                 }
9017
9018                 /*
9019                  * Filter definition is fully parsed, validate and install it.
9020                  * Make sure that it doesn't contradict itself or the event's
9021                  * attribute.
9022                  */
9023                 if (state == IF_STATE_END) {
9024                         ret = -EINVAL;
9025                         if (kernel && event->attr.exclude_kernel)
9026                                 goto fail;
9027
9028                         /*
9029                          * ACTION "filter" must have a non-zero length region
9030                          * specified.
9031                          */
9032                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9033                             !filter->size)
9034                                 goto fail;
9035
9036                         if (!kernel) {
9037                                 if (!filename)
9038                                         goto fail;
9039
9040                                 /*
9041                                  * For now, we only support file-based filters
9042                                  * in per-task events; doing so for CPU-wide
9043                                  * events requires additional context switching
9044                                  * trickery, since same object code will be
9045                                  * mapped at different virtual addresses in
9046                                  * different processes.
9047                                  */
9048                                 ret = -EOPNOTSUPP;
9049                                 if (!event->ctx->task)
9050                                         goto fail_free_name;
9051
9052                                 /* look up the path and grab its inode */
9053                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9054                                                 &filter->path);
9055                                 if (ret)
9056                                         goto fail_free_name;
9057
9058                                 kfree(filename);
9059                                 filename = NULL;
9060
9061                                 ret = -EINVAL;
9062                                 if (!filter->path.dentry ||
9063                                     !S_ISREG(d_inode(filter->path.dentry)
9064                                              ->i_mode))
9065                                         goto fail;
9066
9067                                 event->addr_filters.nr_file_filters++;
9068                         }
9069
9070                         /* ready to consume more filters */
9071                         state = IF_STATE_ACTION;
9072                         filter = NULL;
9073                 }
9074         }
9075
9076         if (state != IF_STATE_ACTION)
9077                 goto fail;
9078
9079         kfree(orig);
9080
9081         return 0;
9082
9083 fail_free_name:
9084         kfree(filename);
9085 fail:
9086         free_filters_list(filters);
9087         kfree(orig);
9088
9089         return ret;
9090 }
9091
9092 static int
9093 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9094 {
9095         LIST_HEAD(filters);
9096         int ret;
9097
9098         /*
9099          * Since this is called in perf_ioctl() path, we're already holding
9100          * ctx::mutex.
9101          */
9102         lockdep_assert_held(&event->ctx->mutex);
9103
9104         if (WARN_ON_ONCE(event->parent))
9105                 return -EINVAL;
9106
9107         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9108         if (ret)
9109                 goto fail_clear_files;
9110
9111         ret = event->pmu->addr_filters_validate(&filters);
9112         if (ret)
9113                 goto fail_free_filters;
9114
9115         /* remove existing filters, if any */
9116         perf_addr_filters_splice(event, &filters);
9117
9118         /* install new filters */
9119         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9120
9121         return ret;
9122
9123 fail_free_filters:
9124         free_filters_list(&filters);
9125
9126 fail_clear_files:
9127         event->addr_filters.nr_file_filters = 0;
9128
9129         return ret;
9130 }
9131
9132 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9133 {
9134         int ret = -EINVAL;
9135         char *filter_str;
9136
9137         filter_str = strndup_user(arg, PAGE_SIZE);
9138         if (IS_ERR(filter_str))
9139                 return PTR_ERR(filter_str);
9140
9141 #ifdef CONFIG_EVENT_TRACING
9142         if (perf_event_is_tracing(event)) {
9143                 struct perf_event_context *ctx = event->ctx;
9144
9145                 /*
9146                  * Beware, here be dragons!!
9147                  *
9148                  * the tracepoint muck will deadlock against ctx->mutex, but
9149                  * the tracepoint stuff does not actually need it. So
9150                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9151                  * already have a reference on ctx.
9152                  *
9153                  * This can result in event getting moved to a different ctx,
9154                  * but that does not affect the tracepoint state.
9155                  */
9156                 mutex_unlock(&ctx->mutex);
9157                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9158                 mutex_lock(&ctx->mutex);
9159         } else
9160 #endif
9161         if (has_addr_filter(event))
9162                 ret = perf_event_set_addr_filter(event, filter_str);
9163
9164         kfree(filter_str);
9165         return ret;
9166 }
9167
9168 /*
9169  * hrtimer based swevent callback
9170  */
9171
9172 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9173 {
9174         enum hrtimer_restart ret = HRTIMER_RESTART;
9175         struct perf_sample_data data;
9176         struct pt_regs *regs;
9177         struct perf_event *event;
9178         u64 period;
9179
9180         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9181
9182         if (event->state != PERF_EVENT_STATE_ACTIVE)
9183                 return HRTIMER_NORESTART;
9184
9185         event->pmu->read(event);
9186
9187         perf_sample_data_init(&data, 0, event->hw.last_period);
9188         regs = get_irq_regs();
9189
9190         if (regs && !perf_exclude_event(event, regs)) {
9191                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9192                         if (__perf_event_overflow(event, 1, &data, regs))
9193                                 ret = HRTIMER_NORESTART;
9194         }
9195
9196         period = max_t(u64, 10000, event->hw.sample_period);
9197         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9198
9199         return ret;
9200 }
9201
9202 static void perf_swevent_start_hrtimer(struct perf_event *event)
9203 {
9204         struct hw_perf_event *hwc = &event->hw;
9205         s64 period;
9206
9207         if (!is_sampling_event(event))
9208                 return;
9209
9210         period = local64_read(&hwc->period_left);
9211         if (period) {
9212                 if (period < 0)
9213                         period = 10000;
9214
9215                 local64_set(&hwc->period_left, 0);
9216         } else {
9217                 period = max_t(u64, 10000, hwc->sample_period);
9218         }
9219         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9220                       HRTIMER_MODE_REL_PINNED);
9221 }
9222
9223 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9224 {
9225         struct hw_perf_event *hwc = &event->hw;
9226
9227         if (is_sampling_event(event)) {
9228                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9229                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9230
9231                 hrtimer_cancel(&hwc->hrtimer);
9232         }
9233 }
9234
9235 static void perf_swevent_init_hrtimer(struct perf_event *event)
9236 {
9237         struct hw_perf_event *hwc = &event->hw;
9238
9239         if (!is_sampling_event(event))
9240                 return;
9241
9242         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9243         hwc->hrtimer.function = perf_swevent_hrtimer;
9244
9245         /*
9246          * Since hrtimers have a fixed rate, we can do a static freq->period
9247          * mapping and avoid the whole period adjust feedback stuff.
9248          */
9249         if (event->attr.freq) {
9250                 long freq = event->attr.sample_freq;
9251
9252                 event->attr.sample_period = NSEC_PER_SEC / freq;
9253                 hwc->sample_period = event->attr.sample_period;
9254                 local64_set(&hwc->period_left, hwc->sample_period);
9255                 hwc->last_period = hwc->sample_period;
9256                 event->attr.freq = 0;
9257         }
9258 }
9259
9260 /*
9261  * Software event: cpu wall time clock
9262  */
9263
9264 static void cpu_clock_event_update(struct perf_event *event)
9265 {
9266         s64 prev;
9267         u64 now;
9268
9269         now = local_clock();
9270         prev = local64_xchg(&event->hw.prev_count, now);
9271         local64_add(now - prev, &event->count);
9272 }
9273
9274 static void cpu_clock_event_start(struct perf_event *event, int flags)
9275 {
9276         local64_set(&event->hw.prev_count, local_clock());
9277         perf_swevent_start_hrtimer(event);
9278 }
9279
9280 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9281 {
9282         perf_swevent_cancel_hrtimer(event);
9283         cpu_clock_event_update(event);
9284 }
9285
9286 static int cpu_clock_event_add(struct perf_event *event, int flags)
9287 {
9288         if (flags & PERF_EF_START)
9289                 cpu_clock_event_start(event, flags);
9290         perf_event_update_userpage(event);
9291
9292         return 0;
9293 }
9294
9295 static void cpu_clock_event_del(struct perf_event *event, int flags)
9296 {
9297         cpu_clock_event_stop(event, flags);
9298 }
9299
9300 static void cpu_clock_event_read(struct perf_event *event)
9301 {
9302         cpu_clock_event_update(event);
9303 }
9304
9305 static int cpu_clock_event_init(struct perf_event *event)
9306 {
9307         if (event->attr.type != PERF_TYPE_SOFTWARE)
9308                 return -ENOENT;
9309
9310         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9311                 return -ENOENT;
9312
9313         /*
9314          * no branch sampling for software events
9315          */
9316         if (has_branch_stack(event))
9317                 return -EOPNOTSUPP;
9318
9319         perf_swevent_init_hrtimer(event);
9320
9321         return 0;
9322 }
9323
9324 static struct pmu perf_cpu_clock = {
9325         .task_ctx_nr    = perf_sw_context,
9326
9327         .capabilities   = PERF_PMU_CAP_NO_NMI,
9328
9329         .event_init     = cpu_clock_event_init,
9330         .add            = cpu_clock_event_add,
9331         .del            = cpu_clock_event_del,
9332         .start          = cpu_clock_event_start,
9333         .stop           = cpu_clock_event_stop,
9334         .read           = cpu_clock_event_read,
9335 };
9336
9337 /*
9338  * Software event: task time clock
9339  */
9340
9341 static void task_clock_event_update(struct perf_event *event, u64 now)
9342 {
9343         u64 prev;
9344         s64 delta;
9345
9346         prev = local64_xchg(&event->hw.prev_count, now);
9347         delta = now - prev;
9348         local64_add(delta, &event->count);
9349 }
9350
9351 static void task_clock_event_start(struct perf_event *event, int flags)
9352 {
9353         local64_set(&event->hw.prev_count, event->ctx->time);
9354         perf_swevent_start_hrtimer(event);
9355 }
9356
9357 static void task_clock_event_stop(struct perf_event *event, int flags)
9358 {
9359         perf_swevent_cancel_hrtimer(event);
9360         task_clock_event_update(event, event->ctx->time);
9361 }
9362
9363 static int task_clock_event_add(struct perf_event *event, int flags)
9364 {
9365         if (flags & PERF_EF_START)
9366                 task_clock_event_start(event, flags);
9367         perf_event_update_userpage(event);
9368
9369         return 0;
9370 }
9371
9372 static void task_clock_event_del(struct perf_event *event, int flags)
9373 {
9374         task_clock_event_stop(event, PERF_EF_UPDATE);
9375 }
9376
9377 static void task_clock_event_read(struct perf_event *event)
9378 {
9379         u64 now = perf_clock();
9380         u64 delta = now - event->ctx->timestamp;
9381         u64 time = event->ctx->time + delta;
9382
9383         task_clock_event_update(event, time);
9384 }
9385
9386 static int task_clock_event_init(struct perf_event *event)
9387 {
9388         if (event->attr.type != PERF_TYPE_SOFTWARE)
9389                 return -ENOENT;
9390
9391         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9392                 return -ENOENT;
9393
9394         /*
9395          * no branch sampling for software events
9396          */
9397         if (has_branch_stack(event))
9398                 return -EOPNOTSUPP;
9399
9400         perf_swevent_init_hrtimer(event);
9401
9402         return 0;
9403 }
9404
9405 static struct pmu perf_task_clock = {
9406         .task_ctx_nr    = perf_sw_context,
9407
9408         .capabilities   = PERF_PMU_CAP_NO_NMI,
9409
9410         .event_init     = task_clock_event_init,
9411         .add            = task_clock_event_add,
9412         .del            = task_clock_event_del,
9413         .start          = task_clock_event_start,
9414         .stop           = task_clock_event_stop,
9415         .read           = task_clock_event_read,
9416 };
9417
9418 static void perf_pmu_nop_void(struct pmu *pmu)
9419 {
9420 }
9421
9422 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9423 {
9424 }
9425
9426 static int perf_pmu_nop_int(struct pmu *pmu)
9427 {
9428         return 0;
9429 }
9430
9431 static int perf_event_nop_int(struct perf_event *event, u64 value)
9432 {
9433         return 0;
9434 }
9435
9436 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9437
9438 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9439 {
9440         __this_cpu_write(nop_txn_flags, flags);
9441
9442         if (flags & ~PERF_PMU_TXN_ADD)
9443                 return;
9444
9445         perf_pmu_disable(pmu);
9446 }
9447
9448 static int perf_pmu_commit_txn(struct pmu *pmu)
9449 {
9450         unsigned int flags = __this_cpu_read(nop_txn_flags);
9451
9452         __this_cpu_write(nop_txn_flags, 0);
9453
9454         if (flags & ~PERF_PMU_TXN_ADD)
9455                 return 0;
9456
9457         perf_pmu_enable(pmu);
9458         return 0;
9459 }
9460
9461 static void perf_pmu_cancel_txn(struct pmu *pmu)
9462 {
9463         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9464
9465         __this_cpu_write(nop_txn_flags, 0);
9466
9467         if (flags & ~PERF_PMU_TXN_ADD)
9468                 return;
9469
9470         perf_pmu_enable(pmu);
9471 }
9472
9473 static int perf_event_idx_default(struct perf_event *event)
9474 {
9475         return 0;
9476 }
9477
9478 /*
9479  * Ensures all contexts with the same task_ctx_nr have the same
9480  * pmu_cpu_context too.
9481  */
9482 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9483 {
9484         struct pmu *pmu;
9485
9486         if (ctxn < 0)
9487                 return NULL;
9488
9489         list_for_each_entry(pmu, &pmus, entry) {
9490                 if (pmu->task_ctx_nr == ctxn)
9491                         return pmu->pmu_cpu_context;
9492         }
9493
9494         return NULL;
9495 }
9496
9497 static void free_pmu_context(struct pmu *pmu)
9498 {
9499         /*
9500          * Static contexts such as perf_sw_context have a global lifetime
9501          * and may be shared between different PMUs. Avoid freeing them
9502          * when a single PMU is going away.
9503          */
9504         if (pmu->task_ctx_nr > perf_invalid_context)
9505                 return;
9506
9507         free_percpu(pmu->pmu_cpu_context);
9508 }
9509
9510 /*
9511  * Let userspace know that this PMU supports address range filtering:
9512  */
9513 static ssize_t nr_addr_filters_show(struct device *dev,
9514                                     struct device_attribute *attr,
9515                                     char *page)
9516 {
9517         struct pmu *pmu = dev_get_drvdata(dev);
9518
9519         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9520 }
9521 DEVICE_ATTR_RO(nr_addr_filters);
9522
9523 static struct idr pmu_idr;
9524
9525 static ssize_t
9526 type_show(struct device *dev, struct device_attribute *attr, char *page)
9527 {
9528         struct pmu *pmu = dev_get_drvdata(dev);
9529
9530         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9531 }
9532 static DEVICE_ATTR_RO(type);
9533
9534 static ssize_t
9535 perf_event_mux_interval_ms_show(struct device *dev,
9536                                 struct device_attribute *attr,
9537                                 char *page)
9538 {
9539         struct pmu *pmu = dev_get_drvdata(dev);
9540
9541         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9542 }
9543
9544 static DEFINE_MUTEX(mux_interval_mutex);
9545
9546 static ssize_t
9547 perf_event_mux_interval_ms_store(struct device *dev,
9548                                  struct device_attribute *attr,
9549                                  const char *buf, size_t count)
9550 {
9551         struct pmu *pmu = dev_get_drvdata(dev);
9552         int timer, cpu, ret;
9553
9554         ret = kstrtoint(buf, 0, &timer);
9555         if (ret)
9556                 return ret;
9557
9558         if (timer < 1)
9559                 return -EINVAL;
9560
9561         /* same value, noting to do */
9562         if (timer == pmu->hrtimer_interval_ms)
9563                 return count;
9564
9565         mutex_lock(&mux_interval_mutex);
9566         pmu->hrtimer_interval_ms = timer;
9567
9568         /* update all cpuctx for this PMU */
9569         cpus_read_lock();
9570         for_each_online_cpu(cpu) {
9571                 struct perf_cpu_context *cpuctx;
9572                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9573                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9574
9575                 cpu_function_call(cpu,
9576                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9577         }
9578         cpus_read_unlock();
9579         mutex_unlock(&mux_interval_mutex);
9580
9581         return count;
9582 }
9583 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9584
9585 static struct attribute *pmu_dev_attrs[] = {
9586         &dev_attr_type.attr,
9587         &dev_attr_perf_event_mux_interval_ms.attr,
9588         NULL,
9589 };
9590 ATTRIBUTE_GROUPS(pmu_dev);
9591
9592 static int pmu_bus_running;
9593 static struct bus_type pmu_bus = {
9594         .name           = "event_source",
9595         .dev_groups     = pmu_dev_groups,
9596 };
9597
9598 static void pmu_dev_release(struct device *dev)
9599 {
9600         kfree(dev);
9601 }
9602
9603 static int pmu_dev_alloc(struct pmu *pmu)
9604 {
9605         int ret = -ENOMEM;
9606
9607         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9608         if (!pmu->dev)
9609                 goto out;
9610
9611         pmu->dev->groups = pmu->attr_groups;
9612         device_initialize(pmu->dev);
9613         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9614         if (ret)
9615                 goto free_dev;
9616
9617         dev_set_drvdata(pmu->dev, pmu);
9618         pmu->dev->bus = &pmu_bus;
9619         pmu->dev->release = pmu_dev_release;
9620         ret = device_add(pmu->dev);
9621         if (ret)
9622                 goto free_dev;
9623
9624         /* For PMUs with address filters, throw in an extra attribute: */
9625         if (pmu->nr_addr_filters)
9626                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9627
9628         if (ret)
9629                 goto del_dev;
9630
9631 out:
9632         return ret;
9633
9634 del_dev:
9635         device_del(pmu->dev);
9636
9637 free_dev:
9638         put_device(pmu->dev);
9639         goto out;
9640 }
9641
9642 static struct lock_class_key cpuctx_mutex;
9643 static struct lock_class_key cpuctx_lock;
9644
9645 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9646 {
9647         int cpu, ret;
9648
9649         mutex_lock(&pmus_lock);
9650         ret = -ENOMEM;
9651         pmu->pmu_disable_count = alloc_percpu(int);
9652         if (!pmu->pmu_disable_count)
9653                 goto unlock;
9654
9655         pmu->type = -1;
9656         if (!name)
9657                 goto skip_type;
9658         pmu->name = name;
9659
9660         if (type < 0) {
9661                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9662                 if (type < 0) {
9663                         ret = type;
9664                         goto free_pdc;
9665                 }
9666         }
9667         pmu->type = type;
9668
9669         if (pmu_bus_running) {
9670                 ret = pmu_dev_alloc(pmu);
9671                 if (ret)
9672                         goto free_idr;
9673         }
9674
9675 skip_type:
9676         if (pmu->task_ctx_nr == perf_hw_context) {
9677                 static int hw_context_taken = 0;
9678
9679                 /*
9680                  * Other than systems with heterogeneous CPUs, it never makes
9681                  * sense for two PMUs to share perf_hw_context. PMUs which are
9682                  * uncore must use perf_invalid_context.
9683                  */
9684                 if (WARN_ON_ONCE(hw_context_taken &&
9685                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9686                         pmu->task_ctx_nr = perf_invalid_context;
9687
9688                 hw_context_taken = 1;
9689         }
9690
9691         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9692         if (pmu->pmu_cpu_context)
9693                 goto got_cpu_context;
9694
9695         ret = -ENOMEM;
9696         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9697         if (!pmu->pmu_cpu_context)
9698                 goto free_dev;
9699
9700         for_each_possible_cpu(cpu) {
9701                 struct perf_cpu_context *cpuctx;
9702
9703                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9704                 __perf_event_init_context(&cpuctx->ctx);
9705                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9706                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9707                 cpuctx->ctx.pmu = pmu;
9708                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9709
9710                 __perf_mux_hrtimer_init(cpuctx, cpu);
9711         }
9712
9713 got_cpu_context:
9714         if (!pmu->start_txn) {
9715                 if (pmu->pmu_enable) {
9716                         /*
9717                          * If we have pmu_enable/pmu_disable calls, install
9718                          * transaction stubs that use that to try and batch
9719                          * hardware accesses.
9720                          */
9721                         pmu->start_txn  = perf_pmu_start_txn;
9722                         pmu->commit_txn = perf_pmu_commit_txn;
9723                         pmu->cancel_txn = perf_pmu_cancel_txn;
9724                 } else {
9725                         pmu->start_txn  = perf_pmu_nop_txn;
9726                         pmu->commit_txn = perf_pmu_nop_int;
9727                         pmu->cancel_txn = perf_pmu_nop_void;
9728                 }
9729         }
9730
9731         if (!pmu->pmu_enable) {
9732                 pmu->pmu_enable  = perf_pmu_nop_void;
9733                 pmu->pmu_disable = perf_pmu_nop_void;
9734         }
9735
9736         if (!pmu->check_period)
9737                 pmu->check_period = perf_event_nop_int;
9738
9739         if (!pmu->event_idx)
9740                 pmu->event_idx = perf_event_idx_default;
9741
9742         list_add_rcu(&pmu->entry, &pmus);
9743         atomic_set(&pmu->exclusive_cnt, 0);
9744         ret = 0;
9745 unlock:
9746         mutex_unlock(&pmus_lock);
9747
9748         return ret;
9749
9750 free_dev:
9751         device_del(pmu->dev);
9752         put_device(pmu->dev);
9753
9754 free_idr:
9755         if (pmu->type >= PERF_TYPE_MAX)
9756                 idr_remove(&pmu_idr, pmu->type);
9757
9758 free_pdc:
9759         free_percpu(pmu->pmu_disable_count);
9760         goto unlock;
9761 }
9762 EXPORT_SYMBOL_GPL(perf_pmu_register);
9763
9764 void perf_pmu_unregister(struct pmu *pmu)
9765 {
9766         mutex_lock(&pmus_lock);
9767         list_del_rcu(&pmu->entry);
9768
9769         /*
9770          * We dereference the pmu list under both SRCU and regular RCU, so
9771          * synchronize against both of those.
9772          */
9773         synchronize_srcu(&pmus_srcu);
9774         synchronize_rcu();
9775
9776         free_percpu(pmu->pmu_disable_count);
9777         if (pmu->type >= PERF_TYPE_MAX)
9778                 idr_remove(&pmu_idr, pmu->type);
9779         if (pmu_bus_running) {
9780                 if (pmu->nr_addr_filters)
9781                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9782                 device_del(pmu->dev);
9783                 put_device(pmu->dev);
9784         }
9785         free_pmu_context(pmu);
9786         mutex_unlock(&pmus_lock);
9787 }
9788 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9789
9790 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9791 {
9792         struct perf_event_context *ctx = NULL;
9793         int ret;
9794
9795         if (!try_module_get(pmu->module))
9796                 return -ENODEV;
9797
9798         /*
9799          * A number of pmu->event_init() methods iterate the sibling_list to,
9800          * for example, validate if the group fits on the PMU. Therefore,
9801          * if this is a sibling event, acquire the ctx->mutex to protect
9802          * the sibling_list.
9803          */
9804         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9805                 /*
9806                  * This ctx->mutex can nest when we're called through
9807                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9808                  */
9809                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9810                                                  SINGLE_DEPTH_NESTING);
9811                 BUG_ON(!ctx);
9812         }
9813
9814         event->pmu = pmu;
9815         ret = pmu->event_init(event);
9816
9817         if (ctx)
9818                 perf_event_ctx_unlock(event->group_leader, ctx);
9819
9820         if (ret)
9821                 module_put(pmu->module);
9822
9823         return ret;
9824 }
9825
9826 static struct pmu *perf_init_event(struct perf_event *event)
9827 {
9828         struct pmu *pmu;
9829         int idx;
9830         int ret;
9831
9832         idx = srcu_read_lock(&pmus_srcu);
9833
9834         /* Try parent's PMU first: */
9835         if (event->parent && event->parent->pmu) {
9836                 pmu = event->parent->pmu;
9837                 ret = perf_try_init_event(pmu, event);
9838                 if (!ret)
9839                         goto unlock;
9840         }
9841
9842         rcu_read_lock();
9843         pmu = idr_find(&pmu_idr, event->attr.type);
9844         rcu_read_unlock();
9845         if (pmu) {
9846                 ret = perf_try_init_event(pmu, event);
9847                 if (ret)
9848                         pmu = ERR_PTR(ret);
9849                 goto unlock;
9850         }
9851
9852         list_for_each_entry_rcu(pmu, &pmus, entry) {
9853                 ret = perf_try_init_event(pmu, event);
9854                 if (!ret)
9855                         goto unlock;
9856
9857                 if (ret != -ENOENT) {
9858                         pmu = ERR_PTR(ret);
9859                         goto unlock;
9860                 }
9861         }
9862         pmu = ERR_PTR(-ENOENT);
9863 unlock:
9864         srcu_read_unlock(&pmus_srcu, idx);
9865
9866         return pmu;
9867 }
9868
9869 static void attach_sb_event(struct perf_event *event)
9870 {
9871         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9872
9873         raw_spin_lock(&pel->lock);
9874         list_add_rcu(&event->sb_list, &pel->list);
9875         raw_spin_unlock(&pel->lock);
9876 }
9877
9878 /*
9879  * We keep a list of all !task (and therefore per-cpu) events
9880  * that need to receive side-band records.
9881  *
9882  * This avoids having to scan all the various PMU per-cpu contexts
9883  * looking for them.
9884  */
9885 static void account_pmu_sb_event(struct perf_event *event)
9886 {
9887         if (is_sb_event(event))
9888                 attach_sb_event(event);
9889 }
9890
9891 static void account_event_cpu(struct perf_event *event, int cpu)
9892 {
9893         if (event->parent)
9894                 return;
9895
9896         if (is_cgroup_event(event))
9897                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9898 }
9899
9900 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9901 static void account_freq_event_nohz(void)
9902 {
9903 #ifdef CONFIG_NO_HZ_FULL
9904         /* Lock so we don't race with concurrent unaccount */
9905         spin_lock(&nr_freq_lock);
9906         if (atomic_inc_return(&nr_freq_events) == 1)
9907                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9908         spin_unlock(&nr_freq_lock);
9909 #endif
9910 }
9911
9912 static void account_freq_event(void)
9913 {
9914         if (tick_nohz_full_enabled())
9915                 account_freq_event_nohz();
9916         else
9917                 atomic_inc(&nr_freq_events);
9918 }
9919
9920
9921 static void account_event(struct perf_event *event)
9922 {
9923         bool inc = false;
9924
9925         if (event->parent)
9926                 return;
9927
9928         if (event->attach_state & PERF_ATTACH_TASK)
9929                 inc = true;
9930         if (event->attr.mmap || event->attr.mmap_data)
9931                 atomic_inc(&nr_mmap_events);
9932         if (event->attr.comm)
9933                 atomic_inc(&nr_comm_events);
9934         if (event->attr.namespaces)
9935                 atomic_inc(&nr_namespaces_events);
9936         if (event->attr.task)
9937                 atomic_inc(&nr_task_events);
9938         if (event->attr.freq)
9939                 account_freq_event();
9940         if (event->attr.context_switch) {
9941                 atomic_inc(&nr_switch_events);
9942                 inc = true;
9943         }
9944         if (has_branch_stack(event))
9945                 inc = true;
9946         if (is_cgroup_event(event))
9947                 inc = true;
9948
9949         if (inc) {
9950                 /*
9951                  * We need the mutex here because static_branch_enable()
9952                  * must complete *before* the perf_sched_count increment
9953                  * becomes visible.
9954                  */
9955                 if (atomic_inc_not_zero(&perf_sched_count))
9956                         goto enabled;
9957
9958                 mutex_lock(&perf_sched_mutex);
9959                 if (!atomic_read(&perf_sched_count)) {
9960                         static_branch_enable(&perf_sched_events);
9961                         /*
9962                          * Guarantee that all CPUs observe they key change and
9963                          * call the perf scheduling hooks before proceeding to
9964                          * install events that need them.
9965                          */
9966                         synchronize_sched();
9967                 }
9968                 /*
9969                  * Now that we have waited for the sync_sched(), allow further
9970                  * increments to by-pass the mutex.
9971                  */
9972                 atomic_inc(&perf_sched_count);
9973                 mutex_unlock(&perf_sched_mutex);
9974         }
9975 enabled:
9976
9977         account_event_cpu(event, event->cpu);
9978
9979         account_pmu_sb_event(event);
9980 }
9981
9982 /*
9983  * Allocate and initialize an event structure
9984  */
9985 static struct perf_event *
9986 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9987                  struct task_struct *task,
9988                  struct perf_event *group_leader,
9989                  struct perf_event *parent_event,
9990                  perf_overflow_handler_t overflow_handler,
9991                  void *context, int cgroup_fd)
9992 {
9993         struct pmu *pmu;
9994         struct perf_event *event;
9995         struct hw_perf_event *hwc;
9996         long err = -EINVAL;
9997
9998         if ((unsigned)cpu >= nr_cpu_ids) {
9999                 if (!task || cpu != -1)
10000                         return ERR_PTR(-EINVAL);
10001         }
10002
10003         event = kzalloc(sizeof(*event), GFP_KERNEL);
10004         if (!event)
10005                 return ERR_PTR(-ENOMEM);
10006
10007         /*
10008          * Single events are their own group leaders, with an
10009          * empty sibling list:
10010          */
10011         if (!group_leader)
10012                 group_leader = event;
10013
10014         mutex_init(&event->child_mutex);
10015         INIT_LIST_HEAD(&event->child_list);
10016
10017         INIT_LIST_HEAD(&event->event_entry);
10018         INIT_LIST_HEAD(&event->sibling_list);
10019         INIT_LIST_HEAD(&event->active_list);
10020         init_event_group(event);
10021         INIT_LIST_HEAD(&event->rb_entry);
10022         INIT_LIST_HEAD(&event->active_entry);
10023         INIT_LIST_HEAD(&event->addr_filters.list);
10024         INIT_HLIST_NODE(&event->hlist_entry);
10025
10026
10027         init_waitqueue_head(&event->waitq);
10028         event->pending_disable = -1;
10029         init_irq_work(&event->pending, perf_pending_event);
10030
10031         mutex_init(&event->mmap_mutex);
10032         raw_spin_lock_init(&event->addr_filters.lock);
10033
10034         atomic_long_set(&event->refcount, 1);
10035         event->cpu              = cpu;
10036         event->attr             = *attr;
10037         event->group_leader     = group_leader;
10038         event->pmu              = NULL;
10039         event->oncpu            = -1;
10040
10041         event->parent           = parent_event;
10042
10043         event->ns               = get_pid_ns(task_active_pid_ns(current));
10044         event->id               = atomic64_inc_return(&perf_event_id);
10045
10046         event->state            = PERF_EVENT_STATE_INACTIVE;
10047
10048         if (task) {
10049                 event->attach_state = PERF_ATTACH_TASK;
10050                 /*
10051                  * XXX pmu::event_init needs to know what task to account to
10052                  * and we cannot use the ctx information because we need the
10053                  * pmu before we get a ctx.
10054                  */
10055                 get_task_struct(task);
10056                 event->hw.target = task;
10057         }
10058
10059         event->clock = &local_clock;
10060         if (parent_event)
10061                 event->clock = parent_event->clock;
10062
10063         if (!overflow_handler && parent_event) {
10064                 overflow_handler = parent_event->overflow_handler;
10065                 context = parent_event->overflow_handler_context;
10066 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10067                 if (overflow_handler == bpf_overflow_handler) {
10068                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10069
10070                         if (IS_ERR(prog)) {
10071                                 err = PTR_ERR(prog);
10072                                 goto err_ns;
10073                         }
10074                         event->prog = prog;
10075                         event->orig_overflow_handler =
10076                                 parent_event->orig_overflow_handler;
10077                 }
10078 #endif
10079         }
10080
10081         if (overflow_handler) {
10082                 event->overflow_handler = overflow_handler;
10083                 event->overflow_handler_context = context;
10084         } else if (is_write_backward(event)){
10085                 event->overflow_handler = perf_event_output_backward;
10086                 event->overflow_handler_context = NULL;
10087         } else {
10088                 event->overflow_handler = perf_event_output_forward;
10089                 event->overflow_handler_context = NULL;
10090         }
10091
10092         perf_event__state_init(event);
10093
10094         pmu = NULL;
10095
10096         hwc = &event->hw;
10097         hwc->sample_period = attr->sample_period;
10098         if (attr->freq && attr->sample_freq)
10099                 hwc->sample_period = 1;
10100         hwc->last_period = hwc->sample_period;
10101
10102         local64_set(&hwc->period_left, hwc->sample_period);
10103
10104         /*
10105          * We currently do not support PERF_SAMPLE_READ on inherited events.
10106          * See perf_output_read().
10107          */
10108         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10109                 goto err_ns;
10110
10111         if (!has_branch_stack(event))
10112                 event->attr.branch_sample_type = 0;
10113
10114         if (cgroup_fd != -1) {
10115                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10116                 if (err)
10117                         goto err_ns;
10118         }
10119
10120         pmu = perf_init_event(event);
10121         if (IS_ERR(pmu)) {
10122                 err = PTR_ERR(pmu);
10123                 goto err_ns;
10124         }
10125
10126         err = exclusive_event_init(event);
10127         if (err)
10128                 goto err_pmu;
10129
10130         if (has_addr_filter(event)) {
10131                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10132                                                    sizeof(unsigned long),
10133                                                    GFP_KERNEL);
10134                 if (!event->addr_filters_offs) {
10135                         err = -ENOMEM;
10136                         goto err_per_task;
10137                 }
10138
10139                 /* force hw sync on the address filters */
10140                 event->addr_filters_gen = 1;
10141         }
10142
10143         if (!event->parent) {
10144                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10145                         err = get_callchain_buffers(attr->sample_max_stack);
10146                         if (err)
10147                                 goto err_addr_filters;
10148                 }
10149         }
10150
10151         /* symmetric to unaccount_event() in _free_event() */
10152         account_event(event);
10153
10154         return event;
10155
10156 err_addr_filters:
10157         kfree(event->addr_filters_offs);
10158
10159 err_per_task:
10160         exclusive_event_destroy(event);
10161
10162 err_pmu:
10163         if (event->destroy)
10164                 event->destroy(event);
10165         module_put(pmu->module);
10166 err_ns:
10167         if (is_cgroup_event(event))
10168                 perf_detach_cgroup(event);
10169         if (event->ns)
10170                 put_pid_ns(event->ns);
10171         if (event->hw.target)
10172                 put_task_struct(event->hw.target);
10173         kfree(event);
10174
10175         return ERR_PTR(err);
10176 }
10177
10178 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10179                           struct perf_event_attr *attr)
10180 {
10181         u32 size;
10182         int ret;
10183
10184         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10185                 return -EFAULT;
10186
10187         /*
10188          * zero the full structure, so that a short copy will be nice.
10189          */
10190         memset(attr, 0, sizeof(*attr));
10191
10192         ret = get_user(size, &uattr->size);
10193         if (ret)
10194                 return ret;
10195
10196         if (size > PAGE_SIZE)   /* silly large */
10197                 goto err_size;
10198
10199         if (!size)              /* abi compat */
10200                 size = PERF_ATTR_SIZE_VER0;
10201
10202         if (size < PERF_ATTR_SIZE_VER0)
10203                 goto err_size;
10204
10205         /*
10206          * If we're handed a bigger struct than we know of,
10207          * ensure all the unknown bits are 0 - i.e. new
10208          * user-space does not rely on any kernel feature
10209          * extensions we dont know about yet.
10210          */
10211         if (size > sizeof(*attr)) {
10212                 unsigned char __user *addr;
10213                 unsigned char __user *end;
10214                 unsigned char val;
10215
10216                 addr = (void __user *)uattr + sizeof(*attr);
10217                 end  = (void __user *)uattr + size;
10218
10219                 for (; addr < end; addr++) {
10220                         ret = get_user(val, addr);
10221                         if (ret)
10222                                 return ret;
10223                         if (val)
10224                                 goto err_size;
10225                 }
10226                 size = sizeof(*attr);
10227         }
10228
10229         ret = copy_from_user(attr, uattr, size);
10230         if (ret)
10231                 return -EFAULT;
10232
10233         attr->size = size;
10234
10235         if (attr->__reserved_1)
10236                 return -EINVAL;
10237
10238         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10239                 return -EINVAL;
10240
10241         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10242                 return -EINVAL;
10243
10244         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10245                 u64 mask = attr->branch_sample_type;
10246
10247                 /* only using defined bits */
10248                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10249                         return -EINVAL;
10250
10251                 /* at least one branch bit must be set */
10252                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10253                         return -EINVAL;
10254
10255                 /* propagate priv level, when not set for branch */
10256                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10257
10258                         /* exclude_kernel checked on syscall entry */
10259                         if (!attr->exclude_kernel)
10260                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10261
10262                         if (!attr->exclude_user)
10263                                 mask |= PERF_SAMPLE_BRANCH_USER;
10264
10265                         if (!attr->exclude_hv)
10266                                 mask |= PERF_SAMPLE_BRANCH_HV;
10267                         /*
10268                          * adjust user setting (for HW filter setup)
10269                          */
10270                         attr->branch_sample_type = mask;
10271                 }
10272                 /* privileged levels capture (kernel, hv): check permissions */
10273                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10274                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10275                         return -EACCES;
10276         }
10277
10278         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10279                 ret = perf_reg_validate(attr->sample_regs_user);
10280                 if (ret)
10281                         return ret;
10282         }
10283
10284         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10285                 if (!arch_perf_have_user_stack_dump())
10286                         return -ENOSYS;
10287
10288                 /*
10289                  * We have __u32 type for the size, but so far
10290                  * we can only use __u16 as maximum due to the
10291                  * __u16 sample size limit.
10292                  */
10293                 if (attr->sample_stack_user >= USHRT_MAX)
10294                         return -EINVAL;
10295                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10296                         return -EINVAL;
10297         }
10298
10299         if (!attr->sample_max_stack)
10300                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10301
10302         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10303                 ret = perf_reg_validate(attr->sample_regs_intr);
10304 out:
10305         return ret;
10306
10307 err_size:
10308         put_user(sizeof(*attr), &uattr->size);
10309         ret = -E2BIG;
10310         goto out;
10311 }
10312
10313 static int
10314 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10315 {
10316         struct ring_buffer *rb = NULL;
10317         int ret = -EINVAL;
10318
10319         if (!output_event)
10320                 goto set;
10321
10322         /* don't allow circular references */
10323         if (event == output_event)
10324                 goto out;
10325
10326         /*
10327          * Don't allow cross-cpu buffers
10328          */
10329         if (output_event->cpu != event->cpu)
10330                 goto out;
10331
10332         /*
10333          * If its not a per-cpu rb, it must be the same task.
10334          */
10335         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10336                 goto out;
10337
10338         /*
10339          * Mixing clocks in the same buffer is trouble you don't need.
10340          */
10341         if (output_event->clock != event->clock)
10342                 goto out;
10343
10344         /*
10345          * Either writing ring buffer from beginning or from end.
10346          * Mixing is not allowed.
10347          */
10348         if (is_write_backward(output_event) != is_write_backward(event))
10349                 goto out;
10350
10351         /*
10352          * If both events generate aux data, they must be on the same PMU
10353          */
10354         if (has_aux(event) && has_aux(output_event) &&
10355             event->pmu != output_event->pmu)
10356                 goto out;
10357
10358 set:
10359         mutex_lock(&event->mmap_mutex);
10360         /* Can't redirect output if we've got an active mmap() */
10361         if (atomic_read(&event->mmap_count))
10362                 goto unlock;
10363
10364         if (output_event) {
10365                 /* get the rb we want to redirect to */
10366                 rb = ring_buffer_get(output_event);
10367                 if (!rb)
10368                         goto unlock;
10369         }
10370
10371         ring_buffer_attach(event, rb);
10372
10373         ret = 0;
10374 unlock:
10375         mutex_unlock(&event->mmap_mutex);
10376
10377 out:
10378         return ret;
10379 }
10380
10381 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10382 {
10383         if (b < a)
10384                 swap(a, b);
10385
10386         mutex_lock(a);
10387         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10388 }
10389
10390 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10391 {
10392         bool nmi_safe = false;
10393
10394         switch (clk_id) {
10395         case CLOCK_MONOTONIC:
10396                 event->clock = &ktime_get_mono_fast_ns;
10397                 nmi_safe = true;
10398                 break;
10399
10400         case CLOCK_MONOTONIC_RAW:
10401                 event->clock = &ktime_get_raw_fast_ns;
10402                 nmi_safe = true;
10403                 break;
10404
10405         case CLOCK_REALTIME:
10406                 event->clock = &ktime_get_real_ns;
10407                 break;
10408
10409         case CLOCK_BOOTTIME:
10410                 event->clock = &ktime_get_boot_ns;
10411                 break;
10412
10413         case CLOCK_TAI:
10414                 event->clock = &ktime_get_tai_ns;
10415                 break;
10416
10417         default:
10418                 return -EINVAL;
10419         }
10420
10421         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10422                 return -EINVAL;
10423
10424         return 0;
10425 }
10426
10427 /*
10428  * Variation on perf_event_ctx_lock_nested(), except we take two context
10429  * mutexes.
10430  */
10431 static struct perf_event_context *
10432 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10433                              struct perf_event_context *ctx)
10434 {
10435         struct perf_event_context *gctx;
10436
10437 again:
10438         rcu_read_lock();
10439         gctx = READ_ONCE(group_leader->ctx);
10440         if (!atomic_inc_not_zero(&gctx->refcount)) {
10441                 rcu_read_unlock();
10442                 goto again;
10443         }
10444         rcu_read_unlock();
10445
10446         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10447
10448         if (group_leader->ctx != gctx) {
10449                 mutex_unlock(&ctx->mutex);
10450                 mutex_unlock(&gctx->mutex);
10451                 put_ctx(gctx);
10452                 goto again;
10453         }
10454
10455         return gctx;
10456 }
10457
10458 /**
10459  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10460  *
10461  * @attr_uptr:  event_id type attributes for monitoring/sampling
10462  * @pid:                target pid
10463  * @cpu:                target cpu
10464  * @group_fd:           group leader event fd
10465  */
10466 SYSCALL_DEFINE5(perf_event_open,
10467                 struct perf_event_attr __user *, attr_uptr,
10468                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10469 {
10470         struct perf_event *group_leader = NULL, *output_event = NULL;
10471         struct perf_event *event, *sibling;
10472         struct perf_event_attr attr;
10473         struct perf_event_context *ctx, *uninitialized_var(gctx);
10474         struct file *event_file = NULL;
10475         struct fd group = {NULL, 0};
10476         struct task_struct *task = NULL;
10477         struct pmu *pmu;
10478         int event_fd;
10479         int move_group = 0;
10480         int err;
10481         int f_flags = O_RDWR;
10482         int cgroup_fd = -1;
10483
10484         /* for future expandability... */
10485         if (flags & ~PERF_FLAG_ALL)
10486                 return -EINVAL;
10487
10488         err = perf_copy_attr(attr_uptr, &attr);
10489         if (err)
10490                 return err;
10491
10492         if (!attr.exclude_kernel) {
10493                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10494                         return -EACCES;
10495         }
10496
10497         if (attr.namespaces) {
10498                 if (!capable(CAP_SYS_ADMIN))
10499                         return -EACCES;
10500         }
10501
10502         if (attr.freq) {
10503                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10504                         return -EINVAL;
10505         } else {
10506                 if (attr.sample_period & (1ULL << 63))
10507                         return -EINVAL;
10508         }
10509
10510         /* Only privileged users can get physical addresses */
10511         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10512             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10513                 return -EACCES;
10514
10515         /*
10516          * In cgroup mode, the pid argument is used to pass the fd
10517          * opened to the cgroup directory in cgroupfs. The cpu argument
10518          * designates the cpu on which to monitor threads from that
10519          * cgroup.
10520          */
10521         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10522                 return -EINVAL;
10523
10524         if (flags & PERF_FLAG_FD_CLOEXEC)
10525                 f_flags |= O_CLOEXEC;
10526
10527         event_fd = get_unused_fd_flags(f_flags);
10528         if (event_fd < 0)
10529                 return event_fd;
10530
10531         if (group_fd != -1) {
10532                 err = perf_fget_light(group_fd, &group);
10533                 if (err)
10534                         goto err_fd;
10535                 group_leader = group.file->private_data;
10536                 if (flags & PERF_FLAG_FD_OUTPUT)
10537                         output_event = group_leader;
10538                 if (flags & PERF_FLAG_FD_NO_GROUP)
10539                         group_leader = NULL;
10540         }
10541
10542         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10543                 task = find_lively_task_by_vpid(pid);
10544                 if (IS_ERR(task)) {
10545                         err = PTR_ERR(task);
10546                         goto err_group_fd;
10547                 }
10548         }
10549
10550         if (task && group_leader &&
10551             group_leader->attr.inherit != attr.inherit) {
10552                 err = -EINVAL;
10553                 goto err_task;
10554         }
10555
10556         if (task) {
10557                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10558                 if (err)
10559                         goto err_task;
10560
10561                 /*
10562                  * Reuse ptrace permission checks for now.
10563                  *
10564                  * We must hold cred_guard_mutex across this and any potential
10565                  * perf_install_in_context() call for this new event to
10566                  * serialize against exec() altering our credentials (and the
10567                  * perf_event_exit_task() that could imply).
10568                  */
10569                 err = -EACCES;
10570                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10571                         goto err_cred;
10572         }
10573
10574         if (flags & PERF_FLAG_PID_CGROUP)
10575                 cgroup_fd = pid;
10576
10577         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10578                                  NULL, NULL, cgroup_fd);
10579         if (IS_ERR(event)) {
10580                 err = PTR_ERR(event);
10581                 goto err_cred;
10582         }
10583
10584         if (is_sampling_event(event)) {
10585                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10586                         err = -EOPNOTSUPP;
10587                         goto err_alloc;
10588                 }
10589         }
10590
10591         /*
10592          * Special case software events and allow them to be part of
10593          * any hardware group.
10594          */
10595         pmu = event->pmu;
10596
10597         if (attr.use_clockid) {
10598                 err = perf_event_set_clock(event, attr.clockid);
10599                 if (err)
10600                         goto err_alloc;
10601         }
10602
10603         if (pmu->task_ctx_nr == perf_sw_context)
10604                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10605
10606         if (group_leader) {
10607                 if (is_software_event(event) &&
10608                     !in_software_context(group_leader)) {
10609                         /*
10610                          * If the event is a sw event, but the group_leader
10611                          * is on hw context.
10612                          *
10613                          * Allow the addition of software events to hw
10614                          * groups, this is safe because software events
10615                          * never fail to schedule.
10616                          */
10617                         pmu = group_leader->ctx->pmu;
10618                 } else if (!is_software_event(event) &&
10619                            is_software_event(group_leader) &&
10620                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10621                         /*
10622                          * In case the group is a pure software group, and we
10623                          * try to add a hardware event, move the whole group to
10624                          * the hardware context.
10625                          */
10626                         move_group = 1;
10627                 }
10628         }
10629
10630         /*
10631          * Get the target context (task or percpu):
10632          */
10633         ctx = find_get_context(pmu, task, event);
10634         if (IS_ERR(ctx)) {
10635                 err = PTR_ERR(ctx);
10636                 goto err_alloc;
10637         }
10638
10639         /*
10640          * Look up the group leader (we will attach this event to it):
10641          */
10642         if (group_leader) {
10643                 err = -EINVAL;
10644
10645                 /*
10646                  * Do not allow a recursive hierarchy (this new sibling
10647                  * becoming part of another group-sibling):
10648                  */
10649                 if (group_leader->group_leader != group_leader)
10650                         goto err_context;
10651
10652                 /* All events in a group should have the same clock */
10653                 if (group_leader->clock != event->clock)
10654                         goto err_context;
10655
10656                 /*
10657                  * Make sure we're both events for the same CPU;
10658                  * grouping events for different CPUs is broken; since
10659                  * you can never concurrently schedule them anyhow.
10660                  */
10661                 if (group_leader->cpu != event->cpu)
10662                         goto err_context;
10663
10664                 /*
10665                  * Make sure we're both on the same task, or both
10666                  * per-CPU events.
10667                  */
10668                 if (group_leader->ctx->task != ctx->task)
10669                         goto err_context;
10670
10671                 /*
10672                  * Do not allow to attach to a group in a different task
10673                  * or CPU context. If we're moving SW events, we'll fix
10674                  * this up later, so allow that.
10675                  */
10676                 if (!move_group && group_leader->ctx != ctx)
10677                         goto err_context;
10678
10679                 /*
10680                  * Only a group leader can be exclusive or pinned
10681                  */
10682                 if (attr.exclusive || attr.pinned)
10683                         goto err_context;
10684         }
10685
10686         if (output_event) {
10687                 err = perf_event_set_output(event, output_event);
10688                 if (err)
10689                         goto err_context;
10690         }
10691
10692         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10693                                         f_flags);
10694         if (IS_ERR(event_file)) {
10695                 err = PTR_ERR(event_file);
10696                 event_file = NULL;
10697                 goto err_context;
10698         }
10699
10700         if (move_group) {
10701                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10702
10703                 if (gctx->task == TASK_TOMBSTONE) {
10704                         err = -ESRCH;
10705                         goto err_locked;
10706                 }
10707
10708                 /*
10709                  * Check if we raced against another sys_perf_event_open() call
10710                  * moving the software group underneath us.
10711                  */
10712                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10713                         /*
10714                          * If someone moved the group out from under us, check
10715                          * if this new event wound up on the same ctx, if so
10716                          * its the regular !move_group case, otherwise fail.
10717                          */
10718                         if (gctx != ctx) {
10719                                 err = -EINVAL;
10720                                 goto err_locked;
10721                         } else {
10722                                 perf_event_ctx_unlock(group_leader, gctx);
10723                                 move_group = 0;
10724                         }
10725                 }
10726
10727                 /*
10728                  * Failure to create exclusive events returns -EBUSY.
10729                  */
10730                 err = -EBUSY;
10731                 if (!exclusive_event_installable(group_leader, ctx))
10732                         goto err_locked;
10733
10734                 for_each_sibling_event(sibling, group_leader) {
10735                         if (!exclusive_event_installable(sibling, ctx))
10736                                 goto err_locked;
10737                 }
10738         } else {
10739                 mutex_lock(&ctx->mutex);
10740         }
10741
10742         if (ctx->task == TASK_TOMBSTONE) {
10743                 err = -ESRCH;
10744                 goto err_locked;
10745         }
10746
10747         if (!perf_event_validate_size(event)) {
10748                 err = -E2BIG;
10749                 goto err_locked;
10750         }
10751
10752         if (!task) {
10753                 /*
10754                  * Check if the @cpu we're creating an event for is online.
10755                  *
10756                  * We use the perf_cpu_context::ctx::mutex to serialize against
10757                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10758                  */
10759                 struct perf_cpu_context *cpuctx =
10760                         container_of(ctx, struct perf_cpu_context, ctx);
10761
10762                 if (!cpuctx->online) {
10763                         err = -ENODEV;
10764                         goto err_locked;
10765                 }
10766         }
10767
10768
10769         /*
10770          * Must be under the same ctx::mutex as perf_install_in_context(),
10771          * because we need to serialize with concurrent event creation.
10772          */
10773         if (!exclusive_event_installable(event, ctx)) {
10774                 err = -EBUSY;
10775                 goto err_locked;
10776         }
10777
10778         WARN_ON_ONCE(ctx->parent_ctx);
10779
10780         /*
10781          * This is the point on no return; we cannot fail hereafter. This is
10782          * where we start modifying current state.
10783          */
10784
10785         if (move_group) {
10786                 /*
10787                  * See perf_event_ctx_lock() for comments on the details
10788                  * of swizzling perf_event::ctx.
10789                  */
10790                 perf_remove_from_context(group_leader, 0);
10791                 put_ctx(gctx);
10792
10793                 for_each_sibling_event(sibling, group_leader) {
10794                         perf_remove_from_context(sibling, 0);
10795                         put_ctx(gctx);
10796                 }
10797
10798                 /*
10799                  * Wait for everybody to stop referencing the events through
10800                  * the old lists, before installing it on new lists.
10801                  */
10802                 synchronize_rcu();
10803
10804                 /*
10805                  * Install the group siblings before the group leader.
10806                  *
10807                  * Because a group leader will try and install the entire group
10808                  * (through the sibling list, which is still in-tact), we can
10809                  * end up with siblings installed in the wrong context.
10810                  *
10811                  * By installing siblings first we NO-OP because they're not
10812                  * reachable through the group lists.
10813                  */
10814                 for_each_sibling_event(sibling, group_leader) {
10815                         perf_event__state_init(sibling);
10816                         perf_install_in_context(ctx, sibling, sibling->cpu);
10817                         get_ctx(ctx);
10818                 }
10819
10820                 /*
10821                  * Removing from the context ends up with disabled
10822                  * event. What we want here is event in the initial
10823                  * startup state, ready to be add into new context.
10824                  */
10825                 perf_event__state_init(group_leader);
10826                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10827                 get_ctx(ctx);
10828         }
10829
10830         /*
10831          * Precalculate sample_data sizes; do while holding ctx::mutex such
10832          * that we're serialized against further additions and before
10833          * perf_install_in_context() which is the point the event is active and
10834          * can use these values.
10835          */
10836         perf_event__header_size(event);
10837         perf_event__id_header_size(event);
10838
10839         event->owner = current;
10840
10841         perf_install_in_context(ctx, event, event->cpu);
10842         perf_unpin_context(ctx);
10843
10844         if (move_group)
10845                 perf_event_ctx_unlock(group_leader, gctx);
10846         mutex_unlock(&ctx->mutex);
10847
10848         if (task) {
10849                 mutex_unlock(&task->signal->cred_guard_mutex);
10850                 put_task_struct(task);
10851         }
10852
10853         mutex_lock(&current->perf_event_mutex);
10854         list_add_tail(&event->owner_entry, &current->perf_event_list);
10855         mutex_unlock(&current->perf_event_mutex);
10856
10857         /*
10858          * Drop the reference on the group_event after placing the
10859          * new event on the sibling_list. This ensures destruction
10860          * of the group leader will find the pointer to itself in
10861          * perf_group_detach().
10862          */
10863         fdput(group);
10864         fd_install(event_fd, event_file);
10865         return event_fd;
10866
10867 err_locked:
10868         if (move_group)
10869                 perf_event_ctx_unlock(group_leader, gctx);
10870         mutex_unlock(&ctx->mutex);
10871 /* err_file: */
10872         fput(event_file);
10873 err_context:
10874         perf_unpin_context(ctx);
10875         put_ctx(ctx);
10876 err_alloc:
10877         /*
10878          * If event_file is set, the fput() above will have called ->release()
10879          * and that will take care of freeing the event.
10880          */
10881         if (!event_file)
10882                 free_event(event);
10883 err_cred:
10884         if (task)
10885                 mutex_unlock(&task->signal->cred_guard_mutex);
10886 err_task:
10887         if (task)
10888                 put_task_struct(task);
10889 err_group_fd:
10890         fdput(group);
10891 err_fd:
10892         put_unused_fd(event_fd);
10893         return err;
10894 }
10895
10896 /**
10897  * perf_event_create_kernel_counter
10898  *
10899  * @attr: attributes of the counter to create
10900  * @cpu: cpu in which the counter is bound
10901  * @task: task to profile (NULL for percpu)
10902  */
10903 struct perf_event *
10904 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10905                                  struct task_struct *task,
10906                                  perf_overflow_handler_t overflow_handler,
10907                                  void *context)
10908 {
10909         struct perf_event_context *ctx;
10910         struct perf_event *event;
10911         int err;
10912
10913         /*
10914          * Get the target context (task or percpu):
10915          */
10916
10917         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10918                                  overflow_handler, context, -1);
10919         if (IS_ERR(event)) {
10920                 err = PTR_ERR(event);
10921                 goto err;
10922         }
10923
10924         /* Mark owner so we could distinguish it from user events. */
10925         event->owner = TASK_TOMBSTONE;
10926
10927         ctx = find_get_context(event->pmu, task, event);
10928         if (IS_ERR(ctx)) {
10929                 err = PTR_ERR(ctx);
10930                 goto err_free;
10931         }
10932
10933         WARN_ON_ONCE(ctx->parent_ctx);
10934         mutex_lock(&ctx->mutex);
10935         if (ctx->task == TASK_TOMBSTONE) {
10936                 err = -ESRCH;
10937                 goto err_unlock;
10938         }
10939
10940         if (!task) {
10941                 /*
10942                  * Check if the @cpu we're creating an event for is online.
10943                  *
10944                  * We use the perf_cpu_context::ctx::mutex to serialize against
10945                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10946                  */
10947                 struct perf_cpu_context *cpuctx =
10948                         container_of(ctx, struct perf_cpu_context, ctx);
10949                 if (!cpuctx->online) {
10950                         err = -ENODEV;
10951                         goto err_unlock;
10952                 }
10953         }
10954
10955         if (!exclusive_event_installable(event, ctx)) {
10956                 err = -EBUSY;
10957                 goto err_unlock;
10958         }
10959
10960         perf_install_in_context(ctx, event, cpu);
10961         perf_unpin_context(ctx);
10962         mutex_unlock(&ctx->mutex);
10963
10964         return event;
10965
10966 err_unlock:
10967         mutex_unlock(&ctx->mutex);
10968         perf_unpin_context(ctx);
10969         put_ctx(ctx);
10970 err_free:
10971         free_event(event);
10972 err:
10973         return ERR_PTR(err);
10974 }
10975 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10976
10977 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10978 {
10979         struct perf_event_context *src_ctx;
10980         struct perf_event_context *dst_ctx;
10981         struct perf_event *event, *tmp;
10982         LIST_HEAD(events);
10983
10984         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10985         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10986
10987         /*
10988          * See perf_event_ctx_lock() for comments on the details
10989          * of swizzling perf_event::ctx.
10990          */
10991         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10992         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10993                                  event_entry) {
10994                 perf_remove_from_context(event, 0);
10995                 unaccount_event_cpu(event, src_cpu);
10996                 put_ctx(src_ctx);
10997                 list_add(&event->migrate_entry, &events);
10998         }
10999
11000         /*
11001          * Wait for the events to quiesce before re-instating them.
11002          */
11003         synchronize_rcu();
11004
11005         /*
11006          * Re-instate events in 2 passes.
11007          *
11008          * Skip over group leaders and only install siblings on this first
11009          * pass, siblings will not get enabled without a leader, however a
11010          * leader will enable its siblings, even if those are still on the old
11011          * context.
11012          */
11013         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11014                 if (event->group_leader == event)
11015                         continue;
11016
11017                 list_del(&event->migrate_entry);
11018                 if (event->state >= PERF_EVENT_STATE_OFF)
11019                         event->state = PERF_EVENT_STATE_INACTIVE;
11020                 account_event_cpu(event, dst_cpu);
11021                 perf_install_in_context(dst_ctx, event, dst_cpu);
11022                 get_ctx(dst_ctx);
11023         }
11024
11025         /*
11026          * Once all the siblings are setup properly, install the group leaders
11027          * to make it go.
11028          */
11029         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11030                 list_del(&event->migrate_entry);
11031                 if (event->state >= PERF_EVENT_STATE_OFF)
11032                         event->state = PERF_EVENT_STATE_INACTIVE;
11033                 account_event_cpu(event, dst_cpu);
11034                 perf_install_in_context(dst_ctx, event, dst_cpu);
11035                 get_ctx(dst_ctx);
11036         }
11037         mutex_unlock(&dst_ctx->mutex);
11038         mutex_unlock(&src_ctx->mutex);
11039 }
11040 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11041
11042 static void sync_child_event(struct perf_event *child_event,
11043                                struct task_struct *child)
11044 {
11045         struct perf_event *parent_event = child_event->parent;
11046         u64 child_val;
11047
11048         if (child_event->attr.inherit_stat)
11049                 perf_event_read_event(child_event, child);
11050
11051         child_val = perf_event_count(child_event);
11052
11053         /*
11054          * Add back the child's count to the parent's count:
11055          */
11056         atomic64_add(child_val, &parent_event->child_count);
11057         atomic64_add(child_event->total_time_enabled,
11058                      &parent_event->child_total_time_enabled);
11059         atomic64_add(child_event->total_time_running,
11060                      &parent_event->child_total_time_running);
11061 }
11062
11063 static void
11064 perf_event_exit_event(struct perf_event *child_event,
11065                       struct perf_event_context *child_ctx,
11066                       struct task_struct *child)
11067 {
11068         struct perf_event *parent_event = child_event->parent;
11069
11070         /*
11071          * Do not destroy the 'original' grouping; because of the context
11072          * switch optimization the original events could've ended up in a
11073          * random child task.
11074          *
11075          * If we were to destroy the original group, all group related
11076          * operations would cease to function properly after this random
11077          * child dies.
11078          *
11079          * Do destroy all inherited groups, we don't care about those
11080          * and being thorough is better.
11081          */
11082         raw_spin_lock_irq(&child_ctx->lock);
11083         WARN_ON_ONCE(child_ctx->is_active);
11084
11085         if (parent_event)
11086                 perf_group_detach(child_event);
11087         list_del_event(child_event, child_ctx);
11088         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11089         raw_spin_unlock_irq(&child_ctx->lock);
11090
11091         /*
11092          * Parent events are governed by their filedesc, retain them.
11093          */
11094         if (!parent_event) {
11095                 perf_event_wakeup(child_event);
11096                 return;
11097         }
11098         /*
11099          * Child events can be cleaned up.
11100          */
11101
11102         sync_child_event(child_event, child);
11103
11104         /*
11105          * Remove this event from the parent's list
11106          */
11107         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11108         mutex_lock(&parent_event->child_mutex);
11109         list_del_init(&child_event->child_list);
11110         mutex_unlock(&parent_event->child_mutex);
11111
11112         /*
11113          * Kick perf_poll() for is_event_hup().
11114          */
11115         perf_event_wakeup(parent_event);
11116         free_event(child_event);
11117         put_event(parent_event);
11118 }
11119
11120 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11121 {
11122         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11123         struct perf_event *child_event, *next;
11124
11125         WARN_ON_ONCE(child != current);
11126
11127         child_ctx = perf_pin_task_context(child, ctxn);
11128         if (!child_ctx)
11129                 return;
11130
11131         /*
11132          * In order to reduce the amount of tricky in ctx tear-down, we hold
11133          * ctx::mutex over the entire thing. This serializes against almost
11134          * everything that wants to access the ctx.
11135          *
11136          * The exception is sys_perf_event_open() /
11137          * perf_event_create_kernel_count() which does find_get_context()
11138          * without ctx::mutex (it cannot because of the move_group double mutex
11139          * lock thing). See the comments in perf_install_in_context().
11140          */
11141         mutex_lock(&child_ctx->mutex);
11142
11143         /*
11144          * In a single ctx::lock section, de-schedule the events and detach the
11145          * context from the task such that we cannot ever get it scheduled back
11146          * in.
11147          */
11148         raw_spin_lock_irq(&child_ctx->lock);
11149         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11150
11151         /*
11152          * Now that the context is inactive, destroy the task <-> ctx relation
11153          * and mark the context dead.
11154          */
11155         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11156         put_ctx(child_ctx); /* cannot be last */
11157         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11158         put_task_struct(current); /* cannot be last */
11159
11160         clone_ctx = unclone_ctx(child_ctx);
11161         raw_spin_unlock_irq(&child_ctx->lock);
11162
11163         if (clone_ctx)
11164                 put_ctx(clone_ctx);
11165
11166         /*
11167          * Report the task dead after unscheduling the events so that we
11168          * won't get any samples after PERF_RECORD_EXIT. We can however still
11169          * get a few PERF_RECORD_READ events.
11170          */
11171         perf_event_task(child, child_ctx, 0);
11172
11173         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11174                 perf_event_exit_event(child_event, child_ctx, child);
11175
11176         mutex_unlock(&child_ctx->mutex);
11177
11178         put_ctx(child_ctx);
11179 }
11180
11181 /*
11182  * When a child task exits, feed back event values to parent events.
11183  *
11184  * Can be called with cred_guard_mutex held when called from
11185  * install_exec_creds().
11186  */
11187 void perf_event_exit_task(struct task_struct *child)
11188 {
11189         struct perf_event *event, *tmp;
11190         int ctxn;
11191
11192         mutex_lock(&child->perf_event_mutex);
11193         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11194                                  owner_entry) {
11195                 list_del_init(&event->owner_entry);
11196
11197                 /*
11198                  * Ensure the list deletion is visible before we clear
11199                  * the owner, closes a race against perf_release() where
11200                  * we need to serialize on the owner->perf_event_mutex.
11201                  */
11202                 smp_store_release(&event->owner, NULL);
11203         }
11204         mutex_unlock(&child->perf_event_mutex);
11205
11206         for_each_task_context_nr(ctxn)
11207                 perf_event_exit_task_context(child, ctxn);
11208
11209         /*
11210          * The perf_event_exit_task_context calls perf_event_task
11211          * with child's task_ctx, which generates EXIT events for
11212          * child contexts and sets child->perf_event_ctxp[] to NULL.
11213          * At this point we need to send EXIT events to cpu contexts.
11214          */
11215         perf_event_task(child, NULL, 0);
11216 }
11217
11218 static void perf_free_event(struct perf_event *event,
11219                             struct perf_event_context *ctx)
11220 {
11221         struct perf_event *parent = event->parent;
11222
11223         if (WARN_ON_ONCE(!parent))
11224                 return;
11225
11226         mutex_lock(&parent->child_mutex);
11227         list_del_init(&event->child_list);
11228         mutex_unlock(&parent->child_mutex);
11229
11230         put_event(parent);
11231
11232         raw_spin_lock_irq(&ctx->lock);
11233         perf_group_detach(event);
11234         list_del_event(event, ctx);
11235         raw_spin_unlock_irq(&ctx->lock);
11236         free_event(event);
11237 }
11238
11239 /*
11240  * Free a context as created by inheritance by perf_event_init_task() below,
11241  * used by fork() in case of fail.
11242  *
11243  * Even though the task has never lived, the context and events have been
11244  * exposed through the child_list, so we must take care tearing it all down.
11245  */
11246 void perf_event_free_task(struct task_struct *task)
11247 {
11248         struct perf_event_context *ctx;
11249         struct perf_event *event, *tmp;
11250         int ctxn;
11251
11252         for_each_task_context_nr(ctxn) {
11253                 ctx = task->perf_event_ctxp[ctxn];
11254                 if (!ctx)
11255                         continue;
11256
11257                 mutex_lock(&ctx->mutex);
11258                 raw_spin_lock_irq(&ctx->lock);
11259                 /*
11260                  * Destroy the task <-> ctx relation and mark the context dead.
11261                  *
11262                  * This is important because even though the task hasn't been
11263                  * exposed yet the context has been (through child_list).
11264                  */
11265                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11266                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11267                 put_task_struct(task); /* cannot be last */
11268                 raw_spin_unlock_irq(&ctx->lock);
11269
11270                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11271                         perf_free_event(event, ctx);
11272
11273                 mutex_unlock(&ctx->mutex);
11274
11275                 /*
11276                  * perf_event_release_kernel() could've stolen some of our
11277                  * child events and still have them on its free_list. In that
11278                  * case we must wait for these events to have been freed (in
11279                  * particular all their references to this task must've been
11280                  * dropped).
11281                  *
11282                  * Without this copy_process() will unconditionally free this
11283                  * task (irrespective of its reference count) and
11284                  * _free_event()'s put_task_struct(event->hw.target) will be a
11285                  * use-after-free.
11286                  *
11287                  * Wait for all events to drop their context reference.
11288                  */
11289                 wait_var_event(&ctx->refcount, atomic_read(&ctx->refcount) == 1);
11290                 put_ctx(ctx); /* must be last */
11291         }
11292 }
11293
11294 void perf_event_delayed_put(struct task_struct *task)
11295 {
11296         int ctxn;
11297
11298         for_each_task_context_nr(ctxn)
11299                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11300 }
11301
11302 struct file *perf_event_get(unsigned int fd)
11303 {
11304         struct file *file;
11305
11306         file = fget_raw(fd);
11307         if (!file)
11308                 return ERR_PTR(-EBADF);
11309
11310         if (file->f_op != &perf_fops) {
11311                 fput(file);
11312                 return ERR_PTR(-EBADF);
11313         }
11314
11315         return file;
11316 }
11317
11318 const struct perf_event *perf_get_event(struct file *file)
11319 {
11320         if (file->f_op != &perf_fops)
11321                 return ERR_PTR(-EINVAL);
11322
11323         return file->private_data;
11324 }
11325
11326 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11327 {
11328         if (!event)
11329                 return ERR_PTR(-EINVAL);
11330
11331         return &event->attr;
11332 }
11333
11334 /*
11335  * Inherit an event from parent task to child task.
11336  *
11337  * Returns:
11338  *  - valid pointer on success
11339  *  - NULL for orphaned events
11340  *  - IS_ERR() on error
11341  */
11342 static struct perf_event *
11343 inherit_event(struct perf_event *parent_event,
11344               struct task_struct *parent,
11345               struct perf_event_context *parent_ctx,
11346               struct task_struct *child,
11347               struct perf_event *group_leader,
11348               struct perf_event_context *child_ctx)
11349 {
11350         enum perf_event_state parent_state = parent_event->state;
11351         struct perf_event *child_event;
11352         unsigned long flags;
11353
11354         /*
11355          * Instead of creating recursive hierarchies of events,
11356          * we link inherited events back to the original parent,
11357          * which has a filp for sure, which we use as the reference
11358          * count:
11359          */
11360         if (parent_event->parent)
11361                 parent_event = parent_event->parent;
11362
11363         child_event = perf_event_alloc(&parent_event->attr,
11364                                            parent_event->cpu,
11365                                            child,
11366                                            group_leader, parent_event,
11367                                            NULL, NULL, -1);
11368         if (IS_ERR(child_event))
11369                 return child_event;
11370
11371
11372         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11373             !child_ctx->task_ctx_data) {
11374                 struct pmu *pmu = child_event->pmu;
11375
11376                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11377                                                    GFP_KERNEL);
11378                 if (!child_ctx->task_ctx_data) {
11379                         free_event(child_event);
11380                         return NULL;
11381                 }
11382         }
11383
11384         /*
11385          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11386          * must be under the same lock in order to serialize against
11387          * perf_event_release_kernel(), such that either we must observe
11388          * is_orphaned_event() or they will observe us on the child_list.
11389          */
11390         mutex_lock(&parent_event->child_mutex);
11391         if (is_orphaned_event(parent_event) ||
11392             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11393                 mutex_unlock(&parent_event->child_mutex);
11394                 /* task_ctx_data is freed with child_ctx */
11395                 free_event(child_event);
11396                 return NULL;
11397         }
11398
11399         get_ctx(child_ctx);
11400
11401         /*
11402          * Make the child state follow the state of the parent event,
11403          * not its attr.disabled bit.  We hold the parent's mutex,
11404          * so we won't race with perf_event_{en, dis}able_family.
11405          */
11406         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11407                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11408         else
11409                 child_event->state = PERF_EVENT_STATE_OFF;
11410
11411         if (parent_event->attr.freq) {
11412                 u64 sample_period = parent_event->hw.sample_period;
11413                 struct hw_perf_event *hwc = &child_event->hw;
11414
11415                 hwc->sample_period = sample_period;
11416                 hwc->last_period   = sample_period;
11417
11418                 local64_set(&hwc->period_left, sample_period);
11419         }
11420
11421         child_event->ctx = child_ctx;
11422         child_event->overflow_handler = parent_event->overflow_handler;
11423         child_event->overflow_handler_context
11424                 = parent_event->overflow_handler_context;
11425
11426         /*
11427          * Precalculate sample_data sizes
11428          */
11429         perf_event__header_size(child_event);
11430         perf_event__id_header_size(child_event);
11431
11432         /*
11433          * Link it up in the child's context:
11434          */
11435         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11436         add_event_to_ctx(child_event, child_ctx);
11437         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11438
11439         /*
11440          * Link this into the parent event's child list
11441          */
11442         list_add_tail(&child_event->child_list, &parent_event->child_list);
11443         mutex_unlock(&parent_event->child_mutex);
11444
11445         return child_event;
11446 }
11447
11448 /*
11449  * Inherits an event group.
11450  *
11451  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11452  * This matches with perf_event_release_kernel() removing all child events.
11453  *
11454  * Returns:
11455  *  - 0 on success
11456  *  - <0 on error
11457  */
11458 static int inherit_group(struct perf_event *parent_event,
11459               struct task_struct *parent,
11460               struct perf_event_context *parent_ctx,
11461               struct task_struct *child,
11462               struct perf_event_context *child_ctx)
11463 {
11464         struct perf_event *leader;
11465         struct perf_event *sub;
11466         struct perf_event *child_ctr;
11467
11468         leader = inherit_event(parent_event, parent, parent_ctx,
11469                                  child, NULL, child_ctx);
11470         if (IS_ERR(leader))
11471                 return PTR_ERR(leader);
11472         /*
11473          * @leader can be NULL here because of is_orphaned_event(). In this
11474          * case inherit_event() will create individual events, similar to what
11475          * perf_group_detach() would do anyway.
11476          */
11477         for_each_sibling_event(sub, parent_event) {
11478                 child_ctr = inherit_event(sub, parent, parent_ctx,
11479                                             child, leader, child_ctx);
11480                 if (IS_ERR(child_ctr))
11481                         return PTR_ERR(child_ctr);
11482         }
11483         return 0;
11484 }
11485
11486 /*
11487  * Creates the child task context and tries to inherit the event-group.
11488  *
11489  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11490  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11491  * consistent with perf_event_release_kernel() removing all child events.
11492  *
11493  * Returns:
11494  *  - 0 on success
11495  *  - <0 on error
11496  */
11497 static int
11498 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11499                    struct perf_event_context *parent_ctx,
11500                    struct task_struct *child, int ctxn,
11501                    int *inherited_all)
11502 {
11503         int ret;
11504         struct perf_event_context *child_ctx;
11505
11506         if (!event->attr.inherit) {
11507                 *inherited_all = 0;
11508                 return 0;
11509         }
11510
11511         child_ctx = child->perf_event_ctxp[ctxn];
11512         if (!child_ctx) {
11513                 /*
11514                  * This is executed from the parent task context, so
11515                  * inherit events that have been marked for cloning.
11516                  * First allocate and initialize a context for the
11517                  * child.
11518                  */
11519                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11520                 if (!child_ctx)
11521                         return -ENOMEM;
11522
11523                 child->perf_event_ctxp[ctxn] = child_ctx;
11524         }
11525
11526         ret = inherit_group(event, parent, parent_ctx,
11527                             child, child_ctx);
11528
11529         if (ret)
11530                 *inherited_all = 0;
11531
11532         return ret;
11533 }
11534
11535 /*
11536  * Initialize the perf_event context in task_struct
11537  */
11538 static int perf_event_init_context(struct task_struct *child, int ctxn)
11539 {
11540         struct perf_event_context *child_ctx, *parent_ctx;
11541         struct perf_event_context *cloned_ctx;
11542         struct perf_event *event;
11543         struct task_struct *parent = current;
11544         int inherited_all = 1;
11545         unsigned long flags;
11546         int ret = 0;
11547
11548         if (likely(!parent->perf_event_ctxp[ctxn]))
11549                 return 0;
11550
11551         /*
11552          * If the parent's context is a clone, pin it so it won't get
11553          * swapped under us.
11554          */
11555         parent_ctx = perf_pin_task_context(parent, ctxn);
11556         if (!parent_ctx)
11557                 return 0;
11558
11559         /*
11560          * No need to check if parent_ctx != NULL here; since we saw
11561          * it non-NULL earlier, the only reason for it to become NULL
11562          * is if we exit, and since we're currently in the middle of
11563          * a fork we can't be exiting at the same time.
11564          */
11565
11566         /*
11567          * Lock the parent list. No need to lock the child - not PID
11568          * hashed yet and not running, so nobody can access it.
11569          */
11570         mutex_lock(&parent_ctx->mutex);
11571
11572         /*
11573          * We dont have to disable NMIs - we are only looking at
11574          * the list, not manipulating it:
11575          */
11576         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11577                 ret = inherit_task_group(event, parent, parent_ctx,
11578                                          child, ctxn, &inherited_all);
11579                 if (ret)
11580                         goto out_unlock;
11581         }
11582
11583         /*
11584          * We can't hold ctx->lock when iterating the ->flexible_group list due
11585          * to allocations, but we need to prevent rotation because
11586          * rotate_ctx() will change the list from interrupt context.
11587          */
11588         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11589         parent_ctx->rotate_disable = 1;
11590         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11591
11592         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11593                 ret = inherit_task_group(event, parent, parent_ctx,
11594                                          child, ctxn, &inherited_all);
11595                 if (ret)
11596                         goto out_unlock;
11597         }
11598
11599         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11600         parent_ctx->rotate_disable = 0;
11601
11602         child_ctx = child->perf_event_ctxp[ctxn];
11603
11604         if (child_ctx && inherited_all) {
11605                 /*
11606                  * Mark the child context as a clone of the parent
11607                  * context, or of whatever the parent is a clone of.
11608                  *
11609                  * Note that if the parent is a clone, the holding of
11610                  * parent_ctx->lock avoids it from being uncloned.
11611                  */
11612                 cloned_ctx = parent_ctx->parent_ctx;
11613                 if (cloned_ctx) {
11614                         child_ctx->parent_ctx = cloned_ctx;
11615                         child_ctx->parent_gen = parent_ctx->parent_gen;
11616                 } else {
11617                         child_ctx->parent_ctx = parent_ctx;
11618                         child_ctx->parent_gen = parent_ctx->generation;
11619                 }
11620                 get_ctx(child_ctx->parent_ctx);
11621         }
11622
11623         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11624 out_unlock:
11625         mutex_unlock(&parent_ctx->mutex);
11626
11627         perf_unpin_context(parent_ctx);
11628         put_ctx(parent_ctx);
11629
11630         return ret;
11631 }
11632
11633 /*
11634  * Initialize the perf_event context in task_struct
11635  */
11636 int perf_event_init_task(struct task_struct *child)
11637 {
11638         int ctxn, ret;
11639
11640         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11641         mutex_init(&child->perf_event_mutex);
11642         INIT_LIST_HEAD(&child->perf_event_list);
11643
11644         for_each_task_context_nr(ctxn) {
11645                 ret = perf_event_init_context(child, ctxn);
11646                 if (ret) {
11647                         perf_event_free_task(child);
11648                         return ret;
11649                 }
11650         }
11651
11652         return 0;
11653 }
11654
11655 static void __init perf_event_init_all_cpus(void)
11656 {
11657         struct swevent_htable *swhash;
11658         int cpu;
11659
11660         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11661
11662         for_each_possible_cpu(cpu) {
11663                 swhash = &per_cpu(swevent_htable, cpu);
11664                 mutex_init(&swhash->hlist_mutex);
11665                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11666
11667                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11668                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11669
11670 #ifdef CONFIG_CGROUP_PERF
11671                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11672 #endif
11673                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11674         }
11675 }
11676
11677 void perf_swevent_init_cpu(unsigned int cpu)
11678 {
11679         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11680
11681         mutex_lock(&swhash->hlist_mutex);
11682         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11683                 struct swevent_hlist *hlist;
11684
11685                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11686                 WARN_ON(!hlist);
11687                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11688         }
11689         mutex_unlock(&swhash->hlist_mutex);
11690 }
11691
11692 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11693 static void __perf_event_exit_context(void *__info)
11694 {
11695         struct perf_event_context *ctx = __info;
11696         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11697         struct perf_event *event;
11698
11699         raw_spin_lock(&ctx->lock);
11700         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11701         list_for_each_entry(event, &ctx->event_list, event_entry)
11702                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11703         raw_spin_unlock(&ctx->lock);
11704 }
11705
11706 static void perf_event_exit_cpu_context(int cpu)
11707 {
11708         struct perf_cpu_context *cpuctx;
11709         struct perf_event_context *ctx;
11710         struct pmu *pmu;
11711
11712         mutex_lock(&pmus_lock);
11713         list_for_each_entry(pmu, &pmus, entry) {
11714                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11715                 ctx = &cpuctx->ctx;
11716
11717                 mutex_lock(&ctx->mutex);
11718                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11719                 cpuctx->online = 0;
11720                 mutex_unlock(&ctx->mutex);
11721         }
11722         cpumask_clear_cpu(cpu, perf_online_mask);
11723         mutex_unlock(&pmus_lock);
11724 }
11725 #else
11726
11727 static void perf_event_exit_cpu_context(int cpu) { }
11728
11729 #endif
11730
11731 int perf_event_init_cpu(unsigned int cpu)
11732 {
11733         struct perf_cpu_context *cpuctx;
11734         struct perf_event_context *ctx;
11735         struct pmu *pmu;
11736
11737         perf_swevent_init_cpu(cpu);
11738
11739         mutex_lock(&pmus_lock);
11740         cpumask_set_cpu(cpu, perf_online_mask);
11741         list_for_each_entry(pmu, &pmus, entry) {
11742                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11743                 ctx = &cpuctx->ctx;
11744
11745                 mutex_lock(&ctx->mutex);
11746                 cpuctx->online = 1;
11747                 mutex_unlock(&ctx->mutex);
11748         }
11749         mutex_unlock(&pmus_lock);
11750
11751         return 0;
11752 }
11753
11754 int perf_event_exit_cpu(unsigned int cpu)
11755 {
11756         perf_event_exit_cpu_context(cpu);
11757         return 0;
11758 }
11759
11760 static int
11761 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11762 {
11763         int cpu;
11764
11765         for_each_online_cpu(cpu)
11766                 perf_event_exit_cpu(cpu);
11767
11768         return NOTIFY_OK;
11769 }
11770
11771 /*
11772  * Run the perf reboot notifier at the very last possible moment so that
11773  * the generic watchdog code runs as long as possible.
11774  */
11775 static struct notifier_block perf_reboot_notifier = {
11776         .notifier_call = perf_reboot,
11777         .priority = INT_MIN,
11778 };
11779
11780 void __init perf_event_init(void)
11781 {
11782         int ret;
11783
11784         idr_init(&pmu_idr);
11785
11786         perf_event_init_all_cpus();
11787         init_srcu_struct(&pmus_srcu);
11788         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11789         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11790         perf_pmu_register(&perf_task_clock, NULL, -1);
11791         perf_tp_register();
11792         perf_event_init_cpu(smp_processor_id());
11793         register_reboot_notifier(&perf_reboot_notifier);
11794
11795         ret = init_hw_breakpoint();
11796         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11797
11798         /*
11799          * Build time assertion that we keep the data_head at the intended
11800          * location.  IOW, validation we got the __reserved[] size right.
11801          */
11802         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11803                      != 1024);
11804 }
11805
11806 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11807                               char *page)
11808 {
11809         struct perf_pmu_events_attr *pmu_attr =
11810                 container_of(attr, struct perf_pmu_events_attr, attr);
11811
11812         if (pmu_attr->event_str)
11813                 return sprintf(page, "%s\n", pmu_attr->event_str);
11814
11815         return 0;
11816 }
11817 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11818
11819 static int __init perf_event_sysfs_init(void)
11820 {
11821         struct pmu *pmu;
11822         int ret;
11823
11824         mutex_lock(&pmus_lock);
11825
11826         ret = bus_register(&pmu_bus);
11827         if (ret)
11828                 goto unlock;
11829
11830         list_for_each_entry(pmu, &pmus, entry) {
11831                 if (!pmu->name || pmu->type < 0)
11832                         continue;
11833
11834                 ret = pmu_dev_alloc(pmu);
11835                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11836         }
11837         pmu_bus_running = 1;
11838         ret = 0;
11839
11840 unlock:
11841         mutex_unlock(&pmus_lock);
11842
11843         return ret;
11844 }
11845 device_initcall(perf_event_sysfs_init);
11846
11847 #ifdef CONFIG_CGROUP_PERF
11848 static struct cgroup_subsys_state *
11849 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11850 {
11851         struct perf_cgroup *jc;
11852
11853         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11854         if (!jc)
11855                 return ERR_PTR(-ENOMEM);
11856
11857         jc->info = alloc_percpu(struct perf_cgroup_info);
11858         if (!jc->info) {
11859                 kfree(jc);
11860                 return ERR_PTR(-ENOMEM);
11861         }
11862
11863         return &jc->css;
11864 }
11865
11866 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11867 {
11868         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11869
11870         free_percpu(jc->info);
11871         kfree(jc);
11872 }
11873
11874 static int __perf_cgroup_move(void *info)
11875 {
11876         struct task_struct *task = info;
11877         rcu_read_lock();
11878         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11879         rcu_read_unlock();
11880         return 0;
11881 }
11882
11883 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11884 {
11885         struct task_struct *task;
11886         struct cgroup_subsys_state *css;
11887
11888         cgroup_taskset_for_each(task, css, tset)
11889                 task_function_call(task, __perf_cgroup_move, task);
11890 }
11891
11892 struct cgroup_subsys perf_event_cgrp_subsys = {
11893         .css_alloc      = perf_cgroup_css_alloc,
11894         .css_free       = perf_cgroup_css_free,
11895         .attach         = perf_cgroup_attach,
11896         /*
11897          * Implicitly enable on dfl hierarchy so that perf events can
11898          * always be filtered by cgroup2 path as long as perf_event
11899          * controller is not mounted on a legacy hierarchy.
11900          */
11901         .implicit_on_dfl = true,
11902         .threaded       = true,
11903 };
11904 #endif /* CONFIG_CGROUP_PERF */