2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
45 #include <asm/irq_regs.h>
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
54 static void remote_function(void *data)
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
65 tfc->ret = tfc->func(tfc->info);
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
84 struct remote_function_call data = {
88 .ret = -ESRCH, /* No such (running) process */
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
102 * Calls the function @func on the remote cpu.
104 * returns: @func return value or -ENXIO when the cpu is offline
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
108 struct remote_function_call data = {
112 .ret = -ENXIO, /* No such CPU */
115 smp_call_function_single(cpu, remote_function, &data, 1);
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
125 * branch priv levels that need permission checks
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
132 EVENT_FLEXIBLE = 0x1,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144 static DEFINE_PER_CPU(atomic_t, perf_freq_events);
146 static atomic_t nr_mmap_events __read_mostly;
147 static atomic_t nr_comm_events __read_mostly;
148 static atomic_t nr_task_events __read_mostly;
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
155 * perf event paranoia level:
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
158 * 1 - disallow cpu events for unpriv
159 * 2 - disallow kernel profiling for unpriv
161 int sysctl_perf_event_paranoid __read_mostly = 1;
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
167 * max perf event sample rate
169 #define DEFAULT_MAX_SAMPLE_RATE 100000
170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
178 static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
181 void update_perf_cpu_limits(void)
183 u64 tmp = perf_sample_period_ns;
185 tmp *= sysctl_perf_cpu_time_max_percent;
187 atomic_set(&perf_sample_allowed_ns, tmp);
190 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
192 int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
196 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
219 update_perf_cpu_limits();
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
230 #define NR_ACCUMULATED_SAMPLES 128
231 DEFINE_PER_CPU(u64, running_sample_length);
233 void perf_sample_event_took(u64 sample_len_ns)
235 u64 avg_local_sample_len;
236 u64 local_samples_len;
238 if (atomic_read(&perf_sample_allowed_ns) == 0)
241 /* decay the counter by 1 average sample */
242 local_samples_len = __get_cpu_var(running_sample_length);
243 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
244 local_samples_len += sample_len_ns;
245 __get_cpu_var(running_sample_length) = local_samples_len;
248 * note: this will be biased artifically low until we have
249 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
250 * from having to maintain a count.
252 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
257 if (max_samples_per_tick <= 1)
260 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
261 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
262 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
264 printk_ratelimited(KERN_WARNING
265 "perf samples too long (%lld > %d), lowering "
266 "kernel.perf_event_max_sample_rate to %d\n",
267 avg_local_sample_len,
268 atomic_read(&perf_sample_allowed_ns),
269 sysctl_perf_event_sample_rate);
271 update_perf_cpu_limits();
274 static atomic64_t perf_event_id;
276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
280 enum event_type_t event_type,
281 struct task_struct *task);
283 static void update_context_time(struct perf_event_context *ctx);
284 static u64 perf_event_time(struct perf_event *event);
286 void __weak perf_event_print_debug(void) { }
288 extern __weak const char *perf_pmu_name(void)
293 static inline u64 perf_clock(void)
295 return local_clock();
298 static inline struct perf_cpu_context *
299 __get_cpu_context(struct perf_event_context *ctx)
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
307 raw_spin_lock(&cpuctx->ctx.lock);
309 raw_spin_lock(&ctx->lock);
312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
320 #ifdef CONFIG_CGROUP_PERF
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
326 struct perf_cgroup_info {
332 struct cgroup_subsys_state css;
333 struct perf_cgroup_info __percpu *info;
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
341 static inline struct perf_cgroup *
342 perf_cgroup_from_task(struct task_struct *task)
344 return container_of(task_subsys_state(task, perf_subsys_id),
345 struct perf_cgroup, css);
349 perf_cgroup_match(struct perf_event *event)
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
354 /* @event doesn't care about cgroup */
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
372 static inline bool perf_tryget_cgroup(struct perf_event *event)
374 return css_tryget(&event->cgrp->css);
377 static inline void perf_put_cgroup(struct perf_event *event)
379 css_put(&event->cgrp->css);
382 static inline void perf_detach_cgroup(struct perf_event *event)
384 perf_put_cgroup(event);
388 static inline int is_cgroup_event(struct perf_event *event)
390 return event->cgrp != NULL;
393 static inline u64 perf_cgroup_event_time(struct perf_event *event)
395 struct perf_cgroup_info *t;
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
403 struct perf_cgroup_info *info;
408 info = this_cpu_ptr(cgrp->info);
410 info->time += now - info->timestamp;
411 info->timestamp = now;
414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
418 __update_cgrp_time(cgrp_out);
421 static inline void update_cgrp_time_from_event(struct perf_event *event)
423 struct perf_cgroup *cgrp;
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
429 if (!is_cgroup_event(event))
432 cgrp = perf_cgroup_from_task(current);
434 * Do not update time when cgroup is not active
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
441 perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
452 if (!task || !ctx->nr_cgroups)
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
457 info->timestamp = ctx->timestamp;
460 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
464 * reschedule events based on the cgroup constraint of task.
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
469 void perf_cgroup_switch(struct task_struct *task, int mode)
471 struct perf_cpu_context *cpuctx;
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
480 local_irq_save(flags);
483 * we reschedule only in the presence of cgroup
484 * constrained events.
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
500 if (cpuctx->ctx.nr_cgroups > 0) {
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
513 if (mode & PERF_CGROUP_SWIN) {
514 WARN_ON_ONCE(cpuctx->cgrp);
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
530 local_irq_restore(flags);
533 static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
540 * we come here when we know perf_cgroup_events > 0
542 cgrp1 = perf_cgroup_from_task(task);
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
549 cgrp2 = perf_cgroup_from_task(next);
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
560 static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
567 * we come here when we know perf_cgroup_events > 0
569 cgrp1 = perf_cgroup_from_task(task);
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
583 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
589 struct fd f = fdget(fd);
595 css = cgroup_css_from_dir(f.file, perf_subsys_id);
601 cgrp = container_of(css, struct perf_cgroup, css);
604 /* must be done before we fput() the file */
605 if (!perf_tryget_cgroup(event)) {
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
634 perf_cgroup_defer_enabled(struct perf_event *event)
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
653 if (!event->cgrp_defer_enabled)
656 event->cgrp_defer_enabled = 0;
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
666 #else /* !CONFIG_CGROUP_PERF */
669 perf_cgroup_match(struct perf_event *event)
674 static inline void perf_detach_cgroup(struct perf_event *event)
677 static inline int is_cgroup_event(struct perf_event *event)
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
734 perf_cgroup_defer_enabled(struct perf_event *event)
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
746 * set default to be dependent on timer tick just
749 #define PERF_CPU_HRTIMER (1000 / HZ)
751 * function must be called with interrupts disbled
753 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
755 struct perf_cpu_context *cpuctx;
756 enum hrtimer_restart ret = HRTIMER_NORESTART;
759 WARN_ON(!irqs_disabled());
761 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
763 rotations = perf_rotate_context(cpuctx);
766 * arm timer if needed
769 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
770 ret = HRTIMER_RESTART;
776 /* CPU is going down */
777 void perf_cpu_hrtimer_cancel(int cpu)
779 struct perf_cpu_context *cpuctx;
783 if (WARN_ON(cpu != smp_processor_id()))
786 local_irq_save(flags);
790 list_for_each_entry_rcu(pmu, &pmus, entry) {
791 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
793 if (pmu->task_ctx_nr == perf_sw_context)
796 hrtimer_cancel(&cpuctx->hrtimer);
801 local_irq_restore(flags);
804 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
806 struct hrtimer *hr = &cpuctx->hrtimer;
807 struct pmu *pmu = cpuctx->ctx.pmu;
810 /* no multiplexing needed for SW PMU */
811 if (pmu->task_ctx_nr == perf_sw_context)
815 * check default is sane, if not set then force to
816 * default interval (1/tick)
818 timer = pmu->hrtimer_interval_ms;
820 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
822 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
824 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
825 hr->function = perf_cpu_hrtimer_handler;
828 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
830 struct hrtimer *hr = &cpuctx->hrtimer;
831 struct pmu *pmu = cpuctx->ctx.pmu;
834 if (pmu->task_ctx_nr == perf_sw_context)
837 if (hrtimer_active(hr))
840 if (!hrtimer_callback_running(hr))
841 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
842 0, HRTIMER_MODE_REL_PINNED, 0);
845 void perf_pmu_disable(struct pmu *pmu)
847 int *count = this_cpu_ptr(pmu->pmu_disable_count);
849 pmu->pmu_disable(pmu);
852 void perf_pmu_enable(struct pmu *pmu)
854 int *count = this_cpu_ptr(pmu->pmu_disable_count);
856 pmu->pmu_enable(pmu);
859 static DEFINE_PER_CPU(struct list_head, rotation_list);
862 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
863 * because they're strictly cpu affine and rotate_start is called with IRQs
864 * disabled, while rotate_context is called from IRQ context.
866 static void perf_pmu_rotate_start(struct pmu *pmu)
868 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
869 struct list_head *head = &__get_cpu_var(rotation_list);
871 WARN_ON(!irqs_disabled());
873 if (list_empty(&cpuctx->rotation_list))
874 list_add(&cpuctx->rotation_list, head);
877 static void get_ctx(struct perf_event_context *ctx)
879 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
882 static void put_ctx(struct perf_event_context *ctx)
884 if (atomic_dec_and_test(&ctx->refcount)) {
886 put_ctx(ctx->parent_ctx);
888 put_task_struct(ctx->task);
889 kfree_rcu(ctx, rcu_head);
893 static void unclone_ctx(struct perf_event_context *ctx)
895 if (ctx->parent_ctx) {
896 put_ctx(ctx->parent_ctx);
897 ctx->parent_ctx = NULL;
901 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
904 * only top level events have the pid namespace they were created in
907 event = event->parent;
909 return task_tgid_nr_ns(p, event->ns);
912 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
915 * only top level events have the pid namespace they were created in
918 event = event->parent;
920 return task_pid_nr_ns(p, event->ns);
924 * If we inherit events we want to return the parent event id
927 static u64 primary_event_id(struct perf_event *event)
932 id = event->parent->id;
938 * Get the perf_event_context for a task and lock it.
939 * This has to cope with with the fact that until it is locked,
940 * the context could get moved to another task.
942 static struct perf_event_context *
943 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
945 struct perf_event_context *ctx;
949 * One of the few rules of preemptible RCU is that one cannot do
950 * rcu_read_unlock() while holding a scheduler (or nested) lock when
951 * part of the read side critical section was preemptible -- see
952 * rcu_read_unlock_special().
954 * Since ctx->lock nests under rq->lock we must ensure the entire read
955 * side critical section is non-preemptible.
959 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
962 * If this context is a clone of another, it might
963 * get swapped for another underneath us by
964 * perf_event_task_sched_out, though the
965 * rcu_read_lock() protects us from any context
966 * getting freed. Lock the context and check if it
967 * got swapped before we could get the lock, and retry
968 * if so. If we locked the right context, then it
969 * can't get swapped on us any more.
971 raw_spin_lock_irqsave(&ctx->lock, *flags);
972 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
973 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
979 if (!atomic_inc_not_zero(&ctx->refcount)) {
980 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
990 * Get the context for a task and increment its pin_count so it
991 * can't get swapped to another task. This also increments its
992 * reference count so that the context can't get freed.
994 static struct perf_event_context *
995 perf_pin_task_context(struct task_struct *task, int ctxn)
997 struct perf_event_context *ctx;
1000 ctx = perf_lock_task_context(task, ctxn, &flags);
1003 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1008 static void perf_unpin_context(struct perf_event_context *ctx)
1010 unsigned long flags;
1012 raw_spin_lock_irqsave(&ctx->lock, flags);
1014 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1018 * Update the record of the current time in a context.
1020 static void update_context_time(struct perf_event_context *ctx)
1022 u64 now = perf_clock();
1024 ctx->time += now - ctx->timestamp;
1025 ctx->timestamp = now;
1028 static u64 perf_event_time(struct perf_event *event)
1030 struct perf_event_context *ctx = event->ctx;
1032 if (is_cgroup_event(event))
1033 return perf_cgroup_event_time(event);
1035 return ctx ? ctx->time : 0;
1039 * Update the total_time_enabled and total_time_running fields for a event.
1040 * The caller of this function needs to hold the ctx->lock.
1042 static void update_event_times(struct perf_event *event)
1044 struct perf_event_context *ctx = event->ctx;
1047 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1048 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1051 * in cgroup mode, time_enabled represents
1052 * the time the event was enabled AND active
1053 * tasks were in the monitored cgroup. This is
1054 * independent of the activity of the context as
1055 * there may be a mix of cgroup and non-cgroup events.
1057 * That is why we treat cgroup events differently
1060 if (is_cgroup_event(event))
1061 run_end = perf_cgroup_event_time(event);
1062 else if (ctx->is_active)
1063 run_end = ctx->time;
1065 run_end = event->tstamp_stopped;
1067 event->total_time_enabled = run_end - event->tstamp_enabled;
1069 if (event->state == PERF_EVENT_STATE_INACTIVE)
1070 run_end = event->tstamp_stopped;
1072 run_end = perf_event_time(event);
1074 event->total_time_running = run_end - event->tstamp_running;
1079 * Update total_time_enabled and total_time_running for all events in a group.
1081 static void update_group_times(struct perf_event *leader)
1083 struct perf_event *event;
1085 update_event_times(leader);
1086 list_for_each_entry(event, &leader->sibling_list, group_entry)
1087 update_event_times(event);
1090 static struct list_head *
1091 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1093 if (event->attr.pinned)
1094 return &ctx->pinned_groups;
1096 return &ctx->flexible_groups;
1100 * Add a event from the lists for its context.
1101 * Must be called with ctx->mutex and ctx->lock held.
1104 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1106 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1107 event->attach_state |= PERF_ATTACH_CONTEXT;
1110 * If we're a stand alone event or group leader, we go to the context
1111 * list, group events are kept attached to the group so that
1112 * perf_group_detach can, at all times, locate all siblings.
1114 if (event->group_leader == event) {
1115 struct list_head *list;
1117 if (is_software_event(event))
1118 event->group_flags |= PERF_GROUP_SOFTWARE;
1120 list = ctx_group_list(event, ctx);
1121 list_add_tail(&event->group_entry, list);
1124 if (is_cgroup_event(event))
1127 if (has_branch_stack(event))
1128 ctx->nr_branch_stack++;
1130 list_add_rcu(&event->event_entry, &ctx->event_list);
1131 if (!ctx->nr_events)
1132 perf_pmu_rotate_start(ctx->pmu);
1134 if (event->attr.inherit_stat)
1139 * Initialize event state based on the perf_event_attr::disabled.
1141 static inline void perf_event__state_init(struct perf_event *event)
1143 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1144 PERF_EVENT_STATE_INACTIVE;
1148 * Called at perf_event creation and when events are attached/detached from a
1151 static void perf_event__read_size(struct perf_event *event)
1153 int entry = sizeof(u64); /* value */
1157 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1158 size += sizeof(u64);
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1161 size += sizeof(u64);
1163 if (event->attr.read_format & PERF_FORMAT_ID)
1164 entry += sizeof(u64);
1166 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1167 nr += event->group_leader->nr_siblings;
1168 size += sizeof(u64);
1172 event->read_size = size;
1175 static void perf_event__header_size(struct perf_event *event)
1177 struct perf_sample_data *data;
1178 u64 sample_type = event->attr.sample_type;
1181 perf_event__read_size(event);
1183 if (sample_type & PERF_SAMPLE_IP)
1184 size += sizeof(data->ip);
1186 if (sample_type & PERF_SAMPLE_ADDR)
1187 size += sizeof(data->addr);
1189 if (sample_type & PERF_SAMPLE_PERIOD)
1190 size += sizeof(data->period);
1192 if (sample_type & PERF_SAMPLE_WEIGHT)
1193 size += sizeof(data->weight);
1195 if (sample_type & PERF_SAMPLE_READ)
1196 size += event->read_size;
1198 if (sample_type & PERF_SAMPLE_DATA_SRC)
1199 size += sizeof(data->data_src.val);
1201 event->header_size = size;
1204 static void perf_event__id_header_size(struct perf_event *event)
1206 struct perf_sample_data *data;
1207 u64 sample_type = event->attr.sample_type;
1210 if (sample_type & PERF_SAMPLE_TID)
1211 size += sizeof(data->tid_entry);
1213 if (sample_type & PERF_SAMPLE_TIME)
1214 size += sizeof(data->time);
1216 if (sample_type & PERF_SAMPLE_ID)
1217 size += sizeof(data->id);
1219 if (sample_type & PERF_SAMPLE_STREAM_ID)
1220 size += sizeof(data->stream_id);
1222 if (sample_type & PERF_SAMPLE_CPU)
1223 size += sizeof(data->cpu_entry);
1225 event->id_header_size = size;
1228 static void perf_group_attach(struct perf_event *event)
1230 struct perf_event *group_leader = event->group_leader, *pos;
1233 * We can have double attach due to group movement in perf_event_open.
1235 if (event->attach_state & PERF_ATTACH_GROUP)
1238 event->attach_state |= PERF_ATTACH_GROUP;
1240 if (group_leader == event)
1243 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1244 !is_software_event(event))
1245 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1247 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1248 group_leader->nr_siblings++;
1250 perf_event__header_size(group_leader);
1252 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1253 perf_event__header_size(pos);
1257 * Remove a event from the lists for its context.
1258 * Must be called with ctx->mutex and ctx->lock held.
1261 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1263 struct perf_cpu_context *cpuctx;
1265 * We can have double detach due to exit/hot-unplug + close.
1267 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1270 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1272 if (is_cgroup_event(event)) {
1274 cpuctx = __get_cpu_context(ctx);
1276 * if there are no more cgroup events
1277 * then cler cgrp to avoid stale pointer
1278 * in update_cgrp_time_from_cpuctx()
1280 if (!ctx->nr_cgroups)
1281 cpuctx->cgrp = NULL;
1284 if (has_branch_stack(event))
1285 ctx->nr_branch_stack--;
1288 if (event->attr.inherit_stat)
1291 list_del_rcu(&event->event_entry);
1293 if (event->group_leader == event)
1294 list_del_init(&event->group_entry);
1296 update_group_times(event);
1299 * If event was in error state, then keep it
1300 * that way, otherwise bogus counts will be
1301 * returned on read(). The only way to get out
1302 * of error state is by explicit re-enabling
1305 if (event->state > PERF_EVENT_STATE_OFF)
1306 event->state = PERF_EVENT_STATE_OFF;
1309 static void perf_group_detach(struct perf_event *event)
1311 struct perf_event *sibling, *tmp;
1312 struct list_head *list = NULL;
1315 * We can have double detach due to exit/hot-unplug + close.
1317 if (!(event->attach_state & PERF_ATTACH_GROUP))
1320 event->attach_state &= ~PERF_ATTACH_GROUP;
1323 * If this is a sibling, remove it from its group.
1325 if (event->group_leader != event) {
1326 list_del_init(&event->group_entry);
1327 event->group_leader->nr_siblings--;
1331 if (!list_empty(&event->group_entry))
1332 list = &event->group_entry;
1335 * If this was a group event with sibling events then
1336 * upgrade the siblings to singleton events by adding them
1337 * to whatever list we are on.
1339 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1341 list_move_tail(&sibling->group_entry, list);
1342 sibling->group_leader = sibling;
1344 /* Inherit group flags from the previous leader */
1345 sibling->group_flags = event->group_flags;
1349 perf_event__header_size(event->group_leader);
1351 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1352 perf_event__header_size(tmp);
1356 event_filter_match(struct perf_event *event)
1358 return (event->cpu == -1 || event->cpu == smp_processor_id())
1359 && perf_cgroup_match(event);
1363 event_sched_out(struct perf_event *event,
1364 struct perf_cpu_context *cpuctx,
1365 struct perf_event_context *ctx)
1367 u64 tstamp = perf_event_time(event);
1370 * An event which could not be activated because of
1371 * filter mismatch still needs to have its timings
1372 * maintained, otherwise bogus information is return
1373 * via read() for time_enabled, time_running:
1375 if (event->state == PERF_EVENT_STATE_INACTIVE
1376 && !event_filter_match(event)) {
1377 delta = tstamp - event->tstamp_stopped;
1378 event->tstamp_running += delta;
1379 event->tstamp_stopped = tstamp;
1382 if (event->state != PERF_EVENT_STATE_ACTIVE)
1385 event->state = PERF_EVENT_STATE_INACTIVE;
1386 if (event->pending_disable) {
1387 event->pending_disable = 0;
1388 event->state = PERF_EVENT_STATE_OFF;
1390 event->tstamp_stopped = tstamp;
1391 event->pmu->del(event, 0);
1394 if (!is_software_event(event))
1395 cpuctx->active_oncpu--;
1397 if (event->attr.freq && event->attr.sample_freq)
1399 if (event->attr.exclusive || !cpuctx->active_oncpu)
1400 cpuctx->exclusive = 0;
1404 group_sched_out(struct perf_event *group_event,
1405 struct perf_cpu_context *cpuctx,
1406 struct perf_event_context *ctx)
1408 struct perf_event *event;
1409 int state = group_event->state;
1411 event_sched_out(group_event, cpuctx, ctx);
1414 * Schedule out siblings (if any):
1416 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1417 event_sched_out(event, cpuctx, ctx);
1419 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1420 cpuctx->exclusive = 0;
1424 * Cross CPU call to remove a performance event
1426 * We disable the event on the hardware level first. After that we
1427 * remove it from the context list.
1429 static int __perf_remove_from_context(void *info)
1431 struct perf_event *event = info;
1432 struct perf_event_context *ctx = event->ctx;
1433 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1435 raw_spin_lock(&ctx->lock);
1436 event_sched_out(event, cpuctx, ctx);
1437 list_del_event(event, ctx);
1438 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1440 cpuctx->task_ctx = NULL;
1442 raw_spin_unlock(&ctx->lock);
1449 * Remove the event from a task's (or a CPU's) list of events.
1451 * CPU events are removed with a smp call. For task events we only
1452 * call when the task is on a CPU.
1454 * If event->ctx is a cloned context, callers must make sure that
1455 * every task struct that event->ctx->task could possibly point to
1456 * remains valid. This is OK when called from perf_release since
1457 * that only calls us on the top-level context, which can't be a clone.
1458 * When called from perf_event_exit_task, it's OK because the
1459 * context has been detached from its task.
1461 static void perf_remove_from_context(struct perf_event *event)
1463 struct perf_event_context *ctx = event->ctx;
1464 struct task_struct *task = ctx->task;
1466 lockdep_assert_held(&ctx->mutex);
1470 * Per cpu events are removed via an smp call and
1471 * the removal is always successful.
1473 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1478 if (!task_function_call(task, __perf_remove_from_context, event))
1481 raw_spin_lock_irq(&ctx->lock);
1483 * If we failed to find a running task, but find the context active now
1484 * that we've acquired the ctx->lock, retry.
1486 if (ctx->is_active) {
1487 raw_spin_unlock_irq(&ctx->lock);
1492 * Since the task isn't running, its safe to remove the event, us
1493 * holding the ctx->lock ensures the task won't get scheduled in.
1495 list_del_event(event, ctx);
1496 raw_spin_unlock_irq(&ctx->lock);
1500 * Cross CPU call to disable a performance event
1502 int __perf_event_disable(void *info)
1504 struct perf_event *event = info;
1505 struct perf_event_context *ctx = event->ctx;
1506 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1509 * If this is a per-task event, need to check whether this
1510 * event's task is the current task on this cpu.
1512 * Can trigger due to concurrent perf_event_context_sched_out()
1513 * flipping contexts around.
1515 if (ctx->task && cpuctx->task_ctx != ctx)
1518 raw_spin_lock(&ctx->lock);
1521 * If the event is on, turn it off.
1522 * If it is in error state, leave it in error state.
1524 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1525 update_context_time(ctx);
1526 update_cgrp_time_from_event(event);
1527 update_group_times(event);
1528 if (event == event->group_leader)
1529 group_sched_out(event, cpuctx, ctx);
1531 event_sched_out(event, cpuctx, ctx);
1532 event->state = PERF_EVENT_STATE_OFF;
1535 raw_spin_unlock(&ctx->lock);
1543 * If event->ctx is a cloned context, callers must make sure that
1544 * every task struct that event->ctx->task could possibly point to
1545 * remains valid. This condition is satisifed when called through
1546 * perf_event_for_each_child or perf_event_for_each because they
1547 * hold the top-level event's child_mutex, so any descendant that
1548 * goes to exit will block in sync_child_event.
1549 * When called from perf_pending_event it's OK because event->ctx
1550 * is the current context on this CPU and preemption is disabled,
1551 * hence we can't get into perf_event_task_sched_out for this context.
1553 void perf_event_disable(struct perf_event *event)
1555 struct perf_event_context *ctx = event->ctx;
1556 struct task_struct *task = ctx->task;
1560 * Disable the event on the cpu that it's on
1562 cpu_function_call(event->cpu, __perf_event_disable, event);
1567 if (!task_function_call(task, __perf_event_disable, event))
1570 raw_spin_lock_irq(&ctx->lock);
1572 * If the event is still active, we need to retry the cross-call.
1574 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1575 raw_spin_unlock_irq(&ctx->lock);
1577 * Reload the task pointer, it might have been changed by
1578 * a concurrent perf_event_context_sched_out().
1585 * Since we have the lock this context can't be scheduled
1586 * in, so we can change the state safely.
1588 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1589 update_group_times(event);
1590 event->state = PERF_EVENT_STATE_OFF;
1592 raw_spin_unlock_irq(&ctx->lock);
1594 EXPORT_SYMBOL_GPL(perf_event_disable);
1596 static void perf_set_shadow_time(struct perf_event *event,
1597 struct perf_event_context *ctx,
1601 * use the correct time source for the time snapshot
1603 * We could get by without this by leveraging the
1604 * fact that to get to this function, the caller
1605 * has most likely already called update_context_time()
1606 * and update_cgrp_time_xx() and thus both timestamp
1607 * are identical (or very close). Given that tstamp is,
1608 * already adjusted for cgroup, we could say that:
1609 * tstamp - ctx->timestamp
1611 * tstamp - cgrp->timestamp.
1613 * Then, in perf_output_read(), the calculation would
1614 * work with no changes because:
1615 * - event is guaranteed scheduled in
1616 * - no scheduled out in between
1617 * - thus the timestamp would be the same
1619 * But this is a bit hairy.
1621 * So instead, we have an explicit cgroup call to remain
1622 * within the time time source all along. We believe it
1623 * is cleaner and simpler to understand.
1625 if (is_cgroup_event(event))
1626 perf_cgroup_set_shadow_time(event, tstamp);
1628 event->shadow_ctx_time = tstamp - ctx->timestamp;
1631 #define MAX_INTERRUPTS (~0ULL)
1633 static void perf_log_throttle(struct perf_event *event, int enable);
1636 event_sched_in(struct perf_event *event,
1637 struct perf_cpu_context *cpuctx,
1638 struct perf_event_context *ctx)
1640 u64 tstamp = perf_event_time(event);
1642 if (event->state <= PERF_EVENT_STATE_OFF)
1645 event->state = PERF_EVENT_STATE_ACTIVE;
1646 event->oncpu = smp_processor_id();
1649 * Unthrottle events, since we scheduled we might have missed several
1650 * ticks already, also for a heavily scheduling task there is little
1651 * guarantee it'll get a tick in a timely manner.
1653 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1654 perf_log_throttle(event, 1);
1655 event->hw.interrupts = 0;
1659 * The new state must be visible before we turn it on in the hardware:
1663 if (event->pmu->add(event, PERF_EF_START)) {
1664 event->state = PERF_EVENT_STATE_INACTIVE;
1669 event->tstamp_running += tstamp - event->tstamp_stopped;
1671 perf_set_shadow_time(event, ctx, tstamp);
1673 if (!is_software_event(event))
1674 cpuctx->active_oncpu++;
1676 if (event->attr.freq && event->attr.sample_freq)
1679 if (event->attr.exclusive)
1680 cpuctx->exclusive = 1;
1686 group_sched_in(struct perf_event *group_event,
1687 struct perf_cpu_context *cpuctx,
1688 struct perf_event_context *ctx)
1690 struct perf_event *event, *partial_group = NULL;
1691 struct pmu *pmu = group_event->pmu;
1692 u64 now = ctx->time;
1693 bool simulate = false;
1695 if (group_event->state == PERF_EVENT_STATE_OFF)
1698 pmu->start_txn(pmu);
1700 if (event_sched_in(group_event, cpuctx, ctx)) {
1701 pmu->cancel_txn(pmu);
1702 perf_cpu_hrtimer_restart(cpuctx);
1707 * Schedule in siblings as one group (if any):
1709 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1710 if (event_sched_in(event, cpuctx, ctx)) {
1711 partial_group = event;
1716 if (!pmu->commit_txn(pmu))
1721 * Groups can be scheduled in as one unit only, so undo any
1722 * partial group before returning:
1723 * The events up to the failed event are scheduled out normally,
1724 * tstamp_stopped will be updated.
1726 * The failed events and the remaining siblings need to have
1727 * their timings updated as if they had gone thru event_sched_in()
1728 * and event_sched_out(). This is required to get consistent timings
1729 * across the group. This also takes care of the case where the group
1730 * could never be scheduled by ensuring tstamp_stopped is set to mark
1731 * the time the event was actually stopped, such that time delta
1732 * calculation in update_event_times() is correct.
1734 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1735 if (event == partial_group)
1739 event->tstamp_running += now - event->tstamp_stopped;
1740 event->tstamp_stopped = now;
1742 event_sched_out(event, cpuctx, ctx);
1745 event_sched_out(group_event, cpuctx, ctx);
1747 pmu->cancel_txn(pmu);
1749 perf_cpu_hrtimer_restart(cpuctx);
1755 * Work out whether we can put this event group on the CPU now.
1757 static int group_can_go_on(struct perf_event *event,
1758 struct perf_cpu_context *cpuctx,
1762 * Groups consisting entirely of software events can always go on.
1764 if (event->group_flags & PERF_GROUP_SOFTWARE)
1767 * If an exclusive group is already on, no other hardware
1770 if (cpuctx->exclusive)
1773 * If this group is exclusive and there are already
1774 * events on the CPU, it can't go on.
1776 if (event->attr.exclusive && cpuctx->active_oncpu)
1779 * Otherwise, try to add it if all previous groups were able
1785 static void add_event_to_ctx(struct perf_event *event,
1786 struct perf_event_context *ctx)
1788 u64 tstamp = perf_event_time(event);
1790 list_add_event(event, ctx);
1791 perf_group_attach(event);
1792 event->tstamp_enabled = tstamp;
1793 event->tstamp_running = tstamp;
1794 event->tstamp_stopped = tstamp;
1797 static void task_ctx_sched_out(struct perf_event_context *ctx);
1799 ctx_sched_in(struct perf_event_context *ctx,
1800 struct perf_cpu_context *cpuctx,
1801 enum event_type_t event_type,
1802 struct task_struct *task);
1804 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1805 struct perf_event_context *ctx,
1806 struct task_struct *task)
1808 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1810 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1811 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1813 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1817 * Cross CPU call to install and enable a performance event
1819 * Must be called with ctx->mutex held
1821 static int __perf_install_in_context(void *info)
1823 struct perf_event *event = info;
1824 struct perf_event_context *ctx = event->ctx;
1825 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1826 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1827 struct task_struct *task = current;
1829 perf_ctx_lock(cpuctx, task_ctx);
1830 perf_pmu_disable(cpuctx->ctx.pmu);
1833 * If there was an active task_ctx schedule it out.
1836 task_ctx_sched_out(task_ctx);
1839 * If the context we're installing events in is not the
1840 * active task_ctx, flip them.
1842 if (ctx->task && task_ctx != ctx) {
1844 raw_spin_unlock(&task_ctx->lock);
1845 raw_spin_lock(&ctx->lock);
1850 cpuctx->task_ctx = task_ctx;
1851 task = task_ctx->task;
1854 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1856 update_context_time(ctx);
1858 * update cgrp time only if current cgrp
1859 * matches event->cgrp. Must be done before
1860 * calling add_event_to_ctx()
1862 update_cgrp_time_from_event(event);
1864 add_event_to_ctx(event, ctx);
1867 * Schedule everything back in
1869 perf_event_sched_in(cpuctx, task_ctx, task);
1871 perf_pmu_enable(cpuctx->ctx.pmu);
1872 perf_ctx_unlock(cpuctx, task_ctx);
1874 if (atomic_read(&__get_cpu_var(perf_freq_events)))
1875 tick_nohz_full_kick();
1881 * Attach a performance event to a context
1883 * First we add the event to the list with the hardware enable bit
1884 * in event->hw_config cleared.
1886 * If the event is attached to a task which is on a CPU we use a smp
1887 * call to enable it in the task context. The task might have been
1888 * scheduled away, but we check this in the smp call again.
1891 perf_install_in_context(struct perf_event_context *ctx,
1892 struct perf_event *event,
1895 struct task_struct *task = ctx->task;
1897 lockdep_assert_held(&ctx->mutex);
1900 if (event->cpu != -1)
1905 * Per cpu events are installed via an smp call and
1906 * the install is always successful.
1908 cpu_function_call(cpu, __perf_install_in_context, event);
1913 if (!task_function_call(task, __perf_install_in_context, event))
1916 raw_spin_lock_irq(&ctx->lock);
1918 * If we failed to find a running task, but find the context active now
1919 * that we've acquired the ctx->lock, retry.
1921 if (ctx->is_active) {
1922 raw_spin_unlock_irq(&ctx->lock);
1927 * Since the task isn't running, its safe to add the event, us holding
1928 * the ctx->lock ensures the task won't get scheduled in.
1930 add_event_to_ctx(event, ctx);
1931 raw_spin_unlock_irq(&ctx->lock);
1935 * Put a event into inactive state and update time fields.
1936 * Enabling the leader of a group effectively enables all
1937 * the group members that aren't explicitly disabled, so we
1938 * have to update their ->tstamp_enabled also.
1939 * Note: this works for group members as well as group leaders
1940 * since the non-leader members' sibling_lists will be empty.
1942 static void __perf_event_mark_enabled(struct perf_event *event)
1944 struct perf_event *sub;
1945 u64 tstamp = perf_event_time(event);
1947 event->state = PERF_EVENT_STATE_INACTIVE;
1948 event->tstamp_enabled = tstamp - event->total_time_enabled;
1949 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1950 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1951 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1956 * Cross CPU call to enable a performance event
1958 static int __perf_event_enable(void *info)
1960 struct perf_event *event = info;
1961 struct perf_event_context *ctx = event->ctx;
1962 struct perf_event *leader = event->group_leader;
1963 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1967 * There's a time window between 'ctx->is_active' check
1968 * in perf_event_enable function and this place having:
1970 * - ctx->lock unlocked
1972 * where the task could be killed and 'ctx' deactivated
1973 * by perf_event_exit_task.
1975 if (!ctx->is_active)
1978 raw_spin_lock(&ctx->lock);
1979 update_context_time(ctx);
1981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1985 * set current task's cgroup time reference point
1987 perf_cgroup_set_timestamp(current, ctx);
1989 __perf_event_mark_enabled(event);
1991 if (!event_filter_match(event)) {
1992 if (is_cgroup_event(event))
1993 perf_cgroup_defer_enabled(event);
1998 * If the event is in a group and isn't the group leader,
1999 * then don't put it on unless the group is on.
2001 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2004 if (!group_can_go_on(event, cpuctx, 1)) {
2007 if (event == leader)
2008 err = group_sched_in(event, cpuctx, ctx);
2010 err = event_sched_in(event, cpuctx, ctx);
2015 * If this event can't go on and it's part of a
2016 * group, then the whole group has to come off.
2018 if (leader != event) {
2019 group_sched_out(leader, cpuctx, ctx);
2020 perf_cpu_hrtimer_restart(cpuctx);
2022 if (leader->attr.pinned) {
2023 update_group_times(leader);
2024 leader->state = PERF_EVENT_STATE_ERROR;
2029 raw_spin_unlock(&ctx->lock);
2037 * If event->ctx is a cloned context, callers must make sure that
2038 * every task struct that event->ctx->task could possibly point to
2039 * remains valid. This condition is satisfied when called through
2040 * perf_event_for_each_child or perf_event_for_each as described
2041 * for perf_event_disable.
2043 void perf_event_enable(struct perf_event *event)
2045 struct perf_event_context *ctx = event->ctx;
2046 struct task_struct *task = ctx->task;
2050 * Enable the event on the cpu that it's on
2052 cpu_function_call(event->cpu, __perf_event_enable, event);
2056 raw_spin_lock_irq(&ctx->lock);
2057 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2061 * If the event is in error state, clear that first.
2062 * That way, if we see the event in error state below, we
2063 * know that it has gone back into error state, as distinct
2064 * from the task having been scheduled away before the
2065 * cross-call arrived.
2067 if (event->state == PERF_EVENT_STATE_ERROR)
2068 event->state = PERF_EVENT_STATE_OFF;
2071 if (!ctx->is_active) {
2072 __perf_event_mark_enabled(event);
2076 raw_spin_unlock_irq(&ctx->lock);
2078 if (!task_function_call(task, __perf_event_enable, event))
2081 raw_spin_lock_irq(&ctx->lock);
2084 * If the context is active and the event is still off,
2085 * we need to retry the cross-call.
2087 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2089 * task could have been flipped by a concurrent
2090 * perf_event_context_sched_out()
2097 raw_spin_unlock_irq(&ctx->lock);
2099 EXPORT_SYMBOL_GPL(perf_event_enable);
2101 int perf_event_refresh(struct perf_event *event, int refresh)
2104 * not supported on inherited events
2106 if (event->attr.inherit || !is_sampling_event(event))
2109 atomic_add(refresh, &event->event_limit);
2110 perf_event_enable(event);
2114 EXPORT_SYMBOL_GPL(perf_event_refresh);
2116 static void ctx_sched_out(struct perf_event_context *ctx,
2117 struct perf_cpu_context *cpuctx,
2118 enum event_type_t event_type)
2120 struct perf_event *event;
2121 int is_active = ctx->is_active;
2123 ctx->is_active &= ~event_type;
2124 if (likely(!ctx->nr_events))
2127 update_context_time(ctx);
2128 update_cgrp_time_from_cpuctx(cpuctx);
2129 if (!ctx->nr_active)
2132 perf_pmu_disable(ctx->pmu);
2133 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2134 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2135 group_sched_out(event, cpuctx, ctx);
2138 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2139 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2140 group_sched_out(event, cpuctx, ctx);
2142 perf_pmu_enable(ctx->pmu);
2146 * Test whether two contexts are equivalent, i.e. whether they
2147 * have both been cloned from the same version of the same context
2148 * and they both have the same number of enabled events.
2149 * If the number of enabled events is the same, then the set
2150 * of enabled events should be the same, because these are both
2151 * inherited contexts, therefore we can't access individual events
2152 * in them directly with an fd; we can only enable/disable all
2153 * events via prctl, or enable/disable all events in a family
2154 * via ioctl, which will have the same effect on both contexts.
2156 static int context_equiv(struct perf_event_context *ctx1,
2157 struct perf_event_context *ctx2)
2159 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2160 && ctx1->parent_gen == ctx2->parent_gen
2161 && !ctx1->pin_count && !ctx2->pin_count;
2164 static void __perf_event_sync_stat(struct perf_event *event,
2165 struct perf_event *next_event)
2169 if (!event->attr.inherit_stat)
2173 * Update the event value, we cannot use perf_event_read()
2174 * because we're in the middle of a context switch and have IRQs
2175 * disabled, which upsets smp_call_function_single(), however
2176 * we know the event must be on the current CPU, therefore we
2177 * don't need to use it.
2179 switch (event->state) {
2180 case PERF_EVENT_STATE_ACTIVE:
2181 event->pmu->read(event);
2184 case PERF_EVENT_STATE_INACTIVE:
2185 update_event_times(event);
2193 * In order to keep per-task stats reliable we need to flip the event
2194 * values when we flip the contexts.
2196 value = local64_read(&next_event->count);
2197 value = local64_xchg(&event->count, value);
2198 local64_set(&next_event->count, value);
2200 swap(event->total_time_enabled, next_event->total_time_enabled);
2201 swap(event->total_time_running, next_event->total_time_running);
2204 * Since we swizzled the values, update the user visible data too.
2206 perf_event_update_userpage(event);
2207 perf_event_update_userpage(next_event);
2210 #define list_next_entry(pos, member) \
2211 list_entry(pos->member.next, typeof(*pos), member)
2213 static void perf_event_sync_stat(struct perf_event_context *ctx,
2214 struct perf_event_context *next_ctx)
2216 struct perf_event *event, *next_event;
2221 update_context_time(ctx);
2223 event = list_first_entry(&ctx->event_list,
2224 struct perf_event, event_entry);
2226 next_event = list_first_entry(&next_ctx->event_list,
2227 struct perf_event, event_entry);
2229 while (&event->event_entry != &ctx->event_list &&
2230 &next_event->event_entry != &next_ctx->event_list) {
2232 __perf_event_sync_stat(event, next_event);
2234 event = list_next_entry(event, event_entry);
2235 next_event = list_next_entry(next_event, event_entry);
2239 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2240 struct task_struct *next)
2242 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2243 struct perf_event_context *next_ctx;
2244 struct perf_event_context *parent;
2245 struct perf_cpu_context *cpuctx;
2251 cpuctx = __get_cpu_context(ctx);
2252 if (!cpuctx->task_ctx)
2256 parent = rcu_dereference(ctx->parent_ctx);
2257 next_ctx = next->perf_event_ctxp[ctxn];
2258 if (parent && next_ctx &&
2259 rcu_dereference(next_ctx->parent_ctx) == parent) {
2261 * Looks like the two contexts are clones, so we might be
2262 * able to optimize the context switch. We lock both
2263 * contexts and check that they are clones under the
2264 * lock (including re-checking that neither has been
2265 * uncloned in the meantime). It doesn't matter which
2266 * order we take the locks because no other cpu could
2267 * be trying to lock both of these tasks.
2269 raw_spin_lock(&ctx->lock);
2270 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2271 if (context_equiv(ctx, next_ctx)) {
2273 * XXX do we need a memory barrier of sorts
2274 * wrt to rcu_dereference() of perf_event_ctxp
2276 task->perf_event_ctxp[ctxn] = next_ctx;
2277 next->perf_event_ctxp[ctxn] = ctx;
2279 next_ctx->task = task;
2282 perf_event_sync_stat(ctx, next_ctx);
2284 raw_spin_unlock(&next_ctx->lock);
2285 raw_spin_unlock(&ctx->lock);
2290 raw_spin_lock(&ctx->lock);
2291 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2292 cpuctx->task_ctx = NULL;
2293 raw_spin_unlock(&ctx->lock);
2297 #define for_each_task_context_nr(ctxn) \
2298 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2301 * Called from scheduler to remove the events of the current task,
2302 * with interrupts disabled.
2304 * We stop each event and update the event value in event->count.
2306 * This does not protect us against NMI, but disable()
2307 * sets the disabled bit in the control field of event _before_
2308 * accessing the event control register. If a NMI hits, then it will
2309 * not restart the event.
2311 void __perf_event_task_sched_out(struct task_struct *task,
2312 struct task_struct *next)
2316 for_each_task_context_nr(ctxn)
2317 perf_event_context_sched_out(task, ctxn, next);
2320 * if cgroup events exist on this CPU, then we need
2321 * to check if we have to switch out PMU state.
2322 * cgroup event are system-wide mode only
2324 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2325 perf_cgroup_sched_out(task, next);
2328 static void task_ctx_sched_out(struct perf_event_context *ctx)
2330 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2332 if (!cpuctx->task_ctx)
2335 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2338 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2339 cpuctx->task_ctx = NULL;
2343 * Called with IRQs disabled
2345 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2346 enum event_type_t event_type)
2348 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2352 ctx_pinned_sched_in(struct perf_event_context *ctx,
2353 struct perf_cpu_context *cpuctx)
2355 struct perf_event *event;
2357 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2358 if (event->state <= PERF_EVENT_STATE_OFF)
2360 if (!event_filter_match(event))
2363 /* may need to reset tstamp_enabled */
2364 if (is_cgroup_event(event))
2365 perf_cgroup_mark_enabled(event, ctx);
2367 if (group_can_go_on(event, cpuctx, 1))
2368 group_sched_in(event, cpuctx, ctx);
2371 * If this pinned group hasn't been scheduled,
2372 * put it in error state.
2374 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2375 update_group_times(event);
2376 event->state = PERF_EVENT_STATE_ERROR;
2382 ctx_flexible_sched_in(struct perf_event_context *ctx,
2383 struct perf_cpu_context *cpuctx)
2385 struct perf_event *event;
2388 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2389 /* Ignore events in OFF or ERROR state */
2390 if (event->state <= PERF_EVENT_STATE_OFF)
2393 * Listen to the 'cpu' scheduling filter constraint
2396 if (!event_filter_match(event))
2399 /* may need to reset tstamp_enabled */
2400 if (is_cgroup_event(event))
2401 perf_cgroup_mark_enabled(event, ctx);
2403 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2404 if (group_sched_in(event, cpuctx, ctx))
2411 ctx_sched_in(struct perf_event_context *ctx,
2412 struct perf_cpu_context *cpuctx,
2413 enum event_type_t event_type,
2414 struct task_struct *task)
2417 int is_active = ctx->is_active;
2419 ctx->is_active |= event_type;
2420 if (likely(!ctx->nr_events))
2424 ctx->timestamp = now;
2425 perf_cgroup_set_timestamp(task, ctx);
2427 * First go through the list and put on any pinned groups
2428 * in order to give them the best chance of going on.
2430 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2431 ctx_pinned_sched_in(ctx, cpuctx);
2433 /* Then walk through the lower prio flexible groups */
2434 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2435 ctx_flexible_sched_in(ctx, cpuctx);
2438 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2439 enum event_type_t event_type,
2440 struct task_struct *task)
2442 struct perf_event_context *ctx = &cpuctx->ctx;
2444 ctx_sched_in(ctx, cpuctx, event_type, task);
2447 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2448 struct task_struct *task)
2450 struct perf_cpu_context *cpuctx;
2452 cpuctx = __get_cpu_context(ctx);
2453 if (cpuctx->task_ctx == ctx)
2456 perf_ctx_lock(cpuctx, ctx);
2457 perf_pmu_disable(ctx->pmu);
2459 * We want to keep the following priority order:
2460 * cpu pinned (that don't need to move), task pinned,
2461 * cpu flexible, task flexible.
2463 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2466 cpuctx->task_ctx = ctx;
2468 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2470 perf_pmu_enable(ctx->pmu);
2471 perf_ctx_unlock(cpuctx, ctx);
2474 * Since these rotations are per-cpu, we need to ensure the
2475 * cpu-context we got scheduled on is actually rotating.
2477 perf_pmu_rotate_start(ctx->pmu);
2481 * When sampling the branck stack in system-wide, it may be necessary
2482 * to flush the stack on context switch. This happens when the branch
2483 * stack does not tag its entries with the pid of the current task.
2484 * Otherwise it becomes impossible to associate a branch entry with a
2485 * task. This ambiguity is more likely to appear when the branch stack
2486 * supports priv level filtering and the user sets it to monitor only
2487 * at the user level (which could be a useful measurement in system-wide
2488 * mode). In that case, the risk is high of having a branch stack with
2489 * branch from multiple tasks. Flushing may mean dropping the existing
2490 * entries or stashing them somewhere in the PMU specific code layer.
2492 * This function provides the context switch callback to the lower code
2493 * layer. It is invoked ONLY when there is at least one system-wide context
2494 * with at least one active event using taken branch sampling.
2496 static void perf_branch_stack_sched_in(struct task_struct *prev,
2497 struct task_struct *task)
2499 struct perf_cpu_context *cpuctx;
2501 unsigned long flags;
2503 /* no need to flush branch stack if not changing task */
2507 local_irq_save(flags);
2511 list_for_each_entry_rcu(pmu, &pmus, entry) {
2512 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2515 * check if the context has at least one
2516 * event using PERF_SAMPLE_BRANCH_STACK
2518 if (cpuctx->ctx.nr_branch_stack > 0
2519 && pmu->flush_branch_stack) {
2521 pmu = cpuctx->ctx.pmu;
2523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2525 perf_pmu_disable(pmu);
2527 pmu->flush_branch_stack();
2529 perf_pmu_enable(pmu);
2531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2537 local_irq_restore(flags);
2541 * Called from scheduler to add the events of the current task
2542 * with interrupts disabled.
2544 * We restore the event value and then enable it.
2546 * This does not protect us against NMI, but enable()
2547 * sets the enabled bit in the control field of event _before_
2548 * accessing the event control register. If a NMI hits, then it will
2549 * keep the event running.
2551 void __perf_event_task_sched_in(struct task_struct *prev,
2552 struct task_struct *task)
2554 struct perf_event_context *ctx;
2557 for_each_task_context_nr(ctxn) {
2558 ctx = task->perf_event_ctxp[ctxn];
2562 perf_event_context_sched_in(ctx, task);
2565 * if cgroup events exist on this CPU, then we need
2566 * to check if we have to switch in PMU state.
2567 * cgroup event are system-wide mode only
2569 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2570 perf_cgroup_sched_in(prev, task);
2572 /* check for system-wide branch_stack events */
2573 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2574 perf_branch_stack_sched_in(prev, task);
2577 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2579 u64 frequency = event->attr.sample_freq;
2580 u64 sec = NSEC_PER_SEC;
2581 u64 divisor, dividend;
2583 int count_fls, nsec_fls, frequency_fls, sec_fls;
2585 count_fls = fls64(count);
2586 nsec_fls = fls64(nsec);
2587 frequency_fls = fls64(frequency);
2591 * We got @count in @nsec, with a target of sample_freq HZ
2592 * the target period becomes:
2595 * period = -------------------
2596 * @nsec * sample_freq
2601 * Reduce accuracy by one bit such that @a and @b converge
2602 * to a similar magnitude.
2604 #define REDUCE_FLS(a, b) \
2606 if (a##_fls > b##_fls) { \
2616 * Reduce accuracy until either term fits in a u64, then proceed with
2617 * the other, so that finally we can do a u64/u64 division.
2619 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2620 REDUCE_FLS(nsec, frequency);
2621 REDUCE_FLS(sec, count);
2624 if (count_fls + sec_fls > 64) {
2625 divisor = nsec * frequency;
2627 while (count_fls + sec_fls > 64) {
2628 REDUCE_FLS(count, sec);
2632 dividend = count * sec;
2634 dividend = count * sec;
2636 while (nsec_fls + frequency_fls > 64) {
2637 REDUCE_FLS(nsec, frequency);
2641 divisor = nsec * frequency;
2647 return div64_u64(dividend, divisor);
2650 static DEFINE_PER_CPU(int, perf_throttled_count);
2651 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2653 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2655 struct hw_perf_event *hwc = &event->hw;
2656 s64 period, sample_period;
2659 period = perf_calculate_period(event, nsec, count);
2661 delta = (s64)(period - hwc->sample_period);
2662 delta = (delta + 7) / 8; /* low pass filter */
2664 sample_period = hwc->sample_period + delta;
2669 hwc->sample_period = sample_period;
2671 if (local64_read(&hwc->period_left) > 8*sample_period) {
2673 event->pmu->stop(event, PERF_EF_UPDATE);
2675 local64_set(&hwc->period_left, 0);
2678 event->pmu->start(event, PERF_EF_RELOAD);
2683 * combine freq adjustment with unthrottling to avoid two passes over the
2684 * events. At the same time, make sure, having freq events does not change
2685 * the rate of unthrottling as that would introduce bias.
2687 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2690 struct perf_event *event;
2691 struct hw_perf_event *hwc;
2692 u64 now, period = TICK_NSEC;
2696 * only need to iterate over all events iff:
2697 * - context have events in frequency mode (needs freq adjust)
2698 * - there are events to unthrottle on this cpu
2700 if (!(ctx->nr_freq || needs_unthr))
2703 raw_spin_lock(&ctx->lock);
2704 perf_pmu_disable(ctx->pmu);
2706 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2707 if (event->state != PERF_EVENT_STATE_ACTIVE)
2710 if (!event_filter_match(event))
2715 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2716 hwc->interrupts = 0;
2717 perf_log_throttle(event, 1);
2718 event->pmu->start(event, 0);
2721 if (!event->attr.freq || !event->attr.sample_freq)
2725 * stop the event and update event->count
2727 event->pmu->stop(event, PERF_EF_UPDATE);
2729 now = local64_read(&event->count);
2730 delta = now - hwc->freq_count_stamp;
2731 hwc->freq_count_stamp = now;
2735 * reload only if value has changed
2736 * we have stopped the event so tell that
2737 * to perf_adjust_period() to avoid stopping it
2741 perf_adjust_period(event, period, delta, false);
2743 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2746 perf_pmu_enable(ctx->pmu);
2747 raw_spin_unlock(&ctx->lock);
2751 * Round-robin a context's events:
2753 static void rotate_ctx(struct perf_event_context *ctx)
2756 * Rotate the first entry last of non-pinned groups. Rotation might be
2757 * disabled by the inheritance code.
2759 if (!ctx->rotate_disable)
2760 list_rotate_left(&ctx->flexible_groups);
2764 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2765 * because they're strictly cpu affine and rotate_start is called with IRQs
2766 * disabled, while rotate_context is called from IRQ context.
2768 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2770 struct perf_event_context *ctx = NULL;
2771 int rotate = 0, remove = 1;
2773 if (cpuctx->ctx.nr_events) {
2775 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2779 ctx = cpuctx->task_ctx;
2780 if (ctx && ctx->nr_events) {
2782 if (ctx->nr_events != ctx->nr_active)
2789 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2790 perf_pmu_disable(cpuctx->ctx.pmu);
2792 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2794 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2796 rotate_ctx(&cpuctx->ctx);
2800 perf_event_sched_in(cpuctx, ctx, current);
2802 perf_pmu_enable(cpuctx->ctx.pmu);
2803 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2806 list_del_init(&cpuctx->rotation_list);
2811 #ifdef CONFIG_NO_HZ_FULL
2812 bool perf_event_can_stop_tick(void)
2814 if (atomic_read(&__get_cpu_var(perf_freq_events)) ||
2815 __this_cpu_read(perf_throttled_count))
2822 void perf_event_task_tick(void)
2824 struct list_head *head = &__get_cpu_var(rotation_list);
2825 struct perf_cpu_context *cpuctx, *tmp;
2826 struct perf_event_context *ctx;
2829 WARN_ON(!irqs_disabled());
2831 __this_cpu_inc(perf_throttled_seq);
2832 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2834 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2836 perf_adjust_freq_unthr_context(ctx, throttled);
2838 ctx = cpuctx->task_ctx;
2840 perf_adjust_freq_unthr_context(ctx, throttled);
2844 static int event_enable_on_exec(struct perf_event *event,
2845 struct perf_event_context *ctx)
2847 if (!event->attr.enable_on_exec)
2850 event->attr.enable_on_exec = 0;
2851 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2854 __perf_event_mark_enabled(event);
2860 * Enable all of a task's events that have been marked enable-on-exec.
2861 * This expects task == current.
2863 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2865 struct perf_event *event;
2866 unsigned long flags;
2870 local_irq_save(flags);
2871 if (!ctx || !ctx->nr_events)
2875 * We must ctxsw out cgroup events to avoid conflict
2876 * when invoking perf_task_event_sched_in() later on
2877 * in this function. Otherwise we end up trying to
2878 * ctxswin cgroup events which are already scheduled
2881 perf_cgroup_sched_out(current, NULL);
2883 raw_spin_lock(&ctx->lock);
2884 task_ctx_sched_out(ctx);
2886 list_for_each_entry(event, &ctx->event_list, event_entry) {
2887 ret = event_enable_on_exec(event, ctx);
2893 * Unclone this context if we enabled any event.
2898 raw_spin_unlock(&ctx->lock);
2901 * Also calls ctxswin for cgroup events, if any:
2903 perf_event_context_sched_in(ctx, ctx->task);
2905 local_irq_restore(flags);
2909 * Cross CPU call to read the hardware event
2911 static void __perf_event_read(void *info)
2913 struct perf_event *event = info;
2914 struct perf_event_context *ctx = event->ctx;
2915 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2918 * If this is a task context, we need to check whether it is
2919 * the current task context of this cpu. If not it has been
2920 * scheduled out before the smp call arrived. In that case
2921 * event->count would have been updated to a recent sample
2922 * when the event was scheduled out.
2924 if (ctx->task && cpuctx->task_ctx != ctx)
2927 raw_spin_lock(&ctx->lock);
2928 if (ctx->is_active) {
2929 update_context_time(ctx);
2930 update_cgrp_time_from_event(event);
2932 update_event_times(event);
2933 if (event->state == PERF_EVENT_STATE_ACTIVE)
2934 event->pmu->read(event);
2935 raw_spin_unlock(&ctx->lock);
2938 static inline u64 perf_event_count(struct perf_event *event)
2940 return local64_read(&event->count) + atomic64_read(&event->child_count);
2943 static u64 perf_event_read(struct perf_event *event)
2946 * If event is enabled and currently active on a CPU, update the
2947 * value in the event structure:
2949 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2950 smp_call_function_single(event->oncpu,
2951 __perf_event_read, event, 1);
2952 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2953 struct perf_event_context *ctx = event->ctx;
2954 unsigned long flags;
2956 raw_spin_lock_irqsave(&ctx->lock, flags);
2958 * may read while context is not active
2959 * (e.g., thread is blocked), in that case
2960 * we cannot update context time
2962 if (ctx->is_active) {
2963 update_context_time(ctx);
2964 update_cgrp_time_from_event(event);
2966 update_event_times(event);
2967 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2970 return perf_event_count(event);
2974 * Initialize the perf_event context in a task_struct:
2976 static void __perf_event_init_context(struct perf_event_context *ctx)
2978 raw_spin_lock_init(&ctx->lock);
2979 mutex_init(&ctx->mutex);
2980 INIT_LIST_HEAD(&ctx->pinned_groups);
2981 INIT_LIST_HEAD(&ctx->flexible_groups);
2982 INIT_LIST_HEAD(&ctx->event_list);
2983 atomic_set(&ctx->refcount, 1);
2986 static struct perf_event_context *
2987 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2989 struct perf_event_context *ctx;
2991 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2995 __perf_event_init_context(ctx);
2998 get_task_struct(task);
3005 static struct task_struct *
3006 find_lively_task_by_vpid(pid_t vpid)
3008 struct task_struct *task;
3015 task = find_task_by_vpid(vpid);
3017 get_task_struct(task);
3021 return ERR_PTR(-ESRCH);
3023 /* Reuse ptrace permission checks for now. */
3025 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3030 put_task_struct(task);
3031 return ERR_PTR(err);
3036 * Returns a matching context with refcount and pincount.
3038 static struct perf_event_context *
3039 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3041 struct perf_event_context *ctx;
3042 struct perf_cpu_context *cpuctx;
3043 unsigned long flags;
3047 /* Must be root to operate on a CPU event: */
3048 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3049 return ERR_PTR(-EACCES);
3052 * We could be clever and allow to attach a event to an
3053 * offline CPU and activate it when the CPU comes up, but
3056 if (!cpu_online(cpu))
3057 return ERR_PTR(-ENODEV);
3059 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3068 ctxn = pmu->task_ctx_nr;
3073 ctx = perf_lock_task_context(task, ctxn, &flags);
3077 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3079 ctx = alloc_perf_context(pmu, task);
3085 mutex_lock(&task->perf_event_mutex);
3087 * If it has already passed perf_event_exit_task().
3088 * we must see PF_EXITING, it takes this mutex too.
3090 if (task->flags & PF_EXITING)
3092 else if (task->perf_event_ctxp[ctxn])
3097 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3099 mutex_unlock(&task->perf_event_mutex);
3101 if (unlikely(err)) {
3113 return ERR_PTR(err);
3116 static void perf_event_free_filter(struct perf_event *event);
3118 static void free_event_rcu(struct rcu_head *head)
3120 struct perf_event *event;
3122 event = container_of(head, struct perf_event, rcu_head);
3124 put_pid_ns(event->ns);
3125 perf_event_free_filter(event);
3129 static void ring_buffer_put(struct ring_buffer *rb);
3130 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3132 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3137 if (has_branch_stack(event)) {
3138 if (!(event->attach_state & PERF_ATTACH_TASK))
3139 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3141 if (is_cgroup_event(event))
3142 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3144 if (event->attr.freq)
3145 atomic_dec(&per_cpu(perf_freq_events, cpu));
3148 static void unaccount_event(struct perf_event *event)
3153 if (event->attach_state & PERF_ATTACH_TASK)
3154 static_key_slow_dec_deferred(&perf_sched_events);
3155 if (event->attr.mmap || event->attr.mmap_data)
3156 atomic_dec(&nr_mmap_events);
3157 if (event->attr.comm)
3158 atomic_dec(&nr_comm_events);
3159 if (event->attr.task)
3160 atomic_dec(&nr_task_events);
3161 if (is_cgroup_event(event))
3162 static_key_slow_dec_deferred(&perf_sched_events);
3163 if (has_branch_stack(event))
3164 static_key_slow_dec_deferred(&perf_sched_events);
3166 unaccount_event_cpu(event, event->cpu);
3169 static void __free_event(struct perf_event *event)
3171 if (!event->parent) {
3172 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3173 put_callchain_buffers();
3177 event->destroy(event);
3180 put_ctx(event->ctx);
3182 call_rcu(&event->rcu_head, free_event_rcu);
3184 static void free_event(struct perf_event *event)
3186 irq_work_sync(&event->pending);
3188 unaccount_event(event);
3191 struct ring_buffer *rb;
3194 * Can happen when we close an event with re-directed output.
3196 * Since we have a 0 refcount, perf_mmap_close() will skip
3197 * over us; possibly making our ring_buffer_put() the last.
3199 mutex_lock(&event->mmap_mutex);
3202 rcu_assign_pointer(event->rb, NULL);
3203 ring_buffer_detach(event, rb);
3204 ring_buffer_put(rb); /* could be last */
3206 mutex_unlock(&event->mmap_mutex);
3209 if (is_cgroup_event(event))
3210 perf_detach_cgroup(event);
3213 __free_event(event);
3216 int perf_event_release_kernel(struct perf_event *event)
3218 struct perf_event_context *ctx = event->ctx;
3220 WARN_ON_ONCE(ctx->parent_ctx);
3222 * There are two ways this annotation is useful:
3224 * 1) there is a lock recursion from perf_event_exit_task
3225 * see the comment there.
3227 * 2) there is a lock-inversion with mmap_sem through
3228 * perf_event_read_group(), which takes faults while
3229 * holding ctx->mutex, however this is called after
3230 * the last filedesc died, so there is no possibility
3231 * to trigger the AB-BA case.
3233 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3234 raw_spin_lock_irq(&ctx->lock);
3235 perf_group_detach(event);
3236 raw_spin_unlock_irq(&ctx->lock);
3237 perf_remove_from_context(event);
3238 mutex_unlock(&ctx->mutex);
3244 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3247 * Called when the last reference to the file is gone.
3249 static void put_event(struct perf_event *event)
3251 struct task_struct *owner;
3253 if (!atomic_long_dec_and_test(&event->refcount))
3257 owner = ACCESS_ONCE(event->owner);
3259 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3260 * !owner it means the list deletion is complete and we can indeed
3261 * free this event, otherwise we need to serialize on
3262 * owner->perf_event_mutex.
3264 smp_read_barrier_depends();
3267 * Since delayed_put_task_struct() also drops the last
3268 * task reference we can safely take a new reference
3269 * while holding the rcu_read_lock().
3271 get_task_struct(owner);
3276 mutex_lock(&owner->perf_event_mutex);
3278 * We have to re-check the event->owner field, if it is cleared
3279 * we raced with perf_event_exit_task(), acquiring the mutex
3280 * ensured they're done, and we can proceed with freeing the
3284 list_del_init(&event->owner_entry);
3285 mutex_unlock(&owner->perf_event_mutex);
3286 put_task_struct(owner);
3289 perf_event_release_kernel(event);
3292 static int perf_release(struct inode *inode, struct file *file)
3294 put_event(file->private_data);
3298 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3300 struct perf_event *child;
3306 mutex_lock(&event->child_mutex);
3307 total += perf_event_read(event);
3308 *enabled += event->total_time_enabled +
3309 atomic64_read(&event->child_total_time_enabled);
3310 *running += event->total_time_running +
3311 atomic64_read(&event->child_total_time_running);
3313 list_for_each_entry(child, &event->child_list, child_list) {
3314 total += perf_event_read(child);
3315 *enabled += child->total_time_enabled;
3316 *running += child->total_time_running;
3318 mutex_unlock(&event->child_mutex);
3322 EXPORT_SYMBOL_GPL(perf_event_read_value);
3324 static int perf_event_read_group(struct perf_event *event,
3325 u64 read_format, char __user *buf)
3327 struct perf_event *leader = event->group_leader, *sub;
3328 int n = 0, size = 0, ret = -EFAULT;
3329 struct perf_event_context *ctx = leader->ctx;
3331 u64 count, enabled, running;
3333 mutex_lock(&ctx->mutex);
3334 count = perf_event_read_value(leader, &enabled, &running);
3336 values[n++] = 1 + leader->nr_siblings;
3337 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3338 values[n++] = enabled;
3339 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3340 values[n++] = running;
3341 values[n++] = count;
3342 if (read_format & PERF_FORMAT_ID)
3343 values[n++] = primary_event_id(leader);
3345 size = n * sizeof(u64);
3347 if (copy_to_user(buf, values, size))
3352 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3355 values[n++] = perf_event_read_value(sub, &enabled, &running);
3356 if (read_format & PERF_FORMAT_ID)
3357 values[n++] = primary_event_id(sub);
3359 size = n * sizeof(u64);
3361 if (copy_to_user(buf + ret, values, size)) {
3369 mutex_unlock(&ctx->mutex);
3374 static int perf_event_read_one(struct perf_event *event,
3375 u64 read_format, char __user *buf)
3377 u64 enabled, running;
3381 values[n++] = perf_event_read_value(event, &enabled, &running);
3382 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3383 values[n++] = enabled;
3384 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3385 values[n++] = running;
3386 if (read_format & PERF_FORMAT_ID)
3387 values[n++] = primary_event_id(event);
3389 if (copy_to_user(buf, values, n * sizeof(u64)))
3392 return n * sizeof(u64);
3396 * Read the performance event - simple non blocking version for now
3399 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3401 u64 read_format = event->attr.read_format;
3405 * Return end-of-file for a read on a event that is in
3406 * error state (i.e. because it was pinned but it couldn't be
3407 * scheduled on to the CPU at some point).
3409 if (event->state == PERF_EVENT_STATE_ERROR)
3412 if (count < event->read_size)
3415 WARN_ON_ONCE(event->ctx->parent_ctx);
3416 if (read_format & PERF_FORMAT_GROUP)
3417 ret = perf_event_read_group(event, read_format, buf);
3419 ret = perf_event_read_one(event, read_format, buf);
3425 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3427 struct perf_event *event = file->private_data;
3429 return perf_read_hw(event, buf, count);
3432 static unsigned int perf_poll(struct file *file, poll_table *wait)
3434 struct perf_event *event = file->private_data;
3435 struct ring_buffer *rb;
3436 unsigned int events = POLL_HUP;
3439 * Pin the event->rb by taking event->mmap_mutex; otherwise
3440 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3442 mutex_lock(&event->mmap_mutex);
3445 events = atomic_xchg(&rb->poll, 0);
3446 mutex_unlock(&event->mmap_mutex);
3448 poll_wait(file, &event->waitq, wait);
3453 static void perf_event_reset(struct perf_event *event)
3455 (void)perf_event_read(event);
3456 local64_set(&event->count, 0);
3457 perf_event_update_userpage(event);
3461 * Holding the top-level event's child_mutex means that any
3462 * descendant process that has inherited this event will block
3463 * in sync_child_event if it goes to exit, thus satisfying the
3464 * task existence requirements of perf_event_enable/disable.
3466 static void perf_event_for_each_child(struct perf_event *event,
3467 void (*func)(struct perf_event *))
3469 struct perf_event *child;
3471 WARN_ON_ONCE(event->ctx->parent_ctx);
3472 mutex_lock(&event->child_mutex);
3474 list_for_each_entry(child, &event->child_list, child_list)
3476 mutex_unlock(&event->child_mutex);
3479 static void perf_event_for_each(struct perf_event *event,
3480 void (*func)(struct perf_event *))
3482 struct perf_event_context *ctx = event->ctx;
3483 struct perf_event *sibling;
3485 WARN_ON_ONCE(ctx->parent_ctx);
3486 mutex_lock(&ctx->mutex);
3487 event = event->group_leader;
3489 perf_event_for_each_child(event, func);
3490 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3491 perf_event_for_each_child(sibling, func);
3492 mutex_unlock(&ctx->mutex);
3495 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3497 struct perf_event_context *ctx = event->ctx;
3501 if (!is_sampling_event(event))
3504 if (copy_from_user(&value, arg, sizeof(value)))
3510 raw_spin_lock_irq(&ctx->lock);
3511 if (event->attr.freq) {
3512 if (value > sysctl_perf_event_sample_rate) {
3517 event->attr.sample_freq = value;
3519 event->attr.sample_period = value;
3520 event->hw.sample_period = value;
3523 raw_spin_unlock_irq(&ctx->lock);
3528 static const struct file_operations perf_fops;
3530 static inline int perf_fget_light(int fd, struct fd *p)
3532 struct fd f = fdget(fd);
3536 if (f.file->f_op != &perf_fops) {
3544 static int perf_event_set_output(struct perf_event *event,
3545 struct perf_event *output_event);
3546 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3548 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3550 struct perf_event *event = file->private_data;
3551 void (*func)(struct perf_event *);
3555 case PERF_EVENT_IOC_ENABLE:
3556 func = perf_event_enable;
3558 case PERF_EVENT_IOC_DISABLE:
3559 func = perf_event_disable;
3561 case PERF_EVENT_IOC_RESET:
3562 func = perf_event_reset;
3565 case PERF_EVENT_IOC_REFRESH:
3566 return perf_event_refresh(event, arg);
3568 case PERF_EVENT_IOC_PERIOD:
3569 return perf_event_period(event, (u64 __user *)arg);
3571 case PERF_EVENT_IOC_ID:
3573 u64 id = primary_event_id(event);
3575 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3580 case PERF_EVENT_IOC_SET_OUTPUT:
3584 struct perf_event *output_event;
3586 ret = perf_fget_light(arg, &output);
3589 output_event = output.file->private_data;
3590 ret = perf_event_set_output(event, output_event);
3593 ret = perf_event_set_output(event, NULL);
3598 case PERF_EVENT_IOC_SET_FILTER:
3599 return perf_event_set_filter(event, (void __user *)arg);
3605 if (flags & PERF_IOC_FLAG_GROUP)
3606 perf_event_for_each(event, func);
3608 perf_event_for_each_child(event, func);
3613 int perf_event_task_enable(void)
3615 struct perf_event *event;
3617 mutex_lock(¤t->perf_event_mutex);
3618 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
3619 perf_event_for_each_child(event, perf_event_enable);
3620 mutex_unlock(¤t->perf_event_mutex);
3625 int perf_event_task_disable(void)
3627 struct perf_event *event;
3629 mutex_lock(¤t->perf_event_mutex);
3630 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
3631 perf_event_for_each_child(event, perf_event_disable);
3632 mutex_unlock(¤t->perf_event_mutex);
3637 static int perf_event_index(struct perf_event *event)
3639 if (event->hw.state & PERF_HES_STOPPED)
3642 if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 return event->pmu->event_idx(event);
3648 static void calc_timer_values(struct perf_event *event,
3655 *now = perf_clock();
3656 ctx_time = event->shadow_ctx_time + *now;
3657 *enabled = ctx_time - event->tstamp_enabled;
3658 *running = ctx_time - event->tstamp_running;
3661 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3666 * Callers need to ensure there can be no nesting of this function, otherwise
3667 * the seqlock logic goes bad. We can not serialize this because the arch
3668 * code calls this from NMI context.
3670 void perf_event_update_userpage(struct perf_event *event)
3672 struct perf_event_mmap_page *userpg;
3673 struct ring_buffer *rb;
3674 u64 enabled, running, now;
3678 * compute total_time_enabled, total_time_running
3679 * based on snapshot values taken when the event
3680 * was last scheduled in.
3682 * we cannot simply called update_context_time()
3683 * because of locking issue as we can be called in
3686 calc_timer_values(event, &now, &enabled, &running);
3687 rb = rcu_dereference(event->rb);
3691 userpg = rb->user_page;
3694 * Disable preemption so as to not let the corresponding user-space
3695 * spin too long if we get preempted.
3700 userpg->index = perf_event_index(event);
3701 userpg->offset = perf_event_count(event);
3703 userpg->offset -= local64_read(&event->hw.prev_count);
3705 userpg->time_enabled = enabled +
3706 atomic64_read(&event->child_total_time_enabled);
3708 userpg->time_running = running +
3709 atomic64_read(&event->child_total_time_running);
3711 arch_perf_update_userpage(userpg, now);
3720 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3722 struct perf_event *event = vma->vm_file->private_data;
3723 struct ring_buffer *rb;
3724 int ret = VM_FAULT_SIGBUS;
3726 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3727 if (vmf->pgoff == 0)
3733 rb = rcu_dereference(event->rb);
3737 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3740 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3744 get_page(vmf->page);
3745 vmf->page->mapping = vma->vm_file->f_mapping;
3746 vmf->page->index = vmf->pgoff;
3755 static void ring_buffer_attach(struct perf_event *event,
3756 struct ring_buffer *rb)
3758 unsigned long flags;
3760 if (!list_empty(&event->rb_entry))
3763 spin_lock_irqsave(&rb->event_lock, flags);
3764 if (list_empty(&event->rb_entry))
3765 list_add(&event->rb_entry, &rb->event_list);
3766 spin_unlock_irqrestore(&rb->event_lock, flags);
3769 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3771 unsigned long flags;
3773 if (list_empty(&event->rb_entry))
3776 spin_lock_irqsave(&rb->event_lock, flags);
3777 list_del_init(&event->rb_entry);
3778 wake_up_all(&event->waitq);
3779 spin_unlock_irqrestore(&rb->event_lock, flags);
3782 static void ring_buffer_wakeup(struct perf_event *event)
3784 struct ring_buffer *rb;
3787 rb = rcu_dereference(event->rb);
3789 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3790 wake_up_all(&event->waitq);
3795 static void rb_free_rcu(struct rcu_head *rcu_head)
3797 struct ring_buffer *rb;
3799 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3803 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3805 struct ring_buffer *rb;
3808 rb = rcu_dereference(event->rb);
3810 if (!atomic_inc_not_zero(&rb->refcount))
3818 static void ring_buffer_put(struct ring_buffer *rb)
3820 if (!atomic_dec_and_test(&rb->refcount))
3823 WARN_ON_ONCE(!list_empty(&rb->event_list));
3825 call_rcu(&rb->rcu_head, rb_free_rcu);
3828 static void perf_mmap_open(struct vm_area_struct *vma)
3830 struct perf_event *event = vma->vm_file->private_data;
3832 atomic_inc(&event->mmap_count);
3833 atomic_inc(&event->rb->mmap_count);
3837 * A buffer can be mmap()ed multiple times; either directly through the same
3838 * event, or through other events by use of perf_event_set_output().
3840 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3841 * the buffer here, where we still have a VM context. This means we need
3842 * to detach all events redirecting to us.
3844 static void perf_mmap_close(struct vm_area_struct *vma)
3846 struct perf_event *event = vma->vm_file->private_data;
3848 struct ring_buffer *rb = event->rb;
3849 struct user_struct *mmap_user = rb->mmap_user;
3850 int mmap_locked = rb->mmap_locked;
3851 unsigned long size = perf_data_size(rb);
3853 atomic_dec(&rb->mmap_count);
3855 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3858 /* Detach current event from the buffer. */
3859 rcu_assign_pointer(event->rb, NULL);
3860 ring_buffer_detach(event, rb);
3861 mutex_unlock(&event->mmap_mutex);
3863 /* If there's still other mmap()s of this buffer, we're done. */
3864 if (atomic_read(&rb->mmap_count)) {
3865 ring_buffer_put(rb); /* can't be last */
3870 * No other mmap()s, detach from all other events that might redirect
3871 * into the now unreachable buffer. Somewhat complicated by the
3872 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3876 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3877 if (!atomic_long_inc_not_zero(&event->refcount)) {
3879 * This event is en-route to free_event() which will
3880 * detach it and remove it from the list.
3886 mutex_lock(&event->mmap_mutex);
3888 * Check we didn't race with perf_event_set_output() which can
3889 * swizzle the rb from under us while we were waiting to
3890 * acquire mmap_mutex.
3892 * If we find a different rb; ignore this event, a next
3893 * iteration will no longer find it on the list. We have to
3894 * still restart the iteration to make sure we're not now
3895 * iterating the wrong list.
3897 if (event->rb == rb) {
3898 rcu_assign_pointer(event->rb, NULL);
3899 ring_buffer_detach(event, rb);
3900 ring_buffer_put(rb); /* can't be last, we still have one */
3902 mutex_unlock(&event->mmap_mutex);
3906 * Restart the iteration; either we're on the wrong list or
3907 * destroyed its integrity by doing a deletion.
3914 * It could be there's still a few 0-ref events on the list; they'll
3915 * get cleaned up by free_event() -- they'll also still have their
3916 * ref on the rb and will free it whenever they are done with it.
3918 * Aside from that, this buffer is 'fully' detached and unmapped,
3919 * undo the VM accounting.
3922 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3923 vma->vm_mm->pinned_vm -= mmap_locked;
3924 free_uid(mmap_user);
3926 ring_buffer_put(rb); /* could be last */
3929 static const struct vm_operations_struct perf_mmap_vmops = {
3930 .open = perf_mmap_open,
3931 .close = perf_mmap_close,
3932 .fault = perf_mmap_fault,
3933 .page_mkwrite = perf_mmap_fault,
3936 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3938 struct perf_event *event = file->private_data;
3939 unsigned long user_locked, user_lock_limit;
3940 struct user_struct *user = current_user();
3941 unsigned long locked, lock_limit;
3942 struct ring_buffer *rb;
3943 unsigned long vma_size;
3944 unsigned long nr_pages;
3945 long user_extra, extra;
3946 int ret = 0, flags = 0;
3949 * Don't allow mmap() of inherited per-task counters. This would
3950 * create a performance issue due to all children writing to the
3953 if (event->cpu == -1 && event->attr.inherit)
3956 if (!(vma->vm_flags & VM_SHARED))
3959 vma_size = vma->vm_end - vma->vm_start;
3960 nr_pages = (vma_size / PAGE_SIZE) - 1;
3963 * If we have rb pages ensure they're a power-of-two number, so we
3964 * can do bitmasks instead of modulo.
3966 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3969 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3972 if (vma->vm_pgoff != 0)
3975 WARN_ON_ONCE(event->ctx->parent_ctx);
3977 mutex_lock(&event->mmap_mutex);
3979 if (event->rb->nr_pages != nr_pages) {
3984 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3986 * Raced against perf_mmap_close() through
3987 * perf_event_set_output(). Try again, hope for better
3990 mutex_unlock(&event->mmap_mutex);
3997 user_extra = nr_pages + 1;
3998 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4001 * Increase the limit linearly with more CPUs:
4003 user_lock_limit *= num_online_cpus();
4005 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4008 if (user_locked > user_lock_limit)
4009 extra = user_locked - user_lock_limit;
4011 lock_limit = rlimit(RLIMIT_MEMLOCK);
4012 lock_limit >>= PAGE_SHIFT;
4013 locked = vma->vm_mm->pinned_vm + extra;
4015 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4016 !capable(CAP_IPC_LOCK)) {
4023 if (vma->vm_flags & VM_WRITE)
4024 flags |= RING_BUFFER_WRITABLE;
4026 rb = rb_alloc(nr_pages,
4027 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4035 atomic_set(&rb->mmap_count, 1);
4036 rb->mmap_locked = extra;
4037 rb->mmap_user = get_current_user();
4039 atomic_long_add(user_extra, &user->locked_vm);
4040 vma->vm_mm->pinned_vm += extra;
4042 ring_buffer_attach(event, rb);
4043 rcu_assign_pointer(event->rb, rb);
4045 perf_event_update_userpage(event);
4049 atomic_inc(&event->mmap_count);
4050 mutex_unlock(&event->mmap_mutex);
4053 * Since pinned accounting is per vm we cannot allow fork() to copy our
4056 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4057 vma->vm_ops = &perf_mmap_vmops;
4062 static int perf_fasync(int fd, struct file *filp, int on)
4064 struct inode *inode = file_inode(filp);
4065 struct perf_event *event = filp->private_data;
4068 mutex_lock(&inode->i_mutex);
4069 retval = fasync_helper(fd, filp, on, &event->fasync);
4070 mutex_unlock(&inode->i_mutex);
4078 static const struct file_operations perf_fops = {
4079 .llseek = no_llseek,
4080 .release = perf_release,
4083 .unlocked_ioctl = perf_ioctl,
4084 .compat_ioctl = perf_ioctl,
4086 .fasync = perf_fasync,
4092 * If there's data, ensure we set the poll() state and publish everything
4093 * to user-space before waking everybody up.
4096 void perf_event_wakeup(struct perf_event *event)
4098 ring_buffer_wakeup(event);
4100 if (event->pending_kill) {
4101 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4102 event->pending_kill = 0;
4106 static void perf_pending_event(struct irq_work *entry)
4108 struct perf_event *event = container_of(entry,
4109 struct perf_event, pending);
4111 if (event->pending_disable) {
4112 event->pending_disable = 0;
4113 __perf_event_disable(event);
4116 if (event->pending_wakeup) {
4117 event->pending_wakeup = 0;
4118 perf_event_wakeup(event);
4123 * We assume there is only KVM supporting the callbacks.
4124 * Later on, we might change it to a list if there is
4125 * another virtualization implementation supporting the callbacks.
4127 struct perf_guest_info_callbacks *perf_guest_cbs;
4129 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4131 perf_guest_cbs = cbs;
4134 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4136 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4138 perf_guest_cbs = NULL;
4141 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4144 perf_output_sample_regs(struct perf_output_handle *handle,
4145 struct pt_regs *regs, u64 mask)
4149 for_each_set_bit(bit, (const unsigned long *) &mask,
4150 sizeof(mask) * BITS_PER_BYTE) {
4153 val = perf_reg_value(regs, bit);
4154 perf_output_put(handle, val);
4158 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4159 struct pt_regs *regs)
4161 if (!user_mode(regs)) {
4163 regs = task_pt_regs(current);
4169 regs_user->regs = regs;
4170 regs_user->abi = perf_reg_abi(current);
4175 * Get remaining task size from user stack pointer.
4177 * It'd be better to take stack vma map and limit this more
4178 * precisly, but there's no way to get it safely under interrupt,
4179 * so using TASK_SIZE as limit.
4181 static u64 perf_ustack_task_size(struct pt_regs *regs)
4183 unsigned long addr = perf_user_stack_pointer(regs);
4185 if (!addr || addr >= TASK_SIZE)
4188 return TASK_SIZE - addr;
4192 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4193 struct pt_regs *regs)
4197 /* No regs, no stack pointer, no dump. */
4202 * Check if we fit in with the requested stack size into the:
4204 * If we don't, we limit the size to the TASK_SIZE.
4206 * - remaining sample size
4207 * If we don't, we customize the stack size to
4208 * fit in to the remaining sample size.
4211 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4212 stack_size = min(stack_size, (u16) task_size);
4214 /* Current header size plus static size and dynamic size. */
4215 header_size += 2 * sizeof(u64);
4217 /* Do we fit in with the current stack dump size? */
4218 if ((u16) (header_size + stack_size) < header_size) {
4220 * If we overflow the maximum size for the sample,
4221 * we customize the stack dump size to fit in.
4223 stack_size = USHRT_MAX - header_size - sizeof(u64);
4224 stack_size = round_up(stack_size, sizeof(u64));
4231 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4232 struct pt_regs *regs)
4234 /* Case of a kernel thread, nothing to dump */
4237 perf_output_put(handle, size);
4246 * - the size requested by user or the best one we can fit
4247 * in to the sample max size
4249 * - user stack dump data
4251 * - the actual dumped size
4255 perf_output_put(handle, dump_size);
4258 sp = perf_user_stack_pointer(regs);
4259 rem = __output_copy_user(handle, (void *) sp, dump_size);
4260 dyn_size = dump_size - rem;
4262 perf_output_skip(handle, rem);
4265 perf_output_put(handle, dyn_size);
4269 static void __perf_event_header__init_id(struct perf_event_header *header,
4270 struct perf_sample_data *data,
4271 struct perf_event *event)
4273 u64 sample_type = event->attr.sample_type;
4275 data->type = sample_type;
4276 header->size += event->id_header_size;
4278 if (sample_type & PERF_SAMPLE_TID) {
4279 /* namespace issues */
4280 data->tid_entry.pid = perf_event_pid(event, current);
4281 data->tid_entry.tid = perf_event_tid(event, current);
4284 if (sample_type & PERF_SAMPLE_TIME)
4285 data->time = perf_clock();
4287 if (sample_type & PERF_SAMPLE_ID)
4288 data->id = primary_event_id(event);
4290 if (sample_type & PERF_SAMPLE_STREAM_ID)
4291 data->stream_id = event->id;
4293 if (sample_type & PERF_SAMPLE_CPU) {
4294 data->cpu_entry.cpu = raw_smp_processor_id();
4295 data->cpu_entry.reserved = 0;
4299 void perf_event_header__init_id(struct perf_event_header *header,
4300 struct perf_sample_data *data,
4301 struct perf_event *event)
4303 if (event->attr.sample_id_all)
4304 __perf_event_header__init_id(header, data, event);
4307 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4308 struct perf_sample_data *data)
4310 u64 sample_type = data->type;
4312 if (sample_type & PERF_SAMPLE_TID)
4313 perf_output_put(handle, data->tid_entry);
4315 if (sample_type & PERF_SAMPLE_TIME)
4316 perf_output_put(handle, data->time);
4318 if (sample_type & PERF_SAMPLE_ID)
4319 perf_output_put(handle, data->id);
4321 if (sample_type & PERF_SAMPLE_STREAM_ID)
4322 perf_output_put(handle, data->stream_id);
4324 if (sample_type & PERF_SAMPLE_CPU)
4325 perf_output_put(handle, data->cpu_entry);
4328 void perf_event__output_id_sample(struct perf_event *event,
4329 struct perf_output_handle *handle,
4330 struct perf_sample_data *sample)
4332 if (event->attr.sample_id_all)
4333 __perf_event__output_id_sample(handle, sample);
4336 static void perf_output_read_one(struct perf_output_handle *handle,
4337 struct perf_event *event,
4338 u64 enabled, u64 running)
4340 u64 read_format = event->attr.read_format;
4344 values[n++] = perf_event_count(event);
4345 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4346 values[n++] = enabled +
4347 atomic64_read(&event->child_total_time_enabled);
4349 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4350 values[n++] = running +
4351 atomic64_read(&event->child_total_time_running);
4353 if (read_format & PERF_FORMAT_ID)
4354 values[n++] = primary_event_id(event);
4356 __output_copy(handle, values, n * sizeof(u64));
4360 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4362 static void perf_output_read_group(struct perf_output_handle *handle,
4363 struct perf_event *event,
4364 u64 enabled, u64 running)
4366 struct perf_event *leader = event->group_leader, *sub;
4367 u64 read_format = event->attr.read_format;
4371 values[n++] = 1 + leader->nr_siblings;
4373 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4374 values[n++] = enabled;
4376 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4377 values[n++] = running;
4379 if (leader != event)
4380 leader->pmu->read(leader);
4382 values[n++] = perf_event_count(leader);
4383 if (read_format & PERF_FORMAT_ID)
4384 values[n++] = primary_event_id(leader);
4386 __output_copy(handle, values, n * sizeof(u64));
4388 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4391 if ((sub != event) &&
4392 (sub->state == PERF_EVENT_STATE_ACTIVE))
4393 sub->pmu->read(sub);
4395 values[n++] = perf_event_count(sub);
4396 if (read_format & PERF_FORMAT_ID)
4397 values[n++] = primary_event_id(sub);
4399 __output_copy(handle, values, n * sizeof(u64));
4403 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4404 PERF_FORMAT_TOTAL_TIME_RUNNING)
4406 static void perf_output_read(struct perf_output_handle *handle,
4407 struct perf_event *event)
4409 u64 enabled = 0, running = 0, now;
4410 u64 read_format = event->attr.read_format;
4413 * compute total_time_enabled, total_time_running
4414 * based on snapshot values taken when the event
4415 * was last scheduled in.
4417 * we cannot simply called update_context_time()
4418 * because of locking issue as we are called in
4421 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4422 calc_timer_values(event, &now, &enabled, &running);
4424 if (event->attr.read_format & PERF_FORMAT_GROUP)
4425 perf_output_read_group(handle, event, enabled, running);
4427 perf_output_read_one(handle, event, enabled, running);
4430 void perf_output_sample(struct perf_output_handle *handle,
4431 struct perf_event_header *header,
4432 struct perf_sample_data *data,
4433 struct perf_event *event)
4435 u64 sample_type = data->type;
4437 perf_output_put(handle, *header);
4439 if (sample_type & PERF_SAMPLE_IP)
4440 perf_output_put(handle, data->ip);
4442 if (sample_type & PERF_SAMPLE_TID)
4443 perf_output_put(handle, data->tid_entry);
4445 if (sample_type & PERF_SAMPLE_TIME)
4446 perf_output_put(handle, data->time);
4448 if (sample_type & PERF_SAMPLE_ADDR)
4449 perf_output_put(handle, data->addr);
4451 if (sample_type & PERF_SAMPLE_ID)
4452 perf_output_put(handle, data->id);
4454 if (sample_type & PERF_SAMPLE_STREAM_ID)
4455 perf_output_put(handle, data->stream_id);
4457 if (sample_type & PERF_SAMPLE_CPU)
4458 perf_output_put(handle, data->cpu_entry);
4460 if (sample_type & PERF_SAMPLE_PERIOD)
4461 perf_output_put(handle, data->period);
4463 if (sample_type & PERF_SAMPLE_READ)
4464 perf_output_read(handle, event);
4466 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4467 if (data->callchain) {
4470 if (data->callchain)
4471 size += data->callchain->nr;
4473 size *= sizeof(u64);
4475 __output_copy(handle, data->callchain, size);
4478 perf_output_put(handle, nr);
4482 if (sample_type & PERF_SAMPLE_RAW) {
4484 perf_output_put(handle, data->raw->size);
4485 __output_copy(handle, data->raw->data,
4492 .size = sizeof(u32),
4495 perf_output_put(handle, raw);
4499 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4500 if (data->br_stack) {
4503 size = data->br_stack->nr
4504 * sizeof(struct perf_branch_entry);
4506 perf_output_put(handle, data->br_stack->nr);
4507 perf_output_copy(handle, data->br_stack->entries, size);
4510 * we always store at least the value of nr
4513 perf_output_put(handle, nr);
4517 if (sample_type & PERF_SAMPLE_REGS_USER) {
4518 u64 abi = data->regs_user.abi;
4521 * If there are no regs to dump, notice it through
4522 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4524 perf_output_put(handle, abi);
4527 u64 mask = event->attr.sample_regs_user;
4528 perf_output_sample_regs(handle,
4529 data->regs_user.regs,
4534 if (sample_type & PERF_SAMPLE_STACK_USER) {
4535 perf_output_sample_ustack(handle,
4536 data->stack_user_size,
4537 data->regs_user.regs);
4540 if (sample_type & PERF_SAMPLE_WEIGHT)
4541 perf_output_put(handle, data->weight);
4543 if (sample_type & PERF_SAMPLE_DATA_SRC)
4544 perf_output_put(handle, data->data_src.val);
4546 if (!event->attr.watermark) {
4547 int wakeup_events = event->attr.wakeup_events;
4549 if (wakeup_events) {
4550 struct ring_buffer *rb = handle->rb;
4551 int events = local_inc_return(&rb->events);
4553 if (events >= wakeup_events) {
4554 local_sub(wakeup_events, &rb->events);
4555 local_inc(&rb->wakeup);
4561 void perf_prepare_sample(struct perf_event_header *header,
4562 struct perf_sample_data *data,
4563 struct perf_event *event,
4564 struct pt_regs *regs)
4566 u64 sample_type = event->attr.sample_type;
4568 header->type = PERF_RECORD_SAMPLE;
4569 header->size = sizeof(*header) + event->header_size;
4572 header->misc |= perf_misc_flags(regs);
4574 __perf_event_header__init_id(header, data, event);
4576 if (sample_type & PERF_SAMPLE_IP)
4577 data->ip = perf_instruction_pointer(regs);
4579 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4582 data->callchain = perf_callchain(event, regs);
4584 if (data->callchain)
4585 size += data->callchain->nr;
4587 header->size += size * sizeof(u64);
4590 if (sample_type & PERF_SAMPLE_RAW) {
4591 int size = sizeof(u32);
4594 size += data->raw->size;
4596 size += sizeof(u32);
4598 WARN_ON_ONCE(size & (sizeof(u64)-1));
4599 header->size += size;
4602 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4603 int size = sizeof(u64); /* nr */
4604 if (data->br_stack) {
4605 size += data->br_stack->nr
4606 * sizeof(struct perf_branch_entry);
4608 header->size += size;
4611 if (sample_type & PERF_SAMPLE_REGS_USER) {
4612 /* regs dump ABI info */
4613 int size = sizeof(u64);
4615 perf_sample_regs_user(&data->regs_user, regs);
4617 if (data->regs_user.regs) {
4618 u64 mask = event->attr.sample_regs_user;
4619 size += hweight64(mask) * sizeof(u64);
4622 header->size += size;
4625 if (sample_type & PERF_SAMPLE_STACK_USER) {
4627 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4628 * processed as the last one or have additional check added
4629 * in case new sample type is added, because we could eat
4630 * up the rest of the sample size.
4632 struct perf_regs_user *uregs = &data->regs_user;
4633 u16 stack_size = event->attr.sample_stack_user;
4634 u16 size = sizeof(u64);
4637 perf_sample_regs_user(uregs, regs);
4639 stack_size = perf_sample_ustack_size(stack_size, header->size,
4643 * If there is something to dump, add space for the dump
4644 * itself and for the field that tells the dynamic size,
4645 * which is how many have been actually dumped.
4648 size += sizeof(u64) + stack_size;
4650 data->stack_user_size = stack_size;
4651 header->size += size;
4655 static void perf_event_output(struct perf_event *event,
4656 struct perf_sample_data *data,
4657 struct pt_regs *regs)
4659 struct perf_output_handle handle;
4660 struct perf_event_header header;
4662 /* protect the callchain buffers */
4665 perf_prepare_sample(&header, data, event, regs);
4667 if (perf_output_begin(&handle, event, header.size))
4670 perf_output_sample(&handle, &header, data, event);
4672 perf_output_end(&handle);
4682 struct perf_read_event {
4683 struct perf_event_header header;
4690 perf_event_read_event(struct perf_event *event,
4691 struct task_struct *task)
4693 struct perf_output_handle handle;
4694 struct perf_sample_data sample;
4695 struct perf_read_event read_event = {
4697 .type = PERF_RECORD_READ,
4699 .size = sizeof(read_event) + event->read_size,
4701 .pid = perf_event_pid(event, task),
4702 .tid = perf_event_tid(event, task),
4706 perf_event_header__init_id(&read_event.header, &sample, event);
4707 ret = perf_output_begin(&handle, event, read_event.header.size);
4711 perf_output_put(&handle, read_event);
4712 perf_output_read(&handle, event);
4713 perf_event__output_id_sample(event, &handle, &sample);
4715 perf_output_end(&handle);
4718 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4721 perf_event_aux_ctx(struct perf_event_context *ctx,
4722 perf_event_aux_output_cb output,
4725 struct perf_event *event;
4727 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4728 if (event->state < PERF_EVENT_STATE_INACTIVE)
4730 if (!event_filter_match(event))
4732 output(event, data);
4737 perf_event_aux(perf_event_aux_output_cb output, void *data,
4738 struct perf_event_context *task_ctx)
4740 struct perf_cpu_context *cpuctx;
4741 struct perf_event_context *ctx;
4746 list_for_each_entry_rcu(pmu, &pmus, entry) {
4747 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4748 if (cpuctx->unique_pmu != pmu)
4750 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4753 ctxn = pmu->task_ctx_nr;
4756 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4758 perf_event_aux_ctx(ctx, output, data);
4760 put_cpu_ptr(pmu->pmu_cpu_context);
4765 perf_event_aux_ctx(task_ctx, output, data);
4772 * task tracking -- fork/exit
4774 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4777 struct perf_task_event {
4778 struct task_struct *task;
4779 struct perf_event_context *task_ctx;
4782 struct perf_event_header header;
4792 static int perf_event_task_match(struct perf_event *event)
4794 return event->attr.comm || event->attr.mmap ||
4795 event->attr.mmap_data || event->attr.task;
4798 static void perf_event_task_output(struct perf_event *event,
4801 struct perf_task_event *task_event = data;
4802 struct perf_output_handle handle;
4803 struct perf_sample_data sample;
4804 struct task_struct *task = task_event->task;
4805 int ret, size = task_event->event_id.header.size;
4807 if (!perf_event_task_match(event))
4810 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4812 ret = perf_output_begin(&handle, event,
4813 task_event->event_id.header.size);
4817 task_event->event_id.pid = perf_event_pid(event, task);
4818 task_event->event_id.ppid = perf_event_pid(event, current);
4820 task_event->event_id.tid = perf_event_tid(event, task);
4821 task_event->event_id.ptid = perf_event_tid(event, current);
4823 perf_output_put(&handle, task_event->event_id);
4825 perf_event__output_id_sample(event, &handle, &sample);
4827 perf_output_end(&handle);
4829 task_event->event_id.header.size = size;
4832 static void perf_event_task(struct task_struct *task,
4833 struct perf_event_context *task_ctx,
4836 struct perf_task_event task_event;
4838 if (!atomic_read(&nr_comm_events) &&
4839 !atomic_read(&nr_mmap_events) &&
4840 !atomic_read(&nr_task_events))
4843 task_event = (struct perf_task_event){
4845 .task_ctx = task_ctx,
4848 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4850 .size = sizeof(task_event.event_id),
4856 .time = perf_clock(),
4860 perf_event_aux(perf_event_task_output,
4865 void perf_event_fork(struct task_struct *task)
4867 perf_event_task(task, NULL, 1);
4874 struct perf_comm_event {
4875 struct task_struct *task;
4880 struct perf_event_header header;
4887 static int perf_event_comm_match(struct perf_event *event)
4889 return event->attr.comm;
4892 static void perf_event_comm_output(struct perf_event *event,
4895 struct perf_comm_event *comm_event = data;
4896 struct perf_output_handle handle;
4897 struct perf_sample_data sample;
4898 int size = comm_event->event_id.header.size;
4901 if (!perf_event_comm_match(event))
4904 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4905 ret = perf_output_begin(&handle, event,
4906 comm_event->event_id.header.size);
4911 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4912 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4914 perf_output_put(&handle, comm_event->event_id);
4915 __output_copy(&handle, comm_event->comm,
4916 comm_event->comm_size);
4918 perf_event__output_id_sample(event, &handle, &sample);
4920 perf_output_end(&handle);
4922 comm_event->event_id.header.size = size;
4925 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4927 char comm[TASK_COMM_LEN];
4930 memset(comm, 0, sizeof(comm));
4931 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4932 size = ALIGN(strlen(comm)+1, sizeof(u64));
4934 comm_event->comm = comm;
4935 comm_event->comm_size = size;
4937 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4939 perf_event_aux(perf_event_comm_output,
4944 void perf_event_comm(struct task_struct *task)
4946 struct perf_comm_event comm_event;
4947 struct perf_event_context *ctx;
4951 for_each_task_context_nr(ctxn) {
4952 ctx = task->perf_event_ctxp[ctxn];
4956 perf_event_enable_on_exec(ctx);
4960 if (!atomic_read(&nr_comm_events))
4963 comm_event = (struct perf_comm_event){
4969 .type = PERF_RECORD_COMM,
4978 perf_event_comm_event(&comm_event);
4985 struct perf_mmap_event {
4986 struct vm_area_struct *vma;
4988 const char *file_name;
4992 struct perf_event_header header;
5002 static int perf_event_mmap_match(struct perf_event *event,
5005 struct perf_mmap_event *mmap_event = data;
5006 struct vm_area_struct *vma = mmap_event->vma;
5007 int executable = vma->vm_flags & VM_EXEC;
5009 return (!executable && event->attr.mmap_data) ||
5010 (executable && event->attr.mmap);
5013 static void perf_event_mmap_output(struct perf_event *event,
5016 struct perf_mmap_event *mmap_event = data;
5017 struct perf_output_handle handle;
5018 struct perf_sample_data sample;
5019 int size = mmap_event->event_id.header.size;
5022 if (!perf_event_mmap_match(event, data))
5025 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5026 ret = perf_output_begin(&handle, event,
5027 mmap_event->event_id.header.size);
5031 mmap_event->event_id.pid = perf_event_pid(event, current);
5032 mmap_event->event_id.tid = perf_event_tid(event, current);
5034 perf_output_put(&handle, mmap_event->event_id);
5035 __output_copy(&handle, mmap_event->file_name,
5036 mmap_event->file_size);
5038 perf_event__output_id_sample(event, &handle, &sample);
5040 perf_output_end(&handle);
5042 mmap_event->event_id.header.size = size;
5045 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5047 struct vm_area_struct *vma = mmap_event->vma;
5048 struct file *file = vma->vm_file;
5054 memset(tmp, 0, sizeof(tmp));
5058 * d_path works from the end of the rb backwards, so we
5059 * need to add enough zero bytes after the string to handle
5060 * the 64bit alignment we do later.
5062 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5064 name = strncpy(tmp, "//enomem", sizeof(tmp));
5067 name = d_path(&file->f_path, buf, PATH_MAX);
5069 name = strncpy(tmp, "//toolong", sizeof(tmp));
5073 if (arch_vma_name(mmap_event->vma)) {
5074 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5076 tmp[sizeof(tmp) - 1] = '\0';
5081 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5083 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5084 vma->vm_end >= vma->vm_mm->brk) {
5085 name = strncpy(tmp, "[heap]", sizeof(tmp));
5087 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5088 vma->vm_end >= vma->vm_mm->start_stack) {
5089 name = strncpy(tmp, "[stack]", sizeof(tmp));
5093 name = strncpy(tmp, "//anon", sizeof(tmp));
5098 size = ALIGN(strlen(name)+1, sizeof(u64));
5100 mmap_event->file_name = name;
5101 mmap_event->file_size = size;
5103 if (!(vma->vm_flags & VM_EXEC))
5104 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5106 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5108 perf_event_aux(perf_event_mmap_output,
5115 void perf_event_mmap(struct vm_area_struct *vma)
5117 struct perf_mmap_event mmap_event;
5119 if (!atomic_read(&nr_mmap_events))
5122 mmap_event = (struct perf_mmap_event){
5128 .type = PERF_RECORD_MMAP,
5129 .misc = PERF_RECORD_MISC_USER,
5134 .start = vma->vm_start,
5135 .len = vma->vm_end - vma->vm_start,
5136 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5140 perf_event_mmap_event(&mmap_event);
5144 * IRQ throttle logging
5147 static void perf_log_throttle(struct perf_event *event, int enable)
5149 struct perf_output_handle handle;
5150 struct perf_sample_data sample;
5154 struct perf_event_header header;
5158 } throttle_event = {
5160 .type = PERF_RECORD_THROTTLE,
5162 .size = sizeof(throttle_event),
5164 .time = perf_clock(),
5165 .id = primary_event_id(event),
5166 .stream_id = event->id,
5170 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5172 perf_event_header__init_id(&throttle_event.header, &sample, event);
5174 ret = perf_output_begin(&handle, event,
5175 throttle_event.header.size);
5179 perf_output_put(&handle, throttle_event);
5180 perf_event__output_id_sample(event, &handle, &sample);
5181 perf_output_end(&handle);
5185 * Generic event overflow handling, sampling.
5188 static int __perf_event_overflow(struct perf_event *event,
5189 int throttle, struct perf_sample_data *data,
5190 struct pt_regs *regs)
5192 int events = atomic_read(&event->event_limit);
5193 struct hw_perf_event *hwc = &event->hw;
5198 * Non-sampling counters might still use the PMI to fold short
5199 * hardware counters, ignore those.
5201 if (unlikely(!is_sampling_event(event)))
5204 seq = __this_cpu_read(perf_throttled_seq);
5205 if (seq != hwc->interrupts_seq) {
5206 hwc->interrupts_seq = seq;
5207 hwc->interrupts = 1;
5210 if (unlikely(throttle
5211 && hwc->interrupts >= max_samples_per_tick)) {
5212 __this_cpu_inc(perf_throttled_count);
5213 hwc->interrupts = MAX_INTERRUPTS;
5214 perf_log_throttle(event, 0);
5215 tick_nohz_full_kick();
5220 if (event->attr.freq) {
5221 u64 now = perf_clock();
5222 s64 delta = now - hwc->freq_time_stamp;
5224 hwc->freq_time_stamp = now;
5226 if (delta > 0 && delta < 2*TICK_NSEC)
5227 perf_adjust_period(event, delta, hwc->last_period, true);
5231 * XXX event_limit might not quite work as expected on inherited
5235 event->pending_kill = POLL_IN;
5236 if (events && atomic_dec_and_test(&event->event_limit)) {
5238 event->pending_kill = POLL_HUP;
5239 event->pending_disable = 1;
5240 irq_work_queue(&event->pending);
5243 if (event->overflow_handler)
5244 event->overflow_handler(event, data, regs);
5246 perf_event_output(event, data, regs);
5248 if (event->fasync && event->pending_kill) {
5249 event->pending_wakeup = 1;
5250 irq_work_queue(&event->pending);
5256 int perf_event_overflow(struct perf_event *event,
5257 struct perf_sample_data *data,
5258 struct pt_regs *regs)
5260 return __perf_event_overflow(event, 1, data, regs);
5264 * Generic software event infrastructure
5267 struct swevent_htable {
5268 struct swevent_hlist *swevent_hlist;
5269 struct mutex hlist_mutex;
5272 /* Recursion avoidance in each contexts */
5273 int recursion[PERF_NR_CONTEXTS];
5276 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5279 * We directly increment event->count and keep a second value in
5280 * event->hw.period_left to count intervals. This period event
5281 * is kept in the range [-sample_period, 0] so that we can use the
5285 u64 perf_swevent_set_period(struct perf_event *event)
5287 struct hw_perf_event *hwc = &event->hw;
5288 u64 period = hwc->last_period;
5292 hwc->last_period = hwc->sample_period;
5295 old = val = local64_read(&hwc->period_left);
5299 nr = div64_u64(period + val, period);
5300 offset = nr * period;
5302 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5308 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5309 struct perf_sample_data *data,
5310 struct pt_regs *regs)
5312 struct hw_perf_event *hwc = &event->hw;
5316 overflow = perf_swevent_set_period(event);
5318 if (hwc->interrupts == MAX_INTERRUPTS)
5321 for (; overflow; overflow--) {
5322 if (__perf_event_overflow(event, throttle,
5325 * We inhibit the overflow from happening when
5326 * hwc->interrupts == MAX_INTERRUPTS.
5334 static void perf_swevent_event(struct perf_event *event, u64 nr,
5335 struct perf_sample_data *data,
5336 struct pt_regs *regs)
5338 struct hw_perf_event *hwc = &event->hw;
5340 local64_add(nr, &event->count);
5345 if (!is_sampling_event(event))
5348 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5350 return perf_swevent_overflow(event, 1, data, regs);
5352 data->period = event->hw.last_period;
5354 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5355 return perf_swevent_overflow(event, 1, data, regs);
5357 if (local64_add_negative(nr, &hwc->period_left))
5360 perf_swevent_overflow(event, 0, data, regs);
5363 static int perf_exclude_event(struct perf_event *event,
5364 struct pt_regs *regs)
5366 if (event->hw.state & PERF_HES_STOPPED)
5370 if (event->attr.exclude_user && user_mode(regs))
5373 if (event->attr.exclude_kernel && !user_mode(regs))
5380 static int perf_swevent_match(struct perf_event *event,
5381 enum perf_type_id type,
5383 struct perf_sample_data *data,
5384 struct pt_regs *regs)
5386 if (event->attr.type != type)
5389 if (event->attr.config != event_id)
5392 if (perf_exclude_event(event, regs))
5398 static inline u64 swevent_hash(u64 type, u32 event_id)
5400 u64 val = event_id | (type << 32);
5402 return hash_64(val, SWEVENT_HLIST_BITS);
5405 static inline struct hlist_head *
5406 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5408 u64 hash = swevent_hash(type, event_id);
5410 return &hlist->heads[hash];
5413 /* For the read side: events when they trigger */
5414 static inline struct hlist_head *
5415 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5417 struct swevent_hlist *hlist;
5419 hlist = rcu_dereference(swhash->swevent_hlist);
5423 return __find_swevent_head(hlist, type, event_id);
5426 /* For the event head insertion and removal in the hlist */
5427 static inline struct hlist_head *
5428 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5430 struct swevent_hlist *hlist;
5431 u32 event_id = event->attr.config;
5432 u64 type = event->attr.type;
5435 * Event scheduling is always serialized against hlist allocation
5436 * and release. Which makes the protected version suitable here.
5437 * The context lock guarantees that.
5439 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5440 lockdep_is_held(&event->ctx->lock));
5444 return __find_swevent_head(hlist, type, event_id);
5447 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5449 struct perf_sample_data *data,
5450 struct pt_regs *regs)
5452 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5453 struct perf_event *event;
5454 struct hlist_head *head;
5457 head = find_swevent_head_rcu(swhash, type, event_id);
5461 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5462 if (perf_swevent_match(event, type, event_id, data, regs))
5463 perf_swevent_event(event, nr, data, regs);
5469 int perf_swevent_get_recursion_context(void)
5471 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5473 return get_recursion_context(swhash->recursion);
5475 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5477 inline void perf_swevent_put_recursion_context(int rctx)
5479 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5481 put_recursion_context(swhash->recursion, rctx);
5484 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5486 struct perf_sample_data data;
5489 preempt_disable_notrace();
5490 rctx = perf_swevent_get_recursion_context();
5494 perf_sample_data_init(&data, addr, 0);
5496 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5498 perf_swevent_put_recursion_context(rctx);
5499 preempt_enable_notrace();
5502 static void perf_swevent_read(struct perf_event *event)
5506 static int perf_swevent_add(struct perf_event *event, int flags)
5508 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5509 struct hw_perf_event *hwc = &event->hw;
5510 struct hlist_head *head;
5512 if (is_sampling_event(event)) {
5513 hwc->last_period = hwc->sample_period;
5514 perf_swevent_set_period(event);
5517 hwc->state = !(flags & PERF_EF_START);
5519 head = find_swevent_head(swhash, event);
5520 if (WARN_ON_ONCE(!head))
5523 hlist_add_head_rcu(&event->hlist_entry, head);
5528 static void perf_swevent_del(struct perf_event *event, int flags)
5530 hlist_del_rcu(&event->hlist_entry);
5533 static void perf_swevent_start(struct perf_event *event, int flags)
5535 event->hw.state = 0;
5538 static void perf_swevent_stop(struct perf_event *event, int flags)
5540 event->hw.state = PERF_HES_STOPPED;
5543 /* Deref the hlist from the update side */
5544 static inline struct swevent_hlist *
5545 swevent_hlist_deref(struct swevent_htable *swhash)
5547 return rcu_dereference_protected(swhash->swevent_hlist,
5548 lockdep_is_held(&swhash->hlist_mutex));
5551 static void swevent_hlist_release(struct swevent_htable *swhash)
5553 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5558 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5559 kfree_rcu(hlist, rcu_head);
5562 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5564 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5566 mutex_lock(&swhash->hlist_mutex);
5568 if (!--swhash->hlist_refcount)
5569 swevent_hlist_release(swhash);
5571 mutex_unlock(&swhash->hlist_mutex);
5574 static void swevent_hlist_put(struct perf_event *event)
5578 if (event->cpu != -1) {
5579 swevent_hlist_put_cpu(event, event->cpu);
5583 for_each_possible_cpu(cpu)
5584 swevent_hlist_put_cpu(event, cpu);
5587 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5589 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5592 mutex_lock(&swhash->hlist_mutex);
5594 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5595 struct swevent_hlist *hlist;
5597 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5602 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5604 swhash->hlist_refcount++;
5606 mutex_unlock(&swhash->hlist_mutex);
5611 static int swevent_hlist_get(struct perf_event *event)
5614 int cpu, failed_cpu;
5616 if (event->cpu != -1)
5617 return swevent_hlist_get_cpu(event, event->cpu);
5620 for_each_possible_cpu(cpu) {
5621 err = swevent_hlist_get_cpu(event, cpu);
5631 for_each_possible_cpu(cpu) {
5632 if (cpu == failed_cpu)
5634 swevent_hlist_put_cpu(event, cpu);
5641 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5643 static void sw_perf_event_destroy(struct perf_event *event)
5645 u64 event_id = event->attr.config;
5647 WARN_ON(event->parent);
5649 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5650 swevent_hlist_put(event);
5653 static int perf_swevent_init(struct perf_event *event)
5655 u64 event_id = event->attr.config;
5657 if (event->attr.type != PERF_TYPE_SOFTWARE)
5661 * no branch sampling for software events
5663 if (has_branch_stack(event))
5667 case PERF_COUNT_SW_CPU_CLOCK:
5668 case PERF_COUNT_SW_TASK_CLOCK:
5675 if (event_id >= PERF_COUNT_SW_MAX)
5678 if (!event->parent) {
5681 err = swevent_hlist_get(event);
5685 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5686 event->destroy = sw_perf_event_destroy;
5692 static int perf_swevent_event_idx(struct perf_event *event)
5697 static struct pmu perf_swevent = {
5698 .task_ctx_nr = perf_sw_context,
5700 .event_init = perf_swevent_init,
5701 .add = perf_swevent_add,
5702 .del = perf_swevent_del,
5703 .start = perf_swevent_start,
5704 .stop = perf_swevent_stop,
5705 .read = perf_swevent_read,
5707 .event_idx = perf_swevent_event_idx,
5710 #ifdef CONFIG_EVENT_TRACING
5712 static int perf_tp_filter_match(struct perf_event *event,
5713 struct perf_sample_data *data)
5715 void *record = data->raw->data;
5717 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5722 static int perf_tp_event_match(struct perf_event *event,
5723 struct perf_sample_data *data,
5724 struct pt_regs *regs)
5726 if (event->hw.state & PERF_HES_STOPPED)
5729 * All tracepoints are from kernel-space.
5731 if (event->attr.exclude_kernel)
5734 if (!perf_tp_filter_match(event, data))
5740 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5741 struct pt_regs *regs, struct hlist_head *head, int rctx,
5742 struct task_struct *task)
5744 struct perf_sample_data data;
5745 struct perf_event *event;
5747 struct perf_raw_record raw = {
5752 perf_sample_data_init(&data, addr, 0);
5755 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5756 if (perf_tp_event_match(event, &data, regs))
5757 perf_swevent_event(event, count, &data, regs);
5761 * If we got specified a target task, also iterate its context and
5762 * deliver this event there too.
5764 if (task && task != current) {
5765 struct perf_event_context *ctx;
5766 struct trace_entry *entry = record;
5769 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5773 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5774 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5776 if (event->attr.config != entry->type)
5778 if (perf_tp_event_match(event, &data, regs))
5779 perf_swevent_event(event, count, &data, regs);
5785 perf_swevent_put_recursion_context(rctx);
5787 EXPORT_SYMBOL_GPL(perf_tp_event);
5789 static void tp_perf_event_destroy(struct perf_event *event)
5791 perf_trace_destroy(event);
5794 static int perf_tp_event_init(struct perf_event *event)
5798 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5802 * no branch sampling for tracepoint events
5804 if (has_branch_stack(event))
5807 err = perf_trace_init(event);
5811 event->destroy = tp_perf_event_destroy;
5816 static struct pmu perf_tracepoint = {
5817 .task_ctx_nr = perf_sw_context,
5819 .event_init = perf_tp_event_init,
5820 .add = perf_trace_add,
5821 .del = perf_trace_del,
5822 .start = perf_swevent_start,
5823 .stop = perf_swevent_stop,
5824 .read = perf_swevent_read,
5826 .event_idx = perf_swevent_event_idx,
5829 static inline void perf_tp_register(void)
5831 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5834 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5839 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5842 filter_str = strndup_user(arg, PAGE_SIZE);
5843 if (IS_ERR(filter_str))
5844 return PTR_ERR(filter_str);
5846 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5852 static void perf_event_free_filter(struct perf_event *event)
5854 ftrace_profile_free_filter(event);
5859 static inline void perf_tp_register(void)
5863 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5868 static void perf_event_free_filter(struct perf_event *event)
5872 #endif /* CONFIG_EVENT_TRACING */
5874 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5875 void perf_bp_event(struct perf_event *bp, void *data)
5877 struct perf_sample_data sample;
5878 struct pt_regs *regs = data;
5880 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5882 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5883 perf_swevent_event(bp, 1, &sample, regs);
5888 * hrtimer based swevent callback
5891 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5893 enum hrtimer_restart ret = HRTIMER_RESTART;
5894 struct perf_sample_data data;
5895 struct pt_regs *regs;
5896 struct perf_event *event;
5899 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5901 if (event->state != PERF_EVENT_STATE_ACTIVE)
5902 return HRTIMER_NORESTART;
5904 event->pmu->read(event);
5906 perf_sample_data_init(&data, 0, event->hw.last_period);
5907 regs = get_irq_regs();
5909 if (regs && !perf_exclude_event(event, regs)) {
5910 if (!(event->attr.exclude_idle && is_idle_task(current)))
5911 if (__perf_event_overflow(event, 1, &data, regs))
5912 ret = HRTIMER_NORESTART;
5915 period = max_t(u64, 10000, event->hw.sample_period);
5916 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5921 static void perf_swevent_start_hrtimer(struct perf_event *event)
5923 struct hw_perf_event *hwc = &event->hw;
5926 if (!is_sampling_event(event))
5929 period = local64_read(&hwc->period_left);
5934 local64_set(&hwc->period_left, 0);
5936 period = max_t(u64, 10000, hwc->sample_period);
5938 __hrtimer_start_range_ns(&hwc->hrtimer,
5939 ns_to_ktime(period), 0,
5940 HRTIMER_MODE_REL_PINNED, 0);
5943 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5945 struct hw_perf_event *hwc = &event->hw;
5947 if (is_sampling_event(event)) {
5948 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5949 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5951 hrtimer_cancel(&hwc->hrtimer);
5955 static void perf_swevent_init_hrtimer(struct perf_event *event)
5957 struct hw_perf_event *hwc = &event->hw;
5959 if (!is_sampling_event(event))
5962 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5963 hwc->hrtimer.function = perf_swevent_hrtimer;
5966 * Since hrtimers have a fixed rate, we can do a static freq->period
5967 * mapping and avoid the whole period adjust feedback stuff.
5969 if (event->attr.freq) {
5970 long freq = event->attr.sample_freq;
5972 event->attr.sample_period = NSEC_PER_SEC / freq;
5973 hwc->sample_period = event->attr.sample_period;
5974 local64_set(&hwc->period_left, hwc->sample_period);
5975 hwc->last_period = hwc->sample_period;
5976 event->attr.freq = 0;
5981 * Software event: cpu wall time clock
5984 static void cpu_clock_event_update(struct perf_event *event)
5989 now = local_clock();
5990 prev = local64_xchg(&event->hw.prev_count, now);
5991 local64_add(now - prev, &event->count);
5994 static void cpu_clock_event_start(struct perf_event *event, int flags)
5996 local64_set(&event->hw.prev_count, local_clock());
5997 perf_swevent_start_hrtimer(event);
6000 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6002 perf_swevent_cancel_hrtimer(event);
6003 cpu_clock_event_update(event);
6006 static int cpu_clock_event_add(struct perf_event *event, int flags)
6008 if (flags & PERF_EF_START)
6009 cpu_clock_event_start(event, flags);
6014 static void cpu_clock_event_del(struct perf_event *event, int flags)
6016 cpu_clock_event_stop(event, flags);
6019 static void cpu_clock_event_read(struct perf_event *event)
6021 cpu_clock_event_update(event);
6024 static int cpu_clock_event_init(struct perf_event *event)
6026 if (event->attr.type != PERF_TYPE_SOFTWARE)
6029 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6033 * no branch sampling for software events
6035 if (has_branch_stack(event))
6038 perf_swevent_init_hrtimer(event);
6043 static struct pmu perf_cpu_clock = {
6044 .task_ctx_nr = perf_sw_context,
6046 .event_init = cpu_clock_event_init,
6047 .add = cpu_clock_event_add,
6048 .del = cpu_clock_event_del,
6049 .start = cpu_clock_event_start,
6050 .stop = cpu_clock_event_stop,
6051 .read = cpu_clock_event_read,
6053 .event_idx = perf_swevent_event_idx,
6057 * Software event: task time clock
6060 static void task_clock_event_update(struct perf_event *event, u64 now)
6065 prev = local64_xchg(&event->hw.prev_count, now);
6067 local64_add(delta, &event->count);
6070 static void task_clock_event_start(struct perf_event *event, int flags)
6072 local64_set(&event->hw.prev_count, event->ctx->time);
6073 perf_swevent_start_hrtimer(event);
6076 static void task_clock_event_stop(struct perf_event *event, int flags)
6078 perf_swevent_cancel_hrtimer(event);
6079 task_clock_event_update(event, event->ctx->time);
6082 static int task_clock_event_add(struct perf_event *event, int flags)
6084 if (flags & PERF_EF_START)
6085 task_clock_event_start(event, flags);
6090 static void task_clock_event_del(struct perf_event *event, int flags)
6092 task_clock_event_stop(event, PERF_EF_UPDATE);
6095 static void task_clock_event_read(struct perf_event *event)
6097 u64 now = perf_clock();
6098 u64 delta = now - event->ctx->timestamp;
6099 u64 time = event->ctx->time + delta;
6101 task_clock_event_update(event, time);
6104 static int task_clock_event_init(struct perf_event *event)
6106 if (event->attr.type != PERF_TYPE_SOFTWARE)
6109 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6113 * no branch sampling for software events
6115 if (has_branch_stack(event))
6118 perf_swevent_init_hrtimer(event);
6123 static struct pmu perf_task_clock = {
6124 .task_ctx_nr = perf_sw_context,
6126 .event_init = task_clock_event_init,
6127 .add = task_clock_event_add,
6128 .del = task_clock_event_del,
6129 .start = task_clock_event_start,
6130 .stop = task_clock_event_stop,
6131 .read = task_clock_event_read,
6133 .event_idx = perf_swevent_event_idx,
6136 static void perf_pmu_nop_void(struct pmu *pmu)
6140 static int perf_pmu_nop_int(struct pmu *pmu)
6145 static void perf_pmu_start_txn(struct pmu *pmu)
6147 perf_pmu_disable(pmu);
6150 static int perf_pmu_commit_txn(struct pmu *pmu)
6152 perf_pmu_enable(pmu);
6156 static void perf_pmu_cancel_txn(struct pmu *pmu)
6158 perf_pmu_enable(pmu);
6161 static int perf_event_idx_default(struct perf_event *event)
6163 return event->hw.idx + 1;
6167 * Ensures all contexts with the same task_ctx_nr have the same
6168 * pmu_cpu_context too.
6170 static void *find_pmu_context(int ctxn)
6177 list_for_each_entry(pmu, &pmus, entry) {
6178 if (pmu->task_ctx_nr == ctxn)
6179 return pmu->pmu_cpu_context;
6185 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6189 for_each_possible_cpu(cpu) {
6190 struct perf_cpu_context *cpuctx;
6192 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6194 if (cpuctx->unique_pmu == old_pmu)
6195 cpuctx->unique_pmu = pmu;
6199 static void free_pmu_context(struct pmu *pmu)
6203 mutex_lock(&pmus_lock);
6205 * Like a real lame refcount.
6207 list_for_each_entry(i, &pmus, entry) {
6208 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6209 update_pmu_context(i, pmu);
6214 free_percpu(pmu->pmu_cpu_context);
6216 mutex_unlock(&pmus_lock);
6218 static struct idr pmu_idr;
6221 type_show(struct device *dev, struct device_attribute *attr, char *page)
6223 struct pmu *pmu = dev_get_drvdata(dev);
6225 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6229 perf_event_mux_interval_ms_show(struct device *dev,
6230 struct device_attribute *attr,
6233 struct pmu *pmu = dev_get_drvdata(dev);
6235 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6239 perf_event_mux_interval_ms_store(struct device *dev,
6240 struct device_attribute *attr,
6241 const char *buf, size_t count)
6243 struct pmu *pmu = dev_get_drvdata(dev);
6244 int timer, cpu, ret;
6246 ret = kstrtoint(buf, 0, &timer);
6253 /* same value, noting to do */
6254 if (timer == pmu->hrtimer_interval_ms)
6257 pmu->hrtimer_interval_ms = timer;
6259 /* update all cpuctx for this PMU */
6260 for_each_possible_cpu(cpu) {
6261 struct perf_cpu_context *cpuctx;
6262 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6263 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6265 if (hrtimer_active(&cpuctx->hrtimer))
6266 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6272 static struct device_attribute pmu_dev_attrs[] = {
6274 __ATTR_RW(perf_event_mux_interval_ms),
6278 static int pmu_bus_running;
6279 static struct bus_type pmu_bus = {
6280 .name = "event_source",
6281 .dev_attrs = pmu_dev_attrs,
6284 static void pmu_dev_release(struct device *dev)
6289 static int pmu_dev_alloc(struct pmu *pmu)
6293 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6297 pmu->dev->groups = pmu->attr_groups;
6298 device_initialize(pmu->dev);
6299 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6303 dev_set_drvdata(pmu->dev, pmu);
6304 pmu->dev->bus = &pmu_bus;
6305 pmu->dev->release = pmu_dev_release;
6306 ret = device_add(pmu->dev);
6314 put_device(pmu->dev);
6318 static struct lock_class_key cpuctx_mutex;
6319 static struct lock_class_key cpuctx_lock;
6321 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6325 mutex_lock(&pmus_lock);
6327 pmu->pmu_disable_count = alloc_percpu(int);
6328 if (!pmu->pmu_disable_count)
6337 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6345 if (pmu_bus_running) {
6346 ret = pmu_dev_alloc(pmu);
6352 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6353 if (pmu->pmu_cpu_context)
6354 goto got_cpu_context;
6357 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6358 if (!pmu->pmu_cpu_context)
6361 for_each_possible_cpu(cpu) {
6362 struct perf_cpu_context *cpuctx;
6364 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6365 __perf_event_init_context(&cpuctx->ctx);
6366 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6367 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6368 cpuctx->ctx.type = cpu_context;
6369 cpuctx->ctx.pmu = pmu;
6371 __perf_cpu_hrtimer_init(cpuctx, cpu);
6373 INIT_LIST_HEAD(&cpuctx->rotation_list);
6374 cpuctx->unique_pmu = pmu;
6378 if (!pmu->start_txn) {
6379 if (pmu->pmu_enable) {
6381 * If we have pmu_enable/pmu_disable calls, install
6382 * transaction stubs that use that to try and batch
6383 * hardware accesses.
6385 pmu->start_txn = perf_pmu_start_txn;
6386 pmu->commit_txn = perf_pmu_commit_txn;
6387 pmu->cancel_txn = perf_pmu_cancel_txn;
6389 pmu->start_txn = perf_pmu_nop_void;
6390 pmu->commit_txn = perf_pmu_nop_int;
6391 pmu->cancel_txn = perf_pmu_nop_void;
6395 if (!pmu->pmu_enable) {
6396 pmu->pmu_enable = perf_pmu_nop_void;
6397 pmu->pmu_disable = perf_pmu_nop_void;
6400 if (!pmu->event_idx)
6401 pmu->event_idx = perf_event_idx_default;
6403 list_add_rcu(&pmu->entry, &pmus);
6406 mutex_unlock(&pmus_lock);
6411 device_del(pmu->dev);
6412 put_device(pmu->dev);
6415 if (pmu->type >= PERF_TYPE_MAX)
6416 idr_remove(&pmu_idr, pmu->type);
6419 free_percpu(pmu->pmu_disable_count);
6423 void perf_pmu_unregister(struct pmu *pmu)
6425 mutex_lock(&pmus_lock);
6426 list_del_rcu(&pmu->entry);
6427 mutex_unlock(&pmus_lock);
6430 * We dereference the pmu list under both SRCU and regular RCU, so
6431 * synchronize against both of those.
6433 synchronize_srcu(&pmus_srcu);
6436 free_percpu(pmu->pmu_disable_count);
6437 if (pmu->type >= PERF_TYPE_MAX)
6438 idr_remove(&pmu_idr, pmu->type);
6439 device_del(pmu->dev);
6440 put_device(pmu->dev);
6441 free_pmu_context(pmu);
6444 struct pmu *perf_init_event(struct perf_event *event)
6446 struct pmu *pmu = NULL;
6450 idx = srcu_read_lock(&pmus_srcu);
6453 pmu = idr_find(&pmu_idr, event->attr.type);
6457 ret = pmu->event_init(event);
6463 list_for_each_entry_rcu(pmu, &pmus, entry) {
6465 ret = pmu->event_init(event);
6469 if (ret != -ENOENT) {
6474 pmu = ERR_PTR(-ENOENT);
6476 srcu_read_unlock(&pmus_srcu, idx);
6481 static void account_event_cpu(struct perf_event *event, int cpu)
6486 if (has_branch_stack(event)) {
6487 if (!(event->attach_state & PERF_ATTACH_TASK))
6488 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6490 if (is_cgroup_event(event))
6491 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6493 if (event->attr.freq)
6494 atomic_inc(&per_cpu(perf_freq_events, cpu));
6497 static void account_event(struct perf_event *event)
6502 if (event->attach_state & PERF_ATTACH_TASK)
6503 static_key_slow_inc(&perf_sched_events.key);
6504 if (event->attr.mmap || event->attr.mmap_data)
6505 atomic_inc(&nr_mmap_events);
6506 if (event->attr.comm)
6507 atomic_inc(&nr_comm_events);
6508 if (event->attr.task)
6509 atomic_inc(&nr_task_events);
6510 if (has_branch_stack(event))
6511 static_key_slow_inc(&perf_sched_events.key);
6512 if (is_cgroup_event(event))
6513 static_key_slow_inc(&perf_sched_events.key);
6515 account_event_cpu(event, event->cpu);
6519 * Allocate and initialize a event structure
6521 static struct perf_event *
6522 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6523 struct task_struct *task,
6524 struct perf_event *group_leader,
6525 struct perf_event *parent_event,
6526 perf_overflow_handler_t overflow_handler,
6530 struct perf_event *event;
6531 struct hw_perf_event *hwc;
6534 if ((unsigned)cpu >= nr_cpu_ids) {
6535 if (!task || cpu != -1)
6536 return ERR_PTR(-EINVAL);
6539 event = kzalloc(sizeof(*event), GFP_KERNEL);
6541 return ERR_PTR(-ENOMEM);
6544 * Single events are their own group leaders, with an
6545 * empty sibling list:
6548 group_leader = event;
6550 mutex_init(&event->child_mutex);
6551 INIT_LIST_HEAD(&event->child_list);
6553 INIT_LIST_HEAD(&event->group_entry);
6554 INIT_LIST_HEAD(&event->event_entry);
6555 INIT_LIST_HEAD(&event->sibling_list);
6556 INIT_LIST_HEAD(&event->rb_entry);
6558 init_waitqueue_head(&event->waitq);
6559 init_irq_work(&event->pending, perf_pending_event);
6561 mutex_init(&event->mmap_mutex);
6563 atomic_long_set(&event->refcount, 1);
6565 event->attr = *attr;
6566 event->group_leader = group_leader;
6570 event->parent = parent_event;
6572 event->ns = get_pid_ns(task_active_pid_ns(current));
6573 event->id = atomic64_inc_return(&perf_event_id);
6575 event->state = PERF_EVENT_STATE_INACTIVE;
6578 event->attach_state = PERF_ATTACH_TASK;
6580 if (attr->type == PERF_TYPE_TRACEPOINT)
6581 event->hw.tp_target = task;
6582 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6584 * hw_breakpoint is a bit difficult here..
6586 else if (attr->type == PERF_TYPE_BREAKPOINT)
6587 event->hw.bp_target = task;
6591 if (!overflow_handler && parent_event) {
6592 overflow_handler = parent_event->overflow_handler;
6593 context = parent_event->overflow_handler_context;
6596 event->overflow_handler = overflow_handler;
6597 event->overflow_handler_context = context;
6599 perf_event__state_init(event);
6604 hwc->sample_period = attr->sample_period;
6605 if (attr->freq && attr->sample_freq)
6606 hwc->sample_period = 1;
6607 hwc->last_period = hwc->sample_period;
6609 local64_set(&hwc->period_left, hwc->sample_period);
6612 * we currently do not support PERF_FORMAT_GROUP on inherited events
6614 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6617 pmu = perf_init_event(event);
6620 else if (IS_ERR(pmu)) {
6625 if (!event->parent) {
6626 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6627 err = get_callchain_buffers();
6637 event->destroy(event);
6640 put_pid_ns(event->ns);
6643 return ERR_PTR(err);
6646 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6647 struct perf_event_attr *attr)
6652 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6656 * zero the full structure, so that a short copy will be nice.
6658 memset(attr, 0, sizeof(*attr));
6660 ret = get_user(size, &uattr->size);
6664 if (size > PAGE_SIZE) /* silly large */
6667 if (!size) /* abi compat */
6668 size = PERF_ATTR_SIZE_VER0;
6670 if (size < PERF_ATTR_SIZE_VER0)
6674 * If we're handed a bigger struct than we know of,
6675 * ensure all the unknown bits are 0 - i.e. new
6676 * user-space does not rely on any kernel feature
6677 * extensions we dont know about yet.
6679 if (size > sizeof(*attr)) {
6680 unsigned char __user *addr;
6681 unsigned char __user *end;
6684 addr = (void __user *)uattr + sizeof(*attr);
6685 end = (void __user *)uattr + size;
6687 for (; addr < end; addr++) {
6688 ret = get_user(val, addr);
6694 size = sizeof(*attr);
6697 ret = copy_from_user(attr, uattr, size);
6701 if (attr->__reserved_1)
6704 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6707 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6710 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6711 u64 mask = attr->branch_sample_type;
6713 /* only using defined bits */
6714 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6717 /* at least one branch bit must be set */
6718 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6721 /* propagate priv level, when not set for branch */
6722 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6724 /* exclude_kernel checked on syscall entry */
6725 if (!attr->exclude_kernel)
6726 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6728 if (!attr->exclude_user)
6729 mask |= PERF_SAMPLE_BRANCH_USER;
6731 if (!attr->exclude_hv)
6732 mask |= PERF_SAMPLE_BRANCH_HV;
6734 * adjust user setting (for HW filter setup)
6736 attr->branch_sample_type = mask;
6738 /* privileged levels capture (kernel, hv): check permissions */
6739 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6740 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6744 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6745 ret = perf_reg_validate(attr->sample_regs_user);
6750 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6751 if (!arch_perf_have_user_stack_dump())
6755 * We have __u32 type for the size, but so far
6756 * we can only use __u16 as maximum due to the
6757 * __u16 sample size limit.
6759 if (attr->sample_stack_user >= USHRT_MAX)
6761 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6769 put_user(sizeof(*attr), &uattr->size);
6775 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6777 struct ring_buffer *rb = NULL, *old_rb = NULL;
6783 /* don't allow circular references */
6784 if (event == output_event)
6788 * Don't allow cross-cpu buffers
6790 if (output_event->cpu != event->cpu)
6794 * If its not a per-cpu rb, it must be the same task.
6796 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6800 mutex_lock(&event->mmap_mutex);
6801 /* Can't redirect output if we've got an active mmap() */
6802 if (atomic_read(&event->mmap_count))
6808 /* get the rb we want to redirect to */
6809 rb = ring_buffer_get(output_event);
6815 ring_buffer_detach(event, old_rb);
6818 ring_buffer_attach(event, rb);
6820 rcu_assign_pointer(event->rb, rb);
6823 ring_buffer_put(old_rb);
6825 * Since we detached before setting the new rb, so that we
6826 * could attach the new rb, we could have missed a wakeup.
6829 wake_up_all(&event->waitq);
6834 mutex_unlock(&event->mmap_mutex);
6841 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6843 * @attr_uptr: event_id type attributes for monitoring/sampling
6846 * @group_fd: group leader event fd
6848 SYSCALL_DEFINE5(perf_event_open,
6849 struct perf_event_attr __user *, attr_uptr,
6850 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6852 struct perf_event *group_leader = NULL, *output_event = NULL;
6853 struct perf_event *event, *sibling;
6854 struct perf_event_attr attr;
6855 struct perf_event_context *ctx;
6856 struct file *event_file = NULL;
6857 struct fd group = {NULL, 0};
6858 struct task_struct *task = NULL;
6864 /* for future expandability... */
6865 if (flags & ~PERF_FLAG_ALL)
6868 err = perf_copy_attr(attr_uptr, &attr);
6872 if (!attr.exclude_kernel) {
6873 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6878 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6883 * In cgroup mode, the pid argument is used to pass the fd
6884 * opened to the cgroup directory in cgroupfs. The cpu argument
6885 * designates the cpu on which to monitor threads from that
6888 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6891 event_fd = get_unused_fd();
6895 if (group_fd != -1) {
6896 err = perf_fget_light(group_fd, &group);
6899 group_leader = group.file->private_data;
6900 if (flags & PERF_FLAG_FD_OUTPUT)
6901 output_event = group_leader;
6902 if (flags & PERF_FLAG_FD_NO_GROUP)
6903 group_leader = NULL;
6906 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6907 task = find_lively_task_by_vpid(pid);
6909 err = PTR_ERR(task);
6916 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6918 if (IS_ERR(event)) {
6919 err = PTR_ERR(event);
6923 if (flags & PERF_FLAG_PID_CGROUP) {
6924 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6926 __free_event(event);
6931 account_event(event);
6934 * Special case software events and allow them to be part of
6935 * any hardware group.
6940 (is_software_event(event) != is_software_event(group_leader))) {
6941 if (is_software_event(event)) {
6943 * If event and group_leader are not both a software
6944 * event, and event is, then group leader is not.
6946 * Allow the addition of software events to !software
6947 * groups, this is safe because software events never
6950 pmu = group_leader->pmu;
6951 } else if (is_software_event(group_leader) &&
6952 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6954 * In case the group is a pure software group, and we
6955 * try to add a hardware event, move the whole group to
6956 * the hardware context.
6963 * Get the target context (task or percpu):
6965 ctx = find_get_context(pmu, task, event->cpu);
6972 put_task_struct(task);
6977 * Look up the group leader (we will attach this event to it):
6983 * Do not allow a recursive hierarchy (this new sibling
6984 * becoming part of another group-sibling):
6986 if (group_leader->group_leader != group_leader)
6989 * Do not allow to attach to a group in a different
6990 * task or CPU context:
6993 if (group_leader->ctx->type != ctx->type)
6996 if (group_leader->ctx != ctx)
7001 * Only a group leader can be exclusive or pinned
7003 if (attr.exclusive || attr.pinned)
7008 err = perf_event_set_output(event, output_event);
7013 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7014 if (IS_ERR(event_file)) {
7015 err = PTR_ERR(event_file);
7020 struct perf_event_context *gctx = group_leader->ctx;
7022 mutex_lock(&gctx->mutex);
7023 perf_remove_from_context(group_leader);
7026 * Removing from the context ends up with disabled
7027 * event. What we want here is event in the initial
7028 * startup state, ready to be add into new context.
7030 perf_event__state_init(group_leader);
7031 list_for_each_entry(sibling, &group_leader->sibling_list,
7033 perf_remove_from_context(sibling);
7034 perf_event__state_init(sibling);
7037 mutex_unlock(&gctx->mutex);
7041 WARN_ON_ONCE(ctx->parent_ctx);
7042 mutex_lock(&ctx->mutex);
7046 perf_install_in_context(ctx, group_leader, event->cpu);
7048 list_for_each_entry(sibling, &group_leader->sibling_list,
7050 perf_install_in_context(ctx, sibling, event->cpu);
7055 perf_install_in_context(ctx, event, event->cpu);
7057 perf_unpin_context(ctx);
7058 mutex_unlock(&ctx->mutex);
7062 event->owner = current;
7064 mutex_lock(¤t->perf_event_mutex);
7065 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
7066 mutex_unlock(¤t->perf_event_mutex);
7069 * Precalculate sample_data sizes
7071 perf_event__header_size(event);
7072 perf_event__id_header_size(event);
7075 * Drop the reference on the group_event after placing the
7076 * new event on the sibling_list. This ensures destruction
7077 * of the group leader will find the pointer to itself in
7078 * perf_group_detach().
7081 fd_install(event_fd, event_file);
7085 perf_unpin_context(ctx);
7092 put_task_struct(task);
7096 put_unused_fd(event_fd);
7101 * perf_event_create_kernel_counter
7103 * @attr: attributes of the counter to create
7104 * @cpu: cpu in which the counter is bound
7105 * @task: task to profile (NULL for percpu)
7108 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7109 struct task_struct *task,
7110 perf_overflow_handler_t overflow_handler,
7113 struct perf_event_context *ctx;
7114 struct perf_event *event;
7118 * Get the target context (task or percpu):
7121 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7122 overflow_handler, context);
7123 if (IS_ERR(event)) {
7124 err = PTR_ERR(event);
7128 account_event(event);
7130 ctx = find_get_context(event->pmu, task, cpu);
7136 WARN_ON_ONCE(ctx->parent_ctx);
7137 mutex_lock(&ctx->mutex);
7138 perf_install_in_context(ctx, event, cpu);
7140 perf_unpin_context(ctx);
7141 mutex_unlock(&ctx->mutex);
7148 return ERR_PTR(err);
7150 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7152 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7154 struct perf_event_context *src_ctx;
7155 struct perf_event_context *dst_ctx;
7156 struct perf_event *event, *tmp;
7159 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7160 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7162 mutex_lock(&src_ctx->mutex);
7163 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7165 perf_remove_from_context(event);
7166 unaccount_event_cpu(event, src_cpu);
7168 list_add(&event->event_entry, &events);
7170 mutex_unlock(&src_ctx->mutex);
7174 mutex_lock(&dst_ctx->mutex);
7175 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7176 list_del(&event->event_entry);
7177 if (event->state >= PERF_EVENT_STATE_OFF)
7178 event->state = PERF_EVENT_STATE_INACTIVE;
7179 account_event_cpu(event, dst_cpu);
7180 perf_install_in_context(dst_ctx, event, dst_cpu);
7183 mutex_unlock(&dst_ctx->mutex);
7185 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7187 static void sync_child_event(struct perf_event *child_event,
7188 struct task_struct *child)
7190 struct perf_event *parent_event = child_event->parent;
7193 if (child_event->attr.inherit_stat)
7194 perf_event_read_event(child_event, child);
7196 child_val = perf_event_count(child_event);
7199 * Add back the child's count to the parent's count:
7201 atomic64_add(child_val, &parent_event->child_count);
7202 atomic64_add(child_event->total_time_enabled,
7203 &parent_event->child_total_time_enabled);
7204 atomic64_add(child_event->total_time_running,
7205 &parent_event->child_total_time_running);
7208 * Remove this event from the parent's list
7210 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7211 mutex_lock(&parent_event->child_mutex);
7212 list_del_init(&child_event->child_list);
7213 mutex_unlock(&parent_event->child_mutex);
7216 * Release the parent event, if this was the last
7219 put_event(parent_event);
7223 __perf_event_exit_task(struct perf_event *child_event,
7224 struct perf_event_context *child_ctx,
7225 struct task_struct *child)
7227 if (child_event->parent) {
7228 raw_spin_lock_irq(&child_ctx->lock);
7229 perf_group_detach(child_event);
7230 raw_spin_unlock_irq(&child_ctx->lock);
7233 perf_remove_from_context(child_event);
7236 * It can happen that the parent exits first, and has events
7237 * that are still around due to the child reference. These
7238 * events need to be zapped.
7240 if (child_event->parent) {
7241 sync_child_event(child_event, child);
7242 free_event(child_event);
7246 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7248 struct perf_event *child_event, *tmp;
7249 struct perf_event_context *child_ctx;
7250 unsigned long flags;
7252 if (likely(!child->perf_event_ctxp[ctxn])) {
7253 perf_event_task(child, NULL, 0);
7257 local_irq_save(flags);
7259 * We can't reschedule here because interrupts are disabled,
7260 * and either child is current or it is a task that can't be
7261 * scheduled, so we are now safe from rescheduling changing
7264 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7267 * Take the context lock here so that if find_get_context is
7268 * reading child->perf_event_ctxp, we wait until it has
7269 * incremented the context's refcount before we do put_ctx below.
7271 raw_spin_lock(&child_ctx->lock);
7272 task_ctx_sched_out(child_ctx);
7273 child->perf_event_ctxp[ctxn] = NULL;
7275 * If this context is a clone; unclone it so it can't get
7276 * swapped to another process while we're removing all
7277 * the events from it.
7279 unclone_ctx(child_ctx);
7280 update_context_time(child_ctx);
7281 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7284 * Report the task dead after unscheduling the events so that we
7285 * won't get any samples after PERF_RECORD_EXIT. We can however still
7286 * get a few PERF_RECORD_READ events.
7288 perf_event_task(child, child_ctx, 0);
7291 * We can recurse on the same lock type through:
7293 * __perf_event_exit_task()
7294 * sync_child_event()
7296 * mutex_lock(&ctx->mutex)
7298 * But since its the parent context it won't be the same instance.
7300 mutex_lock(&child_ctx->mutex);
7303 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7305 __perf_event_exit_task(child_event, child_ctx, child);
7307 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7309 __perf_event_exit_task(child_event, child_ctx, child);
7312 * If the last event was a group event, it will have appended all
7313 * its siblings to the list, but we obtained 'tmp' before that which
7314 * will still point to the list head terminating the iteration.
7316 if (!list_empty(&child_ctx->pinned_groups) ||
7317 !list_empty(&child_ctx->flexible_groups))
7320 mutex_unlock(&child_ctx->mutex);
7326 * When a child task exits, feed back event values to parent events.
7328 void perf_event_exit_task(struct task_struct *child)
7330 struct perf_event *event, *tmp;
7333 mutex_lock(&child->perf_event_mutex);
7334 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7336 list_del_init(&event->owner_entry);
7339 * Ensure the list deletion is visible before we clear
7340 * the owner, closes a race against perf_release() where
7341 * we need to serialize on the owner->perf_event_mutex.
7344 event->owner = NULL;
7346 mutex_unlock(&child->perf_event_mutex);
7348 for_each_task_context_nr(ctxn)
7349 perf_event_exit_task_context(child, ctxn);
7352 static void perf_free_event(struct perf_event *event,
7353 struct perf_event_context *ctx)
7355 struct perf_event *parent = event->parent;
7357 if (WARN_ON_ONCE(!parent))
7360 mutex_lock(&parent->child_mutex);
7361 list_del_init(&event->child_list);
7362 mutex_unlock(&parent->child_mutex);
7366 perf_group_detach(event);
7367 list_del_event(event, ctx);
7372 * free an unexposed, unused context as created by inheritance by
7373 * perf_event_init_task below, used by fork() in case of fail.
7375 void perf_event_free_task(struct task_struct *task)
7377 struct perf_event_context *ctx;
7378 struct perf_event *event, *tmp;
7381 for_each_task_context_nr(ctxn) {
7382 ctx = task->perf_event_ctxp[ctxn];
7386 mutex_lock(&ctx->mutex);
7388 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7390 perf_free_event(event, ctx);
7392 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7394 perf_free_event(event, ctx);
7396 if (!list_empty(&ctx->pinned_groups) ||
7397 !list_empty(&ctx->flexible_groups))
7400 mutex_unlock(&ctx->mutex);
7406 void perf_event_delayed_put(struct task_struct *task)
7410 for_each_task_context_nr(ctxn)
7411 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7415 * inherit a event from parent task to child task:
7417 static struct perf_event *
7418 inherit_event(struct perf_event *parent_event,
7419 struct task_struct *parent,
7420 struct perf_event_context *parent_ctx,
7421 struct task_struct *child,
7422 struct perf_event *group_leader,
7423 struct perf_event_context *child_ctx)
7425 struct perf_event *child_event;
7426 unsigned long flags;
7429 * Instead of creating recursive hierarchies of events,
7430 * we link inherited events back to the original parent,
7431 * which has a filp for sure, which we use as the reference
7434 if (parent_event->parent)
7435 parent_event = parent_event->parent;
7437 child_event = perf_event_alloc(&parent_event->attr,
7440 group_leader, parent_event,
7442 if (IS_ERR(child_event))
7445 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7446 free_event(child_event);
7453 * Make the child state follow the state of the parent event,
7454 * not its attr.disabled bit. We hold the parent's mutex,
7455 * so we won't race with perf_event_{en, dis}able_family.
7457 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7458 child_event->state = PERF_EVENT_STATE_INACTIVE;
7460 child_event->state = PERF_EVENT_STATE_OFF;
7462 if (parent_event->attr.freq) {
7463 u64 sample_period = parent_event->hw.sample_period;
7464 struct hw_perf_event *hwc = &child_event->hw;
7466 hwc->sample_period = sample_period;
7467 hwc->last_period = sample_period;
7469 local64_set(&hwc->period_left, sample_period);
7472 child_event->ctx = child_ctx;
7473 child_event->overflow_handler = parent_event->overflow_handler;
7474 child_event->overflow_handler_context
7475 = parent_event->overflow_handler_context;
7478 * Precalculate sample_data sizes
7480 perf_event__header_size(child_event);
7481 perf_event__id_header_size(child_event);
7484 * Link it up in the child's context:
7486 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7487 add_event_to_ctx(child_event, child_ctx);
7488 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7491 * Link this into the parent event's child list
7493 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7494 mutex_lock(&parent_event->child_mutex);
7495 list_add_tail(&child_event->child_list, &parent_event->child_list);
7496 mutex_unlock(&parent_event->child_mutex);
7501 static int inherit_group(struct perf_event *parent_event,
7502 struct task_struct *parent,
7503 struct perf_event_context *parent_ctx,
7504 struct task_struct *child,
7505 struct perf_event_context *child_ctx)
7507 struct perf_event *leader;
7508 struct perf_event *sub;
7509 struct perf_event *child_ctr;
7511 leader = inherit_event(parent_event, parent, parent_ctx,
7512 child, NULL, child_ctx);
7514 return PTR_ERR(leader);
7515 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7516 child_ctr = inherit_event(sub, parent, parent_ctx,
7517 child, leader, child_ctx);
7518 if (IS_ERR(child_ctr))
7519 return PTR_ERR(child_ctr);
7525 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7526 struct perf_event_context *parent_ctx,
7527 struct task_struct *child, int ctxn,
7531 struct perf_event_context *child_ctx;
7533 if (!event->attr.inherit) {
7538 child_ctx = child->perf_event_ctxp[ctxn];
7541 * This is executed from the parent task context, so
7542 * inherit events that have been marked for cloning.
7543 * First allocate and initialize a context for the
7547 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7551 child->perf_event_ctxp[ctxn] = child_ctx;
7554 ret = inherit_group(event, parent, parent_ctx,
7564 * Initialize the perf_event context in task_struct
7566 int perf_event_init_context(struct task_struct *child, int ctxn)
7568 struct perf_event_context *child_ctx, *parent_ctx;
7569 struct perf_event_context *cloned_ctx;
7570 struct perf_event *event;
7571 struct task_struct *parent = current;
7572 int inherited_all = 1;
7573 unsigned long flags;
7576 if (likely(!parent->perf_event_ctxp[ctxn]))
7580 * If the parent's context is a clone, pin it so it won't get
7583 parent_ctx = perf_pin_task_context(parent, ctxn);
7586 * No need to check if parent_ctx != NULL here; since we saw
7587 * it non-NULL earlier, the only reason for it to become NULL
7588 * is if we exit, and since we're currently in the middle of
7589 * a fork we can't be exiting at the same time.
7593 * Lock the parent list. No need to lock the child - not PID
7594 * hashed yet and not running, so nobody can access it.
7596 mutex_lock(&parent_ctx->mutex);
7599 * We dont have to disable NMIs - we are only looking at
7600 * the list, not manipulating it:
7602 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7603 ret = inherit_task_group(event, parent, parent_ctx,
7604 child, ctxn, &inherited_all);
7610 * We can't hold ctx->lock when iterating the ->flexible_group list due
7611 * to allocations, but we need to prevent rotation because
7612 * rotate_ctx() will change the list from interrupt context.
7614 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7615 parent_ctx->rotate_disable = 1;
7616 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7618 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7619 ret = inherit_task_group(event, parent, parent_ctx,
7620 child, ctxn, &inherited_all);
7625 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7626 parent_ctx->rotate_disable = 0;
7628 child_ctx = child->perf_event_ctxp[ctxn];
7630 if (child_ctx && inherited_all) {
7632 * Mark the child context as a clone of the parent
7633 * context, or of whatever the parent is a clone of.
7635 * Note that if the parent is a clone, the holding of
7636 * parent_ctx->lock avoids it from being uncloned.
7638 cloned_ctx = parent_ctx->parent_ctx;
7640 child_ctx->parent_ctx = cloned_ctx;
7641 child_ctx->parent_gen = parent_ctx->parent_gen;
7643 child_ctx->parent_ctx = parent_ctx;
7644 child_ctx->parent_gen = parent_ctx->generation;
7646 get_ctx(child_ctx->parent_ctx);
7649 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7650 mutex_unlock(&parent_ctx->mutex);
7652 perf_unpin_context(parent_ctx);
7653 put_ctx(parent_ctx);
7659 * Initialize the perf_event context in task_struct
7661 int perf_event_init_task(struct task_struct *child)
7665 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7666 mutex_init(&child->perf_event_mutex);
7667 INIT_LIST_HEAD(&child->perf_event_list);
7669 for_each_task_context_nr(ctxn) {
7670 ret = perf_event_init_context(child, ctxn);
7678 static void __init perf_event_init_all_cpus(void)
7680 struct swevent_htable *swhash;
7683 for_each_possible_cpu(cpu) {
7684 swhash = &per_cpu(swevent_htable, cpu);
7685 mutex_init(&swhash->hlist_mutex);
7686 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7690 static void perf_event_init_cpu(int cpu)
7692 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7694 mutex_lock(&swhash->hlist_mutex);
7695 if (swhash->hlist_refcount > 0) {
7696 struct swevent_hlist *hlist;
7698 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7700 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7702 mutex_unlock(&swhash->hlist_mutex);
7705 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7706 static void perf_pmu_rotate_stop(struct pmu *pmu)
7708 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7710 WARN_ON(!irqs_disabled());
7712 list_del_init(&cpuctx->rotation_list);
7715 static void __perf_event_exit_context(void *__info)
7717 struct perf_event_context *ctx = __info;
7718 struct perf_event *event, *tmp;
7720 perf_pmu_rotate_stop(ctx->pmu);
7722 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7723 __perf_remove_from_context(event);
7724 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7725 __perf_remove_from_context(event);
7728 static void perf_event_exit_cpu_context(int cpu)
7730 struct perf_event_context *ctx;
7734 idx = srcu_read_lock(&pmus_srcu);
7735 list_for_each_entry_rcu(pmu, &pmus, entry) {
7736 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7738 mutex_lock(&ctx->mutex);
7739 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7740 mutex_unlock(&ctx->mutex);
7742 srcu_read_unlock(&pmus_srcu, idx);
7745 static void perf_event_exit_cpu(int cpu)
7747 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7749 mutex_lock(&swhash->hlist_mutex);
7750 swevent_hlist_release(swhash);
7751 mutex_unlock(&swhash->hlist_mutex);
7753 perf_event_exit_cpu_context(cpu);
7756 static inline void perf_event_exit_cpu(int cpu) { }
7760 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7764 for_each_online_cpu(cpu)
7765 perf_event_exit_cpu(cpu);
7771 * Run the perf reboot notifier at the very last possible moment so that
7772 * the generic watchdog code runs as long as possible.
7774 static struct notifier_block perf_reboot_notifier = {
7775 .notifier_call = perf_reboot,
7776 .priority = INT_MIN,
7780 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7782 unsigned int cpu = (long)hcpu;
7784 switch (action & ~CPU_TASKS_FROZEN) {
7786 case CPU_UP_PREPARE:
7787 case CPU_DOWN_FAILED:
7788 perf_event_init_cpu(cpu);
7791 case CPU_UP_CANCELED:
7792 case CPU_DOWN_PREPARE:
7793 perf_event_exit_cpu(cpu);
7802 void __init perf_event_init(void)
7808 perf_event_init_all_cpus();
7809 init_srcu_struct(&pmus_srcu);
7810 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7811 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7812 perf_pmu_register(&perf_task_clock, NULL, -1);
7814 perf_cpu_notifier(perf_cpu_notify);
7815 register_reboot_notifier(&perf_reboot_notifier);
7817 ret = init_hw_breakpoint();
7818 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7820 /* do not patch jump label more than once per second */
7821 jump_label_rate_limit(&perf_sched_events, HZ);
7824 * Build time assertion that we keep the data_head at the intended
7825 * location. IOW, validation we got the __reserved[] size right.
7827 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7831 static int __init perf_event_sysfs_init(void)
7836 mutex_lock(&pmus_lock);
7838 ret = bus_register(&pmu_bus);
7842 list_for_each_entry(pmu, &pmus, entry) {
7843 if (!pmu->name || pmu->type < 0)
7846 ret = pmu_dev_alloc(pmu);
7847 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7849 pmu_bus_running = 1;
7853 mutex_unlock(&pmus_lock);
7857 device_initcall(perf_event_sysfs_init);
7859 #ifdef CONFIG_CGROUP_PERF
7860 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7862 struct perf_cgroup *jc;
7864 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7866 return ERR_PTR(-ENOMEM);
7868 jc->info = alloc_percpu(struct perf_cgroup_info);
7871 return ERR_PTR(-ENOMEM);
7877 static void perf_cgroup_css_free(struct cgroup *cont)
7879 struct perf_cgroup *jc;
7880 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7881 struct perf_cgroup, css);
7882 free_percpu(jc->info);
7886 static int __perf_cgroup_move(void *info)
7888 struct task_struct *task = info;
7889 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7893 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7895 struct task_struct *task;
7897 cgroup_taskset_for_each(task, cgrp, tset)
7898 task_function_call(task, __perf_cgroup_move, task);
7901 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7902 struct task_struct *task)
7905 * cgroup_exit() is called in the copy_process() failure path.
7906 * Ignore this case since the task hasn't ran yet, this avoids
7907 * trying to poke a half freed task state from generic code.
7909 if (!(task->flags & PF_EXITING))
7912 task_function_call(task, __perf_cgroup_move, task);
7915 struct cgroup_subsys perf_subsys = {
7916 .name = "perf_event",
7917 .subsys_id = perf_subsys_id,
7918 .css_alloc = perf_cgroup_css_alloc,
7919 .css_free = perf_cgroup_css_free,
7920 .exit = perf_cgroup_exit,
7921 .attach = perf_cgroup_attach,
7923 #endif /* CONFIG_CGROUP_PERF */