perf/core: Fix ctx_event_type in ctx_resched()
[platform/kernel/linux-rpi.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         WARN_ON_ONCE(!irqs_disabled());
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         WARN_ON_ONCE(!irqs_disabled());
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590         struct perf_event_context *ctx = event->ctx;
591         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593         /* @event doesn't care about cgroup */
594         if (!event->cgrp)
595                 return true;
596
597         /* wants specific cgroup scope but @cpuctx isn't associated with any */
598         if (!cpuctx->cgrp)
599                 return false;
600
601         /*
602          * Cgroup scoping is recursive.  An event enabled for a cgroup is
603          * also enabled for all its descendant cgroups.  If @cpuctx's
604          * cgroup is a descendant of @event's (the test covers identity
605          * case), it's a match.
606          */
607         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608                                     event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613         css_put(&event->cgrp->css);
614         event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619         return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624         struct perf_cgroup_info *t;
625
626         t = per_cpu_ptr(event->cgrp->info, event->cpu);
627         return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632         struct perf_cgroup_info *info;
633         u64 now;
634
635         now = perf_clock();
636
637         info = this_cpu_ptr(cgrp->info);
638
639         info->time += now - info->timestamp;
640         info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646         if (cgrp_out)
647                 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652         struct perf_cgroup *cgrp;
653
654         /*
655          * ensure we access cgroup data only when needed and
656          * when we know the cgroup is pinned (css_get)
657          */
658         if (!is_cgroup_event(event))
659                 return;
660
661         cgrp = perf_cgroup_from_task(current, event->ctx);
662         /*
663          * Do not update time when cgroup is not active
664          */
665        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
666                 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671                           struct perf_event_context *ctx)
672 {
673         struct perf_cgroup *cgrp;
674         struct perf_cgroup_info *info;
675
676         /*
677          * ctx->lock held by caller
678          * ensure we do not access cgroup data
679          * unless we have the cgroup pinned (css_get)
680          */
681         if (!task || !ctx->nr_cgroups)
682                 return;
683
684         cgrp = perf_cgroup_from_task(task, ctx);
685         info = this_cpu_ptr(cgrp->info);
686         info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
693
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702         struct perf_cpu_context *cpuctx;
703         struct list_head *list;
704         unsigned long flags;
705
706         /*
707          * Disable interrupts and preemption to avoid this CPU's
708          * cgrp_cpuctx_entry to change under us.
709          */
710         local_irq_save(flags);
711
712         list = this_cpu_ptr(&cgrp_cpuctx_list);
713         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717                 perf_pmu_disable(cpuctx->ctx.pmu);
718
719                 if (mode & PERF_CGROUP_SWOUT) {
720                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721                         /*
722                          * must not be done before ctxswout due
723                          * to event_filter_match() in event_sched_out()
724                          */
725                         cpuctx->cgrp = NULL;
726                 }
727
728                 if (mode & PERF_CGROUP_SWIN) {
729                         WARN_ON_ONCE(cpuctx->cgrp);
730                         /*
731                          * set cgrp before ctxsw in to allow
732                          * event_filter_match() to not have to pass
733                          * task around
734                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
735                          * because cgorup events are only per-cpu
736                          */
737                         cpuctx->cgrp = perf_cgroup_from_task(task,
738                                                              &cpuctx->ctx);
739                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740                 }
741                 perf_pmu_enable(cpuctx->ctx.pmu);
742                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743         }
744
745         local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749                                          struct task_struct *next)
750 {
751         struct perf_cgroup *cgrp1;
752         struct perf_cgroup *cgrp2 = NULL;
753
754         rcu_read_lock();
755         /*
756          * we come here when we know perf_cgroup_events > 0
757          * we do not need to pass the ctx here because we know
758          * we are holding the rcu lock
759          */
760         cgrp1 = perf_cgroup_from_task(task, NULL);
761         cgrp2 = perf_cgroup_from_task(next, NULL);
762
763         /*
764          * only schedule out current cgroup events if we know
765          * that we are switching to a different cgroup. Otherwise,
766          * do no touch the cgroup events.
767          */
768         if (cgrp1 != cgrp2)
769                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771         rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775                                         struct task_struct *task)
776 {
777         struct perf_cgroup *cgrp1;
778         struct perf_cgroup *cgrp2 = NULL;
779
780         rcu_read_lock();
781         /*
782          * we come here when we know perf_cgroup_events > 0
783          * we do not need to pass the ctx here because we know
784          * we are holding the rcu lock
785          */
786         cgrp1 = perf_cgroup_from_task(task, NULL);
787         cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789         /*
790          * only need to schedule in cgroup events if we are changing
791          * cgroup during ctxsw. Cgroup events were not scheduled
792          * out of ctxsw out if that was not the case.
793          */
794         if (cgrp1 != cgrp2)
795                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797         rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801                                       struct perf_event_attr *attr,
802                                       struct perf_event *group_leader)
803 {
804         struct perf_cgroup *cgrp;
805         struct cgroup_subsys_state *css;
806         struct fd f = fdget(fd);
807         int ret = 0;
808
809         if (!f.file)
810                 return -EBADF;
811
812         css = css_tryget_online_from_dir(f.file->f_path.dentry,
813                                          &perf_event_cgrp_subsys);
814         if (IS_ERR(css)) {
815                 ret = PTR_ERR(css);
816                 goto out;
817         }
818
819         cgrp = container_of(css, struct perf_cgroup, css);
820         event->cgrp = cgrp;
821
822         /*
823          * all events in a group must monitor
824          * the same cgroup because a task belongs
825          * to only one perf cgroup at a time
826          */
827         if (group_leader && group_leader->cgrp != cgrp) {
828                 perf_detach_cgroup(event);
829                 ret = -EINVAL;
830         }
831 out:
832         fdput(f);
833         return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839         struct perf_cgroup_info *t;
840         t = per_cpu_ptr(event->cgrp->info, event->cpu);
841         event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847         /*
848          * when the current task's perf cgroup does not match
849          * the event's, we need to remember to call the
850          * perf_mark_enable() function the first time a task with
851          * a matching perf cgroup is scheduled in.
852          */
853         if (is_cgroup_event(event) && !perf_cgroup_match(event))
854                 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859                          struct perf_event_context *ctx)
860 {
861         struct perf_event *sub;
862         u64 tstamp = perf_event_time(event);
863
864         if (!event->cgrp_defer_enabled)
865                 return;
866
867         event->cgrp_defer_enabled = 0;
868
869         event->tstamp_enabled = tstamp - event->total_time_enabled;
870         list_for_each_entry(sub, &event->sibling_list, group_entry) {
871                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873                         sub->cgrp_defer_enabled = 0;
874                 }
875         }
876 }
877
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884                          struct perf_event_context *ctx, bool add)
885 {
886         struct perf_cpu_context *cpuctx;
887         struct list_head *cpuctx_entry;
888
889         if (!is_cgroup_event(event))
890                 return;
891
892         if (add && ctx->nr_cgroups++)
893                 return;
894         else if (!add && --ctx->nr_cgroups)
895                 return;
896         /*
897          * Because cgroup events are always per-cpu events,
898          * this will always be called from the right CPU.
899          */
900         cpuctx = __get_cpu_context(ctx);
901         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903         if (add) {
904                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
905
906                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
907                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
908                         cpuctx->cgrp = cgrp;
909         } else {
910                 list_del(cpuctx_entry);
911                 cpuctx->cgrp = NULL;
912         }
913 }
914
915 #else /* !CONFIG_CGROUP_PERF */
916
917 static inline bool
918 perf_cgroup_match(struct perf_event *event)
919 {
920         return true;
921 }
922
923 static inline void perf_detach_cgroup(struct perf_event *event)
924 {}
925
926 static inline int is_cgroup_event(struct perf_event *event)
927 {
928         return 0;
929 }
930
931 static inline void update_cgrp_time_from_event(struct perf_event *event)
932 {
933 }
934
935 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
936 {
937 }
938
939 static inline void perf_cgroup_sched_out(struct task_struct *task,
940                                          struct task_struct *next)
941 {
942 }
943
944 static inline void perf_cgroup_sched_in(struct task_struct *prev,
945                                         struct task_struct *task)
946 {
947 }
948
949 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
950                                       struct perf_event_attr *attr,
951                                       struct perf_event *group_leader)
952 {
953         return -EINVAL;
954 }
955
956 static inline void
957 perf_cgroup_set_timestamp(struct task_struct *task,
958                           struct perf_event_context *ctx)
959 {
960 }
961
962 void
963 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
964 {
965 }
966
967 static inline void
968 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
969 {
970 }
971
972 static inline u64 perf_cgroup_event_time(struct perf_event *event)
973 {
974         return 0;
975 }
976
977 static inline void
978 perf_cgroup_defer_enabled(struct perf_event *event)
979 {
980 }
981
982 static inline void
983 perf_cgroup_mark_enabled(struct perf_event *event,
984                          struct perf_event_context *ctx)
985 {
986 }
987
988 static inline void
989 list_update_cgroup_event(struct perf_event *event,
990                          struct perf_event_context *ctx, bool add)
991 {
992 }
993
994 #endif
995
996 /*
997  * set default to be dependent on timer tick just
998  * like original code
999  */
1000 #define PERF_CPU_HRTIMER (1000 / HZ)
1001 /*
1002  * function must be called with interrupts disabled
1003  */
1004 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1005 {
1006         struct perf_cpu_context *cpuctx;
1007         int rotations = 0;
1008
1009         WARN_ON(!irqs_disabled());
1010
1011         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1012         rotations = perf_rotate_context(cpuctx);
1013
1014         raw_spin_lock(&cpuctx->hrtimer_lock);
1015         if (rotations)
1016                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1017         else
1018                 cpuctx->hrtimer_active = 0;
1019         raw_spin_unlock(&cpuctx->hrtimer_lock);
1020
1021         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1022 }
1023
1024 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1025 {
1026         struct hrtimer *timer = &cpuctx->hrtimer;
1027         struct pmu *pmu = cpuctx->ctx.pmu;
1028         u64 interval;
1029
1030         /* no multiplexing needed for SW PMU */
1031         if (pmu->task_ctx_nr == perf_sw_context)
1032                 return;
1033
1034         /*
1035          * check default is sane, if not set then force to
1036          * default interval (1/tick)
1037          */
1038         interval = pmu->hrtimer_interval_ms;
1039         if (interval < 1)
1040                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1041
1042         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1043
1044         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1045         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1046         timer->function = perf_mux_hrtimer_handler;
1047 }
1048
1049 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1050 {
1051         struct hrtimer *timer = &cpuctx->hrtimer;
1052         struct pmu *pmu = cpuctx->ctx.pmu;
1053         unsigned long flags;
1054
1055         /* not for SW PMU */
1056         if (pmu->task_ctx_nr == perf_sw_context)
1057                 return 0;
1058
1059         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1060         if (!cpuctx->hrtimer_active) {
1061                 cpuctx->hrtimer_active = 1;
1062                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1063                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1064         }
1065         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1066
1067         return 0;
1068 }
1069
1070 void perf_pmu_disable(struct pmu *pmu)
1071 {
1072         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1073         if (!(*count)++)
1074                 pmu->pmu_disable(pmu);
1075 }
1076
1077 void perf_pmu_enable(struct pmu *pmu)
1078 {
1079         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1080         if (!--(*count))
1081                 pmu->pmu_enable(pmu);
1082 }
1083
1084 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1085
1086 /*
1087  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1088  * perf_event_task_tick() are fully serialized because they're strictly cpu
1089  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1090  * disabled, while perf_event_task_tick is called from IRQ context.
1091  */
1092 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1093 {
1094         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1095
1096         WARN_ON(!irqs_disabled());
1097
1098         WARN_ON(!list_empty(&ctx->active_ctx_list));
1099
1100         list_add(&ctx->active_ctx_list, head);
1101 }
1102
1103 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1104 {
1105         WARN_ON(!irqs_disabled());
1106
1107         WARN_ON(list_empty(&ctx->active_ctx_list));
1108
1109         list_del_init(&ctx->active_ctx_list);
1110 }
1111
1112 static void get_ctx(struct perf_event_context *ctx)
1113 {
1114         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1115 }
1116
1117 static void free_ctx(struct rcu_head *head)
1118 {
1119         struct perf_event_context *ctx;
1120
1121         ctx = container_of(head, struct perf_event_context, rcu_head);
1122         kfree(ctx->task_ctx_data);
1123         kfree(ctx);
1124 }
1125
1126 static void put_ctx(struct perf_event_context *ctx)
1127 {
1128         if (atomic_dec_and_test(&ctx->refcount)) {
1129                 if (ctx->parent_ctx)
1130                         put_ctx(ctx->parent_ctx);
1131                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1132                         put_task_struct(ctx->task);
1133                 call_rcu(&ctx->rcu_head, free_ctx);
1134         }
1135 }
1136
1137 /*
1138  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1139  * perf_pmu_migrate_context() we need some magic.
1140  *
1141  * Those places that change perf_event::ctx will hold both
1142  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1143  *
1144  * Lock ordering is by mutex address. There are two other sites where
1145  * perf_event_context::mutex nests and those are:
1146  *
1147  *  - perf_event_exit_task_context()    [ child , 0 ]
1148  *      perf_event_exit_event()
1149  *        put_event()                   [ parent, 1 ]
1150  *
1151  *  - perf_event_init_context()         [ parent, 0 ]
1152  *      inherit_task_group()
1153  *        inherit_group()
1154  *          inherit_event()
1155  *            perf_event_alloc()
1156  *              perf_init_event()
1157  *                perf_try_init_event() [ child , 1 ]
1158  *
1159  * While it appears there is an obvious deadlock here -- the parent and child
1160  * nesting levels are inverted between the two. This is in fact safe because
1161  * life-time rules separate them. That is an exiting task cannot fork, and a
1162  * spawning task cannot (yet) exit.
1163  *
1164  * But remember that that these are parent<->child context relations, and
1165  * migration does not affect children, therefore these two orderings should not
1166  * interact.
1167  *
1168  * The change in perf_event::ctx does not affect children (as claimed above)
1169  * because the sys_perf_event_open() case will install a new event and break
1170  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1171  * concerned with cpuctx and that doesn't have children.
1172  *
1173  * The places that change perf_event::ctx will issue:
1174  *
1175  *   perf_remove_from_context();
1176  *   synchronize_rcu();
1177  *   perf_install_in_context();
1178  *
1179  * to affect the change. The remove_from_context() + synchronize_rcu() should
1180  * quiesce the event, after which we can install it in the new location. This
1181  * means that only external vectors (perf_fops, prctl) can perturb the event
1182  * while in transit. Therefore all such accessors should also acquire
1183  * perf_event_context::mutex to serialize against this.
1184  *
1185  * However; because event->ctx can change while we're waiting to acquire
1186  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1187  * function.
1188  *
1189  * Lock order:
1190  *    cred_guard_mutex
1191  *      task_struct::perf_event_mutex
1192  *        perf_event_context::mutex
1193  *          perf_event::child_mutex;
1194  *            perf_event_context::lock
1195  *          perf_event::mmap_mutex
1196  *          mmap_sem
1197  */
1198 static struct perf_event_context *
1199 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1200 {
1201         struct perf_event_context *ctx;
1202
1203 again:
1204         rcu_read_lock();
1205         ctx = ACCESS_ONCE(event->ctx);
1206         if (!atomic_inc_not_zero(&ctx->refcount)) {
1207                 rcu_read_unlock();
1208                 goto again;
1209         }
1210         rcu_read_unlock();
1211
1212         mutex_lock_nested(&ctx->mutex, nesting);
1213         if (event->ctx != ctx) {
1214                 mutex_unlock(&ctx->mutex);
1215                 put_ctx(ctx);
1216                 goto again;
1217         }
1218
1219         return ctx;
1220 }
1221
1222 static inline struct perf_event_context *
1223 perf_event_ctx_lock(struct perf_event *event)
1224 {
1225         return perf_event_ctx_lock_nested(event, 0);
1226 }
1227
1228 static void perf_event_ctx_unlock(struct perf_event *event,
1229                                   struct perf_event_context *ctx)
1230 {
1231         mutex_unlock(&ctx->mutex);
1232         put_ctx(ctx);
1233 }
1234
1235 /*
1236  * This must be done under the ctx->lock, such as to serialize against
1237  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1238  * calling scheduler related locks and ctx->lock nests inside those.
1239  */
1240 static __must_check struct perf_event_context *
1241 unclone_ctx(struct perf_event_context *ctx)
1242 {
1243         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1244
1245         lockdep_assert_held(&ctx->lock);
1246
1247         if (parent_ctx)
1248                 ctx->parent_ctx = NULL;
1249         ctx->generation++;
1250
1251         return parent_ctx;
1252 }
1253
1254 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1255                                 enum pid_type type)
1256 {
1257         u32 nr;
1258         /*
1259          * only top level events have the pid namespace they were created in
1260          */
1261         if (event->parent)
1262                 event = event->parent;
1263
1264         nr = __task_pid_nr_ns(p, type, event->ns);
1265         /* avoid -1 if it is idle thread or runs in another ns */
1266         if (!nr && !pid_alive(p))
1267                 nr = -1;
1268         return nr;
1269 }
1270
1271 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1272 {
1273         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1274 }
1275
1276 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1277 {
1278         return perf_event_pid_type(event, p, PIDTYPE_PID);
1279 }
1280
1281 /*
1282  * If we inherit events we want to return the parent event id
1283  * to userspace.
1284  */
1285 static u64 primary_event_id(struct perf_event *event)
1286 {
1287         u64 id = event->id;
1288
1289         if (event->parent)
1290                 id = event->parent->id;
1291
1292         return id;
1293 }
1294
1295 /*
1296  * Get the perf_event_context for a task and lock it.
1297  *
1298  * This has to cope with with the fact that until it is locked,
1299  * the context could get moved to another task.
1300  */
1301 static struct perf_event_context *
1302 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1303 {
1304         struct perf_event_context *ctx;
1305
1306 retry:
1307         /*
1308          * One of the few rules of preemptible RCU is that one cannot do
1309          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1310          * part of the read side critical section was irqs-enabled -- see
1311          * rcu_read_unlock_special().
1312          *
1313          * Since ctx->lock nests under rq->lock we must ensure the entire read
1314          * side critical section has interrupts disabled.
1315          */
1316         local_irq_save(*flags);
1317         rcu_read_lock();
1318         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1319         if (ctx) {
1320                 /*
1321                  * If this context is a clone of another, it might
1322                  * get swapped for another underneath us by
1323                  * perf_event_task_sched_out, though the
1324                  * rcu_read_lock() protects us from any context
1325                  * getting freed.  Lock the context and check if it
1326                  * got swapped before we could get the lock, and retry
1327                  * if so.  If we locked the right context, then it
1328                  * can't get swapped on us any more.
1329                  */
1330                 raw_spin_lock(&ctx->lock);
1331                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1332                         raw_spin_unlock(&ctx->lock);
1333                         rcu_read_unlock();
1334                         local_irq_restore(*flags);
1335                         goto retry;
1336                 }
1337
1338                 if (ctx->task == TASK_TOMBSTONE ||
1339                     !atomic_inc_not_zero(&ctx->refcount)) {
1340                         raw_spin_unlock(&ctx->lock);
1341                         ctx = NULL;
1342                 } else {
1343                         WARN_ON_ONCE(ctx->task != task);
1344                 }
1345         }
1346         rcu_read_unlock();
1347         if (!ctx)
1348                 local_irq_restore(*flags);
1349         return ctx;
1350 }
1351
1352 /*
1353  * Get the context for a task and increment its pin_count so it
1354  * can't get swapped to another task.  This also increments its
1355  * reference count so that the context can't get freed.
1356  */
1357 static struct perf_event_context *
1358 perf_pin_task_context(struct task_struct *task, int ctxn)
1359 {
1360         struct perf_event_context *ctx;
1361         unsigned long flags;
1362
1363         ctx = perf_lock_task_context(task, ctxn, &flags);
1364         if (ctx) {
1365                 ++ctx->pin_count;
1366                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1367         }
1368         return ctx;
1369 }
1370
1371 static void perf_unpin_context(struct perf_event_context *ctx)
1372 {
1373         unsigned long flags;
1374
1375         raw_spin_lock_irqsave(&ctx->lock, flags);
1376         --ctx->pin_count;
1377         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1378 }
1379
1380 /*
1381  * Update the record of the current time in a context.
1382  */
1383 static void update_context_time(struct perf_event_context *ctx)
1384 {
1385         u64 now = perf_clock();
1386
1387         ctx->time += now - ctx->timestamp;
1388         ctx->timestamp = now;
1389 }
1390
1391 static u64 perf_event_time(struct perf_event *event)
1392 {
1393         struct perf_event_context *ctx = event->ctx;
1394
1395         if (is_cgroup_event(event))
1396                 return perf_cgroup_event_time(event);
1397
1398         return ctx ? ctx->time : 0;
1399 }
1400
1401 /*
1402  * Update the total_time_enabled and total_time_running fields for a event.
1403  */
1404 static void update_event_times(struct perf_event *event)
1405 {
1406         struct perf_event_context *ctx = event->ctx;
1407         u64 run_end;
1408
1409         lockdep_assert_held(&ctx->lock);
1410
1411         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1412             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1413                 return;
1414
1415         /*
1416          * in cgroup mode, time_enabled represents
1417          * the time the event was enabled AND active
1418          * tasks were in the monitored cgroup. This is
1419          * independent of the activity of the context as
1420          * there may be a mix of cgroup and non-cgroup events.
1421          *
1422          * That is why we treat cgroup events differently
1423          * here.
1424          */
1425         if (is_cgroup_event(event))
1426                 run_end = perf_cgroup_event_time(event);
1427         else if (ctx->is_active)
1428                 run_end = ctx->time;
1429         else
1430                 run_end = event->tstamp_stopped;
1431
1432         event->total_time_enabled = run_end - event->tstamp_enabled;
1433
1434         if (event->state == PERF_EVENT_STATE_INACTIVE)
1435                 run_end = event->tstamp_stopped;
1436         else
1437                 run_end = perf_event_time(event);
1438
1439         event->total_time_running = run_end - event->tstamp_running;
1440
1441 }
1442
1443 /*
1444  * Update total_time_enabled and total_time_running for all events in a group.
1445  */
1446 static void update_group_times(struct perf_event *leader)
1447 {
1448         struct perf_event *event;
1449
1450         update_event_times(leader);
1451         list_for_each_entry(event, &leader->sibling_list, group_entry)
1452                 update_event_times(event);
1453 }
1454
1455 static enum event_type_t get_event_type(struct perf_event *event)
1456 {
1457         struct perf_event_context *ctx = event->ctx;
1458         enum event_type_t event_type;
1459
1460         lockdep_assert_held(&ctx->lock);
1461
1462         /*
1463          * It's 'group type', really, because if our group leader is
1464          * pinned, so are we.
1465          */
1466         if (event->group_leader != event)
1467                 event = event->group_leader;
1468
1469         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1470         if (!ctx->task)
1471                 event_type |= EVENT_CPU;
1472
1473         return event_type;
1474 }
1475
1476 static struct list_head *
1477 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479         if (event->attr.pinned)
1480                 return &ctx->pinned_groups;
1481         else
1482                 return &ctx->flexible_groups;
1483 }
1484
1485 /*
1486  * Add a event from the lists for its context.
1487  * Must be called with ctx->mutex and ctx->lock held.
1488  */
1489 static void
1490 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1491 {
1492         lockdep_assert_held(&ctx->lock);
1493
1494         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1495         event->attach_state |= PERF_ATTACH_CONTEXT;
1496
1497         /*
1498          * If we're a stand alone event or group leader, we go to the context
1499          * list, group events are kept attached to the group so that
1500          * perf_group_detach can, at all times, locate all siblings.
1501          */
1502         if (event->group_leader == event) {
1503                 struct list_head *list;
1504
1505                 event->group_caps = event->event_caps;
1506
1507                 list = ctx_group_list(event, ctx);
1508                 list_add_tail(&event->group_entry, list);
1509         }
1510
1511         list_update_cgroup_event(event, ctx, true);
1512
1513         list_add_rcu(&event->event_entry, &ctx->event_list);
1514         ctx->nr_events++;
1515         if (event->attr.inherit_stat)
1516                 ctx->nr_stat++;
1517
1518         ctx->generation++;
1519 }
1520
1521 /*
1522  * Initialize event state based on the perf_event_attr::disabled.
1523  */
1524 static inline void perf_event__state_init(struct perf_event *event)
1525 {
1526         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1527                                               PERF_EVENT_STATE_INACTIVE;
1528 }
1529
1530 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1531 {
1532         int entry = sizeof(u64); /* value */
1533         int size = 0;
1534         int nr = 1;
1535
1536         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1537                 size += sizeof(u64);
1538
1539         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1540                 size += sizeof(u64);
1541
1542         if (event->attr.read_format & PERF_FORMAT_ID)
1543                 entry += sizeof(u64);
1544
1545         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1546                 nr += nr_siblings;
1547                 size += sizeof(u64);
1548         }
1549
1550         size += entry * nr;
1551         event->read_size = size;
1552 }
1553
1554 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1555 {
1556         struct perf_sample_data *data;
1557         u16 size = 0;
1558
1559         if (sample_type & PERF_SAMPLE_IP)
1560                 size += sizeof(data->ip);
1561
1562         if (sample_type & PERF_SAMPLE_ADDR)
1563                 size += sizeof(data->addr);
1564
1565         if (sample_type & PERF_SAMPLE_PERIOD)
1566                 size += sizeof(data->period);
1567
1568         if (sample_type & PERF_SAMPLE_WEIGHT)
1569                 size += sizeof(data->weight);
1570
1571         if (sample_type & PERF_SAMPLE_READ)
1572                 size += event->read_size;
1573
1574         if (sample_type & PERF_SAMPLE_DATA_SRC)
1575                 size += sizeof(data->data_src.val);
1576
1577         if (sample_type & PERF_SAMPLE_TRANSACTION)
1578                 size += sizeof(data->txn);
1579
1580         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1581                 size += sizeof(data->phys_addr);
1582
1583         event->header_size = size;
1584 }
1585
1586 /*
1587  * Called at perf_event creation and when events are attached/detached from a
1588  * group.
1589  */
1590 static void perf_event__header_size(struct perf_event *event)
1591 {
1592         __perf_event_read_size(event,
1593                                event->group_leader->nr_siblings);
1594         __perf_event_header_size(event, event->attr.sample_type);
1595 }
1596
1597 static void perf_event__id_header_size(struct perf_event *event)
1598 {
1599         struct perf_sample_data *data;
1600         u64 sample_type = event->attr.sample_type;
1601         u16 size = 0;
1602
1603         if (sample_type & PERF_SAMPLE_TID)
1604                 size += sizeof(data->tid_entry);
1605
1606         if (sample_type & PERF_SAMPLE_TIME)
1607                 size += sizeof(data->time);
1608
1609         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1610                 size += sizeof(data->id);
1611
1612         if (sample_type & PERF_SAMPLE_ID)
1613                 size += sizeof(data->id);
1614
1615         if (sample_type & PERF_SAMPLE_STREAM_ID)
1616                 size += sizeof(data->stream_id);
1617
1618         if (sample_type & PERF_SAMPLE_CPU)
1619                 size += sizeof(data->cpu_entry);
1620
1621         event->id_header_size = size;
1622 }
1623
1624 static bool perf_event_validate_size(struct perf_event *event)
1625 {
1626         /*
1627          * The values computed here will be over-written when we actually
1628          * attach the event.
1629          */
1630         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1631         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1632         perf_event__id_header_size(event);
1633
1634         /*
1635          * Sum the lot; should not exceed the 64k limit we have on records.
1636          * Conservative limit to allow for callchains and other variable fields.
1637          */
1638         if (event->read_size + event->header_size +
1639             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1640                 return false;
1641
1642         return true;
1643 }
1644
1645 static void perf_group_attach(struct perf_event *event)
1646 {
1647         struct perf_event *group_leader = event->group_leader, *pos;
1648
1649         lockdep_assert_held(&event->ctx->lock);
1650
1651         /*
1652          * We can have double attach due to group movement in perf_event_open.
1653          */
1654         if (event->attach_state & PERF_ATTACH_GROUP)
1655                 return;
1656
1657         event->attach_state |= PERF_ATTACH_GROUP;
1658
1659         if (group_leader == event)
1660                 return;
1661
1662         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1663
1664         group_leader->group_caps &= event->event_caps;
1665
1666         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1667         group_leader->nr_siblings++;
1668
1669         perf_event__header_size(group_leader);
1670
1671         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1672                 perf_event__header_size(pos);
1673 }
1674
1675 /*
1676  * Remove a event from the lists for its context.
1677  * Must be called with ctx->mutex and ctx->lock held.
1678  */
1679 static void
1680 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1681 {
1682         WARN_ON_ONCE(event->ctx != ctx);
1683         lockdep_assert_held(&ctx->lock);
1684
1685         /*
1686          * We can have double detach due to exit/hot-unplug + close.
1687          */
1688         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1689                 return;
1690
1691         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1692
1693         list_update_cgroup_event(event, ctx, false);
1694
1695         ctx->nr_events--;
1696         if (event->attr.inherit_stat)
1697                 ctx->nr_stat--;
1698
1699         list_del_rcu(&event->event_entry);
1700
1701         if (event->group_leader == event)
1702                 list_del_init(&event->group_entry);
1703
1704         update_group_times(event);
1705
1706         /*
1707          * If event was in error state, then keep it
1708          * that way, otherwise bogus counts will be
1709          * returned on read(). The only way to get out
1710          * of error state is by explicit re-enabling
1711          * of the event
1712          */
1713         if (event->state > PERF_EVENT_STATE_OFF)
1714                 event->state = PERF_EVENT_STATE_OFF;
1715
1716         ctx->generation++;
1717 }
1718
1719 static void perf_group_detach(struct perf_event *event)
1720 {
1721         struct perf_event *sibling, *tmp;
1722         struct list_head *list = NULL;
1723
1724         lockdep_assert_held(&event->ctx->lock);
1725
1726         /*
1727          * We can have double detach due to exit/hot-unplug + close.
1728          */
1729         if (!(event->attach_state & PERF_ATTACH_GROUP))
1730                 return;
1731
1732         event->attach_state &= ~PERF_ATTACH_GROUP;
1733
1734         /*
1735          * If this is a sibling, remove it from its group.
1736          */
1737         if (event->group_leader != event) {
1738                 list_del_init(&event->group_entry);
1739                 event->group_leader->nr_siblings--;
1740                 goto out;
1741         }
1742
1743         if (!list_empty(&event->group_entry))
1744                 list = &event->group_entry;
1745
1746         /*
1747          * If this was a group event with sibling events then
1748          * upgrade the siblings to singleton events by adding them
1749          * to whatever list we are on.
1750          */
1751         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1752                 if (list)
1753                         list_move_tail(&sibling->group_entry, list);
1754                 sibling->group_leader = sibling;
1755
1756                 /* Inherit group flags from the previous leader */
1757                 sibling->group_caps = event->group_caps;
1758
1759                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1760         }
1761
1762 out:
1763         perf_event__header_size(event->group_leader);
1764
1765         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1766                 perf_event__header_size(tmp);
1767 }
1768
1769 static bool is_orphaned_event(struct perf_event *event)
1770 {
1771         return event->state == PERF_EVENT_STATE_DEAD;
1772 }
1773
1774 static inline int __pmu_filter_match(struct perf_event *event)
1775 {
1776         struct pmu *pmu = event->pmu;
1777         return pmu->filter_match ? pmu->filter_match(event) : 1;
1778 }
1779
1780 /*
1781  * Check whether we should attempt to schedule an event group based on
1782  * PMU-specific filtering. An event group can consist of HW and SW events,
1783  * potentially with a SW leader, so we must check all the filters, to
1784  * determine whether a group is schedulable:
1785  */
1786 static inline int pmu_filter_match(struct perf_event *event)
1787 {
1788         struct perf_event *child;
1789
1790         if (!__pmu_filter_match(event))
1791                 return 0;
1792
1793         list_for_each_entry(child, &event->sibling_list, group_entry) {
1794                 if (!__pmu_filter_match(child))
1795                         return 0;
1796         }
1797
1798         return 1;
1799 }
1800
1801 static inline int
1802 event_filter_match(struct perf_event *event)
1803 {
1804         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1805                perf_cgroup_match(event) && pmu_filter_match(event);
1806 }
1807
1808 static void
1809 event_sched_out(struct perf_event *event,
1810                   struct perf_cpu_context *cpuctx,
1811                   struct perf_event_context *ctx)
1812 {
1813         u64 tstamp = perf_event_time(event);
1814         u64 delta;
1815
1816         WARN_ON_ONCE(event->ctx != ctx);
1817         lockdep_assert_held(&ctx->lock);
1818
1819         /*
1820          * An event which could not be activated because of
1821          * filter mismatch still needs to have its timings
1822          * maintained, otherwise bogus information is return
1823          * via read() for time_enabled, time_running:
1824          */
1825         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1826             !event_filter_match(event)) {
1827                 delta = tstamp - event->tstamp_stopped;
1828                 event->tstamp_running += delta;
1829                 event->tstamp_stopped = tstamp;
1830         }
1831
1832         if (event->state != PERF_EVENT_STATE_ACTIVE)
1833                 return;
1834
1835         perf_pmu_disable(event->pmu);
1836
1837         event->tstamp_stopped = tstamp;
1838         event->pmu->del(event, 0);
1839         event->oncpu = -1;
1840         event->state = PERF_EVENT_STATE_INACTIVE;
1841         if (event->pending_disable) {
1842                 event->pending_disable = 0;
1843                 event->state = PERF_EVENT_STATE_OFF;
1844         }
1845
1846         if (!is_software_event(event))
1847                 cpuctx->active_oncpu--;
1848         if (!--ctx->nr_active)
1849                 perf_event_ctx_deactivate(ctx);
1850         if (event->attr.freq && event->attr.sample_freq)
1851                 ctx->nr_freq--;
1852         if (event->attr.exclusive || !cpuctx->active_oncpu)
1853                 cpuctx->exclusive = 0;
1854
1855         perf_pmu_enable(event->pmu);
1856 }
1857
1858 static void
1859 group_sched_out(struct perf_event *group_event,
1860                 struct perf_cpu_context *cpuctx,
1861                 struct perf_event_context *ctx)
1862 {
1863         struct perf_event *event;
1864         int state = group_event->state;
1865
1866         perf_pmu_disable(ctx->pmu);
1867
1868         event_sched_out(group_event, cpuctx, ctx);
1869
1870         /*
1871          * Schedule out siblings (if any):
1872          */
1873         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1874                 event_sched_out(event, cpuctx, ctx);
1875
1876         perf_pmu_enable(ctx->pmu);
1877
1878         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1879                 cpuctx->exclusive = 0;
1880 }
1881
1882 #define DETACH_GROUP    0x01UL
1883
1884 /*
1885  * Cross CPU call to remove a performance event
1886  *
1887  * We disable the event on the hardware level first. After that we
1888  * remove it from the context list.
1889  */
1890 static void
1891 __perf_remove_from_context(struct perf_event *event,
1892                            struct perf_cpu_context *cpuctx,
1893                            struct perf_event_context *ctx,
1894                            void *info)
1895 {
1896         unsigned long flags = (unsigned long)info;
1897
1898         event_sched_out(event, cpuctx, ctx);
1899         if (flags & DETACH_GROUP)
1900                 perf_group_detach(event);
1901         list_del_event(event, ctx);
1902
1903         if (!ctx->nr_events && ctx->is_active) {
1904                 ctx->is_active = 0;
1905                 if (ctx->task) {
1906                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1907                         cpuctx->task_ctx = NULL;
1908                 }
1909         }
1910 }
1911
1912 /*
1913  * Remove the event from a task's (or a CPU's) list of events.
1914  *
1915  * If event->ctx is a cloned context, callers must make sure that
1916  * every task struct that event->ctx->task could possibly point to
1917  * remains valid.  This is OK when called from perf_release since
1918  * that only calls us on the top-level context, which can't be a clone.
1919  * When called from perf_event_exit_task, it's OK because the
1920  * context has been detached from its task.
1921  */
1922 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1923 {
1924         struct perf_event_context *ctx = event->ctx;
1925
1926         lockdep_assert_held(&ctx->mutex);
1927
1928         event_function_call(event, __perf_remove_from_context, (void *)flags);
1929
1930         /*
1931          * The above event_function_call() can NO-OP when it hits
1932          * TASK_TOMBSTONE. In that case we must already have been detached
1933          * from the context (by perf_event_exit_event()) but the grouping
1934          * might still be in-tact.
1935          */
1936         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1937         if ((flags & DETACH_GROUP) &&
1938             (event->attach_state & PERF_ATTACH_GROUP)) {
1939                 /*
1940                  * Since in that case we cannot possibly be scheduled, simply
1941                  * detach now.
1942                  */
1943                 raw_spin_lock_irq(&ctx->lock);
1944                 perf_group_detach(event);
1945                 raw_spin_unlock_irq(&ctx->lock);
1946         }
1947 }
1948
1949 /*
1950  * Cross CPU call to disable a performance event
1951  */
1952 static void __perf_event_disable(struct perf_event *event,
1953                                  struct perf_cpu_context *cpuctx,
1954                                  struct perf_event_context *ctx,
1955                                  void *info)
1956 {
1957         if (event->state < PERF_EVENT_STATE_INACTIVE)
1958                 return;
1959
1960         update_context_time(ctx);
1961         update_cgrp_time_from_event(event);
1962         update_group_times(event);
1963         if (event == event->group_leader)
1964                 group_sched_out(event, cpuctx, ctx);
1965         else
1966                 event_sched_out(event, cpuctx, ctx);
1967         event->state = PERF_EVENT_STATE_OFF;
1968 }
1969
1970 /*
1971  * Disable a event.
1972  *
1973  * If event->ctx is a cloned context, callers must make sure that
1974  * every task struct that event->ctx->task could possibly point to
1975  * remains valid.  This condition is satisifed when called through
1976  * perf_event_for_each_child or perf_event_for_each because they
1977  * hold the top-level event's child_mutex, so any descendant that
1978  * goes to exit will block in perf_event_exit_event().
1979  *
1980  * When called from perf_pending_event it's OK because event->ctx
1981  * is the current context on this CPU and preemption is disabled,
1982  * hence we can't get into perf_event_task_sched_out for this context.
1983  */
1984 static void _perf_event_disable(struct perf_event *event)
1985 {
1986         struct perf_event_context *ctx = event->ctx;
1987
1988         raw_spin_lock_irq(&ctx->lock);
1989         if (event->state <= PERF_EVENT_STATE_OFF) {
1990                 raw_spin_unlock_irq(&ctx->lock);
1991                 return;
1992         }
1993         raw_spin_unlock_irq(&ctx->lock);
1994
1995         event_function_call(event, __perf_event_disable, NULL);
1996 }
1997
1998 void perf_event_disable_local(struct perf_event *event)
1999 {
2000         event_function_local(event, __perf_event_disable, NULL);
2001 }
2002
2003 /*
2004  * Strictly speaking kernel users cannot create groups and therefore this
2005  * interface does not need the perf_event_ctx_lock() magic.
2006  */
2007 void perf_event_disable(struct perf_event *event)
2008 {
2009         struct perf_event_context *ctx;
2010
2011         ctx = perf_event_ctx_lock(event);
2012         _perf_event_disable(event);
2013         perf_event_ctx_unlock(event, ctx);
2014 }
2015 EXPORT_SYMBOL_GPL(perf_event_disable);
2016
2017 void perf_event_disable_inatomic(struct perf_event *event)
2018 {
2019         event->pending_disable = 1;
2020         irq_work_queue(&event->pending);
2021 }
2022
2023 static void perf_set_shadow_time(struct perf_event *event,
2024                                  struct perf_event_context *ctx,
2025                                  u64 tstamp)
2026 {
2027         /*
2028          * use the correct time source for the time snapshot
2029          *
2030          * We could get by without this by leveraging the
2031          * fact that to get to this function, the caller
2032          * has most likely already called update_context_time()
2033          * and update_cgrp_time_xx() and thus both timestamp
2034          * are identical (or very close). Given that tstamp is,
2035          * already adjusted for cgroup, we could say that:
2036          *    tstamp - ctx->timestamp
2037          * is equivalent to
2038          *    tstamp - cgrp->timestamp.
2039          *
2040          * Then, in perf_output_read(), the calculation would
2041          * work with no changes because:
2042          * - event is guaranteed scheduled in
2043          * - no scheduled out in between
2044          * - thus the timestamp would be the same
2045          *
2046          * But this is a bit hairy.
2047          *
2048          * So instead, we have an explicit cgroup call to remain
2049          * within the time time source all along. We believe it
2050          * is cleaner and simpler to understand.
2051          */
2052         if (is_cgroup_event(event))
2053                 perf_cgroup_set_shadow_time(event, tstamp);
2054         else
2055                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2056 }
2057
2058 #define MAX_INTERRUPTS (~0ULL)
2059
2060 static void perf_log_throttle(struct perf_event *event, int enable);
2061 static void perf_log_itrace_start(struct perf_event *event);
2062
2063 static int
2064 event_sched_in(struct perf_event *event,
2065                  struct perf_cpu_context *cpuctx,
2066                  struct perf_event_context *ctx)
2067 {
2068         u64 tstamp = perf_event_time(event);
2069         int ret = 0;
2070
2071         lockdep_assert_held(&ctx->lock);
2072
2073         if (event->state <= PERF_EVENT_STATE_OFF)
2074                 return 0;
2075
2076         WRITE_ONCE(event->oncpu, smp_processor_id());
2077         /*
2078          * Order event::oncpu write to happen before the ACTIVE state
2079          * is visible.
2080          */
2081         smp_wmb();
2082         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2083
2084         /*
2085          * Unthrottle events, since we scheduled we might have missed several
2086          * ticks already, also for a heavily scheduling task there is little
2087          * guarantee it'll get a tick in a timely manner.
2088          */
2089         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2090                 perf_log_throttle(event, 1);
2091                 event->hw.interrupts = 0;
2092         }
2093
2094         /*
2095          * The new state must be visible before we turn it on in the hardware:
2096          */
2097         smp_wmb();
2098
2099         perf_pmu_disable(event->pmu);
2100
2101         perf_set_shadow_time(event, ctx, tstamp);
2102
2103         perf_log_itrace_start(event);
2104
2105         if (event->pmu->add(event, PERF_EF_START)) {
2106                 event->state = PERF_EVENT_STATE_INACTIVE;
2107                 event->oncpu = -1;
2108                 ret = -EAGAIN;
2109                 goto out;
2110         }
2111
2112         event->tstamp_running += tstamp - event->tstamp_stopped;
2113
2114         if (!is_software_event(event))
2115                 cpuctx->active_oncpu++;
2116         if (!ctx->nr_active++)
2117                 perf_event_ctx_activate(ctx);
2118         if (event->attr.freq && event->attr.sample_freq)
2119                 ctx->nr_freq++;
2120
2121         if (event->attr.exclusive)
2122                 cpuctx->exclusive = 1;
2123
2124 out:
2125         perf_pmu_enable(event->pmu);
2126
2127         return ret;
2128 }
2129
2130 static int
2131 group_sched_in(struct perf_event *group_event,
2132                struct perf_cpu_context *cpuctx,
2133                struct perf_event_context *ctx)
2134 {
2135         struct perf_event *event, *partial_group = NULL;
2136         struct pmu *pmu = ctx->pmu;
2137         u64 now = ctx->time;
2138         bool simulate = false;
2139
2140         if (group_event->state == PERF_EVENT_STATE_OFF)
2141                 return 0;
2142
2143         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2144
2145         if (event_sched_in(group_event, cpuctx, ctx)) {
2146                 pmu->cancel_txn(pmu);
2147                 perf_mux_hrtimer_restart(cpuctx);
2148                 return -EAGAIN;
2149         }
2150
2151         /*
2152          * Schedule in siblings as one group (if any):
2153          */
2154         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2155                 if (event_sched_in(event, cpuctx, ctx)) {
2156                         partial_group = event;
2157                         goto group_error;
2158                 }
2159         }
2160
2161         if (!pmu->commit_txn(pmu))
2162                 return 0;
2163
2164 group_error:
2165         /*
2166          * Groups can be scheduled in as one unit only, so undo any
2167          * partial group before returning:
2168          * The events up to the failed event are scheduled out normally,
2169          * tstamp_stopped will be updated.
2170          *
2171          * The failed events and the remaining siblings need to have
2172          * their timings updated as if they had gone thru event_sched_in()
2173          * and event_sched_out(). This is required to get consistent timings
2174          * across the group. This also takes care of the case where the group
2175          * could never be scheduled by ensuring tstamp_stopped is set to mark
2176          * the time the event was actually stopped, such that time delta
2177          * calculation in update_event_times() is correct.
2178          */
2179         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2180                 if (event == partial_group)
2181                         simulate = true;
2182
2183                 if (simulate) {
2184                         event->tstamp_running += now - event->tstamp_stopped;
2185                         event->tstamp_stopped = now;
2186                 } else {
2187                         event_sched_out(event, cpuctx, ctx);
2188                 }
2189         }
2190         event_sched_out(group_event, cpuctx, ctx);
2191
2192         pmu->cancel_txn(pmu);
2193
2194         perf_mux_hrtimer_restart(cpuctx);
2195
2196         return -EAGAIN;
2197 }
2198
2199 /*
2200  * Work out whether we can put this event group on the CPU now.
2201  */
2202 static int group_can_go_on(struct perf_event *event,
2203                            struct perf_cpu_context *cpuctx,
2204                            int can_add_hw)
2205 {
2206         /*
2207          * Groups consisting entirely of software events can always go on.
2208          */
2209         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2210                 return 1;
2211         /*
2212          * If an exclusive group is already on, no other hardware
2213          * events can go on.
2214          */
2215         if (cpuctx->exclusive)
2216                 return 0;
2217         /*
2218          * If this group is exclusive and there are already
2219          * events on the CPU, it can't go on.
2220          */
2221         if (event->attr.exclusive && cpuctx->active_oncpu)
2222                 return 0;
2223         /*
2224          * Otherwise, try to add it if all previous groups were able
2225          * to go on.
2226          */
2227         return can_add_hw;
2228 }
2229
2230 /*
2231  * Complement to update_event_times(). This computes the tstamp_* values to
2232  * continue 'enabled' state from @now, and effectively discards the time
2233  * between the prior tstamp_stopped and now (as we were in the OFF state, or
2234  * just switched (context) time base).
2235  *
2236  * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2237  * cannot have been scheduled in yet. And going into INACTIVE state means
2238  * '@event->tstamp_stopped = @now'.
2239  *
2240  * Thus given the rules of update_event_times():
2241  *
2242  *   total_time_enabled = tstamp_stopped - tstamp_enabled
2243  *   total_time_running = tstamp_stopped - tstamp_running
2244  *
2245  * We can insert 'tstamp_stopped == now' and reverse them to compute new
2246  * tstamp_* values.
2247  */
2248 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2249 {
2250         WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2251
2252         event->tstamp_stopped = now;
2253         event->tstamp_enabled = now - event->total_time_enabled;
2254         event->tstamp_running = now - event->total_time_running;
2255 }
2256
2257 static void add_event_to_ctx(struct perf_event *event,
2258                                struct perf_event_context *ctx)
2259 {
2260         u64 tstamp = perf_event_time(event);
2261
2262         list_add_event(event, ctx);
2263         perf_group_attach(event);
2264         /*
2265          * We can be called with event->state == STATE_OFF when we create with
2266          * .disabled = 1. In that case the IOC_ENABLE will call this function.
2267          */
2268         if (event->state == PERF_EVENT_STATE_INACTIVE)
2269                 __perf_event_enable_time(event, tstamp);
2270 }
2271
2272 static void ctx_sched_out(struct perf_event_context *ctx,
2273                           struct perf_cpu_context *cpuctx,
2274                           enum event_type_t event_type);
2275 static void
2276 ctx_sched_in(struct perf_event_context *ctx,
2277              struct perf_cpu_context *cpuctx,
2278              enum event_type_t event_type,
2279              struct task_struct *task);
2280
2281 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2282                                struct perf_event_context *ctx,
2283                                enum event_type_t event_type)
2284 {
2285         if (!cpuctx->task_ctx)
2286                 return;
2287
2288         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2289                 return;
2290
2291         ctx_sched_out(ctx, cpuctx, event_type);
2292 }
2293
2294 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2295                                 struct perf_event_context *ctx,
2296                                 struct task_struct *task)
2297 {
2298         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2299         if (ctx)
2300                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2301         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2302         if (ctx)
2303                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2304 }
2305
2306 /*
2307  * We want to maintain the following priority of scheduling:
2308  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2309  *  - task pinned (EVENT_PINNED)
2310  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2311  *  - task flexible (EVENT_FLEXIBLE).
2312  *
2313  * In order to avoid unscheduling and scheduling back in everything every
2314  * time an event is added, only do it for the groups of equal priority and
2315  * below.
2316  *
2317  * This can be called after a batch operation on task events, in which case
2318  * event_type is a bit mask of the types of events involved. For CPU events,
2319  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2320  */
2321 static void ctx_resched(struct perf_cpu_context *cpuctx,
2322                         struct perf_event_context *task_ctx,
2323                         enum event_type_t event_type)
2324 {
2325         enum event_type_t ctx_event_type;
2326         bool cpu_event = !!(event_type & EVENT_CPU);
2327
2328         /*
2329          * If pinned groups are involved, flexible groups also need to be
2330          * scheduled out.
2331          */
2332         if (event_type & EVENT_PINNED)
2333                 event_type |= EVENT_FLEXIBLE;
2334
2335         ctx_event_type = event_type & EVENT_ALL;
2336
2337         perf_pmu_disable(cpuctx->ctx.pmu);
2338         if (task_ctx)
2339                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2340
2341         /*
2342          * Decide which cpu ctx groups to schedule out based on the types
2343          * of events that caused rescheduling:
2344          *  - EVENT_CPU: schedule out corresponding groups;
2345          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2346          *  - otherwise, do nothing more.
2347          */
2348         if (cpu_event)
2349                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2350         else if (ctx_event_type & EVENT_PINNED)
2351                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2352
2353         perf_event_sched_in(cpuctx, task_ctx, current);
2354         perf_pmu_enable(cpuctx->ctx.pmu);
2355 }
2356
2357 /*
2358  * Cross CPU call to install and enable a performance event
2359  *
2360  * Very similar to remote_function() + event_function() but cannot assume that
2361  * things like ctx->is_active and cpuctx->task_ctx are set.
2362  */
2363 static int  __perf_install_in_context(void *info)
2364 {
2365         struct perf_event *event = info;
2366         struct perf_event_context *ctx = event->ctx;
2367         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2368         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2369         bool reprogram = true;
2370         int ret = 0;
2371
2372         raw_spin_lock(&cpuctx->ctx.lock);
2373         if (ctx->task) {
2374                 raw_spin_lock(&ctx->lock);
2375                 task_ctx = ctx;
2376
2377                 reprogram = (ctx->task == current);
2378
2379                 /*
2380                  * If the task is running, it must be running on this CPU,
2381                  * otherwise we cannot reprogram things.
2382                  *
2383                  * If its not running, we don't care, ctx->lock will
2384                  * serialize against it becoming runnable.
2385                  */
2386                 if (task_curr(ctx->task) && !reprogram) {
2387                         ret = -ESRCH;
2388                         goto unlock;
2389                 }
2390
2391                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2392         } else if (task_ctx) {
2393                 raw_spin_lock(&task_ctx->lock);
2394         }
2395
2396         if (reprogram) {
2397                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2398                 add_event_to_ctx(event, ctx);
2399                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2400         } else {
2401                 add_event_to_ctx(event, ctx);
2402         }
2403
2404 unlock:
2405         perf_ctx_unlock(cpuctx, task_ctx);
2406
2407         return ret;
2408 }
2409
2410 /*
2411  * Attach a performance event to a context.
2412  *
2413  * Very similar to event_function_call, see comment there.
2414  */
2415 static void
2416 perf_install_in_context(struct perf_event_context *ctx,
2417                         struct perf_event *event,
2418                         int cpu)
2419 {
2420         struct task_struct *task = READ_ONCE(ctx->task);
2421
2422         lockdep_assert_held(&ctx->mutex);
2423
2424         if (event->cpu != -1)
2425                 event->cpu = cpu;
2426
2427         /*
2428          * Ensures that if we can observe event->ctx, both the event and ctx
2429          * will be 'complete'. See perf_iterate_sb_cpu().
2430          */
2431         smp_store_release(&event->ctx, ctx);
2432
2433         if (!task) {
2434                 cpu_function_call(cpu, __perf_install_in_context, event);
2435                 return;
2436         }
2437
2438         /*
2439          * Should not happen, we validate the ctx is still alive before calling.
2440          */
2441         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2442                 return;
2443
2444         /*
2445          * Installing events is tricky because we cannot rely on ctx->is_active
2446          * to be set in case this is the nr_events 0 -> 1 transition.
2447          *
2448          * Instead we use task_curr(), which tells us if the task is running.
2449          * However, since we use task_curr() outside of rq::lock, we can race
2450          * against the actual state. This means the result can be wrong.
2451          *
2452          * If we get a false positive, we retry, this is harmless.
2453          *
2454          * If we get a false negative, things are complicated. If we are after
2455          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2456          * value must be correct. If we're before, it doesn't matter since
2457          * perf_event_context_sched_in() will program the counter.
2458          *
2459          * However, this hinges on the remote context switch having observed
2460          * our task->perf_event_ctxp[] store, such that it will in fact take
2461          * ctx::lock in perf_event_context_sched_in().
2462          *
2463          * We do this by task_function_call(), if the IPI fails to hit the task
2464          * we know any future context switch of task must see the
2465          * perf_event_ctpx[] store.
2466          */
2467
2468         /*
2469          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2470          * task_cpu() load, such that if the IPI then does not find the task
2471          * running, a future context switch of that task must observe the
2472          * store.
2473          */
2474         smp_mb();
2475 again:
2476         if (!task_function_call(task, __perf_install_in_context, event))
2477                 return;
2478
2479         raw_spin_lock_irq(&ctx->lock);
2480         task = ctx->task;
2481         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2482                 /*
2483                  * Cannot happen because we already checked above (which also
2484                  * cannot happen), and we hold ctx->mutex, which serializes us
2485                  * against perf_event_exit_task_context().
2486                  */
2487                 raw_spin_unlock_irq(&ctx->lock);
2488                 return;
2489         }
2490         /*
2491          * If the task is not running, ctx->lock will avoid it becoming so,
2492          * thus we can safely install the event.
2493          */
2494         if (task_curr(task)) {
2495                 raw_spin_unlock_irq(&ctx->lock);
2496                 goto again;
2497         }
2498         add_event_to_ctx(event, ctx);
2499         raw_spin_unlock_irq(&ctx->lock);
2500 }
2501
2502 /*
2503  * Put a event into inactive state and update time fields.
2504  * Enabling the leader of a group effectively enables all
2505  * the group members that aren't explicitly disabled, so we
2506  * have to update their ->tstamp_enabled also.
2507  * Note: this works for group members as well as group leaders
2508  * since the non-leader members' sibling_lists will be empty.
2509  */
2510 static void __perf_event_mark_enabled(struct perf_event *event)
2511 {
2512         struct perf_event *sub;
2513         u64 tstamp = perf_event_time(event);
2514
2515         event->state = PERF_EVENT_STATE_INACTIVE;
2516         __perf_event_enable_time(event, tstamp);
2517         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2518                 /* XXX should not be > INACTIVE if event isn't */
2519                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2520                         __perf_event_enable_time(sub, tstamp);
2521         }
2522 }
2523
2524 /*
2525  * Cross CPU call to enable a performance event
2526  */
2527 static void __perf_event_enable(struct perf_event *event,
2528                                 struct perf_cpu_context *cpuctx,
2529                                 struct perf_event_context *ctx,
2530                                 void *info)
2531 {
2532         struct perf_event *leader = event->group_leader;
2533         struct perf_event_context *task_ctx;
2534
2535         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2536             event->state <= PERF_EVENT_STATE_ERROR)
2537                 return;
2538
2539         if (ctx->is_active)
2540                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2541
2542         __perf_event_mark_enabled(event);
2543
2544         if (!ctx->is_active)
2545                 return;
2546
2547         if (!event_filter_match(event)) {
2548                 if (is_cgroup_event(event))
2549                         perf_cgroup_defer_enabled(event);
2550                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2551                 return;
2552         }
2553
2554         /*
2555          * If the event is in a group and isn't the group leader,
2556          * then don't put it on unless the group is on.
2557          */
2558         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2559                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2560                 return;
2561         }
2562
2563         task_ctx = cpuctx->task_ctx;
2564         if (ctx->task)
2565                 WARN_ON_ONCE(task_ctx != ctx);
2566
2567         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2568 }
2569
2570 /*
2571  * Enable a event.
2572  *
2573  * If event->ctx is a cloned context, callers must make sure that
2574  * every task struct that event->ctx->task could possibly point to
2575  * remains valid.  This condition is satisfied when called through
2576  * perf_event_for_each_child or perf_event_for_each as described
2577  * for perf_event_disable.
2578  */
2579 static void _perf_event_enable(struct perf_event *event)
2580 {
2581         struct perf_event_context *ctx = event->ctx;
2582
2583         raw_spin_lock_irq(&ctx->lock);
2584         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2585             event->state <  PERF_EVENT_STATE_ERROR) {
2586                 raw_spin_unlock_irq(&ctx->lock);
2587                 return;
2588         }
2589
2590         /*
2591          * If the event is in error state, clear that first.
2592          *
2593          * That way, if we see the event in error state below, we know that it
2594          * has gone back into error state, as distinct from the task having
2595          * been scheduled away before the cross-call arrived.
2596          */
2597         if (event->state == PERF_EVENT_STATE_ERROR)
2598                 event->state = PERF_EVENT_STATE_OFF;
2599         raw_spin_unlock_irq(&ctx->lock);
2600
2601         event_function_call(event, __perf_event_enable, NULL);
2602 }
2603
2604 /*
2605  * See perf_event_disable();
2606  */
2607 void perf_event_enable(struct perf_event *event)
2608 {
2609         struct perf_event_context *ctx;
2610
2611         ctx = perf_event_ctx_lock(event);
2612         _perf_event_enable(event);
2613         perf_event_ctx_unlock(event, ctx);
2614 }
2615 EXPORT_SYMBOL_GPL(perf_event_enable);
2616
2617 struct stop_event_data {
2618         struct perf_event       *event;
2619         unsigned int            restart;
2620 };
2621
2622 static int __perf_event_stop(void *info)
2623 {
2624         struct stop_event_data *sd = info;
2625         struct perf_event *event = sd->event;
2626
2627         /* if it's already INACTIVE, do nothing */
2628         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2629                 return 0;
2630
2631         /* matches smp_wmb() in event_sched_in() */
2632         smp_rmb();
2633
2634         /*
2635          * There is a window with interrupts enabled before we get here,
2636          * so we need to check again lest we try to stop another CPU's event.
2637          */
2638         if (READ_ONCE(event->oncpu) != smp_processor_id())
2639                 return -EAGAIN;
2640
2641         event->pmu->stop(event, PERF_EF_UPDATE);
2642
2643         /*
2644          * May race with the actual stop (through perf_pmu_output_stop()),
2645          * but it is only used for events with AUX ring buffer, and such
2646          * events will refuse to restart because of rb::aux_mmap_count==0,
2647          * see comments in perf_aux_output_begin().
2648          *
2649          * Since this is happening on a event-local CPU, no trace is lost
2650          * while restarting.
2651          */
2652         if (sd->restart)
2653                 event->pmu->start(event, 0);
2654
2655         return 0;
2656 }
2657
2658 static int perf_event_stop(struct perf_event *event, int restart)
2659 {
2660         struct stop_event_data sd = {
2661                 .event          = event,
2662                 .restart        = restart,
2663         };
2664         int ret = 0;
2665
2666         do {
2667                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2668                         return 0;
2669
2670                 /* matches smp_wmb() in event_sched_in() */
2671                 smp_rmb();
2672
2673                 /*
2674                  * We only want to restart ACTIVE events, so if the event goes
2675                  * inactive here (event->oncpu==-1), there's nothing more to do;
2676                  * fall through with ret==-ENXIO.
2677                  */
2678                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2679                                         __perf_event_stop, &sd);
2680         } while (ret == -EAGAIN);
2681
2682         return ret;
2683 }
2684
2685 /*
2686  * In order to contain the amount of racy and tricky in the address filter
2687  * configuration management, it is a two part process:
2688  *
2689  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2690  *      we update the addresses of corresponding vmas in
2691  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2692  * (p2) when an event is scheduled in (pmu::add), it calls
2693  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2694  *      if the generation has changed since the previous call.
2695  *
2696  * If (p1) happens while the event is active, we restart it to force (p2).
2697  *
2698  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2699  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2700  *     ioctl;
2701  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2702  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2703  *     for reading;
2704  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2705  *     of exec.
2706  */
2707 void perf_event_addr_filters_sync(struct perf_event *event)
2708 {
2709         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2710
2711         if (!has_addr_filter(event))
2712                 return;
2713
2714         raw_spin_lock(&ifh->lock);
2715         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2716                 event->pmu->addr_filters_sync(event);
2717                 event->hw.addr_filters_gen = event->addr_filters_gen;
2718         }
2719         raw_spin_unlock(&ifh->lock);
2720 }
2721 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2722
2723 static int _perf_event_refresh(struct perf_event *event, int refresh)
2724 {
2725         /*
2726          * not supported on inherited events
2727          */
2728         if (event->attr.inherit || !is_sampling_event(event))
2729                 return -EINVAL;
2730
2731         atomic_add(refresh, &event->event_limit);
2732         _perf_event_enable(event);
2733
2734         return 0;
2735 }
2736
2737 /*
2738  * See perf_event_disable()
2739  */
2740 int perf_event_refresh(struct perf_event *event, int refresh)
2741 {
2742         struct perf_event_context *ctx;
2743         int ret;
2744
2745         ctx = perf_event_ctx_lock(event);
2746         ret = _perf_event_refresh(event, refresh);
2747         perf_event_ctx_unlock(event, ctx);
2748
2749         return ret;
2750 }
2751 EXPORT_SYMBOL_GPL(perf_event_refresh);
2752
2753 static void ctx_sched_out(struct perf_event_context *ctx,
2754                           struct perf_cpu_context *cpuctx,
2755                           enum event_type_t event_type)
2756 {
2757         int is_active = ctx->is_active;
2758         struct perf_event *event;
2759
2760         lockdep_assert_held(&ctx->lock);
2761
2762         if (likely(!ctx->nr_events)) {
2763                 /*
2764                  * See __perf_remove_from_context().
2765                  */
2766                 WARN_ON_ONCE(ctx->is_active);
2767                 if (ctx->task)
2768                         WARN_ON_ONCE(cpuctx->task_ctx);
2769                 return;
2770         }
2771
2772         ctx->is_active &= ~event_type;
2773         if (!(ctx->is_active & EVENT_ALL))
2774                 ctx->is_active = 0;
2775
2776         if (ctx->task) {
2777                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2778                 if (!ctx->is_active)
2779                         cpuctx->task_ctx = NULL;
2780         }
2781
2782         /*
2783          * Always update time if it was set; not only when it changes.
2784          * Otherwise we can 'forget' to update time for any but the last
2785          * context we sched out. For example:
2786          *
2787          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2788          *   ctx_sched_out(.event_type = EVENT_PINNED)
2789          *
2790          * would only update time for the pinned events.
2791          */
2792         if (is_active & EVENT_TIME) {
2793                 /* update (and stop) ctx time */
2794                 update_context_time(ctx);
2795                 update_cgrp_time_from_cpuctx(cpuctx);
2796         }
2797
2798         is_active ^= ctx->is_active; /* changed bits */
2799
2800         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2801                 return;
2802
2803         perf_pmu_disable(ctx->pmu);
2804         if (is_active & EVENT_PINNED) {
2805                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2806                         group_sched_out(event, cpuctx, ctx);
2807         }
2808
2809         if (is_active & EVENT_FLEXIBLE) {
2810                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2811                         group_sched_out(event, cpuctx, ctx);
2812         }
2813         perf_pmu_enable(ctx->pmu);
2814 }
2815
2816 /*
2817  * Test whether two contexts are equivalent, i.e. whether they have both been
2818  * cloned from the same version of the same context.
2819  *
2820  * Equivalence is measured using a generation number in the context that is
2821  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2822  * and list_del_event().
2823  */
2824 static int context_equiv(struct perf_event_context *ctx1,
2825                          struct perf_event_context *ctx2)
2826 {
2827         lockdep_assert_held(&ctx1->lock);
2828         lockdep_assert_held(&ctx2->lock);
2829
2830         /* Pinning disables the swap optimization */
2831         if (ctx1->pin_count || ctx2->pin_count)
2832                 return 0;
2833
2834         /* If ctx1 is the parent of ctx2 */
2835         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2836                 return 1;
2837
2838         /* If ctx2 is the parent of ctx1 */
2839         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2840                 return 1;
2841
2842         /*
2843          * If ctx1 and ctx2 have the same parent; we flatten the parent
2844          * hierarchy, see perf_event_init_context().
2845          */
2846         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2847                         ctx1->parent_gen == ctx2->parent_gen)
2848                 return 1;
2849
2850         /* Unmatched */
2851         return 0;
2852 }
2853
2854 static void __perf_event_sync_stat(struct perf_event *event,
2855                                      struct perf_event *next_event)
2856 {
2857         u64 value;
2858
2859         if (!event->attr.inherit_stat)
2860                 return;
2861
2862         /*
2863          * Update the event value, we cannot use perf_event_read()
2864          * because we're in the middle of a context switch and have IRQs
2865          * disabled, which upsets smp_call_function_single(), however
2866          * we know the event must be on the current CPU, therefore we
2867          * don't need to use it.
2868          */
2869         switch (event->state) {
2870         case PERF_EVENT_STATE_ACTIVE:
2871                 event->pmu->read(event);
2872                 /* fall-through */
2873
2874         case PERF_EVENT_STATE_INACTIVE:
2875                 update_event_times(event);
2876                 break;
2877
2878         default:
2879                 break;
2880         }
2881
2882         /*
2883          * In order to keep per-task stats reliable we need to flip the event
2884          * values when we flip the contexts.
2885          */
2886         value = local64_read(&next_event->count);
2887         value = local64_xchg(&event->count, value);
2888         local64_set(&next_event->count, value);
2889
2890         swap(event->total_time_enabled, next_event->total_time_enabled);
2891         swap(event->total_time_running, next_event->total_time_running);
2892
2893         /*
2894          * Since we swizzled the values, update the user visible data too.
2895          */
2896         perf_event_update_userpage(event);
2897         perf_event_update_userpage(next_event);
2898 }
2899
2900 static void perf_event_sync_stat(struct perf_event_context *ctx,
2901                                    struct perf_event_context *next_ctx)
2902 {
2903         struct perf_event *event, *next_event;
2904
2905         if (!ctx->nr_stat)
2906                 return;
2907
2908         update_context_time(ctx);
2909
2910         event = list_first_entry(&ctx->event_list,
2911                                    struct perf_event, event_entry);
2912
2913         next_event = list_first_entry(&next_ctx->event_list,
2914                                         struct perf_event, event_entry);
2915
2916         while (&event->event_entry != &ctx->event_list &&
2917                &next_event->event_entry != &next_ctx->event_list) {
2918
2919                 __perf_event_sync_stat(event, next_event);
2920
2921                 event = list_next_entry(event, event_entry);
2922                 next_event = list_next_entry(next_event, event_entry);
2923         }
2924 }
2925
2926 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2927                                          struct task_struct *next)
2928 {
2929         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2930         struct perf_event_context *next_ctx;
2931         struct perf_event_context *parent, *next_parent;
2932         struct perf_cpu_context *cpuctx;
2933         int do_switch = 1;
2934
2935         if (likely(!ctx))
2936                 return;
2937
2938         cpuctx = __get_cpu_context(ctx);
2939         if (!cpuctx->task_ctx)
2940                 return;
2941
2942         rcu_read_lock();
2943         next_ctx = next->perf_event_ctxp[ctxn];
2944         if (!next_ctx)
2945                 goto unlock;
2946
2947         parent = rcu_dereference(ctx->parent_ctx);
2948         next_parent = rcu_dereference(next_ctx->parent_ctx);
2949
2950         /* If neither context have a parent context; they cannot be clones. */
2951         if (!parent && !next_parent)
2952                 goto unlock;
2953
2954         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2955                 /*
2956                  * Looks like the two contexts are clones, so we might be
2957                  * able to optimize the context switch.  We lock both
2958                  * contexts and check that they are clones under the
2959                  * lock (including re-checking that neither has been
2960                  * uncloned in the meantime).  It doesn't matter which
2961                  * order we take the locks because no other cpu could
2962                  * be trying to lock both of these tasks.
2963                  */
2964                 raw_spin_lock(&ctx->lock);
2965                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2966                 if (context_equiv(ctx, next_ctx)) {
2967                         WRITE_ONCE(ctx->task, next);
2968                         WRITE_ONCE(next_ctx->task, task);
2969
2970                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2971
2972                         /*
2973                          * RCU_INIT_POINTER here is safe because we've not
2974                          * modified the ctx and the above modification of
2975                          * ctx->task and ctx->task_ctx_data are immaterial
2976                          * since those values are always verified under
2977                          * ctx->lock which we're now holding.
2978                          */
2979                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2980                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2981
2982                         do_switch = 0;
2983
2984                         perf_event_sync_stat(ctx, next_ctx);
2985                 }
2986                 raw_spin_unlock(&next_ctx->lock);
2987                 raw_spin_unlock(&ctx->lock);
2988         }
2989 unlock:
2990         rcu_read_unlock();
2991
2992         if (do_switch) {
2993                 raw_spin_lock(&ctx->lock);
2994                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2995                 raw_spin_unlock(&ctx->lock);
2996         }
2997 }
2998
2999 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3000
3001 void perf_sched_cb_dec(struct pmu *pmu)
3002 {
3003         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3004
3005         this_cpu_dec(perf_sched_cb_usages);
3006
3007         if (!--cpuctx->sched_cb_usage)
3008                 list_del(&cpuctx->sched_cb_entry);
3009 }
3010
3011
3012 void perf_sched_cb_inc(struct pmu *pmu)
3013 {
3014         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3015
3016         if (!cpuctx->sched_cb_usage++)
3017                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3018
3019         this_cpu_inc(perf_sched_cb_usages);
3020 }
3021
3022 /*
3023  * This function provides the context switch callback to the lower code
3024  * layer. It is invoked ONLY when the context switch callback is enabled.
3025  *
3026  * This callback is relevant even to per-cpu events; for example multi event
3027  * PEBS requires this to provide PID/TID information. This requires we flush
3028  * all queued PEBS records before we context switch to a new task.
3029  */
3030 static void perf_pmu_sched_task(struct task_struct *prev,
3031                                 struct task_struct *next,
3032                                 bool sched_in)
3033 {
3034         struct perf_cpu_context *cpuctx;
3035         struct pmu *pmu;
3036
3037         if (prev == next)
3038                 return;
3039
3040         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3041                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3042
3043                 if (WARN_ON_ONCE(!pmu->sched_task))
3044                         continue;
3045
3046                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3047                 perf_pmu_disable(pmu);
3048
3049                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3050
3051                 perf_pmu_enable(pmu);
3052                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3053         }
3054 }
3055
3056 static void perf_event_switch(struct task_struct *task,
3057                               struct task_struct *next_prev, bool sched_in);
3058
3059 #define for_each_task_context_nr(ctxn)                                  \
3060         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3061
3062 /*
3063  * Called from scheduler to remove the events of the current task,
3064  * with interrupts disabled.
3065  *
3066  * We stop each event and update the event value in event->count.
3067  *
3068  * This does not protect us against NMI, but disable()
3069  * sets the disabled bit in the control field of event _before_
3070  * accessing the event control register. If a NMI hits, then it will
3071  * not restart the event.
3072  */
3073 void __perf_event_task_sched_out(struct task_struct *task,
3074                                  struct task_struct *next)
3075 {
3076         int ctxn;
3077
3078         if (__this_cpu_read(perf_sched_cb_usages))
3079                 perf_pmu_sched_task(task, next, false);
3080
3081         if (atomic_read(&nr_switch_events))
3082                 perf_event_switch(task, next, false);
3083
3084         for_each_task_context_nr(ctxn)
3085                 perf_event_context_sched_out(task, ctxn, next);
3086
3087         /*
3088          * if cgroup events exist on this CPU, then we need
3089          * to check if we have to switch out PMU state.
3090          * cgroup event are system-wide mode only
3091          */
3092         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3093                 perf_cgroup_sched_out(task, next);
3094 }
3095
3096 /*
3097  * Called with IRQs disabled
3098  */
3099 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3100                               enum event_type_t event_type)
3101 {
3102         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3103 }
3104
3105 static void
3106 ctx_pinned_sched_in(struct perf_event_context *ctx,
3107                     struct perf_cpu_context *cpuctx)
3108 {
3109         struct perf_event *event;
3110
3111         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3112                 if (event->state <= PERF_EVENT_STATE_OFF)
3113                         continue;
3114                 if (!event_filter_match(event))
3115                         continue;
3116
3117                 /* may need to reset tstamp_enabled */
3118                 if (is_cgroup_event(event))
3119                         perf_cgroup_mark_enabled(event, ctx);
3120
3121                 if (group_can_go_on(event, cpuctx, 1))
3122                         group_sched_in(event, cpuctx, ctx);
3123
3124                 /*
3125                  * If this pinned group hasn't been scheduled,
3126                  * put it in error state.
3127                  */
3128                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3129                         update_group_times(event);
3130                         event->state = PERF_EVENT_STATE_ERROR;
3131                 }
3132         }
3133 }
3134
3135 static void
3136 ctx_flexible_sched_in(struct perf_event_context *ctx,
3137                       struct perf_cpu_context *cpuctx)
3138 {
3139         struct perf_event *event;
3140         int can_add_hw = 1;
3141
3142         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3143                 /* Ignore events in OFF or ERROR state */
3144                 if (event->state <= PERF_EVENT_STATE_OFF)
3145                         continue;
3146                 /*
3147                  * Listen to the 'cpu' scheduling filter constraint
3148                  * of events:
3149                  */
3150                 if (!event_filter_match(event))
3151                         continue;
3152
3153                 /* may need to reset tstamp_enabled */
3154                 if (is_cgroup_event(event))
3155                         perf_cgroup_mark_enabled(event, ctx);
3156
3157                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3158                         if (group_sched_in(event, cpuctx, ctx))
3159                                 can_add_hw = 0;
3160                 }
3161         }
3162 }
3163
3164 static void
3165 ctx_sched_in(struct perf_event_context *ctx,
3166              struct perf_cpu_context *cpuctx,
3167              enum event_type_t event_type,
3168              struct task_struct *task)
3169 {
3170         int is_active = ctx->is_active;
3171         u64 now;
3172
3173         lockdep_assert_held(&ctx->lock);
3174
3175         if (likely(!ctx->nr_events))
3176                 return;
3177
3178         ctx->is_active |= (event_type | EVENT_TIME);
3179         if (ctx->task) {
3180                 if (!is_active)
3181                         cpuctx->task_ctx = ctx;
3182                 else
3183                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3184         }
3185
3186         is_active ^= ctx->is_active; /* changed bits */
3187
3188         if (is_active & EVENT_TIME) {
3189                 /* start ctx time */
3190                 now = perf_clock();
3191                 ctx->timestamp = now;
3192                 perf_cgroup_set_timestamp(task, ctx);
3193         }
3194
3195         /*
3196          * First go through the list and put on any pinned groups
3197          * in order to give them the best chance of going on.
3198          */
3199         if (is_active & EVENT_PINNED)
3200                 ctx_pinned_sched_in(ctx, cpuctx);
3201
3202         /* Then walk through the lower prio flexible groups */
3203         if (is_active & EVENT_FLEXIBLE)
3204                 ctx_flexible_sched_in(ctx, cpuctx);
3205 }
3206
3207 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3208                              enum event_type_t event_type,
3209                              struct task_struct *task)
3210 {
3211         struct perf_event_context *ctx = &cpuctx->ctx;
3212
3213         ctx_sched_in(ctx, cpuctx, event_type, task);
3214 }
3215
3216 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3217                                         struct task_struct *task)
3218 {
3219         struct perf_cpu_context *cpuctx;
3220
3221         cpuctx = __get_cpu_context(ctx);
3222         if (cpuctx->task_ctx == ctx)
3223                 return;
3224
3225         perf_ctx_lock(cpuctx, ctx);
3226         /*
3227          * We must check ctx->nr_events while holding ctx->lock, such
3228          * that we serialize against perf_install_in_context().
3229          */
3230         if (!ctx->nr_events)
3231                 goto unlock;
3232
3233         perf_pmu_disable(ctx->pmu);
3234         /*
3235          * We want to keep the following priority order:
3236          * cpu pinned (that don't need to move), task pinned,
3237          * cpu flexible, task flexible.
3238          *
3239          * However, if task's ctx is not carrying any pinned
3240          * events, no need to flip the cpuctx's events around.
3241          */
3242         if (!list_empty(&ctx->pinned_groups))
3243                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3244         perf_event_sched_in(cpuctx, ctx, task);
3245         perf_pmu_enable(ctx->pmu);
3246
3247 unlock:
3248         perf_ctx_unlock(cpuctx, ctx);
3249 }
3250
3251 /*
3252  * Called from scheduler to add the events of the current task
3253  * with interrupts disabled.
3254  *
3255  * We restore the event value and then enable it.
3256  *
3257  * This does not protect us against NMI, but enable()
3258  * sets the enabled bit in the control field of event _before_
3259  * accessing the event control register. If a NMI hits, then it will
3260  * keep the event running.
3261  */
3262 void __perf_event_task_sched_in(struct task_struct *prev,
3263                                 struct task_struct *task)
3264 {
3265         struct perf_event_context *ctx;
3266         int ctxn;
3267
3268         /*
3269          * If cgroup events exist on this CPU, then we need to check if we have
3270          * to switch in PMU state; cgroup event are system-wide mode only.
3271          *
3272          * Since cgroup events are CPU events, we must schedule these in before
3273          * we schedule in the task events.
3274          */
3275         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3276                 perf_cgroup_sched_in(prev, task);
3277
3278         for_each_task_context_nr(ctxn) {
3279                 ctx = task->perf_event_ctxp[ctxn];
3280                 if (likely(!ctx))
3281                         continue;
3282
3283                 perf_event_context_sched_in(ctx, task);
3284         }
3285
3286         if (atomic_read(&nr_switch_events))
3287                 perf_event_switch(task, prev, true);
3288
3289         if (__this_cpu_read(perf_sched_cb_usages))
3290                 perf_pmu_sched_task(prev, task, true);
3291 }
3292
3293 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3294 {
3295         u64 frequency = event->attr.sample_freq;
3296         u64 sec = NSEC_PER_SEC;
3297         u64 divisor, dividend;
3298
3299         int count_fls, nsec_fls, frequency_fls, sec_fls;
3300
3301         count_fls = fls64(count);
3302         nsec_fls = fls64(nsec);
3303         frequency_fls = fls64(frequency);
3304         sec_fls = 30;
3305
3306         /*
3307          * We got @count in @nsec, with a target of sample_freq HZ
3308          * the target period becomes:
3309          *
3310          *             @count * 10^9
3311          * period = -------------------
3312          *          @nsec * sample_freq
3313          *
3314          */
3315
3316         /*
3317          * Reduce accuracy by one bit such that @a and @b converge
3318          * to a similar magnitude.
3319          */
3320 #define REDUCE_FLS(a, b)                \
3321 do {                                    \
3322         if (a##_fls > b##_fls) {        \
3323                 a >>= 1;                \
3324                 a##_fls--;              \
3325         } else {                        \
3326                 b >>= 1;                \
3327                 b##_fls--;              \
3328         }                               \
3329 } while (0)
3330
3331         /*
3332          * Reduce accuracy until either term fits in a u64, then proceed with
3333          * the other, so that finally we can do a u64/u64 division.
3334          */
3335         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3336                 REDUCE_FLS(nsec, frequency);
3337                 REDUCE_FLS(sec, count);
3338         }
3339
3340         if (count_fls + sec_fls > 64) {
3341                 divisor = nsec * frequency;
3342
3343                 while (count_fls + sec_fls > 64) {
3344                         REDUCE_FLS(count, sec);
3345                         divisor >>= 1;
3346                 }
3347
3348                 dividend = count * sec;
3349         } else {
3350                 dividend = count * sec;
3351
3352                 while (nsec_fls + frequency_fls > 64) {
3353                         REDUCE_FLS(nsec, frequency);
3354                         dividend >>= 1;
3355                 }
3356
3357                 divisor = nsec * frequency;
3358         }
3359
3360         if (!divisor)
3361                 return dividend;
3362
3363         return div64_u64(dividend, divisor);
3364 }
3365
3366 static DEFINE_PER_CPU(int, perf_throttled_count);
3367 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3368
3369 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3370 {
3371         struct hw_perf_event *hwc = &event->hw;
3372         s64 period, sample_period;
3373         s64 delta;
3374
3375         period = perf_calculate_period(event, nsec, count);
3376
3377         delta = (s64)(period - hwc->sample_period);
3378         delta = (delta + 7) / 8; /* low pass filter */
3379
3380         sample_period = hwc->sample_period + delta;
3381
3382         if (!sample_period)
3383                 sample_period = 1;
3384
3385         hwc->sample_period = sample_period;
3386
3387         if (local64_read(&hwc->period_left) > 8*sample_period) {
3388                 if (disable)
3389                         event->pmu->stop(event, PERF_EF_UPDATE);
3390
3391                 local64_set(&hwc->period_left, 0);
3392
3393                 if (disable)
3394                         event->pmu->start(event, PERF_EF_RELOAD);
3395         }
3396 }
3397
3398 /*
3399  * combine freq adjustment with unthrottling to avoid two passes over the
3400  * events. At the same time, make sure, having freq events does not change
3401  * the rate of unthrottling as that would introduce bias.
3402  */
3403 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3404                                            int needs_unthr)
3405 {
3406         struct perf_event *event;
3407         struct hw_perf_event *hwc;
3408         u64 now, period = TICK_NSEC;
3409         s64 delta;
3410
3411         /*
3412          * only need to iterate over all events iff:
3413          * - context have events in frequency mode (needs freq adjust)
3414          * - there are events to unthrottle on this cpu
3415          */
3416         if (!(ctx->nr_freq || needs_unthr))
3417                 return;
3418
3419         raw_spin_lock(&ctx->lock);
3420         perf_pmu_disable(ctx->pmu);
3421
3422         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3423                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3424                         continue;
3425
3426                 if (!event_filter_match(event))
3427                         continue;
3428
3429                 perf_pmu_disable(event->pmu);
3430
3431                 hwc = &event->hw;
3432
3433                 if (hwc->interrupts == MAX_INTERRUPTS) {
3434                         hwc->interrupts = 0;
3435                         perf_log_throttle(event, 1);
3436                         event->pmu->start(event, 0);
3437                 }
3438
3439                 if (!event->attr.freq || !event->attr.sample_freq)
3440                         goto next;
3441
3442                 /*
3443                  * stop the event and update event->count
3444                  */
3445                 event->pmu->stop(event, PERF_EF_UPDATE);
3446
3447                 now = local64_read(&event->count);
3448                 delta = now - hwc->freq_count_stamp;
3449                 hwc->freq_count_stamp = now;
3450
3451                 /*
3452                  * restart the event
3453                  * reload only if value has changed
3454                  * we have stopped the event so tell that
3455                  * to perf_adjust_period() to avoid stopping it
3456                  * twice.
3457                  */
3458                 if (delta > 0)
3459                         perf_adjust_period(event, period, delta, false);
3460
3461                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3462         next:
3463                 perf_pmu_enable(event->pmu);
3464         }
3465
3466         perf_pmu_enable(ctx->pmu);
3467         raw_spin_unlock(&ctx->lock);
3468 }
3469
3470 /*
3471  * Round-robin a context's events:
3472  */
3473 static void rotate_ctx(struct perf_event_context *ctx)
3474 {
3475         /*
3476          * Rotate the first entry last of non-pinned groups. Rotation might be
3477          * disabled by the inheritance code.
3478          */
3479         if (!ctx->rotate_disable)
3480                 list_rotate_left(&ctx->flexible_groups);
3481 }
3482
3483 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3484 {
3485         struct perf_event_context *ctx = NULL;
3486         int rotate = 0;
3487
3488         if (cpuctx->ctx.nr_events) {
3489                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3490                         rotate = 1;
3491         }
3492
3493         ctx = cpuctx->task_ctx;
3494         if (ctx && ctx->nr_events) {
3495                 if (ctx->nr_events != ctx->nr_active)
3496                         rotate = 1;
3497         }
3498
3499         if (!rotate)
3500                 goto done;
3501
3502         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3503         perf_pmu_disable(cpuctx->ctx.pmu);
3504
3505         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3506         if (ctx)
3507                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3508
3509         rotate_ctx(&cpuctx->ctx);
3510         if (ctx)
3511                 rotate_ctx(ctx);
3512
3513         perf_event_sched_in(cpuctx, ctx, current);
3514
3515         perf_pmu_enable(cpuctx->ctx.pmu);
3516         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3517 done:
3518
3519         return rotate;
3520 }
3521
3522 void perf_event_task_tick(void)
3523 {
3524         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3525         struct perf_event_context *ctx, *tmp;
3526         int throttled;
3527
3528         WARN_ON(!irqs_disabled());
3529
3530         __this_cpu_inc(perf_throttled_seq);
3531         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3532         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3533
3534         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3535                 perf_adjust_freq_unthr_context(ctx, throttled);
3536 }
3537
3538 static int event_enable_on_exec(struct perf_event *event,
3539                                 struct perf_event_context *ctx)
3540 {
3541         if (!event->attr.enable_on_exec)
3542                 return 0;
3543
3544         event->attr.enable_on_exec = 0;
3545         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3546                 return 0;
3547
3548         __perf_event_mark_enabled(event);
3549
3550         return 1;
3551 }
3552
3553 /*
3554  * Enable all of a task's events that have been marked enable-on-exec.
3555  * This expects task == current.
3556  */
3557 static void perf_event_enable_on_exec(int ctxn)
3558 {
3559         struct perf_event_context *ctx, *clone_ctx = NULL;
3560         enum event_type_t event_type = 0;
3561         struct perf_cpu_context *cpuctx;
3562         struct perf_event *event;
3563         unsigned long flags;
3564         int enabled = 0;
3565
3566         local_irq_save(flags);
3567         ctx = current->perf_event_ctxp[ctxn];
3568         if (!ctx || !ctx->nr_events)
3569                 goto out;
3570
3571         cpuctx = __get_cpu_context(ctx);
3572         perf_ctx_lock(cpuctx, ctx);
3573         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3574         list_for_each_entry(event, &ctx->event_list, event_entry) {
3575                 enabled |= event_enable_on_exec(event, ctx);
3576                 event_type |= get_event_type(event);
3577         }
3578
3579         /*
3580          * Unclone and reschedule this context if we enabled any event.
3581          */
3582         if (enabled) {
3583                 clone_ctx = unclone_ctx(ctx);
3584                 ctx_resched(cpuctx, ctx, event_type);
3585         } else {
3586                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3587         }
3588         perf_ctx_unlock(cpuctx, ctx);
3589
3590 out:
3591         local_irq_restore(flags);
3592
3593         if (clone_ctx)
3594                 put_ctx(clone_ctx);
3595 }
3596
3597 struct perf_read_data {
3598         struct perf_event *event;
3599         bool group;
3600         int ret;
3601 };
3602
3603 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3604 {
3605         u16 local_pkg, event_pkg;
3606
3607         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3608                 int local_cpu = smp_processor_id();
3609
3610                 event_pkg = topology_physical_package_id(event_cpu);
3611                 local_pkg = topology_physical_package_id(local_cpu);
3612
3613                 if (event_pkg == local_pkg)
3614                         return local_cpu;
3615         }
3616
3617         return event_cpu;
3618 }
3619
3620 /*
3621  * Cross CPU call to read the hardware event
3622  */
3623 static void __perf_event_read(void *info)
3624 {
3625         struct perf_read_data *data = info;
3626         struct perf_event *sub, *event = data->event;
3627         struct perf_event_context *ctx = event->ctx;
3628         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3629         struct pmu *pmu = event->pmu;
3630
3631         /*
3632          * If this is a task context, we need to check whether it is
3633          * the current task context of this cpu.  If not it has been
3634          * scheduled out before the smp call arrived.  In that case
3635          * event->count would have been updated to a recent sample
3636          * when the event was scheduled out.
3637          */
3638         if (ctx->task && cpuctx->task_ctx != ctx)
3639                 return;
3640
3641         raw_spin_lock(&ctx->lock);
3642         if (ctx->is_active) {
3643                 update_context_time(ctx);
3644                 update_cgrp_time_from_event(event);
3645         }
3646
3647         update_event_times(event);
3648         if (event->state != PERF_EVENT_STATE_ACTIVE)
3649                 goto unlock;
3650
3651         if (!data->group) {
3652                 pmu->read(event);
3653                 data->ret = 0;
3654                 goto unlock;
3655         }
3656
3657         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3658
3659         pmu->read(event);
3660
3661         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3662                 update_event_times(sub);
3663                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3664                         /*
3665                          * Use sibling's PMU rather than @event's since
3666                          * sibling could be on different (eg: software) PMU.
3667                          */
3668                         sub->pmu->read(sub);
3669                 }
3670         }
3671
3672         data->ret = pmu->commit_txn(pmu);
3673
3674 unlock:
3675         raw_spin_unlock(&ctx->lock);
3676 }
3677
3678 static inline u64 perf_event_count(struct perf_event *event)
3679 {
3680         return local64_read(&event->count) + atomic64_read(&event->child_count);
3681 }
3682
3683 /*
3684  * NMI-safe method to read a local event, that is an event that
3685  * is:
3686  *   - either for the current task, or for this CPU
3687  *   - does not have inherit set, for inherited task events
3688  *     will not be local and we cannot read them atomically
3689  *   - must not have a pmu::count method
3690  */
3691 int perf_event_read_local(struct perf_event *event, u64 *value)
3692 {
3693         unsigned long flags;
3694         int ret = 0;
3695
3696         /*
3697          * Disabling interrupts avoids all counter scheduling (context
3698          * switches, timer based rotation and IPIs).
3699          */
3700         local_irq_save(flags);
3701
3702         /*
3703          * It must not be an event with inherit set, we cannot read
3704          * all child counters from atomic context.
3705          */
3706         if (event->attr.inherit) {
3707                 ret = -EOPNOTSUPP;
3708                 goto out;
3709         }
3710
3711         /* If this is a per-task event, it must be for current */
3712         if ((event->attach_state & PERF_ATTACH_TASK) &&
3713             event->hw.target != current) {
3714                 ret = -EINVAL;
3715                 goto out;
3716         }
3717
3718         /* If this is a per-CPU event, it must be for this CPU */
3719         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3720             event->cpu != smp_processor_id()) {
3721                 ret = -EINVAL;
3722                 goto out;
3723         }
3724
3725         /*
3726          * If the event is currently on this CPU, its either a per-task event,
3727          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3728          * oncpu == -1).
3729          */
3730         if (event->oncpu == smp_processor_id())
3731                 event->pmu->read(event);
3732
3733         *value = local64_read(&event->count);
3734 out:
3735         local_irq_restore(flags);
3736
3737         return ret;
3738 }
3739
3740 static int perf_event_read(struct perf_event *event, bool group)
3741 {
3742         int event_cpu, ret = 0;
3743
3744         /*
3745          * If event is enabled and currently active on a CPU, update the
3746          * value in the event structure:
3747          */
3748         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3749                 struct perf_read_data data = {
3750                         .event = event,
3751                         .group = group,
3752                         .ret = 0,
3753                 };
3754
3755                 event_cpu = READ_ONCE(event->oncpu);
3756                 if ((unsigned)event_cpu >= nr_cpu_ids)
3757                         return 0;
3758
3759                 preempt_disable();
3760                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3761
3762                 /*
3763                  * Purposely ignore the smp_call_function_single() return
3764                  * value.
3765                  *
3766                  * If event_cpu isn't a valid CPU it means the event got
3767                  * scheduled out and that will have updated the event count.
3768                  *
3769                  * Therefore, either way, we'll have an up-to-date event count
3770                  * after this.
3771                  */
3772                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3773                 preempt_enable();
3774                 ret = data.ret;
3775         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3776                 struct perf_event_context *ctx = event->ctx;
3777                 unsigned long flags;
3778
3779                 raw_spin_lock_irqsave(&ctx->lock, flags);
3780                 /*
3781                  * may read while context is not active
3782                  * (e.g., thread is blocked), in that case
3783                  * we cannot update context time
3784                  */
3785                 if (ctx->is_active) {
3786                         update_context_time(ctx);
3787                         update_cgrp_time_from_event(event);
3788                 }
3789                 if (group)
3790                         update_group_times(event);
3791                 else
3792                         update_event_times(event);
3793                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3794         }
3795
3796         return ret;
3797 }
3798
3799 /*
3800  * Initialize the perf_event context in a task_struct:
3801  */
3802 static void __perf_event_init_context(struct perf_event_context *ctx)
3803 {
3804         raw_spin_lock_init(&ctx->lock);
3805         mutex_init(&ctx->mutex);
3806         INIT_LIST_HEAD(&ctx->active_ctx_list);
3807         INIT_LIST_HEAD(&ctx->pinned_groups);
3808         INIT_LIST_HEAD(&ctx->flexible_groups);
3809         INIT_LIST_HEAD(&ctx->event_list);
3810         atomic_set(&ctx->refcount, 1);
3811 }
3812
3813 static struct perf_event_context *
3814 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3815 {
3816         struct perf_event_context *ctx;
3817
3818         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3819         if (!ctx)
3820                 return NULL;
3821
3822         __perf_event_init_context(ctx);
3823         if (task) {
3824                 ctx->task = task;
3825                 get_task_struct(task);
3826         }
3827         ctx->pmu = pmu;
3828
3829         return ctx;
3830 }
3831
3832 static struct task_struct *
3833 find_lively_task_by_vpid(pid_t vpid)
3834 {
3835         struct task_struct *task;
3836
3837         rcu_read_lock();
3838         if (!vpid)
3839                 task = current;
3840         else
3841                 task = find_task_by_vpid(vpid);
3842         if (task)
3843                 get_task_struct(task);
3844         rcu_read_unlock();
3845
3846         if (!task)
3847                 return ERR_PTR(-ESRCH);
3848
3849         return task;
3850 }
3851
3852 /*
3853  * Returns a matching context with refcount and pincount.
3854  */
3855 static struct perf_event_context *
3856 find_get_context(struct pmu *pmu, struct task_struct *task,
3857                 struct perf_event *event)
3858 {
3859         struct perf_event_context *ctx, *clone_ctx = NULL;
3860         struct perf_cpu_context *cpuctx;
3861         void *task_ctx_data = NULL;
3862         unsigned long flags;
3863         int ctxn, err;
3864         int cpu = event->cpu;
3865
3866         if (!task) {
3867                 /* Must be root to operate on a CPU event: */
3868                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3869                         return ERR_PTR(-EACCES);
3870
3871                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3872                 ctx = &cpuctx->ctx;
3873                 get_ctx(ctx);
3874                 ++ctx->pin_count;
3875
3876                 return ctx;
3877         }
3878
3879         err = -EINVAL;
3880         ctxn = pmu->task_ctx_nr;
3881         if (ctxn < 0)
3882                 goto errout;
3883
3884         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3885                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3886                 if (!task_ctx_data) {
3887                         err = -ENOMEM;
3888                         goto errout;
3889                 }
3890         }
3891
3892 retry:
3893         ctx = perf_lock_task_context(task, ctxn, &flags);
3894         if (ctx) {
3895                 clone_ctx = unclone_ctx(ctx);
3896                 ++ctx->pin_count;
3897
3898                 if (task_ctx_data && !ctx->task_ctx_data) {
3899                         ctx->task_ctx_data = task_ctx_data;
3900                         task_ctx_data = NULL;
3901                 }
3902                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3903
3904                 if (clone_ctx)
3905                         put_ctx(clone_ctx);
3906         } else {
3907                 ctx = alloc_perf_context(pmu, task);
3908                 err = -ENOMEM;
3909                 if (!ctx)
3910                         goto errout;
3911
3912                 if (task_ctx_data) {
3913                         ctx->task_ctx_data = task_ctx_data;
3914                         task_ctx_data = NULL;
3915                 }
3916
3917                 err = 0;
3918                 mutex_lock(&task->perf_event_mutex);
3919                 /*
3920                  * If it has already passed perf_event_exit_task().
3921                  * we must see PF_EXITING, it takes this mutex too.
3922                  */
3923                 if (task->flags & PF_EXITING)
3924                         err = -ESRCH;
3925                 else if (task->perf_event_ctxp[ctxn])
3926                         err = -EAGAIN;
3927                 else {
3928                         get_ctx(ctx);
3929                         ++ctx->pin_count;
3930                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3931                 }
3932                 mutex_unlock(&task->perf_event_mutex);
3933
3934                 if (unlikely(err)) {
3935                         put_ctx(ctx);
3936
3937                         if (err == -EAGAIN)
3938                                 goto retry;
3939                         goto errout;
3940                 }
3941         }
3942
3943         kfree(task_ctx_data);
3944         return ctx;
3945
3946 errout:
3947         kfree(task_ctx_data);
3948         return ERR_PTR(err);
3949 }
3950
3951 static void perf_event_free_filter(struct perf_event *event);
3952 static void perf_event_free_bpf_prog(struct perf_event *event);
3953
3954 static void free_event_rcu(struct rcu_head *head)
3955 {
3956         struct perf_event *event;
3957
3958         event = container_of(head, struct perf_event, rcu_head);
3959         if (event->ns)
3960                 put_pid_ns(event->ns);
3961         perf_event_free_filter(event);
3962         kfree(event);
3963 }
3964
3965 static void ring_buffer_attach(struct perf_event *event,
3966                                struct ring_buffer *rb);
3967
3968 static void detach_sb_event(struct perf_event *event)
3969 {
3970         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3971
3972         raw_spin_lock(&pel->lock);
3973         list_del_rcu(&event->sb_list);
3974         raw_spin_unlock(&pel->lock);
3975 }
3976
3977 static bool is_sb_event(struct perf_event *event)
3978 {
3979         struct perf_event_attr *attr = &event->attr;
3980
3981         if (event->parent)
3982                 return false;
3983
3984         if (event->attach_state & PERF_ATTACH_TASK)
3985                 return false;
3986
3987         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3988             attr->comm || attr->comm_exec ||
3989             attr->task ||
3990             attr->context_switch)
3991                 return true;
3992         return false;
3993 }
3994
3995 static void unaccount_pmu_sb_event(struct perf_event *event)
3996 {
3997         if (is_sb_event(event))
3998                 detach_sb_event(event);
3999 }
4000
4001 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4002 {
4003         if (event->parent)
4004                 return;
4005
4006         if (is_cgroup_event(event))
4007                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4008 }
4009
4010 #ifdef CONFIG_NO_HZ_FULL
4011 static DEFINE_SPINLOCK(nr_freq_lock);
4012 #endif
4013
4014 static void unaccount_freq_event_nohz(void)
4015 {
4016 #ifdef CONFIG_NO_HZ_FULL
4017         spin_lock(&nr_freq_lock);
4018         if (atomic_dec_and_test(&nr_freq_events))
4019                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4020         spin_unlock(&nr_freq_lock);
4021 #endif
4022 }
4023
4024 static void unaccount_freq_event(void)
4025 {
4026         if (tick_nohz_full_enabled())
4027                 unaccount_freq_event_nohz();
4028         else
4029                 atomic_dec(&nr_freq_events);
4030 }
4031
4032 static void unaccount_event(struct perf_event *event)
4033 {
4034         bool dec = false;
4035
4036         if (event->parent)
4037                 return;
4038
4039         if (event->attach_state & PERF_ATTACH_TASK)
4040                 dec = true;
4041         if (event->attr.mmap || event->attr.mmap_data)
4042                 atomic_dec(&nr_mmap_events);
4043         if (event->attr.comm)
4044                 atomic_dec(&nr_comm_events);
4045         if (event->attr.namespaces)
4046                 atomic_dec(&nr_namespaces_events);
4047         if (event->attr.task)
4048                 atomic_dec(&nr_task_events);
4049         if (event->attr.freq)
4050                 unaccount_freq_event();
4051         if (event->attr.context_switch) {
4052                 dec = true;
4053                 atomic_dec(&nr_switch_events);
4054         }
4055         if (is_cgroup_event(event))
4056                 dec = true;
4057         if (has_branch_stack(event))
4058                 dec = true;
4059
4060         if (dec) {
4061                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4062                         schedule_delayed_work(&perf_sched_work, HZ);
4063         }
4064
4065         unaccount_event_cpu(event, event->cpu);
4066
4067         unaccount_pmu_sb_event(event);
4068 }
4069
4070 static void perf_sched_delayed(struct work_struct *work)
4071 {
4072         mutex_lock(&perf_sched_mutex);
4073         if (atomic_dec_and_test(&perf_sched_count))
4074                 static_branch_disable(&perf_sched_events);
4075         mutex_unlock(&perf_sched_mutex);
4076 }
4077
4078 /*
4079  * The following implement mutual exclusion of events on "exclusive" pmus
4080  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4081  * at a time, so we disallow creating events that might conflict, namely:
4082  *
4083  *  1) cpu-wide events in the presence of per-task events,
4084  *  2) per-task events in the presence of cpu-wide events,
4085  *  3) two matching events on the same context.
4086  *
4087  * The former two cases are handled in the allocation path (perf_event_alloc(),
4088  * _free_event()), the latter -- before the first perf_install_in_context().
4089  */
4090 static int exclusive_event_init(struct perf_event *event)
4091 {
4092         struct pmu *pmu = event->pmu;
4093
4094         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4095                 return 0;
4096
4097         /*
4098          * Prevent co-existence of per-task and cpu-wide events on the
4099          * same exclusive pmu.
4100          *
4101          * Negative pmu::exclusive_cnt means there are cpu-wide
4102          * events on this "exclusive" pmu, positive means there are
4103          * per-task events.
4104          *
4105          * Since this is called in perf_event_alloc() path, event::ctx
4106          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4107          * to mean "per-task event", because unlike other attach states it
4108          * never gets cleared.
4109          */
4110         if (event->attach_state & PERF_ATTACH_TASK) {
4111                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4112                         return -EBUSY;
4113         } else {
4114                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4115                         return -EBUSY;
4116         }
4117
4118         return 0;
4119 }
4120
4121 static void exclusive_event_destroy(struct perf_event *event)
4122 {
4123         struct pmu *pmu = event->pmu;
4124
4125         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4126                 return;
4127
4128         /* see comment in exclusive_event_init() */
4129         if (event->attach_state & PERF_ATTACH_TASK)
4130                 atomic_dec(&pmu->exclusive_cnt);
4131         else
4132                 atomic_inc(&pmu->exclusive_cnt);
4133 }
4134
4135 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4136 {
4137         if ((e1->pmu == e2->pmu) &&
4138             (e1->cpu == e2->cpu ||
4139              e1->cpu == -1 ||
4140              e2->cpu == -1))
4141                 return true;
4142         return false;
4143 }
4144
4145 /* Called under the same ctx::mutex as perf_install_in_context() */
4146 static bool exclusive_event_installable(struct perf_event *event,
4147                                         struct perf_event_context *ctx)
4148 {
4149         struct perf_event *iter_event;
4150         struct pmu *pmu = event->pmu;
4151
4152         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4153                 return true;
4154
4155         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4156                 if (exclusive_event_match(iter_event, event))
4157                         return false;
4158         }
4159
4160         return true;
4161 }
4162
4163 static void perf_addr_filters_splice(struct perf_event *event,
4164                                        struct list_head *head);
4165
4166 static void _free_event(struct perf_event *event)
4167 {
4168         irq_work_sync(&event->pending);
4169
4170         unaccount_event(event);
4171
4172         if (event->rb) {
4173                 /*
4174                  * Can happen when we close an event with re-directed output.
4175                  *
4176                  * Since we have a 0 refcount, perf_mmap_close() will skip
4177                  * over us; possibly making our ring_buffer_put() the last.
4178                  */
4179                 mutex_lock(&event->mmap_mutex);
4180                 ring_buffer_attach(event, NULL);
4181                 mutex_unlock(&event->mmap_mutex);
4182         }
4183
4184         if (is_cgroup_event(event))
4185                 perf_detach_cgroup(event);
4186
4187         if (!event->parent) {
4188                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4189                         put_callchain_buffers();
4190         }
4191
4192         perf_event_free_bpf_prog(event);
4193         perf_addr_filters_splice(event, NULL);
4194         kfree(event->addr_filters_offs);
4195
4196         if (event->destroy)
4197                 event->destroy(event);
4198
4199         if (event->ctx)
4200                 put_ctx(event->ctx);
4201
4202         exclusive_event_destroy(event);
4203         module_put(event->pmu->module);
4204
4205         call_rcu(&event->rcu_head, free_event_rcu);
4206 }
4207
4208 /*
4209  * Used to free events which have a known refcount of 1, such as in error paths
4210  * where the event isn't exposed yet and inherited events.
4211  */
4212 static void free_event(struct perf_event *event)
4213 {
4214         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4215                                 "unexpected event refcount: %ld; ptr=%p\n",
4216                                 atomic_long_read(&event->refcount), event)) {
4217                 /* leak to avoid use-after-free */
4218                 return;
4219         }
4220
4221         _free_event(event);
4222 }
4223
4224 /*
4225  * Remove user event from the owner task.
4226  */
4227 static void perf_remove_from_owner(struct perf_event *event)
4228 {
4229         struct task_struct *owner;
4230
4231         rcu_read_lock();
4232         /*
4233          * Matches the smp_store_release() in perf_event_exit_task(). If we
4234          * observe !owner it means the list deletion is complete and we can
4235          * indeed free this event, otherwise we need to serialize on
4236          * owner->perf_event_mutex.
4237          */
4238         owner = READ_ONCE(event->owner);
4239         if (owner) {
4240                 /*
4241                  * Since delayed_put_task_struct() also drops the last
4242                  * task reference we can safely take a new reference
4243                  * while holding the rcu_read_lock().
4244                  */
4245                 get_task_struct(owner);
4246         }
4247         rcu_read_unlock();
4248
4249         if (owner) {
4250                 /*
4251                  * If we're here through perf_event_exit_task() we're already
4252                  * holding ctx->mutex which would be an inversion wrt. the
4253                  * normal lock order.
4254                  *
4255                  * However we can safely take this lock because its the child
4256                  * ctx->mutex.
4257                  */
4258                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4259
4260                 /*
4261                  * We have to re-check the event->owner field, if it is cleared
4262                  * we raced with perf_event_exit_task(), acquiring the mutex
4263                  * ensured they're done, and we can proceed with freeing the
4264                  * event.
4265                  */
4266                 if (event->owner) {
4267                         list_del_init(&event->owner_entry);
4268                         smp_store_release(&event->owner, NULL);
4269                 }
4270                 mutex_unlock(&owner->perf_event_mutex);
4271                 put_task_struct(owner);
4272         }
4273 }
4274
4275 static void put_event(struct perf_event *event)
4276 {
4277         if (!atomic_long_dec_and_test(&event->refcount))
4278                 return;
4279
4280         _free_event(event);
4281 }
4282
4283 /*
4284  * Kill an event dead; while event:refcount will preserve the event
4285  * object, it will not preserve its functionality. Once the last 'user'
4286  * gives up the object, we'll destroy the thing.
4287  */
4288 int perf_event_release_kernel(struct perf_event *event)
4289 {
4290         struct perf_event_context *ctx = event->ctx;
4291         struct perf_event *child, *tmp;
4292
4293         /*
4294          * If we got here through err_file: fput(event_file); we will not have
4295          * attached to a context yet.
4296          */
4297         if (!ctx) {
4298                 WARN_ON_ONCE(event->attach_state &
4299                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4300                 goto no_ctx;
4301         }
4302
4303         if (!is_kernel_event(event))
4304                 perf_remove_from_owner(event);
4305
4306         ctx = perf_event_ctx_lock(event);
4307         WARN_ON_ONCE(ctx->parent_ctx);
4308         perf_remove_from_context(event, DETACH_GROUP);
4309
4310         raw_spin_lock_irq(&ctx->lock);
4311         /*
4312          * Mark this event as STATE_DEAD, there is no external reference to it
4313          * anymore.
4314          *
4315          * Anybody acquiring event->child_mutex after the below loop _must_
4316          * also see this, most importantly inherit_event() which will avoid
4317          * placing more children on the list.
4318          *
4319          * Thus this guarantees that we will in fact observe and kill _ALL_
4320          * child events.
4321          */
4322         event->state = PERF_EVENT_STATE_DEAD;
4323         raw_spin_unlock_irq(&ctx->lock);
4324
4325         perf_event_ctx_unlock(event, ctx);
4326
4327 again:
4328         mutex_lock(&event->child_mutex);
4329         list_for_each_entry(child, &event->child_list, child_list) {
4330
4331                 /*
4332                  * Cannot change, child events are not migrated, see the
4333                  * comment with perf_event_ctx_lock_nested().
4334                  */
4335                 ctx = READ_ONCE(child->ctx);
4336                 /*
4337                  * Since child_mutex nests inside ctx::mutex, we must jump
4338                  * through hoops. We start by grabbing a reference on the ctx.
4339                  *
4340                  * Since the event cannot get freed while we hold the
4341                  * child_mutex, the context must also exist and have a !0
4342                  * reference count.
4343                  */
4344                 get_ctx(ctx);
4345
4346                 /*
4347                  * Now that we have a ctx ref, we can drop child_mutex, and
4348                  * acquire ctx::mutex without fear of it going away. Then we
4349                  * can re-acquire child_mutex.
4350                  */
4351                 mutex_unlock(&event->child_mutex);
4352                 mutex_lock(&ctx->mutex);
4353                 mutex_lock(&event->child_mutex);
4354
4355                 /*
4356                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4357                  * state, if child is still the first entry, it didn't get freed
4358                  * and we can continue doing so.
4359                  */
4360                 tmp = list_first_entry_or_null(&event->child_list,
4361                                                struct perf_event, child_list);
4362                 if (tmp == child) {
4363                         perf_remove_from_context(child, DETACH_GROUP);
4364                         list_del(&child->child_list);
4365                         free_event(child);
4366                         /*
4367                          * This matches the refcount bump in inherit_event();
4368                          * this can't be the last reference.
4369                          */
4370                         put_event(event);
4371                 }
4372
4373                 mutex_unlock(&event->child_mutex);
4374                 mutex_unlock(&ctx->mutex);
4375                 put_ctx(ctx);
4376                 goto again;
4377         }
4378         mutex_unlock(&event->child_mutex);
4379
4380 no_ctx:
4381         put_event(event); /* Must be the 'last' reference */
4382         return 0;
4383 }
4384 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4385
4386 /*
4387  * Called when the last reference to the file is gone.
4388  */
4389 static int perf_release(struct inode *inode, struct file *file)
4390 {
4391         perf_event_release_kernel(file->private_data);
4392         return 0;
4393 }
4394
4395 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4396 {
4397         struct perf_event *child;
4398         u64 total = 0;
4399
4400         *enabled = 0;
4401         *running = 0;
4402
4403         mutex_lock(&event->child_mutex);
4404
4405         (void)perf_event_read(event, false);
4406         total += perf_event_count(event);
4407
4408         *enabled += event->total_time_enabled +
4409                         atomic64_read(&event->child_total_time_enabled);
4410         *running += event->total_time_running +
4411                         atomic64_read(&event->child_total_time_running);
4412
4413         list_for_each_entry(child, &event->child_list, child_list) {
4414                 (void)perf_event_read(child, false);
4415                 total += perf_event_count(child);
4416                 *enabled += child->total_time_enabled;
4417                 *running += child->total_time_running;
4418         }
4419         mutex_unlock(&event->child_mutex);
4420
4421         return total;
4422 }
4423 EXPORT_SYMBOL_GPL(perf_event_read_value);
4424
4425 static int __perf_read_group_add(struct perf_event *leader,
4426                                         u64 read_format, u64 *values)
4427 {
4428         struct perf_event_context *ctx = leader->ctx;
4429         struct perf_event *sub;
4430         unsigned long flags;
4431         int n = 1; /* skip @nr */
4432         int ret;
4433
4434         ret = perf_event_read(leader, true);
4435         if (ret)
4436                 return ret;
4437
4438         raw_spin_lock_irqsave(&ctx->lock, flags);
4439
4440         /*
4441          * Since we co-schedule groups, {enabled,running} times of siblings
4442          * will be identical to those of the leader, so we only publish one
4443          * set.
4444          */
4445         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4446                 values[n++] += leader->total_time_enabled +
4447                         atomic64_read(&leader->child_total_time_enabled);
4448         }
4449
4450         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4451                 values[n++] += leader->total_time_running +
4452                         atomic64_read(&leader->child_total_time_running);
4453         }
4454
4455         /*
4456          * Write {count,id} tuples for every sibling.
4457          */
4458         values[n++] += perf_event_count(leader);
4459         if (read_format & PERF_FORMAT_ID)
4460                 values[n++] = primary_event_id(leader);
4461
4462         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4463                 values[n++] += perf_event_count(sub);
4464                 if (read_format & PERF_FORMAT_ID)
4465                         values[n++] = primary_event_id(sub);
4466         }
4467
4468         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4469         return 0;
4470 }
4471
4472 static int perf_read_group(struct perf_event *event,
4473                                    u64 read_format, char __user *buf)
4474 {
4475         struct perf_event *leader = event->group_leader, *child;
4476         struct perf_event_context *ctx = leader->ctx;
4477         int ret;
4478         u64 *values;
4479
4480         lockdep_assert_held(&ctx->mutex);
4481
4482         values = kzalloc(event->read_size, GFP_KERNEL);
4483         if (!values)
4484                 return -ENOMEM;
4485
4486         values[0] = 1 + leader->nr_siblings;
4487
4488         /*
4489          * By locking the child_mutex of the leader we effectively
4490          * lock the child list of all siblings.. XXX explain how.
4491          */
4492         mutex_lock(&leader->child_mutex);
4493
4494         ret = __perf_read_group_add(leader, read_format, values);
4495         if (ret)
4496                 goto unlock;
4497
4498         list_for_each_entry(child, &leader->child_list, child_list) {
4499                 ret = __perf_read_group_add(child, read_format, values);
4500                 if (ret)
4501                         goto unlock;
4502         }
4503
4504         mutex_unlock(&leader->child_mutex);
4505
4506         ret = event->read_size;
4507         if (copy_to_user(buf, values, event->read_size))
4508                 ret = -EFAULT;
4509         goto out;
4510
4511 unlock:
4512         mutex_unlock(&leader->child_mutex);
4513 out:
4514         kfree(values);
4515         return ret;
4516 }
4517
4518 static int perf_read_one(struct perf_event *event,
4519                                  u64 read_format, char __user *buf)
4520 {
4521         u64 enabled, running;
4522         u64 values[4];
4523         int n = 0;
4524
4525         values[n++] = perf_event_read_value(event, &enabled, &running);
4526         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4527                 values[n++] = enabled;
4528         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4529                 values[n++] = running;
4530         if (read_format & PERF_FORMAT_ID)
4531                 values[n++] = primary_event_id(event);
4532
4533         if (copy_to_user(buf, values, n * sizeof(u64)))
4534                 return -EFAULT;
4535
4536         return n * sizeof(u64);
4537 }
4538
4539 static bool is_event_hup(struct perf_event *event)
4540 {
4541         bool no_children;
4542
4543         if (event->state > PERF_EVENT_STATE_EXIT)
4544                 return false;
4545
4546         mutex_lock(&event->child_mutex);
4547         no_children = list_empty(&event->child_list);
4548         mutex_unlock(&event->child_mutex);
4549         return no_children;
4550 }
4551
4552 /*
4553  * Read the performance event - simple non blocking version for now
4554  */
4555 static ssize_t
4556 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4557 {
4558         u64 read_format = event->attr.read_format;
4559         int ret;
4560
4561         /*
4562          * Return end-of-file for a read on a event that is in
4563          * error state (i.e. because it was pinned but it couldn't be
4564          * scheduled on to the CPU at some point).
4565          */
4566         if (event->state == PERF_EVENT_STATE_ERROR)
4567                 return 0;
4568
4569         if (count < event->read_size)
4570                 return -ENOSPC;
4571
4572         WARN_ON_ONCE(event->ctx->parent_ctx);
4573         if (read_format & PERF_FORMAT_GROUP)
4574                 ret = perf_read_group(event, read_format, buf);
4575         else
4576                 ret = perf_read_one(event, read_format, buf);
4577
4578         return ret;
4579 }
4580
4581 static ssize_t
4582 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4583 {
4584         struct perf_event *event = file->private_data;
4585         struct perf_event_context *ctx;
4586         int ret;
4587
4588         ctx = perf_event_ctx_lock(event);
4589         ret = __perf_read(event, buf, count);
4590         perf_event_ctx_unlock(event, ctx);
4591
4592         return ret;
4593 }
4594
4595 static unsigned int perf_poll(struct file *file, poll_table *wait)
4596 {
4597         struct perf_event *event = file->private_data;
4598         struct ring_buffer *rb;
4599         unsigned int events = POLLHUP;
4600
4601         poll_wait(file, &event->waitq, wait);
4602
4603         if (is_event_hup(event))
4604                 return events;
4605
4606         /*
4607          * Pin the event->rb by taking event->mmap_mutex; otherwise
4608          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4609          */
4610         mutex_lock(&event->mmap_mutex);
4611         rb = event->rb;
4612         if (rb)
4613                 events = atomic_xchg(&rb->poll, 0);
4614         mutex_unlock(&event->mmap_mutex);
4615         return events;
4616 }
4617
4618 static void _perf_event_reset(struct perf_event *event)
4619 {
4620         (void)perf_event_read(event, false);
4621         local64_set(&event->count, 0);
4622         perf_event_update_userpage(event);
4623 }
4624
4625 /*
4626  * Holding the top-level event's child_mutex means that any
4627  * descendant process that has inherited this event will block
4628  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4629  * task existence requirements of perf_event_enable/disable.
4630  */
4631 static void perf_event_for_each_child(struct perf_event *event,
4632                                         void (*func)(struct perf_event *))
4633 {
4634         struct perf_event *child;
4635
4636         WARN_ON_ONCE(event->ctx->parent_ctx);
4637
4638         mutex_lock(&event->child_mutex);
4639         func(event);
4640         list_for_each_entry(child, &event->child_list, child_list)
4641                 func(child);
4642         mutex_unlock(&event->child_mutex);
4643 }
4644
4645 static void perf_event_for_each(struct perf_event *event,
4646                                   void (*func)(struct perf_event *))
4647 {
4648         struct perf_event_context *ctx = event->ctx;
4649         struct perf_event *sibling;
4650
4651         lockdep_assert_held(&ctx->mutex);
4652
4653         event = event->group_leader;
4654
4655         perf_event_for_each_child(event, func);
4656         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4657                 perf_event_for_each_child(sibling, func);
4658 }
4659
4660 static void __perf_event_period(struct perf_event *event,
4661                                 struct perf_cpu_context *cpuctx,
4662                                 struct perf_event_context *ctx,
4663                                 void *info)
4664 {
4665         u64 value = *((u64 *)info);
4666         bool active;
4667
4668         if (event->attr.freq) {
4669                 event->attr.sample_freq = value;
4670         } else {
4671                 event->attr.sample_period = value;
4672                 event->hw.sample_period = value;
4673         }
4674
4675         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4676         if (active) {
4677                 perf_pmu_disable(ctx->pmu);
4678                 /*
4679                  * We could be throttled; unthrottle now to avoid the tick
4680                  * trying to unthrottle while we already re-started the event.
4681                  */
4682                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4683                         event->hw.interrupts = 0;
4684                         perf_log_throttle(event, 1);
4685                 }
4686                 event->pmu->stop(event, PERF_EF_UPDATE);
4687         }
4688
4689         local64_set(&event->hw.period_left, 0);
4690
4691         if (active) {
4692                 event->pmu->start(event, PERF_EF_RELOAD);
4693                 perf_pmu_enable(ctx->pmu);
4694         }
4695 }
4696
4697 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4698 {
4699         u64 value;
4700
4701         if (!is_sampling_event(event))
4702                 return -EINVAL;
4703
4704         if (copy_from_user(&value, arg, sizeof(value)))
4705                 return -EFAULT;
4706
4707         if (!value)
4708                 return -EINVAL;
4709
4710         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4711                 return -EINVAL;
4712
4713         event_function_call(event, __perf_event_period, &value);
4714
4715         return 0;
4716 }
4717
4718 static const struct file_operations perf_fops;
4719
4720 static inline int perf_fget_light(int fd, struct fd *p)
4721 {
4722         struct fd f = fdget(fd);
4723         if (!f.file)
4724                 return -EBADF;
4725
4726         if (f.file->f_op != &perf_fops) {
4727                 fdput(f);
4728                 return -EBADF;
4729         }
4730         *p = f;
4731         return 0;
4732 }
4733
4734 static int perf_event_set_output(struct perf_event *event,
4735                                  struct perf_event *output_event);
4736 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4737 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4738
4739 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4740 {
4741         void (*func)(struct perf_event *);
4742         u32 flags = arg;
4743
4744         switch (cmd) {
4745         case PERF_EVENT_IOC_ENABLE:
4746                 func = _perf_event_enable;
4747                 break;
4748         case PERF_EVENT_IOC_DISABLE:
4749                 func = _perf_event_disable;
4750                 break;
4751         case PERF_EVENT_IOC_RESET:
4752                 func = _perf_event_reset;
4753                 break;
4754
4755         case PERF_EVENT_IOC_REFRESH:
4756                 return _perf_event_refresh(event, arg);
4757
4758         case PERF_EVENT_IOC_PERIOD:
4759                 return perf_event_period(event, (u64 __user *)arg);
4760
4761         case PERF_EVENT_IOC_ID:
4762         {
4763                 u64 id = primary_event_id(event);
4764
4765                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4766                         return -EFAULT;
4767                 return 0;
4768         }
4769
4770         case PERF_EVENT_IOC_SET_OUTPUT:
4771         {
4772                 int ret;
4773                 if (arg != -1) {
4774                         struct perf_event *output_event;
4775                         struct fd output;
4776                         ret = perf_fget_light(arg, &output);
4777                         if (ret)
4778                                 return ret;
4779                         output_event = output.file->private_data;
4780                         ret = perf_event_set_output(event, output_event);
4781                         fdput(output);
4782                 } else {
4783                         ret = perf_event_set_output(event, NULL);
4784                 }
4785                 return ret;
4786         }
4787
4788         case PERF_EVENT_IOC_SET_FILTER:
4789                 return perf_event_set_filter(event, (void __user *)arg);
4790
4791         case PERF_EVENT_IOC_SET_BPF:
4792                 return perf_event_set_bpf_prog(event, arg);
4793
4794         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4795                 struct ring_buffer *rb;
4796
4797                 rcu_read_lock();
4798                 rb = rcu_dereference(event->rb);
4799                 if (!rb || !rb->nr_pages) {
4800                         rcu_read_unlock();
4801                         return -EINVAL;
4802                 }
4803                 rb_toggle_paused(rb, !!arg);
4804                 rcu_read_unlock();
4805                 return 0;
4806         }
4807         default:
4808                 return -ENOTTY;
4809         }
4810
4811         if (flags & PERF_IOC_FLAG_GROUP)
4812                 perf_event_for_each(event, func);
4813         else
4814                 perf_event_for_each_child(event, func);
4815
4816         return 0;
4817 }
4818
4819 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4820 {
4821         struct perf_event *event = file->private_data;
4822         struct perf_event_context *ctx;
4823         long ret;
4824
4825         ctx = perf_event_ctx_lock(event);
4826         ret = _perf_ioctl(event, cmd, arg);
4827         perf_event_ctx_unlock(event, ctx);
4828
4829         return ret;
4830 }
4831
4832 #ifdef CONFIG_COMPAT
4833 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4834                                 unsigned long arg)
4835 {
4836         switch (_IOC_NR(cmd)) {
4837         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4838         case _IOC_NR(PERF_EVENT_IOC_ID):
4839                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4840                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4841                         cmd &= ~IOCSIZE_MASK;
4842                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4843                 }
4844                 break;
4845         }
4846         return perf_ioctl(file, cmd, arg);
4847 }
4848 #else
4849 # define perf_compat_ioctl NULL
4850 #endif
4851
4852 int perf_event_task_enable(void)
4853 {
4854         struct perf_event_context *ctx;
4855         struct perf_event *event;
4856
4857         mutex_lock(&current->perf_event_mutex);
4858         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4859                 ctx = perf_event_ctx_lock(event);
4860                 perf_event_for_each_child(event, _perf_event_enable);
4861                 perf_event_ctx_unlock(event, ctx);
4862         }
4863         mutex_unlock(&current->perf_event_mutex);
4864
4865         return 0;
4866 }
4867
4868 int perf_event_task_disable(void)
4869 {
4870         struct perf_event_context *ctx;
4871         struct perf_event *event;
4872
4873         mutex_lock(&current->perf_event_mutex);
4874         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4875                 ctx = perf_event_ctx_lock(event);
4876                 perf_event_for_each_child(event, _perf_event_disable);
4877                 perf_event_ctx_unlock(event, ctx);
4878         }
4879         mutex_unlock(&current->perf_event_mutex);
4880
4881         return 0;
4882 }
4883
4884 static int perf_event_index(struct perf_event *event)
4885 {
4886         if (event->hw.state & PERF_HES_STOPPED)
4887                 return 0;
4888
4889         if (event->state != PERF_EVENT_STATE_ACTIVE)
4890                 return 0;
4891
4892         return event->pmu->event_idx(event);
4893 }
4894
4895 static void calc_timer_values(struct perf_event *event,
4896                                 u64 *now,
4897                                 u64 *enabled,
4898                                 u64 *running)
4899 {
4900         u64 ctx_time;
4901
4902         *now = perf_clock();
4903         ctx_time = event->shadow_ctx_time + *now;
4904         *enabled = ctx_time - event->tstamp_enabled;
4905         *running = ctx_time - event->tstamp_running;
4906 }
4907
4908 static void perf_event_init_userpage(struct perf_event *event)
4909 {
4910         struct perf_event_mmap_page *userpg;
4911         struct ring_buffer *rb;
4912
4913         rcu_read_lock();
4914         rb = rcu_dereference(event->rb);
4915         if (!rb)
4916                 goto unlock;
4917
4918         userpg = rb->user_page;
4919
4920         /* Allow new userspace to detect that bit 0 is deprecated */
4921         userpg->cap_bit0_is_deprecated = 1;
4922         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4923         userpg->data_offset = PAGE_SIZE;
4924         userpg->data_size = perf_data_size(rb);
4925
4926 unlock:
4927         rcu_read_unlock();
4928 }
4929
4930 void __weak arch_perf_update_userpage(
4931         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4932 {
4933 }
4934
4935 /*
4936  * Callers need to ensure there can be no nesting of this function, otherwise
4937  * the seqlock logic goes bad. We can not serialize this because the arch
4938  * code calls this from NMI context.
4939  */
4940 void perf_event_update_userpage(struct perf_event *event)
4941 {
4942         struct perf_event_mmap_page *userpg;
4943         struct ring_buffer *rb;
4944         u64 enabled, running, now;
4945
4946         rcu_read_lock();
4947         rb = rcu_dereference(event->rb);
4948         if (!rb)
4949                 goto unlock;
4950
4951         /*
4952          * compute total_time_enabled, total_time_running
4953          * based on snapshot values taken when the event
4954          * was last scheduled in.
4955          *
4956          * we cannot simply called update_context_time()
4957          * because of locking issue as we can be called in
4958          * NMI context
4959          */
4960         calc_timer_values(event, &now, &enabled, &running);
4961
4962         userpg = rb->user_page;
4963         /*
4964          * Disable preemption so as to not let the corresponding user-space
4965          * spin too long if we get preempted.
4966          */
4967         preempt_disable();
4968         ++userpg->lock;
4969         barrier();
4970         userpg->index = perf_event_index(event);
4971         userpg->offset = perf_event_count(event);
4972         if (userpg->index)
4973                 userpg->offset -= local64_read(&event->hw.prev_count);
4974
4975         userpg->time_enabled = enabled +
4976                         atomic64_read(&event->child_total_time_enabled);
4977
4978         userpg->time_running = running +
4979                         atomic64_read(&event->child_total_time_running);
4980
4981         arch_perf_update_userpage(event, userpg, now);
4982
4983         barrier();
4984         ++userpg->lock;
4985         preempt_enable();
4986 unlock:
4987         rcu_read_unlock();
4988 }
4989
4990 static int perf_mmap_fault(struct vm_fault *vmf)
4991 {
4992         struct perf_event *event = vmf->vma->vm_file->private_data;
4993         struct ring_buffer *rb;
4994         int ret = VM_FAULT_SIGBUS;
4995
4996         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4997                 if (vmf->pgoff == 0)
4998                         ret = 0;
4999                 return ret;
5000         }
5001
5002         rcu_read_lock();
5003         rb = rcu_dereference(event->rb);
5004         if (!rb)
5005                 goto unlock;
5006
5007         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5008                 goto unlock;
5009
5010         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5011         if (!vmf->page)
5012                 goto unlock;
5013
5014         get_page(vmf->page);
5015         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5016         vmf->page->index   = vmf->pgoff;
5017
5018         ret = 0;
5019 unlock:
5020         rcu_read_unlock();
5021
5022         return ret;
5023 }
5024
5025 static void ring_buffer_attach(struct perf_event *event,
5026                                struct ring_buffer *rb)
5027 {
5028         struct ring_buffer *old_rb = NULL;
5029         unsigned long flags;
5030
5031         if (event->rb) {
5032                 /*
5033                  * Should be impossible, we set this when removing
5034                  * event->rb_entry and wait/clear when adding event->rb_entry.
5035                  */
5036                 WARN_ON_ONCE(event->rcu_pending);
5037
5038                 old_rb = event->rb;
5039                 spin_lock_irqsave(&old_rb->event_lock, flags);
5040                 list_del_rcu(&event->rb_entry);
5041                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5042
5043                 event->rcu_batches = get_state_synchronize_rcu();
5044                 event->rcu_pending = 1;
5045         }
5046
5047         if (rb) {
5048                 if (event->rcu_pending) {
5049                         cond_synchronize_rcu(event->rcu_batches);
5050                         event->rcu_pending = 0;
5051                 }
5052
5053                 spin_lock_irqsave(&rb->event_lock, flags);
5054                 list_add_rcu(&event->rb_entry, &rb->event_list);
5055                 spin_unlock_irqrestore(&rb->event_lock, flags);
5056         }
5057
5058         /*
5059          * Avoid racing with perf_mmap_close(AUX): stop the event
5060          * before swizzling the event::rb pointer; if it's getting
5061          * unmapped, its aux_mmap_count will be 0 and it won't
5062          * restart. See the comment in __perf_pmu_output_stop().
5063          *
5064          * Data will inevitably be lost when set_output is done in
5065          * mid-air, but then again, whoever does it like this is
5066          * not in for the data anyway.
5067          */
5068         if (has_aux(event))
5069                 perf_event_stop(event, 0);
5070
5071         rcu_assign_pointer(event->rb, rb);
5072
5073         if (old_rb) {
5074                 ring_buffer_put(old_rb);
5075                 /*
5076                  * Since we detached before setting the new rb, so that we
5077                  * could attach the new rb, we could have missed a wakeup.
5078                  * Provide it now.
5079                  */
5080                 wake_up_all(&event->waitq);
5081         }
5082 }
5083
5084 static void ring_buffer_wakeup(struct perf_event *event)
5085 {
5086         struct ring_buffer *rb;
5087
5088         rcu_read_lock();
5089         rb = rcu_dereference(event->rb);
5090         if (rb) {
5091                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5092                         wake_up_all(&event->waitq);
5093         }
5094         rcu_read_unlock();
5095 }
5096
5097 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5098 {
5099         struct ring_buffer *rb;
5100
5101         rcu_read_lock();
5102         rb = rcu_dereference(event->rb);
5103         if (rb) {
5104                 if (!atomic_inc_not_zero(&rb->refcount))
5105                         rb = NULL;
5106         }
5107         rcu_read_unlock();
5108
5109         return rb;
5110 }
5111
5112 void ring_buffer_put(struct ring_buffer *rb)
5113 {
5114         if (!atomic_dec_and_test(&rb->refcount))
5115                 return;
5116
5117         WARN_ON_ONCE(!list_empty(&rb->event_list));
5118
5119         call_rcu(&rb->rcu_head, rb_free_rcu);
5120 }
5121
5122 static void perf_mmap_open(struct vm_area_struct *vma)
5123 {
5124         struct perf_event *event = vma->vm_file->private_data;
5125
5126         atomic_inc(&event->mmap_count);
5127         atomic_inc(&event->rb->mmap_count);
5128
5129         if (vma->vm_pgoff)
5130                 atomic_inc(&event->rb->aux_mmap_count);
5131
5132         if (event->pmu->event_mapped)
5133                 event->pmu->event_mapped(event, vma->vm_mm);
5134 }
5135
5136 static void perf_pmu_output_stop(struct perf_event *event);
5137
5138 /*
5139  * A buffer can be mmap()ed multiple times; either directly through the same
5140  * event, or through other events by use of perf_event_set_output().
5141  *
5142  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5143  * the buffer here, where we still have a VM context. This means we need
5144  * to detach all events redirecting to us.
5145  */
5146 static void perf_mmap_close(struct vm_area_struct *vma)
5147 {
5148         struct perf_event *event = vma->vm_file->private_data;
5149
5150         struct ring_buffer *rb = ring_buffer_get(event);
5151         struct user_struct *mmap_user = rb->mmap_user;
5152         int mmap_locked = rb->mmap_locked;
5153         unsigned long size = perf_data_size(rb);
5154
5155         if (event->pmu->event_unmapped)
5156                 event->pmu->event_unmapped(event, vma->vm_mm);
5157
5158         /*
5159          * rb->aux_mmap_count will always drop before rb->mmap_count and
5160          * event->mmap_count, so it is ok to use event->mmap_mutex to
5161          * serialize with perf_mmap here.
5162          */
5163         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5164             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5165                 /*
5166                  * Stop all AUX events that are writing to this buffer,
5167                  * so that we can free its AUX pages and corresponding PMU
5168                  * data. Note that after rb::aux_mmap_count dropped to zero,
5169                  * they won't start any more (see perf_aux_output_begin()).
5170                  */
5171                 perf_pmu_output_stop(event);
5172
5173                 /* now it's safe to free the pages */
5174                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5175                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5176
5177                 /* this has to be the last one */
5178                 rb_free_aux(rb);
5179                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5180
5181                 mutex_unlock(&event->mmap_mutex);
5182         }
5183
5184         atomic_dec(&rb->mmap_count);
5185
5186         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5187                 goto out_put;
5188
5189         ring_buffer_attach(event, NULL);
5190         mutex_unlock(&event->mmap_mutex);
5191
5192         /* If there's still other mmap()s of this buffer, we're done. */
5193         if (atomic_read(&rb->mmap_count))
5194                 goto out_put;
5195
5196         /*
5197          * No other mmap()s, detach from all other events that might redirect
5198          * into the now unreachable buffer. Somewhat complicated by the
5199          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5200          */
5201 again:
5202         rcu_read_lock();
5203         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5204                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5205                         /*
5206                          * This event is en-route to free_event() which will
5207                          * detach it and remove it from the list.
5208                          */
5209                         continue;
5210                 }
5211                 rcu_read_unlock();
5212
5213                 mutex_lock(&event->mmap_mutex);
5214                 /*
5215                  * Check we didn't race with perf_event_set_output() which can
5216                  * swizzle the rb from under us while we were waiting to
5217                  * acquire mmap_mutex.
5218                  *
5219                  * If we find a different rb; ignore this event, a next
5220                  * iteration will no longer find it on the list. We have to
5221                  * still restart the iteration to make sure we're not now
5222                  * iterating the wrong list.
5223                  */
5224                 if (event->rb == rb)
5225                         ring_buffer_attach(event, NULL);
5226
5227                 mutex_unlock(&event->mmap_mutex);
5228                 put_event(event);
5229
5230                 /*
5231                  * Restart the iteration; either we're on the wrong list or
5232                  * destroyed its integrity by doing a deletion.
5233                  */
5234                 goto again;
5235         }
5236         rcu_read_unlock();
5237
5238         /*
5239          * It could be there's still a few 0-ref events on the list; they'll
5240          * get cleaned up by free_event() -- they'll also still have their
5241          * ref on the rb and will free it whenever they are done with it.
5242          *
5243          * Aside from that, this buffer is 'fully' detached and unmapped,
5244          * undo the VM accounting.
5245          */
5246
5247         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5248         vma->vm_mm->pinned_vm -= mmap_locked;
5249         free_uid(mmap_user);
5250
5251 out_put:
5252         ring_buffer_put(rb); /* could be last */
5253 }
5254
5255 static const struct vm_operations_struct perf_mmap_vmops = {
5256         .open           = perf_mmap_open,
5257         .close          = perf_mmap_close, /* non mergable */
5258         .fault          = perf_mmap_fault,
5259         .page_mkwrite   = perf_mmap_fault,
5260 };
5261
5262 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5263 {
5264         struct perf_event *event = file->private_data;
5265         unsigned long user_locked, user_lock_limit;
5266         struct user_struct *user = current_user();
5267         unsigned long locked, lock_limit;
5268         struct ring_buffer *rb = NULL;
5269         unsigned long vma_size;
5270         unsigned long nr_pages;
5271         long user_extra = 0, extra = 0;
5272         int ret = 0, flags = 0;
5273
5274         /*
5275          * Don't allow mmap() of inherited per-task counters. This would
5276          * create a performance issue due to all children writing to the
5277          * same rb.
5278          */
5279         if (event->cpu == -1 && event->attr.inherit)
5280                 return -EINVAL;
5281
5282         if (!(vma->vm_flags & VM_SHARED))
5283                 return -EINVAL;
5284
5285         vma_size = vma->vm_end - vma->vm_start;
5286
5287         if (vma->vm_pgoff == 0) {
5288                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5289         } else {
5290                 /*
5291                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5292                  * mapped, all subsequent mappings should have the same size
5293                  * and offset. Must be above the normal perf buffer.
5294                  */
5295                 u64 aux_offset, aux_size;
5296
5297                 if (!event->rb)
5298                         return -EINVAL;
5299
5300                 nr_pages = vma_size / PAGE_SIZE;
5301
5302                 mutex_lock(&event->mmap_mutex);
5303                 ret = -EINVAL;
5304
5305                 rb = event->rb;
5306                 if (!rb)
5307                         goto aux_unlock;
5308
5309                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5310                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5311
5312                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5313                         goto aux_unlock;
5314
5315                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5316                         goto aux_unlock;
5317
5318                 /* already mapped with a different offset */
5319                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5320                         goto aux_unlock;
5321
5322                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5323                         goto aux_unlock;
5324
5325                 /* already mapped with a different size */
5326                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5327                         goto aux_unlock;
5328
5329                 if (!is_power_of_2(nr_pages))
5330                         goto aux_unlock;
5331
5332                 if (!atomic_inc_not_zero(&rb->mmap_count))
5333                         goto aux_unlock;
5334
5335                 if (rb_has_aux(rb)) {
5336                         atomic_inc(&rb->aux_mmap_count);
5337                         ret = 0;
5338                         goto unlock;
5339                 }
5340
5341                 atomic_set(&rb->aux_mmap_count, 1);
5342                 user_extra = nr_pages;
5343
5344                 goto accounting;
5345         }
5346
5347         /*
5348          * If we have rb pages ensure they're a power-of-two number, so we
5349          * can do bitmasks instead of modulo.
5350          */
5351         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5352                 return -EINVAL;
5353
5354         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5355                 return -EINVAL;
5356
5357         WARN_ON_ONCE(event->ctx->parent_ctx);
5358 again:
5359         mutex_lock(&event->mmap_mutex);
5360         if (event->rb) {
5361                 if (event->rb->nr_pages != nr_pages) {
5362                         ret = -EINVAL;
5363                         goto unlock;
5364                 }
5365
5366                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5367                         /*
5368                          * Raced against perf_mmap_close() through
5369                          * perf_event_set_output(). Try again, hope for better
5370                          * luck.
5371                          */
5372                         mutex_unlock(&event->mmap_mutex);
5373                         goto again;
5374                 }
5375
5376                 goto unlock;
5377         }
5378
5379         user_extra = nr_pages + 1;
5380
5381 accounting:
5382         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5383
5384         /*
5385          * Increase the limit linearly with more CPUs:
5386          */
5387         user_lock_limit *= num_online_cpus();
5388
5389         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5390
5391         if (user_locked > user_lock_limit)
5392                 extra = user_locked - user_lock_limit;
5393
5394         lock_limit = rlimit(RLIMIT_MEMLOCK);
5395         lock_limit >>= PAGE_SHIFT;
5396         locked = vma->vm_mm->pinned_vm + extra;
5397
5398         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5399                 !capable(CAP_IPC_LOCK)) {
5400                 ret = -EPERM;
5401                 goto unlock;
5402         }
5403
5404         WARN_ON(!rb && event->rb);
5405
5406         if (vma->vm_flags & VM_WRITE)
5407                 flags |= RING_BUFFER_WRITABLE;
5408
5409         if (!rb) {
5410                 rb = rb_alloc(nr_pages,
5411                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5412                               event->cpu, flags);
5413
5414                 if (!rb) {
5415                         ret = -ENOMEM;
5416                         goto unlock;
5417                 }
5418
5419                 atomic_set(&rb->mmap_count, 1);
5420                 rb->mmap_user = get_current_user();
5421                 rb->mmap_locked = extra;
5422
5423                 ring_buffer_attach(event, rb);
5424
5425                 perf_event_init_userpage(event);
5426                 perf_event_update_userpage(event);
5427         } else {
5428                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5429                                    event->attr.aux_watermark, flags);
5430                 if (!ret)
5431                         rb->aux_mmap_locked = extra;
5432         }
5433
5434 unlock:
5435         if (!ret) {
5436                 atomic_long_add(user_extra, &user->locked_vm);
5437                 vma->vm_mm->pinned_vm += extra;
5438
5439                 atomic_inc(&event->mmap_count);
5440         } else if (rb) {
5441                 atomic_dec(&rb->mmap_count);
5442         }
5443 aux_unlock:
5444         mutex_unlock(&event->mmap_mutex);
5445
5446         /*
5447          * Since pinned accounting is per vm we cannot allow fork() to copy our
5448          * vma.
5449          */
5450         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5451         vma->vm_ops = &perf_mmap_vmops;
5452
5453         if (event->pmu->event_mapped)
5454                 event->pmu->event_mapped(event, vma->vm_mm);
5455
5456         return ret;
5457 }
5458
5459 static int perf_fasync(int fd, struct file *filp, int on)
5460 {
5461         struct inode *inode = file_inode(filp);
5462         struct perf_event *event = filp->private_data;
5463         int retval;
5464
5465         inode_lock(inode);
5466         retval = fasync_helper(fd, filp, on, &event->fasync);
5467         inode_unlock(inode);
5468
5469         if (retval < 0)
5470                 return retval;
5471
5472         return 0;
5473 }
5474
5475 static const struct file_operations perf_fops = {
5476         .llseek                 = no_llseek,
5477         .release                = perf_release,
5478         .read                   = perf_read,
5479         .poll                   = perf_poll,
5480         .unlocked_ioctl         = perf_ioctl,
5481         .compat_ioctl           = perf_compat_ioctl,
5482         .mmap                   = perf_mmap,
5483         .fasync                 = perf_fasync,
5484 };
5485
5486 /*
5487  * Perf event wakeup
5488  *
5489  * If there's data, ensure we set the poll() state and publish everything
5490  * to user-space before waking everybody up.
5491  */
5492
5493 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5494 {
5495         /* only the parent has fasync state */
5496         if (event->parent)
5497                 event = event->parent;
5498         return &event->fasync;
5499 }
5500
5501 void perf_event_wakeup(struct perf_event *event)
5502 {
5503         ring_buffer_wakeup(event);
5504
5505         if (event->pending_kill) {
5506                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5507                 event->pending_kill = 0;
5508         }
5509 }
5510
5511 static void perf_pending_event(struct irq_work *entry)
5512 {
5513         struct perf_event *event = container_of(entry,
5514                         struct perf_event, pending);
5515         int rctx;
5516
5517         rctx = perf_swevent_get_recursion_context();
5518         /*
5519          * If we 'fail' here, that's OK, it means recursion is already disabled
5520          * and we won't recurse 'further'.
5521          */
5522
5523         if (event->pending_disable) {
5524                 event->pending_disable = 0;
5525                 perf_event_disable_local(event);
5526         }
5527
5528         if (event->pending_wakeup) {
5529                 event->pending_wakeup = 0;
5530                 perf_event_wakeup(event);
5531         }
5532
5533         if (rctx >= 0)
5534                 perf_swevent_put_recursion_context(rctx);
5535 }
5536
5537 /*
5538  * We assume there is only KVM supporting the callbacks.
5539  * Later on, we might change it to a list if there is
5540  * another virtualization implementation supporting the callbacks.
5541  */
5542 struct perf_guest_info_callbacks *perf_guest_cbs;
5543
5544 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5545 {
5546         perf_guest_cbs = cbs;
5547         return 0;
5548 }
5549 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5550
5551 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5552 {
5553         perf_guest_cbs = NULL;
5554         return 0;
5555 }
5556 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5557
5558 static void
5559 perf_output_sample_regs(struct perf_output_handle *handle,
5560                         struct pt_regs *regs, u64 mask)
5561 {
5562         int bit;
5563         DECLARE_BITMAP(_mask, 64);
5564
5565         bitmap_from_u64(_mask, mask);
5566         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5567                 u64 val;
5568
5569                 val = perf_reg_value(regs, bit);
5570                 perf_output_put(handle, val);
5571         }
5572 }
5573
5574 static void perf_sample_regs_user(struct perf_regs *regs_user,
5575                                   struct pt_regs *regs,
5576                                   struct pt_regs *regs_user_copy)
5577 {
5578         if (user_mode(regs)) {
5579                 regs_user->abi = perf_reg_abi(current);
5580                 regs_user->regs = regs;
5581         } else if (current->mm) {
5582                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5583         } else {
5584                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5585                 regs_user->regs = NULL;
5586         }
5587 }
5588
5589 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5590                                   struct pt_regs *regs)
5591 {
5592         regs_intr->regs = regs;
5593         regs_intr->abi  = perf_reg_abi(current);
5594 }
5595
5596
5597 /*
5598  * Get remaining task size from user stack pointer.
5599  *
5600  * It'd be better to take stack vma map and limit this more
5601  * precisly, but there's no way to get it safely under interrupt,
5602  * so using TASK_SIZE as limit.
5603  */
5604 static u64 perf_ustack_task_size(struct pt_regs *regs)
5605 {
5606         unsigned long addr = perf_user_stack_pointer(regs);
5607
5608         if (!addr || addr >= TASK_SIZE)
5609                 return 0;
5610
5611         return TASK_SIZE - addr;
5612 }
5613
5614 static u16
5615 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5616                         struct pt_regs *regs)
5617 {
5618         u64 task_size;
5619
5620         /* No regs, no stack pointer, no dump. */
5621         if (!regs)
5622                 return 0;
5623
5624         /*
5625          * Check if we fit in with the requested stack size into the:
5626          * - TASK_SIZE
5627          *   If we don't, we limit the size to the TASK_SIZE.
5628          *
5629          * - remaining sample size
5630          *   If we don't, we customize the stack size to
5631          *   fit in to the remaining sample size.
5632          */
5633
5634         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5635         stack_size = min(stack_size, (u16) task_size);
5636
5637         /* Current header size plus static size and dynamic size. */
5638         header_size += 2 * sizeof(u64);
5639
5640         /* Do we fit in with the current stack dump size? */
5641         if ((u16) (header_size + stack_size) < header_size) {
5642                 /*
5643                  * If we overflow the maximum size for the sample,
5644                  * we customize the stack dump size to fit in.
5645                  */
5646                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5647                 stack_size = round_up(stack_size, sizeof(u64));
5648         }
5649
5650         return stack_size;
5651 }
5652
5653 static void
5654 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5655                           struct pt_regs *regs)
5656 {
5657         /* Case of a kernel thread, nothing to dump */
5658         if (!regs) {
5659                 u64 size = 0;
5660                 perf_output_put(handle, size);
5661         } else {
5662                 unsigned long sp;
5663                 unsigned int rem;
5664                 u64 dyn_size;
5665
5666                 /*
5667                  * We dump:
5668                  * static size
5669                  *   - the size requested by user or the best one we can fit
5670                  *     in to the sample max size
5671                  * data
5672                  *   - user stack dump data
5673                  * dynamic size
5674                  *   - the actual dumped size
5675                  */
5676
5677                 /* Static size. */
5678                 perf_output_put(handle, dump_size);
5679
5680                 /* Data. */
5681                 sp = perf_user_stack_pointer(regs);
5682                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5683                 dyn_size = dump_size - rem;
5684
5685                 perf_output_skip(handle, rem);
5686
5687                 /* Dynamic size. */
5688                 perf_output_put(handle, dyn_size);
5689         }
5690 }
5691
5692 static void __perf_event_header__init_id(struct perf_event_header *header,
5693                                          struct perf_sample_data *data,
5694                                          struct perf_event *event)
5695 {
5696         u64 sample_type = event->attr.sample_type;
5697
5698         data->type = sample_type;
5699         header->size += event->id_header_size;
5700
5701         if (sample_type & PERF_SAMPLE_TID) {
5702                 /* namespace issues */
5703                 data->tid_entry.pid = perf_event_pid(event, current);
5704                 data->tid_entry.tid = perf_event_tid(event, current);
5705         }
5706
5707         if (sample_type & PERF_SAMPLE_TIME)
5708                 data->time = perf_event_clock(event);
5709
5710         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5711                 data->id = primary_event_id(event);
5712
5713         if (sample_type & PERF_SAMPLE_STREAM_ID)
5714                 data->stream_id = event->id;
5715
5716         if (sample_type & PERF_SAMPLE_CPU) {
5717                 data->cpu_entry.cpu      = raw_smp_processor_id();
5718                 data->cpu_entry.reserved = 0;
5719         }
5720 }
5721
5722 void perf_event_header__init_id(struct perf_event_header *header,
5723                                 struct perf_sample_data *data,
5724                                 struct perf_event *event)
5725 {
5726         if (event->attr.sample_id_all)
5727                 __perf_event_header__init_id(header, data, event);
5728 }
5729
5730 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5731                                            struct perf_sample_data *data)
5732 {
5733         u64 sample_type = data->type;
5734
5735         if (sample_type & PERF_SAMPLE_TID)
5736                 perf_output_put(handle, data->tid_entry);
5737
5738         if (sample_type & PERF_SAMPLE_TIME)
5739                 perf_output_put(handle, data->time);
5740
5741         if (sample_type & PERF_SAMPLE_ID)
5742                 perf_output_put(handle, data->id);
5743
5744         if (sample_type & PERF_SAMPLE_STREAM_ID)
5745                 perf_output_put(handle, data->stream_id);
5746
5747         if (sample_type & PERF_SAMPLE_CPU)
5748                 perf_output_put(handle, data->cpu_entry);
5749
5750         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5751                 perf_output_put(handle, data->id);
5752 }
5753
5754 void perf_event__output_id_sample(struct perf_event *event,
5755                                   struct perf_output_handle *handle,
5756                                   struct perf_sample_data *sample)
5757 {
5758         if (event->attr.sample_id_all)
5759                 __perf_event__output_id_sample(handle, sample);
5760 }
5761
5762 static void perf_output_read_one(struct perf_output_handle *handle,
5763                                  struct perf_event *event,
5764                                  u64 enabled, u64 running)
5765 {
5766         u64 read_format = event->attr.read_format;
5767         u64 values[4];
5768         int n = 0;
5769
5770         values[n++] = perf_event_count(event);
5771         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5772                 values[n++] = enabled +
5773                         atomic64_read(&event->child_total_time_enabled);
5774         }
5775         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5776                 values[n++] = running +
5777                         atomic64_read(&event->child_total_time_running);
5778         }
5779         if (read_format & PERF_FORMAT_ID)
5780                 values[n++] = primary_event_id(event);
5781
5782         __output_copy(handle, values, n * sizeof(u64));
5783 }
5784
5785 static void perf_output_read_group(struct perf_output_handle *handle,
5786                             struct perf_event *event,
5787                             u64 enabled, u64 running)
5788 {
5789         struct perf_event *leader = event->group_leader, *sub;
5790         u64 read_format = event->attr.read_format;
5791         u64 values[5];
5792         int n = 0;
5793
5794         values[n++] = 1 + leader->nr_siblings;
5795
5796         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5797                 values[n++] = enabled;
5798
5799         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5800                 values[n++] = running;
5801
5802         if (leader != event)
5803                 leader->pmu->read(leader);
5804
5805         values[n++] = perf_event_count(leader);
5806         if (read_format & PERF_FORMAT_ID)
5807                 values[n++] = primary_event_id(leader);
5808
5809         __output_copy(handle, values, n * sizeof(u64));
5810
5811         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5812                 n = 0;
5813
5814                 if ((sub != event) &&
5815                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5816                         sub->pmu->read(sub);
5817
5818                 values[n++] = perf_event_count(sub);
5819                 if (read_format & PERF_FORMAT_ID)
5820                         values[n++] = primary_event_id(sub);
5821
5822                 __output_copy(handle, values, n * sizeof(u64));
5823         }
5824 }
5825
5826 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5827                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5828
5829 /*
5830  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5831  *
5832  * The problem is that its both hard and excessively expensive to iterate the
5833  * child list, not to mention that its impossible to IPI the children running
5834  * on another CPU, from interrupt/NMI context.
5835  */
5836 static void perf_output_read(struct perf_output_handle *handle,
5837                              struct perf_event *event)
5838 {
5839         u64 enabled = 0, running = 0, now;
5840         u64 read_format = event->attr.read_format;
5841
5842         /*
5843          * compute total_time_enabled, total_time_running
5844          * based on snapshot values taken when the event
5845          * was last scheduled in.
5846          *
5847          * we cannot simply called update_context_time()
5848          * because of locking issue as we are called in
5849          * NMI context
5850          */
5851         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5852                 calc_timer_values(event, &now, &enabled, &running);
5853
5854         if (event->attr.read_format & PERF_FORMAT_GROUP)
5855                 perf_output_read_group(handle, event, enabled, running);
5856         else
5857                 perf_output_read_one(handle, event, enabled, running);
5858 }
5859
5860 void perf_output_sample(struct perf_output_handle *handle,
5861                         struct perf_event_header *header,
5862                         struct perf_sample_data *data,
5863                         struct perf_event *event)
5864 {
5865         u64 sample_type = data->type;
5866
5867         perf_output_put(handle, *header);
5868
5869         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5870                 perf_output_put(handle, data->id);
5871
5872         if (sample_type & PERF_SAMPLE_IP)
5873                 perf_output_put(handle, data->ip);
5874
5875         if (sample_type & PERF_SAMPLE_TID)
5876                 perf_output_put(handle, data->tid_entry);
5877
5878         if (sample_type & PERF_SAMPLE_TIME)
5879                 perf_output_put(handle, data->time);
5880
5881         if (sample_type & PERF_SAMPLE_ADDR)
5882                 perf_output_put(handle, data->addr);
5883
5884         if (sample_type & PERF_SAMPLE_ID)
5885                 perf_output_put(handle, data->id);
5886
5887         if (sample_type & PERF_SAMPLE_STREAM_ID)
5888                 perf_output_put(handle, data->stream_id);
5889
5890         if (sample_type & PERF_SAMPLE_CPU)
5891                 perf_output_put(handle, data->cpu_entry);
5892
5893         if (sample_type & PERF_SAMPLE_PERIOD)
5894                 perf_output_put(handle, data->period);
5895
5896         if (sample_type & PERF_SAMPLE_READ)
5897                 perf_output_read(handle, event);
5898
5899         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5900                 if (data->callchain) {
5901                         int size = 1;
5902
5903                         if (data->callchain)
5904                                 size += data->callchain->nr;
5905
5906                         size *= sizeof(u64);
5907
5908                         __output_copy(handle, data->callchain, size);
5909                 } else {
5910                         u64 nr = 0;
5911                         perf_output_put(handle, nr);
5912                 }
5913         }
5914
5915         if (sample_type & PERF_SAMPLE_RAW) {
5916                 struct perf_raw_record *raw = data->raw;
5917
5918                 if (raw) {
5919                         struct perf_raw_frag *frag = &raw->frag;
5920
5921                         perf_output_put(handle, raw->size);
5922                         do {
5923                                 if (frag->copy) {
5924                                         __output_custom(handle, frag->copy,
5925                                                         frag->data, frag->size);
5926                                 } else {
5927                                         __output_copy(handle, frag->data,
5928                                                       frag->size);
5929                                 }
5930                                 if (perf_raw_frag_last(frag))
5931                                         break;
5932                                 frag = frag->next;
5933                         } while (1);
5934                         if (frag->pad)
5935                                 __output_skip(handle, NULL, frag->pad);
5936                 } else {
5937                         struct {
5938                                 u32     size;
5939                                 u32     data;
5940                         } raw = {
5941                                 .size = sizeof(u32),
5942                                 .data = 0,
5943                         };
5944                         perf_output_put(handle, raw);
5945                 }
5946         }
5947
5948         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5949                 if (data->br_stack) {
5950                         size_t size;
5951
5952                         size = data->br_stack->nr
5953                              * sizeof(struct perf_branch_entry);
5954
5955                         perf_output_put(handle, data->br_stack->nr);
5956                         perf_output_copy(handle, data->br_stack->entries, size);
5957                 } else {
5958                         /*
5959                          * we always store at least the value of nr
5960                          */
5961                         u64 nr = 0;
5962                         perf_output_put(handle, nr);
5963                 }
5964         }
5965
5966         if (sample_type & PERF_SAMPLE_REGS_USER) {
5967                 u64 abi = data->regs_user.abi;
5968
5969                 /*
5970                  * If there are no regs to dump, notice it through
5971                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5972                  */
5973                 perf_output_put(handle, abi);
5974
5975                 if (abi) {
5976                         u64 mask = event->attr.sample_regs_user;
5977                         perf_output_sample_regs(handle,
5978                                                 data->regs_user.regs,
5979                                                 mask);
5980                 }
5981         }
5982
5983         if (sample_type & PERF_SAMPLE_STACK_USER) {
5984                 perf_output_sample_ustack(handle,
5985                                           data->stack_user_size,
5986                                           data->regs_user.regs);
5987         }
5988
5989         if (sample_type & PERF_SAMPLE_WEIGHT)
5990                 perf_output_put(handle, data->weight);
5991
5992         if (sample_type & PERF_SAMPLE_DATA_SRC)
5993                 perf_output_put(handle, data->data_src.val);
5994
5995         if (sample_type & PERF_SAMPLE_TRANSACTION)
5996                 perf_output_put(handle, data->txn);
5997
5998         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5999                 u64 abi = data->regs_intr.abi;
6000                 /*
6001                  * If there are no regs to dump, notice it through
6002                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6003                  */
6004                 perf_output_put(handle, abi);
6005
6006                 if (abi) {
6007                         u64 mask = event->attr.sample_regs_intr;
6008
6009                         perf_output_sample_regs(handle,
6010                                                 data->regs_intr.regs,
6011                                                 mask);
6012                 }
6013         }
6014
6015         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6016                 perf_output_put(handle, data->phys_addr);
6017
6018         if (!event->attr.watermark) {
6019                 int wakeup_events = event->attr.wakeup_events;
6020
6021                 if (wakeup_events) {
6022                         struct ring_buffer *rb = handle->rb;
6023                         int events = local_inc_return(&rb->events);
6024
6025                         if (events >= wakeup_events) {
6026                                 local_sub(wakeup_events, &rb->events);
6027                                 local_inc(&rb->wakeup);
6028                         }
6029                 }
6030         }
6031 }
6032
6033 static u64 perf_virt_to_phys(u64 virt)
6034 {
6035         u64 phys_addr = 0;
6036         struct page *p = NULL;
6037
6038         if (!virt)
6039                 return 0;
6040
6041         if (virt >= TASK_SIZE) {
6042                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6043                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6044                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6045                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6046         } else {
6047                 /*
6048                  * Walking the pages tables for user address.
6049                  * Interrupts are disabled, so it prevents any tear down
6050                  * of the page tables.
6051                  * Try IRQ-safe __get_user_pages_fast first.
6052                  * If failed, leave phys_addr as 0.
6053                  */
6054                 if ((current->mm != NULL) &&
6055                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6056                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6057
6058                 if (p)
6059                         put_page(p);
6060         }
6061
6062         return phys_addr;
6063 }
6064
6065 void perf_prepare_sample(struct perf_event_header *header,
6066                          struct perf_sample_data *data,
6067                          struct perf_event *event,
6068                          struct pt_regs *regs)
6069 {
6070         u64 sample_type = event->attr.sample_type;
6071
6072         header->type = PERF_RECORD_SAMPLE;
6073         header->size = sizeof(*header) + event->header_size;
6074
6075         header->misc = 0;
6076         header->misc |= perf_misc_flags(regs);
6077
6078         __perf_event_header__init_id(header, data, event);
6079
6080         if (sample_type & PERF_SAMPLE_IP)
6081                 data->ip = perf_instruction_pointer(regs);
6082
6083         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6084                 int size = 1;
6085
6086                 data->callchain = perf_callchain(event, regs);
6087
6088                 if (data->callchain)
6089                         size += data->callchain->nr;
6090
6091                 header->size += size * sizeof(u64);
6092         }
6093
6094         if (sample_type & PERF_SAMPLE_RAW) {
6095                 struct perf_raw_record *raw = data->raw;
6096                 int size;
6097
6098                 if (raw) {
6099                         struct perf_raw_frag *frag = &raw->frag;
6100                         u32 sum = 0;
6101
6102                         do {
6103                                 sum += frag->size;
6104                                 if (perf_raw_frag_last(frag))
6105                                         break;
6106                                 frag = frag->next;
6107                         } while (1);
6108
6109                         size = round_up(sum + sizeof(u32), sizeof(u64));
6110                         raw->size = size - sizeof(u32);
6111                         frag->pad = raw->size - sum;
6112                 } else {
6113                         size = sizeof(u64);
6114                 }
6115
6116                 header->size += size;
6117         }
6118
6119         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6120                 int size = sizeof(u64); /* nr */
6121                 if (data->br_stack) {
6122                         size += data->br_stack->nr
6123                               * sizeof(struct perf_branch_entry);
6124                 }
6125                 header->size += size;
6126         }
6127
6128         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6129                 perf_sample_regs_user(&data->regs_user, regs,
6130                                       &data->regs_user_copy);
6131
6132         if (sample_type & PERF_SAMPLE_REGS_USER) {
6133                 /* regs dump ABI info */
6134                 int size = sizeof(u64);
6135
6136                 if (data->regs_user.regs) {
6137                         u64 mask = event->attr.sample_regs_user;
6138                         size += hweight64(mask) * sizeof(u64);
6139                 }
6140
6141                 header->size += size;
6142         }
6143
6144         if (sample_type & PERF_SAMPLE_STACK_USER) {
6145                 /*
6146                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6147                  * processed as the last one or have additional check added
6148                  * in case new sample type is added, because we could eat
6149                  * up the rest of the sample size.
6150                  */
6151                 u16 stack_size = event->attr.sample_stack_user;
6152                 u16 size = sizeof(u64);
6153
6154                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6155                                                      data->regs_user.regs);
6156
6157                 /*
6158                  * If there is something to dump, add space for the dump
6159                  * itself and for the field that tells the dynamic size,
6160                  * which is how many have been actually dumped.
6161                  */
6162                 if (stack_size)
6163                         size += sizeof(u64) + stack_size;
6164
6165                 data->stack_user_size = stack_size;
6166                 header->size += size;
6167         }
6168
6169         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6170                 /* regs dump ABI info */
6171                 int size = sizeof(u64);
6172
6173                 perf_sample_regs_intr(&data->regs_intr, regs);
6174
6175                 if (data->regs_intr.regs) {
6176                         u64 mask = event->attr.sample_regs_intr;
6177
6178                         size += hweight64(mask) * sizeof(u64);
6179                 }
6180
6181                 header->size += size;
6182         }
6183
6184         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6185                 data->phys_addr = perf_virt_to_phys(data->addr);
6186 }
6187
6188 static void __always_inline
6189 __perf_event_output(struct perf_event *event,
6190                     struct perf_sample_data *data,
6191                     struct pt_regs *regs,
6192                     int (*output_begin)(struct perf_output_handle *,
6193                                         struct perf_event *,
6194                                         unsigned int))
6195 {
6196         struct perf_output_handle handle;
6197         struct perf_event_header header;
6198
6199         /* protect the callchain buffers */
6200         rcu_read_lock();
6201
6202         perf_prepare_sample(&header, data, event, regs);
6203
6204         if (output_begin(&handle, event, header.size))
6205                 goto exit;
6206
6207         perf_output_sample(&handle, &header, data, event);
6208
6209         perf_output_end(&handle);
6210
6211 exit:
6212         rcu_read_unlock();
6213 }
6214
6215 void
6216 perf_event_output_forward(struct perf_event *event,
6217                          struct perf_sample_data *data,
6218                          struct pt_regs *regs)
6219 {
6220         __perf_event_output(event, data, regs, perf_output_begin_forward);
6221 }
6222
6223 void
6224 perf_event_output_backward(struct perf_event *event,
6225                            struct perf_sample_data *data,
6226                            struct pt_regs *regs)
6227 {
6228         __perf_event_output(event, data, regs, perf_output_begin_backward);
6229 }
6230
6231 void
6232 perf_event_output(struct perf_event *event,
6233                   struct perf_sample_data *data,
6234                   struct pt_regs *regs)
6235 {
6236         __perf_event_output(event, data, regs, perf_output_begin);
6237 }
6238
6239 /*
6240  * read event_id
6241  */
6242
6243 struct perf_read_event {
6244         struct perf_event_header        header;
6245
6246         u32                             pid;
6247         u32                             tid;
6248 };
6249
6250 static void
6251 perf_event_read_event(struct perf_event *event,
6252                         struct task_struct *task)
6253 {
6254         struct perf_output_handle handle;
6255         struct perf_sample_data sample;
6256         struct perf_read_event read_event = {
6257                 .header = {
6258                         .type = PERF_RECORD_READ,
6259                         .misc = 0,
6260                         .size = sizeof(read_event) + event->read_size,
6261                 },
6262                 .pid = perf_event_pid(event, task),
6263                 .tid = perf_event_tid(event, task),
6264         };
6265         int ret;
6266
6267         perf_event_header__init_id(&read_event.header, &sample, event);
6268         ret = perf_output_begin(&handle, event, read_event.header.size);
6269         if (ret)
6270                 return;
6271
6272         perf_output_put(&handle, read_event);
6273         perf_output_read(&handle, event);
6274         perf_event__output_id_sample(event, &handle, &sample);
6275
6276         perf_output_end(&handle);
6277 }
6278
6279 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6280
6281 static void
6282 perf_iterate_ctx(struct perf_event_context *ctx,
6283                    perf_iterate_f output,
6284                    void *data, bool all)
6285 {
6286         struct perf_event *event;
6287
6288         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6289                 if (!all) {
6290                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6291                                 continue;
6292                         if (!event_filter_match(event))
6293                                 continue;
6294                 }
6295
6296                 output(event, data);
6297         }
6298 }
6299
6300 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6301 {
6302         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6303         struct perf_event *event;
6304
6305         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6306                 /*
6307                  * Skip events that are not fully formed yet; ensure that
6308                  * if we observe event->ctx, both event and ctx will be
6309                  * complete enough. See perf_install_in_context().
6310                  */
6311                 if (!smp_load_acquire(&event->ctx))
6312                         continue;
6313
6314                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6315                         continue;
6316                 if (!event_filter_match(event))
6317                         continue;
6318                 output(event, data);
6319         }
6320 }
6321
6322 /*
6323  * Iterate all events that need to receive side-band events.
6324  *
6325  * For new callers; ensure that account_pmu_sb_event() includes
6326  * your event, otherwise it might not get delivered.
6327  */
6328 static void
6329 perf_iterate_sb(perf_iterate_f output, void *data,
6330                struct perf_event_context *task_ctx)
6331 {
6332         struct perf_event_context *ctx;
6333         int ctxn;
6334
6335         rcu_read_lock();
6336         preempt_disable();
6337
6338         /*
6339          * If we have task_ctx != NULL we only notify the task context itself.
6340          * The task_ctx is set only for EXIT events before releasing task
6341          * context.
6342          */
6343         if (task_ctx) {
6344                 perf_iterate_ctx(task_ctx, output, data, false);
6345                 goto done;
6346         }
6347
6348         perf_iterate_sb_cpu(output, data);
6349
6350         for_each_task_context_nr(ctxn) {
6351                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6352                 if (ctx)
6353                         perf_iterate_ctx(ctx, output, data, false);
6354         }
6355 done:
6356         preempt_enable();
6357         rcu_read_unlock();
6358 }
6359
6360 /*
6361  * Clear all file-based filters at exec, they'll have to be
6362  * re-instated when/if these objects are mmapped again.
6363  */
6364 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6365 {
6366         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6367         struct perf_addr_filter *filter;
6368         unsigned int restart = 0, count = 0;
6369         unsigned long flags;
6370
6371         if (!has_addr_filter(event))
6372                 return;
6373
6374         raw_spin_lock_irqsave(&ifh->lock, flags);
6375         list_for_each_entry(filter, &ifh->list, entry) {
6376                 if (filter->inode) {
6377                         event->addr_filters_offs[count] = 0;
6378                         restart++;
6379                 }
6380
6381                 count++;
6382         }
6383
6384         if (restart)
6385                 event->addr_filters_gen++;
6386         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6387
6388         if (restart)
6389                 perf_event_stop(event, 1);
6390 }
6391
6392 void perf_event_exec(void)
6393 {
6394         struct perf_event_context *ctx;
6395         int ctxn;
6396
6397         rcu_read_lock();
6398         for_each_task_context_nr(ctxn) {
6399                 ctx = current->perf_event_ctxp[ctxn];
6400                 if (!ctx)
6401                         continue;
6402
6403                 perf_event_enable_on_exec(ctxn);
6404
6405                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6406                                    true);
6407         }
6408         rcu_read_unlock();
6409 }
6410
6411 struct remote_output {
6412         struct ring_buffer      *rb;
6413         int                     err;
6414 };
6415
6416 static void __perf_event_output_stop(struct perf_event *event, void *data)
6417 {
6418         struct perf_event *parent = event->parent;
6419         struct remote_output *ro = data;
6420         struct ring_buffer *rb = ro->rb;
6421         struct stop_event_data sd = {
6422                 .event  = event,
6423         };
6424
6425         if (!has_aux(event))
6426                 return;
6427
6428         if (!parent)
6429                 parent = event;
6430
6431         /*
6432          * In case of inheritance, it will be the parent that links to the
6433          * ring-buffer, but it will be the child that's actually using it.
6434          *
6435          * We are using event::rb to determine if the event should be stopped,
6436          * however this may race with ring_buffer_attach() (through set_output),
6437          * which will make us skip the event that actually needs to be stopped.
6438          * So ring_buffer_attach() has to stop an aux event before re-assigning
6439          * its rb pointer.
6440          */
6441         if (rcu_dereference(parent->rb) == rb)
6442                 ro->err = __perf_event_stop(&sd);
6443 }
6444
6445 static int __perf_pmu_output_stop(void *info)
6446 {
6447         struct perf_event *event = info;
6448         struct pmu *pmu = event->pmu;
6449         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6450         struct remote_output ro = {
6451                 .rb     = event->rb,
6452         };
6453
6454         rcu_read_lock();
6455         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6456         if (cpuctx->task_ctx)
6457                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6458                                    &ro, false);
6459         rcu_read_unlock();
6460
6461         return ro.err;
6462 }
6463
6464 static void perf_pmu_output_stop(struct perf_event *event)
6465 {
6466         struct perf_event *iter;
6467         int err, cpu;
6468
6469 restart:
6470         rcu_read_lock();
6471         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6472                 /*
6473                  * For per-CPU events, we need to make sure that neither they
6474                  * nor their children are running; for cpu==-1 events it's
6475                  * sufficient to stop the event itself if it's active, since
6476                  * it can't have children.
6477                  */
6478                 cpu = iter->cpu;
6479                 if (cpu == -1)
6480                         cpu = READ_ONCE(iter->oncpu);
6481
6482                 if (cpu == -1)
6483                         continue;
6484
6485                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6486                 if (err == -EAGAIN) {
6487                         rcu_read_unlock();
6488                         goto restart;
6489                 }
6490         }
6491         rcu_read_unlock();
6492 }
6493
6494 /*
6495  * task tracking -- fork/exit
6496  *
6497  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6498  */
6499
6500 struct perf_task_event {
6501         struct task_struct              *task;
6502         struct perf_event_context       *task_ctx;
6503
6504         struct {
6505                 struct perf_event_header        header;
6506
6507                 u32                             pid;
6508                 u32                             ppid;
6509                 u32                             tid;
6510                 u32                             ptid;
6511                 u64                             time;
6512         } event_id;
6513 };
6514
6515 static int perf_event_task_match(struct perf_event *event)
6516 {
6517         return event->attr.comm  || event->attr.mmap ||
6518                event->attr.mmap2 || event->attr.mmap_data ||
6519                event->attr.task;
6520 }
6521
6522 static void perf_event_task_output(struct perf_event *event,
6523                                    void *data)
6524 {
6525         struct perf_task_event *task_event = data;
6526         struct perf_output_handle handle;
6527         struct perf_sample_data sample;
6528         struct task_struct *task = task_event->task;
6529         int ret, size = task_event->event_id.header.size;
6530
6531         if (!perf_event_task_match(event))
6532                 return;
6533
6534         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6535
6536         ret = perf_output_begin(&handle, event,
6537                                 task_event->event_id.header.size);
6538         if (ret)
6539                 goto out;
6540
6541         task_event->event_id.pid = perf_event_pid(event, task);
6542         task_event->event_id.ppid = perf_event_pid(event, current);
6543
6544         task_event->event_id.tid = perf_event_tid(event, task);
6545         task_event->event_id.ptid = perf_event_tid(event, current);
6546
6547         task_event->event_id.time = perf_event_clock(event);
6548
6549         perf_output_put(&handle, task_event->event_id);
6550
6551         perf_event__output_id_sample(event, &handle, &sample);
6552
6553         perf_output_end(&handle);
6554 out:
6555         task_event->event_id.header.size = size;
6556 }
6557
6558 static void perf_event_task(struct task_struct *task,
6559                               struct perf_event_context *task_ctx,
6560                               int new)
6561 {
6562         struct perf_task_event task_event;
6563
6564         if (!atomic_read(&nr_comm_events) &&
6565             !atomic_read(&nr_mmap_events) &&
6566             !atomic_read(&nr_task_events))
6567                 return;
6568
6569         task_event = (struct perf_task_event){
6570                 .task     = task,
6571                 .task_ctx = task_ctx,
6572                 .event_id    = {
6573                         .header = {
6574                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6575                                 .misc = 0,
6576                                 .size = sizeof(task_event.event_id),
6577                         },
6578                         /* .pid  */
6579                         /* .ppid */
6580                         /* .tid  */
6581                         /* .ptid */
6582                         /* .time */
6583                 },
6584         };
6585
6586         perf_iterate_sb(perf_event_task_output,
6587                        &task_event,
6588                        task_ctx);
6589 }
6590
6591 void perf_event_fork(struct task_struct *task)
6592 {
6593         perf_event_task(task, NULL, 1);
6594         perf_event_namespaces(task);
6595 }
6596
6597 /*
6598  * comm tracking
6599  */
6600
6601 struct perf_comm_event {
6602         struct task_struct      *task;
6603         char                    *comm;
6604         int                     comm_size;
6605
6606         struct {
6607                 struct perf_event_header        header;
6608
6609                 u32                             pid;
6610                 u32                             tid;
6611         } event_id;
6612 };
6613
6614 static int perf_event_comm_match(struct perf_event *event)
6615 {
6616         return event->attr.comm;
6617 }
6618
6619 static void perf_event_comm_output(struct perf_event *event,
6620                                    void *data)
6621 {
6622         struct perf_comm_event *comm_event = data;
6623         struct perf_output_handle handle;
6624         struct perf_sample_data sample;
6625         int size = comm_event->event_id.header.size;
6626         int ret;
6627
6628         if (!perf_event_comm_match(event))
6629                 return;
6630
6631         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6632         ret = perf_output_begin(&handle, event,
6633                                 comm_event->event_id.header.size);
6634
6635         if (ret)
6636                 goto out;
6637
6638         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6639         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6640
6641         perf_output_put(&handle, comm_event->event_id);
6642         __output_copy(&handle, comm_event->comm,
6643                                    comm_event->comm_size);
6644
6645         perf_event__output_id_sample(event, &handle, &sample);
6646
6647         perf_output_end(&handle);
6648 out:
6649         comm_event->event_id.header.size = size;
6650 }
6651
6652 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6653 {
6654         char comm[TASK_COMM_LEN];
6655         unsigned int size;
6656
6657         memset(comm, 0, sizeof(comm));
6658         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6659         size = ALIGN(strlen(comm)+1, sizeof(u64));
6660
6661         comm_event->comm = comm;
6662         comm_event->comm_size = size;
6663
6664         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6665
6666         perf_iterate_sb(perf_event_comm_output,
6667                        comm_event,
6668                        NULL);
6669 }
6670
6671 void perf_event_comm(struct task_struct *task, bool exec)
6672 {
6673         struct perf_comm_event comm_event;
6674
6675         if (!atomic_read(&nr_comm_events))
6676                 return;
6677
6678         comm_event = (struct perf_comm_event){
6679                 .task   = task,
6680                 /* .comm      */
6681                 /* .comm_size */
6682                 .event_id  = {
6683                         .header = {
6684                                 .type = PERF_RECORD_COMM,
6685                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6686                                 /* .size */
6687                         },
6688                         /* .pid */
6689                         /* .tid */
6690                 },
6691         };
6692
6693         perf_event_comm_event(&comm_event);
6694 }
6695
6696 /*
6697  * namespaces tracking
6698  */
6699
6700 struct perf_namespaces_event {
6701         struct task_struct              *task;
6702
6703         struct {
6704                 struct perf_event_header        header;
6705
6706                 u32                             pid;
6707                 u32                             tid;
6708                 u64                             nr_namespaces;
6709                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6710         } event_id;
6711 };
6712
6713 static int perf_event_namespaces_match(struct perf_event *event)
6714 {
6715         return event->attr.namespaces;
6716 }
6717
6718 static void perf_event_namespaces_output(struct perf_event *event,
6719                                          void *data)
6720 {
6721         struct perf_namespaces_event *namespaces_event = data;
6722         struct perf_output_handle handle;
6723         struct perf_sample_data sample;
6724         u16 header_size = namespaces_event->event_id.header.size;
6725         int ret;
6726
6727         if (!perf_event_namespaces_match(event))
6728                 return;
6729
6730         perf_event_header__init_id(&namespaces_event->event_id.header,
6731                                    &sample, event);
6732         ret = perf_output_begin(&handle, event,
6733                                 namespaces_event->event_id.header.size);
6734         if (ret)
6735                 goto out;
6736
6737         namespaces_event->event_id.pid = perf_event_pid(event,
6738                                                         namespaces_event->task);
6739         namespaces_event->event_id.tid = perf_event_tid(event,
6740                                                         namespaces_event->task);
6741
6742         perf_output_put(&handle, namespaces_event->event_id);
6743
6744         perf_event__output_id_sample(event, &handle, &sample);
6745
6746         perf_output_end(&handle);
6747 out:
6748         namespaces_event->event_id.header.size = header_size;
6749 }
6750
6751 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6752                                    struct task_struct *task,
6753                                    const struct proc_ns_operations *ns_ops)
6754 {
6755         struct path ns_path;
6756         struct inode *ns_inode;
6757         void *error;
6758
6759         error = ns_get_path(&ns_path, task, ns_ops);
6760         if (!error) {
6761                 ns_inode = ns_path.dentry->d_inode;
6762                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6763                 ns_link_info->ino = ns_inode->i_ino;
6764                 path_put(&ns_path);
6765         }
6766 }
6767
6768 void perf_event_namespaces(struct task_struct *task)
6769 {
6770         struct perf_namespaces_event namespaces_event;
6771         struct perf_ns_link_info *ns_link_info;
6772
6773         if (!atomic_read(&nr_namespaces_events))
6774                 return;
6775
6776         namespaces_event = (struct perf_namespaces_event){
6777                 .task   = task,
6778                 .event_id  = {
6779                         .header = {
6780                                 .type = PERF_RECORD_NAMESPACES,
6781                                 .misc = 0,
6782                                 .size = sizeof(namespaces_event.event_id),
6783                         },
6784                         /* .pid */
6785                         /* .tid */
6786                         .nr_namespaces = NR_NAMESPACES,
6787                         /* .link_info[NR_NAMESPACES] */
6788                 },
6789         };
6790
6791         ns_link_info = namespaces_event.event_id.link_info;
6792
6793         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6794                                task, &mntns_operations);
6795
6796 #ifdef CONFIG_USER_NS
6797         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6798                                task, &userns_operations);
6799 #endif
6800 #ifdef CONFIG_NET_NS
6801         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6802                                task, &netns_operations);
6803 #endif
6804 #ifdef CONFIG_UTS_NS
6805         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6806                                task, &utsns_operations);
6807 #endif
6808 #ifdef CONFIG_IPC_NS
6809         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6810                                task, &ipcns_operations);
6811 #endif
6812 #ifdef CONFIG_PID_NS
6813         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6814                                task, &pidns_operations);
6815 #endif
6816 #ifdef CONFIG_CGROUPS
6817         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6818                                task, &cgroupns_operations);
6819 #endif
6820
6821         perf_iterate_sb(perf_event_namespaces_output,
6822                         &namespaces_event,
6823                         NULL);
6824 }
6825
6826 /*
6827  * mmap tracking
6828  */
6829
6830 struct perf_mmap_event {
6831         struct vm_area_struct   *vma;
6832
6833         const char              *file_name;
6834         int                     file_size;
6835         int                     maj, min;
6836         u64                     ino;
6837         u64                     ino_generation;
6838         u32                     prot, flags;
6839
6840         struct {
6841                 struct perf_event_header        header;
6842
6843                 u32                             pid;
6844                 u32                             tid;
6845                 u64                             start;
6846                 u64                             len;
6847                 u64                             pgoff;
6848         } event_id;
6849 };
6850
6851 static int perf_event_mmap_match(struct perf_event *event,
6852                                  void *data)
6853 {
6854         struct perf_mmap_event *mmap_event = data;
6855         struct vm_area_struct *vma = mmap_event->vma;
6856         int executable = vma->vm_flags & VM_EXEC;
6857
6858         return (!executable && event->attr.mmap_data) ||
6859                (executable && (event->attr.mmap || event->attr.mmap2));
6860 }
6861
6862 static void perf_event_mmap_output(struct perf_event *event,
6863                                    void *data)
6864 {
6865         struct perf_mmap_event *mmap_event = data;
6866         struct perf_output_handle handle;
6867         struct perf_sample_data sample;
6868         int size = mmap_event->event_id.header.size;
6869         int ret;
6870
6871         if (!perf_event_mmap_match(event, data))
6872                 return;
6873
6874         if (event->attr.mmap2) {
6875                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6876                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6877                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6878                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6879                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6880                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6881                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6882         }
6883
6884         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6885         ret = perf_output_begin(&handle, event,
6886                                 mmap_event->event_id.header.size);
6887         if (ret)
6888                 goto out;
6889
6890         mmap_event->event_id.pid = perf_event_pid(event, current);
6891         mmap_event->event_id.tid = perf_event_tid(event, current);
6892
6893         perf_output_put(&handle, mmap_event->event_id);
6894
6895         if (event->attr.mmap2) {
6896                 perf_output_put(&handle, mmap_event->maj);
6897                 perf_output_put(&handle, mmap_event->min);
6898                 perf_output_put(&handle, mmap_event->ino);
6899                 perf_output_put(&handle, mmap_event->ino_generation);
6900                 perf_output_put(&handle, mmap_event->prot);
6901                 perf_output_put(&handle, mmap_event->flags);
6902         }
6903
6904         __output_copy(&handle, mmap_event->file_name,
6905                                    mmap_event->file_size);
6906
6907         perf_event__output_id_sample(event, &handle, &sample);
6908
6909         perf_output_end(&handle);
6910 out:
6911         mmap_event->event_id.header.size = size;
6912 }
6913
6914 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6915 {
6916         struct vm_area_struct *vma = mmap_event->vma;
6917         struct file *file = vma->vm_file;
6918         int maj = 0, min = 0;
6919         u64 ino = 0, gen = 0;
6920         u32 prot = 0, flags = 0;
6921         unsigned int size;
6922         char tmp[16];
6923         char *buf = NULL;
6924         char *name;
6925
6926         if (vma->vm_flags & VM_READ)
6927                 prot |= PROT_READ;
6928         if (vma->vm_flags & VM_WRITE)
6929                 prot |= PROT_WRITE;
6930         if (vma->vm_flags & VM_EXEC)
6931                 prot |= PROT_EXEC;
6932
6933         if (vma->vm_flags & VM_MAYSHARE)
6934                 flags = MAP_SHARED;
6935         else
6936                 flags = MAP_PRIVATE;
6937
6938         if (vma->vm_flags & VM_DENYWRITE)
6939                 flags |= MAP_DENYWRITE;
6940         if (vma->vm_flags & VM_MAYEXEC)
6941                 flags |= MAP_EXECUTABLE;
6942         if (vma->vm_flags & VM_LOCKED)
6943                 flags |= MAP_LOCKED;
6944         if (vma->vm_flags & VM_HUGETLB)
6945                 flags |= MAP_HUGETLB;
6946
6947         if (file) {
6948                 struct inode *inode;
6949                 dev_t dev;
6950
6951                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6952                 if (!buf) {
6953                         name = "//enomem";
6954                         goto cpy_name;
6955                 }
6956                 /*
6957                  * d_path() works from the end of the rb backwards, so we
6958                  * need to add enough zero bytes after the string to handle
6959                  * the 64bit alignment we do later.
6960                  */
6961                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6962                 if (IS_ERR(name)) {
6963                         name = "//toolong";
6964                         goto cpy_name;
6965                 }
6966                 inode = file_inode(vma->vm_file);
6967                 dev = inode->i_sb->s_dev;
6968                 ino = inode->i_ino;
6969                 gen = inode->i_generation;
6970                 maj = MAJOR(dev);
6971                 min = MINOR(dev);
6972
6973                 goto got_name;
6974         } else {
6975                 if (vma->vm_ops && vma->vm_ops->name) {
6976                         name = (char *) vma->vm_ops->name(vma);
6977                         if (name)
6978                                 goto cpy_name;
6979                 }
6980
6981                 name = (char *)arch_vma_name(vma);
6982                 if (name)
6983                         goto cpy_name;
6984
6985                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6986                                 vma->vm_end >= vma->vm_mm->brk) {
6987                         name = "[heap]";
6988                         goto cpy_name;
6989                 }
6990                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6991                                 vma->vm_end >= vma->vm_mm->start_stack) {
6992                         name = "[stack]";
6993                         goto cpy_name;
6994                 }
6995
6996                 name = "//anon";
6997                 goto cpy_name;
6998         }
6999
7000 cpy_name:
7001         strlcpy(tmp, name, sizeof(tmp));
7002         name = tmp;
7003 got_name:
7004         /*
7005          * Since our buffer works in 8 byte units we need to align our string
7006          * size to a multiple of 8. However, we must guarantee the tail end is
7007          * zero'd out to avoid leaking random bits to userspace.
7008          */
7009         size = strlen(name)+1;
7010         while (!IS_ALIGNED(size, sizeof(u64)))
7011                 name[size++] = '\0';
7012
7013         mmap_event->file_name = name;
7014         mmap_event->file_size = size;
7015         mmap_event->maj = maj;
7016         mmap_event->min = min;
7017         mmap_event->ino = ino;
7018         mmap_event->ino_generation = gen;
7019         mmap_event->prot = prot;
7020         mmap_event->flags = flags;
7021
7022         if (!(vma->vm_flags & VM_EXEC))
7023                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7024
7025         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7026
7027         perf_iterate_sb(perf_event_mmap_output,
7028                        mmap_event,
7029                        NULL);
7030
7031         kfree(buf);
7032 }
7033
7034 /*
7035  * Check whether inode and address range match filter criteria.
7036  */
7037 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7038                                      struct file *file, unsigned long offset,
7039                                      unsigned long size)
7040 {
7041         if (filter->inode != file_inode(file))
7042                 return false;
7043
7044         if (filter->offset > offset + size)
7045                 return false;
7046
7047         if (filter->offset + filter->size < offset)
7048                 return false;
7049
7050         return true;
7051 }
7052
7053 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7054 {
7055         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7056         struct vm_area_struct *vma = data;
7057         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7058         struct file *file = vma->vm_file;
7059         struct perf_addr_filter *filter;
7060         unsigned int restart = 0, count = 0;
7061
7062         if (!has_addr_filter(event))
7063                 return;
7064
7065         if (!file)
7066                 return;
7067
7068         raw_spin_lock_irqsave(&ifh->lock, flags);
7069         list_for_each_entry(filter, &ifh->list, entry) {
7070                 if (perf_addr_filter_match(filter, file, off,
7071                                              vma->vm_end - vma->vm_start)) {
7072                         event->addr_filters_offs[count] = vma->vm_start;
7073                         restart++;
7074                 }
7075
7076                 count++;
7077         }
7078
7079         if (restart)
7080                 event->addr_filters_gen++;
7081         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7082
7083         if (restart)
7084                 perf_event_stop(event, 1);
7085 }
7086
7087 /*
7088  * Adjust all task's events' filters to the new vma
7089  */
7090 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7091 {
7092         struct perf_event_context *ctx;
7093         int ctxn;
7094
7095         /*
7096          * Data tracing isn't supported yet and as such there is no need
7097          * to keep track of anything that isn't related to executable code:
7098          */
7099         if (!(vma->vm_flags & VM_EXEC))
7100                 return;
7101
7102         rcu_read_lock();
7103         for_each_task_context_nr(ctxn) {
7104                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7105                 if (!ctx)
7106                         continue;
7107
7108                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7109         }
7110         rcu_read_unlock();
7111 }
7112
7113 void perf_event_mmap(struct vm_area_struct *vma)
7114 {
7115         struct perf_mmap_event mmap_event;
7116
7117         if (!atomic_read(&nr_mmap_events))
7118                 return;
7119
7120         mmap_event = (struct perf_mmap_event){
7121                 .vma    = vma,
7122                 /* .file_name */
7123                 /* .file_size */
7124                 .event_id  = {
7125                         .header = {
7126                                 .type = PERF_RECORD_MMAP,
7127                                 .misc = PERF_RECORD_MISC_USER,
7128                                 /* .size */
7129                         },
7130                         /* .pid */
7131                         /* .tid */
7132                         .start  = vma->vm_start,
7133                         .len    = vma->vm_end - vma->vm_start,
7134                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7135                 },
7136                 /* .maj (attr_mmap2 only) */
7137                 /* .min (attr_mmap2 only) */
7138                 /* .ino (attr_mmap2 only) */
7139                 /* .ino_generation (attr_mmap2 only) */
7140                 /* .prot (attr_mmap2 only) */
7141                 /* .flags (attr_mmap2 only) */
7142         };
7143
7144         perf_addr_filters_adjust(vma);
7145         perf_event_mmap_event(&mmap_event);
7146 }
7147
7148 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7149                           unsigned long size, u64 flags)
7150 {
7151         struct perf_output_handle handle;
7152         struct perf_sample_data sample;
7153         struct perf_aux_event {
7154                 struct perf_event_header        header;
7155                 u64                             offset;
7156                 u64                             size;
7157                 u64                             flags;
7158         } rec = {
7159                 .header = {
7160                         .type = PERF_RECORD_AUX,
7161                         .misc = 0,
7162                         .size = sizeof(rec),
7163                 },
7164                 .offset         = head,
7165                 .size           = size,
7166                 .flags          = flags,
7167         };
7168         int ret;
7169
7170         perf_event_header__init_id(&rec.header, &sample, event);
7171         ret = perf_output_begin(&handle, event, rec.header.size);
7172
7173         if (ret)
7174                 return;
7175
7176         perf_output_put(&handle, rec);
7177         perf_event__output_id_sample(event, &handle, &sample);
7178
7179         perf_output_end(&handle);
7180 }
7181
7182 /*
7183  * Lost/dropped samples logging
7184  */
7185 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7186 {
7187         struct perf_output_handle handle;
7188         struct perf_sample_data sample;
7189         int ret;
7190
7191         struct {
7192                 struct perf_event_header        header;
7193                 u64                             lost;
7194         } lost_samples_event = {
7195                 .header = {
7196                         .type = PERF_RECORD_LOST_SAMPLES,
7197                         .misc = 0,
7198                         .size = sizeof(lost_samples_event),
7199                 },
7200                 .lost           = lost,
7201         };
7202
7203         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7204
7205         ret = perf_output_begin(&handle, event,
7206                                 lost_samples_event.header.size);
7207         if (ret)
7208                 return;
7209
7210         perf_output_put(&handle, lost_samples_event);
7211         perf_event__output_id_sample(event, &handle, &sample);
7212         perf_output_end(&handle);
7213 }
7214
7215 /*
7216  * context_switch tracking
7217  */
7218
7219 struct perf_switch_event {
7220         struct task_struct      *task;
7221         struct task_struct      *next_prev;
7222
7223         struct {
7224                 struct perf_event_header        header;
7225                 u32                             next_prev_pid;
7226                 u32                             next_prev_tid;
7227         } event_id;
7228 };
7229
7230 static int perf_event_switch_match(struct perf_event *event)
7231 {
7232         return event->attr.context_switch;
7233 }
7234
7235 static void perf_event_switch_output(struct perf_event *event, void *data)
7236 {
7237         struct perf_switch_event *se = data;
7238         struct perf_output_handle handle;
7239         struct perf_sample_data sample;
7240         int ret;
7241
7242         if (!perf_event_switch_match(event))
7243                 return;
7244
7245         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7246         if (event->ctx->task) {
7247                 se->event_id.header.type = PERF_RECORD_SWITCH;
7248                 se->event_id.header.size = sizeof(se->event_id.header);
7249         } else {
7250                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7251                 se->event_id.header.size = sizeof(se->event_id);
7252                 se->event_id.next_prev_pid =
7253                                         perf_event_pid(event, se->next_prev);
7254                 se->event_id.next_prev_tid =
7255                                         perf_event_tid(event, se->next_prev);
7256         }
7257
7258         perf_event_header__init_id(&se->event_id.header, &sample, event);
7259
7260         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7261         if (ret)
7262                 return;
7263
7264         if (event->ctx->task)
7265                 perf_output_put(&handle, se->event_id.header);
7266         else
7267                 perf_output_put(&handle, se->event_id);
7268
7269         perf_event__output_id_sample(event, &handle, &sample);
7270
7271         perf_output_end(&handle);
7272 }
7273
7274 static void perf_event_switch(struct task_struct *task,
7275                               struct task_struct *next_prev, bool sched_in)
7276 {
7277         struct perf_switch_event switch_event;
7278
7279         /* N.B. caller checks nr_switch_events != 0 */
7280
7281         switch_event = (struct perf_switch_event){
7282                 .task           = task,
7283                 .next_prev      = next_prev,
7284                 .event_id       = {
7285                         .header = {
7286                                 /* .type */
7287                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7288                                 /* .size */
7289                         },
7290                         /* .next_prev_pid */
7291                         /* .next_prev_tid */
7292                 },
7293         };
7294
7295         perf_iterate_sb(perf_event_switch_output,
7296                        &switch_event,
7297                        NULL);
7298 }
7299
7300 /*
7301  * IRQ throttle logging
7302  */
7303
7304 static void perf_log_throttle(struct perf_event *event, int enable)
7305 {
7306         struct perf_output_handle handle;
7307         struct perf_sample_data sample;
7308         int ret;
7309
7310         struct {
7311                 struct perf_event_header        header;
7312                 u64                             time;
7313                 u64                             id;
7314                 u64                             stream_id;
7315         } throttle_event = {
7316                 .header = {
7317                         .type = PERF_RECORD_THROTTLE,
7318                         .misc = 0,
7319                         .size = sizeof(throttle_event),
7320                 },
7321                 .time           = perf_event_clock(event),
7322                 .id             = primary_event_id(event),
7323                 .stream_id      = event->id,
7324         };
7325
7326         if (enable)
7327                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7328
7329         perf_event_header__init_id(&throttle_event.header, &sample, event);
7330
7331         ret = perf_output_begin(&handle, event,
7332                                 throttle_event.header.size);
7333         if (ret)
7334                 return;
7335
7336         perf_output_put(&handle, throttle_event);
7337         perf_event__output_id_sample(event, &handle, &sample);
7338         perf_output_end(&handle);
7339 }
7340
7341 void perf_event_itrace_started(struct perf_event *event)
7342 {
7343         event->attach_state |= PERF_ATTACH_ITRACE;
7344 }
7345
7346 static void perf_log_itrace_start(struct perf_event *event)
7347 {
7348         struct perf_output_handle handle;
7349         struct perf_sample_data sample;
7350         struct perf_aux_event {
7351                 struct perf_event_header        header;
7352                 u32                             pid;
7353                 u32                             tid;
7354         } rec;
7355         int ret;
7356
7357         if (event->parent)
7358                 event = event->parent;
7359
7360         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7361             event->attach_state & PERF_ATTACH_ITRACE)
7362                 return;
7363
7364         rec.header.type = PERF_RECORD_ITRACE_START;
7365         rec.header.misc = 0;
7366         rec.header.size = sizeof(rec);
7367         rec.pid = perf_event_pid(event, current);
7368         rec.tid = perf_event_tid(event, current);
7369
7370         perf_event_header__init_id(&rec.header, &sample, event);
7371         ret = perf_output_begin(&handle, event, rec.header.size);
7372
7373         if (ret)
7374                 return;
7375
7376         perf_output_put(&handle, rec);
7377         perf_event__output_id_sample(event, &handle, &sample);
7378
7379         perf_output_end(&handle);
7380 }
7381
7382 static int
7383 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7384 {
7385         struct hw_perf_event *hwc = &event->hw;
7386         int ret = 0;
7387         u64 seq;
7388
7389         seq = __this_cpu_read(perf_throttled_seq);
7390         if (seq != hwc->interrupts_seq) {
7391                 hwc->interrupts_seq = seq;
7392                 hwc->interrupts = 1;
7393         } else {
7394                 hwc->interrupts++;
7395                 if (unlikely(throttle
7396                              && hwc->interrupts >= max_samples_per_tick)) {
7397                         __this_cpu_inc(perf_throttled_count);
7398                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7399                         hwc->interrupts = MAX_INTERRUPTS;
7400                         perf_log_throttle(event, 0);
7401                         ret = 1;
7402                 }
7403         }
7404
7405         if (event->attr.freq) {
7406                 u64 now = perf_clock();
7407                 s64 delta = now - hwc->freq_time_stamp;
7408
7409                 hwc->freq_time_stamp = now;
7410
7411                 if (delta > 0 && delta < 2*TICK_NSEC)
7412                         perf_adjust_period(event, delta, hwc->last_period, true);
7413         }
7414
7415         return ret;
7416 }
7417
7418 int perf_event_account_interrupt(struct perf_event *event)
7419 {
7420         return __perf_event_account_interrupt(event, 1);
7421 }
7422
7423 /*
7424  * Generic event overflow handling, sampling.
7425  */
7426
7427 static int __perf_event_overflow(struct perf_event *event,
7428                                    int throttle, struct perf_sample_data *data,
7429                                    struct pt_regs *regs)
7430 {
7431         int events = atomic_read(&event->event_limit);
7432         int ret = 0;
7433
7434         /*
7435          * Non-sampling counters might still use the PMI to fold short
7436          * hardware counters, ignore those.
7437          */
7438         if (unlikely(!is_sampling_event(event)))
7439                 return 0;
7440
7441         ret = __perf_event_account_interrupt(event, throttle);
7442
7443         /*
7444          * XXX event_limit might not quite work as expected on inherited
7445          * events
7446          */
7447
7448         event->pending_kill = POLL_IN;
7449         if (events && atomic_dec_and_test(&event->event_limit)) {
7450                 ret = 1;
7451                 event->pending_kill = POLL_HUP;
7452
7453                 perf_event_disable_inatomic(event);
7454         }
7455
7456         READ_ONCE(event->overflow_handler)(event, data, regs);
7457
7458         if (*perf_event_fasync(event) && event->pending_kill) {
7459                 event->pending_wakeup = 1;
7460                 irq_work_queue(&event->pending);
7461         }
7462
7463         return ret;
7464 }
7465
7466 int perf_event_overflow(struct perf_event *event,
7467                           struct perf_sample_data *data,
7468                           struct pt_regs *regs)
7469 {
7470         return __perf_event_overflow(event, 1, data, regs);
7471 }
7472
7473 /*
7474  * Generic software event infrastructure
7475  */
7476
7477 struct swevent_htable {
7478         struct swevent_hlist            *swevent_hlist;
7479         struct mutex                    hlist_mutex;
7480         int                             hlist_refcount;
7481
7482         /* Recursion avoidance in each contexts */
7483         int                             recursion[PERF_NR_CONTEXTS];
7484 };
7485
7486 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7487
7488 /*
7489  * We directly increment event->count and keep a second value in
7490  * event->hw.period_left to count intervals. This period event
7491  * is kept in the range [-sample_period, 0] so that we can use the
7492  * sign as trigger.
7493  */
7494
7495 u64 perf_swevent_set_period(struct perf_event *event)
7496 {
7497         struct hw_perf_event *hwc = &event->hw;
7498         u64 period = hwc->last_period;
7499         u64 nr, offset;
7500         s64 old, val;
7501
7502         hwc->last_period = hwc->sample_period;
7503
7504 again:
7505         old = val = local64_read(&hwc->period_left);
7506         if (val < 0)
7507                 return 0;
7508
7509         nr = div64_u64(period + val, period);
7510         offset = nr * period;
7511         val -= offset;
7512         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7513                 goto again;
7514
7515         return nr;
7516 }
7517
7518 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7519                                     struct perf_sample_data *data,
7520                                     struct pt_regs *regs)
7521 {
7522         struct hw_perf_event *hwc = &event->hw;
7523         int throttle = 0;
7524
7525         if (!overflow)
7526                 overflow = perf_swevent_set_period(event);
7527
7528         if (hwc->interrupts == MAX_INTERRUPTS)
7529                 return;
7530
7531         for (; overflow; overflow--) {
7532                 if (__perf_event_overflow(event, throttle,
7533                                             data, regs)) {
7534                         /*
7535                          * We inhibit the overflow from happening when
7536                          * hwc->interrupts == MAX_INTERRUPTS.
7537                          */
7538                         break;
7539                 }
7540                 throttle = 1;
7541         }
7542 }
7543
7544 static void perf_swevent_event(struct perf_event *event, u64 nr,
7545                                struct perf_sample_data *data,
7546                                struct pt_regs *regs)
7547 {
7548         struct hw_perf_event *hwc = &event->hw;
7549
7550         local64_add(nr, &event->count);
7551
7552         if (!regs)
7553                 return;
7554
7555         if (!is_sampling_event(event))
7556                 return;
7557
7558         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7559                 data->period = nr;
7560                 return perf_swevent_overflow(event, 1, data, regs);
7561         } else
7562                 data->period = event->hw.last_period;
7563
7564         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7565                 return perf_swevent_overflow(event, 1, data, regs);
7566
7567         if (local64_add_negative(nr, &hwc->period_left))
7568                 return;
7569
7570         perf_swevent_overflow(event, 0, data, regs);
7571 }
7572
7573 static int perf_exclude_event(struct perf_event *event,
7574                               struct pt_regs *regs)
7575 {
7576         if (event->hw.state & PERF_HES_STOPPED)
7577                 return 1;
7578
7579         if (regs) {
7580                 if (event->attr.exclude_user && user_mode(regs))
7581                         return 1;
7582
7583                 if (event->attr.exclude_kernel && !user_mode(regs))
7584                         return 1;
7585         }
7586
7587         return 0;
7588 }
7589
7590 static int perf_swevent_match(struct perf_event *event,
7591                                 enum perf_type_id type,
7592                                 u32 event_id,
7593                                 struct perf_sample_data *data,
7594                                 struct pt_regs *regs)
7595 {
7596         if (event->attr.type != type)
7597                 return 0;
7598
7599         if (event->attr.config != event_id)
7600                 return 0;
7601
7602         if (perf_exclude_event(event, regs))
7603                 return 0;
7604
7605         return 1;
7606 }
7607
7608 static inline u64 swevent_hash(u64 type, u32 event_id)
7609 {
7610         u64 val = event_id | (type << 32);
7611
7612         return hash_64(val, SWEVENT_HLIST_BITS);
7613 }
7614
7615 static inline struct hlist_head *
7616 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7617 {
7618         u64 hash = swevent_hash(type, event_id);
7619
7620         return &hlist->heads[hash];
7621 }
7622
7623 /* For the read side: events when they trigger */
7624 static inline struct hlist_head *
7625 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7626 {
7627         struct swevent_hlist *hlist;
7628
7629         hlist = rcu_dereference(swhash->swevent_hlist);
7630         if (!hlist)
7631                 return NULL;
7632
7633         return __find_swevent_head(hlist, type, event_id);
7634 }
7635
7636 /* For the event head insertion and removal in the hlist */
7637 static inline struct hlist_head *
7638 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7639 {
7640         struct swevent_hlist *hlist;
7641         u32 event_id = event->attr.config;
7642         u64 type = event->attr.type;
7643
7644         /*
7645          * Event scheduling is always serialized against hlist allocation
7646          * and release. Which makes the protected version suitable here.
7647          * The context lock guarantees that.
7648          */
7649         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7650                                           lockdep_is_held(&event->ctx->lock));
7651         if (!hlist)
7652                 return NULL;
7653
7654         return __find_swevent_head(hlist, type, event_id);
7655 }
7656
7657 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7658                                     u64 nr,
7659                                     struct perf_sample_data *data,
7660                                     struct pt_regs *regs)
7661 {
7662         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7663         struct perf_event *event;
7664         struct hlist_head *head;
7665
7666         rcu_read_lock();
7667         head = find_swevent_head_rcu(swhash, type, event_id);
7668         if (!head)
7669                 goto end;
7670
7671         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7672                 if (perf_swevent_match(event, type, event_id, data, regs))
7673                         perf_swevent_event(event, nr, data, regs);
7674         }
7675 end:
7676         rcu_read_unlock();
7677 }
7678
7679 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7680
7681 int perf_swevent_get_recursion_context(void)
7682 {
7683         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7684
7685         return get_recursion_context(swhash->recursion);
7686 }
7687 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7688
7689 void perf_swevent_put_recursion_context(int rctx)
7690 {
7691         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7692
7693         put_recursion_context(swhash->recursion, rctx);
7694 }
7695
7696 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7697 {
7698         struct perf_sample_data data;
7699
7700         if (WARN_ON_ONCE(!regs))
7701                 return;
7702
7703         perf_sample_data_init(&data, addr, 0);
7704         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7705 }
7706
7707 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7708 {
7709         int rctx;
7710
7711         preempt_disable_notrace();
7712         rctx = perf_swevent_get_recursion_context();
7713         if (unlikely(rctx < 0))
7714                 goto fail;
7715
7716         ___perf_sw_event(event_id, nr, regs, addr);
7717
7718         perf_swevent_put_recursion_context(rctx);
7719 fail:
7720         preempt_enable_notrace();
7721 }
7722
7723 static void perf_swevent_read(struct perf_event *event)
7724 {
7725 }
7726
7727 static int perf_swevent_add(struct perf_event *event, int flags)
7728 {
7729         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7730         struct hw_perf_event *hwc = &event->hw;
7731         struct hlist_head *head;
7732
7733         if (is_sampling_event(event)) {
7734                 hwc->last_period = hwc->sample_period;
7735                 perf_swevent_set_period(event);
7736         }
7737
7738         hwc->state = !(flags & PERF_EF_START);
7739
7740         head = find_swevent_head(swhash, event);
7741         if (WARN_ON_ONCE(!head))
7742                 return -EINVAL;
7743
7744         hlist_add_head_rcu(&event->hlist_entry, head);
7745         perf_event_update_userpage(event);
7746
7747         return 0;
7748 }
7749
7750 static void perf_swevent_del(struct perf_event *event, int flags)
7751 {
7752         hlist_del_rcu(&event->hlist_entry);
7753 }
7754
7755 static void perf_swevent_start(struct perf_event *event, int flags)
7756 {
7757         event->hw.state = 0;
7758 }
7759
7760 static void perf_swevent_stop(struct perf_event *event, int flags)
7761 {
7762         event->hw.state = PERF_HES_STOPPED;
7763 }
7764
7765 /* Deref the hlist from the update side */
7766 static inline struct swevent_hlist *
7767 swevent_hlist_deref(struct swevent_htable *swhash)
7768 {
7769         return rcu_dereference_protected(swhash->swevent_hlist,
7770                                          lockdep_is_held(&swhash->hlist_mutex));
7771 }
7772
7773 static void swevent_hlist_release(struct swevent_htable *swhash)
7774 {
7775         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7776
7777         if (!hlist)
7778                 return;
7779
7780         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7781         kfree_rcu(hlist, rcu_head);
7782 }
7783
7784 static void swevent_hlist_put_cpu(int cpu)
7785 {
7786         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7787
7788         mutex_lock(&swhash->hlist_mutex);
7789
7790         if (!--swhash->hlist_refcount)
7791                 swevent_hlist_release(swhash);
7792
7793         mutex_unlock(&swhash->hlist_mutex);
7794 }
7795
7796 static void swevent_hlist_put(void)
7797 {
7798         int cpu;
7799
7800         for_each_possible_cpu(cpu)
7801                 swevent_hlist_put_cpu(cpu);
7802 }
7803
7804 static int swevent_hlist_get_cpu(int cpu)
7805 {
7806         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7807         int err = 0;
7808
7809         mutex_lock(&swhash->hlist_mutex);
7810         if (!swevent_hlist_deref(swhash) &&
7811             cpumask_test_cpu(cpu, perf_online_mask)) {
7812                 struct swevent_hlist *hlist;
7813
7814                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7815                 if (!hlist) {
7816                         err = -ENOMEM;
7817                         goto exit;
7818                 }
7819                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7820         }
7821         swhash->hlist_refcount++;
7822 exit:
7823         mutex_unlock(&swhash->hlist_mutex);
7824
7825         return err;
7826 }
7827
7828 static int swevent_hlist_get(void)
7829 {
7830         int err, cpu, failed_cpu;
7831
7832         mutex_lock(&pmus_lock);
7833         for_each_possible_cpu(cpu) {
7834                 err = swevent_hlist_get_cpu(cpu);
7835                 if (err) {
7836                         failed_cpu = cpu;
7837                         goto fail;
7838                 }
7839         }
7840         mutex_unlock(&pmus_lock);
7841         return 0;
7842 fail:
7843         for_each_possible_cpu(cpu) {
7844                 if (cpu == failed_cpu)
7845                         break;
7846                 swevent_hlist_put_cpu(cpu);
7847         }
7848         mutex_unlock(&pmus_lock);
7849         return err;
7850 }
7851
7852 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7853
7854 static void sw_perf_event_destroy(struct perf_event *event)
7855 {
7856         u64 event_id = event->attr.config;
7857
7858         WARN_ON(event->parent);
7859
7860         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7861         swevent_hlist_put();
7862 }
7863
7864 static int perf_swevent_init(struct perf_event *event)
7865 {
7866         u64 event_id = event->attr.config;
7867
7868         if (event->attr.type != PERF_TYPE_SOFTWARE)
7869                 return -ENOENT;
7870
7871         /*
7872          * no branch sampling for software events
7873          */
7874         if (has_branch_stack(event))
7875                 return -EOPNOTSUPP;
7876
7877         switch (event_id) {
7878         case PERF_COUNT_SW_CPU_CLOCK:
7879         case PERF_COUNT_SW_TASK_CLOCK:
7880                 return -ENOENT;
7881
7882         default:
7883                 break;
7884         }
7885
7886         if (event_id >= PERF_COUNT_SW_MAX)
7887                 return -ENOENT;
7888
7889         if (!event->parent) {
7890                 int err;
7891
7892                 err = swevent_hlist_get();
7893                 if (err)
7894                         return err;
7895
7896                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7897                 event->destroy = sw_perf_event_destroy;
7898         }
7899
7900         return 0;
7901 }
7902
7903 static struct pmu perf_swevent = {
7904         .task_ctx_nr    = perf_sw_context,
7905
7906         .capabilities   = PERF_PMU_CAP_NO_NMI,
7907
7908         .event_init     = perf_swevent_init,
7909         .add            = perf_swevent_add,
7910         .del            = perf_swevent_del,
7911         .start          = perf_swevent_start,
7912         .stop           = perf_swevent_stop,
7913         .read           = perf_swevent_read,
7914 };
7915
7916 #ifdef CONFIG_EVENT_TRACING
7917
7918 static int perf_tp_filter_match(struct perf_event *event,
7919                                 struct perf_sample_data *data)
7920 {
7921         void *record = data->raw->frag.data;
7922
7923         /* only top level events have filters set */
7924         if (event->parent)
7925                 event = event->parent;
7926
7927         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7928                 return 1;
7929         return 0;
7930 }
7931
7932 static int perf_tp_event_match(struct perf_event *event,
7933                                 struct perf_sample_data *data,
7934                                 struct pt_regs *regs)
7935 {
7936         if (event->hw.state & PERF_HES_STOPPED)
7937                 return 0;
7938         /*
7939          * All tracepoints are from kernel-space.
7940          */
7941         if (event->attr.exclude_kernel)
7942                 return 0;
7943
7944         if (!perf_tp_filter_match(event, data))
7945                 return 0;
7946
7947         return 1;
7948 }
7949
7950 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7951                                struct trace_event_call *call, u64 count,
7952                                struct pt_regs *regs, struct hlist_head *head,
7953                                struct task_struct *task)
7954 {
7955         struct bpf_prog *prog = call->prog;
7956
7957         if (prog) {
7958                 *(struct pt_regs **)raw_data = regs;
7959                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7960                         perf_swevent_put_recursion_context(rctx);
7961                         return;
7962                 }
7963         }
7964         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7965                       rctx, task, NULL);
7966 }
7967 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7968
7969 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7970                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7971                    struct task_struct *task, struct perf_event *event)
7972 {
7973         struct perf_sample_data data;
7974
7975         struct perf_raw_record raw = {
7976                 .frag = {
7977                         .size = entry_size,
7978                         .data = record,
7979                 },
7980         };
7981
7982         perf_sample_data_init(&data, 0, 0);
7983         data.raw = &raw;
7984
7985         perf_trace_buf_update(record, event_type);
7986
7987         /* Use the given event instead of the hlist */
7988         if (event) {
7989                 if (perf_tp_event_match(event, &data, regs))
7990                         perf_swevent_event(event, count, &data, regs);
7991         } else {
7992                 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7993                         if (perf_tp_event_match(event, &data, regs))
7994                                 perf_swevent_event(event, count, &data, regs);
7995                 }
7996         }
7997
7998         /*
7999          * If we got specified a target task, also iterate its context and
8000          * deliver this event there too.
8001          */
8002         if (task && task != current) {
8003                 struct perf_event_context *ctx;
8004                 struct trace_entry *entry = record;
8005
8006                 rcu_read_lock();
8007                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8008                 if (!ctx)
8009                         goto unlock;
8010
8011                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8012                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8013                                 continue;
8014                         if (event->attr.config != entry->type)
8015                                 continue;
8016                         if (perf_tp_event_match(event, &data, regs))
8017                                 perf_swevent_event(event, count, &data, regs);
8018                 }
8019 unlock:
8020                 rcu_read_unlock();
8021         }
8022
8023         perf_swevent_put_recursion_context(rctx);
8024 }
8025 EXPORT_SYMBOL_GPL(perf_tp_event);
8026
8027 static void tp_perf_event_destroy(struct perf_event *event)
8028 {
8029         perf_trace_destroy(event);
8030 }
8031
8032 static int perf_tp_event_init(struct perf_event *event)
8033 {
8034         int err;
8035
8036         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8037                 return -ENOENT;
8038
8039         /*
8040          * no branch sampling for tracepoint events
8041          */
8042         if (has_branch_stack(event))
8043                 return -EOPNOTSUPP;
8044
8045         err = perf_trace_init(event);
8046         if (err)
8047                 return err;
8048
8049         event->destroy = tp_perf_event_destroy;
8050
8051         return 0;
8052 }
8053
8054 static struct pmu perf_tracepoint = {
8055         .task_ctx_nr    = perf_sw_context,
8056
8057         .event_init     = perf_tp_event_init,
8058         .add            = perf_trace_add,
8059         .del            = perf_trace_del,
8060         .start          = perf_swevent_start,
8061         .stop           = perf_swevent_stop,
8062         .read           = perf_swevent_read,
8063 };
8064
8065 static inline void perf_tp_register(void)
8066 {
8067         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8068 }
8069
8070 static void perf_event_free_filter(struct perf_event *event)
8071 {
8072         ftrace_profile_free_filter(event);
8073 }
8074
8075 #ifdef CONFIG_BPF_SYSCALL
8076 static void bpf_overflow_handler(struct perf_event *event,
8077                                  struct perf_sample_data *data,
8078                                  struct pt_regs *regs)
8079 {
8080         struct bpf_perf_event_data_kern ctx = {
8081                 .data = data,
8082                 .regs = regs,
8083         };
8084         int ret = 0;
8085
8086         preempt_disable();
8087         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8088                 goto out;
8089         rcu_read_lock();
8090         ret = BPF_PROG_RUN(event->prog, &ctx);
8091         rcu_read_unlock();
8092 out:
8093         __this_cpu_dec(bpf_prog_active);
8094         preempt_enable();
8095         if (!ret)
8096                 return;
8097
8098         event->orig_overflow_handler(event, data, regs);
8099 }
8100
8101 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8102 {
8103         struct bpf_prog *prog;
8104
8105         if (event->overflow_handler_context)
8106                 /* hw breakpoint or kernel counter */
8107                 return -EINVAL;
8108
8109         if (event->prog)
8110                 return -EEXIST;
8111
8112         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8113         if (IS_ERR(prog))
8114                 return PTR_ERR(prog);
8115
8116         event->prog = prog;
8117         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8118         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8119         return 0;
8120 }
8121
8122 static void perf_event_free_bpf_handler(struct perf_event *event)
8123 {
8124         struct bpf_prog *prog = event->prog;
8125
8126         if (!prog)
8127                 return;
8128
8129         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8130         event->prog = NULL;
8131         bpf_prog_put(prog);
8132 }
8133 #else
8134 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8135 {
8136         return -EOPNOTSUPP;
8137 }
8138 static void perf_event_free_bpf_handler(struct perf_event *event)
8139 {
8140 }
8141 #endif
8142
8143 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8144 {
8145         bool is_kprobe, is_tracepoint, is_syscall_tp;
8146         struct bpf_prog *prog;
8147
8148         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8149                 return perf_event_set_bpf_handler(event, prog_fd);
8150
8151         if (event->tp_event->prog)
8152                 return -EEXIST;
8153
8154         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8155         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8156         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8157         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8158                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8159                 return -EINVAL;
8160
8161         prog = bpf_prog_get(prog_fd);
8162         if (IS_ERR(prog))
8163                 return PTR_ERR(prog);
8164
8165         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8166             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8167             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8168                 /* valid fd, but invalid bpf program type */
8169                 bpf_prog_put(prog);
8170                 return -EINVAL;
8171         }
8172
8173         if (is_tracepoint || is_syscall_tp) {
8174                 int off = trace_event_get_offsets(event->tp_event);
8175
8176                 if (prog->aux->max_ctx_offset > off) {
8177                         bpf_prog_put(prog);
8178                         return -EACCES;
8179                 }
8180         }
8181         event->tp_event->prog = prog;
8182         event->tp_event->bpf_prog_owner = event;
8183
8184         return 0;
8185 }
8186
8187 static void perf_event_free_bpf_prog(struct perf_event *event)
8188 {
8189         struct bpf_prog *prog;
8190
8191         perf_event_free_bpf_handler(event);
8192
8193         if (!event->tp_event)
8194                 return;
8195
8196         prog = event->tp_event->prog;
8197         if (prog && event->tp_event->bpf_prog_owner == event) {
8198                 event->tp_event->prog = NULL;
8199                 bpf_prog_put(prog);
8200         }
8201 }
8202
8203 #else
8204
8205 static inline void perf_tp_register(void)
8206 {
8207 }
8208
8209 static void perf_event_free_filter(struct perf_event *event)
8210 {
8211 }
8212
8213 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8214 {
8215         return -ENOENT;
8216 }
8217
8218 static void perf_event_free_bpf_prog(struct perf_event *event)
8219 {
8220 }
8221 #endif /* CONFIG_EVENT_TRACING */
8222
8223 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8224 void perf_bp_event(struct perf_event *bp, void *data)
8225 {
8226         struct perf_sample_data sample;
8227         struct pt_regs *regs = data;
8228
8229         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8230
8231         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8232                 perf_swevent_event(bp, 1, &sample, regs);
8233 }
8234 #endif
8235
8236 /*
8237  * Allocate a new address filter
8238  */
8239 static struct perf_addr_filter *
8240 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8241 {
8242         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8243         struct perf_addr_filter *filter;
8244
8245         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8246         if (!filter)
8247                 return NULL;
8248
8249         INIT_LIST_HEAD(&filter->entry);
8250         list_add_tail(&filter->entry, filters);
8251
8252         return filter;
8253 }
8254
8255 static void free_filters_list(struct list_head *filters)
8256 {
8257         struct perf_addr_filter *filter, *iter;
8258
8259         list_for_each_entry_safe(filter, iter, filters, entry) {
8260                 if (filter->inode)
8261                         iput(filter->inode);
8262                 list_del(&filter->entry);
8263                 kfree(filter);
8264         }
8265 }
8266
8267 /*
8268  * Free existing address filters and optionally install new ones
8269  */
8270 static void perf_addr_filters_splice(struct perf_event *event,
8271                                      struct list_head *head)
8272 {
8273         unsigned long flags;
8274         LIST_HEAD(list);
8275
8276         if (!has_addr_filter(event))
8277                 return;
8278
8279         /* don't bother with children, they don't have their own filters */
8280         if (event->parent)
8281                 return;
8282
8283         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8284
8285         list_splice_init(&event->addr_filters.list, &list);
8286         if (head)
8287                 list_splice(head, &event->addr_filters.list);
8288
8289         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8290
8291         free_filters_list(&list);
8292 }
8293
8294 /*
8295  * Scan through mm's vmas and see if one of them matches the
8296  * @filter; if so, adjust filter's address range.
8297  * Called with mm::mmap_sem down for reading.
8298  */
8299 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8300                                             struct mm_struct *mm)
8301 {
8302         struct vm_area_struct *vma;
8303
8304         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8305                 struct file *file = vma->vm_file;
8306                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8307                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8308
8309                 if (!file)
8310                         continue;
8311
8312                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8313                         continue;
8314
8315                 return vma->vm_start;
8316         }
8317
8318         return 0;
8319 }
8320
8321 /*
8322  * Update event's address range filters based on the
8323  * task's existing mappings, if any.
8324  */
8325 static void perf_event_addr_filters_apply(struct perf_event *event)
8326 {
8327         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8328         struct task_struct *task = READ_ONCE(event->ctx->task);
8329         struct perf_addr_filter *filter;
8330         struct mm_struct *mm = NULL;
8331         unsigned int count = 0;
8332         unsigned long flags;
8333
8334         /*
8335          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8336          * will stop on the parent's child_mutex that our caller is also holding
8337          */
8338         if (task == TASK_TOMBSTONE)
8339                 return;
8340
8341         if (!ifh->nr_file_filters)
8342                 return;
8343
8344         mm = get_task_mm(event->ctx->task);
8345         if (!mm)
8346                 goto restart;
8347
8348         down_read(&mm->mmap_sem);
8349
8350         raw_spin_lock_irqsave(&ifh->lock, flags);
8351         list_for_each_entry(filter, &ifh->list, entry) {
8352                 event->addr_filters_offs[count] = 0;
8353
8354                 /*
8355                  * Adjust base offset if the filter is associated to a binary
8356                  * that needs to be mapped:
8357                  */
8358                 if (filter->inode)
8359                         event->addr_filters_offs[count] =
8360                                 perf_addr_filter_apply(filter, mm);
8361
8362                 count++;
8363         }
8364
8365         event->addr_filters_gen++;
8366         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8367
8368         up_read(&mm->mmap_sem);
8369
8370         mmput(mm);
8371
8372 restart:
8373         perf_event_stop(event, 1);
8374 }
8375
8376 /*
8377  * Address range filtering: limiting the data to certain
8378  * instruction address ranges. Filters are ioctl()ed to us from
8379  * userspace as ascii strings.
8380  *
8381  * Filter string format:
8382  *
8383  * ACTION RANGE_SPEC
8384  * where ACTION is one of the
8385  *  * "filter": limit the trace to this region
8386  *  * "start": start tracing from this address
8387  *  * "stop": stop tracing at this address/region;
8388  * RANGE_SPEC is
8389  *  * for kernel addresses: <start address>[/<size>]
8390  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8391  *
8392  * if <size> is not specified, the range is treated as a single address.
8393  */
8394 enum {
8395         IF_ACT_NONE = -1,
8396         IF_ACT_FILTER,
8397         IF_ACT_START,
8398         IF_ACT_STOP,
8399         IF_SRC_FILE,
8400         IF_SRC_KERNEL,
8401         IF_SRC_FILEADDR,
8402         IF_SRC_KERNELADDR,
8403 };
8404
8405 enum {
8406         IF_STATE_ACTION = 0,
8407         IF_STATE_SOURCE,
8408         IF_STATE_END,
8409 };
8410
8411 static const match_table_t if_tokens = {
8412         { IF_ACT_FILTER,        "filter" },
8413         { IF_ACT_START,         "start" },
8414         { IF_ACT_STOP,          "stop" },
8415         { IF_SRC_FILE,          "%u/%u@%s" },
8416         { IF_SRC_KERNEL,        "%u/%u" },
8417         { IF_SRC_FILEADDR,      "%u@%s" },
8418         { IF_SRC_KERNELADDR,    "%u" },
8419         { IF_ACT_NONE,          NULL },
8420 };
8421
8422 /*
8423  * Address filter string parser
8424  */
8425 static int
8426 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8427                              struct list_head *filters)
8428 {
8429         struct perf_addr_filter *filter = NULL;
8430         char *start, *orig, *filename = NULL;
8431         struct path path;
8432         substring_t args[MAX_OPT_ARGS];
8433         int state = IF_STATE_ACTION, token;
8434         unsigned int kernel = 0;
8435         int ret = -EINVAL;
8436
8437         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8438         if (!fstr)
8439                 return -ENOMEM;
8440
8441         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8442                 ret = -EINVAL;
8443
8444                 if (!*start)
8445                         continue;
8446
8447                 /* filter definition begins */
8448                 if (state == IF_STATE_ACTION) {
8449                         filter = perf_addr_filter_new(event, filters);
8450                         if (!filter)
8451                                 goto fail;
8452                 }
8453
8454                 token = match_token(start, if_tokens, args);
8455                 switch (token) {
8456                 case IF_ACT_FILTER:
8457                 case IF_ACT_START:
8458                         filter->filter = 1;
8459
8460                 case IF_ACT_STOP:
8461                         if (state != IF_STATE_ACTION)
8462                                 goto fail;
8463
8464                         state = IF_STATE_SOURCE;
8465                         break;
8466
8467                 case IF_SRC_KERNELADDR:
8468                 case IF_SRC_KERNEL:
8469                         kernel = 1;
8470
8471                 case IF_SRC_FILEADDR:
8472                 case IF_SRC_FILE:
8473                         if (state != IF_STATE_SOURCE)
8474                                 goto fail;
8475
8476                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8477                                 filter->range = 1;
8478
8479                         *args[0].to = 0;
8480                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8481                         if (ret)
8482                                 goto fail;
8483
8484                         if (filter->range) {
8485                                 *args[1].to = 0;
8486                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8487                                 if (ret)
8488                                         goto fail;
8489                         }
8490
8491                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8492                                 int fpos = filter->range ? 2 : 1;
8493
8494                                 filename = match_strdup(&args[fpos]);
8495                                 if (!filename) {
8496                                         ret = -ENOMEM;
8497                                         goto fail;
8498                                 }
8499                         }
8500
8501                         state = IF_STATE_END;
8502                         break;
8503
8504                 default:
8505                         goto fail;
8506                 }
8507
8508                 /*
8509                  * Filter definition is fully parsed, validate and install it.
8510                  * Make sure that it doesn't contradict itself or the event's
8511                  * attribute.
8512                  */
8513                 if (state == IF_STATE_END) {
8514                         ret = -EINVAL;
8515                         if (kernel && event->attr.exclude_kernel)
8516                                 goto fail;
8517
8518                         if (!kernel) {
8519                                 if (!filename)
8520                                         goto fail;
8521
8522                                 /*
8523                                  * For now, we only support file-based filters
8524                                  * in per-task events; doing so for CPU-wide
8525                                  * events requires additional context switching
8526                                  * trickery, since same object code will be
8527                                  * mapped at different virtual addresses in
8528                                  * different processes.
8529                                  */
8530                                 ret = -EOPNOTSUPP;
8531                                 if (!event->ctx->task)
8532                                         goto fail_free_name;
8533
8534                                 /* look up the path and grab its inode */
8535                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8536                                 if (ret)
8537                                         goto fail_free_name;
8538
8539                                 filter->inode = igrab(d_inode(path.dentry));
8540                                 path_put(&path);
8541                                 kfree(filename);
8542                                 filename = NULL;
8543
8544                                 ret = -EINVAL;
8545                                 if (!filter->inode ||
8546                                     !S_ISREG(filter->inode->i_mode))
8547                                         /* free_filters_list() will iput() */
8548                                         goto fail;
8549
8550                                 event->addr_filters.nr_file_filters++;
8551                         }
8552
8553                         /* ready to consume more filters */
8554                         state = IF_STATE_ACTION;
8555                         filter = NULL;
8556                 }
8557         }
8558
8559         if (state != IF_STATE_ACTION)
8560                 goto fail;
8561
8562         kfree(orig);
8563
8564         return 0;
8565
8566 fail_free_name:
8567         kfree(filename);
8568 fail:
8569         free_filters_list(filters);
8570         kfree(orig);
8571
8572         return ret;
8573 }
8574
8575 static int
8576 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8577 {
8578         LIST_HEAD(filters);
8579         int ret;
8580
8581         /*
8582          * Since this is called in perf_ioctl() path, we're already holding
8583          * ctx::mutex.
8584          */
8585         lockdep_assert_held(&event->ctx->mutex);
8586
8587         if (WARN_ON_ONCE(event->parent))
8588                 return -EINVAL;
8589
8590         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8591         if (ret)
8592                 goto fail_clear_files;
8593
8594         ret = event->pmu->addr_filters_validate(&filters);
8595         if (ret)
8596                 goto fail_free_filters;
8597
8598         /* remove existing filters, if any */
8599         perf_addr_filters_splice(event, &filters);
8600
8601         /* install new filters */
8602         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8603
8604         return ret;
8605
8606 fail_free_filters:
8607         free_filters_list(&filters);
8608
8609 fail_clear_files:
8610         event->addr_filters.nr_file_filters = 0;
8611
8612         return ret;
8613 }
8614
8615 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8616 {
8617         char *filter_str;
8618         int ret = -EINVAL;
8619
8620         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8621             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8622             !has_addr_filter(event))
8623                 return -EINVAL;
8624
8625         filter_str = strndup_user(arg, PAGE_SIZE);
8626         if (IS_ERR(filter_str))
8627                 return PTR_ERR(filter_str);
8628
8629         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8630             event->attr.type == PERF_TYPE_TRACEPOINT)
8631                 ret = ftrace_profile_set_filter(event, event->attr.config,
8632                                                 filter_str);
8633         else if (has_addr_filter(event))
8634                 ret = perf_event_set_addr_filter(event, filter_str);
8635
8636         kfree(filter_str);
8637         return ret;
8638 }
8639
8640 /*
8641  * hrtimer based swevent callback
8642  */
8643
8644 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8645 {
8646         enum hrtimer_restart ret = HRTIMER_RESTART;
8647         struct perf_sample_data data;
8648         struct pt_regs *regs;
8649         struct perf_event *event;
8650         u64 period;
8651
8652         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8653
8654         if (event->state != PERF_EVENT_STATE_ACTIVE)
8655                 return HRTIMER_NORESTART;
8656
8657         event->pmu->read(event);
8658
8659         perf_sample_data_init(&data, 0, event->hw.last_period);
8660         regs = get_irq_regs();
8661
8662         if (regs && !perf_exclude_event(event, regs)) {
8663                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8664                         if (__perf_event_overflow(event, 1, &data, regs))
8665                                 ret = HRTIMER_NORESTART;
8666         }
8667
8668         period = max_t(u64, 10000, event->hw.sample_period);
8669         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8670
8671         return ret;
8672 }
8673
8674 static void perf_swevent_start_hrtimer(struct perf_event *event)
8675 {
8676         struct hw_perf_event *hwc = &event->hw;
8677         s64 period;
8678
8679         if (!is_sampling_event(event))
8680                 return;
8681
8682         period = local64_read(&hwc->period_left);
8683         if (period) {
8684                 if (period < 0)
8685                         period = 10000;
8686
8687                 local64_set(&hwc->period_left, 0);
8688         } else {
8689                 period = max_t(u64, 10000, hwc->sample_period);
8690         }
8691         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8692                       HRTIMER_MODE_REL_PINNED);
8693 }
8694
8695 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8696 {
8697         struct hw_perf_event *hwc = &event->hw;
8698
8699         if (is_sampling_event(event)) {
8700                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8701                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8702
8703                 hrtimer_cancel(&hwc->hrtimer);
8704         }
8705 }
8706
8707 static void perf_swevent_init_hrtimer(struct perf_event *event)
8708 {
8709         struct hw_perf_event *hwc = &event->hw;
8710
8711         if (!is_sampling_event(event))
8712                 return;
8713
8714         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8715         hwc->hrtimer.function = perf_swevent_hrtimer;
8716
8717         /*
8718          * Since hrtimers have a fixed rate, we can do a static freq->period
8719          * mapping and avoid the whole period adjust feedback stuff.
8720          */
8721         if (event->attr.freq) {
8722                 long freq = event->attr.sample_freq;
8723
8724                 event->attr.sample_period = NSEC_PER_SEC / freq;
8725                 hwc->sample_period = event->attr.sample_period;
8726                 local64_set(&hwc->period_left, hwc->sample_period);
8727                 hwc->last_period = hwc->sample_period;
8728                 event->attr.freq = 0;
8729         }
8730 }
8731
8732 /*
8733  * Software event: cpu wall time clock
8734  */
8735
8736 static void cpu_clock_event_update(struct perf_event *event)
8737 {
8738         s64 prev;
8739         u64 now;
8740
8741         now = local_clock();
8742         prev = local64_xchg(&event->hw.prev_count, now);
8743         local64_add(now - prev, &event->count);
8744 }
8745
8746 static void cpu_clock_event_start(struct perf_event *event, int flags)
8747 {
8748         local64_set(&event->hw.prev_count, local_clock());
8749         perf_swevent_start_hrtimer(event);
8750 }
8751
8752 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8753 {
8754         perf_swevent_cancel_hrtimer(event);
8755         cpu_clock_event_update(event);
8756 }
8757
8758 static int cpu_clock_event_add(struct perf_event *event, int flags)
8759 {
8760         if (flags & PERF_EF_START)
8761                 cpu_clock_event_start(event, flags);
8762         perf_event_update_userpage(event);
8763
8764         return 0;
8765 }
8766
8767 static void cpu_clock_event_del(struct perf_event *event, int flags)
8768 {
8769         cpu_clock_event_stop(event, flags);
8770 }
8771
8772 static void cpu_clock_event_read(struct perf_event *event)
8773 {
8774         cpu_clock_event_update(event);
8775 }
8776
8777 static int cpu_clock_event_init(struct perf_event *event)
8778 {
8779         if (event->attr.type != PERF_TYPE_SOFTWARE)
8780                 return -ENOENT;
8781
8782         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8783                 return -ENOENT;
8784
8785         /*
8786          * no branch sampling for software events
8787          */
8788         if (has_branch_stack(event))
8789                 return -EOPNOTSUPP;
8790
8791         perf_swevent_init_hrtimer(event);
8792
8793         return 0;
8794 }
8795
8796 static struct pmu perf_cpu_clock = {
8797         .task_ctx_nr    = perf_sw_context,
8798
8799         .capabilities   = PERF_PMU_CAP_NO_NMI,
8800
8801         .event_init     = cpu_clock_event_init,
8802         .add            = cpu_clock_event_add,
8803         .del            = cpu_clock_event_del,
8804         .start          = cpu_clock_event_start,
8805         .stop           = cpu_clock_event_stop,
8806         .read           = cpu_clock_event_read,
8807 };
8808
8809 /*
8810  * Software event: task time clock
8811  */
8812
8813 static void task_clock_event_update(struct perf_event *event, u64 now)
8814 {
8815         u64 prev;
8816         s64 delta;
8817
8818         prev = local64_xchg(&event->hw.prev_count, now);
8819         delta = now - prev;
8820         local64_add(delta, &event->count);
8821 }
8822
8823 static void task_clock_event_start(struct perf_event *event, int flags)
8824 {
8825         local64_set(&event->hw.prev_count, event->ctx->time);
8826         perf_swevent_start_hrtimer(event);
8827 }
8828
8829 static void task_clock_event_stop(struct perf_event *event, int flags)
8830 {
8831         perf_swevent_cancel_hrtimer(event);
8832         task_clock_event_update(event, event->ctx->time);
8833 }
8834
8835 static int task_clock_event_add(struct perf_event *event, int flags)
8836 {
8837         if (flags & PERF_EF_START)
8838                 task_clock_event_start(event, flags);
8839         perf_event_update_userpage(event);
8840
8841         return 0;
8842 }
8843
8844 static void task_clock_event_del(struct perf_event *event, int flags)
8845 {
8846         task_clock_event_stop(event, PERF_EF_UPDATE);
8847 }
8848
8849 static void task_clock_event_read(struct perf_event *event)
8850 {
8851         u64 now = perf_clock();
8852         u64 delta = now - event->ctx->timestamp;
8853         u64 time = event->ctx->time + delta;
8854
8855         task_clock_event_update(event, time);
8856 }
8857
8858 static int task_clock_event_init(struct perf_event *event)
8859 {
8860         if (event->attr.type != PERF_TYPE_SOFTWARE)
8861                 return -ENOENT;
8862
8863         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8864                 return -ENOENT;
8865
8866         /*
8867          * no branch sampling for software events
8868          */
8869         if (has_branch_stack(event))
8870                 return -EOPNOTSUPP;
8871
8872         perf_swevent_init_hrtimer(event);
8873
8874         return 0;
8875 }
8876
8877 static struct pmu perf_task_clock = {
8878         .task_ctx_nr    = perf_sw_context,
8879
8880         .capabilities   = PERF_PMU_CAP_NO_NMI,
8881
8882         .event_init     = task_clock_event_init,
8883         .add            = task_clock_event_add,
8884         .del            = task_clock_event_del,
8885         .start          = task_clock_event_start,
8886         .stop           = task_clock_event_stop,
8887         .read           = task_clock_event_read,
8888 };
8889
8890 static void perf_pmu_nop_void(struct pmu *pmu)
8891 {
8892 }
8893
8894 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8895 {
8896 }
8897
8898 static int perf_pmu_nop_int(struct pmu *pmu)
8899 {
8900         return 0;
8901 }
8902
8903 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8904
8905 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8906 {
8907         __this_cpu_write(nop_txn_flags, flags);
8908
8909         if (flags & ~PERF_PMU_TXN_ADD)
8910                 return;
8911
8912         perf_pmu_disable(pmu);
8913 }
8914
8915 static int perf_pmu_commit_txn(struct pmu *pmu)
8916 {
8917         unsigned int flags = __this_cpu_read(nop_txn_flags);
8918
8919         __this_cpu_write(nop_txn_flags, 0);
8920
8921         if (flags & ~PERF_PMU_TXN_ADD)
8922                 return 0;
8923
8924         perf_pmu_enable(pmu);
8925         return 0;
8926 }
8927
8928 static void perf_pmu_cancel_txn(struct pmu *pmu)
8929 {
8930         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8931
8932         __this_cpu_write(nop_txn_flags, 0);
8933
8934         if (flags & ~PERF_PMU_TXN_ADD)
8935                 return;
8936
8937         perf_pmu_enable(pmu);
8938 }
8939
8940 static int perf_event_idx_default(struct perf_event *event)
8941 {
8942         return 0;
8943 }
8944
8945 /*
8946  * Ensures all contexts with the same task_ctx_nr have the same
8947  * pmu_cpu_context too.
8948  */
8949 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8950 {
8951         struct pmu *pmu;
8952
8953         if (ctxn < 0)
8954                 return NULL;
8955
8956         list_for_each_entry(pmu, &pmus, entry) {
8957                 if (pmu->task_ctx_nr == ctxn)
8958                         return pmu->pmu_cpu_context;
8959         }
8960
8961         return NULL;
8962 }
8963
8964 static void free_pmu_context(struct pmu *pmu)
8965 {
8966         /*
8967          * Static contexts such as perf_sw_context have a global lifetime
8968          * and may be shared between different PMUs. Avoid freeing them
8969          * when a single PMU is going away.
8970          */
8971         if (pmu->task_ctx_nr > perf_invalid_context)
8972                 return;
8973
8974         mutex_lock(&pmus_lock);
8975         free_percpu(pmu->pmu_cpu_context);
8976         mutex_unlock(&pmus_lock);
8977 }
8978
8979 /*
8980  * Let userspace know that this PMU supports address range filtering:
8981  */
8982 static ssize_t nr_addr_filters_show(struct device *dev,
8983                                     struct device_attribute *attr,
8984                                     char *page)
8985 {
8986         struct pmu *pmu = dev_get_drvdata(dev);
8987
8988         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8989 }
8990 DEVICE_ATTR_RO(nr_addr_filters);
8991
8992 static struct idr pmu_idr;
8993
8994 static ssize_t
8995 type_show(struct device *dev, struct device_attribute *attr, char *page)
8996 {
8997         struct pmu *pmu = dev_get_drvdata(dev);
8998
8999         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9000 }
9001 static DEVICE_ATTR_RO(type);
9002
9003 static ssize_t
9004 perf_event_mux_interval_ms_show(struct device *dev,
9005                                 struct device_attribute *attr,
9006                                 char *page)
9007 {
9008         struct pmu *pmu = dev_get_drvdata(dev);
9009
9010         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9011 }
9012
9013 static DEFINE_MUTEX(mux_interval_mutex);
9014
9015 static ssize_t
9016 perf_event_mux_interval_ms_store(struct device *dev,
9017                                  struct device_attribute *attr,
9018                                  const char *buf, size_t count)
9019 {
9020         struct pmu *pmu = dev_get_drvdata(dev);
9021         int timer, cpu, ret;
9022
9023         ret = kstrtoint(buf, 0, &timer);
9024         if (ret)
9025                 return ret;
9026
9027         if (timer < 1)
9028                 return -EINVAL;
9029
9030         /* same value, noting to do */
9031         if (timer == pmu->hrtimer_interval_ms)
9032                 return count;
9033
9034         mutex_lock(&mux_interval_mutex);
9035         pmu->hrtimer_interval_ms = timer;
9036
9037         /* update all cpuctx for this PMU */
9038         cpus_read_lock();
9039         for_each_online_cpu(cpu) {
9040                 struct perf_cpu_context *cpuctx;
9041                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9042                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9043
9044                 cpu_function_call(cpu,
9045                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9046         }
9047         cpus_read_unlock();
9048         mutex_unlock(&mux_interval_mutex);
9049
9050         return count;
9051 }
9052 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9053
9054 static struct attribute *pmu_dev_attrs[] = {
9055         &dev_attr_type.attr,
9056         &dev_attr_perf_event_mux_interval_ms.attr,
9057         NULL,
9058 };
9059 ATTRIBUTE_GROUPS(pmu_dev);
9060
9061 static int pmu_bus_running;
9062 static struct bus_type pmu_bus = {
9063         .name           = "event_source",
9064         .dev_groups     = pmu_dev_groups,
9065 };
9066
9067 static void pmu_dev_release(struct device *dev)
9068 {
9069         kfree(dev);
9070 }
9071
9072 static int pmu_dev_alloc(struct pmu *pmu)
9073 {
9074         int ret = -ENOMEM;
9075
9076         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9077         if (!pmu->dev)
9078                 goto out;
9079
9080         pmu->dev->groups = pmu->attr_groups;
9081         device_initialize(pmu->dev);
9082         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9083         if (ret)
9084                 goto free_dev;
9085
9086         dev_set_drvdata(pmu->dev, pmu);
9087         pmu->dev->bus = &pmu_bus;
9088         pmu->dev->release = pmu_dev_release;
9089         ret = device_add(pmu->dev);
9090         if (ret)
9091                 goto free_dev;
9092
9093         /* For PMUs with address filters, throw in an extra attribute: */
9094         if (pmu->nr_addr_filters)
9095                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9096
9097         if (ret)
9098                 goto del_dev;
9099
9100 out:
9101         return ret;
9102
9103 del_dev:
9104         device_del(pmu->dev);
9105
9106 free_dev:
9107         put_device(pmu->dev);
9108         goto out;
9109 }
9110
9111 static struct lock_class_key cpuctx_mutex;
9112 static struct lock_class_key cpuctx_lock;
9113
9114 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9115 {
9116         int cpu, ret;
9117
9118         mutex_lock(&pmus_lock);
9119         ret = -ENOMEM;
9120         pmu->pmu_disable_count = alloc_percpu(int);
9121         if (!pmu->pmu_disable_count)
9122                 goto unlock;
9123
9124         pmu->type = -1;
9125         if (!name)
9126                 goto skip_type;
9127         pmu->name = name;
9128
9129         if (type < 0) {
9130                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9131                 if (type < 0) {
9132                         ret = type;
9133                         goto free_pdc;
9134                 }
9135         }
9136         pmu->type = type;
9137
9138         if (pmu_bus_running) {
9139                 ret = pmu_dev_alloc(pmu);
9140                 if (ret)
9141                         goto free_idr;
9142         }
9143
9144 skip_type:
9145         if (pmu->task_ctx_nr == perf_hw_context) {
9146                 static int hw_context_taken = 0;
9147
9148                 /*
9149                  * Other than systems with heterogeneous CPUs, it never makes
9150                  * sense for two PMUs to share perf_hw_context. PMUs which are
9151                  * uncore must use perf_invalid_context.
9152                  */
9153                 if (WARN_ON_ONCE(hw_context_taken &&
9154                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9155                         pmu->task_ctx_nr = perf_invalid_context;
9156
9157                 hw_context_taken = 1;
9158         }
9159
9160         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9161         if (pmu->pmu_cpu_context)
9162                 goto got_cpu_context;
9163
9164         ret = -ENOMEM;
9165         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9166         if (!pmu->pmu_cpu_context)
9167                 goto free_dev;
9168
9169         for_each_possible_cpu(cpu) {
9170                 struct perf_cpu_context *cpuctx;
9171
9172                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9173                 __perf_event_init_context(&cpuctx->ctx);
9174                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9175                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9176                 cpuctx->ctx.pmu = pmu;
9177                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9178
9179                 __perf_mux_hrtimer_init(cpuctx, cpu);
9180         }
9181
9182 got_cpu_context:
9183         if (!pmu->start_txn) {
9184                 if (pmu->pmu_enable) {
9185                         /*
9186                          * If we have pmu_enable/pmu_disable calls, install
9187                          * transaction stubs that use that to try and batch
9188                          * hardware accesses.
9189                          */
9190                         pmu->start_txn  = perf_pmu_start_txn;
9191                         pmu->commit_txn = perf_pmu_commit_txn;
9192                         pmu->cancel_txn = perf_pmu_cancel_txn;
9193                 } else {
9194                         pmu->start_txn  = perf_pmu_nop_txn;
9195                         pmu->commit_txn = perf_pmu_nop_int;
9196                         pmu->cancel_txn = perf_pmu_nop_void;
9197                 }
9198         }
9199
9200         if (!pmu->pmu_enable) {
9201                 pmu->pmu_enable  = perf_pmu_nop_void;
9202                 pmu->pmu_disable = perf_pmu_nop_void;
9203         }
9204
9205         if (!pmu->event_idx)
9206                 pmu->event_idx = perf_event_idx_default;
9207
9208         list_add_rcu(&pmu->entry, &pmus);
9209         atomic_set(&pmu->exclusive_cnt, 0);
9210         ret = 0;
9211 unlock:
9212         mutex_unlock(&pmus_lock);
9213
9214         return ret;
9215
9216 free_dev:
9217         device_del(pmu->dev);
9218         put_device(pmu->dev);
9219
9220 free_idr:
9221         if (pmu->type >= PERF_TYPE_MAX)
9222                 idr_remove(&pmu_idr, pmu->type);
9223
9224 free_pdc:
9225         free_percpu(pmu->pmu_disable_count);
9226         goto unlock;
9227 }
9228 EXPORT_SYMBOL_GPL(perf_pmu_register);
9229
9230 void perf_pmu_unregister(struct pmu *pmu)
9231 {
9232         int remove_device;
9233
9234         mutex_lock(&pmus_lock);
9235         remove_device = pmu_bus_running;
9236         list_del_rcu(&pmu->entry);
9237         mutex_unlock(&pmus_lock);
9238
9239         /*
9240          * We dereference the pmu list under both SRCU and regular RCU, so
9241          * synchronize against both of those.
9242          */
9243         synchronize_srcu(&pmus_srcu);
9244         synchronize_rcu();
9245
9246         free_percpu(pmu->pmu_disable_count);
9247         if (pmu->type >= PERF_TYPE_MAX)
9248                 idr_remove(&pmu_idr, pmu->type);
9249         if (remove_device) {
9250                 if (pmu->nr_addr_filters)
9251                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9252                 device_del(pmu->dev);
9253                 put_device(pmu->dev);
9254         }
9255         free_pmu_context(pmu);
9256 }
9257 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9258
9259 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9260 {
9261         struct perf_event_context *ctx = NULL;
9262         int ret;
9263
9264         if (!try_module_get(pmu->module))
9265                 return -ENODEV;
9266
9267         if (event->group_leader != event) {
9268                 /*
9269                  * This ctx->mutex can nest when we're called through
9270                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9271                  */
9272                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9273                                                  SINGLE_DEPTH_NESTING);
9274                 BUG_ON(!ctx);
9275         }
9276
9277         event->pmu = pmu;
9278         ret = pmu->event_init(event);
9279
9280         if (ctx)
9281                 perf_event_ctx_unlock(event->group_leader, ctx);
9282
9283         if (ret)
9284                 module_put(pmu->module);
9285
9286         return ret;
9287 }
9288
9289 static struct pmu *perf_init_event(struct perf_event *event)
9290 {
9291         struct pmu *pmu;
9292         int idx;
9293         int ret;
9294
9295         idx = srcu_read_lock(&pmus_srcu);
9296
9297         /* Try parent's PMU first: */
9298         if (event->parent && event->parent->pmu) {
9299                 pmu = event->parent->pmu;
9300                 ret = perf_try_init_event(pmu, event);
9301                 if (!ret)
9302                         goto unlock;
9303         }
9304
9305         rcu_read_lock();
9306         pmu = idr_find(&pmu_idr, event->attr.type);
9307         rcu_read_unlock();
9308         if (pmu) {
9309                 ret = perf_try_init_event(pmu, event);
9310                 if (ret)
9311                         pmu = ERR_PTR(ret);
9312                 goto unlock;
9313         }
9314
9315         list_for_each_entry_rcu(pmu, &pmus, entry) {
9316                 ret = perf_try_init_event(pmu, event);
9317                 if (!ret)
9318                         goto unlock;
9319
9320                 if (ret != -ENOENT) {
9321                         pmu = ERR_PTR(ret);
9322                         goto unlock;
9323                 }
9324         }
9325         pmu = ERR_PTR(-ENOENT);
9326 unlock:
9327         srcu_read_unlock(&pmus_srcu, idx);
9328
9329         return pmu;
9330 }
9331
9332 static void attach_sb_event(struct perf_event *event)
9333 {
9334         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9335
9336         raw_spin_lock(&pel->lock);
9337         list_add_rcu(&event->sb_list, &pel->list);
9338         raw_spin_unlock(&pel->lock);
9339 }
9340
9341 /*
9342  * We keep a list of all !task (and therefore per-cpu) events
9343  * that need to receive side-band records.
9344  *
9345  * This avoids having to scan all the various PMU per-cpu contexts
9346  * looking for them.
9347  */
9348 static void account_pmu_sb_event(struct perf_event *event)
9349 {
9350         if (is_sb_event(event))
9351                 attach_sb_event(event);
9352 }
9353
9354 static void account_event_cpu(struct perf_event *event, int cpu)
9355 {
9356         if (event->parent)
9357                 return;
9358
9359         if (is_cgroup_event(event))
9360                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9361 }
9362
9363 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9364 static void account_freq_event_nohz(void)
9365 {
9366 #ifdef CONFIG_NO_HZ_FULL
9367         /* Lock so we don't race with concurrent unaccount */
9368         spin_lock(&nr_freq_lock);
9369         if (atomic_inc_return(&nr_freq_events) == 1)
9370                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9371         spin_unlock(&nr_freq_lock);
9372 #endif
9373 }
9374
9375 static void account_freq_event(void)
9376 {
9377         if (tick_nohz_full_enabled())
9378                 account_freq_event_nohz();
9379         else
9380                 atomic_inc(&nr_freq_events);
9381 }
9382
9383
9384 static void account_event(struct perf_event *event)
9385 {
9386         bool inc = false;
9387
9388         if (event->parent)
9389                 return;
9390
9391         if (event->attach_state & PERF_ATTACH_TASK)
9392                 inc = true;
9393         if (event->attr.mmap || event->attr.mmap_data)
9394                 atomic_inc(&nr_mmap_events);
9395         if (event->attr.comm)
9396                 atomic_inc(&nr_comm_events);
9397         if (event->attr.namespaces)
9398                 atomic_inc(&nr_namespaces_events);
9399         if (event->attr.task)
9400                 atomic_inc(&nr_task_events);
9401         if (event->attr.freq)
9402                 account_freq_event();
9403         if (event->attr.context_switch) {
9404                 atomic_inc(&nr_switch_events);
9405                 inc = true;
9406         }
9407         if (has_branch_stack(event))
9408                 inc = true;
9409         if (is_cgroup_event(event))
9410                 inc = true;
9411
9412         if (inc) {
9413                 if (atomic_inc_not_zero(&perf_sched_count))
9414                         goto enabled;
9415
9416                 mutex_lock(&perf_sched_mutex);
9417                 if (!atomic_read(&perf_sched_count)) {
9418                         static_branch_enable(&perf_sched_events);
9419                         /*
9420                          * Guarantee that all CPUs observe they key change and
9421                          * call the perf scheduling hooks before proceeding to
9422                          * install events that need them.
9423                          */
9424                         synchronize_sched();
9425                 }
9426                 /*
9427                  * Now that we have waited for the sync_sched(), allow further
9428                  * increments to by-pass the mutex.
9429                  */
9430                 atomic_inc(&perf_sched_count);
9431                 mutex_unlock(&perf_sched_mutex);
9432         }
9433 enabled:
9434
9435         account_event_cpu(event, event->cpu);
9436
9437         account_pmu_sb_event(event);
9438 }
9439
9440 /*
9441  * Allocate and initialize a event structure
9442  */
9443 static struct perf_event *
9444 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9445                  struct task_struct *task,
9446                  struct perf_event *group_leader,
9447                  struct perf_event *parent_event,
9448                  perf_overflow_handler_t overflow_handler,
9449                  void *context, int cgroup_fd)
9450 {
9451         struct pmu *pmu;
9452         struct perf_event *event;
9453         struct hw_perf_event *hwc;
9454         long err = -EINVAL;
9455
9456         if ((unsigned)cpu >= nr_cpu_ids) {
9457                 if (!task || cpu != -1)
9458                         return ERR_PTR(-EINVAL);
9459         }
9460
9461         event = kzalloc(sizeof(*event), GFP_KERNEL);
9462         if (!event)
9463                 return ERR_PTR(-ENOMEM);
9464
9465         /*
9466          * Single events are their own group leaders, with an
9467          * empty sibling list:
9468          */
9469         if (!group_leader)
9470                 group_leader = event;
9471
9472         mutex_init(&event->child_mutex);
9473         INIT_LIST_HEAD(&event->child_list);
9474
9475         INIT_LIST_HEAD(&event->group_entry);
9476         INIT_LIST_HEAD(&event->event_entry);
9477         INIT_LIST_HEAD(&event->sibling_list);
9478         INIT_LIST_HEAD(&event->rb_entry);
9479         INIT_LIST_HEAD(&event->active_entry);
9480         INIT_LIST_HEAD(&event->addr_filters.list);
9481         INIT_HLIST_NODE(&event->hlist_entry);
9482
9483
9484         init_waitqueue_head(&event->waitq);
9485         init_irq_work(&event->pending, perf_pending_event);
9486
9487         mutex_init(&event->mmap_mutex);
9488         raw_spin_lock_init(&event->addr_filters.lock);
9489
9490         atomic_long_set(&event->refcount, 1);
9491         event->cpu              = cpu;
9492         event->attr             = *attr;
9493         event->group_leader     = group_leader;
9494         event->pmu              = NULL;
9495         event->oncpu            = -1;
9496
9497         event->parent           = parent_event;
9498
9499         event->ns               = get_pid_ns(task_active_pid_ns(current));
9500         event->id               = atomic64_inc_return(&perf_event_id);
9501
9502         event->state            = PERF_EVENT_STATE_INACTIVE;
9503
9504         if (task) {
9505                 event->attach_state = PERF_ATTACH_TASK;
9506                 /*
9507                  * XXX pmu::event_init needs to know what task to account to
9508                  * and we cannot use the ctx information because we need the
9509                  * pmu before we get a ctx.
9510                  */
9511                 event->hw.target = task;
9512         }
9513
9514         event->clock = &local_clock;
9515         if (parent_event)
9516                 event->clock = parent_event->clock;
9517
9518         if (!overflow_handler && parent_event) {
9519                 overflow_handler = parent_event->overflow_handler;
9520                 context = parent_event->overflow_handler_context;
9521 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9522                 if (overflow_handler == bpf_overflow_handler) {
9523                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9524
9525                         if (IS_ERR(prog)) {
9526                                 err = PTR_ERR(prog);
9527                                 goto err_ns;
9528                         }
9529                         event->prog = prog;
9530                         event->orig_overflow_handler =
9531                                 parent_event->orig_overflow_handler;
9532                 }
9533 #endif
9534         }
9535
9536         if (overflow_handler) {
9537                 event->overflow_handler = overflow_handler;
9538                 event->overflow_handler_context = context;
9539         } else if (is_write_backward(event)){
9540                 event->overflow_handler = perf_event_output_backward;
9541                 event->overflow_handler_context = NULL;
9542         } else {
9543                 event->overflow_handler = perf_event_output_forward;
9544                 event->overflow_handler_context = NULL;
9545         }
9546
9547         perf_event__state_init(event);
9548
9549         pmu = NULL;
9550
9551         hwc = &event->hw;
9552         hwc->sample_period = attr->sample_period;
9553         if (attr->freq && attr->sample_freq)
9554                 hwc->sample_period = 1;
9555         hwc->last_period = hwc->sample_period;
9556
9557         local64_set(&hwc->period_left, hwc->sample_period);
9558
9559         /*
9560          * We currently do not support PERF_SAMPLE_READ on inherited events.
9561          * See perf_output_read().
9562          */
9563         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9564                 goto err_ns;
9565
9566         if (!has_branch_stack(event))
9567                 event->attr.branch_sample_type = 0;
9568
9569         if (cgroup_fd != -1) {
9570                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9571                 if (err)
9572                         goto err_ns;
9573         }
9574
9575         pmu = perf_init_event(event);
9576         if (IS_ERR(pmu)) {
9577                 err = PTR_ERR(pmu);
9578                 goto err_ns;
9579         }
9580
9581         err = exclusive_event_init(event);
9582         if (err)
9583                 goto err_pmu;
9584
9585         if (has_addr_filter(event)) {
9586                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9587                                                    sizeof(unsigned long),
9588                                                    GFP_KERNEL);
9589                 if (!event->addr_filters_offs) {
9590                         err = -ENOMEM;
9591                         goto err_per_task;
9592                 }
9593
9594                 /* force hw sync on the address filters */
9595                 event->addr_filters_gen = 1;
9596         }
9597
9598         if (!event->parent) {
9599                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9600                         err = get_callchain_buffers(attr->sample_max_stack);
9601                         if (err)
9602                                 goto err_addr_filters;
9603                 }
9604         }
9605
9606         /* symmetric to unaccount_event() in _free_event() */
9607         account_event(event);
9608
9609         return event;
9610
9611 err_addr_filters:
9612         kfree(event->addr_filters_offs);
9613
9614 err_per_task:
9615         exclusive_event_destroy(event);
9616
9617 err_pmu:
9618         if (event->destroy)
9619                 event->destroy(event);
9620         module_put(pmu->module);
9621 err_ns:
9622         if (is_cgroup_event(event))
9623                 perf_detach_cgroup(event);
9624         if (event->ns)
9625                 put_pid_ns(event->ns);
9626         kfree(event);
9627
9628         return ERR_PTR(err);
9629 }
9630
9631 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9632                           struct perf_event_attr *attr)
9633 {
9634         u32 size;
9635         int ret;
9636
9637         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9638                 return -EFAULT;
9639
9640         /*
9641          * zero the full structure, so that a short copy will be nice.
9642          */
9643         memset(attr, 0, sizeof(*attr));
9644
9645         ret = get_user(size, &uattr->size);
9646         if (ret)
9647                 return ret;
9648
9649         if (size > PAGE_SIZE)   /* silly large */
9650                 goto err_size;
9651
9652         if (!size)              /* abi compat */
9653                 size = PERF_ATTR_SIZE_VER0;
9654
9655         if (size < PERF_ATTR_SIZE_VER0)
9656                 goto err_size;
9657
9658         /*
9659          * If we're handed a bigger struct than we know of,
9660          * ensure all the unknown bits are 0 - i.e. new
9661          * user-space does not rely on any kernel feature
9662          * extensions we dont know about yet.
9663          */
9664         if (size > sizeof(*attr)) {
9665                 unsigned char __user *addr;
9666                 unsigned char __user *end;
9667                 unsigned char val;
9668
9669                 addr = (void __user *)uattr + sizeof(*attr);
9670                 end  = (void __user *)uattr + size;
9671
9672                 for (; addr < end; addr++) {
9673                         ret = get_user(val, addr);
9674                         if (ret)
9675                                 return ret;
9676                         if (val)
9677                                 goto err_size;
9678                 }
9679                 size = sizeof(*attr);
9680         }
9681
9682         ret = copy_from_user(attr, uattr, size);
9683         if (ret)
9684                 return -EFAULT;
9685
9686         attr->size = size;
9687
9688         if (attr->__reserved_1)
9689                 return -EINVAL;
9690
9691         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9692                 return -EINVAL;
9693
9694         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9695                 return -EINVAL;
9696
9697         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9698                 u64 mask = attr->branch_sample_type;
9699
9700                 /* only using defined bits */
9701                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9702                         return -EINVAL;
9703
9704                 /* at least one branch bit must be set */
9705                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9706                         return -EINVAL;
9707
9708                 /* propagate priv level, when not set for branch */
9709                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9710
9711                         /* exclude_kernel checked on syscall entry */
9712                         if (!attr->exclude_kernel)
9713                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9714
9715                         if (!attr->exclude_user)
9716                                 mask |= PERF_SAMPLE_BRANCH_USER;
9717
9718                         if (!attr->exclude_hv)
9719                                 mask |= PERF_SAMPLE_BRANCH_HV;
9720                         /*
9721                          * adjust user setting (for HW filter setup)
9722                          */
9723                         attr->branch_sample_type = mask;
9724                 }
9725                 /* privileged levels capture (kernel, hv): check permissions */
9726                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9727                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9728                         return -EACCES;
9729         }
9730
9731         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9732                 ret = perf_reg_validate(attr->sample_regs_user);
9733                 if (ret)
9734                         return ret;
9735         }
9736
9737         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9738                 if (!arch_perf_have_user_stack_dump())
9739                         return -ENOSYS;
9740
9741                 /*
9742                  * We have __u32 type for the size, but so far
9743                  * we can only use __u16 as maximum due to the
9744                  * __u16 sample size limit.
9745                  */
9746                 if (attr->sample_stack_user >= USHRT_MAX)
9747                         ret = -EINVAL;
9748                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9749                         ret = -EINVAL;
9750         }
9751
9752         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9753                 ret = perf_reg_validate(attr->sample_regs_intr);
9754 out:
9755         return ret;
9756
9757 err_size:
9758         put_user(sizeof(*attr), &uattr->size);
9759         ret = -E2BIG;
9760         goto out;
9761 }
9762
9763 static int
9764 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9765 {
9766         struct ring_buffer *rb = NULL;
9767         int ret = -EINVAL;
9768
9769         if (!output_event)
9770                 goto set;
9771
9772         /* don't allow circular references */
9773         if (event == output_event)
9774                 goto out;
9775
9776         /*
9777          * Don't allow cross-cpu buffers
9778          */
9779         if (output_event->cpu != event->cpu)
9780                 goto out;
9781
9782         /*
9783          * If its not a per-cpu rb, it must be the same task.
9784          */
9785         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9786                 goto out;
9787
9788         /*
9789          * Mixing clocks in the same buffer is trouble you don't need.
9790          */
9791         if (output_event->clock != event->clock)
9792                 goto out;
9793
9794         /*
9795          * Either writing ring buffer from beginning or from end.
9796          * Mixing is not allowed.
9797          */
9798         if (is_write_backward(output_event) != is_write_backward(event))
9799                 goto out;
9800
9801         /*
9802          * If both events generate aux data, they must be on the same PMU
9803          */
9804         if (has_aux(event) && has_aux(output_event) &&
9805             event->pmu != output_event->pmu)
9806                 goto out;
9807
9808 set:
9809         mutex_lock(&event->mmap_mutex);
9810         /* Can't redirect output if we've got an active mmap() */
9811         if (atomic_read(&event->mmap_count))
9812                 goto unlock;
9813
9814         if (output_event) {
9815                 /* get the rb we want to redirect to */
9816                 rb = ring_buffer_get(output_event);
9817                 if (!rb)
9818                         goto unlock;
9819         }
9820
9821         ring_buffer_attach(event, rb);
9822
9823         ret = 0;
9824 unlock:
9825         mutex_unlock(&event->mmap_mutex);
9826
9827 out:
9828         return ret;
9829 }
9830
9831 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9832 {
9833         if (b < a)
9834                 swap(a, b);
9835
9836         mutex_lock(a);
9837         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9838 }
9839
9840 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9841 {
9842         bool nmi_safe = false;
9843
9844         switch (clk_id) {
9845         case CLOCK_MONOTONIC:
9846                 event->clock = &ktime_get_mono_fast_ns;
9847                 nmi_safe = true;
9848                 break;
9849
9850         case CLOCK_MONOTONIC_RAW:
9851                 event->clock = &ktime_get_raw_fast_ns;
9852                 nmi_safe = true;
9853                 break;
9854
9855         case CLOCK_REALTIME:
9856                 event->clock = &ktime_get_real_ns;
9857                 break;
9858
9859         case CLOCK_BOOTTIME:
9860                 event->clock = &ktime_get_boot_ns;
9861                 break;
9862
9863         case CLOCK_TAI:
9864                 event->clock = &ktime_get_tai_ns;
9865                 break;
9866
9867         default:
9868                 return -EINVAL;
9869         }
9870
9871         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9872                 return -EINVAL;
9873
9874         return 0;
9875 }
9876
9877 /*
9878  * Variation on perf_event_ctx_lock_nested(), except we take two context
9879  * mutexes.
9880  */
9881 static struct perf_event_context *
9882 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9883                              struct perf_event_context *ctx)
9884 {
9885         struct perf_event_context *gctx;
9886
9887 again:
9888         rcu_read_lock();
9889         gctx = READ_ONCE(group_leader->ctx);
9890         if (!atomic_inc_not_zero(&gctx->refcount)) {
9891                 rcu_read_unlock();
9892                 goto again;
9893         }
9894         rcu_read_unlock();
9895
9896         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9897
9898         if (group_leader->ctx != gctx) {
9899                 mutex_unlock(&ctx->mutex);
9900                 mutex_unlock(&gctx->mutex);
9901                 put_ctx(gctx);
9902                 goto again;
9903         }
9904
9905         return gctx;
9906 }
9907
9908 /**
9909  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9910  *
9911  * @attr_uptr:  event_id type attributes for monitoring/sampling
9912  * @pid:                target pid
9913  * @cpu:                target cpu
9914  * @group_fd:           group leader event fd
9915  */
9916 SYSCALL_DEFINE5(perf_event_open,
9917                 struct perf_event_attr __user *, attr_uptr,
9918                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9919 {
9920         struct perf_event *group_leader = NULL, *output_event = NULL;
9921         struct perf_event *event, *sibling;
9922         struct perf_event_attr attr;
9923         struct perf_event_context *ctx, *uninitialized_var(gctx);
9924         struct file *event_file = NULL;
9925         struct fd group = {NULL, 0};
9926         struct task_struct *task = NULL;
9927         struct pmu *pmu;
9928         int event_fd;
9929         int move_group = 0;
9930         int err;
9931         int f_flags = O_RDWR;
9932         int cgroup_fd = -1;
9933
9934         /* for future expandability... */
9935         if (flags & ~PERF_FLAG_ALL)
9936                 return -EINVAL;
9937
9938         err = perf_copy_attr(attr_uptr, &attr);
9939         if (err)
9940                 return err;
9941
9942         if (!attr.exclude_kernel) {
9943                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9944                         return -EACCES;
9945         }
9946
9947         if (attr.namespaces) {
9948                 if (!capable(CAP_SYS_ADMIN))
9949                         return -EACCES;
9950         }
9951
9952         if (attr.freq) {
9953                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9954                         return -EINVAL;
9955         } else {
9956                 if (attr.sample_period & (1ULL << 63))
9957                         return -EINVAL;
9958         }
9959
9960         /* Only privileged users can get physical addresses */
9961         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9962             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9963                 return -EACCES;
9964
9965         if (!attr.sample_max_stack)
9966                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9967
9968         /*
9969          * In cgroup mode, the pid argument is used to pass the fd
9970          * opened to the cgroup directory in cgroupfs. The cpu argument
9971          * designates the cpu on which to monitor threads from that
9972          * cgroup.
9973          */
9974         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9975                 return -EINVAL;
9976
9977         if (flags & PERF_FLAG_FD_CLOEXEC)
9978                 f_flags |= O_CLOEXEC;
9979
9980         event_fd = get_unused_fd_flags(f_flags);
9981         if (event_fd < 0)
9982                 return event_fd;
9983
9984         if (group_fd != -1) {
9985                 err = perf_fget_light(group_fd, &group);
9986                 if (err)
9987                         goto err_fd;
9988                 group_leader = group.file->private_data;
9989                 if (flags & PERF_FLAG_FD_OUTPUT)
9990                         output_event = group_leader;
9991                 if (flags & PERF_FLAG_FD_NO_GROUP)
9992                         group_leader = NULL;
9993         }
9994
9995         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9996                 task = find_lively_task_by_vpid(pid);
9997                 if (IS_ERR(task)) {
9998                         err = PTR_ERR(task);
9999                         goto err_group_fd;
10000                 }
10001         }
10002
10003         if (task && group_leader &&
10004             group_leader->attr.inherit != attr.inherit) {
10005                 err = -EINVAL;
10006                 goto err_task;
10007         }
10008
10009         if (task) {
10010                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10011                 if (err)
10012                         goto err_task;
10013
10014                 /*
10015                  * Reuse ptrace permission checks for now.
10016                  *
10017                  * We must hold cred_guard_mutex across this and any potential
10018                  * perf_install_in_context() call for this new event to
10019                  * serialize against exec() altering our credentials (and the
10020                  * perf_event_exit_task() that could imply).
10021                  */
10022                 err = -EACCES;
10023                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10024                         goto err_cred;
10025         }
10026
10027         if (flags & PERF_FLAG_PID_CGROUP)
10028                 cgroup_fd = pid;
10029
10030         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10031                                  NULL, NULL, cgroup_fd);
10032         if (IS_ERR(event)) {
10033                 err = PTR_ERR(event);
10034                 goto err_cred;
10035         }
10036
10037         if (is_sampling_event(event)) {
10038                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10039                         err = -EOPNOTSUPP;
10040                         goto err_alloc;
10041                 }
10042         }
10043
10044         /*
10045          * Special case software events and allow them to be part of
10046          * any hardware group.
10047          */
10048         pmu = event->pmu;
10049
10050         if (attr.use_clockid) {
10051                 err = perf_event_set_clock(event, attr.clockid);
10052                 if (err)
10053                         goto err_alloc;
10054         }
10055
10056         if (pmu->task_ctx_nr == perf_sw_context)
10057                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10058
10059         if (group_leader &&
10060             (is_software_event(event) != is_software_event(group_leader))) {
10061                 if (is_software_event(event)) {
10062                         /*
10063                          * If event and group_leader are not both a software
10064                          * event, and event is, then group leader is not.
10065                          *
10066                          * Allow the addition of software events to !software
10067                          * groups, this is safe because software events never
10068                          * fail to schedule.
10069                          */
10070                         pmu = group_leader->pmu;
10071                 } else if (is_software_event(group_leader) &&
10072                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10073                         /*
10074                          * In case the group is a pure software group, and we
10075                          * try to add a hardware event, move the whole group to
10076                          * the hardware context.
10077                          */
10078                         move_group = 1;
10079                 }
10080         }
10081
10082         /*
10083          * Get the target context (task or percpu):
10084          */
10085         ctx = find_get_context(pmu, task, event);
10086         if (IS_ERR(ctx)) {
10087                 err = PTR_ERR(ctx);
10088                 goto err_alloc;
10089         }
10090
10091         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10092                 err = -EBUSY;
10093                 goto err_context;
10094         }
10095
10096         /*
10097          * Look up the group leader (we will attach this event to it):
10098          */
10099         if (group_leader) {
10100                 err = -EINVAL;
10101
10102                 /*
10103                  * Do not allow a recursive hierarchy (this new sibling
10104                  * becoming part of another group-sibling):
10105                  */
10106                 if (group_leader->group_leader != group_leader)
10107                         goto err_context;
10108
10109                 /* All events in a group should have the same clock */
10110                 if (group_leader->clock != event->clock)
10111                         goto err_context;
10112
10113                 /*
10114                  * Make sure we're both events for the same CPU;
10115                  * grouping events for different CPUs is broken; since
10116                  * you can never concurrently schedule them anyhow.
10117                  */
10118                 if (group_leader->cpu != event->cpu)
10119                         goto err_context;
10120
10121                 /*
10122                  * Make sure we're both on the same task, or both
10123                  * per-CPU events.
10124                  */
10125                 if (group_leader->ctx->task != ctx->task)
10126                         goto err_context;
10127
10128                 /*
10129                  * Do not allow to attach to a group in a different task
10130                  * or CPU context. If we're moving SW events, we'll fix
10131                  * this up later, so allow that.
10132                  */
10133                 if (!move_group && group_leader->ctx != ctx)
10134                         goto err_context;
10135
10136                 /*
10137                  * Only a group leader can be exclusive or pinned
10138                  */
10139                 if (attr.exclusive || attr.pinned)
10140                         goto err_context;
10141         }
10142
10143         if (output_event) {
10144                 err = perf_event_set_output(event, output_event);
10145                 if (err)
10146                         goto err_context;
10147         }
10148
10149         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10150                                         f_flags);
10151         if (IS_ERR(event_file)) {
10152                 err = PTR_ERR(event_file);
10153                 event_file = NULL;
10154                 goto err_context;
10155         }
10156
10157         if (move_group) {
10158                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10159
10160                 if (gctx->task == TASK_TOMBSTONE) {
10161                         err = -ESRCH;
10162                         goto err_locked;
10163                 }
10164
10165                 /*
10166                  * Check if we raced against another sys_perf_event_open() call
10167                  * moving the software group underneath us.
10168                  */
10169                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10170                         /*
10171                          * If someone moved the group out from under us, check
10172                          * if this new event wound up on the same ctx, if so
10173                          * its the regular !move_group case, otherwise fail.
10174                          */
10175                         if (gctx != ctx) {
10176                                 err = -EINVAL;
10177                                 goto err_locked;
10178                         } else {
10179                                 perf_event_ctx_unlock(group_leader, gctx);
10180                                 move_group = 0;
10181                         }
10182                 }
10183         } else {
10184                 mutex_lock(&ctx->mutex);
10185         }
10186
10187         if (ctx->task == TASK_TOMBSTONE) {
10188                 err = -ESRCH;
10189                 goto err_locked;
10190         }
10191
10192         if (!perf_event_validate_size(event)) {
10193                 err = -E2BIG;
10194                 goto err_locked;
10195         }
10196
10197         if (!task) {
10198                 /*
10199                  * Check if the @cpu we're creating an event for is online.
10200                  *
10201                  * We use the perf_cpu_context::ctx::mutex to serialize against
10202                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10203                  */
10204                 struct perf_cpu_context *cpuctx =
10205                         container_of(ctx, struct perf_cpu_context, ctx);
10206
10207                 if (!cpuctx->online) {
10208                         err = -ENODEV;
10209                         goto err_locked;
10210                 }
10211         }
10212
10213
10214         /*
10215          * Must be under the same ctx::mutex as perf_install_in_context(),
10216          * because we need to serialize with concurrent event creation.
10217          */
10218         if (!exclusive_event_installable(event, ctx)) {
10219                 /* exclusive and group stuff are assumed mutually exclusive */
10220                 WARN_ON_ONCE(move_group);
10221
10222                 err = -EBUSY;
10223                 goto err_locked;
10224         }
10225
10226         WARN_ON_ONCE(ctx->parent_ctx);
10227
10228         /*
10229          * This is the point on no return; we cannot fail hereafter. This is
10230          * where we start modifying current state.
10231          */
10232
10233         if (move_group) {
10234                 /*
10235                  * See perf_event_ctx_lock() for comments on the details
10236                  * of swizzling perf_event::ctx.
10237                  */
10238                 perf_remove_from_context(group_leader, 0);
10239                 put_ctx(gctx);
10240
10241                 list_for_each_entry(sibling, &group_leader->sibling_list,
10242                                     group_entry) {
10243                         perf_remove_from_context(sibling, 0);
10244                         put_ctx(gctx);
10245                 }
10246
10247                 /*
10248                  * Wait for everybody to stop referencing the events through
10249                  * the old lists, before installing it on new lists.
10250                  */
10251                 synchronize_rcu();
10252
10253                 /*
10254                  * Install the group siblings before the group leader.
10255                  *
10256                  * Because a group leader will try and install the entire group
10257                  * (through the sibling list, which is still in-tact), we can
10258                  * end up with siblings installed in the wrong context.
10259                  *
10260                  * By installing siblings first we NO-OP because they're not
10261                  * reachable through the group lists.
10262                  */
10263                 list_for_each_entry(sibling, &group_leader->sibling_list,
10264                                     group_entry) {
10265                         perf_event__state_init(sibling);
10266                         perf_install_in_context(ctx, sibling, sibling->cpu);
10267                         get_ctx(ctx);
10268                 }
10269
10270                 /*
10271                  * Removing from the context ends up with disabled
10272                  * event. What we want here is event in the initial
10273                  * startup state, ready to be add into new context.
10274                  */
10275                 perf_event__state_init(group_leader);
10276                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10277                 get_ctx(ctx);
10278         }
10279
10280         /*
10281          * Precalculate sample_data sizes; do while holding ctx::mutex such
10282          * that we're serialized against further additions and before
10283          * perf_install_in_context() which is the point the event is active and
10284          * can use these values.
10285          */
10286         perf_event__header_size(event);
10287         perf_event__id_header_size(event);
10288
10289         event->owner = current;
10290
10291         perf_install_in_context(ctx, event, event->cpu);
10292         perf_unpin_context(ctx);
10293
10294         if (move_group)
10295                 perf_event_ctx_unlock(group_leader, gctx);
10296         mutex_unlock(&ctx->mutex);
10297
10298         if (task) {
10299                 mutex_unlock(&task->signal->cred_guard_mutex);
10300                 put_task_struct(task);
10301         }
10302
10303         mutex_lock(&current->perf_event_mutex);
10304         list_add_tail(&event->owner_entry, &current->perf_event_list);
10305         mutex_unlock(&current->perf_event_mutex);
10306
10307         /*
10308          * Drop the reference on the group_event after placing the
10309          * new event on the sibling_list. This ensures destruction
10310          * of the group leader will find the pointer to itself in
10311          * perf_group_detach().
10312          */
10313         fdput(group);
10314         fd_install(event_fd, event_file);
10315         return event_fd;
10316
10317 err_locked:
10318         if (move_group)
10319                 perf_event_ctx_unlock(group_leader, gctx);
10320         mutex_unlock(&ctx->mutex);
10321 /* err_file: */
10322         fput(event_file);
10323 err_context:
10324         perf_unpin_context(ctx);
10325         put_ctx(ctx);
10326 err_alloc:
10327         /*
10328          * If event_file is set, the fput() above will have called ->release()
10329          * and that will take care of freeing the event.
10330          */
10331         if (!event_file)
10332                 free_event(event);
10333 err_cred:
10334         if (task)
10335                 mutex_unlock(&task->signal->cred_guard_mutex);
10336 err_task:
10337         if (task)
10338                 put_task_struct(task);
10339 err_group_fd:
10340         fdput(group);
10341 err_fd:
10342         put_unused_fd(event_fd);
10343         return err;
10344 }
10345
10346 /**
10347  * perf_event_create_kernel_counter
10348  *
10349  * @attr: attributes of the counter to create
10350  * @cpu: cpu in which the counter is bound
10351  * @task: task to profile (NULL for percpu)
10352  */
10353 struct perf_event *
10354 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10355                                  struct task_struct *task,
10356                                  perf_overflow_handler_t overflow_handler,
10357                                  void *context)
10358 {
10359         struct perf_event_context *ctx;
10360         struct perf_event *event;
10361         int err;
10362
10363         /*
10364          * Get the target context (task or percpu):
10365          */
10366
10367         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10368                                  overflow_handler, context, -1);
10369         if (IS_ERR(event)) {
10370                 err = PTR_ERR(event);
10371                 goto err;
10372         }
10373
10374         /* Mark owner so we could distinguish it from user events. */
10375         event->owner = TASK_TOMBSTONE;
10376
10377         ctx = find_get_context(event->pmu, task, event);
10378         if (IS_ERR(ctx)) {
10379                 err = PTR_ERR(ctx);
10380                 goto err_free;
10381         }
10382
10383         WARN_ON_ONCE(ctx->parent_ctx);
10384         mutex_lock(&ctx->mutex);
10385         if (ctx->task == TASK_TOMBSTONE) {
10386                 err = -ESRCH;
10387                 goto err_unlock;
10388         }
10389
10390         if (!task) {
10391                 /*
10392                  * Check if the @cpu we're creating an event for is online.
10393                  *
10394                  * We use the perf_cpu_context::ctx::mutex to serialize against
10395                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10396                  */
10397                 struct perf_cpu_context *cpuctx =
10398                         container_of(ctx, struct perf_cpu_context, ctx);
10399                 if (!cpuctx->online) {
10400                         err = -ENODEV;
10401                         goto err_unlock;
10402                 }
10403         }
10404
10405         if (!exclusive_event_installable(event, ctx)) {
10406                 err = -EBUSY;
10407                 goto err_unlock;
10408         }
10409
10410         perf_install_in_context(ctx, event, cpu);
10411         perf_unpin_context(ctx);
10412         mutex_unlock(&ctx->mutex);
10413
10414         return event;
10415
10416 err_unlock:
10417         mutex_unlock(&ctx->mutex);
10418         perf_unpin_context(ctx);
10419         put_ctx(ctx);
10420 err_free:
10421         free_event(event);
10422 err:
10423         return ERR_PTR(err);
10424 }
10425 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10426
10427 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10428 {
10429         struct perf_event_context *src_ctx;
10430         struct perf_event_context *dst_ctx;
10431         struct perf_event *event, *tmp;
10432         LIST_HEAD(events);
10433
10434         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10435         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10436
10437         /*
10438          * See perf_event_ctx_lock() for comments on the details
10439          * of swizzling perf_event::ctx.
10440          */
10441         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10442         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10443                                  event_entry) {
10444                 perf_remove_from_context(event, 0);
10445                 unaccount_event_cpu(event, src_cpu);
10446                 put_ctx(src_ctx);
10447                 list_add(&event->migrate_entry, &events);
10448         }
10449
10450         /*
10451          * Wait for the events to quiesce before re-instating them.
10452          */
10453         synchronize_rcu();
10454
10455         /*
10456          * Re-instate events in 2 passes.
10457          *
10458          * Skip over group leaders and only install siblings on this first
10459          * pass, siblings will not get enabled without a leader, however a
10460          * leader will enable its siblings, even if those are still on the old
10461          * context.
10462          */
10463         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10464                 if (event->group_leader == event)
10465                         continue;
10466
10467                 list_del(&event->migrate_entry);
10468                 if (event->state >= PERF_EVENT_STATE_OFF)
10469                         event->state = PERF_EVENT_STATE_INACTIVE;
10470                 account_event_cpu(event, dst_cpu);
10471                 perf_install_in_context(dst_ctx, event, dst_cpu);
10472                 get_ctx(dst_ctx);
10473         }
10474
10475         /*
10476          * Once all the siblings are setup properly, install the group leaders
10477          * to make it go.
10478          */
10479         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10480                 list_del(&event->migrate_entry);
10481                 if (event->state >= PERF_EVENT_STATE_OFF)
10482                         event->state = PERF_EVENT_STATE_INACTIVE;
10483                 account_event_cpu(event, dst_cpu);
10484                 perf_install_in_context(dst_ctx, event, dst_cpu);
10485                 get_ctx(dst_ctx);
10486         }
10487         mutex_unlock(&dst_ctx->mutex);
10488         mutex_unlock(&src_ctx->mutex);
10489 }
10490 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10491
10492 static void sync_child_event(struct perf_event *child_event,
10493                                struct task_struct *child)
10494 {
10495         struct perf_event *parent_event = child_event->parent;
10496         u64 child_val;
10497
10498         if (child_event->attr.inherit_stat)
10499                 perf_event_read_event(child_event, child);
10500
10501         child_val = perf_event_count(child_event);
10502
10503         /*
10504          * Add back the child's count to the parent's count:
10505          */
10506         atomic64_add(child_val, &parent_event->child_count);
10507         atomic64_add(child_event->total_time_enabled,
10508                      &parent_event->child_total_time_enabled);
10509         atomic64_add(child_event->total_time_running,
10510                      &parent_event->child_total_time_running);
10511 }
10512
10513 static void
10514 perf_event_exit_event(struct perf_event *child_event,
10515                       struct perf_event_context *child_ctx,
10516                       struct task_struct *child)
10517 {
10518         struct perf_event *parent_event = child_event->parent;
10519
10520         /*
10521          * Do not destroy the 'original' grouping; because of the context
10522          * switch optimization the original events could've ended up in a
10523          * random child task.
10524          *
10525          * If we were to destroy the original group, all group related
10526          * operations would cease to function properly after this random
10527          * child dies.
10528          *
10529          * Do destroy all inherited groups, we don't care about those
10530          * and being thorough is better.
10531          */
10532         raw_spin_lock_irq(&child_ctx->lock);
10533         WARN_ON_ONCE(child_ctx->is_active);
10534
10535         if (parent_event)
10536                 perf_group_detach(child_event);
10537         list_del_event(child_event, child_ctx);
10538         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10539         raw_spin_unlock_irq(&child_ctx->lock);
10540
10541         /*
10542          * Parent events are governed by their filedesc, retain them.
10543          */
10544         if (!parent_event) {
10545                 perf_event_wakeup(child_event);
10546                 return;
10547         }
10548         /*
10549          * Child events can be cleaned up.
10550          */
10551
10552         sync_child_event(child_event, child);
10553
10554         /*
10555          * Remove this event from the parent's list
10556          */
10557         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10558         mutex_lock(&parent_event->child_mutex);
10559         list_del_init(&child_event->child_list);
10560         mutex_unlock(&parent_event->child_mutex);
10561
10562         /*
10563          * Kick perf_poll() for is_event_hup().
10564          */
10565         perf_event_wakeup(parent_event);
10566         free_event(child_event);
10567         put_event(parent_event);
10568 }
10569
10570 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10571 {
10572         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10573         struct perf_event *child_event, *next;
10574
10575         WARN_ON_ONCE(child != current);
10576
10577         child_ctx = perf_pin_task_context(child, ctxn);
10578         if (!child_ctx)
10579                 return;
10580
10581         /*
10582          * In order to reduce the amount of tricky in ctx tear-down, we hold
10583          * ctx::mutex over the entire thing. This serializes against almost
10584          * everything that wants to access the ctx.
10585          *
10586          * The exception is sys_perf_event_open() /
10587          * perf_event_create_kernel_count() which does find_get_context()
10588          * without ctx::mutex (it cannot because of the move_group double mutex
10589          * lock thing). See the comments in perf_install_in_context().
10590          */
10591         mutex_lock(&child_ctx->mutex);
10592
10593         /*
10594          * In a single ctx::lock section, de-schedule the events and detach the
10595          * context from the task such that we cannot ever get it scheduled back
10596          * in.
10597          */
10598         raw_spin_lock_irq(&child_ctx->lock);
10599         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10600
10601         /*
10602          * Now that the context is inactive, destroy the task <-> ctx relation
10603          * and mark the context dead.
10604          */
10605         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10606         put_ctx(child_ctx); /* cannot be last */
10607         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10608         put_task_struct(current); /* cannot be last */
10609
10610         clone_ctx = unclone_ctx(child_ctx);
10611         raw_spin_unlock_irq(&child_ctx->lock);
10612
10613         if (clone_ctx)
10614                 put_ctx(clone_ctx);
10615
10616         /*
10617          * Report the task dead after unscheduling the events so that we
10618          * won't get any samples after PERF_RECORD_EXIT. We can however still
10619          * get a few PERF_RECORD_READ events.
10620          */
10621         perf_event_task(child, child_ctx, 0);
10622
10623         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10624                 perf_event_exit_event(child_event, child_ctx, child);
10625
10626         mutex_unlock(&child_ctx->mutex);
10627
10628         put_ctx(child_ctx);
10629 }
10630
10631 /*
10632  * When a child task exits, feed back event values to parent events.
10633  *
10634  * Can be called with cred_guard_mutex held when called from
10635  * install_exec_creds().
10636  */
10637 void perf_event_exit_task(struct task_struct *child)
10638 {
10639         struct perf_event *event, *tmp;
10640         int ctxn;
10641
10642         mutex_lock(&child->perf_event_mutex);
10643         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10644                                  owner_entry) {
10645                 list_del_init(&event->owner_entry);
10646
10647                 /*
10648                  * Ensure the list deletion is visible before we clear
10649                  * the owner, closes a race against perf_release() where
10650                  * we need to serialize on the owner->perf_event_mutex.
10651                  */
10652                 smp_store_release(&event->owner, NULL);
10653         }
10654         mutex_unlock(&child->perf_event_mutex);
10655
10656         for_each_task_context_nr(ctxn)
10657                 perf_event_exit_task_context(child, ctxn);
10658
10659         /*
10660          * The perf_event_exit_task_context calls perf_event_task
10661          * with child's task_ctx, which generates EXIT events for
10662          * child contexts and sets child->perf_event_ctxp[] to NULL.
10663          * At this point we need to send EXIT events to cpu contexts.
10664          */
10665         perf_event_task(child, NULL, 0);
10666 }
10667
10668 static void perf_free_event(struct perf_event *event,
10669                             struct perf_event_context *ctx)
10670 {
10671         struct perf_event *parent = event->parent;
10672
10673         if (WARN_ON_ONCE(!parent))
10674                 return;
10675
10676         mutex_lock(&parent->child_mutex);
10677         list_del_init(&event->child_list);
10678         mutex_unlock(&parent->child_mutex);
10679
10680         put_event(parent);
10681
10682         raw_spin_lock_irq(&ctx->lock);
10683         perf_group_detach(event);
10684         list_del_event(event, ctx);
10685         raw_spin_unlock_irq(&ctx->lock);
10686         free_event(event);
10687 }
10688
10689 /*
10690  * Free an unexposed, unused context as created by inheritance by
10691  * perf_event_init_task below, used by fork() in case of fail.
10692  *
10693  * Not all locks are strictly required, but take them anyway to be nice and
10694  * help out with the lockdep assertions.
10695  */
10696 void perf_event_free_task(struct task_struct *task)
10697 {
10698         struct perf_event_context *ctx;
10699         struct perf_event *event, *tmp;
10700         int ctxn;
10701
10702         for_each_task_context_nr(ctxn) {
10703                 ctx = task->perf_event_ctxp[ctxn];
10704                 if (!ctx)
10705                         continue;
10706
10707                 mutex_lock(&ctx->mutex);
10708                 raw_spin_lock_irq(&ctx->lock);
10709                 /*
10710                  * Destroy the task <-> ctx relation and mark the context dead.
10711                  *
10712                  * This is important because even though the task hasn't been
10713                  * exposed yet the context has been (through child_list).
10714                  */
10715                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10716                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10717                 put_task_struct(task); /* cannot be last */
10718                 raw_spin_unlock_irq(&ctx->lock);
10719
10720                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10721                         perf_free_event(event, ctx);
10722
10723                 mutex_unlock(&ctx->mutex);
10724                 put_ctx(ctx);
10725         }
10726 }
10727
10728 void perf_event_delayed_put(struct task_struct *task)
10729 {
10730         int ctxn;
10731
10732         for_each_task_context_nr(ctxn)
10733                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10734 }
10735
10736 struct file *perf_event_get(unsigned int fd)
10737 {
10738         struct file *file;
10739
10740         file = fget_raw(fd);
10741         if (!file)
10742                 return ERR_PTR(-EBADF);
10743
10744         if (file->f_op != &perf_fops) {
10745                 fput(file);
10746                 return ERR_PTR(-EBADF);
10747         }
10748
10749         return file;
10750 }
10751
10752 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10753 {
10754         if (!event)
10755                 return ERR_PTR(-EINVAL);
10756
10757         return &event->attr;
10758 }
10759
10760 /*
10761  * Inherit a event from parent task to child task.
10762  *
10763  * Returns:
10764  *  - valid pointer on success
10765  *  - NULL for orphaned events
10766  *  - IS_ERR() on error
10767  */
10768 static struct perf_event *
10769 inherit_event(struct perf_event *parent_event,
10770               struct task_struct *parent,
10771               struct perf_event_context *parent_ctx,
10772               struct task_struct *child,
10773               struct perf_event *group_leader,
10774               struct perf_event_context *child_ctx)
10775 {
10776         enum perf_event_active_state parent_state = parent_event->state;
10777         struct perf_event *child_event;
10778         unsigned long flags;
10779
10780         /*
10781          * Instead of creating recursive hierarchies of events,
10782          * we link inherited events back to the original parent,
10783          * which has a filp for sure, which we use as the reference
10784          * count:
10785          */
10786         if (parent_event->parent)
10787                 parent_event = parent_event->parent;
10788
10789         child_event = perf_event_alloc(&parent_event->attr,
10790                                            parent_event->cpu,
10791                                            child,
10792                                            group_leader, parent_event,
10793                                            NULL, NULL, -1);
10794         if (IS_ERR(child_event))
10795                 return child_event;
10796
10797         /*
10798          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10799          * must be under the same lock in order to serialize against
10800          * perf_event_release_kernel(), such that either we must observe
10801          * is_orphaned_event() or they will observe us on the child_list.
10802          */
10803         mutex_lock(&parent_event->child_mutex);
10804         if (is_orphaned_event(parent_event) ||
10805             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10806                 mutex_unlock(&parent_event->child_mutex);
10807                 free_event(child_event);
10808                 return NULL;
10809         }
10810
10811         get_ctx(child_ctx);
10812
10813         /*
10814          * Make the child state follow the state of the parent event,
10815          * not its attr.disabled bit.  We hold the parent's mutex,
10816          * so we won't race with perf_event_{en, dis}able_family.
10817          */
10818         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10819                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10820         else
10821                 child_event->state = PERF_EVENT_STATE_OFF;
10822
10823         if (parent_event->attr.freq) {
10824                 u64 sample_period = parent_event->hw.sample_period;
10825                 struct hw_perf_event *hwc = &child_event->hw;
10826
10827                 hwc->sample_period = sample_period;
10828                 hwc->last_period   = sample_period;
10829
10830                 local64_set(&hwc->period_left, sample_period);
10831         }
10832
10833         child_event->ctx = child_ctx;
10834         child_event->overflow_handler = parent_event->overflow_handler;
10835         child_event->overflow_handler_context
10836                 = parent_event->overflow_handler_context;
10837
10838         /*
10839          * Precalculate sample_data sizes
10840          */
10841         perf_event__header_size(child_event);
10842         perf_event__id_header_size(child_event);
10843
10844         /*
10845          * Link it up in the child's context:
10846          */
10847         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10848         add_event_to_ctx(child_event, child_ctx);
10849         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10850
10851         /*
10852          * Link this into the parent event's child list
10853          */
10854         list_add_tail(&child_event->child_list, &parent_event->child_list);
10855         mutex_unlock(&parent_event->child_mutex);
10856
10857         return child_event;
10858 }
10859
10860 /*
10861  * Inherits an event group.
10862  *
10863  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10864  * This matches with perf_event_release_kernel() removing all child events.
10865  *
10866  * Returns:
10867  *  - 0 on success
10868  *  - <0 on error
10869  */
10870 static int inherit_group(struct perf_event *parent_event,
10871               struct task_struct *parent,
10872               struct perf_event_context *parent_ctx,
10873               struct task_struct *child,
10874               struct perf_event_context *child_ctx)
10875 {
10876         struct perf_event *leader;
10877         struct perf_event *sub;
10878         struct perf_event *child_ctr;
10879
10880         leader = inherit_event(parent_event, parent, parent_ctx,
10881                                  child, NULL, child_ctx);
10882         if (IS_ERR(leader))
10883                 return PTR_ERR(leader);
10884         /*
10885          * @leader can be NULL here because of is_orphaned_event(). In this
10886          * case inherit_event() will create individual events, similar to what
10887          * perf_group_detach() would do anyway.
10888          */
10889         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10890                 child_ctr = inherit_event(sub, parent, parent_ctx,
10891                                             child, leader, child_ctx);
10892                 if (IS_ERR(child_ctr))
10893                         return PTR_ERR(child_ctr);
10894         }
10895         return 0;
10896 }
10897
10898 /*
10899  * Creates the child task context and tries to inherit the event-group.
10900  *
10901  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10902  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10903  * consistent with perf_event_release_kernel() removing all child events.
10904  *
10905  * Returns:
10906  *  - 0 on success
10907  *  - <0 on error
10908  */
10909 static int
10910 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10911                    struct perf_event_context *parent_ctx,
10912                    struct task_struct *child, int ctxn,
10913                    int *inherited_all)
10914 {
10915         int ret;
10916         struct perf_event_context *child_ctx;
10917
10918         if (!event->attr.inherit) {
10919                 *inherited_all = 0;
10920                 return 0;
10921         }
10922
10923         child_ctx = child->perf_event_ctxp[ctxn];
10924         if (!child_ctx) {
10925                 /*
10926                  * This is executed from the parent task context, so
10927                  * inherit events that have been marked for cloning.
10928                  * First allocate and initialize a context for the
10929                  * child.
10930                  */
10931                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10932                 if (!child_ctx)
10933                         return -ENOMEM;
10934
10935                 child->perf_event_ctxp[ctxn] = child_ctx;
10936         }
10937
10938         ret = inherit_group(event, parent, parent_ctx,
10939                             child, child_ctx);
10940
10941         if (ret)
10942                 *inherited_all = 0;
10943
10944         return ret;
10945 }
10946
10947 /*
10948  * Initialize the perf_event context in task_struct
10949  */
10950 static int perf_event_init_context(struct task_struct *child, int ctxn)
10951 {
10952         struct perf_event_context *child_ctx, *parent_ctx;
10953         struct perf_event_context *cloned_ctx;
10954         struct perf_event *event;
10955         struct task_struct *parent = current;
10956         int inherited_all = 1;
10957         unsigned long flags;
10958         int ret = 0;
10959
10960         if (likely(!parent->perf_event_ctxp[ctxn]))
10961                 return 0;
10962
10963         /*
10964          * If the parent's context is a clone, pin it so it won't get
10965          * swapped under us.
10966          */
10967         parent_ctx = perf_pin_task_context(parent, ctxn);
10968         if (!parent_ctx)
10969                 return 0;
10970
10971         /*
10972          * No need to check if parent_ctx != NULL here; since we saw
10973          * it non-NULL earlier, the only reason for it to become NULL
10974          * is if we exit, and since we're currently in the middle of
10975          * a fork we can't be exiting at the same time.
10976          */
10977
10978         /*
10979          * Lock the parent list. No need to lock the child - not PID
10980          * hashed yet and not running, so nobody can access it.
10981          */
10982         mutex_lock(&parent_ctx->mutex);
10983
10984         /*
10985          * We dont have to disable NMIs - we are only looking at
10986          * the list, not manipulating it:
10987          */
10988         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10989                 ret = inherit_task_group(event, parent, parent_ctx,
10990                                          child, ctxn, &inherited_all);
10991                 if (ret)
10992                         goto out_unlock;
10993         }
10994
10995         /*
10996          * We can't hold ctx->lock when iterating the ->flexible_group list due
10997          * to allocations, but we need to prevent rotation because
10998          * rotate_ctx() will change the list from interrupt context.
10999          */
11000         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11001         parent_ctx->rotate_disable = 1;
11002         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11003
11004         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
11005                 ret = inherit_task_group(event, parent, parent_ctx,
11006                                          child, ctxn, &inherited_all);
11007                 if (ret)
11008                         goto out_unlock;
11009         }
11010
11011         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11012         parent_ctx->rotate_disable = 0;
11013
11014         child_ctx = child->perf_event_ctxp[ctxn];
11015
11016         if (child_ctx && inherited_all) {
11017                 /*
11018                  * Mark the child context as a clone of the parent
11019                  * context, or of whatever the parent is a clone of.
11020                  *
11021                  * Note that if the parent is a clone, the holding of
11022                  * parent_ctx->lock avoids it from being uncloned.
11023                  */
11024                 cloned_ctx = parent_ctx->parent_ctx;
11025                 if (cloned_ctx) {
11026                         child_ctx->parent_ctx = cloned_ctx;
11027                         child_ctx->parent_gen = parent_ctx->parent_gen;
11028                 } else {
11029                         child_ctx->parent_ctx = parent_ctx;
11030                         child_ctx->parent_gen = parent_ctx->generation;
11031                 }
11032                 get_ctx(child_ctx->parent_ctx);
11033         }
11034
11035         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11036 out_unlock:
11037         mutex_unlock(&parent_ctx->mutex);
11038
11039         perf_unpin_context(parent_ctx);
11040         put_ctx(parent_ctx);
11041
11042         return ret;
11043 }
11044
11045 /*
11046  * Initialize the perf_event context in task_struct
11047  */
11048 int perf_event_init_task(struct task_struct *child)
11049 {
11050         int ctxn, ret;
11051
11052         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11053         mutex_init(&child->perf_event_mutex);
11054         INIT_LIST_HEAD(&child->perf_event_list);
11055
11056         for_each_task_context_nr(ctxn) {
11057                 ret = perf_event_init_context(child, ctxn);
11058                 if (ret) {
11059                         perf_event_free_task(child);
11060                         return ret;
11061                 }
11062         }
11063
11064         return 0;
11065 }
11066
11067 static void __init perf_event_init_all_cpus(void)
11068 {
11069         struct swevent_htable *swhash;
11070         int cpu;
11071
11072         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11073
11074         for_each_possible_cpu(cpu) {
11075                 swhash = &per_cpu(swevent_htable, cpu);
11076                 mutex_init(&swhash->hlist_mutex);
11077                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11078
11079                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11080                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11081
11082 #ifdef CONFIG_CGROUP_PERF
11083                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11084 #endif
11085                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11086         }
11087 }
11088
11089 void perf_swevent_init_cpu(unsigned int cpu)
11090 {
11091         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11092
11093         mutex_lock(&swhash->hlist_mutex);
11094         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11095                 struct swevent_hlist *hlist;
11096
11097                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11098                 WARN_ON(!hlist);
11099                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11100         }
11101         mutex_unlock(&swhash->hlist_mutex);
11102 }
11103
11104 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11105 static void __perf_event_exit_context(void *__info)
11106 {
11107         struct perf_event_context *ctx = __info;
11108         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11109         struct perf_event *event;
11110
11111         raw_spin_lock(&ctx->lock);
11112         list_for_each_entry(event, &ctx->event_list, event_entry)
11113                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11114         raw_spin_unlock(&ctx->lock);
11115 }
11116
11117 static void perf_event_exit_cpu_context(int cpu)
11118 {
11119         struct perf_cpu_context *cpuctx;
11120         struct perf_event_context *ctx;
11121         struct pmu *pmu;
11122
11123         mutex_lock(&pmus_lock);
11124         list_for_each_entry(pmu, &pmus, entry) {
11125                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11126                 ctx = &cpuctx->ctx;
11127
11128                 mutex_lock(&ctx->mutex);
11129                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11130                 cpuctx->online = 0;
11131                 mutex_unlock(&ctx->mutex);
11132         }
11133         cpumask_clear_cpu(cpu, perf_online_mask);
11134         mutex_unlock(&pmus_lock);
11135 }
11136 #else
11137
11138 static void perf_event_exit_cpu_context(int cpu) { }
11139
11140 #endif
11141
11142 int perf_event_init_cpu(unsigned int cpu)
11143 {
11144         struct perf_cpu_context *cpuctx;
11145         struct perf_event_context *ctx;
11146         struct pmu *pmu;
11147
11148         perf_swevent_init_cpu(cpu);
11149
11150         mutex_lock(&pmus_lock);
11151         cpumask_set_cpu(cpu, perf_online_mask);
11152         list_for_each_entry(pmu, &pmus, entry) {
11153                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11154                 ctx = &cpuctx->ctx;
11155
11156                 mutex_lock(&ctx->mutex);
11157                 cpuctx->online = 1;
11158                 mutex_unlock(&ctx->mutex);
11159         }
11160         mutex_unlock(&pmus_lock);
11161
11162         return 0;
11163 }
11164
11165 int perf_event_exit_cpu(unsigned int cpu)
11166 {
11167         perf_event_exit_cpu_context(cpu);
11168         return 0;
11169 }
11170
11171 static int
11172 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11173 {
11174         int cpu;
11175
11176         for_each_online_cpu(cpu)
11177                 perf_event_exit_cpu(cpu);
11178
11179         return NOTIFY_OK;
11180 }
11181
11182 /*
11183  * Run the perf reboot notifier at the very last possible moment so that
11184  * the generic watchdog code runs as long as possible.
11185  */
11186 static struct notifier_block perf_reboot_notifier = {
11187         .notifier_call = perf_reboot,
11188         .priority = INT_MIN,
11189 };
11190
11191 void __init perf_event_init(void)
11192 {
11193         int ret;
11194
11195         idr_init(&pmu_idr);
11196
11197         perf_event_init_all_cpus();
11198         init_srcu_struct(&pmus_srcu);
11199         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11200         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11201         perf_pmu_register(&perf_task_clock, NULL, -1);
11202         perf_tp_register();
11203         perf_event_init_cpu(smp_processor_id());
11204         register_reboot_notifier(&perf_reboot_notifier);
11205
11206         ret = init_hw_breakpoint();
11207         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11208
11209         /*
11210          * Build time assertion that we keep the data_head at the intended
11211          * location.  IOW, validation we got the __reserved[] size right.
11212          */
11213         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11214                      != 1024);
11215 }
11216
11217 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11218                               char *page)
11219 {
11220         struct perf_pmu_events_attr *pmu_attr =
11221                 container_of(attr, struct perf_pmu_events_attr, attr);
11222
11223         if (pmu_attr->event_str)
11224                 return sprintf(page, "%s\n", pmu_attr->event_str);
11225
11226         return 0;
11227 }
11228 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11229
11230 static int __init perf_event_sysfs_init(void)
11231 {
11232         struct pmu *pmu;
11233         int ret;
11234
11235         mutex_lock(&pmus_lock);
11236
11237         ret = bus_register(&pmu_bus);
11238         if (ret)
11239                 goto unlock;
11240
11241         list_for_each_entry(pmu, &pmus, entry) {
11242                 if (!pmu->name || pmu->type < 0)
11243                         continue;
11244
11245                 ret = pmu_dev_alloc(pmu);
11246                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11247         }
11248         pmu_bus_running = 1;
11249         ret = 0;
11250
11251 unlock:
11252         mutex_unlock(&pmus_lock);
11253
11254         return ret;
11255 }
11256 device_initcall(perf_event_sysfs_init);
11257
11258 #ifdef CONFIG_CGROUP_PERF
11259 static struct cgroup_subsys_state *
11260 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11261 {
11262         struct perf_cgroup *jc;
11263
11264         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11265         if (!jc)
11266                 return ERR_PTR(-ENOMEM);
11267
11268         jc->info = alloc_percpu(struct perf_cgroup_info);
11269         if (!jc->info) {
11270                 kfree(jc);
11271                 return ERR_PTR(-ENOMEM);
11272         }
11273
11274         return &jc->css;
11275 }
11276
11277 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11278 {
11279         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11280
11281         free_percpu(jc->info);
11282         kfree(jc);
11283 }
11284
11285 static int __perf_cgroup_move(void *info)
11286 {
11287         struct task_struct *task = info;
11288         rcu_read_lock();
11289         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11290         rcu_read_unlock();
11291         return 0;
11292 }
11293
11294 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11295 {
11296         struct task_struct *task;
11297         struct cgroup_subsys_state *css;
11298
11299         cgroup_taskset_for_each(task, css, tset)
11300                 task_function_call(task, __perf_cgroup_move, task);
11301 }
11302
11303 struct cgroup_subsys perf_event_cgrp_subsys = {
11304         .css_alloc      = perf_cgroup_css_alloc,
11305         .css_free       = perf_cgroup_css_free,
11306         .attach         = perf_cgroup_attach,
11307         /*
11308          * Implicitly enable on dfl hierarchy so that perf events can
11309          * always be filtered by cgroup2 path as long as perf_event
11310          * controller is not mounted on a legacy hierarchy.
11311          */
11312         .implicit_on_dfl = true,
11313         .threaded       = true,
11314 };
11315 #endif /* CONFIG_CGROUP_PERF */