Merge tag 'lsm-pr-20220801' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm
[platform/kernel/linux-starfive.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type);
578
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581
582 void __weak perf_event_print_debug(void)        { }
583
584 static inline u64 perf_clock(void)
585 {
586         return local_clock();
587 }
588
589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591         return event->clock();
592 }
593
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615
616 static __always_inline enum perf_event_state
617 __perf_effective_state(struct perf_event *event)
618 {
619         struct perf_event *leader = event->group_leader;
620
621         if (leader->state <= PERF_EVENT_STATE_OFF)
622                 return leader->state;
623
624         return event->state;
625 }
626
627 static __always_inline void
628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630         enum perf_event_state state = __perf_effective_state(event);
631         u64 delta = now - event->tstamp;
632
633         *enabled = event->total_time_enabled;
634         if (state >= PERF_EVENT_STATE_INACTIVE)
635                 *enabled += delta;
636
637         *running = event->total_time_running;
638         if (state >= PERF_EVENT_STATE_ACTIVE)
639                 *running += delta;
640 }
641
642 static void perf_event_update_time(struct perf_event *event)
643 {
644         u64 now = perf_event_time(event);
645
646         __perf_update_times(event, now, &event->total_time_enabled,
647                                         &event->total_time_running);
648         event->tstamp = now;
649 }
650
651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653         struct perf_event *sibling;
654
655         for_each_sibling_event(sibling, leader)
656                 perf_event_update_time(sibling);
657 }
658
659 static void
660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662         if (event->state == state)
663                 return;
664
665         perf_event_update_time(event);
666         /*
667          * If a group leader gets enabled/disabled all its siblings
668          * are affected too.
669          */
670         if ((event->state < 0) ^ (state < 0))
671                 perf_event_update_sibling_time(event);
672
673         WRITE_ONCE(event->state, state);
674 }
675
676 /*
677  * UP store-release, load-acquire
678  */
679
680 #define __store_release(ptr, val)                                       \
681 do {                                                                    \
682         barrier();                                                      \
683         WRITE_ONCE(*(ptr), (val));                                      \
684 } while (0)
685
686 #define __load_acquire(ptr)                                             \
687 ({                                                                      \
688         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
689         barrier();                                                      \
690         ___p;                                                           \
691 })
692
693 #ifdef CONFIG_CGROUP_PERF
694
695 static inline bool
696 perf_cgroup_match(struct perf_event *event)
697 {
698         struct perf_event_context *ctx = event->ctx;
699         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
700
701         /* @event doesn't care about cgroup */
702         if (!event->cgrp)
703                 return true;
704
705         /* wants specific cgroup scope but @cpuctx isn't associated with any */
706         if (!cpuctx->cgrp)
707                 return false;
708
709         /*
710          * Cgroup scoping is recursive.  An event enabled for a cgroup is
711          * also enabled for all its descendant cgroups.  If @cpuctx's
712          * cgroup is a descendant of @event's (the test covers identity
713          * case), it's a match.
714          */
715         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
716                                     event->cgrp->css.cgroup);
717 }
718
719 static inline void perf_detach_cgroup(struct perf_event *event)
720 {
721         css_put(&event->cgrp->css);
722         event->cgrp = NULL;
723 }
724
725 static inline int is_cgroup_event(struct perf_event *event)
726 {
727         return event->cgrp != NULL;
728 }
729
730 static inline u64 perf_cgroup_event_time(struct perf_event *event)
731 {
732         struct perf_cgroup_info *t;
733
734         t = per_cpu_ptr(event->cgrp->info, event->cpu);
735         return t->time;
736 }
737
738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
739 {
740         struct perf_cgroup_info *t;
741
742         t = per_cpu_ptr(event->cgrp->info, event->cpu);
743         if (!__load_acquire(&t->active))
744                 return t->time;
745         now += READ_ONCE(t->timeoffset);
746         return now;
747 }
748
749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
750 {
751         if (adv)
752                 info->time += now - info->timestamp;
753         info->timestamp = now;
754         /*
755          * see update_context_time()
756          */
757         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
758 }
759
760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
761 {
762         struct perf_cgroup *cgrp = cpuctx->cgrp;
763         struct cgroup_subsys_state *css;
764         struct perf_cgroup_info *info;
765
766         if (cgrp) {
767                 u64 now = perf_clock();
768
769                 for (css = &cgrp->css; css; css = css->parent) {
770                         cgrp = container_of(css, struct perf_cgroup, css);
771                         info = this_cpu_ptr(cgrp->info);
772
773                         __update_cgrp_time(info, now, true);
774                         if (final)
775                                 __store_release(&info->active, 0);
776                 }
777         }
778 }
779
780 static inline void update_cgrp_time_from_event(struct perf_event *event)
781 {
782         struct perf_cgroup_info *info;
783
784         /*
785          * ensure we access cgroup data only when needed and
786          * when we know the cgroup is pinned (css_get)
787          */
788         if (!is_cgroup_event(event))
789                 return;
790
791         info = this_cpu_ptr(event->cgrp->info);
792         /*
793          * Do not update time when cgroup is not active
794          */
795         if (info->active)
796                 __update_cgrp_time(info, perf_clock(), true);
797 }
798
799 static inline void
800 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
801 {
802         struct perf_event_context *ctx = &cpuctx->ctx;
803         struct perf_cgroup *cgrp = cpuctx->cgrp;
804         struct perf_cgroup_info *info;
805         struct cgroup_subsys_state *css;
806
807         /*
808          * ctx->lock held by caller
809          * ensure we do not access cgroup data
810          * unless we have the cgroup pinned (css_get)
811          */
812         if (!cgrp)
813                 return;
814
815         WARN_ON_ONCE(!ctx->nr_cgroups);
816
817         for (css = &cgrp->css; css; css = css->parent) {
818                 cgrp = container_of(css, struct perf_cgroup, css);
819                 info = this_cpu_ptr(cgrp->info);
820                 __update_cgrp_time(info, ctx->timestamp, false);
821                 __store_release(&info->active, 1);
822         }
823 }
824
825 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
826
827 /*
828  * reschedule events based on the cgroup constraint of task.
829  */
830 static void perf_cgroup_switch(struct task_struct *task)
831 {
832         struct perf_cgroup *cgrp;
833         struct perf_cpu_context *cpuctx, *tmp;
834         struct list_head *list;
835         unsigned long flags;
836
837         /*
838          * Disable interrupts and preemption to avoid this CPU's
839          * cgrp_cpuctx_entry to change under us.
840          */
841         local_irq_save(flags);
842
843         cgrp = perf_cgroup_from_task(task, NULL);
844
845         list = this_cpu_ptr(&cgrp_cpuctx_list);
846         list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
847                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
848                 if (READ_ONCE(cpuctx->cgrp) == cgrp)
849                         continue;
850
851                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
852                 perf_pmu_disable(cpuctx->ctx.pmu);
853
854                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
855                 /*
856                  * must not be done before ctxswout due
857                  * to update_cgrp_time_from_cpuctx() in
858                  * ctx_sched_out()
859                  */
860                 cpuctx->cgrp = cgrp;
861                 /*
862                  * set cgrp before ctxsw in to allow
863                  * perf_cgroup_set_timestamp() in ctx_sched_in()
864                  * to not have to pass task around
865                  */
866                 cpu_ctx_sched_in(cpuctx, EVENT_ALL);
867
868                 perf_pmu_enable(cpuctx->ctx.pmu);
869                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
870         }
871
872         local_irq_restore(flags);
873 }
874
875 static int perf_cgroup_ensure_storage(struct perf_event *event,
876                                 struct cgroup_subsys_state *css)
877 {
878         struct perf_cpu_context *cpuctx;
879         struct perf_event **storage;
880         int cpu, heap_size, ret = 0;
881
882         /*
883          * Allow storage to have sufficent space for an iterator for each
884          * possibly nested cgroup plus an iterator for events with no cgroup.
885          */
886         for (heap_size = 1; css; css = css->parent)
887                 heap_size++;
888
889         for_each_possible_cpu(cpu) {
890                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
891                 if (heap_size <= cpuctx->heap_size)
892                         continue;
893
894                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
895                                        GFP_KERNEL, cpu_to_node(cpu));
896                 if (!storage) {
897                         ret = -ENOMEM;
898                         break;
899                 }
900
901                 raw_spin_lock_irq(&cpuctx->ctx.lock);
902                 if (cpuctx->heap_size < heap_size) {
903                         swap(cpuctx->heap, storage);
904                         if (storage == cpuctx->heap_default)
905                                 storage = NULL;
906                         cpuctx->heap_size = heap_size;
907                 }
908                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
909
910                 kfree(storage);
911         }
912
913         return ret;
914 }
915
916 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
917                                       struct perf_event_attr *attr,
918                                       struct perf_event *group_leader)
919 {
920         struct perf_cgroup *cgrp;
921         struct cgroup_subsys_state *css;
922         struct fd f = fdget(fd);
923         int ret = 0;
924
925         if (!f.file)
926                 return -EBADF;
927
928         css = css_tryget_online_from_dir(f.file->f_path.dentry,
929                                          &perf_event_cgrp_subsys);
930         if (IS_ERR(css)) {
931                 ret = PTR_ERR(css);
932                 goto out;
933         }
934
935         ret = perf_cgroup_ensure_storage(event, css);
936         if (ret)
937                 goto out;
938
939         cgrp = container_of(css, struct perf_cgroup, css);
940         event->cgrp = cgrp;
941
942         /*
943          * all events in a group must monitor
944          * the same cgroup because a task belongs
945          * to only one perf cgroup at a time
946          */
947         if (group_leader && group_leader->cgrp != cgrp) {
948                 perf_detach_cgroup(event);
949                 ret = -EINVAL;
950         }
951 out:
952         fdput(f);
953         return ret;
954 }
955
956 static inline void
957 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
958 {
959         struct perf_cpu_context *cpuctx;
960
961         if (!is_cgroup_event(event))
962                 return;
963
964         /*
965          * Because cgroup events are always per-cpu events,
966          * @ctx == &cpuctx->ctx.
967          */
968         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
969
970         if (ctx->nr_cgroups++)
971                 return;
972
973         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
974         list_add(&cpuctx->cgrp_cpuctx_entry,
975                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
976 }
977
978 static inline void
979 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
980 {
981         struct perf_cpu_context *cpuctx;
982
983         if (!is_cgroup_event(event))
984                 return;
985
986         /*
987          * Because cgroup events are always per-cpu events,
988          * @ctx == &cpuctx->ctx.
989          */
990         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
991
992         if (--ctx->nr_cgroups)
993                 return;
994
995         cpuctx->cgrp = NULL;
996         list_del(&cpuctx->cgrp_cpuctx_entry);
997 }
998
999 #else /* !CONFIG_CGROUP_PERF */
1000
1001 static inline bool
1002 perf_cgroup_match(struct perf_event *event)
1003 {
1004         return true;
1005 }
1006
1007 static inline void perf_detach_cgroup(struct perf_event *event)
1008 {}
1009
1010 static inline int is_cgroup_event(struct perf_event *event)
1011 {
1012         return 0;
1013 }
1014
1015 static inline void update_cgrp_time_from_event(struct perf_event *event)
1016 {
1017 }
1018
1019 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1020                                                 bool final)
1021 {
1022 }
1023
1024 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1025                                       struct perf_event_attr *attr,
1026                                       struct perf_event *group_leader)
1027 {
1028         return -EINVAL;
1029 }
1030
1031 static inline void
1032 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1033 {
1034 }
1035
1036 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1037 {
1038         return 0;
1039 }
1040
1041 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1042 {
1043         return 0;
1044 }
1045
1046 static inline void
1047 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1048 {
1049 }
1050
1051 static inline void
1052 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1053 {
1054 }
1055
1056 static void perf_cgroup_switch(struct task_struct *task)
1057 {
1058 }
1059 #endif
1060
1061 /*
1062  * set default to be dependent on timer tick just
1063  * like original code
1064  */
1065 #define PERF_CPU_HRTIMER (1000 / HZ)
1066 /*
1067  * function must be called with interrupts disabled
1068  */
1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1070 {
1071         struct perf_cpu_context *cpuctx;
1072         bool rotations;
1073
1074         lockdep_assert_irqs_disabled();
1075
1076         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1077         rotations = perf_rotate_context(cpuctx);
1078
1079         raw_spin_lock(&cpuctx->hrtimer_lock);
1080         if (rotations)
1081                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1082         else
1083                 cpuctx->hrtimer_active = 0;
1084         raw_spin_unlock(&cpuctx->hrtimer_lock);
1085
1086         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1087 }
1088
1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1090 {
1091         struct hrtimer *timer = &cpuctx->hrtimer;
1092         struct pmu *pmu = cpuctx->ctx.pmu;
1093         u64 interval;
1094
1095         /* no multiplexing needed for SW PMU */
1096         if (pmu->task_ctx_nr == perf_sw_context)
1097                 return;
1098
1099         /*
1100          * check default is sane, if not set then force to
1101          * default interval (1/tick)
1102          */
1103         interval = pmu->hrtimer_interval_ms;
1104         if (interval < 1)
1105                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1106
1107         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1108
1109         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1110         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1111         timer->function = perf_mux_hrtimer_handler;
1112 }
1113
1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1115 {
1116         struct hrtimer *timer = &cpuctx->hrtimer;
1117         struct pmu *pmu = cpuctx->ctx.pmu;
1118         unsigned long flags;
1119
1120         /* not for SW PMU */
1121         if (pmu->task_ctx_nr == perf_sw_context)
1122                 return 0;
1123
1124         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1125         if (!cpuctx->hrtimer_active) {
1126                 cpuctx->hrtimer_active = 1;
1127                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1128                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1129         }
1130         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1131
1132         return 0;
1133 }
1134
1135 void perf_pmu_disable(struct pmu *pmu)
1136 {
1137         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1138         if (!(*count)++)
1139                 pmu->pmu_disable(pmu);
1140 }
1141
1142 void perf_pmu_enable(struct pmu *pmu)
1143 {
1144         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1145         if (!--(*count))
1146                 pmu->pmu_enable(pmu);
1147 }
1148
1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1150
1151 /*
1152  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1153  * perf_event_task_tick() are fully serialized because they're strictly cpu
1154  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1155  * disabled, while perf_event_task_tick is called from IRQ context.
1156  */
1157 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1158 {
1159         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1160
1161         lockdep_assert_irqs_disabled();
1162
1163         WARN_ON(!list_empty(&ctx->active_ctx_list));
1164
1165         list_add(&ctx->active_ctx_list, head);
1166 }
1167
1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1169 {
1170         lockdep_assert_irqs_disabled();
1171
1172         WARN_ON(list_empty(&ctx->active_ctx_list));
1173
1174         list_del_init(&ctx->active_ctx_list);
1175 }
1176
1177 static void get_ctx(struct perf_event_context *ctx)
1178 {
1179         refcount_inc(&ctx->refcount);
1180 }
1181
1182 static void *alloc_task_ctx_data(struct pmu *pmu)
1183 {
1184         if (pmu->task_ctx_cache)
1185                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1186
1187         return NULL;
1188 }
1189
1190 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1191 {
1192         if (pmu->task_ctx_cache && task_ctx_data)
1193                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1194 }
1195
1196 static void free_ctx(struct rcu_head *head)
1197 {
1198         struct perf_event_context *ctx;
1199
1200         ctx = container_of(head, struct perf_event_context, rcu_head);
1201         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1202         kfree(ctx);
1203 }
1204
1205 static void put_ctx(struct perf_event_context *ctx)
1206 {
1207         if (refcount_dec_and_test(&ctx->refcount)) {
1208                 if (ctx->parent_ctx)
1209                         put_ctx(ctx->parent_ctx);
1210                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1211                         put_task_struct(ctx->task);
1212                 call_rcu(&ctx->rcu_head, free_ctx);
1213         }
1214 }
1215
1216 /*
1217  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1218  * perf_pmu_migrate_context() we need some magic.
1219  *
1220  * Those places that change perf_event::ctx will hold both
1221  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1222  *
1223  * Lock ordering is by mutex address. There are two other sites where
1224  * perf_event_context::mutex nests and those are:
1225  *
1226  *  - perf_event_exit_task_context()    [ child , 0 ]
1227  *      perf_event_exit_event()
1228  *        put_event()                   [ parent, 1 ]
1229  *
1230  *  - perf_event_init_context()         [ parent, 0 ]
1231  *      inherit_task_group()
1232  *        inherit_group()
1233  *          inherit_event()
1234  *            perf_event_alloc()
1235  *              perf_init_event()
1236  *                perf_try_init_event() [ child , 1 ]
1237  *
1238  * While it appears there is an obvious deadlock here -- the parent and child
1239  * nesting levels are inverted between the two. This is in fact safe because
1240  * life-time rules separate them. That is an exiting task cannot fork, and a
1241  * spawning task cannot (yet) exit.
1242  *
1243  * But remember that these are parent<->child context relations, and
1244  * migration does not affect children, therefore these two orderings should not
1245  * interact.
1246  *
1247  * The change in perf_event::ctx does not affect children (as claimed above)
1248  * because the sys_perf_event_open() case will install a new event and break
1249  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1250  * concerned with cpuctx and that doesn't have children.
1251  *
1252  * The places that change perf_event::ctx will issue:
1253  *
1254  *   perf_remove_from_context();
1255  *   synchronize_rcu();
1256  *   perf_install_in_context();
1257  *
1258  * to affect the change. The remove_from_context() + synchronize_rcu() should
1259  * quiesce the event, after which we can install it in the new location. This
1260  * means that only external vectors (perf_fops, prctl) can perturb the event
1261  * while in transit. Therefore all such accessors should also acquire
1262  * perf_event_context::mutex to serialize against this.
1263  *
1264  * However; because event->ctx can change while we're waiting to acquire
1265  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1266  * function.
1267  *
1268  * Lock order:
1269  *    exec_update_lock
1270  *      task_struct::perf_event_mutex
1271  *        perf_event_context::mutex
1272  *          perf_event::child_mutex;
1273  *            perf_event_context::lock
1274  *          perf_event::mmap_mutex
1275  *          mmap_lock
1276  *            perf_addr_filters_head::lock
1277  *
1278  *    cpu_hotplug_lock
1279  *      pmus_lock
1280  *        cpuctx->mutex / perf_event_context::mutex
1281  */
1282 static struct perf_event_context *
1283 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1284 {
1285         struct perf_event_context *ctx;
1286
1287 again:
1288         rcu_read_lock();
1289         ctx = READ_ONCE(event->ctx);
1290         if (!refcount_inc_not_zero(&ctx->refcount)) {
1291                 rcu_read_unlock();
1292                 goto again;
1293         }
1294         rcu_read_unlock();
1295
1296         mutex_lock_nested(&ctx->mutex, nesting);
1297         if (event->ctx != ctx) {
1298                 mutex_unlock(&ctx->mutex);
1299                 put_ctx(ctx);
1300                 goto again;
1301         }
1302
1303         return ctx;
1304 }
1305
1306 static inline struct perf_event_context *
1307 perf_event_ctx_lock(struct perf_event *event)
1308 {
1309         return perf_event_ctx_lock_nested(event, 0);
1310 }
1311
1312 static void perf_event_ctx_unlock(struct perf_event *event,
1313                                   struct perf_event_context *ctx)
1314 {
1315         mutex_unlock(&ctx->mutex);
1316         put_ctx(ctx);
1317 }
1318
1319 /*
1320  * This must be done under the ctx->lock, such as to serialize against
1321  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1322  * calling scheduler related locks and ctx->lock nests inside those.
1323  */
1324 static __must_check struct perf_event_context *
1325 unclone_ctx(struct perf_event_context *ctx)
1326 {
1327         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1328
1329         lockdep_assert_held(&ctx->lock);
1330
1331         if (parent_ctx)
1332                 ctx->parent_ctx = NULL;
1333         ctx->generation++;
1334
1335         return parent_ctx;
1336 }
1337
1338 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1339                                 enum pid_type type)
1340 {
1341         u32 nr;
1342         /*
1343          * only top level events have the pid namespace they were created in
1344          */
1345         if (event->parent)
1346                 event = event->parent;
1347
1348         nr = __task_pid_nr_ns(p, type, event->ns);
1349         /* avoid -1 if it is idle thread or runs in another ns */
1350         if (!nr && !pid_alive(p))
1351                 nr = -1;
1352         return nr;
1353 }
1354
1355 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1356 {
1357         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1358 }
1359
1360 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1361 {
1362         return perf_event_pid_type(event, p, PIDTYPE_PID);
1363 }
1364
1365 /*
1366  * If we inherit events we want to return the parent event id
1367  * to userspace.
1368  */
1369 static u64 primary_event_id(struct perf_event *event)
1370 {
1371         u64 id = event->id;
1372
1373         if (event->parent)
1374                 id = event->parent->id;
1375
1376         return id;
1377 }
1378
1379 /*
1380  * Get the perf_event_context for a task and lock it.
1381  *
1382  * This has to cope with the fact that until it is locked,
1383  * the context could get moved to another task.
1384  */
1385 static struct perf_event_context *
1386 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1387 {
1388         struct perf_event_context *ctx;
1389
1390 retry:
1391         /*
1392          * One of the few rules of preemptible RCU is that one cannot do
1393          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1394          * part of the read side critical section was irqs-enabled -- see
1395          * rcu_read_unlock_special().
1396          *
1397          * Since ctx->lock nests under rq->lock we must ensure the entire read
1398          * side critical section has interrupts disabled.
1399          */
1400         local_irq_save(*flags);
1401         rcu_read_lock();
1402         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1403         if (ctx) {
1404                 /*
1405                  * If this context is a clone of another, it might
1406                  * get swapped for another underneath us by
1407                  * perf_event_task_sched_out, though the
1408                  * rcu_read_lock() protects us from any context
1409                  * getting freed.  Lock the context and check if it
1410                  * got swapped before we could get the lock, and retry
1411                  * if so.  If we locked the right context, then it
1412                  * can't get swapped on us any more.
1413                  */
1414                 raw_spin_lock(&ctx->lock);
1415                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1416                         raw_spin_unlock(&ctx->lock);
1417                         rcu_read_unlock();
1418                         local_irq_restore(*flags);
1419                         goto retry;
1420                 }
1421
1422                 if (ctx->task == TASK_TOMBSTONE ||
1423                     !refcount_inc_not_zero(&ctx->refcount)) {
1424                         raw_spin_unlock(&ctx->lock);
1425                         ctx = NULL;
1426                 } else {
1427                         WARN_ON_ONCE(ctx->task != task);
1428                 }
1429         }
1430         rcu_read_unlock();
1431         if (!ctx)
1432                 local_irq_restore(*flags);
1433         return ctx;
1434 }
1435
1436 /*
1437  * Get the context for a task and increment its pin_count so it
1438  * can't get swapped to another task.  This also increments its
1439  * reference count so that the context can't get freed.
1440  */
1441 static struct perf_event_context *
1442 perf_pin_task_context(struct task_struct *task, int ctxn)
1443 {
1444         struct perf_event_context *ctx;
1445         unsigned long flags;
1446
1447         ctx = perf_lock_task_context(task, ctxn, &flags);
1448         if (ctx) {
1449                 ++ctx->pin_count;
1450                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1451         }
1452         return ctx;
1453 }
1454
1455 static void perf_unpin_context(struct perf_event_context *ctx)
1456 {
1457         unsigned long flags;
1458
1459         raw_spin_lock_irqsave(&ctx->lock, flags);
1460         --ctx->pin_count;
1461         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1462 }
1463
1464 /*
1465  * Update the record of the current time in a context.
1466  */
1467 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1468 {
1469         u64 now = perf_clock();
1470
1471         if (adv)
1472                 ctx->time += now - ctx->timestamp;
1473         ctx->timestamp = now;
1474
1475         /*
1476          * The above: time' = time + (now - timestamp), can be re-arranged
1477          * into: time` = now + (time - timestamp), which gives a single value
1478          * offset to compute future time without locks on.
1479          *
1480          * See perf_event_time_now(), which can be used from NMI context where
1481          * it's (obviously) not possible to acquire ctx->lock in order to read
1482          * both the above values in a consistent manner.
1483          */
1484         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1485 }
1486
1487 static void update_context_time(struct perf_event_context *ctx)
1488 {
1489         __update_context_time(ctx, true);
1490 }
1491
1492 static u64 perf_event_time(struct perf_event *event)
1493 {
1494         struct perf_event_context *ctx = event->ctx;
1495
1496         if (unlikely(!ctx))
1497                 return 0;
1498
1499         if (is_cgroup_event(event))
1500                 return perf_cgroup_event_time(event);
1501
1502         return ctx->time;
1503 }
1504
1505 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1506 {
1507         struct perf_event_context *ctx = event->ctx;
1508
1509         if (unlikely(!ctx))
1510                 return 0;
1511
1512         if (is_cgroup_event(event))
1513                 return perf_cgroup_event_time_now(event, now);
1514
1515         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1516                 return ctx->time;
1517
1518         now += READ_ONCE(ctx->timeoffset);
1519         return now;
1520 }
1521
1522 static enum event_type_t get_event_type(struct perf_event *event)
1523 {
1524         struct perf_event_context *ctx = event->ctx;
1525         enum event_type_t event_type;
1526
1527         lockdep_assert_held(&ctx->lock);
1528
1529         /*
1530          * It's 'group type', really, because if our group leader is
1531          * pinned, so are we.
1532          */
1533         if (event->group_leader != event)
1534                 event = event->group_leader;
1535
1536         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1537         if (!ctx->task)
1538                 event_type |= EVENT_CPU;
1539
1540         return event_type;
1541 }
1542
1543 /*
1544  * Helper function to initialize event group nodes.
1545  */
1546 static void init_event_group(struct perf_event *event)
1547 {
1548         RB_CLEAR_NODE(&event->group_node);
1549         event->group_index = 0;
1550 }
1551
1552 /*
1553  * Extract pinned or flexible groups from the context
1554  * based on event attrs bits.
1555  */
1556 static struct perf_event_groups *
1557 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1558 {
1559         if (event->attr.pinned)
1560                 return &ctx->pinned_groups;
1561         else
1562                 return &ctx->flexible_groups;
1563 }
1564
1565 /*
1566  * Helper function to initializes perf_event_group trees.
1567  */
1568 static void perf_event_groups_init(struct perf_event_groups *groups)
1569 {
1570         groups->tree = RB_ROOT;
1571         groups->index = 0;
1572 }
1573
1574 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1575 {
1576         struct cgroup *cgroup = NULL;
1577
1578 #ifdef CONFIG_CGROUP_PERF
1579         if (event->cgrp)
1580                 cgroup = event->cgrp->css.cgroup;
1581 #endif
1582
1583         return cgroup;
1584 }
1585
1586 /*
1587  * Compare function for event groups;
1588  *
1589  * Implements complex key that first sorts by CPU and then by virtual index
1590  * which provides ordering when rotating groups for the same CPU.
1591  */
1592 static __always_inline int
1593 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1594                       const u64 left_group_index, const struct perf_event *right)
1595 {
1596         if (left_cpu < right->cpu)
1597                 return -1;
1598         if (left_cpu > right->cpu)
1599                 return 1;
1600
1601 #ifdef CONFIG_CGROUP_PERF
1602         {
1603                 const struct cgroup *right_cgroup = event_cgroup(right);
1604
1605                 if (left_cgroup != right_cgroup) {
1606                         if (!left_cgroup) {
1607                                 /*
1608                                  * Left has no cgroup but right does, no
1609                                  * cgroups come first.
1610                                  */
1611                                 return -1;
1612                         }
1613                         if (!right_cgroup) {
1614                                 /*
1615                                  * Right has no cgroup but left does, no
1616                                  * cgroups come first.
1617                                  */
1618                                 return 1;
1619                         }
1620                         /* Two dissimilar cgroups, order by id. */
1621                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1622                                 return -1;
1623
1624                         return 1;
1625                 }
1626         }
1627 #endif
1628
1629         if (left_group_index < right->group_index)
1630                 return -1;
1631         if (left_group_index > right->group_index)
1632                 return 1;
1633
1634         return 0;
1635 }
1636
1637 #define __node_2_pe(node) \
1638         rb_entry((node), struct perf_event, group_node)
1639
1640 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1641 {
1642         struct perf_event *e = __node_2_pe(a);
1643         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1644                                      __node_2_pe(b)) < 0;
1645 }
1646
1647 struct __group_key {
1648         int cpu;
1649         struct cgroup *cgroup;
1650 };
1651
1652 static inline int __group_cmp(const void *key, const struct rb_node *node)
1653 {
1654         const struct __group_key *a = key;
1655         const struct perf_event *b = __node_2_pe(node);
1656
1657         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1658         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1659 }
1660
1661 /*
1662  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1663  * key (see perf_event_groups_less). This places it last inside the CPU
1664  * subtree.
1665  */
1666 static void
1667 perf_event_groups_insert(struct perf_event_groups *groups,
1668                          struct perf_event *event)
1669 {
1670         event->group_index = ++groups->index;
1671
1672         rb_add(&event->group_node, &groups->tree, __group_less);
1673 }
1674
1675 /*
1676  * Helper function to insert event into the pinned or flexible groups.
1677  */
1678 static void
1679 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1680 {
1681         struct perf_event_groups *groups;
1682
1683         groups = get_event_groups(event, ctx);
1684         perf_event_groups_insert(groups, event);
1685 }
1686
1687 /*
1688  * Delete a group from a tree.
1689  */
1690 static void
1691 perf_event_groups_delete(struct perf_event_groups *groups,
1692                          struct perf_event *event)
1693 {
1694         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1695                      RB_EMPTY_ROOT(&groups->tree));
1696
1697         rb_erase(&event->group_node, &groups->tree);
1698         init_event_group(event);
1699 }
1700
1701 /*
1702  * Helper function to delete event from its groups.
1703  */
1704 static void
1705 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1706 {
1707         struct perf_event_groups *groups;
1708
1709         groups = get_event_groups(event, ctx);
1710         perf_event_groups_delete(groups, event);
1711 }
1712
1713 /*
1714  * Get the leftmost event in the cpu/cgroup subtree.
1715  */
1716 static struct perf_event *
1717 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1718                         struct cgroup *cgrp)
1719 {
1720         struct __group_key key = {
1721                 .cpu = cpu,
1722                 .cgroup = cgrp,
1723         };
1724         struct rb_node *node;
1725
1726         node = rb_find_first(&key, &groups->tree, __group_cmp);
1727         if (node)
1728                 return __node_2_pe(node);
1729
1730         return NULL;
1731 }
1732
1733 /*
1734  * Like rb_entry_next_safe() for the @cpu subtree.
1735  */
1736 static struct perf_event *
1737 perf_event_groups_next(struct perf_event *event)
1738 {
1739         struct __group_key key = {
1740                 .cpu = event->cpu,
1741                 .cgroup = event_cgroup(event),
1742         };
1743         struct rb_node *next;
1744
1745         next = rb_next_match(&key, &event->group_node, __group_cmp);
1746         if (next)
1747                 return __node_2_pe(next);
1748
1749         return NULL;
1750 }
1751
1752 /*
1753  * Iterate through the whole groups tree.
1754  */
1755 #define perf_event_groups_for_each(event, groups)                       \
1756         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1757                                 typeof(*event), group_node); event;     \
1758                 event = rb_entry_safe(rb_next(&event->group_node),      \
1759                                 typeof(*event), group_node))
1760
1761 /*
1762  * Add an event from the lists for its context.
1763  * Must be called with ctx->mutex and ctx->lock held.
1764  */
1765 static void
1766 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1767 {
1768         lockdep_assert_held(&ctx->lock);
1769
1770         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1771         event->attach_state |= PERF_ATTACH_CONTEXT;
1772
1773         event->tstamp = perf_event_time(event);
1774
1775         /*
1776          * If we're a stand alone event or group leader, we go to the context
1777          * list, group events are kept attached to the group so that
1778          * perf_group_detach can, at all times, locate all siblings.
1779          */
1780         if (event->group_leader == event) {
1781                 event->group_caps = event->event_caps;
1782                 add_event_to_groups(event, ctx);
1783         }
1784
1785         list_add_rcu(&event->event_entry, &ctx->event_list);
1786         ctx->nr_events++;
1787         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1788                 ctx->nr_user++;
1789         if (event->attr.inherit_stat)
1790                 ctx->nr_stat++;
1791
1792         if (event->state > PERF_EVENT_STATE_OFF)
1793                 perf_cgroup_event_enable(event, ctx);
1794
1795         ctx->generation++;
1796 }
1797
1798 /*
1799  * Initialize event state based on the perf_event_attr::disabled.
1800  */
1801 static inline void perf_event__state_init(struct perf_event *event)
1802 {
1803         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1804                                               PERF_EVENT_STATE_INACTIVE;
1805 }
1806
1807 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1808 {
1809         int entry = sizeof(u64); /* value */
1810         int size = 0;
1811         int nr = 1;
1812
1813         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1814                 size += sizeof(u64);
1815
1816         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1817                 size += sizeof(u64);
1818
1819         if (event->attr.read_format & PERF_FORMAT_ID)
1820                 entry += sizeof(u64);
1821
1822         if (event->attr.read_format & PERF_FORMAT_LOST)
1823                 entry += sizeof(u64);
1824
1825         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1826                 nr += nr_siblings;
1827                 size += sizeof(u64);
1828         }
1829
1830         size += entry * nr;
1831         event->read_size = size;
1832 }
1833
1834 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1835 {
1836         struct perf_sample_data *data;
1837         u16 size = 0;
1838
1839         if (sample_type & PERF_SAMPLE_IP)
1840                 size += sizeof(data->ip);
1841
1842         if (sample_type & PERF_SAMPLE_ADDR)
1843                 size += sizeof(data->addr);
1844
1845         if (sample_type & PERF_SAMPLE_PERIOD)
1846                 size += sizeof(data->period);
1847
1848         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1849                 size += sizeof(data->weight.full);
1850
1851         if (sample_type & PERF_SAMPLE_READ)
1852                 size += event->read_size;
1853
1854         if (sample_type & PERF_SAMPLE_DATA_SRC)
1855                 size += sizeof(data->data_src.val);
1856
1857         if (sample_type & PERF_SAMPLE_TRANSACTION)
1858                 size += sizeof(data->txn);
1859
1860         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1861                 size += sizeof(data->phys_addr);
1862
1863         if (sample_type & PERF_SAMPLE_CGROUP)
1864                 size += sizeof(data->cgroup);
1865
1866         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1867                 size += sizeof(data->data_page_size);
1868
1869         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1870                 size += sizeof(data->code_page_size);
1871
1872         event->header_size = size;
1873 }
1874
1875 /*
1876  * Called at perf_event creation and when events are attached/detached from a
1877  * group.
1878  */
1879 static void perf_event__header_size(struct perf_event *event)
1880 {
1881         __perf_event_read_size(event,
1882                                event->group_leader->nr_siblings);
1883         __perf_event_header_size(event, event->attr.sample_type);
1884 }
1885
1886 static void perf_event__id_header_size(struct perf_event *event)
1887 {
1888         struct perf_sample_data *data;
1889         u64 sample_type = event->attr.sample_type;
1890         u16 size = 0;
1891
1892         if (sample_type & PERF_SAMPLE_TID)
1893                 size += sizeof(data->tid_entry);
1894
1895         if (sample_type & PERF_SAMPLE_TIME)
1896                 size += sizeof(data->time);
1897
1898         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1899                 size += sizeof(data->id);
1900
1901         if (sample_type & PERF_SAMPLE_ID)
1902                 size += sizeof(data->id);
1903
1904         if (sample_type & PERF_SAMPLE_STREAM_ID)
1905                 size += sizeof(data->stream_id);
1906
1907         if (sample_type & PERF_SAMPLE_CPU)
1908                 size += sizeof(data->cpu_entry);
1909
1910         event->id_header_size = size;
1911 }
1912
1913 static bool perf_event_validate_size(struct perf_event *event)
1914 {
1915         /*
1916          * The values computed here will be over-written when we actually
1917          * attach the event.
1918          */
1919         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1920         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1921         perf_event__id_header_size(event);
1922
1923         /*
1924          * Sum the lot; should not exceed the 64k limit we have on records.
1925          * Conservative limit to allow for callchains and other variable fields.
1926          */
1927         if (event->read_size + event->header_size +
1928             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1929                 return false;
1930
1931         return true;
1932 }
1933
1934 static void perf_group_attach(struct perf_event *event)
1935 {
1936         struct perf_event *group_leader = event->group_leader, *pos;
1937
1938         lockdep_assert_held(&event->ctx->lock);
1939
1940         /*
1941          * We can have double attach due to group movement in perf_event_open.
1942          */
1943         if (event->attach_state & PERF_ATTACH_GROUP)
1944                 return;
1945
1946         event->attach_state |= PERF_ATTACH_GROUP;
1947
1948         if (group_leader == event)
1949                 return;
1950
1951         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1952
1953         group_leader->group_caps &= event->event_caps;
1954
1955         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1956         group_leader->nr_siblings++;
1957
1958         perf_event__header_size(group_leader);
1959
1960         for_each_sibling_event(pos, group_leader)
1961                 perf_event__header_size(pos);
1962 }
1963
1964 /*
1965  * Remove an event from the lists for its context.
1966  * Must be called with ctx->mutex and ctx->lock held.
1967  */
1968 static void
1969 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1970 {
1971         WARN_ON_ONCE(event->ctx != ctx);
1972         lockdep_assert_held(&ctx->lock);
1973
1974         /*
1975          * We can have double detach due to exit/hot-unplug + close.
1976          */
1977         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1978                 return;
1979
1980         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1981
1982         ctx->nr_events--;
1983         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1984                 ctx->nr_user--;
1985         if (event->attr.inherit_stat)
1986                 ctx->nr_stat--;
1987
1988         list_del_rcu(&event->event_entry);
1989
1990         if (event->group_leader == event)
1991                 del_event_from_groups(event, ctx);
1992
1993         /*
1994          * If event was in error state, then keep it
1995          * that way, otherwise bogus counts will be
1996          * returned on read(). The only way to get out
1997          * of error state is by explicit re-enabling
1998          * of the event
1999          */
2000         if (event->state > PERF_EVENT_STATE_OFF) {
2001                 perf_cgroup_event_disable(event, ctx);
2002                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2003         }
2004
2005         ctx->generation++;
2006 }
2007
2008 static int
2009 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2010 {
2011         if (!has_aux(aux_event))
2012                 return 0;
2013
2014         if (!event->pmu->aux_output_match)
2015                 return 0;
2016
2017         return event->pmu->aux_output_match(aux_event);
2018 }
2019
2020 static void put_event(struct perf_event *event);
2021 static void event_sched_out(struct perf_event *event,
2022                             struct perf_cpu_context *cpuctx,
2023                             struct perf_event_context *ctx);
2024
2025 static void perf_put_aux_event(struct perf_event *event)
2026 {
2027         struct perf_event_context *ctx = event->ctx;
2028         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2029         struct perf_event *iter;
2030
2031         /*
2032          * If event uses aux_event tear down the link
2033          */
2034         if (event->aux_event) {
2035                 iter = event->aux_event;
2036                 event->aux_event = NULL;
2037                 put_event(iter);
2038                 return;
2039         }
2040
2041         /*
2042          * If the event is an aux_event, tear down all links to
2043          * it from other events.
2044          */
2045         for_each_sibling_event(iter, event->group_leader) {
2046                 if (iter->aux_event != event)
2047                         continue;
2048
2049                 iter->aux_event = NULL;
2050                 put_event(event);
2051
2052                 /*
2053                  * If it's ACTIVE, schedule it out and put it into ERROR
2054                  * state so that we don't try to schedule it again. Note
2055                  * that perf_event_enable() will clear the ERROR status.
2056                  */
2057                 event_sched_out(iter, cpuctx, ctx);
2058                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2059         }
2060 }
2061
2062 static bool perf_need_aux_event(struct perf_event *event)
2063 {
2064         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2065 }
2066
2067 static int perf_get_aux_event(struct perf_event *event,
2068                               struct perf_event *group_leader)
2069 {
2070         /*
2071          * Our group leader must be an aux event if we want to be
2072          * an aux_output. This way, the aux event will precede its
2073          * aux_output events in the group, and therefore will always
2074          * schedule first.
2075          */
2076         if (!group_leader)
2077                 return 0;
2078
2079         /*
2080          * aux_output and aux_sample_size are mutually exclusive.
2081          */
2082         if (event->attr.aux_output && event->attr.aux_sample_size)
2083                 return 0;
2084
2085         if (event->attr.aux_output &&
2086             !perf_aux_output_match(event, group_leader))
2087                 return 0;
2088
2089         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2090                 return 0;
2091
2092         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2093                 return 0;
2094
2095         /*
2096          * Link aux_outputs to their aux event; this is undone in
2097          * perf_group_detach() by perf_put_aux_event(). When the
2098          * group in torn down, the aux_output events loose their
2099          * link to the aux_event and can't schedule any more.
2100          */
2101         event->aux_event = group_leader;
2102
2103         return 1;
2104 }
2105
2106 static inline struct list_head *get_event_list(struct perf_event *event)
2107 {
2108         struct perf_event_context *ctx = event->ctx;
2109         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2110 }
2111
2112 /*
2113  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2114  * cannot exist on their own, schedule them out and move them into the ERROR
2115  * state. Also see _perf_event_enable(), it will not be able to recover
2116  * this ERROR state.
2117  */
2118 static inline void perf_remove_sibling_event(struct perf_event *event)
2119 {
2120         struct perf_event_context *ctx = event->ctx;
2121         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2122
2123         event_sched_out(event, cpuctx, ctx);
2124         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2125 }
2126
2127 static void perf_group_detach(struct perf_event *event)
2128 {
2129         struct perf_event *leader = event->group_leader;
2130         struct perf_event *sibling, *tmp;
2131         struct perf_event_context *ctx = event->ctx;
2132
2133         lockdep_assert_held(&ctx->lock);
2134
2135         /*
2136          * We can have double detach due to exit/hot-unplug + close.
2137          */
2138         if (!(event->attach_state & PERF_ATTACH_GROUP))
2139                 return;
2140
2141         event->attach_state &= ~PERF_ATTACH_GROUP;
2142
2143         perf_put_aux_event(event);
2144
2145         /*
2146          * If this is a sibling, remove it from its group.
2147          */
2148         if (leader != event) {
2149                 list_del_init(&event->sibling_list);
2150                 event->group_leader->nr_siblings--;
2151                 goto out;
2152         }
2153
2154         /*
2155          * If this was a group event with sibling events then
2156          * upgrade the siblings to singleton events by adding them
2157          * to whatever list we are on.
2158          */
2159         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2160
2161                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2162                         perf_remove_sibling_event(sibling);
2163
2164                 sibling->group_leader = sibling;
2165                 list_del_init(&sibling->sibling_list);
2166
2167                 /* Inherit group flags from the previous leader */
2168                 sibling->group_caps = event->group_caps;
2169
2170                 if (!RB_EMPTY_NODE(&event->group_node)) {
2171                         add_event_to_groups(sibling, event->ctx);
2172
2173                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2174                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2175                 }
2176
2177                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2178         }
2179
2180 out:
2181         for_each_sibling_event(tmp, leader)
2182                 perf_event__header_size(tmp);
2183
2184         perf_event__header_size(leader);
2185 }
2186
2187 static void sync_child_event(struct perf_event *child_event);
2188
2189 static void perf_child_detach(struct perf_event *event)
2190 {
2191         struct perf_event *parent_event = event->parent;
2192
2193         if (!(event->attach_state & PERF_ATTACH_CHILD))
2194                 return;
2195
2196         event->attach_state &= ~PERF_ATTACH_CHILD;
2197
2198         if (WARN_ON_ONCE(!parent_event))
2199                 return;
2200
2201         lockdep_assert_held(&parent_event->child_mutex);
2202
2203         sync_child_event(event);
2204         list_del_init(&event->child_list);
2205 }
2206
2207 static bool is_orphaned_event(struct perf_event *event)
2208 {
2209         return event->state == PERF_EVENT_STATE_DEAD;
2210 }
2211
2212 static inline int __pmu_filter_match(struct perf_event *event)
2213 {
2214         struct pmu *pmu = event->pmu;
2215         return pmu->filter_match ? pmu->filter_match(event) : 1;
2216 }
2217
2218 /*
2219  * Check whether we should attempt to schedule an event group based on
2220  * PMU-specific filtering. An event group can consist of HW and SW events,
2221  * potentially with a SW leader, so we must check all the filters, to
2222  * determine whether a group is schedulable:
2223  */
2224 static inline int pmu_filter_match(struct perf_event *event)
2225 {
2226         struct perf_event *sibling;
2227
2228         if (!__pmu_filter_match(event))
2229                 return 0;
2230
2231         for_each_sibling_event(sibling, event) {
2232                 if (!__pmu_filter_match(sibling))
2233                         return 0;
2234         }
2235
2236         return 1;
2237 }
2238
2239 static inline int
2240 event_filter_match(struct perf_event *event)
2241 {
2242         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2243                perf_cgroup_match(event) && pmu_filter_match(event);
2244 }
2245
2246 static void
2247 event_sched_out(struct perf_event *event,
2248                   struct perf_cpu_context *cpuctx,
2249                   struct perf_event_context *ctx)
2250 {
2251         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2252
2253         WARN_ON_ONCE(event->ctx != ctx);
2254         lockdep_assert_held(&ctx->lock);
2255
2256         if (event->state != PERF_EVENT_STATE_ACTIVE)
2257                 return;
2258
2259         /*
2260          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2261          * we can schedule events _OUT_ individually through things like
2262          * __perf_remove_from_context().
2263          */
2264         list_del_init(&event->active_list);
2265
2266         perf_pmu_disable(event->pmu);
2267
2268         event->pmu->del(event, 0);
2269         event->oncpu = -1;
2270
2271         if (READ_ONCE(event->pending_disable) >= 0) {
2272                 WRITE_ONCE(event->pending_disable, -1);
2273                 perf_cgroup_event_disable(event, ctx);
2274                 state = PERF_EVENT_STATE_OFF;
2275         }
2276         perf_event_set_state(event, state);
2277
2278         if (!is_software_event(event))
2279                 cpuctx->active_oncpu--;
2280         if (!--ctx->nr_active)
2281                 perf_event_ctx_deactivate(ctx);
2282         if (event->attr.freq && event->attr.sample_freq)
2283                 ctx->nr_freq--;
2284         if (event->attr.exclusive || !cpuctx->active_oncpu)
2285                 cpuctx->exclusive = 0;
2286
2287         perf_pmu_enable(event->pmu);
2288 }
2289
2290 static void
2291 group_sched_out(struct perf_event *group_event,
2292                 struct perf_cpu_context *cpuctx,
2293                 struct perf_event_context *ctx)
2294 {
2295         struct perf_event *event;
2296
2297         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2298                 return;
2299
2300         perf_pmu_disable(ctx->pmu);
2301
2302         event_sched_out(group_event, cpuctx, ctx);
2303
2304         /*
2305          * Schedule out siblings (if any):
2306          */
2307         for_each_sibling_event(event, group_event)
2308                 event_sched_out(event, cpuctx, ctx);
2309
2310         perf_pmu_enable(ctx->pmu);
2311 }
2312
2313 #define DETACH_GROUP    0x01UL
2314 #define DETACH_CHILD    0x02UL
2315
2316 /*
2317  * Cross CPU call to remove a performance event
2318  *
2319  * We disable the event on the hardware level first. After that we
2320  * remove it from the context list.
2321  */
2322 static void
2323 __perf_remove_from_context(struct perf_event *event,
2324                            struct perf_cpu_context *cpuctx,
2325                            struct perf_event_context *ctx,
2326                            void *info)
2327 {
2328         unsigned long flags = (unsigned long)info;
2329
2330         if (ctx->is_active & EVENT_TIME) {
2331                 update_context_time(ctx);
2332                 update_cgrp_time_from_cpuctx(cpuctx, false);
2333         }
2334
2335         event_sched_out(event, cpuctx, ctx);
2336         if (flags & DETACH_GROUP)
2337                 perf_group_detach(event);
2338         if (flags & DETACH_CHILD)
2339                 perf_child_detach(event);
2340         list_del_event(event, ctx);
2341
2342         if (!ctx->nr_events && ctx->is_active) {
2343                 if (ctx == &cpuctx->ctx)
2344                         update_cgrp_time_from_cpuctx(cpuctx, true);
2345
2346                 ctx->is_active = 0;
2347                 ctx->rotate_necessary = 0;
2348                 if (ctx->task) {
2349                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2350                         cpuctx->task_ctx = NULL;
2351                 }
2352         }
2353 }
2354
2355 /*
2356  * Remove the event from a task's (or a CPU's) list of events.
2357  *
2358  * If event->ctx is a cloned context, callers must make sure that
2359  * every task struct that event->ctx->task could possibly point to
2360  * remains valid.  This is OK when called from perf_release since
2361  * that only calls us on the top-level context, which can't be a clone.
2362  * When called from perf_event_exit_task, it's OK because the
2363  * context has been detached from its task.
2364  */
2365 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2366 {
2367         struct perf_event_context *ctx = event->ctx;
2368
2369         lockdep_assert_held(&ctx->mutex);
2370
2371         /*
2372          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2373          * to work in the face of TASK_TOMBSTONE, unlike every other
2374          * event_function_call() user.
2375          */
2376         raw_spin_lock_irq(&ctx->lock);
2377         /*
2378          * Cgroup events are per-cpu events, and must IPI because of
2379          * cgrp_cpuctx_list.
2380          */
2381         if (!ctx->is_active && !is_cgroup_event(event)) {
2382                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2383                                            ctx, (void *)flags);
2384                 raw_spin_unlock_irq(&ctx->lock);
2385                 return;
2386         }
2387         raw_spin_unlock_irq(&ctx->lock);
2388
2389         event_function_call(event, __perf_remove_from_context, (void *)flags);
2390 }
2391
2392 /*
2393  * Cross CPU call to disable a performance event
2394  */
2395 static void __perf_event_disable(struct perf_event *event,
2396                                  struct perf_cpu_context *cpuctx,
2397                                  struct perf_event_context *ctx,
2398                                  void *info)
2399 {
2400         if (event->state < PERF_EVENT_STATE_INACTIVE)
2401                 return;
2402
2403         if (ctx->is_active & EVENT_TIME) {
2404                 update_context_time(ctx);
2405                 update_cgrp_time_from_event(event);
2406         }
2407
2408         if (event == event->group_leader)
2409                 group_sched_out(event, cpuctx, ctx);
2410         else
2411                 event_sched_out(event, cpuctx, ctx);
2412
2413         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2414         perf_cgroup_event_disable(event, ctx);
2415 }
2416
2417 /*
2418  * Disable an event.
2419  *
2420  * If event->ctx is a cloned context, callers must make sure that
2421  * every task struct that event->ctx->task could possibly point to
2422  * remains valid.  This condition is satisfied when called through
2423  * perf_event_for_each_child or perf_event_for_each because they
2424  * hold the top-level event's child_mutex, so any descendant that
2425  * goes to exit will block in perf_event_exit_event().
2426  *
2427  * When called from perf_pending_event it's OK because event->ctx
2428  * is the current context on this CPU and preemption is disabled,
2429  * hence we can't get into perf_event_task_sched_out for this context.
2430  */
2431 static void _perf_event_disable(struct perf_event *event)
2432 {
2433         struct perf_event_context *ctx = event->ctx;
2434
2435         raw_spin_lock_irq(&ctx->lock);
2436         if (event->state <= PERF_EVENT_STATE_OFF) {
2437                 raw_spin_unlock_irq(&ctx->lock);
2438                 return;
2439         }
2440         raw_spin_unlock_irq(&ctx->lock);
2441
2442         event_function_call(event, __perf_event_disable, NULL);
2443 }
2444
2445 void perf_event_disable_local(struct perf_event *event)
2446 {
2447         event_function_local(event, __perf_event_disable, NULL);
2448 }
2449
2450 /*
2451  * Strictly speaking kernel users cannot create groups and therefore this
2452  * interface does not need the perf_event_ctx_lock() magic.
2453  */
2454 void perf_event_disable(struct perf_event *event)
2455 {
2456         struct perf_event_context *ctx;
2457
2458         ctx = perf_event_ctx_lock(event);
2459         _perf_event_disable(event);
2460         perf_event_ctx_unlock(event, ctx);
2461 }
2462 EXPORT_SYMBOL_GPL(perf_event_disable);
2463
2464 void perf_event_disable_inatomic(struct perf_event *event)
2465 {
2466         WRITE_ONCE(event->pending_disable, smp_processor_id());
2467         /* can fail, see perf_pending_event_disable() */
2468         irq_work_queue(&event->pending);
2469 }
2470
2471 #define MAX_INTERRUPTS (~0ULL)
2472
2473 static void perf_log_throttle(struct perf_event *event, int enable);
2474 static void perf_log_itrace_start(struct perf_event *event);
2475
2476 static int
2477 event_sched_in(struct perf_event *event,
2478                  struct perf_cpu_context *cpuctx,
2479                  struct perf_event_context *ctx)
2480 {
2481         int ret = 0;
2482
2483         WARN_ON_ONCE(event->ctx != ctx);
2484
2485         lockdep_assert_held(&ctx->lock);
2486
2487         if (event->state <= PERF_EVENT_STATE_OFF)
2488                 return 0;
2489
2490         WRITE_ONCE(event->oncpu, smp_processor_id());
2491         /*
2492          * Order event::oncpu write to happen before the ACTIVE state is
2493          * visible. This allows perf_event_{stop,read}() to observe the correct
2494          * ->oncpu if it sees ACTIVE.
2495          */
2496         smp_wmb();
2497         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2498
2499         /*
2500          * Unthrottle events, since we scheduled we might have missed several
2501          * ticks already, also for a heavily scheduling task there is little
2502          * guarantee it'll get a tick in a timely manner.
2503          */
2504         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2505                 perf_log_throttle(event, 1);
2506                 event->hw.interrupts = 0;
2507         }
2508
2509         perf_pmu_disable(event->pmu);
2510
2511         perf_log_itrace_start(event);
2512
2513         if (event->pmu->add(event, PERF_EF_START)) {
2514                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2515                 event->oncpu = -1;
2516                 ret = -EAGAIN;
2517                 goto out;
2518         }
2519
2520         if (!is_software_event(event))
2521                 cpuctx->active_oncpu++;
2522         if (!ctx->nr_active++)
2523                 perf_event_ctx_activate(ctx);
2524         if (event->attr.freq && event->attr.sample_freq)
2525                 ctx->nr_freq++;
2526
2527         if (event->attr.exclusive)
2528                 cpuctx->exclusive = 1;
2529
2530 out:
2531         perf_pmu_enable(event->pmu);
2532
2533         return ret;
2534 }
2535
2536 static int
2537 group_sched_in(struct perf_event *group_event,
2538                struct perf_cpu_context *cpuctx,
2539                struct perf_event_context *ctx)
2540 {
2541         struct perf_event *event, *partial_group = NULL;
2542         struct pmu *pmu = ctx->pmu;
2543
2544         if (group_event->state == PERF_EVENT_STATE_OFF)
2545                 return 0;
2546
2547         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2548
2549         if (event_sched_in(group_event, cpuctx, ctx))
2550                 goto error;
2551
2552         /*
2553          * Schedule in siblings as one group (if any):
2554          */
2555         for_each_sibling_event(event, group_event) {
2556                 if (event_sched_in(event, cpuctx, ctx)) {
2557                         partial_group = event;
2558                         goto group_error;
2559                 }
2560         }
2561
2562         if (!pmu->commit_txn(pmu))
2563                 return 0;
2564
2565 group_error:
2566         /*
2567          * Groups can be scheduled in as one unit only, so undo any
2568          * partial group before returning:
2569          * The events up to the failed event are scheduled out normally.
2570          */
2571         for_each_sibling_event(event, group_event) {
2572                 if (event == partial_group)
2573                         break;
2574
2575                 event_sched_out(event, cpuctx, ctx);
2576         }
2577         event_sched_out(group_event, cpuctx, ctx);
2578
2579 error:
2580         pmu->cancel_txn(pmu);
2581         return -EAGAIN;
2582 }
2583
2584 /*
2585  * Work out whether we can put this event group on the CPU now.
2586  */
2587 static int group_can_go_on(struct perf_event *event,
2588                            struct perf_cpu_context *cpuctx,
2589                            int can_add_hw)
2590 {
2591         /*
2592          * Groups consisting entirely of software events can always go on.
2593          */
2594         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2595                 return 1;
2596         /*
2597          * If an exclusive group is already on, no other hardware
2598          * events can go on.
2599          */
2600         if (cpuctx->exclusive)
2601                 return 0;
2602         /*
2603          * If this group is exclusive and there are already
2604          * events on the CPU, it can't go on.
2605          */
2606         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2607                 return 0;
2608         /*
2609          * Otherwise, try to add it if all previous groups were able
2610          * to go on.
2611          */
2612         return can_add_hw;
2613 }
2614
2615 static void add_event_to_ctx(struct perf_event *event,
2616                                struct perf_event_context *ctx)
2617 {
2618         list_add_event(event, ctx);
2619         perf_group_attach(event);
2620 }
2621
2622 static void ctx_sched_out(struct perf_event_context *ctx,
2623                           struct perf_cpu_context *cpuctx,
2624                           enum event_type_t event_type);
2625 static void
2626 ctx_sched_in(struct perf_event_context *ctx,
2627              struct perf_cpu_context *cpuctx,
2628              enum event_type_t event_type);
2629
2630 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2631                                struct perf_event_context *ctx,
2632                                enum event_type_t event_type)
2633 {
2634         if (!cpuctx->task_ctx)
2635                 return;
2636
2637         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2638                 return;
2639
2640         ctx_sched_out(ctx, cpuctx, event_type);
2641 }
2642
2643 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2644                                 struct perf_event_context *ctx)
2645 {
2646         cpu_ctx_sched_in(cpuctx, EVENT_PINNED);
2647         if (ctx)
2648                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
2649         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
2650         if (ctx)
2651                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
2652 }
2653
2654 /*
2655  * We want to maintain the following priority of scheduling:
2656  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2657  *  - task pinned (EVENT_PINNED)
2658  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2659  *  - task flexible (EVENT_FLEXIBLE).
2660  *
2661  * In order to avoid unscheduling and scheduling back in everything every
2662  * time an event is added, only do it for the groups of equal priority and
2663  * below.
2664  *
2665  * This can be called after a batch operation on task events, in which case
2666  * event_type is a bit mask of the types of events involved. For CPU events,
2667  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2668  */
2669 static void ctx_resched(struct perf_cpu_context *cpuctx,
2670                         struct perf_event_context *task_ctx,
2671                         enum event_type_t event_type)
2672 {
2673         enum event_type_t ctx_event_type;
2674         bool cpu_event = !!(event_type & EVENT_CPU);
2675
2676         /*
2677          * If pinned groups are involved, flexible groups also need to be
2678          * scheduled out.
2679          */
2680         if (event_type & EVENT_PINNED)
2681                 event_type |= EVENT_FLEXIBLE;
2682
2683         ctx_event_type = event_type & EVENT_ALL;
2684
2685         perf_pmu_disable(cpuctx->ctx.pmu);
2686         if (task_ctx)
2687                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2688
2689         /*
2690          * Decide which cpu ctx groups to schedule out based on the types
2691          * of events that caused rescheduling:
2692          *  - EVENT_CPU: schedule out corresponding groups;
2693          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2694          *  - otherwise, do nothing more.
2695          */
2696         if (cpu_event)
2697                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2698         else if (ctx_event_type & EVENT_PINNED)
2699                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2700
2701         perf_event_sched_in(cpuctx, task_ctx);
2702         perf_pmu_enable(cpuctx->ctx.pmu);
2703 }
2704
2705 void perf_pmu_resched(struct pmu *pmu)
2706 {
2707         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2708         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2709
2710         perf_ctx_lock(cpuctx, task_ctx);
2711         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2712         perf_ctx_unlock(cpuctx, task_ctx);
2713 }
2714
2715 /*
2716  * Cross CPU call to install and enable a performance event
2717  *
2718  * Very similar to remote_function() + event_function() but cannot assume that
2719  * things like ctx->is_active and cpuctx->task_ctx are set.
2720  */
2721 static int  __perf_install_in_context(void *info)
2722 {
2723         struct perf_event *event = info;
2724         struct perf_event_context *ctx = event->ctx;
2725         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2726         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2727         bool reprogram = true;
2728         int ret = 0;
2729
2730         raw_spin_lock(&cpuctx->ctx.lock);
2731         if (ctx->task) {
2732                 raw_spin_lock(&ctx->lock);
2733                 task_ctx = ctx;
2734
2735                 reprogram = (ctx->task == current);
2736
2737                 /*
2738                  * If the task is running, it must be running on this CPU,
2739                  * otherwise we cannot reprogram things.
2740                  *
2741                  * If its not running, we don't care, ctx->lock will
2742                  * serialize against it becoming runnable.
2743                  */
2744                 if (task_curr(ctx->task) && !reprogram) {
2745                         ret = -ESRCH;
2746                         goto unlock;
2747                 }
2748
2749                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2750         } else if (task_ctx) {
2751                 raw_spin_lock(&task_ctx->lock);
2752         }
2753
2754 #ifdef CONFIG_CGROUP_PERF
2755         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2756                 /*
2757                  * If the current cgroup doesn't match the event's
2758                  * cgroup, we should not try to schedule it.
2759                  */
2760                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2761                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2762                                         event->cgrp->css.cgroup);
2763         }
2764 #endif
2765
2766         if (reprogram) {
2767                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2768                 add_event_to_ctx(event, ctx);
2769                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2770         } else {
2771                 add_event_to_ctx(event, ctx);
2772         }
2773
2774 unlock:
2775         perf_ctx_unlock(cpuctx, task_ctx);
2776
2777         return ret;
2778 }
2779
2780 static bool exclusive_event_installable(struct perf_event *event,
2781                                         struct perf_event_context *ctx);
2782
2783 /*
2784  * Attach a performance event to a context.
2785  *
2786  * Very similar to event_function_call, see comment there.
2787  */
2788 static void
2789 perf_install_in_context(struct perf_event_context *ctx,
2790                         struct perf_event *event,
2791                         int cpu)
2792 {
2793         struct task_struct *task = READ_ONCE(ctx->task);
2794
2795         lockdep_assert_held(&ctx->mutex);
2796
2797         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2798
2799         if (event->cpu != -1)
2800                 event->cpu = cpu;
2801
2802         /*
2803          * Ensures that if we can observe event->ctx, both the event and ctx
2804          * will be 'complete'. See perf_iterate_sb_cpu().
2805          */
2806         smp_store_release(&event->ctx, ctx);
2807
2808         /*
2809          * perf_event_attr::disabled events will not run and can be initialized
2810          * without IPI. Except when this is the first event for the context, in
2811          * that case we need the magic of the IPI to set ctx->is_active.
2812          * Similarly, cgroup events for the context also needs the IPI to
2813          * manipulate the cgrp_cpuctx_list.
2814          *
2815          * The IOC_ENABLE that is sure to follow the creation of a disabled
2816          * event will issue the IPI and reprogram the hardware.
2817          */
2818         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2819             ctx->nr_events && !is_cgroup_event(event)) {
2820                 raw_spin_lock_irq(&ctx->lock);
2821                 if (ctx->task == TASK_TOMBSTONE) {
2822                         raw_spin_unlock_irq(&ctx->lock);
2823                         return;
2824                 }
2825                 add_event_to_ctx(event, ctx);
2826                 raw_spin_unlock_irq(&ctx->lock);
2827                 return;
2828         }
2829
2830         if (!task) {
2831                 cpu_function_call(cpu, __perf_install_in_context, event);
2832                 return;
2833         }
2834
2835         /*
2836          * Should not happen, we validate the ctx is still alive before calling.
2837          */
2838         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2839                 return;
2840
2841         /*
2842          * Installing events is tricky because we cannot rely on ctx->is_active
2843          * to be set in case this is the nr_events 0 -> 1 transition.
2844          *
2845          * Instead we use task_curr(), which tells us if the task is running.
2846          * However, since we use task_curr() outside of rq::lock, we can race
2847          * against the actual state. This means the result can be wrong.
2848          *
2849          * If we get a false positive, we retry, this is harmless.
2850          *
2851          * If we get a false negative, things are complicated. If we are after
2852          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2853          * value must be correct. If we're before, it doesn't matter since
2854          * perf_event_context_sched_in() will program the counter.
2855          *
2856          * However, this hinges on the remote context switch having observed
2857          * our task->perf_event_ctxp[] store, such that it will in fact take
2858          * ctx::lock in perf_event_context_sched_in().
2859          *
2860          * We do this by task_function_call(), if the IPI fails to hit the task
2861          * we know any future context switch of task must see the
2862          * perf_event_ctpx[] store.
2863          */
2864
2865         /*
2866          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2867          * task_cpu() load, such that if the IPI then does not find the task
2868          * running, a future context switch of that task must observe the
2869          * store.
2870          */
2871         smp_mb();
2872 again:
2873         if (!task_function_call(task, __perf_install_in_context, event))
2874                 return;
2875
2876         raw_spin_lock_irq(&ctx->lock);
2877         task = ctx->task;
2878         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2879                 /*
2880                  * Cannot happen because we already checked above (which also
2881                  * cannot happen), and we hold ctx->mutex, which serializes us
2882                  * against perf_event_exit_task_context().
2883                  */
2884                 raw_spin_unlock_irq(&ctx->lock);
2885                 return;
2886         }
2887         /*
2888          * If the task is not running, ctx->lock will avoid it becoming so,
2889          * thus we can safely install the event.
2890          */
2891         if (task_curr(task)) {
2892                 raw_spin_unlock_irq(&ctx->lock);
2893                 goto again;
2894         }
2895         add_event_to_ctx(event, ctx);
2896         raw_spin_unlock_irq(&ctx->lock);
2897 }
2898
2899 /*
2900  * Cross CPU call to enable a performance event
2901  */
2902 static void __perf_event_enable(struct perf_event *event,
2903                                 struct perf_cpu_context *cpuctx,
2904                                 struct perf_event_context *ctx,
2905                                 void *info)
2906 {
2907         struct perf_event *leader = event->group_leader;
2908         struct perf_event_context *task_ctx;
2909
2910         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2911             event->state <= PERF_EVENT_STATE_ERROR)
2912                 return;
2913
2914         if (ctx->is_active)
2915                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2916
2917         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2918         perf_cgroup_event_enable(event, ctx);
2919
2920         if (!ctx->is_active)
2921                 return;
2922
2923         if (!event_filter_match(event)) {
2924                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2925                 return;
2926         }
2927
2928         /*
2929          * If the event is in a group and isn't the group leader,
2930          * then don't put it on unless the group is on.
2931          */
2932         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2933                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2934                 return;
2935         }
2936
2937         task_ctx = cpuctx->task_ctx;
2938         if (ctx->task)
2939                 WARN_ON_ONCE(task_ctx != ctx);
2940
2941         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2942 }
2943
2944 /*
2945  * Enable an event.
2946  *
2947  * If event->ctx is a cloned context, callers must make sure that
2948  * every task struct that event->ctx->task could possibly point to
2949  * remains valid.  This condition is satisfied when called through
2950  * perf_event_for_each_child or perf_event_for_each as described
2951  * for perf_event_disable.
2952  */
2953 static void _perf_event_enable(struct perf_event *event)
2954 {
2955         struct perf_event_context *ctx = event->ctx;
2956
2957         raw_spin_lock_irq(&ctx->lock);
2958         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2959             event->state <  PERF_EVENT_STATE_ERROR) {
2960 out:
2961                 raw_spin_unlock_irq(&ctx->lock);
2962                 return;
2963         }
2964
2965         /*
2966          * If the event is in error state, clear that first.
2967          *
2968          * That way, if we see the event in error state below, we know that it
2969          * has gone back into error state, as distinct from the task having
2970          * been scheduled away before the cross-call arrived.
2971          */
2972         if (event->state == PERF_EVENT_STATE_ERROR) {
2973                 /*
2974                  * Detached SIBLING events cannot leave ERROR state.
2975                  */
2976                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
2977                     event->group_leader == event)
2978                         goto out;
2979
2980                 event->state = PERF_EVENT_STATE_OFF;
2981         }
2982         raw_spin_unlock_irq(&ctx->lock);
2983
2984         event_function_call(event, __perf_event_enable, NULL);
2985 }
2986
2987 /*
2988  * See perf_event_disable();
2989  */
2990 void perf_event_enable(struct perf_event *event)
2991 {
2992         struct perf_event_context *ctx;
2993
2994         ctx = perf_event_ctx_lock(event);
2995         _perf_event_enable(event);
2996         perf_event_ctx_unlock(event, ctx);
2997 }
2998 EXPORT_SYMBOL_GPL(perf_event_enable);
2999
3000 struct stop_event_data {
3001         struct perf_event       *event;
3002         unsigned int            restart;
3003 };
3004
3005 static int __perf_event_stop(void *info)
3006 {
3007         struct stop_event_data *sd = info;
3008         struct perf_event *event = sd->event;
3009
3010         /* if it's already INACTIVE, do nothing */
3011         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3012                 return 0;
3013
3014         /* matches smp_wmb() in event_sched_in() */
3015         smp_rmb();
3016
3017         /*
3018          * There is a window with interrupts enabled before we get here,
3019          * so we need to check again lest we try to stop another CPU's event.
3020          */
3021         if (READ_ONCE(event->oncpu) != smp_processor_id())
3022                 return -EAGAIN;
3023
3024         event->pmu->stop(event, PERF_EF_UPDATE);
3025
3026         /*
3027          * May race with the actual stop (through perf_pmu_output_stop()),
3028          * but it is only used for events with AUX ring buffer, and such
3029          * events will refuse to restart because of rb::aux_mmap_count==0,
3030          * see comments in perf_aux_output_begin().
3031          *
3032          * Since this is happening on an event-local CPU, no trace is lost
3033          * while restarting.
3034          */
3035         if (sd->restart)
3036                 event->pmu->start(event, 0);
3037
3038         return 0;
3039 }
3040
3041 static int perf_event_stop(struct perf_event *event, int restart)
3042 {
3043         struct stop_event_data sd = {
3044                 .event          = event,
3045                 .restart        = restart,
3046         };
3047         int ret = 0;
3048
3049         do {
3050                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051                         return 0;
3052
3053                 /* matches smp_wmb() in event_sched_in() */
3054                 smp_rmb();
3055
3056                 /*
3057                  * We only want to restart ACTIVE events, so if the event goes
3058                  * inactive here (event->oncpu==-1), there's nothing more to do;
3059                  * fall through with ret==-ENXIO.
3060                  */
3061                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3062                                         __perf_event_stop, &sd);
3063         } while (ret == -EAGAIN);
3064
3065         return ret;
3066 }
3067
3068 /*
3069  * In order to contain the amount of racy and tricky in the address filter
3070  * configuration management, it is a two part process:
3071  *
3072  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3073  *      we update the addresses of corresponding vmas in
3074  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3075  * (p2) when an event is scheduled in (pmu::add), it calls
3076  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3077  *      if the generation has changed since the previous call.
3078  *
3079  * If (p1) happens while the event is active, we restart it to force (p2).
3080  *
3081  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3082  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3083  *     ioctl;
3084  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3085  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3086  *     for reading;
3087  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3088  *     of exec.
3089  */
3090 void perf_event_addr_filters_sync(struct perf_event *event)
3091 {
3092         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3093
3094         if (!has_addr_filter(event))
3095                 return;
3096
3097         raw_spin_lock(&ifh->lock);
3098         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3099                 event->pmu->addr_filters_sync(event);
3100                 event->hw.addr_filters_gen = event->addr_filters_gen;
3101         }
3102         raw_spin_unlock(&ifh->lock);
3103 }
3104 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3105
3106 static int _perf_event_refresh(struct perf_event *event, int refresh)
3107 {
3108         /*
3109          * not supported on inherited events
3110          */
3111         if (event->attr.inherit || !is_sampling_event(event))
3112                 return -EINVAL;
3113
3114         atomic_add(refresh, &event->event_limit);
3115         _perf_event_enable(event);
3116
3117         return 0;
3118 }
3119
3120 /*
3121  * See perf_event_disable()
3122  */
3123 int perf_event_refresh(struct perf_event *event, int refresh)
3124 {
3125         struct perf_event_context *ctx;
3126         int ret;
3127
3128         ctx = perf_event_ctx_lock(event);
3129         ret = _perf_event_refresh(event, refresh);
3130         perf_event_ctx_unlock(event, ctx);
3131
3132         return ret;
3133 }
3134 EXPORT_SYMBOL_GPL(perf_event_refresh);
3135
3136 static int perf_event_modify_breakpoint(struct perf_event *bp,
3137                                          struct perf_event_attr *attr)
3138 {
3139         int err;
3140
3141         _perf_event_disable(bp);
3142
3143         err = modify_user_hw_breakpoint_check(bp, attr, true);
3144
3145         if (!bp->attr.disabled)
3146                 _perf_event_enable(bp);
3147
3148         return err;
3149 }
3150
3151 /*
3152  * Copy event-type-independent attributes that may be modified.
3153  */
3154 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3155                                         const struct perf_event_attr *from)
3156 {
3157         to->sig_data = from->sig_data;
3158 }
3159
3160 static int perf_event_modify_attr(struct perf_event *event,
3161                                   struct perf_event_attr *attr)
3162 {
3163         int (*func)(struct perf_event *, struct perf_event_attr *);
3164         struct perf_event *child;
3165         int err;
3166
3167         if (event->attr.type != attr->type)
3168                 return -EINVAL;
3169
3170         switch (event->attr.type) {
3171         case PERF_TYPE_BREAKPOINT:
3172                 func = perf_event_modify_breakpoint;
3173                 break;
3174         default:
3175                 /* Place holder for future additions. */
3176                 return -EOPNOTSUPP;
3177         }
3178
3179         WARN_ON_ONCE(event->ctx->parent_ctx);
3180
3181         mutex_lock(&event->child_mutex);
3182         /*
3183          * Event-type-independent attributes must be copied before event-type
3184          * modification, which will validate that final attributes match the
3185          * source attributes after all relevant attributes have been copied.
3186          */
3187         perf_event_modify_copy_attr(&event->attr, attr);
3188         err = func(event, attr);
3189         if (err)
3190                 goto out;
3191         list_for_each_entry(child, &event->child_list, child_list) {
3192                 perf_event_modify_copy_attr(&child->attr, attr);
3193                 err = func(child, attr);
3194                 if (err)
3195                         goto out;
3196         }
3197 out:
3198         mutex_unlock(&event->child_mutex);
3199         return err;
3200 }
3201
3202 static void ctx_sched_out(struct perf_event_context *ctx,
3203                           struct perf_cpu_context *cpuctx,
3204                           enum event_type_t event_type)
3205 {
3206         struct perf_event *event, *tmp;
3207         int is_active = ctx->is_active;
3208
3209         lockdep_assert_held(&ctx->lock);
3210
3211         if (likely(!ctx->nr_events)) {
3212                 /*
3213                  * See __perf_remove_from_context().
3214                  */
3215                 WARN_ON_ONCE(ctx->is_active);
3216                 if (ctx->task)
3217                         WARN_ON_ONCE(cpuctx->task_ctx);
3218                 return;
3219         }
3220
3221         /*
3222          * Always update time if it was set; not only when it changes.
3223          * Otherwise we can 'forget' to update time for any but the last
3224          * context we sched out. For example:
3225          *
3226          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3227          *   ctx_sched_out(.event_type = EVENT_PINNED)
3228          *
3229          * would only update time for the pinned events.
3230          */
3231         if (is_active & EVENT_TIME) {
3232                 /* update (and stop) ctx time */
3233                 update_context_time(ctx);
3234                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3235                 /*
3236                  * CPU-release for the below ->is_active store,
3237                  * see __load_acquire() in perf_event_time_now()
3238                  */
3239                 barrier();
3240         }
3241
3242         ctx->is_active &= ~event_type;
3243         if (!(ctx->is_active & EVENT_ALL))
3244                 ctx->is_active = 0;
3245
3246         if (ctx->task) {
3247                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3248                 if (!ctx->is_active)
3249                         cpuctx->task_ctx = NULL;
3250         }
3251
3252         is_active ^= ctx->is_active; /* changed bits */
3253
3254         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3255                 return;
3256
3257         perf_pmu_disable(ctx->pmu);
3258         if (is_active & EVENT_PINNED) {
3259                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3260                         group_sched_out(event, cpuctx, ctx);
3261         }
3262
3263         if (is_active & EVENT_FLEXIBLE) {
3264                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3265                         group_sched_out(event, cpuctx, ctx);
3266
3267                 /*
3268                  * Since we cleared EVENT_FLEXIBLE, also clear
3269                  * rotate_necessary, is will be reset by
3270                  * ctx_flexible_sched_in() when needed.
3271                  */
3272                 ctx->rotate_necessary = 0;
3273         }
3274         perf_pmu_enable(ctx->pmu);
3275 }
3276
3277 /*
3278  * Test whether two contexts are equivalent, i.e. whether they have both been
3279  * cloned from the same version of the same context.
3280  *
3281  * Equivalence is measured using a generation number in the context that is
3282  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3283  * and list_del_event().
3284  */
3285 static int context_equiv(struct perf_event_context *ctx1,
3286                          struct perf_event_context *ctx2)
3287 {
3288         lockdep_assert_held(&ctx1->lock);
3289         lockdep_assert_held(&ctx2->lock);
3290
3291         /* Pinning disables the swap optimization */
3292         if (ctx1->pin_count || ctx2->pin_count)
3293                 return 0;
3294
3295         /* If ctx1 is the parent of ctx2 */
3296         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3297                 return 1;
3298
3299         /* If ctx2 is the parent of ctx1 */
3300         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3301                 return 1;
3302
3303         /*
3304          * If ctx1 and ctx2 have the same parent; we flatten the parent
3305          * hierarchy, see perf_event_init_context().
3306          */
3307         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3308                         ctx1->parent_gen == ctx2->parent_gen)
3309                 return 1;
3310
3311         /* Unmatched */
3312         return 0;
3313 }
3314
3315 static void __perf_event_sync_stat(struct perf_event *event,
3316                                      struct perf_event *next_event)
3317 {
3318         u64 value;
3319
3320         if (!event->attr.inherit_stat)
3321                 return;
3322
3323         /*
3324          * Update the event value, we cannot use perf_event_read()
3325          * because we're in the middle of a context switch and have IRQs
3326          * disabled, which upsets smp_call_function_single(), however
3327          * we know the event must be on the current CPU, therefore we
3328          * don't need to use it.
3329          */
3330         if (event->state == PERF_EVENT_STATE_ACTIVE)
3331                 event->pmu->read(event);
3332
3333         perf_event_update_time(event);
3334
3335         /*
3336          * In order to keep per-task stats reliable we need to flip the event
3337          * values when we flip the contexts.
3338          */
3339         value = local64_read(&next_event->count);
3340         value = local64_xchg(&event->count, value);
3341         local64_set(&next_event->count, value);
3342
3343         swap(event->total_time_enabled, next_event->total_time_enabled);
3344         swap(event->total_time_running, next_event->total_time_running);
3345
3346         /*
3347          * Since we swizzled the values, update the user visible data too.
3348          */
3349         perf_event_update_userpage(event);
3350         perf_event_update_userpage(next_event);
3351 }
3352
3353 static void perf_event_sync_stat(struct perf_event_context *ctx,
3354                                    struct perf_event_context *next_ctx)
3355 {
3356         struct perf_event *event, *next_event;
3357
3358         if (!ctx->nr_stat)
3359                 return;
3360
3361         update_context_time(ctx);
3362
3363         event = list_first_entry(&ctx->event_list,
3364                                    struct perf_event, event_entry);
3365
3366         next_event = list_first_entry(&next_ctx->event_list,
3367                                         struct perf_event, event_entry);
3368
3369         while (&event->event_entry != &ctx->event_list &&
3370                &next_event->event_entry != &next_ctx->event_list) {
3371
3372                 __perf_event_sync_stat(event, next_event);
3373
3374                 event = list_next_entry(event, event_entry);
3375                 next_event = list_next_entry(next_event, event_entry);
3376         }
3377 }
3378
3379 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3380                                          struct task_struct *next)
3381 {
3382         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3383         struct perf_event_context *next_ctx;
3384         struct perf_event_context *parent, *next_parent;
3385         struct perf_cpu_context *cpuctx;
3386         int do_switch = 1;
3387         struct pmu *pmu;
3388
3389         if (likely(!ctx))
3390                 return;
3391
3392         pmu = ctx->pmu;
3393         cpuctx = __get_cpu_context(ctx);
3394         if (!cpuctx->task_ctx)
3395                 return;
3396
3397         rcu_read_lock();
3398         next_ctx = next->perf_event_ctxp[ctxn];
3399         if (!next_ctx)
3400                 goto unlock;
3401
3402         parent = rcu_dereference(ctx->parent_ctx);
3403         next_parent = rcu_dereference(next_ctx->parent_ctx);
3404
3405         /* If neither context have a parent context; they cannot be clones. */
3406         if (!parent && !next_parent)
3407                 goto unlock;
3408
3409         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3410                 /*
3411                  * Looks like the two contexts are clones, so we might be
3412                  * able to optimize the context switch.  We lock both
3413                  * contexts and check that they are clones under the
3414                  * lock (including re-checking that neither has been
3415                  * uncloned in the meantime).  It doesn't matter which
3416                  * order we take the locks because no other cpu could
3417                  * be trying to lock both of these tasks.
3418                  */
3419                 raw_spin_lock(&ctx->lock);
3420                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3421                 if (context_equiv(ctx, next_ctx)) {
3422
3423                         WRITE_ONCE(ctx->task, next);
3424                         WRITE_ONCE(next_ctx->task, task);
3425
3426                         perf_pmu_disable(pmu);
3427
3428                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3429                                 pmu->sched_task(ctx, false);
3430
3431                         /*
3432                          * PMU specific parts of task perf context can require
3433                          * additional synchronization. As an example of such
3434                          * synchronization see implementation details of Intel
3435                          * LBR call stack data profiling;
3436                          */
3437                         if (pmu->swap_task_ctx)
3438                                 pmu->swap_task_ctx(ctx, next_ctx);
3439                         else
3440                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3441
3442                         perf_pmu_enable(pmu);
3443
3444                         /*
3445                          * RCU_INIT_POINTER here is safe because we've not
3446                          * modified the ctx and the above modification of
3447                          * ctx->task and ctx->task_ctx_data are immaterial
3448                          * since those values are always verified under
3449                          * ctx->lock which we're now holding.
3450                          */
3451                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3452                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3453
3454                         do_switch = 0;
3455
3456                         perf_event_sync_stat(ctx, next_ctx);
3457                 }
3458                 raw_spin_unlock(&next_ctx->lock);
3459                 raw_spin_unlock(&ctx->lock);
3460         }
3461 unlock:
3462         rcu_read_unlock();
3463
3464         if (do_switch) {
3465                 raw_spin_lock(&ctx->lock);
3466                 perf_pmu_disable(pmu);
3467
3468                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3469                         pmu->sched_task(ctx, false);
3470                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3471
3472                 perf_pmu_enable(pmu);
3473                 raw_spin_unlock(&ctx->lock);
3474         }
3475 }
3476
3477 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3478
3479 void perf_sched_cb_dec(struct pmu *pmu)
3480 {
3481         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3482
3483         this_cpu_dec(perf_sched_cb_usages);
3484
3485         if (!--cpuctx->sched_cb_usage)
3486                 list_del(&cpuctx->sched_cb_entry);
3487 }
3488
3489
3490 void perf_sched_cb_inc(struct pmu *pmu)
3491 {
3492         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3493
3494         if (!cpuctx->sched_cb_usage++)
3495                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3496
3497         this_cpu_inc(perf_sched_cb_usages);
3498 }
3499
3500 /*
3501  * This function provides the context switch callback to the lower code
3502  * layer. It is invoked ONLY when the context switch callback is enabled.
3503  *
3504  * This callback is relevant even to per-cpu events; for example multi event
3505  * PEBS requires this to provide PID/TID information. This requires we flush
3506  * all queued PEBS records before we context switch to a new task.
3507  */
3508 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3509 {
3510         struct pmu *pmu;
3511
3512         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3513
3514         if (WARN_ON_ONCE(!pmu->sched_task))
3515                 return;
3516
3517         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3518         perf_pmu_disable(pmu);
3519
3520         pmu->sched_task(cpuctx->task_ctx, sched_in);
3521
3522         perf_pmu_enable(pmu);
3523         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3524 }
3525
3526 static void perf_pmu_sched_task(struct task_struct *prev,
3527                                 struct task_struct *next,
3528                                 bool sched_in)
3529 {
3530         struct perf_cpu_context *cpuctx;
3531
3532         if (prev == next)
3533                 return;
3534
3535         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3536                 /* will be handled in perf_event_context_sched_in/out */
3537                 if (cpuctx->task_ctx)
3538                         continue;
3539
3540                 __perf_pmu_sched_task(cpuctx, sched_in);
3541         }
3542 }
3543
3544 static void perf_event_switch(struct task_struct *task,
3545                               struct task_struct *next_prev, bool sched_in);
3546
3547 #define for_each_task_context_nr(ctxn)                                  \
3548         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3549
3550 /*
3551  * Called from scheduler to remove the events of the current task,
3552  * with interrupts disabled.
3553  *
3554  * We stop each event and update the event value in event->count.
3555  *
3556  * This does not protect us against NMI, but disable()
3557  * sets the disabled bit in the control field of event _before_
3558  * accessing the event control register. If a NMI hits, then it will
3559  * not restart the event.
3560  */
3561 void __perf_event_task_sched_out(struct task_struct *task,
3562                                  struct task_struct *next)
3563 {
3564         int ctxn;
3565
3566         if (__this_cpu_read(perf_sched_cb_usages))
3567                 perf_pmu_sched_task(task, next, false);
3568
3569         if (atomic_read(&nr_switch_events))
3570                 perf_event_switch(task, next, false);
3571
3572         for_each_task_context_nr(ctxn)
3573                 perf_event_context_sched_out(task, ctxn, next);
3574
3575         /*
3576          * if cgroup events exist on this CPU, then we need
3577          * to check if we have to switch out PMU state.
3578          * cgroup event are system-wide mode only
3579          */
3580         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3581                 perf_cgroup_switch(next);
3582 }
3583
3584 /*
3585  * Called with IRQs disabled
3586  */
3587 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3588                               enum event_type_t event_type)
3589 {
3590         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3591 }
3592
3593 static bool perf_less_group_idx(const void *l, const void *r)
3594 {
3595         const struct perf_event *le = *(const struct perf_event **)l;
3596         const struct perf_event *re = *(const struct perf_event **)r;
3597
3598         return le->group_index < re->group_index;
3599 }
3600
3601 static void swap_ptr(void *l, void *r)
3602 {
3603         void **lp = l, **rp = r;
3604
3605         swap(*lp, *rp);
3606 }
3607
3608 static const struct min_heap_callbacks perf_min_heap = {
3609         .elem_size = sizeof(struct perf_event *),
3610         .less = perf_less_group_idx,
3611         .swp = swap_ptr,
3612 };
3613
3614 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3615 {
3616         struct perf_event **itrs = heap->data;
3617
3618         if (event) {
3619                 itrs[heap->nr] = event;
3620                 heap->nr++;
3621         }
3622 }
3623
3624 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3625                                 struct perf_event_groups *groups, int cpu,
3626                                 int (*func)(struct perf_event *, void *),
3627                                 void *data)
3628 {
3629 #ifdef CONFIG_CGROUP_PERF
3630         struct cgroup_subsys_state *css = NULL;
3631 #endif
3632         /* Space for per CPU and/or any CPU event iterators. */
3633         struct perf_event *itrs[2];
3634         struct min_heap event_heap;
3635         struct perf_event **evt;
3636         int ret;
3637
3638         if (cpuctx) {
3639                 event_heap = (struct min_heap){
3640                         .data = cpuctx->heap,
3641                         .nr = 0,
3642                         .size = cpuctx->heap_size,
3643                 };
3644
3645                 lockdep_assert_held(&cpuctx->ctx.lock);
3646
3647 #ifdef CONFIG_CGROUP_PERF
3648                 if (cpuctx->cgrp)
3649                         css = &cpuctx->cgrp->css;
3650 #endif
3651         } else {
3652                 event_heap = (struct min_heap){
3653                         .data = itrs,
3654                         .nr = 0,
3655                         .size = ARRAY_SIZE(itrs),
3656                 };
3657                 /* Events not within a CPU context may be on any CPU. */
3658                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3659         }
3660         evt = event_heap.data;
3661
3662         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3663
3664 #ifdef CONFIG_CGROUP_PERF
3665         for (; css; css = css->parent)
3666                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3667 #endif
3668
3669         min_heapify_all(&event_heap, &perf_min_heap);
3670
3671         while (event_heap.nr) {
3672                 ret = func(*evt, data);
3673                 if (ret)
3674                         return ret;
3675
3676                 *evt = perf_event_groups_next(*evt);
3677                 if (*evt)
3678                         min_heapify(&event_heap, 0, &perf_min_heap);
3679                 else
3680                         min_heap_pop(&event_heap, &perf_min_heap);
3681         }
3682
3683         return 0;
3684 }
3685
3686 /*
3687  * Because the userpage is strictly per-event (there is no concept of context,
3688  * so there cannot be a context indirection), every userpage must be updated
3689  * when context time starts :-(
3690  *
3691  * IOW, we must not miss EVENT_TIME edges.
3692  */
3693 static inline bool event_update_userpage(struct perf_event *event)
3694 {
3695         if (likely(!atomic_read(&event->mmap_count)))
3696                 return false;
3697
3698         perf_event_update_time(event);
3699         perf_event_update_userpage(event);
3700
3701         return true;
3702 }
3703
3704 static inline void group_update_userpage(struct perf_event *group_event)
3705 {
3706         struct perf_event *event;
3707
3708         if (!event_update_userpage(group_event))
3709                 return;
3710
3711         for_each_sibling_event(event, group_event)
3712                 event_update_userpage(event);
3713 }
3714
3715 static int merge_sched_in(struct perf_event *event, void *data)
3716 {
3717         struct perf_event_context *ctx = event->ctx;
3718         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3719         int *can_add_hw = data;
3720
3721         if (event->state <= PERF_EVENT_STATE_OFF)
3722                 return 0;
3723
3724         if (!event_filter_match(event))
3725                 return 0;
3726
3727         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3728                 if (!group_sched_in(event, cpuctx, ctx))
3729                         list_add_tail(&event->active_list, get_event_list(event));
3730         }
3731
3732         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3733                 *can_add_hw = 0;
3734                 if (event->attr.pinned) {
3735                         perf_cgroup_event_disable(event, ctx);
3736                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3737                 } else {
3738                         ctx->rotate_necessary = 1;
3739                         perf_mux_hrtimer_restart(cpuctx);
3740                         group_update_userpage(event);
3741                 }
3742         }
3743
3744         return 0;
3745 }
3746
3747 static void
3748 ctx_pinned_sched_in(struct perf_event_context *ctx,
3749                     struct perf_cpu_context *cpuctx)
3750 {
3751         int can_add_hw = 1;
3752
3753         if (ctx != &cpuctx->ctx)
3754                 cpuctx = NULL;
3755
3756         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3757                            smp_processor_id(),
3758                            merge_sched_in, &can_add_hw);
3759 }
3760
3761 static void
3762 ctx_flexible_sched_in(struct perf_event_context *ctx,
3763                       struct perf_cpu_context *cpuctx)
3764 {
3765         int can_add_hw = 1;
3766
3767         if (ctx != &cpuctx->ctx)
3768                 cpuctx = NULL;
3769
3770         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3771                            smp_processor_id(),
3772                            merge_sched_in, &can_add_hw);
3773 }
3774
3775 static void
3776 ctx_sched_in(struct perf_event_context *ctx,
3777              struct perf_cpu_context *cpuctx,
3778              enum event_type_t event_type)
3779 {
3780         int is_active = ctx->is_active;
3781
3782         lockdep_assert_held(&ctx->lock);
3783
3784         if (likely(!ctx->nr_events))
3785                 return;
3786
3787         if (is_active ^ EVENT_TIME) {
3788                 /* start ctx time */
3789                 __update_context_time(ctx, false);
3790                 perf_cgroup_set_timestamp(cpuctx);
3791                 /*
3792                  * CPU-release for the below ->is_active store,
3793                  * see __load_acquire() in perf_event_time_now()
3794                  */
3795                 barrier();
3796         }
3797
3798         ctx->is_active |= (event_type | EVENT_TIME);
3799         if (ctx->task) {
3800                 if (!is_active)
3801                         cpuctx->task_ctx = ctx;
3802                 else
3803                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3804         }
3805
3806         is_active ^= ctx->is_active; /* changed bits */
3807
3808         /*
3809          * First go through the list and put on any pinned groups
3810          * in order to give them the best chance of going on.
3811          */
3812         if (is_active & EVENT_PINNED)
3813                 ctx_pinned_sched_in(ctx, cpuctx);
3814
3815         /* Then walk through the lower prio flexible groups */
3816         if (is_active & EVENT_FLEXIBLE)
3817                 ctx_flexible_sched_in(ctx, cpuctx);
3818 }
3819
3820 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3821                              enum event_type_t event_type)
3822 {
3823         struct perf_event_context *ctx = &cpuctx->ctx;
3824
3825         ctx_sched_in(ctx, cpuctx, event_type);
3826 }
3827
3828 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3829                                         struct task_struct *task)
3830 {
3831         struct perf_cpu_context *cpuctx;
3832         struct pmu *pmu;
3833
3834         cpuctx = __get_cpu_context(ctx);
3835
3836         /*
3837          * HACK: for HETEROGENEOUS the task context might have switched to a
3838          * different PMU, force (re)set the context,
3839          */
3840         pmu = ctx->pmu = cpuctx->ctx.pmu;
3841
3842         if (cpuctx->task_ctx == ctx) {
3843                 if (cpuctx->sched_cb_usage)
3844                         __perf_pmu_sched_task(cpuctx, true);
3845                 return;
3846         }
3847
3848         perf_ctx_lock(cpuctx, ctx);
3849         /*
3850          * We must check ctx->nr_events while holding ctx->lock, such
3851          * that we serialize against perf_install_in_context().
3852          */
3853         if (!ctx->nr_events)
3854                 goto unlock;
3855
3856         perf_pmu_disable(pmu);
3857         /*
3858          * We want to keep the following priority order:
3859          * cpu pinned (that don't need to move), task pinned,
3860          * cpu flexible, task flexible.
3861          *
3862          * However, if task's ctx is not carrying any pinned
3863          * events, no need to flip the cpuctx's events around.
3864          */
3865         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3866                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3867         perf_event_sched_in(cpuctx, ctx);
3868
3869         if (cpuctx->sched_cb_usage && pmu->sched_task)
3870                 pmu->sched_task(cpuctx->task_ctx, true);
3871
3872         perf_pmu_enable(pmu);
3873
3874 unlock:
3875         perf_ctx_unlock(cpuctx, ctx);
3876 }
3877
3878 /*
3879  * Called from scheduler to add the events of the current task
3880  * with interrupts disabled.
3881  *
3882  * We restore the event value and then enable it.
3883  *
3884  * This does not protect us against NMI, but enable()
3885  * sets the enabled bit in the control field of event _before_
3886  * accessing the event control register. If a NMI hits, then it will
3887  * keep the event running.
3888  */
3889 void __perf_event_task_sched_in(struct task_struct *prev,
3890                                 struct task_struct *task)
3891 {
3892         struct perf_event_context *ctx;
3893         int ctxn;
3894
3895         for_each_task_context_nr(ctxn) {
3896                 ctx = task->perf_event_ctxp[ctxn];
3897                 if (likely(!ctx))
3898                         continue;
3899
3900                 perf_event_context_sched_in(ctx, task);
3901         }
3902
3903         if (atomic_read(&nr_switch_events))
3904                 perf_event_switch(task, prev, true);
3905
3906         if (__this_cpu_read(perf_sched_cb_usages))
3907                 perf_pmu_sched_task(prev, task, true);
3908 }
3909
3910 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3911 {
3912         u64 frequency = event->attr.sample_freq;
3913         u64 sec = NSEC_PER_SEC;
3914         u64 divisor, dividend;
3915
3916         int count_fls, nsec_fls, frequency_fls, sec_fls;
3917
3918         count_fls = fls64(count);
3919         nsec_fls = fls64(nsec);
3920         frequency_fls = fls64(frequency);
3921         sec_fls = 30;
3922
3923         /*
3924          * We got @count in @nsec, with a target of sample_freq HZ
3925          * the target period becomes:
3926          *
3927          *             @count * 10^9
3928          * period = -------------------
3929          *          @nsec * sample_freq
3930          *
3931          */
3932
3933         /*
3934          * Reduce accuracy by one bit such that @a and @b converge
3935          * to a similar magnitude.
3936          */
3937 #define REDUCE_FLS(a, b)                \
3938 do {                                    \
3939         if (a##_fls > b##_fls) {        \
3940                 a >>= 1;                \
3941                 a##_fls--;              \
3942         } else {                        \
3943                 b >>= 1;                \
3944                 b##_fls--;              \
3945         }                               \
3946 } while (0)
3947
3948         /*
3949          * Reduce accuracy until either term fits in a u64, then proceed with
3950          * the other, so that finally we can do a u64/u64 division.
3951          */
3952         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3953                 REDUCE_FLS(nsec, frequency);
3954                 REDUCE_FLS(sec, count);
3955         }
3956
3957         if (count_fls + sec_fls > 64) {
3958                 divisor = nsec * frequency;
3959
3960                 while (count_fls + sec_fls > 64) {
3961                         REDUCE_FLS(count, sec);
3962                         divisor >>= 1;
3963                 }
3964
3965                 dividend = count * sec;
3966         } else {
3967                 dividend = count * sec;
3968
3969                 while (nsec_fls + frequency_fls > 64) {
3970                         REDUCE_FLS(nsec, frequency);
3971                         dividend >>= 1;
3972                 }
3973
3974                 divisor = nsec * frequency;
3975         }
3976
3977         if (!divisor)
3978                 return dividend;
3979
3980         return div64_u64(dividend, divisor);
3981 }
3982
3983 static DEFINE_PER_CPU(int, perf_throttled_count);
3984 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3985
3986 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3987 {
3988         struct hw_perf_event *hwc = &event->hw;
3989         s64 period, sample_period;
3990         s64 delta;
3991
3992         period = perf_calculate_period(event, nsec, count);
3993
3994         delta = (s64)(period - hwc->sample_period);
3995         delta = (delta + 7) / 8; /* low pass filter */
3996
3997         sample_period = hwc->sample_period + delta;
3998
3999         if (!sample_period)
4000                 sample_period = 1;
4001
4002         hwc->sample_period = sample_period;
4003
4004         if (local64_read(&hwc->period_left) > 8*sample_period) {
4005                 if (disable)
4006                         event->pmu->stop(event, PERF_EF_UPDATE);
4007
4008                 local64_set(&hwc->period_left, 0);
4009
4010                 if (disable)
4011                         event->pmu->start(event, PERF_EF_RELOAD);
4012         }
4013 }
4014
4015 /*
4016  * combine freq adjustment with unthrottling to avoid two passes over the
4017  * events. At the same time, make sure, having freq events does not change
4018  * the rate of unthrottling as that would introduce bias.
4019  */
4020 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4021                                            int needs_unthr)
4022 {
4023         struct perf_event *event;
4024         struct hw_perf_event *hwc;
4025         u64 now, period = TICK_NSEC;
4026         s64 delta;
4027
4028         /*
4029          * only need to iterate over all events iff:
4030          * - context have events in frequency mode (needs freq adjust)
4031          * - there are events to unthrottle on this cpu
4032          */
4033         if (!(ctx->nr_freq || needs_unthr))
4034                 return;
4035
4036         raw_spin_lock(&ctx->lock);
4037         perf_pmu_disable(ctx->pmu);
4038
4039         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4040                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4041                         continue;
4042
4043                 if (!event_filter_match(event))
4044                         continue;
4045
4046                 perf_pmu_disable(event->pmu);
4047
4048                 hwc = &event->hw;
4049
4050                 if (hwc->interrupts == MAX_INTERRUPTS) {
4051                         hwc->interrupts = 0;
4052                         perf_log_throttle(event, 1);
4053                         event->pmu->start(event, 0);
4054                 }
4055
4056                 if (!event->attr.freq || !event->attr.sample_freq)
4057                         goto next;
4058
4059                 /*
4060                  * stop the event and update event->count
4061                  */
4062                 event->pmu->stop(event, PERF_EF_UPDATE);
4063
4064                 now = local64_read(&event->count);
4065                 delta = now - hwc->freq_count_stamp;
4066                 hwc->freq_count_stamp = now;
4067
4068                 /*
4069                  * restart the event
4070                  * reload only if value has changed
4071                  * we have stopped the event so tell that
4072                  * to perf_adjust_period() to avoid stopping it
4073                  * twice.
4074                  */
4075                 if (delta > 0)
4076                         perf_adjust_period(event, period, delta, false);
4077
4078                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4079         next:
4080                 perf_pmu_enable(event->pmu);
4081         }
4082
4083         perf_pmu_enable(ctx->pmu);
4084         raw_spin_unlock(&ctx->lock);
4085 }
4086
4087 /*
4088  * Move @event to the tail of the @ctx's elegible events.
4089  */
4090 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4091 {
4092         /*
4093          * Rotate the first entry last of non-pinned groups. Rotation might be
4094          * disabled by the inheritance code.
4095          */
4096         if (ctx->rotate_disable)
4097                 return;
4098
4099         perf_event_groups_delete(&ctx->flexible_groups, event);
4100         perf_event_groups_insert(&ctx->flexible_groups, event);
4101 }
4102
4103 /* pick an event from the flexible_groups to rotate */
4104 static inline struct perf_event *
4105 ctx_event_to_rotate(struct perf_event_context *ctx)
4106 {
4107         struct perf_event *event;
4108
4109         /* pick the first active flexible event */
4110         event = list_first_entry_or_null(&ctx->flexible_active,
4111                                          struct perf_event, active_list);
4112
4113         /* if no active flexible event, pick the first event */
4114         if (!event) {
4115                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4116                                       typeof(*event), group_node);
4117         }
4118
4119         /*
4120          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4121          * finds there are unschedulable events, it will set it again.
4122          */
4123         ctx->rotate_necessary = 0;
4124
4125         return event;
4126 }
4127
4128 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4129 {
4130         struct perf_event *cpu_event = NULL, *task_event = NULL;
4131         struct perf_event_context *task_ctx = NULL;
4132         int cpu_rotate, task_rotate;
4133
4134         /*
4135          * Since we run this from IRQ context, nobody can install new
4136          * events, thus the event count values are stable.
4137          */
4138
4139         cpu_rotate = cpuctx->ctx.rotate_necessary;
4140         task_ctx = cpuctx->task_ctx;
4141         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4142
4143         if (!(cpu_rotate || task_rotate))
4144                 return false;
4145
4146         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4147         perf_pmu_disable(cpuctx->ctx.pmu);
4148
4149         if (task_rotate)
4150                 task_event = ctx_event_to_rotate(task_ctx);
4151         if (cpu_rotate)
4152                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4153
4154         /*
4155          * As per the order given at ctx_resched() first 'pop' task flexible
4156          * and then, if needed CPU flexible.
4157          */
4158         if (task_event || (task_ctx && cpu_event))
4159                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4160         if (cpu_event)
4161                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4162
4163         if (task_event)
4164                 rotate_ctx(task_ctx, task_event);
4165         if (cpu_event)
4166                 rotate_ctx(&cpuctx->ctx, cpu_event);
4167
4168         perf_event_sched_in(cpuctx, task_ctx);
4169
4170         perf_pmu_enable(cpuctx->ctx.pmu);
4171         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4172
4173         return true;
4174 }
4175
4176 void perf_event_task_tick(void)
4177 {
4178         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4179         struct perf_event_context *ctx, *tmp;
4180         int throttled;
4181
4182         lockdep_assert_irqs_disabled();
4183
4184         __this_cpu_inc(perf_throttled_seq);
4185         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4186         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4187
4188         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4189                 perf_adjust_freq_unthr_context(ctx, throttled);
4190 }
4191
4192 static int event_enable_on_exec(struct perf_event *event,
4193                                 struct perf_event_context *ctx)
4194 {
4195         if (!event->attr.enable_on_exec)
4196                 return 0;
4197
4198         event->attr.enable_on_exec = 0;
4199         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4200                 return 0;
4201
4202         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4203
4204         return 1;
4205 }
4206
4207 /*
4208  * Enable all of a task's events that have been marked enable-on-exec.
4209  * This expects task == current.
4210  */
4211 static void perf_event_enable_on_exec(int ctxn)
4212 {
4213         struct perf_event_context *ctx, *clone_ctx = NULL;
4214         enum event_type_t event_type = 0;
4215         struct perf_cpu_context *cpuctx;
4216         struct perf_event *event;
4217         unsigned long flags;
4218         int enabled = 0;
4219
4220         local_irq_save(flags);
4221         ctx = current->perf_event_ctxp[ctxn];
4222         if (!ctx || !ctx->nr_events)
4223                 goto out;
4224
4225         cpuctx = __get_cpu_context(ctx);
4226         perf_ctx_lock(cpuctx, ctx);
4227         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4228         list_for_each_entry(event, &ctx->event_list, event_entry) {
4229                 enabled |= event_enable_on_exec(event, ctx);
4230                 event_type |= get_event_type(event);
4231         }
4232
4233         /*
4234          * Unclone and reschedule this context if we enabled any event.
4235          */
4236         if (enabled) {
4237                 clone_ctx = unclone_ctx(ctx);
4238                 ctx_resched(cpuctx, ctx, event_type);
4239         } else {
4240                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
4241         }
4242         perf_ctx_unlock(cpuctx, ctx);
4243
4244 out:
4245         local_irq_restore(flags);
4246
4247         if (clone_ctx)
4248                 put_ctx(clone_ctx);
4249 }
4250
4251 static void perf_remove_from_owner(struct perf_event *event);
4252 static void perf_event_exit_event(struct perf_event *event,
4253                                   struct perf_event_context *ctx);
4254
4255 /*
4256  * Removes all events from the current task that have been marked
4257  * remove-on-exec, and feeds their values back to parent events.
4258  */
4259 static void perf_event_remove_on_exec(int ctxn)
4260 {
4261         struct perf_event_context *ctx, *clone_ctx = NULL;
4262         struct perf_event *event, *next;
4263         unsigned long flags;
4264         bool modified = false;
4265
4266         ctx = perf_pin_task_context(current, ctxn);
4267         if (!ctx)
4268                 return;
4269
4270         mutex_lock(&ctx->mutex);
4271
4272         if (WARN_ON_ONCE(ctx->task != current))
4273                 goto unlock;
4274
4275         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4276                 if (!event->attr.remove_on_exec)
4277                         continue;
4278
4279                 if (!is_kernel_event(event))
4280                         perf_remove_from_owner(event);
4281
4282                 modified = true;
4283
4284                 perf_event_exit_event(event, ctx);
4285         }
4286
4287         raw_spin_lock_irqsave(&ctx->lock, flags);
4288         if (modified)
4289                 clone_ctx = unclone_ctx(ctx);
4290         --ctx->pin_count;
4291         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4292
4293 unlock:
4294         mutex_unlock(&ctx->mutex);
4295
4296         put_ctx(ctx);
4297         if (clone_ctx)
4298                 put_ctx(clone_ctx);
4299 }
4300
4301 struct perf_read_data {
4302         struct perf_event *event;
4303         bool group;
4304         int ret;
4305 };
4306
4307 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4308 {
4309         u16 local_pkg, event_pkg;
4310
4311         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4312                 int local_cpu = smp_processor_id();
4313
4314                 event_pkg = topology_physical_package_id(event_cpu);
4315                 local_pkg = topology_physical_package_id(local_cpu);
4316
4317                 if (event_pkg == local_pkg)
4318                         return local_cpu;
4319         }
4320
4321         return event_cpu;
4322 }
4323
4324 /*
4325  * Cross CPU call to read the hardware event
4326  */
4327 static void __perf_event_read(void *info)
4328 {
4329         struct perf_read_data *data = info;
4330         struct perf_event *sub, *event = data->event;
4331         struct perf_event_context *ctx = event->ctx;
4332         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4333         struct pmu *pmu = event->pmu;
4334
4335         /*
4336          * If this is a task context, we need to check whether it is
4337          * the current task context of this cpu.  If not it has been
4338          * scheduled out before the smp call arrived.  In that case
4339          * event->count would have been updated to a recent sample
4340          * when the event was scheduled out.
4341          */
4342         if (ctx->task && cpuctx->task_ctx != ctx)
4343                 return;
4344
4345         raw_spin_lock(&ctx->lock);
4346         if (ctx->is_active & EVENT_TIME) {
4347                 update_context_time(ctx);
4348                 update_cgrp_time_from_event(event);
4349         }
4350
4351         perf_event_update_time(event);
4352         if (data->group)
4353                 perf_event_update_sibling_time(event);
4354
4355         if (event->state != PERF_EVENT_STATE_ACTIVE)
4356                 goto unlock;
4357
4358         if (!data->group) {
4359                 pmu->read(event);
4360                 data->ret = 0;
4361                 goto unlock;
4362         }
4363
4364         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4365
4366         pmu->read(event);
4367
4368         for_each_sibling_event(sub, event) {
4369                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4370                         /*
4371                          * Use sibling's PMU rather than @event's since
4372                          * sibling could be on different (eg: software) PMU.
4373                          */
4374                         sub->pmu->read(sub);
4375                 }
4376         }
4377
4378         data->ret = pmu->commit_txn(pmu);
4379
4380 unlock:
4381         raw_spin_unlock(&ctx->lock);
4382 }
4383
4384 static inline u64 perf_event_count(struct perf_event *event)
4385 {
4386         return local64_read(&event->count) + atomic64_read(&event->child_count);
4387 }
4388
4389 static void calc_timer_values(struct perf_event *event,
4390                                 u64 *now,
4391                                 u64 *enabled,
4392                                 u64 *running)
4393 {
4394         u64 ctx_time;
4395
4396         *now = perf_clock();
4397         ctx_time = perf_event_time_now(event, *now);
4398         __perf_update_times(event, ctx_time, enabled, running);
4399 }
4400
4401 /*
4402  * NMI-safe method to read a local event, that is an event that
4403  * is:
4404  *   - either for the current task, or for this CPU
4405  *   - does not have inherit set, for inherited task events
4406  *     will not be local and we cannot read them atomically
4407  *   - must not have a pmu::count method
4408  */
4409 int perf_event_read_local(struct perf_event *event, u64 *value,
4410                           u64 *enabled, u64 *running)
4411 {
4412         unsigned long flags;
4413         int ret = 0;
4414
4415         /*
4416          * Disabling interrupts avoids all counter scheduling (context
4417          * switches, timer based rotation and IPIs).
4418          */
4419         local_irq_save(flags);
4420
4421         /*
4422          * It must not be an event with inherit set, we cannot read
4423          * all child counters from atomic context.
4424          */
4425         if (event->attr.inherit) {
4426                 ret = -EOPNOTSUPP;
4427                 goto out;
4428         }
4429
4430         /* If this is a per-task event, it must be for current */
4431         if ((event->attach_state & PERF_ATTACH_TASK) &&
4432             event->hw.target != current) {
4433                 ret = -EINVAL;
4434                 goto out;
4435         }
4436
4437         /* If this is a per-CPU event, it must be for this CPU */
4438         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4439             event->cpu != smp_processor_id()) {
4440                 ret = -EINVAL;
4441                 goto out;
4442         }
4443
4444         /* If this is a pinned event it must be running on this CPU */
4445         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4446                 ret = -EBUSY;
4447                 goto out;
4448         }
4449
4450         /*
4451          * If the event is currently on this CPU, its either a per-task event,
4452          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4453          * oncpu == -1).
4454          */
4455         if (event->oncpu == smp_processor_id())
4456                 event->pmu->read(event);
4457
4458         *value = local64_read(&event->count);
4459         if (enabled || running) {
4460                 u64 __enabled, __running, __now;;
4461
4462                 calc_timer_values(event, &__now, &__enabled, &__running);
4463                 if (enabled)
4464                         *enabled = __enabled;
4465                 if (running)
4466                         *running = __running;
4467         }
4468 out:
4469         local_irq_restore(flags);
4470
4471         return ret;
4472 }
4473
4474 static int perf_event_read(struct perf_event *event, bool group)
4475 {
4476         enum perf_event_state state = READ_ONCE(event->state);
4477         int event_cpu, ret = 0;
4478
4479         /*
4480          * If event is enabled and currently active on a CPU, update the
4481          * value in the event structure:
4482          */
4483 again:
4484         if (state == PERF_EVENT_STATE_ACTIVE) {
4485                 struct perf_read_data data;
4486
4487                 /*
4488                  * Orders the ->state and ->oncpu loads such that if we see
4489                  * ACTIVE we must also see the right ->oncpu.
4490                  *
4491                  * Matches the smp_wmb() from event_sched_in().
4492                  */
4493                 smp_rmb();
4494
4495                 event_cpu = READ_ONCE(event->oncpu);
4496                 if ((unsigned)event_cpu >= nr_cpu_ids)
4497                         return 0;
4498
4499                 data = (struct perf_read_data){
4500                         .event = event,
4501                         .group = group,
4502                         .ret = 0,
4503                 };
4504
4505                 preempt_disable();
4506                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4507
4508                 /*
4509                  * Purposely ignore the smp_call_function_single() return
4510                  * value.
4511                  *
4512                  * If event_cpu isn't a valid CPU it means the event got
4513                  * scheduled out and that will have updated the event count.
4514                  *
4515                  * Therefore, either way, we'll have an up-to-date event count
4516                  * after this.
4517                  */
4518                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4519                 preempt_enable();
4520                 ret = data.ret;
4521
4522         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4523                 struct perf_event_context *ctx = event->ctx;
4524                 unsigned long flags;
4525
4526                 raw_spin_lock_irqsave(&ctx->lock, flags);
4527                 state = event->state;
4528                 if (state != PERF_EVENT_STATE_INACTIVE) {
4529                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4530                         goto again;
4531                 }
4532
4533                 /*
4534                  * May read while context is not active (e.g., thread is
4535                  * blocked), in that case we cannot update context time
4536                  */
4537                 if (ctx->is_active & EVENT_TIME) {
4538                         update_context_time(ctx);
4539                         update_cgrp_time_from_event(event);
4540                 }
4541
4542                 perf_event_update_time(event);
4543                 if (group)
4544                         perf_event_update_sibling_time(event);
4545                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4546         }
4547
4548         return ret;
4549 }
4550
4551 /*
4552  * Initialize the perf_event context in a task_struct:
4553  */
4554 static void __perf_event_init_context(struct perf_event_context *ctx)
4555 {
4556         raw_spin_lock_init(&ctx->lock);
4557         mutex_init(&ctx->mutex);
4558         INIT_LIST_HEAD(&ctx->active_ctx_list);
4559         perf_event_groups_init(&ctx->pinned_groups);
4560         perf_event_groups_init(&ctx->flexible_groups);
4561         INIT_LIST_HEAD(&ctx->event_list);
4562         INIT_LIST_HEAD(&ctx->pinned_active);
4563         INIT_LIST_HEAD(&ctx->flexible_active);
4564         refcount_set(&ctx->refcount, 1);
4565 }
4566
4567 static struct perf_event_context *
4568 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4569 {
4570         struct perf_event_context *ctx;
4571
4572         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4573         if (!ctx)
4574                 return NULL;
4575
4576         __perf_event_init_context(ctx);
4577         if (task)
4578                 ctx->task = get_task_struct(task);
4579         ctx->pmu = pmu;
4580
4581         return ctx;
4582 }
4583
4584 static struct task_struct *
4585 find_lively_task_by_vpid(pid_t vpid)
4586 {
4587         struct task_struct *task;
4588
4589         rcu_read_lock();
4590         if (!vpid)
4591                 task = current;
4592         else
4593                 task = find_task_by_vpid(vpid);
4594         if (task)
4595                 get_task_struct(task);
4596         rcu_read_unlock();
4597
4598         if (!task)
4599                 return ERR_PTR(-ESRCH);
4600
4601         return task;
4602 }
4603
4604 /*
4605  * Returns a matching context with refcount and pincount.
4606  */
4607 static struct perf_event_context *
4608 find_get_context(struct pmu *pmu, struct task_struct *task,
4609                 struct perf_event *event)
4610 {
4611         struct perf_event_context *ctx, *clone_ctx = NULL;
4612         struct perf_cpu_context *cpuctx;
4613         void *task_ctx_data = NULL;
4614         unsigned long flags;
4615         int ctxn, err;
4616         int cpu = event->cpu;
4617
4618         if (!task) {
4619                 /* Must be root to operate on a CPU event: */
4620                 err = perf_allow_cpu(&event->attr);
4621                 if (err)
4622                         return ERR_PTR(err);
4623
4624                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4625                 ctx = &cpuctx->ctx;
4626                 get_ctx(ctx);
4627                 raw_spin_lock_irqsave(&ctx->lock, flags);
4628                 ++ctx->pin_count;
4629                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4630
4631                 return ctx;
4632         }
4633
4634         err = -EINVAL;
4635         ctxn = pmu->task_ctx_nr;
4636         if (ctxn < 0)
4637                 goto errout;
4638
4639         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4640                 task_ctx_data = alloc_task_ctx_data(pmu);
4641                 if (!task_ctx_data) {
4642                         err = -ENOMEM;
4643                         goto errout;
4644                 }
4645         }
4646
4647 retry:
4648         ctx = perf_lock_task_context(task, ctxn, &flags);
4649         if (ctx) {
4650                 clone_ctx = unclone_ctx(ctx);
4651                 ++ctx->pin_count;
4652
4653                 if (task_ctx_data && !ctx->task_ctx_data) {
4654                         ctx->task_ctx_data = task_ctx_data;
4655                         task_ctx_data = NULL;
4656                 }
4657                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4658
4659                 if (clone_ctx)
4660                         put_ctx(clone_ctx);
4661         } else {
4662                 ctx = alloc_perf_context(pmu, task);
4663                 err = -ENOMEM;
4664                 if (!ctx)
4665                         goto errout;
4666
4667                 if (task_ctx_data) {
4668                         ctx->task_ctx_data = task_ctx_data;
4669                         task_ctx_data = NULL;
4670                 }
4671
4672                 err = 0;
4673                 mutex_lock(&task->perf_event_mutex);
4674                 /*
4675                  * If it has already passed perf_event_exit_task().
4676                  * we must see PF_EXITING, it takes this mutex too.
4677                  */
4678                 if (task->flags & PF_EXITING)
4679                         err = -ESRCH;
4680                 else if (task->perf_event_ctxp[ctxn])
4681                         err = -EAGAIN;
4682                 else {
4683                         get_ctx(ctx);
4684                         ++ctx->pin_count;
4685                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4686                 }
4687                 mutex_unlock(&task->perf_event_mutex);
4688
4689                 if (unlikely(err)) {
4690                         put_ctx(ctx);
4691
4692                         if (err == -EAGAIN)
4693                                 goto retry;
4694                         goto errout;
4695                 }
4696         }
4697
4698         free_task_ctx_data(pmu, task_ctx_data);
4699         return ctx;
4700
4701 errout:
4702         free_task_ctx_data(pmu, task_ctx_data);
4703         return ERR_PTR(err);
4704 }
4705
4706 static void perf_event_free_filter(struct perf_event *event);
4707
4708 static void free_event_rcu(struct rcu_head *head)
4709 {
4710         struct perf_event *event;
4711
4712         event = container_of(head, struct perf_event, rcu_head);
4713         if (event->ns)
4714                 put_pid_ns(event->ns);
4715         perf_event_free_filter(event);
4716         kmem_cache_free(perf_event_cache, event);
4717 }
4718
4719 static void ring_buffer_attach(struct perf_event *event,
4720                                struct perf_buffer *rb);
4721
4722 static void detach_sb_event(struct perf_event *event)
4723 {
4724         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4725
4726         raw_spin_lock(&pel->lock);
4727         list_del_rcu(&event->sb_list);
4728         raw_spin_unlock(&pel->lock);
4729 }
4730
4731 static bool is_sb_event(struct perf_event *event)
4732 {
4733         struct perf_event_attr *attr = &event->attr;
4734
4735         if (event->parent)
4736                 return false;
4737
4738         if (event->attach_state & PERF_ATTACH_TASK)
4739                 return false;
4740
4741         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4742             attr->comm || attr->comm_exec ||
4743             attr->task || attr->ksymbol ||
4744             attr->context_switch || attr->text_poke ||
4745             attr->bpf_event)
4746                 return true;
4747         return false;
4748 }
4749
4750 static void unaccount_pmu_sb_event(struct perf_event *event)
4751 {
4752         if (is_sb_event(event))
4753                 detach_sb_event(event);
4754 }
4755
4756 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4757 {
4758         if (event->parent)
4759                 return;
4760
4761         if (is_cgroup_event(event))
4762                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4763 }
4764
4765 #ifdef CONFIG_NO_HZ_FULL
4766 static DEFINE_SPINLOCK(nr_freq_lock);
4767 #endif
4768
4769 static void unaccount_freq_event_nohz(void)
4770 {
4771 #ifdef CONFIG_NO_HZ_FULL
4772         spin_lock(&nr_freq_lock);
4773         if (atomic_dec_and_test(&nr_freq_events))
4774                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4775         spin_unlock(&nr_freq_lock);
4776 #endif
4777 }
4778
4779 static void unaccount_freq_event(void)
4780 {
4781         if (tick_nohz_full_enabled())
4782                 unaccount_freq_event_nohz();
4783         else
4784                 atomic_dec(&nr_freq_events);
4785 }
4786
4787 static void unaccount_event(struct perf_event *event)
4788 {
4789         bool dec = false;
4790
4791         if (event->parent)
4792                 return;
4793
4794         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4795                 dec = true;
4796         if (event->attr.mmap || event->attr.mmap_data)
4797                 atomic_dec(&nr_mmap_events);
4798         if (event->attr.build_id)
4799                 atomic_dec(&nr_build_id_events);
4800         if (event->attr.comm)
4801                 atomic_dec(&nr_comm_events);
4802         if (event->attr.namespaces)
4803                 atomic_dec(&nr_namespaces_events);
4804         if (event->attr.cgroup)
4805                 atomic_dec(&nr_cgroup_events);
4806         if (event->attr.task)
4807                 atomic_dec(&nr_task_events);
4808         if (event->attr.freq)
4809                 unaccount_freq_event();
4810         if (event->attr.context_switch) {
4811                 dec = true;
4812                 atomic_dec(&nr_switch_events);
4813         }
4814         if (is_cgroup_event(event))
4815                 dec = true;
4816         if (has_branch_stack(event))
4817                 dec = true;
4818         if (event->attr.ksymbol)
4819                 atomic_dec(&nr_ksymbol_events);
4820         if (event->attr.bpf_event)
4821                 atomic_dec(&nr_bpf_events);
4822         if (event->attr.text_poke)
4823                 atomic_dec(&nr_text_poke_events);
4824
4825         if (dec) {
4826                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4827                         schedule_delayed_work(&perf_sched_work, HZ);
4828         }
4829
4830         unaccount_event_cpu(event, event->cpu);
4831
4832         unaccount_pmu_sb_event(event);
4833 }
4834
4835 static void perf_sched_delayed(struct work_struct *work)
4836 {
4837         mutex_lock(&perf_sched_mutex);
4838         if (atomic_dec_and_test(&perf_sched_count))
4839                 static_branch_disable(&perf_sched_events);
4840         mutex_unlock(&perf_sched_mutex);
4841 }
4842
4843 /*
4844  * The following implement mutual exclusion of events on "exclusive" pmus
4845  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4846  * at a time, so we disallow creating events that might conflict, namely:
4847  *
4848  *  1) cpu-wide events in the presence of per-task events,
4849  *  2) per-task events in the presence of cpu-wide events,
4850  *  3) two matching events on the same context.
4851  *
4852  * The former two cases are handled in the allocation path (perf_event_alloc(),
4853  * _free_event()), the latter -- before the first perf_install_in_context().
4854  */
4855 static int exclusive_event_init(struct perf_event *event)
4856 {
4857         struct pmu *pmu = event->pmu;
4858
4859         if (!is_exclusive_pmu(pmu))
4860                 return 0;
4861
4862         /*
4863          * Prevent co-existence of per-task and cpu-wide events on the
4864          * same exclusive pmu.
4865          *
4866          * Negative pmu::exclusive_cnt means there are cpu-wide
4867          * events on this "exclusive" pmu, positive means there are
4868          * per-task events.
4869          *
4870          * Since this is called in perf_event_alloc() path, event::ctx
4871          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4872          * to mean "per-task event", because unlike other attach states it
4873          * never gets cleared.
4874          */
4875         if (event->attach_state & PERF_ATTACH_TASK) {
4876                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4877                         return -EBUSY;
4878         } else {
4879                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4880                         return -EBUSY;
4881         }
4882
4883         return 0;
4884 }
4885
4886 static void exclusive_event_destroy(struct perf_event *event)
4887 {
4888         struct pmu *pmu = event->pmu;
4889
4890         if (!is_exclusive_pmu(pmu))
4891                 return;
4892
4893         /* see comment in exclusive_event_init() */
4894         if (event->attach_state & PERF_ATTACH_TASK)
4895                 atomic_dec(&pmu->exclusive_cnt);
4896         else
4897                 atomic_inc(&pmu->exclusive_cnt);
4898 }
4899
4900 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4901 {
4902         if ((e1->pmu == e2->pmu) &&
4903             (e1->cpu == e2->cpu ||
4904              e1->cpu == -1 ||
4905              e2->cpu == -1))
4906                 return true;
4907         return false;
4908 }
4909
4910 static bool exclusive_event_installable(struct perf_event *event,
4911                                         struct perf_event_context *ctx)
4912 {
4913         struct perf_event *iter_event;
4914         struct pmu *pmu = event->pmu;
4915
4916         lockdep_assert_held(&ctx->mutex);
4917
4918         if (!is_exclusive_pmu(pmu))
4919                 return true;
4920
4921         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4922                 if (exclusive_event_match(iter_event, event))
4923                         return false;
4924         }
4925
4926         return true;
4927 }
4928
4929 static void perf_addr_filters_splice(struct perf_event *event,
4930                                        struct list_head *head);
4931
4932 static void _free_event(struct perf_event *event)
4933 {
4934         irq_work_sync(&event->pending);
4935
4936         unaccount_event(event);
4937
4938         security_perf_event_free(event);
4939
4940         if (event->rb) {
4941                 /*
4942                  * Can happen when we close an event with re-directed output.
4943                  *
4944                  * Since we have a 0 refcount, perf_mmap_close() will skip
4945                  * over us; possibly making our ring_buffer_put() the last.
4946                  */
4947                 mutex_lock(&event->mmap_mutex);
4948                 ring_buffer_attach(event, NULL);
4949                 mutex_unlock(&event->mmap_mutex);
4950         }
4951
4952         if (is_cgroup_event(event))
4953                 perf_detach_cgroup(event);
4954
4955         if (!event->parent) {
4956                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4957                         put_callchain_buffers();
4958         }
4959
4960         perf_event_free_bpf_prog(event);
4961         perf_addr_filters_splice(event, NULL);
4962         kfree(event->addr_filter_ranges);
4963
4964         if (event->destroy)
4965                 event->destroy(event);
4966
4967         /*
4968          * Must be after ->destroy(), due to uprobe_perf_close() using
4969          * hw.target.
4970          */
4971         if (event->hw.target)
4972                 put_task_struct(event->hw.target);
4973
4974         /*
4975          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4976          * all task references must be cleaned up.
4977          */
4978         if (event->ctx)
4979                 put_ctx(event->ctx);
4980
4981         exclusive_event_destroy(event);
4982         module_put(event->pmu->module);
4983
4984         call_rcu(&event->rcu_head, free_event_rcu);
4985 }
4986
4987 /*
4988  * Used to free events which have a known refcount of 1, such as in error paths
4989  * where the event isn't exposed yet and inherited events.
4990  */
4991 static void free_event(struct perf_event *event)
4992 {
4993         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4994                                 "unexpected event refcount: %ld; ptr=%p\n",
4995                                 atomic_long_read(&event->refcount), event)) {
4996                 /* leak to avoid use-after-free */
4997                 return;
4998         }
4999
5000         _free_event(event);
5001 }
5002
5003 /*
5004  * Remove user event from the owner task.
5005  */
5006 static void perf_remove_from_owner(struct perf_event *event)
5007 {
5008         struct task_struct *owner;
5009
5010         rcu_read_lock();
5011         /*
5012          * Matches the smp_store_release() in perf_event_exit_task(). If we
5013          * observe !owner it means the list deletion is complete and we can
5014          * indeed free this event, otherwise we need to serialize on
5015          * owner->perf_event_mutex.
5016          */
5017         owner = READ_ONCE(event->owner);
5018         if (owner) {
5019                 /*
5020                  * Since delayed_put_task_struct() also drops the last
5021                  * task reference we can safely take a new reference
5022                  * while holding the rcu_read_lock().
5023                  */
5024                 get_task_struct(owner);
5025         }
5026         rcu_read_unlock();
5027
5028         if (owner) {
5029                 /*
5030                  * If we're here through perf_event_exit_task() we're already
5031                  * holding ctx->mutex which would be an inversion wrt. the
5032                  * normal lock order.
5033                  *
5034                  * However we can safely take this lock because its the child
5035                  * ctx->mutex.
5036                  */
5037                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5038
5039                 /*
5040                  * We have to re-check the event->owner field, if it is cleared
5041                  * we raced with perf_event_exit_task(), acquiring the mutex
5042                  * ensured they're done, and we can proceed with freeing the
5043                  * event.
5044                  */
5045                 if (event->owner) {
5046                         list_del_init(&event->owner_entry);
5047                         smp_store_release(&event->owner, NULL);
5048                 }
5049                 mutex_unlock(&owner->perf_event_mutex);
5050                 put_task_struct(owner);
5051         }
5052 }
5053
5054 static void put_event(struct perf_event *event)
5055 {
5056         if (!atomic_long_dec_and_test(&event->refcount))
5057                 return;
5058
5059         _free_event(event);
5060 }
5061
5062 /*
5063  * Kill an event dead; while event:refcount will preserve the event
5064  * object, it will not preserve its functionality. Once the last 'user'
5065  * gives up the object, we'll destroy the thing.
5066  */
5067 int perf_event_release_kernel(struct perf_event *event)
5068 {
5069         struct perf_event_context *ctx = event->ctx;
5070         struct perf_event *child, *tmp;
5071         LIST_HEAD(free_list);
5072
5073         /*
5074          * If we got here through err_file: fput(event_file); we will not have
5075          * attached to a context yet.
5076          */
5077         if (!ctx) {
5078                 WARN_ON_ONCE(event->attach_state &
5079                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5080                 goto no_ctx;
5081         }
5082
5083         if (!is_kernel_event(event))
5084                 perf_remove_from_owner(event);
5085
5086         ctx = perf_event_ctx_lock(event);
5087         WARN_ON_ONCE(ctx->parent_ctx);
5088         perf_remove_from_context(event, DETACH_GROUP);
5089
5090         raw_spin_lock_irq(&ctx->lock);
5091         /*
5092          * Mark this event as STATE_DEAD, there is no external reference to it
5093          * anymore.
5094          *
5095          * Anybody acquiring event->child_mutex after the below loop _must_
5096          * also see this, most importantly inherit_event() which will avoid
5097          * placing more children on the list.
5098          *
5099          * Thus this guarantees that we will in fact observe and kill _ALL_
5100          * child events.
5101          */
5102         event->state = PERF_EVENT_STATE_DEAD;
5103         raw_spin_unlock_irq(&ctx->lock);
5104
5105         perf_event_ctx_unlock(event, ctx);
5106
5107 again:
5108         mutex_lock(&event->child_mutex);
5109         list_for_each_entry(child, &event->child_list, child_list) {
5110
5111                 /*
5112                  * Cannot change, child events are not migrated, see the
5113                  * comment with perf_event_ctx_lock_nested().
5114                  */
5115                 ctx = READ_ONCE(child->ctx);
5116                 /*
5117                  * Since child_mutex nests inside ctx::mutex, we must jump
5118                  * through hoops. We start by grabbing a reference on the ctx.
5119                  *
5120                  * Since the event cannot get freed while we hold the
5121                  * child_mutex, the context must also exist and have a !0
5122                  * reference count.
5123                  */
5124                 get_ctx(ctx);
5125
5126                 /*
5127                  * Now that we have a ctx ref, we can drop child_mutex, and
5128                  * acquire ctx::mutex without fear of it going away. Then we
5129                  * can re-acquire child_mutex.
5130                  */
5131                 mutex_unlock(&event->child_mutex);
5132                 mutex_lock(&ctx->mutex);
5133                 mutex_lock(&event->child_mutex);
5134
5135                 /*
5136                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5137                  * state, if child is still the first entry, it didn't get freed
5138                  * and we can continue doing so.
5139                  */
5140                 tmp = list_first_entry_or_null(&event->child_list,
5141                                                struct perf_event, child_list);
5142                 if (tmp == child) {
5143                         perf_remove_from_context(child, DETACH_GROUP);
5144                         list_move(&child->child_list, &free_list);
5145                         /*
5146                          * This matches the refcount bump in inherit_event();
5147                          * this can't be the last reference.
5148                          */
5149                         put_event(event);
5150                 }
5151
5152                 mutex_unlock(&event->child_mutex);
5153                 mutex_unlock(&ctx->mutex);
5154                 put_ctx(ctx);
5155                 goto again;
5156         }
5157         mutex_unlock(&event->child_mutex);
5158
5159         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5160                 void *var = &child->ctx->refcount;
5161
5162                 list_del(&child->child_list);
5163                 free_event(child);
5164
5165                 /*
5166                  * Wake any perf_event_free_task() waiting for this event to be
5167                  * freed.
5168                  */
5169                 smp_mb(); /* pairs with wait_var_event() */
5170                 wake_up_var(var);
5171         }
5172
5173 no_ctx:
5174         put_event(event); /* Must be the 'last' reference */
5175         return 0;
5176 }
5177 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5178
5179 /*
5180  * Called when the last reference to the file is gone.
5181  */
5182 static int perf_release(struct inode *inode, struct file *file)
5183 {
5184         perf_event_release_kernel(file->private_data);
5185         return 0;
5186 }
5187
5188 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5189 {
5190         struct perf_event *child;
5191         u64 total = 0;
5192
5193         *enabled = 0;
5194         *running = 0;
5195
5196         mutex_lock(&event->child_mutex);
5197
5198         (void)perf_event_read(event, false);
5199         total += perf_event_count(event);
5200
5201         *enabled += event->total_time_enabled +
5202                         atomic64_read(&event->child_total_time_enabled);
5203         *running += event->total_time_running +
5204                         atomic64_read(&event->child_total_time_running);
5205
5206         list_for_each_entry(child, &event->child_list, child_list) {
5207                 (void)perf_event_read(child, false);
5208                 total += perf_event_count(child);
5209                 *enabled += child->total_time_enabled;
5210                 *running += child->total_time_running;
5211         }
5212         mutex_unlock(&event->child_mutex);
5213
5214         return total;
5215 }
5216
5217 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5218 {
5219         struct perf_event_context *ctx;
5220         u64 count;
5221
5222         ctx = perf_event_ctx_lock(event);
5223         count = __perf_event_read_value(event, enabled, running);
5224         perf_event_ctx_unlock(event, ctx);
5225
5226         return count;
5227 }
5228 EXPORT_SYMBOL_GPL(perf_event_read_value);
5229
5230 static int __perf_read_group_add(struct perf_event *leader,
5231                                         u64 read_format, u64 *values)
5232 {
5233         struct perf_event_context *ctx = leader->ctx;
5234         struct perf_event *sub;
5235         unsigned long flags;
5236         int n = 1; /* skip @nr */
5237         int ret;
5238
5239         ret = perf_event_read(leader, true);
5240         if (ret)
5241                 return ret;
5242
5243         raw_spin_lock_irqsave(&ctx->lock, flags);
5244
5245         /*
5246          * Since we co-schedule groups, {enabled,running} times of siblings
5247          * will be identical to those of the leader, so we only publish one
5248          * set.
5249          */
5250         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5251                 values[n++] += leader->total_time_enabled +
5252                         atomic64_read(&leader->child_total_time_enabled);
5253         }
5254
5255         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5256                 values[n++] += leader->total_time_running +
5257                         atomic64_read(&leader->child_total_time_running);
5258         }
5259
5260         /*
5261          * Write {count,id} tuples for every sibling.
5262          */
5263         values[n++] += perf_event_count(leader);
5264         if (read_format & PERF_FORMAT_ID)
5265                 values[n++] = primary_event_id(leader);
5266         if (read_format & PERF_FORMAT_LOST)
5267                 values[n++] = atomic64_read(&leader->lost_samples);
5268
5269         for_each_sibling_event(sub, leader) {
5270                 values[n++] += perf_event_count(sub);
5271                 if (read_format & PERF_FORMAT_ID)
5272                         values[n++] = primary_event_id(sub);
5273                 if (read_format & PERF_FORMAT_LOST)
5274                         values[n++] = atomic64_read(&sub->lost_samples);
5275         }
5276
5277         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5278         return 0;
5279 }
5280
5281 static int perf_read_group(struct perf_event *event,
5282                                    u64 read_format, char __user *buf)
5283 {
5284         struct perf_event *leader = event->group_leader, *child;
5285         struct perf_event_context *ctx = leader->ctx;
5286         int ret;
5287         u64 *values;
5288
5289         lockdep_assert_held(&ctx->mutex);
5290
5291         values = kzalloc(event->read_size, GFP_KERNEL);
5292         if (!values)
5293                 return -ENOMEM;
5294
5295         values[0] = 1 + leader->nr_siblings;
5296
5297         /*
5298          * By locking the child_mutex of the leader we effectively
5299          * lock the child list of all siblings.. XXX explain how.
5300          */
5301         mutex_lock(&leader->child_mutex);
5302
5303         ret = __perf_read_group_add(leader, read_format, values);
5304         if (ret)
5305                 goto unlock;
5306
5307         list_for_each_entry(child, &leader->child_list, child_list) {
5308                 ret = __perf_read_group_add(child, read_format, values);
5309                 if (ret)
5310                         goto unlock;
5311         }
5312
5313         mutex_unlock(&leader->child_mutex);
5314
5315         ret = event->read_size;
5316         if (copy_to_user(buf, values, event->read_size))
5317                 ret = -EFAULT;
5318         goto out;
5319
5320 unlock:
5321         mutex_unlock(&leader->child_mutex);
5322 out:
5323         kfree(values);
5324         return ret;
5325 }
5326
5327 static int perf_read_one(struct perf_event *event,
5328                                  u64 read_format, char __user *buf)
5329 {
5330         u64 enabled, running;
5331         u64 values[5];
5332         int n = 0;
5333
5334         values[n++] = __perf_event_read_value(event, &enabled, &running);
5335         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5336                 values[n++] = enabled;
5337         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5338                 values[n++] = running;
5339         if (read_format & PERF_FORMAT_ID)
5340                 values[n++] = primary_event_id(event);
5341         if (read_format & PERF_FORMAT_LOST)
5342                 values[n++] = atomic64_read(&event->lost_samples);
5343
5344         if (copy_to_user(buf, values, n * sizeof(u64)))
5345                 return -EFAULT;
5346
5347         return n * sizeof(u64);
5348 }
5349
5350 static bool is_event_hup(struct perf_event *event)
5351 {
5352         bool no_children;
5353
5354         if (event->state > PERF_EVENT_STATE_EXIT)
5355                 return false;
5356
5357         mutex_lock(&event->child_mutex);
5358         no_children = list_empty(&event->child_list);
5359         mutex_unlock(&event->child_mutex);
5360         return no_children;
5361 }
5362
5363 /*
5364  * Read the performance event - simple non blocking version for now
5365  */
5366 static ssize_t
5367 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5368 {
5369         u64 read_format = event->attr.read_format;
5370         int ret;
5371
5372         /*
5373          * Return end-of-file for a read on an event that is in
5374          * error state (i.e. because it was pinned but it couldn't be
5375          * scheduled on to the CPU at some point).
5376          */
5377         if (event->state == PERF_EVENT_STATE_ERROR)
5378                 return 0;
5379
5380         if (count < event->read_size)
5381                 return -ENOSPC;
5382
5383         WARN_ON_ONCE(event->ctx->parent_ctx);
5384         if (read_format & PERF_FORMAT_GROUP)
5385                 ret = perf_read_group(event, read_format, buf);
5386         else
5387                 ret = perf_read_one(event, read_format, buf);
5388
5389         return ret;
5390 }
5391
5392 static ssize_t
5393 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5394 {
5395         struct perf_event *event = file->private_data;
5396         struct perf_event_context *ctx;
5397         int ret;
5398
5399         ret = security_perf_event_read(event);
5400         if (ret)
5401                 return ret;
5402
5403         ctx = perf_event_ctx_lock(event);
5404         ret = __perf_read(event, buf, count);
5405         perf_event_ctx_unlock(event, ctx);
5406
5407         return ret;
5408 }
5409
5410 static __poll_t perf_poll(struct file *file, poll_table *wait)
5411 {
5412         struct perf_event *event = file->private_data;
5413         struct perf_buffer *rb;
5414         __poll_t events = EPOLLHUP;
5415
5416         poll_wait(file, &event->waitq, wait);
5417
5418         if (is_event_hup(event))
5419                 return events;
5420
5421         /*
5422          * Pin the event->rb by taking event->mmap_mutex; otherwise
5423          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5424          */
5425         mutex_lock(&event->mmap_mutex);
5426         rb = event->rb;
5427         if (rb)
5428                 events = atomic_xchg(&rb->poll, 0);
5429         mutex_unlock(&event->mmap_mutex);
5430         return events;
5431 }
5432
5433 static void _perf_event_reset(struct perf_event *event)
5434 {
5435         (void)perf_event_read(event, false);
5436         local64_set(&event->count, 0);
5437         perf_event_update_userpage(event);
5438 }
5439
5440 /* Assume it's not an event with inherit set. */
5441 u64 perf_event_pause(struct perf_event *event, bool reset)
5442 {
5443         struct perf_event_context *ctx;
5444         u64 count;
5445
5446         ctx = perf_event_ctx_lock(event);
5447         WARN_ON_ONCE(event->attr.inherit);
5448         _perf_event_disable(event);
5449         count = local64_read(&event->count);
5450         if (reset)
5451                 local64_set(&event->count, 0);
5452         perf_event_ctx_unlock(event, ctx);
5453
5454         return count;
5455 }
5456 EXPORT_SYMBOL_GPL(perf_event_pause);
5457
5458 /*
5459  * Holding the top-level event's child_mutex means that any
5460  * descendant process that has inherited this event will block
5461  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5462  * task existence requirements of perf_event_enable/disable.
5463  */
5464 static void perf_event_for_each_child(struct perf_event *event,
5465                                         void (*func)(struct perf_event *))
5466 {
5467         struct perf_event *child;
5468
5469         WARN_ON_ONCE(event->ctx->parent_ctx);
5470
5471         mutex_lock(&event->child_mutex);
5472         func(event);
5473         list_for_each_entry(child, &event->child_list, child_list)
5474                 func(child);
5475         mutex_unlock(&event->child_mutex);
5476 }
5477
5478 static void perf_event_for_each(struct perf_event *event,
5479                                   void (*func)(struct perf_event *))
5480 {
5481         struct perf_event_context *ctx = event->ctx;
5482         struct perf_event *sibling;
5483
5484         lockdep_assert_held(&ctx->mutex);
5485
5486         event = event->group_leader;
5487
5488         perf_event_for_each_child(event, func);
5489         for_each_sibling_event(sibling, event)
5490                 perf_event_for_each_child(sibling, func);
5491 }
5492
5493 static void __perf_event_period(struct perf_event *event,
5494                                 struct perf_cpu_context *cpuctx,
5495                                 struct perf_event_context *ctx,
5496                                 void *info)
5497 {
5498         u64 value = *((u64 *)info);
5499         bool active;
5500
5501         if (event->attr.freq) {
5502                 event->attr.sample_freq = value;
5503         } else {
5504                 event->attr.sample_period = value;
5505                 event->hw.sample_period = value;
5506         }
5507
5508         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5509         if (active) {
5510                 perf_pmu_disable(ctx->pmu);
5511                 /*
5512                  * We could be throttled; unthrottle now to avoid the tick
5513                  * trying to unthrottle while we already re-started the event.
5514                  */
5515                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5516                         event->hw.interrupts = 0;
5517                         perf_log_throttle(event, 1);
5518                 }
5519                 event->pmu->stop(event, PERF_EF_UPDATE);
5520         }
5521
5522         local64_set(&event->hw.period_left, 0);
5523
5524         if (active) {
5525                 event->pmu->start(event, PERF_EF_RELOAD);
5526                 perf_pmu_enable(ctx->pmu);
5527         }
5528 }
5529
5530 static int perf_event_check_period(struct perf_event *event, u64 value)
5531 {
5532         return event->pmu->check_period(event, value);
5533 }
5534
5535 static int _perf_event_period(struct perf_event *event, u64 value)
5536 {
5537         if (!is_sampling_event(event))
5538                 return -EINVAL;
5539
5540         if (!value)
5541                 return -EINVAL;
5542
5543         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5544                 return -EINVAL;
5545
5546         if (perf_event_check_period(event, value))
5547                 return -EINVAL;
5548
5549         if (!event->attr.freq && (value & (1ULL << 63)))
5550                 return -EINVAL;
5551
5552         event_function_call(event, __perf_event_period, &value);
5553
5554         return 0;
5555 }
5556
5557 int perf_event_period(struct perf_event *event, u64 value)
5558 {
5559         struct perf_event_context *ctx;
5560         int ret;
5561
5562         ctx = perf_event_ctx_lock(event);
5563         ret = _perf_event_period(event, value);
5564         perf_event_ctx_unlock(event, ctx);
5565
5566         return ret;
5567 }
5568 EXPORT_SYMBOL_GPL(perf_event_period);
5569
5570 static const struct file_operations perf_fops;
5571
5572 static inline int perf_fget_light(int fd, struct fd *p)
5573 {
5574         struct fd f = fdget(fd);
5575         if (!f.file)
5576                 return -EBADF;
5577
5578         if (f.file->f_op != &perf_fops) {
5579                 fdput(f);
5580                 return -EBADF;
5581         }
5582         *p = f;
5583         return 0;
5584 }
5585
5586 static int perf_event_set_output(struct perf_event *event,
5587                                  struct perf_event *output_event);
5588 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5589 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5590                           struct perf_event_attr *attr);
5591
5592 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5593 {
5594         void (*func)(struct perf_event *);
5595         u32 flags = arg;
5596
5597         switch (cmd) {
5598         case PERF_EVENT_IOC_ENABLE:
5599                 func = _perf_event_enable;
5600                 break;
5601         case PERF_EVENT_IOC_DISABLE:
5602                 func = _perf_event_disable;
5603                 break;
5604         case PERF_EVENT_IOC_RESET:
5605                 func = _perf_event_reset;
5606                 break;
5607
5608         case PERF_EVENT_IOC_REFRESH:
5609                 return _perf_event_refresh(event, arg);
5610
5611         case PERF_EVENT_IOC_PERIOD:
5612         {
5613                 u64 value;
5614
5615                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5616                         return -EFAULT;
5617
5618                 return _perf_event_period(event, value);
5619         }
5620         case PERF_EVENT_IOC_ID:
5621         {
5622                 u64 id = primary_event_id(event);
5623
5624                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5625                         return -EFAULT;
5626                 return 0;
5627         }
5628
5629         case PERF_EVENT_IOC_SET_OUTPUT:
5630         {
5631                 int ret;
5632                 if (arg != -1) {
5633                         struct perf_event *output_event;
5634                         struct fd output;
5635                         ret = perf_fget_light(arg, &output);
5636                         if (ret)
5637                                 return ret;
5638                         output_event = output.file->private_data;
5639                         ret = perf_event_set_output(event, output_event);
5640                         fdput(output);
5641                 } else {
5642                         ret = perf_event_set_output(event, NULL);
5643                 }
5644                 return ret;
5645         }
5646
5647         case PERF_EVENT_IOC_SET_FILTER:
5648                 return perf_event_set_filter(event, (void __user *)arg);
5649
5650         case PERF_EVENT_IOC_SET_BPF:
5651         {
5652                 struct bpf_prog *prog;
5653                 int err;
5654
5655                 prog = bpf_prog_get(arg);
5656                 if (IS_ERR(prog))
5657                         return PTR_ERR(prog);
5658
5659                 err = perf_event_set_bpf_prog(event, prog, 0);
5660                 if (err) {
5661                         bpf_prog_put(prog);
5662                         return err;
5663                 }
5664
5665                 return 0;
5666         }
5667
5668         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5669                 struct perf_buffer *rb;
5670
5671                 rcu_read_lock();
5672                 rb = rcu_dereference(event->rb);
5673                 if (!rb || !rb->nr_pages) {
5674                         rcu_read_unlock();
5675                         return -EINVAL;
5676                 }
5677                 rb_toggle_paused(rb, !!arg);
5678                 rcu_read_unlock();
5679                 return 0;
5680         }
5681
5682         case PERF_EVENT_IOC_QUERY_BPF:
5683                 return perf_event_query_prog_array(event, (void __user *)arg);
5684
5685         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5686                 struct perf_event_attr new_attr;
5687                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5688                                          &new_attr);
5689
5690                 if (err)
5691                         return err;
5692
5693                 return perf_event_modify_attr(event,  &new_attr);
5694         }
5695         default:
5696                 return -ENOTTY;
5697         }
5698
5699         if (flags & PERF_IOC_FLAG_GROUP)
5700                 perf_event_for_each(event, func);
5701         else
5702                 perf_event_for_each_child(event, func);
5703
5704         return 0;
5705 }
5706
5707 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5708 {
5709         struct perf_event *event = file->private_data;
5710         struct perf_event_context *ctx;
5711         long ret;
5712
5713         /* Treat ioctl like writes as it is likely a mutating operation. */
5714         ret = security_perf_event_write(event);
5715         if (ret)
5716                 return ret;
5717
5718         ctx = perf_event_ctx_lock(event);
5719         ret = _perf_ioctl(event, cmd, arg);
5720         perf_event_ctx_unlock(event, ctx);
5721
5722         return ret;
5723 }
5724
5725 #ifdef CONFIG_COMPAT
5726 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5727                                 unsigned long arg)
5728 {
5729         switch (_IOC_NR(cmd)) {
5730         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5731         case _IOC_NR(PERF_EVENT_IOC_ID):
5732         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5733         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5734                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5735                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5736                         cmd &= ~IOCSIZE_MASK;
5737                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5738                 }
5739                 break;
5740         }
5741         return perf_ioctl(file, cmd, arg);
5742 }
5743 #else
5744 # define perf_compat_ioctl NULL
5745 #endif
5746
5747 int perf_event_task_enable(void)
5748 {
5749         struct perf_event_context *ctx;
5750         struct perf_event *event;
5751
5752         mutex_lock(&current->perf_event_mutex);
5753         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5754                 ctx = perf_event_ctx_lock(event);
5755                 perf_event_for_each_child(event, _perf_event_enable);
5756                 perf_event_ctx_unlock(event, ctx);
5757         }
5758         mutex_unlock(&current->perf_event_mutex);
5759
5760         return 0;
5761 }
5762
5763 int perf_event_task_disable(void)
5764 {
5765         struct perf_event_context *ctx;
5766         struct perf_event *event;
5767
5768         mutex_lock(&current->perf_event_mutex);
5769         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5770                 ctx = perf_event_ctx_lock(event);
5771                 perf_event_for_each_child(event, _perf_event_disable);
5772                 perf_event_ctx_unlock(event, ctx);
5773         }
5774         mutex_unlock(&current->perf_event_mutex);
5775
5776         return 0;
5777 }
5778
5779 static int perf_event_index(struct perf_event *event)
5780 {
5781         if (event->hw.state & PERF_HES_STOPPED)
5782                 return 0;
5783
5784         if (event->state != PERF_EVENT_STATE_ACTIVE)
5785                 return 0;
5786
5787         return event->pmu->event_idx(event);
5788 }
5789
5790 static void perf_event_init_userpage(struct perf_event *event)
5791 {
5792         struct perf_event_mmap_page *userpg;
5793         struct perf_buffer *rb;
5794
5795         rcu_read_lock();
5796         rb = rcu_dereference(event->rb);
5797         if (!rb)
5798                 goto unlock;
5799
5800         userpg = rb->user_page;
5801
5802         /* Allow new userspace to detect that bit 0 is deprecated */
5803         userpg->cap_bit0_is_deprecated = 1;
5804         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5805         userpg->data_offset = PAGE_SIZE;
5806         userpg->data_size = perf_data_size(rb);
5807
5808 unlock:
5809         rcu_read_unlock();
5810 }
5811
5812 void __weak arch_perf_update_userpage(
5813         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5814 {
5815 }
5816
5817 /*
5818  * Callers need to ensure there can be no nesting of this function, otherwise
5819  * the seqlock logic goes bad. We can not serialize this because the arch
5820  * code calls this from NMI context.
5821  */
5822 void perf_event_update_userpage(struct perf_event *event)
5823 {
5824         struct perf_event_mmap_page *userpg;
5825         struct perf_buffer *rb;
5826         u64 enabled, running, now;
5827
5828         rcu_read_lock();
5829         rb = rcu_dereference(event->rb);
5830         if (!rb)
5831                 goto unlock;
5832
5833         /*
5834          * compute total_time_enabled, total_time_running
5835          * based on snapshot values taken when the event
5836          * was last scheduled in.
5837          *
5838          * we cannot simply called update_context_time()
5839          * because of locking issue as we can be called in
5840          * NMI context
5841          */
5842         calc_timer_values(event, &now, &enabled, &running);
5843
5844         userpg = rb->user_page;
5845         /*
5846          * Disable preemption to guarantee consistent time stamps are stored to
5847          * the user page.
5848          */
5849         preempt_disable();
5850         ++userpg->lock;
5851         barrier();
5852         userpg->index = perf_event_index(event);
5853         userpg->offset = perf_event_count(event);
5854         if (userpg->index)
5855                 userpg->offset -= local64_read(&event->hw.prev_count);
5856
5857         userpg->time_enabled = enabled +
5858                         atomic64_read(&event->child_total_time_enabled);
5859
5860         userpg->time_running = running +
5861                         atomic64_read(&event->child_total_time_running);
5862
5863         arch_perf_update_userpage(event, userpg, now);
5864
5865         barrier();
5866         ++userpg->lock;
5867         preempt_enable();
5868 unlock:
5869         rcu_read_unlock();
5870 }
5871 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5872
5873 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5874 {
5875         struct perf_event *event = vmf->vma->vm_file->private_data;
5876         struct perf_buffer *rb;
5877         vm_fault_t ret = VM_FAULT_SIGBUS;
5878
5879         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5880                 if (vmf->pgoff == 0)
5881                         ret = 0;
5882                 return ret;
5883         }
5884
5885         rcu_read_lock();
5886         rb = rcu_dereference(event->rb);
5887         if (!rb)
5888                 goto unlock;
5889
5890         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5891                 goto unlock;
5892
5893         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5894         if (!vmf->page)
5895                 goto unlock;
5896
5897         get_page(vmf->page);
5898         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5899         vmf->page->index   = vmf->pgoff;
5900
5901         ret = 0;
5902 unlock:
5903         rcu_read_unlock();
5904
5905         return ret;
5906 }
5907
5908 static void ring_buffer_attach(struct perf_event *event,
5909                                struct perf_buffer *rb)
5910 {
5911         struct perf_buffer *old_rb = NULL;
5912         unsigned long flags;
5913
5914         WARN_ON_ONCE(event->parent);
5915
5916         if (event->rb) {
5917                 /*
5918                  * Should be impossible, we set this when removing
5919                  * event->rb_entry and wait/clear when adding event->rb_entry.
5920                  */
5921                 WARN_ON_ONCE(event->rcu_pending);
5922
5923                 old_rb = event->rb;
5924                 spin_lock_irqsave(&old_rb->event_lock, flags);
5925                 list_del_rcu(&event->rb_entry);
5926                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5927
5928                 event->rcu_batches = get_state_synchronize_rcu();
5929                 event->rcu_pending = 1;
5930         }
5931
5932         if (rb) {
5933                 if (event->rcu_pending) {
5934                         cond_synchronize_rcu(event->rcu_batches);
5935                         event->rcu_pending = 0;
5936                 }
5937
5938                 spin_lock_irqsave(&rb->event_lock, flags);
5939                 list_add_rcu(&event->rb_entry, &rb->event_list);
5940                 spin_unlock_irqrestore(&rb->event_lock, flags);
5941         }
5942
5943         /*
5944          * Avoid racing with perf_mmap_close(AUX): stop the event
5945          * before swizzling the event::rb pointer; if it's getting
5946          * unmapped, its aux_mmap_count will be 0 and it won't
5947          * restart. See the comment in __perf_pmu_output_stop().
5948          *
5949          * Data will inevitably be lost when set_output is done in
5950          * mid-air, but then again, whoever does it like this is
5951          * not in for the data anyway.
5952          */
5953         if (has_aux(event))
5954                 perf_event_stop(event, 0);
5955
5956         rcu_assign_pointer(event->rb, rb);
5957
5958         if (old_rb) {
5959                 ring_buffer_put(old_rb);
5960                 /*
5961                  * Since we detached before setting the new rb, so that we
5962                  * could attach the new rb, we could have missed a wakeup.
5963                  * Provide it now.
5964                  */
5965                 wake_up_all(&event->waitq);
5966         }
5967 }
5968
5969 static void ring_buffer_wakeup(struct perf_event *event)
5970 {
5971         struct perf_buffer *rb;
5972
5973         if (event->parent)
5974                 event = event->parent;
5975
5976         rcu_read_lock();
5977         rb = rcu_dereference(event->rb);
5978         if (rb) {
5979                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5980                         wake_up_all(&event->waitq);
5981         }
5982         rcu_read_unlock();
5983 }
5984
5985 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5986 {
5987         struct perf_buffer *rb;
5988
5989         if (event->parent)
5990                 event = event->parent;
5991
5992         rcu_read_lock();
5993         rb = rcu_dereference(event->rb);
5994         if (rb) {
5995                 if (!refcount_inc_not_zero(&rb->refcount))
5996                         rb = NULL;
5997         }
5998         rcu_read_unlock();
5999
6000         return rb;
6001 }
6002
6003 void ring_buffer_put(struct perf_buffer *rb)
6004 {
6005         if (!refcount_dec_and_test(&rb->refcount))
6006                 return;
6007
6008         WARN_ON_ONCE(!list_empty(&rb->event_list));
6009
6010         call_rcu(&rb->rcu_head, rb_free_rcu);
6011 }
6012
6013 static void perf_mmap_open(struct vm_area_struct *vma)
6014 {
6015         struct perf_event *event = vma->vm_file->private_data;
6016
6017         atomic_inc(&event->mmap_count);
6018         atomic_inc(&event->rb->mmap_count);
6019
6020         if (vma->vm_pgoff)
6021                 atomic_inc(&event->rb->aux_mmap_count);
6022
6023         if (event->pmu->event_mapped)
6024                 event->pmu->event_mapped(event, vma->vm_mm);
6025 }
6026
6027 static void perf_pmu_output_stop(struct perf_event *event);
6028
6029 /*
6030  * A buffer can be mmap()ed multiple times; either directly through the same
6031  * event, or through other events by use of perf_event_set_output().
6032  *
6033  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6034  * the buffer here, where we still have a VM context. This means we need
6035  * to detach all events redirecting to us.
6036  */
6037 static void perf_mmap_close(struct vm_area_struct *vma)
6038 {
6039         struct perf_event *event = vma->vm_file->private_data;
6040         struct perf_buffer *rb = ring_buffer_get(event);
6041         struct user_struct *mmap_user = rb->mmap_user;
6042         int mmap_locked = rb->mmap_locked;
6043         unsigned long size = perf_data_size(rb);
6044         bool detach_rest = false;
6045
6046         if (event->pmu->event_unmapped)
6047                 event->pmu->event_unmapped(event, vma->vm_mm);
6048
6049         /*
6050          * rb->aux_mmap_count will always drop before rb->mmap_count and
6051          * event->mmap_count, so it is ok to use event->mmap_mutex to
6052          * serialize with perf_mmap here.
6053          */
6054         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6055             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6056                 /*
6057                  * Stop all AUX events that are writing to this buffer,
6058                  * so that we can free its AUX pages and corresponding PMU
6059                  * data. Note that after rb::aux_mmap_count dropped to zero,
6060                  * they won't start any more (see perf_aux_output_begin()).
6061                  */
6062                 perf_pmu_output_stop(event);
6063
6064                 /* now it's safe to free the pages */
6065                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6066                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6067
6068                 /* this has to be the last one */
6069                 rb_free_aux(rb);
6070                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6071
6072                 mutex_unlock(&event->mmap_mutex);
6073         }
6074
6075         if (atomic_dec_and_test(&rb->mmap_count))
6076                 detach_rest = true;
6077
6078         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6079                 goto out_put;
6080
6081         ring_buffer_attach(event, NULL);
6082         mutex_unlock(&event->mmap_mutex);
6083
6084         /* If there's still other mmap()s of this buffer, we're done. */
6085         if (!detach_rest)
6086                 goto out_put;
6087
6088         /*
6089          * No other mmap()s, detach from all other events that might redirect
6090          * into the now unreachable buffer. Somewhat complicated by the
6091          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6092          */
6093 again:
6094         rcu_read_lock();
6095         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6096                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6097                         /*
6098                          * This event is en-route to free_event() which will
6099                          * detach it and remove it from the list.
6100                          */
6101                         continue;
6102                 }
6103                 rcu_read_unlock();
6104
6105                 mutex_lock(&event->mmap_mutex);
6106                 /*
6107                  * Check we didn't race with perf_event_set_output() which can
6108                  * swizzle the rb from under us while we were waiting to
6109                  * acquire mmap_mutex.
6110                  *
6111                  * If we find a different rb; ignore this event, a next
6112                  * iteration will no longer find it on the list. We have to
6113                  * still restart the iteration to make sure we're not now
6114                  * iterating the wrong list.
6115                  */
6116                 if (event->rb == rb)
6117                         ring_buffer_attach(event, NULL);
6118
6119                 mutex_unlock(&event->mmap_mutex);
6120                 put_event(event);
6121
6122                 /*
6123                  * Restart the iteration; either we're on the wrong list or
6124                  * destroyed its integrity by doing a deletion.
6125                  */
6126                 goto again;
6127         }
6128         rcu_read_unlock();
6129
6130         /*
6131          * It could be there's still a few 0-ref events on the list; they'll
6132          * get cleaned up by free_event() -- they'll also still have their
6133          * ref on the rb and will free it whenever they are done with it.
6134          *
6135          * Aside from that, this buffer is 'fully' detached and unmapped,
6136          * undo the VM accounting.
6137          */
6138
6139         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6140                         &mmap_user->locked_vm);
6141         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6142         free_uid(mmap_user);
6143
6144 out_put:
6145         ring_buffer_put(rb); /* could be last */
6146 }
6147
6148 static const struct vm_operations_struct perf_mmap_vmops = {
6149         .open           = perf_mmap_open,
6150         .close          = perf_mmap_close, /* non mergeable */
6151         .fault          = perf_mmap_fault,
6152         .page_mkwrite   = perf_mmap_fault,
6153 };
6154
6155 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6156 {
6157         struct perf_event *event = file->private_data;
6158         unsigned long user_locked, user_lock_limit;
6159         struct user_struct *user = current_user();
6160         struct perf_buffer *rb = NULL;
6161         unsigned long locked, lock_limit;
6162         unsigned long vma_size;
6163         unsigned long nr_pages;
6164         long user_extra = 0, extra = 0;
6165         int ret = 0, flags = 0;
6166
6167         /*
6168          * Don't allow mmap() of inherited per-task counters. This would
6169          * create a performance issue due to all children writing to the
6170          * same rb.
6171          */
6172         if (event->cpu == -1 && event->attr.inherit)
6173                 return -EINVAL;
6174
6175         if (!(vma->vm_flags & VM_SHARED))
6176                 return -EINVAL;
6177
6178         ret = security_perf_event_read(event);
6179         if (ret)
6180                 return ret;
6181
6182         vma_size = vma->vm_end - vma->vm_start;
6183
6184         if (vma->vm_pgoff == 0) {
6185                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6186         } else {
6187                 /*
6188                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6189                  * mapped, all subsequent mappings should have the same size
6190                  * and offset. Must be above the normal perf buffer.
6191                  */
6192                 u64 aux_offset, aux_size;
6193
6194                 if (!event->rb)
6195                         return -EINVAL;
6196
6197                 nr_pages = vma_size / PAGE_SIZE;
6198
6199                 mutex_lock(&event->mmap_mutex);
6200                 ret = -EINVAL;
6201
6202                 rb = event->rb;
6203                 if (!rb)
6204                         goto aux_unlock;
6205
6206                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6207                 aux_size = READ_ONCE(rb->user_page->aux_size);
6208
6209                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6210                         goto aux_unlock;
6211
6212                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6213                         goto aux_unlock;
6214
6215                 /* already mapped with a different offset */
6216                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6217                         goto aux_unlock;
6218
6219                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6220                         goto aux_unlock;
6221
6222                 /* already mapped with a different size */
6223                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6224                         goto aux_unlock;
6225
6226                 if (!is_power_of_2(nr_pages))
6227                         goto aux_unlock;
6228
6229                 if (!atomic_inc_not_zero(&rb->mmap_count))
6230                         goto aux_unlock;
6231
6232                 if (rb_has_aux(rb)) {
6233                         atomic_inc(&rb->aux_mmap_count);
6234                         ret = 0;
6235                         goto unlock;
6236                 }
6237
6238                 atomic_set(&rb->aux_mmap_count, 1);
6239                 user_extra = nr_pages;
6240
6241                 goto accounting;
6242         }
6243
6244         /*
6245          * If we have rb pages ensure they're a power-of-two number, so we
6246          * can do bitmasks instead of modulo.
6247          */
6248         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6249                 return -EINVAL;
6250
6251         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6252                 return -EINVAL;
6253
6254         WARN_ON_ONCE(event->ctx->parent_ctx);
6255 again:
6256         mutex_lock(&event->mmap_mutex);
6257         if (event->rb) {
6258                 if (data_page_nr(event->rb) != nr_pages) {
6259                         ret = -EINVAL;
6260                         goto unlock;
6261                 }
6262
6263                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6264                         /*
6265                          * Raced against perf_mmap_close(); remove the
6266                          * event and try again.
6267                          */
6268                         ring_buffer_attach(event, NULL);
6269                         mutex_unlock(&event->mmap_mutex);
6270                         goto again;
6271                 }
6272
6273                 goto unlock;
6274         }
6275
6276         user_extra = nr_pages + 1;
6277
6278 accounting:
6279         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6280
6281         /*
6282          * Increase the limit linearly with more CPUs:
6283          */
6284         user_lock_limit *= num_online_cpus();
6285
6286         user_locked = atomic_long_read(&user->locked_vm);
6287
6288         /*
6289          * sysctl_perf_event_mlock may have changed, so that
6290          *     user->locked_vm > user_lock_limit
6291          */
6292         if (user_locked > user_lock_limit)
6293                 user_locked = user_lock_limit;
6294         user_locked += user_extra;
6295
6296         if (user_locked > user_lock_limit) {
6297                 /*
6298                  * charge locked_vm until it hits user_lock_limit;
6299                  * charge the rest from pinned_vm
6300                  */
6301                 extra = user_locked - user_lock_limit;
6302                 user_extra -= extra;
6303         }
6304
6305         lock_limit = rlimit(RLIMIT_MEMLOCK);
6306         lock_limit >>= PAGE_SHIFT;
6307         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6308
6309         if ((locked > lock_limit) && perf_is_paranoid() &&
6310                 !capable(CAP_IPC_LOCK)) {
6311                 ret = -EPERM;
6312                 goto unlock;
6313         }
6314
6315         WARN_ON(!rb && event->rb);
6316
6317         if (vma->vm_flags & VM_WRITE)
6318                 flags |= RING_BUFFER_WRITABLE;
6319
6320         if (!rb) {
6321                 rb = rb_alloc(nr_pages,
6322                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6323                               event->cpu, flags);
6324
6325                 if (!rb) {
6326                         ret = -ENOMEM;
6327                         goto unlock;
6328                 }
6329
6330                 atomic_set(&rb->mmap_count, 1);
6331                 rb->mmap_user = get_current_user();
6332                 rb->mmap_locked = extra;
6333
6334                 ring_buffer_attach(event, rb);
6335
6336                 perf_event_update_time(event);
6337                 perf_event_init_userpage(event);
6338                 perf_event_update_userpage(event);
6339         } else {
6340                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6341                                    event->attr.aux_watermark, flags);
6342                 if (!ret)
6343                         rb->aux_mmap_locked = extra;
6344         }
6345
6346 unlock:
6347         if (!ret) {
6348                 atomic_long_add(user_extra, &user->locked_vm);
6349                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6350
6351                 atomic_inc(&event->mmap_count);
6352         } else if (rb) {
6353                 atomic_dec(&rb->mmap_count);
6354         }
6355 aux_unlock:
6356         mutex_unlock(&event->mmap_mutex);
6357
6358         /*
6359          * Since pinned accounting is per vm we cannot allow fork() to copy our
6360          * vma.
6361          */
6362         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6363         vma->vm_ops = &perf_mmap_vmops;
6364
6365         if (event->pmu->event_mapped)
6366                 event->pmu->event_mapped(event, vma->vm_mm);
6367
6368         return ret;
6369 }
6370
6371 static int perf_fasync(int fd, struct file *filp, int on)
6372 {
6373         struct inode *inode = file_inode(filp);
6374         struct perf_event *event = filp->private_data;
6375         int retval;
6376
6377         inode_lock(inode);
6378         retval = fasync_helper(fd, filp, on, &event->fasync);
6379         inode_unlock(inode);
6380
6381         if (retval < 0)
6382                 return retval;
6383
6384         return 0;
6385 }
6386
6387 static const struct file_operations perf_fops = {
6388         .llseek                 = no_llseek,
6389         .release                = perf_release,
6390         .read                   = perf_read,
6391         .poll                   = perf_poll,
6392         .unlocked_ioctl         = perf_ioctl,
6393         .compat_ioctl           = perf_compat_ioctl,
6394         .mmap                   = perf_mmap,
6395         .fasync                 = perf_fasync,
6396 };
6397
6398 /*
6399  * Perf event wakeup
6400  *
6401  * If there's data, ensure we set the poll() state and publish everything
6402  * to user-space before waking everybody up.
6403  */
6404
6405 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6406 {
6407         /* only the parent has fasync state */
6408         if (event->parent)
6409                 event = event->parent;
6410         return &event->fasync;
6411 }
6412
6413 void perf_event_wakeup(struct perf_event *event)
6414 {
6415         ring_buffer_wakeup(event);
6416
6417         if (event->pending_kill) {
6418                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6419                 event->pending_kill = 0;
6420         }
6421 }
6422
6423 static void perf_sigtrap(struct perf_event *event)
6424 {
6425         /*
6426          * We'd expect this to only occur if the irq_work is delayed and either
6427          * ctx->task or current has changed in the meantime. This can be the
6428          * case on architectures that do not implement arch_irq_work_raise().
6429          */
6430         if (WARN_ON_ONCE(event->ctx->task != current))
6431                 return;
6432
6433         /*
6434          * perf_pending_event() can race with the task exiting.
6435          */
6436         if (current->flags & PF_EXITING)
6437                 return;
6438
6439         send_sig_perf((void __user *)event->pending_addr,
6440                       event->attr.type, event->attr.sig_data);
6441 }
6442
6443 static void perf_pending_event_disable(struct perf_event *event)
6444 {
6445         int cpu = READ_ONCE(event->pending_disable);
6446
6447         if (cpu < 0)
6448                 return;
6449
6450         if (cpu == smp_processor_id()) {
6451                 WRITE_ONCE(event->pending_disable, -1);
6452
6453                 if (event->attr.sigtrap) {
6454                         perf_sigtrap(event);
6455                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6456                         return;
6457                 }
6458
6459                 perf_event_disable_local(event);
6460                 return;
6461         }
6462
6463         /*
6464          *  CPU-A                       CPU-B
6465          *
6466          *  perf_event_disable_inatomic()
6467          *    @pending_disable = CPU-A;
6468          *    irq_work_queue();
6469          *
6470          *  sched-out
6471          *    @pending_disable = -1;
6472          *
6473          *                              sched-in
6474          *                              perf_event_disable_inatomic()
6475          *                                @pending_disable = CPU-B;
6476          *                                irq_work_queue(); // FAILS
6477          *
6478          *  irq_work_run()
6479          *    perf_pending_event()
6480          *
6481          * But the event runs on CPU-B and wants disabling there.
6482          */
6483         irq_work_queue_on(&event->pending, cpu);
6484 }
6485
6486 static void perf_pending_event(struct irq_work *entry)
6487 {
6488         struct perf_event *event = container_of(entry, struct perf_event, pending);
6489         int rctx;
6490
6491         rctx = perf_swevent_get_recursion_context();
6492         /*
6493          * If we 'fail' here, that's OK, it means recursion is already disabled
6494          * and we won't recurse 'further'.
6495          */
6496
6497         perf_pending_event_disable(event);
6498
6499         if (event->pending_wakeup) {
6500                 event->pending_wakeup = 0;
6501                 perf_event_wakeup(event);
6502         }
6503
6504         if (rctx >= 0)
6505                 perf_swevent_put_recursion_context(rctx);
6506 }
6507
6508 #ifdef CONFIG_GUEST_PERF_EVENTS
6509 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6510
6511 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6512 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6513 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6514
6515 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6516 {
6517         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6518                 return;
6519
6520         rcu_assign_pointer(perf_guest_cbs, cbs);
6521         static_call_update(__perf_guest_state, cbs->state);
6522         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6523
6524         /* Implementing ->handle_intel_pt_intr is optional. */
6525         if (cbs->handle_intel_pt_intr)
6526                 static_call_update(__perf_guest_handle_intel_pt_intr,
6527                                    cbs->handle_intel_pt_intr);
6528 }
6529 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6530
6531 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6532 {
6533         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6534                 return;
6535
6536         rcu_assign_pointer(perf_guest_cbs, NULL);
6537         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6538         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6539         static_call_update(__perf_guest_handle_intel_pt_intr,
6540                            (void *)&__static_call_return0);
6541         synchronize_rcu();
6542 }
6543 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6544 #endif
6545
6546 static void
6547 perf_output_sample_regs(struct perf_output_handle *handle,
6548                         struct pt_regs *regs, u64 mask)
6549 {
6550         int bit;
6551         DECLARE_BITMAP(_mask, 64);
6552
6553         bitmap_from_u64(_mask, mask);
6554         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6555                 u64 val;
6556
6557                 val = perf_reg_value(regs, bit);
6558                 perf_output_put(handle, val);
6559         }
6560 }
6561
6562 static void perf_sample_regs_user(struct perf_regs *regs_user,
6563                                   struct pt_regs *regs)
6564 {
6565         if (user_mode(regs)) {
6566                 regs_user->abi = perf_reg_abi(current);
6567                 regs_user->regs = regs;
6568         } else if (!(current->flags & PF_KTHREAD)) {
6569                 perf_get_regs_user(regs_user, regs);
6570         } else {
6571                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6572                 regs_user->regs = NULL;
6573         }
6574 }
6575
6576 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6577                                   struct pt_regs *regs)
6578 {
6579         regs_intr->regs = regs;
6580         regs_intr->abi  = perf_reg_abi(current);
6581 }
6582
6583
6584 /*
6585  * Get remaining task size from user stack pointer.
6586  *
6587  * It'd be better to take stack vma map and limit this more
6588  * precisely, but there's no way to get it safely under interrupt,
6589  * so using TASK_SIZE as limit.
6590  */
6591 static u64 perf_ustack_task_size(struct pt_regs *regs)
6592 {
6593         unsigned long addr = perf_user_stack_pointer(regs);
6594
6595         if (!addr || addr >= TASK_SIZE)
6596                 return 0;
6597
6598         return TASK_SIZE - addr;
6599 }
6600
6601 static u16
6602 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6603                         struct pt_regs *regs)
6604 {
6605         u64 task_size;
6606
6607         /* No regs, no stack pointer, no dump. */
6608         if (!regs)
6609                 return 0;
6610
6611         /*
6612          * Check if we fit in with the requested stack size into the:
6613          * - TASK_SIZE
6614          *   If we don't, we limit the size to the TASK_SIZE.
6615          *
6616          * - remaining sample size
6617          *   If we don't, we customize the stack size to
6618          *   fit in to the remaining sample size.
6619          */
6620
6621         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6622         stack_size = min(stack_size, (u16) task_size);
6623
6624         /* Current header size plus static size and dynamic size. */
6625         header_size += 2 * sizeof(u64);
6626
6627         /* Do we fit in with the current stack dump size? */
6628         if ((u16) (header_size + stack_size) < header_size) {
6629                 /*
6630                  * If we overflow the maximum size for the sample,
6631                  * we customize the stack dump size to fit in.
6632                  */
6633                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6634                 stack_size = round_up(stack_size, sizeof(u64));
6635         }
6636
6637         return stack_size;
6638 }
6639
6640 static void
6641 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6642                           struct pt_regs *regs)
6643 {
6644         /* Case of a kernel thread, nothing to dump */
6645         if (!regs) {
6646                 u64 size = 0;
6647                 perf_output_put(handle, size);
6648         } else {
6649                 unsigned long sp;
6650                 unsigned int rem;
6651                 u64 dyn_size;
6652
6653                 /*
6654                  * We dump:
6655                  * static size
6656                  *   - the size requested by user or the best one we can fit
6657                  *     in to the sample max size
6658                  * data
6659                  *   - user stack dump data
6660                  * dynamic size
6661                  *   - the actual dumped size
6662                  */
6663
6664                 /* Static size. */
6665                 perf_output_put(handle, dump_size);
6666
6667                 /* Data. */
6668                 sp = perf_user_stack_pointer(regs);
6669                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6670                 dyn_size = dump_size - rem;
6671
6672                 perf_output_skip(handle, rem);
6673
6674                 /* Dynamic size. */
6675                 perf_output_put(handle, dyn_size);
6676         }
6677 }
6678
6679 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6680                                           struct perf_sample_data *data,
6681                                           size_t size)
6682 {
6683         struct perf_event *sampler = event->aux_event;
6684         struct perf_buffer *rb;
6685
6686         data->aux_size = 0;
6687
6688         if (!sampler)
6689                 goto out;
6690
6691         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6692                 goto out;
6693
6694         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6695                 goto out;
6696
6697         rb = ring_buffer_get(sampler);
6698         if (!rb)
6699                 goto out;
6700
6701         /*
6702          * If this is an NMI hit inside sampling code, don't take
6703          * the sample. See also perf_aux_sample_output().
6704          */
6705         if (READ_ONCE(rb->aux_in_sampling)) {
6706                 data->aux_size = 0;
6707         } else {
6708                 size = min_t(size_t, size, perf_aux_size(rb));
6709                 data->aux_size = ALIGN(size, sizeof(u64));
6710         }
6711         ring_buffer_put(rb);
6712
6713 out:
6714         return data->aux_size;
6715 }
6716
6717 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6718                                  struct perf_event *event,
6719                                  struct perf_output_handle *handle,
6720                                  unsigned long size)
6721 {
6722         unsigned long flags;
6723         long ret;
6724
6725         /*
6726          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6727          * paths. If we start calling them in NMI context, they may race with
6728          * the IRQ ones, that is, for example, re-starting an event that's just
6729          * been stopped, which is why we're using a separate callback that
6730          * doesn't change the event state.
6731          *
6732          * IRQs need to be disabled to prevent IPIs from racing with us.
6733          */
6734         local_irq_save(flags);
6735         /*
6736          * Guard against NMI hits inside the critical section;
6737          * see also perf_prepare_sample_aux().
6738          */
6739         WRITE_ONCE(rb->aux_in_sampling, 1);
6740         barrier();
6741
6742         ret = event->pmu->snapshot_aux(event, handle, size);
6743
6744         barrier();
6745         WRITE_ONCE(rb->aux_in_sampling, 0);
6746         local_irq_restore(flags);
6747
6748         return ret;
6749 }
6750
6751 static void perf_aux_sample_output(struct perf_event *event,
6752                                    struct perf_output_handle *handle,
6753                                    struct perf_sample_data *data)
6754 {
6755         struct perf_event *sampler = event->aux_event;
6756         struct perf_buffer *rb;
6757         unsigned long pad;
6758         long size;
6759
6760         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6761                 return;
6762
6763         rb = ring_buffer_get(sampler);
6764         if (!rb)
6765                 return;
6766
6767         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6768
6769         /*
6770          * An error here means that perf_output_copy() failed (returned a
6771          * non-zero surplus that it didn't copy), which in its current
6772          * enlightened implementation is not possible. If that changes, we'd
6773          * like to know.
6774          */
6775         if (WARN_ON_ONCE(size < 0))
6776                 goto out_put;
6777
6778         /*
6779          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6780          * perf_prepare_sample_aux(), so should not be more than that.
6781          */
6782         pad = data->aux_size - size;
6783         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6784                 pad = 8;
6785
6786         if (pad) {
6787                 u64 zero = 0;
6788                 perf_output_copy(handle, &zero, pad);
6789         }
6790
6791 out_put:
6792         ring_buffer_put(rb);
6793 }
6794
6795 static void __perf_event_header__init_id(struct perf_event_header *header,
6796                                          struct perf_sample_data *data,
6797                                          struct perf_event *event)
6798 {
6799         u64 sample_type = event->attr.sample_type;
6800
6801         data->type = sample_type;
6802         header->size += event->id_header_size;
6803
6804         if (sample_type & PERF_SAMPLE_TID) {
6805                 /* namespace issues */
6806                 data->tid_entry.pid = perf_event_pid(event, current);
6807                 data->tid_entry.tid = perf_event_tid(event, current);
6808         }
6809
6810         if (sample_type & PERF_SAMPLE_TIME)
6811                 data->time = perf_event_clock(event);
6812
6813         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6814                 data->id = primary_event_id(event);
6815
6816         if (sample_type & PERF_SAMPLE_STREAM_ID)
6817                 data->stream_id = event->id;
6818
6819         if (sample_type & PERF_SAMPLE_CPU) {
6820                 data->cpu_entry.cpu      = raw_smp_processor_id();
6821                 data->cpu_entry.reserved = 0;
6822         }
6823 }
6824
6825 void perf_event_header__init_id(struct perf_event_header *header,
6826                                 struct perf_sample_data *data,
6827                                 struct perf_event *event)
6828 {
6829         if (event->attr.sample_id_all)
6830                 __perf_event_header__init_id(header, data, event);
6831 }
6832
6833 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6834                                            struct perf_sample_data *data)
6835 {
6836         u64 sample_type = data->type;
6837
6838         if (sample_type & PERF_SAMPLE_TID)
6839                 perf_output_put(handle, data->tid_entry);
6840
6841         if (sample_type & PERF_SAMPLE_TIME)
6842                 perf_output_put(handle, data->time);
6843
6844         if (sample_type & PERF_SAMPLE_ID)
6845                 perf_output_put(handle, data->id);
6846
6847         if (sample_type & PERF_SAMPLE_STREAM_ID)
6848                 perf_output_put(handle, data->stream_id);
6849
6850         if (sample_type & PERF_SAMPLE_CPU)
6851                 perf_output_put(handle, data->cpu_entry);
6852
6853         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6854                 perf_output_put(handle, data->id);
6855 }
6856
6857 void perf_event__output_id_sample(struct perf_event *event,
6858                                   struct perf_output_handle *handle,
6859                                   struct perf_sample_data *sample)
6860 {
6861         if (event->attr.sample_id_all)
6862                 __perf_event__output_id_sample(handle, sample);
6863 }
6864
6865 static void perf_output_read_one(struct perf_output_handle *handle,
6866                                  struct perf_event *event,
6867                                  u64 enabled, u64 running)
6868 {
6869         u64 read_format = event->attr.read_format;
6870         u64 values[5];
6871         int n = 0;
6872
6873         values[n++] = perf_event_count(event);
6874         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6875                 values[n++] = enabled +
6876                         atomic64_read(&event->child_total_time_enabled);
6877         }
6878         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6879                 values[n++] = running +
6880                         atomic64_read(&event->child_total_time_running);
6881         }
6882         if (read_format & PERF_FORMAT_ID)
6883                 values[n++] = primary_event_id(event);
6884         if (read_format & PERF_FORMAT_LOST)
6885                 values[n++] = atomic64_read(&event->lost_samples);
6886
6887         __output_copy(handle, values, n * sizeof(u64));
6888 }
6889
6890 static void perf_output_read_group(struct perf_output_handle *handle,
6891                             struct perf_event *event,
6892                             u64 enabled, u64 running)
6893 {
6894         struct perf_event *leader = event->group_leader, *sub;
6895         u64 read_format = event->attr.read_format;
6896         u64 values[6];
6897         int n = 0;
6898
6899         values[n++] = 1 + leader->nr_siblings;
6900
6901         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6902                 values[n++] = enabled;
6903
6904         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6905                 values[n++] = running;
6906
6907         if ((leader != event) &&
6908             (leader->state == PERF_EVENT_STATE_ACTIVE))
6909                 leader->pmu->read(leader);
6910
6911         values[n++] = perf_event_count(leader);
6912         if (read_format & PERF_FORMAT_ID)
6913                 values[n++] = primary_event_id(leader);
6914         if (read_format & PERF_FORMAT_LOST)
6915                 values[n++] = atomic64_read(&leader->lost_samples);
6916
6917         __output_copy(handle, values, n * sizeof(u64));
6918
6919         for_each_sibling_event(sub, leader) {
6920                 n = 0;
6921
6922                 if ((sub != event) &&
6923                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6924                         sub->pmu->read(sub);
6925
6926                 values[n++] = perf_event_count(sub);
6927                 if (read_format & PERF_FORMAT_ID)
6928                         values[n++] = primary_event_id(sub);
6929                 if (read_format & PERF_FORMAT_LOST)
6930                         values[n++] = atomic64_read(&sub->lost_samples);
6931
6932                 __output_copy(handle, values, n * sizeof(u64));
6933         }
6934 }
6935
6936 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6937                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6938
6939 /*
6940  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6941  *
6942  * The problem is that its both hard and excessively expensive to iterate the
6943  * child list, not to mention that its impossible to IPI the children running
6944  * on another CPU, from interrupt/NMI context.
6945  */
6946 static void perf_output_read(struct perf_output_handle *handle,
6947                              struct perf_event *event)
6948 {
6949         u64 enabled = 0, running = 0, now;
6950         u64 read_format = event->attr.read_format;
6951
6952         /*
6953          * compute total_time_enabled, total_time_running
6954          * based on snapshot values taken when the event
6955          * was last scheduled in.
6956          *
6957          * we cannot simply called update_context_time()
6958          * because of locking issue as we are called in
6959          * NMI context
6960          */
6961         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6962                 calc_timer_values(event, &now, &enabled, &running);
6963
6964         if (event->attr.read_format & PERF_FORMAT_GROUP)
6965                 perf_output_read_group(handle, event, enabled, running);
6966         else
6967                 perf_output_read_one(handle, event, enabled, running);
6968 }
6969
6970 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6971 {
6972         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6973 }
6974
6975 void perf_output_sample(struct perf_output_handle *handle,
6976                         struct perf_event_header *header,
6977                         struct perf_sample_data *data,
6978                         struct perf_event *event)
6979 {
6980         u64 sample_type = data->type;
6981
6982         perf_output_put(handle, *header);
6983
6984         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6985                 perf_output_put(handle, data->id);
6986
6987         if (sample_type & PERF_SAMPLE_IP)
6988                 perf_output_put(handle, data->ip);
6989
6990         if (sample_type & PERF_SAMPLE_TID)
6991                 perf_output_put(handle, data->tid_entry);
6992
6993         if (sample_type & PERF_SAMPLE_TIME)
6994                 perf_output_put(handle, data->time);
6995
6996         if (sample_type & PERF_SAMPLE_ADDR)
6997                 perf_output_put(handle, data->addr);
6998
6999         if (sample_type & PERF_SAMPLE_ID)
7000                 perf_output_put(handle, data->id);
7001
7002         if (sample_type & PERF_SAMPLE_STREAM_ID)
7003                 perf_output_put(handle, data->stream_id);
7004
7005         if (sample_type & PERF_SAMPLE_CPU)
7006                 perf_output_put(handle, data->cpu_entry);
7007
7008         if (sample_type & PERF_SAMPLE_PERIOD)
7009                 perf_output_put(handle, data->period);
7010
7011         if (sample_type & PERF_SAMPLE_READ)
7012                 perf_output_read(handle, event);
7013
7014         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7015                 int size = 1;
7016
7017                 size += data->callchain->nr;
7018                 size *= sizeof(u64);
7019                 __output_copy(handle, data->callchain, size);
7020         }
7021
7022         if (sample_type & PERF_SAMPLE_RAW) {
7023                 struct perf_raw_record *raw = data->raw;
7024
7025                 if (raw) {
7026                         struct perf_raw_frag *frag = &raw->frag;
7027
7028                         perf_output_put(handle, raw->size);
7029                         do {
7030                                 if (frag->copy) {
7031                                         __output_custom(handle, frag->copy,
7032                                                         frag->data, frag->size);
7033                                 } else {
7034                                         __output_copy(handle, frag->data,
7035                                                       frag->size);
7036                                 }
7037                                 if (perf_raw_frag_last(frag))
7038                                         break;
7039                                 frag = frag->next;
7040                         } while (1);
7041                         if (frag->pad)
7042                                 __output_skip(handle, NULL, frag->pad);
7043                 } else {
7044                         struct {
7045                                 u32     size;
7046                                 u32     data;
7047                         } raw = {
7048                                 .size = sizeof(u32),
7049                                 .data = 0,
7050                         };
7051                         perf_output_put(handle, raw);
7052                 }
7053         }
7054
7055         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7056                 if (data->br_stack) {
7057                         size_t size;
7058
7059                         size = data->br_stack->nr
7060                              * sizeof(struct perf_branch_entry);
7061
7062                         perf_output_put(handle, data->br_stack->nr);
7063                         if (perf_sample_save_hw_index(event))
7064                                 perf_output_put(handle, data->br_stack->hw_idx);
7065                         perf_output_copy(handle, data->br_stack->entries, size);
7066                 } else {
7067                         /*
7068                          * we always store at least the value of nr
7069                          */
7070                         u64 nr = 0;
7071                         perf_output_put(handle, nr);
7072                 }
7073         }
7074
7075         if (sample_type & PERF_SAMPLE_REGS_USER) {
7076                 u64 abi = data->regs_user.abi;
7077
7078                 /*
7079                  * If there are no regs to dump, notice it through
7080                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7081                  */
7082                 perf_output_put(handle, abi);
7083
7084                 if (abi) {
7085                         u64 mask = event->attr.sample_regs_user;
7086                         perf_output_sample_regs(handle,
7087                                                 data->regs_user.regs,
7088                                                 mask);
7089                 }
7090         }
7091
7092         if (sample_type & PERF_SAMPLE_STACK_USER) {
7093                 perf_output_sample_ustack(handle,
7094                                           data->stack_user_size,
7095                                           data->regs_user.regs);
7096         }
7097
7098         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7099                 perf_output_put(handle, data->weight.full);
7100
7101         if (sample_type & PERF_SAMPLE_DATA_SRC)
7102                 perf_output_put(handle, data->data_src.val);
7103
7104         if (sample_type & PERF_SAMPLE_TRANSACTION)
7105                 perf_output_put(handle, data->txn);
7106
7107         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7108                 u64 abi = data->regs_intr.abi;
7109                 /*
7110                  * If there are no regs to dump, notice it through
7111                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7112                  */
7113                 perf_output_put(handle, abi);
7114
7115                 if (abi) {
7116                         u64 mask = event->attr.sample_regs_intr;
7117
7118                         perf_output_sample_regs(handle,
7119                                                 data->regs_intr.regs,
7120                                                 mask);
7121                 }
7122         }
7123
7124         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7125                 perf_output_put(handle, data->phys_addr);
7126
7127         if (sample_type & PERF_SAMPLE_CGROUP)
7128                 perf_output_put(handle, data->cgroup);
7129
7130         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7131                 perf_output_put(handle, data->data_page_size);
7132
7133         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7134                 perf_output_put(handle, data->code_page_size);
7135
7136         if (sample_type & PERF_SAMPLE_AUX) {
7137                 perf_output_put(handle, data->aux_size);
7138
7139                 if (data->aux_size)
7140                         perf_aux_sample_output(event, handle, data);
7141         }
7142
7143         if (!event->attr.watermark) {
7144                 int wakeup_events = event->attr.wakeup_events;
7145
7146                 if (wakeup_events) {
7147                         struct perf_buffer *rb = handle->rb;
7148                         int events = local_inc_return(&rb->events);
7149
7150                         if (events >= wakeup_events) {
7151                                 local_sub(wakeup_events, &rb->events);
7152                                 local_inc(&rb->wakeup);
7153                         }
7154                 }
7155         }
7156 }
7157
7158 static u64 perf_virt_to_phys(u64 virt)
7159 {
7160         u64 phys_addr = 0;
7161
7162         if (!virt)
7163                 return 0;
7164
7165         if (virt >= TASK_SIZE) {
7166                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7167                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7168                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7169                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7170         } else {
7171                 /*
7172                  * Walking the pages tables for user address.
7173                  * Interrupts are disabled, so it prevents any tear down
7174                  * of the page tables.
7175                  * Try IRQ-safe get_user_page_fast_only first.
7176                  * If failed, leave phys_addr as 0.
7177                  */
7178                 if (current->mm != NULL) {
7179                         struct page *p;
7180
7181                         pagefault_disable();
7182                         if (get_user_page_fast_only(virt, 0, &p)) {
7183                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7184                                 put_page(p);
7185                         }
7186                         pagefault_enable();
7187                 }
7188         }
7189
7190         return phys_addr;
7191 }
7192
7193 /*
7194  * Return the pagetable size of a given virtual address.
7195  */
7196 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7197 {
7198         u64 size = 0;
7199
7200 #ifdef CONFIG_HAVE_FAST_GUP
7201         pgd_t *pgdp, pgd;
7202         p4d_t *p4dp, p4d;
7203         pud_t *pudp, pud;
7204         pmd_t *pmdp, pmd;
7205         pte_t *ptep, pte;
7206
7207         pgdp = pgd_offset(mm, addr);
7208         pgd = READ_ONCE(*pgdp);
7209         if (pgd_none(pgd))
7210                 return 0;
7211
7212         if (pgd_leaf(pgd))
7213                 return pgd_leaf_size(pgd);
7214
7215         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7216         p4d = READ_ONCE(*p4dp);
7217         if (!p4d_present(p4d))
7218                 return 0;
7219
7220         if (p4d_leaf(p4d))
7221                 return p4d_leaf_size(p4d);
7222
7223         pudp = pud_offset_lockless(p4dp, p4d, addr);
7224         pud = READ_ONCE(*pudp);
7225         if (!pud_present(pud))
7226                 return 0;
7227
7228         if (pud_leaf(pud))
7229                 return pud_leaf_size(pud);
7230
7231         pmdp = pmd_offset_lockless(pudp, pud, addr);
7232         pmd = READ_ONCE(*pmdp);
7233         if (!pmd_present(pmd))
7234                 return 0;
7235
7236         if (pmd_leaf(pmd))
7237                 return pmd_leaf_size(pmd);
7238
7239         ptep = pte_offset_map(&pmd, addr);
7240         pte = ptep_get_lockless(ptep);
7241         if (pte_present(pte))
7242                 size = pte_leaf_size(pte);
7243         pte_unmap(ptep);
7244 #endif /* CONFIG_HAVE_FAST_GUP */
7245
7246         return size;
7247 }
7248
7249 static u64 perf_get_page_size(unsigned long addr)
7250 {
7251         struct mm_struct *mm;
7252         unsigned long flags;
7253         u64 size;
7254
7255         if (!addr)
7256                 return 0;
7257
7258         /*
7259          * Software page-table walkers must disable IRQs,
7260          * which prevents any tear down of the page tables.
7261          */
7262         local_irq_save(flags);
7263
7264         mm = current->mm;
7265         if (!mm) {
7266                 /*
7267                  * For kernel threads and the like, use init_mm so that
7268                  * we can find kernel memory.
7269                  */
7270                 mm = &init_mm;
7271         }
7272
7273         size = perf_get_pgtable_size(mm, addr);
7274
7275         local_irq_restore(flags);
7276
7277         return size;
7278 }
7279
7280 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7281
7282 struct perf_callchain_entry *
7283 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7284 {
7285         bool kernel = !event->attr.exclude_callchain_kernel;
7286         bool user   = !event->attr.exclude_callchain_user;
7287         /* Disallow cross-task user callchains. */
7288         bool crosstask = event->ctx->task && event->ctx->task != current;
7289         const u32 max_stack = event->attr.sample_max_stack;
7290         struct perf_callchain_entry *callchain;
7291
7292         if (!kernel && !user)
7293                 return &__empty_callchain;
7294
7295         callchain = get_perf_callchain(regs, 0, kernel, user,
7296                                        max_stack, crosstask, true);
7297         return callchain ?: &__empty_callchain;
7298 }
7299
7300 void perf_prepare_sample(struct perf_event_header *header,
7301                          struct perf_sample_data *data,
7302                          struct perf_event *event,
7303                          struct pt_regs *regs)
7304 {
7305         u64 sample_type = event->attr.sample_type;
7306
7307         header->type = PERF_RECORD_SAMPLE;
7308         header->size = sizeof(*header) + event->header_size;
7309
7310         header->misc = 0;
7311         header->misc |= perf_misc_flags(regs);
7312
7313         __perf_event_header__init_id(header, data, event);
7314
7315         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7316                 data->ip = perf_instruction_pointer(regs);
7317
7318         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7319                 int size = 1;
7320
7321                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7322                         data->callchain = perf_callchain(event, regs);
7323
7324                 size += data->callchain->nr;
7325
7326                 header->size += size * sizeof(u64);
7327         }
7328
7329         if (sample_type & PERF_SAMPLE_RAW) {
7330                 struct perf_raw_record *raw = data->raw;
7331                 int size;
7332
7333                 if (raw) {
7334                         struct perf_raw_frag *frag = &raw->frag;
7335                         u32 sum = 0;
7336
7337                         do {
7338                                 sum += frag->size;
7339                                 if (perf_raw_frag_last(frag))
7340                                         break;
7341                                 frag = frag->next;
7342                         } while (1);
7343
7344                         size = round_up(sum + sizeof(u32), sizeof(u64));
7345                         raw->size = size - sizeof(u32);
7346                         frag->pad = raw->size - sum;
7347                 } else {
7348                         size = sizeof(u64);
7349                 }
7350
7351                 header->size += size;
7352         }
7353
7354         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7355                 int size = sizeof(u64); /* nr */
7356                 if (data->br_stack) {
7357                         if (perf_sample_save_hw_index(event))
7358                                 size += sizeof(u64);
7359
7360                         size += data->br_stack->nr
7361                               * sizeof(struct perf_branch_entry);
7362                 }
7363                 header->size += size;
7364         }
7365
7366         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7367                 perf_sample_regs_user(&data->regs_user, regs);
7368
7369         if (sample_type & PERF_SAMPLE_REGS_USER) {
7370                 /* regs dump ABI info */
7371                 int size = sizeof(u64);
7372
7373                 if (data->regs_user.regs) {
7374                         u64 mask = event->attr.sample_regs_user;
7375                         size += hweight64(mask) * sizeof(u64);
7376                 }
7377
7378                 header->size += size;
7379         }
7380
7381         if (sample_type & PERF_SAMPLE_STACK_USER) {
7382                 /*
7383                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7384                  * processed as the last one or have additional check added
7385                  * in case new sample type is added, because we could eat
7386                  * up the rest of the sample size.
7387                  */
7388                 u16 stack_size = event->attr.sample_stack_user;
7389                 u16 size = sizeof(u64);
7390
7391                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7392                                                      data->regs_user.regs);
7393
7394                 /*
7395                  * If there is something to dump, add space for the dump
7396                  * itself and for the field that tells the dynamic size,
7397                  * which is how many have been actually dumped.
7398                  */
7399                 if (stack_size)
7400                         size += sizeof(u64) + stack_size;
7401
7402                 data->stack_user_size = stack_size;
7403                 header->size += size;
7404         }
7405
7406         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7407                 /* regs dump ABI info */
7408                 int size = sizeof(u64);
7409
7410                 perf_sample_regs_intr(&data->regs_intr, regs);
7411
7412                 if (data->regs_intr.regs) {
7413                         u64 mask = event->attr.sample_regs_intr;
7414
7415                         size += hweight64(mask) * sizeof(u64);
7416                 }
7417
7418                 header->size += size;
7419         }
7420
7421         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7422                 data->phys_addr = perf_virt_to_phys(data->addr);
7423
7424 #ifdef CONFIG_CGROUP_PERF
7425         if (sample_type & PERF_SAMPLE_CGROUP) {
7426                 struct cgroup *cgrp;
7427
7428                 /* protected by RCU */
7429                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7430                 data->cgroup = cgroup_id(cgrp);
7431         }
7432 #endif
7433
7434         /*
7435          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7436          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7437          * but the value will not dump to the userspace.
7438          */
7439         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7440                 data->data_page_size = perf_get_page_size(data->addr);
7441
7442         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7443                 data->code_page_size = perf_get_page_size(data->ip);
7444
7445         if (sample_type & PERF_SAMPLE_AUX) {
7446                 u64 size;
7447
7448                 header->size += sizeof(u64); /* size */
7449
7450                 /*
7451                  * Given the 16bit nature of header::size, an AUX sample can
7452                  * easily overflow it, what with all the preceding sample bits.
7453                  * Make sure this doesn't happen by using up to U16_MAX bytes
7454                  * per sample in total (rounded down to 8 byte boundary).
7455                  */
7456                 size = min_t(size_t, U16_MAX - header->size,
7457                              event->attr.aux_sample_size);
7458                 size = rounddown(size, 8);
7459                 size = perf_prepare_sample_aux(event, data, size);
7460
7461                 WARN_ON_ONCE(size + header->size > U16_MAX);
7462                 header->size += size;
7463         }
7464         /*
7465          * If you're adding more sample types here, you likely need to do
7466          * something about the overflowing header::size, like repurpose the
7467          * lowest 3 bits of size, which should be always zero at the moment.
7468          * This raises a more important question, do we really need 512k sized
7469          * samples and why, so good argumentation is in order for whatever you
7470          * do here next.
7471          */
7472         WARN_ON_ONCE(header->size & 7);
7473 }
7474
7475 static __always_inline int
7476 __perf_event_output(struct perf_event *event,
7477                     struct perf_sample_data *data,
7478                     struct pt_regs *regs,
7479                     int (*output_begin)(struct perf_output_handle *,
7480                                         struct perf_sample_data *,
7481                                         struct perf_event *,
7482                                         unsigned int))
7483 {
7484         struct perf_output_handle handle;
7485         struct perf_event_header header;
7486         int err;
7487
7488         /* protect the callchain buffers */
7489         rcu_read_lock();
7490
7491         perf_prepare_sample(&header, data, event, regs);
7492
7493         err = output_begin(&handle, data, event, header.size);
7494         if (err)
7495                 goto exit;
7496
7497         perf_output_sample(&handle, &header, data, event);
7498
7499         perf_output_end(&handle);
7500
7501 exit:
7502         rcu_read_unlock();
7503         return err;
7504 }
7505
7506 void
7507 perf_event_output_forward(struct perf_event *event,
7508                          struct perf_sample_data *data,
7509                          struct pt_regs *regs)
7510 {
7511         __perf_event_output(event, data, regs, perf_output_begin_forward);
7512 }
7513
7514 void
7515 perf_event_output_backward(struct perf_event *event,
7516                            struct perf_sample_data *data,
7517                            struct pt_regs *regs)
7518 {
7519         __perf_event_output(event, data, regs, perf_output_begin_backward);
7520 }
7521
7522 int
7523 perf_event_output(struct perf_event *event,
7524                   struct perf_sample_data *data,
7525                   struct pt_regs *regs)
7526 {
7527         return __perf_event_output(event, data, regs, perf_output_begin);
7528 }
7529
7530 /*
7531  * read event_id
7532  */
7533
7534 struct perf_read_event {
7535         struct perf_event_header        header;
7536
7537         u32                             pid;
7538         u32                             tid;
7539 };
7540
7541 static void
7542 perf_event_read_event(struct perf_event *event,
7543                         struct task_struct *task)
7544 {
7545         struct perf_output_handle handle;
7546         struct perf_sample_data sample;
7547         struct perf_read_event read_event = {
7548                 .header = {
7549                         .type = PERF_RECORD_READ,
7550                         .misc = 0,
7551                         .size = sizeof(read_event) + event->read_size,
7552                 },
7553                 .pid = perf_event_pid(event, task),
7554                 .tid = perf_event_tid(event, task),
7555         };
7556         int ret;
7557
7558         perf_event_header__init_id(&read_event.header, &sample, event);
7559         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7560         if (ret)
7561                 return;
7562
7563         perf_output_put(&handle, read_event);
7564         perf_output_read(&handle, event);
7565         perf_event__output_id_sample(event, &handle, &sample);
7566
7567         perf_output_end(&handle);
7568 }
7569
7570 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7571
7572 static void
7573 perf_iterate_ctx(struct perf_event_context *ctx,
7574                    perf_iterate_f output,
7575                    void *data, bool all)
7576 {
7577         struct perf_event *event;
7578
7579         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7580                 if (!all) {
7581                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7582                                 continue;
7583                         if (!event_filter_match(event))
7584                                 continue;
7585                 }
7586
7587                 output(event, data);
7588         }
7589 }
7590
7591 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7592 {
7593         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7594         struct perf_event *event;
7595
7596         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7597                 /*
7598                  * Skip events that are not fully formed yet; ensure that
7599                  * if we observe event->ctx, both event and ctx will be
7600                  * complete enough. See perf_install_in_context().
7601                  */
7602                 if (!smp_load_acquire(&event->ctx))
7603                         continue;
7604
7605                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7606                         continue;
7607                 if (!event_filter_match(event))
7608                         continue;
7609                 output(event, data);
7610         }
7611 }
7612
7613 /*
7614  * Iterate all events that need to receive side-band events.
7615  *
7616  * For new callers; ensure that account_pmu_sb_event() includes
7617  * your event, otherwise it might not get delivered.
7618  */
7619 static void
7620 perf_iterate_sb(perf_iterate_f output, void *data,
7621                struct perf_event_context *task_ctx)
7622 {
7623         struct perf_event_context *ctx;
7624         int ctxn;
7625
7626         rcu_read_lock();
7627         preempt_disable();
7628
7629         /*
7630          * If we have task_ctx != NULL we only notify the task context itself.
7631          * The task_ctx is set only for EXIT events before releasing task
7632          * context.
7633          */
7634         if (task_ctx) {
7635                 perf_iterate_ctx(task_ctx, output, data, false);
7636                 goto done;
7637         }
7638
7639         perf_iterate_sb_cpu(output, data);
7640
7641         for_each_task_context_nr(ctxn) {
7642                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7643                 if (ctx)
7644                         perf_iterate_ctx(ctx, output, data, false);
7645         }
7646 done:
7647         preempt_enable();
7648         rcu_read_unlock();
7649 }
7650
7651 /*
7652  * Clear all file-based filters at exec, they'll have to be
7653  * re-instated when/if these objects are mmapped again.
7654  */
7655 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7656 {
7657         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7658         struct perf_addr_filter *filter;
7659         unsigned int restart = 0, count = 0;
7660         unsigned long flags;
7661
7662         if (!has_addr_filter(event))
7663                 return;
7664
7665         raw_spin_lock_irqsave(&ifh->lock, flags);
7666         list_for_each_entry(filter, &ifh->list, entry) {
7667                 if (filter->path.dentry) {
7668                         event->addr_filter_ranges[count].start = 0;
7669                         event->addr_filter_ranges[count].size = 0;
7670                         restart++;
7671                 }
7672
7673                 count++;
7674         }
7675
7676         if (restart)
7677                 event->addr_filters_gen++;
7678         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7679
7680         if (restart)
7681                 perf_event_stop(event, 1);
7682 }
7683
7684 void perf_event_exec(void)
7685 {
7686         struct perf_event_context *ctx;
7687         int ctxn;
7688
7689         for_each_task_context_nr(ctxn) {
7690                 perf_event_enable_on_exec(ctxn);
7691                 perf_event_remove_on_exec(ctxn);
7692
7693                 rcu_read_lock();
7694                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7695                 if (ctx) {
7696                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7697                                          NULL, true);
7698                 }
7699                 rcu_read_unlock();
7700         }
7701 }
7702
7703 struct remote_output {
7704         struct perf_buffer      *rb;
7705         int                     err;
7706 };
7707
7708 static void __perf_event_output_stop(struct perf_event *event, void *data)
7709 {
7710         struct perf_event *parent = event->parent;
7711         struct remote_output *ro = data;
7712         struct perf_buffer *rb = ro->rb;
7713         struct stop_event_data sd = {
7714                 .event  = event,
7715         };
7716
7717         if (!has_aux(event))
7718                 return;
7719
7720         if (!parent)
7721                 parent = event;
7722
7723         /*
7724          * In case of inheritance, it will be the parent that links to the
7725          * ring-buffer, but it will be the child that's actually using it.
7726          *
7727          * We are using event::rb to determine if the event should be stopped,
7728          * however this may race with ring_buffer_attach() (through set_output),
7729          * which will make us skip the event that actually needs to be stopped.
7730          * So ring_buffer_attach() has to stop an aux event before re-assigning
7731          * its rb pointer.
7732          */
7733         if (rcu_dereference(parent->rb) == rb)
7734                 ro->err = __perf_event_stop(&sd);
7735 }
7736
7737 static int __perf_pmu_output_stop(void *info)
7738 {
7739         struct perf_event *event = info;
7740         struct pmu *pmu = event->ctx->pmu;
7741         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7742         struct remote_output ro = {
7743                 .rb     = event->rb,
7744         };
7745
7746         rcu_read_lock();
7747         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7748         if (cpuctx->task_ctx)
7749                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7750                                    &ro, false);
7751         rcu_read_unlock();
7752
7753         return ro.err;
7754 }
7755
7756 static void perf_pmu_output_stop(struct perf_event *event)
7757 {
7758         struct perf_event *iter;
7759         int err, cpu;
7760
7761 restart:
7762         rcu_read_lock();
7763         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7764                 /*
7765                  * For per-CPU events, we need to make sure that neither they
7766                  * nor their children are running; for cpu==-1 events it's
7767                  * sufficient to stop the event itself if it's active, since
7768                  * it can't have children.
7769                  */
7770                 cpu = iter->cpu;
7771                 if (cpu == -1)
7772                         cpu = READ_ONCE(iter->oncpu);
7773
7774                 if (cpu == -1)
7775                         continue;
7776
7777                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7778                 if (err == -EAGAIN) {
7779                         rcu_read_unlock();
7780                         goto restart;
7781                 }
7782         }
7783         rcu_read_unlock();
7784 }
7785
7786 /*
7787  * task tracking -- fork/exit
7788  *
7789  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7790  */
7791
7792 struct perf_task_event {
7793         struct task_struct              *task;
7794         struct perf_event_context       *task_ctx;
7795
7796         struct {
7797                 struct perf_event_header        header;
7798
7799                 u32                             pid;
7800                 u32                             ppid;
7801                 u32                             tid;
7802                 u32                             ptid;
7803                 u64                             time;
7804         } event_id;
7805 };
7806
7807 static int perf_event_task_match(struct perf_event *event)
7808 {
7809         return event->attr.comm  || event->attr.mmap ||
7810                event->attr.mmap2 || event->attr.mmap_data ||
7811                event->attr.task;
7812 }
7813
7814 static void perf_event_task_output(struct perf_event *event,
7815                                    void *data)
7816 {
7817         struct perf_task_event *task_event = data;
7818         struct perf_output_handle handle;
7819         struct perf_sample_data sample;
7820         struct task_struct *task = task_event->task;
7821         int ret, size = task_event->event_id.header.size;
7822
7823         if (!perf_event_task_match(event))
7824                 return;
7825
7826         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7827
7828         ret = perf_output_begin(&handle, &sample, event,
7829                                 task_event->event_id.header.size);
7830         if (ret)
7831                 goto out;
7832
7833         task_event->event_id.pid = perf_event_pid(event, task);
7834         task_event->event_id.tid = perf_event_tid(event, task);
7835
7836         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7837                 task_event->event_id.ppid = perf_event_pid(event,
7838                                                         task->real_parent);
7839                 task_event->event_id.ptid = perf_event_pid(event,
7840                                                         task->real_parent);
7841         } else {  /* PERF_RECORD_FORK */
7842                 task_event->event_id.ppid = perf_event_pid(event, current);
7843                 task_event->event_id.ptid = perf_event_tid(event, current);
7844         }
7845
7846         task_event->event_id.time = perf_event_clock(event);
7847
7848         perf_output_put(&handle, task_event->event_id);
7849
7850         perf_event__output_id_sample(event, &handle, &sample);
7851
7852         perf_output_end(&handle);
7853 out:
7854         task_event->event_id.header.size = size;
7855 }
7856
7857 static void perf_event_task(struct task_struct *task,
7858                               struct perf_event_context *task_ctx,
7859                               int new)
7860 {
7861         struct perf_task_event task_event;
7862
7863         if (!atomic_read(&nr_comm_events) &&
7864             !atomic_read(&nr_mmap_events) &&
7865             !atomic_read(&nr_task_events))
7866                 return;
7867
7868         task_event = (struct perf_task_event){
7869                 .task     = task,
7870                 .task_ctx = task_ctx,
7871                 .event_id    = {
7872                         .header = {
7873                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7874                                 .misc = 0,
7875                                 .size = sizeof(task_event.event_id),
7876                         },
7877                         /* .pid  */
7878                         /* .ppid */
7879                         /* .tid  */
7880                         /* .ptid */
7881                         /* .time */
7882                 },
7883         };
7884
7885         perf_iterate_sb(perf_event_task_output,
7886                        &task_event,
7887                        task_ctx);
7888 }
7889
7890 void perf_event_fork(struct task_struct *task)
7891 {
7892         perf_event_task(task, NULL, 1);
7893         perf_event_namespaces(task);
7894 }
7895
7896 /*
7897  * comm tracking
7898  */
7899
7900 struct perf_comm_event {
7901         struct task_struct      *task;
7902         char                    *comm;
7903         int                     comm_size;
7904
7905         struct {
7906                 struct perf_event_header        header;
7907
7908                 u32                             pid;
7909                 u32                             tid;
7910         } event_id;
7911 };
7912
7913 static int perf_event_comm_match(struct perf_event *event)
7914 {
7915         return event->attr.comm;
7916 }
7917
7918 static void perf_event_comm_output(struct perf_event *event,
7919                                    void *data)
7920 {
7921         struct perf_comm_event *comm_event = data;
7922         struct perf_output_handle handle;
7923         struct perf_sample_data sample;
7924         int size = comm_event->event_id.header.size;
7925         int ret;
7926
7927         if (!perf_event_comm_match(event))
7928                 return;
7929
7930         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7931         ret = perf_output_begin(&handle, &sample, event,
7932                                 comm_event->event_id.header.size);
7933
7934         if (ret)
7935                 goto out;
7936
7937         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7938         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7939
7940         perf_output_put(&handle, comm_event->event_id);
7941         __output_copy(&handle, comm_event->comm,
7942                                    comm_event->comm_size);
7943
7944         perf_event__output_id_sample(event, &handle, &sample);
7945
7946         perf_output_end(&handle);
7947 out:
7948         comm_event->event_id.header.size = size;
7949 }
7950
7951 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7952 {
7953         char comm[TASK_COMM_LEN];
7954         unsigned int size;
7955
7956         memset(comm, 0, sizeof(comm));
7957         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7958         size = ALIGN(strlen(comm)+1, sizeof(u64));
7959
7960         comm_event->comm = comm;
7961         comm_event->comm_size = size;
7962
7963         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7964
7965         perf_iterate_sb(perf_event_comm_output,
7966                        comm_event,
7967                        NULL);
7968 }
7969
7970 void perf_event_comm(struct task_struct *task, bool exec)
7971 {
7972         struct perf_comm_event comm_event;
7973
7974         if (!atomic_read(&nr_comm_events))
7975                 return;
7976
7977         comm_event = (struct perf_comm_event){
7978                 .task   = task,
7979                 /* .comm      */
7980                 /* .comm_size */
7981                 .event_id  = {
7982                         .header = {
7983                                 .type = PERF_RECORD_COMM,
7984                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7985                                 /* .size */
7986                         },
7987                         /* .pid */
7988                         /* .tid */
7989                 },
7990         };
7991
7992         perf_event_comm_event(&comm_event);
7993 }
7994
7995 /*
7996  * namespaces tracking
7997  */
7998
7999 struct perf_namespaces_event {
8000         struct task_struct              *task;
8001
8002         struct {
8003                 struct perf_event_header        header;
8004
8005                 u32                             pid;
8006                 u32                             tid;
8007                 u64                             nr_namespaces;
8008                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8009         } event_id;
8010 };
8011
8012 static int perf_event_namespaces_match(struct perf_event *event)
8013 {
8014         return event->attr.namespaces;
8015 }
8016
8017 static void perf_event_namespaces_output(struct perf_event *event,
8018                                          void *data)
8019 {
8020         struct perf_namespaces_event *namespaces_event = data;
8021         struct perf_output_handle handle;
8022         struct perf_sample_data sample;
8023         u16 header_size = namespaces_event->event_id.header.size;
8024         int ret;
8025
8026         if (!perf_event_namespaces_match(event))
8027                 return;
8028
8029         perf_event_header__init_id(&namespaces_event->event_id.header,
8030                                    &sample, event);
8031         ret = perf_output_begin(&handle, &sample, event,
8032                                 namespaces_event->event_id.header.size);
8033         if (ret)
8034                 goto out;
8035
8036         namespaces_event->event_id.pid = perf_event_pid(event,
8037                                                         namespaces_event->task);
8038         namespaces_event->event_id.tid = perf_event_tid(event,
8039                                                         namespaces_event->task);
8040
8041         perf_output_put(&handle, namespaces_event->event_id);
8042
8043         perf_event__output_id_sample(event, &handle, &sample);
8044
8045         perf_output_end(&handle);
8046 out:
8047         namespaces_event->event_id.header.size = header_size;
8048 }
8049
8050 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8051                                    struct task_struct *task,
8052                                    const struct proc_ns_operations *ns_ops)
8053 {
8054         struct path ns_path;
8055         struct inode *ns_inode;
8056         int error;
8057
8058         error = ns_get_path(&ns_path, task, ns_ops);
8059         if (!error) {
8060                 ns_inode = ns_path.dentry->d_inode;
8061                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8062                 ns_link_info->ino = ns_inode->i_ino;
8063                 path_put(&ns_path);
8064         }
8065 }
8066
8067 void perf_event_namespaces(struct task_struct *task)
8068 {
8069         struct perf_namespaces_event namespaces_event;
8070         struct perf_ns_link_info *ns_link_info;
8071
8072         if (!atomic_read(&nr_namespaces_events))
8073                 return;
8074
8075         namespaces_event = (struct perf_namespaces_event){
8076                 .task   = task,
8077                 .event_id  = {
8078                         .header = {
8079                                 .type = PERF_RECORD_NAMESPACES,
8080                                 .misc = 0,
8081                                 .size = sizeof(namespaces_event.event_id),
8082                         },
8083                         /* .pid */
8084                         /* .tid */
8085                         .nr_namespaces = NR_NAMESPACES,
8086                         /* .link_info[NR_NAMESPACES] */
8087                 },
8088         };
8089
8090         ns_link_info = namespaces_event.event_id.link_info;
8091
8092         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8093                                task, &mntns_operations);
8094
8095 #ifdef CONFIG_USER_NS
8096         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8097                                task, &userns_operations);
8098 #endif
8099 #ifdef CONFIG_NET_NS
8100         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8101                                task, &netns_operations);
8102 #endif
8103 #ifdef CONFIG_UTS_NS
8104         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8105                                task, &utsns_operations);
8106 #endif
8107 #ifdef CONFIG_IPC_NS
8108         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8109                                task, &ipcns_operations);
8110 #endif
8111 #ifdef CONFIG_PID_NS
8112         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8113                                task, &pidns_operations);
8114 #endif
8115 #ifdef CONFIG_CGROUPS
8116         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8117                                task, &cgroupns_operations);
8118 #endif
8119
8120         perf_iterate_sb(perf_event_namespaces_output,
8121                         &namespaces_event,
8122                         NULL);
8123 }
8124
8125 /*
8126  * cgroup tracking
8127  */
8128 #ifdef CONFIG_CGROUP_PERF
8129
8130 struct perf_cgroup_event {
8131         char                            *path;
8132         int                             path_size;
8133         struct {
8134                 struct perf_event_header        header;
8135                 u64                             id;
8136                 char                            path[];
8137         } event_id;
8138 };
8139
8140 static int perf_event_cgroup_match(struct perf_event *event)
8141 {
8142         return event->attr.cgroup;
8143 }
8144
8145 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8146 {
8147         struct perf_cgroup_event *cgroup_event = data;
8148         struct perf_output_handle handle;
8149         struct perf_sample_data sample;
8150         u16 header_size = cgroup_event->event_id.header.size;
8151         int ret;
8152
8153         if (!perf_event_cgroup_match(event))
8154                 return;
8155
8156         perf_event_header__init_id(&cgroup_event->event_id.header,
8157                                    &sample, event);
8158         ret = perf_output_begin(&handle, &sample, event,
8159                                 cgroup_event->event_id.header.size);
8160         if (ret)
8161                 goto out;
8162
8163         perf_output_put(&handle, cgroup_event->event_id);
8164         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8165
8166         perf_event__output_id_sample(event, &handle, &sample);
8167
8168         perf_output_end(&handle);
8169 out:
8170         cgroup_event->event_id.header.size = header_size;
8171 }
8172
8173 static void perf_event_cgroup(struct cgroup *cgrp)
8174 {
8175         struct perf_cgroup_event cgroup_event;
8176         char path_enomem[16] = "//enomem";
8177         char *pathname;
8178         size_t size;
8179
8180         if (!atomic_read(&nr_cgroup_events))
8181                 return;
8182
8183         cgroup_event = (struct perf_cgroup_event){
8184                 .event_id  = {
8185                         .header = {
8186                                 .type = PERF_RECORD_CGROUP,
8187                                 .misc = 0,
8188                                 .size = sizeof(cgroup_event.event_id),
8189                         },
8190                         .id = cgroup_id(cgrp),
8191                 },
8192         };
8193
8194         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8195         if (pathname == NULL) {
8196                 cgroup_event.path = path_enomem;
8197         } else {
8198                 /* just to be sure to have enough space for alignment */
8199                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8200                 cgroup_event.path = pathname;
8201         }
8202
8203         /*
8204          * Since our buffer works in 8 byte units we need to align our string
8205          * size to a multiple of 8. However, we must guarantee the tail end is
8206          * zero'd out to avoid leaking random bits to userspace.
8207          */
8208         size = strlen(cgroup_event.path) + 1;
8209         while (!IS_ALIGNED(size, sizeof(u64)))
8210                 cgroup_event.path[size++] = '\0';
8211
8212         cgroup_event.event_id.header.size += size;
8213         cgroup_event.path_size = size;
8214
8215         perf_iterate_sb(perf_event_cgroup_output,
8216                         &cgroup_event,
8217                         NULL);
8218
8219         kfree(pathname);
8220 }
8221
8222 #endif
8223
8224 /*
8225  * mmap tracking
8226  */
8227
8228 struct perf_mmap_event {
8229         struct vm_area_struct   *vma;
8230
8231         const char              *file_name;
8232         int                     file_size;
8233         int                     maj, min;
8234         u64                     ino;
8235         u64                     ino_generation;
8236         u32                     prot, flags;
8237         u8                      build_id[BUILD_ID_SIZE_MAX];
8238         u32                     build_id_size;
8239
8240         struct {
8241                 struct perf_event_header        header;
8242
8243                 u32                             pid;
8244                 u32                             tid;
8245                 u64                             start;
8246                 u64                             len;
8247                 u64                             pgoff;
8248         } event_id;
8249 };
8250
8251 static int perf_event_mmap_match(struct perf_event *event,
8252                                  void *data)
8253 {
8254         struct perf_mmap_event *mmap_event = data;
8255         struct vm_area_struct *vma = mmap_event->vma;
8256         int executable = vma->vm_flags & VM_EXEC;
8257
8258         return (!executable && event->attr.mmap_data) ||
8259                (executable && (event->attr.mmap || event->attr.mmap2));
8260 }
8261
8262 static void perf_event_mmap_output(struct perf_event *event,
8263                                    void *data)
8264 {
8265         struct perf_mmap_event *mmap_event = data;
8266         struct perf_output_handle handle;
8267         struct perf_sample_data sample;
8268         int size = mmap_event->event_id.header.size;
8269         u32 type = mmap_event->event_id.header.type;
8270         bool use_build_id;
8271         int ret;
8272
8273         if (!perf_event_mmap_match(event, data))
8274                 return;
8275
8276         if (event->attr.mmap2) {
8277                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8278                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8279                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8280                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8281                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8282                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8283                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8284         }
8285
8286         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8287         ret = perf_output_begin(&handle, &sample, event,
8288                                 mmap_event->event_id.header.size);
8289         if (ret)
8290                 goto out;
8291
8292         mmap_event->event_id.pid = perf_event_pid(event, current);
8293         mmap_event->event_id.tid = perf_event_tid(event, current);
8294
8295         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8296
8297         if (event->attr.mmap2 && use_build_id)
8298                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8299
8300         perf_output_put(&handle, mmap_event->event_id);
8301
8302         if (event->attr.mmap2) {
8303                 if (use_build_id) {
8304                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8305
8306                         __output_copy(&handle, size, 4);
8307                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8308                 } else {
8309                         perf_output_put(&handle, mmap_event->maj);
8310                         perf_output_put(&handle, mmap_event->min);
8311                         perf_output_put(&handle, mmap_event->ino);
8312                         perf_output_put(&handle, mmap_event->ino_generation);
8313                 }
8314                 perf_output_put(&handle, mmap_event->prot);
8315                 perf_output_put(&handle, mmap_event->flags);
8316         }
8317
8318         __output_copy(&handle, mmap_event->file_name,
8319                                    mmap_event->file_size);
8320
8321         perf_event__output_id_sample(event, &handle, &sample);
8322
8323         perf_output_end(&handle);
8324 out:
8325         mmap_event->event_id.header.size = size;
8326         mmap_event->event_id.header.type = type;
8327 }
8328
8329 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8330 {
8331         struct vm_area_struct *vma = mmap_event->vma;
8332         struct file *file = vma->vm_file;
8333         int maj = 0, min = 0;
8334         u64 ino = 0, gen = 0;
8335         u32 prot = 0, flags = 0;
8336         unsigned int size;
8337         char tmp[16];
8338         char *buf = NULL;
8339         char *name;
8340
8341         if (vma->vm_flags & VM_READ)
8342                 prot |= PROT_READ;
8343         if (vma->vm_flags & VM_WRITE)
8344                 prot |= PROT_WRITE;
8345         if (vma->vm_flags & VM_EXEC)
8346                 prot |= PROT_EXEC;
8347
8348         if (vma->vm_flags & VM_MAYSHARE)
8349                 flags = MAP_SHARED;
8350         else
8351                 flags = MAP_PRIVATE;
8352
8353         if (vma->vm_flags & VM_LOCKED)
8354                 flags |= MAP_LOCKED;
8355         if (is_vm_hugetlb_page(vma))
8356                 flags |= MAP_HUGETLB;
8357
8358         if (file) {
8359                 struct inode *inode;
8360                 dev_t dev;
8361
8362                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8363                 if (!buf) {
8364                         name = "//enomem";
8365                         goto cpy_name;
8366                 }
8367                 /*
8368                  * d_path() works from the end of the rb backwards, so we
8369                  * need to add enough zero bytes after the string to handle
8370                  * the 64bit alignment we do later.
8371                  */
8372                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8373                 if (IS_ERR(name)) {
8374                         name = "//toolong";
8375                         goto cpy_name;
8376                 }
8377                 inode = file_inode(vma->vm_file);
8378                 dev = inode->i_sb->s_dev;
8379                 ino = inode->i_ino;
8380                 gen = inode->i_generation;
8381                 maj = MAJOR(dev);
8382                 min = MINOR(dev);
8383
8384                 goto got_name;
8385         } else {
8386                 if (vma->vm_ops && vma->vm_ops->name) {
8387                         name = (char *) vma->vm_ops->name(vma);
8388                         if (name)
8389                                 goto cpy_name;
8390                 }
8391
8392                 name = (char *)arch_vma_name(vma);
8393                 if (name)
8394                         goto cpy_name;
8395
8396                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8397                                 vma->vm_end >= vma->vm_mm->brk) {
8398                         name = "[heap]";
8399                         goto cpy_name;
8400                 }
8401                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8402                                 vma->vm_end >= vma->vm_mm->start_stack) {
8403                         name = "[stack]";
8404                         goto cpy_name;
8405                 }
8406
8407                 name = "//anon";
8408                 goto cpy_name;
8409         }
8410
8411 cpy_name:
8412         strlcpy(tmp, name, sizeof(tmp));
8413         name = tmp;
8414 got_name:
8415         /*
8416          * Since our buffer works in 8 byte units we need to align our string
8417          * size to a multiple of 8. However, we must guarantee the tail end is
8418          * zero'd out to avoid leaking random bits to userspace.
8419          */
8420         size = strlen(name)+1;
8421         while (!IS_ALIGNED(size, sizeof(u64)))
8422                 name[size++] = '\0';
8423
8424         mmap_event->file_name = name;
8425         mmap_event->file_size = size;
8426         mmap_event->maj = maj;
8427         mmap_event->min = min;
8428         mmap_event->ino = ino;
8429         mmap_event->ino_generation = gen;
8430         mmap_event->prot = prot;
8431         mmap_event->flags = flags;
8432
8433         if (!(vma->vm_flags & VM_EXEC))
8434                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8435
8436         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8437
8438         if (atomic_read(&nr_build_id_events))
8439                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8440
8441         perf_iterate_sb(perf_event_mmap_output,
8442                        mmap_event,
8443                        NULL);
8444
8445         kfree(buf);
8446 }
8447
8448 /*
8449  * Check whether inode and address range match filter criteria.
8450  */
8451 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8452                                      struct file *file, unsigned long offset,
8453                                      unsigned long size)
8454 {
8455         /* d_inode(NULL) won't be equal to any mapped user-space file */
8456         if (!filter->path.dentry)
8457                 return false;
8458
8459         if (d_inode(filter->path.dentry) != file_inode(file))
8460                 return false;
8461
8462         if (filter->offset > offset + size)
8463                 return false;
8464
8465         if (filter->offset + filter->size < offset)
8466                 return false;
8467
8468         return true;
8469 }
8470
8471 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8472                                         struct vm_area_struct *vma,
8473                                         struct perf_addr_filter_range *fr)
8474 {
8475         unsigned long vma_size = vma->vm_end - vma->vm_start;
8476         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8477         struct file *file = vma->vm_file;
8478
8479         if (!perf_addr_filter_match(filter, file, off, vma_size))
8480                 return false;
8481
8482         if (filter->offset < off) {
8483                 fr->start = vma->vm_start;
8484                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8485         } else {
8486                 fr->start = vma->vm_start + filter->offset - off;
8487                 fr->size = min(vma->vm_end - fr->start, filter->size);
8488         }
8489
8490         return true;
8491 }
8492
8493 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8494 {
8495         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8496         struct vm_area_struct *vma = data;
8497         struct perf_addr_filter *filter;
8498         unsigned int restart = 0, count = 0;
8499         unsigned long flags;
8500
8501         if (!has_addr_filter(event))
8502                 return;
8503
8504         if (!vma->vm_file)
8505                 return;
8506
8507         raw_spin_lock_irqsave(&ifh->lock, flags);
8508         list_for_each_entry(filter, &ifh->list, entry) {
8509                 if (perf_addr_filter_vma_adjust(filter, vma,
8510                                                 &event->addr_filter_ranges[count]))
8511                         restart++;
8512
8513                 count++;
8514         }
8515
8516         if (restart)
8517                 event->addr_filters_gen++;
8518         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8519
8520         if (restart)
8521                 perf_event_stop(event, 1);
8522 }
8523
8524 /*
8525  * Adjust all task's events' filters to the new vma
8526  */
8527 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8528 {
8529         struct perf_event_context *ctx;
8530         int ctxn;
8531
8532         /*
8533          * Data tracing isn't supported yet and as such there is no need
8534          * to keep track of anything that isn't related to executable code:
8535          */
8536         if (!(vma->vm_flags & VM_EXEC))
8537                 return;
8538
8539         rcu_read_lock();
8540         for_each_task_context_nr(ctxn) {
8541                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8542                 if (!ctx)
8543                         continue;
8544
8545                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8546         }
8547         rcu_read_unlock();
8548 }
8549
8550 void perf_event_mmap(struct vm_area_struct *vma)
8551 {
8552         struct perf_mmap_event mmap_event;
8553
8554         if (!atomic_read(&nr_mmap_events))
8555                 return;
8556
8557         mmap_event = (struct perf_mmap_event){
8558                 .vma    = vma,
8559                 /* .file_name */
8560                 /* .file_size */
8561                 .event_id  = {
8562                         .header = {
8563                                 .type = PERF_RECORD_MMAP,
8564                                 .misc = PERF_RECORD_MISC_USER,
8565                                 /* .size */
8566                         },
8567                         /* .pid */
8568                         /* .tid */
8569                         .start  = vma->vm_start,
8570                         .len    = vma->vm_end - vma->vm_start,
8571                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8572                 },
8573                 /* .maj (attr_mmap2 only) */
8574                 /* .min (attr_mmap2 only) */
8575                 /* .ino (attr_mmap2 only) */
8576                 /* .ino_generation (attr_mmap2 only) */
8577                 /* .prot (attr_mmap2 only) */
8578                 /* .flags (attr_mmap2 only) */
8579         };
8580
8581         perf_addr_filters_adjust(vma);
8582         perf_event_mmap_event(&mmap_event);
8583 }
8584
8585 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8586                           unsigned long size, u64 flags)
8587 {
8588         struct perf_output_handle handle;
8589         struct perf_sample_data sample;
8590         struct perf_aux_event {
8591                 struct perf_event_header        header;
8592                 u64                             offset;
8593                 u64                             size;
8594                 u64                             flags;
8595         } rec = {
8596                 .header = {
8597                         .type = PERF_RECORD_AUX,
8598                         .misc = 0,
8599                         .size = sizeof(rec),
8600                 },
8601                 .offset         = head,
8602                 .size           = size,
8603                 .flags          = flags,
8604         };
8605         int ret;
8606
8607         perf_event_header__init_id(&rec.header, &sample, event);
8608         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8609
8610         if (ret)
8611                 return;
8612
8613         perf_output_put(&handle, rec);
8614         perf_event__output_id_sample(event, &handle, &sample);
8615
8616         perf_output_end(&handle);
8617 }
8618
8619 /*
8620  * Lost/dropped samples logging
8621  */
8622 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8623 {
8624         struct perf_output_handle handle;
8625         struct perf_sample_data sample;
8626         int ret;
8627
8628         struct {
8629                 struct perf_event_header        header;
8630                 u64                             lost;
8631         } lost_samples_event = {
8632                 .header = {
8633                         .type = PERF_RECORD_LOST_SAMPLES,
8634                         .misc = 0,
8635                         .size = sizeof(lost_samples_event),
8636                 },
8637                 .lost           = lost,
8638         };
8639
8640         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8641
8642         ret = perf_output_begin(&handle, &sample, event,
8643                                 lost_samples_event.header.size);
8644         if (ret)
8645                 return;
8646
8647         perf_output_put(&handle, lost_samples_event);
8648         perf_event__output_id_sample(event, &handle, &sample);
8649         perf_output_end(&handle);
8650 }
8651
8652 /*
8653  * context_switch tracking
8654  */
8655
8656 struct perf_switch_event {
8657         struct task_struct      *task;
8658         struct task_struct      *next_prev;
8659
8660         struct {
8661                 struct perf_event_header        header;
8662                 u32                             next_prev_pid;
8663                 u32                             next_prev_tid;
8664         } event_id;
8665 };
8666
8667 static int perf_event_switch_match(struct perf_event *event)
8668 {
8669         return event->attr.context_switch;
8670 }
8671
8672 static void perf_event_switch_output(struct perf_event *event, void *data)
8673 {
8674         struct perf_switch_event *se = data;
8675         struct perf_output_handle handle;
8676         struct perf_sample_data sample;
8677         int ret;
8678
8679         if (!perf_event_switch_match(event))
8680                 return;
8681
8682         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8683         if (event->ctx->task) {
8684                 se->event_id.header.type = PERF_RECORD_SWITCH;
8685                 se->event_id.header.size = sizeof(se->event_id.header);
8686         } else {
8687                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8688                 se->event_id.header.size = sizeof(se->event_id);
8689                 se->event_id.next_prev_pid =
8690                                         perf_event_pid(event, se->next_prev);
8691                 se->event_id.next_prev_tid =
8692                                         perf_event_tid(event, se->next_prev);
8693         }
8694
8695         perf_event_header__init_id(&se->event_id.header, &sample, event);
8696
8697         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8698         if (ret)
8699                 return;
8700
8701         if (event->ctx->task)
8702                 perf_output_put(&handle, se->event_id.header);
8703         else
8704                 perf_output_put(&handle, se->event_id);
8705
8706         perf_event__output_id_sample(event, &handle, &sample);
8707
8708         perf_output_end(&handle);
8709 }
8710
8711 static void perf_event_switch(struct task_struct *task,
8712                               struct task_struct *next_prev, bool sched_in)
8713 {
8714         struct perf_switch_event switch_event;
8715
8716         /* N.B. caller checks nr_switch_events != 0 */
8717
8718         switch_event = (struct perf_switch_event){
8719                 .task           = task,
8720                 .next_prev      = next_prev,
8721                 .event_id       = {
8722                         .header = {
8723                                 /* .type */
8724                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8725                                 /* .size */
8726                         },
8727                         /* .next_prev_pid */
8728                         /* .next_prev_tid */
8729                 },
8730         };
8731
8732         if (!sched_in && task->on_rq) {
8733                 switch_event.event_id.header.misc |=
8734                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8735         }
8736
8737         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8738 }
8739
8740 /*
8741  * IRQ throttle logging
8742  */
8743
8744 static void perf_log_throttle(struct perf_event *event, int enable)
8745 {
8746         struct perf_output_handle handle;
8747         struct perf_sample_data sample;
8748         int ret;
8749
8750         struct {
8751                 struct perf_event_header        header;
8752                 u64                             time;
8753                 u64                             id;
8754                 u64                             stream_id;
8755         } throttle_event = {
8756                 .header = {
8757                         .type = PERF_RECORD_THROTTLE,
8758                         .misc = 0,
8759                         .size = sizeof(throttle_event),
8760                 },
8761                 .time           = perf_event_clock(event),
8762                 .id             = primary_event_id(event),
8763                 .stream_id      = event->id,
8764         };
8765
8766         if (enable)
8767                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8768
8769         perf_event_header__init_id(&throttle_event.header, &sample, event);
8770
8771         ret = perf_output_begin(&handle, &sample, event,
8772                                 throttle_event.header.size);
8773         if (ret)
8774                 return;
8775
8776         perf_output_put(&handle, throttle_event);
8777         perf_event__output_id_sample(event, &handle, &sample);
8778         perf_output_end(&handle);
8779 }
8780
8781 /*
8782  * ksymbol register/unregister tracking
8783  */
8784
8785 struct perf_ksymbol_event {
8786         const char      *name;
8787         int             name_len;
8788         struct {
8789                 struct perf_event_header        header;
8790                 u64                             addr;
8791                 u32                             len;
8792                 u16                             ksym_type;
8793                 u16                             flags;
8794         } event_id;
8795 };
8796
8797 static int perf_event_ksymbol_match(struct perf_event *event)
8798 {
8799         return event->attr.ksymbol;
8800 }
8801
8802 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8803 {
8804         struct perf_ksymbol_event *ksymbol_event = data;
8805         struct perf_output_handle handle;
8806         struct perf_sample_data sample;
8807         int ret;
8808
8809         if (!perf_event_ksymbol_match(event))
8810                 return;
8811
8812         perf_event_header__init_id(&ksymbol_event->event_id.header,
8813                                    &sample, event);
8814         ret = perf_output_begin(&handle, &sample, event,
8815                                 ksymbol_event->event_id.header.size);
8816         if (ret)
8817                 return;
8818
8819         perf_output_put(&handle, ksymbol_event->event_id);
8820         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8821         perf_event__output_id_sample(event, &handle, &sample);
8822
8823         perf_output_end(&handle);
8824 }
8825
8826 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8827                         const char *sym)
8828 {
8829         struct perf_ksymbol_event ksymbol_event;
8830         char name[KSYM_NAME_LEN];
8831         u16 flags = 0;
8832         int name_len;
8833
8834         if (!atomic_read(&nr_ksymbol_events))
8835                 return;
8836
8837         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8838             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8839                 goto err;
8840
8841         strlcpy(name, sym, KSYM_NAME_LEN);
8842         name_len = strlen(name) + 1;
8843         while (!IS_ALIGNED(name_len, sizeof(u64)))
8844                 name[name_len++] = '\0';
8845         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8846
8847         if (unregister)
8848                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8849
8850         ksymbol_event = (struct perf_ksymbol_event){
8851                 .name = name,
8852                 .name_len = name_len,
8853                 .event_id = {
8854                         .header = {
8855                                 .type = PERF_RECORD_KSYMBOL,
8856                                 .size = sizeof(ksymbol_event.event_id) +
8857                                         name_len,
8858                         },
8859                         .addr = addr,
8860                         .len = len,
8861                         .ksym_type = ksym_type,
8862                         .flags = flags,
8863                 },
8864         };
8865
8866         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8867         return;
8868 err:
8869         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8870 }
8871
8872 /*
8873  * bpf program load/unload tracking
8874  */
8875
8876 struct perf_bpf_event {
8877         struct bpf_prog *prog;
8878         struct {
8879                 struct perf_event_header        header;
8880                 u16                             type;
8881                 u16                             flags;
8882                 u32                             id;
8883                 u8                              tag[BPF_TAG_SIZE];
8884         } event_id;
8885 };
8886
8887 static int perf_event_bpf_match(struct perf_event *event)
8888 {
8889         return event->attr.bpf_event;
8890 }
8891
8892 static void perf_event_bpf_output(struct perf_event *event, void *data)
8893 {
8894         struct perf_bpf_event *bpf_event = data;
8895         struct perf_output_handle handle;
8896         struct perf_sample_data sample;
8897         int ret;
8898
8899         if (!perf_event_bpf_match(event))
8900                 return;
8901
8902         perf_event_header__init_id(&bpf_event->event_id.header,
8903                                    &sample, event);
8904         ret = perf_output_begin(&handle, data, event,
8905                                 bpf_event->event_id.header.size);
8906         if (ret)
8907                 return;
8908
8909         perf_output_put(&handle, bpf_event->event_id);
8910         perf_event__output_id_sample(event, &handle, &sample);
8911
8912         perf_output_end(&handle);
8913 }
8914
8915 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8916                                          enum perf_bpf_event_type type)
8917 {
8918         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8919         int i;
8920
8921         if (prog->aux->func_cnt == 0) {
8922                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8923                                    (u64)(unsigned long)prog->bpf_func,
8924                                    prog->jited_len, unregister,
8925                                    prog->aux->ksym.name);
8926         } else {
8927                 for (i = 0; i < prog->aux->func_cnt; i++) {
8928                         struct bpf_prog *subprog = prog->aux->func[i];
8929
8930                         perf_event_ksymbol(
8931                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8932                                 (u64)(unsigned long)subprog->bpf_func,
8933                                 subprog->jited_len, unregister,
8934                                 prog->aux->ksym.name);
8935                 }
8936         }
8937 }
8938
8939 void perf_event_bpf_event(struct bpf_prog *prog,
8940                           enum perf_bpf_event_type type,
8941                           u16 flags)
8942 {
8943         struct perf_bpf_event bpf_event;
8944
8945         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8946             type >= PERF_BPF_EVENT_MAX)
8947                 return;
8948
8949         switch (type) {
8950         case PERF_BPF_EVENT_PROG_LOAD:
8951         case PERF_BPF_EVENT_PROG_UNLOAD:
8952                 if (atomic_read(&nr_ksymbol_events))
8953                         perf_event_bpf_emit_ksymbols(prog, type);
8954                 break;
8955         default:
8956                 break;
8957         }
8958
8959         if (!atomic_read(&nr_bpf_events))
8960                 return;
8961
8962         bpf_event = (struct perf_bpf_event){
8963                 .prog = prog,
8964                 .event_id = {
8965                         .header = {
8966                                 .type = PERF_RECORD_BPF_EVENT,
8967                                 .size = sizeof(bpf_event.event_id),
8968                         },
8969                         .type = type,
8970                         .flags = flags,
8971                         .id = prog->aux->id,
8972                 },
8973         };
8974
8975         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8976
8977         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8978         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8979 }
8980
8981 struct perf_text_poke_event {
8982         const void              *old_bytes;
8983         const void              *new_bytes;
8984         size_t                  pad;
8985         u16                     old_len;
8986         u16                     new_len;
8987
8988         struct {
8989                 struct perf_event_header        header;
8990
8991                 u64                             addr;
8992         } event_id;
8993 };
8994
8995 static int perf_event_text_poke_match(struct perf_event *event)
8996 {
8997         return event->attr.text_poke;
8998 }
8999
9000 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9001 {
9002         struct perf_text_poke_event *text_poke_event = data;
9003         struct perf_output_handle handle;
9004         struct perf_sample_data sample;
9005         u64 padding = 0;
9006         int ret;
9007
9008         if (!perf_event_text_poke_match(event))
9009                 return;
9010
9011         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9012
9013         ret = perf_output_begin(&handle, &sample, event,
9014                                 text_poke_event->event_id.header.size);
9015         if (ret)
9016                 return;
9017
9018         perf_output_put(&handle, text_poke_event->event_id);
9019         perf_output_put(&handle, text_poke_event->old_len);
9020         perf_output_put(&handle, text_poke_event->new_len);
9021
9022         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9023         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9024
9025         if (text_poke_event->pad)
9026                 __output_copy(&handle, &padding, text_poke_event->pad);
9027
9028         perf_event__output_id_sample(event, &handle, &sample);
9029
9030         perf_output_end(&handle);
9031 }
9032
9033 void perf_event_text_poke(const void *addr, const void *old_bytes,
9034                           size_t old_len, const void *new_bytes, size_t new_len)
9035 {
9036         struct perf_text_poke_event text_poke_event;
9037         size_t tot, pad;
9038
9039         if (!atomic_read(&nr_text_poke_events))
9040                 return;
9041
9042         tot  = sizeof(text_poke_event.old_len) + old_len;
9043         tot += sizeof(text_poke_event.new_len) + new_len;
9044         pad  = ALIGN(tot, sizeof(u64)) - tot;
9045
9046         text_poke_event = (struct perf_text_poke_event){
9047                 .old_bytes    = old_bytes,
9048                 .new_bytes    = new_bytes,
9049                 .pad          = pad,
9050                 .old_len      = old_len,
9051                 .new_len      = new_len,
9052                 .event_id  = {
9053                         .header = {
9054                                 .type = PERF_RECORD_TEXT_POKE,
9055                                 .misc = PERF_RECORD_MISC_KERNEL,
9056                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9057                         },
9058                         .addr = (unsigned long)addr,
9059                 },
9060         };
9061
9062         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9063 }
9064
9065 void perf_event_itrace_started(struct perf_event *event)
9066 {
9067         event->attach_state |= PERF_ATTACH_ITRACE;
9068 }
9069
9070 static void perf_log_itrace_start(struct perf_event *event)
9071 {
9072         struct perf_output_handle handle;
9073         struct perf_sample_data sample;
9074         struct perf_aux_event {
9075                 struct perf_event_header        header;
9076                 u32                             pid;
9077                 u32                             tid;
9078         } rec;
9079         int ret;
9080
9081         if (event->parent)
9082                 event = event->parent;
9083
9084         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9085             event->attach_state & PERF_ATTACH_ITRACE)
9086                 return;
9087
9088         rec.header.type = PERF_RECORD_ITRACE_START;
9089         rec.header.misc = 0;
9090         rec.header.size = sizeof(rec);
9091         rec.pid = perf_event_pid(event, current);
9092         rec.tid = perf_event_tid(event, current);
9093
9094         perf_event_header__init_id(&rec.header, &sample, event);
9095         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9096
9097         if (ret)
9098                 return;
9099
9100         perf_output_put(&handle, rec);
9101         perf_event__output_id_sample(event, &handle, &sample);
9102
9103         perf_output_end(&handle);
9104 }
9105
9106 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9107 {
9108         struct perf_output_handle handle;
9109         struct perf_sample_data sample;
9110         struct perf_aux_event {
9111                 struct perf_event_header        header;
9112                 u64                             hw_id;
9113         } rec;
9114         int ret;
9115
9116         if (event->parent)
9117                 event = event->parent;
9118
9119         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9120         rec.header.misc = 0;
9121         rec.header.size = sizeof(rec);
9122         rec.hw_id       = hw_id;
9123
9124         perf_event_header__init_id(&rec.header, &sample, event);
9125         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9126
9127         if (ret)
9128                 return;
9129
9130         perf_output_put(&handle, rec);
9131         perf_event__output_id_sample(event, &handle, &sample);
9132
9133         perf_output_end(&handle);
9134 }
9135
9136 static int
9137 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9138 {
9139         struct hw_perf_event *hwc = &event->hw;
9140         int ret = 0;
9141         u64 seq;
9142
9143         seq = __this_cpu_read(perf_throttled_seq);
9144         if (seq != hwc->interrupts_seq) {
9145                 hwc->interrupts_seq = seq;
9146                 hwc->interrupts = 1;
9147         } else {
9148                 hwc->interrupts++;
9149                 if (unlikely(throttle
9150                              && hwc->interrupts >= max_samples_per_tick)) {
9151                         __this_cpu_inc(perf_throttled_count);
9152                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9153                         hwc->interrupts = MAX_INTERRUPTS;
9154                         perf_log_throttle(event, 0);
9155                         ret = 1;
9156                 }
9157         }
9158
9159         if (event->attr.freq) {
9160                 u64 now = perf_clock();
9161                 s64 delta = now - hwc->freq_time_stamp;
9162
9163                 hwc->freq_time_stamp = now;
9164
9165                 if (delta > 0 && delta < 2*TICK_NSEC)
9166                         perf_adjust_period(event, delta, hwc->last_period, true);
9167         }
9168
9169         return ret;
9170 }
9171
9172 int perf_event_account_interrupt(struct perf_event *event)
9173 {
9174         return __perf_event_account_interrupt(event, 1);
9175 }
9176
9177 /*
9178  * Generic event overflow handling, sampling.
9179  */
9180
9181 static int __perf_event_overflow(struct perf_event *event,
9182                                    int throttle, struct perf_sample_data *data,
9183                                    struct pt_regs *regs)
9184 {
9185         int events = atomic_read(&event->event_limit);
9186         int ret = 0;
9187
9188         /*
9189          * Non-sampling counters might still use the PMI to fold short
9190          * hardware counters, ignore those.
9191          */
9192         if (unlikely(!is_sampling_event(event)))
9193                 return 0;
9194
9195         ret = __perf_event_account_interrupt(event, throttle);
9196
9197         /*
9198          * XXX event_limit might not quite work as expected on inherited
9199          * events
9200          */
9201
9202         event->pending_kill = POLL_IN;
9203         if (events && atomic_dec_and_test(&event->event_limit)) {
9204                 ret = 1;
9205                 event->pending_kill = POLL_HUP;
9206                 event->pending_addr = data->addr;
9207
9208                 perf_event_disable_inatomic(event);
9209         }
9210
9211         READ_ONCE(event->overflow_handler)(event, data, regs);
9212
9213         if (*perf_event_fasync(event) && event->pending_kill) {
9214                 event->pending_wakeup = 1;
9215                 irq_work_queue(&event->pending);
9216         }
9217
9218         return ret;
9219 }
9220
9221 int perf_event_overflow(struct perf_event *event,
9222                           struct perf_sample_data *data,
9223                           struct pt_regs *regs)
9224 {
9225         return __perf_event_overflow(event, 1, data, regs);
9226 }
9227
9228 /*
9229  * Generic software event infrastructure
9230  */
9231
9232 struct swevent_htable {
9233         struct swevent_hlist            *swevent_hlist;
9234         struct mutex                    hlist_mutex;
9235         int                             hlist_refcount;
9236
9237         /* Recursion avoidance in each contexts */
9238         int                             recursion[PERF_NR_CONTEXTS];
9239 };
9240
9241 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9242
9243 /*
9244  * We directly increment event->count and keep a second value in
9245  * event->hw.period_left to count intervals. This period event
9246  * is kept in the range [-sample_period, 0] so that we can use the
9247  * sign as trigger.
9248  */
9249
9250 u64 perf_swevent_set_period(struct perf_event *event)
9251 {
9252         struct hw_perf_event *hwc = &event->hw;
9253         u64 period = hwc->last_period;
9254         u64 nr, offset;
9255         s64 old, val;
9256
9257         hwc->last_period = hwc->sample_period;
9258
9259 again:
9260         old = val = local64_read(&hwc->period_left);
9261         if (val < 0)
9262                 return 0;
9263
9264         nr = div64_u64(period + val, period);
9265         offset = nr * period;
9266         val -= offset;
9267         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9268                 goto again;
9269
9270         return nr;
9271 }
9272
9273 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9274                                     struct perf_sample_data *data,
9275                                     struct pt_regs *regs)
9276 {
9277         struct hw_perf_event *hwc = &event->hw;
9278         int throttle = 0;
9279
9280         if (!overflow)
9281                 overflow = perf_swevent_set_period(event);
9282
9283         if (hwc->interrupts == MAX_INTERRUPTS)
9284                 return;
9285
9286         for (; overflow; overflow--) {
9287                 if (__perf_event_overflow(event, throttle,
9288                                             data, regs)) {
9289                         /*
9290                          * We inhibit the overflow from happening when
9291                          * hwc->interrupts == MAX_INTERRUPTS.
9292                          */
9293                         break;
9294                 }
9295                 throttle = 1;
9296         }
9297 }
9298
9299 static void perf_swevent_event(struct perf_event *event, u64 nr,
9300                                struct perf_sample_data *data,
9301                                struct pt_regs *regs)
9302 {
9303         struct hw_perf_event *hwc = &event->hw;
9304
9305         local64_add(nr, &event->count);
9306
9307         if (!regs)
9308                 return;
9309
9310         if (!is_sampling_event(event))
9311                 return;
9312
9313         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9314                 data->period = nr;
9315                 return perf_swevent_overflow(event, 1, data, regs);
9316         } else
9317                 data->period = event->hw.last_period;
9318
9319         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9320                 return perf_swevent_overflow(event, 1, data, regs);
9321
9322         if (local64_add_negative(nr, &hwc->period_left))
9323                 return;
9324
9325         perf_swevent_overflow(event, 0, data, regs);
9326 }
9327
9328 static int perf_exclude_event(struct perf_event *event,
9329                               struct pt_regs *regs)
9330 {
9331         if (event->hw.state & PERF_HES_STOPPED)
9332                 return 1;
9333
9334         if (regs) {
9335                 if (event->attr.exclude_user && user_mode(regs))
9336                         return 1;
9337
9338                 if (event->attr.exclude_kernel && !user_mode(regs))
9339                         return 1;
9340         }
9341
9342         return 0;
9343 }
9344
9345 static int perf_swevent_match(struct perf_event *event,
9346                                 enum perf_type_id type,
9347                                 u32 event_id,
9348                                 struct perf_sample_data *data,
9349                                 struct pt_regs *regs)
9350 {
9351         if (event->attr.type != type)
9352                 return 0;
9353
9354         if (event->attr.config != event_id)
9355                 return 0;
9356
9357         if (perf_exclude_event(event, regs))
9358                 return 0;
9359
9360         return 1;
9361 }
9362
9363 static inline u64 swevent_hash(u64 type, u32 event_id)
9364 {
9365         u64 val = event_id | (type << 32);
9366
9367         return hash_64(val, SWEVENT_HLIST_BITS);
9368 }
9369
9370 static inline struct hlist_head *
9371 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9372 {
9373         u64 hash = swevent_hash(type, event_id);
9374
9375         return &hlist->heads[hash];
9376 }
9377
9378 /* For the read side: events when they trigger */
9379 static inline struct hlist_head *
9380 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9381 {
9382         struct swevent_hlist *hlist;
9383
9384         hlist = rcu_dereference(swhash->swevent_hlist);
9385         if (!hlist)
9386                 return NULL;
9387
9388         return __find_swevent_head(hlist, type, event_id);
9389 }
9390
9391 /* For the event head insertion and removal in the hlist */
9392 static inline struct hlist_head *
9393 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9394 {
9395         struct swevent_hlist *hlist;
9396         u32 event_id = event->attr.config;
9397         u64 type = event->attr.type;
9398
9399         /*
9400          * Event scheduling is always serialized against hlist allocation
9401          * and release. Which makes the protected version suitable here.
9402          * The context lock guarantees that.
9403          */
9404         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9405                                           lockdep_is_held(&event->ctx->lock));
9406         if (!hlist)
9407                 return NULL;
9408
9409         return __find_swevent_head(hlist, type, event_id);
9410 }
9411
9412 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9413                                     u64 nr,
9414                                     struct perf_sample_data *data,
9415                                     struct pt_regs *regs)
9416 {
9417         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9418         struct perf_event *event;
9419         struct hlist_head *head;
9420
9421         rcu_read_lock();
9422         head = find_swevent_head_rcu(swhash, type, event_id);
9423         if (!head)
9424                 goto end;
9425
9426         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9427                 if (perf_swevent_match(event, type, event_id, data, regs))
9428                         perf_swevent_event(event, nr, data, regs);
9429         }
9430 end:
9431         rcu_read_unlock();
9432 }
9433
9434 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9435
9436 int perf_swevent_get_recursion_context(void)
9437 {
9438         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9439
9440         return get_recursion_context(swhash->recursion);
9441 }
9442 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9443
9444 void perf_swevent_put_recursion_context(int rctx)
9445 {
9446         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9447
9448         put_recursion_context(swhash->recursion, rctx);
9449 }
9450
9451 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9452 {
9453         struct perf_sample_data data;
9454
9455         if (WARN_ON_ONCE(!regs))
9456                 return;
9457
9458         perf_sample_data_init(&data, addr, 0);
9459         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9460 }
9461
9462 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9463 {
9464         int rctx;
9465
9466         preempt_disable_notrace();
9467         rctx = perf_swevent_get_recursion_context();
9468         if (unlikely(rctx < 0))
9469                 goto fail;
9470
9471         ___perf_sw_event(event_id, nr, regs, addr);
9472
9473         perf_swevent_put_recursion_context(rctx);
9474 fail:
9475         preempt_enable_notrace();
9476 }
9477
9478 static void perf_swevent_read(struct perf_event *event)
9479 {
9480 }
9481
9482 static int perf_swevent_add(struct perf_event *event, int flags)
9483 {
9484         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9485         struct hw_perf_event *hwc = &event->hw;
9486         struct hlist_head *head;
9487
9488         if (is_sampling_event(event)) {
9489                 hwc->last_period = hwc->sample_period;
9490                 perf_swevent_set_period(event);
9491         }
9492
9493         hwc->state = !(flags & PERF_EF_START);
9494
9495         head = find_swevent_head(swhash, event);
9496         if (WARN_ON_ONCE(!head))
9497                 return -EINVAL;
9498
9499         hlist_add_head_rcu(&event->hlist_entry, head);
9500         perf_event_update_userpage(event);
9501
9502         return 0;
9503 }
9504
9505 static void perf_swevent_del(struct perf_event *event, int flags)
9506 {
9507         hlist_del_rcu(&event->hlist_entry);
9508 }
9509
9510 static void perf_swevent_start(struct perf_event *event, int flags)
9511 {
9512         event->hw.state = 0;
9513 }
9514
9515 static void perf_swevent_stop(struct perf_event *event, int flags)
9516 {
9517         event->hw.state = PERF_HES_STOPPED;
9518 }
9519
9520 /* Deref the hlist from the update side */
9521 static inline struct swevent_hlist *
9522 swevent_hlist_deref(struct swevent_htable *swhash)
9523 {
9524         return rcu_dereference_protected(swhash->swevent_hlist,
9525                                          lockdep_is_held(&swhash->hlist_mutex));
9526 }
9527
9528 static void swevent_hlist_release(struct swevent_htable *swhash)
9529 {
9530         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9531
9532         if (!hlist)
9533                 return;
9534
9535         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9536         kfree_rcu(hlist, rcu_head);
9537 }
9538
9539 static void swevent_hlist_put_cpu(int cpu)
9540 {
9541         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9542
9543         mutex_lock(&swhash->hlist_mutex);
9544
9545         if (!--swhash->hlist_refcount)
9546                 swevent_hlist_release(swhash);
9547
9548         mutex_unlock(&swhash->hlist_mutex);
9549 }
9550
9551 static void swevent_hlist_put(void)
9552 {
9553         int cpu;
9554
9555         for_each_possible_cpu(cpu)
9556                 swevent_hlist_put_cpu(cpu);
9557 }
9558
9559 static int swevent_hlist_get_cpu(int cpu)
9560 {
9561         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9562         int err = 0;
9563
9564         mutex_lock(&swhash->hlist_mutex);
9565         if (!swevent_hlist_deref(swhash) &&
9566             cpumask_test_cpu(cpu, perf_online_mask)) {
9567                 struct swevent_hlist *hlist;
9568
9569                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9570                 if (!hlist) {
9571                         err = -ENOMEM;
9572                         goto exit;
9573                 }
9574                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9575         }
9576         swhash->hlist_refcount++;
9577 exit:
9578         mutex_unlock(&swhash->hlist_mutex);
9579
9580         return err;
9581 }
9582
9583 static int swevent_hlist_get(void)
9584 {
9585         int err, cpu, failed_cpu;
9586
9587         mutex_lock(&pmus_lock);
9588         for_each_possible_cpu(cpu) {
9589                 err = swevent_hlist_get_cpu(cpu);
9590                 if (err) {
9591                         failed_cpu = cpu;
9592                         goto fail;
9593                 }
9594         }
9595         mutex_unlock(&pmus_lock);
9596         return 0;
9597 fail:
9598         for_each_possible_cpu(cpu) {
9599                 if (cpu == failed_cpu)
9600                         break;
9601                 swevent_hlist_put_cpu(cpu);
9602         }
9603         mutex_unlock(&pmus_lock);
9604         return err;
9605 }
9606
9607 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9608
9609 static void sw_perf_event_destroy(struct perf_event *event)
9610 {
9611         u64 event_id = event->attr.config;
9612
9613         WARN_ON(event->parent);
9614
9615         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9616         swevent_hlist_put();
9617 }
9618
9619 static int perf_swevent_init(struct perf_event *event)
9620 {
9621         u64 event_id = event->attr.config;
9622
9623         if (event->attr.type != PERF_TYPE_SOFTWARE)
9624                 return -ENOENT;
9625
9626         /*
9627          * no branch sampling for software events
9628          */
9629         if (has_branch_stack(event))
9630                 return -EOPNOTSUPP;
9631
9632         switch (event_id) {
9633         case PERF_COUNT_SW_CPU_CLOCK:
9634         case PERF_COUNT_SW_TASK_CLOCK:
9635                 return -ENOENT;
9636
9637         default:
9638                 break;
9639         }
9640
9641         if (event_id >= PERF_COUNT_SW_MAX)
9642                 return -ENOENT;
9643
9644         if (!event->parent) {
9645                 int err;
9646
9647                 err = swevent_hlist_get();
9648                 if (err)
9649                         return err;
9650
9651                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9652                 event->destroy = sw_perf_event_destroy;
9653         }
9654
9655         return 0;
9656 }
9657
9658 static struct pmu perf_swevent = {
9659         .task_ctx_nr    = perf_sw_context,
9660
9661         .capabilities   = PERF_PMU_CAP_NO_NMI,
9662
9663         .event_init     = perf_swevent_init,
9664         .add            = perf_swevent_add,
9665         .del            = perf_swevent_del,
9666         .start          = perf_swevent_start,
9667         .stop           = perf_swevent_stop,
9668         .read           = perf_swevent_read,
9669 };
9670
9671 #ifdef CONFIG_EVENT_TRACING
9672
9673 static int perf_tp_filter_match(struct perf_event *event,
9674                                 struct perf_sample_data *data)
9675 {
9676         void *record = data->raw->frag.data;
9677
9678         /* only top level events have filters set */
9679         if (event->parent)
9680                 event = event->parent;
9681
9682         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9683                 return 1;
9684         return 0;
9685 }
9686
9687 static int perf_tp_event_match(struct perf_event *event,
9688                                 struct perf_sample_data *data,
9689                                 struct pt_regs *regs)
9690 {
9691         if (event->hw.state & PERF_HES_STOPPED)
9692                 return 0;
9693         /*
9694          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9695          */
9696         if (event->attr.exclude_kernel && !user_mode(regs))
9697                 return 0;
9698
9699         if (!perf_tp_filter_match(event, data))
9700                 return 0;
9701
9702         return 1;
9703 }
9704
9705 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9706                                struct trace_event_call *call, u64 count,
9707                                struct pt_regs *regs, struct hlist_head *head,
9708                                struct task_struct *task)
9709 {
9710         if (bpf_prog_array_valid(call)) {
9711                 *(struct pt_regs **)raw_data = regs;
9712                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9713                         perf_swevent_put_recursion_context(rctx);
9714                         return;
9715                 }
9716         }
9717         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9718                       rctx, task);
9719 }
9720 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9721
9722 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9723                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9724                    struct task_struct *task)
9725 {
9726         struct perf_sample_data data;
9727         struct perf_event *event;
9728
9729         struct perf_raw_record raw = {
9730                 .frag = {
9731                         .size = entry_size,
9732                         .data = record,
9733                 },
9734         };
9735
9736         perf_sample_data_init(&data, 0, 0);
9737         data.raw = &raw;
9738
9739         perf_trace_buf_update(record, event_type);
9740
9741         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9742                 if (perf_tp_event_match(event, &data, regs))
9743                         perf_swevent_event(event, count, &data, regs);
9744         }
9745
9746         /*
9747          * If we got specified a target task, also iterate its context and
9748          * deliver this event there too.
9749          */
9750         if (task && task != current) {
9751                 struct perf_event_context *ctx;
9752                 struct trace_entry *entry = record;
9753
9754                 rcu_read_lock();
9755                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9756                 if (!ctx)
9757                         goto unlock;
9758
9759                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9760                         if (event->cpu != smp_processor_id())
9761                                 continue;
9762                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9763                                 continue;
9764                         if (event->attr.config != entry->type)
9765                                 continue;
9766                         /* Cannot deliver synchronous signal to other task. */
9767                         if (event->attr.sigtrap)
9768                                 continue;
9769                         if (perf_tp_event_match(event, &data, regs))
9770                                 perf_swevent_event(event, count, &data, regs);
9771                 }
9772 unlock:
9773                 rcu_read_unlock();
9774         }
9775
9776         perf_swevent_put_recursion_context(rctx);
9777 }
9778 EXPORT_SYMBOL_GPL(perf_tp_event);
9779
9780 static void tp_perf_event_destroy(struct perf_event *event)
9781 {
9782         perf_trace_destroy(event);
9783 }
9784
9785 static int perf_tp_event_init(struct perf_event *event)
9786 {
9787         int err;
9788
9789         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9790                 return -ENOENT;
9791
9792         /*
9793          * no branch sampling for tracepoint events
9794          */
9795         if (has_branch_stack(event))
9796                 return -EOPNOTSUPP;
9797
9798         err = perf_trace_init(event);
9799         if (err)
9800                 return err;
9801
9802         event->destroy = tp_perf_event_destroy;
9803
9804         return 0;
9805 }
9806
9807 static struct pmu perf_tracepoint = {
9808         .task_ctx_nr    = perf_sw_context,
9809
9810         .event_init     = perf_tp_event_init,
9811         .add            = perf_trace_add,
9812         .del            = perf_trace_del,
9813         .start          = perf_swevent_start,
9814         .stop           = perf_swevent_stop,
9815         .read           = perf_swevent_read,
9816 };
9817
9818 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9819 /*
9820  * Flags in config, used by dynamic PMU kprobe and uprobe
9821  * The flags should match following PMU_FORMAT_ATTR().
9822  *
9823  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9824  *                               if not set, create kprobe/uprobe
9825  *
9826  * The following values specify a reference counter (or semaphore in the
9827  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9828  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9829  *
9830  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9831  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9832  */
9833 enum perf_probe_config {
9834         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9835         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9836         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9837 };
9838
9839 PMU_FORMAT_ATTR(retprobe, "config:0");
9840 #endif
9841
9842 #ifdef CONFIG_KPROBE_EVENTS
9843 static struct attribute *kprobe_attrs[] = {
9844         &format_attr_retprobe.attr,
9845         NULL,
9846 };
9847
9848 static struct attribute_group kprobe_format_group = {
9849         .name = "format",
9850         .attrs = kprobe_attrs,
9851 };
9852
9853 static const struct attribute_group *kprobe_attr_groups[] = {
9854         &kprobe_format_group,
9855         NULL,
9856 };
9857
9858 static int perf_kprobe_event_init(struct perf_event *event);
9859 static struct pmu perf_kprobe = {
9860         .task_ctx_nr    = perf_sw_context,
9861         .event_init     = perf_kprobe_event_init,
9862         .add            = perf_trace_add,
9863         .del            = perf_trace_del,
9864         .start          = perf_swevent_start,
9865         .stop           = perf_swevent_stop,
9866         .read           = perf_swevent_read,
9867         .attr_groups    = kprobe_attr_groups,
9868 };
9869
9870 static int perf_kprobe_event_init(struct perf_event *event)
9871 {
9872         int err;
9873         bool is_retprobe;
9874
9875         if (event->attr.type != perf_kprobe.type)
9876                 return -ENOENT;
9877
9878         if (!perfmon_capable())
9879                 return -EACCES;
9880
9881         /*
9882          * no branch sampling for probe events
9883          */
9884         if (has_branch_stack(event))
9885                 return -EOPNOTSUPP;
9886
9887         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9888         err = perf_kprobe_init(event, is_retprobe);
9889         if (err)
9890                 return err;
9891
9892         event->destroy = perf_kprobe_destroy;
9893
9894         return 0;
9895 }
9896 #endif /* CONFIG_KPROBE_EVENTS */
9897
9898 #ifdef CONFIG_UPROBE_EVENTS
9899 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9900
9901 static struct attribute *uprobe_attrs[] = {
9902         &format_attr_retprobe.attr,
9903         &format_attr_ref_ctr_offset.attr,
9904         NULL,
9905 };
9906
9907 static struct attribute_group uprobe_format_group = {
9908         .name = "format",
9909         .attrs = uprobe_attrs,
9910 };
9911
9912 static const struct attribute_group *uprobe_attr_groups[] = {
9913         &uprobe_format_group,
9914         NULL,
9915 };
9916
9917 static int perf_uprobe_event_init(struct perf_event *event);
9918 static struct pmu perf_uprobe = {
9919         .task_ctx_nr    = perf_sw_context,
9920         .event_init     = perf_uprobe_event_init,
9921         .add            = perf_trace_add,
9922         .del            = perf_trace_del,
9923         .start          = perf_swevent_start,
9924         .stop           = perf_swevent_stop,
9925         .read           = perf_swevent_read,
9926         .attr_groups    = uprobe_attr_groups,
9927 };
9928
9929 static int perf_uprobe_event_init(struct perf_event *event)
9930 {
9931         int err;
9932         unsigned long ref_ctr_offset;
9933         bool is_retprobe;
9934
9935         if (event->attr.type != perf_uprobe.type)
9936                 return -ENOENT;
9937
9938         if (!perfmon_capable())
9939                 return -EACCES;
9940
9941         /*
9942          * no branch sampling for probe events
9943          */
9944         if (has_branch_stack(event))
9945                 return -EOPNOTSUPP;
9946
9947         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9948         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9949         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9950         if (err)
9951                 return err;
9952
9953         event->destroy = perf_uprobe_destroy;
9954
9955         return 0;
9956 }
9957 #endif /* CONFIG_UPROBE_EVENTS */
9958
9959 static inline void perf_tp_register(void)
9960 {
9961         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9962 #ifdef CONFIG_KPROBE_EVENTS
9963         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9964 #endif
9965 #ifdef CONFIG_UPROBE_EVENTS
9966         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9967 #endif
9968 }
9969
9970 static void perf_event_free_filter(struct perf_event *event)
9971 {
9972         ftrace_profile_free_filter(event);
9973 }
9974
9975 #ifdef CONFIG_BPF_SYSCALL
9976 static void bpf_overflow_handler(struct perf_event *event,
9977                                  struct perf_sample_data *data,
9978                                  struct pt_regs *regs)
9979 {
9980         struct bpf_perf_event_data_kern ctx = {
9981                 .data = data,
9982                 .event = event,
9983         };
9984         struct bpf_prog *prog;
9985         int ret = 0;
9986
9987         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9988         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9989                 goto out;
9990         rcu_read_lock();
9991         prog = READ_ONCE(event->prog);
9992         if (prog)
9993                 ret = bpf_prog_run(prog, &ctx);
9994         rcu_read_unlock();
9995 out:
9996         __this_cpu_dec(bpf_prog_active);
9997         if (!ret)
9998                 return;
9999
10000         event->orig_overflow_handler(event, data, regs);
10001 }
10002
10003 static int perf_event_set_bpf_handler(struct perf_event *event,
10004                                       struct bpf_prog *prog,
10005                                       u64 bpf_cookie)
10006 {
10007         if (event->overflow_handler_context)
10008                 /* hw breakpoint or kernel counter */
10009                 return -EINVAL;
10010
10011         if (event->prog)
10012                 return -EEXIST;
10013
10014         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10015                 return -EINVAL;
10016
10017         if (event->attr.precise_ip &&
10018             prog->call_get_stack &&
10019             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10020              event->attr.exclude_callchain_kernel ||
10021              event->attr.exclude_callchain_user)) {
10022                 /*
10023                  * On perf_event with precise_ip, calling bpf_get_stack()
10024                  * may trigger unwinder warnings and occasional crashes.
10025                  * bpf_get_[stack|stackid] works around this issue by using
10026                  * callchain attached to perf_sample_data. If the
10027                  * perf_event does not full (kernel and user) callchain
10028                  * attached to perf_sample_data, do not allow attaching BPF
10029                  * program that calls bpf_get_[stack|stackid].
10030                  */
10031                 return -EPROTO;
10032         }
10033
10034         event->prog = prog;
10035         event->bpf_cookie = bpf_cookie;
10036         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10037         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10038         return 0;
10039 }
10040
10041 static void perf_event_free_bpf_handler(struct perf_event *event)
10042 {
10043         struct bpf_prog *prog = event->prog;
10044
10045         if (!prog)
10046                 return;
10047
10048         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10049         event->prog = NULL;
10050         bpf_prog_put(prog);
10051 }
10052 #else
10053 static int perf_event_set_bpf_handler(struct perf_event *event,
10054                                       struct bpf_prog *prog,
10055                                       u64 bpf_cookie)
10056 {
10057         return -EOPNOTSUPP;
10058 }
10059 static void perf_event_free_bpf_handler(struct perf_event *event)
10060 {
10061 }
10062 #endif
10063
10064 /*
10065  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10066  * with perf_event_open()
10067  */
10068 static inline bool perf_event_is_tracing(struct perf_event *event)
10069 {
10070         if (event->pmu == &perf_tracepoint)
10071                 return true;
10072 #ifdef CONFIG_KPROBE_EVENTS
10073         if (event->pmu == &perf_kprobe)
10074                 return true;
10075 #endif
10076 #ifdef CONFIG_UPROBE_EVENTS
10077         if (event->pmu == &perf_uprobe)
10078                 return true;
10079 #endif
10080         return false;
10081 }
10082
10083 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10084                             u64 bpf_cookie)
10085 {
10086         bool is_kprobe, is_tracepoint, is_syscall_tp;
10087
10088         if (!perf_event_is_tracing(event))
10089                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10090
10091         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10092         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10093         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10094         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10095                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10096                 return -EINVAL;
10097
10098         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10099             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10100             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10101                 return -EINVAL;
10102
10103         /* Kprobe override only works for kprobes, not uprobes. */
10104         if (prog->kprobe_override &&
10105             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10106                 return -EINVAL;
10107
10108         if (is_tracepoint || is_syscall_tp) {
10109                 int off = trace_event_get_offsets(event->tp_event);
10110
10111                 if (prog->aux->max_ctx_offset > off)
10112                         return -EACCES;
10113         }
10114
10115         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10116 }
10117
10118 void perf_event_free_bpf_prog(struct perf_event *event)
10119 {
10120         if (!perf_event_is_tracing(event)) {
10121                 perf_event_free_bpf_handler(event);
10122                 return;
10123         }
10124         perf_event_detach_bpf_prog(event);
10125 }
10126
10127 #else
10128
10129 static inline void perf_tp_register(void)
10130 {
10131 }
10132
10133 static void perf_event_free_filter(struct perf_event *event)
10134 {
10135 }
10136
10137 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10138                             u64 bpf_cookie)
10139 {
10140         return -ENOENT;
10141 }
10142
10143 void perf_event_free_bpf_prog(struct perf_event *event)
10144 {
10145 }
10146 #endif /* CONFIG_EVENT_TRACING */
10147
10148 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10149 void perf_bp_event(struct perf_event *bp, void *data)
10150 {
10151         struct perf_sample_data sample;
10152         struct pt_regs *regs = data;
10153
10154         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10155
10156         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10157                 perf_swevent_event(bp, 1, &sample, regs);
10158 }
10159 #endif
10160
10161 /*
10162  * Allocate a new address filter
10163  */
10164 static struct perf_addr_filter *
10165 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10166 {
10167         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10168         struct perf_addr_filter *filter;
10169
10170         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10171         if (!filter)
10172                 return NULL;
10173
10174         INIT_LIST_HEAD(&filter->entry);
10175         list_add_tail(&filter->entry, filters);
10176
10177         return filter;
10178 }
10179
10180 static void free_filters_list(struct list_head *filters)
10181 {
10182         struct perf_addr_filter *filter, *iter;
10183
10184         list_for_each_entry_safe(filter, iter, filters, entry) {
10185                 path_put(&filter->path);
10186                 list_del(&filter->entry);
10187                 kfree(filter);
10188         }
10189 }
10190
10191 /*
10192  * Free existing address filters and optionally install new ones
10193  */
10194 static void perf_addr_filters_splice(struct perf_event *event,
10195                                      struct list_head *head)
10196 {
10197         unsigned long flags;
10198         LIST_HEAD(list);
10199
10200         if (!has_addr_filter(event))
10201                 return;
10202
10203         /* don't bother with children, they don't have their own filters */
10204         if (event->parent)
10205                 return;
10206
10207         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10208
10209         list_splice_init(&event->addr_filters.list, &list);
10210         if (head)
10211                 list_splice(head, &event->addr_filters.list);
10212
10213         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10214
10215         free_filters_list(&list);
10216 }
10217
10218 /*
10219  * Scan through mm's vmas and see if one of them matches the
10220  * @filter; if so, adjust filter's address range.
10221  * Called with mm::mmap_lock down for reading.
10222  */
10223 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10224                                    struct mm_struct *mm,
10225                                    struct perf_addr_filter_range *fr)
10226 {
10227         struct vm_area_struct *vma;
10228
10229         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10230                 if (!vma->vm_file)
10231                         continue;
10232
10233                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10234                         return;
10235         }
10236 }
10237
10238 /*
10239  * Update event's address range filters based on the
10240  * task's existing mappings, if any.
10241  */
10242 static void perf_event_addr_filters_apply(struct perf_event *event)
10243 {
10244         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10245         struct task_struct *task = READ_ONCE(event->ctx->task);
10246         struct perf_addr_filter *filter;
10247         struct mm_struct *mm = NULL;
10248         unsigned int count = 0;
10249         unsigned long flags;
10250
10251         /*
10252          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10253          * will stop on the parent's child_mutex that our caller is also holding
10254          */
10255         if (task == TASK_TOMBSTONE)
10256                 return;
10257
10258         if (ifh->nr_file_filters) {
10259                 mm = get_task_mm(task);
10260                 if (!mm)
10261                         goto restart;
10262
10263                 mmap_read_lock(mm);
10264         }
10265
10266         raw_spin_lock_irqsave(&ifh->lock, flags);
10267         list_for_each_entry(filter, &ifh->list, entry) {
10268                 if (filter->path.dentry) {
10269                         /*
10270                          * Adjust base offset if the filter is associated to a
10271                          * binary that needs to be mapped:
10272                          */
10273                         event->addr_filter_ranges[count].start = 0;
10274                         event->addr_filter_ranges[count].size = 0;
10275
10276                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10277                 } else {
10278                         event->addr_filter_ranges[count].start = filter->offset;
10279                         event->addr_filter_ranges[count].size  = filter->size;
10280                 }
10281
10282                 count++;
10283         }
10284
10285         event->addr_filters_gen++;
10286         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10287
10288         if (ifh->nr_file_filters) {
10289                 mmap_read_unlock(mm);
10290
10291                 mmput(mm);
10292         }
10293
10294 restart:
10295         perf_event_stop(event, 1);
10296 }
10297
10298 /*
10299  * Address range filtering: limiting the data to certain
10300  * instruction address ranges. Filters are ioctl()ed to us from
10301  * userspace as ascii strings.
10302  *
10303  * Filter string format:
10304  *
10305  * ACTION RANGE_SPEC
10306  * where ACTION is one of the
10307  *  * "filter": limit the trace to this region
10308  *  * "start": start tracing from this address
10309  *  * "stop": stop tracing at this address/region;
10310  * RANGE_SPEC is
10311  *  * for kernel addresses: <start address>[/<size>]
10312  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10313  *
10314  * if <size> is not specified or is zero, the range is treated as a single
10315  * address; not valid for ACTION=="filter".
10316  */
10317 enum {
10318         IF_ACT_NONE = -1,
10319         IF_ACT_FILTER,
10320         IF_ACT_START,
10321         IF_ACT_STOP,
10322         IF_SRC_FILE,
10323         IF_SRC_KERNEL,
10324         IF_SRC_FILEADDR,
10325         IF_SRC_KERNELADDR,
10326 };
10327
10328 enum {
10329         IF_STATE_ACTION = 0,
10330         IF_STATE_SOURCE,
10331         IF_STATE_END,
10332 };
10333
10334 static const match_table_t if_tokens = {
10335         { IF_ACT_FILTER,        "filter" },
10336         { IF_ACT_START,         "start" },
10337         { IF_ACT_STOP,          "stop" },
10338         { IF_SRC_FILE,          "%u/%u@%s" },
10339         { IF_SRC_KERNEL,        "%u/%u" },
10340         { IF_SRC_FILEADDR,      "%u@%s" },
10341         { IF_SRC_KERNELADDR,    "%u" },
10342         { IF_ACT_NONE,          NULL },
10343 };
10344
10345 /*
10346  * Address filter string parser
10347  */
10348 static int
10349 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10350                              struct list_head *filters)
10351 {
10352         struct perf_addr_filter *filter = NULL;
10353         char *start, *orig, *filename = NULL;
10354         substring_t args[MAX_OPT_ARGS];
10355         int state = IF_STATE_ACTION, token;
10356         unsigned int kernel = 0;
10357         int ret = -EINVAL;
10358
10359         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10360         if (!fstr)
10361                 return -ENOMEM;
10362
10363         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10364                 static const enum perf_addr_filter_action_t actions[] = {
10365                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10366                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10367                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10368                 };
10369                 ret = -EINVAL;
10370
10371                 if (!*start)
10372                         continue;
10373
10374                 /* filter definition begins */
10375                 if (state == IF_STATE_ACTION) {
10376                         filter = perf_addr_filter_new(event, filters);
10377                         if (!filter)
10378                                 goto fail;
10379                 }
10380
10381                 token = match_token(start, if_tokens, args);
10382                 switch (token) {
10383                 case IF_ACT_FILTER:
10384                 case IF_ACT_START:
10385                 case IF_ACT_STOP:
10386                         if (state != IF_STATE_ACTION)
10387                                 goto fail;
10388
10389                         filter->action = actions[token];
10390                         state = IF_STATE_SOURCE;
10391                         break;
10392
10393                 case IF_SRC_KERNELADDR:
10394                 case IF_SRC_KERNEL:
10395                         kernel = 1;
10396                         fallthrough;
10397
10398                 case IF_SRC_FILEADDR:
10399                 case IF_SRC_FILE:
10400                         if (state != IF_STATE_SOURCE)
10401                                 goto fail;
10402
10403                         *args[0].to = 0;
10404                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10405                         if (ret)
10406                                 goto fail;
10407
10408                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10409                                 *args[1].to = 0;
10410                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10411                                 if (ret)
10412                                         goto fail;
10413                         }
10414
10415                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10416                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10417
10418                                 kfree(filename);
10419                                 filename = match_strdup(&args[fpos]);
10420                                 if (!filename) {
10421                                         ret = -ENOMEM;
10422                                         goto fail;
10423                                 }
10424                         }
10425
10426                         state = IF_STATE_END;
10427                         break;
10428
10429                 default:
10430                         goto fail;
10431                 }
10432
10433                 /*
10434                  * Filter definition is fully parsed, validate and install it.
10435                  * Make sure that it doesn't contradict itself or the event's
10436                  * attribute.
10437                  */
10438                 if (state == IF_STATE_END) {
10439                         ret = -EINVAL;
10440
10441                         /*
10442                          * ACTION "filter" must have a non-zero length region
10443                          * specified.
10444                          */
10445                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10446                             !filter->size)
10447                                 goto fail;
10448
10449                         if (!kernel) {
10450                                 if (!filename)
10451                                         goto fail;
10452
10453                                 /*
10454                                  * For now, we only support file-based filters
10455                                  * in per-task events; doing so for CPU-wide
10456                                  * events requires additional context switching
10457                                  * trickery, since same object code will be
10458                                  * mapped at different virtual addresses in
10459                                  * different processes.
10460                                  */
10461                                 ret = -EOPNOTSUPP;
10462                                 if (!event->ctx->task)
10463                                         goto fail;
10464
10465                                 /* look up the path and grab its inode */
10466                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10467                                                 &filter->path);
10468                                 if (ret)
10469                                         goto fail;
10470
10471                                 ret = -EINVAL;
10472                                 if (!filter->path.dentry ||
10473                                     !S_ISREG(d_inode(filter->path.dentry)
10474                                              ->i_mode))
10475                                         goto fail;
10476
10477                                 event->addr_filters.nr_file_filters++;
10478                         }
10479
10480                         /* ready to consume more filters */
10481                         kfree(filename);
10482                         filename = NULL;
10483                         state = IF_STATE_ACTION;
10484                         filter = NULL;
10485                         kernel = 0;
10486                 }
10487         }
10488
10489         if (state != IF_STATE_ACTION)
10490                 goto fail;
10491
10492         kfree(filename);
10493         kfree(orig);
10494
10495         return 0;
10496
10497 fail:
10498         kfree(filename);
10499         free_filters_list(filters);
10500         kfree(orig);
10501
10502         return ret;
10503 }
10504
10505 static int
10506 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10507 {
10508         LIST_HEAD(filters);
10509         int ret;
10510
10511         /*
10512          * Since this is called in perf_ioctl() path, we're already holding
10513          * ctx::mutex.
10514          */
10515         lockdep_assert_held(&event->ctx->mutex);
10516
10517         if (WARN_ON_ONCE(event->parent))
10518                 return -EINVAL;
10519
10520         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10521         if (ret)
10522                 goto fail_clear_files;
10523
10524         ret = event->pmu->addr_filters_validate(&filters);
10525         if (ret)
10526                 goto fail_free_filters;
10527
10528         /* remove existing filters, if any */
10529         perf_addr_filters_splice(event, &filters);
10530
10531         /* install new filters */
10532         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10533
10534         return ret;
10535
10536 fail_free_filters:
10537         free_filters_list(&filters);
10538
10539 fail_clear_files:
10540         event->addr_filters.nr_file_filters = 0;
10541
10542         return ret;
10543 }
10544
10545 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10546 {
10547         int ret = -EINVAL;
10548         char *filter_str;
10549
10550         filter_str = strndup_user(arg, PAGE_SIZE);
10551         if (IS_ERR(filter_str))
10552                 return PTR_ERR(filter_str);
10553
10554 #ifdef CONFIG_EVENT_TRACING
10555         if (perf_event_is_tracing(event)) {
10556                 struct perf_event_context *ctx = event->ctx;
10557
10558                 /*
10559                  * Beware, here be dragons!!
10560                  *
10561                  * the tracepoint muck will deadlock against ctx->mutex, but
10562                  * the tracepoint stuff does not actually need it. So
10563                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10564                  * already have a reference on ctx.
10565                  *
10566                  * This can result in event getting moved to a different ctx,
10567                  * but that does not affect the tracepoint state.
10568                  */
10569                 mutex_unlock(&ctx->mutex);
10570                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10571                 mutex_lock(&ctx->mutex);
10572         } else
10573 #endif
10574         if (has_addr_filter(event))
10575                 ret = perf_event_set_addr_filter(event, filter_str);
10576
10577         kfree(filter_str);
10578         return ret;
10579 }
10580
10581 /*
10582  * hrtimer based swevent callback
10583  */
10584
10585 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10586 {
10587         enum hrtimer_restart ret = HRTIMER_RESTART;
10588         struct perf_sample_data data;
10589         struct pt_regs *regs;
10590         struct perf_event *event;
10591         u64 period;
10592
10593         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10594
10595         if (event->state != PERF_EVENT_STATE_ACTIVE)
10596                 return HRTIMER_NORESTART;
10597
10598         event->pmu->read(event);
10599
10600         perf_sample_data_init(&data, 0, event->hw.last_period);
10601         regs = get_irq_regs();
10602
10603         if (regs && !perf_exclude_event(event, regs)) {
10604                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10605                         if (__perf_event_overflow(event, 1, &data, regs))
10606                                 ret = HRTIMER_NORESTART;
10607         }
10608
10609         period = max_t(u64, 10000, event->hw.sample_period);
10610         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10611
10612         return ret;
10613 }
10614
10615 static void perf_swevent_start_hrtimer(struct perf_event *event)
10616 {
10617         struct hw_perf_event *hwc = &event->hw;
10618         s64 period;
10619
10620         if (!is_sampling_event(event))
10621                 return;
10622
10623         period = local64_read(&hwc->period_left);
10624         if (period) {
10625                 if (period < 0)
10626                         period = 10000;
10627
10628                 local64_set(&hwc->period_left, 0);
10629         } else {
10630                 period = max_t(u64, 10000, hwc->sample_period);
10631         }
10632         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10633                       HRTIMER_MODE_REL_PINNED_HARD);
10634 }
10635
10636 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10637 {
10638         struct hw_perf_event *hwc = &event->hw;
10639
10640         if (is_sampling_event(event)) {
10641                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10642                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10643
10644                 hrtimer_cancel(&hwc->hrtimer);
10645         }
10646 }
10647
10648 static void perf_swevent_init_hrtimer(struct perf_event *event)
10649 {
10650         struct hw_perf_event *hwc = &event->hw;
10651
10652         if (!is_sampling_event(event))
10653                 return;
10654
10655         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10656         hwc->hrtimer.function = perf_swevent_hrtimer;
10657
10658         /*
10659          * Since hrtimers have a fixed rate, we can do a static freq->period
10660          * mapping and avoid the whole period adjust feedback stuff.
10661          */
10662         if (event->attr.freq) {
10663                 long freq = event->attr.sample_freq;
10664
10665                 event->attr.sample_period = NSEC_PER_SEC / freq;
10666                 hwc->sample_period = event->attr.sample_period;
10667                 local64_set(&hwc->period_left, hwc->sample_period);
10668                 hwc->last_period = hwc->sample_period;
10669                 event->attr.freq = 0;
10670         }
10671 }
10672
10673 /*
10674  * Software event: cpu wall time clock
10675  */
10676
10677 static void cpu_clock_event_update(struct perf_event *event)
10678 {
10679         s64 prev;
10680         u64 now;
10681
10682         now = local_clock();
10683         prev = local64_xchg(&event->hw.prev_count, now);
10684         local64_add(now - prev, &event->count);
10685 }
10686
10687 static void cpu_clock_event_start(struct perf_event *event, int flags)
10688 {
10689         local64_set(&event->hw.prev_count, local_clock());
10690         perf_swevent_start_hrtimer(event);
10691 }
10692
10693 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10694 {
10695         perf_swevent_cancel_hrtimer(event);
10696         cpu_clock_event_update(event);
10697 }
10698
10699 static int cpu_clock_event_add(struct perf_event *event, int flags)
10700 {
10701         if (flags & PERF_EF_START)
10702                 cpu_clock_event_start(event, flags);
10703         perf_event_update_userpage(event);
10704
10705         return 0;
10706 }
10707
10708 static void cpu_clock_event_del(struct perf_event *event, int flags)
10709 {
10710         cpu_clock_event_stop(event, flags);
10711 }
10712
10713 static void cpu_clock_event_read(struct perf_event *event)
10714 {
10715         cpu_clock_event_update(event);
10716 }
10717
10718 static int cpu_clock_event_init(struct perf_event *event)
10719 {
10720         if (event->attr.type != PERF_TYPE_SOFTWARE)
10721                 return -ENOENT;
10722
10723         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10724                 return -ENOENT;
10725
10726         /*
10727          * no branch sampling for software events
10728          */
10729         if (has_branch_stack(event))
10730                 return -EOPNOTSUPP;
10731
10732         perf_swevent_init_hrtimer(event);
10733
10734         return 0;
10735 }
10736
10737 static struct pmu perf_cpu_clock = {
10738         .task_ctx_nr    = perf_sw_context,
10739
10740         .capabilities   = PERF_PMU_CAP_NO_NMI,
10741
10742         .event_init     = cpu_clock_event_init,
10743         .add            = cpu_clock_event_add,
10744         .del            = cpu_clock_event_del,
10745         .start          = cpu_clock_event_start,
10746         .stop           = cpu_clock_event_stop,
10747         .read           = cpu_clock_event_read,
10748 };
10749
10750 /*
10751  * Software event: task time clock
10752  */
10753
10754 static void task_clock_event_update(struct perf_event *event, u64 now)
10755 {
10756         u64 prev;
10757         s64 delta;
10758
10759         prev = local64_xchg(&event->hw.prev_count, now);
10760         delta = now - prev;
10761         local64_add(delta, &event->count);
10762 }
10763
10764 static void task_clock_event_start(struct perf_event *event, int flags)
10765 {
10766         local64_set(&event->hw.prev_count, event->ctx->time);
10767         perf_swevent_start_hrtimer(event);
10768 }
10769
10770 static void task_clock_event_stop(struct perf_event *event, int flags)
10771 {
10772         perf_swevent_cancel_hrtimer(event);
10773         task_clock_event_update(event, event->ctx->time);
10774 }
10775
10776 static int task_clock_event_add(struct perf_event *event, int flags)
10777 {
10778         if (flags & PERF_EF_START)
10779                 task_clock_event_start(event, flags);
10780         perf_event_update_userpage(event);
10781
10782         return 0;
10783 }
10784
10785 static void task_clock_event_del(struct perf_event *event, int flags)
10786 {
10787         task_clock_event_stop(event, PERF_EF_UPDATE);
10788 }
10789
10790 static void task_clock_event_read(struct perf_event *event)
10791 {
10792         u64 now = perf_clock();
10793         u64 delta = now - event->ctx->timestamp;
10794         u64 time = event->ctx->time + delta;
10795
10796         task_clock_event_update(event, time);
10797 }
10798
10799 static int task_clock_event_init(struct perf_event *event)
10800 {
10801         if (event->attr.type != PERF_TYPE_SOFTWARE)
10802                 return -ENOENT;
10803
10804         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10805                 return -ENOENT;
10806
10807         /*
10808          * no branch sampling for software events
10809          */
10810         if (has_branch_stack(event))
10811                 return -EOPNOTSUPP;
10812
10813         perf_swevent_init_hrtimer(event);
10814
10815         return 0;
10816 }
10817
10818 static struct pmu perf_task_clock = {
10819         .task_ctx_nr    = perf_sw_context,
10820
10821         .capabilities   = PERF_PMU_CAP_NO_NMI,
10822
10823         .event_init     = task_clock_event_init,
10824         .add            = task_clock_event_add,
10825         .del            = task_clock_event_del,
10826         .start          = task_clock_event_start,
10827         .stop           = task_clock_event_stop,
10828         .read           = task_clock_event_read,
10829 };
10830
10831 static void perf_pmu_nop_void(struct pmu *pmu)
10832 {
10833 }
10834
10835 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10836 {
10837 }
10838
10839 static int perf_pmu_nop_int(struct pmu *pmu)
10840 {
10841         return 0;
10842 }
10843
10844 static int perf_event_nop_int(struct perf_event *event, u64 value)
10845 {
10846         return 0;
10847 }
10848
10849 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10850
10851 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10852 {
10853         __this_cpu_write(nop_txn_flags, flags);
10854
10855         if (flags & ~PERF_PMU_TXN_ADD)
10856                 return;
10857
10858         perf_pmu_disable(pmu);
10859 }
10860
10861 static int perf_pmu_commit_txn(struct pmu *pmu)
10862 {
10863         unsigned int flags = __this_cpu_read(nop_txn_flags);
10864
10865         __this_cpu_write(nop_txn_flags, 0);
10866
10867         if (flags & ~PERF_PMU_TXN_ADD)
10868                 return 0;
10869
10870         perf_pmu_enable(pmu);
10871         return 0;
10872 }
10873
10874 static void perf_pmu_cancel_txn(struct pmu *pmu)
10875 {
10876         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10877
10878         __this_cpu_write(nop_txn_flags, 0);
10879
10880         if (flags & ~PERF_PMU_TXN_ADD)
10881                 return;
10882
10883         perf_pmu_enable(pmu);
10884 }
10885
10886 static int perf_event_idx_default(struct perf_event *event)
10887 {
10888         return 0;
10889 }
10890
10891 /*
10892  * Ensures all contexts with the same task_ctx_nr have the same
10893  * pmu_cpu_context too.
10894  */
10895 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10896 {
10897         struct pmu *pmu;
10898
10899         if (ctxn < 0)
10900                 return NULL;
10901
10902         list_for_each_entry(pmu, &pmus, entry) {
10903                 if (pmu->task_ctx_nr == ctxn)
10904                         return pmu->pmu_cpu_context;
10905         }
10906
10907         return NULL;
10908 }
10909
10910 static void free_pmu_context(struct pmu *pmu)
10911 {
10912         /*
10913          * Static contexts such as perf_sw_context have a global lifetime
10914          * and may be shared between different PMUs. Avoid freeing them
10915          * when a single PMU is going away.
10916          */
10917         if (pmu->task_ctx_nr > perf_invalid_context)
10918                 return;
10919
10920         free_percpu(pmu->pmu_cpu_context);
10921 }
10922
10923 /*
10924  * Let userspace know that this PMU supports address range filtering:
10925  */
10926 static ssize_t nr_addr_filters_show(struct device *dev,
10927                                     struct device_attribute *attr,
10928                                     char *page)
10929 {
10930         struct pmu *pmu = dev_get_drvdata(dev);
10931
10932         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10933 }
10934 DEVICE_ATTR_RO(nr_addr_filters);
10935
10936 static struct idr pmu_idr;
10937
10938 static ssize_t
10939 type_show(struct device *dev, struct device_attribute *attr, char *page)
10940 {
10941         struct pmu *pmu = dev_get_drvdata(dev);
10942
10943         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10944 }
10945 static DEVICE_ATTR_RO(type);
10946
10947 static ssize_t
10948 perf_event_mux_interval_ms_show(struct device *dev,
10949                                 struct device_attribute *attr,
10950                                 char *page)
10951 {
10952         struct pmu *pmu = dev_get_drvdata(dev);
10953
10954         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10955 }
10956
10957 static DEFINE_MUTEX(mux_interval_mutex);
10958
10959 static ssize_t
10960 perf_event_mux_interval_ms_store(struct device *dev,
10961                                  struct device_attribute *attr,
10962                                  const char *buf, size_t count)
10963 {
10964         struct pmu *pmu = dev_get_drvdata(dev);
10965         int timer, cpu, ret;
10966
10967         ret = kstrtoint(buf, 0, &timer);
10968         if (ret)
10969                 return ret;
10970
10971         if (timer < 1)
10972                 return -EINVAL;
10973
10974         /* same value, noting to do */
10975         if (timer == pmu->hrtimer_interval_ms)
10976                 return count;
10977
10978         mutex_lock(&mux_interval_mutex);
10979         pmu->hrtimer_interval_ms = timer;
10980
10981         /* update all cpuctx for this PMU */
10982         cpus_read_lock();
10983         for_each_online_cpu(cpu) {
10984                 struct perf_cpu_context *cpuctx;
10985                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10986                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10987
10988                 cpu_function_call(cpu,
10989                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10990         }
10991         cpus_read_unlock();
10992         mutex_unlock(&mux_interval_mutex);
10993
10994         return count;
10995 }
10996 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10997
10998 static struct attribute *pmu_dev_attrs[] = {
10999         &dev_attr_type.attr,
11000         &dev_attr_perf_event_mux_interval_ms.attr,
11001         NULL,
11002 };
11003 ATTRIBUTE_GROUPS(pmu_dev);
11004
11005 static int pmu_bus_running;
11006 static struct bus_type pmu_bus = {
11007         .name           = "event_source",
11008         .dev_groups     = pmu_dev_groups,
11009 };
11010
11011 static void pmu_dev_release(struct device *dev)
11012 {
11013         kfree(dev);
11014 }
11015
11016 static int pmu_dev_alloc(struct pmu *pmu)
11017 {
11018         int ret = -ENOMEM;
11019
11020         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11021         if (!pmu->dev)
11022                 goto out;
11023
11024         pmu->dev->groups = pmu->attr_groups;
11025         device_initialize(pmu->dev);
11026         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11027         if (ret)
11028                 goto free_dev;
11029
11030         dev_set_drvdata(pmu->dev, pmu);
11031         pmu->dev->bus = &pmu_bus;
11032         pmu->dev->release = pmu_dev_release;
11033         ret = device_add(pmu->dev);
11034         if (ret)
11035                 goto free_dev;
11036
11037         /* For PMUs with address filters, throw in an extra attribute: */
11038         if (pmu->nr_addr_filters)
11039                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11040
11041         if (ret)
11042                 goto del_dev;
11043
11044         if (pmu->attr_update)
11045                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11046
11047         if (ret)
11048                 goto del_dev;
11049
11050 out:
11051         return ret;
11052
11053 del_dev:
11054         device_del(pmu->dev);
11055
11056 free_dev:
11057         put_device(pmu->dev);
11058         goto out;
11059 }
11060
11061 static struct lock_class_key cpuctx_mutex;
11062 static struct lock_class_key cpuctx_lock;
11063
11064 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11065 {
11066         int cpu, ret, max = PERF_TYPE_MAX;
11067
11068         mutex_lock(&pmus_lock);
11069         ret = -ENOMEM;
11070         pmu->pmu_disable_count = alloc_percpu(int);
11071         if (!pmu->pmu_disable_count)
11072                 goto unlock;
11073
11074         pmu->type = -1;
11075         if (!name)
11076                 goto skip_type;
11077         pmu->name = name;
11078
11079         if (type != PERF_TYPE_SOFTWARE) {
11080                 if (type >= 0)
11081                         max = type;
11082
11083                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11084                 if (ret < 0)
11085                         goto free_pdc;
11086
11087                 WARN_ON(type >= 0 && ret != type);
11088
11089                 type = ret;
11090         }
11091         pmu->type = type;
11092
11093         if (pmu_bus_running) {
11094                 ret = pmu_dev_alloc(pmu);
11095                 if (ret)
11096                         goto free_idr;
11097         }
11098
11099 skip_type:
11100         if (pmu->task_ctx_nr == perf_hw_context) {
11101                 static int hw_context_taken = 0;
11102
11103                 /*
11104                  * Other than systems with heterogeneous CPUs, it never makes
11105                  * sense for two PMUs to share perf_hw_context. PMUs which are
11106                  * uncore must use perf_invalid_context.
11107                  */
11108                 if (WARN_ON_ONCE(hw_context_taken &&
11109                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11110                         pmu->task_ctx_nr = perf_invalid_context;
11111
11112                 hw_context_taken = 1;
11113         }
11114
11115         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11116         if (pmu->pmu_cpu_context)
11117                 goto got_cpu_context;
11118
11119         ret = -ENOMEM;
11120         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11121         if (!pmu->pmu_cpu_context)
11122                 goto free_dev;
11123
11124         for_each_possible_cpu(cpu) {
11125                 struct perf_cpu_context *cpuctx;
11126
11127                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11128                 __perf_event_init_context(&cpuctx->ctx);
11129                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11130                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11131                 cpuctx->ctx.pmu = pmu;
11132                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11133
11134                 __perf_mux_hrtimer_init(cpuctx, cpu);
11135
11136                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11137                 cpuctx->heap = cpuctx->heap_default;
11138         }
11139
11140 got_cpu_context:
11141         if (!pmu->start_txn) {
11142                 if (pmu->pmu_enable) {
11143                         /*
11144                          * If we have pmu_enable/pmu_disable calls, install
11145                          * transaction stubs that use that to try and batch
11146                          * hardware accesses.
11147                          */
11148                         pmu->start_txn  = perf_pmu_start_txn;
11149                         pmu->commit_txn = perf_pmu_commit_txn;
11150                         pmu->cancel_txn = perf_pmu_cancel_txn;
11151                 } else {
11152                         pmu->start_txn  = perf_pmu_nop_txn;
11153                         pmu->commit_txn = perf_pmu_nop_int;
11154                         pmu->cancel_txn = perf_pmu_nop_void;
11155                 }
11156         }
11157
11158         if (!pmu->pmu_enable) {
11159                 pmu->pmu_enable  = perf_pmu_nop_void;
11160                 pmu->pmu_disable = perf_pmu_nop_void;
11161         }
11162
11163         if (!pmu->check_period)
11164                 pmu->check_period = perf_event_nop_int;
11165
11166         if (!pmu->event_idx)
11167                 pmu->event_idx = perf_event_idx_default;
11168
11169         /*
11170          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11171          * since these cannot be in the IDR. This way the linear search
11172          * is fast, provided a valid software event is provided.
11173          */
11174         if (type == PERF_TYPE_SOFTWARE || !name)
11175                 list_add_rcu(&pmu->entry, &pmus);
11176         else
11177                 list_add_tail_rcu(&pmu->entry, &pmus);
11178
11179         atomic_set(&pmu->exclusive_cnt, 0);
11180         ret = 0;
11181 unlock:
11182         mutex_unlock(&pmus_lock);
11183
11184         return ret;
11185
11186 free_dev:
11187         device_del(pmu->dev);
11188         put_device(pmu->dev);
11189
11190 free_idr:
11191         if (pmu->type != PERF_TYPE_SOFTWARE)
11192                 idr_remove(&pmu_idr, pmu->type);
11193
11194 free_pdc:
11195         free_percpu(pmu->pmu_disable_count);
11196         goto unlock;
11197 }
11198 EXPORT_SYMBOL_GPL(perf_pmu_register);
11199
11200 void perf_pmu_unregister(struct pmu *pmu)
11201 {
11202         mutex_lock(&pmus_lock);
11203         list_del_rcu(&pmu->entry);
11204
11205         /*
11206          * We dereference the pmu list under both SRCU and regular RCU, so
11207          * synchronize against both of those.
11208          */
11209         synchronize_srcu(&pmus_srcu);
11210         synchronize_rcu();
11211
11212         free_percpu(pmu->pmu_disable_count);
11213         if (pmu->type != PERF_TYPE_SOFTWARE)
11214                 idr_remove(&pmu_idr, pmu->type);
11215         if (pmu_bus_running) {
11216                 if (pmu->nr_addr_filters)
11217                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11218                 device_del(pmu->dev);
11219                 put_device(pmu->dev);
11220         }
11221         free_pmu_context(pmu);
11222         mutex_unlock(&pmus_lock);
11223 }
11224 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11225
11226 static inline bool has_extended_regs(struct perf_event *event)
11227 {
11228         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11229                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11230 }
11231
11232 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11233 {
11234         struct perf_event_context *ctx = NULL;
11235         int ret;
11236
11237         if (!try_module_get(pmu->module))
11238                 return -ENODEV;
11239
11240         /*
11241          * A number of pmu->event_init() methods iterate the sibling_list to,
11242          * for example, validate if the group fits on the PMU. Therefore,
11243          * if this is a sibling event, acquire the ctx->mutex to protect
11244          * the sibling_list.
11245          */
11246         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11247                 /*
11248                  * This ctx->mutex can nest when we're called through
11249                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11250                  */
11251                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11252                                                  SINGLE_DEPTH_NESTING);
11253                 BUG_ON(!ctx);
11254         }
11255
11256         event->pmu = pmu;
11257         ret = pmu->event_init(event);
11258
11259         if (ctx)
11260                 perf_event_ctx_unlock(event->group_leader, ctx);
11261
11262         if (!ret) {
11263                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11264                     has_extended_regs(event))
11265                         ret = -EOPNOTSUPP;
11266
11267                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11268                     event_has_any_exclude_flag(event))
11269                         ret = -EINVAL;
11270
11271                 if (ret && event->destroy)
11272                         event->destroy(event);
11273         }
11274
11275         if (ret)
11276                 module_put(pmu->module);
11277
11278         return ret;
11279 }
11280
11281 static struct pmu *perf_init_event(struct perf_event *event)
11282 {
11283         bool extended_type = false;
11284         int idx, type, ret;
11285         struct pmu *pmu;
11286
11287         idx = srcu_read_lock(&pmus_srcu);
11288
11289         /* Try parent's PMU first: */
11290         if (event->parent && event->parent->pmu) {
11291                 pmu = event->parent->pmu;
11292                 ret = perf_try_init_event(pmu, event);
11293                 if (!ret)
11294                         goto unlock;
11295         }
11296
11297         /*
11298          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11299          * are often aliases for PERF_TYPE_RAW.
11300          */
11301         type = event->attr.type;
11302         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11303                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11304                 if (!type) {
11305                         type = PERF_TYPE_RAW;
11306                 } else {
11307                         extended_type = true;
11308                         event->attr.config &= PERF_HW_EVENT_MASK;
11309                 }
11310         }
11311
11312 again:
11313         rcu_read_lock();
11314         pmu = idr_find(&pmu_idr, type);
11315         rcu_read_unlock();
11316         if (pmu) {
11317                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11318                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11319                         goto fail;
11320
11321                 ret = perf_try_init_event(pmu, event);
11322                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11323                         type = event->attr.type;
11324                         goto again;
11325                 }
11326
11327                 if (ret)
11328                         pmu = ERR_PTR(ret);
11329
11330                 goto unlock;
11331         }
11332
11333         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11334                 ret = perf_try_init_event(pmu, event);
11335                 if (!ret)
11336                         goto unlock;
11337
11338                 if (ret != -ENOENT) {
11339                         pmu = ERR_PTR(ret);
11340                         goto unlock;
11341                 }
11342         }
11343 fail:
11344         pmu = ERR_PTR(-ENOENT);
11345 unlock:
11346         srcu_read_unlock(&pmus_srcu, idx);
11347
11348         return pmu;
11349 }
11350
11351 static void attach_sb_event(struct perf_event *event)
11352 {
11353         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11354
11355         raw_spin_lock(&pel->lock);
11356         list_add_rcu(&event->sb_list, &pel->list);
11357         raw_spin_unlock(&pel->lock);
11358 }
11359
11360 /*
11361  * We keep a list of all !task (and therefore per-cpu) events
11362  * that need to receive side-band records.
11363  *
11364  * This avoids having to scan all the various PMU per-cpu contexts
11365  * looking for them.
11366  */
11367 static void account_pmu_sb_event(struct perf_event *event)
11368 {
11369         if (is_sb_event(event))
11370                 attach_sb_event(event);
11371 }
11372
11373 static void account_event_cpu(struct perf_event *event, int cpu)
11374 {
11375         if (event->parent)
11376                 return;
11377
11378         if (is_cgroup_event(event))
11379                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11380 }
11381
11382 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11383 static void account_freq_event_nohz(void)
11384 {
11385 #ifdef CONFIG_NO_HZ_FULL
11386         /* Lock so we don't race with concurrent unaccount */
11387         spin_lock(&nr_freq_lock);
11388         if (atomic_inc_return(&nr_freq_events) == 1)
11389                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11390         spin_unlock(&nr_freq_lock);
11391 #endif
11392 }
11393
11394 static void account_freq_event(void)
11395 {
11396         if (tick_nohz_full_enabled())
11397                 account_freq_event_nohz();
11398         else
11399                 atomic_inc(&nr_freq_events);
11400 }
11401
11402
11403 static void account_event(struct perf_event *event)
11404 {
11405         bool inc = false;
11406
11407         if (event->parent)
11408                 return;
11409
11410         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11411                 inc = true;
11412         if (event->attr.mmap || event->attr.mmap_data)
11413                 atomic_inc(&nr_mmap_events);
11414         if (event->attr.build_id)
11415                 atomic_inc(&nr_build_id_events);
11416         if (event->attr.comm)
11417                 atomic_inc(&nr_comm_events);
11418         if (event->attr.namespaces)
11419                 atomic_inc(&nr_namespaces_events);
11420         if (event->attr.cgroup)
11421                 atomic_inc(&nr_cgroup_events);
11422         if (event->attr.task)
11423                 atomic_inc(&nr_task_events);
11424         if (event->attr.freq)
11425                 account_freq_event();
11426         if (event->attr.context_switch) {
11427                 atomic_inc(&nr_switch_events);
11428                 inc = true;
11429         }
11430         if (has_branch_stack(event))
11431                 inc = true;
11432         if (is_cgroup_event(event))
11433                 inc = true;
11434         if (event->attr.ksymbol)
11435                 atomic_inc(&nr_ksymbol_events);
11436         if (event->attr.bpf_event)
11437                 atomic_inc(&nr_bpf_events);
11438         if (event->attr.text_poke)
11439                 atomic_inc(&nr_text_poke_events);
11440
11441         if (inc) {
11442                 /*
11443                  * We need the mutex here because static_branch_enable()
11444                  * must complete *before* the perf_sched_count increment
11445                  * becomes visible.
11446                  */
11447                 if (atomic_inc_not_zero(&perf_sched_count))
11448                         goto enabled;
11449
11450                 mutex_lock(&perf_sched_mutex);
11451                 if (!atomic_read(&perf_sched_count)) {
11452                         static_branch_enable(&perf_sched_events);
11453                         /*
11454                          * Guarantee that all CPUs observe they key change and
11455                          * call the perf scheduling hooks before proceeding to
11456                          * install events that need them.
11457                          */
11458                         synchronize_rcu();
11459                 }
11460                 /*
11461                  * Now that we have waited for the sync_sched(), allow further
11462                  * increments to by-pass the mutex.
11463                  */
11464                 atomic_inc(&perf_sched_count);
11465                 mutex_unlock(&perf_sched_mutex);
11466         }
11467 enabled:
11468
11469         account_event_cpu(event, event->cpu);
11470
11471         account_pmu_sb_event(event);
11472 }
11473
11474 /*
11475  * Allocate and initialize an event structure
11476  */
11477 static struct perf_event *
11478 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11479                  struct task_struct *task,
11480                  struct perf_event *group_leader,
11481                  struct perf_event *parent_event,
11482                  perf_overflow_handler_t overflow_handler,
11483                  void *context, int cgroup_fd)
11484 {
11485         struct pmu *pmu;
11486         struct perf_event *event;
11487         struct hw_perf_event *hwc;
11488         long err = -EINVAL;
11489         int node;
11490
11491         if ((unsigned)cpu >= nr_cpu_ids) {
11492                 if (!task || cpu != -1)
11493                         return ERR_PTR(-EINVAL);
11494         }
11495         if (attr->sigtrap && !task) {
11496                 /* Requires a task: avoid signalling random tasks. */
11497                 return ERR_PTR(-EINVAL);
11498         }
11499
11500         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11501         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11502                                       node);
11503         if (!event)
11504                 return ERR_PTR(-ENOMEM);
11505
11506         /*
11507          * Single events are their own group leaders, with an
11508          * empty sibling list:
11509          */
11510         if (!group_leader)
11511                 group_leader = event;
11512
11513         mutex_init(&event->child_mutex);
11514         INIT_LIST_HEAD(&event->child_list);
11515
11516         INIT_LIST_HEAD(&event->event_entry);
11517         INIT_LIST_HEAD(&event->sibling_list);
11518         INIT_LIST_HEAD(&event->active_list);
11519         init_event_group(event);
11520         INIT_LIST_HEAD(&event->rb_entry);
11521         INIT_LIST_HEAD(&event->active_entry);
11522         INIT_LIST_HEAD(&event->addr_filters.list);
11523         INIT_HLIST_NODE(&event->hlist_entry);
11524
11525
11526         init_waitqueue_head(&event->waitq);
11527         event->pending_disable = -1;
11528         init_irq_work(&event->pending, perf_pending_event);
11529
11530         mutex_init(&event->mmap_mutex);
11531         raw_spin_lock_init(&event->addr_filters.lock);
11532
11533         atomic_long_set(&event->refcount, 1);
11534         event->cpu              = cpu;
11535         event->attr             = *attr;
11536         event->group_leader     = group_leader;
11537         event->pmu              = NULL;
11538         event->oncpu            = -1;
11539
11540         event->parent           = parent_event;
11541
11542         event->ns               = get_pid_ns(task_active_pid_ns(current));
11543         event->id               = atomic64_inc_return(&perf_event_id);
11544
11545         event->state            = PERF_EVENT_STATE_INACTIVE;
11546
11547         if (parent_event)
11548                 event->event_caps = parent_event->event_caps;
11549
11550         if (event->attr.sigtrap)
11551                 atomic_set(&event->event_limit, 1);
11552
11553         if (task) {
11554                 event->attach_state = PERF_ATTACH_TASK;
11555                 /*
11556                  * XXX pmu::event_init needs to know what task to account to
11557                  * and we cannot use the ctx information because we need the
11558                  * pmu before we get a ctx.
11559                  */
11560                 event->hw.target = get_task_struct(task);
11561         }
11562
11563         event->clock = &local_clock;
11564         if (parent_event)
11565                 event->clock = parent_event->clock;
11566
11567         if (!overflow_handler && parent_event) {
11568                 overflow_handler = parent_event->overflow_handler;
11569                 context = parent_event->overflow_handler_context;
11570 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11571                 if (overflow_handler == bpf_overflow_handler) {
11572                         struct bpf_prog *prog = parent_event->prog;
11573
11574                         bpf_prog_inc(prog);
11575                         event->prog = prog;
11576                         event->orig_overflow_handler =
11577                                 parent_event->orig_overflow_handler;
11578                 }
11579 #endif
11580         }
11581
11582         if (overflow_handler) {
11583                 event->overflow_handler = overflow_handler;
11584                 event->overflow_handler_context = context;
11585         } else if (is_write_backward(event)){
11586                 event->overflow_handler = perf_event_output_backward;
11587                 event->overflow_handler_context = NULL;
11588         } else {
11589                 event->overflow_handler = perf_event_output_forward;
11590                 event->overflow_handler_context = NULL;
11591         }
11592
11593         perf_event__state_init(event);
11594
11595         pmu = NULL;
11596
11597         hwc = &event->hw;
11598         hwc->sample_period = attr->sample_period;
11599         if (attr->freq && attr->sample_freq)
11600                 hwc->sample_period = 1;
11601         hwc->last_period = hwc->sample_period;
11602
11603         local64_set(&hwc->period_left, hwc->sample_period);
11604
11605         /*
11606          * We currently do not support PERF_SAMPLE_READ on inherited events.
11607          * See perf_output_read().
11608          */
11609         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11610                 goto err_ns;
11611
11612         if (!has_branch_stack(event))
11613                 event->attr.branch_sample_type = 0;
11614
11615         pmu = perf_init_event(event);
11616         if (IS_ERR(pmu)) {
11617                 err = PTR_ERR(pmu);
11618                 goto err_ns;
11619         }
11620
11621         /*
11622          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11623          * be different on other CPUs in the uncore mask.
11624          */
11625         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11626                 err = -EINVAL;
11627                 goto err_pmu;
11628         }
11629
11630         if (event->attr.aux_output &&
11631             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11632                 err = -EOPNOTSUPP;
11633                 goto err_pmu;
11634         }
11635
11636         if (cgroup_fd != -1) {
11637                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11638                 if (err)
11639                         goto err_pmu;
11640         }
11641
11642         err = exclusive_event_init(event);
11643         if (err)
11644                 goto err_pmu;
11645
11646         if (has_addr_filter(event)) {
11647                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11648                                                     sizeof(struct perf_addr_filter_range),
11649                                                     GFP_KERNEL);
11650                 if (!event->addr_filter_ranges) {
11651                         err = -ENOMEM;
11652                         goto err_per_task;
11653                 }
11654
11655                 /*
11656                  * Clone the parent's vma offsets: they are valid until exec()
11657                  * even if the mm is not shared with the parent.
11658                  */
11659                 if (event->parent) {
11660                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11661
11662                         raw_spin_lock_irq(&ifh->lock);
11663                         memcpy(event->addr_filter_ranges,
11664                                event->parent->addr_filter_ranges,
11665                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11666                         raw_spin_unlock_irq(&ifh->lock);
11667                 }
11668
11669                 /* force hw sync on the address filters */
11670                 event->addr_filters_gen = 1;
11671         }
11672
11673         if (!event->parent) {
11674                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11675                         err = get_callchain_buffers(attr->sample_max_stack);
11676                         if (err)
11677                                 goto err_addr_filters;
11678                 }
11679         }
11680
11681         err = security_perf_event_alloc(event);
11682         if (err)
11683                 goto err_callchain_buffer;
11684
11685         /* symmetric to unaccount_event() in _free_event() */
11686         account_event(event);
11687
11688         return event;
11689
11690 err_callchain_buffer:
11691         if (!event->parent) {
11692                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11693                         put_callchain_buffers();
11694         }
11695 err_addr_filters:
11696         kfree(event->addr_filter_ranges);
11697
11698 err_per_task:
11699         exclusive_event_destroy(event);
11700
11701 err_pmu:
11702         if (is_cgroup_event(event))
11703                 perf_detach_cgroup(event);
11704         if (event->destroy)
11705                 event->destroy(event);
11706         module_put(pmu->module);
11707 err_ns:
11708         if (event->ns)
11709                 put_pid_ns(event->ns);
11710         if (event->hw.target)
11711                 put_task_struct(event->hw.target);
11712         kmem_cache_free(perf_event_cache, event);
11713
11714         return ERR_PTR(err);
11715 }
11716
11717 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11718                           struct perf_event_attr *attr)
11719 {
11720         u32 size;
11721         int ret;
11722
11723         /* Zero the full structure, so that a short copy will be nice. */
11724         memset(attr, 0, sizeof(*attr));
11725
11726         ret = get_user(size, &uattr->size);
11727         if (ret)
11728                 return ret;
11729
11730         /* ABI compatibility quirk: */
11731         if (!size)
11732                 size = PERF_ATTR_SIZE_VER0;
11733         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11734                 goto err_size;
11735
11736         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11737         if (ret) {
11738                 if (ret == -E2BIG)
11739                         goto err_size;
11740                 return ret;
11741         }
11742
11743         attr->size = size;
11744
11745         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11746                 return -EINVAL;
11747
11748         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11749                 return -EINVAL;
11750
11751         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11752                 return -EINVAL;
11753
11754         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11755                 u64 mask = attr->branch_sample_type;
11756
11757                 /* only using defined bits */
11758                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11759                         return -EINVAL;
11760
11761                 /* at least one branch bit must be set */
11762                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11763                         return -EINVAL;
11764
11765                 /* propagate priv level, when not set for branch */
11766                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11767
11768                         /* exclude_kernel checked on syscall entry */
11769                         if (!attr->exclude_kernel)
11770                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11771
11772                         if (!attr->exclude_user)
11773                                 mask |= PERF_SAMPLE_BRANCH_USER;
11774
11775                         if (!attr->exclude_hv)
11776                                 mask |= PERF_SAMPLE_BRANCH_HV;
11777                         /*
11778                          * adjust user setting (for HW filter setup)
11779                          */
11780                         attr->branch_sample_type = mask;
11781                 }
11782                 /* privileged levels capture (kernel, hv): check permissions */
11783                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11784                         ret = perf_allow_kernel(attr);
11785                         if (ret)
11786                                 return ret;
11787                 }
11788         }
11789
11790         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11791                 ret = perf_reg_validate(attr->sample_regs_user);
11792                 if (ret)
11793                         return ret;
11794         }
11795
11796         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11797                 if (!arch_perf_have_user_stack_dump())
11798                         return -ENOSYS;
11799
11800                 /*
11801                  * We have __u32 type for the size, but so far
11802                  * we can only use __u16 as maximum due to the
11803                  * __u16 sample size limit.
11804                  */
11805                 if (attr->sample_stack_user >= USHRT_MAX)
11806                         return -EINVAL;
11807                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11808                         return -EINVAL;
11809         }
11810
11811         if (!attr->sample_max_stack)
11812                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11813
11814         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11815                 ret = perf_reg_validate(attr->sample_regs_intr);
11816
11817 #ifndef CONFIG_CGROUP_PERF
11818         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11819                 return -EINVAL;
11820 #endif
11821         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11822             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11823                 return -EINVAL;
11824
11825         if (!attr->inherit && attr->inherit_thread)
11826                 return -EINVAL;
11827
11828         if (attr->remove_on_exec && attr->enable_on_exec)
11829                 return -EINVAL;
11830
11831         if (attr->sigtrap && !attr->remove_on_exec)
11832                 return -EINVAL;
11833
11834 out:
11835         return ret;
11836
11837 err_size:
11838         put_user(sizeof(*attr), &uattr->size);
11839         ret = -E2BIG;
11840         goto out;
11841 }
11842
11843 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11844 {
11845         if (b < a)
11846                 swap(a, b);
11847
11848         mutex_lock(a);
11849         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11850 }
11851
11852 static int
11853 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11854 {
11855         struct perf_buffer *rb = NULL;
11856         int ret = -EINVAL;
11857
11858         if (!output_event) {
11859                 mutex_lock(&event->mmap_mutex);
11860                 goto set;
11861         }
11862
11863         /* don't allow circular references */
11864         if (event == output_event)
11865                 goto out;
11866
11867         /*
11868          * Don't allow cross-cpu buffers
11869          */
11870         if (output_event->cpu != event->cpu)
11871                 goto out;
11872
11873         /*
11874          * If its not a per-cpu rb, it must be the same task.
11875          */
11876         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11877                 goto out;
11878
11879         /*
11880          * Mixing clocks in the same buffer is trouble you don't need.
11881          */
11882         if (output_event->clock != event->clock)
11883                 goto out;
11884
11885         /*
11886          * Either writing ring buffer from beginning or from end.
11887          * Mixing is not allowed.
11888          */
11889         if (is_write_backward(output_event) != is_write_backward(event))
11890                 goto out;
11891
11892         /*
11893          * If both events generate aux data, they must be on the same PMU
11894          */
11895         if (has_aux(event) && has_aux(output_event) &&
11896             event->pmu != output_event->pmu)
11897                 goto out;
11898
11899         /*
11900          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
11901          * output_event is already on rb->event_list, and the list iteration
11902          * restarts after every removal, it is guaranteed this new event is
11903          * observed *OR* if output_event is already removed, it's guaranteed we
11904          * observe !rb->mmap_count.
11905          */
11906         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
11907 set:
11908         /* Can't redirect output if we've got an active mmap() */
11909         if (atomic_read(&event->mmap_count))
11910                 goto unlock;
11911
11912         if (output_event) {
11913                 /* get the rb we want to redirect to */
11914                 rb = ring_buffer_get(output_event);
11915                 if (!rb)
11916                         goto unlock;
11917
11918                 /* did we race against perf_mmap_close() */
11919                 if (!atomic_read(&rb->mmap_count)) {
11920                         ring_buffer_put(rb);
11921                         goto unlock;
11922                 }
11923         }
11924
11925         ring_buffer_attach(event, rb);
11926
11927         ret = 0;
11928 unlock:
11929         mutex_unlock(&event->mmap_mutex);
11930         if (output_event)
11931                 mutex_unlock(&output_event->mmap_mutex);
11932
11933 out:
11934         return ret;
11935 }
11936
11937 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11938 {
11939         bool nmi_safe = false;
11940
11941         switch (clk_id) {
11942         case CLOCK_MONOTONIC:
11943                 event->clock = &ktime_get_mono_fast_ns;
11944                 nmi_safe = true;
11945                 break;
11946
11947         case CLOCK_MONOTONIC_RAW:
11948                 event->clock = &ktime_get_raw_fast_ns;
11949                 nmi_safe = true;
11950                 break;
11951
11952         case CLOCK_REALTIME:
11953                 event->clock = &ktime_get_real_ns;
11954                 break;
11955
11956         case CLOCK_BOOTTIME:
11957                 event->clock = &ktime_get_boottime_ns;
11958                 break;
11959
11960         case CLOCK_TAI:
11961                 event->clock = &ktime_get_clocktai_ns;
11962                 break;
11963
11964         default:
11965                 return -EINVAL;
11966         }
11967
11968         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11969                 return -EINVAL;
11970
11971         return 0;
11972 }
11973
11974 /*
11975  * Variation on perf_event_ctx_lock_nested(), except we take two context
11976  * mutexes.
11977  */
11978 static struct perf_event_context *
11979 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11980                              struct perf_event_context *ctx)
11981 {
11982         struct perf_event_context *gctx;
11983
11984 again:
11985         rcu_read_lock();
11986         gctx = READ_ONCE(group_leader->ctx);
11987         if (!refcount_inc_not_zero(&gctx->refcount)) {
11988                 rcu_read_unlock();
11989                 goto again;
11990         }
11991         rcu_read_unlock();
11992
11993         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11994
11995         if (group_leader->ctx != gctx) {
11996                 mutex_unlock(&ctx->mutex);
11997                 mutex_unlock(&gctx->mutex);
11998                 put_ctx(gctx);
11999                 goto again;
12000         }
12001
12002         return gctx;
12003 }
12004
12005 static bool
12006 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12007 {
12008         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12009         bool is_capable = perfmon_capable();
12010
12011         if (attr->sigtrap) {
12012                 /*
12013                  * perf_event_attr::sigtrap sends signals to the other task.
12014                  * Require the current task to also have CAP_KILL.
12015                  */
12016                 rcu_read_lock();
12017                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12018                 rcu_read_unlock();
12019
12020                 /*
12021                  * If the required capabilities aren't available, checks for
12022                  * ptrace permissions: upgrade to ATTACH, since sending signals
12023                  * can effectively change the target task.
12024                  */
12025                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12026         }
12027
12028         /*
12029          * Preserve ptrace permission check for backwards compatibility. The
12030          * ptrace check also includes checks that the current task and other
12031          * task have matching uids, and is therefore not done here explicitly.
12032          */
12033         return is_capable || ptrace_may_access(task, ptrace_mode);
12034 }
12035
12036 /**
12037  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12038  *
12039  * @attr_uptr:  event_id type attributes for monitoring/sampling
12040  * @pid:                target pid
12041  * @cpu:                target cpu
12042  * @group_fd:           group leader event fd
12043  * @flags:              perf event open flags
12044  */
12045 SYSCALL_DEFINE5(perf_event_open,
12046                 struct perf_event_attr __user *, attr_uptr,
12047                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12048 {
12049         struct perf_event *group_leader = NULL, *output_event = NULL;
12050         struct perf_event *event, *sibling;
12051         struct perf_event_attr attr;
12052         struct perf_event_context *ctx, *gctx;
12053         struct file *event_file = NULL;
12054         struct fd group = {NULL, 0};
12055         struct task_struct *task = NULL;
12056         struct pmu *pmu;
12057         int event_fd;
12058         int move_group = 0;
12059         int err;
12060         int f_flags = O_RDWR;
12061         int cgroup_fd = -1;
12062
12063         /* for future expandability... */
12064         if (flags & ~PERF_FLAG_ALL)
12065                 return -EINVAL;
12066
12067         /* Do we allow access to perf_event_open(2) ? */
12068         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12069         if (err)
12070                 return err;
12071
12072         err = perf_copy_attr(attr_uptr, &attr);
12073         if (err)
12074                 return err;
12075
12076         if (!attr.exclude_kernel) {
12077                 err = perf_allow_kernel(&attr);
12078                 if (err)
12079                         return err;
12080         }
12081
12082         if (attr.namespaces) {
12083                 if (!perfmon_capable())
12084                         return -EACCES;
12085         }
12086
12087         if (attr.freq) {
12088                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12089                         return -EINVAL;
12090         } else {
12091                 if (attr.sample_period & (1ULL << 63))
12092                         return -EINVAL;
12093         }
12094
12095         /* Only privileged users can get physical addresses */
12096         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12097                 err = perf_allow_kernel(&attr);
12098                 if (err)
12099                         return err;
12100         }
12101
12102         /* REGS_INTR can leak data, lockdown must prevent this */
12103         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12104                 err = security_locked_down(LOCKDOWN_PERF);
12105                 if (err)
12106                         return err;
12107         }
12108
12109         /*
12110          * In cgroup mode, the pid argument is used to pass the fd
12111          * opened to the cgroup directory in cgroupfs. The cpu argument
12112          * designates the cpu on which to monitor threads from that
12113          * cgroup.
12114          */
12115         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12116                 return -EINVAL;
12117
12118         if (flags & PERF_FLAG_FD_CLOEXEC)
12119                 f_flags |= O_CLOEXEC;
12120
12121         event_fd = get_unused_fd_flags(f_flags);
12122         if (event_fd < 0)
12123                 return event_fd;
12124
12125         if (group_fd != -1) {
12126                 err = perf_fget_light(group_fd, &group);
12127                 if (err)
12128                         goto err_fd;
12129                 group_leader = group.file->private_data;
12130                 if (flags & PERF_FLAG_FD_OUTPUT)
12131                         output_event = group_leader;
12132                 if (flags & PERF_FLAG_FD_NO_GROUP)
12133                         group_leader = NULL;
12134         }
12135
12136         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12137                 task = find_lively_task_by_vpid(pid);
12138                 if (IS_ERR(task)) {
12139                         err = PTR_ERR(task);
12140                         goto err_group_fd;
12141                 }
12142         }
12143
12144         if (task && group_leader &&
12145             group_leader->attr.inherit != attr.inherit) {
12146                 err = -EINVAL;
12147                 goto err_task;
12148         }
12149
12150         if (flags & PERF_FLAG_PID_CGROUP)
12151                 cgroup_fd = pid;
12152
12153         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12154                                  NULL, NULL, cgroup_fd);
12155         if (IS_ERR(event)) {
12156                 err = PTR_ERR(event);
12157                 goto err_task;
12158         }
12159
12160         if (is_sampling_event(event)) {
12161                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12162                         err = -EOPNOTSUPP;
12163                         goto err_alloc;
12164                 }
12165         }
12166
12167         /*
12168          * Special case software events and allow them to be part of
12169          * any hardware group.
12170          */
12171         pmu = event->pmu;
12172
12173         if (attr.use_clockid) {
12174                 err = perf_event_set_clock(event, attr.clockid);
12175                 if (err)
12176                         goto err_alloc;
12177         }
12178
12179         if (pmu->task_ctx_nr == perf_sw_context)
12180                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12181
12182         if (group_leader) {
12183                 if (is_software_event(event) &&
12184                     !in_software_context(group_leader)) {
12185                         /*
12186                          * If the event is a sw event, but the group_leader
12187                          * is on hw context.
12188                          *
12189                          * Allow the addition of software events to hw
12190                          * groups, this is safe because software events
12191                          * never fail to schedule.
12192                          */
12193                         pmu = group_leader->ctx->pmu;
12194                 } else if (!is_software_event(event) &&
12195                            is_software_event(group_leader) &&
12196                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12197                         /*
12198                          * In case the group is a pure software group, and we
12199                          * try to add a hardware event, move the whole group to
12200                          * the hardware context.
12201                          */
12202                         move_group = 1;
12203                 }
12204         }
12205
12206         /*
12207          * Get the target context (task or percpu):
12208          */
12209         ctx = find_get_context(pmu, task, event);
12210         if (IS_ERR(ctx)) {
12211                 err = PTR_ERR(ctx);
12212                 goto err_alloc;
12213         }
12214
12215         /*
12216          * Look up the group leader (we will attach this event to it):
12217          */
12218         if (group_leader) {
12219                 err = -EINVAL;
12220
12221                 /*
12222                  * Do not allow a recursive hierarchy (this new sibling
12223                  * becoming part of another group-sibling):
12224                  */
12225                 if (group_leader->group_leader != group_leader)
12226                         goto err_context;
12227
12228                 /* All events in a group should have the same clock */
12229                 if (group_leader->clock != event->clock)
12230                         goto err_context;
12231
12232                 /*
12233                  * Make sure we're both events for the same CPU;
12234                  * grouping events for different CPUs is broken; since
12235                  * you can never concurrently schedule them anyhow.
12236                  */
12237                 if (group_leader->cpu != event->cpu)
12238                         goto err_context;
12239
12240                 /*
12241                  * Make sure we're both on the same task, or both
12242                  * per-CPU events.
12243                  */
12244                 if (group_leader->ctx->task != ctx->task)
12245                         goto err_context;
12246
12247                 /*
12248                  * Do not allow to attach to a group in a different task
12249                  * or CPU context. If we're moving SW events, we'll fix
12250                  * this up later, so allow that.
12251                  *
12252                  * Racy, not holding group_leader->ctx->mutex, see comment with
12253                  * perf_event_ctx_lock().
12254                  */
12255                 if (!move_group && group_leader->ctx != ctx)
12256                         goto err_context;
12257
12258                 /*
12259                  * Only a group leader can be exclusive or pinned
12260                  */
12261                 if (attr.exclusive || attr.pinned)
12262                         goto err_context;
12263         }
12264
12265         if (output_event) {
12266                 err = perf_event_set_output(event, output_event);
12267                 if (err)
12268                         goto err_context;
12269         }
12270
12271         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12272                                         f_flags);
12273         if (IS_ERR(event_file)) {
12274                 err = PTR_ERR(event_file);
12275                 event_file = NULL;
12276                 goto err_context;
12277         }
12278
12279         if (task) {
12280                 err = down_read_interruptible(&task->signal->exec_update_lock);
12281                 if (err)
12282                         goto err_file;
12283
12284                 /*
12285                  * We must hold exec_update_lock across this and any potential
12286                  * perf_install_in_context() call for this new event to
12287                  * serialize against exec() altering our credentials (and the
12288                  * perf_event_exit_task() that could imply).
12289                  */
12290                 err = -EACCES;
12291                 if (!perf_check_permission(&attr, task))
12292                         goto err_cred;
12293         }
12294
12295         if (move_group) {
12296                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12297
12298                 if (gctx->task == TASK_TOMBSTONE) {
12299                         err = -ESRCH;
12300                         goto err_locked;
12301                 }
12302
12303                 /*
12304                  * Check if we raced against another sys_perf_event_open() call
12305                  * moving the software group underneath us.
12306                  */
12307                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12308                         /*
12309                          * If someone moved the group out from under us, check
12310                          * if this new event wound up on the same ctx, if so
12311                          * its the regular !move_group case, otherwise fail.
12312                          */
12313                         if (gctx != ctx) {
12314                                 err = -EINVAL;
12315                                 goto err_locked;
12316                         } else {
12317                                 perf_event_ctx_unlock(group_leader, gctx);
12318                                 move_group = 0;
12319                                 goto not_move_group;
12320                         }
12321                 }
12322
12323                 /*
12324                  * Failure to create exclusive events returns -EBUSY.
12325                  */
12326                 err = -EBUSY;
12327                 if (!exclusive_event_installable(group_leader, ctx))
12328                         goto err_locked;
12329
12330                 for_each_sibling_event(sibling, group_leader) {
12331                         if (!exclusive_event_installable(sibling, ctx))
12332                                 goto err_locked;
12333                 }
12334         } else {
12335                 mutex_lock(&ctx->mutex);
12336
12337                 /*
12338                  * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12339                  * see the group_leader && !move_group test earlier.
12340                  */
12341                 if (group_leader && group_leader->ctx != ctx) {
12342                         err = -EINVAL;
12343                         goto err_locked;
12344                 }
12345         }
12346 not_move_group:
12347
12348         if (ctx->task == TASK_TOMBSTONE) {
12349                 err = -ESRCH;
12350                 goto err_locked;
12351         }
12352
12353         if (!perf_event_validate_size(event)) {
12354                 err = -E2BIG;
12355                 goto err_locked;
12356         }
12357
12358         if (!task) {
12359                 /*
12360                  * Check if the @cpu we're creating an event for is online.
12361                  *
12362                  * We use the perf_cpu_context::ctx::mutex to serialize against
12363                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12364                  */
12365                 struct perf_cpu_context *cpuctx =
12366                         container_of(ctx, struct perf_cpu_context, ctx);
12367
12368                 if (!cpuctx->online) {
12369                         err = -ENODEV;
12370                         goto err_locked;
12371                 }
12372         }
12373
12374         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12375                 err = -EINVAL;
12376                 goto err_locked;
12377         }
12378
12379         /*
12380          * Must be under the same ctx::mutex as perf_install_in_context(),
12381          * because we need to serialize with concurrent event creation.
12382          */
12383         if (!exclusive_event_installable(event, ctx)) {
12384                 err = -EBUSY;
12385                 goto err_locked;
12386         }
12387
12388         WARN_ON_ONCE(ctx->parent_ctx);
12389
12390         /*
12391          * This is the point on no return; we cannot fail hereafter. This is
12392          * where we start modifying current state.
12393          */
12394
12395         if (move_group) {
12396                 /*
12397                  * See perf_event_ctx_lock() for comments on the details
12398                  * of swizzling perf_event::ctx.
12399                  */
12400                 perf_remove_from_context(group_leader, 0);
12401                 put_ctx(gctx);
12402
12403                 for_each_sibling_event(sibling, group_leader) {
12404                         perf_remove_from_context(sibling, 0);
12405                         put_ctx(gctx);
12406                 }
12407
12408                 /*
12409                  * Wait for everybody to stop referencing the events through
12410                  * the old lists, before installing it on new lists.
12411                  */
12412                 synchronize_rcu();
12413
12414                 /*
12415                  * Install the group siblings before the group leader.
12416                  *
12417                  * Because a group leader will try and install the entire group
12418                  * (through the sibling list, which is still in-tact), we can
12419                  * end up with siblings installed in the wrong context.
12420                  *
12421                  * By installing siblings first we NO-OP because they're not
12422                  * reachable through the group lists.
12423                  */
12424                 for_each_sibling_event(sibling, group_leader) {
12425                         perf_event__state_init(sibling);
12426                         perf_install_in_context(ctx, sibling, sibling->cpu);
12427                         get_ctx(ctx);
12428                 }
12429
12430                 /*
12431                  * Removing from the context ends up with disabled
12432                  * event. What we want here is event in the initial
12433                  * startup state, ready to be add into new context.
12434                  */
12435                 perf_event__state_init(group_leader);
12436                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12437                 get_ctx(ctx);
12438         }
12439
12440         /*
12441          * Precalculate sample_data sizes; do while holding ctx::mutex such
12442          * that we're serialized against further additions and before
12443          * perf_install_in_context() which is the point the event is active and
12444          * can use these values.
12445          */
12446         perf_event__header_size(event);
12447         perf_event__id_header_size(event);
12448
12449         event->owner = current;
12450
12451         perf_install_in_context(ctx, event, event->cpu);
12452         perf_unpin_context(ctx);
12453
12454         if (move_group)
12455                 perf_event_ctx_unlock(group_leader, gctx);
12456         mutex_unlock(&ctx->mutex);
12457
12458         if (task) {
12459                 up_read(&task->signal->exec_update_lock);
12460                 put_task_struct(task);
12461         }
12462
12463         mutex_lock(&current->perf_event_mutex);
12464         list_add_tail(&event->owner_entry, &current->perf_event_list);
12465         mutex_unlock(&current->perf_event_mutex);
12466
12467         /*
12468          * Drop the reference on the group_event after placing the
12469          * new event on the sibling_list. This ensures destruction
12470          * of the group leader will find the pointer to itself in
12471          * perf_group_detach().
12472          */
12473         fdput(group);
12474         fd_install(event_fd, event_file);
12475         return event_fd;
12476
12477 err_locked:
12478         if (move_group)
12479                 perf_event_ctx_unlock(group_leader, gctx);
12480         mutex_unlock(&ctx->mutex);
12481 err_cred:
12482         if (task)
12483                 up_read(&task->signal->exec_update_lock);
12484 err_file:
12485         fput(event_file);
12486 err_context:
12487         perf_unpin_context(ctx);
12488         put_ctx(ctx);
12489 err_alloc:
12490         /*
12491          * If event_file is set, the fput() above will have called ->release()
12492          * and that will take care of freeing the event.
12493          */
12494         if (!event_file)
12495                 free_event(event);
12496 err_task:
12497         if (task)
12498                 put_task_struct(task);
12499 err_group_fd:
12500         fdput(group);
12501 err_fd:
12502         put_unused_fd(event_fd);
12503         return err;
12504 }
12505
12506 /**
12507  * perf_event_create_kernel_counter
12508  *
12509  * @attr: attributes of the counter to create
12510  * @cpu: cpu in which the counter is bound
12511  * @task: task to profile (NULL for percpu)
12512  * @overflow_handler: callback to trigger when we hit the event
12513  * @context: context data could be used in overflow_handler callback
12514  */
12515 struct perf_event *
12516 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12517                                  struct task_struct *task,
12518                                  perf_overflow_handler_t overflow_handler,
12519                                  void *context)
12520 {
12521         struct perf_event_context *ctx;
12522         struct perf_event *event;
12523         int err;
12524
12525         /*
12526          * Grouping is not supported for kernel events, neither is 'AUX',
12527          * make sure the caller's intentions are adjusted.
12528          */
12529         if (attr->aux_output)
12530                 return ERR_PTR(-EINVAL);
12531
12532         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12533                                  overflow_handler, context, -1);
12534         if (IS_ERR(event)) {
12535                 err = PTR_ERR(event);
12536                 goto err;
12537         }
12538
12539         /* Mark owner so we could distinguish it from user events. */
12540         event->owner = TASK_TOMBSTONE;
12541
12542         /*
12543          * Get the target context (task or percpu):
12544          */
12545         ctx = find_get_context(event->pmu, task, event);
12546         if (IS_ERR(ctx)) {
12547                 err = PTR_ERR(ctx);
12548                 goto err_free;
12549         }
12550
12551         WARN_ON_ONCE(ctx->parent_ctx);
12552         mutex_lock(&ctx->mutex);
12553         if (ctx->task == TASK_TOMBSTONE) {
12554                 err = -ESRCH;
12555                 goto err_unlock;
12556         }
12557
12558         if (!task) {
12559                 /*
12560                  * Check if the @cpu we're creating an event for is online.
12561                  *
12562                  * We use the perf_cpu_context::ctx::mutex to serialize against
12563                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12564                  */
12565                 struct perf_cpu_context *cpuctx =
12566                         container_of(ctx, struct perf_cpu_context, ctx);
12567                 if (!cpuctx->online) {
12568                         err = -ENODEV;
12569                         goto err_unlock;
12570                 }
12571         }
12572
12573         if (!exclusive_event_installable(event, ctx)) {
12574                 err = -EBUSY;
12575                 goto err_unlock;
12576         }
12577
12578         perf_install_in_context(ctx, event, event->cpu);
12579         perf_unpin_context(ctx);
12580         mutex_unlock(&ctx->mutex);
12581
12582         return event;
12583
12584 err_unlock:
12585         mutex_unlock(&ctx->mutex);
12586         perf_unpin_context(ctx);
12587         put_ctx(ctx);
12588 err_free:
12589         free_event(event);
12590 err:
12591         return ERR_PTR(err);
12592 }
12593 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12594
12595 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12596 {
12597         struct perf_event_context *src_ctx;
12598         struct perf_event_context *dst_ctx;
12599         struct perf_event *event, *tmp;
12600         LIST_HEAD(events);
12601
12602         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12603         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12604
12605         /*
12606          * See perf_event_ctx_lock() for comments on the details
12607          * of swizzling perf_event::ctx.
12608          */
12609         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12610         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12611                                  event_entry) {
12612                 perf_remove_from_context(event, 0);
12613                 unaccount_event_cpu(event, src_cpu);
12614                 put_ctx(src_ctx);
12615                 list_add(&event->migrate_entry, &events);
12616         }
12617
12618         /*
12619          * Wait for the events to quiesce before re-instating them.
12620          */
12621         synchronize_rcu();
12622
12623         /*
12624          * Re-instate events in 2 passes.
12625          *
12626          * Skip over group leaders and only install siblings on this first
12627          * pass, siblings will not get enabled without a leader, however a
12628          * leader will enable its siblings, even if those are still on the old
12629          * context.
12630          */
12631         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12632                 if (event->group_leader == event)
12633                         continue;
12634
12635                 list_del(&event->migrate_entry);
12636                 if (event->state >= PERF_EVENT_STATE_OFF)
12637                         event->state = PERF_EVENT_STATE_INACTIVE;
12638                 account_event_cpu(event, dst_cpu);
12639                 perf_install_in_context(dst_ctx, event, dst_cpu);
12640                 get_ctx(dst_ctx);
12641         }
12642
12643         /*
12644          * Once all the siblings are setup properly, install the group leaders
12645          * to make it go.
12646          */
12647         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12648                 list_del(&event->migrate_entry);
12649                 if (event->state >= PERF_EVENT_STATE_OFF)
12650                         event->state = PERF_EVENT_STATE_INACTIVE;
12651                 account_event_cpu(event, dst_cpu);
12652                 perf_install_in_context(dst_ctx, event, dst_cpu);
12653                 get_ctx(dst_ctx);
12654         }
12655         mutex_unlock(&dst_ctx->mutex);
12656         mutex_unlock(&src_ctx->mutex);
12657 }
12658 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12659
12660 static void sync_child_event(struct perf_event *child_event)
12661 {
12662         struct perf_event *parent_event = child_event->parent;
12663         u64 child_val;
12664
12665         if (child_event->attr.inherit_stat) {
12666                 struct task_struct *task = child_event->ctx->task;
12667
12668                 if (task && task != TASK_TOMBSTONE)
12669                         perf_event_read_event(child_event, task);
12670         }
12671
12672         child_val = perf_event_count(child_event);
12673
12674         /*
12675          * Add back the child's count to the parent's count:
12676          */
12677         atomic64_add(child_val, &parent_event->child_count);
12678         atomic64_add(child_event->total_time_enabled,
12679                      &parent_event->child_total_time_enabled);
12680         atomic64_add(child_event->total_time_running,
12681                      &parent_event->child_total_time_running);
12682 }
12683
12684 static void
12685 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12686 {
12687         struct perf_event *parent_event = event->parent;
12688         unsigned long detach_flags = 0;
12689
12690         if (parent_event) {
12691                 /*
12692                  * Do not destroy the 'original' grouping; because of the
12693                  * context switch optimization the original events could've
12694                  * ended up in a random child task.
12695                  *
12696                  * If we were to destroy the original group, all group related
12697                  * operations would cease to function properly after this
12698                  * random child dies.
12699                  *
12700                  * Do destroy all inherited groups, we don't care about those
12701                  * and being thorough is better.
12702                  */
12703                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12704                 mutex_lock(&parent_event->child_mutex);
12705         }
12706
12707         perf_remove_from_context(event, detach_flags);
12708
12709         raw_spin_lock_irq(&ctx->lock);
12710         if (event->state > PERF_EVENT_STATE_EXIT)
12711                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12712         raw_spin_unlock_irq(&ctx->lock);
12713
12714         /*
12715          * Child events can be freed.
12716          */
12717         if (parent_event) {
12718                 mutex_unlock(&parent_event->child_mutex);
12719                 /*
12720                  * Kick perf_poll() for is_event_hup();
12721                  */
12722                 perf_event_wakeup(parent_event);
12723                 free_event(event);
12724                 put_event(parent_event);
12725                 return;
12726         }
12727
12728         /*
12729          * Parent events are governed by their filedesc, retain them.
12730          */
12731         perf_event_wakeup(event);
12732 }
12733
12734 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12735 {
12736         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12737         struct perf_event *child_event, *next;
12738
12739         WARN_ON_ONCE(child != current);
12740
12741         child_ctx = perf_pin_task_context(child, ctxn);
12742         if (!child_ctx)
12743                 return;
12744
12745         /*
12746          * In order to reduce the amount of tricky in ctx tear-down, we hold
12747          * ctx::mutex over the entire thing. This serializes against almost
12748          * everything that wants to access the ctx.
12749          *
12750          * The exception is sys_perf_event_open() /
12751          * perf_event_create_kernel_count() which does find_get_context()
12752          * without ctx::mutex (it cannot because of the move_group double mutex
12753          * lock thing). See the comments in perf_install_in_context().
12754          */
12755         mutex_lock(&child_ctx->mutex);
12756
12757         /*
12758          * In a single ctx::lock section, de-schedule the events and detach the
12759          * context from the task such that we cannot ever get it scheduled back
12760          * in.
12761          */
12762         raw_spin_lock_irq(&child_ctx->lock);
12763         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12764
12765         /*
12766          * Now that the context is inactive, destroy the task <-> ctx relation
12767          * and mark the context dead.
12768          */
12769         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12770         put_ctx(child_ctx); /* cannot be last */
12771         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12772         put_task_struct(current); /* cannot be last */
12773
12774         clone_ctx = unclone_ctx(child_ctx);
12775         raw_spin_unlock_irq(&child_ctx->lock);
12776
12777         if (clone_ctx)
12778                 put_ctx(clone_ctx);
12779
12780         /*
12781          * Report the task dead after unscheduling the events so that we
12782          * won't get any samples after PERF_RECORD_EXIT. We can however still
12783          * get a few PERF_RECORD_READ events.
12784          */
12785         perf_event_task(child, child_ctx, 0);
12786
12787         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12788                 perf_event_exit_event(child_event, child_ctx);
12789
12790         mutex_unlock(&child_ctx->mutex);
12791
12792         put_ctx(child_ctx);
12793 }
12794
12795 /*
12796  * When a child task exits, feed back event values to parent events.
12797  *
12798  * Can be called with exec_update_lock held when called from
12799  * setup_new_exec().
12800  */
12801 void perf_event_exit_task(struct task_struct *child)
12802 {
12803         struct perf_event *event, *tmp;
12804         int ctxn;
12805
12806         mutex_lock(&child->perf_event_mutex);
12807         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12808                                  owner_entry) {
12809                 list_del_init(&event->owner_entry);
12810
12811                 /*
12812                  * Ensure the list deletion is visible before we clear
12813                  * the owner, closes a race against perf_release() where
12814                  * we need to serialize on the owner->perf_event_mutex.
12815                  */
12816                 smp_store_release(&event->owner, NULL);
12817         }
12818         mutex_unlock(&child->perf_event_mutex);
12819
12820         for_each_task_context_nr(ctxn)
12821                 perf_event_exit_task_context(child, ctxn);
12822
12823         /*
12824          * The perf_event_exit_task_context calls perf_event_task
12825          * with child's task_ctx, which generates EXIT events for
12826          * child contexts and sets child->perf_event_ctxp[] to NULL.
12827          * At this point we need to send EXIT events to cpu contexts.
12828          */
12829         perf_event_task(child, NULL, 0);
12830 }
12831
12832 static void perf_free_event(struct perf_event *event,
12833                             struct perf_event_context *ctx)
12834 {
12835         struct perf_event *parent = event->parent;
12836
12837         if (WARN_ON_ONCE(!parent))
12838                 return;
12839
12840         mutex_lock(&parent->child_mutex);
12841         list_del_init(&event->child_list);
12842         mutex_unlock(&parent->child_mutex);
12843
12844         put_event(parent);
12845
12846         raw_spin_lock_irq(&ctx->lock);
12847         perf_group_detach(event);
12848         list_del_event(event, ctx);
12849         raw_spin_unlock_irq(&ctx->lock);
12850         free_event(event);
12851 }
12852
12853 /*
12854  * Free a context as created by inheritance by perf_event_init_task() below,
12855  * used by fork() in case of fail.
12856  *
12857  * Even though the task has never lived, the context and events have been
12858  * exposed through the child_list, so we must take care tearing it all down.
12859  */
12860 void perf_event_free_task(struct task_struct *task)
12861 {
12862         struct perf_event_context *ctx;
12863         struct perf_event *event, *tmp;
12864         int ctxn;
12865
12866         for_each_task_context_nr(ctxn) {
12867                 ctx = task->perf_event_ctxp[ctxn];
12868                 if (!ctx)
12869                         continue;
12870
12871                 mutex_lock(&ctx->mutex);
12872                 raw_spin_lock_irq(&ctx->lock);
12873                 /*
12874                  * Destroy the task <-> ctx relation and mark the context dead.
12875                  *
12876                  * This is important because even though the task hasn't been
12877                  * exposed yet the context has been (through child_list).
12878                  */
12879                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12880                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12881                 put_task_struct(task); /* cannot be last */
12882                 raw_spin_unlock_irq(&ctx->lock);
12883
12884                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12885                         perf_free_event(event, ctx);
12886
12887                 mutex_unlock(&ctx->mutex);
12888
12889                 /*
12890                  * perf_event_release_kernel() could've stolen some of our
12891                  * child events and still have them on its free_list. In that
12892                  * case we must wait for these events to have been freed (in
12893                  * particular all their references to this task must've been
12894                  * dropped).
12895                  *
12896                  * Without this copy_process() will unconditionally free this
12897                  * task (irrespective of its reference count) and
12898                  * _free_event()'s put_task_struct(event->hw.target) will be a
12899                  * use-after-free.
12900                  *
12901                  * Wait for all events to drop their context reference.
12902                  */
12903                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12904                 put_ctx(ctx); /* must be last */
12905         }
12906 }
12907
12908 void perf_event_delayed_put(struct task_struct *task)
12909 {
12910         int ctxn;
12911
12912         for_each_task_context_nr(ctxn)
12913                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12914 }
12915
12916 struct file *perf_event_get(unsigned int fd)
12917 {
12918         struct file *file = fget(fd);
12919         if (!file)
12920                 return ERR_PTR(-EBADF);
12921
12922         if (file->f_op != &perf_fops) {
12923                 fput(file);
12924                 return ERR_PTR(-EBADF);
12925         }
12926
12927         return file;
12928 }
12929
12930 const struct perf_event *perf_get_event(struct file *file)
12931 {
12932         if (file->f_op != &perf_fops)
12933                 return ERR_PTR(-EINVAL);
12934
12935         return file->private_data;
12936 }
12937
12938 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12939 {
12940         if (!event)
12941                 return ERR_PTR(-EINVAL);
12942
12943         return &event->attr;
12944 }
12945
12946 /*
12947  * Inherit an event from parent task to child task.
12948  *
12949  * Returns:
12950  *  - valid pointer on success
12951  *  - NULL for orphaned events
12952  *  - IS_ERR() on error
12953  */
12954 static struct perf_event *
12955 inherit_event(struct perf_event *parent_event,
12956               struct task_struct *parent,
12957               struct perf_event_context *parent_ctx,
12958               struct task_struct *child,
12959               struct perf_event *group_leader,
12960               struct perf_event_context *child_ctx)
12961 {
12962         enum perf_event_state parent_state = parent_event->state;
12963         struct perf_event *child_event;
12964         unsigned long flags;
12965
12966         /*
12967          * Instead of creating recursive hierarchies of events,
12968          * we link inherited events back to the original parent,
12969          * which has a filp for sure, which we use as the reference
12970          * count:
12971          */
12972         if (parent_event->parent)
12973                 parent_event = parent_event->parent;
12974
12975         child_event = perf_event_alloc(&parent_event->attr,
12976                                            parent_event->cpu,
12977                                            child,
12978                                            group_leader, parent_event,
12979                                            NULL, NULL, -1);
12980         if (IS_ERR(child_event))
12981                 return child_event;
12982
12983
12984         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12985             !child_ctx->task_ctx_data) {
12986                 struct pmu *pmu = child_event->pmu;
12987
12988                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12989                 if (!child_ctx->task_ctx_data) {
12990                         free_event(child_event);
12991                         return ERR_PTR(-ENOMEM);
12992                 }
12993         }
12994
12995         /*
12996          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12997          * must be under the same lock in order to serialize against
12998          * perf_event_release_kernel(), such that either we must observe
12999          * is_orphaned_event() or they will observe us on the child_list.
13000          */
13001         mutex_lock(&parent_event->child_mutex);
13002         if (is_orphaned_event(parent_event) ||
13003             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13004                 mutex_unlock(&parent_event->child_mutex);
13005                 /* task_ctx_data is freed with child_ctx */
13006                 free_event(child_event);
13007                 return NULL;
13008         }
13009
13010         get_ctx(child_ctx);
13011
13012         /*
13013          * Make the child state follow the state of the parent event,
13014          * not its attr.disabled bit.  We hold the parent's mutex,
13015          * so we won't race with perf_event_{en, dis}able_family.
13016          */
13017         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13018                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13019         else
13020                 child_event->state = PERF_EVENT_STATE_OFF;
13021
13022         if (parent_event->attr.freq) {
13023                 u64 sample_period = parent_event->hw.sample_period;
13024                 struct hw_perf_event *hwc = &child_event->hw;
13025
13026                 hwc->sample_period = sample_period;
13027                 hwc->last_period   = sample_period;
13028
13029                 local64_set(&hwc->period_left, sample_period);
13030         }
13031
13032         child_event->ctx = child_ctx;
13033         child_event->overflow_handler = parent_event->overflow_handler;
13034         child_event->overflow_handler_context
13035                 = parent_event->overflow_handler_context;
13036
13037         /*
13038          * Precalculate sample_data sizes
13039          */
13040         perf_event__header_size(child_event);
13041         perf_event__id_header_size(child_event);
13042
13043         /*
13044          * Link it up in the child's context:
13045          */
13046         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13047         add_event_to_ctx(child_event, child_ctx);
13048         child_event->attach_state |= PERF_ATTACH_CHILD;
13049         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13050
13051         /*
13052          * Link this into the parent event's child list
13053          */
13054         list_add_tail(&child_event->child_list, &parent_event->child_list);
13055         mutex_unlock(&parent_event->child_mutex);
13056
13057         return child_event;
13058 }
13059
13060 /*
13061  * Inherits an event group.
13062  *
13063  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13064  * This matches with perf_event_release_kernel() removing all child events.
13065  *
13066  * Returns:
13067  *  - 0 on success
13068  *  - <0 on error
13069  */
13070 static int inherit_group(struct perf_event *parent_event,
13071               struct task_struct *parent,
13072               struct perf_event_context *parent_ctx,
13073               struct task_struct *child,
13074               struct perf_event_context *child_ctx)
13075 {
13076         struct perf_event *leader;
13077         struct perf_event *sub;
13078         struct perf_event *child_ctr;
13079
13080         leader = inherit_event(parent_event, parent, parent_ctx,
13081                                  child, NULL, child_ctx);
13082         if (IS_ERR(leader))
13083                 return PTR_ERR(leader);
13084         /*
13085          * @leader can be NULL here because of is_orphaned_event(). In this
13086          * case inherit_event() will create individual events, similar to what
13087          * perf_group_detach() would do anyway.
13088          */
13089         for_each_sibling_event(sub, parent_event) {
13090                 child_ctr = inherit_event(sub, parent, parent_ctx,
13091                                             child, leader, child_ctx);
13092                 if (IS_ERR(child_ctr))
13093                         return PTR_ERR(child_ctr);
13094
13095                 if (sub->aux_event == parent_event && child_ctr &&
13096                     !perf_get_aux_event(child_ctr, leader))
13097                         return -EINVAL;
13098         }
13099         return 0;
13100 }
13101
13102 /*
13103  * Creates the child task context and tries to inherit the event-group.
13104  *
13105  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13106  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13107  * consistent with perf_event_release_kernel() removing all child events.
13108  *
13109  * Returns:
13110  *  - 0 on success
13111  *  - <0 on error
13112  */
13113 static int
13114 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13115                    struct perf_event_context *parent_ctx,
13116                    struct task_struct *child, int ctxn,
13117                    u64 clone_flags, int *inherited_all)
13118 {
13119         int ret;
13120         struct perf_event_context *child_ctx;
13121
13122         if (!event->attr.inherit ||
13123             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13124             /* Do not inherit if sigtrap and signal handlers were cleared. */
13125             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13126                 *inherited_all = 0;
13127                 return 0;
13128         }
13129
13130         child_ctx = child->perf_event_ctxp[ctxn];
13131         if (!child_ctx) {
13132                 /*
13133                  * This is executed from the parent task context, so
13134                  * inherit events that have been marked for cloning.
13135                  * First allocate and initialize a context for the
13136                  * child.
13137                  */
13138                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13139                 if (!child_ctx)
13140                         return -ENOMEM;
13141
13142                 child->perf_event_ctxp[ctxn] = child_ctx;
13143         }
13144
13145         ret = inherit_group(event, parent, parent_ctx,
13146                             child, child_ctx);
13147
13148         if (ret)
13149                 *inherited_all = 0;
13150
13151         return ret;
13152 }
13153
13154 /*
13155  * Initialize the perf_event context in task_struct
13156  */
13157 static int perf_event_init_context(struct task_struct *child, int ctxn,
13158                                    u64 clone_flags)
13159 {
13160         struct perf_event_context *child_ctx, *parent_ctx;
13161         struct perf_event_context *cloned_ctx;
13162         struct perf_event *event;
13163         struct task_struct *parent = current;
13164         int inherited_all = 1;
13165         unsigned long flags;
13166         int ret = 0;
13167
13168         if (likely(!parent->perf_event_ctxp[ctxn]))
13169                 return 0;
13170
13171         /*
13172          * If the parent's context is a clone, pin it so it won't get
13173          * swapped under us.
13174          */
13175         parent_ctx = perf_pin_task_context(parent, ctxn);
13176         if (!parent_ctx)
13177                 return 0;
13178
13179         /*
13180          * No need to check if parent_ctx != NULL here; since we saw
13181          * it non-NULL earlier, the only reason for it to become NULL
13182          * is if we exit, and since we're currently in the middle of
13183          * a fork we can't be exiting at the same time.
13184          */
13185
13186         /*
13187          * Lock the parent list. No need to lock the child - not PID
13188          * hashed yet and not running, so nobody can access it.
13189          */
13190         mutex_lock(&parent_ctx->mutex);
13191
13192         /*
13193          * We dont have to disable NMIs - we are only looking at
13194          * the list, not manipulating it:
13195          */
13196         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13197                 ret = inherit_task_group(event, parent, parent_ctx,
13198                                          child, ctxn, clone_flags,
13199                                          &inherited_all);
13200                 if (ret)
13201                         goto out_unlock;
13202         }
13203
13204         /*
13205          * We can't hold ctx->lock when iterating the ->flexible_group list due
13206          * to allocations, but we need to prevent rotation because
13207          * rotate_ctx() will change the list from interrupt context.
13208          */
13209         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13210         parent_ctx->rotate_disable = 1;
13211         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13212
13213         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13214                 ret = inherit_task_group(event, parent, parent_ctx,
13215                                          child, ctxn, clone_flags,
13216                                          &inherited_all);
13217                 if (ret)
13218                         goto out_unlock;
13219         }
13220
13221         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13222         parent_ctx->rotate_disable = 0;
13223
13224         child_ctx = child->perf_event_ctxp[ctxn];
13225
13226         if (child_ctx && inherited_all) {
13227                 /*
13228                  * Mark the child context as a clone of the parent
13229                  * context, or of whatever the parent is a clone of.
13230                  *
13231                  * Note that if the parent is a clone, the holding of
13232                  * parent_ctx->lock avoids it from being uncloned.
13233                  */
13234                 cloned_ctx = parent_ctx->parent_ctx;
13235                 if (cloned_ctx) {
13236                         child_ctx->parent_ctx = cloned_ctx;
13237                         child_ctx->parent_gen = parent_ctx->parent_gen;
13238                 } else {
13239                         child_ctx->parent_ctx = parent_ctx;
13240                         child_ctx->parent_gen = parent_ctx->generation;
13241                 }
13242                 get_ctx(child_ctx->parent_ctx);
13243         }
13244
13245         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13246 out_unlock:
13247         mutex_unlock(&parent_ctx->mutex);
13248
13249         perf_unpin_context(parent_ctx);
13250         put_ctx(parent_ctx);
13251
13252         return ret;
13253 }
13254
13255 /*
13256  * Initialize the perf_event context in task_struct
13257  */
13258 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13259 {
13260         int ctxn, ret;
13261
13262         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13263         mutex_init(&child->perf_event_mutex);
13264         INIT_LIST_HEAD(&child->perf_event_list);
13265
13266         for_each_task_context_nr(ctxn) {
13267                 ret = perf_event_init_context(child, ctxn, clone_flags);
13268                 if (ret) {
13269                         perf_event_free_task(child);
13270                         return ret;
13271                 }
13272         }
13273
13274         return 0;
13275 }
13276
13277 static void __init perf_event_init_all_cpus(void)
13278 {
13279         struct swevent_htable *swhash;
13280         int cpu;
13281
13282         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13283
13284         for_each_possible_cpu(cpu) {
13285                 swhash = &per_cpu(swevent_htable, cpu);
13286                 mutex_init(&swhash->hlist_mutex);
13287                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13288
13289                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13290                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13291
13292 #ifdef CONFIG_CGROUP_PERF
13293                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13294 #endif
13295                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13296         }
13297 }
13298
13299 static void perf_swevent_init_cpu(unsigned int cpu)
13300 {
13301         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13302
13303         mutex_lock(&swhash->hlist_mutex);
13304         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13305                 struct swevent_hlist *hlist;
13306
13307                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13308                 WARN_ON(!hlist);
13309                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13310         }
13311         mutex_unlock(&swhash->hlist_mutex);
13312 }
13313
13314 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13315 static void __perf_event_exit_context(void *__info)
13316 {
13317         struct perf_event_context *ctx = __info;
13318         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13319         struct perf_event *event;
13320
13321         raw_spin_lock(&ctx->lock);
13322         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13323         list_for_each_entry(event, &ctx->event_list, event_entry)
13324                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13325         raw_spin_unlock(&ctx->lock);
13326 }
13327
13328 static void perf_event_exit_cpu_context(int cpu)
13329 {
13330         struct perf_cpu_context *cpuctx;
13331         struct perf_event_context *ctx;
13332         struct pmu *pmu;
13333
13334         mutex_lock(&pmus_lock);
13335         list_for_each_entry(pmu, &pmus, entry) {
13336                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13337                 ctx = &cpuctx->ctx;
13338
13339                 mutex_lock(&ctx->mutex);
13340                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13341                 cpuctx->online = 0;
13342                 mutex_unlock(&ctx->mutex);
13343         }
13344         cpumask_clear_cpu(cpu, perf_online_mask);
13345         mutex_unlock(&pmus_lock);
13346 }
13347 #else
13348
13349 static void perf_event_exit_cpu_context(int cpu) { }
13350
13351 #endif
13352
13353 int perf_event_init_cpu(unsigned int cpu)
13354 {
13355         struct perf_cpu_context *cpuctx;
13356         struct perf_event_context *ctx;
13357         struct pmu *pmu;
13358
13359         perf_swevent_init_cpu(cpu);
13360
13361         mutex_lock(&pmus_lock);
13362         cpumask_set_cpu(cpu, perf_online_mask);
13363         list_for_each_entry(pmu, &pmus, entry) {
13364                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13365                 ctx = &cpuctx->ctx;
13366
13367                 mutex_lock(&ctx->mutex);
13368                 cpuctx->online = 1;
13369                 mutex_unlock(&ctx->mutex);
13370         }
13371         mutex_unlock(&pmus_lock);
13372
13373         return 0;
13374 }
13375
13376 int perf_event_exit_cpu(unsigned int cpu)
13377 {
13378         perf_event_exit_cpu_context(cpu);
13379         return 0;
13380 }
13381
13382 static int
13383 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13384 {
13385         int cpu;
13386
13387         for_each_online_cpu(cpu)
13388                 perf_event_exit_cpu(cpu);
13389
13390         return NOTIFY_OK;
13391 }
13392
13393 /*
13394  * Run the perf reboot notifier at the very last possible moment so that
13395  * the generic watchdog code runs as long as possible.
13396  */
13397 static struct notifier_block perf_reboot_notifier = {
13398         .notifier_call = perf_reboot,
13399         .priority = INT_MIN,
13400 };
13401
13402 void __init perf_event_init(void)
13403 {
13404         int ret;
13405
13406         idr_init(&pmu_idr);
13407
13408         perf_event_init_all_cpus();
13409         init_srcu_struct(&pmus_srcu);
13410         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13411         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13412         perf_pmu_register(&perf_task_clock, NULL, -1);
13413         perf_tp_register();
13414         perf_event_init_cpu(smp_processor_id());
13415         register_reboot_notifier(&perf_reboot_notifier);
13416
13417         ret = init_hw_breakpoint();
13418         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13419
13420         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13421
13422         /*
13423          * Build time assertion that we keep the data_head at the intended
13424          * location.  IOW, validation we got the __reserved[] size right.
13425          */
13426         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13427                      != 1024);
13428 }
13429
13430 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13431                               char *page)
13432 {
13433         struct perf_pmu_events_attr *pmu_attr =
13434                 container_of(attr, struct perf_pmu_events_attr, attr);
13435
13436         if (pmu_attr->event_str)
13437                 return sprintf(page, "%s\n", pmu_attr->event_str);
13438
13439         return 0;
13440 }
13441 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13442
13443 static int __init perf_event_sysfs_init(void)
13444 {
13445         struct pmu *pmu;
13446         int ret;
13447
13448         mutex_lock(&pmus_lock);
13449
13450         ret = bus_register(&pmu_bus);
13451         if (ret)
13452                 goto unlock;
13453
13454         list_for_each_entry(pmu, &pmus, entry) {
13455                 if (!pmu->name || pmu->type < 0)
13456                         continue;
13457
13458                 ret = pmu_dev_alloc(pmu);
13459                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13460         }
13461         pmu_bus_running = 1;
13462         ret = 0;
13463
13464 unlock:
13465         mutex_unlock(&pmus_lock);
13466
13467         return ret;
13468 }
13469 device_initcall(perf_event_sysfs_init);
13470
13471 #ifdef CONFIG_CGROUP_PERF
13472 static struct cgroup_subsys_state *
13473 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13474 {
13475         struct perf_cgroup *jc;
13476
13477         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13478         if (!jc)
13479                 return ERR_PTR(-ENOMEM);
13480
13481         jc->info = alloc_percpu(struct perf_cgroup_info);
13482         if (!jc->info) {
13483                 kfree(jc);
13484                 return ERR_PTR(-ENOMEM);
13485         }
13486
13487         return &jc->css;
13488 }
13489
13490 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13491 {
13492         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13493
13494         free_percpu(jc->info);
13495         kfree(jc);
13496 }
13497
13498 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13499 {
13500         perf_event_cgroup(css->cgroup);
13501         return 0;
13502 }
13503
13504 static int __perf_cgroup_move(void *info)
13505 {
13506         struct task_struct *task = info;
13507         rcu_read_lock();
13508         perf_cgroup_switch(task);
13509         rcu_read_unlock();
13510         return 0;
13511 }
13512
13513 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13514 {
13515         struct task_struct *task;
13516         struct cgroup_subsys_state *css;
13517
13518         cgroup_taskset_for_each(task, css, tset)
13519                 task_function_call(task, __perf_cgroup_move, task);
13520 }
13521
13522 struct cgroup_subsys perf_event_cgrp_subsys = {
13523         .css_alloc      = perf_cgroup_css_alloc,
13524         .css_free       = perf_cgroup_css_free,
13525         .css_online     = perf_cgroup_css_online,
13526         .attach         = perf_cgroup_attach,
13527         /*
13528          * Implicitly enable on dfl hierarchy so that perf events can
13529          * always be filtered by cgroup2 path as long as perf_event
13530          * controller is not mounted on a legacy hierarchy.
13531          */
13532         .implicit_on_dfl = true,
13533         .threaded       = true,
13534 };
13535 #endif /* CONFIG_CGROUP_PERF */
13536
13537 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);