2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
52 #include <asm/irq_regs.h>
54 typedef int (*remote_function_f)(void *);
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
63 static void remote_function(void *data)
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
70 if (task_cpu(p) != smp_processor_id())
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
78 tfc->ret = -ESRCH; /* No such (running) process */
83 tfc->ret = tfc->func(tfc->info);
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
102 struct remote_function_call data = {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
114 } while (ret == -EAGAIN);
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
124 * Calls the function @func on the remote cpu.
126 * returns: @func return value or -ENXIO when the cpu is offline
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
130 struct remote_function_call data = {
134 .ret = -ENXIO, /* No such CPU */
137 smp_call_function_single(cpu, remote_function, &data, 1);
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
151 raw_spin_lock(&cpuctx->ctx.lock);
153 raw_spin_lock(&ctx->lock);
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
164 #define TASK_TOMBSTONE ((void *)-1L)
166 static bool is_kernel_event(struct perf_event *event)
168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 * On task ctx scheduling...
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
178 * This however results in two special cases:
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
193 struct event_function_struct {
194 struct perf_event *event;
199 static int event_function(void *info)
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
208 WARN_ON_ONCE(!irqs_disabled());
210 perf_ctx_lock(cpuctx, task_ctx);
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
216 if (ctx->task != current) {
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
228 WARN_ON_ONCE(!ctx->is_active);
230 * And since we have ctx->is_active, cpuctx->task_ctx must
233 WARN_ON_ONCE(task_ctx != ctx);
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
238 efs->func(event, cpuctx, ctx, efs->data);
240 perf_ctx_unlock(cpuctx, task_ctx);
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
247 struct event_function_struct efs = {
253 int ret = event_function(&efs);
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
259 struct perf_event_context *ctx = event->ctx;
260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 struct event_function_struct efs = {
267 if (!event->parent) {
269 * If this is a !child event, we must hold ctx::mutex to
270 * stabilize the the event->ctx relation. See
271 * perf_event_ctx_lock().
273 lockdep_assert_held(&ctx->mutex);
277 cpu_function_call(event->cpu, event_function, &efs);
281 if (task == TASK_TOMBSTONE)
285 if (!task_function_call(task, event_function, &efs))
288 raw_spin_lock_irq(&ctx->lock);
290 * Reload the task pointer, it might have been changed by
291 * a concurrent perf_event_context_sched_out().
294 if (task == TASK_TOMBSTONE) {
295 raw_spin_unlock_irq(&ctx->lock);
298 if (ctx->is_active) {
299 raw_spin_unlock_irq(&ctx->lock);
302 func(event, NULL, ctx, data);
303 raw_spin_unlock_irq(&ctx->lock);
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307 PERF_FLAG_FD_OUTPUT |\
308 PERF_FLAG_PID_CGROUP |\
309 PERF_FLAG_FD_CLOEXEC)
312 * branch priv levels that need permission checks
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315 (PERF_SAMPLE_BRANCH_KERNEL |\
316 PERF_SAMPLE_BRANCH_HV)
319 EVENT_FLEXIBLE = 0x1,
322 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
326 * perf_sched_events : >0 events exist
327 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
340 static atomic_t nr_mmap_events __read_mostly;
341 static atomic_t nr_comm_events __read_mostly;
342 static atomic_t nr_task_events __read_mostly;
343 static atomic_t nr_freq_events __read_mostly;
344 static atomic_t nr_switch_events __read_mostly;
346 static LIST_HEAD(pmus);
347 static DEFINE_MUTEX(pmus_lock);
348 static struct srcu_struct pmus_srcu;
351 * perf event paranoia level:
352 * -1 - not paranoid at all
353 * 0 - disallow raw tracepoint access for unpriv
354 * 1 - disallow cpu events for unpriv
355 * 2 - disallow kernel profiling for unpriv
357 int sysctl_perf_event_paranoid __read_mostly = 2;
359 /* Minimum for 512 kiB + 1 user control page */
360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
363 * max perf event sample rate
365 #define DEFAULT_MAX_SAMPLE_RATE 100000
366 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
369 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
371 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
374 static int perf_sample_allowed_ns __read_mostly =
375 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
377 static void update_perf_cpu_limits(void)
379 u64 tmp = perf_sample_period_ns;
381 tmp *= sysctl_perf_cpu_time_max_percent;
382 tmp = div_u64(tmp, 100);
386 WRITE_ONCE(perf_sample_allowed_ns, tmp);
389 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
391 int perf_proc_update_handler(struct ctl_table *table, int write,
392 void __user *buffer, size_t *lenp,
395 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
401 * If throttling is disabled don't allow the write:
403 if (sysctl_perf_cpu_time_max_percent == 100 ||
404 sysctl_perf_cpu_time_max_percent == 0)
407 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
408 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
409 update_perf_cpu_limits();
414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
417 void __user *buffer, size_t *lenp,
420 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
425 if (sysctl_perf_cpu_time_max_percent == 100 ||
426 sysctl_perf_cpu_time_max_percent == 0) {
428 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
429 WRITE_ONCE(perf_sample_allowed_ns, 0);
431 update_perf_cpu_limits();
438 * perf samples are done in some very critical code paths (NMIs).
439 * If they take too much CPU time, the system can lock up and not
440 * get any real work done. This will drop the sample rate when
441 * we detect that events are taking too long.
443 #define NR_ACCUMULATED_SAMPLES 128
444 static DEFINE_PER_CPU(u64, running_sample_length);
446 static u64 __report_avg;
447 static u64 __report_allowed;
449 static void perf_duration_warn(struct irq_work *w)
451 printk_ratelimited(KERN_INFO
452 "perf: interrupt took too long (%lld > %lld), lowering "
453 "kernel.perf_event_max_sample_rate to %d\n",
454 __report_avg, __report_allowed,
455 sysctl_perf_event_sample_rate);
458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
460 void perf_sample_event_took(u64 sample_len_ns)
462 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
470 /* Decay the counter by 1 average sample. */
471 running_len = __this_cpu_read(running_sample_length);
472 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
473 running_len += sample_len_ns;
474 __this_cpu_write(running_sample_length, running_len);
477 * Note: this will be biased artifically low until we have
478 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
479 * from having to maintain a count.
481 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
482 if (avg_len <= max_len)
485 __report_avg = avg_len;
486 __report_allowed = max_len;
489 * Compute a throttle threshold 25% below the current duration.
491 avg_len += avg_len / 4;
492 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
498 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
499 WRITE_ONCE(max_samples_per_tick, max);
501 sysctl_perf_event_sample_rate = max * HZ;
502 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
504 if (!irq_work_queue(&perf_duration_work)) {
505 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
506 "kernel.perf_event_max_sample_rate to %d\n",
507 __report_avg, __report_allowed,
508 sysctl_perf_event_sample_rate);
512 static atomic64_t perf_event_id;
514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
515 enum event_type_t event_type);
517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
518 enum event_type_t event_type,
519 struct task_struct *task);
521 static void update_context_time(struct perf_event_context *ctx);
522 static u64 perf_event_time(struct perf_event *event);
524 void __weak perf_event_print_debug(void) { }
526 extern __weak const char *perf_pmu_name(void)
531 static inline u64 perf_clock(void)
533 return local_clock();
536 static inline u64 perf_event_clock(struct perf_event *event)
538 return event->clock();
541 #ifdef CONFIG_CGROUP_PERF
544 perf_cgroup_match(struct perf_event *event)
546 struct perf_event_context *ctx = event->ctx;
547 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
549 /* @event doesn't care about cgroup */
553 /* wants specific cgroup scope but @cpuctx isn't associated with any */
558 * Cgroup scoping is recursive. An event enabled for a cgroup is
559 * also enabled for all its descendant cgroups. If @cpuctx's
560 * cgroup is a descendant of @event's (the test covers identity
561 * case), it's a match.
563 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
564 event->cgrp->css.cgroup);
567 static inline void perf_detach_cgroup(struct perf_event *event)
569 css_put(&event->cgrp->css);
573 static inline int is_cgroup_event(struct perf_event *event)
575 return event->cgrp != NULL;
578 static inline u64 perf_cgroup_event_time(struct perf_event *event)
580 struct perf_cgroup_info *t;
582 t = per_cpu_ptr(event->cgrp->info, event->cpu);
586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
588 struct perf_cgroup_info *info;
593 info = this_cpu_ptr(cgrp->info);
595 info->time += now - info->timestamp;
596 info->timestamp = now;
599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
601 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
603 __update_cgrp_time(cgrp_out);
606 static inline void update_cgrp_time_from_event(struct perf_event *event)
608 struct perf_cgroup *cgrp;
611 * ensure we access cgroup data only when needed and
612 * when we know the cgroup is pinned (css_get)
614 if (!is_cgroup_event(event))
617 cgrp = perf_cgroup_from_task(current, event->ctx);
619 * Do not update time when cgroup is not active
621 if (cgrp == event->cgrp)
622 __update_cgrp_time(event->cgrp);
626 perf_cgroup_set_timestamp(struct task_struct *task,
627 struct perf_event_context *ctx)
629 struct perf_cgroup *cgrp;
630 struct perf_cgroup_info *info;
633 * ctx->lock held by caller
634 * ensure we do not access cgroup data
635 * unless we have the cgroup pinned (css_get)
637 if (!task || !ctx->nr_cgroups)
640 cgrp = perf_cgroup_from_task(task, ctx);
641 info = this_cpu_ptr(cgrp->info);
642 info->timestamp = ctx->timestamp;
645 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
646 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
649 * reschedule events based on the cgroup constraint of task.
651 * mode SWOUT : schedule out everything
652 * mode SWIN : schedule in based on cgroup for next
654 static void perf_cgroup_switch(struct task_struct *task, int mode)
656 struct perf_cpu_context *cpuctx;
661 * disable interrupts to avoid geting nr_cgroup
662 * changes via __perf_event_disable(). Also
665 local_irq_save(flags);
668 * we reschedule only in the presence of cgroup
669 * constrained events.
672 list_for_each_entry_rcu(pmu, &pmus, entry) {
673 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
674 if (cpuctx->unique_pmu != pmu)
675 continue; /* ensure we process each cpuctx once */
678 * perf_cgroup_events says at least one
679 * context on this CPU has cgroup events.
681 * ctx->nr_cgroups reports the number of cgroup
682 * events for a context.
684 if (cpuctx->ctx.nr_cgroups > 0) {
685 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
686 perf_pmu_disable(cpuctx->ctx.pmu);
688 if (mode & PERF_CGROUP_SWOUT) {
689 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
691 * must not be done before ctxswout due
692 * to event_filter_match() in event_sched_out()
697 if (mode & PERF_CGROUP_SWIN) {
698 WARN_ON_ONCE(cpuctx->cgrp);
700 * set cgrp before ctxsw in to allow
701 * event_filter_match() to not have to pass
703 * we pass the cpuctx->ctx to perf_cgroup_from_task()
704 * because cgorup events are only per-cpu
706 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
707 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
709 perf_pmu_enable(cpuctx->ctx.pmu);
710 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
714 local_irq_restore(flags);
717 static inline void perf_cgroup_sched_out(struct task_struct *task,
718 struct task_struct *next)
720 struct perf_cgroup *cgrp1;
721 struct perf_cgroup *cgrp2 = NULL;
725 * we come here when we know perf_cgroup_events > 0
726 * we do not need to pass the ctx here because we know
727 * we are holding the rcu lock
729 cgrp1 = perf_cgroup_from_task(task, NULL);
730 cgrp2 = perf_cgroup_from_task(next, NULL);
733 * only schedule out current cgroup events if we know
734 * that we are switching to a different cgroup. Otherwise,
735 * do no touch the cgroup events.
738 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
743 static inline void perf_cgroup_sched_in(struct task_struct *prev,
744 struct task_struct *task)
746 struct perf_cgroup *cgrp1;
747 struct perf_cgroup *cgrp2 = NULL;
751 * we come here when we know perf_cgroup_events > 0
752 * we do not need to pass the ctx here because we know
753 * we are holding the rcu lock
755 cgrp1 = perf_cgroup_from_task(task, NULL);
756 cgrp2 = perf_cgroup_from_task(prev, NULL);
759 * only need to schedule in cgroup events if we are changing
760 * cgroup during ctxsw. Cgroup events were not scheduled
761 * out of ctxsw out if that was not the case.
764 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
769 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
770 struct perf_event_attr *attr,
771 struct perf_event *group_leader)
773 struct perf_cgroup *cgrp;
774 struct cgroup_subsys_state *css;
775 struct fd f = fdget(fd);
781 css = css_tryget_online_from_dir(f.file->f_path.dentry,
782 &perf_event_cgrp_subsys);
788 cgrp = container_of(css, struct perf_cgroup, css);
792 * all events in a group must monitor
793 * the same cgroup because a task belongs
794 * to only one perf cgroup at a time
796 if (group_leader && group_leader->cgrp != cgrp) {
797 perf_detach_cgroup(event);
806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
808 struct perf_cgroup_info *t;
809 t = per_cpu_ptr(event->cgrp->info, event->cpu);
810 event->shadow_ctx_time = now - t->timestamp;
814 perf_cgroup_defer_enabled(struct perf_event *event)
817 * when the current task's perf cgroup does not match
818 * the event's, we need to remember to call the
819 * perf_mark_enable() function the first time a task with
820 * a matching perf cgroup is scheduled in.
822 if (is_cgroup_event(event) && !perf_cgroup_match(event))
823 event->cgrp_defer_enabled = 1;
827 perf_cgroup_mark_enabled(struct perf_event *event,
828 struct perf_event_context *ctx)
830 struct perf_event *sub;
831 u64 tstamp = perf_event_time(event);
833 if (!event->cgrp_defer_enabled)
836 event->cgrp_defer_enabled = 0;
838 event->tstamp_enabled = tstamp - event->total_time_enabled;
839 list_for_each_entry(sub, &event->sibling_list, group_entry) {
840 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
841 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
842 sub->cgrp_defer_enabled = 0;
846 #else /* !CONFIG_CGROUP_PERF */
849 perf_cgroup_match(struct perf_event *event)
854 static inline void perf_detach_cgroup(struct perf_event *event)
857 static inline int is_cgroup_event(struct perf_event *event)
862 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
867 static inline void update_cgrp_time_from_event(struct perf_event *event)
871 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
875 static inline void perf_cgroup_sched_out(struct task_struct *task,
876 struct task_struct *next)
880 static inline void perf_cgroup_sched_in(struct task_struct *prev,
881 struct task_struct *task)
885 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
886 struct perf_event_attr *attr,
887 struct perf_event *group_leader)
893 perf_cgroup_set_timestamp(struct task_struct *task,
894 struct perf_event_context *ctx)
899 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
904 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
908 static inline u64 perf_cgroup_event_time(struct perf_event *event)
914 perf_cgroup_defer_enabled(struct perf_event *event)
919 perf_cgroup_mark_enabled(struct perf_event *event,
920 struct perf_event_context *ctx)
926 * set default to be dependent on timer tick just
929 #define PERF_CPU_HRTIMER (1000 / HZ)
931 * function must be called with interrupts disbled
933 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
935 struct perf_cpu_context *cpuctx;
938 WARN_ON(!irqs_disabled());
940 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
941 rotations = perf_rotate_context(cpuctx);
943 raw_spin_lock(&cpuctx->hrtimer_lock);
945 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
947 cpuctx->hrtimer_active = 0;
948 raw_spin_unlock(&cpuctx->hrtimer_lock);
950 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
953 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
955 struct hrtimer *timer = &cpuctx->hrtimer;
956 struct pmu *pmu = cpuctx->ctx.pmu;
959 /* no multiplexing needed for SW PMU */
960 if (pmu->task_ctx_nr == perf_sw_context)
964 * check default is sane, if not set then force to
965 * default interval (1/tick)
967 interval = pmu->hrtimer_interval_ms;
969 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
971 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
973 raw_spin_lock_init(&cpuctx->hrtimer_lock);
974 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
975 timer->function = perf_mux_hrtimer_handler;
978 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
980 struct hrtimer *timer = &cpuctx->hrtimer;
981 struct pmu *pmu = cpuctx->ctx.pmu;
985 if (pmu->task_ctx_nr == perf_sw_context)
988 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
989 if (!cpuctx->hrtimer_active) {
990 cpuctx->hrtimer_active = 1;
991 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
992 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
994 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
999 void perf_pmu_disable(struct pmu *pmu)
1001 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1003 pmu->pmu_disable(pmu);
1006 void perf_pmu_enable(struct pmu *pmu)
1008 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1010 pmu->pmu_enable(pmu);
1013 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1016 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1017 * perf_event_task_tick() are fully serialized because they're strictly cpu
1018 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1019 * disabled, while perf_event_task_tick is called from IRQ context.
1021 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1023 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1025 WARN_ON(!irqs_disabled());
1027 WARN_ON(!list_empty(&ctx->active_ctx_list));
1029 list_add(&ctx->active_ctx_list, head);
1032 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1034 WARN_ON(!irqs_disabled());
1036 WARN_ON(list_empty(&ctx->active_ctx_list));
1038 list_del_init(&ctx->active_ctx_list);
1041 static void get_ctx(struct perf_event_context *ctx)
1043 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1046 static void free_ctx(struct rcu_head *head)
1048 struct perf_event_context *ctx;
1050 ctx = container_of(head, struct perf_event_context, rcu_head);
1051 kfree(ctx->task_ctx_data);
1055 static void put_ctx(struct perf_event_context *ctx)
1057 if (atomic_dec_and_test(&ctx->refcount)) {
1058 if (ctx->parent_ctx)
1059 put_ctx(ctx->parent_ctx);
1060 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1061 put_task_struct(ctx->task);
1062 call_rcu(&ctx->rcu_head, free_ctx);
1067 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1068 * perf_pmu_migrate_context() we need some magic.
1070 * Those places that change perf_event::ctx will hold both
1071 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1073 * Lock ordering is by mutex address. There are two other sites where
1074 * perf_event_context::mutex nests and those are:
1076 * - perf_event_exit_task_context() [ child , 0 ]
1077 * perf_event_exit_event()
1078 * put_event() [ parent, 1 ]
1080 * - perf_event_init_context() [ parent, 0 ]
1081 * inherit_task_group()
1084 * perf_event_alloc()
1086 * perf_try_init_event() [ child , 1 ]
1088 * While it appears there is an obvious deadlock here -- the parent and child
1089 * nesting levels are inverted between the two. This is in fact safe because
1090 * life-time rules separate them. That is an exiting task cannot fork, and a
1091 * spawning task cannot (yet) exit.
1093 * But remember that that these are parent<->child context relations, and
1094 * migration does not affect children, therefore these two orderings should not
1097 * The change in perf_event::ctx does not affect children (as claimed above)
1098 * because the sys_perf_event_open() case will install a new event and break
1099 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1100 * concerned with cpuctx and that doesn't have children.
1102 * The places that change perf_event::ctx will issue:
1104 * perf_remove_from_context();
1105 * synchronize_rcu();
1106 * perf_install_in_context();
1108 * to affect the change. The remove_from_context() + synchronize_rcu() should
1109 * quiesce the event, after which we can install it in the new location. This
1110 * means that only external vectors (perf_fops, prctl) can perturb the event
1111 * while in transit. Therefore all such accessors should also acquire
1112 * perf_event_context::mutex to serialize against this.
1114 * However; because event->ctx can change while we're waiting to acquire
1115 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1120 * task_struct::perf_event_mutex
1121 * perf_event_context::mutex
1122 * perf_event::child_mutex;
1123 * perf_event_context::lock
1124 * perf_event::mmap_mutex
1127 static struct perf_event_context *
1128 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1130 struct perf_event_context *ctx;
1134 ctx = ACCESS_ONCE(event->ctx);
1135 if (!atomic_inc_not_zero(&ctx->refcount)) {
1141 mutex_lock_nested(&ctx->mutex, nesting);
1142 if (event->ctx != ctx) {
1143 mutex_unlock(&ctx->mutex);
1151 static inline struct perf_event_context *
1152 perf_event_ctx_lock(struct perf_event *event)
1154 return perf_event_ctx_lock_nested(event, 0);
1157 static void perf_event_ctx_unlock(struct perf_event *event,
1158 struct perf_event_context *ctx)
1160 mutex_unlock(&ctx->mutex);
1165 * This must be done under the ctx->lock, such as to serialize against
1166 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1167 * calling scheduler related locks and ctx->lock nests inside those.
1169 static __must_check struct perf_event_context *
1170 unclone_ctx(struct perf_event_context *ctx)
1172 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1174 lockdep_assert_held(&ctx->lock);
1177 ctx->parent_ctx = NULL;
1183 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1186 * only top level events have the pid namespace they were created in
1189 event = event->parent;
1191 return task_tgid_nr_ns(p, event->ns);
1194 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1197 * only top level events have the pid namespace they were created in
1200 event = event->parent;
1202 return task_pid_nr_ns(p, event->ns);
1206 * If we inherit events we want to return the parent event id
1209 static u64 primary_event_id(struct perf_event *event)
1214 id = event->parent->id;
1220 * Get the perf_event_context for a task and lock it.
1222 * This has to cope with with the fact that until it is locked,
1223 * the context could get moved to another task.
1225 static struct perf_event_context *
1226 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1228 struct perf_event_context *ctx;
1232 * One of the few rules of preemptible RCU is that one cannot do
1233 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1234 * part of the read side critical section was irqs-enabled -- see
1235 * rcu_read_unlock_special().
1237 * Since ctx->lock nests under rq->lock we must ensure the entire read
1238 * side critical section has interrupts disabled.
1240 local_irq_save(*flags);
1242 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1245 * If this context is a clone of another, it might
1246 * get swapped for another underneath us by
1247 * perf_event_task_sched_out, though the
1248 * rcu_read_lock() protects us from any context
1249 * getting freed. Lock the context and check if it
1250 * got swapped before we could get the lock, and retry
1251 * if so. If we locked the right context, then it
1252 * can't get swapped on us any more.
1254 raw_spin_lock(&ctx->lock);
1255 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1256 raw_spin_unlock(&ctx->lock);
1258 local_irq_restore(*flags);
1262 if (ctx->task == TASK_TOMBSTONE ||
1263 !atomic_inc_not_zero(&ctx->refcount)) {
1264 raw_spin_unlock(&ctx->lock);
1267 WARN_ON_ONCE(ctx->task != task);
1272 local_irq_restore(*flags);
1277 * Get the context for a task and increment its pin_count so it
1278 * can't get swapped to another task. This also increments its
1279 * reference count so that the context can't get freed.
1281 static struct perf_event_context *
1282 perf_pin_task_context(struct task_struct *task, int ctxn)
1284 struct perf_event_context *ctx;
1285 unsigned long flags;
1287 ctx = perf_lock_task_context(task, ctxn, &flags);
1290 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1295 static void perf_unpin_context(struct perf_event_context *ctx)
1297 unsigned long flags;
1299 raw_spin_lock_irqsave(&ctx->lock, flags);
1301 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1305 * Update the record of the current time in a context.
1307 static void update_context_time(struct perf_event_context *ctx)
1309 u64 now = perf_clock();
1311 ctx->time += now - ctx->timestamp;
1312 ctx->timestamp = now;
1315 static u64 perf_event_time(struct perf_event *event)
1317 struct perf_event_context *ctx = event->ctx;
1319 if (is_cgroup_event(event))
1320 return perf_cgroup_event_time(event);
1322 return ctx ? ctx->time : 0;
1326 * Update the total_time_enabled and total_time_running fields for a event.
1328 static void update_event_times(struct perf_event *event)
1330 struct perf_event_context *ctx = event->ctx;
1333 lockdep_assert_held(&ctx->lock);
1335 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1336 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1340 * in cgroup mode, time_enabled represents
1341 * the time the event was enabled AND active
1342 * tasks were in the monitored cgroup. This is
1343 * independent of the activity of the context as
1344 * there may be a mix of cgroup and non-cgroup events.
1346 * That is why we treat cgroup events differently
1349 if (is_cgroup_event(event))
1350 run_end = perf_cgroup_event_time(event);
1351 else if (ctx->is_active)
1352 run_end = ctx->time;
1354 run_end = event->tstamp_stopped;
1356 event->total_time_enabled = run_end - event->tstamp_enabled;
1358 if (event->state == PERF_EVENT_STATE_INACTIVE)
1359 run_end = event->tstamp_stopped;
1361 run_end = perf_event_time(event);
1363 event->total_time_running = run_end - event->tstamp_running;
1368 * Update total_time_enabled and total_time_running for all events in a group.
1370 static void update_group_times(struct perf_event *leader)
1372 struct perf_event *event;
1374 update_event_times(leader);
1375 list_for_each_entry(event, &leader->sibling_list, group_entry)
1376 update_event_times(event);
1379 static struct list_head *
1380 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1382 if (event->attr.pinned)
1383 return &ctx->pinned_groups;
1385 return &ctx->flexible_groups;
1389 * Add a event from the lists for its context.
1390 * Must be called with ctx->mutex and ctx->lock held.
1393 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1395 lockdep_assert_held(&ctx->lock);
1397 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1398 event->attach_state |= PERF_ATTACH_CONTEXT;
1401 * If we're a stand alone event or group leader, we go to the context
1402 * list, group events are kept attached to the group so that
1403 * perf_group_detach can, at all times, locate all siblings.
1405 if (event->group_leader == event) {
1406 struct list_head *list;
1408 if (is_software_event(event))
1409 event->group_flags |= PERF_GROUP_SOFTWARE;
1411 list = ctx_group_list(event, ctx);
1412 list_add_tail(&event->group_entry, list);
1415 if (is_cgroup_event(event))
1418 list_add_rcu(&event->event_entry, &ctx->event_list);
1420 if (event->attr.inherit_stat)
1427 * Initialize event state based on the perf_event_attr::disabled.
1429 static inline void perf_event__state_init(struct perf_event *event)
1431 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1432 PERF_EVENT_STATE_INACTIVE;
1435 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1437 int entry = sizeof(u64); /* value */
1441 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1442 size += sizeof(u64);
1444 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1445 size += sizeof(u64);
1447 if (event->attr.read_format & PERF_FORMAT_ID)
1448 entry += sizeof(u64);
1450 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1452 size += sizeof(u64);
1456 event->read_size = size;
1459 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1461 struct perf_sample_data *data;
1464 if (sample_type & PERF_SAMPLE_IP)
1465 size += sizeof(data->ip);
1467 if (sample_type & PERF_SAMPLE_ADDR)
1468 size += sizeof(data->addr);
1470 if (sample_type & PERF_SAMPLE_PERIOD)
1471 size += sizeof(data->period);
1473 if (sample_type & PERF_SAMPLE_WEIGHT)
1474 size += sizeof(data->weight);
1476 if (sample_type & PERF_SAMPLE_READ)
1477 size += event->read_size;
1479 if (sample_type & PERF_SAMPLE_DATA_SRC)
1480 size += sizeof(data->data_src.val);
1482 if (sample_type & PERF_SAMPLE_TRANSACTION)
1483 size += sizeof(data->txn);
1485 event->header_size = size;
1489 * Called at perf_event creation and when events are attached/detached from a
1492 static void perf_event__header_size(struct perf_event *event)
1494 __perf_event_read_size(event,
1495 event->group_leader->nr_siblings);
1496 __perf_event_header_size(event, event->attr.sample_type);
1499 static void perf_event__id_header_size(struct perf_event *event)
1501 struct perf_sample_data *data;
1502 u64 sample_type = event->attr.sample_type;
1505 if (sample_type & PERF_SAMPLE_TID)
1506 size += sizeof(data->tid_entry);
1508 if (sample_type & PERF_SAMPLE_TIME)
1509 size += sizeof(data->time);
1511 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1512 size += sizeof(data->id);
1514 if (sample_type & PERF_SAMPLE_ID)
1515 size += sizeof(data->id);
1517 if (sample_type & PERF_SAMPLE_STREAM_ID)
1518 size += sizeof(data->stream_id);
1520 if (sample_type & PERF_SAMPLE_CPU)
1521 size += sizeof(data->cpu_entry);
1523 event->id_header_size = size;
1526 static bool perf_event_validate_size(struct perf_event *event)
1529 * The values computed here will be over-written when we actually
1532 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1533 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1534 perf_event__id_header_size(event);
1537 * Sum the lot; should not exceed the 64k limit we have on records.
1538 * Conservative limit to allow for callchains and other variable fields.
1540 if (event->read_size + event->header_size +
1541 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1547 static void perf_group_attach(struct perf_event *event)
1549 struct perf_event *group_leader = event->group_leader, *pos;
1552 * We can have double attach due to group movement in perf_event_open.
1554 if (event->attach_state & PERF_ATTACH_GROUP)
1557 event->attach_state |= PERF_ATTACH_GROUP;
1559 if (group_leader == event)
1562 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1564 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1565 !is_software_event(event))
1566 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1568 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1569 group_leader->nr_siblings++;
1571 perf_event__header_size(group_leader);
1573 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1574 perf_event__header_size(pos);
1578 * Remove a event from the lists for its context.
1579 * Must be called with ctx->mutex and ctx->lock held.
1582 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1584 struct perf_cpu_context *cpuctx;
1586 WARN_ON_ONCE(event->ctx != ctx);
1587 lockdep_assert_held(&ctx->lock);
1590 * We can have double detach due to exit/hot-unplug + close.
1592 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1595 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1597 if (is_cgroup_event(event)) {
1600 * Because cgroup events are always per-cpu events, this will
1601 * always be called from the right CPU.
1603 cpuctx = __get_cpu_context(ctx);
1605 * If there are no more cgroup events then clear cgrp to avoid
1606 * stale pointer in update_cgrp_time_from_cpuctx().
1608 if (!ctx->nr_cgroups)
1609 cpuctx->cgrp = NULL;
1613 if (event->attr.inherit_stat)
1616 list_del_rcu(&event->event_entry);
1618 if (event->group_leader == event)
1619 list_del_init(&event->group_entry);
1621 update_group_times(event);
1624 * If event was in error state, then keep it
1625 * that way, otherwise bogus counts will be
1626 * returned on read(). The only way to get out
1627 * of error state is by explicit re-enabling
1630 if (event->state > PERF_EVENT_STATE_OFF)
1631 event->state = PERF_EVENT_STATE_OFF;
1636 static void perf_group_detach(struct perf_event *event)
1638 struct perf_event *sibling, *tmp;
1639 struct list_head *list = NULL;
1642 * We can have double detach due to exit/hot-unplug + close.
1644 if (!(event->attach_state & PERF_ATTACH_GROUP))
1647 event->attach_state &= ~PERF_ATTACH_GROUP;
1650 * If this is a sibling, remove it from its group.
1652 if (event->group_leader != event) {
1653 list_del_init(&event->group_entry);
1654 event->group_leader->nr_siblings--;
1658 if (!list_empty(&event->group_entry))
1659 list = &event->group_entry;
1662 * If this was a group event with sibling events then
1663 * upgrade the siblings to singleton events by adding them
1664 * to whatever list we are on.
1666 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1668 list_move_tail(&sibling->group_entry, list);
1669 sibling->group_leader = sibling;
1671 /* Inherit group flags from the previous leader */
1672 sibling->group_flags = event->group_flags;
1674 WARN_ON_ONCE(sibling->ctx != event->ctx);
1678 perf_event__header_size(event->group_leader);
1680 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1681 perf_event__header_size(tmp);
1684 static bool is_orphaned_event(struct perf_event *event)
1686 return event->state == PERF_EVENT_STATE_DEAD;
1689 static inline int __pmu_filter_match(struct perf_event *event)
1691 struct pmu *pmu = event->pmu;
1692 return pmu->filter_match ? pmu->filter_match(event) : 1;
1696 * Check whether we should attempt to schedule an event group based on
1697 * PMU-specific filtering. An event group can consist of HW and SW events,
1698 * potentially with a SW leader, so we must check all the filters, to
1699 * determine whether a group is schedulable:
1701 static inline int pmu_filter_match(struct perf_event *event)
1703 struct perf_event *child;
1705 if (!__pmu_filter_match(event))
1708 list_for_each_entry(child, &event->sibling_list, group_entry) {
1709 if (!__pmu_filter_match(child))
1717 event_filter_match(struct perf_event *event)
1719 return (event->cpu == -1 || event->cpu == smp_processor_id())
1720 && perf_cgroup_match(event) && pmu_filter_match(event);
1724 event_sched_out(struct perf_event *event,
1725 struct perf_cpu_context *cpuctx,
1726 struct perf_event_context *ctx)
1728 u64 tstamp = perf_event_time(event);
1731 WARN_ON_ONCE(event->ctx != ctx);
1732 lockdep_assert_held(&ctx->lock);
1735 * An event which could not be activated because of
1736 * filter mismatch still needs to have its timings
1737 * maintained, otherwise bogus information is return
1738 * via read() for time_enabled, time_running:
1740 if (event->state == PERF_EVENT_STATE_INACTIVE
1741 && !event_filter_match(event)) {
1742 delta = tstamp - event->tstamp_stopped;
1743 event->tstamp_running += delta;
1744 event->tstamp_stopped = tstamp;
1747 if (event->state != PERF_EVENT_STATE_ACTIVE)
1750 perf_pmu_disable(event->pmu);
1752 event->tstamp_stopped = tstamp;
1753 event->pmu->del(event, 0);
1755 event->state = PERF_EVENT_STATE_INACTIVE;
1756 if (event->pending_disable) {
1757 event->pending_disable = 0;
1758 event->state = PERF_EVENT_STATE_OFF;
1761 if (!is_software_event(event))
1762 cpuctx->active_oncpu--;
1763 if (!--ctx->nr_active)
1764 perf_event_ctx_deactivate(ctx);
1765 if (event->attr.freq && event->attr.sample_freq)
1767 if (event->attr.exclusive || !cpuctx->active_oncpu)
1768 cpuctx->exclusive = 0;
1770 perf_pmu_enable(event->pmu);
1774 group_sched_out(struct perf_event *group_event,
1775 struct perf_cpu_context *cpuctx,
1776 struct perf_event_context *ctx)
1778 struct perf_event *event;
1779 int state = group_event->state;
1781 event_sched_out(group_event, cpuctx, ctx);
1784 * Schedule out siblings (if any):
1786 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1787 event_sched_out(event, cpuctx, ctx);
1789 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1790 cpuctx->exclusive = 0;
1793 #define DETACH_GROUP 0x01UL
1796 * Cross CPU call to remove a performance event
1798 * We disable the event on the hardware level first. After that we
1799 * remove it from the context list.
1802 __perf_remove_from_context(struct perf_event *event,
1803 struct perf_cpu_context *cpuctx,
1804 struct perf_event_context *ctx,
1807 unsigned long flags = (unsigned long)info;
1809 event_sched_out(event, cpuctx, ctx);
1810 if (flags & DETACH_GROUP)
1811 perf_group_detach(event);
1812 list_del_event(event, ctx);
1814 if (!ctx->nr_events && ctx->is_active) {
1817 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1818 cpuctx->task_ctx = NULL;
1824 * Remove the event from a task's (or a CPU's) list of events.
1826 * If event->ctx is a cloned context, callers must make sure that
1827 * every task struct that event->ctx->task could possibly point to
1828 * remains valid. This is OK when called from perf_release since
1829 * that only calls us on the top-level context, which can't be a clone.
1830 * When called from perf_event_exit_task, it's OK because the
1831 * context has been detached from its task.
1833 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1835 lockdep_assert_held(&event->ctx->mutex);
1837 event_function_call(event, __perf_remove_from_context, (void *)flags);
1841 * Cross CPU call to disable a performance event
1843 static void __perf_event_disable(struct perf_event *event,
1844 struct perf_cpu_context *cpuctx,
1845 struct perf_event_context *ctx,
1848 if (event->state < PERF_EVENT_STATE_INACTIVE)
1851 update_context_time(ctx);
1852 update_cgrp_time_from_event(event);
1853 update_group_times(event);
1854 if (event == event->group_leader)
1855 group_sched_out(event, cpuctx, ctx);
1857 event_sched_out(event, cpuctx, ctx);
1858 event->state = PERF_EVENT_STATE_OFF;
1864 * If event->ctx is a cloned context, callers must make sure that
1865 * every task struct that event->ctx->task could possibly point to
1866 * remains valid. This condition is satisifed when called through
1867 * perf_event_for_each_child or perf_event_for_each because they
1868 * hold the top-level event's child_mutex, so any descendant that
1869 * goes to exit will block in perf_event_exit_event().
1871 * When called from perf_pending_event it's OK because event->ctx
1872 * is the current context on this CPU and preemption is disabled,
1873 * hence we can't get into perf_event_task_sched_out for this context.
1875 static void _perf_event_disable(struct perf_event *event)
1877 struct perf_event_context *ctx = event->ctx;
1879 raw_spin_lock_irq(&ctx->lock);
1880 if (event->state <= PERF_EVENT_STATE_OFF) {
1881 raw_spin_unlock_irq(&ctx->lock);
1884 raw_spin_unlock_irq(&ctx->lock);
1886 event_function_call(event, __perf_event_disable, NULL);
1889 void perf_event_disable_local(struct perf_event *event)
1891 event_function_local(event, __perf_event_disable, NULL);
1895 * Strictly speaking kernel users cannot create groups and therefore this
1896 * interface does not need the perf_event_ctx_lock() magic.
1898 void perf_event_disable(struct perf_event *event)
1900 struct perf_event_context *ctx;
1902 ctx = perf_event_ctx_lock(event);
1903 _perf_event_disable(event);
1904 perf_event_ctx_unlock(event, ctx);
1906 EXPORT_SYMBOL_GPL(perf_event_disable);
1908 static void perf_set_shadow_time(struct perf_event *event,
1909 struct perf_event_context *ctx,
1913 * use the correct time source for the time snapshot
1915 * We could get by without this by leveraging the
1916 * fact that to get to this function, the caller
1917 * has most likely already called update_context_time()
1918 * and update_cgrp_time_xx() and thus both timestamp
1919 * are identical (or very close). Given that tstamp is,
1920 * already adjusted for cgroup, we could say that:
1921 * tstamp - ctx->timestamp
1923 * tstamp - cgrp->timestamp.
1925 * Then, in perf_output_read(), the calculation would
1926 * work with no changes because:
1927 * - event is guaranteed scheduled in
1928 * - no scheduled out in between
1929 * - thus the timestamp would be the same
1931 * But this is a bit hairy.
1933 * So instead, we have an explicit cgroup call to remain
1934 * within the time time source all along. We believe it
1935 * is cleaner and simpler to understand.
1937 if (is_cgroup_event(event))
1938 perf_cgroup_set_shadow_time(event, tstamp);
1940 event->shadow_ctx_time = tstamp - ctx->timestamp;
1943 #define MAX_INTERRUPTS (~0ULL)
1945 static void perf_log_throttle(struct perf_event *event, int enable);
1946 static void perf_log_itrace_start(struct perf_event *event);
1949 event_sched_in(struct perf_event *event,
1950 struct perf_cpu_context *cpuctx,
1951 struct perf_event_context *ctx)
1953 u64 tstamp = perf_event_time(event);
1956 lockdep_assert_held(&ctx->lock);
1958 if (event->state <= PERF_EVENT_STATE_OFF)
1961 WRITE_ONCE(event->oncpu, smp_processor_id());
1963 * Order event::oncpu write to happen before the ACTIVE state
1967 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1970 * Unthrottle events, since we scheduled we might have missed several
1971 * ticks already, also for a heavily scheduling task there is little
1972 * guarantee it'll get a tick in a timely manner.
1974 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1975 perf_log_throttle(event, 1);
1976 event->hw.interrupts = 0;
1980 * The new state must be visible before we turn it on in the hardware:
1984 perf_pmu_disable(event->pmu);
1986 perf_set_shadow_time(event, ctx, tstamp);
1988 perf_log_itrace_start(event);
1990 if (event->pmu->add(event, PERF_EF_START)) {
1991 event->state = PERF_EVENT_STATE_INACTIVE;
1997 event->tstamp_running += tstamp - event->tstamp_stopped;
1999 if (!is_software_event(event))
2000 cpuctx->active_oncpu++;
2001 if (!ctx->nr_active++)
2002 perf_event_ctx_activate(ctx);
2003 if (event->attr.freq && event->attr.sample_freq)
2006 if (event->attr.exclusive)
2007 cpuctx->exclusive = 1;
2010 perf_pmu_enable(event->pmu);
2016 group_sched_in(struct perf_event *group_event,
2017 struct perf_cpu_context *cpuctx,
2018 struct perf_event_context *ctx)
2020 struct perf_event *event, *partial_group = NULL;
2021 struct pmu *pmu = ctx->pmu;
2022 u64 now = ctx->time;
2023 bool simulate = false;
2025 if (group_event->state == PERF_EVENT_STATE_OFF)
2028 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2030 if (event_sched_in(group_event, cpuctx, ctx)) {
2031 pmu->cancel_txn(pmu);
2032 perf_mux_hrtimer_restart(cpuctx);
2037 * Schedule in siblings as one group (if any):
2039 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2040 if (event_sched_in(event, cpuctx, ctx)) {
2041 partial_group = event;
2046 if (!pmu->commit_txn(pmu))
2051 * Groups can be scheduled in as one unit only, so undo any
2052 * partial group before returning:
2053 * The events up to the failed event are scheduled out normally,
2054 * tstamp_stopped will be updated.
2056 * The failed events and the remaining siblings need to have
2057 * their timings updated as if they had gone thru event_sched_in()
2058 * and event_sched_out(). This is required to get consistent timings
2059 * across the group. This also takes care of the case where the group
2060 * could never be scheduled by ensuring tstamp_stopped is set to mark
2061 * the time the event was actually stopped, such that time delta
2062 * calculation in update_event_times() is correct.
2064 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2065 if (event == partial_group)
2069 event->tstamp_running += now - event->tstamp_stopped;
2070 event->tstamp_stopped = now;
2072 event_sched_out(event, cpuctx, ctx);
2075 event_sched_out(group_event, cpuctx, ctx);
2077 pmu->cancel_txn(pmu);
2079 perf_mux_hrtimer_restart(cpuctx);
2085 * Work out whether we can put this event group on the CPU now.
2087 static int group_can_go_on(struct perf_event *event,
2088 struct perf_cpu_context *cpuctx,
2092 * Groups consisting entirely of software events can always go on.
2094 if (event->group_flags & PERF_GROUP_SOFTWARE)
2097 * If an exclusive group is already on, no other hardware
2100 if (cpuctx->exclusive)
2103 * If this group is exclusive and there are already
2104 * events on the CPU, it can't go on.
2106 if (event->attr.exclusive && cpuctx->active_oncpu)
2109 * Otherwise, try to add it if all previous groups were able
2115 static void add_event_to_ctx(struct perf_event *event,
2116 struct perf_event_context *ctx)
2118 u64 tstamp = perf_event_time(event);
2120 list_add_event(event, ctx);
2121 perf_group_attach(event);
2122 event->tstamp_enabled = tstamp;
2123 event->tstamp_running = tstamp;
2124 event->tstamp_stopped = tstamp;
2127 static void ctx_sched_out(struct perf_event_context *ctx,
2128 struct perf_cpu_context *cpuctx,
2129 enum event_type_t event_type);
2131 ctx_sched_in(struct perf_event_context *ctx,
2132 struct perf_cpu_context *cpuctx,
2133 enum event_type_t event_type,
2134 struct task_struct *task);
2136 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2137 struct perf_event_context *ctx)
2139 if (!cpuctx->task_ctx)
2142 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2145 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2148 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2149 struct perf_event_context *ctx,
2150 struct task_struct *task)
2152 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2154 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2155 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2157 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2160 static void ctx_resched(struct perf_cpu_context *cpuctx,
2161 struct perf_event_context *task_ctx)
2163 perf_pmu_disable(cpuctx->ctx.pmu);
2165 task_ctx_sched_out(cpuctx, task_ctx);
2166 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2167 perf_event_sched_in(cpuctx, task_ctx, current);
2168 perf_pmu_enable(cpuctx->ctx.pmu);
2172 * Cross CPU call to install and enable a performance event
2174 * Very similar to remote_function() + event_function() but cannot assume that
2175 * things like ctx->is_active and cpuctx->task_ctx are set.
2177 static int __perf_install_in_context(void *info)
2179 struct perf_event *event = info;
2180 struct perf_event_context *ctx = event->ctx;
2181 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2182 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2183 bool activate = true;
2186 raw_spin_lock(&cpuctx->ctx.lock);
2188 raw_spin_lock(&ctx->lock);
2191 /* If we're on the wrong CPU, try again */
2192 if (task_cpu(ctx->task) != smp_processor_id()) {
2198 * If we're on the right CPU, see if the task we target is
2199 * current, if not we don't have to activate the ctx, a future
2200 * context switch will do that for us.
2202 if (ctx->task != current)
2205 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2207 } else if (task_ctx) {
2208 raw_spin_lock(&task_ctx->lock);
2212 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2213 add_event_to_ctx(event, ctx);
2214 ctx_resched(cpuctx, task_ctx);
2216 add_event_to_ctx(event, ctx);
2220 perf_ctx_unlock(cpuctx, task_ctx);
2226 * Attach a performance event to a context.
2228 * Very similar to event_function_call, see comment there.
2231 perf_install_in_context(struct perf_event_context *ctx,
2232 struct perf_event *event,
2235 struct task_struct *task = READ_ONCE(ctx->task);
2237 lockdep_assert_held(&ctx->mutex);
2240 if (event->cpu != -1)
2244 cpu_function_call(cpu, __perf_install_in_context, event);
2249 * Should not happen, we validate the ctx is still alive before calling.
2251 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2255 * Installing events is tricky because we cannot rely on ctx->is_active
2256 * to be set in case this is the nr_events 0 -> 1 transition.
2260 * Cannot use task_function_call() because we need to run on the task's
2261 * CPU regardless of whether its current or not.
2263 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2266 raw_spin_lock_irq(&ctx->lock);
2268 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2270 * Cannot happen because we already checked above (which also
2271 * cannot happen), and we hold ctx->mutex, which serializes us
2272 * against perf_event_exit_task_context().
2274 raw_spin_unlock_irq(&ctx->lock);
2277 raw_spin_unlock_irq(&ctx->lock);
2279 * Since !ctx->is_active doesn't mean anything, we must IPI
2286 * Put a event into inactive state and update time fields.
2287 * Enabling the leader of a group effectively enables all
2288 * the group members that aren't explicitly disabled, so we
2289 * have to update their ->tstamp_enabled also.
2290 * Note: this works for group members as well as group leaders
2291 * since the non-leader members' sibling_lists will be empty.
2293 static void __perf_event_mark_enabled(struct perf_event *event)
2295 struct perf_event *sub;
2296 u64 tstamp = perf_event_time(event);
2298 event->state = PERF_EVENT_STATE_INACTIVE;
2299 event->tstamp_enabled = tstamp - event->total_time_enabled;
2300 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2301 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2302 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2307 * Cross CPU call to enable a performance event
2309 static void __perf_event_enable(struct perf_event *event,
2310 struct perf_cpu_context *cpuctx,
2311 struct perf_event_context *ctx,
2314 struct perf_event *leader = event->group_leader;
2315 struct perf_event_context *task_ctx;
2317 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2318 event->state <= PERF_EVENT_STATE_ERROR)
2322 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2324 __perf_event_mark_enabled(event);
2326 if (!ctx->is_active)
2329 if (!event_filter_match(event)) {
2330 if (is_cgroup_event(event))
2331 perf_cgroup_defer_enabled(event);
2332 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2337 * If the event is in a group and isn't the group leader,
2338 * then don't put it on unless the group is on.
2340 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2341 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2345 task_ctx = cpuctx->task_ctx;
2347 WARN_ON_ONCE(task_ctx != ctx);
2349 ctx_resched(cpuctx, task_ctx);
2355 * If event->ctx is a cloned context, callers must make sure that
2356 * every task struct that event->ctx->task could possibly point to
2357 * remains valid. This condition is satisfied when called through
2358 * perf_event_for_each_child or perf_event_for_each as described
2359 * for perf_event_disable.
2361 static void _perf_event_enable(struct perf_event *event)
2363 struct perf_event_context *ctx = event->ctx;
2365 raw_spin_lock_irq(&ctx->lock);
2366 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2367 event->state < PERF_EVENT_STATE_ERROR) {
2368 raw_spin_unlock_irq(&ctx->lock);
2373 * If the event is in error state, clear that first.
2375 * That way, if we see the event in error state below, we know that it
2376 * has gone back into error state, as distinct from the task having
2377 * been scheduled away before the cross-call arrived.
2379 if (event->state == PERF_EVENT_STATE_ERROR)
2380 event->state = PERF_EVENT_STATE_OFF;
2381 raw_spin_unlock_irq(&ctx->lock);
2383 event_function_call(event, __perf_event_enable, NULL);
2387 * See perf_event_disable();
2389 void perf_event_enable(struct perf_event *event)
2391 struct perf_event_context *ctx;
2393 ctx = perf_event_ctx_lock(event);
2394 _perf_event_enable(event);
2395 perf_event_ctx_unlock(event, ctx);
2397 EXPORT_SYMBOL_GPL(perf_event_enable);
2399 struct stop_event_data {
2400 struct perf_event *event;
2401 unsigned int restart;
2404 static int __perf_event_stop(void *info)
2406 struct stop_event_data *sd = info;
2407 struct perf_event *event = sd->event;
2409 /* if it's already INACTIVE, do nothing */
2410 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2413 /* matches smp_wmb() in event_sched_in() */
2417 * There is a window with interrupts enabled before we get here,
2418 * so we need to check again lest we try to stop another CPU's event.
2420 if (READ_ONCE(event->oncpu) != smp_processor_id())
2423 event->pmu->stop(event, PERF_EF_UPDATE);
2426 * May race with the actual stop (through perf_pmu_output_stop()),
2427 * but it is only used for events with AUX ring buffer, and such
2428 * events will refuse to restart because of rb::aux_mmap_count==0,
2429 * see comments in perf_aux_output_begin().
2431 * Since this is happening on a event-local CPU, no trace is lost
2435 event->pmu->start(event, PERF_EF_START);
2440 static int perf_event_restart(struct perf_event *event)
2442 struct stop_event_data sd = {
2449 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2452 /* matches smp_wmb() in event_sched_in() */
2456 * We only want to restart ACTIVE events, so if the event goes
2457 * inactive here (event->oncpu==-1), there's nothing more to do;
2458 * fall through with ret==-ENXIO.
2460 ret = cpu_function_call(READ_ONCE(event->oncpu),
2461 __perf_event_stop, &sd);
2462 } while (ret == -EAGAIN);
2468 * In order to contain the amount of racy and tricky in the address filter
2469 * configuration management, it is a two part process:
2471 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2472 * we update the addresses of corresponding vmas in
2473 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2474 * (p2) when an event is scheduled in (pmu::add), it calls
2475 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2476 * if the generation has changed since the previous call.
2478 * If (p1) happens while the event is active, we restart it to force (p2).
2480 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2481 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2483 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2484 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2486 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2489 void perf_event_addr_filters_sync(struct perf_event *event)
2491 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2493 if (!has_addr_filter(event))
2496 raw_spin_lock(&ifh->lock);
2497 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2498 event->pmu->addr_filters_sync(event);
2499 event->hw.addr_filters_gen = event->addr_filters_gen;
2501 raw_spin_unlock(&ifh->lock);
2503 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2505 static int _perf_event_refresh(struct perf_event *event, int refresh)
2508 * not supported on inherited events
2510 if (event->attr.inherit || !is_sampling_event(event))
2513 atomic_add(refresh, &event->event_limit);
2514 _perf_event_enable(event);
2520 * See perf_event_disable()
2522 int perf_event_refresh(struct perf_event *event, int refresh)
2524 struct perf_event_context *ctx;
2527 ctx = perf_event_ctx_lock(event);
2528 ret = _perf_event_refresh(event, refresh);
2529 perf_event_ctx_unlock(event, ctx);
2533 EXPORT_SYMBOL_GPL(perf_event_refresh);
2535 static void ctx_sched_out(struct perf_event_context *ctx,
2536 struct perf_cpu_context *cpuctx,
2537 enum event_type_t event_type)
2539 int is_active = ctx->is_active;
2540 struct perf_event *event;
2542 lockdep_assert_held(&ctx->lock);
2544 if (likely(!ctx->nr_events)) {
2546 * See __perf_remove_from_context().
2548 WARN_ON_ONCE(ctx->is_active);
2550 WARN_ON_ONCE(cpuctx->task_ctx);
2554 ctx->is_active &= ~event_type;
2555 if (!(ctx->is_active & EVENT_ALL))
2559 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2560 if (!ctx->is_active)
2561 cpuctx->task_ctx = NULL;
2565 * Always update time if it was set; not only when it changes.
2566 * Otherwise we can 'forget' to update time for any but the last
2567 * context we sched out. For example:
2569 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2570 * ctx_sched_out(.event_type = EVENT_PINNED)
2572 * would only update time for the pinned events.
2574 if (is_active & EVENT_TIME) {
2575 /* update (and stop) ctx time */
2576 update_context_time(ctx);
2577 update_cgrp_time_from_cpuctx(cpuctx);
2580 is_active ^= ctx->is_active; /* changed bits */
2582 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2585 perf_pmu_disable(ctx->pmu);
2586 if (is_active & EVENT_PINNED) {
2587 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2588 group_sched_out(event, cpuctx, ctx);
2591 if (is_active & EVENT_FLEXIBLE) {
2592 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2593 group_sched_out(event, cpuctx, ctx);
2595 perf_pmu_enable(ctx->pmu);
2599 * Test whether two contexts are equivalent, i.e. whether they have both been
2600 * cloned from the same version of the same context.
2602 * Equivalence is measured using a generation number in the context that is
2603 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2604 * and list_del_event().
2606 static int context_equiv(struct perf_event_context *ctx1,
2607 struct perf_event_context *ctx2)
2609 lockdep_assert_held(&ctx1->lock);
2610 lockdep_assert_held(&ctx2->lock);
2612 /* Pinning disables the swap optimization */
2613 if (ctx1->pin_count || ctx2->pin_count)
2616 /* If ctx1 is the parent of ctx2 */
2617 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2620 /* If ctx2 is the parent of ctx1 */
2621 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2625 * If ctx1 and ctx2 have the same parent; we flatten the parent
2626 * hierarchy, see perf_event_init_context().
2628 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2629 ctx1->parent_gen == ctx2->parent_gen)
2636 static void __perf_event_sync_stat(struct perf_event *event,
2637 struct perf_event *next_event)
2641 if (!event->attr.inherit_stat)
2645 * Update the event value, we cannot use perf_event_read()
2646 * because we're in the middle of a context switch and have IRQs
2647 * disabled, which upsets smp_call_function_single(), however
2648 * we know the event must be on the current CPU, therefore we
2649 * don't need to use it.
2651 switch (event->state) {
2652 case PERF_EVENT_STATE_ACTIVE:
2653 event->pmu->read(event);
2656 case PERF_EVENT_STATE_INACTIVE:
2657 update_event_times(event);
2665 * In order to keep per-task stats reliable we need to flip the event
2666 * values when we flip the contexts.
2668 value = local64_read(&next_event->count);
2669 value = local64_xchg(&event->count, value);
2670 local64_set(&next_event->count, value);
2672 swap(event->total_time_enabled, next_event->total_time_enabled);
2673 swap(event->total_time_running, next_event->total_time_running);
2676 * Since we swizzled the values, update the user visible data too.
2678 perf_event_update_userpage(event);
2679 perf_event_update_userpage(next_event);
2682 static void perf_event_sync_stat(struct perf_event_context *ctx,
2683 struct perf_event_context *next_ctx)
2685 struct perf_event *event, *next_event;
2690 update_context_time(ctx);
2692 event = list_first_entry(&ctx->event_list,
2693 struct perf_event, event_entry);
2695 next_event = list_first_entry(&next_ctx->event_list,
2696 struct perf_event, event_entry);
2698 while (&event->event_entry != &ctx->event_list &&
2699 &next_event->event_entry != &next_ctx->event_list) {
2701 __perf_event_sync_stat(event, next_event);
2703 event = list_next_entry(event, event_entry);
2704 next_event = list_next_entry(next_event, event_entry);
2708 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2709 struct task_struct *next)
2711 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2712 struct perf_event_context *next_ctx;
2713 struct perf_event_context *parent, *next_parent;
2714 struct perf_cpu_context *cpuctx;
2720 cpuctx = __get_cpu_context(ctx);
2721 if (!cpuctx->task_ctx)
2725 next_ctx = next->perf_event_ctxp[ctxn];
2729 parent = rcu_dereference(ctx->parent_ctx);
2730 next_parent = rcu_dereference(next_ctx->parent_ctx);
2732 /* If neither context have a parent context; they cannot be clones. */
2733 if (!parent && !next_parent)
2736 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2738 * Looks like the two contexts are clones, so we might be
2739 * able to optimize the context switch. We lock both
2740 * contexts and check that they are clones under the
2741 * lock (including re-checking that neither has been
2742 * uncloned in the meantime). It doesn't matter which
2743 * order we take the locks because no other cpu could
2744 * be trying to lock both of these tasks.
2746 raw_spin_lock(&ctx->lock);
2747 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2748 if (context_equiv(ctx, next_ctx)) {
2749 WRITE_ONCE(ctx->task, next);
2750 WRITE_ONCE(next_ctx->task, task);
2752 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2755 * RCU_INIT_POINTER here is safe because we've not
2756 * modified the ctx and the above modification of
2757 * ctx->task and ctx->task_ctx_data are immaterial
2758 * since those values are always verified under
2759 * ctx->lock which we're now holding.
2761 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2762 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2766 perf_event_sync_stat(ctx, next_ctx);
2768 raw_spin_unlock(&next_ctx->lock);
2769 raw_spin_unlock(&ctx->lock);
2775 raw_spin_lock(&ctx->lock);
2776 task_ctx_sched_out(cpuctx, ctx);
2777 raw_spin_unlock(&ctx->lock);
2781 void perf_sched_cb_dec(struct pmu *pmu)
2783 this_cpu_dec(perf_sched_cb_usages);
2786 void perf_sched_cb_inc(struct pmu *pmu)
2788 this_cpu_inc(perf_sched_cb_usages);
2792 * This function provides the context switch callback to the lower code
2793 * layer. It is invoked ONLY when the context switch callback is enabled.
2795 static void perf_pmu_sched_task(struct task_struct *prev,
2796 struct task_struct *next,
2799 struct perf_cpu_context *cpuctx;
2801 unsigned long flags;
2806 local_irq_save(flags);
2810 list_for_each_entry_rcu(pmu, &pmus, entry) {
2811 if (pmu->sched_task) {
2812 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2814 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2816 perf_pmu_disable(pmu);
2818 pmu->sched_task(cpuctx->task_ctx, sched_in);
2820 perf_pmu_enable(pmu);
2822 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2828 local_irq_restore(flags);
2831 static void perf_event_switch(struct task_struct *task,
2832 struct task_struct *next_prev, bool sched_in);
2834 #define for_each_task_context_nr(ctxn) \
2835 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2838 * Called from scheduler to remove the events of the current task,
2839 * with interrupts disabled.
2841 * We stop each event and update the event value in event->count.
2843 * This does not protect us against NMI, but disable()
2844 * sets the disabled bit in the control field of event _before_
2845 * accessing the event control register. If a NMI hits, then it will
2846 * not restart the event.
2848 void __perf_event_task_sched_out(struct task_struct *task,
2849 struct task_struct *next)
2853 if (__this_cpu_read(perf_sched_cb_usages))
2854 perf_pmu_sched_task(task, next, false);
2856 if (atomic_read(&nr_switch_events))
2857 perf_event_switch(task, next, false);
2859 for_each_task_context_nr(ctxn)
2860 perf_event_context_sched_out(task, ctxn, next);
2863 * if cgroup events exist on this CPU, then we need
2864 * to check if we have to switch out PMU state.
2865 * cgroup event are system-wide mode only
2867 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2868 perf_cgroup_sched_out(task, next);
2872 * Called with IRQs disabled
2874 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2875 enum event_type_t event_type)
2877 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2881 ctx_pinned_sched_in(struct perf_event_context *ctx,
2882 struct perf_cpu_context *cpuctx)
2884 struct perf_event *event;
2886 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2887 if (event->state <= PERF_EVENT_STATE_OFF)
2889 if (!event_filter_match(event))
2892 /* may need to reset tstamp_enabled */
2893 if (is_cgroup_event(event))
2894 perf_cgroup_mark_enabled(event, ctx);
2896 if (group_can_go_on(event, cpuctx, 1))
2897 group_sched_in(event, cpuctx, ctx);
2900 * If this pinned group hasn't been scheduled,
2901 * put it in error state.
2903 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2904 update_group_times(event);
2905 event->state = PERF_EVENT_STATE_ERROR;
2911 ctx_flexible_sched_in(struct perf_event_context *ctx,
2912 struct perf_cpu_context *cpuctx)
2914 struct perf_event *event;
2917 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2918 /* Ignore events in OFF or ERROR state */
2919 if (event->state <= PERF_EVENT_STATE_OFF)
2922 * Listen to the 'cpu' scheduling filter constraint
2925 if (!event_filter_match(event))
2928 /* may need to reset tstamp_enabled */
2929 if (is_cgroup_event(event))
2930 perf_cgroup_mark_enabled(event, ctx);
2932 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2933 if (group_sched_in(event, cpuctx, ctx))
2940 ctx_sched_in(struct perf_event_context *ctx,
2941 struct perf_cpu_context *cpuctx,
2942 enum event_type_t event_type,
2943 struct task_struct *task)
2945 int is_active = ctx->is_active;
2948 lockdep_assert_held(&ctx->lock);
2950 if (likely(!ctx->nr_events))
2953 ctx->is_active |= (event_type | EVENT_TIME);
2956 cpuctx->task_ctx = ctx;
2958 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2961 is_active ^= ctx->is_active; /* changed bits */
2963 if (is_active & EVENT_TIME) {
2964 /* start ctx time */
2966 ctx->timestamp = now;
2967 perf_cgroup_set_timestamp(task, ctx);
2971 * First go through the list and put on any pinned groups
2972 * in order to give them the best chance of going on.
2974 if (is_active & EVENT_PINNED)
2975 ctx_pinned_sched_in(ctx, cpuctx);
2977 /* Then walk through the lower prio flexible groups */
2978 if (is_active & EVENT_FLEXIBLE)
2979 ctx_flexible_sched_in(ctx, cpuctx);
2982 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2983 enum event_type_t event_type,
2984 struct task_struct *task)
2986 struct perf_event_context *ctx = &cpuctx->ctx;
2988 ctx_sched_in(ctx, cpuctx, event_type, task);
2991 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2992 struct task_struct *task)
2994 struct perf_cpu_context *cpuctx;
2996 cpuctx = __get_cpu_context(ctx);
2997 if (cpuctx->task_ctx == ctx)
3000 perf_ctx_lock(cpuctx, ctx);
3001 perf_pmu_disable(ctx->pmu);
3003 * We want to keep the following priority order:
3004 * cpu pinned (that don't need to move), task pinned,
3005 * cpu flexible, task flexible.
3007 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3008 perf_event_sched_in(cpuctx, ctx, task);
3009 perf_pmu_enable(ctx->pmu);
3010 perf_ctx_unlock(cpuctx, ctx);
3014 * Called from scheduler to add the events of the current task
3015 * with interrupts disabled.
3017 * We restore the event value and then enable it.
3019 * This does not protect us against NMI, but enable()
3020 * sets the enabled bit in the control field of event _before_
3021 * accessing the event control register. If a NMI hits, then it will
3022 * keep the event running.
3024 void __perf_event_task_sched_in(struct task_struct *prev,
3025 struct task_struct *task)
3027 struct perf_event_context *ctx;
3031 * If cgroup events exist on this CPU, then we need to check if we have
3032 * to switch in PMU state; cgroup event are system-wide mode only.
3034 * Since cgroup events are CPU events, we must schedule these in before
3035 * we schedule in the task events.
3037 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3038 perf_cgroup_sched_in(prev, task);
3040 for_each_task_context_nr(ctxn) {
3041 ctx = task->perf_event_ctxp[ctxn];
3045 perf_event_context_sched_in(ctx, task);
3048 if (atomic_read(&nr_switch_events))
3049 perf_event_switch(task, prev, true);
3051 if (__this_cpu_read(perf_sched_cb_usages))
3052 perf_pmu_sched_task(prev, task, true);
3055 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3057 u64 frequency = event->attr.sample_freq;
3058 u64 sec = NSEC_PER_SEC;
3059 u64 divisor, dividend;
3061 int count_fls, nsec_fls, frequency_fls, sec_fls;
3063 count_fls = fls64(count);
3064 nsec_fls = fls64(nsec);
3065 frequency_fls = fls64(frequency);
3069 * We got @count in @nsec, with a target of sample_freq HZ
3070 * the target period becomes:
3073 * period = -------------------
3074 * @nsec * sample_freq
3079 * Reduce accuracy by one bit such that @a and @b converge
3080 * to a similar magnitude.
3082 #define REDUCE_FLS(a, b) \
3084 if (a##_fls > b##_fls) { \
3094 * Reduce accuracy until either term fits in a u64, then proceed with
3095 * the other, so that finally we can do a u64/u64 division.
3097 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3098 REDUCE_FLS(nsec, frequency);
3099 REDUCE_FLS(sec, count);
3102 if (count_fls + sec_fls > 64) {
3103 divisor = nsec * frequency;
3105 while (count_fls + sec_fls > 64) {
3106 REDUCE_FLS(count, sec);
3110 dividend = count * sec;
3112 dividend = count * sec;
3114 while (nsec_fls + frequency_fls > 64) {
3115 REDUCE_FLS(nsec, frequency);
3119 divisor = nsec * frequency;
3125 return div64_u64(dividend, divisor);
3128 static DEFINE_PER_CPU(int, perf_throttled_count);
3129 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3131 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3133 struct hw_perf_event *hwc = &event->hw;
3134 s64 period, sample_period;
3137 period = perf_calculate_period(event, nsec, count);
3139 delta = (s64)(period - hwc->sample_period);
3140 delta = (delta + 7) / 8; /* low pass filter */
3142 sample_period = hwc->sample_period + delta;
3147 hwc->sample_period = sample_period;
3149 if (local64_read(&hwc->period_left) > 8*sample_period) {
3151 event->pmu->stop(event, PERF_EF_UPDATE);
3153 local64_set(&hwc->period_left, 0);
3156 event->pmu->start(event, PERF_EF_RELOAD);
3161 * combine freq adjustment with unthrottling to avoid two passes over the
3162 * events. At the same time, make sure, having freq events does not change
3163 * the rate of unthrottling as that would introduce bias.
3165 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3168 struct perf_event *event;
3169 struct hw_perf_event *hwc;
3170 u64 now, period = TICK_NSEC;
3174 * only need to iterate over all events iff:
3175 * - context have events in frequency mode (needs freq adjust)
3176 * - there are events to unthrottle on this cpu
3178 if (!(ctx->nr_freq || needs_unthr))
3181 raw_spin_lock(&ctx->lock);
3182 perf_pmu_disable(ctx->pmu);
3184 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3185 if (event->state != PERF_EVENT_STATE_ACTIVE)
3188 if (!event_filter_match(event))
3191 perf_pmu_disable(event->pmu);
3195 if (hwc->interrupts == MAX_INTERRUPTS) {
3196 hwc->interrupts = 0;
3197 perf_log_throttle(event, 1);
3198 event->pmu->start(event, 0);
3201 if (!event->attr.freq || !event->attr.sample_freq)
3205 * stop the event and update event->count
3207 event->pmu->stop(event, PERF_EF_UPDATE);
3209 now = local64_read(&event->count);
3210 delta = now - hwc->freq_count_stamp;
3211 hwc->freq_count_stamp = now;
3215 * reload only if value has changed
3216 * we have stopped the event so tell that
3217 * to perf_adjust_period() to avoid stopping it
3221 perf_adjust_period(event, period, delta, false);
3223 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3225 perf_pmu_enable(event->pmu);
3228 perf_pmu_enable(ctx->pmu);
3229 raw_spin_unlock(&ctx->lock);
3233 * Round-robin a context's events:
3235 static void rotate_ctx(struct perf_event_context *ctx)
3238 * Rotate the first entry last of non-pinned groups. Rotation might be
3239 * disabled by the inheritance code.
3241 if (!ctx->rotate_disable)
3242 list_rotate_left(&ctx->flexible_groups);
3245 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3247 struct perf_event_context *ctx = NULL;
3250 if (cpuctx->ctx.nr_events) {
3251 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3255 ctx = cpuctx->task_ctx;
3256 if (ctx && ctx->nr_events) {
3257 if (ctx->nr_events != ctx->nr_active)
3264 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3265 perf_pmu_disable(cpuctx->ctx.pmu);
3267 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3269 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3271 rotate_ctx(&cpuctx->ctx);
3275 perf_event_sched_in(cpuctx, ctx, current);
3277 perf_pmu_enable(cpuctx->ctx.pmu);
3278 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3284 void perf_event_task_tick(void)
3286 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3287 struct perf_event_context *ctx, *tmp;
3290 WARN_ON(!irqs_disabled());
3292 __this_cpu_inc(perf_throttled_seq);
3293 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3294 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3296 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3297 perf_adjust_freq_unthr_context(ctx, throttled);
3300 static int event_enable_on_exec(struct perf_event *event,
3301 struct perf_event_context *ctx)
3303 if (!event->attr.enable_on_exec)
3306 event->attr.enable_on_exec = 0;
3307 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3310 __perf_event_mark_enabled(event);
3316 * Enable all of a task's events that have been marked enable-on-exec.
3317 * This expects task == current.
3319 static void perf_event_enable_on_exec(int ctxn)
3321 struct perf_event_context *ctx, *clone_ctx = NULL;
3322 struct perf_cpu_context *cpuctx;
3323 struct perf_event *event;
3324 unsigned long flags;
3327 local_irq_save(flags);
3328 ctx = current->perf_event_ctxp[ctxn];
3329 if (!ctx || !ctx->nr_events)
3332 cpuctx = __get_cpu_context(ctx);
3333 perf_ctx_lock(cpuctx, ctx);
3334 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3335 list_for_each_entry(event, &ctx->event_list, event_entry)
3336 enabled |= event_enable_on_exec(event, ctx);
3339 * Unclone and reschedule this context if we enabled any event.
3342 clone_ctx = unclone_ctx(ctx);
3343 ctx_resched(cpuctx, ctx);
3345 perf_ctx_unlock(cpuctx, ctx);
3348 local_irq_restore(flags);
3354 struct perf_read_data {
3355 struct perf_event *event;
3361 * Cross CPU call to read the hardware event
3363 static void __perf_event_read(void *info)
3365 struct perf_read_data *data = info;
3366 struct perf_event *sub, *event = data->event;
3367 struct perf_event_context *ctx = event->ctx;
3368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3369 struct pmu *pmu = event->pmu;
3372 * If this is a task context, we need to check whether it is
3373 * the current task context of this cpu. If not it has been
3374 * scheduled out before the smp call arrived. In that case
3375 * event->count would have been updated to a recent sample
3376 * when the event was scheduled out.
3378 if (ctx->task && cpuctx->task_ctx != ctx)
3381 raw_spin_lock(&ctx->lock);
3382 if (ctx->is_active) {
3383 update_context_time(ctx);
3384 update_cgrp_time_from_event(event);
3387 update_event_times(event);
3388 if (event->state != PERF_EVENT_STATE_ACTIVE)
3397 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3401 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3402 update_event_times(sub);
3403 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3405 * Use sibling's PMU rather than @event's since
3406 * sibling could be on different (eg: software) PMU.
3408 sub->pmu->read(sub);
3412 data->ret = pmu->commit_txn(pmu);
3415 raw_spin_unlock(&ctx->lock);
3418 static inline u64 perf_event_count(struct perf_event *event)
3420 if (event->pmu->count)
3421 return event->pmu->count(event);
3423 return __perf_event_count(event);
3427 * NMI-safe method to read a local event, that is an event that
3429 * - either for the current task, or for this CPU
3430 * - does not have inherit set, for inherited task events
3431 * will not be local and we cannot read them atomically
3432 * - must not have a pmu::count method
3434 u64 perf_event_read_local(struct perf_event *event)
3436 unsigned long flags;
3440 * Disabling interrupts avoids all counter scheduling (context
3441 * switches, timer based rotation and IPIs).
3443 local_irq_save(flags);
3445 /* If this is a per-task event, it must be for current */
3446 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3447 event->hw.target != current);
3449 /* If this is a per-CPU event, it must be for this CPU */
3450 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3451 event->cpu != smp_processor_id());
3454 * It must not be an event with inherit set, we cannot read
3455 * all child counters from atomic context.
3457 WARN_ON_ONCE(event->attr.inherit);
3460 * It must not have a pmu::count method, those are not
3463 WARN_ON_ONCE(event->pmu->count);
3466 * If the event is currently on this CPU, its either a per-task event,
3467 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3470 if (event->oncpu == smp_processor_id())
3471 event->pmu->read(event);
3473 val = local64_read(&event->count);
3474 local_irq_restore(flags);
3479 static int perf_event_read(struct perf_event *event, bool group)
3484 * If event is enabled and currently active on a CPU, update the
3485 * value in the event structure:
3487 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3488 struct perf_read_data data = {
3493 smp_call_function_single(event->oncpu,
3494 __perf_event_read, &data, 1);
3496 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3497 struct perf_event_context *ctx = event->ctx;
3498 unsigned long flags;
3500 raw_spin_lock_irqsave(&ctx->lock, flags);
3502 * may read while context is not active
3503 * (e.g., thread is blocked), in that case
3504 * we cannot update context time
3506 if (ctx->is_active) {
3507 update_context_time(ctx);
3508 update_cgrp_time_from_event(event);
3511 update_group_times(event);
3513 update_event_times(event);
3514 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3521 * Initialize the perf_event context in a task_struct:
3523 static void __perf_event_init_context(struct perf_event_context *ctx)
3525 raw_spin_lock_init(&ctx->lock);
3526 mutex_init(&ctx->mutex);
3527 INIT_LIST_HEAD(&ctx->active_ctx_list);
3528 INIT_LIST_HEAD(&ctx->pinned_groups);
3529 INIT_LIST_HEAD(&ctx->flexible_groups);
3530 INIT_LIST_HEAD(&ctx->event_list);
3531 atomic_set(&ctx->refcount, 1);
3534 static struct perf_event_context *
3535 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3537 struct perf_event_context *ctx;
3539 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3543 __perf_event_init_context(ctx);
3546 get_task_struct(task);
3553 static struct task_struct *
3554 find_lively_task_by_vpid(pid_t vpid)
3556 struct task_struct *task;
3562 task = find_task_by_vpid(vpid);
3564 get_task_struct(task);
3568 return ERR_PTR(-ESRCH);
3574 * Returns a matching context with refcount and pincount.
3576 static struct perf_event_context *
3577 find_get_context(struct pmu *pmu, struct task_struct *task,
3578 struct perf_event *event)
3580 struct perf_event_context *ctx, *clone_ctx = NULL;
3581 struct perf_cpu_context *cpuctx;
3582 void *task_ctx_data = NULL;
3583 unsigned long flags;
3585 int cpu = event->cpu;
3588 /* Must be root to operate on a CPU event: */
3589 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3590 return ERR_PTR(-EACCES);
3593 * We could be clever and allow to attach a event to an
3594 * offline CPU and activate it when the CPU comes up, but
3597 if (!cpu_online(cpu))
3598 return ERR_PTR(-ENODEV);
3600 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3609 ctxn = pmu->task_ctx_nr;
3613 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3614 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3615 if (!task_ctx_data) {
3622 ctx = perf_lock_task_context(task, ctxn, &flags);
3624 clone_ctx = unclone_ctx(ctx);
3627 if (task_ctx_data && !ctx->task_ctx_data) {
3628 ctx->task_ctx_data = task_ctx_data;
3629 task_ctx_data = NULL;
3631 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3636 ctx = alloc_perf_context(pmu, task);
3641 if (task_ctx_data) {
3642 ctx->task_ctx_data = task_ctx_data;
3643 task_ctx_data = NULL;
3647 mutex_lock(&task->perf_event_mutex);
3649 * If it has already passed perf_event_exit_task().
3650 * we must see PF_EXITING, it takes this mutex too.
3652 if (task->flags & PF_EXITING)
3654 else if (task->perf_event_ctxp[ctxn])
3659 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3661 mutex_unlock(&task->perf_event_mutex);
3663 if (unlikely(err)) {
3672 kfree(task_ctx_data);
3676 kfree(task_ctx_data);
3677 return ERR_PTR(err);
3680 static void perf_event_free_filter(struct perf_event *event);
3681 static void perf_event_free_bpf_prog(struct perf_event *event);
3683 static void free_event_rcu(struct rcu_head *head)
3685 struct perf_event *event;
3687 event = container_of(head, struct perf_event, rcu_head);
3689 put_pid_ns(event->ns);
3690 perf_event_free_filter(event);
3694 static void ring_buffer_attach(struct perf_event *event,
3695 struct ring_buffer *rb);
3697 static void detach_sb_event(struct perf_event *event)
3699 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3701 raw_spin_lock(&pel->lock);
3702 list_del_rcu(&event->sb_list);
3703 raw_spin_unlock(&pel->lock);
3706 static bool is_sb_event(struct perf_event *event)
3708 struct perf_event_attr *attr = &event->attr;
3713 if (event->attach_state & PERF_ATTACH_TASK)
3716 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3717 attr->comm || attr->comm_exec ||
3719 attr->context_switch)
3724 static void unaccount_pmu_sb_event(struct perf_event *event)
3726 if (is_sb_event(event))
3727 detach_sb_event(event);
3730 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3735 if (is_cgroup_event(event))
3736 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3739 #ifdef CONFIG_NO_HZ_FULL
3740 static DEFINE_SPINLOCK(nr_freq_lock);
3743 static void unaccount_freq_event_nohz(void)
3745 #ifdef CONFIG_NO_HZ_FULL
3746 spin_lock(&nr_freq_lock);
3747 if (atomic_dec_and_test(&nr_freq_events))
3748 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3749 spin_unlock(&nr_freq_lock);
3753 static void unaccount_freq_event(void)
3755 if (tick_nohz_full_enabled())
3756 unaccount_freq_event_nohz();
3758 atomic_dec(&nr_freq_events);
3761 static void unaccount_event(struct perf_event *event)
3768 if (event->attach_state & PERF_ATTACH_TASK)
3770 if (event->attr.mmap || event->attr.mmap_data)
3771 atomic_dec(&nr_mmap_events);
3772 if (event->attr.comm)
3773 atomic_dec(&nr_comm_events);
3774 if (event->attr.task)
3775 atomic_dec(&nr_task_events);
3776 if (event->attr.freq)
3777 unaccount_freq_event();
3778 if (event->attr.context_switch) {
3780 atomic_dec(&nr_switch_events);
3782 if (is_cgroup_event(event))
3784 if (has_branch_stack(event))
3788 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3789 schedule_delayed_work(&perf_sched_work, HZ);
3792 unaccount_event_cpu(event, event->cpu);
3794 unaccount_pmu_sb_event(event);
3797 static void perf_sched_delayed(struct work_struct *work)
3799 mutex_lock(&perf_sched_mutex);
3800 if (atomic_dec_and_test(&perf_sched_count))
3801 static_branch_disable(&perf_sched_events);
3802 mutex_unlock(&perf_sched_mutex);
3806 * The following implement mutual exclusion of events on "exclusive" pmus
3807 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3808 * at a time, so we disallow creating events that might conflict, namely:
3810 * 1) cpu-wide events in the presence of per-task events,
3811 * 2) per-task events in the presence of cpu-wide events,
3812 * 3) two matching events on the same context.
3814 * The former two cases are handled in the allocation path (perf_event_alloc(),
3815 * _free_event()), the latter -- before the first perf_install_in_context().
3817 static int exclusive_event_init(struct perf_event *event)
3819 struct pmu *pmu = event->pmu;
3821 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3825 * Prevent co-existence of per-task and cpu-wide events on the
3826 * same exclusive pmu.
3828 * Negative pmu::exclusive_cnt means there are cpu-wide
3829 * events on this "exclusive" pmu, positive means there are
3832 * Since this is called in perf_event_alloc() path, event::ctx
3833 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3834 * to mean "per-task event", because unlike other attach states it
3835 * never gets cleared.
3837 if (event->attach_state & PERF_ATTACH_TASK) {
3838 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3841 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3848 static void exclusive_event_destroy(struct perf_event *event)
3850 struct pmu *pmu = event->pmu;
3852 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3855 /* see comment in exclusive_event_init() */
3856 if (event->attach_state & PERF_ATTACH_TASK)
3857 atomic_dec(&pmu->exclusive_cnt);
3859 atomic_inc(&pmu->exclusive_cnt);
3862 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3864 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3865 (e1->cpu == e2->cpu ||
3872 /* Called under the same ctx::mutex as perf_install_in_context() */
3873 static bool exclusive_event_installable(struct perf_event *event,
3874 struct perf_event_context *ctx)
3876 struct perf_event *iter_event;
3877 struct pmu *pmu = event->pmu;
3879 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3882 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3883 if (exclusive_event_match(iter_event, event))
3890 static void perf_addr_filters_splice(struct perf_event *event,
3891 struct list_head *head);
3893 static void _free_event(struct perf_event *event)
3895 irq_work_sync(&event->pending);
3897 unaccount_event(event);
3901 * Can happen when we close an event with re-directed output.
3903 * Since we have a 0 refcount, perf_mmap_close() will skip
3904 * over us; possibly making our ring_buffer_put() the last.
3906 mutex_lock(&event->mmap_mutex);
3907 ring_buffer_attach(event, NULL);
3908 mutex_unlock(&event->mmap_mutex);
3911 if (is_cgroup_event(event))
3912 perf_detach_cgroup(event);
3914 if (!event->parent) {
3915 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3916 put_callchain_buffers();
3919 perf_event_free_bpf_prog(event);
3920 perf_addr_filters_splice(event, NULL);
3921 kfree(event->addr_filters_offs);
3924 event->destroy(event);
3927 put_ctx(event->ctx);
3929 exclusive_event_destroy(event);
3930 module_put(event->pmu->module);
3932 call_rcu(&event->rcu_head, free_event_rcu);
3936 * Used to free events which have a known refcount of 1, such as in error paths
3937 * where the event isn't exposed yet and inherited events.
3939 static void free_event(struct perf_event *event)
3941 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3942 "unexpected event refcount: %ld; ptr=%p\n",
3943 atomic_long_read(&event->refcount), event)) {
3944 /* leak to avoid use-after-free */
3952 * Remove user event from the owner task.
3954 static void perf_remove_from_owner(struct perf_event *event)
3956 struct task_struct *owner;
3960 * Matches the smp_store_release() in perf_event_exit_task(). If we
3961 * observe !owner it means the list deletion is complete and we can
3962 * indeed free this event, otherwise we need to serialize on
3963 * owner->perf_event_mutex.
3965 owner = lockless_dereference(event->owner);
3968 * Since delayed_put_task_struct() also drops the last
3969 * task reference we can safely take a new reference
3970 * while holding the rcu_read_lock().
3972 get_task_struct(owner);
3978 * If we're here through perf_event_exit_task() we're already
3979 * holding ctx->mutex which would be an inversion wrt. the
3980 * normal lock order.
3982 * However we can safely take this lock because its the child
3985 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3988 * We have to re-check the event->owner field, if it is cleared
3989 * we raced with perf_event_exit_task(), acquiring the mutex
3990 * ensured they're done, and we can proceed with freeing the
3994 list_del_init(&event->owner_entry);
3995 smp_store_release(&event->owner, NULL);
3997 mutex_unlock(&owner->perf_event_mutex);
3998 put_task_struct(owner);
4002 static void put_event(struct perf_event *event)
4004 if (!atomic_long_dec_and_test(&event->refcount))
4011 * Kill an event dead; while event:refcount will preserve the event
4012 * object, it will not preserve its functionality. Once the last 'user'
4013 * gives up the object, we'll destroy the thing.
4015 int perf_event_release_kernel(struct perf_event *event)
4017 struct perf_event_context *ctx = event->ctx;
4018 struct perf_event *child, *tmp;
4021 * If we got here through err_file: fput(event_file); we will not have
4022 * attached to a context yet.
4025 WARN_ON_ONCE(event->attach_state &
4026 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4030 if (!is_kernel_event(event))
4031 perf_remove_from_owner(event);
4033 ctx = perf_event_ctx_lock(event);
4034 WARN_ON_ONCE(ctx->parent_ctx);
4035 perf_remove_from_context(event, DETACH_GROUP);
4037 raw_spin_lock_irq(&ctx->lock);
4039 * Mark this even as STATE_DEAD, there is no external reference to it
4042 * Anybody acquiring event->child_mutex after the below loop _must_
4043 * also see this, most importantly inherit_event() which will avoid
4044 * placing more children on the list.
4046 * Thus this guarantees that we will in fact observe and kill _ALL_
4049 event->state = PERF_EVENT_STATE_DEAD;
4050 raw_spin_unlock_irq(&ctx->lock);
4052 perf_event_ctx_unlock(event, ctx);
4055 mutex_lock(&event->child_mutex);
4056 list_for_each_entry(child, &event->child_list, child_list) {
4059 * Cannot change, child events are not migrated, see the
4060 * comment with perf_event_ctx_lock_nested().
4062 ctx = lockless_dereference(child->ctx);
4064 * Since child_mutex nests inside ctx::mutex, we must jump
4065 * through hoops. We start by grabbing a reference on the ctx.
4067 * Since the event cannot get freed while we hold the
4068 * child_mutex, the context must also exist and have a !0
4074 * Now that we have a ctx ref, we can drop child_mutex, and
4075 * acquire ctx::mutex without fear of it going away. Then we
4076 * can re-acquire child_mutex.
4078 mutex_unlock(&event->child_mutex);
4079 mutex_lock(&ctx->mutex);
4080 mutex_lock(&event->child_mutex);
4083 * Now that we hold ctx::mutex and child_mutex, revalidate our
4084 * state, if child is still the first entry, it didn't get freed
4085 * and we can continue doing so.
4087 tmp = list_first_entry_or_null(&event->child_list,
4088 struct perf_event, child_list);
4090 perf_remove_from_context(child, DETACH_GROUP);
4091 list_del(&child->child_list);
4094 * This matches the refcount bump in inherit_event();
4095 * this can't be the last reference.
4100 mutex_unlock(&event->child_mutex);
4101 mutex_unlock(&ctx->mutex);
4105 mutex_unlock(&event->child_mutex);
4108 put_event(event); /* Must be the 'last' reference */
4111 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4114 * Called when the last reference to the file is gone.
4116 static int perf_release(struct inode *inode, struct file *file)
4118 perf_event_release_kernel(file->private_data);
4122 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4124 struct perf_event *child;
4130 mutex_lock(&event->child_mutex);
4132 (void)perf_event_read(event, false);
4133 total += perf_event_count(event);
4135 *enabled += event->total_time_enabled +
4136 atomic64_read(&event->child_total_time_enabled);
4137 *running += event->total_time_running +
4138 atomic64_read(&event->child_total_time_running);
4140 list_for_each_entry(child, &event->child_list, child_list) {
4141 (void)perf_event_read(child, false);
4142 total += perf_event_count(child);
4143 *enabled += child->total_time_enabled;
4144 *running += child->total_time_running;
4146 mutex_unlock(&event->child_mutex);
4150 EXPORT_SYMBOL_GPL(perf_event_read_value);
4152 static int __perf_read_group_add(struct perf_event *leader,
4153 u64 read_format, u64 *values)
4155 struct perf_event *sub;
4156 int n = 1; /* skip @nr */
4159 ret = perf_event_read(leader, true);
4164 * Since we co-schedule groups, {enabled,running} times of siblings
4165 * will be identical to those of the leader, so we only publish one
4168 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4169 values[n++] += leader->total_time_enabled +
4170 atomic64_read(&leader->child_total_time_enabled);
4173 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4174 values[n++] += leader->total_time_running +
4175 atomic64_read(&leader->child_total_time_running);
4179 * Write {count,id} tuples for every sibling.
4181 values[n++] += perf_event_count(leader);
4182 if (read_format & PERF_FORMAT_ID)
4183 values[n++] = primary_event_id(leader);
4185 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4186 values[n++] += perf_event_count(sub);
4187 if (read_format & PERF_FORMAT_ID)
4188 values[n++] = primary_event_id(sub);
4194 static int perf_read_group(struct perf_event *event,
4195 u64 read_format, char __user *buf)
4197 struct perf_event *leader = event->group_leader, *child;
4198 struct perf_event_context *ctx = leader->ctx;
4202 lockdep_assert_held(&ctx->mutex);
4204 values = kzalloc(event->read_size, GFP_KERNEL);
4208 values[0] = 1 + leader->nr_siblings;
4211 * By locking the child_mutex of the leader we effectively
4212 * lock the child list of all siblings.. XXX explain how.
4214 mutex_lock(&leader->child_mutex);
4216 ret = __perf_read_group_add(leader, read_format, values);
4220 list_for_each_entry(child, &leader->child_list, child_list) {
4221 ret = __perf_read_group_add(child, read_format, values);
4226 mutex_unlock(&leader->child_mutex);
4228 ret = event->read_size;
4229 if (copy_to_user(buf, values, event->read_size))
4234 mutex_unlock(&leader->child_mutex);
4240 static int perf_read_one(struct perf_event *event,
4241 u64 read_format, char __user *buf)
4243 u64 enabled, running;
4247 values[n++] = perf_event_read_value(event, &enabled, &running);
4248 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4249 values[n++] = enabled;
4250 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4251 values[n++] = running;
4252 if (read_format & PERF_FORMAT_ID)
4253 values[n++] = primary_event_id(event);
4255 if (copy_to_user(buf, values, n * sizeof(u64)))
4258 return n * sizeof(u64);
4261 static bool is_event_hup(struct perf_event *event)
4265 if (event->state > PERF_EVENT_STATE_EXIT)
4268 mutex_lock(&event->child_mutex);
4269 no_children = list_empty(&event->child_list);
4270 mutex_unlock(&event->child_mutex);
4275 * Read the performance event - simple non blocking version for now
4278 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4280 u64 read_format = event->attr.read_format;
4284 * Return end-of-file for a read on a event that is in
4285 * error state (i.e. because it was pinned but it couldn't be
4286 * scheduled on to the CPU at some point).
4288 if (event->state == PERF_EVENT_STATE_ERROR)
4291 if (count < event->read_size)
4294 WARN_ON_ONCE(event->ctx->parent_ctx);
4295 if (read_format & PERF_FORMAT_GROUP)
4296 ret = perf_read_group(event, read_format, buf);
4298 ret = perf_read_one(event, read_format, buf);
4304 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4306 struct perf_event *event = file->private_data;
4307 struct perf_event_context *ctx;
4310 ctx = perf_event_ctx_lock(event);
4311 ret = __perf_read(event, buf, count);
4312 perf_event_ctx_unlock(event, ctx);
4317 static unsigned int perf_poll(struct file *file, poll_table *wait)
4319 struct perf_event *event = file->private_data;
4320 struct ring_buffer *rb;
4321 unsigned int events = POLLHUP;
4323 poll_wait(file, &event->waitq, wait);
4325 if (is_event_hup(event))
4329 * Pin the event->rb by taking event->mmap_mutex; otherwise
4330 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4332 mutex_lock(&event->mmap_mutex);
4335 events = atomic_xchg(&rb->poll, 0);
4336 mutex_unlock(&event->mmap_mutex);
4340 static void _perf_event_reset(struct perf_event *event)
4342 (void)perf_event_read(event, false);
4343 local64_set(&event->count, 0);
4344 perf_event_update_userpage(event);
4348 * Holding the top-level event's child_mutex means that any
4349 * descendant process that has inherited this event will block
4350 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4351 * task existence requirements of perf_event_enable/disable.
4353 static void perf_event_for_each_child(struct perf_event *event,
4354 void (*func)(struct perf_event *))
4356 struct perf_event *child;
4358 WARN_ON_ONCE(event->ctx->parent_ctx);
4360 mutex_lock(&event->child_mutex);
4362 list_for_each_entry(child, &event->child_list, child_list)
4364 mutex_unlock(&event->child_mutex);
4367 static void perf_event_for_each(struct perf_event *event,
4368 void (*func)(struct perf_event *))
4370 struct perf_event_context *ctx = event->ctx;
4371 struct perf_event *sibling;
4373 lockdep_assert_held(&ctx->mutex);
4375 event = event->group_leader;
4377 perf_event_for_each_child(event, func);
4378 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4379 perf_event_for_each_child(sibling, func);
4382 static void __perf_event_period(struct perf_event *event,
4383 struct perf_cpu_context *cpuctx,
4384 struct perf_event_context *ctx,
4387 u64 value = *((u64 *)info);
4390 if (event->attr.freq) {
4391 event->attr.sample_freq = value;
4393 event->attr.sample_period = value;
4394 event->hw.sample_period = value;
4397 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4399 perf_pmu_disable(ctx->pmu);
4401 * We could be throttled; unthrottle now to avoid the tick
4402 * trying to unthrottle while we already re-started the event.
4404 if (event->hw.interrupts == MAX_INTERRUPTS) {
4405 event->hw.interrupts = 0;
4406 perf_log_throttle(event, 1);
4408 event->pmu->stop(event, PERF_EF_UPDATE);
4411 local64_set(&event->hw.period_left, 0);
4414 event->pmu->start(event, PERF_EF_RELOAD);
4415 perf_pmu_enable(ctx->pmu);
4419 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4423 if (!is_sampling_event(event))
4426 if (copy_from_user(&value, arg, sizeof(value)))
4432 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4435 event_function_call(event, __perf_event_period, &value);
4440 static const struct file_operations perf_fops;
4442 static inline int perf_fget_light(int fd, struct fd *p)
4444 struct fd f = fdget(fd);
4448 if (f.file->f_op != &perf_fops) {
4456 static int perf_event_set_output(struct perf_event *event,
4457 struct perf_event *output_event);
4458 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4459 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4461 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4463 void (*func)(struct perf_event *);
4467 case PERF_EVENT_IOC_ENABLE:
4468 func = _perf_event_enable;
4470 case PERF_EVENT_IOC_DISABLE:
4471 func = _perf_event_disable;
4473 case PERF_EVENT_IOC_RESET:
4474 func = _perf_event_reset;
4477 case PERF_EVENT_IOC_REFRESH:
4478 return _perf_event_refresh(event, arg);
4480 case PERF_EVENT_IOC_PERIOD:
4481 return perf_event_period(event, (u64 __user *)arg);
4483 case PERF_EVENT_IOC_ID:
4485 u64 id = primary_event_id(event);
4487 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4492 case PERF_EVENT_IOC_SET_OUTPUT:
4496 struct perf_event *output_event;
4498 ret = perf_fget_light(arg, &output);
4501 output_event = output.file->private_data;
4502 ret = perf_event_set_output(event, output_event);
4505 ret = perf_event_set_output(event, NULL);
4510 case PERF_EVENT_IOC_SET_FILTER:
4511 return perf_event_set_filter(event, (void __user *)arg);
4513 case PERF_EVENT_IOC_SET_BPF:
4514 return perf_event_set_bpf_prog(event, arg);
4516 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4517 struct ring_buffer *rb;
4520 rb = rcu_dereference(event->rb);
4521 if (!rb || !rb->nr_pages) {
4525 rb_toggle_paused(rb, !!arg);
4533 if (flags & PERF_IOC_FLAG_GROUP)
4534 perf_event_for_each(event, func);
4536 perf_event_for_each_child(event, func);
4541 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4543 struct perf_event *event = file->private_data;
4544 struct perf_event_context *ctx;
4547 ctx = perf_event_ctx_lock(event);
4548 ret = _perf_ioctl(event, cmd, arg);
4549 perf_event_ctx_unlock(event, ctx);
4554 #ifdef CONFIG_COMPAT
4555 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4558 switch (_IOC_NR(cmd)) {
4559 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4560 case _IOC_NR(PERF_EVENT_IOC_ID):
4561 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4562 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4563 cmd &= ~IOCSIZE_MASK;
4564 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4568 return perf_ioctl(file, cmd, arg);
4571 # define perf_compat_ioctl NULL
4574 int perf_event_task_enable(void)
4576 struct perf_event_context *ctx;
4577 struct perf_event *event;
4579 mutex_lock(¤t->perf_event_mutex);
4580 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
4581 ctx = perf_event_ctx_lock(event);
4582 perf_event_for_each_child(event, _perf_event_enable);
4583 perf_event_ctx_unlock(event, ctx);
4585 mutex_unlock(¤t->perf_event_mutex);
4590 int perf_event_task_disable(void)
4592 struct perf_event_context *ctx;
4593 struct perf_event *event;
4595 mutex_lock(¤t->perf_event_mutex);
4596 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
4597 ctx = perf_event_ctx_lock(event);
4598 perf_event_for_each_child(event, _perf_event_disable);
4599 perf_event_ctx_unlock(event, ctx);
4601 mutex_unlock(¤t->perf_event_mutex);
4606 static int perf_event_index(struct perf_event *event)
4608 if (event->hw.state & PERF_HES_STOPPED)
4611 if (event->state != PERF_EVENT_STATE_ACTIVE)
4614 return event->pmu->event_idx(event);
4617 static void calc_timer_values(struct perf_event *event,
4624 *now = perf_clock();
4625 ctx_time = event->shadow_ctx_time + *now;
4626 *enabled = ctx_time - event->tstamp_enabled;
4627 *running = ctx_time - event->tstamp_running;
4630 static void perf_event_init_userpage(struct perf_event *event)
4632 struct perf_event_mmap_page *userpg;
4633 struct ring_buffer *rb;
4636 rb = rcu_dereference(event->rb);
4640 userpg = rb->user_page;
4642 /* Allow new userspace to detect that bit 0 is deprecated */
4643 userpg->cap_bit0_is_deprecated = 1;
4644 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4645 userpg->data_offset = PAGE_SIZE;
4646 userpg->data_size = perf_data_size(rb);
4652 void __weak arch_perf_update_userpage(
4653 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4658 * Callers need to ensure there can be no nesting of this function, otherwise
4659 * the seqlock logic goes bad. We can not serialize this because the arch
4660 * code calls this from NMI context.
4662 void perf_event_update_userpage(struct perf_event *event)
4664 struct perf_event_mmap_page *userpg;
4665 struct ring_buffer *rb;
4666 u64 enabled, running, now;
4669 rb = rcu_dereference(event->rb);
4674 * compute total_time_enabled, total_time_running
4675 * based on snapshot values taken when the event
4676 * was last scheduled in.
4678 * we cannot simply called update_context_time()
4679 * because of locking issue as we can be called in
4682 calc_timer_values(event, &now, &enabled, &running);
4684 userpg = rb->user_page;
4686 * Disable preemption so as to not let the corresponding user-space
4687 * spin too long if we get preempted.
4692 userpg->index = perf_event_index(event);
4693 userpg->offset = perf_event_count(event);
4695 userpg->offset -= local64_read(&event->hw.prev_count);
4697 userpg->time_enabled = enabled +
4698 atomic64_read(&event->child_total_time_enabled);
4700 userpg->time_running = running +
4701 atomic64_read(&event->child_total_time_running);
4703 arch_perf_update_userpage(event, userpg, now);
4712 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4714 struct perf_event *event = vma->vm_file->private_data;
4715 struct ring_buffer *rb;
4716 int ret = VM_FAULT_SIGBUS;
4718 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4719 if (vmf->pgoff == 0)
4725 rb = rcu_dereference(event->rb);
4729 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4732 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4736 get_page(vmf->page);
4737 vmf->page->mapping = vma->vm_file->f_mapping;
4738 vmf->page->index = vmf->pgoff;
4747 static void ring_buffer_attach(struct perf_event *event,
4748 struct ring_buffer *rb)
4750 struct ring_buffer *old_rb = NULL;
4751 unsigned long flags;
4755 * Should be impossible, we set this when removing
4756 * event->rb_entry and wait/clear when adding event->rb_entry.
4758 WARN_ON_ONCE(event->rcu_pending);
4761 spin_lock_irqsave(&old_rb->event_lock, flags);
4762 list_del_rcu(&event->rb_entry);
4763 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4765 event->rcu_batches = get_state_synchronize_rcu();
4766 event->rcu_pending = 1;
4770 if (event->rcu_pending) {
4771 cond_synchronize_rcu(event->rcu_batches);
4772 event->rcu_pending = 0;
4775 spin_lock_irqsave(&rb->event_lock, flags);
4776 list_add_rcu(&event->rb_entry, &rb->event_list);
4777 spin_unlock_irqrestore(&rb->event_lock, flags);
4780 rcu_assign_pointer(event->rb, rb);
4783 ring_buffer_put(old_rb);
4785 * Since we detached before setting the new rb, so that we
4786 * could attach the new rb, we could have missed a wakeup.
4789 wake_up_all(&event->waitq);
4793 static void ring_buffer_wakeup(struct perf_event *event)
4795 struct ring_buffer *rb;
4798 rb = rcu_dereference(event->rb);
4800 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4801 wake_up_all(&event->waitq);
4806 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4808 struct ring_buffer *rb;
4811 rb = rcu_dereference(event->rb);
4813 if (!atomic_inc_not_zero(&rb->refcount))
4821 void ring_buffer_put(struct ring_buffer *rb)
4823 if (!atomic_dec_and_test(&rb->refcount))
4826 WARN_ON_ONCE(!list_empty(&rb->event_list));
4828 call_rcu(&rb->rcu_head, rb_free_rcu);
4831 static void perf_mmap_open(struct vm_area_struct *vma)
4833 struct perf_event *event = vma->vm_file->private_data;
4835 atomic_inc(&event->mmap_count);
4836 atomic_inc(&event->rb->mmap_count);
4839 atomic_inc(&event->rb->aux_mmap_count);
4841 if (event->pmu->event_mapped)
4842 event->pmu->event_mapped(event);
4845 static void perf_pmu_output_stop(struct perf_event *event);
4848 * A buffer can be mmap()ed multiple times; either directly through the same
4849 * event, or through other events by use of perf_event_set_output().
4851 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4852 * the buffer here, where we still have a VM context. This means we need
4853 * to detach all events redirecting to us.
4855 static void perf_mmap_close(struct vm_area_struct *vma)
4857 struct perf_event *event = vma->vm_file->private_data;
4859 struct ring_buffer *rb = ring_buffer_get(event);
4860 struct user_struct *mmap_user = rb->mmap_user;
4861 int mmap_locked = rb->mmap_locked;
4862 unsigned long size = perf_data_size(rb);
4864 if (event->pmu->event_unmapped)
4865 event->pmu->event_unmapped(event);
4868 * rb->aux_mmap_count will always drop before rb->mmap_count and
4869 * event->mmap_count, so it is ok to use event->mmap_mutex to
4870 * serialize with perf_mmap here.
4872 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4873 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4875 * Stop all AUX events that are writing to this buffer,
4876 * so that we can free its AUX pages and corresponding PMU
4877 * data. Note that after rb::aux_mmap_count dropped to zero,
4878 * they won't start any more (see perf_aux_output_begin()).
4880 perf_pmu_output_stop(event);
4882 /* now it's safe to free the pages */
4883 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4884 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4886 /* this has to be the last one */
4888 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4890 mutex_unlock(&event->mmap_mutex);
4893 atomic_dec(&rb->mmap_count);
4895 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4898 ring_buffer_attach(event, NULL);
4899 mutex_unlock(&event->mmap_mutex);
4901 /* If there's still other mmap()s of this buffer, we're done. */
4902 if (atomic_read(&rb->mmap_count))
4906 * No other mmap()s, detach from all other events that might redirect
4907 * into the now unreachable buffer. Somewhat complicated by the
4908 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4912 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4913 if (!atomic_long_inc_not_zero(&event->refcount)) {
4915 * This event is en-route to free_event() which will
4916 * detach it and remove it from the list.
4922 mutex_lock(&event->mmap_mutex);
4924 * Check we didn't race with perf_event_set_output() which can
4925 * swizzle the rb from under us while we were waiting to
4926 * acquire mmap_mutex.
4928 * If we find a different rb; ignore this event, a next
4929 * iteration will no longer find it on the list. We have to
4930 * still restart the iteration to make sure we're not now
4931 * iterating the wrong list.
4933 if (event->rb == rb)
4934 ring_buffer_attach(event, NULL);
4936 mutex_unlock(&event->mmap_mutex);
4940 * Restart the iteration; either we're on the wrong list or
4941 * destroyed its integrity by doing a deletion.
4948 * It could be there's still a few 0-ref events on the list; they'll
4949 * get cleaned up by free_event() -- they'll also still have their
4950 * ref on the rb and will free it whenever they are done with it.
4952 * Aside from that, this buffer is 'fully' detached and unmapped,
4953 * undo the VM accounting.
4956 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4957 vma->vm_mm->pinned_vm -= mmap_locked;
4958 free_uid(mmap_user);
4961 ring_buffer_put(rb); /* could be last */
4964 static const struct vm_operations_struct perf_mmap_vmops = {
4965 .open = perf_mmap_open,
4966 .close = perf_mmap_close, /* non mergable */
4967 .fault = perf_mmap_fault,
4968 .page_mkwrite = perf_mmap_fault,
4971 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4973 struct perf_event *event = file->private_data;
4974 unsigned long user_locked, user_lock_limit;
4975 struct user_struct *user = current_user();
4976 unsigned long locked, lock_limit;
4977 struct ring_buffer *rb = NULL;
4978 unsigned long vma_size;
4979 unsigned long nr_pages;
4980 long user_extra = 0, extra = 0;
4981 int ret = 0, flags = 0;
4984 * Don't allow mmap() of inherited per-task counters. This would
4985 * create a performance issue due to all children writing to the
4988 if (event->cpu == -1 && event->attr.inherit)
4991 if (!(vma->vm_flags & VM_SHARED))
4994 vma_size = vma->vm_end - vma->vm_start;
4996 if (vma->vm_pgoff == 0) {
4997 nr_pages = (vma_size / PAGE_SIZE) - 1;
5000 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5001 * mapped, all subsequent mappings should have the same size
5002 * and offset. Must be above the normal perf buffer.
5004 u64 aux_offset, aux_size;
5009 nr_pages = vma_size / PAGE_SIZE;
5011 mutex_lock(&event->mmap_mutex);
5018 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5019 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5021 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5024 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5027 /* already mapped with a different offset */
5028 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5031 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5034 /* already mapped with a different size */
5035 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5038 if (!is_power_of_2(nr_pages))
5041 if (!atomic_inc_not_zero(&rb->mmap_count))
5044 if (rb_has_aux(rb)) {
5045 atomic_inc(&rb->aux_mmap_count);
5050 atomic_set(&rb->aux_mmap_count, 1);
5051 user_extra = nr_pages;
5057 * If we have rb pages ensure they're a power-of-two number, so we
5058 * can do bitmasks instead of modulo.
5060 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5063 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5066 WARN_ON_ONCE(event->ctx->parent_ctx);
5068 mutex_lock(&event->mmap_mutex);
5070 if (event->rb->nr_pages != nr_pages) {
5075 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5077 * Raced against perf_mmap_close() through
5078 * perf_event_set_output(). Try again, hope for better
5081 mutex_unlock(&event->mmap_mutex);
5088 user_extra = nr_pages + 1;
5091 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5094 * Increase the limit linearly with more CPUs:
5096 user_lock_limit *= num_online_cpus();
5098 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5100 if (user_locked > user_lock_limit)
5101 extra = user_locked - user_lock_limit;
5103 lock_limit = rlimit(RLIMIT_MEMLOCK);
5104 lock_limit >>= PAGE_SHIFT;
5105 locked = vma->vm_mm->pinned_vm + extra;
5107 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5108 !capable(CAP_IPC_LOCK)) {
5113 WARN_ON(!rb && event->rb);
5115 if (vma->vm_flags & VM_WRITE)
5116 flags |= RING_BUFFER_WRITABLE;
5119 rb = rb_alloc(nr_pages,
5120 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5128 atomic_set(&rb->mmap_count, 1);
5129 rb->mmap_user = get_current_user();
5130 rb->mmap_locked = extra;
5132 ring_buffer_attach(event, rb);
5134 perf_event_init_userpage(event);
5135 perf_event_update_userpage(event);
5137 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5138 event->attr.aux_watermark, flags);
5140 rb->aux_mmap_locked = extra;
5145 atomic_long_add(user_extra, &user->locked_vm);
5146 vma->vm_mm->pinned_vm += extra;
5148 atomic_inc(&event->mmap_count);
5150 atomic_dec(&rb->mmap_count);
5153 mutex_unlock(&event->mmap_mutex);
5156 * Since pinned accounting is per vm we cannot allow fork() to copy our
5159 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5160 vma->vm_ops = &perf_mmap_vmops;
5162 if (event->pmu->event_mapped)
5163 event->pmu->event_mapped(event);
5168 static int perf_fasync(int fd, struct file *filp, int on)
5170 struct inode *inode = file_inode(filp);
5171 struct perf_event *event = filp->private_data;
5175 retval = fasync_helper(fd, filp, on, &event->fasync);
5176 inode_unlock(inode);
5184 static const struct file_operations perf_fops = {
5185 .llseek = no_llseek,
5186 .release = perf_release,
5189 .unlocked_ioctl = perf_ioctl,
5190 .compat_ioctl = perf_compat_ioctl,
5192 .fasync = perf_fasync,
5198 * If there's data, ensure we set the poll() state and publish everything
5199 * to user-space before waking everybody up.
5202 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5204 /* only the parent has fasync state */
5206 event = event->parent;
5207 return &event->fasync;
5210 void perf_event_wakeup(struct perf_event *event)
5212 ring_buffer_wakeup(event);
5214 if (event->pending_kill) {
5215 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5216 event->pending_kill = 0;
5220 static void perf_pending_event(struct irq_work *entry)
5222 struct perf_event *event = container_of(entry,
5223 struct perf_event, pending);
5226 rctx = perf_swevent_get_recursion_context();
5228 * If we 'fail' here, that's OK, it means recursion is already disabled
5229 * and we won't recurse 'further'.
5232 if (event->pending_disable) {
5233 event->pending_disable = 0;
5234 perf_event_disable_local(event);
5237 if (event->pending_wakeup) {
5238 event->pending_wakeup = 0;
5239 perf_event_wakeup(event);
5243 perf_swevent_put_recursion_context(rctx);
5247 * We assume there is only KVM supporting the callbacks.
5248 * Later on, we might change it to a list if there is
5249 * another virtualization implementation supporting the callbacks.
5251 struct perf_guest_info_callbacks *perf_guest_cbs;
5253 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5255 perf_guest_cbs = cbs;
5258 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5260 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5262 perf_guest_cbs = NULL;
5265 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5268 perf_output_sample_regs(struct perf_output_handle *handle,
5269 struct pt_regs *regs, u64 mask)
5273 for_each_set_bit(bit, (const unsigned long *) &mask,
5274 sizeof(mask) * BITS_PER_BYTE) {
5277 val = perf_reg_value(regs, bit);
5278 perf_output_put(handle, val);
5282 static void perf_sample_regs_user(struct perf_regs *regs_user,
5283 struct pt_regs *regs,
5284 struct pt_regs *regs_user_copy)
5286 if (user_mode(regs)) {
5287 regs_user->abi = perf_reg_abi(current);
5288 regs_user->regs = regs;
5289 } else if (current->mm) {
5290 perf_get_regs_user(regs_user, regs, regs_user_copy);
5292 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5293 regs_user->regs = NULL;
5297 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5298 struct pt_regs *regs)
5300 regs_intr->regs = regs;
5301 regs_intr->abi = perf_reg_abi(current);
5306 * Get remaining task size from user stack pointer.
5308 * It'd be better to take stack vma map and limit this more
5309 * precisly, but there's no way to get it safely under interrupt,
5310 * so using TASK_SIZE as limit.
5312 static u64 perf_ustack_task_size(struct pt_regs *regs)
5314 unsigned long addr = perf_user_stack_pointer(regs);
5316 if (!addr || addr >= TASK_SIZE)
5319 return TASK_SIZE - addr;
5323 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5324 struct pt_regs *regs)
5328 /* No regs, no stack pointer, no dump. */
5333 * Check if we fit in with the requested stack size into the:
5335 * If we don't, we limit the size to the TASK_SIZE.
5337 * - remaining sample size
5338 * If we don't, we customize the stack size to
5339 * fit in to the remaining sample size.
5342 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5343 stack_size = min(stack_size, (u16) task_size);
5345 /* Current header size plus static size and dynamic size. */
5346 header_size += 2 * sizeof(u64);
5348 /* Do we fit in with the current stack dump size? */
5349 if ((u16) (header_size + stack_size) < header_size) {
5351 * If we overflow the maximum size for the sample,
5352 * we customize the stack dump size to fit in.
5354 stack_size = USHRT_MAX - header_size - sizeof(u64);
5355 stack_size = round_up(stack_size, sizeof(u64));
5362 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5363 struct pt_regs *regs)
5365 /* Case of a kernel thread, nothing to dump */
5368 perf_output_put(handle, size);
5377 * - the size requested by user or the best one we can fit
5378 * in to the sample max size
5380 * - user stack dump data
5382 * - the actual dumped size
5386 perf_output_put(handle, dump_size);
5389 sp = perf_user_stack_pointer(regs);
5390 rem = __output_copy_user(handle, (void *) sp, dump_size);
5391 dyn_size = dump_size - rem;
5393 perf_output_skip(handle, rem);
5396 perf_output_put(handle, dyn_size);
5400 static void __perf_event_header__init_id(struct perf_event_header *header,
5401 struct perf_sample_data *data,
5402 struct perf_event *event)
5404 u64 sample_type = event->attr.sample_type;
5406 data->type = sample_type;
5407 header->size += event->id_header_size;
5409 if (sample_type & PERF_SAMPLE_TID) {
5410 /* namespace issues */
5411 data->tid_entry.pid = perf_event_pid(event, current);
5412 data->tid_entry.tid = perf_event_tid(event, current);
5415 if (sample_type & PERF_SAMPLE_TIME)
5416 data->time = perf_event_clock(event);
5418 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5419 data->id = primary_event_id(event);
5421 if (sample_type & PERF_SAMPLE_STREAM_ID)
5422 data->stream_id = event->id;
5424 if (sample_type & PERF_SAMPLE_CPU) {
5425 data->cpu_entry.cpu = raw_smp_processor_id();
5426 data->cpu_entry.reserved = 0;
5430 void perf_event_header__init_id(struct perf_event_header *header,
5431 struct perf_sample_data *data,
5432 struct perf_event *event)
5434 if (event->attr.sample_id_all)
5435 __perf_event_header__init_id(header, data, event);
5438 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5439 struct perf_sample_data *data)
5441 u64 sample_type = data->type;
5443 if (sample_type & PERF_SAMPLE_TID)
5444 perf_output_put(handle, data->tid_entry);
5446 if (sample_type & PERF_SAMPLE_TIME)
5447 perf_output_put(handle, data->time);
5449 if (sample_type & PERF_SAMPLE_ID)
5450 perf_output_put(handle, data->id);
5452 if (sample_type & PERF_SAMPLE_STREAM_ID)
5453 perf_output_put(handle, data->stream_id);
5455 if (sample_type & PERF_SAMPLE_CPU)
5456 perf_output_put(handle, data->cpu_entry);
5458 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5459 perf_output_put(handle, data->id);
5462 void perf_event__output_id_sample(struct perf_event *event,
5463 struct perf_output_handle *handle,
5464 struct perf_sample_data *sample)
5466 if (event->attr.sample_id_all)
5467 __perf_event__output_id_sample(handle, sample);
5470 static void perf_output_read_one(struct perf_output_handle *handle,
5471 struct perf_event *event,
5472 u64 enabled, u64 running)
5474 u64 read_format = event->attr.read_format;
5478 values[n++] = perf_event_count(event);
5479 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5480 values[n++] = enabled +
5481 atomic64_read(&event->child_total_time_enabled);
5483 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5484 values[n++] = running +
5485 atomic64_read(&event->child_total_time_running);
5487 if (read_format & PERF_FORMAT_ID)
5488 values[n++] = primary_event_id(event);
5490 __output_copy(handle, values, n * sizeof(u64));
5494 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5496 static void perf_output_read_group(struct perf_output_handle *handle,
5497 struct perf_event *event,
5498 u64 enabled, u64 running)
5500 struct perf_event *leader = event->group_leader, *sub;
5501 u64 read_format = event->attr.read_format;
5505 values[n++] = 1 + leader->nr_siblings;
5507 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5508 values[n++] = enabled;
5510 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5511 values[n++] = running;
5513 if (leader != event)
5514 leader->pmu->read(leader);
5516 values[n++] = perf_event_count(leader);
5517 if (read_format & PERF_FORMAT_ID)
5518 values[n++] = primary_event_id(leader);
5520 __output_copy(handle, values, n * sizeof(u64));
5522 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5525 if ((sub != event) &&
5526 (sub->state == PERF_EVENT_STATE_ACTIVE))
5527 sub->pmu->read(sub);
5529 values[n++] = perf_event_count(sub);
5530 if (read_format & PERF_FORMAT_ID)
5531 values[n++] = primary_event_id(sub);
5533 __output_copy(handle, values, n * sizeof(u64));
5537 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5538 PERF_FORMAT_TOTAL_TIME_RUNNING)
5540 static void perf_output_read(struct perf_output_handle *handle,
5541 struct perf_event *event)
5543 u64 enabled = 0, running = 0, now;
5544 u64 read_format = event->attr.read_format;
5547 * compute total_time_enabled, total_time_running
5548 * based on snapshot values taken when the event
5549 * was last scheduled in.
5551 * we cannot simply called update_context_time()
5552 * because of locking issue as we are called in
5555 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5556 calc_timer_values(event, &now, &enabled, &running);
5558 if (event->attr.read_format & PERF_FORMAT_GROUP)
5559 perf_output_read_group(handle, event, enabled, running);
5561 perf_output_read_one(handle, event, enabled, running);
5564 void perf_output_sample(struct perf_output_handle *handle,
5565 struct perf_event_header *header,
5566 struct perf_sample_data *data,
5567 struct perf_event *event)
5569 u64 sample_type = data->type;
5571 perf_output_put(handle, *header);
5573 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5574 perf_output_put(handle, data->id);
5576 if (sample_type & PERF_SAMPLE_IP)
5577 perf_output_put(handle, data->ip);
5579 if (sample_type & PERF_SAMPLE_TID)
5580 perf_output_put(handle, data->tid_entry);
5582 if (sample_type & PERF_SAMPLE_TIME)
5583 perf_output_put(handle, data->time);
5585 if (sample_type & PERF_SAMPLE_ADDR)
5586 perf_output_put(handle, data->addr);
5588 if (sample_type & PERF_SAMPLE_ID)
5589 perf_output_put(handle, data->id);
5591 if (sample_type & PERF_SAMPLE_STREAM_ID)
5592 perf_output_put(handle, data->stream_id);
5594 if (sample_type & PERF_SAMPLE_CPU)
5595 perf_output_put(handle, data->cpu_entry);
5597 if (sample_type & PERF_SAMPLE_PERIOD)
5598 perf_output_put(handle, data->period);
5600 if (sample_type & PERF_SAMPLE_READ)
5601 perf_output_read(handle, event);
5603 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5604 if (data->callchain) {
5607 if (data->callchain)
5608 size += data->callchain->nr;
5610 size *= sizeof(u64);
5612 __output_copy(handle, data->callchain, size);
5615 perf_output_put(handle, nr);
5619 if (sample_type & PERF_SAMPLE_RAW) {
5620 struct perf_raw_record *raw = data->raw;
5623 struct perf_raw_frag *frag = &raw->frag;
5625 perf_output_put(handle, raw->size);
5628 __output_custom(handle, frag->copy,
5629 frag->data, frag->size);
5631 __output_copy(handle, frag->data,
5634 if (perf_raw_frag_last(frag))
5639 __output_skip(handle, NULL, frag->pad);
5645 .size = sizeof(u32),
5648 perf_output_put(handle, raw);
5652 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5653 if (data->br_stack) {
5656 size = data->br_stack->nr
5657 * sizeof(struct perf_branch_entry);
5659 perf_output_put(handle, data->br_stack->nr);
5660 perf_output_copy(handle, data->br_stack->entries, size);
5663 * we always store at least the value of nr
5666 perf_output_put(handle, nr);
5670 if (sample_type & PERF_SAMPLE_REGS_USER) {
5671 u64 abi = data->regs_user.abi;
5674 * If there are no regs to dump, notice it through
5675 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5677 perf_output_put(handle, abi);
5680 u64 mask = event->attr.sample_regs_user;
5681 perf_output_sample_regs(handle,
5682 data->regs_user.regs,
5687 if (sample_type & PERF_SAMPLE_STACK_USER) {
5688 perf_output_sample_ustack(handle,
5689 data->stack_user_size,
5690 data->regs_user.regs);
5693 if (sample_type & PERF_SAMPLE_WEIGHT)
5694 perf_output_put(handle, data->weight);
5696 if (sample_type & PERF_SAMPLE_DATA_SRC)
5697 perf_output_put(handle, data->data_src.val);
5699 if (sample_type & PERF_SAMPLE_TRANSACTION)
5700 perf_output_put(handle, data->txn);
5702 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5703 u64 abi = data->regs_intr.abi;
5705 * If there are no regs to dump, notice it through
5706 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5708 perf_output_put(handle, abi);
5711 u64 mask = event->attr.sample_regs_intr;
5713 perf_output_sample_regs(handle,
5714 data->regs_intr.regs,
5719 if (!event->attr.watermark) {
5720 int wakeup_events = event->attr.wakeup_events;
5722 if (wakeup_events) {
5723 struct ring_buffer *rb = handle->rb;
5724 int events = local_inc_return(&rb->events);
5726 if (events >= wakeup_events) {
5727 local_sub(wakeup_events, &rb->events);
5728 local_inc(&rb->wakeup);
5734 void perf_prepare_sample(struct perf_event_header *header,
5735 struct perf_sample_data *data,
5736 struct perf_event *event,
5737 struct pt_regs *regs)
5739 u64 sample_type = event->attr.sample_type;
5741 header->type = PERF_RECORD_SAMPLE;
5742 header->size = sizeof(*header) + event->header_size;
5745 header->misc |= perf_misc_flags(regs);
5747 __perf_event_header__init_id(header, data, event);
5749 if (sample_type & PERF_SAMPLE_IP)
5750 data->ip = perf_instruction_pointer(regs);
5752 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5755 data->callchain = perf_callchain(event, regs);
5757 if (data->callchain)
5758 size += data->callchain->nr;
5760 header->size += size * sizeof(u64);
5763 if (sample_type & PERF_SAMPLE_RAW) {
5764 struct perf_raw_record *raw = data->raw;
5768 struct perf_raw_frag *frag = &raw->frag;
5773 if (perf_raw_frag_last(frag))
5778 size = round_up(sum + sizeof(u32), sizeof(u64));
5779 raw->size = size - sizeof(u32);
5780 frag->pad = raw->size - sum;
5785 header->size += size;
5788 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5789 int size = sizeof(u64); /* nr */
5790 if (data->br_stack) {
5791 size += data->br_stack->nr
5792 * sizeof(struct perf_branch_entry);
5794 header->size += size;
5797 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5798 perf_sample_regs_user(&data->regs_user, regs,
5799 &data->regs_user_copy);
5801 if (sample_type & PERF_SAMPLE_REGS_USER) {
5802 /* regs dump ABI info */
5803 int size = sizeof(u64);
5805 if (data->regs_user.regs) {
5806 u64 mask = event->attr.sample_regs_user;
5807 size += hweight64(mask) * sizeof(u64);
5810 header->size += size;
5813 if (sample_type & PERF_SAMPLE_STACK_USER) {
5815 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5816 * processed as the last one or have additional check added
5817 * in case new sample type is added, because we could eat
5818 * up the rest of the sample size.
5820 u16 stack_size = event->attr.sample_stack_user;
5821 u16 size = sizeof(u64);
5823 stack_size = perf_sample_ustack_size(stack_size, header->size,
5824 data->regs_user.regs);
5827 * If there is something to dump, add space for the dump
5828 * itself and for the field that tells the dynamic size,
5829 * which is how many have been actually dumped.
5832 size += sizeof(u64) + stack_size;
5834 data->stack_user_size = stack_size;
5835 header->size += size;
5838 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5839 /* regs dump ABI info */
5840 int size = sizeof(u64);
5842 perf_sample_regs_intr(&data->regs_intr, regs);
5844 if (data->regs_intr.regs) {
5845 u64 mask = event->attr.sample_regs_intr;
5847 size += hweight64(mask) * sizeof(u64);
5850 header->size += size;
5854 static void __always_inline
5855 __perf_event_output(struct perf_event *event,
5856 struct perf_sample_data *data,
5857 struct pt_regs *regs,
5858 int (*output_begin)(struct perf_output_handle *,
5859 struct perf_event *,
5862 struct perf_output_handle handle;
5863 struct perf_event_header header;
5865 /* protect the callchain buffers */
5868 perf_prepare_sample(&header, data, event, regs);
5870 if (output_begin(&handle, event, header.size))
5873 perf_output_sample(&handle, &header, data, event);
5875 perf_output_end(&handle);
5882 perf_event_output_forward(struct perf_event *event,
5883 struct perf_sample_data *data,
5884 struct pt_regs *regs)
5886 __perf_event_output(event, data, regs, perf_output_begin_forward);
5890 perf_event_output_backward(struct perf_event *event,
5891 struct perf_sample_data *data,
5892 struct pt_regs *regs)
5894 __perf_event_output(event, data, regs, perf_output_begin_backward);
5898 perf_event_output(struct perf_event *event,
5899 struct perf_sample_data *data,
5900 struct pt_regs *regs)
5902 __perf_event_output(event, data, regs, perf_output_begin);
5909 struct perf_read_event {
5910 struct perf_event_header header;
5917 perf_event_read_event(struct perf_event *event,
5918 struct task_struct *task)
5920 struct perf_output_handle handle;
5921 struct perf_sample_data sample;
5922 struct perf_read_event read_event = {
5924 .type = PERF_RECORD_READ,
5926 .size = sizeof(read_event) + event->read_size,
5928 .pid = perf_event_pid(event, task),
5929 .tid = perf_event_tid(event, task),
5933 perf_event_header__init_id(&read_event.header, &sample, event);
5934 ret = perf_output_begin(&handle, event, read_event.header.size);
5938 perf_output_put(&handle, read_event);
5939 perf_output_read(&handle, event);
5940 perf_event__output_id_sample(event, &handle, &sample);
5942 perf_output_end(&handle);
5945 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
5948 perf_iterate_ctx(struct perf_event_context *ctx,
5949 perf_iterate_f output,
5950 void *data, bool all)
5952 struct perf_event *event;
5954 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5956 if (event->state < PERF_EVENT_STATE_INACTIVE)
5958 if (!event_filter_match(event))
5962 output(event, data);
5966 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
5968 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5969 struct perf_event *event;
5971 list_for_each_entry_rcu(event, &pel->list, sb_list) {
5972 if (event->state < PERF_EVENT_STATE_INACTIVE)
5974 if (!event_filter_match(event))
5976 output(event, data);
5981 * Iterate all events that need to receive side-band events.
5983 * For new callers; ensure that account_pmu_sb_event() includes
5984 * your event, otherwise it might not get delivered.
5987 perf_iterate_sb(perf_iterate_f output, void *data,
5988 struct perf_event_context *task_ctx)
5990 struct perf_event_context *ctx;
5997 * If we have task_ctx != NULL we only notify the task context itself.
5998 * The task_ctx is set only for EXIT events before releasing task
6002 perf_iterate_ctx(task_ctx, output, data, false);
6006 perf_iterate_sb_cpu(output, data);
6008 for_each_task_context_nr(ctxn) {
6009 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6011 perf_iterate_ctx(ctx, output, data, false);
6019 * Clear all file-based filters at exec, they'll have to be
6020 * re-instated when/if these objects are mmapped again.
6022 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6024 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6025 struct perf_addr_filter *filter;
6026 unsigned int restart = 0, count = 0;
6027 unsigned long flags;
6029 if (!has_addr_filter(event))
6032 raw_spin_lock_irqsave(&ifh->lock, flags);
6033 list_for_each_entry(filter, &ifh->list, entry) {
6034 if (filter->inode) {
6035 event->addr_filters_offs[count] = 0;
6043 event->addr_filters_gen++;
6044 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6047 perf_event_restart(event);
6050 void perf_event_exec(void)
6052 struct perf_event_context *ctx;
6056 for_each_task_context_nr(ctxn) {
6057 ctx = current->perf_event_ctxp[ctxn];
6061 perf_event_enable_on_exec(ctxn);
6063 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6069 struct remote_output {
6070 struct ring_buffer *rb;
6074 static void __perf_event_output_stop(struct perf_event *event, void *data)
6076 struct perf_event *parent = event->parent;
6077 struct remote_output *ro = data;
6078 struct ring_buffer *rb = ro->rb;
6079 struct stop_event_data sd = {
6083 if (!has_aux(event))
6090 * In case of inheritance, it will be the parent that links to the
6091 * ring-buffer, but it will be the child that's actually using it:
6093 if (rcu_dereference(parent->rb) == rb)
6094 ro->err = __perf_event_stop(&sd);
6097 static int __perf_pmu_output_stop(void *info)
6099 struct perf_event *event = info;
6100 struct pmu *pmu = event->pmu;
6101 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6102 struct remote_output ro = {
6107 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6108 if (cpuctx->task_ctx)
6109 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6116 static void perf_pmu_output_stop(struct perf_event *event)
6118 struct perf_event *iter;
6123 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6125 * For per-CPU events, we need to make sure that neither they
6126 * nor their children are running; for cpu==-1 events it's
6127 * sufficient to stop the event itself if it's active, since
6128 * it can't have children.
6132 cpu = READ_ONCE(iter->oncpu);
6137 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6138 if (err == -EAGAIN) {
6147 * task tracking -- fork/exit
6149 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6152 struct perf_task_event {
6153 struct task_struct *task;
6154 struct perf_event_context *task_ctx;
6157 struct perf_event_header header;
6167 static int perf_event_task_match(struct perf_event *event)
6169 return event->attr.comm || event->attr.mmap ||
6170 event->attr.mmap2 || event->attr.mmap_data ||
6174 static void perf_event_task_output(struct perf_event *event,
6177 struct perf_task_event *task_event = data;
6178 struct perf_output_handle handle;
6179 struct perf_sample_data sample;
6180 struct task_struct *task = task_event->task;
6181 int ret, size = task_event->event_id.header.size;
6183 if (!perf_event_task_match(event))
6186 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6188 ret = perf_output_begin(&handle, event,
6189 task_event->event_id.header.size);
6193 task_event->event_id.pid = perf_event_pid(event, task);
6194 task_event->event_id.ppid = perf_event_pid(event, current);
6196 task_event->event_id.tid = perf_event_tid(event, task);
6197 task_event->event_id.ptid = perf_event_tid(event, current);
6199 task_event->event_id.time = perf_event_clock(event);
6201 perf_output_put(&handle, task_event->event_id);
6203 perf_event__output_id_sample(event, &handle, &sample);
6205 perf_output_end(&handle);
6207 task_event->event_id.header.size = size;
6210 static void perf_event_task(struct task_struct *task,
6211 struct perf_event_context *task_ctx,
6214 struct perf_task_event task_event;
6216 if (!atomic_read(&nr_comm_events) &&
6217 !atomic_read(&nr_mmap_events) &&
6218 !atomic_read(&nr_task_events))
6221 task_event = (struct perf_task_event){
6223 .task_ctx = task_ctx,
6226 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6228 .size = sizeof(task_event.event_id),
6238 perf_iterate_sb(perf_event_task_output,
6243 void perf_event_fork(struct task_struct *task)
6245 perf_event_task(task, NULL, 1);
6252 struct perf_comm_event {
6253 struct task_struct *task;
6258 struct perf_event_header header;
6265 static int perf_event_comm_match(struct perf_event *event)
6267 return event->attr.comm;
6270 static void perf_event_comm_output(struct perf_event *event,
6273 struct perf_comm_event *comm_event = data;
6274 struct perf_output_handle handle;
6275 struct perf_sample_data sample;
6276 int size = comm_event->event_id.header.size;
6279 if (!perf_event_comm_match(event))
6282 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6283 ret = perf_output_begin(&handle, event,
6284 comm_event->event_id.header.size);
6289 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6290 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6292 perf_output_put(&handle, comm_event->event_id);
6293 __output_copy(&handle, comm_event->comm,
6294 comm_event->comm_size);
6296 perf_event__output_id_sample(event, &handle, &sample);
6298 perf_output_end(&handle);
6300 comm_event->event_id.header.size = size;
6303 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6305 char comm[TASK_COMM_LEN];
6308 memset(comm, 0, sizeof(comm));
6309 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6310 size = ALIGN(strlen(comm)+1, sizeof(u64));
6312 comm_event->comm = comm;
6313 comm_event->comm_size = size;
6315 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6317 perf_iterate_sb(perf_event_comm_output,
6322 void perf_event_comm(struct task_struct *task, bool exec)
6324 struct perf_comm_event comm_event;
6326 if (!atomic_read(&nr_comm_events))
6329 comm_event = (struct perf_comm_event){
6335 .type = PERF_RECORD_COMM,
6336 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6344 perf_event_comm_event(&comm_event);
6351 struct perf_mmap_event {
6352 struct vm_area_struct *vma;
6354 const char *file_name;
6362 struct perf_event_header header;
6372 static int perf_event_mmap_match(struct perf_event *event,
6375 struct perf_mmap_event *mmap_event = data;
6376 struct vm_area_struct *vma = mmap_event->vma;
6377 int executable = vma->vm_flags & VM_EXEC;
6379 return (!executable && event->attr.mmap_data) ||
6380 (executable && (event->attr.mmap || event->attr.mmap2));
6383 static void perf_event_mmap_output(struct perf_event *event,
6386 struct perf_mmap_event *mmap_event = data;
6387 struct perf_output_handle handle;
6388 struct perf_sample_data sample;
6389 int size = mmap_event->event_id.header.size;
6392 if (!perf_event_mmap_match(event, data))
6395 if (event->attr.mmap2) {
6396 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6397 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6398 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6399 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6400 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6401 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6402 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6405 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6406 ret = perf_output_begin(&handle, event,
6407 mmap_event->event_id.header.size);
6411 mmap_event->event_id.pid = perf_event_pid(event, current);
6412 mmap_event->event_id.tid = perf_event_tid(event, current);
6414 perf_output_put(&handle, mmap_event->event_id);
6416 if (event->attr.mmap2) {
6417 perf_output_put(&handle, mmap_event->maj);
6418 perf_output_put(&handle, mmap_event->min);
6419 perf_output_put(&handle, mmap_event->ino);
6420 perf_output_put(&handle, mmap_event->ino_generation);
6421 perf_output_put(&handle, mmap_event->prot);
6422 perf_output_put(&handle, mmap_event->flags);
6425 __output_copy(&handle, mmap_event->file_name,
6426 mmap_event->file_size);
6428 perf_event__output_id_sample(event, &handle, &sample);
6430 perf_output_end(&handle);
6432 mmap_event->event_id.header.size = size;
6435 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6437 struct vm_area_struct *vma = mmap_event->vma;
6438 struct file *file = vma->vm_file;
6439 int maj = 0, min = 0;
6440 u64 ino = 0, gen = 0;
6441 u32 prot = 0, flags = 0;
6448 struct inode *inode;
6451 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6457 * d_path() works from the end of the rb backwards, so we
6458 * need to add enough zero bytes after the string to handle
6459 * the 64bit alignment we do later.
6461 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6466 inode = file_inode(vma->vm_file);
6467 dev = inode->i_sb->s_dev;
6469 gen = inode->i_generation;
6473 if (vma->vm_flags & VM_READ)
6475 if (vma->vm_flags & VM_WRITE)
6477 if (vma->vm_flags & VM_EXEC)
6480 if (vma->vm_flags & VM_MAYSHARE)
6483 flags = MAP_PRIVATE;
6485 if (vma->vm_flags & VM_DENYWRITE)
6486 flags |= MAP_DENYWRITE;
6487 if (vma->vm_flags & VM_MAYEXEC)
6488 flags |= MAP_EXECUTABLE;
6489 if (vma->vm_flags & VM_LOCKED)
6490 flags |= MAP_LOCKED;
6491 if (vma->vm_flags & VM_HUGETLB)
6492 flags |= MAP_HUGETLB;
6496 if (vma->vm_ops && vma->vm_ops->name) {
6497 name = (char *) vma->vm_ops->name(vma);
6502 name = (char *)arch_vma_name(vma);
6506 if (vma->vm_start <= vma->vm_mm->start_brk &&
6507 vma->vm_end >= vma->vm_mm->brk) {
6511 if (vma->vm_start <= vma->vm_mm->start_stack &&
6512 vma->vm_end >= vma->vm_mm->start_stack) {
6522 strlcpy(tmp, name, sizeof(tmp));
6526 * Since our buffer works in 8 byte units we need to align our string
6527 * size to a multiple of 8. However, we must guarantee the tail end is
6528 * zero'd out to avoid leaking random bits to userspace.
6530 size = strlen(name)+1;
6531 while (!IS_ALIGNED(size, sizeof(u64)))
6532 name[size++] = '\0';
6534 mmap_event->file_name = name;
6535 mmap_event->file_size = size;
6536 mmap_event->maj = maj;
6537 mmap_event->min = min;
6538 mmap_event->ino = ino;
6539 mmap_event->ino_generation = gen;
6540 mmap_event->prot = prot;
6541 mmap_event->flags = flags;
6543 if (!(vma->vm_flags & VM_EXEC))
6544 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6546 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6548 perf_iterate_sb(perf_event_mmap_output,
6556 * Whether this @filter depends on a dynamic object which is not loaded
6557 * yet or its load addresses are not known.
6559 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6561 return filter->filter && filter->inode;
6565 * Check whether inode and address range match filter criteria.
6567 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6568 struct file *file, unsigned long offset,
6571 if (filter->inode != file->f_inode)
6574 if (filter->offset > offset + size)
6577 if (filter->offset + filter->size < offset)
6583 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6585 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6586 struct vm_area_struct *vma = data;
6587 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6588 struct file *file = vma->vm_file;
6589 struct perf_addr_filter *filter;
6590 unsigned int restart = 0, count = 0;
6592 if (!has_addr_filter(event))
6598 raw_spin_lock_irqsave(&ifh->lock, flags);
6599 list_for_each_entry(filter, &ifh->list, entry) {
6600 if (perf_addr_filter_match(filter, file, off,
6601 vma->vm_end - vma->vm_start)) {
6602 event->addr_filters_offs[count] = vma->vm_start;
6610 event->addr_filters_gen++;
6611 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6614 perf_event_restart(event);
6618 * Adjust all task's events' filters to the new vma
6620 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6622 struct perf_event_context *ctx;
6626 for_each_task_context_nr(ctxn) {
6627 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6631 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6636 void perf_event_mmap(struct vm_area_struct *vma)
6638 struct perf_mmap_event mmap_event;
6640 if (!atomic_read(&nr_mmap_events))
6643 mmap_event = (struct perf_mmap_event){
6649 .type = PERF_RECORD_MMAP,
6650 .misc = PERF_RECORD_MISC_USER,
6655 .start = vma->vm_start,
6656 .len = vma->vm_end - vma->vm_start,
6657 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6659 /* .maj (attr_mmap2 only) */
6660 /* .min (attr_mmap2 only) */
6661 /* .ino (attr_mmap2 only) */
6662 /* .ino_generation (attr_mmap2 only) */
6663 /* .prot (attr_mmap2 only) */
6664 /* .flags (attr_mmap2 only) */
6667 perf_addr_filters_adjust(vma);
6668 perf_event_mmap_event(&mmap_event);
6671 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6672 unsigned long size, u64 flags)
6674 struct perf_output_handle handle;
6675 struct perf_sample_data sample;
6676 struct perf_aux_event {
6677 struct perf_event_header header;
6683 .type = PERF_RECORD_AUX,
6685 .size = sizeof(rec),
6693 perf_event_header__init_id(&rec.header, &sample, event);
6694 ret = perf_output_begin(&handle, event, rec.header.size);
6699 perf_output_put(&handle, rec);
6700 perf_event__output_id_sample(event, &handle, &sample);
6702 perf_output_end(&handle);
6706 * Lost/dropped samples logging
6708 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6710 struct perf_output_handle handle;
6711 struct perf_sample_data sample;
6715 struct perf_event_header header;
6717 } lost_samples_event = {
6719 .type = PERF_RECORD_LOST_SAMPLES,
6721 .size = sizeof(lost_samples_event),
6726 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6728 ret = perf_output_begin(&handle, event,
6729 lost_samples_event.header.size);
6733 perf_output_put(&handle, lost_samples_event);
6734 perf_event__output_id_sample(event, &handle, &sample);
6735 perf_output_end(&handle);
6739 * context_switch tracking
6742 struct perf_switch_event {
6743 struct task_struct *task;
6744 struct task_struct *next_prev;
6747 struct perf_event_header header;
6753 static int perf_event_switch_match(struct perf_event *event)
6755 return event->attr.context_switch;
6758 static void perf_event_switch_output(struct perf_event *event, void *data)
6760 struct perf_switch_event *se = data;
6761 struct perf_output_handle handle;
6762 struct perf_sample_data sample;
6765 if (!perf_event_switch_match(event))
6768 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6769 if (event->ctx->task) {
6770 se->event_id.header.type = PERF_RECORD_SWITCH;
6771 se->event_id.header.size = sizeof(se->event_id.header);
6773 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6774 se->event_id.header.size = sizeof(se->event_id);
6775 se->event_id.next_prev_pid =
6776 perf_event_pid(event, se->next_prev);
6777 se->event_id.next_prev_tid =
6778 perf_event_tid(event, se->next_prev);
6781 perf_event_header__init_id(&se->event_id.header, &sample, event);
6783 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6787 if (event->ctx->task)
6788 perf_output_put(&handle, se->event_id.header);
6790 perf_output_put(&handle, se->event_id);
6792 perf_event__output_id_sample(event, &handle, &sample);
6794 perf_output_end(&handle);
6797 static void perf_event_switch(struct task_struct *task,
6798 struct task_struct *next_prev, bool sched_in)
6800 struct perf_switch_event switch_event;
6802 /* N.B. caller checks nr_switch_events != 0 */
6804 switch_event = (struct perf_switch_event){
6806 .next_prev = next_prev,
6810 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6813 /* .next_prev_pid */
6814 /* .next_prev_tid */
6818 perf_iterate_sb(perf_event_switch_output,
6824 * IRQ throttle logging
6827 static void perf_log_throttle(struct perf_event *event, int enable)
6829 struct perf_output_handle handle;
6830 struct perf_sample_data sample;
6834 struct perf_event_header header;
6838 } throttle_event = {
6840 .type = PERF_RECORD_THROTTLE,
6842 .size = sizeof(throttle_event),
6844 .time = perf_event_clock(event),
6845 .id = primary_event_id(event),
6846 .stream_id = event->id,
6850 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6852 perf_event_header__init_id(&throttle_event.header, &sample, event);
6854 ret = perf_output_begin(&handle, event,
6855 throttle_event.header.size);
6859 perf_output_put(&handle, throttle_event);
6860 perf_event__output_id_sample(event, &handle, &sample);
6861 perf_output_end(&handle);
6864 static void perf_log_itrace_start(struct perf_event *event)
6866 struct perf_output_handle handle;
6867 struct perf_sample_data sample;
6868 struct perf_aux_event {
6869 struct perf_event_header header;
6876 event = event->parent;
6878 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6879 event->hw.itrace_started)
6882 rec.header.type = PERF_RECORD_ITRACE_START;
6883 rec.header.misc = 0;
6884 rec.header.size = sizeof(rec);
6885 rec.pid = perf_event_pid(event, current);
6886 rec.tid = perf_event_tid(event, current);
6888 perf_event_header__init_id(&rec.header, &sample, event);
6889 ret = perf_output_begin(&handle, event, rec.header.size);
6894 perf_output_put(&handle, rec);
6895 perf_event__output_id_sample(event, &handle, &sample);
6897 perf_output_end(&handle);
6901 * Generic event overflow handling, sampling.
6904 static int __perf_event_overflow(struct perf_event *event,
6905 int throttle, struct perf_sample_data *data,
6906 struct pt_regs *regs)
6908 int events = atomic_read(&event->event_limit);
6909 struct hw_perf_event *hwc = &event->hw;
6914 * Non-sampling counters might still use the PMI to fold short
6915 * hardware counters, ignore those.
6917 if (unlikely(!is_sampling_event(event)))
6920 seq = __this_cpu_read(perf_throttled_seq);
6921 if (seq != hwc->interrupts_seq) {
6922 hwc->interrupts_seq = seq;
6923 hwc->interrupts = 1;
6926 if (unlikely(throttle
6927 && hwc->interrupts >= max_samples_per_tick)) {
6928 __this_cpu_inc(perf_throttled_count);
6929 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6930 hwc->interrupts = MAX_INTERRUPTS;
6931 perf_log_throttle(event, 0);
6936 if (event->attr.freq) {
6937 u64 now = perf_clock();
6938 s64 delta = now - hwc->freq_time_stamp;
6940 hwc->freq_time_stamp = now;
6942 if (delta > 0 && delta < 2*TICK_NSEC)
6943 perf_adjust_period(event, delta, hwc->last_period, true);
6947 * XXX event_limit might not quite work as expected on inherited
6951 event->pending_kill = POLL_IN;
6952 if (events && atomic_dec_and_test(&event->event_limit)) {
6954 event->pending_kill = POLL_HUP;
6955 event->pending_disable = 1;
6956 irq_work_queue(&event->pending);
6959 event->overflow_handler(event, data, regs);
6961 if (*perf_event_fasync(event) && event->pending_kill) {
6962 event->pending_wakeup = 1;
6963 irq_work_queue(&event->pending);
6969 int perf_event_overflow(struct perf_event *event,
6970 struct perf_sample_data *data,
6971 struct pt_regs *regs)
6973 return __perf_event_overflow(event, 1, data, regs);
6977 * Generic software event infrastructure
6980 struct swevent_htable {
6981 struct swevent_hlist *swevent_hlist;
6982 struct mutex hlist_mutex;
6985 /* Recursion avoidance in each contexts */
6986 int recursion[PERF_NR_CONTEXTS];
6989 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6992 * We directly increment event->count and keep a second value in
6993 * event->hw.period_left to count intervals. This period event
6994 * is kept in the range [-sample_period, 0] so that we can use the
6998 u64 perf_swevent_set_period(struct perf_event *event)
7000 struct hw_perf_event *hwc = &event->hw;
7001 u64 period = hwc->last_period;
7005 hwc->last_period = hwc->sample_period;
7008 old = val = local64_read(&hwc->period_left);
7012 nr = div64_u64(period + val, period);
7013 offset = nr * period;
7015 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7021 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7022 struct perf_sample_data *data,
7023 struct pt_regs *regs)
7025 struct hw_perf_event *hwc = &event->hw;
7029 overflow = perf_swevent_set_period(event);
7031 if (hwc->interrupts == MAX_INTERRUPTS)
7034 for (; overflow; overflow--) {
7035 if (__perf_event_overflow(event, throttle,
7038 * We inhibit the overflow from happening when
7039 * hwc->interrupts == MAX_INTERRUPTS.
7047 static void perf_swevent_event(struct perf_event *event, u64 nr,
7048 struct perf_sample_data *data,
7049 struct pt_regs *regs)
7051 struct hw_perf_event *hwc = &event->hw;
7053 local64_add(nr, &event->count);
7058 if (!is_sampling_event(event))
7061 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7063 return perf_swevent_overflow(event, 1, data, regs);
7065 data->period = event->hw.last_period;
7067 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7068 return perf_swevent_overflow(event, 1, data, regs);
7070 if (local64_add_negative(nr, &hwc->period_left))
7073 perf_swevent_overflow(event, 0, data, regs);
7076 static int perf_exclude_event(struct perf_event *event,
7077 struct pt_regs *regs)
7079 if (event->hw.state & PERF_HES_STOPPED)
7083 if (event->attr.exclude_user && user_mode(regs))
7086 if (event->attr.exclude_kernel && !user_mode(regs))
7093 static int perf_swevent_match(struct perf_event *event,
7094 enum perf_type_id type,
7096 struct perf_sample_data *data,
7097 struct pt_regs *regs)
7099 if (event->attr.type != type)
7102 if (event->attr.config != event_id)
7105 if (perf_exclude_event(event, regs))
7111 static inline u64 swevent_hash(u64 type, u32 event_id)
7113 u64 val = event_id | (type << 32);
7115 return hash_64(val, SWEVENT_HLIST_BITS);
7118 static inline struct hlist_head *
7119 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7121 u64 hash = swevent_hash(type, event_id);
7123 return &hlist->heads[hash];
7126 /* For the read side: events when they trigger */
7127 static inline struct hlist_head *
7128 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7130 struct swevent_hlist *hlist;
7132 hlist = rcu_dereference(swhash->swevent_hlist);
7136 return __find_swevent_head(hlist, type, event_id);
7139 /* For the event head insertion and removal in the hlist */
7140 static inline struct hlist_head *
7141 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7143 struct swevent_hlist *hlist;
7144 u32 event_id = event->attr.config;
7145 u64 type = event->attr.type;
7148 * Event scheduling is always serialized against hlist allocation
7149 * and release. Which makes the protected version suitable here.
7150 * The context lock guarantees that.
7152 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7153 lockdep_is_held(&event->ctx->lock));
7157 return __find_swevent_head(hlist, type, event_id);
7160 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7162 struct perf_sample_data *data,
7163 struct pt_regs *regs)
7165 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7166 struct perf_event *event;
7167 struct hlist_head *head;
7170 head = find_swevent_head_rcu(swhash, type, event_id);
7174 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7175 if (perf_swevent_match(event, type, event_id, data, regs))
7176 perf_swevent_event(event, nr, data, regs);
7182 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7184 int perf_swevent_get_recursion_context(void)
7186 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7188 return get_recursion_context(swhash->recursion);
7190 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7192 void perf_swevent_put_recursion_context(int rctx)
7194 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7196 put_recursion_context(swhash->recursion, rctx);
7199 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7201 struct perf_sample_data data;
7203 if (WARN_ON_ONCE(!regs))
7206 perf_sample_data_init(&data, addr, 0);
7207 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7210 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7214 preempt_disable_notrace();
7215 rctx = perf_swevent_get_recursion_context();
7216 if (unlikely(rctx < 0))
7219 ___perf_sw_event(event_id, nr, regs, addr);
7221 perf_swevent_put_recursion_context(rctx);
7223 preempt_enable_notrace();
7226 static void perf_swevent_read(struct perf_event *event)
7230 static int perf_swevent_add(struct perf_event *event, int flags)
7232 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7233 struct hw_perf_event *hwc = &event->hw;
7234 struct hlist_head *head;
7236 if (is_sampling_event(event)) {
7237 hwc->last_period = hwc->sample_period;
7238 perf_swevent_set_period(event);
7241 hwc->state = !(flags & PERF_EF_START);
7243 head = find_swevent_head(swhash, event);
7244 if (WARN_ON_ONCE(!head))
7247 hlist_add_head_rcu(&event->hlist_entry, head);
7248 perf_event_update_userpage(event);
7253 static void perf_swevent_del(struct perf_event *event, int flags)
7255 hlist_del_rcu(&event->hlist_entry);
7258 static void perf_swevent_start(struct perf_event *event, int flags)
7260 event->hw.state = 0;
7263 static void perf_swevent_stop(struct perf_event *event, int flags)
7265 event->hw.state = PERF_HES_STOPPED;
7268 /* Deref the hlist from the update side */
7269 static inline struct swevent_hlist *
7270 swevent_hlist_deref(struct swevent_htable *swhash)
7272 return rcu_dereference_protected(swhash->swevent_hlist,
7273 lockdep_is_held(&swhash->hlist_mutex));
7276 static void swevent_hlist_release(struct swevent_htable *swhash)
7278 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7283 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7284 kfree_rcu(hlist, rcu_head);
7287 static void swevent_hlist_put_cpu(int cpu)
7289 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7291 mutex_lock(&swhash->hlist_mutex);
7293 if (!--swhash->hlist_refcount)
7294 swevent_hlist_release(swhash);
7296 mutex_unlock(&swhash->hlist_mutex);
7299 static void swevent_hlist_put(void)
7303 for_each_possible_cpu(cpu)
7304 swevent_hlist_put_cpu(cpu);
7307 static int swevent_hlist_get_cpu(int cpu)
7309 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7312 mutex_lock(&swhash->hlist_mutex);
7313 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7314 struct swevent_hlist *hlist;
7316 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7321 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7323 swhash->hlist_refcount++;
7325 mutex_unlock(&swhash->hlist_mutex);
7330 static int swevent_hlist_get(void)
7332 int err, cpu, failed_cpu;
7335 for_each_possible_cpu(cpu) {
7336 err = swevent_hlist_get_cpu(cpu);
7346 for_each_possible_cpu(cpu) {
7347 if (cpu == failed_cpu)
7349 swevent_hlist_put_cpu(cpu);
7356 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7358 static void sw_perf_event_destroy(struct perf_event *event)
7360 u64 event_id = event->attr.config;
7362 WARN_ON(event->parent);
7364 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7365 swevent_hlist_put();
7368 static int perf_swevent_init(struct perf_event *event)
7370 u64 event_id = event->attr.config;
7372 if (event->attr.type != PERF_TYPE_SOFTWARE)
7376 * no branch sampling for software events
7378 if (has_branch_stack(event))
7382 case PERF_COUNT_SW_CPU_CLOCK:
7383 case PERF_COUNT_SW_TASK_CLOCK:
7390 if (event_id >= PERF_COUNT_SW_MAX)
7393 if (!event->parent) {
7396 err = swevent_hlist_get();
7400 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7401 event->destroy = sw_perf_event_destroy;
7407 static struct pmu perf_swevent = {
7408 .task_ctx_nr = perf_sw_context,
7410 .capabilities = PERF_PMU_CAP_NO_NMI,
7412 .event_init = perf_swevent_init,
7413 .add = perf_swevent_add,
7414 .del = perf_swevent_del,
7415 .start = perf_swevent_start,
7416 .stop = perf_swevent_stop,
7417 .read = perf_swevent_read,
7420 #ifdef CONFIG_EVENT_TRACING
7422 static int perf_tp_filter_match(struct perf_event *event,
7423 struct perf_sample_data *data)
7425 void *record = data->raw->frag.data;
7427 /* only top level events have filters set */
7429 event = event->parent;
7431 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7436 static int perf_tp_event_match(struct perf_event *event,
7437 struct perf_sample_data *data,
7438 struct pt_regs *regs)
7440 if (event->hw.state & PERF_HES_STOPPED)
7443 * All tracepoints are from kernel-space.
7445 if (event->attr.exclude_kernel)
7448 if (!perf_tp_filter_match(event, data))
7454 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7455 struct trace_event_call *call, u64 count,
7456 struct pt_regs *regs, struct hlist_head *head,
7457 struct task_struct *task)
7459 struct bpf_prog *prog = call->prog;
7462 *(struct pt_regs **)raw_data = regs;
7463 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7464 perf_swevent_put_recursion_context(rctx);
7468 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7471 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7473 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7474 struct pt_regs *regs, struct hlist_head *head, int rctx,
7475 struct task_struct *task)
7477 struct perf_sample_data data;
7478 struct perf_event *event;
7480 struct perf_raw_record raw = {
7487 perf_sample_data_init(&data, 0, 0);
7490 perf_trace_buf_update(record, event_type);
7492 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7493 if (perf_tp_event_match(event, &data, regs))
7494 perf_swevent_event(event, count, &data, regs);
7498 * If we got specified a target task, also iterate its context and
7499 * deliver this event there too.
7501 if (task && task != current) {
7502 struct perf_event_context *ctx;
7503 struct trace_entry *entry = record;
7506 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7510 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7511 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7513 if (event->attr.config != entry->type)
7515 if (perf_tp_event_match(event, &data, regs))
7516 perf_swevent_event(event, count, &data, regs);
7522 perf_swevent_put_recursion_context(rctx);
7524 EXPORT_SYMBOL_GPL(perf_tp_event);
7526 static void tp_perf_event_destroy(struct perf_event *event)
7528 perf_trace_destroy(event);
7531 static int perf_tp_event_init(struct perf_event *event)
7535 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7539 * no branch sampling for tracepoint events
7541 if (has_branch_stack(event))
7544 err = perf_trace_init(event);
7548 event->destroy = tp_perf_event_destroy;
7553 static struct pmu perf_tracepoint = {
7554 .task_ctx_nr = perf_sw_context,
7556 .event_init = perf_tp_event_init,
7557 .add = perf_trace_add,
7558 .del = perf_trace_del,
7559 .start = perf_swevent_start,
7560 .stop = perf_swevent_stop,
7561 .read = perf_swevent_read,
7564 static inline void perf_tp_register(void)
7566 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7569 static void perf_event_free_filter(struct perf_event *event)
7571 ftrace_profile_free_filter(event);
7574 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7576 bool is_kprobe, is_tracepoint;
7577 struct bpf_prog *prog;
7579 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7582 if (event->tp_event->prog)
7585 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7586 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7587 if (!is_kprobe && !is_tracepoint)
7588 /* bpf programs can only be attached to u/kprobe or tracepoint */
7591 prog = bpf_prog_get(prog_fd);
7593 return PTR_ERR(prog);
7595 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7596 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7597 /* valid fd, but invalid bpf program type */
7602 if (is_tracepoint) {
7603 int off = trace_event_get_offsets(event->tp_event);
7605 if (prog->aux->max_ctx_offset > off) {
7610 event->tp_event->prog = prog;
7615 static void perf_event_free_bpf_prog(struct perf_event *event)
7617 struct bpf_prog *prog;
7619 if (!event->tp_event)
7622 prog = event->tp_event->prog;
7624 event->tp_event->prog = NULL;
7631 static inline void perf_tp_register(void)
7635 static void perf_event_free_filter(struct perf_event *event)
7639 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7644 static void perf_event_free_bpf_prog(struct perf_event *event)
7647 #endif /* CONFIG_EVENT_TRACING */
7649 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7650 void perf_bp_event(struct perf_event *bp, void *data)
7652 struct perf_sample_data sample;
7653 struct pt_regs *regs = data;
7655 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7657 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7658 perf_swevent_event(bp, 1, &sample, regs);
7663 * Allocate a new address filter
7665 static struct perf_addr_filter *
7666 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7668 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7669 struct perf_addr_filter *filter;
7671 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7675 INIT_LIST_HEAD(&filter->entry);
7676 list_add_tail(&filter->entry, filters);
7681 static void free_filters_list(struct list_head *filters)
7683 struct perf_addr_filter *filter, *iter;
7685 list_for_each_entry_safe(filter, iter, filters, entry) {
7687 iput(filter->inode);
7688 list_del(&filter->entry);
7694 * Free existing address filters and optionally install new ones
7696 static void perf_addr_filters_splice(struct perf_event *event,
7697 struct list_head *head)
7699 unsigned long flags;
7702 if (!has_addr_filter(event))
7705 /* don't bother with children, they don't have their own filters */
7709 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7711 list_splice_init(&event->addr_filters.list, &list);
7713 list_splice(head, &event->addr_filters.list);
7715 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7717 free_filters_list(&list);
7721 * Scan through mm's vmas and see if one of them matches the
7722 * @filter; if so, adjust filter's address range.
7723 * Called with mm::mmap_sem down for reading.
7725 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7726 struct mm_struct *mm)
7728 struct vm_area_struct *vma;
7730 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7731 struct file *file = vma->vm_file;
7732 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7733 unsigned long vma_size = vma->vm_end - vma->vm_start;
7738 if (!perf_addr_filter_match(filter, file, off, vma_size))
7741 return vma->vm_start;
7748 * Update event's address range filters based on the
7749 * task's existing mappings, if any.
7751 static void perf_event_addr_filters_apply(struct perf_event *event)
7753 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7754 struct task_struct *task = READ_ONCE(event->ctx->task);
7755 struct perf_addr_filter *filter;
7756 struct mm_struct *mm = NULL;
7757 unsigned int count = 0;
7758 unsigned long flags;
7761 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7762 * will stop on the parent's child_mutex that our caller is also holding
7764 if (task == TASK_TOMBSTONE)
7767 mm = get_task_mm(event->ctx->task);
7771 down_read(&mm->mmap_sem);
7773 raw_spin_lock_irqsave(&ifh->lock, flags);
7774 list_for_each_entry(filter, &ifh->list, entry) {
7775 event->addr_filters_offs[count] = 0;
7777 if (perf_addr_filter_needs_mmap(filter))
7778 event->addr_filters_offs[count] =
7779 perf_addr_filter_apply(filter, mm);
7784 event->addr_filters_gen++;
7785 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7787 up_read(&mm->mmap_sem);
7792 perf_event_restart(event);
7796 * Address range filtering: limiting the data to certain
7797 * instruction address ranges. Filters are ioctl()ed to us from
7798 * userspace as ascii strings.
7800 * Filter string format:
7803 * where ACTION is one of the
7804 * * "filter": limit the trace to this region
7805 * * "start": start tracing from this address
7806 * * "stop": stop tracing at this address/region;
7808 * * for kernel addresses: <start address>[/<size>]
7809 * * for object files: <start address>[/<size>]@</path/to/object/file>
7811 * if <size> is not specified, the range is treated as a single address.
7824 IF_STATE_ACTION = 0,
7829 static const match_table_t if_tokens = {
7830 { IF_ACT_FILTER, "filter" },
7831 { IF_ACT_START, "start" },
7832 { IF_ACT_STOP, "stop" },
7833 { IF_SRC_FILE, "%u/%u@%s" },
7834 { IF_SRC_KERNEL, "%u/%u" },
7835 { IF_SRC_FILEADDR, "%u@%s" },
7836 { IF_SRC_KERNELADDR, "%u" },
7840 * Address filter string parser
7843 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7844 struct list_head *filters)
7846 struct perf_addr_filter *filter = NULL;
7847 char *start, *orig, *filename = NULL;
7849 substring_t args[MAX_OPT_ARGS];
7850 int state = IF_STATE_ACTION, token;
7851 unsigned int kernel = 0;
7854 orig = fstr = kstrdup(fstr, GFP_KERNEL);
7858 while ((start = strsep(&fstr, " ,\n")) != NULL) {
7864 /* filter definition begins */
7865 if (state == IF_STATE_ACTION) {
7866 filter = perf_addr_filter_new(event, filters);
7871 token = match_token(start, if_tokens, args);
7878 if (state != IF_STATE_ACTION)
7881 state = IF_STATE_SOURCE;
7884 case IF_SRC_KERNELADDR:
7888 case IF_SRC_FILEADDR:
7890 if (state != IF_STATE_SOURCE)
7893 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7897 ret = kstrtoul(args[0].from, 0, &filter->offset);
7901 if (filter->range) {
7903 ret = kstrtoul(args[1].from, 0, &filter->size);
7908 if (token == IF_SRC_FILE) {
7909 filename = match_strdup(&args[2]);
7916 state = IF_STATE_END;
7924 * Filter definition is fully parsed, validate and install it.
7925 * Make sure that it doesn't contradict itself or the event's
7928 if (state == IF_STATE_END) {
7929 if (kernel && event->attr.exclude_kernel)
7936 /* look up the path and grab its inode */
7937 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7939 goto fail_free_name;
7941 filter->inode = igrab(d_inode(path.dentry));
7947 if (!filter->inode ||
7948 !S_ISREG(filter->inode->i_mode))
7949 /* free_filters_list() will iput() */
7953 /* ready to consume more filters */
7954 state = IF_STATE_ACTION;
7959 if (state != IF_STATE_ACTION)
7969 free_filters_list(filters);
7976 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7982 * Since this is called in perf_ioctl() path, we're already holding
7985 lockdep_assert_held(&event->ctx->mutex);
7987 if (WARN_ON_ONCE(event->parent))
7991 * For now, we only support filtering in per-task events; doing so
7992 * for CPU-wide events requires additional context switching trickery,
7993 * since same object code will be mapped at different virtual
7994 * addresses in different processes.
7996 if (!event->ctx->task)
7999 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8003 ret = event->pmu->addr_filters_validate(&filters);
8005 free_filters_list(&filters);
8009 /* remove existing filters, if any */
8010 perf_addr_filters_splice(event, &filters);
8012 /* install new filters */
8013 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8018 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8023 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8024 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8025 !has_addr_filter(event))
8028 filter_str = strndup_user(arg, PAGE_SIZE);
8029 if (IS_ERR(filter_str))
8030 return PTR_ERR(filter_str);
8032 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8033 event->attr.type == PERF_TYPE_TRACEPOINT)
8034 ret = ftrace_profile_set_filter(event, event->attr.config,
8036 else if (has_addr_filter(event))
8037 ret = perf_event_set_addr_filter(event, filter_str);
8044 * hrtimer based swevent callback
8047 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8049 enum hrtimer_restart ret = HRTIMER_RESTART;
8050 struct perf_sample_data data;
8051 struct pt_regs *regs;
8052 struct perf_event *event;
8055 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8057 if (event->state != PERF_EVENT_STATE_ACTIVE)
8058 return HRTIMER_NORESTART;
8060 event->pmu->read(event);
8062 perf_sample_data_init(&data, 0, event->hw.last_period);
8063 regs = get_irq_regs();
8065 if (regs && !perf_exclude_event(event, regs)) {
8066 if (!(event->attr.exclude_idle && is_idle_task(current)))
8067 if (__perf_event_overflow(event, 1, &data, regs))
8068 ret = HRTIMER_NORESTART;
8071 period = max_t(u64, 10000, event->hw.sample_period);
8072 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8077 static void perf_swevent_start_hrtimer(struct perf_event *event)
8079 struct hw_perf_event *hwc = &event->hw;
8082 if (!is_sampling_event(event))
8085 period = local64_read(&hwc->period_left);
8090 local64_set(&hwc->period_left, 0);
8092 period = max_t(u64, 10000, hwc->sample_period);
8094 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8095 HRTIMER_MODE_REL_PINNED);
8098 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8100 struct hw_perf_event *hwc = &event->hw;
8102 if (is_sampling_event(event)) {
8103 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8104 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8106 hrtimer_cancel(&hwc->hrtimer);
8110 static void perf_swevent_init_hrtimer(struct perf_event *event)
8112 struct hw_perf_event *hwc = &event->hw;
8114 if (!is_sampling_event(event))
8117 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8118 hwc->hrtimer.function = perf_swevent_hrtimer;
8121 * Since hrtimers have a fixed rate, we can do a static freq->period
8122 * mapping and avoid the whole period adjust feedback stuff.
8124 if (event->attr.freq) {
8125 long freq = event->attr.sample_freq;
8127 event->attr.sample_period = NSEC_PER_SEC / freq;
8128 hwc->sample_period = event->attr.sample_period;
8129 local64_set(&hwc->period_left, hwc->sample_period);
8130 hwc->last_period = hwc->sample_period;
8131 event->attr.freq = 0;
8136 * Software event: cpu wall time clock
8139 static void cpu_clock_event_update(struct perf_event *event)
8144 now = local_clock();
8145 prev = local64_xchg(&event->hw.prev_count, now);
8146 local64_add(now - prev, &event->count);
8149 static void cpu_clock_event_start(struct perf_event *event, int flags)
8151 local64_set(&event->hw.prev_count, local_clock());
8152 perf_swevent_start_hrtimer(event);
8155 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8157 perf_swevent_cancel_hrtimer(event);
8158 cpu_clock_event_update(event);
8161 static int cpu_clock_event_add(struct perf_event *event, int flags)
8163 if (flags & PERF_EF_START)
8164 cpu_clock_event_start(event, flags);
8165 perf_event_update_userpage(event);
8170 static void cpu_clock_event_del(struct perf_event *event, int flags)
8172 cpu_clock_event_stop(event, flags);
8175 static void cpu_clock_event_read(struct perf_event *event)
8177 cpu_clock_event_update(event);
8180 static int cpu_clock_event_init(struct perf_event *event)
8182 if (event->attr.type != PERF_TYPE_SOFTWARE)
8185 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8189 * no branch sampling for software events
8191 if (has_branch_stack(event))
8194 perf_swevent_init_hrtimer(event);
8199 static struct pmu perf_cpu_clock = {
8200 .task_ctx_nr = perf_sw_context,
8202 .capabilities = PERF_PMU_CAP_NO_NMI,
8204 .event_init = cpu_clock_event_init,
8205 .add = cpu_clock_event_add,
8206 .del = cpu_clock_event_del,
8207 .start = cpu_clock_event_start,
8208 .stop = cpu_clock_event_stop,
8209 .read = cpu_clock_event_read,
8213 * Software event: task time clock
8216 static void task_clock_event_update(struct perf_event *event, u64 now)
8221 prev = local64_xchg(&event->hw.prev_count, now);
8223 local64_add(delta, &event->count);
8226 static void task_clock_event_start(struct perf_event *event, int flags)
8228 local64_set(&event->hw.prev_count, event->ctx->time);
8229 perf_swevent_start_hrtimer(event);
8232 static void task_clock_event_stop(struct perf_event *event, int flags)
8234 perf_swevent_cancel_hrtimer(event);
8235 task_clock_event_update(event, event->ctx->time);
8238 static int task_clock_event_add(struct perf_event *event, int flags)
8240 if (flags & PERF_EF_START)
8241 task_clock_event_start(event, flags);
8242 perf_event_update_userpage(event);
8247 static void task_clock_event_del(struct perf_event *event, int flags)
8249 task_clock_event_stop(event, PERF_EF_UPDATE);
8252 static void task_clock_event_read(struct perf_event *event)
8254 u64 now = perf_clock();
8255 u64 delta = now - event->ctx->timestamp;
8256 u64 time = event->ctx->time + delta;
8258 task_clock_event_update(event, time);
8261 static int task_clock_event_init(struct perf_event *event)
8263 if (event->attr.type != PERF_TYPE_SOFTWARE)
8266 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8270 * no branch sampling for software events
8272 if (has_branch_stack(event))
8275 perf_swevent_init_hrtimer(event);
8280 static struct pmu perf_task_clock = {
8281 .task_ctx_nr = perf_sw_context,
8283 .capabilities = PERF_PMU_CAP_NO_NMI,
8285 .event_init = task_clock_event_init,
8286 .add = task_clock_event_add,
8287 .del = task_clock_event_del,
8288 .start = task_clock_event_start,
8289 .stop = task_clock_event_stop,
8290 .read = task_clock_event_read,
8293 static void perf_pmu_nop_void(struct pmu *pmu)
8297 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8301 static int perf_pmu_nop_int(struct pmu *pmu)
8306 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8308 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8310 __this_cpu_write(nop_txn_flags, flags);
8312 if (flags & ~PERF_PMU_TXN_ADD)
8315 perf_pmu_disable(pmu);
8318 static int perf_pmu_commit_txn(struct pmu *pmu)
8320 unsigned int flags = __this_cpu_read(nop_txn_flags);
8322 __this_cpu_write(nop_txn_flags, 0);
8324 if (flags & ~PERF_PMU_TXN_ADD)
8327 perf_pmu_enable(pmu);
8331 static void perf_pmu_cancel_txn(struct pmu *pmu)
8333 unsigned int flags = __this_cpu_read(nop_txn_flags);
8335 __this_cpu_write(nop_txn_flags, 0);
8337 if (flags & ~PERF_PMU_TXN_ADD)
8340 perf_pmu_enable(pmu);
8343 static int perf_event_idx_default(struct perf_event *event)
8349 * Ensures all contexts with the same task_ctx_nr have the same
8350 * pmu_cpu_context too.
8352 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8359 list_for_each_entry(pmu, &pmus, entry) {
8360 if (pmu->task_ctx_nr == ctxn)
8361 return pmu->pmu_cpu_context;
8367 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8371 for_each_possible_cpu(cpu) {
8372 struct perf_cpu_context *cpuctx;
8374 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8376 if (cpuctx->unique_pmu == old_pmu)
8377 cpuctx->unique_pmu = pmu;
8381 static void free_pmu_context(struct pmu *pmu)
8385 mutex_lock(&pmus_lock);
8387 * Like a real lame refcount.
8389 list_for_each_entry(i, &pmus, entry) {
8390 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8391 update_pmu_context(i, pmu);
8396 free_percpu(pmu->pmu_cpu_context);
8398 mutex_unlock(&pmus_lock);
8402 * Let userspace know that this PMU supports address range filtering:
8404 static ssize_t nr_addr_filters_show(struct device *dev,
8405 struct device_attribute *attr,
8408 struct pmu *pmu = dev_get_drvdata(dev);
8410 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8412 DEVICE_ATTR_RO(nr_addr_filters);
8414 static struct idr pmu_idr;
8417 type_show(struct device *dev, struct device_attribute *attr, char *page)
8419 struct pmu *pmu = dev_get_drvdata(dev);
8421 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8423 static DEVICE_ATTR_RO(type);
8426 perf_event_mux_interval_ms_show(struct device *dev,
8427 struct device_attribute *attr,
8430 struct pmu *pmu = dev_get_drvdata(dev);
8432 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8435 static DEFINE_MUTEX(mux_interval_mutex);
8438 perf_event_mux_interval_ms_store(struct device *dev,
8439 struct device_attribute *attr,
8440 const char *buf, size_t count)
8442 struct pmu *pmu = dev_get_drvdata(dev);
8443 int timer, cpu, ret;
8445 ret = kstrtoint(buf, 0, &timer);
8452 /* same value, noting to do */
8453 if (timer == pmu->hrtimer_interval_ms)
8456 mutex_lock(&mux_interval_mutex);
8457 pmu->hrtimer_interval_ms = timer;
8459 /* update all cpuctx for this PMU */
8461 for_each_online_cpu(cpu) {
8462 struct perf_cpu_context *cpuctx;
8463 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8464 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8466 cpu_function_call(cpu,
8467 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8470 mutex_unlock(&mux_interval_mutex);
8474 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8476 static struct attribute *pmu_dev_attrs[] = {
8477 &dev_attr_type.attr,
8478 &dev_attr_perf_event_mux_interval_ms.attr,
8481 ATTRIBUTE_GROUPS(pmu_dev);
8483 static int pmu_bus_running;
8484 static struct bus_type pmu_bus = {
8485 .name = "event_source",
8486 .dev_groups = pmu_dev_groups,
8489 static void pmu_dev_release(struct device *dev)
8494 static int pmu_dev_alloc(struct pmu *pmu)
8498 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8502 pmu->dev->groups = pmu->attr_groups;
8503 device_initialize(pmu->dev);
8504 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8508 dev_set_drvdata(pmu->dev, pmu);
8509 pmu->dev->bus = &pmu_bus;
8510 pmu->dev->release = pmu_dev_release;
8511 ret = device_add(pmu->dev);
8515 /* For PMUs with address filters, throw in an extra attribute: */
8516 if (pmu->nr_addr_filters)
8517 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8526 device_del(pmu->dev);
8529 put_device(pmu->dev);
8533 static struct lock_class_key cpuctx_mutex;
8534 static struct lock_class_key cpuctx_lock;
8536 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8540 mutex_lock(&pmus_lock);
8542 pmu->pmu_disable_count = alloc_percpu(int);
8543 if (!pmu->pmu_disable_count)
8552 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8560 if (pmu_bus_running) {
8561 ret = pmu_dev_alloc(pmu);
8567 if (pmu->task_ctx_nr == perf_hw_context) {
8568 static int hw_context_taken = 0;
8571 * Other than systems with heterogeneous CPUs, it never makes
8572 * sense for two PMUs to share perf_hw_context. PMUs which are
8573 * uncore must use perf_invalid_context.
8575 if (WARN_ON_ONCE(hw_context_taken &&
8576 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8577 pmu->task_ctx_nr = perf_invalid_context;
8579 hw_context_taken = 1;
8582 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8583 if (pmu->pmu_cpu_context)
8584 goto got_cpu_context;
8587 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8588 if (!pmu->pmu_cpu_context)
8591 for_each_possible_cpu(cpu) {
8592 struct perf_cpu_context *cpuctx;
8594 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8595 __perf_event_init_context(&cpuctx->ctx);
8596 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8597 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8598 cpuctx->ctx.pmu = pmu;
8600 __perf_mux_hrtimer_init(cpuctx, cpu);
8602 cpuctx->unique_pmu = pmu;
8606 if (!pmu->start_txn) {
8607 if (pmu->pmu_enable) {
8609 * If we have pmu_enable/pmu_disable calls, install
8610 * transaction stubs that use that to try and batch
8611 * hardware accesses.
8613 pmu->start_txn = perf_pmu_start_txn;
8614 pmu->commit_txn = perf_pmu_commit_txn;
8615 pmu->cancel_txn = perf_pmu_cancel_txn;
8617 pmu->start_txn = perf_pmu_nop_txn;
8618 pmu->commit_txn = perf_pmu_nop_int;
8619 pmu->cancel_txn = perf_pmu_nop_void;
8623 if (!pmu->pmu_enable) {
8624 pmu->pmu_enable = perf_pmu_nop_void;
8625 pmu->pmu_disable = perf_pmu_nop_void;
8628 if (!pmu->event_idx)
8629 pmu->event_idx = perf_event_idx_default;
8631 list_add_rcu(&pmu->entry, &pmus);
8632 atomic_set(&pmu->exclusive_cnt, 0);
8635 mutex_unlock(&pmus_lock);
8640 device_del(pmu->dev);
8641 put_device(pmu->dev);
8644 if (pmu->type >= PERF_TYPE_MAX)
8645 idr_remove(&pmu_idr, pmu->type);
8648 free_percpu(pmu->pmu_disable_count);
8651 EXPORT_SYMBOL_GPL(perf_pmu_register);
8653 void perf_pmu_unregister(struct pmu *pmu)
8655 mutex_lock(&pmus_lock);
8656 list_del_rcu(&pmu->entry);
8657 mutex_unlock(&pmus_lock);
8660 * We dereference the pmu list under both SRCU and regular RCU, so
8661 * synchronize against both of those.
8663 synchronize_srcu(&pmus_srcu);
8666 free_percpu(pmu->pmu_disable_count);
8667 if (pmu->type >= PERF_TYPE_MAX)
8668 idr_remove(&pmu_idr, pmu->type);
8669 if (pmu->nr_addr_filters)
8670 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8671 device_del(pmu->dev);
8672 put_device(pmu->dev);
8673 free_pmu_context(pmu);
8675 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8677 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8679 struct perf_event_context *ctx = NULL;
8682 if (!try_module_get(pmu->module))
8685 if (event->group_leader != event) {
8687 * This ctx->mutex can nest when we're called through
8688 * inheritance. See the perf_event_ctx_lock_nested() comment.
8690 ctx = perf_event_ctx_lock_nested(event->group_leader,
8691 SINGLE_DEPTH_NESTING);
8696 ret = pmu->event_init(event);
8699 perf_event_ctx_unlock(event->group_leader, ctx);
8702 module_put(pmu->module);
8707 static struct pmu *perf_init_event(struct perf_event *event)
8709 struct pmu *pmu = NULL;
8713 idx = srcu_read_lock(&pmus_srcu);
8716 pmu = idr_find(&pmu_idr, event->attr.type);
8719 ret = perf_try_init_event(pmu, event);
8725 list_for_each_entry_rcu(pmu, &pmus, entry) {
8726 ret = perf_try_init_event(pmu, event);
8730 if (ret != -ENOENT) {
8735 pmu = ERR_PTR(-ENOENT);
8737 srcu_read_unlock(&pmus_srcu, idx);
8742 static void attach_sb_event(struct perf_event *event)
8744 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8746 raw_spin_lock(&pel->lock);
8747 list_add_rcu(&event->sb_list, &pel->list);
8748 raw_spin_unlock(&pel->lock);
8752 * We keep a list of all !task (and therefore per-cpu) events
8753 * that need to receive side-band records.
8755 * This avoids having to scan all the various PMU per-cpu contexts
8758 static void account_pmu_sb_event(struct perf_event *event)
8760 if (is_sb_event(event))
8761 attach_sb_event(event);
8764 static void account_event_cpu(struct perf_event *event, int cpu)
8769 if (is_cgroup_event(event))
8770 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8773 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8774 static void account_freq_event_nohz(void)
8776 #ifdef CONFIG_NO_HZ_FULL
8777 /* Lock so we don't race with concurrent unaccount */
8778 spin_lock(&nr_freq_lock);
8779 if (atomic_inc_return(&nr_freq_events) == 1)
8780 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8781 spin_unlock(&nr_freq_lock);
8785 static void account_freq_event(void)
8787 if (tick_nohz_full_enabled())
8788 account_freq_event_nohz();
8790 atomic_inc(&nr_freq_events);
8794 static void account_event(struct perf_event *event)
8801 if (event->attach_state & PERF_ATTACH_TASK)
8803 if (event->attr.mmap || event->attr.mmap_data)
8804 atomic_inc(&nr_mmap_events);
8805 if (event->attr.comm)
8806 atomic_inc(&nr_comm_events);
8807 if (event->attr.task)
8808 atomic_inc(&nr_task_events);
8809 if (event->attr.freq)
8810 account_freq_event();
8811 if (event->attr.context_switch) {
8812 atomic_inc(&nr_switch_events);
8815 if (has_branch_stack(event))
8817 if (is_cgroup_event(event))
8821 if (atomic_inc_not_zero(&perf_sched_count))
8824 mutex_lock(&perf_sched_mutex);
8825 if (!atomic_read(&perf_sched_count)) {
8826 static_branch_enable(&perf_sched_events);
8828 * Guarantee that all CPUs observe they key change and
8829 * call the perf scheduling hooks before proceeding to
8830 * install events that need them.
8832 synchronize_sched();
8835 * Now that we have waited for the sync_sched(), allow further
8836 * increments to by-pass the mutex.
8838 atomic_inc(&perf_sched_count);
8839 mutex_unlock(&perf_sched_mutex);
8843 account_event_cpu(event, event->cpu);
8845 account_pmu_sb_event(event);
8849 * Allocate and initialize a event structure
8851 static struct perf_event *
8852 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8853 struct task_struct *task,
8854 struct perf_event *group_leader,
8855 struct perf_event *parent_event,
8856 perf_overflow_handler_t overflow_handler,
8857 void *context, int cgroup_fd)
8860 struct perf_event *event;
8861 struct hw_perf_event *hwc;
8864 if ((unsigned)cpu >= nr_cpu_ids) {
8865 if (!task || cpu != -1)
8866 return ERR_PTR(-EINVAL);
8869 event = kzalloc(sizeof(*event), GFP_KERNEL);
8871 return ERR_PTR(-ENOMEM);
8874 * Single events are their own group leaders, with an
8875 * empty sibling list:
8878 group_leader = event;
8880 mutex_init(&event->child_mutex);
8881 INIT_LIST_HEAD(&event->child_list);
8883 INIT_LIST_HEAD(&event->group_entry);
8884 INIT_LIST_HEAD(&event->event_entry);
8885 INIT_LIST_HEAD(&event->sibling_list);
8886 INIT_LIST_HEAD(&event->rb_entry);
8887 INIT_LIST_HEAD(&event->active_entry);
8888 INIT_LIST_HEAD(&event->addr_filters.list);
8889 INIT_HLIST_NODE(&event->hlist_entry);
8892 init_waitqueue_head(&event->waitq);
8893 init_irq_work(&event->pending, perf_pending_event);
8895 mutex_init(&event->mmap_mutex);
8896 raw_spin_lock_init(&event->addr_filters.lock);
8898 atomic_long_set(&event->refcount, 1);
8900 event->attr = *attr;
8901 event->group_leader = group_leader;
8905 event->parent = parent_event;
8907 event->ns = get_pid_ns(task_active_pid_ns(current));
8908 event->id = atomic64_inc_return(&perf_event_id);
8910 event->state = PERF_EVENT_STATE_INACTIVE;
8913 event->attach_state = PERF_ATTACH_TASK;
8915 * XXX pmu::event_init needs to know what task to account to
8916 * and we cannot use the ctx information because we need the
8917 * pmu before we get a ctx.
8919 event->hw.target = task;
8922 event->clock = &local_clock;
8924 event->clock = parent_event->clock;
8926 if (!overflow_handler && parent_event) {
8927 overflow_handler = parent_event->overflow_handler;
8928 context = parent_event->overflow_handler_context;
8931 if (overflow_handler) {
8932 event->overflow_handler = overflow_handler;
8933 event->overflow_handler_context = context;
8934 } else if (is_write_backward(event)){
8935 event->overflow_handler = perf_event_output_backward;
8936 event->overflow_handler_context = NULL;
8938 event->overflow_handler = perf_event_output_forward;
8939 event->overflow_handler_context = NULL;
8942 perf_event__state_init(event);
8947 hwc->sample_period = attr->sample_period;
8948 if (attr->freq && attr->sample_freq)
8949 hwc->sample_period = 1;
8950 hwc->last_period = hwc->sample_period;
8952 local64_set(&hwc->period_left, hwc->sample_period);
8955 * we currently do not support PERF_FORMAT_GROUP on inherited events
8957 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8960 if (!has_branch_stack(event))
8961 event->attr.branch_sample_type = 0;
8963 if (cgroup_fd != -1) {
8964 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8969 pmu = perf_init_event(event);
8972 else if (IS_ERR(pmu)) {
8977 err = exclusive_event_init(event);
8981 if (has_addr_filter(event)) {
8982 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8983 sizeof(unsigned long),
8985 if (!event->addr_filters_offs)
8988 /* force hw sync on the address filters */
8989 event->addr_filters_gen = 1;
8992 if (!event->parent) {
8993 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8994 err = get_callchain_buffers(attr->sample_max_stack);
8996 goto err_addr_filters;
9000 /* symmetric to unaccount_event() in _free_event() */
9001 account_event(event);
9006 kfree(event->addr_filters_offs);
9009 exclusive_event_destroy(event);
9013 event->destroy(event);
9014 module_put(pmu->module);
9016 if (is_cgroup_event(event))
9017 perf_detach_cgroup(event);
9019 put_pid_ns(event->ns);
9022 return ERR_PTR(err);
9025 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9026 struct perf_event_attr *attr)
9031 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9035 * zero the full structure, so that a short copy will be nice.
9037 memset(attr, 0, sizeof(*attr));
9039 ret = get_user(size, &uattr->size);
9043 if (size > PAGE_SIZE) /* silly large */
9046 if (!size) /* abi compat */
9047 size = PERF_ATTR_SIZE_VER0;
9049 if (size < PERF_ATTR_SIZE_VER0)
9053 * If we're handed a bigger struct than we know of,
9054 * ensure all the unknown bits are 0 - i.e. new
9055 * user-space does not rely on any kernel feature
9056 * extensions we dont know about yet.
9058 if (size > sizeof(*attr)) {
9059 unsigned char __user *addr;
9060 unsigned char __user *end;
9063 addr = (void __user *)uattr + sizeof(*attr);
9064 end = (void __user *)uattr + size;
9066 for (; addr < end; addr++) {
9067 ret = get_user(val, addr);
9073 size = sizeof(*attr);
9076 ret = copy_from_user(attr, uattr, size);
9080 if (attr->__reserved_1)
9083 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9086 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9089 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9090 u64 mask = attr->branch_sample_type;
9092 /* only using defined bits */
9093 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9096 /* at least one branch bit must be set */
9097 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9100 /* propagate priv level, when not set for branch */
9101 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9103 /* exclude_kernel checked on syscall entry */
9104 if (!attr->exclude_kernel)
9105 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9107 if (!attr->exclude_user)
9108 mask |= PERF_SAMPLE_BRANCH_USER;
9110 if (!attr->exclude_hv)
9111 mask |= PERF_SAMPLE_BRANCH_HV;
9113 * adjust user setting (for HW filter setup)
9115 attr->branch_sample_type = mask;
9117 /* privileged levels capture (kernel, hv): check permissions */
9118 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9119 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9123 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9124 ret = perf_reg_validate(attr->sample_regs_user);
9129 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9130 if (!arch_perf_have_user_stack_dump())
9134 * We have __u32 type for the size, but so far
9135 * we can only use __u16 as maximum due to the
9136 * __u16 sample size limit.
9138 if (attr->sample_stack_user >= USHRT_MAX)
9140 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9144 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9145 ret = perf_reg_validate(attr->sample_regs_intr);
9150 put_user(sizeof(*attr), &uattr->size);
9156 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9158 struct ring_buffer *rb = NULL;
9164 /* don't allow circular references */
9165 if (event == output_event)
9169 * Don't allow cross-cpu buffers
9171 if (output_event->cpu != event->cpu)
9175 * If its not a per-cpu rb, it must be the same task.
9177 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9181 * Mixing clocks in the same buffer is trouble you don't need.
9183 if (output_event->clock != event->clock)
9187 * Either writing ring buffer from beginning or from end.
9188 * Mixing is not allowed.
9190 if (is_write_backward(output_event) != is_write_backward(event))
9194 * If both events generate aux data, they must be on the same PMU
9196 if (has_aux(event) && has_aux(output_event) &&
9197 event->pmu != output_event->pmu)
9201 mutex_lock(&event->mmap_mutex);
9202 /* Can't redirect output if we've got an active mmap() */
9203 if (atomic_read(&event->mmap_count))
9207 /* get the rb we want to redirect to */
9208 rb = ring_buffer_get(output_event);
9213 ring_buffer_attach(event, rb);
9217 mutex_unlock(&event->mmap_mutex);
9223 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9229 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9232 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9234 bool nmi_safe = false;
9237 case CLOCK_MONOTONIC:
9238 event->clock = &ktime_get_mono_fast_ns;
9242 case CLOCK_MONOTONIC_RAW:
9243 event->clock = &ktime_get_raw_fast_ns;
9247 case CLOCK_REALTIME:
9248 event->clock = &ktime_get_real_ns;
9251 case CLOCK_BOOTTIME:
9252 event->clock = &ktime_get_boot_ns;
9256 event->clock = &ktime_get_tai_ns;
9263 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9270 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9272 * @attr_uptr: event_id type attributes for monitoring/sampling
9275 * @group_fd: group leader event fd
9277 SYSCALL_DEFINE5(perf_event_open,
9278 struct perf_event_attr __user *, attr_uptr,
9279 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9281 struct perf_event *group_leader = NULL, *output_event = NULL;
9282 struct perf_event *event, *sibling;
9283 struct perf_event_attr attr;
9284 struct perf_event_context *ctx, *uninitialized_var(gctx);
9285 struct file *event_file = NULL;
9286 struct fd group = {NULL, 0};
9287 struct task_struct *task = NULL;
9292 int f_flags = O_RDWR;
9295 /* for future expandability... */
9296 if (flags & ~PERF_FLAG_ALL)
9299 err = perf_copy_attr(attr_uptr, &attr);
9303 if (!attr.exclude_kernel) {
9304 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9309 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9312 if (attr.sample_period & (1ULL << 63))
9316 if (!attr.sample_max_stack)
9317 attr.sample_max_stack = sysctl_perf_event_max_stack;
9320 * In cgroup mode, the pid argument is used to pass the fd
9321 * opened to the cgroup directory in cgroupfs. The cpu argument
9322 * designates the cpu on which to monitor threads from that
9325 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9328 if (flags & PERF_FLAG_FD_CLOEXEC)
9329 f_flags |= O_CLOEXEC;
9331 event_fd = get_unused_fd_flags(f_flags);
9335 if (group_fd != -1) {
9336 err = perf_fget_light(group_fd, &group);
9339 group_leader = group.file->private_data;
9340 if (flags & PERF_FLAG_FD_OUTPUT)
9341 output_event = group_leader;
9342 if (flags & PERF_FLAG_FD_NO_GROUP)
9343 group_leader = NULL;
9346 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9347 task = find_lively_task_by_vpid(pid);
9349 err = PTR_ERR(task);
9354 if (task && group_leader &&
9355 group_leader->attr.inherit != attr.inherit) {
9363 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9368 * Reuse ptrace permission checks for now.
9370 * We must hold cred_guard_mutex across this and any potential
9371 * perf_install_in_context() call for this new event to
9372 * serialize against exec() altering our credentials (and the
9373 * perf_event_exit_task() that could imply).
9376 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9380 if (flags & PERF_FLAG_PID_CGROUP)
9383 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9384 NULL, NULL, cgroup_fd);
9385 if (IS_ERR(event)) {
9386 err = PTR_ERR(event);
9390 if (is_sampling_event(event)) {
9391 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9398 * Special case software events and allow them to be part of
9399 * any hardware group.
9403 if (attr.use_clockid) {
9404 err = perf_event_set_clock(event, attr.clockid);
9410 (is_software_event(event) != is_software_event(group_leader))) {
9411 if (is_software_event(event)) {
9413 * If event and group_leader are not both a software
9414 * event, and event is, then group leader is not.
9416 * Allow the addition of software events to !software
9417 * groups, this is safe because software events never
9420 pmu = group_leader->pmu;
9421 } else if (is_software_event(group_leader) &&
9422 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9424 * In case the group is a pure software group, and we
9425 * try to add a hardware event, move the whole group to
9426 * the hardware context.
9433 * Get the target context (task or percpu):
9435 ctx = find_get_context(pmu, task, event);
9441 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9447 * Look up the group leader (we will attach this event to it):
9453 * Do not allow a recursive hierarchy (this new sibling
9454 * becoming part of another group-sibling):
9456 if (group_leader->group_leader != group_leader)
9459 /* All events in a group should have the same clock */
9460 if (group_leader->clock != event->clock)
9464 * Do not allow to attach to a group in a different
9465 * task or CPU context:
9469 * Make sure we're both on the same task, or both
9472 if (group_leader->ctx->task != ctx->task)
9476 * Make sure we're both events for the same CPU;
9477 * grouping events for different CPUs is broken; since
9478 * you can never concurrently schedule them anyhow.
9480 if (group_leader->cpu != event->cpu)
9483 if (group_leader->ctx != ctx)
9488 * Only a group leader can be exclusive or pinned
9490 if (attr.exclusive || attr.pinned)
9495 err = perf_event_set_output(event, output_event);
9500 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9502 if (IS_ERR(event_file)) {
9503 err = PTR_ERR(event_file);
9509 gctx = group_leader->ctx;
9510 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9511 if (gctx->task == TASK_TOMBSTONE) {
9516 mutex_lock(&ctx->mutex);
9519 if (ctx->task == TASK_TOMBSTONE) {
9524 if (!perf_event_validate_size(event)) {
9530 * Must be under the same ctx::mutex as perf_install_in_context(),
9531 * because we need to serialize with concurrent event creation.
9533 if (!exclusive_event_installable(event, ctx)) {
9534 /* exclusive and group stuff are assumed mutually exclusive */
9535 WARN_ON_ONCE(move_group);
9541 WARN_ON_ONCE(ctx->parent_ctx);
9544 * This is the point on no return; we cannot fail hereafter. This is
9545 * where we start modifying current state.
9550 * See perf_event_ctx_lock() for comments on the details
9551 * of swizzling perf_event::ctx.
9553 perf_remove_from_context(group_leader, 0);
9555 list_for_each_entry(sibling, &group_leader->sibling_list,
9557 perf_remove_from_context(sibling, 0);
9562 * Wait for everybody to stop referencing the events through
9563 * the old lists, before installing it on new lists.
9568 * Install the group siblings before the group leader.
9570 * Because a group leader will try and install the entire group
9571 * (through the sibling list, which is still in-tact), we can
9572 * end up with siblings installed in the wrong context.
9574 * By installing siblings first we NO-OP because they're not
9575 * reachable through the group lists.
9577 list_for_each_entry(sibling, &group_leader->sibling_list,
9579 perf_event__state_init(sibling);
9580 perf_install_in_context(ctx, sibling, sibling->cpu);
9585 * Removing from the context ends up with disabled
9586 * event. What we want here is event in the initial
9587 * startup state, ready to be add into new context.
9589 perf_event__state_init(group_leader);
9590 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9594 * Now that all events are installed in @ctx, nothing
9595 * references @gctx anymore, so drop the last reference we have
9602 * Precalculate sample_data sizes; do while holding ctx::mutex such
9603 * that we're serialized against further additions and before
9604 * perf_install_in_context() which is the point the event is active and
9605 * can use these values.
9607 perf_event__header_size(event);
9608 perf_event__id_header_size(event);
9610 event->owner = current;
9612 perf_install_in_context(ctx, event, event->cpu);
9613 perf_unpin_context(ctx);
9616 mutex_unlock(&gctx->mutex);
9617 mutex_unlock(&ctx->mutex);
9620 mutex_unlock(&task->signal->cred_guard_mutex);
9621 put_task_struct(task);
9626 mutex_lock(¤t->perf_event_mutex);
9627 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
9628 mutex_unlock(¤t->perf_event_mutex);
9631 * Drop the reference on the group_event after placing the
9632 * new event on the sibling_list. This ensures destruction
9633 * of the group leader will find the pointer to itself in
9634 * perf_group_detach().
9637 fd_install(event_fd, event_file);
9642 mutex_unlock(&gctx->mutex);
9643 mutex_unlock(&ctx->mutex);
9647 perf_unpin_context(ctx);
9651 * If event_file is set, the fput() above will have called ->release()
9652 * and that will take care of freeing the event.
9658 mutex_unlock(&task->signal->cred_guard_mutex);
9663 put_task_struct(task);
9667 put_unused_fd(event_fd);
9672 * perf_event_create_kernel_counter
9674 * @attr: attributes of the counter to create
9675 * @cpu: cpu in which the counter is bound
9676 * @task: task to profile (NULL for percpu)
9679 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9680 struct task_struct *task,
9681 perf_overflow_handler_t overflow_handler,
9684 struct perf_event_context *ctx;
9685 struct perf_event *event;
9689 * Get the target context (task or percpu):
9692 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9693 overflow_handler, context, -1);
9694 if (IS_ERR(event)) {
9695 err = PTR_ERR(event);
9699 /* Mark owner so we could distinguish it from user events. */
9700 event->owner = TASK_TOMBSTONE;
9702 ctx = find_get_context(event->pmu, task, event);
9708 WARN_ON_ONCE(ctx->parent_ctx);
9709 mutex_lock(&ctx->mutex);
9710 if (ctx->task == TASK_TOMBSTONE) {
9715 if (!exclusive_event_installable(event, ctx)) {
9720 perf_install_in_context(ctx, event, cpu);
9721 perf_unpin_context(ctx);
9722 mutex_unlock(&ctx->mutex);
9727 mutex_unlock(&ctx->mutex);
9728 perf_unpin_context(ctx);
9733 return ERR_PTR(err);
9735 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9737 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9739 struct perf_event_context *src_ctx;
9740 struct perf_event_context *dst_ctx;
9741 struct perf_event *event, *tmp;
9744 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9745 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9748 * See perf_event_ctx_lock() for comments on the details
9749 * of swizzling perf_event::ctx.
9751 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9752 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9754 perf_remove_from_context(event, 0);
9755 unaccount_event_cpu(event, src_cpu);
9757 list_add(&event->migrate_entry, &events);
9761 * Wait for the events to quiesce before re-instating them.
9766 * Re-instate events in 2 passes.
9768 * Skip over group leaders and only install siblings on this first
9769 * pass, siblings will not get enabled without a leader, however a
9770 * leader will enable its siblings, even if those are still on the old
9773 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9774 if (event->group_leader == event)
9777 list_del(&event->migrate_entry);
9778 if (event->state >= PERF_EVENT_STATE_OFF)
9779 event->state = PERF_EVENT_STATE_INACTIVE;
9780 account_event_cpu(event, dst_cpu);
9781 perf_install_in_context(dst_ctx, event, dst_cpu);
9786 * Once all the siblings are setup properly, install the group leaders
9789 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9790 list_del(&event->migrate_entry);
9791 if (event->state >= PERF_EVENT_STATE_OFF)
9792 event->state = PERF_EVENT_STATE_INACTIVE;
9793 account_event_cpu(event, dst_cpu);
9794 perf_install_in_context(dst_ctx, event, dst_cpu);
9797 mutex_unlock(&dst_ctx->mutex);
9798 mutex_unlock(&src_ctx->mutex);
9800 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9802 static void sync_child_event(struct perf_event *child_event,
9803 struct task_struct *child)
9805 struct perf_event *parent_event = child_event->parent;
9808 if (child_event->attr.inherit_stat)
9809 perf_event_read_event(child_event, child);
9811 child_val = perf_event_count(child_event);
9814 * Add back the child's count to the parent's count:
9816 atomic64_add(child_val, &parent_event->child_count);
9817 atomic64_add(child_event->total_time_enabled,
9818 &parent_event->child_total_time_enabled);
9819 atomic64_add(child_event->total_time_running,
9820 &parent_event->child_total_time_running);
9824 perf_event_exit_event(struct perf_event *child_event,
9825 struct perf_event_context *child_ctx,
9826 struct task_struct *child)
9828 struct perf_event *parent_event = child_event->parent;
9831 * Do not destroy the 'original' grouping; because of the context
9832 * switch optimization the original events could've ended up in a
9833 * random child task.
9835 * If we were to destroy the original group, all group related
9836 * operations would cease to function properly after this random
9839 * Do destroy all inherited groups, we don't care about those
9840 * and being thorough is better.
9842 raw_spin_lock_irq(&child_ctx->lock);
9843 WARN_ON_ONCE(child_ctx->is_active);
9846 perf_group_detach(child_event);
9847 list_del_event(child_event, child_ctx);
9848 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9849 raw_spin_unlock_irq(&child_ctx->lock);
9852 * Parent events are governed by their filedesc, retain them.
9854 if (!parent_event) {
9855 perf_event_wakeup(child_event);
9859 * Child events can be cleaned up.
9862 sync_child_event(child_event, child);
9865 * Remove this event from the parent's list
9867 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9868 mutex_lock(&parent_event->child_mutex);
9869 list_del_init(&child_event->child_list);
9870 mutex_unlock(&parent_event->child_mutex);
9873 * Kick perf_poll() for is_event_hup().
9875 perf_event_wakeup(parent_event);
9876 free_event(child_event);
9877 put_event(parent_event);
9880 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9882 struct perf_event_context *child_ctx, *clone_ctx = NULL;
9883 struct perf_event *child_event, *next;
9885 WARN_ON_ONCE(child != current);
9887 child_ctx = perf_pin_task_context(child, ctxn);
9892 * In order to reduce the amount of tricky in ctx tear-down, we hold
9893 * ctx::mutex over the entire thing. This serializes against almost
9894 * everything that wants to access the ctx.
9896 * The exception is sys_perf_event_open() /
9897 * perf_event_create_kernel_count() which does find_get_context()
9898 * without ctx::mutex (it cannot because of the move_group double mutex
9899 * lock thing). See the comments in perf_install_in_context().
9901 mutex_lock(&child_ctx->mutex);
9904 * In a single ctx::lock section, de-schedule the events and detach the
9905 * context from the task such that we cannot ever get it scheduled back
9908 raw_spin_lock_irq(&child_ctx->lock);
9909 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9912 * Now that the context is inactive, destroy the task <-> ctx relation
9913 * and mark the context dead.
9915 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9916 put_ctx(child_ctx); /* cannot be last */
9917 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9918 put_task_struct(current); /* cannot be last */
9920 clone_ctx = unclone_ctx(child_ctx);
9921 raw_spin_unlock_irq(&child_ctx->lock);
9927 * Report the task dead after unscheduling the events so that we
9928 * won't get any samples after PERF_RECORD_EXIT. We can however still
9929 * get a few PERF_RECORD_READ events.
9931 perf_event_task(child, child_ctx, 0);
9933 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9934 perf_event_exit_event(child_event, child_ctx, child);
9936 mutex_unlock(&child_ctx->mutex);
9942 * When a child task exits, feed back event values to parent events.
9944 * Can be called with cred_guard_mutex held when called from
9945 * install_exec_creds().
9947 void perf_event_exit_task(struct task_struct *child)
9949 struct perf_event *event, *tmp;
9952 mutex_lock(&child->perf_event_mutex);
9953 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9955 list_del_init(&event->owner_entry);
9958 * Ensure the list deletion is visible before we clear
9959 * the owner, closes a race against perf_release() where
9960 * we need to serialize on the owner->perf_event_mutex.
9962 smp_store_release(&event->owner, NULL);
9964 mutex_unlock(&child->perf_event_mutex);
9966 for_each_task_context_nr(ctxn)
9967 perf_event_exit_task_context(child, ctxn);
9970 * The perf_event_exit_task_context calls perf_event_task
9971 * with child's task_ctx, which generates EXIT events for
9972 * child contexts and sets child->perf_event_ctxp[] to NULL.
9973 * At this point we need to send EXIT events to cpu contexts.
9975 perf_event_task(child, NULL, 0);
9978 static void perf_free_event(struct perf_event *event,
9979 struct perf_event_context *ctx)
9981 struct perf_event *parent = event->parent;
9983 if (WARN_ON_ONCE(!parent))
9986 mutex_lock(&parent->child_mutex);
9987 list_del_init(&event->child_list);
9988 mutex_unlock(&parent->child_mutex);
9992 raw_spin_lock_irq(&ctx->lock);
9993 perf_group_detach(event);
9994 list_del_event(event, ctx);
9995 raw_spin_unlock_irq(&ctx->lock);
10000 * Free an unexposed, unused context as created by inheritance by
10001 * perf_event_init_task below, used by fork() in case of fail.
10003 * Not all locks are strictly required, but take them anyway to be nice and
10004 * help out with the lockdep assertions.
10006 void perf_event_free_task(struct task_struct *task)
10008 struct perf_event_context *ctx;
10009 struct perf_event *event, *tmp;
10012 for_each_task_context_nr(ctxn) {
10013 ctx = task->perf_event_ctxp[ctxn];
10017 mutex_lock(&ctx->mutex);
10019 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10021 perf_free_event(event, ctx);
10023 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10025 perf_free_event(event, ctx);
10027 if (!list_empty(&ctx->pinned_groups) ||
10028 !list_empty(&ctx->flexible_groups))
10031 mutex_unlock(&ctx->mutex);
10037 void perf_event_delayed_put(struct task_struct *task)
10041 for_each_task_context_nr(ctxn)
10042 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10045 struct file *perf_event_get(unsigned int fd)
10049 file = fget_raw(fd);
10051 return ERR_PTR(-EBADF);
10053 if (file->f_op != &perf_fops) {
10055 return ERR_PTR(-EBADF);
10061 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10064 return ERR_PTR(-EINVAL);
10066 return &event->attr;
10070 * inherit a event from parent task to child task:
10072 static struct perf_event *
10073 inherit_event(struct perf_event *parent_event,
10074 struct task_struct *parent,
10075 struct perf_event_context *parent_ctx,
10076 struct task_struct *child,
10077 struct perf_event *group_leader,
10078 struct perf_event_context *child_ctx)
10080 enum perf_event_active_state parent_state = parent_event->state;
10081 struct perf_event *child_event;
10082 unsigned long flags;
10085 * Instead of creating recursive hierarchies of events,
10086 * we link inherited events back to the original parent,
10087 * which has a filp for sure, which we use as the reference
10090 if (parent_event->parent)
10091 parent_event = parent_event->parent;
10093 child_event = perf_event_alloc(&parent_event->attr,
10096 group_leader, parent_event,
10098 if (IS_ERR(child_event))
10099 return child_event;
10102 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10103 * must be under the same lock in order to serialize against
10104 * perf_event_release_kernel(), such that either we must observe
10105 * is_orphaned_event() or they will observe us on the child_list.
10107 mutex_lock(&parent_event->child_mutex);
10108 if (is_orphaned_event(parent_event) ||
10109 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10110 mutex_unlock(&parent_event->child_mutex);
10111 free_event(child_event);
10115 get_ctx(child_ctx);
10118 * Make the child state follow the state of the parent event,
10119 * not its attr.disabled bit. We hold the parent's mutex,
10120 * so we won't race with perf_event_{en, dis}able_family.
10122 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10123 child_event->state = PERF_EVENT_STATE_INACTIVE;
10125 child_event->state = PERF_EVENT_STATE_OFF;
10127 if (parent_event->attr.freq) {
10128 u64 sample_period = parent_event->hw.sample_period;
10129 struct hw_perf_event *hwc = &child_event->hw;
10131 hwc->sample_period = sample_period;
10132 hwc->last_period = sample_period;
10134 local64_set(&hwc->period_left, sample_period);
10137 child_event->ctx = child_ctx;
10138 child_event->overflow_handler = parent_event->overflow_handler;
10139 child_event->overflow_handler_context
10140 = parent_event->overflow_handler_context;
10143 * Precalculate sample_data sizes
10145 perf_event__header_size(child_event);
10146 perf_event__id_header_size(child_event);
10149 * Link it up in the child's context:
10151 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10152 add_event_to_ctx(child_event, child_ctx);
10153 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10156 * Link this into the parent event's child list
10158 list_add_tail(&child_event->child_list, &parent_event->child_list);
10159 mutex_unlock(&parent_event->child_mutex);
10161 return child_event;
10164 static int inherit_group(struct perf_event *parent_event,
10165 struct task_struct *parent,
10166 struct perf_event_context *parent_ctx,
10167 struct task_struct *child,
10168 struct perf_event_context *child_ctx)
10170 struct perf_event *leader;
10171 struct perf_event *sub;
10172 struct perf_event *child_ctr;
10174 leader = inherit_event(parent_event, parent, parent_ctx,
10175 child, NULL, child_ctx);
10176 if (IS_ERR(leader))
10177 return PTR_ERR(leader);
10178 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10179 child_ctr = inherit_event(sub, parent, parent_ctx,
10180 child, leader, child_ctx);
10181 if (IS_ERR(child_ctr))
10182 return PTR_ERR(child_ctr);
10188 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10189 struct perf_event_context *parent_ctx,
10190 struct task_struct *child, int ctxn,
10191 int *inherited_all)
10194 struct perf_event_context *child_ctx;
10196 if (!event->attr.inherit) {
10197 *inherited_all = 0;
10201 child_ctx = child->perf_event_ctxp[ctxn];
10204 * This is executed from the parent task context, so
10205 * inherit events that have been marked for cloning.
10206 * First allocate and initialize a context for the
10210 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10214 child->perf_event_ctxp[ctxn] = child_ctx;
10217 ret = inherit_group(event, parent, parent_ctx,
10221 *inherited_all = 0;
10227 * Initialize the perf_event context in task_struct
10229 static int perf_event_init_context(struct task_struct *child, int ctxn)
10231 struct perf_event_context *child_ctx, *parent_ctx;
10232 struct perf_event_context *cloned_ctx;
10233 struct perf_event *event;
10234 struct task_struct *parent = current;
10235 int inherited_all = 1;
10236 unsigned long flags;
10239 if (likely(!parent->perf_event_ctxp[ctxn]))
10243 * If the parent's context is a clone, pin it so it won't get
10244 * swapped under us.
10246 parent_ctx = perf_pin_task_context(parent, ctxn);
10251 * No need to check if parent_ctx != NULL here; since we saw
10252 * it non-NULL earlier, the only reason for it to become NULL
10253 * is if we exit, and since we're currently in the middle of
10254 * a fork we can't be exiting at the same time.
10258 * Lock the parent list. No need to lock the child - not PID
10259 * hashed yet and not running, so nobody can access it.
10261 mutex_lock(&parent_ctx->mutex);
10264 * We dont have to disable NMIs - we are only looking at
10265 * the list, not manipulating it:
10267 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10268 ret = inherit_task_group(event, parent, parent_ctx,
10269 child, ctxn, &inherited_all);
10275 * We can't hold ctx->lock when iterating the ->flexible_group list due
10276 * to allocations, but we need to prevent rotation because
10277 * rotate_ctx() will change the list from interrupt context.
10279 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10280 parent_ctx->rotate_disable = 1;
10281 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10283 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10284 ret = inherit_task_group(event, parent, parent_ctx,
10285 child, ctxn, &inherited_all);
10290 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10291 parent_ctx->rotate_disable = 0;
10293 child_ctx = child->perf_event_ctxp[ctxn];
10295 if (child_ctx && inherited_all) {
10297 * Mark the child context as a clone of the parent
10298 * context, or of whatever the parent is a clone of.
10300 * Note that if the parent is a clone, the holding of
10301 * parent_ctx->lock avoids it from being uncloned.
10303 cloned_ctx = parent_ctx->parent_ctx;
10305 child_ctx->parent_ctx = cloned_ctx;
10306 child_ctx->parent_gen = parent_ctx->parent_gen;
10308 child_ctx->parent_ctx = parent_ctx;
10309 child_ctx->parent_gen = parent_ctx->generation;
10311 get_ctx(child_ctx->parent_ctx);
10314 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10315 mutex_unlock(&parent_ctx->mutex);
10317 perf_unpin_context(parent_ctx);
10318 put_ctx(parent_ctx);
10324 * Initialize the perf_event context in task_struct
10326 int perf_event_init_task(struct task_struct *child)
10330 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10331 mutex_init(&child->perf_event_mutex);
10332 INIT_LIST_HEAD(&child->perf_event_list);
10334 for_each_task_context_nr(ctxn) {
10335 ret = perf_event_init_context(child, ctxn);
10337 perf_event_free_task(child);
10345 static void __init perf_event_init_all_cpus(void)
10347 struct swevent_htable *swhash;
10350 for_each_possible_cpu(cpu) {
10351 swhash = &per_cpu(swevent_htable, cpu);
10352 mutex_init(&swhash->hlist_mutex);
10353 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10355 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10356 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10360 int perf_event_init_cpu(unsigned int cpu)
10362 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10364 mutex_lock(&swhash->hlist_mutex);
10365 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10366 struct swevent_hlist *hlist;
10368 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10370 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10372 mutex_unlock(&swhash->hlist_mutex);
10376 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10377 static void __perf_event_exit_context(void *__info)
10379 struct perf_event_context *ctx = __info;
10380 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10381 struct perf_event *event;
10383 raw_spin_lock(&ctx->lock);
10384 list_for_each_entry(event, &ctx->event_list, event_entry)
10385 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10386 raw_spin_unlock(&ctx->lock);
10389 static void perf_event_exit_cpu_context(int cpu)
10391 struct perf_event_context *ctx;
10395 idx = srcu_read_lock(&pmus_srcu);
10396 list_for_each_entry_rcu(pmu, &pmus, entry) {
10397 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10399 mutex_lock(&ctx->mutex);
10400 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10401 mutex_unlock(&ctx->mutex);
10403 srcu_read_unlock(&pmus_srcu, idx);
10407 static void perf_event_exit_cpu_context(int cpu) { }
10411 int perf_event_exit_cpu(unsigned int cpu)
10413 perf_event_exit_cpu_context(cpu);
10418 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10422 for_each_online_cpu(cpu)
10423 perf_event_exit_cpu(cpu);
10429 * Run the perf reboot notifier at the very last possible moment so that
10430 * the generic watchdog code runs as long as possible.
10432 static struct notifier_block perf_reboot_notifier = {
10433 .notifier_call = perf_reboot,
10434 .priority = INT_MIN,
10437 void __init perf_event_init(void)
10441 idr_init(&pmu_idr);
10443 perf_event_init_all_cpus();
10444 init_srcu_struct(&pmus_srcu);
10445 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10446 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10447 perf_pmu_register(&perf_task_clock, NULL, -1);
10448 perf_tp_register();
10449 perf_event_init_cpu(smp_processor_id());
10450 register_reboot_notifier(&perf_reboot_notifier);
10452 ret = init_hw_breakpoint();
10453 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10456 * Build time assertion that we keep the data_head at the intended
10457 * location. IOW, validation we got the __reserved[] size right.
10459 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10463 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10466 struct perf_pmu_events_attr *pmu_attr =
10467 container_of(attr, struct perf_pmu_events_attr, attr);
10469 if (pmu_attr->event_str)
10470 return sprintf(page, "%s\n", pmu_attr->event_str);
10474 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10476 static int __init perf_event_sysfs_init(void)
10481 mutex_lock(&pmus_lock);
10483 ret = bus_register(&pmu_bus);
10487 list_for_each_entry(pmu, &pmus, entry) {
10488 if (!pmu->name || pmu->type < 0)
10491 ret = pmu_dev_alloc(pmu);
10492 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10494 pmu_bus_running = 1;
10498 mutex_unlock(&pmus_lock);
10502 device_initcall(perf_event_sysfs_init);
10504 #ifdef CONFIG_CGROUP_PERF
10505 static struct cgroup_subsys_state *
10506 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10508 struct perf_cgroup *jc;
10510 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10512 return ERR_PTR(-ENOMEM);
10514 jc->info = alloc_percpu(struct perf_cgroup_info);
10517 return ERR_PTR(-ENOMEM);
10523 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10525 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10527 free_percpu(jc->info);
10531 static int __perf_cgroup_move(void *info)
10533 struct task_struct *task = info;
10535 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10540 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10542 struct task_struct *task;
10543 struct cgroup_subsys_state *css;
10545 cgroup_taskset_for_each(task, css, tset)
10546 task_function_call(task, __perf_cgroup_move, task);
10549 struct cgroup_subsys perf_event_cgrp_subsys = {
10550 .css_alloc = perf_cgroup_css_alloc,
10551 .css_free = perf_cgroup_css_free,
10552 .attach = perf_cgroup_attach,
10554 #endif /* CONFIG_CGROUP_PERF */