9a5559f5938a5c1f49128f2ad85ccc7f0d4683cc
[platform/kernel/linux-rpi.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret;
440         int perf_cpu = sysctl_perf_cpu_time_max_percent;
441         /*
442          * If throttling is disabled don't allow the write:
443          */
444         if (write && (perf_cpu == 100 || perf_cpu == 0))
445                 return -EINVAL;
446
447         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
448         if (ret || !write)
449                 return ret;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         for_each_sibling_event(sibling, leader)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp = cpuctx->cgrp;
728         struct cgroup_subsys_state *css;
729
730         if (cgrp) {
731                 for (css = &cgrp->css; css; css = css->parent) {
732                         cgrp = container_of(css, struct perf_cgroup, css);
733                         __update_cgrp_time(cgrp);
734                 }
735         }
736 }
737
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740         struct perf_cgroup *cgrp;
741
742         /*
743          * ensure we access cgroup data only when needed and
744          * when we know the cgroup is pinned (css_get)
745          */
746         if (!is_cgroup_event(event))
747                 return;
748
749         cgrp = perf_cgroup_from_task(current, event->ctx);
750         /*
751          * Do not update time when cgroup is not active
752          */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754                 __update_cgrp_time(event->cgrp);
755 }
756
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759                           struct perf_event_context *ctx)
760 {
761         struct perf_cgroup *cgrp;
762         struct perf_cgroup_info *info;
763         struct cgroup_subsys_state *css;
764
765         /*
766          * ctx->lock held by caller
767          * ensure we do not access cgroup data
768          * unless we have the cgroup pinned (css_get)
769          */
770         if (!task || !ctx->nr_cgroups)
771                 return;
772
773         cgrp = perf_cgroup_from_task(task, ctx);
774
775         for (css = &cgrp->css; css; css = css->parent) {
776                 cgrp = container_of(css, struct perf_cgroup, css);
777                 info = this_cpu_ptr(cgrp->info);
778                 info->timestamp = ctx->timestamp;
779         }
780 }
781
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
784 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
786
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795         struct perf_cpu_context *cpuctx;
796         struct list_head *list;
797         unsigned long flags;
798
799         /*
800          * Disable interrupts and preemption to avoid this CPU's
801          * cgrp_cpuctx_entry to change under us.
802          */
803         local_irq_save(flags);
804
805         list = this_cpu_ptr(&cgrp_cpuctx_list);
806         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808
809                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810                 perf_pmu_disable(cpuctx->ctx.pmu);
811
812                 if (mode & PERF_CGROUP_SWOUT) {
813                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814                         /*
815                          * must not be done before ctxswout due
816                          * to event_filter_match() in event_sched_out()
817                          */
818                         cpuctx->cgrp = NULL;
819                 }
820
821                 if (mode & PERF_CGROUP_SWIN) {
822                         WARN_ON_ONCE(cpuctx->cgrp);
823                         /*
824                          * set cgrp before ctxsw in to allow
825                          * event_filter_match() to not have to pass
826                          * task around
827                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
828                          * because cgorup events are only per-cpu
829                          */
830                         cpuctx->cgrp = perf_cgroup_from_task(task,
831                                                              &cpuctx->ctx);
832                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833                 }
834                 perf_pmu_enable(cpuctx->ctx.pmu);
835                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836         }
837
838         local_irq_restore(flags);
839 }
840
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842                                          struct task_struct *next)
843 {
844         struct perf_cgroup *cgrp1;
845         struct perf_cgroup *cgrp2 = NULL;
846
847         rcu_read_lock();
848         /*
849          * we come here when we know perf_cgroup_events > 0
850          * we do not need to pass the ctx here because we know
851          * we are holding the rcu lock
852          */
853         cgrp1 = perf_cgroup_from_task(task, NULL);
854         cgrp2 = perf_cgroup_from_task(next, NULL);
855
856         /*
857          * only schedule out current cgroup events if we know
858          * that we are switching to a different cgroup. Otherwise,
859          * do no touch the cgroup events.
860          */
861         if (cgrp1 != cgrp2)
862                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863
864         rcu_read_unlock();
865 }
866
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868                                         struct task_struct *task)
869 {
870         struct perf_cgroup *cgrp1;
871         struct perf_cgroup *cgrp2 = NULL;
872
873         rcu_read_lock();
874         /*
875          * we come here when we know perf_cgroup_events > 0
876          * we do not need to pass the ctx here because we know
877          * we are holding the rcu lock
878          */
879         cgrp1 = perf_cgroup_from_task(task, NULL);
880         cgrp2 = perf_cgroup_from_task(prev, NULL);
881
882         /*
883          * only need to schedule in cgroup events if we are changing
884          * cgroup during ctxsw. Cgroup events were not scheduled
885          * out of ctxsw out if that was not the case.
886          */
887         if (cgrp1 != cgrp2)
888                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889
890         rcu_read_unlock();
891 }
892
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894                                       struct perf_event_attr *attr,
895                                       struct perf_event *group_leader)
896 {
897         struct perf_cgroup *cgrp;
898         struct cgroup_subsys_state *css;
899         struct fd f = fdget(fd);
900         int ret = 0;
901
902         if (!f.file)
903                 return -EBADF;
904
905         css = css_tryget_online_from_dir(f.file->f_path.dentry,
906                                          &perf_event_cgrp_subsys);
907         if (IS_ERR(css)) {
908                 ret = PTR_ERR(css);
909                 goto out;
910         }
911
912         cgrp = container_of(css, struct perf_cgroup, css);
913         event->cgrp = cgrp;
914
915         /*
916          * all events in a group must monitor
917          * the same cgroup because a task belongs
918          * to only one perf cgroup at a time
919          */
920         if (group_leader && group_leader->cgrp != cgrp) {
921                 perf_detach_cgroup(event);
922                 ret = -EINVAL;
923         }
924 out:
925         fdput(f);
926         return ret;
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932         struct perf_cgroup_info *t;
933         t = per_cpu_ptr(event->cgrp->info, event->cpu);
934         event->shadow_ctx_time = now - t->timestamp;
935 }
936
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943                          struct perf_event_context *ctx, bool add)
944 {
945         struct perf_cpu_context *cpuctx;
946         struct list_head *cpuctx_entry;
947
948         if (!is_cgroup_event(event))
949                 return;
950
951         /*
952          * Because cgroup events are always per-cpu events,
953          * this will always be called from the right CPU.
954          */
955         cpuctx = __get_cpu_context(ctx);
956
957         /*
958          * Since setting cpuctx->cgrp is conditional on the current @cgrp
959          * matching the event's cgroup, we must do this for every new event,
960          * because if the first would mismatch, the second would not try again
961          * and we would leave cpuctx->cgrp unset.
962          */
963         if (add && !cpuctx->cgrp) {
964                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
966                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967                         cpuctx->cgrp = cgrp;
968         }
969
970         if (add && ctx->nr_cgroups++)
971                 return;
972         else if (!add && --ctx->nr_cgroups)
973                 return;
974
975         /* no cgroup running */
976         if (!add)
977                 cpuctx->cgrp = NULL;
978
979         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980         if (add)
981                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982         else
983                 list_del(cpuctx_entry);
984 }
985
986 #else /* !CONFIG_CGROUP_PERF */
987
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991         return true;
992 }
993
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999         return 0;
1000 }
1001
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011                                          struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016                                         struct task_struct *task)
1017 {
1018 }
1019
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021                                       struct perf_event_attr *attr,
1022                                       struct perf_event *group_leader)
1023 {
1024         return -EINVAL;
1025 }
1026
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029                           struct perf_event_context *ctx)
1030 {
1031 }
1032
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045         return 0;
1046 }
1047
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050                          struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053
1054 #endif
1055
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066         struct perf_cpu_context *cpuctx;
1067         bool rotations;
1068
1069         lockdep_assert_irqs_disabled();
1070
1071         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072         rotations = perf_rotate_context(cpuctx);
1073
1074         raw_spin_lock(&cpuctx->hrtimer_lock);
1075         if (rotations)
1076                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077         else
1078                 cpuctx->hrtimer_active = 0;
1079         raw_spin_unlock(&cpuctx->hrtimer_lock);
1080
1081         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086         struct hrtimer *timer = &cpuctx->hrtimer;
1087         struct pmu *pmu = cpuctx->ctx.pmu;
1088         u64 interval;
1089
1090         /* no multiplexing needed for SW PMU */
1091         if (pmu->task_ctx_nr == perf_sw_context)
1092                 return;
1093
1094         /*
1095          * check default is sane, if not set then force to
1096          * default interval (1/tick)
1097          */
1098         interval = pmu->hrtimer_interval_ms;
1099         if (interval < 1)
1100                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101
1102         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103
1104         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106         timer->function = perf_mux_hrtimer_handler;
1107 }
1108
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111         struct hrtimer *timer = &cpuctx->hrtimer;
1112         struct pmu *pmu = cpuctx->ctx.pmu;
1113         unsigned long flags;
1114
1115         /* not for SW PMU */
1116         if (pmu->task_ctx_nr == perf_sw_context)
1117                 return 0;
1118
1119         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120         if (!cpuctx->hrtimer_active) {
1121                 cpuctx->hrtimer_active = 1;
1122                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124         }
1125         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126
1127         return 0;
1128 }
1129
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133         if (!(*count)++)
1134                 pmu->pmu_disable(pmu);
1135 }
1136
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140         if (!--(*count))
1141                 pmu->pmu_enable(pmu);
1142 }
1143
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155
1156         lockdep_assert_irqs_disabled();
1157
1158         WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160         list_add(&ctx->active_ctx_list, head);
1161 }
1162
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165         lockdep_assert_irqs_disabled();
1166
1167         WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169         list_del_init(&ctx->active_ctx_list);
1170 }
1171
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179         struct perf_event_context *ctx;
1180
1181         ctx = container_of(head, struct perf_event_context, rcu_head);
1182         kfree(ctx->task_ctx_data);
1183         kfree(ctx);
1184 }
1185
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188         if (atomic_dec_and_test(&ctx->refcount)) {
1189                 if (ctx->parent_ctx)
1190                         put_ctx(ctx->parent_ctx);
1191                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192                         put_task_struct(ctx->task);
1193                 call_rcu(&ctx->rcu_head, free_ctx);
1194         }
1195 }
1196
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()    [ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()                   [ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()         [ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event() [ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *      task_struct::perf_event_mutex
1252  *        perf_event_context::mutex
1253  *          perf_event::child_mutex;
1254  *            perf_event_context::lock
1255  *          perf_event::mmap_mutex
1256  *          mmap_sem
1257  *            perf_addr_filters_head::lock
1258  *
1259  *    cpu_hotplug_lock
1260  *      pmus_lock
1261  *        cpuctx->mutex / perf_event_context::mutex
1262  */
1263 static struct perf_event_context *
1264 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1265 {
1266         struct perf_event_context *ctx;
1267
1268 again:
1269         rcu_read_lock();
1270         ctx = READ_ONCE(event->ctx);
1271         if (!atomic_inc_not_zero(&ctx->refcount)) {
1272                 rcu_read_unlock();
1273                 goto again;
1274         }
1275         rcu_read_unlock();
1276
1277         mutex_lock_nested(&ctx->mutex, nesting);
1278         if (event->ctx != ctx) {
1279                 mutex_unlock(&ctx->mutex);
1280                 put_ctx(ctx);
1281                 goto again;
1282         }
1283
1284         return ctx;
1285 }
1286
1287 static inline struct perf_event_context *
1288 perf_event_ctx_lock(struct perf_event *event)
1289 {
1290         return perf_event_ctx_lock_nested(event, 0);
1291 }
1292
1293 static void perf_event_ctx_unlock(struct perf_event *event,
1294                                   struct perf_event_context *ctx)
1295 {
1296         mutex_unlock(&ctx->mutex);
1297         put_ctx(ctx);
1298 }
1299
1300 /*
1301  * This must be done under the ctx->lock, such as to serialize against
1302  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1303  * calling scheduler related locks and ctx->lock nests inside those.
1304  */
1305 static __must_check struct perf_event_context *
1306 unclone_ctx(struct perf_event_context *ctx)
1307 {
1308         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1309
1310         lockdep_assert_held(&ctx->lock);
1311
1312         if (parent_ctx)
1313                 ctx->parent_ctx = NULL;
1314         ctx->generation++;
1315
1316         return parent_ctx;
1317 }
1318
1319 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1320                                 enum pid_type type)
1321 {
1322         u32 nr;
1323         /*
1324          * only top level events have the pid namespace they were created in
1325          */
1326         if (event->parent)
1327                 event = event->parent;
1328
1329         nr = __task_pid_nr_ns(p, type, event->ns);
1330         /* avoid -1 if it is idle thread or runs in another ns */
1331         if (!nr && !pid_alive(p))
1332                 nr = -1;
1333         return nr;
1334 }
1335
1336 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1337 {
1338         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1339 }
1340
1341 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1342 {
1343         return perf_event_pid_type(event, p, PIDTYPE_PID);
1344 }
1345
1346 /*
1347  * If we inherit events we want to return the parent event id
1348  * to userspace.
1349  */
1350 static u64 primary_event_id(struct perf_event *event)
1351 {
1352         u64 id = event->id;
1353
1354         if (event->parent)
1355                 id = event->parent->id;
1356
1357         return id;
1358 }
1359
1360 /*
1361  * Get the perf_event_context for a task and lock it.
1362  *
1363  * This has to cope with with the fact that until it is locked,
1364  * the context could get moved to another task.
1365  */
1366 static struct perf_event_context *
1367 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1368 {
1369         struct perf_event_context *ctx;
1370
1371 retry:
1372         /*
1373          * One of the few rules of preemptible RCU is that one cannot do
1374          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1375          * part of the read side critical section was irqs-enabled -- see
1376          * rcu_read_unlock_special().
1377          *
1378          * Since ctx->lock nests under rq->lock we must ensure the entire read
1379          * side critical section has interrupts disabled.
1380          */
1381         local_irq_save(*flags);
1382         rcu_read_lock();
1383         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1384         if (ctx) {
1385                 /*
1386                  * If this context is a clone of another, it might
1387                  * get swapped for another underneath us by
1388                  * perf_event_task_sched_out, though the
1389                  * rcu_read_lock() protects us from any context
1390                  * getting freed.  Lock the context and check if it
1391                  * got swapped before we could get the lock, and retry
1392                  * if so.  If we locked the right context, then it
1393                  * can't get swapped on us any more.
1394                  */
1395                 raw_spin_lock(&ctx->lock);
1396                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1397                         raw_spin_unlock(&ctx->lock);
1398                         rcu_read_unlock();
1399                         local_irq_restore(*flags);
1400                         goto retry;
1401                 }
1402
1403                 if (ctx->task == TASK_TOMBSTONE ||
1404                     !atomic_inc_not_zero(&ctx->refcount)) {
1405                         raw_spin_unlock(&ctx->lock);
1406                         ctx = NULL;
1407                 } else {
1408                         WARN_ON_ONCE(ctx->task != task);
1409                 }
1410         }
1411         rcu_read_unlock();
1412         if (!ctx)
1413                 local_irq_restore(*flags);
1414         return ctx;
1415 }
1416
1417 /*
1418  * Get the context for a task and increment its pin_count so it
1419  * can't get swapped to another task.  This also increments its
1420  * reference count so that the context can't get freed.
1421  */
1422 static struct perf_event_context *
1423 perf_pin_task_context(struct task_struct *task, int ctxn)
1424 {
1425         struct perf_event_context *ctx;
1426         unsigned long flags;
1427
1428         ctx = perf_lock_task_context(task, ctxn, &flags);
1429         if (ctx) {
1430                 ++ctx->pin_count;
1431                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1432         }
1433         return ctx;
1434 }
1435
1436 static void perf_unpin_context(struct perf_event_context *ctx)
1437 {
1438         unsigned long flags;
1439
1440         raw_spin_lock_irqsave(&ctx->lock, flags);
1441         --ctx->pin_count;
1442         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1443 }
1444
1445 /*
1446  * Update the record of the current time in a context.
1447  */
1448 static void update_context_time(struct perf_event_context *ctx)
1449 {
1450         u64 now = perf_clock();
1451
1452         ctx->time += now - ctx->timestamp;
1453         ctx->timestamp = now;
1454 }
1455
1456 static u64 perf_event_time(struct perf_event *event)
1457 {
1458         struct perf_event_context *ctx = event->ctx;
1459
1460         if (is_cgroup_event(event))
1461                 return perf_cgroup_event_time(event);
1462
1463         return ctx ? ctx->time : 0;
1464 }
1465
1466 static enum event_type_t get_event_type(struct perf_event *event)
1467 {
1468         struct perf_event_context *ctx = event->ctx;
1469         enum event_type_t event_type;
1470
1471         lockdep_assert_held(&ctx->lock);
1472
1473         /*
1474          * It's 'group type', really, because if our group leader is
1475          * pinned, so are we.
1476          */
1477         if (event->group_leader != event)
1478                 event = event->group_leader;
1479
1480         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1481         if (!ctx->task)
1482                 event_type |= EVENT_CPU;
1483
1484         return event_type;
1485 }
1486
1487 /*
1488  * Helper function to initialize event group nodes.
1489  */
1490 static void init_event_group(struct perf_event *event)
1491 {
1492         RB_CLEAR_NODE(&event->group_node);
1493         event->group_index = 0;
1494 }
1495
1496 /*
1497  * Extract pinned or flexible groups from the context
1498  * based on event attrs bits.
1499  */
1500 static struct perf_event_groups *
1501 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1502 {
1503         if (event->attr.pinned)
1504                 return &ctx->pinned_groups;
1505         else
1506                 return &ctx->flexible_groups;
1507 }
1508
1509 /*
1510  * Helper function to initializes perf_event_group trees.
1511  */
1512 static void perf_event_groups_init(struct perf_event_groups *groups)
1513 {
1514         groups->tree = RB_ROOT;
1515         groups->index = 0;
1516 }
1517
1518 /*
1519  * Compare function for event groups;
1520  *
1521  * Implements complex key that first sorts by CPU and then by virtual index
1522  * which provides ordering when rotating groups for the same CPU.
1523  */
1524 static bool
1525 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1526 {
1527         if (left->cpu < right->cpu)
1528                 return true;
1529         if (left->cpu > right->cpu)
1530                 return false;
1531
1532         if (left->group_index < right->group_index)
1533                 return true;
1534         if (left->group_index > right->group_index)
1535                 return false;
1536
1537         return false;
1538 }
1539
1540 /*
1541  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1542  * key (see perf_event_groups_less). This places it last inside the CPU
1543  * subtree.
1544  */
1545 static void
1546 perf_event_groups_insert(struct perf_event_groups *groups,
1547                          struct perf_event *event)
1548 {
1549         struct perf_event *node_event;
1550         struct rb_node *parent;
1551         struct rb_node **node;
1552
1553         event->group_index = ++groups->index;
1554
1555         node = &groups->tree.rb_node;
1556         parent = *node;
1557
1558         while (*node) {
1559                 parent = *node;
1560                 node_event = container_of(*node, struct perf_event, group_node);
1561
1562                 if (perf_event_groups_less(event, node_event))
1563                         node = &parent->rb_left;
1564                 else
1565                         node = &parent->rb_right;
1566         }
1567
1568         rb_link_node(&event->group_node, parent, node);
1569         rb_insert_color(&event->group_node, &groups->tree);
1570 }
1571
1572 /*
1573  * Helper function to insert event into the pinned or flexible groups.
1574  */
1575 static void
1576 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1577 {
1578         struct perf_event_groups *groups;
1579
1580         groups = get_event_groups(event, ctx);
1581         perf_event_groups_insert(groups, event);
1582 }
1583
1584 /*
1585  * Delete a group from a tree.
1586  */
1587 static void
1588 perf_event_groups_delete(struct perf_event_groups *groups,
1589                          struct perf_event *event)
1590 {
1591         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1592                      RB_EMPTY_ROOT(&groups->tree));
1593
1594         rb_erase(&event->group_node, &groups->tree);
1595         init_event_group(event);
1596 }
1597
1598 /*
1599  * Helper function to delete event from its groups.
1600  */
1601 static void
1602 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1603 {
1604         struct perf_event_groups *groups;
1605
1606         groups = get_event_groups(event, ctx);
1607         perf_event_groups_delete(groups, event);
1608 }
1609
1610 /*
1611  * Get the leftmost event in the @cpu subtree.
1612  */
1613 static struct perf_event *
1614 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1615 {
1616         struct perf_event *node_event = NULL, *match = NULL;
1617         struct rb_node *node = groups->tree.rb_node;
1618
1619         while (node) {
1620                 node_event = container_of(node, struct perf_event, group_node);
1621
1622                 if (cpu < node_event->cpu) {
1623                         node = node->rb_left;
1624                 } else if (cpu > node_event->cpu) {
1625                         node = node->rb_right;
1626                 } else {
1627                         match = node_event;
1628                         node = node->rb_left;
1629                 }
1630         }
1631
1632         return match;
1633 }
1634
1635 /*
1636  * Like rb_entry_next_safe() for the @cpu subtree.
1637  */
1638 static struct perf_event *
1639 perf_event_groups_next(struct perf_event *event)
1640 {
1641         struct perf_event *next;
1642
1643         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1644         if (next && next->cpu == event->cpu)
1645                 return next;
1646
1647         return NULL;
1648 }
1649
1650 /*
1651  * Iterate through the whole groups tree.
1652  */
1653 #define perf_event_groups_for_each(event, groups)                       \
1654         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1655                                 typeof(*event), group_node); event;     \
1656                 event = rb_entry_safe(rb_next(&event->group_node),      \
1657                                 typeof(*event), group_node))
1658
1659 /*
1660  * Add an event from the lists for its context.
1661  * Must be called with ctx->mutex and ctx->lock held.
1662  */
1663 static void
1664 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1665 {
1666         lockdep_assert_held(&ctx->lock);
1667
1668         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1669         event->attach_state |= PERF_ATTACH_CONTEXT;
1670
1671         event->tstamp = perf_event_time(event);
1672
1673         /*
1674          * If we're a stand alone event or group leader, we go to the context
1675          * list, group events are kept attached to the group so that
1676          * perf_group_detach can, at all times, locate all siblings.
1677          */
1678         if (event->group_leader == event) {
1679                 event->group_caps = event->event_caps;
1680                 add_event_to_groups(event, ctx);
1681         }
1682
1683         list_update_cgroup_event(event, ctx, true);
1684
1685         list_add_rcu(&event->event_entry, &ctx->event_list);
1686         ctx->nr_events++;
1687         if (event->attr.inherit_stat)
1688                 ctx->nr_stat++;
1689
1690         ctx->generation++;
1691 }
1692
1693 /*
1694  * Initialize event state based on the perf_event_attr::disabled.
1695  */
1696 static inline void perf_event__state_init(struct perf_event *event)
1697 {
1698         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1699                                               PERF_EVENT_STATE_INACTIVE;
1700 }
1701
1702 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1703 {
1704         int entry = sizeof(u64); /* value */
1705         int size = 0;
1706         int nr = 1;
1707
1708         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1709                 size += sizeof(u64);
1710
1711         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1712                 size += sizeof(u64);
1713
1714         if (event->attr.read_format & PERF_FORMAT_ID)
1715                 entry += sizeof(u64);
1716
1717         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1718                 nr += nr_siblings;
1719                 size += sizeof(u64);
1720         }
1721
1722         size += entry * nr;
1723         event->read_size = size;
1724 }
1725
1726 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1727 {
1728         struct perf_sample_data *data;
1729         u16 size = 0;
1730
1731         if (sample_type & PERF_SAMPLE_IP)
1732                 size += sizeof(data->ip);
1733
1734         if (sample_type & PERF_SAMPLE_ADDR)
1735                 size += sizeof(data->addr);
1736
1737         if (sample_type & PERF_SAMPLE_PERIOD)
1738                 size += sizeof(data->period);
1739
1740         if (sample_type & PERF_SAMPLE_WEIGHT)
1741                 size += sizeof(data->weight);
1742
1743         if (sample_type & PERF_SAMPLE_READ)
1744                 size += event->read_size;
1745
1746         if (sample_type & PERF_SAMPLE_DATA_SRC)
1747                 size += sizeof(data->data_src.val);
1748
1749         if (sample_type & PERF_SAMPLE_TRANSACTION)
1750                 size += sizeof(data->txn);
1751
1752         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1753                 size += sizeof(data->phys_addr);
1754
1755         event->header_size = size;
1756 }
1757
1758 /*
1759  * Called at perf_event creation and when events are attached/detached from a
1760  * group.
1761  */
1762 static void perf_event__header_size(struct perf_event *event)
1763 {
1764         __perf_event_read_size(event,
1765                                event->group_leader->nr_siblings);
1766         __perf_event_header_size(event, event->attr.sample_type);
1767 }
1768
1769 static void perf_event__id_header_size(struct perf_event *event)
1770 {
1771         struct perf_sample_data *data;
1772         u64 sample_type = event->attr.sample_type;
1773         u16 size = 0;
1774
1775         if (sample_type & PERF_SAMPLE_TID)
1776                 size += sizeof(data->tid_entry);
1777
1778         if (sample_type & PERF_SAMPLE_TIME)
1779                 size += sizeof(data->time);
1780
1781         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1782                 size += sizeof(data->id);
1783
1784         if (sample_type & PERF_SAMPLE_ID)
1785                 size += sizeof(data->id);
1786
1787         if (sample_type & PERF_SAMPLE_STREAM_ID)
1788                 size += sizeof(data->stream_id);
1789
1790         if (sample_type & PERF_SAMPLE_CPU)
1791                 size += sizeof(data->cpu_entry);
1792
1793         event->id_header_size = size;
1794 }
1795
1796 static bool perf_event_validate_size(struct perf_event *event)
1797 {
1798         /*
1799          * The values computed here will be over-written when we actually
1800          * attach the event.
1801          */
1802         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1803         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1804         perf_event__id_header_size(event);
1805
1806         /*
1807          * Sum the lot; should not exceed the 64k limit we have on records.
1808          * Conservative limit to allow for callchains and other variable fields.
1809          */
1810         if (event->read_size + event->header_size +
1811             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1812                 return false;
1813
1814         return true;
1815 }
1816
1817 static void perf_group_attach(struct perf_event *event)
1818 {
1819         struct perf_event *group_leader = event->group_leader, *pos;
1820
1821         lockdep_assert_held(&event->ctx->lock);
1822
1823         /*
1824          * We can have double attach due to group movement in perf_event_open.
1825          */
1826         if (event->attach_state & PERF_ATTACH_GROUP)
1827                 return;
1828
1829         event->attach_state |= PERF_ATTACH_GROUP;
1830
1831         if (group_leader == event)
1832                 return;
1833
1834         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1835
1836         group_leader->group_caps &= event->event_caps;
1837
1838         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1839         group_leader->nr_siblings++;
1840
1841         perf_event__header_size(group_leader);
1842
1843         for_each_sibling_event(pos, group_leader)
1844                 perf_event__header_size(pos);
1845 }
1846
1847 /*
1848  * Remove an event from the lists for its context.
1849  * Must be called with ctx->mutex and ctx->lock held.
1850  */
1851 static void
1852 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1853 {
1854         WARN_ON_ONCE(event->ctx != ctx);
1855         lockdep_assert_held(&ctx->lock);
1856
1857         /*
1858          * We can have double detach due to exit/hot-unplug + close.
1859          */
1860         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1861                 return;
1862
1863         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1864
1865         list_update_cgroup_event(event, ctx, false);
1866
1867         ctx->nr_events--;
1868         if (event->attr.inherit_stat)
1869                 ctx->nr_stat--;
1870
1871         list_del_rcu(&event->event_entry);
1872
1873         if (event->group_leader == event)
1874                 del_event_from_groups(event, ctx);
1875
1876         /*
1877          * If event was in error state, then keep it
1878          * that way, otherwise bogus counts will be
1879          * returned on read(). The only way to get out
1880          * of error state is by explicit re-enabling
1881          * of the event
1882          */
1883         if (event->state > PERF_EVENT_STATE_OFF)
1884                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1885
1886         ctx->generation++;
1887 }
1888
1889 static void perf_group_detach(struct perf_event *event)
1890 {
1891         struct perf_event *sibling, *tmp;
1892         struct perf_event_context *ctx = event->ctx;
1893
1894         lockdep_assert_held(&ctx->lock);
1895
1896         /*
1897          * We can have double detach due to exit/hot-unplug + close.
1898          */
1899         if (!(event->attach_state & PERF_ATTACH_GROUP))
1900                 return;
1901
1902         event->attach_state &= ~PERF_ATTACH_GROUP;
1903
1904         /*
1905          * If this is a sibling, remove it from its group.
1906          */
1907         if (event->group_leader != event) {
1908                 list_del_init(&event->sibling_list);
1909                 event->group_leader->nr_siblings--;
1910                 goto out;
1911         }
1912
1913         /*
1914          * If this was a group event with sibling events then
1915          * upgrade the siblings to singleton events by adding them
1916          * to whatever list we are on.
1917          */
1918         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1919
1920                 sibling->group_leader = sibling;
1921                 list_del_init(&sibling->sibling_list);
1922
1923                 /* Inherit group flags from the previous leader */
1924                 sibling->group_caps = event->group_caps;
1925
1926                 if (!RB_EMPTY_NODE(&event->group_node)) {
1927                         add_event_to_groups(sibling, event->ctx);
1928
1929                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1930                                 struct list_head *list = sibling->attr.pinned ?
1931                                         &ctx->pinned_active : &ctx->flexible_active;
1932
1933                                 list_add_tail(&sibling->active_list, list);
1934                         }
1935                 }
1936
1937                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1938         }
1939
1940 out:
1941         perf_event__header_size(event->group_leader);
1942
1943         for_each_sibling_event(tmp, event->group_leader)
1944                 perf_event__header_size(tmp);
1945 }
1946
1947 static bool is_orphaned_event(struct perf_event *event)
1948 {
1949         return event->state == PERF_EVENT_STATE_DEAD;
1950 }
1951
1952 static inline int __pmu_filter_match(struct perf_event *event)
1953 {
1954         struct pmu *pmu = event->pmu;
1955         return pmu->filter_match ? pmu->filter_match(event) : 1;
1956 }
1957
1958 /*
1959  * Check whether we should attempt to schedule an event group based on
1960  * PMU-specific filtering. An event group can consist of HW and SW events,
1961  * potentially with a SW leader, so we must check all the filters, to
1962  * determine whether a group is schedulable:
1963  */
1964 static inline int pmu_filter_match(struct perf_event *event)
1965 {
1966         struct perf_event *sibling;
1967
1968         if (!__pmu_filter_match(event))
1969                 return 0;
1970
1971         for_each_sibling_event(sibling, event) {
1972                 if (!__pmu_filter_match(sibling))
1973                         return 0;
1974         }
1975
1976         return 1;
1977 }
1978
1979 static inline int
1980 event_filter_match(struct perf_event *event)
1981 {
1982         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1983                perf_cgroup_match(event) && pmu_filter_match(event);
1984 }
1985
1986 static void
1987 event_sched_out(struct perf_event *event,
1988                   struct perf_cpu_context *cpuctx,
1989                   struct perf_event_context *ctx)
1990 {
1991         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1992
1993         WARN_ON_ONCE(event->ctx != ctx);
1994         lockdep_assert_held(&ctx->lock);
1995
1996         if (event->state != PERF_EVENT_STATE_ACTIVE)
1997                 return;
1998
1999         /*
2000          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2001          * we can schedule events _OUT_ individually through things like
2002          * __perf_remove_from_context().
2003          */
2004         list_del_init(&event->active_list);
2005
2006         perf_pmu_disable(event->pmu);
2007
2008         event->pmu->del(event, 0);
2009         event->oncpu = -1;
2010
2011         if (READ_ONCE(event->pending_disable) >= 0) {
2012                 WRITE_ONCE(event->pending_disable, -1);
2013                 state = PERF_EVENT_STATE_OFF;
2014         }
2015         perf_event_set_state(event, state);
2016
2017         if (!is_software_event(event))
2018                 cpuctx->active_oncpu--;
2019         if (!--ctx->nr_active)
2020                 perf_event_ctx_deactivate(ctx);
2021         if (event->attr.freq && event->attr.sample_freq)
2022                 ctx->nr_freq--;
2023         if (event->attr.exclusive || !cpuctx->active_oncpu)
2024                 cpuctx->exclusive = 0;
2025
2026         perf_pmu_enable(event->pmu);
2027 }
2028
2029 static void
2030 group_sched_out(struct perf_event *group_event,
2031                 struct perf_cpu_context *cpuctx,
2032                 struct perf_event_context *ctx)
2033 {
2034         struct perf_event *event;
2035
2036         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2037                 return;
2038
2039         perf_pmu_disable(ctx->pmu);
2040
2041         event_sched_out(group_event, cpuctx, ctx);
2042
2043         /*
2044          * Schedule out siblings (if any):
2045          */
2046         for_each_sibling_event(event, group_event)
2047                 event_sched_out(event, cpuctx, ctx);
2048
2049         perf_pmu_enable(ctx->pmu);
2050
2051         if (group_event->attr.exclusive)
2052                 cpuctx->exclusive = 0;
2053 }
2054
2055 #define DETACH_GROUP    0x01UL
2056
2057 /*
2058  * Cross CPU call to remove a performance event
2059  *
2060  * We disable the event on the hardware level first. After that we
2061  * remove it from the context list.
2062  */
2063 static void
2064 __perf_remove_from_context(struct perf_event *event,
2065                            struct perf_cpu_context *cpuctx,
2066                            struct perf_event_context *ctx,
2067                            void *info)
2068 {
2069         unsigned long flags = (unsigned long)info;
2070
2071         if (ctx->is_active & EVENT_TIME) {
2072                 update_context_time(ctx);
2073                 update_cgrp_time_from_cpuctx(cpuctx);
2074         }
2075
2076         event_sched_out(event, cpuctx, ctx);
2077         if (flags & DETACH_GROUP)
2078                 perf_group_detach(event);
2079         list_del_event(event, ctx);
2080
2081         if (!ctx->nr_events && ctx->is_active) {
2082                 ctx->is_active = 0;
2083                 if (ctx->task) {
2084                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2085                         cpuctx->task_ctx = NULL;
2086                 }
2087         }
2088 }
2089
2090 /*
2091  * Remove the event from a task's (or a CPU's) list of events.
2092  *
2093  * If event->ctx is a cloned context, callers must make sure that
2094  * every task struct that event->ctx->task could possibly point to
2095  * remains valid.  This is OK when called from perf_release since
2096  * that only calls us on the top-level context, which can't be a clone.
2097  * When called from perf_event_exit_task, it's OK because the
2098  * context has been detached from its task.
2099  */
2100 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2101 {
2102         struct perf_event_context *ctx = event->ctx;
2103
2104         lockdep_assert_held(&ctx->mutex);
2105
2106         event_function_call(event, __perf_remove_from_context, (void *)flags);
2107
2108         /*
2109          * The above event_function_call() can NO-OP when it hits
2110          * TASK_TOMBSTONE. In that case we must already have been detached
2111          * from the context (by perf_event_exit_event()) but the grouping
2112          * might still be in-tact.
2113          */
2114         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2115         if ((flags & DETACH_GROUP) &&
2116             (event->attach_state & PERF_ATTACH_GROUP)) {
2117                 /*
2118                  * Since in that case we cannot possibly be scheduled, simply
2119                  * detach now.
2120                  */
2121                 raw_spin_lock_irq(&ctx->lock);
2122                 perf_group_detach(event);
2123                 raw_spin_unlock_irq(&ctx->lock);
2124         }
2125 }
2126
2127 /*
2128  * Cross CPU call to disable a performance event
2129  */
2130 static void __perf_event_disable(struct perf_event *event,
2131                                  struct perf_cpu_context *cpuctx,
2132                                  struct perf_event_context *ctx,
2133                                  void *info)
2134 {
2135         if (event->state < PERF_EVENT_STATE_INACTIVE)
2136                 return;
2137
2138         if (ctx->is_active & EVENT_TIME) {
2139                 update_context_time(ctx);
2140                 update_cgrp_time_from_event(event);
2141         }
2142
2143         if (event == event->group_leader)
2144                 group_sched_out(event, cpuctx, ctx);
2145         else
2146                 event_sched_out(event, cpuctx, ctx);
2147
2148         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2149 }
2150
2151 /*
2152  * Disable an event.
2153  *
2154  * If event->ctx is a cloned context, callers must make sure that
2155  * every task struct that event->ctx->task could possibly point to
2156  * remains valid.  This condition is satisifed when called through
2157  * perf_event_for_each_child or perf_event_for_each because they
2158  * hold the top-level event's child_mutex, so any descendant that
2159  * goes to exit will block in perf_event_exit_event().
2160  *
2161  * When called from perf_pending_event it's OK because event->ctx
2162  * is the current context on this CPU and preemption is disabled,
2163  * hence we can't get into perf_event_task_sched_out for this context.
2164  */
2165 static void _perf_event_disable(struct perf_event *event)
2166 {
2167         struct perf_event_context *ctx = event->ctx;
2168
2169         raw_spin_lock_irq(&ctx->lock);
2170         if (event->state <= PERF_EVENT_STATE_OFF) {
2171                 raw_spin_unlock_irq(&ctx->lock);
2172                 return;
2173         }
2174         raw_spin_unlock_irq(&ctx->lock);
2175
2176         event_function_call(event, __perf_event_disable, NULL);
2177 }
2178
2179 void perf_event_disable_local(struct perf_event *event)
2180 {
2181         event_function_local(event, __perf_event_disable, NULL);
2182 }
2183
2184 /*
2185  * Strictly speaking kernel users cannot create groups and therefore this
2186  * interface does not need the perf_event_ctx_lock() magic.
2187  */
2188 void perf_event_disable(struct perf_event *event)
2189 {
2190         struct perf_event_context *ctx;
2191
2192         ctx = perf_event_ctx_lock(event);
2193         _perf_event_disable(event);
2194         perf_event_ctx_unlock(event, ctx);
2195 }
2196 EXPORT_SYMBOL_GPL(perf_event_disable);
2197
2198 void perf_event_disable_inatomic(struct perf_event *event)
2199 {
2200         WRITE_ONCE(event->pending_disable, smp_processor_id());
2201         /* can fail, see perf_pending_event_disable() */
2202         irq_work_queue(&event->pending);
2203 }
2204
2205 static void perf_set_shadow_time(struct perf_event *event,
2206                                  struct perf_event_context *ctx)
2207 {
2208         /*
2209          * use the correct time source for the time snapshot
2210          *
2211          * We could get by without this by leveraging the
2212          * fact that to get to this function, the caller
2213          * has most likely already called update_context_time()
2214          * and update_cgrp_time_xx() and thus both timestamp
2215          * are identical (or very close). Given that tstamp is,
2216          * already adjusted for cgroup, we could say that:
2217          *    tstamp - ctx->timestamp
2218          * is equivalent to
2219          *    tstamp - cgrp->timestamp.
2220          *
2221          * Then, in perf_output_read(), the calculation would
2222          * work with no changes because:
2223          * - event is guaranteed scheduled in
2224          * - no scheduled out in between
2225          * - thus the timestamp would be the same
2226          *
2227          * But this is a bit hairy.
2228          *
2229          * So instead, we have an explicit cgroup call to remain
2230          * within the time time source all along. We believe it
2231          * is cleaner and simpler to understand.
2232          */
2233         if (is_cgroup_event(event))
2234                 perf_cgroup_set_shadow_time(event, event->tstamp);
2235         else
2236                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2237 }
2238
2239 #define MAX_INTERRUPTS (~0ULL)
2240
2241 static void perf_log_throttle(struct perf_event *event, int enable);
2242 static void perf_log_itrace_start(struct perf_event *event);
2243
2244 static int
2245 event_sched_in(struct perf_event *event,
2246                  struct perf_cpu_context *cpuctx,
2247                  struct perf_event_context *ctx)
2248 {
2249         int ret = 0;
2250
2251         lockdep_assert_held(&ctx->lock);
2252
2253         if (event->state <= PERF_EVENT_STATE_OFF)
2254                 return 0;
2255
2256         WRITE_ONCE(event->oncpu, smp_processor_id());
2257         /*
2258          * Order event::oncpu write to happen before the ACTIVE state is
2259          * visible. This allows perf_event_{stop,read}() to observe the correct
2260          * ->oncpu if it sees ACTIVE.
2261          */
2262         smp_wmb();
2263         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2264
2265         /*
2266          * Unthrottle events, since we scheduled we might have missed several
2267          * ticks already, also for a heavily scheduling task there is little
2268          * guarantee it'll get a tick in a timely manner.
2269          */
2270         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2271                 perf_log_throttle(event, 1);
2272                 event->hw.interrupts = 0;
2273         }
2274
2275         perf_pmu_disable(event->pmu);
2276
2277         perf_set_shadow_time(event, ctx);
2278
2279         perf_log_itrace_start(event);
2280
2281         if (event->pmu->add(event, PERF_EF_START)) {
2282                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2283                 event->oncpu = -1;
2284                 ret = -EAGAIN;
2285                 goto out;
2286         }
2287
2288         if (!is_software_event(event))
2289                 cpuctx->active_oncpu++;
2290         if (!ctx->nr_active++)
2291                 perf_event_ctx_activate(ctx);
2292         if (event->attr.freq && event->attr.sample_freq)
2293                 ctx->nr_freq++;
2294
2295         if (event->attr.exclusive)
2296                 cpuctx->exclusive = 1;
2297
2298 out:
2299         perf_pmu_enable(event->pmu);
2300
2301         return ret;
2302 }
2303
2304 static int
2305 group_sched_in(struct perf_event *group_event,
2306                struct perf_cpu_context *cpuctx,
2307                struct perf_event_context *ctx)
2308 {
2309         struct perf_event *event, *partial_group = NULL;
2310         struct pmu *pmu = ctx->pmu;
2311
2312         if (group_event->state == PERF_EVENT_STATE_OFF)
2313                 return 0;
2314
2315         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2316
2317         if (event_sched_in(group_event, cpuctx, ctx)) {
2318                 pmu->cancel_txn(pmu);
2319                 perf_mux_hrtimer_restart(cpuctx);
2320                 return -EAGAIN;
2321         }
2322
2323         /*
2324          * Schedule in siblings as one group (if any):
2325          */
2326         for_each_sibling_event(event, group_event) {
2327                 if (event_sched_in(event, cpuctx, ctx)) {
2328                         partial_group = event;
2329                         goto group_error;
2330                 }
2331         }
2332
2333         if (!pmu->commit_txn(pmu))
2334                 return 0;
2335
2336 group_error:
2337         /*
2338          * Groups can be scheduled in as one unit only, so undo any
2339          * partial group before returning:
2340          * The events up to the failed event are scheduled out normally.
2341          */
2342         for_each_sibling_event(event, group_event) {
2343                 if (event == partial_group)
2344                         break;
2345
2346                 event_sched_out(event, cpuctx, ctx);
2347         }
2348         event_sched_out(group_event, cpuctx, ctx);
2349
2350         pmu->cancel_txn(pmu);
2351
2352         perf_mux_hrtimer_restart(cpuctx);
2353
2354         return -EAGAIN;
2355 }
2356
2357 /*
2358  * Work out whether we can put this event group on the CPU now.
2359  */
2360 static int group_can_go_on(struct perf_event *event,
2361                            struct perf_cpu_context *cpuctx,
2362                            int can_add_hw)
2363 {
2364         /*
2365          * Groups consisting entirely of software events can always go on.
2366          */
2367         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2368                 return 1;
2369         /*
2370          * If an exclusive group is already on, no other hardware
2371          * events can go on.
2372          */
2373         if (cpuctx->exclusive)
2374                 return 0;
2375         /*
2376          * If this group is exclusive and there are already
2377          * events on the CPU, it can't go on.
2378          */
2379         if (event->attr.exclusive && cpuctx->active_oncpu)
2380                 return 0;
2381         /*
2382          * Otherwise, try to add it if all previous groups were able
2383          * to go on.
2384          */
2385         return can_add_hw;
2386 }
2387
2388 static void add_event_to_ctx(struct perf_event *event,
2389                                struct perf_event_context *ctx)
2390 {
2391         list_add_event(event, ctx);
2392         perf_group_attach(event);
2393 }
2394
2395 static void ctx_sched_out(struct perf_event_context *ctx,
2396                           struct perf_cpu_context *cpuctx,
2397                           enum event_type_t event_type);
2398 static void
2399 ctx_sched_in(struct perf_event_context *ctx,
2400              struct perf_cpu_context *cpuctx,
2401              enum event_type_t event_type,
2402              struct task_struct *task);
2403
2404 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2405                                struct perf_event_context *ctx,
2406                                enum event_type_t event_type)
2407 {
2408         if (!cpuctx->task_ctx)
2409                 return;
2410
2411         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2412                 return;
2413
2414         ctx_sched_out(ctx, cpuctx, event_type);
2415 }
2416
2417 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2418                                 struct perf_event_context *ctx,
2419                                 struct task_struct *task)
2420 {
2421         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2422         if (ctx)
2423                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2424         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2425         if (ctx)
2426                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2427 }
2428
2429 /*
2430  * We want to maintain the following priority of scheduling:
2431  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2432  *  - task pinned (EVENT_PINNED)
2433  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2434  *  - task flexible (EVENT_FLEXIBLE).
2435  *
2436  * In order to avoid unscheduling and scheduling back in everything every
2437  * time an event is added, only do it for the groups of equal priority and
2438  * below.
2439  *
2440  * This can be called after a batch operation on task events, in which case
2441  * event_type is a bit mask of the types of events involved. For CPU events,
2442  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2443  */
2444 static void ctx_resched(struct perf_cpu_context *cpuctx,
2445                         struct perf_event_context *task_ctx,
2446                         enum event_type_t event_type)
2447 {
2448         enum event_type_t ctx_event_type;
2449         bool cpu_event = !!(event_type & EVENT_CPU);
2450
2451         /*
2452          * If pinned groups are involved, flexible groups also need to be
2453          * scheduled out.
2454          */
2455         if (event_type & EVENT_PINNED)
2456                 event_type |= EVENT_FLEXIBLE;
2457
2458         ctx_event_type = event_type & EVENT_ALL;
2459
2460         perf_pmu_disable(cpuctx->ctx.pmu);
2461         if (task_ctx)
2462                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2463
2464         /*
2465          * Decide which cpu ctx groups to schedule out based on the types
2466          * of events that caused rescheduling:
2467          *  - EVENT_CPU: schedule out corresponding groups;
2468          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2469          *  - otherwise, do nothing more.
2470          */
2471         if (cpu_event)
2472                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2473         else if (ctx_event_type & EVENT_PINNED)
2474                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2475
2476         perf_event_sched_in(cpuctx, task_ctx, current);
2477         perf_pmu_enable(cpuctx->ctx.pmu);
2478 }
2479
2480 /*
2481  * Cross CPU call to install and enable a performance event
2482  *
2483  * Very similar to remote_function() + event_function() but cannot assume that
2484  * things like ctx->is_active and cpuctx->task_ctx are set.
2485  */
2486 static int  __perf_install_in_context(void *info)
2487 {
2488         struct perf_event *event = info;
2489         struct perf_event_context *ctx = event->ctx;
2490         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2491         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2492         bool reprogram = true;
2493         int ret = 0;
2494
2495         raw_spin_lock(&cpuctx->ctx.lock);
2496         if (ctx->task) {
2497                 raw_spin_lock(&ctx->lock);
2498                 task_ctx = ctx;
2499
2500                 reprogram = (ctx->task == current);
2501
2502                 /*
2503                  * If the task is running, it must be running on this CPU,
2504                  * otherwise we cannot reprogram things.
2505                  *
2506                  * If its not running, we don't care, ctx->lock will
2507                  * serialize against it becoming runnable.
2508                  */
2509                 if (task_curr(ctx->task) && !reprogram) {
2510                         ret = -ESRCH;
2511                         goto unlock;
2512                 }
2513
2514                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2515         } else if (task_ctx) {
2516                 raw_spin_lock(&task_ctx->lock);
2517         }
2518
2519 #ifdef CONFIG_CGROUP_PERF
2520         if (is_cgroup_event(event)) {
2521                 /*
2522                  * If the current cgroup doesn't match the event's
2523                  * cgroup, we should not try to schedule it.
2524                  */
2525                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2526                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2527                                         event->cgrp->css.cgroup);
2528         }
2529 #endif
2530
2531         if (reprogram) {
2532                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2533                 add_event_to_ctx(event, ctx);
2534                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2535         } else {
2536                 add_event_to_ctx(event, ctx);
2537         }
2538
2539 unlock:
2540         perf_ctx_unlock(cpuctx, task_ctx);
2541
2542         return ret;
2543 }
2544
2545 static bool exclusive_event_installable(struct perf_event *event,
2546                                         struct perf_event_context *ctx);
2547
2548 /*
2549  * Attach a performance event to a context.
2550  *
2551  * Very similar to event_function_call, see comment there.
2552  */
2553 static void
2554 perf_install_in_context(struct perf_event_context *ctx,
2555                         struct perf_event *event,
2556                         int cpu)
2557 {
2558         struct task_struct *task = READ_ONCE(ctx->task);
2559
2560         lockdep_assert_held(&ctx->mutex);
2561
2562         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2563
2564         if (event->cpu != -1)
2565                 event->cpu = cpu;
2566
2567         /*
2568          * Ensures that if we can observe event->ctx, both the event and ctx
2569          * will be 'complete'. See perf_iterate_sb_cpu().
2570          */
2571         smp_store_release(&event->ctx, ctx);
2572
2573         if (!task) {
2574                 cpu_function_call(cpu, __perf_install_in_context, event);
2575                 return;
2576         }
2577
2578         /*
2579          * Should not happen, we validate the ctx is still alive before calling.
2580          */
2581         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2582                 return;
2583
2584         /*
2585          * Installing events is tricky because we cannot rely on ctx->is_active
2586          * to be set in case this is the nr_events 0 -> 1 transition.
2587          *
2588          * Instead we use task_curr(), which tells us if the task is running.
2589          * However, since we use task_curr() outside of rq::lock, we can race
2590          * against the actual state. This means the result can be wrong.
2591          *
2592          * If we get a false positive, we retry, this is harmless.
2593          *
2594          * If we get a false negative, things are complicated. If we are after
2595          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2596          * value must be correct. If we're before, it doesn't matter since
2597          * perf_event_context_sched_in() will program the counter.
2598          *
2599          * However, this hinges on the remote context switch having observed
2600          * our task->perf_event_ctxp[] store, such that it will in fact take
2601          * ctx::lock in perf_event_context_sched_in().
2602          *
2603          * We do this by task_function_call(), if the IPI fails to hit the task
2604          * we know any future context switch of task must see the
2605          * perf_event_ctpx[] store.
2606          */
2607
2608         /*
2609          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2610          * task_cpu() load, such that if the IPI then does not find the task
2611          * running, a future context switch of that task must observe the
2612          * store.
2613          */
2614         smp_mb();
2615 again:
2616         if (!task_function_call(task, __perf_install_in_context, event))
2617                 return;
2618
2619         raw_spin_lock_irq(&ctx->lock);
2620         task = ctx->task;
2621         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2622                 /*
2623                  * Cannot happen because we already checked above (which also
2624                  * cannot happen), and we hold ctx->mutex, which serializes us
2625                  * against perf_event_exit_task_context().
2626                  */
2627                 raw_spin_unlock_irq(&ctx->lock);
2628                 return;
2629         }
2630         /*
2631          * If the task is not running, ctx->lock will avoid it becoming so,
2632          * thus we can safely install the event.
2633          */
2634         if (task_curr(task)) {
2635                 raw_spin_unlock_irq(&ctx->lock);
2636                 goto again;
2637         }
2638         add_event_to_ctx(event, ctx);
2639         raw_spin_unlock_irq(&ctx->lock);
2640 }
2641
2642 /*
2643  * Cross CPU call to enable a performance event
2644  */
2645 static void __perf_event_enable(struct perf_event *event,
2646                                 struct perf_cpu_context *cpuctx,
2647                                 struct perf_event_context *ctx,
2648                                 void *info)
2649 {
2650         struct perf_event *leader = event->group_leader;
2651         struct perf_event_context *task_ctx;
2652
2653         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2654             event->state <= PERF_EVENT_STATE_ERROR)
2655                 return;
2656
2657         if (ctx->is_active)
2658                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2659
2660         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2661
2662         if (!ctx->is_active)
2663                 return;
2664
2665         if (!event_filter_match(event)) {
2666                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2667                 return;
2668         }
2669
2670         /*
2671          * If the event is in a group and isn't the group leader,
2672          * then don't put it on unless the group is on.
2673          */
2674         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2675                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2676                 return;
2677         }
2678
2679         task_ctx = cpuctx->task_ctx;
2680         if (ctx->task)
2681                 WARN_ON_ONCE(task_ctx != ctx);
2682
2683         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2684 }
2685
2686 /*
2687  * Enable an event.
2688  *
2689  * If event->ctx is a cloned context, callers must make sure that
2690  * every task struct that event->ctx->task could possibly point to
2691  * remains valid.  This condition is satisfied when called through
2692  * perf_event_for_each_child or perf_event_for_each as described
2693  * for perf_event_disable.
2694  */
2695 static void _perf_event_enable(struct perf_event *event)
2696 {
2697         struct perf_event_context *ctx = event->ctx;
2698
2699         raw_spin_lock_irq(&ctx->lock);
2700         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2701             event->state <  PERF_EVENT_STATE_ERROR) {
2702                 raw_spin_unlock_irq(&ctx->lock);
2703                 return;
2704         }
2705
2706         /*
2707          * If the event is in error state, clear that first.
2708          *
2709          * That way, if we see the event in error state below, we know that it
2710          * has gone back into error state, as distinct from the task having
2711          * been scheduled away before the cross-call arrived.
2712          */
2713         if (event->state == PERF_EVENT_STATE_ERROR)
2714                 event->state = PERF_EVENT_STATE_OFF;
2715         raw_spin_unlock_irq(&ctx->lock);
2716
2717         event_function_call(event, __perf_event_enable, NULL);
2718 }
2719
2720 /*
2721  * See perf_event_disable();
2722  */
2723 void perf_event_enable(struct perf_event *event)
2724 {
2725         struct perf_event_context *ctx;
2726
2727         ctx = perf_event_ctx_lock(event);
2728         _perf_event_enable(event);
2729         perf_event_ctx_unlock(event, ctx);
2730 }
2731 EXPORT_SYMBOL_GPL(perf_event_enable);
2732
2733 struct stop_event_data {
2734         struct perf_event       *event;
2735         unsigned int            restart;
2736 };
2737
2738 static int __perf_event_stop(void *info)
2739 {
2740         struct stop_event_data *sd = info;
2741         struct perf_event *event = sd->event;
2742
2743         /* if it's already INACTIVE, do nothing */
2744         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2745                 return 0;
2746
2747         /* matches smp_wmb() in event_sched_in() */
2748         smp_rmb();
2749
2750         /*
2751          * There is a window with interrupts enabled before we get here,
2752          * so we need to check again lest we try to stop another CPU's event.
2753          */
2754         if (READ_ONCE(event->oncpu) != smp_processor_id())
2755                 return -EAGAIN;
2756
2757         event->pmu->stop(event, PERF_EF_UPDATE);
2758
2759         /*
2760          * May race with the actual stop (through perf_pmu_output_stop()),
2761          * but it is only used for events with AUX ring buffer, and such
2762          * events will refuse to restart because of rb::aux_mmap_count==0,
2763          * see comments in perf_aux_output_begin().
2764          *
2765          * Since this is happening on an event-local CPU, no trace is lost
2766          * while restarting.
2767          */
2768         if (sd->restart)
2769                 event->pmu->start(event, 0);
2770
2771         return 0;
2772 }
2773
2774 static int perf_event_stop(struct perf_event *event, int restart)
2775 {
2776         struct stop_event_data sd = {
2777                 .event          = event,
2778                 .restart        = restart,
2779         };
2780         int ret = 0;
2781
2782         do {
2783                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2784                         return 0;
2785
2786                 /* matches smp_wmb() in event_sched_in() */
2787                 smp_rmb();
2788
2789                 /*
2790                  * We only want to restart ACTIVE events, so if the event goes
2791                  * inactive here (event->oncpu==-1), there's nothing more to do;
2792                  * fall through with ret==-ENXIO.
2793                  */
2794                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2795                                         __perf_event_stop, &sd);
2796         } while (ret == -EAGAIN);
2797
2798         return ret;
2799 }
2800
2801 /*
2802  * In order to contain the amount of racy and tricky in the address filter
2803  * configuration management, it is a two part process:
2804  *
2805  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2806  *      we update the addresses of corresponding vmas in
2807  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2808  * (p2) when an event is scheduled in (pmu::add), it calls
2809  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2810  *      if the generation has changed since the previous call.
2811  *
2812  * If (p1) happens while the event is active, we restart it to force (p2).
2813  *
2814  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2815  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2816  *     ioctl;
2817  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2818  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2819  *     for reading;
2820  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2821  *     of exec.
2822  */
2823 void perf_event_addr_filters_sync(struct perf_event *event)
2824 {
2825         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2826
2827         if (!has_addr_filter(event))
2828                 return;
2829
2830         raw_spin_lock(&ifh->lock);
2831         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2832                 event->pmu->addr_filters_sync(event);
2833                 event->hw.addr_filters_gen = event->addr_filters_gen;
2834         }
2835         raw_spin_unlock(&ifh->lock);
2836 }
2837 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2838
2839 static int _perf_event_refresh(struct perf_event *event, int refresh)
2840 {
2841         /*
2842          * not supported on inherited events
2843          */
2844         if (event->attr.inherit || !is_sampling_event(event))
2845                 return -EINVAL;
2846
2847         atomic_add(refresh, &event->event_limit);
2848         _perf_event_enable(event);
2849
2850         return 0;
2851 }
2852
2853 /*
2854  * See perf_event_disable()
2855  */
2856 int perf_event_refresh(struct perf_event *event, int refresh)
2857 {
2858         struct perf_event_context *ctx;
2859         int ret;
2860
2861         ctx = perf_event_ctx_lock(event);
2862         ret = _perf_event_refresh(event, refresh);
2863         perf_event_ctx_unlock(event, ctx);
2864
2865         return ret;
2866 }
2867 EXPORT_SYMBOL_GPL(perf_event_refresh);
2868
2869 static int perf_event_modify_breakpoint(struct perf_event *bp,
2870                                          struct perf_event_attr *attr)
2871 {
2872         int err;
2873
2874         _perf_event_disable(bp);
2875
2876         err = modify_user_hw_breakpoint_check(bp, attr, true);
2877
2878         if (!bp->attr.disabled)
2879                 _perf_event_enable(bp);
2880
2881         return err;
2882 }
2883
2884 static int perf_event_modify_attr(struct perf_event *event,
2885                                   struct perf_event_attr *attr)
2886 {
2887         if (event->attr.type != attr->type)
2888                 return -EINVAL;
2889
2890         switch (event->attr.type) {
2891         case PERF_TYPE_BREAKPOINT:
2892                 return perf_event_modify_breakpoint(event, attr);
2893         default:
2894                 /* Place holder for future additions. */
2895                 return -EOPNOTSUPP;
2896         }
2897 }
2898
2899 static void ctx_sched_out(struct perf_event_context *ctx,
2900                           struct perf_cpu_context *cpuctx,
2901                           enum event_type_t event_type)
2902 {
2903         struct perf_event *event, *tmp;
2904         int is_active = ctx->is_active;
2905
2906         lockdep_assert_held(&ctx->lock);
2907
2908         if (likely(!ctx->nr_events)) {
2909                 /*
2910                  * See __perf_remove_from_context().
2911                  */
2912                 WARN_ON_ONCE(ctx->is_active);
2913                 if (ctx->task)
2914                         WARN_ON_ONCE(cpuctx->task_ctx);
2915                 return;
2916         }
2917
2918         ctx->is_active &= ~event_type;
2919         if (!(ctx->is_active & EVENT_ALL))
2920                 ctx->is_active = 0;
2921
2922         if (ctx->task) {
2923                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2924                 if (!ctx->is_active)
2925                         cpuctx->task_ctx = NULL;
2926         }
2927
2928         /*
2929          * Always update time if it was set; not only when it changes.
2930          * Otherwise we can 'forget' to update time for any but the last
2931          * context we sched out. For example:
2932          *
2933          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2934          *   ctx_sched_out(.event_type = EVENT_PINNED)
2935          *
2936          * would only update time for the pinned events.
2937          */
2938         if (is_active & EVENT_TIME) {
2939                 /* update (and stop) ctx time */
2940                 update_context_time(ctx);
2941                 update_cgrp_time_from_cpuctx(cpuctx);
2942         }
2943
2944         is_active ^= ctx->is_active; /* changed bits */
2945
2946         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2947                 return;
2948
2949         perf_pmu_disable(ctx->pmu);
2950         if (is_active & EVENT_PINNED) {
2951                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2952                         group_sched_out(event, cpuctx, ctx);
2953         }
2954
2955         if (is_active & EVENT_FLEXIBLE) {
2956                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2957                         group_sched_out(event, cpuctx, ctx);
2958         }
2959         perf_pmu_enable(ctx->pmu);
2960 }
2961
2962 /*
2963  * Test whether two contexts are equivalent, i.e. whether they have both been
2964  * cloned from the same version of the same context.
2965  *
2966  * Equivalence is measured using a generation number in the context that is
2967  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2968  * and list_del_event().
2969  */
2970 static int context_equiv(struct perf_event_context *ctx1,
2971                          struct perf_event_context *ctx2)
2972 {
2973         lockdep_assert_held(&ctx1->lock);
2974         lockdep_assert_held(&ctx2->lock);
2975
2976         /* Pinning disables the swap optimization */
2977         if (ctx1->pin_count || ctx2->pin_count)
2978                 return 0;
2979
2980         /* If ctx1 is the parent of ctx2 */
2981         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2982                 return 1;
2983
2984         /* If ctx2 is the parent of ctx1 */
2985         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2986                 return 1;
2987
2988         /*
2989          * If ctx1 and ctx2 have the same parent; we flatten the parent
2990          * hierarchy, see perf_event_init_context().
2991          */
2992         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2993                         ctx1->parent_gen == ctx2->parent_gen)
2994                 return 1;
2995
2996         /* Unmatched */
2997         return 0;
2998 }
2999
3000 static void __perf_event_sync_stat(struct perf_event *event,
3001                                      struct perf_event *next_event)
3002 {
3003         u64 value;
3004
3005         if (!event->attr.inherit_stat)
3006                 return;
3007
3008         /*
3009          * Update the event value, we cannot use perf_event_read()
3010          * because we're in the middle of a context switch and have IRQs
3011          * disabled, which upsets smp_call_function_single(), however
3012          * we know the event must be on the current CPU, therefore we
3013          * don't need to use it.
3014          */
3015         if (event->state == PERF_EVENT_STATE_ACTIVE)
3016                 event->pmu->read(event);
3017
3018         perf_event_update_time(event);
3019
3020         /*
3021          * In order to keep per-task stats reliable we need to flip the event
3022          * values when we flip the contexts.
3023          */
3024         value = local64_read(&next_event->count);
3025         value = local64_xchg(&event->count, value);
3026         local64_set(&next_event->count, value);
3027
3028         swap(event->total_time_enabled, next_event->total_time_enabled);
3029         swap(event->total_time_running, next_event->total_time_running);
3030
3031         /*
3032          * Since we swizzled the values, update the user visible data too.
3033          */
3034         perf_event_update_userpage(event);
3035         perf_event_update_userpage(next_event);
3036 }
3037
3038 static void perf_event_sync_stat(struct perf_event_context *ctx,
3039                                    struct perf_event_context *next_ctx)
3040 {
3041         struct perf_event *event, *next_event;
3042
3043         if (!ctx->nr_stat)
3044                 return;
3045
3046         update_context_time(ctx);
3047
3048         event = list_first_entry(&ctx->event_list,
3049                                    struct perf_event, event_entry);
3050
3051         next_event = list_first_entry(&next_ctx->event_list,
3052                                         struct perf_event, event_entry);
3053
3054         while (&event->event_entry != &ctx->event_list &&
3055                &next_event->event_entry != &next_ctx->event_list) {
3056
3057                 __perf_event_sync_stat(event, next_event);
3058
3059                 event = list_next_entry(event, event_entry);
3060                 next_event = list_next_entry(next_event, event_entry);
3061         }
3062 }
3063
3064 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3065                                          struct task_struct *next)
3066 {
3067         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3068         struct perf_event_context *next_ctx;
3069         struct perf_event_context *parent, *next_parent;
3070         struct perf_cpu_context *cpuctx;
3071         int do_switch = 1;
3072
3073         if (likely(!ctx))
3074                 return;
3075
3076         cpuctx = __get_cpu_context(ctx);
3077         if (!cpuctx->task_ctx)
3078                 return;
3079
3080         rcu_read_lock();
3081         next_ctx = next->perf_event_ctxp[ctxn];
3082         if (!next_ctx)
3083                 goto unlock;
3084
3085         parent = rcu_dereference(ctx->parent_ctx);
3086         next_parent = rcu_dereference(next_ctx->parent_ctx);
3087
3088         /* If neither context have a parent context; they cannot be clones. */
3089         if (!parent && !next_parent)
3090                 goto unlock;
3091
3092         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3093                 /*
3094                  * Looks like the two contexts are clones, so we might be
3095                  * able to optimize the context switch.  We lock both
3096                  * contexts and check that they are clones under the
3097                  * lock (including re-checking that neither has been
3098                  * uncloned in the meantime).  It doesn't matter which
3099                  * order we take the locks because no other cpu could
3100                  * be trying to lock both of these tasks.
3101                  */
3102                 raw_spin_lock(&ctx->lock);
3103                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3104                 if (context_equiv(ctx, next_ctx)) {
3105                         WRITE_ONCE(ctx->task, next);
3106                         WRITE_ONCE(next_ctx->task, task);
3107
3108                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3109
3110                         /*
3111                          * RCU_INIT_POINTER here is safe because we've not
3112                          * modified the ctx and the above modification of
3113                          * ctx->task and ctx->task_ctx_data are immaterial
3114                          * since those values are always verified under
3115                          * ctx->lock which we're now holding.
3116                          */
3117                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3118                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3119
3120                         do_switch = 0;
3121
3122                         perf_event_sync_stat(ctx, next_ctx);
3123                 }
3124                 raw_spin_unlock(&next_ctx->lock);
3125                 raw_spin_unlock(&ctx->lock);
3126         }
3127 unlock:
3128         rcu_read_unlock();
3129
3130         if (do_switch) {
3131                 raw_spin_lock(&ctx->lock);
3132                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3133                 raw_spin_unlock(&ctx->lock);
3134         }
3135 }
3136
3137 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3138
3139 void perf_sched_cb_dec(struct pmu *pmu)
3140 {
3141         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3142
3143         this_cpu_dec(perf_sched_cb_usages);
3144
3145         if (!--cpuctx->sched_cb_usage)
3146                 list_del(&cpuctx->sched_cb_entry);
3147 }
3148
3149
3150 void perf_sched_cb_inc(struct pmu *pmu)
3151 {
3152         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3153
3154         if (!cpuctx->sched_cb_usage++)
3155                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3156
3157         this_cpu_inc(perf_sched_cb_usages);
3158 }
3159
3160 /*
3161  * This function provides the context switch callback to the lower code
3162  * layer. It is invoked ONLY when the context switch callback is enabled.
3163  *
3164  * This callback is relevant even to per-cpu events; for example multi event
3165  * PEBS requires this to provide PID/TID information. This requires we flush
3166  * all queued PEBS records before we context switch to a new task.
3167  */
3168 static void perf_pmu_sched_task(struct task_struct *prev,
3169                                 struct task_struct *next,
3170                                 bool sched_in)
3171 {
3172         struct perf_cpu_context *cpuctx;
3173         struct pmu *pmu;
3174
3175         if (prev == next)
3176                 return;
3177
3178         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3179                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3180
3181                 if (WARN_ON_ONCE(!pmu->sched_task))
3182                         continue;
3183
3184                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3185                 perf_pmu_disable(pmu);
3186
3187                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3188
3189                 perf_pmu_enable(pmu);
3190                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3191         }
3192 }
3193
3194 static void perf_event_switch(struct task_struct *task,
3195                               struct task_struct *next_prev, bool sched_in);
3196
3197 #define for_each_task_context_nr(ctxn)                                  \
3198         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3199
3200 /*
3201  * Called from scheduler to remove the events of the current task,
3202  * with interrupts disabled.
3203  *
3204  * We stop each event and update the event value in event->count.
3205  *
3206  * This does not protect us against NMI, but disable()
3207  * sets the disabled bit in the control field of event _before_
3208  * accessing the event control register. If a NMI hits, then it will
3209  * not restart the event.
3210  */
3211 void __perf_event_task_sched_out(struct task_struct *task,
3212                                  struct task_struct *next)
3213 {
3214         int ctxn;
3215
3216         if (__this_cpu_read(perf_sched_cb_usages))
3217                 perf_pmu_sched_task(task, next, false);
3218
3219         if (atomic_read(&nr_switch_events))
3220                 perf_event_switch(task, next, false);
3221
3222         for_each_task_context_nr(ctxn)
3223                 perf_event_context_sched_out(task, ctxn, next);
3224
3225         /*
3226          * if cgroup events exist on this CPU, then we need
3227          * to check if we have to switch out PMU state.
3228          * cgroup event are system-wide mode only
3229          */
3230         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3231                 perf_cgroup_sched_out(task, next);
3232 }
3233
3234 /*
3235  * Called with IRQs disabled
3236  */
3237 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3238                               enum event_type_t event_type)
3239 {
3240         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3241 }
3242
3243 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3244                               int (*func)(struct perf_event *, void *), void *data)
3245 {
3246         struct perf_event **evt, *evt1, *evt2;
3247         int ret;
3248
3249         evt1 = perf_event_groups_first(groups, -1);
3250         evt2 = perf_event_groups_first(groups, cpu);
3251
3252         while (evt1 || evt2) {
3253                 if (evt1 && evt2) {
3254                         if (evt1->group_index < evt2->group_index)
3255                                 evt = &evt1;
3256                         else
3257                                 evt = &evt2;
3258                 } else if (evt1) {
3259                         evt = &evt1;
3260                 } else {
3261                         evt = &evt2;
3262                 }
3263
3264                 ret = func(*evt, data);
3265                 if (ret)
3266                         return ret;
3267
3268                 *evt = perf_event_groups_next(*evt);
3269         }
3270
3271         return 0;
3272 }
3273
3274 struct sched_in_data {
3275         struct perf_event_context *ctx;
3276         struct perf_cpu_context *cpuctx;
3277         int can_add_hw;
3278 };
3279
3280 static int pinned_sched_in(struct perf_event *event, void *data)
3281 {
3282         struct sched_in_data *sid = data;
3283
3284         if (event->state <= PERF_EVENT_STATE_OFF)
3285                 return 0;
3286
3287         if (!event_filter_match(event))
3288                 return 0;
3289
3290         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3291                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3292                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3293         }
3294
3295         /*
3296          * If this pinned group hasn't been scheduled,
3297          * put it in error state.
3298          */
3299         if (event->state == PERF_EVENT_STATE_INACTIVE)
3300                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3301
3302         return 0;
3303 }
3304
3305 static int flexible_sched_in(struct perf_event *event, void *data)
3306 {
3307         struct sched_in_data *sid = data;
3308
3309         if (event->state <= PERF_EVENT_STATE_OFF)
3310                 return 0;
3311
3312         if (!event_filter_match(event))
3313                 return 0;
3314
3315         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3316                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3317                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3318                 else
3319                         sid->can_add_hw = 0;
3320         }
3321
3322         return 0;
3323 }
3324
3325 static void
3326 ctx_pinned_sched_in(struct perf_event_context *ctx,
3327                     struct perf_cpu_context *cpuctx)
3328 {
3329         struct sched_in_data sid = {
3330                 .ctx = ctx,
3331                 .cpuctx = cpuctx,
3332                 .can_add_hw = 1,
3333         };
3334
3335         visit_groups_merge(&ctx->pinned_groups,
3336                            smp_processor_id(),
3337                            pinned_sched_in, &sid);
3338 }
3339
3340 static void
3341 ctx_flexible_sched_in(struct perf_event_context *ctx,
3342                       struct perf_cpu_context *cpuctx)
3343 {
3344         struct sched_in_data sid = {
3345                 .ctx = ctx,
3346                 .cpuctx = cpuctx,
3347                 .can_add_hw = 1,
3348         };
3349
3350         visit_groups_merge(&ctx->flexible_groups,
3351                            smp_processor_id(),
3352                            flexible_sched_in, &sid);
3353 }
3354
3355 static void
3356 ctx_sched_in(struct perf_event_context *ctx,
3357              struct perf_cpu_context *cpuctx,
3358              enum event_type_t event_type,
3359              struct task_struct *task)
3360 {
3361         int is_active = ctx->is_active;
3362         u64 now;
3363
3364         lockdep_assert_held(&ctx->lock);
3365
3366         if (likely(!ctx->nr_events))
3367                 return;
3368
3369         ctx->is_active |= (event_type | EVENT_TIME);
3370         if (ctx->task) {
3371                 if (!is_active)
3372                         cpuctx->task_ctx = ctx;
3373                 else
3374                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3375         }
3376
3377         is_active ^= ctx->is_active; /* changed bits */
3378
3379         if (is_active & EVENT_TIME) {
3380                 /* start ctx time */
3381                 now = perf_clock();
3382                 ctx->timestamp = now;
3383                 perf_cgroup_set_timestamp(task, ctx);
3384         }
3385
3386         /*
3387          * First go through the list and put on any pinned groups
3388          * in order to give them the best chance of going on.
3389          */
3390         if (is_active & EVENT_PINNED)
3391                 ctx_pinned_sched_in(ctx, cpuctx);
3392
3393         /* Then walk through the lower prio flexible groups */
3394         if (is_active & EVENT_FLEXIBLE)
3395                 ctx_flexible_sched_in(ctx, cpuctx);
3396 }
3397
3398 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3399                              enum event_type_t event_type,
3400                              struct task_struct *task)
3401 {
3402         struct perf_event_context *ctx = &cpuctx->ctx;
3403
3404         ctx_sched_in(ctx, cpuctx, event_type, task);
3405 }
3406
3407 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3408                                         struct task_struct *task)
3409 {
3410         struct perf_cpu_context *cpuctx;
3411
3412         cpuctx = __get_cpu_context(ctx);
3413         if (cpuctx->task_ctx == ctx)
3414                 return;
3415
3416         perf_ctx_lock(cpuctx, ctx);
3417         /*
3418          * We must check ctx->nr_events while holding ctx->lock, such
3419          * that we serialize against perf_install_in_context().
3420          */
3421         if (!ctx->nr_events)
3422                 goto unlock;
3423
3424         perf_pmu_disable(ctx->pmu);
3425         /*
3426          * We want to keep the following priority order:
3427          * cpu pinned (that don't need to move), task pinned,
3428          * cpu flexible, task flexible.
3429          *
3430          * However, if task's ctx is not carrying any pinned
3431          * events, no need to flip the cpuctx's events around.
3432          */
3433         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3434                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3435         perf_event_sched_in(cpuctx, ctx, task);
3436         perf_pmu_enable(ctx->pmu);
3437
3438 unlock:
3439         perf_ctx_unlock(cpuctx, ctx);
3440 }
3441
3442 /*
3443  * Called from scheduler to add the events of the current task
3444  * with interrupts disabled.
3445  *
3446  * We restore the event value and then enable it.
3447  *
3448  * This does not protect us against NMI, but enable()
3449  * sets the enabled bit in the control field of event _before_
3450  * accessing the event control register. If a NMI hits, then it will
3451  * keep the event running.
3452  */
3453 void __perf_event_task_sched_in(struct task_struct *prev,
3454                                 struct task_struct *task)
3455 {
3456         struct perf_event_context *ctx;
3457         int ctxn;
3458
3459         /*
3460          * If cgroup events exist on this CPU, then we need to check if we have
3461          * to switch in PMU state; cgroup event are system-wide mode only.
3462          *
3463          * Since cgroup events are CPU events, we must schedule these in before
3464          * we schedule in the task events.
3465          */
3466         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3467                 perf_cgroup_sched_in(prev, task);
3468
3469         for_each_task_context_nr(ctxn) {
3470                 ctx = task->perf_event_ctxp[ctxn];
3471                 if (likely(!ctx))
3472                         continue;
3473
3474                 perf_event_context_sched_in(ctx, task);
3475         }
3476
3477         if (atomic_read(&nr_switch_events))
3478                 perf_event_switch(task, prev, true);
3479
3480         if (__this_cpu_read(perf_sched_cb_usages))
3481                 perf_pmu_sched_task(prev, task, true);
3482 }
3483
3484 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3485 {
3486         u64 frequency = event->attr.sample_freq;
3487         u64 sec = NSEC_PER_SEC;
3488         u64 divisor, dividend;
3489
3490         int count_fls, nsec_fls, frequency_fls, sec_fls;
3491
3492         count_fls = fls64(count);
3493         nsec_fls = fls64(nsec);
3494         frequency_fls = fls64(frequency);
3495         sec_fls = 30;
3496
3497         /*
3498          * We got @count in @nsec, with a target of sample_freq HZ
3499          * the target period becomes:
3500          *
3501          *             @count * 10^9
3502          * period = -------------------
3503          *          @nsec * sample_freq
3504          *
3505          */
3506
3507         /*
3508          * Reduce accuracy by one bit such that @a and @b converge
3509          * to a similar magnitude.
3510          */
3511 #define REDUCE_FLS(a, b)                \
3512 do {                                    \
3513         if (a##_fls > b##_fls) {        \
3514                 a >>= 1;                \
3515                 a##_fls--;              \
3516         } else {                        \
3517                 b >>= 1;                \
3518                 b##_fls--;              \
3519         }                               \
3520 } while (0)
3521
3522         /*
3523          * Reduce accuracy until either term fits in a u64, then proceed with
3524          * the other, so that finally we can do a u64/u64 division.
3525          */
3526         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3527                 REDUCE_FLS(nsec, frequency);
3528                 REDUCE_FLS(sec, count);
3529         }
3530
3531         if (count_fls + sec_fls > 64) {
3532                 divisor = nsec * frequency;
3533
3534                 while (count_fls + sec_fls > 64) {
3535                         REDUCE_FLS(count, sec);
3536                         divisor >>= 1;
3537                 }
3538
3539                 dividend = count * sec;
3540         } else {
3541                 dividend = count * sec;
3542
3543                 while (nsec_fls + frequency_fls > 64) {
3544                         REDUCE_FLS(nsec, frequency);
3545                         dividend >>= 1;
3546                 }
3547
3548                 divisor = nsec * frequency;
3549         }
3550
3551         if (!divisor)
3552                 return dividend;
3553
3554         return div64_u64(dividend, divisor);
3555 }
3556
3557 static DEFINE_PER_CPU(int, perf_throttled_count);
3558 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3559
3560 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3561 {
3562         struct hw_perf_event *hwc = &event->hw;
3563         s64 period, sample_period;
3564         s64 delta;
3565
3566         period = perf_calculate_period(event, nsec, count);
3567
3568         delta = (s64)(period - hwc->sample_period);
3569         delta = (delta + 7) / 8; /* low pass filter */
3570
3571         sample_period = hwc->sample_period + delta;
3572
3573         if (!sample_period)
3574                 sample_period = 1;
3575
3576         hwc->sample_period = sample_period;
3577
3578         if (local64_read(&hwc->period_left) > 8*sample_period) {
3579                 if (disable)
3580                         event->pmu->stop(event, PERF_EF_UPDATE);
3581
3582                 local64_set(&hwc->period_left, 0);
3583
3584                 if (disable)
3585                         event->pmu->start(event, PERF_EF_RELOAD);
3586         }
3587 }
3588
3589 /*
3590  * combine freq adjustment with unthrottling to avoid two passes over the
3591  * events. At the same time, make sure, having freq events does not change
3592  * the rate of unthrottling as that would introduce bias.
3593  */
3594 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3595                                            int needs_unthr)
3596 {
3597         struct perf_event *event;
3598         struct hw_perf_event *hwc;
3599         u64 now, period = TICK_NSEC;
3600         s64 delta;
3601
3602         /*
3603          * only need to iterate over all events iff:
3604          * - context have events in frequency mode (needs freq adjust)
3605          * - there are events to unthrottle on this cpu
3606          */
3607         if (!(ctx->nr_freq || needs_unthr))
3608                 return;
3609
3610         raw_spin_lock(&ctx->lock);
3611         perf_pmu_disable(ctx->pmu);
3612
3613         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3614                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3615                         continue;
3616
3617                 if (!event_filter_match(event))
3618                         continue;
3619
3620                 perf_pmu_disable(event->pmu);
3621
3622                 hwc = &event->hw;
3623
3624                 if (hwc->interrupts == MAX_INTERRUPTS) {
3625                         hwc->interrupts = 0;
3626                         perf_log_throttle(event, 1);
3627                         event->pmu->start(event, 0);
3628                 }
3629
3630                 if (!event->attr.freq || !event->attr.sample_freq)
3631                         goto next;
3632
3633                 /*
3634                  * stop the event and update event->count
3635                  */
3636                 event->pmu->stop(event, PERF_EF_UPDATE);
3637
3638                 now = local64_read(&event->count);
3639                 delta = now - hwc->freq_count_stamp;
3640                 hwc->freq_count_stamp = now;
3641
3642                 /*
3643                  * restart the event
3644                  * reload only if value has changed
3645                  * we have stopped the event so tell that
3646                  * to perf_adjust_period() to avoid stopping it
3647                  * twice.
3648                  */
3649                 if (delta > 0)
3650                         perf_adjust_period(event, period, delta, false);
3651
3652                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3653         next:
3654                 perf_pmu_enable(event->pmu);
3655         }
3656
3657         perf_pmu_enable(ctx->pmu);
3658         raw_spin_unlock(&ctx->lock);
3659 }
3660
3661 /*
3662  * Move @event to the tail of the @ctx's elegible events.
3663  */
3664 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3665 {
3666         /*
3667          * Rotate the first entry last of non-pinned groups. Rotation might be
3668          * disabled by the inheritance code.
3669          */
3670         if (ctx->rotate_disable)
3671                 return;
3672
3673         perf_event_groups_delete(&ctx->flexible_groups, event);
3674         perf_event_groups_insert(&ctx->flexible_groups, event);
3675 }
3676
3677 static inline struct perf_event *
3678 ctx_first_active(struct perf_event_context *ctx)
3679 {
3680         return list_first_entry_or_null(&ctx->flexible_active,
3681                                         struct perf_event, active_list);
3682 }
3683
3684 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3685 {
3686         struct perf_event *cpu_event = NULL, *task_event = NULL;
3687         bool cpu_rotate = false, task_rotate = false;
3688         struct perf_event_context *ctx = NULL;
3689
3690         /*
3691          * Since we run this from IRQ context, nobody can install new
3692          * events, thus the event count values are stable.
3693          */
3694
3695         if (cpuctx->ctx.nr_events) {
3696                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3697                         cpu_rotate = true;
3698         }
3699
3700         ctx = cpuctx->task_ctx;
3701         if (ctx && ctx->nr_events) {
3702                 if (ctx->nr_events != ctx->nr_active)
3703                         task_rotate = true;
3704         }
3705
3706         if (!(cpu_rotate || task_rotate))
3707                 return false;
3708
3709         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3710         perf_pmu_disable(cpuctx->ctx.pmu);
3711
3712         if (task_rotate)
3713                 task_event = ctx_first_active(ctx);
3714         if (cpu_rotate)
3715                 cpu_event = ctx_first_active(&cpuctx->ctx);
3716
3717         /*
3718          * As per the order given at ctx_resched() first 'pop' task flexible
3719          * and then, if needed CPU flexible.
3720          */
3721         if (task_event || (ctx && cpu_event))
3722                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3723         if (cpu_event)
3724                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3725
3726         if (task_event)
3727                 rotate_ctx(ctx, task_event);
3728         if (cpu_event)
3729                 rotate_ctx(&cpuctx->ctx, cpu_event);
3730
3731         perf_event_sched_in(cpuctx, ctx, current);
3732
3733         perf_pmu_enable(cpuctx->ctx.pmu);
3734         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3735
3736         return true;
3737 }
3738
3739 void perf_event_task_tick(void)
3740 {
3741         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3742         struct perf_event_context *ctx, *tmp;
3743         int throttled;
3744
3745         lockdep_assert_irqs_disabled();
3746
3747         __this_cpu_inc(perf_throttled_seq);
3748         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3749         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3750
3751         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3752                 perf_adjust_freq_unthr_context(ctx, throttled);
3753 }
3754
3755 static int event_enable_on_exec(struct perf_event *event,
3756                                 struct perf_event_context *ctx)
3757 {
3758         if (!event->attr.enable_on_exec)
3759                 return 0;
3760
3761         event->attr.enable_on_exec = 0;
3762         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3763                 return 0;
3764
3765         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3766
3767         return 1;
3768 }
3769
3770 /*
3771  * Enable all of a task's events that have been marked enable-on-exec.
3772  * This expects task == current.
3773  */
3774 static void perf_event_enable_on_exec(int ctxn)
3775 {
3776         struct perf_event_context *ctx, *clone_ctx = NULL;
3777         enum event_type_t event_type = 0;
3778         struct perf_cpu_context *cpuctx;
3779         struct perf_event *event;
3780         unsigned long flags;
3781         int enabled = 0;
3782
3783         local_irq_save(flags);
3784         ctx = current->perf_event_ctxp[ctxn];
3785         if (!ctx || !ctx->nr_events)
3786                 goto out;
3787
3788         cpuctx = __get_cpu_context(ctx);
3789         perf_ctx_lock(cpuctx, ctx);
3790         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3791         list_for_each_entry(event, &ctx->event_list, event_entry) {
3792                 enabled |= event_enable_on_exec(event, ctx);
3793                 event_type |= get_event_type(event);
3794         }
3795
3796         /*
3797          * Unclone and reschedule this context if we enabled any event.
3798          */
3799         if (enabled) {
3800                 clone_ctx = unclone_ctx(ctx);
3801                 ctx_resched(cpuctx, ctx, event_type);
3802         } else {
3803                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3804         }
3805         perf_ctx_unlock(cpuctx, ctx);
3806
3807 out:
3808         local_irq_restore(flags);
3809
3810         if (clone_ctx)
3811                 put_ctx(clone_ctx);
3812 }
3813
3814 struct perf_read_data {
3815         struct perf_event *event;
3816         bool group;
3817         int ret;
3818 };
3819
3820 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3821 {
3822         u16 local_pkg, event_pkg;
3823
3824         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3825                 int local_cpu = smp_processor_id();
3826
3827                 event_pkg = topology_physical_package_id(event_cpu);
3828                 local_pkg = topology_physical_package_id(local_cpu);
3829
3830                 if (event_pkg == local_pkg)
3831                         return local_cpu;
3832         }
3833
3834         return event_cpu;
3835 }
3836
3837 /*
3838  * Cross CPU call to read the hardware event
3839  */
3840 static void __perf_event_read(void *info)
3841 {
3842         struct perf_read_data *data = info;
3843         struct perf_event *sub, *event = data->event;
3844         struct perf_event_context *ctx = event->ctx;
3845         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3846         struct pmu *pmu = event->pmu;
3847
3848         /*
3849          * If this is a task context, we need to check whether it is
3850          * the current task context of this cpu.  If not it has been
3851          * scheduled out before the smp call arrived.  In that case
3852          * event->count would have been updated to a recent sample
3853          * when the event was scheduled out.
3854          */
3855         if (ctx->task && cpuctx->task_ctx != ctx)
3856                 return;
3857
3858         raw_spin_lock(&ctx->lock);
3859         if (ctx->is_active & EVENT_TIME) {
3860                 update_context_time(ctx);
3861                 update_cgrp_time_from_event(event);
3862         }
3863
3864         perf_event_update_time(event);
3865         if (data->group)
3866                 perf_event_update_sibling_time(event);
3867
3868         if (event->state != PERF_EVENT_STATE_ACTIVE)
3869                 goto unlock;
3870
3871         if (!data->group) {
3872                 pmu->read(event);
3873                 data->ret = 0;
3874                 goto unlock;
3875         }
3876
3877         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3878
3879         pmu->read(event);
3880
3881         for_each_sibling_event(sub, event) {
3882                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3883                         /*
3884                          * Use sibling's PMU rather than @event's since
3885                          * sibling could be on different (eg: software) PMU.
3886                          */
3887                         sub->pmu->read(sub);
3888                 }
3889         }
3890
3891         data->ret = pmu->commit_txn(pmu);
3892
3893 unlock:
3894         raw_spin_unlock(&ctx->lock);
3895 }
3896
3897 static inline u64 perf_event_count(struct perf_event *event)
3898 {
3899         return local64_read(&event->count) + atomic64_read(&event->child_count);
3900 }
3901
3902 /*
3903  * NMI-safe method to read a local event, that is an event that
3904  * is:
3905  *   - either for the current task, or for this CPU
3906  *   - does not have inherit set, for inherited task events
3907  *     will not be local and we cannot read them atomically
3908  *   - must not have a pmu::count method
3909  */
3910 int perf_event_read_local(struct perf_event *event, u64 *value,
3911                           u64 *enabled, u64 *running)
3912 {
3913         unsigned long flags;
3914         int ret = 0;
3915
3916         /*
3917          * Disabling interrupts avoids all counter scheduling (context
3918          * switches, timer based rotation and IPIs).
3919          */
3920         local_irq_save(flags);
3921
3922         /*
3923          * It must not be an event with inherit set, we cannot read
3924          * all child counters from atomic context.
3925          */
3926         if (event->attr.inherit) {
3927                 ret = -EOPNOTSUPP;
3928                 goto out;
3929         }
3930
3931         /* If this is a per-task event, it must be for current */
3932         if ((event->attach_state & PERF_ATTACH_TASK) &&
3933             event->hw.target != current) {
3934                 ret = -EINVAL;
3935                 goto out;
3936         }
3937
3938         /* If this is a per-CPU event, it must be for this CPU */
3939         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3940             event->cpu != smp_processor_id()) {
3941                 ret = -EINVAL;
3942                 goto out;
3943         }
3944
3945         /* If this is a pinned event it must be running on this CPU */
3946         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3947                 ret = -EBUSY;
3948                 goto out;
3949         }
3950
3951         /*
3952          * If the event is currently on this CPU, its either a per-task event,
3953          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3954          * oncpu == -1).
3955          */
3956         if (event->oncpu == smp_processor_id())
3957                 event->pmu->read(event);
3958
3959         *value = local64_read(&event->count);
3960         if (enabled || running) {
3961                 u64 now = event->shadow_ctx_time + perf_clock();
3962                 u64 __enabled, __running;
3963
3964                 __perf_update_times(event, now, &__enabled, &__running);
3965                 if (enabled)
3966                         *enabled = __enabled;
3967                 if (running)
3968                         *running = __running;
3969         }
3970 out:
3971         local_irq_restore(flags);
3972
3973         return ret;
3974 }
3975
3976 static int perf_event_read(struct perf_event *event, bool group)
3977 {
3978         enum perf_event_state state = READ_ONCE(event->state);
3979         int event_cpu, ret = 0;
3980
3981         /*
3982          * If event is enabled and currently active on a CPU, update the
3983          * value in the event structure:
3984          */
3985 again:
3986         if (state == PERF_EVENT_STATE_ACTIVE) {
3987                 struct perf_read_data data;
3988
3989                 /*
3990                  * Orders the ->state and ->oncpu loads such that if we see
3991                  * ACTIVE we must also see the right ->oncpu.
3992                  *
3993                  * Matches the smp_wmb() from event_sched_in().
3994                  */
3995                 smp_rmb();
3996
3997                 event_cpu = READ_ONCE(event->oncpu);
3998                 if ((unsigned)event_cpu >= nr_cpu_ids)
3999                         return 0;
4000
4001                 data = (struct perf_read_data){
4002                         .event = event,
4003                         .group = group,
4004                         .ret = 0,
4005                 };
4006
4007                 preempt_disable();
4008                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4009
4010                 /*
4011                  * Purposely ignore the smp_call_function_single() return
4012                  * value.
4013                  *
4014                  * If event_cpu isn't a valid CPU it means the event got
4015                  * scheduled out and that will have updated the event count.
4016                  *
4017                  * Therefore, either way, we'll have an up-to-date event count
4018                  * after this.
4019                  */
4020                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4021                 preempt_enable();
4022                 ret = data.ret;
4023
4024         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4025                 struct perf_event_context *ctx = event->ctx;
4026                 unsigned long flags;
4027
4028                 raw_spin_lock_irqsave(&ctx->lock, flags);
4029                 state = event->state;
4030                 if (state != PERF_EVENT_STATE_INACTIVE) {
4031                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4032                         goto again;
4033                 }
4034
4035                 /*
4036                  * May read while context is not active (e.g., thread is
4037                  * blocked), in that case we cannot update context time
4038                  */
4039                 if (ctx->is_active & EVENT_TIME) {
4040                         update_context_time(ctx);
4041                         update_cgrp_time_from_event(event);
4042                 }
4043
4044                 perf_event_update_time(event);
4045                 if (group)
4046                         perf_event_update_sibling_time(event);
4047                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4048         }
4049
4050         return ret;
4051 }
4052
4053 /*
4054  * Initialize the perf_event context in a task_struct:
4055  */
4056 static void __perf_event_init_context(struct perf_event_context *ctx)
4057 {
4058         raw_spin_lock_init(&ctx->lock);
4059         mutex_init(&ctx->mutex);
4060         INIT_LIST_HEAD(&ctx->active_ctx_list);
4061         perf_event_groups_init(&ctx->pinned_groups);
4062         perf_event_groups_init(&ctx->flexible_groups);
4063         INIT_LIST_HEAD(&ctx->event_list);
4064         INIT_LIST_HEAD(&ctx->pinned_active);
4065         INIT_LIST_HEAD(&ctx->flexible_active);
4066         atomic_set(&ctx->refcount, 1);
4067 }
4068
4069 static struct perf_event_context *
4070 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4071 {
4072         struct perf_event_context *ctx;
4073
4074         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4075         if (!ctx)
4076                 return NULL;
4077
4078         __perf_event_init_context(ctx);
4079         if (task) {
4080                 ctx->task = task;
4081                 get_task_struct(task);
4082         }
4083         ctx->pmu = pmu;
4084
4085         return ctx;
4086 }
4087
4088 static struct task_struct *
4089 find_lively_task_by_vpid(pid_t vpid)
4090 {
4091         struct task_struct *task;
4092
4093         rcu_read_lock();
4094         if (!vpid)
4095                 task = current;
4096         else
4097                 task = find_task_by_vpid(vpid);
4098         if (task)
4099                 get_task_struct(task);
4100         rcu_read_unlock();
4101
4102         if (!task)
4103                 return ERR_PTR(-ESRCH);
4104
4105         return task;
4106 }
4107
4108 /*
4109  * Returns a matching context with refcount and pincount.
4110  */
4111 static struct perf_event_context *
4112 find_get_context(struct pmu *pmu, struct task_struct *task,
4113                 struct perf_event *event)
4114 {
4115         struct perf_event_context *ctx, *clone_ctx = NULL;
4116         struct perf_cpu_context *cpuctx;
4117         void *task_ctx_data = NULL;
4118         unsigned long flags;
4119         int ctxn, err;
4120         int cpu = event->cpu;
4121
4122         if (!task) {
4123                 /* Must be root to operate on a CPU event: */
4124                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4125                         return ERR_PTR(-EACCES);
4126
4127                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4128                 ctx = &cpuctx->ctx;
4129                 get_ctx(ctx);
4130                 ++ctx->pin_count;
4131
4132                 return ctx;
4133         }
4134
4135         err = -EINVAL;
4136         ctxn = pmu->task_ctx_nr;
4137         if (ctxn < 0)
4138                 goto errout;
4139
4140         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4141                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4142                 if (!task_ctx_data) {
4143                         err = -ENOMEM;
4144                         goto errout;
4145                 }
4146         }
4147
4148 retry:
4149         ctx = perf_lock_task_context(task, ctxn, &flags);
4150         if (ctx) {
4151                 clone_ctx = unclone_ctx(ctx);
4152                 ++ctx->pin_count;
4153
4154                 if (task_ctx_data && !ctx->task_ctx_data) {
4155                         ctx->task_ctx_data = task_ctx_data;
4156                         task_ctx_data = NULL;
4157                 }
4158                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4159
4160                 if (clone_ctx)
4161                         put_ctx(clone_ctx);
4162         } else {
4163                 ctx = alloc_perf_context(pmu, task);
4164                 err = -ENOMEM;
4165                 if (!ctx)
4166                         goto errout;
4167
4168                 if (task_ctx_data) {
4169                         ctx->task_ctx_data = task_ctx_data;
4170                         task_ctx_data = NULL;
4171                 }
4172
4173                 err = 0;
4174                 mutex_lock(&task->perf_event_mutex);
4175                 /*
4176                  * If it has already passed perf_event_exit_task().
4177                  * we must see PF_EXITING, it takes this mutex too.
4178                  */
4179                 if (task->flags & PF_EXITING)
4180                         err = -ESRCH;
4181                 else if (task->perf_event_ctxp[ctxn])
4182                         err = -EAGAIN;
4183                 else {
4184                         get_ctx(ctx);
4185                         ++ctx->pin_count;
4186                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4187                 }
4188                 mutex_unlock(&task->perf_event_mutex);
4189
4190                 if (unlikely(err)) {
4191                         put_ctx(ctx);
4192
4193                         if (err == -EAGAIN)
4194                                 goto retry;
4195                         goto errout;
4196                 }
4197         }
4198
4199         kfree(task_ctx_data);
4200         return ctx;
4201
4202 errout:
4203         kfree(task_ctx_data);
4204         return ERR_PTR(err);
4205 }
4206
4207 static void perf_event_free_filter(struct perf_event *event);
4208 static void perf_event_free_bpf_prog(struct perf_event *event);
4209
4210 static void free_event_rcu(struct rcu_head *head)
4211 {
4212         struct perf_event *event;
4213
4214         event = container_of(head, struct perf_event, rcu_head);
4215         if (event->ns)
4216                 put_pid_ns(event->ns);
4217         perf_event_free_filter(event);
4218         kfree(event);
4219 }
4220
4221 static void ring_buffer_attach(struct perf_event *event,
4222                                struct ring_buffer *rb);
4223
4224 static void detach_sb_event(struct perf_event *event)
4225 {
4226         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4227
4228         raw_spin_lock(&pel->lock);
4229         list_del_rcu(&event->sb_list);
4230         raw_spin_unlock(&pel->lock);
4231 }
4232
4233 static bool is_sb_event(struct perf_event *event)
4234 {
4235         struct perf_event_attr *attr = &event->attr;
4236
4237         if (event->parent)
4238                 return false;
4239
4240         if (event->attach_state & PERF_ATTACH_TASK)
4241                 return false;
4242
4243         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4244             attr->comm || attr->comm_exec ||
4245             attr->task ||
4246             attr->context_switch)
4247                 return true;
4248         return false;
4249 }
4250
4251 static void unaccount_pmu_sb_event(struct perf_event *event)
4252 {
4253         if (is_sb_event(event))
4254                 detach_sb_event(event);
4255 }
4256
4257 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4258 {
4259         if (event->parent)
4260                 return;
4261
4262         if (is_cgroup_event(event))
4263                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4264 }
4265
4266 #ifdef CONFIG_NO_HZ_FULL
4267 static DEFINE_SPINLOCK(nr_freq_lock);
4268 #endif
4269
4270 static void unaccount_freq_event_nohz(void)
4271 {
4272 #ifdef CONFIG_NO_HZ_FULL
4273         spin_lock(&nr_freq_lock);
4274         if (atomic_dec_and_test(&nr_freq_events))
4275                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4276         spin_unlock(&nr_freq_lock);
4277 #endif
4278 }
4279
4280 static void unaccount_freq_event(void)
4281 {
4282         if (tick_nohz_full_enabled())
4283                 unaccount_freq_event_nohz();
4284         else
4285                 atomic_dec(&nr_freq_events);
4286 }
4287
4288 static void unaccount_event(struct perf_event *event)
4289 {
4290         bool dec = false;
4291
4292         if (event->parent)
4293                 return;
4294
4295         if (event->attach_state & PERF_ATTACH_TASK)
4296                 dec = true;
4297         if (event->attr.mmap || event->attr.mmap_data)
4298                 atomic_dec(&nr_mmap_events);
4299         if (event->attr.comm)
4300                 atomic_dec(&nr_comm_events);
4301         if (event->attr.namespaces)
4302                 atomic_dec(&nr_namespaces_events);
4303         if (event->attr.task)
4304                 atomic_dec(&nr_task_events);
4305         if (event->attr.freq)
4306                 unaccount_freq_event();
4307         if (event->attr.context_switch) {
4308                 dec = true;
4309                 atomic_dec(&nr_switch_events);
4310         }
4311         if (is_cgroup_event(event))
4312                 dec = true;
4313         if (has_branch_stack(event))
4314                 dec = true;
4315
4316         if (dec) {
4317                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4318                         schedule_delayed_work(&perf_sched_work, HZ);
4319         }
4320
4321         unaccount_event_cpu(event, event->cpu);
4322
4323         unaccount_pmu_sb_event(event);
4324 }
4325
4326 static void perf_sched_delayed(struct work_struct *work)
4327 {
4328         mutex_lock(&perf_sched_mutex);
4329         if (atomic_dec_and_test(&perf_sched_count))
4330                 static_branch_disable(&perf_sched_events);
4331         mutex_unlock(&perf_sched_mutex);
4332 }
4333
4334 /*
4335  * The following implement mutual exclusion of events on "exclusive" pmus
4336  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4337  * at a time, so we disallow creating events that might conflict, namely:
4338  *
4339  *  1) cpu-wide events in the presence of per-task events,
4340  *  2) per-task events in the presence of cpu-wide events,
4341  *  3) two matching events on the same context.
4342  *
4343  * The former two cases are handled in the allocation path (perf_event_alloc(),
4344  * _free_event()), the latter -- before the first perf_install_in_context().
4345  */
4346 static int exclusive_event_init(struct perf_event *event)
4347 {
4348         struct pmu *pmu = event->pmu;
4349
4350         if (!is_exclusive_pmu(pmu))
4351                 return 0;
4352
4353         /*
4354          * Prevent co-existence of per-task and cpu-wide events on the
4355          * same exclusive pmu.
4356          *
4357          * Negative pmu::exclusive_cnt means there are cpu-wide
4358          * events on this "exclusive" pmu, positive means there are
4359          * per-task events.
4360          *
4361          * Since this is called in perf_event_alloc() path, event::ctx
4362          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4363          * to mean "per-task event", because unlike other attach states it
4364          * never gets cleared.
4365          */
4366         if (event->attach_state & PERF_ATTACH_TASK) {
4367                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4368                         return -EBUSY;
4369         } else {
4370                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4371                         return -EBUSY;
4372         }
4373
4374         return 0;
4375 }
4376
4377 static void exclusive_event_destroy(struct perf_event *event)
4378 {
4379         struct pmu *pmu = event->pmu;
4380
4381         if (!is_exclusive_pmu(pmu))
4382                 return;
4383
4384         /* see comment in exclusive_event_init() */
4385         if (event->attach_state & PERF_ATTACH_TASK)
4386                 atomic_dec(&pmu->exclusive_cnt);
4387         else
4388                 atomic_inc(&pmu->exclusive_cnt);
4389 }
4390
4391 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4392 {
4393         if ((e1->pmu == e2->pmu) &&
4394             (e1->cpu == e2->cpu ||
4395              e1->cpu == -1 ||
4396              e2->cpu == -1))
4397                 return true;
4398         return false;
4399 }
4400
4401 static bool exclusive_event_installable(struct perf_event *event,
4402                                         struct perf_event_context *ctx)
4403 {
4404         struct perf_event *iter_event;
4405         struct pmu *pmu = event->pmu;
4406
4407         lockdep_assert_held(&ctx->mutex);
4408
4409         if (!is_exclusive_pmu(pmu))
4410                 return true;
4411
4412         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4413                 if (exclusive_event_match(iter_event, event))
4414                         return false;
4415         }
4416
4417         return true;
4418 }
4419
4420 static void perf_addr_filters_splice(struct perf_event *event,
4421                                        struct list_head *head);
4422
4423 static void _free_event(struct perf_event *event)
4424 {
4425         irq_work_sync(&event->pending);
4426
4427         unaccount_event(event);
4428
4429         if (event->rb) {
4430                 /*
4431                  * Can happen when we close an event with re-directed output.
4432                  *
4433                  * Since we have a 0 refcount, perf_mmap_close() will skip
4434                  * over us; possibly making our ring_buffer_put() the last.
4435                  */
4436                 mutex_lock(&event->mmap_mutex);
4437                 ring_buffer_attach(event, NULL);
4438                 mutex_unlock(&event->mmap_mutex);
4439         }
4440
4441         if (is_cgroup_event(event))
4442                 perf_detach_cgroup(event);
4443
4444         if (!event->parent) {
4445                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4446                         put_callchain_buffers();
4447         }
4448
4449         perf_event_free_bpf_prog(event);
4450         perf_addr_filters_splice(event, NULL);
4451         kfree(event->addr_filters_offs);
4452
4453         if (event->destroy)
4454                 event->destroy(event);
4455
4456         /*
4457          * Must be after ->destroy(), due to uprobe_perf_close() using
4458          * hw.target.
4459          */
4460         if (event->hw.target)
4461                 put_task_struct(event->hw.target);
4462
4463         /*
4464          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4465          * all task references must be cleaned up.
4466          */
4467         if (event->ctx)
4468                 put_ctx(event->ctx);
4469
4470         exclusive_event_destroy(event);
4471         module_put(event->pmu->module);
4472
4473         call_rcu(&event->rcu_head, free_event_rcu);
4474 }
4475
4476 /*
4477  * Used to free events which have a known refcount of 1, such as in error paths
4478  * where the event isn't exposed yet and inherited events.
4479  */
4480 static void free_event(struct perf_event *event)
4481 {
4482         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4483                                 "unexpected event refcount: %ld; ptr=%p\n",
4484                                 atomic_long_read(&event->refcount), event)) {
4485                 /* leak to avoid use-after-free */
4486                 return;
4487         }
4488
4489         _free_event(event);
4490 }
4491
4492 /*
4493  * Remove user event from the owner task.
4494  */
4495 static void perf_remove_from_owner(struct perf_event *event)
4496 {
4497         struct task_struct *owner;
4498
4499         rcu_read_lock();
4500         /*
4501          * Matches the smp_store_release() in perf_event_exit_task(). If we
4502          * observe !owner it means the list deletion is complete and we can
4503          * indeed free this event, otherwise we need to serialize on
4504          * owner->perf_event_mutex.
4505          */
4506         owner = READ_ONCE(event->owner);
4507         if (owner) {
4508                 /*
4509                  * Since delayed_put_task_struct() also drops the last
4510                  * task reference we can safely take a new reference
4511                  * while holding the rcu_read_lock().
4512                  */
4513                 get_task_struct(owner);
4514         }
4515         rcu_read_unlock();
4516
4517         if (owner) {
4518                 /*
4519                  * If we're here through perf_event_exit_task() we're already
4520                  * holding ctx->mutex which would be an inversion wrt. the
4521                  * normal lock order.
4522                  *
4523                  * However we can safely take this lock because its the child
4524                  * ctx->mutex.
4525                  */
4526                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4527
4528                 /*
4529                  * We have to re-check the event->owner field, if it is cleared
4530                  * we raced with perf_event_exit_task(), acquiring the mutex
4531                  * ensured they're done, and we can proceed with freeing the
4532                  * event.
4533                  */
4534                 if (event->owner) {
4535                         list_del_init(&event->owner_entry);
4536                         smp_store_release(&event->owner, NULL);
4537                 }
4538                 mutex_unlock(&owner->perf_event_mutex);
4539                 put_task_struct(owner);
4540         }
4541 }
4542
4543 static void put_event(struct perf_event *event)
4544 {
4545         if (!atomic_long_dec_and_test(&event->refcount))
4546                 return;
4547
4548         _free_event(event);
4549 }
4550
4551 /*
4552  * Kill an event dead; while event:refcount will preserve the event
4553  * object, it will not preserve its functionality. Once the last 'user'
4554  * gives up the object, we'll destroy the thing.
4555  */
4556 int perf_event_release_kernel(struct perf_event *event)
4557 {
4558         struct perf_event_context *ctx = event->ctx;
4559         struct perf_event *child, *tmp;
4560         LIST_HEAD(free_list);
4561
4562         /*
4563          * If we got here through err_file: fput(event_file); we will not have
4564          * attached to a context yet.
4565          */
4566         if (!ctx) {
4567                 WARN_ON_ONCE(event->attach_state &
4568                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4569                 goto no_ctx;
4570         }
4571
4572         if (!is_kernel_event(event))
4573                 perf_remove_from_owner(event);
4574
4575         ctx = perf_event_ctx_lock(event);
4576         WARN_ON_ONCE(ctx->parent_ctx);
4577         perf_remove_from_context(event, DETACH_GROUP);
4578
4579         raw_spin_lock_irq(&ctx->lock);
4580         /*
4581          * Mark this event as STATE_DEAD, there is no external reference to it
4582          * anymore.
4583          *
4584          * Anybody acquiring event->child_mutex after the below loop _must_
4585          * also see this, most importantly inherit_event() which will avoid
4586          * placing more children on the list.
4587          *
4588          * Thus this guarantees that we will in fact observe and kill _ALL_
4589          * child events.
4590          */
4591         event->state = PERF_EVENT_STATE_DEAD;
4592         raw_spin_unlock_irq(&ctx->lock);
4593
4594         perf_event_ctx_unlock(event, ctx);
4595
4596 again:
4597         mutex_lock(&event->child_mutex);
4598         list_for_each_entry(child, &event->child_list, child_list) {
4599
4600                 /*
4601                  * Cannot change, child events are not migrated, see the
4602                  * comment with perf_event_ctx_lock_nested().
4603                  */
4604                 ctx = READ_ONCE(child->ctx);
4605                 /*
4606                  * Since child_mutex nests inside ctx::mutex, we must jump
4607                  * through hoops. We start by grabbing a reference on the ctx.
4608                  *
4609                  * Since the event cannot get freed while we hold the
4610                  * child_mutex, the context must also exist and have a !0
4611                  * reference count.
4612                  */
4613                 get_ctx(ctx);
4614
4615                 /*
4616                  * Now that we have a ctx ref, we can drop child_mutex, and
4617                  * acquire ctx::mutex without fear of it going away. Then we
4618                  * can re-acquire child_mutex.
4619                  */
4620                 mutex_unlock(&event->child_mutex);
4621                 mutex_lock(&ctx->mutex);
4622                 mutex_lock(&event->child_mutex);
4623
4624                 /*
4625                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4626                  * state, if child is still the first entry, it didn't get freed
4627                  * and we can continue doing so.
4628                  */
4629                 tmp = list_first_entry_or_null(&event->child_list,
4630                                                struct perf_event, child_list);
4631                 if (tmp == child) {
4632                         perf_remove_from_context(child, DETACH_GROUP);
4633                         list_move(&child->child_list, &free_list);
4634                         /*
4635                          * This matches the refcount bump in inherit_event();
4636                          * this can't be the last reference.
4637                          */
4638                         put_event(event);
4639                 }
4640
4641                 mutex_unlock(&event->child_mutex);
4642                 mutex_unlock(&ctx->mutex);
4643                 put_ctx(ctx);
4644                 goto again;
4645         }
4646         mutex_unlock(&event->child_mutex);
4647
4648         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4649                 void *var = &child->ctx->refcount;
4650
4651                 list_del(&child->child_list);
4652                 free_event(child);
4653
4654                 /*
4655                  * Wake any perf_event_free_task() waiting for this event to be
4656                  * freed.
4657                  */
4658                 smp_mb(); /* pairs with wait_var_event() */
4659                 wake_up_var(var);
4660         }
4661
4662 no_ctx:
4663         put_event(event); /* Must be the 'last' reference */
4664         return 0;
4665 }
4666 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4667
4668 /*
4669  * Called when the last reference to the file is gone.
4670  */
4671 static int perf_release(struct inode *inode, struct file *file)
4672 {
4673         perf_event_release_kernel(file->private_data);
4674         return 0;
4675 }
4676
4677 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4678 {
4679         struct perf_event *child;
4680         u64 total = 0;
4681
4682         *enabled = 0;
4683         *running = 0;
4684
4685         mutex_lock(&event->child_mutex);
4686
4687         (void)perf_event_read(event, false);
4688         total += perf_event_count(event);
4689
4690         *enabled += event->total_time_enabled +
4691                         atomic64_read(&event->child_total_time_enabled);
4692         *running += event->total_time_running +
4693                         atomic64_read(&event->child_total_time_running);
4694
4695         list_for_each_entry(child, &event->child_list, child_list) {
4696                 (void)perf_event_read(child, false);
4697                 total += perf_event_count(child);
4698                 *enabled += child->total_time_enabled;
4699                 *running += child->total_time_running;
4700         }
4701         mutex_unlock(&event->child_mutex);
4702
4703         return total;
4704 }
4705
4706 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4707 {
4708         struct perf_event_context *ctx;
4709         u64 count;
4710
4711         ctx = perf_event_ctx_lock(event);
4712         count = __perf_event_read_value(event, enabled, running);
4713         perf_event_ctx_unlock(event, ctx);
4714
4715         return count;
4716 }
4717 EXPORT_SYMBOL_GPL(perf_event_read_value);
4718
4719 static int __perf_read_group_add(struct perf_event *leader,
4720                                         u64 read_format, u64 *values)
4721 {
4722         struct perf_event_context *ctx = leader->ctx;
4723         struct perf_event *sub;
4724         unsigned long flags;
4725         int n = 1; /* skip @nr */
4726         int ret;
4727
4728         ret = perf_event_read(leader, true);
4729         if (ret)
4730                 return ret;
4731
4732         raw_spin_lock_irqsave(&ctx->lock, flags);
4733
4734         /*
4735          * Since we co-schedule groups, {enabled,running} times of siblings
4736          * will be identical to those of the leader, so we only publish one
4737          * set.
4738          */
4739         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4740                 values[n++] += leader->total_time_enabled +
4741                         atomic64_read(&leader->child_total_time_enabled);
4742         }
4743
4744         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4745                 values[n++] += leader->total_time_running +
4746                         atomic64_read(&leader->child_total_time_running);
4747         }
4748
4749         /*
4750          * Write {count,id} tuples for every sibling.
4751          */
4752         values[n++] += perf_event_count(leader);
4753         if (read_format & PERF_FORMAT_ID)
4754                 values[n++] = primary_event_id(leader);
4755
4756         for_each_sibling_event(sub, leader) {
4757                 values[n++] += perf_event_count(sub);
4758                 if (read_format & PERF_FORMAT_ID)
4759                         values[n++] = primary_event_id(sub);
4760         }
4761
4762         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4763         return 0;
4764 }
4765
4766 static int perf_read_group(struct perf_event *event,
4767                                    u64 read_format, char __user *buf)
4768 {
4769         struct perf_event *leader = event->group_leader, *child;
4770         struct perf_event_context *ctx = leader->ctx;
4771         int ret;
4772         u64 *values;
4773
4774         lockdep_assert_held(&ctx->mutex);
4775
4776         values = kzalloc(event->read_size, GFP_KERNEL);
4777         if (!values)
4778                 return -ENOMEM;
4779
4780         values[0] = 1 + leader->nr_siblings;
4781
4782         /*
4783          * By locking the child_mutex of the leader we effectively
4784          * lock the child list of all siblings.. XXX explain how.
4785          */
4786         mutex_lock(&leader->child_mutex);
4787
4788         ret = __perf_read_group_add(leader, read_format, values);
4789         if (ret)
4790                 goto unlock;
4791
4792         list_for_each_entry(child, &leader->child_list, child_list) {
4793                 ret = __perf_read_group_add(child, read_format, values);
4794                 if (ret)
4795                         goto unlock;
4796         }
4797
4798         mutex_unlock(&leader->child_mutex);
4799
4800         ret = event->read_size;
4801         if (copy_to_user(buf, values, event->read_size))
4802                 ret = -EFAULT;
4803         goto out;
4804
4805 unlock:
4806         mutex_unlock(&leader->child_mutex);
4807 out:
4808         kfree(values);
4809         return ret;
4810 }
4811
4812 static int perf_read_one(struct perf_event *event,
4813                                  u64 read_format, char __user *buf)
4814 {
4815         u64 enabled, running;
4816         u64 values[4];
4817         int n = 0;
4818
4819         values[n++] = __perf_event_read_value(event, &enabled, &running);
4820         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4821                 values[n++] = enabled;
4822         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4823                 values[n++] = running;
4824         if (read_format & PERF_FORMAT_ID)
4825                 values[n++] = primary_event_id(event);
4826
4827         if (copy_to_user(buf, values, n * sizeof(u64)))
4828                 return -EFAULT;
4829
4830         return n * sizeof(u64);
4831 }
4832
4833 static bool is_event_hup(struct perf_event *event)
4834 {
4835         bool no_children;
4836
4837         if (event->state > PERF_EVENT_STATE_EXIT)
4838                 return false;
4839
4840         mutex_lock(&event->child_mutex);
4841         no_children = list_empty(&event->child_list);
4842         mutex_unlock(&event->child_mutex);
4843         return no_children;
4844 }
4845
4846 /*
4847  * Read the performance event - simple non blocking version for now
4848  */
4849 static ssize_t
4850 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4851 {
4852         u64 read_format = event->attr.read_format;
4853         int ret;
4854
4855         /*
4856          * Return end-of-file for a read on an event that is in
4857          * error state (i.e. because it was pinned but it couldn't be
4858          * scheduled on to the CPU at some point).
4859          */
4860         if (event->state == PERF_EVENT_STATE_ERROR)
4861                 return 0;
4862
4863         if (count < event->read_size)
4864                 return -ENOSPC;
4865
4866         WARN_ON_ONCE(event->ctx->parent_ctx);
4867         if (read_format & PERF_FORMAT_GROUP)
4868                 ret = perf_read_group(event, read_format, buf);
4869         else
4870                 ret = perf_read_one(event, read_format, buf);
4871
4872         return ret;
4873 }
4874
4875 static ssize_t
4876 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4877 {
4878         struct perf_event *event = file->private_data;
4879         struct perf_event_context *ctx;
4880         int ret;
4881
4882         ctx = perf_event_ctx_lock(event);
4883         ret = __perf_read(event, buf, count);
4884         perf_event_ctx_unlock(event, ctx);
4885
4886         return ret;
4887 }
4888
4889 static __poll_t perf_poll(struct file *file, poll_table *wait)
4890 {
4891         struct perf_event *event = file->private_data;
4892         struct ring_buffer *rb;
4893         __poll_t events = EPOLLHUP;
4894
4895         poll_wait(file, &event->waitq, wait);
4896
4897         if (is_event_hup(event))
4898                 return events;
4899
4900         /*
4901          * Pin the event->rb by taking event->mmap_mutex; otherwise
4902          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4903          */
4904         mutex_lock(&event->mmap_mutex);
4905         rb = event->rb;
4906         if (rb)
4907                 events = atomic_xchg(&rb->poll, 0);
4908         mutex_unlock(&event->mmap_mutex);
4909         return events;
4910 }
4911
4912 static void _perf_event_reset(struct perf_event *event)
4913 {
4914         (void)perf_event_read(event, false);
4915         local64_set(&event->count, 0);
4916         perf_event_update_userpage(event);
4917 }
4918
4919 /*
4920  * Holding the top-level event's child_mutex means that any
4921  * descendant process that has inherited this event will block
4922  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4923  * task existence requirements of perf_event_enable/disable.
4924  */
4925 static void perf_event_for_each_child(struct perf_event *event,
4926                                         void (*func)(struct perf_event *))
4927 {
4928         struct perf_event *child;
4929
4930         WARN_ON_ONCE(event->ctx->parent_ctx);
4931
4932         mutex_lock(&event->child_mutex);
4933         func(event);
4934         list_for_each_entry(child, &event->child_list, child_list)
4935                 func(child);
4936         mutex_unlock(&event->child_mutex);
4937 }
4938
4939 static void perf_event_for_each(struct perf_event *event,
4940                                   void (*func)(struct perf_event *))
4941 {
4942         struct perf_event_context *ctx = event->ctx;
4943         struct perf_event *sibling;
4944
4945         lockdep_assert_held(&ctx->mutex);
4946
4947         event = event->group_leader;
4948
4949         perf_event_for_each_child(event, func);
4950         for_each_sibling_event(sibling, event)
4951                 perf_event_for_each_child(sibling, func);
4952 }
4953
4954 static void __perf_event_period(struct perf_event *event,
4955                                 struct perf_cpu_context *cpuctx,
4956                                 struct perf_event_context *ctx,
4957                                 void *info)
4958 {
4959         u64 value = *((u64 *)info);
4960         bool active;
4961
4962         if (event->attr.freq) {
4963                 event->attr.sample_freq = value;
4964         } else {
4965                 event->attr.sample_period = value;
4966                 event->hw.sample_period = value;
4967         }
4968
4969         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4970         if (active) {
4971                 perf_pmu_disable(ctx->pmu);
4972                 /*
4973                  * We could be throttled; unthrottle now to avoid the tick
4974                  * trying to unthrottle while we already re-started the event.
4975                  */
4976                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4977                         event->hw.interrupts = 0;
4978                         perf_log_throttle(event, 1);
4979                 }
4980                 event->pmu->stop(event, PERF_EF_UPDATE);
4981         }
4982
4983         local64_set(&event->hw.period_left, 0);
4984
4985         if (active) {
4986                 event->pmu->start(event, PERF_EF_RELOAD);
4987                 perf_pmu_enable(ctx->pmu);
4988         }
4989 }
4990
4991 static int perf_event_check_period(struct perf_event *event, u64 value)
4992 {
4993         return event->pmu->check_period(event, value);
4994 }
4995
4996 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4997 {
4998         u64 value;
4999
5000         if (!is_sampling_event(event))
5001                 return -EINVAL;
5002
5003         if (copy_from_user(&value, arg, sizeof(value)))
5004                 return -EFAULT;
5005
5006         if (!value)
5007                 return -EINVAL;
5008
5009         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5010                 return -EINVAL;
5011
5012         if (perf_event_check_period(event, value))
5013                 return -EINVAL;
5014
5015         event_function_call(event, __perf_event_period, &value);
5016
5017         return 0;
5018 }
5019
5020 static const struct file_operations perf_fops;
5021
5022 static inline int perf_fget_light(int fd, struct fd *p)
5023 {
5024         struct fd f = fdget(fd);
5025         if (!f.file)
5026                 return -EBADF;
5027
5028         if (f.file->f_op != &perf_fops) {
5029                 fdput(f);
5030                 return -EBADF;
5031         }
5032         *p = f;
5033         return 0;
5034 }
5035
5036 static int perf_event_set_output(struct perf_event *event,
5037                                  struct perf_event *output_event);
5038 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5039 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5040 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5041                           struct perf_event_attr *attr);
5042
5043 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5044 {
5045         void (*func)(struct perf_event *);
5046         u32 flags = arg;
5047
5048         switch (cmd) {
5049         case PERF_EVENT_IOC_ENABLE:
5050                 func = _perf_event_enable;
5051                 break;
5052         case PERF_EVENT_IOC_DISABLE:
5053                 func = _perf_event_disable;
5054                 break;
5055         case PERF_EVENT_IOC_RESET:
5056                 func = _perf_event_reset;
5057                 break;
5058
5059         case PERF_EVENT_IOC_REFRESH:
5060                 return _perf_event_refresh(event, arg);
5061
5062         case PERF_EVENT_IOC_PERIOD:
5063                 return perf_event_period(event, (u64 __user *)arg);
5064
5065         case PERF_EVENT_IOC_ID:
5066         {
5067                 u64 id = primary_event_id(event);
5068
5069                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5070                         return -EFAULT;
5071                 return 0;
5072         }
5073
5074         case PERF_EVENT_IOC_SET_OUTPUT:
5075         {
5076                 int ret;
5077                 if (arg != -1) {
5078                         struct perf_event *output_event;
5079                         struct fd output;
5080                         ret = perf_fget_light(arg, &output);
5081                         if (ret)
5082                                 return ret;
5083                         output_event = output.file->private_data;
5084                         ret = perf_event_set_output(event, output_event);
5085                         fdput(output);
5086                 } else {
5087                         ret = perf_event_set_output(event, NULL);
5088                 }
5089                 return ret;
5090         }
5091
5092         case PERF_EVENT_IOC_SET_FILTER:
5093                 return perf_event_set_filter(event, (void __user *)arg);
5094
5095         case PERF_EVENT_IOC_SET_BPF:
5096                 return perf_event_set_bpf_prog(event, arg);
5097
5098         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5099                 struct ring_buffer *rb;
5100
5101                 rcu_read_lock();
5102                 rb = rcu_dereference(event->rb);
5103                 if (!rb || !rb->nr_pages) {
5104                         rcu_read_unlock();
5105                         return -EINVAL;
5106                 }
5107                 rb_toggle_paused(rb, !!arg);
5108                 rcu_read_unlock();
5109                 return 0;
5110         }
5111
5112         case PERF_EVENT_IOC_QUERY_BPF:
5113                 return perf_event_query_prog_array(event, (void __user *)arg);
5114
5115         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5116                 struct perf_event_attr new_attr;
5117                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5118                                          &new_attr);
5119
5120                 if (err)
5121                         return err;
5122
5123                 return perf_event_modify_attr(event,  &new_attr);
5124         }
5125         default:
5126                 return -ENOTTY;
5127         }
5128
5129         if (flags & PERF_IOC_FLAG_GROUP)
5130                 perf_event_for_each(event, func);
5131         else
5132                 perf_event_for_each_child(event, func);
5133
5134         return 0;
5135 }
5136
5137 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5138 {
5139         struct perf_event *event = file->private_data;
5140         struct perf_event_context *ctx;
5141         long ret;
5142
5143         ctx = perf_event_ctx_lock(event);
5144         ret = _perf_ioctl(event, cmd, arg);
5145         perf_event_ctx_unlock(event, ctx);
5146
5147         return ret;
5148 }
5149
5150 #ifdef CONFIG_COMPAT
5151 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5152                                 unsigned long arg)
5153 {
5154         switch (_IOC_NR(cmd)) {
5155         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5156         case _IOC_NR(PERF_EVENT_IOC_ID):
5157         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5158         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5159                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5160                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5161                         cmd &= ~IOCSIZE_MASK;
5162                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5163                 }
5164                 break;
5165         }
5166         return perf_ioctl(file, cmd, arg);
5167 }
5168 #else
5169 # define perf_compat_ioctl NULL
5170 #endif
5171
5172 int perf_event_task_enable(void)
5173 {
5174         struct perf_event_context *ctx;
5175         struct perf_event *event;
5176
5177         mutex_lock(&current->perf_event_mutex);
5178         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5179                 ctx = perf_event_ctx_lock(event);
5180                 perf_event_for_each_child(event, _perf_event_enable);
5181                 perf_event_ctx_unlock(event, ctx);
5182         }
5183         mutex_unlock(&current->perf_event_mutex);
5184
5185         return 0;
5186 }
5187
5188 int perf_event_task_disable(void)
5189 {
5190         struct perf_event_context *ctx;
5191         struct perf_event *event;
5192
5193         mutex_lock(&current->perf_event_mutex);
5194         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5195                 ctx = perf_event_ctx_lock(event);
5196                 perf_event_for_each_child(event, _perf_event_disable);
5197                 perf_event_ctx_unlock(event, ctx);
5198         }
5199         mutex_unlock(&current->perf_event_mutex);
5200
5201         return 0;
5202 }
5203
5204 static int perf_event_index(struct perf_event *event)
5205 {
5206         if (event->hw.state & PERF_HES_STOPPED)
5207                 return 0;
5208
5209         if (event->state != PERF_EVENT_STATE_ACTIVE)
5210                 return 0;
5211
5212         return event->pmu->event_idx(event);
5213 }
5214
5215 static void calc_timer_values(struct perf_event *event,
5216                                 u64 *now,
5217                                 u64 *enabled,
5218                                 u64 *running)
5219 {
5220         u64 ctx_time;
5221
5222         *now = perf_clock();
5223         ctx_time = event->shadow_ctx_time + *now;
5224         __perf_update_times(event, ctx_time, enabled, running);
5225 }
5226
5227 static void perf_event_init_userpage(struct perf_event *event)
5228 {
5229         struct perf_event_mmap_page *userpg;
5230         struct ring_buffer *rb;
5231
5232         rcu_read_lock();
5233         rb = rcu_dereference(event->rb);
5234         if (!rb)
5235                 goto unlock;
5236
5237         userpg = rb->user_page;
5238
5239         /* Allow new userspace to detect that bit 0 is deprecated */
5240         userpg->cap_bit0_is_deprecated = 1;
5241         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5242         userpg->data_offset = PAGE_SIZE;
5243         userpg->data_size = perf_data_size(rb);
5244
5245 unlock:
5246         rcu_read_unlock();
5247 }
5248
5249 void __weak arch_perf_update_userpage(
5250         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5251 {
5252 }
5253
5254 /*
5255  * Callers need to ensure there can be no nesting of this function, otherwise
5256  * the seqlock logic goes bad. We can not serialize this because the arch
5257  * code calls this from NMI context.
5258  */
5259 void perf_event_update_userpage(struct perf_event *event)
5260 {
5261         struct perf_event_mmap_page *userpg;
5262         struct ring_buffer *rb;
5263         u64 enabled, running, now;
5264
5265         rcu_read_lock();
5266         rb = rcu_dereference(event->rb);
5267         if (!rb)
5268                 goto unlock;
5269
5270         /*
5271          * compute total_time_enabled, total_time_running
5272          * based on snapshot values taken when the event
5273          * was last scheduled in.
5274          *
5275          * we cannot simply called update_context_time()
5276          * because of locking issue as we can be called in
5277          * NMI context
5278          */
5279         calc_timer_values(event, &now, &enabled, &running);
5280
5281         userpg = rb->user_page;
5282         /*
5283          * Disable preemption to guarantee consistent time stamps are stored to
5284          * the user page.
5285          */
5286         preempt_disable();
5287         ++userpg->lock;
5288         barrier();
5289         userpg->index = perf_event_index(event);
5290         userpg->offset = perf_event_count(event);
5291         if (userpg->index)
5292                 userpg->offset -= local64_read(&event->hw.prev_count);
5293
5294         userpg->time_enabled = enabled +
5295                         atomic64_read(&event->child_total_time_enabled);
5296
5297         userpg->time_running = running +
5298                         atomic64_read(&event->child_total_time_running);
5299
5300         arch_perf_update_userpage(event, userpg, now);
5301
5302         barrier();
5303         ++userpg->lock;
5304         preempt_enable();
5305 unlock:
5306         rcu_read_unlock();
5307 }
5308 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5309
5310 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5311 {
5312         struct perf_event *event = vmf->vma->vm_file->private_data;
5313         struct ring_buffer *rb;
5314         vm_fault_t ret = VM_FAULT_SIGBUS;
5315
5316         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5317                 if (vmf->pgoff == 0)
5318                         ret = 0;
5319                 return ret;
5320         }
5321
5322         rcu_read_lock();
5323         rb = rcu_dereference(event->rb);
5324         if (!rb)
5325                 goto unlock;
5326
5327         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5328                 goto unlock;
5329
5330         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5331         if (!vmf->page)
5332                 goto unlock;
5333
5334         get_page(vmf->page);
5335         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5336         vmf->page->index   = vmf->pgoff;
5337
5338         ret = 0;
5339 unlock:
5340         rcu_read_unlock();
5341
5342         return ret;
5343 }
5344
5345 static void ring_buffer_attach(struct perf_event *event,
5346                                struct ring_buffer *rb)
5347 {
5348         struct ring_buffer *old_rb = NULL;
5349         unsigned long flags;
5350
5351         if (event->rb) {
5352                 /*
5353                  * Should be impossible, we set this when removing
5354                  * event->rb_entry and wait/clear when adding event->rb_entry.
5355                  */
5356                 WARN_ON_ONCE(event->rcu_pending);
5357
5358                 old_rb = event->rb;
5359                 spin_lock_irqsave(&old_rb->event_lock, flags);
5360                 list_del_rcu(&event->rb_entry);
5361                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5362
5363                 event->rcu_batches = get_state_synchronize_rcu();
5364                 event->rcu_pending = 1;
5365         }
5366
5367         if (rb) {
5368                 if (event->rcu_pending) {
5369                         cond_synchronize_rcu(event->rcu_batches);
5370                         event->rcu_pending = 0;
5371                 }
5372
5373                 spin_lock_irqsave(&rb->event_lock, flags);
5374                 list_add_rcu(&event->rb_entry, &rb->event_list);
5375                 spin_unlock_irqrestore(&rb->event_lock, flags);
5376         }
5377
5378         /*
5379          * Avoid racing with perf_mmap_close(AUX): stop the event
5380          * before swizzling the event::rb pointer; if it's getting
5381          * unmapped, its aux_mmap_count will be 0 and it won't
5382          * restart. See the comment in __perf_pmu_output_stop().
5383          *
5384          * Data will inevitably be lost when set_output is done in
5385          * mid-air, but then again, whoever does it like this is
5386          * not in for the data anyway.
5387          */
5388         if (has_aux(event))
5389                 perf_event_stop(event, 0);
5390
5391         rcu_assign_pointer(event->rb, rb);
5392
5393         if (old_rb) {
5394                 ring_buffer_put(old_rb);
5395                 /*
5396                  * Since we detached before setting the new rb, so that we
5397                  * could attach the new rb, we could have missed a wakeup.
5398                  * Provide it now.
5399                  */
5400                 wake_up_all(&event->waitq);
5401         }
5402 }
5403
5404 static void ring_buffer_wakeup(struct perf_event *event)
5405 {
5406         struct ring_buffer *rb;
5407
5408         rcu_read_lock();
5409         rb = rcu_dereference(event->rb);
5410         if (rb) {
5411                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5412                         wake_up_all(&event->waitq);
5413         }
5414         rcu_read_unlock();
5415 }
5416
5417 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5418 {
5419         struct ring_buffer *rb;
5420
5421         rcu_read_lock();
5422         rb = rcu_dereference(event->rb);
5423         if (rb) {
5424                 if (!atomic_inc_not_zero(&rb->refcount))
5425                         rb = NULL;
5426         }
5427         rcu_read_unlock();
5428
5429         return rb;
5430 }
5431
5432 void ring_buffer_put(struct ring_buffer *rb)
5433 {
5434         if (!atomic_dec_and_test(&rb->refcount))
5435                 return;
5436
5437         WARN_ON_ONCE(!list_empty(&rb->event_list));
5438
5439         call_rcu(&rb->rcu_head, rb_free_rcu);
5440 }
5441
5442 static void perf_mmap_open(struct vm_area_struct *vma)
5443 {
5444         struct perf_event *event = vma->vm_file->private_data;
5445
5446         atomic_inc(&event->mmap_count);
5447         atomic_inc(&event->rb->mmap_count);
5448
5449         if (vma->vm_pgoff)
5450                 atomic_inc(&event->rb->aux_mmap_count);
5451
5452         if (event->pmu->event_mapped)
5453                 event->pmu->event_mapped(event, vma->vm_mm);
5454 }
5455
5456 static void perf_pmu_output_stop(struct perf_event *event);
5457
5458 /*
5459  * A buffer can be mmap()ed multiple times; either directly through the same
5460  * event, or through other events by use of perf_event_set_output().
5461  *
5462  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5463  * the buffer here, where we still have a VM context. This means we need
5464  * to detach all events redirecting to us.
5465  */
5466 static void perf_mmap_close(struct vm_area_struct *vma)
5467 {
5468         struct perf_event *event = vma->vm_file->private_data;
5469
5470         struct ring_buffer *rb = ring_buffer_get(event);
5471         struct user_struct *mmap_user = rb->mmap_user;
5472         int mmap_locked = rb->mmap_locked;
5473         unsigned long size = perf_data_size(rb);
5474
5475         if (event->pmu->event_unmapped)
5476                 event->pmu->event_unmapped(event, vma->vm_mm);
5477
5478         /*
5479          * rb->aux_mmap_count will always drop before rb->mmap_count and
5480          * event->mmap_count, so it is ok to use event->mmap_mutex to
5481          * serialize with perf_mmap here.
5482          */
5483         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5484             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5485                 /*
5486                  * Stop all AUX events that are writing to this buffer,
5487                  * so that we can free its AUX pages and corresponding PMU
5488                  * data. Note that after rb::aux_mmap_count dropped to zero,
5489                  * they won't start any more (see perf_aux_output_begin()).
5490                  */
5491                 perf_pmu_output_stop(event);
5492
5493                 /* now it's safe to free the pages */
5494                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5495                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5496
5497                 /* this has to be the last one */
5498                 rb_free_aux(rb);
5499                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5500
5501                 mutex_unlock(&event->mmap_mutex);
5502         }
5503
5504         atomic_dec(&rb->mmap_count);
5505
5506         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5507                 goto out_put;
5508
5509         ring_buffer_attach(event, NULL);
5510         mutex_unlock(&event->mmap_mutex);
5511
5512         /* If there's still other mmap()s of this buffer, we're done. */
5513         if (atomic_read(&rb->mmap_count))
5514                 goto out_put;
5515
5516         /*
5517          * No other mmap()s, detach from all other events that might redirect
5518          * into the now unreachable buffer. Somewhat complicated by the
5519          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5520          */
5521 again:
5522         rcu_read_lock();
5523         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5524                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5525                         /*
5526                          * This event is en-route to free_event() which will
5527                          * detach it and remove it from the list.
5528                          */
5529                         continue;
5530                 }
5531                 rcu_read_unlock();
5532
5533                 mutex_lock(&event->mmap_mutex);
5534                 /*
5535                  * Check we didn't race with perf_event_set_output() which can
5536                  * swizzle the rb from under us while we were waiting to
5537                  * acquire mmap_mutex.
5538                  *
5539                  * If we find a different rb; ignore this event, a next
5540                  * iteration will no longer find it on the list. We have to
5541                  * still restart the iteration to make sure we're not now
5542                  * iterating the wrong list.
5543                  */
5544                 if (event->rb == rb)
5545                         ring_buffer_attach(event, NULL);
5546
5547                 mutex_unlock(&event->mmap_mutex);
5548                 put_event(event);
5549
5550                 /*
5551                  * Restart the iteration; either we're on the wrong list or
5552                  * destroyed its integrity by doing a deletion.
5553                  */
5554                 goto again;
5555         }
5556         rcu_read_unlock();
5557
5558         /*
5559          * It could be there's still a few 0-ref events on the list; they'll
5560          * get cleaned up by free_event() -- they'll also still have their
5561          * ref on the rb and will free it whenever they are done with it.
5562          *
5563          * Aside from that, this buffer is 'fully' detached and unmapped,
5564          * undo the VM accounting.
5565          */
5566
5567         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5568         vma->vm_mm->pinned_vm -= mmap_locked;
5569         free_uid(mmap_user);
5570
5571 out_put:
5572         ring_buffer_put(rb); /* could be last */
5573 }
5574
5575 static const struct vm_operations_struct perf_mmap_vmops = {
5576         .open           = perf_mmap_open,
5577         .close          = perf_mmap_close, /* non mergable */
5578         .fault          = perf_mmap_fault,
5579         .page_mkwrite   = perf_mmap_fault,
5580 };
5581
5582 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5583 {
5584         struct perf_event *event = file->private_data;
5585         unsigned long user_locked, user_lock_limit;
5586         struct user_struct *user = current_user();
5587         unsigned long locked, lock_limit;
5588         struct ring_buffer *rb = NULL;
5589         unsigned long vma_size;
5590         unsigned long nr_pages;
5591         long user_extra = 0, extra = 0;
5592         int ret = 0, flags = 0;
5593
5594         /*
5595          * Don't allow mmap() of inherited per-task counters. This would
5596          * create a performance issue due to all children writing to the
5597          * same rb.
5598          */
5599         if (event->cpu == -1 && event->attr.inherit)
5600                 return -EINVAL;
5601
5602         if (!(vma->vm_flags & VM_SHARED))
5603                 return -EINVAL;
5604
5605         vma_size = vma->vm_end - vma->vm_start;
5606
5607         if (vma->vm_pgoff == 0) {
5608                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5609         } else {
5610                 /*
5611                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5612                  * mapped, all subsequent mappings should have the same size
5613                  * and offset. Must be above the normal perf buffer.
5614                  */
5615                 u64 aux_offset, aux_size;
5616
5617                 if (!event->rb)
5618                         return -EINVAL;
5619
5620                 nr_pages = vma_size / PAGE_SIZE;
5621
5622                 mutex_lock(&event->mmap_mutex);
5623                 ret = -EINVAL;
5624
5625                 rb = event->rb;
5626                 if (!rb)
5627                         goto aux_unlock;
5628
5629                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5630                 aux_size = READ_ONCE(rb->user_page->aux_size);
5631
5632                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5633                         goto aux_unlock;
5634
5635                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5636                         goto aux_unlock;
5637
5638                 /* already mapped with a different offset */
5639                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5640                         goto aux_unlock;
5641
5642                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5643                         goto aux_unlock;
5644
5645                 /* already mapped with a different size */
5646                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5647                         goto aux_unlock;
5648
5649                 if (!is_power_of_2(nr_pages))
5650                         goto aux_unlock;
5651
5652                 if (!atomic_inc_not_zero(&rb->mmap_count))
5653                         goto aux_unlock;
5654
5655                 if (rb_has_aux(rb)) {
5656                         atomic_inc(&rb->aux_mmap_count);
5657                         ret = 0;
5658                         goto unlock;
5659                 }
5660
5661                 atomic_set(&rb->aux_mmap_count, 1);
5662                 user_extra = nr_pages;
5663
5664                 goto accounting;
5665         }
5666
5667         /*
5668          * If we have rb pages ensure they're a power-of-two number, so we
5669          * can do bitmasks instead of modulo.
5670          */
5671         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5672                 return -EINVAL;
5673
5674         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5675                 return -EINVAL;
5676
5677         WARN_ON_ONCE(event->ctx->parent_ctx);
5678 again:
5679         mutex_lock(&event->mmap_mutex);
5680         if (event->rb) {
5681                 if (event->rb->nr_pages != nr_pages) {
5682                         ret = -EINVAL;
5683                         goto unlock;
5684                 }
5685
5686                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5687                         /*
5688                          * Raced against perf_mmap_close() through
5689                          * perf_event_set_output(). Try again, hope for better
5690                          * luck.
5691                          */
5692                         mutex_unlock(&event->mmap_mutex);
5693                         goto again;
5694                 }
5695
5696                 goto unlock;
5697         }
5698
5699         user_extra = nr_pages + 1;
5700
5701 accounting:
5702         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5703
5704         /*
5705          * Increase the limit linearly with more CPUs:
5706          */
5707         user_lock_limit *= num_online_cpus();
5708
5709         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5710
5711         if (user_locked > user_lock_limit)
5712                 extra = user_locked - user_lock_limit;
5713
5714         lock_limit = rlimit(RLIMIT_MEMLOCK);
5715         lock_limit >>= PAGE_SHIFT;
5716         locked = vma->vm_mm->pinned_vm + extra;
5717
5718         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5719                 !capable(CAP_IPC_LOCK)) {
5720                 ret = -EPERM;
5721                 goto unlock;
5722         }
5723
5724         WARN_ON(!rb && event->rb);
5725
5726         if (vma->vm_flags & VM_WRITE)
5727                 flags |= RING_BUFFER_WRITABLE;
5728
5729         if (!rb) {
5730                 rb = rb_alloc(nr_pages,
5731                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5732                               event->cpu, flags);
5733
5734                 if (!rb) {
5735                         ret = -ENOMEM;
5736                         goto unlock;
5737                 }
5738
5739                 atomic_set(&rb->mmap_count, 1);
5740                 rb->mmap_user = get_current_user();
5741                 rb->mmap_locked = extra;
5742
5743                 ring_buffer_attach(event, rb);
5744
5745                 perf_event_init_userpage(event);
5746                 perf_event_update_userpage(event);
5747         } else {
5748                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5749                                    event->attr.aux_watermark, flags);
5750                 if (!ret)
5751                         rb->aux_mmap_locked = extra;
5752         }
5753
5754 unlock:
5755         if (!ret) {
5756                 atomic_long_add(user_extra, &user->locked_vm);
5757                 vma->vm_mm->pinned_vm += extra;
5758
5759                 atomic_inc(&event->mmap_count);
5760         } else if (rb) {
5761                 atomic_dec(&rb->mmap_count);
5762         }
5763 aux_unlock:
5764         mutex_unlock(&event->mmap_mutex);
5765
5766         /*
5767          * Since pinned accounting is per vm we cannot allow fork() to copy our
5768          * vma.
5769          */
5770         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5771         vma->vm_ops = &perf_mmap_vmops;
5772
5773         if (event->pmu->event_mapped)
5774                 event->pmu->event_mapped(event, vma->vm_mm);
5775
5776         return ret;
5777 }
5778
5779 static int perf_fasync(int fd, struct file *filp, int on)
5780 {
5781         struct inode *inode = file_inode(filp);
5782         struct perf_event *event = filp->private_data;
5783         int retval;
5784
5785         inode_lock(inode);
5786         retval = fasync_helper(fd, filp, on, &event->fasync);
5787         inode_unlock(inode);
5788
5789         if (retval < 0)
5790                 return retval;
5791
5792         return 0;
5793 }
5794
5795 static const struct file_operations perf_fops = {
5796         .llseek                 = no_llseek,
5797         .release                = perf_release,
5798         .read                   = perf_read,
5799         .poll                   = perf_poll,
5800         .unlocked_ioctl         = perf_ioctl,
5801         .compat_ioctl           = perf_compat_ioctl,
5802         .mmap                   = perf_mmap,
5803         .fasync                 = perf_fasync,
5804 };
5805
5806 /*
5807  * Perf event wakeup
5808  *
5809  * If there's data, ensure we set the poll() state and publish everything
5810  * to user-space before waking everybody up.
5811  */
5812
5813 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5814 {
5815         /* only the parent has fasync state */
5816         if (event->parent)
5817                 event = event->parent;
5818         return &event->fasync;
5819 }
5820
5821 void perf_event_wakeup(struct perf_event *event)
5822 {
5823         ring_buffer_wakeup(event);
5824
5825         if (event->pending_kill) {
5826                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5827                 event->pending_kill = 0;
5828         }
5829 }
5830
5831 static void perf_pending_event_disable(struct perf_event *event)
5832 {
5833         int cpu = READ_ONCE(event->pending_disable);
5834
5835         if (cpu < 0)
5836                 return;
5837
5838         if (cpu == smp_processor_id()) {
5839                 WRITE_ONCE(event->pending_disable, -1);
5840                 perf_event_disable_local(event);
5841                 return;
5842         }
5843
5844         /*
5845          *  CPU-A                       CPU-B
5846          *
5847          *  perf_event_disable_inatomic()
5848          *    @pending_disable = CPU-A;
5849          *    irq_work_queue();
5850          *
5851          *  sched-out
5852          *    @pending_disable = -1;
5853          *
5854          *                              sched-in
5855          *                              perf_event_disable_inatomic()
5856          *                                @pending_disable = CPU-B;
5857          *                                irq_work_queue(); // FAILS
5858          *
5859          *  irq_work_run()
5860          *    perf_pending_event()
5861          *
5862          * But the event runs on CPU-B and wants disabling there.
5863          */
5864         irq_work_queue_on(&event->pending, cpu);
5865 }
5866
5867 static void perf_pending_event(struct irq_work *entry)
5868 {
5869         struct perf_event *event = container_of(entry, struct perf_event, pending);
5870         int rctx;
5871
5872         rctx = perf_swevent_get_recursion_context();
5873         /*
5874          * If we 'fail' here, that's OK, it means recursion is already disabled
5875          * and we won't recurse 'further'.
5876          */
5877
5878         perf_pending_event_disable(event);
5879
5880         if (event->pending_wakeup) {
5881                 event->pending_wakeup = 0;
5882                 perf_event_wakeup(event);
5883         }
5884
5885         if (rctx >= 0)
5886                 perf_swevent_put_recursion_context(rctx);
5887 }
5888
5889 /*
5890  * We assume there is only KVM supporting the callbacks.
5891  * Later on, we might change it to a list if there is
5892  * another virtualization implementation supporting the callbacks.
5893  */
5894 struct perf_guest_info_callbacks *perf_guest_cbs;
5895
5896 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5897 {
5898         perf_guest_cbs = cbs;
5899         return 0;
5900 }
5901 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5902
5903 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5904 {
5905         perf_guest_cbs = NULL;
5906         return 0;
5907 }
5908 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5909
5910 static void
5911 perf_output_sample_regs(struct perf_output_handle *handle,
5912                         struct pt_regs *regs, u64 mask)
5913 {
5914         int bit;
5915         DECLARE_BITMAP(_mask, 64);
5916
5917         bitmap_from_u64(_mask, mask);
5918         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5919                 u64 val;
5920
5921                 val = perf_reg_value(regs, bit);
5922                 perf_output_put(handle, val);
5923         }
5924 }
5925
5926 static void perf_sample_regs_user(struct perf_regs *regs_user,
5927                                   struct pt_regs *regs,
5928                                   struct pt_regs *regs_user_copy)
5929 {
5930         if (user_mode(regs)) {
5931                 regs_user->abi = perf_reg_abi(current);
5932                 regs_user->regs = regs;
5933         } else if (!(current->flags & PF_KTHREAD)) {
5934                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5935         } else {
5936                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5937                 regs_user->regs = NULL;
5938         }
5939 }
5940
5941 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5942                                   struct pt_regs *regs)
5943 {
5944         regs_intr->regs = regs;
5945         regs_intr->abi  = perf_reg_abi(current);
5946 }
5947
5948
5949 /*
5950  * Get remaining task size from user stack pointer.
5951  *
5952  * It'd be better to take stack vma map and limit this more
5953  * precisly, but there's no way to get it safely under interrupt,
5954  * so using TASK_SIZE as limit.
5955  */
5956 static u64 perf_ustack_task_size(struct pt_regs *regs)
5957 {
5958         unsigned long addr = perf_user_stack_pointer(regs);
5959
5960         if (!addr || addr >= TASK_SIZE)
5961                 return 0;
5962
5963         return TASK_SIZE - addr;
5964 }
5965
5966 static u16
5967 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5968                         struct pt_regs *regs)
5969 {
5970         u64 task_size;
5971
5972         /* No regs, no stack pointer, no dump. */
5973         if (!regs)
5974                 return 0;
5975
5976         /*
5977          * Check if we fit in with the requested stack size into the:
5978          * - TASK_SIZE
5979          *   If we don't, we limit the size to the TASK_SIZE.
5980          *
5981          * - remaining sample size
5982          *   If we don't, we customize the stack size to
5983          *   fit in to the remaining sample size.
5984          */
5985
5986         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5987         stack_size = min(stack_size, (u16) task_size);
5988
5989         /* Current header size plus static size and dynamic size. */
5990         header_size += 2 * sizeof(u64);
5991
5992         /* Do we fit in with the current stack dump size? */
5993         if ((u16) (header_size + stack_size) < header_size) {
5994                 /*
5995                  * If we overflow the maximum size for the sample,
5996                  * we customize the stack dump size to fit in.
5997                  */
5998                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5999                 stack_size = round_up(stack_size, sizeof(u64));
6000         }
6001
6002         return stack_size;
6003 }
6004
6005 static void
6006 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6007                           struct pt_regs *regs)
6008 {
6009         /* Case of a kernel thread, nothing to dump */
6010         if (!regs) {
6011                 u64 size = 0;
6012                 perf_output_put(handle, size);
6013         } else {
6014                 unsigned long sp;
6015                 unsigned int rem;
6016                 u64 dyn_size;
6017                 mm_segment_t fs;
6018
6019                 /*
6020                  * We dump:
6021                  * static size
6022                  *   - the size requested by user or the best one we can fit
6023                  *     in to the sample max size
6024                  * data
6025                  *   - user stack dump data
6026                  * dynamic size
6027                  *   - the actual dumped size
6028                  */
6029
6030                 /* Static size. */
6031                 perf_output_put(handle, dump_size);
6032
6033                 /* Data. */
6034                 sp = perf_user_stack_pointer(regs);
6035                 fs = get_fs();
6036                 set_fs(USER_DS);
6037                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6038                 set_fs(fs);
6039                 dyn_size = dump_size - rem;
6040
6041                 perf_output_skip(handle, rem);
6042
6043                 /* Dynamic size. */
6044                 perf_output_put(handle, dyn_size);
6045         }
6046 }
6047
6048 static void __perf_event_header__init_id(struct perf_event_header *header,
6049                                          struct perf_sample_data *data,
6050                                          struct perf_event *event)
6051 {
6052         u64 sample_type = event->attr.sample_type;
6053
6054         data->type = sample_type;
6055         header->size += event->id_header_size;
6056
6057         if (sample_type & PERF_SAMPLE_TID) {
6058                 /* namespace issues */
6059                 data->tid_entry.pid = perf_event_pid(event, current);
6060                 data->tid_entry.tid = perf_event_tid(event, current);
6061         }
6062
6063         if (sample_type & PERF_SAMPLE_TIME)
6064                 data->time = perf_event_clock(event);
6065
6066         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6067                 data->id = primary_event_id(event);
6068
6069         if (sample_type & PERF_SAMPLE_STREAM_ID)
6070                 data->stream_id = event->id;
6071
6072         if (sample_type & PERF_SAMPLE_CPU) {
6073                 data->cpu_entry.cpu      = raw_smp_processor_id();
6074                 data->cpu_entry.reserved = 0;
6075         }
6076 }
6077
6078 void perf_event_header__init_id(struct perf_event_header *header,
6079                                 struct perf_sample_data *data,
6080                                 struct perf_event *event)
6081 {
6082         if (event->attr.sample_id_all)
6083                 __perf_event_header__init_id(header, data, event);
6084 }
6085
6086 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6087                                            struct perf_sample_data *data)
6088 {
6089         u64 sample_type = data->type;
6090
6091         if (sample_type & PERF_SAMPLE_TID)
6092                 perf_output_put(handle, data->tid_entry);
6093
6094         if (sample_type & PERF_SAMPLE_TIME)
6095                 perf_output_put(handle, data->time);
6096
6097         if (sample_type & PERF_SAMPLE_ID)
6098                 perf_output_put(handle, data->id);
6099
6100         if (sample_type & PERF_SAMPLE_STREAM_ID)
6101                 perf_output_put(handle, data->stream_id);
6102
6103         if (sample_type & PERF_SAMPLE_CPU)
6104                 perf_output_put(handle, data->cpu_entry);
6105
6106         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6107                 perf_output_put(handle, data->id);
6108 }
6109
6110 void perf_event__output_id_sample(struct perf_event *event,
6111                                   struct perf_output_handle *handle,
6112                                   struct perf_sample_data *sample)
6113 {
6114         if (event->attr.sample_id_all)
6115                 __perf_event__output_id_sample(handle, sample);
6116 }
6117
6118 static void perf_output_read_one(struct perf_output_handle *handle,
6119                                  struct perf_event *event,
6120                                  u64 enabled, u64 running)
6121 {
6122         u64 read_format = event->attr.read_format;
6123         u64 values[4];
6124         int n = 0;
6125
6126         values[n++] = perf_event_count(event);
6127         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6128                 values[n++] = enabled +
6129                         atomic64_read(&event->child_total_time_enabled);
6130         }
6131         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6132                 values[n++] = running +
6133                         atomic64_read(&event->child_total_time_running);
6134         }
6135         if (read_format & PERF_FORMAT_ID)
6136                 values[n++] = primary_event_id(event);
6137
6138         __output_copy(handle, values, n * sizeof(u64));
6139 }
6140
6141 static void perf_output_read_group(struct perf_output_handle *handle,
6142                             struct perf_event *event,
6143                             u64 enabled, u64 running)
6144 {
6145         struct perf_event *leader = event->group_leader, *sub;
6146         u64 read_format = event->attr.read_format;
6147         u64 values[5];
6148         int n = 0;
6149
6150         values[n++] = 1 + leader->nr_siblings;
6151
6152         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6153                 values[n++] = enabled;
6154
6155         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6156                 values[n++] = running;
6157
6158         if ((leader != event) &&
6159             (leader->state == PERF_EVENT_STATE_ACTIVE))
6160                 leader->pmu->read(leader);
6161
6162         values[n++] = perf_event_count(leader);
6163         if (read_format & PERF_FORMAT_ID)
6164                 values[n++] = primary_event_id(leader);
6165
6166         __output_copy(handle, values, n * sizeof(u64));
6167
6168         for_each_sibling_event(sub, leader) {
6169                 n = 0;
6170
6171                 if ((sub != event) &&
6172                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6173                         sub->pmu->read(sub);
6174
6175                 values[n++] = perf_event_count(sub);
6176                 if (read_format & PERF_FORMAT_ID)
6177                         values[n++] = primary_event_id(sub);
6178
6179                 __output_copy(handle, values, n * sizeof(u64));
6180         }
6181 }
6182
6183 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6184                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6185
6186 /*
6187  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6188  *
6189  * The problem is that its both hard and excessively expensive to iterate the
6190  * child list, not to mention that its impossible to IPI the children running
6191  * on another CPU, from interrupt/NMI context.
6192  */
6193 static void perf_output_read(struct perf_output_handle *handle,
6194                              struct perf_event *event)
6195 {
6196         u64 enabled = 0, running = 0, now;
6197         u64 read_format = event->attr.read_format;
6198
6199         /*
6200          * compute total_time_enabled, total_time_running
6201          * based on snapshot values taken when the event
6202          * was last scheduled in.
6203          *
6204          * we cannot simply called update_context_time()
6205          * because of locking issue as we are called in
6206          * NMI context
6207          */
6208         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6209                 calc_timer_values(event, &now, &enabled, &running);
6210
6211         if (event->attr.read_format & PERF_FORMAT_GROUP)
6212                 perf_output_read_group(handle, event, enabled, running);
6213         else
6214                 perf_output_read_one(handle, event, enabled, running);
6215 }
6216
6217 void perf_output_sample(struct perf_output_handle *handle,
6218                         struct perf_event_header *header,
6219                         struct perf_sample_data *data,
6220                         struct perf_event *event)
6221 {
6222         u64 sample_type = data->type;
6223
6224         perf_output_put(handle, *header);
6225
6226         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6227                 perf_output_put(handle, data->id);
6228
6229         if (sample_type & PERF_SAMPLE_IP)
6230                 perf_output_put(handle, data->ip);
6231
6232         if (sample_type & PERF_SAMPLE_TID)
6233                 perf_output_put(handle, data->tid_entry);
6234
6235         if (sample_type & PERF_SAMPLE_TIME)
6236                 perf_output_put(handle, data->time);
6237
6238         if (sample_type & PERF_SAMPLE_ADDR)
6239                 perf_output_put(handle, data->addr);
6240
6241         if (sample_type & PERF_SAMPLE_ID)
6242                 perf_output_put(handle, data->id);
6243
6244         if (sample_type & PERF_SAMPLE_STREAM_ID)
6245                 perf_output_put(handle, data->stream_id);
6246
6247         if (sample_type & PERF_SAMPLE_CPU)
6248                 perf_output_put(handle, data->cpu_entry);
6249
6250         if (sample_type & PERF_SAMPLE_PERIOD)
6251                 perf_output_put(handle, data->period);
6252
6253         if (sample_type & PERF_SAMPLE_READ)
6254                 perf_output_read(handle, event);
6255
6256         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6257                 int size = 1;
6258
6259                 size += data->callchain->nr;
6260                 size *= sizeof(u64);
6261                 __output_copy(handle, data->callchain, size);
6262         }
6263
6264         if (sample_type & PERF_SAMPLE_RAW) {
6265                 struct perf_raw_record *raw = data->raw;
6266
6267                 if (raw) {
6268                         struct perf_raw_frag *frag = &raw->frag;
6269
6270                         perf_output_put(handle, raw->size);
6271                         do {
6272                                 if (frag->copy) {
6273                                         __output_custom(handle, frag->copy,
6274                                                         frag->data, frag->size);
6275                                 } else {
6276                                         __output_copy(handle, frag->data,
6277                                                       frag->size);
6278                                 }
6279                                 if (perf_raw_frag_last(frag))
6280                                         break;
6281                                 frag = frag->next;
6282                         } while (1);
6283                         if (frag->pad)
6284                                 __output_skip(handle, NULL, frag->pad);
6285                 } else {
6286                         struct {
6287                                 u32     size;
6288                                 u32     data;
6289                         } raw = {
6290                                 .size = sizeof(u32),
6291                                 .data = 0,
6292                         };
6293                         perf_output_put(handle, raw);
6294                 }
6295         }
6296
6297         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6298                 if (data->br_stack) {
6299                         size_t size;
6300
6301                         size = data->br_stack->nr
6302                              * sizeof(struct perf_branch_entry);
6303
6304                         perf_output_put(handle, data->br_stack->nr);
6305                         perf_output_copy(handle, data->br_stack->entries, size);
6306                 } else {
6307                         /*
6308                          * we always store at least the value of nr
6309                          */
6310                         u64 nr = 0;
6311                         perf_output_put(handle, nr);
6312                 }
6313         }
6314
6315         if (sample_type & PERF_SAMPLE_REGS_USER) {
6316                 u64 abi = data->regs_user.abi;
6317
6318                 /*
6319                  * If there are no regs to dump, notice it through
6320                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6321                  */
6322                 perf_output_put(handle, abi);
6323
6324                 if (abi) {
6325                         u64 mask = event->attr.sample_regs_user;
6326                         perf_output_sample_regs(handle,
6327                                                 data->regs_user.regs,
6328                                                 mask);
6329                 }
6330         }
6331
6332         if (sample_type & PERF_SAMPLE_STACK_USER) {
6333                 perf_output_sample_ustack(handle,
6334                                           data->stack_user_size,
6335                                           data->regs_user.regs);
6336         }
6337
6338         if (sample_type & PERF_SAMPLE_WEIGHT)
6339                 perf_output_put(handle, data->weight);
6340
6341         if (sample_type & PERF_SAMPLE_DATA_SRC)
6342                 perf_output_put(handle, data->data_src.val);
6343
6344         if (sample_type & PERF_SAMPLE_TRANSACTION)
6345                 perf_output_put(handle, data->txn);
6346
6347         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6348                 u64 abi = data->regs_intr.abi;
6349                 /*
6350                  * If there are no regs to dump, notice it through
6351                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6352                  */
6353                 perf_output_put(handle, abi);
6354
6355                 if (abi) {
6356                         u64 mask = event->attr.sample_regs_intr;
6357
6358                         perf_output_sample_regs(handle,
6359                                                 data->regs_intr.regs,
6360                                                 mask);
6361                 }
6362         }
6363
6364         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6365                 perf_output_put(handle, data->phys_addr);
6366
6367         if (!event->attr.watermark) {
6368                 int wakeup_events = event->attr.wakeup_events;
6369
6370                 if (wakeup_events) {
6371                         struct ring_buffer *rb = handle->rb;
6372                         int events = local_inc_return(&rb->events);
6373
6374                         if (events >= wakeup_events) {
6375                                 local_sub(wakeup_events, &rb->events);
6376                                 local_inc(&rb->wakeup);
6377                         }
6378                 }
6379         }
6380 }
6381
6382 static u64 perf_virt_to_phys(u64 virt)
6383 {
6384         u64 phys_addr = 0;
6385         struct page *p = NULL;
6386
6387         if (!virt)
6388                 return 0;
6389
6390         if (virt >= TASK_SIZE) {
6391                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6392                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6393                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6394                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6395         } else {
6396                 /*
6397                  * Walking the pages tables for user address.
6398                  * Interrupts are disabled, so it prevents any tear down
6399                  * of the page tables.
6400                  * Try IRQ-safe __get_user_pages_fast first.
6401                  * If failed, leave phys_addr as 0.
6402                  */
6403                 if ((current->mm != NULL) &&
6404                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6405                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6406
6407                 if (p)
6408                         put_page(p);
6409         }
6410
6411         return phys_addr;
6412 }
6413
6414 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6415
6416 struct perf_callchain_entry *
6417 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6418 {
6419         bool kernel = !event->attr.exclude_callchain_kernel;
6420         bool user   = !event->attr.exclude_callchain_user;
6421         /* Disallow cross-task user callchains. */
6422         bool crosstask = event->ctx->task && event->ctx->task != current;
6423         const u32 max_stack = event->attr.sample_max_stack;
6424         struct perf_callchain_entry *callchain;
6425
6426         if (!kernel && !user)
6427                 return &__empty_callchain;
6428
6429         callchain = get_perf_callchain(regs, 0, kernel, user,
6430                                        max_stack, crosstask, true);
6431         return callchain ?: &__empty_callchain;
6432 }
6433
6434 void perf_prepare_sample(struct perf_event_header *header,
6435                          struct perf_sample_data *data,
6436                          struct perf_event *event,
6437                          struct pt_regs *regs)
6438 {
6439         u64 sample_type = event->attr.sample_type;
6440
6441         header->type = PERF_RECORD_SAMPLE;
6442         header->size = sizeof(*header) + event->header_size;
6443
6444         header->misc = 0;
6445         header->misc |= perf_misc_flags(regs);
6446
6447         __perf_event_header__init_id(header, data, event);
6448
6449         if (sample_type & PERF_SAMPLE_IP)
6450                 data->ip = perf_instruction_pointer(regs);
6451
6452         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6453                 int size = 1;
6454
6455                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6456                         data->callchain = perf_callchain(event, regs);
6457
6458                 size += data->callchain->nr;
6459
6460                 header->size += size * sizeof(u64);
6461         }
6462
6463         if (sample_type & PERF_SAMPLE_RAW) {
6464                 struct perf_raw_record *raw = data->raw;
6465                 int size;
6466
6467                 if (raw) {
6468                         struct perf_raw_frag *frag = &raw->frag;
6469                         u32 sum = 0;
6470
6471                         do {
6472                                 sum += frag->size;
6473                                 if (perf_raw_frag_last(frag))
6474                                         break;
6475                                 frag = frag->next;
6476                         } while (1);
6477
6478                         size = round_up(sum + sizeof(u32), sizeof(u64));
6479                         raw->size = size - sizeof(u32);
6480                         frag->pad = raw->size - sum;
6481                 } else {
6482                         size = sizeof(u64);
6483                 }
6484
6485                 header->size += size;
6486         }
6487
6488         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6489                 int size = sizeof(u64); /* nr */
6490                 if (data->br_stack) {
6491                         size += data->br_stack->nr
6492                               * sizeof(struct perf_branch_entry);
6493                 }
6494                 header->size += size;
6495         }
6496
6497         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6498                 perf_sample_regs_user(&data->regs_user, regs,
6499                                       &data->regs_user_copy);
6500
6501         if (sample_type & PERF_SAMPLE_REGS_USER) {
6502                 /* regs dump ABI info */
6503                 int size = sizeof(u64);
6504
6505                 if (data->regs_user.regs) {
6506                         u64 mask = event->attr.sample_regs_user;
6507                         size += hweight64(mask) * sizeof(u64);
6508                 }
6509
6510                 header->size += size;
6511         }
6512
6513         if (sample_type & PERF_SAMPLE_STACK_USER) {
6514                 /*
6515                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6516                  * processed as the last one or have additional check added
6517                  * in case new sample type is added, because we could eat
6518                  * up the rest of the sample size.
6519                  */
6520                 u16 stack_size = event->attr.sample_stack_user;
6521                 u16 size = sizeof(u64);
6522
6523                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6524                                                      data->regs_user.regs);
6525
6526                 /*
6527                  * If there is something to dump, add space for the dump
6528                  * itself and for the field that tells the dynamic size,
6529                  * which is how many have been actually dumped.
6530                  */
6531                 if (stack_size)
6532                         size += sizeof(u64) + stack_size;
6533
6534                 data->stack_user_size = stack_size;
6535                 header->size += size;
6536         }
6537
6538         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6539                 /* regs dump ABI info */
6540                 int size = sizeof(u64);
6541
6542                 perf_sample_regs_intr(&data->regs_intr, regs);
6543
6544                 if (data->regs_intr.regs) {
6545                         u64 mask = event->attr.sample_regs_intr;
6546
6547                         size += hweight64(mask) * sizeof(u64);
6548                 }
6549
6550                 header->size += size;
6551         }
6552
6553         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6554                 data->phys_addr = perf_virt_to_phys(data->addr);
6555 }
6556
6557 static __always_inline void
6558 __perf_event_output(struct perf_event *event,
6559                     struct perf_sample_data *data,
6560                     struct pt_regs *regs,
6561                     int (*output_begin)(struct perf_output_handle *,
6562                                         struct perf_event *,
6563                                         unsigned int))
6564 {
6565         struct perf_output_handle handle;
6566         struct perf_event_header header;
6567
6568         /* protect the callchain buffers */
6569         rcu_read_lock();
6570
6571         perf_prepare_sample(&header, data, event, regs);
6572
6573         if (output_begin(&handle, event, header.size))
6574                 goto exit;
6575
6576         perf_output_sample(&handle, &header, data, event);
6577
6578         perf_output_end(&handle);
6579
6580 exit:
6581         rcu_read_unlock();
6582 }
6583
6584 void
6585 perf_event_output_forward(struct perf_event *event,
6586                          struct perf_sample_data *data,
6587                          struct pt_regs *regs)
6588 {
6589         __perf_event_output(event, data, regs, perf_output_begin_forward);
6590 }
6591
6592 void
6593 perf_event_output_backward(struct perf_event *event,
6594                            struct perf_sample_data *data,
6595                            struct pt_regs *regs)
6596 {
6597         __perf_event_output(event, data, regs, perf_output_begin_backward);
6598 }
6599
6600 void
6601 perf_event_output(struct perf_event *event,
6602                   struct perf_sample_data *data,
6603                   struct pt_regs *regs)
6604 {
6605         __perf_event_output(event, data, regs, perf_output_begin);
6606 }
6607
6608 /*
6609  * read event_id
6610  */
6611
6612 struct perf_read_event {
6613         struct perf_event_header        header;
6614
6615         u32                             pid;
6616         u32                             tid;
6617 };
6618
6619 static void
6620 perf_event_read_event(struct perf_event *event,
6621                         struct task_struct *task)
6622 {
6623         struct perf_output_handle handle;
6624         struct perf_sample_data sample;
6625         struct perf_read_event read_event = {
6626                 .header = {
6627                         .type = PERF_RECORD_READ,
6628                         .misc = 0,
6629                         .size = sizeof(read_event) + event->read_size,
6630                 },
6631                 .pid = perf_event_pid(event, task),
6632                 .tid = perf_event_tid(event, task),
6633         };
6634         int ret;
6635
6636         perf_event_header__init_id(&read_event.header, &sample, event);
6637         ret = perf_output_begin(&handle, event, read_event.header.size);
6638         if (ret)
6639                 return;
6640
6641         perf_output_put(&handle, read_event);
6642         perf_output_read(&handle, event);
6643         perf_event__output_id_sample(event, &handle, &sample);
6644
6645         perf_output_end(&handle);
6646 }
6647
6648 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6649
6650 static void
6651 perf_iterate_ctx(struct perf_event_context *ctx,
6652                    perf_iterate_f output,
6653                    void *data, bool all)
6654 {
6655         struct perf_event *event;
6656
6657         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6658                 if (!all) {
6659                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6660                                 continue;
6661                         if (!event_filter_match(event))
6662                                 continue;
6663                 }
6664
6665                 output(event, data);
6666         }
6667 }
6668
6669 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6670 {
6671         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6672         struct perf_event *event;
6673
6674         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6675                 /*
6676                  * Skip events that are not fully formed yet; ensure that
6677                  * if we observe event->ctx, both event and ctx will be
6678                  * complete enough. See perf_install_in_context().
6679                  */
6680                 if (!smp_load_acquire(&event->ctx))
6681                         continue;
6682
6683                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6684                         continue;
6685                 if (!event_filter_match(event))
6686                         continue;
6687                 output(event, data);
6688         }
6689 }
6690
6691 /*
6692  * Iterate all events that need to receive side-band events.
6693  *
6694  * For new callers; ensure that account_pmu_sb_event() includes
6695  * your event, otherwise it might not get delivered.
6696  */
6697 static void
6698 perf_iterate_sb(perf_iterate_f output, void *data,
6699                struct perf_event_context *task_ctx)
6700 {
6701         struct perf_event_context *ctx;
6702         int ctxn;
6703
6704         rcu_read_lock();
6705         preempt_disable();
6706
6707         /*
6708          * If we have task_ctx != NULL we only notify the task context itself.
6709          * The task_ctx is set only for EXIT events before releasing task
6710          * context.
6711          */
6712         if (task_ctx) {
6713                 perf_iterate_ctx(task_ctx, output, data, false);
6714                 goto done;
6715         }
6716
6717         perf_iterate_sb_cpu(output, data);
6718
6719         for_each_task_context_nr(ctxn) {
6720                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6721                 if (ctx)
6722                         perf_iterate_ctx(ctx, output, data, false);
6723         }
6724 done:
6725         preempt_enable();
6726         rcu_read_unlock();
6727 }
6728
6729 /*
6730  * Clear all file-based filters at exec, they'll have to be
6731  * re-instated when/if these objects are mmapped again.
6732  */
6733 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6734 {
6735         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6736         struct perf_addr_filter *filter;
6737         unsigned int restart = 0, count = 0;
6738         unsigned long flags;
6739
6740         if (!has_addr_filter(event))
6741                 return;
6742
6743         raw_spin_lock_irqsave(&ifh->lock, flags);
6744         list_for_each_entry(filter, &ifh->list, entry) {
6745                 if (filter->path.dentry) {
6746                         event->addr_filters_offs[count] = 0;
6747                         restart++;
6748                 }
6749
6750                 count++;
6751         }
6752
6753         if (restart)
6754                 event->addr_filters_gen++;
6755         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6756
6757         if (restart)
6758                 perf_event_stop(event, 1);
6759 }
6760
6761 void perf_event_exec(void)
6762 {
6763         struct perf_event_context *ctx;
6764         int ctxn;
6765
6766         rcu_read_lock();
6767         for_each_task_context_nr(ctxn) {
6768                 ctx = current->perf_event_ctxp[ctxn];
6769                 if (!ctx)
6770                         continue;
6771
6772                 perf_event_enable_on_exec(ctxn);
6773
6774                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6775                                    true);
6776         }
6777         rcu_read_unlock();
6778 }
6779
6780 struct remote_output {
6781         struct ring_buffer      *rb;
6782         int                     err;
6783 };
6784
6785 static void __perf_event_output_stop(struct perf_event *event, void *data)
6786 {
6787         struct perf_event *parent = event->parent;
6788         struct remote_output *ro = data;
6789         struct ring_buffer *rb = ro->rb;
6790         struct stop_event_data sd = {
6791                 .event  = event,
6792         };
6793
6794         if (!has_aux(event))
6795                 return;
6796
6797         if (!parent)
6798                 parent = event;
6799
6800         /*
6801          * In case of inheritance, it will be the parent that links to the
6802          * ring-buffer, but it will be the child that's actually using it.
6803          *
6804          * We are using event::rb to determine if the event should be stopped,
6805          * however this may race with ring_buffer_attach() (through set_output),
6806          * which will make us skip the event that actually needs to be stopped.
6807          * So ring_buffer_attach() has to stop an aux event before re-assigning
6808          * its rb pointer.
6809          */
6810         if (rcu_dereference(parent->rb) == rb)
6811                 ro->err = __perf_event_stop(&sd);
6812 }
6813
6814 static int __perf_pmu_output_stop(void *info)
6815 {
6816         struct perf_event *event = info;
6817         struct pmu *pmu = event->ctx->pmu;
6818         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6819         struct remote_output ro = {
6820                 .rb     = event->rb,
6821         };
6822
6823         rcu_read_lock();
6824         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6825         if (cpuctx->task_ctx)
6826                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6827                                    &ro, false);
6828         rcu_read_unlock();
6829
6830         return ro.err;
6831 }
6832
6833 static void perf_pmu_output_stop(struct perf_event *event)
6834 {
6835         struct perf_event *iter;
6836         int err, cpu;
6837
6838 restart:
6839         rcu_read_lock();
6840         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6841                 /*
6842                  * For per-CPU events, we need to make sure that neither they
6843                  * nor their children are running; for cpu==-1 events it's
6844                  * sufficient to stop the event itself if it's active, since
6845                  * it can't have children.
6846                  */
6847                 cpu = iter->cpu;
6848                 if (cpu == -1)
6849                         cpu = READ_ONCE(iter->oncpu);
6850
6851                 if (cpu == -1)
6852                         continue;
6853
6854                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6855                 if (err == -EAGAIN) {
6856                         rcu_read_unlock();
6857                         goto restart;
6858                 }
6859         }
6860         rcu_read_unlock();
6861 }
6862
6863 /*
6864  * task tracking -- fork/exit
6865  *
6866  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6867  */
6868
6869 struct perf_task_event {
6870         struct task_struct              *task;
6871         struct perf_event_context       *task_ctx;
6872
6873         struct {
6874                 struct perf_event_header        header;
6875
6876                 u32                             pid;
6877                 u32                             ppid;
6878                 u32                             tid;
6879                 u32                             ptid;
6880                 u64                             time;
6881         } event_id;
6882 };
6883
6884 static int perf_event_task_match(struct perf_event *event)
6885 {
6886         return event->attr.comm  || event->attr.mmap ||
6887                event->attr.mmap2 || event->attr.mmap_data ||
6888                event->attr.task;
6889 }
6890
6891 static void perf_event_task_output(struct perf_event *event,
6892                                    void *data)
6893 {
6894         struct perf_task_event *task_event = data;
6895         struct perf_output_handle handle;
6896         struct perf_sample_data sample;
6897         struct task_struct *task = task_event->task;
6898         int ret, size = task_event->event_id.header.size;
6899
6900         if (!perf_event_task_match(event))
6901                 return;
6902
6903         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6904
6905         ret = perf_output_begin(&handle, event,
6906                                 task_event->event_id.header.size);
6907         if (ret)
6908                 goto out;
6909
6910         task_event->event_id.pid = perf_event_pid(event, task);
6911         task_event->event_id.ppid = perf_event_pid(event, current);
6912
6913         task_event->event_id.tid = perf_event_tid(event, task);
6914         task_event->event_id.ptid = perf_event_tid(event, current);
6915
6916         task_event->event_id.time = perf_event_clock(event);
6917
6918         perf_output_put(&handle, task_event->event_id);
6919
6920         perf_event__output_id_sample(event, &handle, &sample);
6921
6922         perf_output_end(&handle);
6923 out:
6924         task_event->event_id.header.size = size;
6925 }
6926
6927 static void perf_event_task(struct task_struct *task,
6928                               struct perf_event_context *task_ctx,
6929                               int new)
6930 {
6931         struct perf_task_event task_event;
6932
6933         if (!atomic_read(&nr_comm_events) &&
6934             !atomic_read(&nr_mmap_events) &&
6935             !atomic_read(&nr_task_events))
6936                 return;
6937
6938         task_event = (struct perf_task_event){
6939                 .task     = task,
6940                 .task_ctx = task_ctx,
6941                 .event_id    = {
6942                         .header = {
6943                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6944                                 .misc = 0,
6945                                 .size = sizeof(task_event.event_id),
6946                         },
6947                         /* .pid  */
6948                         /* .ppid */
6949                         /* .tid  */
6950                         /* .ptid */
6951                         /* .time */
6952                 },
6953         };
6954
6955         perf_iterate_sb(perf_event_task_output,
6956                        &task_event,
6957                        task_ctx);
6958 }
6959
6960 void perf_event_fork(struct task_struct *task)
6961 {
6962         perf_event_task(task, NULL, 1);
6963         perf_event_namespaces(task);
6964 }
6965
6966 /*
6967  * comm tracking
6968  */
6969
6970 struct perf_comm_event {
6971         struct task_struct      *task;
6972         char                    *comm;
6973         int                     comm_size;
6974
6975         struct {
6976                 struct perf_event_header        header;
6977
6978                 u32                             pid;
6979                 u32                             tid;
6980         } event_id;
6981 };
6982
6983 static int perf_event_comm_match(struct perf_event *event)
6984 {
6985         return event->attr.comm;
6986 }
6987
6988 static void perf_event_comm_output(struct perf_event *event,
6989                                    void *data)
6990 {
6991         struct perf_comm_event *comm_event = data;
6992         struct perf_output_handle handle;
6993         struct perf_sample_data sample;
6994         int size = comm_event->event_id.header.size;
6995         int ret;
6996
6997         if (!perf_event_comm_match(event))
6998                 return;
6999
7000         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7001         ret = perf_output_begin(&handle, event,
7002                                 comm_event->event_id.header.size);
7003
7004         if (ret)
7005                 goto out;
7006
7007         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7008         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7009
7010         perf_output_put(&handle, comm_event->event_id);
7011         __output_copy(&handle, comm_event->comm,
7012                                    comm_event->comm_size);
7013
7014         perf_event__output_id_sample(event, &handle, &sample);
7015
7016         perf_output_end(&handle);
7017 out:
7018         comm_event->event_id.header.size = size;
7019 }
7020
7021 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7022 {
7023         char comm[TASK_COMM_LEN];
7024         unsigned int size;
7025
7026         memset(comm, 0, sizeof(comm));
7027         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7028         size = ALIGN(strlen(comm)+1, sizeof(u64));
7029
7030         comm_event->comm = comm;
7031         comm_event->comm_size = size;
7032
7033         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7034
7035         perf_iterate_sb(perf_event_comm_output,
7036                        comm_event,
7037                        NULL);
7038 }
7039
7040 void perf_event_comm(struct task_struct *task, bool exec)
7041 {
7042         struct perf_comm_event comm_event;
7043
7044         if (!atomic_read(&nr_comm_events))
7045                 return;
7046
7047         comm_event = (struct perf_comm_event){
7048                 .task   = task,
7049                 /* .comm      */
7050                 /* .comm_size */
7051                 .event_id  = {
7052                         .header = {
7053                                 .type = PERF_RECORD_COMM,
7054                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7055                                 /* .size */
7056                         },
7057                         /* .pid */
7058                         /* .tid */
7059                 },
7060         };
7061
7062         perf_event_comm_event(&comm_event);
7063 }
7064
7065 /*
7066  * namespaces tracking
7067  */
7068
7069 struct perf_namespaces_event {
7070         struct task_struct              *task;
7071
7072         struct {
7073                 struct perf_event_header        header;
7074
7075                 u32                             pid;
7076                 u32                             tid;
7077                 u64                             nr_namespaces;
7078                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7079         } event_id;
7080 };
7081
7082 static int perf_event_namespaces_match(struct perf_event *event)
7083 {
7084         return event->attr.namespaces;
7085 }
7086
7087 static void perf_event_namespaces_output(struct perf_event *event,
7088                                          void *data)
7089 {
7090         struct perf_namespaces_event *namespaces_event = data;
7091         struct perf_output_handle handle;
7092         struct perf_sample_data sample;
7093         u16 header_size = namespaces_event->event_id.header.size;
7094         int ret;
7095
7096         if (!perf_event_namespaces_match(event))
7097                 return;
7098
7099         perf_event_header__init_id(&namespaces_event->event_id.header,
7100                                    &sample, event);
7101         ret = perf_output_begin(&handle, event,
7102                                 namespaces_event->event_id.header.size);
7103         if (ret)
7104                 goto out;
7105
7106         namespaces_event->event_id.pid = perf_event_pid(event,
7107                                                         namespaces_event->task);
7108         namespaces_event->event_id.tid = perf_event_tid(event,
7109                                                         namespaces_event->task);
7110
7111         perf_output_put(&handle, namespaces_event->event_id);
7112
7113         perf_event__output_id_sample(event, &handle, &sample);
7114
7115         perf_output_end(&handle);
7116 out:
7117         namespaces_event->event_id.header.size = header_size;
7118 }
7119
7120 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7121                                    struct task_struct *task,
7122                                    const struct proc_ns_operations *ns_ops)
7123 {
7124         struct path ns_path;
7125         struct inode *ns_inode;
7126         void *error;
7127
7128         error = ns_get_path(&ns_path, task, ns_ops);
7129         if (!error) {
7130                 ns_inode = ns_path.dentry->d_inode;
7131                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7132                 ns_link_info->ino = ns_inode->i_ino;
7133                 path_put(&ns_path);
7134         }
7135 }
7136
7137 void perf_event_namespaces(struct task_struct *task)
7138 {
7139         struct perf_namespaces_event namespaces_event;
7140         struct perf_ns_link_info *ns_link_info;
7141
7142         if (!atomic_read(&nr_namespaces_events))
7143                 return;
7144
7145         namespaces_event = (struct perf_namespaces_event){
7146                 .task   = task,
7147                 .event_id  = {
7148                         .header = {
7149                                 .type = PERF_RECORD_NAMESPACES,
7150                                 .misc = 0,
7151                                 .size = sizeof(namespaces_event.event_id),
7152                         },
7153                         /* .pid */
7154                         /* .tid */
7155                         .nr_namespaces = NR_NAMESPACES,
7156                         /* .link_info[NR_NAMESPACES] */
7157                 },
7158         };
7159
7160         ns_link_info = namespaces_event.event_id.link_info;
7161
7162         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7163                                task, &mntns_operations);
7164
7165 #ifdef CONFIG_USER_NS
7166         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7167                                task, &userns_operations);
7168 #endif
7169 #ifdef CONFIG_NET_NS
7170         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7171                                task, &netns_operations);
7172 #endif
7173 #ifdef CONFIG_UTS_NS
7174         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7175                                task, &utsns_operations);
7176 #endif
7177 #ifdef CONFIG_IPC_NS
7178         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7179                                task, &ipcns_operations);
7180 #endif
7181 #ifdef CONFIG_PID_NS
7182         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7183                                task, &pidns_operations);
7184 #endif
7185 #ifdef CONFIG_CGROUPS
7186         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7187                                task, &cgroupns_operations);
7188 #endif
7189
7190         perf_iterate_sb(perf_event_namespaces_output,
7191                         &namespaces_event,
7192                         NULL);
7193 }
7194
7195 /*
7196  * mmap tracking
7197  */
7198
7199 struct perf_mmap_event {
7200         struct vm_area_struct   *vma;
7201
7202         const char              *file_name;
7203         int                     file_size;
7204         int                     maj, min;
7205         u64                     ino;
7206         u64                     ino_generation;
7207         u32                     prot, flags;
7208
7209         struct {
7210                 struct perf_event_header        header;
7211
7212                 u32                             pid;
7213                 u32                             tid;
7214                 u64                             start;
7215                 u64                             len;
7216                 u64                             pgoff;
7217         } event_id;
7218 };
7219
7220 static int perf_event_mmap_match(struct perf_event *event,
7221                                  void *data)
7222 {
7223         struct perf_mmap_event *mmap_event = data;
7224         struct vm_area_struct *vma = mmap_event->vma;
7225         int executable = vma->vm_flags & VM_EXEC;
7226
7227         return (!executable && event->attr.mmap_data) ||
7228                (executable && (event->attr.mmap || event->attr.mmap2));
7229 }
7230
7231 static void perf_event_mmap_output(struct perf_event *event,
7232                                    void *data)
7233 {
7234         struct perf_mmap_event *mmap_event = data;
7235         struct perf_output_handle handle;
7236         struct perf_sample_data sample;
7237         int size = mmap_event->event_id.header.size;
7238         u32 type = mmap_event->event_id.header.type;
7239         int ret;
7240
7241         if (!perf_event_mmap_match(event, data))
7242                 return;
7243
7244         if (event->attr.mmap2) {
7245                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7246                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7247                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7248                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7249                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7250                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7251                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7252         }
7253
7254         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7255         ret = perf_output_begin(&handle, event,
7256                                 mmap_event->event_id.header.size);
7257         if (ret)
7258                 goto out;
7259
7260         mmap_event->event_id.pid = perf_event_pid(event, current);
7261         mmap_event->event_id.tid = perf_event_tid(event, current);
7262
7263         perf_output_put(&handle, mmap_event->event_id);
7264
7265         if (event->attr.mmap2) {
7266                 perf_output_put(&handle, mmap_event->maj);
7267                 perf_output_put(&handle, mmap_event->min);
7268                 perf_output_put(&handle, mmap_event->ino);
7269                 perf_output_put(&handle, mmap_event->ino_generation);
7270                 perf_output_put(&handle, mmap_event->prot);
7271                 perf_output_put(&handle, mmap_event->flags);
7272         }
7273
7274         __output_copy(&handle, mmap_event->file_name,
7275                                    mmap_event->file_size);
7276
7277         perf_event__output_id_sample(event, &handle, &sample);
7278
7279         perf_output_end(&handle);
7280 out:
7281         mmap_event->event_id.header.size = size;
7282         mmap_event->event_id.header.type = type;
7283 }
7284
7285 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7286 {
7287         struct vm_area_struct *vma = mmap_event->vma;
7288         struct file *file = vma->vm_file;
7289         int maj = 0, min = 0;
7290         u64 ino = 0, gen = 0;
7291         u32 prot = 0, flags = 0;
7292         unsigned int size;
7293         char tmp[16];
7294         char *buf = NULL;
7295         char *name;
7296
7297         if (vma->vm_flags & VM_READ)
7298                 prot |= PROT_READ;
7299         if (vma->vm_flags & VM_WRITE)
7300                 prot |= PROT_WRITE;
7301         if (vma->vm_flags & VM_EXEC)
7302                 prot |= PROT_EXEC;
7303
7304         if (vma->vm_flags & VM_MAYSHARE)
7305                 flags = MAP_SHARED;
7306         else
7307                 flags = MAP_PRIVATE;
7308
7309         if (vma->vm_flags & VM_DENYWRITE)
7310                 flags |= MAP_DENYWRITE;
7311         if (vma->vm_flags & VM_MAYEXEC)
7312                 flags |= MAP_EXECUTABLE;
7313         if (vma->vm_flags & VM_LOCKED)
7314                 flags |= MAP_LOCKED;
7315         if (vma->vm_flags & VM_HUGETLB)
7316                 flags |= MAP_HUGETLB;
7317
7318         if (file) {
7319                 struct inode *inode;
7320                 dev_t dev;
7321
7322                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7323                 if (!buf) {
7324                         name = "//enomem";
7325                         goto cpy_name;
7326                 }
7327                 /*
7328                  * d_path() works from the end of the rb backwards, so we
7329                  * need to add enough zero bytes after the string to handle
7330                  * the 64bit alignment we do later.
7331                  */
7332                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7333                 if (IS_ERR(name)) {
7334                         name = "//toolong";
7335                         goto cpy_name;
7336                 }
7337                 inode = file_inode(vma->vm_file);
7338                 dev = inode->i_sb->s_dev;
7339                 ino = inode->i_ino;
7340                 gen = inode->i_generation;
7341                 maj = MAJOR(dev);
7342                 min = MINOR(dev);
7343
7344                 goto got_name;
7345         } else {
7346                 if (vma->vm_ops && vma->vm_ops->name) {
7347                         name = (char *) vma->vm_ops->name(vma);
7348                         if (name)
7349                                 goto cpy_name;
7350                 }
7351
7352                 name = (char *)arch_vma_name(vma);
7353                 if (name)
7354                         goto cpy_name;
7355
7356                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7357                                 vma->vm_end >= vma->vm_mm->brk) {
7358                         name = "[heap]";
7359                         goto cpy_name;
7360                 }
7361                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7362                                 vma->vm_end >= vma->vm_mm->start_stack) {
7363                         name = "[stack]";
7364                         goto cpy_name;
7365                 }
7366
7367                 name = "//anon";
7368                 goto cpy_name;
7369         }
7370
7371 cpy_name:
7372         strlcpy(tmp, name, sizeof(tmp));
7373         name = tmp;
7374 got_name:
7375         /*
7376          * Since our buffer works in 8 byte units we need to align our string
7377          * size to a multiple of 8. However, we must guarantee the tail end is
7378          * zero'd out to avoid leaking random bits to userspace.
7379          */
7380         size = strlen(name)+1;
7381         while (!IS_ALIGNED(size, sizeof(u64)))
7382                 name[size++] = '\0';
7383
7384         mmap_event->file_name = name;
7385         mmap_event->file_size = size;
7386         mmap_event->maj = maj;
7387         mmap_event->min = min;
7388         mmap_event->ino = ino;
7389         mmap_event->ino_generation = gen;
7390         mmap_event->prot = prot;
7391         mmap_event->flags = flags;
7392
7393         if (!(vma->vm_flags & VM_EXEC))
7394                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7395
7396         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7397
7398         perf_iterate_sb(perf_event_mmap_output,
7399                        mmap_event,
7400                        NULL);
7401
7402         kfree(buf);
7403 }
7404
7405 /*
7406  * Check whether inode and address range match filter criteria.
7407  */
7408 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7409                                      struct file *file, unsigned long offset,
7410                                      unsigned long size)
7411 {
7412         /* d_inode(NULL) won't be equal to any mapped user-space file */
7413         if (!filter->path.dentry)
7414                 return false;
7415
7416         if (d_inode(filter->path.dentry) != file_inode(file))
7417                 return false;
7418
7419         if (filter->offset > offset + size)
7420                 return false;
7421
7422         if (filter->offset + filter->size < offset)
7423                 return false;
7424
7425         return true;
7426 }
7427
7428 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7429 {
7430         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7431         struct vm_area_struct *vma = data;
7432         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7433         struct file *file = vma->vm_file;
7434         struct perf_addr_filter *filter;
7435         unsigned int restart = 0, count = 0;
7436
7437         if (!has_addr_filter(event))
7438                 return;
7439
7440         if (!file)
7441                 return;
7442
7443         raw_spin_lock_irqsave(&ifh->lock, flags);
7444         list_for_each_entry(filter, &ifh->list, entry) {
7445                 if (perf_addr_filter_match(filter, file, off,
7446                                              vma->vm_end - vma->vm_start)) {
7447                         event->addr_filters_offs[count] = vma->vm_start;
7448                         restart++;
7449                 }
7450
7451                 count++;
7452         }
7453
7454         if (restart)
7455                 event->addr_filters_gen++;
7456         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7457
7458         if (restart)
7459                 perf_event_stop(event, 1);
7460 }
7461
7462 /*
7463  * Adjust all task's events' filters to the new vma
7464  */
7465 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7466 {
7467         struct perf_event_context *ctx;
7468         int ctxn;
7469
7470         /*
7471          * Data tracing isn't supported yet and as such there is no need
7472          * to keep track of anything that isn't related to executable code:
7473          */
7474         if (!(vma->vm_flags & VM_EXEC))
7475                 return;
7476
7477         rcu_read_lock();
7478         for_each_task_context_nr(ctxn) {
7479                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7480                 if (!ctx)
7481                         continue;
7482
7483                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7484         }
7485         rcu_read_unlock();
7486 }
7487
7488 void perf_event_mmap(struct vm_area_struct *vma)
7489 {
7490         struct perf_mmap_event mmap_event;
7491
7492         if (!atomic_read(&nr_mmap_events))
7493                 return;
7494
7495         mmap_event = (struct perf_mmap_event){
7496                 .vma    = vma,
7497                 /* .file_name */
7498                 /* .file_size */
7499                 .event_id  = {
7500                         .header = {
7501                                 .type = PERF_RECORD_MMAP,
7502                                 .misc = PERF_RECORD_MISC_USER,
7503                                 /* .size */
7504                         },
7505                         /* .pid */
7506                         /* .tid */
7507                         .start  = vma->vm_start,
7508                         .len    = vma->vm_end - vma->vm_start,
7509                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7510                 },
7511                 /* .maj (attr_mmap2 only) */
7512                 /* .min (attr_mmap2 only) */
7513                 /* .ino (attr_mmap2 only) */
7514                 /* .ino_generation (attr_mmap2 only) */
7515                 /* .prot (attr_mmap2 only) */
7516                 /* .flags (attr_mmap2 only) */
7517         };
7518
7519         perf_addr_filters_adjust(vma);
7520         perf_event_mmap_event(&mmap_event);
7521 }
7522
7523 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7524                           unsigned long size, u64 flags)
7525 {
7526         struct perf_output_handle handle;
7527         struct perf_sample_data sample;
7528         struct perf_aux_event {
7529                 struct perf_event_header        header;
7530                 u64                             offset;
7531                 u64                             size;
7532                 u64                             flags;
7533         } rec = {
7534                 .header = {
7535                         .type = PERF_RECORD_AUX,
7536                         .misc = 0,
7537                         .size = sizeof(rec),
7538                 },
7539                 .offset         = head,
7540                 .size           = size,
7541                 .flags          = flags,
7542         };
7543         int ret;
7544
7545         perf_event_header__init_id(&rec.header, &sample, event);
7546         ret = perf_output_begin(&handle, event, rec.header.size);
7547
7548         if (ret)
7549                 return;
7550
7551         perf_output_put(&handle, rec);
7552         perf_event__output_id_sample(event, &handle, &sample);
7553
7554         perf_output_end(&handle);
7555 }
7556
7557 /*
7558  * Lost/dropped samples logging
7559  */
7560 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7561 {
7562         struct perf_output_handle handle;
7563         struct perf_sample_data sample;
7564         int ret;
7565
7566         struct {
7567                 struct perf_event_header        header;
7568                 u64                             lost;
7569         } lost_samples_event = {
7570                 .header = {
7571                         .type = PERF_RECORD_LOST_SAMPLES,
7572                         .misc = 0,
7573                         .size = sizeof(lost_samples_event),
7574                 },
7575                 .lost           = lost,
7576         };
7577
7578         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7579
7580         ret = perf_output_begin(&handle, event,
7581                                 lost_samples_event.header.size);
7582         if (ret)
7583                 return;
7584
7585         perf_output_put(&handle, lost_samples_event);
7586         perf_event__output_id_sample(event, &handle, &sample);
7587         perf_output_end(&handle);
7588 }
7589
7590 /*
7591  * context_switch tracking
7592  */
7593
7594 struct perf_switch_event {
7595         struct task_struct      *task;
7596         struct task_struct      *next_prev;
7597
7598         struct {
7599                 struct perf_event_header        header;
7600                 u32                             next_prev_pid;
7601                 u32                             next_prev_tid;
7602         } event_id;
7603 };
7604
7605 static int perf_event_switch_match(struct perf_event *event)
7606 {
7607         return event->attr.context_switch;
7608 }
7609
7610 static void perf_event_switch_output(struct perf_event *event, void *data)
7611 {
7612         struct perf_switch_event *se = data;
7613         struct perf_output_handle handle;
7614         struct perf_sample_data sample;
7615         int ret;
7616
7617         if (!perf_event_switch_match(event))
7618                 return;
7619
7620         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7621         if (event->ctx->task) {
7622                 se->event_id.header.type = PERF_RECORD_SWITCH;
7623                 se->event_id.header.size = sizeof(se->event_id.header);
7624         } else {
7625                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7626                 se->event_id.header.size = sizeof(se->event_id);
7627                 se->event_id.next_prev_pid =
7628                                         perf_event_pid(event, se->next_prev);
7629                 se->event_id.next_prev_tid =
7630                                         perf_event_tid(event, se->next_prev);
7631         }
7632
7633         perf_event_header__init_id(&se->event_id.header, &sample, event);
7634
7635         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7636         if (ret)
7637                 return;
7638
7639         if (event->ctx->task)
7640                 perf_output_put(&handle, se->event_id.header);
7641         else
7642                 perf_output_put(&handle, se->event_id);
7643
7644         perf_event__output_id_sample(event, &handle, &sample);
7645
7646         perf_output_end(&handle);
7647 }
7648
7649 static void perf_event_switch(struct task_struct *task,
7650                               struct task_struct *next_prev, bool sched_in)
7651 {
7652         struct perf_switch_event switch_event;
7653
7654         /* N.B. caller checks nr_switch_events != 0 */
7655
7656         switch_event = (struct perf_switch_event){
7657                 .task           = task,
7658                 .next_prev      = next_prev,
7659                 .event_id       = {
7660                         .header = {
7661                                 /* .type */
7662                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7663                                 /* .size */
7664                         },
7665                         /* .next_prev_pid */
7666                         /* .next_prev_tid */
7667                 },
7668         };
7669
7670         if (!sched_in && task->state == TASK_RUNNING)
7671                 switch_event.event_id.header.misc |=
7672                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7673
7674         perf_iterate_sb(perf_event_switch_output,
7675                        &switch_event,
7676                        NULL);
7677 }
7678
7679 /*
7680  * IRQ throttle logging
7681  */
7682
7683 static void perf_log_throttle(struct perf_event *event, int enable)
7684 {
7685         struct perf_output_handle handle;
7686         struct perf_sample_data sample;
7687         int ret;
7688
7689         struct {
7690                 struct perf_event_header        header;
7691                 u64                             time;
7692                 u64                             id;
7693                 u64                             stream_id;
7694         } throttle_event = {
7695                 .header = {
7696                         .type = PERF_RECORD_THROTTLE,
7697                         .misc = 0,
7698                         .size = sizeof(throttle_event),
7699                 },
7700                 .time           = perf_event_clock(event),
7701                 .id             = primary_event_id(event),
7702                 .stream_id      = event->id,
7703         };
7704
7705         if (enable)
7706                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7707
7708         perf_event_header__init_id(&throttle_event.header, &sample, event);
7709
7710         ret = perf_output_begin(&handle, event,
7711                                 throttle_event.header.size);
7712         if (ret)
7713                 return;
7714
7715         perf_output_put(&handle, throttle_event);
7716         perf_event__output_id_sample(event, &handle, &sample);
7717         perf_output_end(&handle);
7718 }
7719
7720 void perf_event_itrace_started(struct perf_event *event)
7721 {
7722         event->attach_state |= PERF_ATTACH_ITRACE;
7723 }
7724
7725 static void perf_log_itrace_start(struct perf_event *event)
7726 {
7727         struct perf_output_handle handle;
7728         struct perf_sample_data sample;
7729         struct perf_aux_event {
7730                 struct perf_event_header        header;
7731                 u32                             pid;
7732                 u32                             tid;
7733         } rec;
7734         int ret;
7735
7736         if (event->parent)
7737                 event = event->parent;
7738
7739         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7740             event->attach_state & PERF_ATTACH_ITRACE)
7741                 return;
7742
7743         rec.header.type = PERF_RECORD_ITRACE_START;
7744         rec.header.misc = 0;
7745         rec.header.size = sizeof(rec);
7746         rec.pid = perf_event_pid(event, current);
7747         rec.tid = perf_event_tid(event, current);
7748
7749         perf_event_header__init_id(&rec.header, &sample, event);
7750         ret = perf_output_begin(&handle, event, rec.header.size);
7751
7752         if (ret)
7753                 return;
7754
7755         perf_output_put(&handle, rec);
7756         perf_event__output_id_sample(event, &handle, &sample);
7757
7758         perf_output_end(&handle);
7759 }
7760
7761 static int
7762 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7763 {
7764         struct hw_perf_event *hwc = &event->hw;
7765         int ret = 0;
7766         u64 seq;
7767
7768         seq = __this_cpu_read(perf_throttled_seq);
7769         if (seq != hwc->interrupts_seq) {
7770                 hwc->interrupts_seq = seq;
7771                 hwc->interrupts = 1;
7772         } else {
7773                 hwc->interrupts++;
7774                 if (unlikely(throttle
7775                              && hwc->interrupts >= max_samples_per_tick)) {
7776                         __this_cpu_inc(perf_throttled_count);
7777                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7778                         hwc->interrupts = MAX_INTERRUPTS;
7779                         perf_log_throttle(event, 0);
7780                         ret = 1;
7781                 }
7782         }
7783
7784         if (event->attr.freq) {
7785                 u64 now = perf_clock();
7786                 s64 delta = now - hwc->freq_time_stamp;
7787
7788                 hwc->freq_time_stamp = now;
7789
7790                 if (delta > 0 && delta < 2*TICK_NSEC)
7791                         perf_adjust_period(event, delta, hwc->last_period, true);
7792         }
7793
7794         return ret;
7795 }
7796
7797 int perf_event_account_interrupt(struct perf_event *event)
7798 {
7799         return __perf_event_account_interrupt(event, 1);
7800 }
7801
7802 /*
7803  * Generic event overflow handling, sampling.
7804  */
7805
7806 static int __perf_event_overflow(struct perf_event *event,
7807                                    int throttle, struct perf_sample_data *data,
7808                                    struct pt_regs *regs)
7809 {
7810         int events = atomic_read(&event->event_limit);
7811         int ret = 0;
7812
7813         /*
7814          * Non-sampling counters might still use the PMI to fold short
7815          * hardware counters, ignore those.
7816          */
7817         if (unlikely(!is_sampling_event(event)))
7818                 return 0;
7819
7820         ret = __perf_event_account_interrupt(event, throttle);
7821
7822         /*
7823          * XXX event_limit might not quite work as expected on inherited
7824          * events
7825          */
7826
7827         event->pending_kill = POLL_IN;
7828         if (events && atomic_dec_and_test(&event->event_limit)) {
7829                 ret = 1;
7830                 event->pending_kill = POLL_HUP;
7831
7832                 perf_event_disable_inatomic(event);
7833         }
7834
7835         READ_ONCE(event->overflow_handler)(event, data, regs);
7836
7837         if (*perf_event_fasync(event) && event->pending_kill) {
7838                 event->pending_wakeup = 1;
7839                 irq_work_queue(&event->pending);
7840         }
7841
7842         return ret;
7843 }
7844
7845 int perf_event_overflow(struct perf_event *event,
7846                           struct perf_sample_data *data,
7847                           struct pt_regs *regs)
7848 {
7849         return __perf_event_overflow(event, 1, data, regs);
7850 }
7851
7852 /*
7853  * Generic software event infrastructure
7854  */
7855
7856 struct swevent_htable {
7857         struct swevent_hlist            *swevent_hlist;
7858         struct mutex                    hlist_mutex;
7859         int                             hlist_refcount;
7860
7861         /* Recursion avoidance in each contexts */
7862         int                             recursion[PERF_NR_CONTEXTS];
7863 };
7864
7865 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7866
7867 /*
7868  * We directly increment event->count and keep a second value in
7869  * event->hw.period_left to count intervals. This period event
7870  * is kept in the range [-sample_period, 0] so that we can use the
7871  * sign as trigger.
7872  */
7873
7874 u64 perf_swevent_set_period(struct perf_event *event)
7875 {
7876         struct hw_perf_event *hwc = &event->hw;
7877         u64 period = hwc->last_period;
7878         u64 nr, offset;
7879         s64 old, val;
7880
7881         hwc->last_period = hwc->sample_period;
7882
7883 again:
7884         old = val = local64_read(&hwc->period_left);
7885         if (val < 0)
7886                 return 0;
7887
7888         nr = div64_u64(period + val, period);
7889         offset = nr * period;
7890         val -= offset;
7891         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7892                 goto again;
7893
7894         return nr;
7895 }
7896
7897 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7898                                     struct perf_sample_data *data,
7899                                     struct pt_regs *regs)
7900 {
7901         struct hw_perf_event *hwc = &event->hw;
7902         int throttle = 0;
7903
7904         if (!overflow)
7905                 overflow = perf_swevent_set_period(event);
7906
7907         if (hwc->interrupts == MAX_INTERRUPTS)
7908                 return;
7909
7910         for (; overflow; overflow--) {
7911                 if (__perf_event_overflow(event, throttle,
7912                                             data, regs)) {
7913                         /*
7914                          * We inhibit the overflow from happening when
7915                          * hwc->interrupts == MAX_INTERRUPTS.
7916                          */
7917                         break;
7918                 }
7919                 throttle = 1;
7920         }
7921 }
7922
7923 static void perf_swevent_event(struct perf_event *event, u64 nr,
7924                                struct perf_sample_data *data,
7925                                struct pt_regs *regs)
7926 {
7927         struct hw_perf_event *hwc = &event->hw;
7928
7929         local64_add(nr, &event->count);
7930
7931         if (!regs)
7932                 return;
7933
7934         if (!is_sampling_event(event))
7935                 return;
7936
7937         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7938                 data->period = nr;
7939                 return perf_swevent_overflow(event, 1, data, regs);
7940         } else
7941                 data->period = event->hw.last_period;
7942
7943         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7944                 return perf_swevent_overflow(event, 1, data, regs);
7945
7946         if (local64_add_negative(nr, &hwc->period_left))
7947                 return;
7948
7949         perf_swevent_overflow(event, 0, data, regs);
7950 }
7951
7952 static int perf_exclude_event(struct perf_event *event,
7953                               struct pt_regs *regs)
7954 {
7955         if (event->hw.state & PERF_HES_STOPPED)
7956                 return 1;
7957
7958         if (regs) {
7959                 if (event->attr.exclude_user && user_mode(regs))
7960                         return 1;
7961
7962                 if (event->attr.exclude_kernel && !user_mode(regs))
7963                         return 1;
7964         }
7965
7966         return 0;
7967 }
7968
7969 static int perf_swevent_match(struct perf_event *event,
7970                                 enum perf_type_id type,
7971                                 u32 event_id,
7972                                 struct perf_sample_data *data,
7973                                 struct pt_regs *regs)
7974 {
7975         if (event->attr.type != type)
7976                 return 0;
7977
7978         if (event->attr.config != event_id)
7979                 return 0;
7980
7981         if (perf_exclude_event(event, regs))
7982                 return 0;
7983
7984         return 1;
7985 }
7986
7987 static inline u64 swevent_hash(u64 type, u32 event_id)
7988 {
7989         u64 val = event_id | (type << 32);
7990
7991         return hash_64(val, SWEVENT_HLIST_BITS);
7992 }
7993
7994 static inline struct hlist_head *
7995 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7996 {
7997         u64 hash = swevent_hash(type, event_id);
7998
7999         return &hlist->heads[hash];
8000 }
8001
8002 /* For the read side: events when they trigger */
8003 static inline struct hlist_head *
8004 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8005 {
8006         struct swevent_hlist *hlist;
8007
8008         hlist = rcu_dereference(swhash->swevent_hlist);
8009         if (!hlist)
8010                 return NULL;
8011
8012         return __find_swevent_head(hlist, type, event_id);
8013 }
8014
8015 /* For the event head insertion and removal in the hlist */
8016 static inline struct hlist_head *
8017 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8018 {
8019         struct swevent_hlist *hlist;
8020         u32 event_id = event->attr.config;
8021         u64 type = event->attr.type;
8022
8023         /*
8024          * Event scheduling is always serialized against hlist allocation
8025          * and release. Which makes the protected version suitable here.
8026          * The context lock guarantees that.
8027          */
8028         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8029                                           lockdep_is_held(&event->ctx->lock));
8030         if (!hlist)
8031                 return NULL;
8032
8033         return __find_swevent_head(hlist, type, event_id);
8034 }
8035
8036 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8037                                     u64 nr,
8038                                     struct perf_sample_data *data,
8039                                     struct pt_regs *regs)
8040 {
8041         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8042         struct perf_event *event;
8043         struct hlist_head *head;
8044
8045         rcu_read_lock();
8046         head = find_swevent_head_rcu(swhash, type, event_id);
8047         if (!head)
8048                 goto end;
8049
8050         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8051                 if (perf_swevent_match(event, type, event_id, data, regs))
8052                         perf_swevent_event(event, nr, data, regs);
8053         }
8054 end:
8055         rcu_read_unlock();
8056 }
8057
8058 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8059
8060 int perf_swevent_get_recursion_context(void)
8061 {
8062         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8063
8064         return get_recursion_context(swhash->recursion);
8065 }
8066 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8067
8068 void perf_swevent_put_recursion_context(int rctx)
8069 {
8070         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8071
8072         put_recursion_context(swhash->recursion, rctx);
8073 }
8074
8075 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8076 {
8077         struct perf_sample_data data;
8078
8079         if (WARN_ON_ONCE(!regs))
8080                 return;
8081
8082         perf_sample_data_init(&data, addr, 0);
8083         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8084 }
8085
8086 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8087 {
8088         int rctx;
8089
8090         preempt_disable_notrace();
8091         rctx = perf_swevent_get_recursion_context();
8092         if (unlikely(rctx < 0))
8093                 goto fail;
8094
8095         ___perf_sw_event(event_id, nr, regs, addr);
8096
8097         perf_swevent_put_recursion_context(rctx);
8098 fail:
8099         preempt_enable_notrace();
8100 }
8101
8102 static void perf_swevent_read(struct perf_event *event)
8103 {
8104 }
8105
8106 static int perf_swevent_add(struct perf_event *event, int flags)
8107 {
8108         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8109         struct hw_perf_event *hwc = &event->hw;
8110         struct hlist_head *head;
8111
8112         if (is_sampling_event(event)) {
8113                 hwc->last_period = hwc->sample_period;
8114                 perf_swevent_set_period(event);
8115         }
8116
8117         hwc->state = !(flags & PERF_EF_START);
8118
8119         head = find_swevent_head(swhash, event);
8120         if (WARN_ON_ONCE(!head))
8121                 return -EINVAL;
8122
8123         hlist_add_head_rcu(&event->hlist_entry, head);
8124         perf_event_update_userpage(event);
8125
8126         return 0;
8127 }
8128
8129 static void perf_swevent_del(struct perf_event *event, int flags)
8130 {
8131         hlist_del_rcu(&event->hlist_entry);
8132 }
8133
8134 static void perf_swevent_start(struct perf_event *event, int flags)
8135 {
8136         event->hw.state = 0;
8137 }
8138
8139 static void perf_swevent_stop(struct perf_event *event, int flags)
8140 {
8141         event->hw.state = PERF_HES_STOPPED;
8142 }
8143
8144 /* Deref the hlist from the update side */
8145 static inline struct swevent_hlist *
8146 swevent_hlist_deref(struct swevent_htable *swhash)
8147 {
8148         return rcu_dereference_protected(swhash->swevent_hlist,
8149                                          lockdep_is_held(&swhash->hlist_mutex));
8150 }
8151
8152 static void swevent_hlist_release(struct swevent_htable *swhash)
8153 {
8154         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8155
8156         if (!hlist)
8157                 return;
8158
8159         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8160         kfree_rcu(hlist, rcu_head);
8161 }
8162
8163 static void swevent_hlist_put_cpu(int cpu)
8164 {
8165         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8166
8167         mutex_lock(&swhash->hlist_mutex);
8168
8169         if (!--swhash->hlist_refcount)
8170                 swevent_hlist_release(swhash);
8171
8172         mutex_unlock(&swhash->hlist_mutex);
8173 }
8174
8175 static void swevent_hlist_put(void)
8176 {
8177         int cpu;
8178
8179         for_each_possible_cpu(cpu)
8180                 swevent_hlist_put_cpu(cpu);
8181 }
8182
8183 static int swevent_hlist_get_cpu(int cpu)
8184 {
8185         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8186         int err = 0;
8187
8188         mutex_lock(&swhash->hlist_mutex);
8189         if (!swevent_hlist_deref(swhash) &&
8190             cpumask_test_cpu(cpu, perf_online_mask)) {
8191                 struct swevent_hlist *hlist;
8192
8193                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8194                 if (!hlist) {
8195                         err = -ENOMEM;
8196                         goto exit;
8197                 }
8198                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8199         }
8200         swhash->hlist_refcount++;
8201 exit:
8202         mutex_unlock(&swhash->hlist_mutex);
8203
8204         return err;
8205 }
8206
8207 static int swevent_hlist_get(void)
8208 {
8209         int err, cpu, failed_cpu;
8210
8211         mutex_lock(&pmus_lock);
8212         for_each_possible_cpu(cpu) {
8213                 err = swevent_hlist_get_cpu(cpu);
8214                 if (err) {
8215                         failed_cpu = cpu;
8216                         goto fail;
8217                 }
8218         }
8219         mutex_unlock(&pmus_lock);
8220         return 0;
8221 fail:
8222         for_each_possible_cpu(cpu) {
8223                 if (cpu == failed_cpu)
8224                         break;
8225                 swevent_hlist_put_cpu(cpu);
8226         }
8227         mutex_unlock(&pmus_lock);
8228         return err;
8229 }
8230
8231 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8232
8233 static void sw_perf_event_destroy(struct perf_event *event)
8234 {
8235         u64 event_id = event->attr.config;
8236
8237         WARN_ON(event->parent);
8238
8239         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8240         swevent_hlist_put();
8241 }
8242
8243 static int perf_swevent_init(struct perf_event *event)
8244 {
8245         u64 event_id = event->attr.config;
8246
8247         if (event->attr.type != PERF_TYPE_SOFTWARE)
8248                 return -ENOENT;
8249
8250         /*
8251          * no branch sampling for software events
8252          */
8253         if (has_branch_stack(event))
8254                 return -EOPNOTSUPP;
8255
8256         switch (event_id) {
8257         case PERF_COUNT_SW_CPU_CLOCK:
8258         case PERF_COUNT_SW_TASK_CLOCK:
8259                 return -ENOENT;
8260
8261         default:
8262                 break;
8263         }
8264
8265         if (event_id >= PERF_COUNT_SW_MAX)
8266                 return -ENOENT;
8267
8268         if (!event->parent) {
8269                 int err;
8270
8271                 err = swevent_hlist_get();
8272                 if (err)
8273                         return err;
8274
8275                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8276                 event->destroy = sw_perf_event_destroy;
8277         }
8278
8279         return 0;
8280 }
8281
8282 static struct pmu perf_swevent = {
8283         .task_ctx_nr    = perf_sw_context,
8284
8285         .capabilities   = PERF_PMU_CAP_NO_NMI,
8286
8287         .event_init     = perf_swevent_init,
8288         .add            = perf_swevent_add,
8289         .del            = perf_swevent_del,
8290         .start          = perf_swevent_start,
8291         .stop           = perf_swevent_stop,
8292         .read           = perf_swevent_read,
8293 };
8294
8295 #ifdef CONFIG_EVENT_TRACING
8296
8297 static int perf_tp_filter_match(struct perf_event *event,
8298                                 struct perf_sample_data *data)
8299 {
8300         void *record = data->raw->frag.data;
8301
8302         /* only top level events have filters set */
8303         if (event->parent)
8304                 event = event->parent;
8305
8306         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8307                 return 1;
8308         return 0;
8309 }
8310
8311 static int perf_tp_event_match(struct perf_event *event,
8312                                 struct perf_sample_data *data,
8313                                 struct pt_regs *regs)
8314 {
8315         if (event->hw.state & PERF_HES_STOPPED)
8316                 return 0;
8317         /*
8318          * All tracepoints are from kernel-space.
8319          */
8320         if (event->attr.exclude_kernel)
8321                 return 0;
8322
8323         if (!perf_tp_filter_match(event, data))
8324                 return 0;
8325
8326         return 1;
8327 }
8328
8329 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8330                                struct trace_event_call *call, u64 count,
8331                                struct pt_regs *regs, struct hlist_head *head,
8332                                struct task_struct *task)
8333 {
8334         if (bpf_prog_array_valid(call)) {
8335                 *(struct pt_regs **)raw_data = regs;
8336                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8337                         perf_swevent_put_recursion_context(rctx);
8338                         return;
8339                 }
8340         }
8341         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8342                       rctx, task);
8343 }
8344 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8345
8346 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8347                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8348                    struct task_struct *task)
8349 {
8350         struct perf_sample_data data;
8351         struct perf_event *event;
8352
8353         struct perf_raw_record raw = {
8354                 .frag = {
8355                         .size = entry_size,
8356                         .data = record,
8357                 },
8358         };
8359
8360         perf_sample_data_init(&data, 0, 0);
8361         data.raw = &raw;
8362
8363         perf_trace_buf_update(record, event_type);
8364
8365         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8366                 if (perf_tp_event_match(event, &data, regs))
8367                         perf_swevent_event(event, count, &data, regs);
8368         }
8369
8370         /*
8371          * If we got specified a target task, also iterate its context and
8372          * deliver this event there too.
8373          */
8374         if (task && task != current) {
8375                 struct perf_event_context *ctx;
8376                 struct trace_entry *entry = record;
8377
8378                 rcu_read_lock();
8379                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8380                 if (!ctx)
8381                         goto unlock;
8382
8383                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8384                         if (event->cpu != smp_processor_id())
8385                                 continue;
8386                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8387                                 continue;
8388                         if (event->attr.config != entry->type)
8389                                 continue;
8390                         if (perf_tp_event_match(event, &data, regs))
8391                                 perf_swevent_event(event, count, &data, regs);
8392                 }
8393 unlock:
8394                 rcu_read_unlock();
8395         }
8396
8397         perf_swevent_put_recursion_context(rctx);
8398 }
8399 EXPORT_SYMBOL_GPL(perf_tp_event);
8400
8401 static void tp_perf_event_destroy(struct perf_event *event)
8402 {
8403         perf_trace_destroy(event);
8404 }
8405
8406 static int perf_tp_event_init(struct perf_event *event)
8407 {
8408         int err;
8409
8410         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8411                 return -ENOENT;
8412
8413         /*
8414          * no branch sampling for tracepoint events
8415          */
8416         if (has_branch_stack(event))
8417                 return -EOPNOTSUPP;
8418
8419         err = perf_trace_init(event);
8420         if (err)
8421                 return err;
8422
8423         event->destroy = tp_perf_event_destroy;
8424
8425         return 0;
8426 }
8427
8428 static struct pmu perf_tracepoint = {
8429         .task_ctx_nr    = perf_sw_context,
8430
8431         .event_init     = perf_tp_event_init,
8432         .add            = perf_trace_add,
8433         .del            = perf_trace_del,
8434         .start          = perf_swevent_start,
8435         .stop           = perf_swevent_stop,
8436         .read           = perf_swevent_read,
8437 };
8438
8439 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8440 /*
8441  * Flags in config, used by dynamic PMU kprobe and uprobe
8442  * The flags should match following PMU_FORMAT_ATTR().
8443  *
8444  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8445  *                               if not set, create kprobe/uprobe
8446  */
8447 enum perf_probe_config {
8448         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8449 };
8450
8451 PMU_FORMAT_ATTR(retprobe, "config:0");
8452
8453 static struct attribute *probe_attrs[] = {
8454         &format_attr_retprobe.attr,
8455         NULL,
8456 };
8457
8458 static struct attribute_group probe_format_group = {
8459         .name = "format",
8460         .attrs = probe_attrs,
8461 };
8462
8463 static const struct attribute_group *probe_attr_groups[] = {
8464         &probe_format_group,
8465         NULL,
8466 };
8467 #endif
8468
8469 #ifdef CONFIG_KPROBE_EVENTS
8470 static int perf_kprobe_event_init(struct perf_event *event);
8471 static struct pmu perf_kprobe = {
8472         .task_ctx_nr    = perf_sw_context,
8473         .event_init     = perf_kprobe_event_init,
8474         .add            = perf_trace_add,
8475         .del            = perf_trace_del,
8476         .start          = perf_swevent_start,
8477         .stop           = perf_swevent_stop,
8478         .read           = perf_swevent_read,
8479         .attr_groups    = probe_attr_groups,
8480 };
8481
8482 static int perf_kprobe_event_init(struct perf_event *event)
8483 {
8484         int err;
8485         bool is_retprobe;
8486
8487         if (event->attr.type != perf_kprobe.type)
8488                 return -ENOENT;
8489
8490         if (!capable(CAP_SYS_ADMIN))
8491                 return -EACCES;
8492
8493         /*
8494          * no branch sampling for probe events
8495          */
8496         if (has_branch_stack(event))
8497                 return -EOPNOTSUPP;
8498
8499         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8500         err = perf_kprobe_init(event, is_retprobe);
8501         if (err)
8502                 return err;
8503
8504         event->destroy = perf_kprobe_destroy;
8505
8506         return 0;
8507 }
8508 #endif /* CONFIG_KPROBE_EVENTS */
8509
8510 #ifdef CONFIG_UPROBE_EVENTS
8511 static int perf_uprobe_event_init(struct perf_event *event);
8512 static struct pmu perf_uprobe = {
8513         .task_ctx_nr    = perf_sw_context,
8514         .event_init     = perf_uprobe_event_init,
8515         .add            = perf_trace_add,
8516         .del            = perf_trace_del,
8517         .start          = perf_swevent_start,
8518         .stop           = perf_swevent_stop,
8519         .read           = perf_swevent_read,
8520         .attr_groups    = probe_attr_groups,
8521 };
8522
8523 static int perf_uprobe_event_init(struct perf_event *event)
8524 {
8525         int err;
8526         bool is_retprobe;
8527
8528         if (event->attr.type != perf_uprobe.type)
8529                 return -ENOENT;
8530
8531         if (!capable(CAP_SYS_ADMIN))
8532                 return -EACCES;
8533
8534         /*
8535          * no branch sampling for probe events
8536          */
8537         if (has_branch_stack(event))
8538                 return -EOPNOTSUPP;
8539
8540         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8541         err = perf_uprobe_init(event, is_retprobe);
8542         if (err)
8543                 return err;
8544
8545         event->destroy = perf_uprobe_destroy;
8546
8547         return 0;
8548 }
8549 #endif /* CONFIG_UPROBE_EVENTS */
8550
8551 static inline void perf_tp_register(void)
8552 {
8553         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8554 #ifdef CONFIG_KPROBE_EVENTS
8555         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8556 #endif
8557 #ifdef CONFIG_UPROBE_EVENTS
8558         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8559 #endif
8560 }
8561
8562 static void perf_event_free_filter(struct perf_event *event)
8563 {
8564         ftrace_profile_free_filter(event);
8565 }
8566
8567 #ifdef CONFIG_BPF_SYSCALL
8568 static void bpf_overflow_handler(struct perf_event *event,
8569                                  struct perf_sample_data *data,
8570                                  struct pt_regs *regs)
8571 {
8572         struct bpf_perf_event_data_kern ctx = {
8573                 .data = data,
8574                 .event = event,
8575         };
8576         int ret = 0;
8577
8578         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8579         preempt_disable();
8580         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8581                 goto out;
8582         rcu_read_lock();
8583         ret = BPF_PROG_RUN(event->prog, &ctx);
8584         rcu_read_unlock();
8585 out:
8586         __this_cpu_dec(bpf_prog_active);
8587         preempt_enable();
8588         if (!ret)
8589                 return;
8590
8591         event->orig_overflow_handler(event, data, regs);
8592 }
8593
8594 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8595 {
8596         struct bpf_prog *prog;
8597
8598         if (event->overflow_handler_context)
8599                 /* hw breakpoint or kernel counter */
8600                 return -EINVAL;
8601
8602         if (event->prog)
8603                 return -EEXIST;
8604
8605         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8606         if (IS_ERR(prog))
8607                 return PTR_ERR(prog);
8608
8609         event->prog = prog;
8610         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8611         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8612         return 0;
8613 }
8614
8615 static void perf_event_free_bpf_handler(struct perf_event *event)
8616 {
8617         struct bpf_prog *prog = event->prog;
8618
8619         if (!prog)
8620                 return;
8621
8622         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8623         event->prog = NULL;
8624         bpf_prog_put(prog);
8625 }
8626 #else
8627 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8628 {
8629         return -EOPNOTSUPP;
8630 }
8631 static void perf_event_free_bpf_handler(struct perf_event *event)
8632 {
8633 }
8634 #endif
8635
8636 /*
8637  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8638  * with perf_event_open()
8639  */
8640 static inline bool perf_event_is_tracing(struct perf_event *event)
8641 {
8642         if (event->pmu == &perf_tracepoint)
8643                 return true;
8644 #ifdef CONFIG_KPROBE_EVENTS
8645         if (event->pmu == &perf_kprobe)
8646                 return true;
8647 #endif
8648 #ifdef CONFIG_UPROBE_EVENTS
8649         if (event->pmu == &perf_uprobe)
8650                 return true;
8651 #endif
8652         return false;
8653 }
8654
8655 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8656 {
8657         bool is_kprobe, is_tracepoint, is_syscall_tp;
8658         struct bpf_prog *prog;
8659         int ret;
8660
8661         if (!perf_event_is_tracing(event))
8662                 return perf_event_set_bpf_handler(event, prog_fd);
8663
8664         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8665         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8666         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8667         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8668                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8669                 return -EINVAL;
8670
8671         prog = bpf_prog_get(prog_fd);
8672         if (IS_ERR(prog))
8673                 return PTR_ERR(prog);
8674
8675         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8676             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8677             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8678                 /* valid fd, but invalid bpf program type */
8679                 bpf_prog_put(prog);
8680                 return -EINVAL;
8681         }
8682
8683         /* Kprobe override only works for kprobes, not uprobes. */
8684         if (prog->kprobe_override &&
8685             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8686                 bpf_prog_put(prog);
8687                 return -EINVAL;
8688         }
8689
8690         if (is_tracepoint || is_syscall_tp) {
8691                 int off = trace_event_get_offsets(event->tp_event);
8692
8693                 if (prog->aux->max_ctx_offset > off) {
8694                         bpf_prog_put(prog);
8695                         return -EACCES;
8696                 }
8697         }
8698
8699         ret = perf_event_attach_bpf_prog(event, prog);
8700         if (ret)
8701                 bpf_prog_put(prog);
8702         return ret;
8703 }
8704
8705 static void perf_event_free_bpf_prog(struct perf_event *event)
8706 {
8707         if (!perf_event_is_tracing(event)) {
8708                 perf_event_free_bpf_handler(event);
8709                 return;
8710         }
8711         perf_event_detach_bpf_prog(event);
8712 }
8713
8714 #else
8715
8716 static inline void perf_tp_register(void)
8717 {
8718 }
8719
8720 static void perf_event_free_filter(struct perf_event *event)
8721 {
8722 }
8723
8724 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8725 {
8726         return -ENOENT;
8727 }
8728
8729 static void perf_event_free_bpf_prog(struct perf_event *event)
8730 {
8731 }
8732 #endif /* CONFIG_EVENT_TRACING */
8733
8734 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8735 void perf_bp_event(struct perf_event *bp, void *data)
8736 {
8737         struct perf_sample_data sample;
8738         struct pt_regs *regs = data;
8739
8740         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8741
8742         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8743                 perf_swevent_event(bp, 1, &sample, regs);
8744 }
8745 #endif
8746
8747 /*
8748  * Allocate a new address filter
8749  */
8750 static struct perf_addr_filter *
8751 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8752 {
8753         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8754         struct perf_addr_filter *filter;
8755
8756         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8757         if (!filter)
8758                 return NULL;
8759
8760         INIT_LIST_HEAD(&filter->entry);
8761         list_add_tail(&filter->entry, filters);
8762
8763         return filter;
8764 }
8765
8766 static void free_filters_list(struct list_head *filters)
8767 {
8768         struct perf_addr_filter *filter, *iter;
8769
8770         list_for_each_entry_safe(filter, iter, filters, entry) {
8771                 path_put(&filter->path);
8772                 list_del(&filter->entry);
8773                 kfree(filter);
8774         }
8775 }
8776
8777 /*
8778  * Free existing address filters and optionally install new ones
8779  */
8780 static void perf_addr_filters_splice(struct perf_event *event,
8781                                      struct list_head *head)
8782 {
8783         unsigned long flags;
8784         LIST_HEAD(list);
8785
8786         if (!has_addr_filter(event))
8787                 return;
8788
8789         /* don't bother with children, they don't have their own filters */
8790         if (event->parent)
8791                 return;
8792
8793         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8794
8795         list_splice_init(&event->addr_filters.list, &list);
8796         if (head)
8797                 list_splice(head, &event->addr_filters.list);
8798
8799         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8800
8801         free_filters_list(&list);
8802 }
8803
8804 /*
8805  * Scan through mm's vmas and see if one of them matches the
8806  * @filter; if so, adjust filter's address range.
8807  * Called with mm::mmap_sem down for reading.
8808  */
8809 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8810                                             struct mm_struct *mm)
8811 {
8812         struct vm_area_struct *vma;
8813
8814         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8815                 struct file *file = vma->vm_file;
8816                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8817                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8818
8819                 if (!file)
8820                         continue;
8821
8822                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8823                         continue;
8824
8825                 return vma->vm_start;
8826         }
8827
8828         return 0;
8829 }
8830
8831 /*
8832  * Update event's address range filters based on the
8833  * task's existing mappings, if any.
8834  */
8835 static void perf_event_addr_filters_apply(struct perf_event *event)
8836 {
8837         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8838         struct task_struct *task = READ_ONCE(event->ctx->task);
8839         struct perf_addr_filter *filter;
8840         struct mm_struct *mm = NULL;
8841         unsigned int count = 0;
8842         unsigned long flags;
8843
8844         /*
8845          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8846          * will stop on the parent's child_mutex that our caller is also holding
8847          */
8848         if (task == TASK_TOMBSTONE)
8849                 return;
8850
8851         if (!ifh->nr_file_filters)
8852                 return;
8853
8854         mm = get_task_mm(event->ctx->task);
8855         if (!mm)
8856                 goto restart;
8857
8858         down_read(&mm->mmap_sem);
8859
8860         raw_spin_lock_irqsave(&ifh->lock, flags);
8861         list_for_each_entry(filter, &ifh->list, entry) {
8862                 event->addr_filters_offs[count] = 0;
8863
8864                 /*
8865                  * Adjust base offset if the filter is associated to a binary
8866                  * that needs to be mapped:
8867                  */
8868                 if (filter->path.dentry)
8869                         event->addr_filters_offs[count] =
8870                                 perf_addr_filter_apply(filter, mm);
8871
8872                 count++;
8873         }
8874
8875         event->addr_filters_gen++;
8876         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8877
8878         up_read(&mm->mmap_sem);
8879
8880         mmput(mm);
8881
8882 restart:
8883         perf_event_stop(event, 1);
8884 }
8885
8886 /*
8887  * Address range filtering: limiting the data to certain
8888  * instruction address ranges. Filters are ioctl()ed to us from
8889  * userspace as ascii strings.
8890  *
8891  * Filter string format:
8892  *
8893  * ACTION RANGE_SPEC
8894  * where ACTION is one of the
8895  *  * "filter": limit the trace to this region
8896  *  * "start": start tracing from this address
8897  *  * "stop": stop tracing at this address/region;
8898  * RANGE_SPEC is
8899  *  * for kernel addresses: <start address>[/<size>]
8900  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8901  *
8902  * if <size> is not specified or is zero, the range is treated as a single
8903  * address; not valid for ACTION=="filter".
8904  */
8905 enum {
8906         IF_ACT_NONE = -1,
8907         IF_ACT_FILTER,
8908         IF_ACT_START,
8909         IF_ACT_STOP,
8910         IF_SRC_FILE,
8911         IF_SRC_KERNEL,
8912         IF_SRC_FILEADDR,
8913         IF_SRC_KERNELADDR,
8914 };
8915
8916 enum {
8917         IF_STATE_ACTION = 0,
8918         IF_STATE_SOURCE,
8919         IF_STATE_END,
8920 };
8921
8922 static const match_table_t if_tokens = {
8923         { IF_ACT_FILTER,        "filter" },
8924         { IF_ACT_START,         "start" },
8925         { IF_ACT_STOP,          "stop" },
8926         { IF_SRC_FILE,          "%u/%u@%s" },
8927         { IF_SRC_KERNEL,        "%u/%u" },
8928         { IF_SRC_FILEADDR,      "%u@%s" },
8929         { IF_SRC_KERNELADDR,    "%u" },
8930         { IF_ACT_NONE,          NULL },
8931 };
8932
8933 /*
8934  * Address filter string parser
8935  */
8936 static int
8937 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8938                              struct list_head *filters)
8939 {
8940         struct perf_addr_filter *filter = NULL;
8941         char *start, *orig, *filename = NULL;
8942         substring_t args[MAX_OPT_ARGS];
8943         int state = IF_STATE_ACTION, token;
8944         unsigned int kernel = 0;
8945         int ret = -EINVAL;
8946
8947         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8948         if (!fstr)
8949                 return -ENOMEM;
8950
8951         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8952                 static const enum perf_addr_filter_action_t actions[] = {
8953                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8954                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
8955                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
8956                 };
8957                 ret = -EINVAL;
8958
8959                 if (!*start)
8960                         continue;
8961
8962                 /* filter definition begins */
8963                 if (state == IF_STATE_ACTION) {
8964                         filter = perf_addr_filter_new(event, filters);
8965                         if (!filter)
8966                                 goto fail;
8967                 }
8968
8969                 token = match_token(start, if_tokens, args);
8970                 switch (token) {
8971                 case IF_ACT_FILTER:
8972                 case IF_ACT_START:
8973                 case IF_ACT_STOP:
8974                         if (state != IF_STATE_ACTION)
8975                                 goto fail;
8976
8977                         filter->action = actions[token];
8978                         state = IF_STATE_SOURCE;
8979                         break;
8980
8981                 case IF_SRC_KERNELADDR:
8982                 case IF_SRC_KERNEL:
8983                         kernel = 1;
8984
8985                 case IF_SRC_FILEADDR:
8986                 case IF_SRC_FILE:
8987                         if (state != IF_STATE_SOURCE)
8988                                 goto fail;
8989
8990                         *args[0].to = 0;
8991                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8992                         if (ret)
8993                                 goto fail;
8994
8995                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8996                                 *args[1].to = 0;
8997                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8998                                 if (ret)
8999                                         goto fail;
9000                         }
9001
9002                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9003                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9004
9005                                 filename = match_strdup(&args[fpos]);
9006                                 if (!filename) {
9007                                         ret = -ENOMEM;
9008                                         goto fail;
9009                                 }
9010                         }
9011
9012                         state = IF_STATE_END;
9013                         break;
9014
9015                 default:
9016                         goto fail;
9017                 }
9018
9019                 /*
9020                  * Filter definition is fully parsed, validate and install it.
9021                  * Make sure that it doesn't contradict itself or the event's
9022                  * attribute.
9023                  */
9024                 if (state == IF_STATE_END) {
9025                         ret = -EINVAL;
9026                         if (kernel && event->attr.exclude_kernel)
9027                                 goto fail;
9028
9029                         /*
9030                          * ACTION "filter" must have a non-zero length region
9031                          * specified.
9032                          */
9033                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9034                             !filter->size)
9035                                 goto fail;
9036
9037                         if (!kernel) {
9038                                 if (!filename)
9039                                         goto fail;
9040
9041                                 /*
9042                                  * For now, we only support file-based filters
9043                                  * in per-task events; doing so for CPU-wide
9044                                  * events requires additional context switching
9045                                  * trickery, since same object code will be
9046                                  * mapped at different virtual addresses in
9047                                  * different processes.
9048                                  */
9049                                 ret = -EOPNOTSUPP;
9050                                 if (!event->ctx->task)
9051                                         goto fail_free_name;
9052
9053                                 /* look up the path and grab its inode */
9054                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9055                                                 &filter->path);
9056                                 if (ret)
9057                                         goto fail_free_name;
9058
9059                                 kfree(filename);
9060                                 filename = NULL;
9061
9062                                 ret = -EINVAL;
9063                                 if (!filter->path.dentry ||
9064                                     !S_ISREG(d_inode(filter->path.dentry)
9065                                              ->i_mode))
9066                                         goto fail;
9067
9068                                 event->addr_filters.nr_file_filters++;
9069                         }
9070
9071                         /* ready to consume more filters */
9072                         state = IF_STATE_ACTION;
9073                         filter = NULL;
9074                 }
9075         }
9076
9077         if (state != IF_STATE_ACTION)
9078                 goto fail;
9079
9080         kfree(orig);
9081
9082         return 0;
9083
9084 fail_free_name:
9085         kfree(filename);
9086 fail:
9087         free_filters_list(filters);
9088         kfree(orig);
9089
9090         return ret;
9091 }
9092
9093 static int
9094 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9095 {
9096         LIST_HEAD(filters);
9097         int ret;
9098
9099         /*
9100          * Since this is called in perf_ioctl() path, we're already holding
9101          * ctx::mutex.
9102          */
9103         lockdep_assert_held(&event->ctx->mutex);
9104
9105         if (WARN_ON_ONCE(event->parent))
9106                 return -EINVAL;
9107
9108         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9109         if (ret)
9110                 goto fail_clear_files;
9111
9112         ret = event->pmu->addr_filters_validate(&filters);
9113         if (ret)
9114                 goto fail_free_filters;
9115
9116         /* remove existing filters, if any */
9117         perf_addr_filters_splice(event, &filters);
9118
9119         /* install new filters */
9120         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9121
9122         return ret;
9123
9124 fail_free_filters:
9125         free_filters_list(&filters);
9126
9127 fail_clear_files:
9128         event->addr_filters.nr_file_filters = 0;
9129
9130         return ret;
9131 }
9132
9133 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9134 {
9135         int ret = -EINVAL;
9136         char *filter_str;
9137
9138         filter_str = strndup_user(arg, PAGE_SIZE);
9139         if (IS_ERR(filter_str))
9140                 return PTR_ERR(filter_str);
9141
9142 #ifdef CONFIG_EVENT_TRACING
9143         if (perf_event_is_tracing(event)) {
9144                 struct perf_event_context *ctx = event->ctx;
9145
9146                 /*
9147                  * Beware, here be dragons!!
9148                  *
9149                  * the tracepoint muck will deadlock against ctx->mutex, but
9150                  * the tracepoint stuff does not actually need it. So
9151                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9152                  * already have a reference on ctx.
9153                  *
9154                  * This can result in event getting moved to a different ctx,
9155                  * but that does not affect the tracepoint state.
9156                  */
9157                 mutex_unlock(&ctx->mutex);
9158                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9159                 mutex_lock(&ctx->mutex);
9160         } else
9161 #endif
9162         if (has_addr_filter(event))
9163                 ret = perf_event_set_addr_filter(event, filter_str);
9164
9165         kfree(filter_str);
9166         return ret;
9167 }
9168
9169 /*
9170  * hrtimer based swevent callback
9171  */
9172
9173 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9174 {
9175         enum hrtimer_restart ret = HRTIMER_RESTART;
9176         struct perf_sample_data data;
9177         struct pt_regs *regs;
9178         struct perf_event *event;
9179         u64 period;
9180
9181         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9182
9183         if (event->state != PERF_EVENT_STATE_ACTIVE)
9184                 return HRTIMER_NORESTART;
9185
9186         event->pmu->read(event);
9187
9188         perf_sample_data_init(&data, 0, event->hw.last_period);
9189         regs = get_irq_regs();
9190
9191         if (regs && !perf_exclude_event(event, regs)) {
9192                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9193                         if (__perf_event_overflow(event, 1, &data, regs))
9194                                 ret = HRTIMER_NORESTART;
9195         }
9196
9197         period = max_t(u64, 10000, event->hw.sample_period);
9198         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9199
9200         return ret;
9201 }
9202
9203 static void perf_swevent_start_hrtimer(struct perf_event *event)
9204 {
9205         struct hw_perf_event *hwc = &event->hw;
9206         s64 period;
9207
9208         if (!is_sampling_event(event))
9209                 return;
9210
9211         period = local64_read(&hwc->period_left);
9212         if (period) {
9213                 if (period < 0)
9214                         period = 10000;
9215
9216                 local64_set(&hwc->period_left, 0);
9217         } else {
9218                 period = max_t(u64, 10000, hwc->sample_period);
9219         }
9220         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9221                       HRTIMER_MODE_REL_PINNED);
9222 }
9223
9224 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9225 {
9226         struct hw_perf_event *hwc = &event->hw;
9227
9228         if (is_sampling_event(event)) {
9229                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9230                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9231
9232                 hrtimer_cancel(&hwc->hrtimer);
9233         }
9234 }
9235
9236 static void perf_swevent_init_hrtimer(struct perf_event *event)
9237 {
9238         struct hw_perf_event *hwc = &event->hw;
9239
9240         if (!is_sampling_event(event))
9241                 return;
9242
9243         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9244         hwc->hrtimer.function = perf_swevent_hrtimer;
9245
9246         /*
9247          * Since hrtimers have a fixed rate, we can do a static freq->period
9248          * mapping and avoid the whole period adjust feedback stuff.
9249          */
9250         if (event->attr.freq) {
9251                 long freq = event->attr.sample_freq;
9252
9253                 event->attr.sample_period = NSEC_PER_SEC / freq;
9254                 hwc->sample_period = event->attr.sample_period;
9255                 local64_set(&hwc->period_left, hwc->sample_period);
9256                 hwc->last_period = hwc->sample_period;
9257                 event->attr.freq = 0;
9258         }
9259 }
9260
9261 /*
9262  * Software event: cpu wall time clock
9263  */
9264
9265 static void cpu_clock_event_update(struct perf_event *event)
9266 {
9267         s64 prev;
9268         u64 now;
9269
9270         now = local_clock();
9271         prev = local64_xchg(&event->hw.prev_count, now);
9272         local64_add(now - prev, &event->count);
9273 }
9274
9275 static void cpu_clock_event_start(struct perf_event *event, int flags)
9276 {
9277         local64_set(&event->hw.prev_count, local_clock());
9278         perf_swevent_start_hrtimer(event);
9279 }
9280
9281 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9282 {
9283         perf_swevent_cancel_hrtimer(event);
9284         cpu_clock_event_update(event);
9285 }
9286
9287 static int cpu_clock_event_add(struct perf_event *event, int flags)
9288 {
9289         if (flags & PERF_EF_START)
9290                 cpu_clock_event_start(event, flags);
9291         perf_event_update_userpage(event);
9292
9293         return 0;
9294 }
9295
9296 static void cpu_clock_event_del(struct perf_event *event, int flags)
9297 {
9298         cpu_clock_event_stop(event, flags);
9299 }
9300
9301 static void cpu_clock_event_read(struct perf_event *event)
9302 {
9303         cpu_clock_event_update(event);
9304 }
9305
9306 static int cpu_clock_event_init(struct perf_event *event)
9307 {
9308         if (event->attr.type != PERF_TYPE_SOFTWARE)
9309                 return -ENOENT;
9310
9311         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9312                 return -ENOENT;
9313
9314         /*
9315          * no branch sampling for software events
9316          */
9317         if (has_branch_stack(event))
9318                 return -EOPNOTSUPP;
9319
9320         perf_swevent_init_hrtimer(event);
9321
9322         return 0;
9323 }
9324
9325 static struct pmu perf_cpu_clock = {
9326         .task_ctx_nr    = perf_sw_context,
9327
9328         .capabilities   = PERF_PMU_CAP_NO_NMI,
9329
9330         .event_init     = cpu_clock_event_init,
9331         .add            = cpu_clock_event_add,
9332         .del            = cpu_clock_event_del,
9333         .start          = cpu_clock_event_start,
9334         .stop           = cpu_clock_event_stop,
9335         .read           = cpu_clock_event_read,
9336 };
9337
9338 /*
9339  * Software event: task time clock
9340  */
9341
9342 static void task_clock_event_update(struct perf_event *event, u64 now)
9343 {
9344         u64 prev;
9345         s64 delta;
9346
9347         prev = local64_xchg(&event->hw.prev_count, now);
9348         delta = now - prev;
9349         local64_add(delta, &event->count);
9350 }
9351
9352 static void task_clock_event_start(struct perf_event *event, int flags)
9353 {
9354         local64_set(&event->hw.prev_count, event->ctx->time);
9355         perf_swevent_start_hrtimer(event);
9356 }
9357
9358 static void task_clock_event_stop(struct perf_event *event, int flags)
9359 {
9360         perf_swevent_cancel_hrtimer(event);
9361         task_clock_event_update(event, event->ctx->time);
9362 }
9363
9364 static int task_clock_event_add(struct perf_event *event, int flags)
9365 {
9366         if (flags & PERF_EF_START)
9367                 task_clock_event_start(event, flags);
9368         perf_event_update_userpage(event);
9369
9370         return 0;
9371 }
9372
9373 static void task_clock_event_del(struct perf_event *event, int flags)
9374 {
9375         task_clock_event_stop(event, PERF_EF_UPDATE);
9376 }
9377
9378 static void task_clock_event_read(struct perf_event *event)
9379 {
9380         u64 now = perf_clock();
9381         u64 delta = now - event->ctx->timestamp;
9382         u64 time = event->ctx->time + delta;
9383
9384         task_clock_event_update(event, time);
9385 }
9386
9387 static int task_clock_event_init(struct perf_event *event)
9388 {
9389         if (event->attr.type != PERF_TYPE_SOFTWARE)
9390                 return -ENOENT;
9391
9392         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9393                 return -ENOENT;
9394
9395         /*
9396          * no branch sampling for software events
9397          */
9398         if (has_branch_stack(event))
9399                 return -EOPNOTSUPP;
9400
9401         perf_swevent_init_hrtimer(event);
9402
9403         return 0;
9404 }
9405
9406 static struct pmu perf_task_clock = {
9407         .task_ctx_nr    = perf_sw_context,
9408
9409         .capabilities   = PERF_PMU_CAP_NO_NMI,
9410
9411         .event_init     = task_clock_event_init,
9412         .add            = task_clock_event_add,
9413         .del            = task_clock_event_del,
9414         .start          = task_clock_event_start,
9415         .stop           = task_clock_event_stop,
9416         .read           = task_clock_event_read,
9417 };
9418
9419 static void perf_pmu_nop_void(struct pmu *pmu)
9420 {
9421 }
9422
9423 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9424 {
9425 }
9426
9427 static int perf_pmu_nop_int(struct pmu *pmu)
9428 {
9429         return 0;
9430 }
9431
9432 static int perf_event_nop_int(struct perf_event *event, u64 value)
9433 {
9434         return 0;
9435 }
9436
9437 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9438
9439 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9440 {
9441         __this_cpu_write(nop_txn_flags, flags);
9442
9443         if (flags & ~PERF_PMU_TXN_ADD)
9444                 return;
9445
9446         perf_pmu_disable(pmu);
9447 }
9448
9449 static int perf_pmu_commit_txn(struct pmu *pmu)
9450 {
9451         unsigned int flags = __this_cpu_read(nop_txn_flags);
9452
9453         __this_cpu_write(nop_txn_flags, 0);
9454
9455         if (flags & ~PERF_PMU_TXN_ADD)
9456                 return 0;
9457
9458         perf_pmu_enable(pmu);
9459         return 0;
9460 }
9461
9462 static void perf_pmu_cancel_txn(struct pmu *pmu)
9463 {
9464         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9465
9466         __this_cpu_write(nop_txn_flags, 0);
9467
9468         if (flags & ~PERF_PMU_TXN_ADD)
9469                 return;
9470
9471         perf_pmu_enable(pmu);
9472 }
9473
9474 static int perf_event_idx_default(struct perf_event *event)
9475 {
9476         return 0;
9477 }
9478
9479 /*
9480  * Ensures all contexts with the same task_ctx_nr have the same
9481  * pmu_cpu_context too.
9482  */
9483 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9484 {
9485         struct pmu *pmu;
9486
9487         if (ctxn < 0)
9488                 return NULL;
9489
9490         list_for_each_entry(pmu, &pmus, entry) {
9491                 if (pmu->task_ctx_nr == ctxn)
9492                         return pmu->pmu_cpu_context;
9493         }
9494
9495         return NULL;
9496 }
9497
9498 static void free_pmu_context(struct pmu *pmu)
9499 {
9500         /*
9501          * Static contexts such as perf_sw_context have a global lifetime
9502          * and may be shared between different PMUs. Avoid freeing them
9503          * when a single PMU is going away.
9504          */
9505         if (pmu->task_ctx_nr > perf_invalid_context)
9506                 return;
9507
9508         free_percpu(pmu->pmu_cpu_context);
9509 }
9510
9511 /*
9512  * Let userspace know that this PMU supports address range filtering:
9513  */
9514 static ssize_t nr_addr_filters_show(struct device *dev,
9515                                     struct device_attribute *attr,
9516                                     char *page)
9517 {
9518         struct pmu *pmu = dev_get_drvdata(dev);
9519
9520         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9521 }
9522 DEVICE_ATTR_RO(nr_addr_filters);
9523
9524 static struct idr pmu_idr;
9525
9526 static ssize_t
9527 type_show(struct device *dev, struct device_attribute *attr, char *page)
9528 {
9529         struct pmu *pmu = dev_get_drvdata(dev);
9530
9531         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9532 }
9533 static DEVICE_ATTR_RO(type);
9534
9535 static ssize_t
9536 perf_event_mux_interval_ms_show(struct device *dev,
9537                                 struct device_attribute *attr,
9538                                 char *page)
9539 {
9540         struct pmu *pmu = dev_get_drvdata(dev);
9541
9542         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9543 }
9544
9545 static DEFINE_MUTEX(mux_interval_mutex);
9546
9547 static ssize_t
9548 perf_event_mux_interval_ms_store(struct device *dev,
9549                                  struct device_attribute *attr,
9550                                  const char *buf, size_t count)
9551 {
9552         struct pmu *pmu = dev_get_drvdata(dev);
9553         int timer, cpu, ret;
9554
9555         ret = kstrtoint(buf, 0, &timer);
9556         if (ret)
9557                 return ret;
9558
9559         if (timer < 1)
9560                 return -EINVAL;
9561
9562         /* same value, noting to do */
9563         if (timer == pmu->hrtimer_interval_ms)
9564                 return count;
9565
9566         mutex_lock(&mux_interval_mutex);
9567         pmu->hrtimer_interval_ms = timer;
9568
9569         /* update all cpuctx for this PMU */
9570         cpus_read_lock();
9571         for_each_online_cpu(cpu) {
9572                 struct perf_cpu_context *cpuctx;
9573                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9574                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9575
9576                 cpu_function_call(cpu,
9577                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9578         }
9579         cpus_read_unlock();
9580         mutex_unlock(&mux_interval_mutex);
9581
9582         return count;
9583 }
9584 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9585
9586 static struct attribute *pmu_dev_attrs[] = {
9587         &dev_attr_type.attr,
9588         &dev_attr_perf_event_mux_interval_ms.attr,
9589         NULL,
9590 };
9591 ATTRIBUTE_GROUPS(pmu_dev);
9592
9593 static int pmu_bus_running;
9594 static struct bus_type pmu_bus = {
9595         .name           = "event_source",
9596         .dev_groups     = pmu_dev_groups,
9597 };
9598
9599 static void pmu_dev_release(struct device *dev)
9600 {
9601         kfree(dev);
9602 }
9603
9604 static int pmu_dev_alloc(struct pmu *pmu)
9605 {
9606         int ret = -ENOMEM;
9607
9608         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9609         if (!pmu->dev)
9610                 goto out;
9611
9612         pmu->dev->groups = pmu->attr_groups;
9613         device_initialize(pmu->dev);
9614         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9615         if (ret)
9616                 goto free_dev;
9617
9618         dev_set_drvdata(pmu->dev, pmu);
9619         pmu->dev->bus = &pmu_bus;
9620         pmu->dev->release = pmu_dev_release;
9621         ret = device_add(pmu->dev);
9622         if (ret)
9623                 goto free_dev;
9624
9625         /* For PMUs with address filters, throw in an extra attribute: */
9626         if (pmu->nr_addr_filters)
9627                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9628
9629         if (ret)
9630                 goto del_dev;
9631
9632 out:
9633         return ret;
9634
9635 del_dev:
9636         device_del(pmu->dev);
9637
9638 free_dev:
9639         put_device(pmu->dev);
9640         goto out;
9641 }
9642
9643 static struct lock_class_key cpuctx_mutex;
9644 static struct lock_class_key cpuctx_lock;
9645
9646 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9647 {
9648         int cpu, ret;
9649
9650         mutex_lock(&pmus_lock);
9651         ret = -ENOMEM;
9652         pmu->pmu_disable_count = alloc_percpu(int);
9653         if (!pmu->pmu_disable_count)
9654                 goto unlock;
9655
9656         pmu->type = -1;
9657         if (!name)
9658                 goto skip_type;
9659         pmu->name = name;
9660
9661         if (type < 0) {
9662                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9663                 if (type < 0) {
9664                         ret = type;
9665                         goto free_pdc;
9666                 }
9667         }
9668         pmu->type = type;
9669
9670         if (pmu_bus_running) {
9671                 ret = pmu_dev_alloc(pmu);
9672                 if (ret)
9673                         goto free_idr;
9674         }
9675
9676 skip_type:
9677         if (pmu->task_ctx_nr == perf_hw_context) {
9678                 static int hw_context_taken = 0;
9679
9680                 /*
9681                  * Other than systems with heterogeneous CPUs, it never makes
9682                  * sense for two PMUs to share perf_hw_context. PMUs which are
9683                  * uncore must use perf_invalid_context.
9684                  */
9685                 if (WARN_ON_ONCE(hw_context_taken &&
9686                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9687                         pmu->task_ctx_nr = perf_invalid_context;
9688
9689                 hw_context_taken = 1;
9690         }
9691
9692         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9693         if (pmu->pmu_cpu_context)
9694                 goto got_cpu_context;
9695
9696         ret = -ENOMEM;
9697         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9698         if (!pmu->pmu_cpu_context)
9699                 goto free_dev;
9700
9701         for_each_possible_cpu(cpu) {
9702                 struct perf_cpu_context *cpuctx;
9703
9704                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9705                 __perf_event_init_context(&cpuctx->ctx);
9706                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9707                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9708                 cpuctx->ctx.pmu = pmu;
9709                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9710
9711                 __perf_mux_hrtimer_init(cpuctx, cpu);
9712         }
9713
9714 got_cpu_context:
9715         if (!pmu->start_txn) {
9716                 if (pmu->pmu_enable) {
9717                         /*
9718                          * If we have pmu_enable/pmu_disable calls, install
9719                          * transaction stubs that use that to try and batch
9720                          * hardware accesses.
9721                          */
9722                         pmu->start_txn  = perf_pmu_start_txn;
9723                         pmu->commit_txn = perf_pmu_commit_txn;
9724                         pmu->cancel_txn = perf_pmu_cancel_txn;
9725                 } else {
9726                         pmu->start_txn  = perf_pmu_nop_txn;
9727                         pmu->commit_txn = perf_pmu_nop_int;
9728                         pmu->cancel_txn = perf_pmu_nop_void;
9729                 }
9730         }
9731
9732         if (!pmu->pmu_enable) {
9733                 pmu->pmu_enable  = perf_pmu_nop_void;
9734                 pmu->pmu_disable = perf_pmu_nop_void;
9735         }
9736
9737         if (!pmu->check_period)
9738                 pmu->check_period = perf_event_nop_int;
9739
9740         if (!pmu->event_idx)
9741                 pmu->event_idx = perf_event_idx_default;
9742
9743         list_add_rcu(&pmu->entry, &pmus);
9744         atomic_set(&pmu->exclusive_cnt, 0);
9745         ret = 0;
9746 unlock:
9747         mutex_unlock(&pmus_lock);
9748
9749         return ret;
9750
9751 free_dev:
9752         device_del(pmu->dev);
9753         put_device(pmu->dev);
9754
9755 free_idr:
9756         if (pmu->type >= PERF_TYPE_MAX)
9757                 idr_remove(&pmu_idr, pmu->type);
9758
9759 free_pdc:
9760         free_percpu(pmu->pmu_disable_count);
9761         goto unlock;
9762 }
9763 EXPORT_SYMBOL_GPL(perf_pmu_register);
9764
9765 void perf_pmu_unregister(struct pmu *pmu)
9766 {
9767         mutex_lock(&pmus_lock);
9768         list_del_rcu(&pmu->entry);
9769
9770         /*
9771          * We dereference the pmu list under both SRCU and regular RCU, so
9772          * synchronize against both of those.
9773          */
9774         synchronize_srcu(&pmus_srcu);
9775         synchronize_rcu();
9776
9777         free_percpu(pmu->pmu_disable_count);
9778         if (pmu->type >= PERF_TYPE_MAX)
9779                 idr_remove(&pmu_idr, pmu->type);
9780         if (pmu_bus_running) {
9781                 if (pmu->nr_addr_filters)
9782                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9783                 device_del(pmu->dev);
9784                 put_device(pmu->dev);
9785         }
9786         free_pmu_context(pmu);
9787         mutex_unlock(&pmus_lock);
9788 }
9789 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9790
9791 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9792 {
9793         struct perf_event_context *ctx = NULL;
9794         int ret;
9795
9796         if (!try_module_get(pmu->module))
9797                 return -ENODEV;
9798
9799         /*
9800          * A number of pmu->event_init() methods iterate the sibling_list to,
9801          * for example, validate if the group fits on the PMU. Therefore,
9802          * if this is a sibling event, acquire the ctx->mutex to protect
9803          * the sibling_list.
9804          */
9805         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9806                 /*
9807                  * This ctx->mutex can nest when we're called through
9808                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9809                  */
9810                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9811                                                  SINGLE_DEPTH_NESTING);
9812                 BUG_ON(!ctx);
9813         }
9814
9815         event->pmu = pmu;
9816         ret = pmu->event_init(event);
9817
9818         if (ctx)
9819                 perf_event_ctx_unlock(event->group_leader, ctx);
9820
9821         if (ret)
9822                 module_put(pmu->module);
9823
9824         return ret;
9825 }
9826
9827 static struct pmu *perf_init_event(struct perf_event *event)
9828 {
9829         struct pmu *pmu;
9830         int idx;
9831         int ret;
9832
9833         idx = srcu_read_lock(&pmus_srcu);
9834
9835         /* Try parent's PMU first: */
9836         if (event->parent && event->parent->pmu) {
9837                 pmu = event->parent->pmu;
9838                 ret = perf_try_init_event(pmu, event);
9839                 if (!ret)
9840                         goto unlock;
9841         }
9842
9843         rcu_read_lock();
9844         pmu = idr_find(&pmu_idr, event->attr.type);
9845         rcu_read_unlock();
9846         if (pmu) {
9847                 ret = perf_try_init_event(pmu, event);
9848                 if (ret)
9849                         pmu = ERR_PTR(ret);
9850                 goto unlock;
9851         }
9852
9853         list_for_each_entry_rcu(pmu, &pmus, entry) {
9854                 ret = perf_try_init_event(pmu, event);
9855                 if (!ret)
9856                         goto unlock;
9857
9858                 if (ret != -ENOENT) {
9859                         pmu = ERR_PTR(ret);
9860                         goto unlock;
9861                 }
9862         }
9863         pmu = ERR_PTR(-ENOENT);
9864 unlock:
9865         srcu_read_unlock(&pmus_srcu, idx);
9866
9867         return pmu;
9868 }
9869
9870 static void attach_sb_event(struct perf_event *event)
9871 {
9872         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9873
9874         raw_spin_lock(&pel->lock);
9875         list_add_rcu(&event->sb_list, &pel->list);
9876         raw_spin_unlock(&pel->lock);
9877 }
9878
9879 /*
9880  * We keep a list of all !task (and therefore per-cpu) events
9881  * that need to receive side-band records.
9882  *
9883  * This avoids having to scan all the various PMU per-cpu contexts
9884  * looking for them.
9885  */
9886 static void account_pmu_sb_event(struct perf_event *event)
9887 {
9888         if (is_sb_event(event))
9889                 attach_sb_event(event);
9890 }
9891
9892 static void account_event_cpu(struct perf_event *event, int cpu)
9893 {
9894         if (event->parent)
9895                 return;
9896
9897         if (is_cgroup_event(event))
9898                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9899 }
9900
9901 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9902 static void account_freq_event_nohz(void)
9903 {
9904 #ifdef CONFIG_NO_HZ_FULL
9905         /* Lock so we don't race with concurrent unaccount */
9906         spin_lock(&nr_freq_lock);
9907         if (atomic_inc_return(&nr_freq_events) == 1)
9908                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9909         spin_unlock(&nr_freq_lock);
9910 #endif
9911 }
9912
9913 static void account_freq_event(void)
9914 {
9915         if (tick_nohz_full_enabled())
9916                 account_freq_event_nohz();
9917         else
9918                 atomic_inc(&nr_freq_events);
9919 }
9920
9921
9922 static void account_event(struct perf_event *event)
9923 {
9924         bool inc = false;
9925
9926         if (event->parent)
9927                 return;
9928
9929         if (event->attach_state & PERF_ATTACH_TASK)
9930                 inc = true;
9931         if (event->attr.mmap || event->attr.mmap_data)
9932                 atomic_inc(&nr_mmap_events);
9933         if (event->attr.comm)
9934                 atomic_inc(&nr_comm_events);
9935         if (event->attr.namespaces)
9936                 atomic_inc(&nr_namespaces_events);
9937         if (event->attr.task)
9938                 atomic_inc(&nr_task_events);
9939         if (event->attr.freq)
9940                 account_freq_event();
9941         if (event->attr.context_switch) {
9942                 atomic_inc(&nr_switch_events);
9943                 inc = true;
9944         }
9945         if (has_branch_stack(event))
9946                 inc = true;
9947         if (is_cgroup_event(event))
9948                 inc = true;
9949
9950         if (inc) {
9951                 /*
9952                  * We need the mutex here because static_branch_enable()
9953                  * must complete *before* the perf_sched_count increment
9954                  * becomes visible.
9955                  */
9956                 if (atomic_inc_not_zero(&perf_sched_count))
9957                         goto enabled;
9958
9959                 mutex_lock(&perf_sched_mutex);
9960                 if (!atomic_read(&perf_sched_count)) {
9961                         static_branch_enable(&perf_sched_events);
9962                         /*
9963                          * Guarantee that all CPUs observe they key change and
9964                          * call the perf scheduling hooks before proceeding to
9965                          * install events that need them.
9966                          */
9967                         synchronize_sched();
9968                 }
9969                 /*
9970                  * Now that we have waited for the sync_sched(), allow further
9971                  * increments to by-pass the mutex.
9972                  */
9973                 atomic_inc(&perf_sched_count);
9974                 mutex_unlock(&perf_sched_mutex);
9975         }
9976 enabled:
9977
9978         account_event_cpu(event, event->cpu);
9979
9980         account_pmu_sb_event(event);
9981 }
9982
9983 /*
9984  * Allocate and initialize an event structure
9985  */
9986 static struct perf_event *
9987 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9988                  struct task_struct *task,
9989                  struct perf_event *group_leader,
9990                  struct perf_event *parent_event,
9991                  perf_overflow_handler_t overflow_handler,
9992                  void *context, int cgroup_fd)
9993 {
9994         struct pmu *pmu;
9995         struct perf_event *event;
9996         struct hw_perf_event *hwc;
9997         long err = -EINVAL;
9998
9999         if ((unsigned)cpu >= nr_cpu_ids) {
10000                 if (!task || cpu != -1)
10001                         return ERR_PTR(-EINVAL);
10002         }
10003
10004         event = kzalloc(sizeof(*event), GFP_KERNEL);
10005         if (!event)
10006                 return ERR_PTR(-ENOMEM);
10007
10008         /*
10009          * Single events are their own group leaders, with an
10010          * empty sibling list:
10011          */
10012         if (!group_leader)
10013                 group_leader = event;
10014
10015         mutex_init(&event->child_mutex);
10016         INIT_LIST_HEAD(&event->child_list);
10017
10018         INIT_LIST_HEAD(&event->event_entry);
10019         INIT_LIST_HEAD(&event->sibling_list);
10020         INIT_LIST_HEAD(&event->active_list);
10021         init_event_group(event);
10022         INIT_LIST_HEAD(&event->rb_entry);
10023         INIT_LIST_HEAD(&event->active_entry);
10024         INIT_LIST_HEAD(&event->addr_filters.list);
10025         INIT_HLIST_NODE(&event->hlist_entry);
10026
10027
10028         init_waitqueue_head(&event->waitq);
10029         event->pending_disable = -1;
10030         init_irq_work(&event->pending, perf_pending_event);
10031
10032         mutex_init(&event->mmap_mutex);
10033         raw_spin_lock_init(&event->addr_filters.lock);
10034
10035         atomic_long_set(&event->refcount, 1);
10036         event->cpu              = cpu;
10037         event->attr             = *attr;
10038         event->group_leader     = group_leader;
10039         event->pmu              = NULL;
10040         event->oncpu            = -1;
10041
10042         event->parent           = parent_event;
10043
10044         event->ns               = get_pid_ns(task_active_pid_ns(current));
10045         event->id               = atomic64_inc_return(&perf_event_id);
10046
10047         event->state            = PERF_EVENT_STATE_INACTIVE;
10048
10049         if (task) {
10050                 event->attach_state = PERF_ATTACH_TASK;
10051                 /*
10052                  * XXX pmu::event_init needs to know what task to account to
10053                  * and we cannot use the ctx information because we need the
10054                  * pmu before we get a ctx.
10055                  */
10056                 get_task_struct(task);
10057                 event->hw.target = task;
10058         }
10059
10060         event->clock = &local_clock;
10061         if (parent_event)
10062                 event->clock = parent_event->clock;
10063
10064         if (!overflow_handler && parent_event) {
10065                 overflow_handler = parent_event->overflow_handler;
10066                 context = parent_event->overflow_handler_context;
10067 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10068                 if (overflow_handler == bpf_overflow_handler) {
10069                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10070
10071                         if (IS_ERR(prog)) {
10072                                 err = PTR_ERR(prog);
10073                                 goto err_ns;
10074                         }
10075                         event->prog = prog;
10076                         event->orig_overflow_handler =
10077                                 parent_event->orig_overflow_handler;
10078                 }
10079 #endif
10080         }
10081
10082         if (overflow_handler) {
10083                 event->overflow_handler = overflow_handler;
10084                 event->overflow_handler_context = context;
10085         } else if (is_write_backward(event)){
10086                 event->overflow_handler = perf_event_output_backward;
10087                 event->overflow_handler_context = NULL;
10088         } else {
10089                 event->overflow_handler = perf_event_output_forward;
10090                 event->overflow_handler_context = NULL;
10091         }
10092
10093         perf_event__state_init(event);
10094
10095         pmu = NULL;
10096
10097         hwc = &event->hw;
10098         hwc->sample_period = attr->sample_period;
10099         if (attr->freq && attr->sample_freq)
10100                 hwc->sample_period = 1;
10101         hwc->last_period = hwc->sample_period;
10102
10103         local64_set(&hwc->period_left, hwc->sample_period);
10104
10105         /*
10106          * We currently do not support PERF_SAMPLE_READ on inherited events.
10107          * See perf_output_read().
10108          */
10109         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10110                 goto err_ns;
10111
10112         if (!has_branch_stack(event))
10113                 event->attr.branch_sample_type = 0;
10114
10115         if (cgroup_fd != -1) {
10116                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10117                 if (err)
10118                         goto err_ns;
10119         }
10120
10121         pmu = perf_init_event(event);
10122         if (IS_ERR(pmu)) {
10123                 err = PTR_ERR(pmu);
10124                 goto err_ns;
10125         }
10126
10127         err = exclusive_event_init(event);
10128         if (err)
10129                 goto err_pmu;
10130
10131         if (has_addr_filter(event)) {
10132                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10133                                                    sizeof(unsigned long),
10134                                                    GFP_KERNEL);
10135                 if (!event->addr_filters_offs) {
10136                         err = -ENOMEM;
10137                         goto err_per_task;
10138                 }
10139
10140                 /*
10141                  * Clone the parent's vma offsets: they are valid until exec()
10142                  * even if the mm is not shared with the parent.
10143                  */
10144                 if (event->parent) {
10145                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10146
10147                         raw_spin_lock_irq(&ifh->lock);
10148                         memcpy(event->addr_filters_offs,
10149                                event->parent->addr_filters_offs,
10150                                pmu->nr_addr_filters * sizeof(unsigned long));
10151                         raw_spin_unlock_irq(&ifh->lock);
10152                 }
10153
10154                 /* force hw sync on the address filters */
10155                 event->addr_filters_gen = 1;
10156         }
10157
10158         if (!event->parent) {
10159                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10160                         err = get_callchain_buffers(attr->sample_max_stack);
10161                         if (err)
10162                                 goto err_addr_filters;
10163                 }
10164         }
10165
10166         /* symmetric to unaccount_event() in _free_event() */
10167         account_event(event);
10168
10169         return event;
10170
10171 err_addr_filters:
10172         kfree(event->addr_filters_offs);
10173
10174 err_per_task:
10175         exclusive_event_destroy(event);
10176
10177 err_pmu:
10178         if (event->destroy)
10179                 event->destroy(event);
10180         module_put(pmu->module);
10181 err_ns:
10182         if (is_cgroup_event(event))
10183                 perf_detach_cgroup(event);
10184         if (event->ns)
10185                 put_pid_ns(event->ns);
10186         if (event->hw.target)
10187                 put_task_struct(event->hw.target);
10188         kfree(event);
10189
10190         return ERR_PTR(err);
10191 }
10192
10193 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10194                           struct perf_event_attr *attr)
10195 {
10196         u32 size;
10197         int ret;
10198
10199         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10200                 return -EFAULT;
10201
10202         /*
10203          * zero the full structure, so that a short copy will be nice.
10204          */
10205         memset(attr, 0, sizeof(*attr));
10206
10207         ret = get_user(size, &uattr->size);
10208         if (ret)
10209                 return ret;
10210
10211         if (size > PAGE_SIZE)   /* silly large */
10212                 goto err_size;
10213
10214         if (!size)              /* abi compat */
10215                 size = PERF_ATTR_SIZE_VER0;
10216
10217         if (size < PERF_ATTR_SIZE_VER0)
10218                 goto err_size;
10219
10220         /*
10221          * If we're handed a bigger struct than we know of,
10222          * ensure all the unknown bits are 0 - i.e. new
10223          * user-space does not rely on any kernel feature
10224          * extensions we dont know about yet.
10225          */
10226         if (size > sizeof(*attr)) {
10227                 unsigned char __user *addr;
10228                 unsigned char __user *end;
10229                 unsigned char val;
10230
10231                 addr = (void __user *)uattr + sizeof(*attr);
10232                 end  = (void __user *)uattr + size;
10233
10234                 for (; addr < end; addr++) {
10235                         ret = get_user(val, addr);
10236                         if (ret)
10237                                 return ret;
10238                         if (val)
10239                                 goto err_size;
10240                 }
10241                 size = sizeof(*attr);
10242         }
10243
10244         ret = copy_from_user(attr, uattr, size);
10245         if (ret)
10246                 return -EFAULT;
10247
10248         attr->size = size;
10249
10250         if (attr->__reserved_1)
10251                 return -EINVAL;
10252
10253         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10254                 return -EINVAL;
10255
10256         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10257                 return -EINVAL;
10258
10259         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10260                 u64 mask = attr->branch_sample_type;
10261
10262                 /* only using defined bits */
10263                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10264                         return -EINVAL;
10265
10266                 /* at least one branch bit must be set */
10267                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10268                         return -EINVAL;
10269
10270                 /* propagate priv level, when not set for branch */
10271                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10272
10273                         /* exclude_kernel checked on syscall entry */
10274                         if (!attr->exclude_kernel)
10275                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10276
10277                         if (!attr->exclude_user)
10278                                 mask |= PERF_SAMPLE_BRANCH_USER;
10279
10280                         if (!attr->exclude_hv)
10281                                 mask |= PERF_SAMPLE_BRANCH_HV;
10282                         /*
10283                          * adjust user setting (for HW filter setup)
10284                          */
10285                         attr->branch_sample_type = mask;
10286                 }
10287                 /* privileged levels capture (kernel, hv): check permissions */
10288                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10289                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10290                         return -EACCES;
10291         }
10292
10293         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10294                 ret = perf_reg_validate(attr->sample_regs_user);
10295                 if (ret)
10296                         return ret;
10297         }
10298
10299         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10300                 if (!arch_perf_have_user_stack_dump())
10301                         return -ENOSYS;
10302
10303                 /*
10304                  * We have __u32 type for the size, but so far
10305                  * we can only use __u16 as maximum due to the
10306                  * __u16 sample size limit.
10307                  */
10308                 if (attr->sample_stack_user >= USHRT_MAX)
10309                         return -EINVAL;
10310                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10311                         return -EINVAL;
10312         }
10313
10314         if (!attr->sample_max_stack)
10315                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10316
10317         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10318                 ret = perf_reg_validate(attr->sample_regs_intr);
10319 out:
10320         return ret;
10321
10322 err_size:
10323         put_user(sizeof(*attr), &uattr->size);
10324         ret = -E2BIG;
10325         goto out;
10326 }
10327
10328 static int
10329 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10330 {
10331         struct ring_buffer *rb = NULL;
10332         int ret = -EINVAL;
10333
10334         if (!output_event)
10335                 goto set;
10336
10337         /* don't allow circular references */
10338         if (event == output_event)
10339                 goto out;
10340
10341         /*
10342          * Don't allow cross-cpu buffers
10343          */
10344         if (output_event->cpu != event->cpu)
10345                 goto out;
10346
10347         /*
10348          * If its not a per-cpu rb, it must be the same task.
10349          */
10350         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10351                 goto out;
10352
10353         /*
10354          * Mixing clocks in the same buffer is trouble you don't need.
10355          */
10356         if (output_event->clock != event->clock)
10357                 goto out;
10358
10359         /*
10360          * Either writing ring buffer from beginning or from end.
10361          * Mixing is not allowed.
10362          */
10363         if (is_write_backward(output_event) != is_write_backward(event))
10364                 goto out;
10365
10366         /*
10367          * If both events generate aux data, they must be on the same PMU
10368          */
10369         if (has_aux(event) && has_aux(output_event) &&
10370             event->pmu != output_event->pmu)
10371                 goto out;
10372
10373 set:
10374         mutex_lock(&event->mmap_mutex);
10375         /* Can't redirect output if we've got an active mmap() */
10376         if (atomic_read(&event->mmap_count))
10377                 goto unlock;
10378
10379         if (output_event) {
10380                 /* get the rb we want to redirect to */
10381                 rb = ring_buffer_get(output_event);
10382                 if (!rb)
10383                         goto unlock;
10384         }
10385
10386         ring_buffer_attach(event, rb);
10387
10388         ret = 0;
10389 unlock:
10390         mutex_unlock(&event->mmap_mutex);
10391
10392 out:
10393         return ret;
10394 }
10395
10396 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10397 {
10398         if (b < a)
10399                 swap(a, b);
10400
10401         mutex_lock(a);
10402         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10403 }
10404
10405 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10406 {
10407         bool nmi_safe = false;
10408
10409         switch (clk_id) {
10410         case CLOCK_MONOTONIC:
10411                 event->clock = &ktime_get_mono_fast_ns;
10412                 nmi_safe = true;
10413                 break;
10414
10415         case CLOCK_MONOTONIC_RAW:
10416                 event->clock = &ktime_get_raw_fast_ns;
10417                 nmi_safe = true;
10418                 break;
10419
10420         case CLOCK_REALTIME:
10421                 event->clock = &ktime_get_real_ns;
10422                 break;
10423
10424         case CLOCK_BOOTTIME:
10425                 event->clock = &ktime_get_boot_ns;
10426                 break;
10427
10428         case CLOCK_TAI:
10429                 event->clock = &ktime_get_tai_ns;
10430                 break;
10431
10432         default:
10433                 return -EINVAL;
10434         }
10435
10436         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10437                 return -EINVAL;
10438
10439         return 0;
10440 }
10441
10442 /*
10443  * Variation on perf_event_ctx_lock_nested(), except we take two context
10444  * mutexes.
10445  */
10446 static struct perf_event_context *
10447 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10448                              struct perf_event_context *ctx)
10449 {
10450         struct perf_event_context *gctx;
10451
10452 again:
10453         rcu_read_lock();
10454         gctx = READ_ONCE(group_leader->ctx);
10455         if (!atomic_inc_not_zero(&gctx->refcount)) {
10456                 rcu_read_unlock();
10457                 goto again;
10458         }
10459         rcu_read_unlock();
10460
10461         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10462
10463         if (group_leader->ctx != gctx) {
10464                 mutex_unlock(&ctx->mutex);
10465                 mutex_unlock(&gctx->mutex);
10466                 put_ctx(gctx);
10467                 goto again;
10468         }
10469
10470         return gctx;
10471 }
10472
10473 /**
10474  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10475  *
10476  * @attr_uptr:  event_id type attributes for monitoring/sampling
10477  * @pid:                target pid
10478  * @cpu:                target cpu
10479  * @group_fd:           group leader event fd
10480  */
10481 SYSCALL_DEFINE5(perf_event_open,
10482                 struct perf_event_attr __user *, attr_uptr,
10483                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10484 {
10485         struct perf_event *group_leader = NULL, *output_event = NULL;
10486         struct perf_event *event, *sibling;
10487         struct perf_event_attr attr;
10488         struct perf_event_context *ctx, *uninitialized_var(gctx);
10489         struct file *event_file = NULL;
10490         struct fd group = {NULL, 0};
10491         struct task_struct *task = NULL;
10492         struct pmu *pmu;
10493         int event_fd;
10494         int move_group = 0;
10495         int err;
10496         int f_flags = O_RDWR;
10497         int cgroup_fd = -1;
10498
10499         /* for future expandability... */
10500         if (flags & ~PERF_FLAG_ALL)
10501                 return -EINVAL;
10502
10503         err = perf_copy_attr(attr_uptr, &attr);
10504         if (err)
10505                 return err;
10506
10507         if (!attr.exclude_kernel) {
10508                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10509                         return -EACCES;
10510         }
10511
10512         if (attr.namespaces) {
10513                 if (!capable(CAP_SYS_ADMIN))
10514                         return -EACCES;
10515         }
10516
10517         if (attr.freq) {
10518                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10519                         return -EINVAL;
10520         } else {
10521                 if (attr.sample_period & (1ULL << 63))
10522                         return -EINVAL;
10523         }
10524
10525         /* Only privileged users can get physical addresses */
10526         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10527             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10528                 return -EACCES;
10529
10530         /*
10531          * In cgroup mode, the pid argument is used to pass the fd
10532          * opened to the cgroup directory in cgroupfs. The cpu argument
10533          * designates the cpu on which to monitor threads from that
10534          * cgroup.
10535          */
10536         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10537                 return -EINVAL;
10538
10539         if (flags & PERF_FLAG_FD_CLOEXEC)
10540                 f_flags |= O_CLOEXEC;
10541
10542         event_fd = get_unused_fd_flags(f_flags);
10543         if (event_fd < 0)
10544                 return event_fd;
10545
10546         if (group_fd != -1) {
10547                 err = perf_fget_light(group_fd, &group);
10548                 if (err)
10549                         goto err_fd;
10550                 group_leader = group.file->private_data;
10551                 if (flags & PERF_FLAG_FD_OUTPUT)
10552                         output_event = group_leader;
10553                 if (flags & PERF_FLAG_FD_NO_GROUP)
10554                         group_leader = NULL;
10555         }
10556
10557         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10558                 task = find_lively_task_by_vpid(pid);
10559                 if (IS_ERR(task)) {
10560                         err = PTR_ERR(task);
10561                         goto err_group_fd;
10562                 }
10563         }
10564
10565         if (task && group_leader &&
10566             group_leader->attr.inherit != attr.inherit) {
10567                 err = -EINVAL;
10568                 goto err_task;
10569         }
10570
10571         if (task) {
10572                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10573                 if (err)
10574                         goto err_task;
10575
10576                 /*
10577                  * Reuse ptrace permission checks for now.
10578                  *
10579                  * We must hold cred_guard_mutex across this and any potential
10580                  * perf_install_in_context() call for this new event to
10581                  * serialize against exec() altering our credentials (and the
10582                  * perf_event_exit_task() that could imply).
10583                  */
10584                 err = -EACCES;
10585                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10586                         goto err_cred;
10587         }
10588
10589         if (flags & PERF_FLAG_PID_CGROUP)
10590                 cgroup_fd = pid;
10591
10592         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10593                                  NULL, NULL, cgroup_fd);
10594         if (IS_ERR(event)) {
10595                 err = PTR_ERR(event);
10596                 goto err_cred;
10597         }
10598
10599         if (is_sampling_event(event)) {
10600                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10601                         err = -EOPNOTSUPP;
10602                         goto err_alloc;
10603                 }
10604         }
10605
10606         /*
10607          * Special case software events and allow them to be part of
10608          * any hardware group.
10609          */
10610         pmu = event->pmu;
10611
10612         if (attr.use_clockid) {
10613                 err = perf_event_set_clock(event, attr.clockid);
10614                 if (err)
10615                         goto err_alloc;
10616         }
10617
10618         if (pmu->task_ctx_nr == perf_sw_context)
10619                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10620
10621         if (group_leader) {
10622                 if (is_software_event(event) &&
10623                     !in_software_context(group_leader)) {
10624                         /*
10625                          * If the event is a sw event, but the group_leader
10626                          * is on hw context.
10627                          *
10628                          * Allow the addition of software events to hw
10629                          * groups, this is safe because software events
10630                          * never fail to schedule.
10631                          */
10632                         pmu = group_leader->ctx->pmu;
10633                 } else if (!is_software_event(event) &&
10634                            is_software_event(group_leader) &&
10635                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10636                         /*
10637                          * In case the group is a pure software group, and we
10638                          * try to add a hardware event, move the whole group to
10639                          * the hardware context.
10640                          */
10641                         move_group = 1;
10642                 }
10643         }
10644
10645         /*
10646          * Get the target context (task or percpu):
10647          */
10648         ctx = find_get_context(pmu, task, event);
10649         if (IS_ERR(ctx)) {
10650                 err = PTR_ERR(ctx);
10651                 goto err_alloc;
10652         }
10653
10654         /*
10655          * Look up the group leader (we will attach this event to it):
10656          */
10657         if (group_leader) {
10658                 err = -EINVAL;
10659
10660                 /*
10661                  * Do not allow a recursive hierarchy (this new sibling
10662                  * becoming part of another group-sibling):
10663                  */
10664                 if (group_leader->group_leader != group_leader)
10665                         goto err_context;
10666
10667                 /* All events in a group should have the same clock */
10668                 if (group_leader->clock != event->clock)
10669                         goto err_context;
10670
10671                 /*
10672                  * Make sure we're both events for the same CPU;
10673                  * grouping events for different CPUs is broken; since
10674                  * you can never concurrently schedule them anyhow.
10675                  */
10676                 if (group_leader->cpu != event->cpu)
10677                         goto err_context;
10678
10679                 /*
10680                  * Make sure we're both on the same task, or both
10681                  * per-CPU events.
10682                  */
10683                 if (group_leader->ctx->task != ctx->task)
10684                         goto err_context;
10685
10686                 /*
10687                  * Do not allow to attach to a group in a different task
10688                  * or CPU context. If we're moving SW events, we'll fix
10689                  * this up later, so allow that.
10690                  */
10691                 if (!move_group && group_leader->ctx != ctx)
10692                         goto err_context;
10693
10694                 /*
10695                  * Only a group leader can be exclusive or pinned
10696                  */
10697                 if (attr.exclusive || attr.pinned)
10698                         goto err_context;
10699         }
10700
10701         if (output_event) {
10702                 err = perf_event_set_output(event, output_event);
10703                 if (err)
10704                         goto err_context;
10705         }
10706
10707         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10708                                         f_flags);
10709         if (IS_ERR(event_file)) {
10710                 err = PTR_ERR(event_file);
10711                 event_file = NULL;
10712                 goto err_context;
10713         }
10714
10715         if (move_group) {
10716                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10717
10718                 if (gctx->task == TASK_TOMBSTONE) {
10719                         err = -ESRCH;
10720                         goto err_locked;
10721                 }
10722
10723                 /*
10724                  * Check if we raced against another sys_perf_event_open() call
10725                  * moving the software group underneath us.
10726                  */
10727                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10728                         /*
10729                          * If someone moved the group out from under us, check
10730                          * if this new event wound up on the same ctx, if so
10731                          * its the regular !move_group case, otherwise fail.
10732                          */
10733                         if (gctx != ctx) {
10734                                 err = -EINVAL;
10735                                 goto err_locked;
10736                         } else {
10737                                 perf_event_ctx_unlock(group_leader, gctx);
10738                                 move_group = 0;
10739                         }
10740                 }
10741
10742                 /*
10743                  * Failure to create exclusive events returns -EBUSY.
10744                  */
10745                 err = -EBUSY;
10746                 if (!exclusive_event_installable(group_leader, ctx))
10747                         goto err_locked;
10748
10749                 for_each_sibling_event(sibling, group_leader) {
10750                         if (!exclusive_event_installable(sibling, ctx))
10751                                 goto err_locked;
10752                 }
10753         } else {
10754                 mutex_lock(&ctx->mutex);
10755         }
10756
10757         if (ctx->task == TASK_TOMBSTONE) {
10758                 err = -ESRCH;
10759                 goto err_locked;
10760         }
10761
10762         if (!perf_event_validate_size(event)) {
10763                 err = -E2BIG;
10764                 goto err_locked;
10765         }
10766
10767         if (!task) {
10768                 /*
10769                  * Check if the @cpu we're creating an event for is online.
10770                  *
10771                  * We use the perf_cpu_context::ctx::mutex to serialize against
10772                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10773                  */
10774                 struct perf_cpu_context *cpuctx =
10775                         container_of(ctx, struct perf_cpu_context, ctx);
10776
10777                 if (!cpuctx->online) {
10778                         err = -ENODEV;
10779                         goto err_locked;
10780                 }
10781         }
10782
10783
10784         /*
10785          * Must be under the same ctx::mutex as perf_install_in_context(),
10786          * because we need to serialize with concurrent event creation.
10787          */
10788         if (!exclusive_event_installable(event, ctx)) {
10789                 err = -EBUSY;
10790                 goto err_locked;
10791         }
10792
10793         WARN_ON_ONCE(ctx->parent_ctx);
10794
10795         /*
10796          * This is the point on no return; we cannot fail hereafter. This is
10797          * where we start modifying current state.
10798          */
10799
10800         if (move_group) {
10801                 /*
10802                  * See perf_event_ctx_lock() for comments on the details
10803                  * of swizzling perf_event::ctx.
10804                  */
10805                 perf_remove_from_context(group_leader, 0);
10806                 put_ctx(gctx);
10807
10808                 for_each_sibling_event(sibling, group_leader) {
10809                         perf_remove_from_context(sibling, 0);
10810                         put_ctx(gctx);
10811                 }
10812
10813                 /*
10814                  * Wait for everybody to stop referencing the events through
10815                  * the old lists, before installing it on new lists.
10816                  */
10817                 synchronize_rcu();
10818
10819                 /*
10820                  * Install the group siblings before the group leader.
10821                  *
10822                  * Because a group leader will try and install the entire group
10823                  * (through the sibling list, which is still in-tact), we can
10824                  * end up with siblings installed in the wrong context.
10825                  *
10826                  * By installing siblings first we NO-OP because they're not
10827                  * reachable through the group lists.
10828                  */
10829                 for_each_sibling_event(sibling, group_leader) {
10830                         perf_event__state_init(sibling);
10831                         perf_install_in_context(ctx, sibling, sibling->cpu);
10832                         get_ctx(ctx);
10833                 }
10834
10835                 /*
10836                  * Removing from the context ends up with disabled
10837                  * event. What we want here is event in the initial
10838                  * startup state, ready to be add into new context.
10839                  */
10840                 perf_event__state_init(group_leader);
10841                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10842                 get_ctx(ctx);
10843         }
10844
10845         /*
10846          * Precalculate sample_data sizes; do while holding ctx::mutex such
10847          * that we're serialized against further additions and before
10848          * perf_install_in_context() which is the point the event is active and
10849          * can use these values.
10850          */
10851         perf_event__header_size(event);
10852         perf_event__id_header_size(event);
10853
10854         event->owner = current;
10855
10856         perf_install_in_context(ctx, event, event->cpu);
10857         perf_unpin_context(ctx);
10858
10859         if (move_group)
10860                 perf_event_ctx_unlock(group_leader, gctx);
10861         mutex_unlock(&ctx->mutex);
10862
10863         if (task) {
10864                 mutex_unlock(&task->signal->cred_guard_mutex);
10865                 put_task_struct(task);
10866         }
10867
10868         mutex_lock(&current->perf_event_mutex);
10869         list_add_tail(&event->owner_entry, &current->perf_event_list);
10870         mutex_unlock(&current->perf_event_mutex);
10871
10872         /*
10873          * Drop the reference on the group_event after placing the
10874          * new event on the sibling_list. This ensures destruction
10875          * of the group leader will find the pointer to itself in
10876          * perf_group_detach().
10877          */
10878         fdput(group);
10879         fd_install(event_fd, event_file);
10880         return event_fd;
10881
10882 err_locked:
10883         if (move_group)
10884                 perf_event_ctx_unlock(group_leader, gctx);
10885         mutex_unlock(&ctx->mutex);
10886 /* err_file: */
10887         fput(event_file);
10888 err_context:
10889         perf_unpin_context(ctx);
10890         put_ctx(ctx);
10891 err_alloc:
10892         /*
10893          * If event_file is set, the fput() above will have called ->release()
10894          * and that will take care of freeing the event.
10895          */
10896         if (!event_file)
10897                 free_event(event);
10898 err_cred:
10899         if (task)
10900                 mutex_unlock(&task->signal->cred_guard_mutex);
10901 err_task:
10902         if (task)
10903                 put_task_struct(task);
10904 err_group_fd:
10905         fdput(group);
10906 err_fd:
10907         put_unused_fd(event_fd);
10908         return err;
10909 }
10910
10911 /**
10912  * perf_event_create_kernel_counter
10913  *
10914  * @attr: attributes of the counter to create
10915  * @cpu: cpu in which the counter is bound
10916  * @task: task to profile (NULL for percpu)
10917  */
10918 struct perf_event *
10919 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10920                                  struct task_struct *task,
10921                                  perf_overflow_handler_t overflow_handler,
10922                                  void *context)
10923 {
10924         struct perf_event_context *ctx;
10925         struct perf_event *event;
10926         int err;
10927
10928         /*
10929          * Get the target context (task or percpu):
10930          */
10931
10932         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10933                                  overflow_handler, context, -1);
10934         if (IS_ERR(event)) {
10935                 err = PTR_ERR(event);
10936                 goto err;
10937         }
10938
10939         /* Mark owner so we could distinguish it from user events. */
10940         event->owner = TASK_TOMBSTONE;
10941
10942         ctx = find_get_context(event->pmu, task, event);
10943         if (IS_ERR(ctx)) {
10944                 err = PTR_ERR(ctx);
10945                 goto err_free;
10946         }
10947
10948         WARN_ON_ONCE(ctx->parent_ctx);
10949         mutex_lock(&ctx->mutex);
10950         if (ctx->task == TASK_TOMBSTONE) {
10951                 err = -ESRCH;
10952                 goto err_unlock;
10953         }
10954
10955         if (!task) {
10956                 /*
10957                  * Check if the @cpu we're creating an event for is online.
10958                  *
10959                  * We use the perf_cpu_context::ctx::mutex to serialize against
10960                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10961                  */
10962                 struct perf_cpu_context *cpuctx =
10963                         container_of(ctx, struct perf_cpu_context, ctx);
10964                 if (!cpuctx->online) {
10965                         err = -ENODEV;
10966                         goto err_unlock;
10967                 }
10968         }
10969
10970         if (!exclusive_event_installable(event, ctx)) {
10971                 err = -EBUSY;
10972                 goto err_unlock;
10973         }
10974
10975         perf_install_in_context(ctx, event, event->cpu);
10976         perf_unpin_context(ctx);
10977         mutex_unlock(&ctx->mutex);
10978
10979         return event;
10980
10981 err_unlock:
10982         mutex_unlock(&ctx->mutex);
10983         perf_unpin_context(ctx);
10984         put_ctx(ctx);
10985 err_free:
10986         free_event(event);
10987 err:
10988         return ERR_PTR(err);
10989 }
10990 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10991
10992 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10993 {
10994         struct perf_event_context *src_ctx;
10995         struct perf_event_context *dst_ctx;
10996         struct perf_event *event, *tmp;
10997         LIST_HEAD(events);
10998
10999         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11000         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11001
11002         /*
11003          * See perf_event_ctx_lock() for comments on the details
11004          * of swizzling perf_event::ctx.
11005          */
11006         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11007         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11008                                  event_entry) {
11009                 perf_remove_from_context(event, 0);
11010                 unaccount_event_cpu(event, src_cpu);
11011                 put_ctx(src_ctx);
11012                 list_add(&event->migrate_entry, &events);
11013         }
11014
11015         /*
11016          * Wait for the events to quiesce before re-instating them.
11017          */
11018         synchronize_rcu();
11019
11020         /*
11021          * Re-instate events in 2 passes.
11022          *
11023          * Skip over group leaders and only install siblings on this first
11024          * pass, siblings will not get enabled without a leader, however a
11025          * leader will enable its siblings, even if those are still on the old
11026          * context.
11027          */
11028         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11029                 if (event->group_leader == event)
11030                         continue;
11031
11032                 list_del(&event->migrate_entry);
11033                 if (event->state >= PERF_EVENT_STATE_OFF)
11034                         event->state = PERF_EVENT_STATE_INACTIVE;
11035                 account_event_cpu(event, dst_cpu);
11036                 perf_install_in_context(dst_ctx, event, dst_cpu);
11037                 get_ctx(dst_ctx);
11038         }
11039
11040         /*
11041          * Once all the siblings are setup properly, install the group leaders
11042          * to make it go.
11043          */
11044         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11045                 list_del(&event->migrate_entry);
11046                 if (event->state >= PERF_EVENT_STATE_OFF)
11047                         event->state = PERF_EVENT_STATE_INACTIVE;
11048                 account_event_cpu(event, dst_cpu);
11049                 perf_install_in_context(dst_ctx, event, dst_cpu);
11050                 get_ctx(dst_ctx);
11051         }
11052         mutex_unlock(&dst_ctx->mutex);
11053         mutex_unlock(&src_ctx->mutex);
11054 }
11055 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11056
11057 static void sync_child_event(struct perf_event *child_event,
11058                                struct task_struct *child)
11059 {
11060         struct perf_event *parent_event = child_event->parent;
11061         u64 child_val;
11062
11063         if (child_event->attr.inherit_stat)
11064                 perf_event_read_event(child_event, child);
11065
11066         child_val = perf_event_count(child_event);
11067
11068         /*
11069          * Add back the child's count to the parent's count:
11070          */
11071         atomic64_add(child_val, &parent_event->child_count);
11072         atomic64_add(child_event->total_time_enabled,
11073                      &parent_event->child_total_time_enabled);
11074         atomic64_add(child_event->total_time_running,
11075                      &parent_event->child_total_time_running);
11076 }
11077
11078 static void
11079 perf_event_exit_event(struct perf_event *child_event,
11080                       struct perf_event_context *child_ctx,
11081                       struct task_struct *child)
11082 {
11083         struct perf_event *parent_event = child_event->parent;
11084
11085         /*
11086          * Do not destroy the 'original' grouping; because of the context
11087          * switch optimization the original events could've ended up in a
11088          * random child task.
11089          *
11090          * If we were to destroy the original group, all group related
11091          * operations would cease to function properly after this random
11092          * child dies.
11093          *
11094          * Do destroy all inherited groups, we don't care about those
11095          * and being thorough is better.
11096          */
11097         raw_spin_lock_irq(&child_ctx->lock);
11098         WARN_ON_ONCE(child_ctx->is_active);
11099
11100         if (parent_event)
11101                 perf_group_detach(child_event);
11102         list_del_event(child_event, child_ctx);
11103         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11104         raw_spin_unlock_irq(&child_ctx->lock);
11105
11106         /*
11107          * Parent events are governed by their filedesc, retain them.
11108          */
11109         if (!parent_event) {
11110                 perf_event_wakeup(child_event);
11111                 return;
11112         }
11113         /*
11114          * Child events can be cleaned up.
11115          */
11116
11117         sync_child_event(child_event, child);
11118
11119         /*
11120          * Remove this event from the parent's list
11121          */
11122         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11123         mutex_lock(&parent_event->child_mutex);
11124         list_del_init(&child_event->child_list);
11125         mutex_unlock(&parent_event->child_mutex);
11126
11127         /*
11128          * Kick perf_poll() for is_event_hup().
11129          */
11130         perf_event_wakeup(parent_event);
11131         free_event(child_event);
11132         put_event(parent_event);
11133 }
11134
11135 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11136 {
11137         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11138         struct perf_event *child_event, *next;
11139
11140         WARN_ON_ONCE(child != current);
11141
11142         child_ctx = perf_pin_task_context(child, ctxn);
11143         if (!child_ctx)
11144                 return;
11145
11146         /*
11147          * In order to reduce the amount of tricky in ctx tear-down, we hold
11148          * ctx::mutex over the entire thing. This serializes against almost
11149          * everything that wants to access the ctx.
11150          *
11151          * The exception is sys_perf_event_open() /
11152          * perf_event_create_kernel_count() which does find_get_context()
11153          * without ctx::mutex (it cannot because of the move_group double mutex
11154          * lock thing). See the comments in perf_install_in_context().
11155          */
11156         mutex_lock(&child_ctx->mutex);
11157
11158         /*
11159          * In a single ctx::lock section, de-schedule the events and detach the
11160          * context from the task such that we cannot ever get it scheduled back
11161          * in.
11162          */
11163         raw_spin_lock_irq(&child_ctx->lock);
11164         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11165
11166         /*
11167          * Now that the context is inactive, destroy the task <-> ctx relation
11168          * and mark the context dead.
11169          */
11170         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11171         put_ctx(child_ctx); /* cannot be last */
11172         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11173         put_task_struct(current); /* cannot be last */
11174
11175         clone_ctx = unclone_ctx(child_ctx);
11176         raw_spin_unlock_irq(&child_ctx->lock);
11177
11178         if (clone_ctx)
11179                 put_ctx(clone_ctx);
11180
11181         /*
11182          * Report the task dead after unscheduling the events so that we
11183          * won't get any samples after PERF_RECORD_EXIT. We can however still
11184          * get a few PERF_RECORD_READ events.
11185          */
11186         perf_event_task(child, child_ctx, 0);
11187
11188         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11189                 perf_event_exit_event(child_event, child_ctx, child);
11190
11191         mutex_unlock(&child_ctx->mutex);
11192
11193         put_ctx(child_ctx);
11194 }
11195
11196 /*
11197  * When a child task exits, feed back event values to parent events.
11198  *
11199  * Can be called with cred_guard_mutex held when called from
11200  * install_exec_creds().
11201  */
11202 void perf_event_exit_task(struct task_struct *child)
11203 {
11204         struct perf_event *event, *tmp;
11205         int ctxn;
11206
11207         mutex_lock(&child->perf_event_mutex);
11208         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11209                                  owner_entry) {
11210                 list_del_init(&event->owner_entry);
11211
11212                 /*
11213                  * Ensure the list deletion is visible before we clear
11214                  * the owner, closes a race against perf_release() where
11215                  * we need to serialize on the owner->perf_event_mutex.
11216                  */
11217                 smp_store_release(&event->owner, NULL);
11218         }
11219         mutex_unlock(&child->perf_event_mutex);
11220
11221         for_each_task_context_nr(ctxn)
11222                 perf_event_exit_task_context(child, ctxn);
11223
11224         /*
11225          * The perf_event_exit_task_context calls perf_event_task
11226          * with child's task_ctx, which generates EXIT events for
11227          * child contexts and sets child->perf_event_ctxp[] to NULL.
11228          * At this point we need to send EXIT events to cpu contexts.
11229          */
11230         perf_event_task(child, NULL, 0);
11231 }
11232
11233 static void perf_free_event(struct perf_event *event,
11234                             struct perf_event_context *ctx)
11235 {
11236         struct perf_event *parent = event->parent;
11237
11238         if (WARN_ON_ONCE(!parent))
11239                 return;
11240
11241         mutex_lock(&parent->child_mutex);
11242         list_del_init(&event->child_list);
11243         mutex_unlock(&parent->child_mutex);
11244
11245         put_event(parent);
11246
11247         raw_spin_lock_irq(&ctx->lock);
11248         perf_group_detach(event);
11249         list_del_event(event, ctx);
11250         raw_spin_unlock_irq(&ctx->lock);
11251         free_event(event);
11252 }
11253
11254 /*
11255  * Free a context as created by inheritance by perf_event_init_task() below,
11256  * used by fork() in case of fail.
11257  *
11258  * Even though the task has never lived, the context and events have been
11259  * exposed through the child_list, so we must take care tearing it all down.
11260  */
11261 void perf_event_free_task(struct task_struct *task)
11262 {
11263         struct perf_event_context *ctx;
11264         struct perf_event *event, *tmp;
11265         int ctxn;
11266
11267         for_each_task_context_nr(ctxn) {
11268                 ctx = task->perf_event_ctxp[ctxn];
11269                 if (!ctx)
11270                         continue;
11271
11272                 mutex_lock(&ctx->mutex);
11273                 raw_spin_lock_irq(&ctx->lock);
11274                 /*
11275                  * Destroy the task <-> ctx relation and mark the context dead.
11276                  *
11277                  * This is important because even though the task hasn't been
11278                  * exposed yet the context has been (through child_list).
11279                  */
11280                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11281                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11282                 put_task_struct(task); /* cannot be last */
11283                 raw_spin_unlock_irq(&ctx->lock);
11284
11285                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11286                         perf_free_event(event, ctx);
11287
11288                 mutex_unlock(&ctx->mutex);
11289
11290                 /*
11291                  * perf_event_release_kernel() could've stolen some of our
11292                  * child events and still have them on its free_list. In that
11293                  * case we must wait for these events to have been freed (in
11294                  * particular all their references to this task must've been
11295                  * dropped).
11296                  *
11297                  * Without this copy_process() will unconditionally free this
11298                  * task (irrespective of its reference count) and
11299                  * _free_event()'s put_task_struct(event->hw.target) will be a
11300                  * use-after-free.
11301                  *
11302                  * Wait for all events to drop their context reference.
11303                  */
11304                 wait_var_event(&ctx->refcount, atomic_read(&ctx->refcount) == 1);
11305                 put_ctx(ctx); /* must be last */
11306         }
11307 }
11308
11309 void perf_event_delayed_put(struct task_struct *task)
11310 {
11311         int ctxn;
11312
11313         for_each_task_context_nr(ctxn)
11314                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11315 }
11316
11317 struct file *perf_event_get(unsigned int fd)
11318 {
11319         struct file *file;
11320
11321         file = fget_raw(fd);
11322         if (!file)
11323                 return ERR_PTR(-EBADF);
11324
11325         if (file->f_op != &perf_fops) {
11326                 fput(file);
11327                 return ERR_PTR(-EBADF);
11328         }
11329
11330         return file;
11331 }
11332
11333 const struct perf_event *perf_get_event(struct file *file)
11334 {
11335         if (file->f_op != &perf_fops)
11336                 return ERR_PTR(-EINVAL);
11337
11338         return file->private_data;
11339 }
11340
11341 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11342 {
11343         if (!event)
11344                 return ERR_PTR(-EINVAL);
11345
11346         return &event->attr;
11347 }
11348
11349 /*
11350  * Inherit an event from parent task to child task.
11351  *
11352  * Returns:
11353  *  - valid pointer on success
11354  *  - NULL for orphaned events
11355  *  - IS_ERR() on error
11356  */
11357 static struct perf_event *
11358 inherit_event(struct perf_event *parent_event,
11359               struct task_struct *parent,
11360               struct perf_event_context *parent_ctx,
11361               struct task_struct *child,
11362               struct perf_event *group_leader,
11363               struct perf_event_context *child_ctx)
11364 {
11365         enum perf_event_state parent_state = parent_event->state;
11366         struct perf_event *child_event;
11367         unsigned long flags;
11368
11369         /*
11370          * Instead of creating recursive hierarchies of events,
11371          * we link inherited events back to the original parent,
11372          * which has a filp for sure, which we use as the reference
11373          * count:
11374          */
11375         if (parent_event->parent)
11376                 parent_event = parent_event->parent;
11377
11378         child_event = perf_event_alloc(&parent_event->attr,
11379                                            parent_event->cpu,
11380                                            child,
11381                                            group_leader, parent_event,
11382                                            NULL, NULL, -1);
11383         if (IS_ERR(child_event))
11384                 return child_event;
11385
11386
11387         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11388             !child_ctx->task_ctx_data) {
11389                 struct pmu *pmu = child_event->pmu;
11390
11391                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11392                                                    GFP_KERNEL);
11393                 if (!child_ctx->task_ctx_data) {
11394                         free_event(child_event);
11395                         return ERR_PTR(-ENOMEM);
11396                 }
11397         }
11398
11399         /*
11400          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11401          * must be under the same lock in order to serialize against
11402          * perf_event_release_kernel(), such that either we must observe
11403          * is_orphaned_event() or they will observe us on the child_list.
11404          */
11405         mutex_lock(&parent_event->child_mutex);
11406         if (is_orphaned_event(parent_event) ||
11407             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11408                 mutex_unlock(&parent_event->child_mutex);
11409                 /* task_ctx_data is freed with child_ctx */
11410                 free_event(child_event);
11411                 return NULL;
11412         }
11413
11414         get_ctx(child_ctx);
11415
11416         /*
11417          * Make the child state follow the state of the parent event,
11418          * not its attr.disabled bit.  We hold the parent's mutex,
11419          * so we won't race with perf_event_{en, dis}able_family.
11420          */
11421         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11422                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11423         else
11424                 child_event->state = PERF_EVENT_STATE_OFF;
11425
11426         if (parent_event->attr.freq) {
11427                 u64 sample_period = parent_event->hw.sample_period;
11428                 struct hw_perf_event *hwc = &child_event->hw;
11429
11430                 hwc->sample_period = sample_period;
11431                 hwc->last_period   = sample_period;
11432
11433                 local64_set(&hwc->period_left, sample_period);
11434         }
11435
11436         child_event->ctx = child_ctx;
11437         child_event->overflow_handler = parent_event->overflow_handler;
11438         child_event->overflow_handler_context
11439                 = parent_event->overflow_handler_context;
11440
11441         /*
11442          * Precalculate sample_data sizes
11443          */
11444         perf_event__header_size(child_event);
11445         perf_event__id_header_size(child_event);
11446
11447         /*
11448          * Link it up in the child's context:
11449          */
11450         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11451         add_event_to_ctx(child_event, child_ctx);
11452         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11453
11454         /*
11455          * Link this into the parent event's child list
11456          */
11457         list_add_tail(&child_event->child_list, &parent_event->child_list);
11458         mutex_unlock(&parent_event->child_mutex);
11459
11460         return child_event;
11461 }
11462
11463 /*
11464  * Inherits an event group.
11465  *
11466  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11467  * This matches with perf_event_release_kernel() removing all child events.
11468  *
11469  * Returns:
11470  *  - 0 on success
11471  *  - <0 on error
11472  */
11473 static int inherit_group(struct perf_event *parent_event,
11474               struct task_struct *parent,
11475               struct perf_event_context *parent_ctx,
11476               struct task_struct *child,
11477               struct perf_event_context *child_ctx)
11478 {
11479         struct perf_event *leader;
11480         struct perf_event *sub;
11481         struct perf_event *child_ctr;
11482
11483         leader = inherit_event(parent_event, parent, parent_ctx,
11484                                  child, NULL, child_ctx);
11485         if (IS_ERR(leader))
11486                 return PTR_ERR(leader);
11487         /*
11488          * @leader can be NULL here because of is_orphaned_event(). In this
11489          * case inherit_event() will create individual events, similar to what
11490          * perf_group_detach() would do anyway.
11491          */
11492         for_each_sibling_event(sub, parent_event) {
11493                 child_ctr = inherit_event(sub, parent, parent_ctx,
11494                                             child, leader, child_ctx);
11495                 if (IS_ERR(child_ctr))
11496                         return PTR_ERR(child_ctr);
11497         }
11498         return 0;
11499 }
11500
11501 /*
11502  * Creates the child task context and tries to inherit the event-group.
11503  *
11504  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11505  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11506  * consistent with perf_event_release_kernel() removing all child events.
11507  *
11508  * Returns:
11509  *  - 0 on success
11510  *  - <0 on error
11511  */
11512 static int
11513 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11514                    struct perf_event_context *parent_ctx,
11515                    struct task_struct *child, int ctxn,
11516                    int *inherited_all)
11517 {
11518         int ret;
11519         struct perf_event_context *child_ctx;
11520
11521         if (!event->attr.inherit) {
11522                 *inherited_all = 0;
11523                 return 0;
11524         }
11525
11526         child_ctx = child->perf_event_ctxp[ctxn];
11527         if (!child_ctx) {
11528                 /*
11529                  * This is executed from the parent task context, so
11530                  * inherit events that have been marked for cloning.
11531                  * First allocate and initialize a context for the
11532                  * child.
11533                  */
11534                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11535                 if (!child_ctx)
11536                         return -ENOMEM;
11537
11538                 child->perf_event_ctxp[ctxn] = child_ctx;
11539         }
11540
11541         ret = inherit_group(event, parent, parent_ctx,
11542                             child, child_ctx);
11543
11544         if (ret)
11545                 *inherited_all = 0;
11546
11547         return ret;
11548 }
11549
11550 /*
11551  * Initialize the perf_event context in task_struct
11552  */
11553 static int perf_event_init_context(struct task_struct *child, int ctxn)
11554 {
11555         struct perf_event_context *child_ctx, *parent_ctx;
11556         struct perf_event_context *cloned_ctx;
11557         struct perf_event *event;
11558         struct task_struct *parent = current;
11559         int inherited_all = 1;
11560         unsigned long flags;
11561         int ret = 0;
11562
11563         if (likely(!parent->perf_event_ctxp[ctxn]))
11564                 return 0;
11565
11566         /*
11567          * If the parent's context is a clone, pin it so it won't get
11568          * swapped under us.
11569          */
11570         parent_ctx = perf_pin_task_context(parent, ctxn);
11571         if (!parent_ctx)
11572                 return 0;
11573
11574         /*
11575          * No need to check if parent_ctx != NULL here; since we saw
11576          * it non-NULL earlier, the only reason for it to become NULL
11577          * is if we exit, and since we're currently in the middle of
11578          * a fork we can't be exiting at the same time.
11579          */
11580
11581         /*
11582          * Lock the parent list. No need to lock the child - not PID
11583          * hashed yet and not running, so nobody can access it.
11584          */
11585         mutex_lock(&parent_ctx->mutex);
11586
11587         /*
11588          * We dont have to disable NMIs - we are only looking at
11589          * the list, not manipulating it:
11590          */
11591         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11592                 ret = inherit_task_group(event, parent, parent_ctx,
11593                                          child, ctxn, &inherited_all);
11594                 if (ret)
11595                         goto out_unlock;
11596         }
11597
11598         /*
11599          * We can't hold ctx->lock when iterating the ->flexible_group list due
11600          * to allocations, but we need to prevent rotation because
11601          * rotate_ctx() will change the list from interrupt context.
11602          */
11603         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11604         parent_ctx->rotate_disable = 1;
11605         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11606
11607         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11608                 ret = inherit_task_group(event, parent, parent_ctx,
11609                                          child, ctxn, &inherited_all);
11610                 if (ret)
11611                         goto out_unlock;
11612         }
11613
11614         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11615         parent_ctx->rotate_disable = 0;
11616
11617         child_ctx = child->perf_event_ctxp[ctxn];
11618
11619         if (child_ctx && inherited_all) {
11620                 /*
11621                  * Mark the child context as a clone of the parent
11622                  * context, or of whatever the parent is a clone of.
11623                  *
11624                  * Note that if the parent is a clone, the holding of
11625                  * parent_ctx->lock avoids it from being uncloned.
11626                  */
11627                 cloned_ctx = parent_ctx->parent_ctx;
11628                 if (cloned_ctx) {
11629                         child_ctx->parent_ctx = cloned_ctx;
11630                         child_ctx->parent_gen = parent_ctx->parent_gen;
11631                 } else {
11632                         child_ctx->parent_ctx = parent_ctx;
11633                         child_ctx->parent_gen = parent_ctx->generation;
11634                 }
11635                 get_ctx(child_ctx->parent_ctx);
11636         }
11637
11638         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11639 out_unlock:
11640         mutex_unlock(&parent_ctx->mutex);
11641
11642         perf_unpin_context(parent_ctx);
11643         put_ctx(parent_ctx);
11644
11645         return ret;
11646 }
11647
11648 /*
11649  * Initialize the perf_event context in task_struct
11650  */
11651 int perf_event_init_task(struct task_struct *child)
11652 {
11653         int ctxn, ret;
11654
11655         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11656         mutex_init(&child->perf_event_mutex);
11657         INIT_LIST_HEAD(&child->perf_event_list);
11658
11659         for_each_task_context_nr(ctxn) {
11660                 ret = perf_event_init_context(child, ctxn);
11661                 if (ret) {
11662                         perf_event_free_task(child);
11663                         return ret;
11664                 }
11665         }
11666
11667         return 0;
11668 }
11669
11670 static void __init perf_event_init_all_cpus(void)
11671 {
11672         struct swevent_htable *swhash;
11673         int cpu;
11674
11675         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11676
11677         for_each_possible_cpu(cpu) {
11678                 swhash = &per_cpu(swevent_htable, cpu);
11679                 mutex_init(&swhash->hlist_mutex);
11680                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11681
11682                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11683                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11684
11685 #ifdef CONFIG_CGROUP_PERF
11686                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11687 #endif
11688                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11689         }
11690 }
11691
11692 void perf_swevent_init_cpu(unsigned int cpu)
11693 {
11694         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11695
11696         mutex_lock(&swhash->hlist_mutex);
11697         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11698                 struct swevent_hlist *hlist;
11699
11700                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11701                 WARN_ON(!hlist);
11702                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11703         }
11704         mutex_unlock(&swhash->hlist_mutex);
11705 }
11706
11707 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11708 static void __perf_event_exit_context(void *__info)
11709 {
11710         struct perf_event_context *ctx = __info;
11711         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11712         struct perf_event *event;
11713
11714         raw_spin_lock(&ctx->lock);
11715         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11716         list_for_each_entry(event, &ctx->event_list, event_entry)
11717                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11718         raw_spin_unlock(&ctx->lock);
11719 }
11720
11721 static void perf_event_exit_cpu_context(int cpu)
11722 {
11723         struct perf_cpu_context *cpuctx;
11724         struct perf_event_context *ctx;
11725         struct pmu *pmu;
11726
11727         mutex_lock(&pmus_lock);
11728         list_for_each_entry(pmu, &pmus, entry) {
11729                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11730                 ctx = &cpuctx->ctx;
11731
11732                 mutex_lock(&ctx->mutex);
11733                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11734                 cpuctx->online = 0;
11735                 mutex_unlock(&ctx->mutex);
11736         }
11737         cpumask_clear_cpu(cpu, perf_online_mask);
11738         mutex_unlock(&pmus_lock);
11739 }
11740 #else
11741
11742 static void perf_event_exit_cpu_context(int cpu) { }
11743
11744 #endif
11745
11746 int perf_event_init_cpu(unsigned int cpu)
11747 {
11748         struct perf_cpu_context *cpuctx;
11749         struct perf_event_context *ctx;
11750         struct pmu *pmu;
11751
11752         perf_swevent_init_cpu(cpu);
11753
11754         mutex_lock(&pmus_lock);
11755         cpumask_set_cpu(cpu, perf_online_mask);
11756         list_for_each_entry(pmu, &pmus, entry) {
11757                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11758                 ctx = &cpuctx->ctx;
11759
11760                 mutex_lock(&ctx->mutex);
11761                 cpuctx->online = 1;
11762                 mutex_unlock(&ctx->mutex);
11763         }
11764         mutex_unlock(&pmus_lock);
11765
11766         return 0;
11767 }
11768
11769 int perf_event_exit_cpu(unsigned int cpu)
11770 {
11771         perf_event_exit_cpu_context(cpu);
11772         return 0;
11773 }
11774
11775 static int
11776 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11777 {
11778         int cpu;
11779
11780         for_each_online_cpu(cpu)
11781                 perf_event_exit_cpu(cpu);
11782
11783         return NOTIFY_OK;
11784 }
11785
11786 /*
11787  * Run the perf reboot notifier at the very last possible moment so that
11788  * the generic watchdog code runs as long as possible.
11789  */
11790 static struct notifier_block perf_reboot_notifier = {
11791         .notifier_call = perf_reboot,
11792         .priority = INT_MIN,
11793 };
11794
11795 void __init perf_event_init(void)
11796 {
11797         int ret;
11798
11799         idr_init(&pmu_idr);
11800
11801         perf_event_init_all_cpus();
11802         init_srcu_struct(&pmus_srcu);
11803         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11804         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11805         perf_pmu_register(&perf_task_clock, NULL, -1);
11806         perf_tp_register();
11807         perf_event_init_cpu(smp_processor_id());
11808         register_reboot_notifier(&perf_reboot_notifier);
11809
11810         ret = init_hw_breakpoint();
11811         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11812
11813         /*
11814          * Build time assertion that we keep the data_head at the intended
11815          * location.  IOW, validation we got the __reserved[] size right.
11816          */
11817         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11818                      != 1024);
11819 }
11820
11821 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11822                               char *page)
11823 {
11824         struct perf_pmu_events_attr *pmu_attr =
11825                 container_of(attr, struct perf_pmu_events_attr, attr);
11826
11827         if (pmu_attr->event_str)
11828                 return sprintf(page, "%s\n", pmu_attr->event_str);
11829
11830         return 0;
11831 }
11832 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11833
11834 static int __init perf_event_sysfs_init(void)
11835 {
11836         struct pmu *pmu;
11837         int ret;
11838
11839         mutex_lock(&pmus_lock);
11840
11841         ret = bus_register(&pmu_bus);
11842         if (ret)
11843                 goto unlock;
11844
11845         list_for_each_entry(pmu, &pmus, entry) {
11846                 if (!pmu->name || pmu->type < 0)
11847                         continue;
11848
11849                 ret = pmu_dev_alloc(pmu);
11850                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11851         }
11852         pmu_bus_running = 1;
11853         ret = 0;
11854
11855 unlock:
11856         mutex_unlock(&pmus_lock);
11857
11858         return ret;
11859 }
11860 device_initcall(perf_event_sysfs_init);
11861
11862 #ifdef CONFIG_CGROUP_PERF
11863 static struct cgroup_subsys_state *
11864 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11865 {
11866         struct perf_cgroup *jc;
11867
11868         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11869         if (!jc)
11870                 return ERR_PTR(-ENOMEM);
11871
11872         jc->info = alloc_percpu(struct perf_cgroup_info);
11873         if (!jc->info) {
11874                 kfree(jc);
11875                 return ERR_PTR(-ENOMEM);
11876         }
11877
11878         return &jc->css;
11879 }
11880
11881 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11882 {
11883         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11884
11885         free_percpu(jc->info);
11886         kfree(jc);
11887 }
11888
11889 static int __perf_cgroup_move(void *info)
11890 {
11891         struct task_struct *task = info;
11892         rcu_read_lock();
11893         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11894         rcu_read_unlock();
11895         return 0;
11896 }
11897
11898 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11899 {
11900         struct task_struct *task;
11901         struct cgroup_subsys_state *css;
11902
11903         cgroup_taskset_for_each(task, css, tset)
11904                 task_function_call(task, __perf_cgroup_move, task);
11905 }
11906
11907 struct cgroup_subsys perf_event_cgrp_subsys = {
11908         .css_alloc      = perf_cgroup_css_alloc,
11909         .css_free       = perf_cgroup_css_free,
11910         .attach         = perf_cgroup_attach,
11911         /*
11912          * Implicitly enable on dfl hierarchy so that perf events can
11913          * always be filtered by cgroup2 path as long as perf_event
11914          * controller is not mounted on a legacy hierarchy.
11915          */
11916         .implicit_on_dfl = true,
11917         .threaded       = true,
11918 };
11919 #endif /* CONFIG_CGROUP_PERF */