Merge tag 'io_uring-6.1-2022-11-25' of git://git.kernel.dk/linux
[platform/kernel/linux-starfive.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66         struct task_struct      *p;
67         remote_function_f       func;
68         void                    *info;
69         int                     ret;
70 };
71
72 static void remote_function(void *data)
73 {
74         struct remote_function_call *tfc = data;
75         struct task_struct *p = tfc->p;
76
77         if (p) {
78                 /* -EAGAIN */
79                 if (task_cpu(p) != smp_processor_id())
80                         return;
81
82                 /*
83                  * Now that we're on right CPU with IRQs disabled, we can test
84                  * if we hit the right task without races.
85                  */
86
87                 tfc->ret = -ESRCH; /* No such (running) process */
88                 if (p != current)
89                         return;
90         }
91
92         tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:          the task to evaluate
98  * @func:       the function to be called
99  * @info:       the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111         struct remote_function_call data = {
112                 .p      = p,
113                 .func   = func,
114                 .info   = info,
115                 .ret    = -EAGAIN,
116         };
117         int ret;
118
119         for (;;) {
120                 ret = smp_call_function_single(task_cpu(p), remote_function,
121                                                &data, 1);
122                 if (!ret)
123                         ret = data.ret;
124
125                 if (ret != -EAGAIN)
126                         break;
127
128                 cond_resched();
129         }
130
131         return ret;
132 }
133
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:        target cpu to queue this function
137  * @func:       the function to be called
138  * @info:       the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146         struct remote_function_call data = {
147                 .p      = NULL,
148                 .func   = func,
149                 .info   = info,
150                 .ret    = -ENXIO, /* No such CPU */
151         };
152
153         smp_call_function_single(cpu, remote_function, &data, 1);
154
155         return data.ret;
156 }
157
158 static inline struct perf_cpu_context *
159 __get_cpu_context(struct perf_event_context *ctx)
160 {
161         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
162 }
163
164 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
165                           struct perf_event_context *ctx)
166 {
167         raw_spin_lock(&cpuctx->ctx.lock);
168         if (ctx)
169                 raw_spin_lock(&ctx->lock);
170 }
171
172 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
173                             struct perf_event_context *ctx)
174 {
175         if (ctx)
176                 raw_spin_unlock(&ctx->lock);
177         raw_spin_unlock(&cpuctx->ctx.lock);
178 }
179
180 #define TASK_TOMBSTONE ((void *)-1L)
181
182 static bool is_kernel_event(struct perf_event *event)
183 {
184         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
185 }
186
187 /*
188  * On task ctx scheduling...
189  *
190  * When !ctx->nr_events a task context will not be scheduled. This means
191  * we can disable the scheduler hooks (for performance) without leaving
192  * pending task ctx state.
193  *
194  * This however results in two special cases:
195  *
196  *  - removing the last event from a task ctx; this is relatively straight
197  *    forward and is done in __perf_remove_from_context.
198  *
199  *  - adding the first event to a task ctx; this is tricky because we cannot
200  *    rely on ctx->is_active and therefore cannot use event_function_call().
201  *    See perf_install_in_context().
202  *
203  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
204  */
205
206 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
207                         struct perf_event_context *, void *);
208
209 struct event_function_struct {
210         struct perf_event *event;
211         event_f func;
212         void *data;
213 };
214
215 static int event_function(void *info)
216 {
217         struct event_function_struct *efs = info;
218         struct perf_event *event = efs->event;
219         struct perf_event_context *ctx = event->ctx;
220         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
221         struct perf_event_context *task_ctx = cpuctx->task_ctx;
222         int ret = 0;
223
224         lockdep_assert_irqs_disabled();
225
226         perf_ctx_lock(cpuctx, task_ctx);
227         /*
228          * Since we do the IPI call without holding ctx->lock things can have
229          * changed, double check we hit the task we set out to hit.
230          */
231         if (ctx->task) {
232                 if (ctx->task != current) {
233                         ret = -ESRCH;
234                         goto unlock;
235                 }
236
237                 /*
238                  * We only use event_function_call() on established contexts,
239                  * and event_function() is only ever called when active (or
240                  * rather, we'll have bailed in task_function_call() or the
241                  * above ctx->task != current test), therefore we must have
242                  * ctx->is_active here.
243                  */
244                 WARN_ON_ONCE(!ctx->is_active);
245                 /*
246                  * And since we have ctx->is_active, cpuctx->task_ctx must
247                  * match.
248                  */
249                 WARN_ON_ONCE(task_ctx != ctx);
250         } else {
251                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
252         }
253
254         efs->func(event, cpuctx, ctx, efs->data);
255 unlock:
256         perf_ctx_unlock(cpuctx, task_ctx);
257
258         return ret;
259 }
260
261 static void event_function_call(struct perf_event *event, event_f func, void *data)
262 {
263         struct perf_event_context *ctx = event->ctx;
264         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
265         struct event_function_struct efs = {
266                 .event = event,
267                 .func = func,
268                 .data = data,
269         };
270
271         if (!event->parent) {
272                 /*
273                  * If this is a !child event, we must hold ctx::mutex to
274                  * stabilize the event->ctx relation. See
275                  * perf_event_ctx_lock().
276                  */
277                 lockdep_assert_held(&ctx->mutex);
278         }
279
280         if (!task) {
281                 cpu_function_call(event->cpu, event_function, &efs);
282                 return;
283         }
284
285         if (task == TASK_TOMBSTONE)
286                 return;
287
288 again:
289         if (!task_function_call(task, event_function, &efs))
290                 return;
291
292         raw_spin_lock_irq(&ctx->lock);
293         /*
294          * Reload the task pointer, it might have been changed by
295          * a concurrent perf_event_context_sched_out().
296          */
297         task = ctx->task;
298         if (task == TASK_TOMBSTONE) {
299                 raw_spin_unlock_irq(&ctx->lock);
300                 return;
301         }
302         if (ctx->is_active) {
303                 raw_spin_unlock_irq(&ctx->lock);
304                 goto again;
305         }
306         func(event, NULL, ctx, data);
307         raw_spin_unlock_irq(&ctx->lock);
308 }
309
310 /*
311  * Similar to event_function_call() + event_function(), but hard assumes IRQs
312  * are already disabled and we're on the right CPU.
313  */
314 static void event_function_local(struct perf_event *event, event_f func, void *data)
315 {
316         struct perf_event_context *ctx = event->ctx;
317         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
318         struct task_struct *task = READ_ONCE(ctx->task);
319         struct perf_event_context *task_ctx = NULL;
320
321         lockdep_assert_irqs_disabled();
322
323         if (task) {
324                 if (task == TASK_TOMBSTONE)
325                         return;
326
327                 task_ctx = ctx;
328         }
329
330         perf_ctx_lock(cpuctx, task_ctx);
331
332         task = ctx->task;
333         if (task == TASK_TOMBSTONE)
334                 goto unlock;
335
336         if (task) {
337                 /*
338                  * We must be either inactive or active and the right task,
339                  * otherwise we're screwed, since we cannot IPI to somewhere
340                  * else.
341                  */
342                 if (ctx->is_active) {
343                         if (WARN_ON_ONCE(task != current))
344                                 goto unlock;
345
346                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
347                                 goto unlock;
348                 }
349         } else {
350                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
351         }
352
353         func(event, cpuctx, ctx, data);
354 unlock:
355         perf_ctx_unlock(cpuctx, task_ctx);
356 }
357
358 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
359                        PERF_FLAG_FD_OUTPUT  |\
360                        PERF_FLAG_PID_CGROUP |\
361                        PERF_FLAG_FD_CLOEXEC)
362
363 /*
364  * branch priv levels that need permission checks
365  */
366 #define PERF_SAMPLE_BRANCH_PERM_PLM \
367         (PERF_SAMPLE_BRANCH_KERNEL |\
368          PERF_SAMPLE_BRANCH_HV)
369
370 enum event_type_t {
371         EVENT_FLEXIBLE = 0x1,
372         EVENT_PINNED = 0x2,
373         EVENT_TIME = 0x4,
374         /* see ctx_resched() for details */
375         EVENT_CPU = 0x8,
376         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
377 };
378
379 /*
380  * perf_sched_events : >0 events exist
381  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
382  */
383
384 static void perf_sched_delayed(struct work_struct *work);
385 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
386 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
387 static DEFINE_MUTEX(perf_sched_mutex);
388 static atomic_t perf_sched_count;
389
390 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
391 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE         100000
428 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
430
431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
435
436 static int perf_sample_allowed_ns __read_mostly =
437         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438
439 static void update_perf_cpu_limits(void)
440 {
441         u64 tmp = perf_sample_period_ns;
442
443         tmp *= sysctl_perf_cpu_time_max_percent;
444         tmp = div_u64(tmp, 100);
445         if (!tmp)
446                 tmp = 1;
447
448         WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450
451 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
452
453 int perf_proc_update_handler(struct ctl_table *table, int write,
454                 void *buffer, size_t *lenp, loff_t *ppos)
455 {
456         int ret;
457         int perf_cpu = sysctl_perf_cpu_time_max_percent;
458         /*
459          * If throttling is disabled don't allow the write:
460          */
461         if (write && (perf_cpu == 100 || perf_cpu == 0))
462                 return -EINVAL;
463
464         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465         if (ret || !write)
466                 return ret;
467
468         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470         update_perf_cpu_limits();
471
472         return 0;
473 }
474
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478                 void *buffer, size_t *lenp, loff_t *ppos)
479 {
480         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481
482         if (ret || !write)
483                 return ret;
484
485         if (sysctl_perf_cpu_time_max_percent == 100 ||
486             sysctl_perf_cpu_time_max_percent == 0) {
487                 printk(KERN_WARNING
488                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489                 WRITE_ONCE(perf_sample_allowed_ns, 0);
490         } else {
491                 update_perf_cpu_limits();
492         }
493
494         return 0;
495 }
496
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505
506 static u64 __report_avg;
507 static u64 __report_allowed;
508
509 static void perf_duration_warn(struct irq_work *w)
510 {
511         printk_ratelimited(KERN_INFO
512                 "perf: interrupt took too long (%lld > %lld), lowering "
513                 "kernel.perf_event_max_sample_rate to %d\n",
514                 __report_avg, __report_allowed,
515                 sysctl_perf_event_sample_rate);
516 }
517
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523         u64 running_len;
524         u64 avg_len;
525         u32 max;
526
527         if (max_len == 0)
528                 return;
529
530         /* Decay the counter by 1 average sample. */
531         running_len = __this_cpu_read(running_sample_length);
532         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533         running_len += sample_len_ns;
534         __this_cpu_write(running_sample_length, running_len);
535
536         /*
537          * Note: this will be biased artifically low until we have
538          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539          * from having to maintain a count.
540          */
541         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542         if (avg_len <= max_len)
543                 return;
544
545         __report_avg = avg_len;
546         __report_allowed = max_len;
547
548         /*
549          * Compute a throttle threshold 25% below the current duration.
550          */
551         avg_len += avg_len / 4;
552         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553         if (avg_len < max)
554                 max /= (u32)avg_len;
555         else
556                 max = 1;
557
558         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559         WRITE_ONCE(max_samples_per_tick, max);
560
561         sysctl_perf_event_sample_rate = max * HZ;
562         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563
564         if (!irq_work_queue(&perf_duration_work)) {
565                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566                              "kernel.perf_event_max_sample_rate to %d\n",
567                              __report_avg, __report_allowed,
568                              sysctl_perf_event_sample_rate);
569         }
570 }
571
572 static atomic64_t perf_event_id;
573
574 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
575                               enum event_type_t event_type);
576
577 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
578                              enum event_type_t event_type);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 /*
678  * UP store-release, load-acquire
679  */
680
681 #define __store_release(ptr, val)                                       \
682 do {                                                                    \
683         barrier();                                                      \
684         WRITE_ONCE(*(ptr), (val));                                      \
685 } while (0)
686
687 #define __load_acquire(ptr)                                             \
688 ({                                                                      \
689         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
690         barrier();                                                      \
691         ___p;                                                           \
692 })
693
694 #ifdef CONFIG_CGROUP_PERF
695
696 static inline bool
697 perf_cgroup_match(struct perf_event *event)
698 {
699         struct perf_event_context *ctx = event->ctx;
700         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
701
702         /* @event doesn't care about cgroup */
703         if (!event->cgrp)
704                 return true;
705
706         /* wants specific cgroup scope but @cpuctx isn't associated with any */
707         if (!cpuctx->cgrp)
708                 return false;
709
710         /*
711          * Cgroup scoping is recursive.  An event enabled for a cgroup is
712          * also enabled for all its descendant cgroups.  If @cpuctx's
713          * cgroup is a descendant of @event's (the test covers identity
714          * case), it's a match.
715          */
716         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
717                                     event->cgrp->css.cgroup);
718 }
719
720 static inline void perf_detach_cgroup(struct perf_event *event)
721 {
722         css_put(&event->cgrp->css);
723         event->cgrp = NULL;
724 }
725
726 static inline int is_cgroup_event(struct perf_event *event)
727 {
728         return event->cgrp != NULL;
729 }
730
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733         struct perf_cgroup_info *t;
734
735         t = per_cpu_ptr(event->cgrp->info, event->cpu);
736         return t->time;
737 }
738
739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
740 {
741         struct perf_cgroup_info *t;
742
743         t = per_cpu_ptr(event->cgrp->info, event->cpu);
744         if (!__load_acquire(&t->active))
745                 return t->time;
746         now += READ_ONCE(t->timeoffset);
747         return now;
748 }
749
750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
751 {
752         if (adv)
753                 info->time += now - info->timestamp;
754         info->timestamp = now;
755         /*
756          * see update_context_time()
757          */
758         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
759 }
760
761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
762 {
763         struct perf_cgroup *cgrp = cpuctx->cgrp;
764         struct cgroup_subsys_state *css;
765         struct perf_cgroup_info *info;
766
767         if (cgrp) {
768                 u64 now = perf_clock();
769
770                 for (css = &cgrp->css; css; css = css->parent) {
771                         cgrp = container_of(css, struct perf_cgroup, css);
772                         info = this_cpu_ptr(cgrp->info);
773
774                         __update_cgrp_time(info, now, true);
775                         if (final)
776                                 __store_release(&info->active, 0);
777                 }
778         }
779 }
780
781 static inline void update_cgrp_time_from_event(struct perf_event *event)
782 {
783         struct perf_cgroup_info *info;
784
785         /*
786          * ensure we access cgroup data only when needed and
787          * when we know the cgroup is pinned (css_get)
788          */
789         if (!is_cgroup_event(event))
790                 return;
791
792         info = this_cpu_ptr(event->cgrp->info);
793         /*
794          * Do not update time when cgroup is not active
795          */
796         if (info->active)
797                 __update_cgrp_time(info, perf_clock(), true);
798 }
799
800 static inline void
801 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
802 {
803         struct perf_event_context *ctx = &cpuctx->ctx;
804         struct perf_cgroup *cgrp = cpuctx->cgrp;
805         struct perf_cgroup_info *info;
806         struct cgroup_subsys_state *css;
807
808         /*
809          * ctx->lock held by caller
810          * ensure we do not access cgroup data
811          * unless we have the cgroup pinned (css_get)
812          */
813         if (!cgrp)
814                 return;
815
816         WARN_ON_ONCE(!ctx->nr_cgroups);
817
818         for (css = &cgrp->css; css; css = css->parent) {
819                 cgrp = container_of(css, struct perf_cgroup, css);
820                 info = this_cpu_ptr(cgrp->info);
821                 __update_cgrp_time(info, ctx->timestamp, false);
822                 __store_release(&info->active, 1);
823         }
824 }
825
826 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
827
828 /*
829  * reschedule events based on the cgroup constraint of task.
830  */
831 static void perf_cgroup_switch(struct task_struct *task)
832 {
833         struct perf_cgroup *cgrp;
834         struct perf_cpu_context *cpuctx, *tmp;
835         struct list_head *list;
836         unsigned long flags;
837
838         /*
839          * Disable interrupts and preemption to avoid this CPU's
840          * cgrp_cpuctx_entry to change under us.
841          */
842         local_irq_save(flags);
843
844         cgrp = perf_cgroup_from_task(task, NULL);
845
846         list = this_cpu_ptr(&cgrp_cpuctx_list);
847         list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
848                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
849                 if (READ_ONCE(cpuctx->cgrp) == cgrp)
850                         continue;
851
852                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
853                 perf_pmu_disable(cpuctx->ctx.pmu);
854
855                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
856                 /*
857                  * must not be done before ctxswout due
858                  * to update_cgrp_time_from_cpuctx() in
859                  * ctx_sched_out()
860                  */
861                 cpuctx->cgrp = cgrp;
862                 /*
863                  * set cgrp before ctxsw in to allow
864                  * perf_cgroup_set_timestamp() in ctx_sched_in()
865                  * to not have to pass task around
866                  */
867                 cpu_ctx_sched_in(cpuctx, EVENT_ALL);
868
869                 perf_pmu_enable(cpuctx->ctx.pmu);
870                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
871         }
872
873         local_irq_restore(flags);
874 }
875
876 static int perf_cgroup_ensure_storage(struct perf_event *event,
877                                 struct cgroup_subsys_state *css)
878 {
879         struct perf_cpu_context *cpuctx;
880         struct perf_event **storage;
881         int cpu, heap_size, ret = 0;
882
883         /*
884          * Allow storage to have sufficent space for an iterator for each
885          * possibly nested cgroup plus an iterator for events with no cgroup.
886          */
887         for (heap_size = 1; css; css = css->parent)
888                 heap_size++;
889
890         for_each_possible_cpu(cpu) {
891                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
892                 if (heap_size <= cpuctx->heap_size)
893                         continue;
894
895                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
896                                        GFP_KERNEL, cpu_to_node(cpu));
897                 if (!storage) {
898                         ret = -ENOMEM;
899                         break;
900                 }
901
902                 raw_spin_lock_irq(&cpuctx->ctx.lock);
903                 if (cpuctx->heap_size < heap_size) {
904                         swap(cpuctx->heap, storage);
905                         if (storage == cpuctx->heap_default)
906                                 storage = NULL;
907                         cpuctx->heap_size = heap_size;
908                 }
909                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
910
911                 kfree(storage);
912         }
913
914         return ret;
915 }
916
917 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
918                                       struct perf_event_attr *attr,
919                                       struct perf_event *group_leader)
920 {
921         struct perf_cgroup *cgrp;
922         struct cgroup_subsys_state *css;
923         struct fd f = fdget(fd);
924         int ret = 0;
925
926         if (!f.file)
927                 return -EBADF;
928
929         css = css_tryget_online_from_dir(f.file->f_path.dentry,
930                                          &perf_event_cgrp_subsys);
931         if (IS_ERR(css)) {
932                 ret = PTR_ERR(css);
933                 goto out;
934         }
935
936         ret = perf_cgroup_ensure_storage(event, css);
937         if (ret)
938                 goto out;
939
940         cgrp = container_of(css, struct perf_cgroup, css);
941         event->cgrp = cgrp;
942
943         /*
944          * all events in a group must monitor
945          * the same cgroup because a task belongs
946          * to only one perf cgroup at a time
947          */
948         if (group_leader && group_leader->cgrp != cgrp) {
949                 perf_detach_cgroup(event);
950                 ret = -EINVAL;
951         }
952 out:
953         fdput(f);
954         return ret;
955 }
956
957 static inline void
958 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
959 {
960         struct perf_cpu_context *cpuctx;
961
962         if (!is_cgroup_event(event))
963                 return;
964
965         /*
966          * Because cgroup events are always per-cpu events,
967          * @ctx == &cpuctx->ctx.
968          */
969         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
970
971         if (ctx->nr_cgroups++)
972                 return;
973
974         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
975         list_add(&cpuctx->cgrp_cpuctx_entry,
976                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
977 }
978
979 static inline void
980 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
981 {
982         struct perf_cpu_context *cpuctx;
983
984         if (!is_cgroup_event(event))
985                 return;
986
987         /*
988          * Because cgroup events are always per-cpu events,
989          * @ctx == &cpuctx->ctx.
990          */
991         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
992
993         if (--ctx->nr_cgroups)
994                 return;
995
996         cpuctx->cgrp = NULL;
997         list_del(&cpuctx->cgrp_cpuctx_entry);
998 }
999
1000 #else /* !CONFIG_CGROUP_PERF */
1001
1002 static inline bool
1003 perf_cgroup_match(struct perf_event *event)
1004 {
1005         return true;
1006 }
1007
1008 static inline void perf_detach_cgroup(struct perf_event *event)
1009 {}
1010
1011 static inline int is_cgroup_event(struct perf_event *event)
1012 {
1013         return 0;
1014 }
1015
1016 static inline void update_cgrp_time_from_event(struct perf_event *event)
1017 {
1018 }
1019
1020 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1021                                                 bool final)
1022 {
1023 }
1024
1025 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1026                                       struct perf_event_attr *attr,
1027                                       struct perf_event *group_leader)
1028 {
1029         return -EINVAL;
1030 }
1031
1032 static inline void
1033 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1034 {
1035 }
1036
1037 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1038 {
1039         return 0;
1040 }
1041
1042 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1043 {
1044         return 0;
1045 }
1046
1047 static inline void
1048 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1049 {
1050 }
1051
1052 static inline void
1053 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1054 {
1055 }
1056
1057 static void perf_cgroup_switch(struct task_struct *task)
1058 {
1059 }
1060 #endif
1061
1062 /*
1063  * set default to be dependent on timer tick just
1064  * like original code
1065  */
1066 #define PERF_CPU_HRTIMER (1000 / HZ)
1067 /*
1068  * function must be called with interrupts disabled
1069  */
1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1071 {
1072         struct perf_cpu_context *cpuctx;
1073         bool rotations;
1074
1075         lockdep_assert_irqs_disabled();
1076
1077         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1078         rotations = perf_rotate_context(cpuctx);
1079
1080         raw_spin_lock(&cpuctx->hrtimer_lock);
1081         if (rotations)
1082                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1083         else
1084                 cpuctx->hrtimer_active = 0;
1085         raw_spin_unlock(&cpuctx->hrtimer_lock);
1086
1087         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1088 }
1089
1090 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1091 {
1092         struct hrtimer *timer = &cpuctx->hrtimer;
1093         struct pmu *pmu = cpuctx->ctx.pmu;
1094         u64 interval;
1095
1096         /* no multiplexing needed for SW PMU */
1097         if (pmu->task_ctx_nr == perf_sw_context)
1098                 return;
1099
1100         /*
1101          * check default is sane, if not set then force to
1102          * default interval (1/tick)
1103          */
1104         interval = pmu->hrtimer_interval_ms;
1105         if (interval < 1)
1106                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1107
1108         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1109
1110         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1111         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1112         timer->function = perf_mux_hrtimer_handler;
1113 }
1114
1115 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1116 {
1117         struct hrtimer *timer = &cpuctx->hrtimer;
1118         struct pmu *pmu = cpuctx->ctx.pmu;
1119         unsigned long flags;
1120
1121         /* not for SW PMU */
1122         if (pmu->task_ctx_nr == perf_sw_context)
1123                 return 0;
1124
1125         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1126         if (!cpuctx->hrtimer_active) {
1127                 cpuctx->hrtimer_active = 1;
1128                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1129                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1130         }
1131         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1132
1133         return 0;
1134 }
1135
1136 void perf_pmu_disable(struct pmu *pmu)
1137 {
1138         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1139         if (!(*count)++)
1140                 pmu->pmu_disable(pmu);
1141 }
1142
1143 void perf_pmu_enable(struct pmu *pmu)
1144 {
1145         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146         if (!--(*count))
1147                 pmu->pmu_enable(pmu);
1148 }
1149
1150 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1151
1152 /*
1153  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1154  * perf_event_task_tick() are fully serialized because they're strictly cpu
1155  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1156  * disabled, while perf_event_task_tick is called from IRQ context.
1157  */
1158 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1159 {
1160         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1161
1162         lockdep_assert_irqs_disabled();
1163
1164         WARN_ON(!list_empty(&ctx->active_ctx_list));
1165
1166         list_add(&ctx->active_ctx_list, head);
1167 }
1168
1169 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1170 {
1171         lockdep_assert_irqs_disabled();
1172
1173         WARN_ON(list_empty(&ctx->active_ctx_list));
1174
1175         list_del_init(&ctx->active_ctx_list);
1176 }
1177
1178 static void get_ctx(struct perf_event_context *ctx)
1179 {
1180         refcount_inc(&ctx->refcount);
1181 }
1182
1183 static void *alloc_task_ctx_data(struct pmu *pmu)
1184 {
1185         if (pmu->task_ctx_cache)
1186                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1187
1188         return NULL;
1189 }
1190
1191 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1192 {
1193         if (pmu->task_ctx_cache && task_ctx_data)
1194                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1195 }
1196
1197 static void free_ctx(struct rcu_head *head)
1198 {
1199         struct perf_event_context *ctx;
1200
1201         ctx = container_of(head, struct perf_event_context, rcu_head);
1202         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1203         kfree(ctx);
1204 }
1205
1206 static void put_ctx(struct perf_event_context *ctx)
1207 {
1208         if (refcount_dec_and_test(&ctx->refcount)) {
1209                 if (ctx->parent_ctx)
1210                         put_ctx(ctx->parent_ctx);
1211                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1212                         put_task_struct(ctx->task);
1213                 call_rcu(&ctx->rcu_head, free_ctx);
1214         }
1215 }
1216
1217 /*
1218  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1219  * perf_pmu_migrate_context() we need some magic.
1220  *
1221  * Those places that change perf_event::ctx will hold both
1222  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1223  *
1224  * Lock ordering is by mutex address. There are two other sites where
1225  * perf_event_context::mutex nests and those are:
1226  *
1227  *  - perf_event_exit_task_context()    [ child , 0 ]
1228  *      perf_event_exit_event()
1229  *        put_event()                   [ parent, 1 ]
1230  *
1231  *  - perf_event_init_context()         [ parent, 0 ]
1232  *      inherit_task_group()
1233  *        inherit_group()
1234  *          inherit_event()
1235  *            perf_event_alloc()
1236  *              perf_init_event()
1237  *                perf_try_init_event() [ child , 1 ]
1238  *
1239  * While it appears there is an obvious deadlock here -- the parent and child
1240  * nesting levels are inverted between the two. This is in fact safe because
1241  * life-time rules separate them. That is an exiting task cannot fork, and a
1242  * spawning task cannot (yet) exit.
1243  *
1244  * But remember that these are parent<->child context relations, and
1245  * migration does not affect children, therefore these two orderings should not
1246  * interact.
1247  *
1248  * The change in perf_event::ctx does not affect children (as claimed above)
1249  * because the sys_perf_event_open() case will install a new event and break
1250  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1251  * concerned with cpuctx and that doesn't have children.
1252  *
1253  * The places that change perf_event::ctx will issue:
1254  *
1255  *   perf_remove_from_context();
1256  *   synchronize_rcu();
1257  *   perf_install_in_context();
1258  *
1259  * to affect the change. The remove_from_context() + synchronize_rcu() should
1260  * quiesce the event, after which we can install it in the new location. This
1261  * means that only external vectors (perf_fops, prctl) can perturb the event
1262  * while in transit. Therefore all such accessors should also acquire
1263  * perf_event_context::mutex to serialize against this.
1264  *
1265  * However; because event->ctx can change while we're waiting to acquire
1266  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1267  * function.
1268  *
1269  * Lock order:
1270  *    exec_update_lock
1271  *      task_struct::perf_event_mutex
1272  *        perf_event_context::mutex
1273  *          perf_event::child_mutex;
1274  *            perf_event_context::lock
1275  *          perf_event::mmap_mutex
1276  *          mmap_lock
1277  *            perf_addr_filters_head::lock
1278  *
1279  *    cpu_hotplug_lock
1280  *      pmus_lock
1281  *        cpuctx->mutex / perf_event_context::mutex
1282  */
1283 static struct perf_event_context *
1284 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1285 {
1286         struct perf_event_context *ctx;
1287
1288 again:
1289         rcu_read_lock();
1290         ctx = READ_ONCE(event->ctx);
1291         if (!refcount_inc_not_zero(&ctx->refcount)) {
1292                 rcu_read_unlock();
1293                 goto again;
1294         }
1295         rcu_read_unlock();
1296
1297         mutex_lock_nested(&ctx->mutex, nesting);
1298         if (event->ctx != ctx) {
1299                 mutex_unlock(&ctx->mutex);
1300                 put_ctx(ctx);
1301                 goto again;
1302         }
1303
1304         return ctx;
1305 }
1306
1307 static inline struct perf_event_context *
1308 perf_event_ctx_lock(struct perf_event *event)
1309 {
1310         return perf_event_ctx_lock_nested(event, 0);
1311 }
1312
1313 static void perf_event_ctx_unlock(struct perf_event *event,
1314                                   struct perf_event_context *ctx)
1315 {
1316         mutex_unlock(&ctx->mutex);
1317         put_ctx(ctx);
1318 }
1319
1320 /*
1321  * This must be done under the ctx->lock, such as to serialize against
1322  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1323  * calling scheduler related locks and ctx->lock nests inside those.
1324  */
1325 static __must_check struct perf_event_context *
1326 unclone_ctx(struct perf_event_context *ctx)
1327 {
1328         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1329
1330         lockdep_assert_held(&ctx->lock);
1331
1332         if (parent_ctx)
1333                 ctx->parent_ctx = NULL;
1334         ctx->generation++;
1335
1336         return parent_ctx;
1337 }
1338
1339 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1340                                 enum pid_type type)
1341 {
1342         u32 nr;
1343         /*
1344          * only top level events have the pid namespace they were created in
1345          */
1346         if (event->parent)
1347                 event = event->parent;
1348
1349         nr = __task_pid_nr_ns(p, type, event->ns);
1350         /* avoid -1 if it is idle thread or runs in another ns */
1351         if (!nr && !pid_alive(p))
1352                 nr = -1;
1353         return nr;
1354 }
1355
1356 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1357 {
1358         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1359 }
1360
1361 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1362 {
1363         return perf_event_pid_type(event, p, PIDTYPE_PID);
1364 }
1365
1366 /*
1367  * If we inherit events we want to return the parent event id
1368  * to userspace.
1369  */
1370 static u64 primary_event_id(struct perf_event *event)
1371 {
1372         u64 id = event->id;
1373
1374         if (event->parent)
1375                 id = event->parent->id;
1376
1377         return id;
1378 }
1379
1380 /*
1381  * Get the perf_event_context for a task and lock it.
1382  *
1383  * This has to cope with the fact that until it is locked,
1384  * the context could get moved to another task.
1385  */
1386 static struct perf_event_context *
1387 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1388 {
1389         struct perf_event_context *ctx;
1390
1391 retry:
1392         /*
1393          * One of the few rules of preemptible RCU is that one cannot do
1394          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1395          * part of the read side critical section was irqs-enabled -- see
1396          * rcu_read_unlock_special().
1397          *
1398          * Since ctx->lock nests under rq->lock we must ensure the entire read
1399          * side critical section has interrupts disabled.
1400          */
1401         local_irq_save(*flags);
1402         rcu_read_lock();
1403         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1404         if (ctx) {
1405                 /*
1406                  * If this context is a clone of another, it might
1407                  * get swapped for another underneath us by
1408                  * perf_event_task_sched_out, though the
1409                  * rcu_read_lock() protects us from any context
1410                  * getting freed.  Lock the context and check if it
1411                  * got swapped before we could get the lock, and retry
1412                  * if so.  If we locked the right context, then it
1413                  * can't get swapped on us any more.
1414                  */
1415                 raw_spin_lock(&ctx->lock);
1416                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1417                         raw_spin_unlock(&ctx->lock);
1418                         rcu_read_unlock();
1419                         local_irq_restore(*flags);
1420                         goto retry;
1421                 }
1422
1423                 if (ctx->task == TASK_TOMBSTONE ||
1424                     !refcount_inc_not_zero(&ctx->refcount)) {
1425                         raw_spin_unlock(&ctx->lock);
1426                         ctx = NULL;
1427                 } else {
1428                         WARN_ON_ONCE(ctx->task != task);
1429                 }
1430         }
1431         rcu_read_unlock();
1432         if (!ctx)
1433                 local_irq_restore(*flags);
1434         return ctx;
1435 }
1436
1437 /*
1438  * Get the context for a task and increment its pin_count so it
1439  * can't get swapped to another task.  This also increments its
1440  * reference count so that the context can't get freed.
1441  */
1442 static struct perf_event_context *
1443 perf_pin_task_context(struct task_struct *task, int ctxn)
1444 {
1445         struct perf_event_context *ctx;
1446         unsigned long flags;
1447
1448         ctx = perf_lock_task_context(task, ctxn, &flags);
1449         if (ctx) {
1450                 ++ctx->pin_count;
1451                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1452         }
1453         return ctx;
1454 }
1455
1456 static void perf_unpin_context(struct perf_event_context *ctx)
1457 {
1458         unsigned long flags;
1459
1460         raw_spin_lock_irqsave(&ctx->lock, flags);
1461         --ctx->pin_count;
1462         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1463 }
1464
1465 /*
1466  * Update the record of the current time in a context.
1467  */
1468 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1469 {
1470         u64 now = perf_clock();
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         if (adv)
1475                 ctx->time += now - ctx->timestamp;
1476         ctx->timestamp = now;
1477
1478         /*
1479          * The above: time' = time + (now - timestamp), can be re-arranged
1480          * into: time` = now + (time - timestamp), which gives a single value
1481          * offset to compute future time without locks on.
1482          *
1483          * See perf_event_time_now(), which can be used from NMI context where
1484          * it's (obviously) not possible to acquire ctx->lock in order to read
1485          * both the above values in a consistent manner.
1486          */
1487         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1488 }
1489
1490 static void update_context_time(struct perf_event_context *ctx)
1491 {
1492         __update_context_time(ctx, true);
1493 }
1494
1495 static u64 perf_event_time(struct perf_event *event)
1496 {
1497         struct perf_event_context *ctx = event->ctx;
1498
1499         if (unlikely(!ctx))
1500                 return 0;
1501
1502         if (is_cgroup_event(event))
1503                 return perf_cgroup_event_time(event);
1504
1505         return ctx->time;
1506 }
1507
1508 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1509 {
1510         struct perf_event_context *ctx = event->ctx;
1511
1512         if (unlikely(!ctx))
1513                 return 0;
1514
1515         if (is_cgroup_event(event))
1516                 return perf_cgroup_event_time_now(event, now);
1517
1518         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1519                 return ctx->time;
1520
1521         now += READ_ONCE(ctx->timeoffset);
1522         return now;
1523 }
1524
1525 static enum event_type_t get_event_type(struct perf_event *event)
1526 {
1527         struct perf_event_context *ctx = event->ctx;
1528         enum event_type_t event_type;
1529
1530         lockdep_assert_held(&ctx->lock);
1531
1532         /*
1533          * It's 'group type', really, because if our group leader is
1534          * pinned, so are we.
1535          */
1536         if (event->group_leader != event)
1537                 event = event->group_leader;
1538
1539         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1540         if (!ctx->task)
1541                 event_type |= EVENT_CPU;
1542
1543         return event_type;
1544 }
1545
1546 /*
1547  * Helper function to initialize event group nodes.
1548  */
1549 static void init_event_group(struct perf_event *event)
1550 {
1551         RB_CLEAR_NODE(&event->group_node);
1552         event->group_index = 0;
1553 }
1554
1555 /*
1556  * Extract pinned or flexible groups from the context
1557  * based on event attrs bits.
1558  */
1559 static struct perf_event_groups *
1560 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1561 {
1562         if (event->attr.pinned)
1563                 return &ctx->pinned_groups;
1564         else
1565                 return &ctx->flexible_groups;
1566 }
1567
1568 /*
1569  * Helper function to initializes perf_event_group trees.
1570  */
1571 static void perf_event_groups_init(struct perf_event_groups *groups)
1572 {
1573         groups->tree = RB_ROOT;
1574         groups->index = 0;
1575 }
1576
1577 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1578 {
1579         struct cgroup *cgroup = NULL;
1580
1581 #ifdef CONFIG_CGROUP_PERF
1582         if (event->cgrp)
1583                 cgroup = event->cgrp->css.cgroup;
1584 #endif
1585
1586         return cgroup;
1587 }
1588
1589 /*
1590  * Compare function for event groups;
1591  *
1592  * Implements complex key that first sorts by CPU and then by virtual index
1593  * which provides ordering when rotating groups for the same CPU.
1594  */
1595 static __always_inline int
1596 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1597                       const u64 left_group_index, const struct perf_event *right)
1598 {
1599         if (left_cpu < right->cpu)
1600                 return -1;
1601         if (left_cpu > right->cpu)
1602                 return 1;
1603
1604 #ifdef CONFIG_CGROUP_PERF
1605         {
1606                 const struct cgroup *right_cgroup = event_cgroup(right);
1607
1608                 if (left_cgroup != right_cgroup) {
1609                         if (!left_cgroup) {
1610                                 /*
1611                                  * Left has no cgroup but right does, no
1612                                  * cgroups come first.
1613                                  */
1614                                 return -1;
1615                         }
1616                         if (!right_cgroup) {
1617                                 /*
1618                                  * Right has no cgroup but left does, no
1619                                  * cgroups come first.
1620                                  */
1621                                 return 1;
1622                         }
1623                         /* Two dissimilar cgroups, order by id. */
1624                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1625                                 return -1;
1626
1627                         return 1;
1628                 }
1629         }
1630 #endif
1631
1632         if (left_group_index < right->group_index)
1633                 return -1;
1634         if (left_group_index > right->group_index)
1635                 return 1;
1636
1637         return 0;
1638 }
1639
1640 #define __node_2_pe(node) \
1641         rb_entry((node), struct perf_event, group_node)
1642
1643 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1644 {
1645         struct perf_event *e = __node_2_pe(a);
1646         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1647                                      __node_2_pe(b)) < 0;
1648 }
1649
1650 struct __group_key {
1651         int cpu;
1652         struct cgroup *cgroup;
1653 };
1654
1655 static inline int __group_cmp(const void *key, const struct rb_node *node)
1656 {
1657         const struct __group_key *a = key;
1658         const struct perf_event *b = __node_2_pe(node);
1659
1660         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1661         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1662 }
1663
1664 /*
1665  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1666  * key (see perf_event_groups_less). This places it last inside the CPU
1667  * subtree.
1668  */
1669 static void
1670 perf_event_groups_insert(struct perf_event_groups *groups,
1671                          struct perf_event *event)
1672 {
1673         event->group_index = ++groups->index;
1674
1675         rb_add(&event->group_node, &groups->tree, __group_less);
1676 }
1677
1678 /*
1679  * Helper function to insert event into the pinned or flexible groups.
1680  */
1681 static void
1682 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1683 {
1684         struct perf_event_groups *groups;
1685
1686         groups = get_event_groups(event, ctx);
1687         perf_event_groups_insert(groups, event);
1688 }
1689
1690 /*
1691  * Delete a group from a tree.
1692  */
1693 static void
1694 perf_event_groups_delete(struct perf_event_groups *groups,
1695                          struct perf_event *event)
1696 {
1697         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1698                      RB_EMPTY_ROOT(&groups->tree));
1699
1700         rb_erase(&event->group_node, &groups->tree);
1701         init_event_group(event);
1702 }
1703
1704 /*
1705  * Helper function to delete event from its groups.
1706  */
1707 static void
1708 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1709 {
1710         struct perf_event_groups *groups;
1711
1712         groups = get_event_groups(event, ctx);
1713         perf_event_groups_delete(groups, event);
1714 }
1715
1716 /*
1717  * Get the leftmost event in the cpu/cgroup subtree.
1718  */
1719 static struct perf_event *
1720 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1721                         struct cgroup *cgrp)
1722 {
1723         struct __group_key key = {
1724                 .cpu = cpu,
1725                 .cgroup = cgrp,
1726         };
1727         struct rb_node *node;
1728
1729         node = rb_find_first(&key, &groups->tree, __group_cmp);
1730         if (node)
1731                 return __node_2_pe(node);
1732
1733         return NULL;
1734 }
1735
1736 /*
1737  * Like rb_entry_next_safe() for the @cpu subtree.
1738  */
1739 static struct perf_event *
1740 perf_event_groups_next(struct perf_event *event)
1741 {
1742         struct __group_key key = {
1743                 .cpu = event->cpu,
1744                 .cgroup = event_cgroup(event),
1745         };
1746         struct rb_node *next;
1747
1748         next = rb_next_match(&key, &event->group_node, __group_cmp);
1749         if (next)
1750                 return __node_2_pe(next);
1751
1752         return NULL;
1753 }
1754
1755 /*
1756  * Iterate through the whole groups tree.
1757  */
1758 #define perf_event_groups_for_each(event, groups)                       \
1759         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1760                                 typeof(*event), group_node); event;     \
1761                 event = rb_entry_safe(rb_next(&event->group_node),      \
1762                                 typeof(*event), group_node))
1763
1764 /*
1765  * Add an event from the lists for its context.
1766  * Must be called with ctx->mutex and ctx->lock held.
1767  */
1768 static void
1769 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1770 {
1771         lockdep_assert_held(&ctx->lock);
1772
1773         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1774         event->attach_state |= PERF_ATTACH_CONTEXT;
1775
1776         event->tstamp = perf_event_time(event);
1777
1778         /*
1779          * If we're a stand alone event or group leader, we go to the context
1780          * list, group events are kept attached to the group so that
1781          * perf_group_detach can, at all times, locate all siblings.
1782          */
1783         if (event->group_leader == event) {
1784                 event->group_caps = event->event_caps;
1785                 add_event_to_groups(event, ctx);
1786         }
1787
1788         list_add_rcu(&event->event_entry, &ctx->event_list);
1789         ctx->nr_events++;
1790         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1791                 ctx->nr_user++;
1792         if (event->attr.inherit_stat)
1793                 ctx->nr_stat++;
1794
1795         if (event->state > PERF_EVENT_STATE_OFF)
1796                 perf_cgroup_event_enable(event, ctx);
1797
1798         ctx->generation++;
1799 }
1800
1801 /*
1802  * Initialize event state based on the perf_event_attr::disabled.
1803  */
1804 static inline void perf_event__state_init(struct perf_event *event)
1805 {
1806         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1807                                               PERF_EVENT_STATE_INACTIVE;
1808 }
1809
1810 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1811 {
1812         int entry = sizeof(u64); /* value */
1813         int size = 0;
1814         int nr = 1;
1815
1816         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1817                 size += sizeof(u64);
1818
1819         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1820                 size += sizeof(u64);
1821
1822         if (event->attr.read_format & PERF_FORMAT_ID)
1823                 entry += sizeof(u64);
1824
1825         if (event->attr.read_format & PERF_FORMAT_LOST)
1826                 entry += sizeof(u64);
1827
1828         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1829                 nr += nr_siblings;
1830                 size += sizeof(u64);
1831         }
1832
1833         size += entry * nr;
1834         event->read_size = size;
1835 }
1836
1837 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1838 {
1839         struct perf_sample_data *data;
1840         u16 size = 0;
1841
1842         if (sample_type & PERF_SAMPLE_IP)
1843                 size += sizeof(data->ip);
1844
1845         if (sample_type & PERF_SAMPLE_ADDR)
1846                 size += sizeof(data->addr);
1847
1848         if (sample_type & PERF_SAMPLE_PERIOD)
1849                 size += sizeof(data->period);
1850
1851         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1852                 size += sizeof(data->weight.full);
1853
1854         if (sample_type & PERF_SAMPLE_READ)
1855                 size += event->read_size;
1856
1857         if (sample_type & PERF_SAMPLE_DATA_SRC)
1858                 size += sizeof(data->data_src.val);
1859
1860         if (sample_type & PERF_SAMPLE_TRANSACTION)
1861                 size += sizeof(data->txn);
1862
1863         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1864                 size += sizeof(data->phys_addr);
1865
1866         if (sample_type & PERF_SAMPLE_CGROUP)
1867                 size += sizeof(data->cgroup);
1868
1869         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1870                 size += sizeof(data->data_page_size);
1871
1872         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1873                 size += sizeof(data->code_page_size);
1874
1875         event->header_size = size;
1876 }
1877
1878 /*
1879  * Called at perf_event creation and when events are attached/detached from a
1880  * group.
1881  */
1882 static void perf_event__header_size(struct perf_event *event)
1883 {
1884         __perf_event_read_size(event,
1885                                event->group_leader->nr_siblings);
1886         __perf_event_header_size(event, event->attr.sample_type);
1887 }
1888
1889 static void perf_event__id_header_size(struct perf_event *event)
1890 {
1891         struct perf_sample_data *data;
1892         u64 sample_type = event->attr.sample_type;
1893         u16 size = 0;
1894
1895         if (sample_type & PERF_SAMPLE_TID)
1896                 size += sizeof(data->tid_entry);
1897
1898         if (sample_type & PERF_SAMPLE_TIME)
1899                 size += sizeof(data->time);
1900
1901         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1902                 size += sizeof(data->id);
1903
1904         if (sample_type & PERF_SAMPLE_ID)
1905                 size += sizeof(data->id);
1906
1907         if (sample_type & PERF_SAMPLE_STREAM_ID)
1908                 size += sizeof(data->stream_id);
1909
1910         if (sample_type & PERF_SAMPLE_CPU)
1911                 size += sizeof(data->cpu_entry);
1912
1913         event->id_header_size = size;
1914 }
1915
1916 static bool perf_event_validate_size(struct perf_event *event)
1917 {
1918         /*
1919          * The values computed here will be over-written when we actually
1920          * attach the event.
1921          */
1922         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1923         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1924         perf_event__id_header_size(event);
1925
1926         /*
1927          * Sum the lot; should not exceed the 64k limit we have on records.
1928          * Conservative limit to allow for callchains and other variable fields.
1929          */
1930         if (event->read_size + event->header_size +
1931             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1932                 return false;
1933
1934         return true;
1935 }
1936
1937 static void perf_group_attach(struct perf_event *event)
1938 {
1939         struct perf_event *group_leader = event->group_leader, *pos;
1940
1941         lockdep_assert_held(&event->ctx->lock);
1942
1943         /*
1944          * We can have double attach due to group movement in perf_event_open.
1945          */
1946         if (event->attach_state & PERF_ATTACH_GROUP)
1947                 return;
1948
1949         event->attach_state |= PERF_ATTACH_GROUP;
1950
1951         if (group_leader == event)
1952                 return;
1953
1954         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1955
1956         group_leader->group_caps &= event->event_caps;
1957
1958         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1959         group_leader->nr_siblings++;
1960
1961         perf_event__header_size(group_leader);
1962
1963         for_each_sibling_event(pos, group_leader)
1964                 perf_event__header_size(pos);
1965 }
1966
1967 /*
1968  * Remove an event from the lists for its context.
1969  * Must be called with ctx->mutex and ctx->lock held.
1970  */
1971 static void
1972 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1973 {
1974         WARN_ON_ONCE(event->ctx != ctx);
1975         lockdep_assert_held(&ctx->lock);
1976
1977         /*
1978          * We can have double detach due to exit/hot-unplug + close.
1979          */
1980         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1981                 return;
1982
1983         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1984
1985         ctx->nr_events--;
1986         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1987                 ctx->nr_user--;
1988         if (event->attr.inherit_stat)
1989                 ctx->nr_stat--;
1990
1991         list_del_rcu(&event->event_entry);
1992
1993         if (event->group_leader == event)
1994                 del_event_from_groups(event, ctx);
1995
1996         /*
1997          * If event was in error state, then keep it
1998          * that way, otherwise bogus counts will be
1999          * returned on read(). The only way to get out
2000          * of error state is by explicit re-enabling
2001          * of the event
2002          */
2003         if (event->state > PERF_EVENT_STATE_OFF) {
2004                 perf_cgroup_event_disable(event, ctx);
2005                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2006         }
2007
2008         ctx->generation++;
2009 }
2010
2011 static int
2012 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2013 {
2014         if (!has_aux(aux_event))
2015                 return 0;
2016
2017         if (!event->pmu->aux_output_match)
2018                 return 0;
2019
2020         return event->pmu->aux_output_match(aux_event);
2021 }
2022
2023 static void put_event(struct perf_event *event);
2024 static void event_sched_out(struct perf_event *event,
2025                             struct perf_cpu_context *cpuctx,
2026                             struct perf_event_context *ctx);
2027
2028 static void perf_put_aux_event(struct perf_event *event)
2029 {
2030         struct perf_event_context *ctx = event->ctx;
2031         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2032         struct perf_event *iter;
2033
2034         /*
2035          * If event uses aux_event tear down the link
2036          */
2037         if (event->aux_event) {
2038                 iter = event->aux_event;
2039                 event->aux_event = NULL;
2040                 put_event(iter);
2041                 return;
2042         }
2043
2044         /*
2045          * If the event is an aux_event, tear down all links to
2046          * it from other events.
2047          */
2048         for_each_sibling_event(iter, event->group_leader) {
2049                 if (iter->aux_event != event)
2050                         continue;
2051
2052                 iter->aux_event = NULL;
2053                 put_event(event);
2054
2055                 /*
2056                  * If it's ACTIVE, schedule it out and put it into ERROR
2057                  * state so that we don't try to schedule it again. Note
2058                  * that perf_event_enable() will clear the ERROR status.
2059                  */
2060                 event_sched_out(iter, cpuctx, ctx);
2061                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2062         }
2063 }
2064
2065 static bool perf_need_aux_event(struct perf_event *event)
2066 {
2067         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2068 }
2069
2070 static int perf_get_aux_event(struct perf_event *event,
2071                               struct perf_event *group_leader)
2072 {
2073         /*
2074          * Our group leader must be an aux event if we want to be
2075          * an aux_output. This way, the aux event will precede its
2076          * aux_output events in the group, and therefore will always
2077          * schedule first.
2078          */
2079         if (!group_leader)
2080                 return 0;
2081
2082         /*
2083          * aux_output and aux_sample_size are mutually exclusive.
2084          */
2085         if (event->attr.aux_output && event->attr.aux_sample_size)
2086                 return 0;
2087
2088         if (event->attr.aux_output &&
2089             !perf_aux_output_match(event, group_leader))
2090                 return 0;
2091
2092         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2093                 return 0;
2094
2095         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2096                 return 0;
2097
2098         /*
2099          * Link aux_outputs to their aux event; this is undone in
2100          * perf_group_detach() by perf_put_aux_event(). When the
2101          * group in torn down, the aux_output events loose their
2102          * link to the aux_event and can't schedule any more.
2103          */
2104         event->aux_event = group_leader;
2105
2106         return 1;
2107 }
2108
2109 static inline struct list_head *get_event_list(struct perf_event *event)
2110 {
2111         struct perf_event_context *ctx = event->ctx;
2112         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2113 }
2114
2115 /*
2116  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2117  * cannot exist on their own, schedule them out and move them into the ERROR
2118  * state. Also see _perf_event_enable(), it will not be able to recover
2119  * this ERROR state.
2120  */
2121 static inline void perf_remove_sibling_event(struct perf_event *event)
2122 {
2123         struct perf_event_context *ctx = event->ctx;
2124         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2125
2126         event_sched_out(event, cpuctx, ctx);
2127         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2128 }
2129
2130 static void perf_group_detach(struct perf_event *event)
2131 {
2132         struct perf_event *leader = event->group_leader;
2133         struct perf_event *sibling, *tmp;
2134         struct perf_event_context *ctx = event->ctx;
2135
2136         lockdep_assert_held(&ctx->lock);
2137
2138         /*
2139          * We can have double detach due to exit/hot-unplug + close.
2140          */
2141         if (!(event->attach_state & PERF_ATTACH_GROUP))
2142                 return;
2143
2144         event->attach_state &= ~PERF_ATTACH_GROUP;
2145
2146         perf_put_aux_event(event);
2147
2148         /*
2149          * If this is a sibling, remove it from its group.
2150          */
2151         if (leader != event) {
2152                 list_del_init(&event->sibling_list);
2153                 event->group_leader->nr_siblings--;
2154                 goto out;
2155         }
2156
2157         /*
2158          * If this was a group event with sibling events then
2159          * upgrade the siblings to singleton events by adding them
2160          * to whatever list we are on.
2161          */
2162         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2163
2164                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2165                         perf_remove_sibling_event(sibling);
2166
2167                 sibling->group_leader = sibling;
2168                 list_del_init(&sibling->sibling_list);
2169
2170                 /* Inherit group flags from the previous leader */
2171                 sibling->group_caps = event->group_caps;
2172
2173                 if (!RB_EMPTY_NODE(&event->group_node)) {
2174                         add_event_to_groups(sibling, event->ctx);
2175
2176                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2177                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2178                 }
2179
2180                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2181         }
2182
2183 out:
2184         for_each_sibling_event(tmp, leader)
2185                 perf_event__header_size(tmp);
2186
2187         perf_event__header_size(leader);
2188 }
2189
2190 static void sync_child_event(struct perf_event *child_event);
2191
2192 static void perf_child_detach(struct perf_event *event)
2193 {
2194         struct perf_event *parent_event = event->parent;
2195
2196         if (!(event->attach_state & PERF_ATTACH_CHILD))
2197                 return;
2198
2199         event->attach_state &= ~PERF_ATTACH_CHILD;
2200
2201         if (WARN_ON_ONCE(!parent_event))
2202                 return;
2203
2204         lockdep_assert_held(&parent_event->child_mutex);
2205
2206         sync_child_event(event);
2207         list_del_init(&event->child_list);
2208 }
2209
2210 static bool is_orphaned_event(struct perf_event *event)
2211 {
2212         return event->state == PERF_EVENT_STATE_DEAD;
2213 }
2214
2215 static inline int __pmu_filter_match(struct perf_event *event)
2216 {
2217         struct pmu *pmu = event->pmu;
2218         return pmu->filter_match ? pmu->filter_match(event) : 1;
2219 }
2220
2221 /*
2222  * Check whether we should attempt to schedule an event group based on
2223  * PMU-specific filtering. An event group can consist of HW and SW events,
2224  * potentially with a SW leader, so we must check all the filters, to
2225  * determine whether a group is schedulable:
2226  */
2227 static inline int pmu_filter_match(struct perf_event *event)
2228 {
2229         struct perf_event *sibling;
2230         unsigned long flags;
2231         int ret = 1;
2232
2233         if (!__pmu_filter_match(event))
2234                 return 0;
2235
2236         local_irq_save(flags);
2237         for_each_sibling_event(sibling, event) {
2238                 if (!__pmu_filter_match(sibling)) {
2239                         ret = 0;
2240                         break;
2241                 }
2242         }
2243         local_irq_restore(flags);
2244
2245         return ret;
2246 }
2247
2248 static inline int
2249 event_filter_match(struct perf_event *event)
2250 {
2251         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2252                perf_cgroup_match(event) && pmu_filter_match(event);
2253 }
2254
2255 static void
2256 event_sched_out(struct perf_event *event,
2257                   struct perf_cpu_context *cpuctx,
2258                   struct perf_event_context *ctx)
2259 {
2260         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2261
2262         WARN_ON_ONCE(event->ctx != ctx);
2263         lockdep_assert_held(&ctx->lock);
2264
2265         if (event->state != PERF_EVENT_STATE_ACTIVE)
2266                 return;
2267
2268         /*
2269          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270          * we can schedule events _OUT_ individually through things like
2271          * __perf_remove_from_context().
2272          */
2273         list_del_init(&event->active_list);
2274
2275         perf_pmu_disable(event->pmu);
2276
2277         event->pmu->del(event, 0);
2278         event->oncpu = -1;
2279
2280         if (event->pending_disable) {
2281                 event->pending_disable = 0;
2282                 perf_cgroup_event_disable(event, ctx);
2283                 state = PERF_EVENT_STATE_OFF;
2284         }
2285
2286         if (event->pending_sigtrap) {
2287                 bool dec = true;
2288
2289                 event->pending_sigtrap = 0;
2290                 if (state != PERF_EVENT_STATE_OFF &&
2291                     !event->pending_work) {
2292                         event->pending_work = 1;
2293                         dec = false;
2294                         task_work_add(current, &event->pending_task, TWA_RESUME);
2295                 }
2296                 if (dec)
2297                         local_dec(&event->ctx->nr_pending);
2298         }
2299
2300         perf_event_set_state(event, state);
2301
2302         if (!is_software_event(event))
2303                 cpuctx->active_oncpu--;
2304         if (!--ctx->nr_active)
2305                 perf_event_ctx_deactivate(ctx);
2306         if (event->attr.freq && event->attr.sample_freq)
2307                 ctx->nr_freq--;
2308         if (event->attr.exclusive || !cpuctx->active_oncpu)
2309                 cpuctx->exclusive = 0;
2310
2311         perf_pmu_enable(event->pmu);
2312 }
2313
2314 static void
2315 group_sched_out(struct perf_event *group_event,
2316                 struct perf_cpu_context *cpuctx,
2317                 struct perf_event_context *ctx)
2318 {
2319         struct perf_event *event;
2320
2321         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2322                 return;
2323
2324         perf_pmu_disable(ctx->pmu);
2325
2326         event_sched_out(group_event, cpuctx, ctx);
2327
2328         /*
2329          * Schedule out siblings (if any):
2330          */
2331         for_each_sibling_event(event, group_event)
2332                 event_sched_out(event, cpuctx, ctx);
2333
2334         perf_pmu_enable(ctx->pmu);
2335 }
2336
2337 #define DETACH_GROUP    0x01UL
2338 #define DETACH_CHILD    0x02UL
2339
2340 /*
2341  * Cross CPU call to remove a performance event
2342  *
2343  * We disable the event on the hardware level first. After that we
2344  * remove it from the context list.
2345  */
2346 static void
2347 __perf_remove_from_context(struct perf_event *event,
2348                            struct perf_cpu_context *cpuctx,
2349                            struct perf_event_context *ctx,
2350                            void *info)
2351 {
2352         unsigned long flags = (unsigned long)info;
2353
2354         if (ctx->is_active & EVENT_TIME) {
2355                 update_context_time(ctx);
2356                 update_cgrp_time_from_cpuctx(cpuctx, false);
2357         }
2358
2359         event_sched_out(event, cpuctx, ctx);
2360         if (flags & DETACH_GROUP)
2361                 perf_group_detach(event);
2362         if (flags & DETACH_CHILD)
2363                 perf_child_detach(event);
2364         list_del_event(event, ctx);
2365
2366         if (!ctx->nr_events && ctx->is_active) {
2367                 if (ctx == &cpuctx->ctx)
2368                         update_cgrp_time_from_cpuctx(cpuctx, true);
2369
2370                 ctx->is_active = 0;
2371                 ctx->rotate_necessary = 0;
2372                 if (ctx->task) {
2373                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2374                         cpuctx->task_ctx = NULL;
2375                 }
2376         }
2377 }
2378
2379 /*
2380  * Remove the event from a task's (or a CPU's) list of events.
2381  *
2382  * If event->ctx is a cloned context, callers must make sure that
2383  * every task struct that event->ctx->task could possibly point to
2384  * remains valid.  This is OK when called from perf_release since
2385  * that only calls us on the top-level context, which can't be a clone.
2386  * When called from perf_event_exit_task, it's OK because the
2387  * context has been detached from its task.
2388  */
2389 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2390 {
2391         struct perf_event_context *ctx = event->ctx;
2392
2393         lockdep_assert_held(&ctx->mutex);
2394
2395         /*
2396          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2397          * to work in the face of TASK_TOMBSTONE, unlike every other
2398          * event_function_call() user.
2399          */
2400         raw_spin_lock_irq(&ctx->lock);
2401         /*
2402          * Cgroup events are per-cpu events, and must IPI because of
2403          * cgrp_cpuctx_list.
2404          */
2405         if (!ctx->is_active && !is_cgroup_event(event)) {
2406                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2407                                            ctx, (void *)flags);
2408                 raw_spin_unlock_irq(&ctx->lock);
2409                 return;
2410         }
2411         raw_spin_unlock_irq(&ctx->lock);
2412
2413         event_function_call(event, __perf_remove_from_context, (void *)flags);
2414 }
2415
2416 /*
2417  * Cross CPU call to disable a performance event
2418  */
2419 static void __perf_event_disable(struct perf_event *event,
2420                                  struct perf_cpu_context *cpuctx,
2421                                  struct perf_event_context *ctx,
2422                                  void *info)
2423 {
2424         if (event->state < PERF_EVENT_STATE_INACTIVE)
2425                 return;
2426
2427         if (ctx->is_active & EVENT_TIME) {
2428                 update_context_time(ctx);
2429                 update_cgrp_time_from_event(event);
2430         }
2431
2432         if (event == event->group_leader)
2433                 group_sched_out(event, cpuctx, ctx);
2434         else
2435                 event_sched_out(event, cpuctx, ctx);
2436
2437         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2438         perf_cgroup_event_disable(event, ctx);
2439 }
2440
2441 /*
2442  * Disable an event.
2443  *
2444  * If event->ctx is a cloned context, callers must make sure that
2445  * every task struct that event->ctx->task could possibly point to
2446  * remains valid.  This condition is satisfied when called through
2447  * perf_event_for_each_child or perf_event_for_each because they
2448  * hold the top-level event's child_mutex, so any descendant that
2449  * goes to exit will block in perf_event_exit_event().
2450  *
2451  * When called from perf_pending_irq it's OK because event->ctx
2452  * is the current context on this CPU and preemption is disabled,
2453  * hence we can't get into perf_event_task_sched_out for this context.
2454  */
2455 static void _perf_event_disable(struct perf_event *event)
2456 {
2457         struct perf_event_context *ctx = event->ctx;
2458
2459         raw_spin_lock_irq(&ctx->lock);
2460         if (event->state <= PERF_EVENT_STATE_OFF) {
2461                 raw_spin_unlock_irq(&ctx->lock);
2462                 return;
2463         }
2464         raw_spin_unlock_irq(&ctx->lock);
2465
2466         event_function_call(event, __perf_event_disable, NULL);
2467 }
2468
2469 void perf_event_disable_local(struct perf_event *event)
2470 {
2471         event_function_local(event, __perf_event_disable, NULL);
2472 }
2473
2474 /*
2475  * Strictly speaking kernel users cannot create groups and therefore this
2476  * interface does not need the perf_event_ctx_lock() magic.
2477  */
2478 void perf_event_disable(struct perf_event *event)
2479 {
2480         struct perf_event_context *ctx;
2481
2482         ctx = perf_event_ctx_lock(event);
2483         _perf_event_disable(event);
2484         perf_event_ctx_unlock(event, ctx);
2485 }
2486 EXPORT_SYMBOL_GPL(perf_event_disable);
2487
2488 void perf_event_disable_inatomic(struct perf_event *event)
2489 {
2490         event->pending_disable = 1;
2491         irq_work_queue(&event->pending_irq);
2492 }
2493
2494 #define MAX_INTERRUPTS (~0ULL)
2495
2496 static void perf_log_throttle(struct perf_event *event, int enable);
2497 static void perf_log_itrace_start(struct perf_event *event);
2498
2499 static int
2500 event_sched_in(struct perf_event *event,
2501                  struct perf_cpu_context *cpuctx,
2502                  struct perf_event_context *ctx)
2503 {
2504         int ret = 0;
2505
2506         WARN_ON_ONCE(event->ctx != ctx);
2507
2508         lockdep_assert_held(&ctx->lock);
2509
2510         if (event->state <= PERF_EVENT_STATE_OFF)
2511                 return 0;
2512
2513         WRITE_ONCE(event->oncpu, smp_processor_id());
2514         /*
2515          * Order event::oncpu write to happen before the ACTIVE state is
2516          * visible. This allows perf_event_{stop,read}() to observe the correct
2517          * ->oncpu if it sees ACTIVE.
2518          */
2519         smp_wmb();
2520         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2521
2522         /*
2523          * Unthrottle events, since we scheduled we might have missed several
2524          * ticks already, also for a heavily scheduling task there is little
2525          * guarantee it'll get a tick in a timely manner.
2526          */
2527         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2528                 perf_log_throttle(event, 1);
2529                 event->hw.interrupts = 0;
2530         }
2531
2532         perf_pmu_disable(event->pmu);
2533
2534         perf_log_itrace_start(event);
2535
2536         if (event->pmu->add(event, PERF_EF_START)) {
2537                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2538                 event->oncpu = -1;
2539                 ret = -EAGAIN;
2540                 goto out;
2541         }
2542
2543         if (!is_software_event(event))
2544                 cpuctx->active_oncpu++;
2545         if (!ctx->nr_active++)
2546                 perf_event_ctx_activate(ctx);
2547         if (event->attr.freq && event->attr.sample_freq)
2548                 ctx->nr_freq++;
2549
2550         if (event->attr.exclusive)
2551                 cpuctx->exclusive = 1;
2552
2553 out:
2554         perf_pmu_enable(event->pmu);
2555
2556         return ret;
2557 }
2558
2559 static int
2560 group_sched_in(struct perf_event *group_event,
2561                struct perf_cpu_context *cpuctx,
2562                struct perf_event_context *ctx)
2563 {
2564         struct perf_event *event, *partial_group = NULL;
2565         struct pmu *pmu = ctx->pmu;
2566
2567         if (group_event->state == PERF_EVENT_STATE_OFF)
2568                 return 0;
2569
2570         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2571
2572         if (event_sched_in(group_event, cpuctx, ctx))
2573                 goto error;
2574
2575         /*
2576          * Schedule in siblings as one group (if any):
2577          */
2578         for_each_sibling_event(event, group_event) {
2579                 if (event_sched_in(event, cpuctx, ctx)) {
2580                         partial_group = event;
2581                         goto group_error;
2582                 }
2583         }
2584
2585         if (!pmu->commit_txn(pmu))
2586                 return 0;
2587
2588 group_error:
2589         /*
2590          * Groups can be scheduled in as one unit only, so undo any
2591          * partial group before returning:
2592          * The events up to the failed event are scheduled out normally.
2593          */
2594         for_each_sibling_event(event, group_event) {
2595                 if (event == partial_group)
2596                         break;
2597
2598                 event_sched_out(event, cpuctx, ctx);
2599         }
2600         event_sched_out(group_event, cpuctx, ctx);
2601
2602 error:
2603         pmu->cancel_txn(pmu);
2604         return -EAGAIN;
2605 }
2606
2607 /*
2608  * Work out whether we can put this event group on the CPU now.
2609  */
2610 static int group_can_go_on(struct perf_event *event,
2611                            struct perf_cpu_context *cpuctx,
2612                            int can_add_hw)
2613 {
2614         /*
2615          * Groups consisting entirely of software events can always go on.
2616          */
2617         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2618                 return 1;
2619         /*
2620          * If an exclusive group is already on, no other hardware
2621          * events can go on.
2622          */
2623         if (cpuctx->exclusive)
2624                 return 0;
2625         /*
2626          * If this group is exclusive and there are already
2627          * events on the CPU, it can't go on.
2628          */
2629         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2630                 return 0;
2631         /*
2632          * Otherwise, try to add it if all previous groups were able
2633          * to go on.
2634          */
2635         return can_add_hw;
2636 }
2637
2638 static void add_event_to_ctx(struct perf_event *event,
2639                                struct perf_event_context *ctx)
2640 {
2641         list_add_event(event, ctx);
2642         perf_group_attach(event);
2643 }
2644
2645 static void ctx_sched_out(struct perf_event_context *ctx,
2646                           struct perf_cpu_context *cpuctx,
2647                           enum event_type_t event_type);
2648 static void
2649 ctx_sched_in(struct perf_event_context *ctx,
2650              struct perf_cpu_context *cpuctx,
2651              enum event_type_t event_type);
2652
2653 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2654                                struct perf_event_context *ctx,
2655                                enum event_type_t event_type)
2656 {
2657         if (!cpuctx->task_ctx)
2658                 return;
2659
2660         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2661                 return;
2662
2663         ctx_sched_out(ctx, cpuctx, event_type);
2664 }
2665
2666 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2667                                 struct perf_event_context *ctx)
2668 {
2669         cpu_ctx_sched_in(cpuctx, EVENT_PINNED);
2670         if (ctx)
2671                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
2672         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
2673         if (ctx)
2674                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
2675 }
2676
2677 /*
2678  * We want to maintain the following priority of scheduling:
2679  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2680  *  - task pinned (EVENT_PINNED)
2681  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2682  *  - task flexible (EVENT_FLEXIBLE).
2683  *
2684  * In order to avoid unscheduling and scheduling back in everything every
2685  * time an event is added, only do it for the groups of equal priority and
2686  * below.
2687  *
2688  * This can be called after a batch operation on task events, in which case
2689  * event_type is a bit mask of the types of events involved. For CPU events,
2690  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2691  */
2692 static void ctx_resched(struct perf_cpu_context *cpuctx,
2693                         struct perf_event_context *task_ctx,
2694                         enum event_type_t event_type)
2695 {
2696         enum event_type_t ctx_event_type;
2697         bool cpu_event = !!(event_type & EVENT_CPU);
2698
2699         /*
2700          * If pinned groups are involved, flexible groups also need to be
2701          * scheduled out.
2702          */
2703         if (event_type & EVENT_PINNED)
2704                 event_type |= EVENT_FLEXIBLE;
2705
2706         ctx_event_type = event_type & EVENT_ALL;
2707
2708         perf_pmu_disable(cpuctx->ctx.pmu);
2709         if (task_ctx)
2710                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2711
2712         /*
2713          * Decide which cpu ctx groups to schedule out based on the types
2714          * of events that caused rescheduling:
2715          *  - EVENT_CPU: schedule out corresponding groups;
2716          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2717          *  - otherwise, do nothing more.
2718          */
2719         if (cpu_event)
2720                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2721         else if (ctx_event_type & EVENT_PINNED)
2722                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2723
2724         perf_event_sched_in(cpuctx, task_ctx);
2725         perf_pmu_enable(cpuctx->ctx.pmu);
2726 }
2727
2728 void perf_pmu_resched(struct pmu *pmu)
2729 {
2730         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2731         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2732
2733         perf_ctx_lock(cpuctx, task_ctx);
2734         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2735         perf_ctx_unlock(cpuctx, task_ctx);
2736 }
2737
2738 /*
2739  * Cross CPU call to install and enable a performance event
2740  *
2741  * Very similar to remote_function() + event_function() but cannot assume that
2742  * things like ctx->is_active and cpuctx->task_ctx are set.
2743  */
2744 static int  __perf_install_in_context(void *info)
2745 {
2746         struct perf_event *event = info;
2747         struct perf_event_context *ctx = event->ctx;
2748         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2749         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2750         bool reprogram = true;
2751         int ret = 0;
2752
2753         raw_spin_lock(&cpuctx->ctx.lock);
2754         if (ctx->task) {
2755                 raw_spin_lock(&ctx->lock);
2756                 task_ctx = ctx;
2757
2758                 reprogram = (ctx->task == current);
2759
2760                 /*
2761                  * If the task is running, it must be running on this CPU,
2762                  * otherwise we cannot reprogram things.
2763                  *
2764                  * If its not running, we don't care, ctx->lock will
2765                  * serialize against it becoming runnable.
2766                  */
2767                 if (task_curr(ctx->task) && !reprogram) {
2768                         ret = -ESRCH;
2769                         goto unlock;
2770                 }
2771
2772                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2773         } else if (task_ctx) {
2774                 raw_spin_lock(&task_ctx->lock);
2775         }
2776
2777 #ifdef CONFIG_CGROUP_PERF
2778         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2779                 /*
2780                  * If the current cgroup doesn't match the event's
2781                  * cgroup, we should not try to schedule it.
2782                  */
2783                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2784                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2785                                         event->cgrp->css.cgroup);
2786         }
2787 #endif
2788
2789         if (reprogram) {
2790                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2791                 add_event_to_ctx(event, ctx);
2792                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2793         } else {
2794                 add_event_to_ctx(event, ctx);
2795         }
2796
2797 unlock:
2798         perf_ctx_unlock(cpuctx, task_ctx);
2799
2800         return ret;
2801 }
2802
2803 static bool exclusive_event_installable(struct perf_event *event,
2804                                         struct perf_event_context *ctx);
2805
2806 /*
2807  * Attach a performance event to a context.
2808  *
2809  * Very similar to event_function_call, see comment there.
2810  */
2811 static void
2812 perf_install_in_context(struct perf_event_context *ctx,
2813                         struct perf_event *event,
2814                         int cpu)
2815 {
2816         struct task_struct *task = READ_ONCE(ctx->task);
2817
2818         lockdep_assert_held(&ctx->mutex);
2819
2820         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2821
2822         if (event->cpu != -1)
2823                 event->cpu = cpu;
2824
2825         /*
2826          * Ensures that if we can observe event->ctx, both the event and ctx
2827          * will be 'complete'. See perf_iterate_sb_cpu().
2828          */
2829         smp_store_release(&event->ctx, ctx);
2830
2831         /*
2832          * perf_event_attr::disabled events will not run and can be initialized
2833          * without IPI. Except when this is the first event for the context, in
2834          * that case we need the magic of the IPI to set ctx->is_active.
2835          * Similarly, cgroup events for the context also needs the IPI to
2836          * manipulate the cgrp_cpuctx_list.
2837          *
2838          * The IOC_ENABLE that is sure to follow the creation of a disabled
2839          * event will issue the IPI and reprogram the hardware.
2840          */
2841         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2842             ctx->nr_events && !is_cgroup_event(event)) {
2843                 raw_spin_lock_irq(&ctx->lock);
2844                 if (ctx->task == TASK_TOMBSTONE) {
2845                         raw_spin_unlock_irq(&ctx->lock);
2846                         return;
2847                 }
2848                 add_event_to_ctx(event, ctx);
2849                 raw_spin_unlock_irq(&ctx->lock);
2850                 return;
2851         }
2852
2853         if (!task) {
2854                 cpu_function_call(cpu, __perf_install_in_context, event);
2855                 return;
2856         }
2857
2858         /*
2859          * Should not happen, we validate the ctx is still alive before calling.
2860          */
2861         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2862                 return;
2863
2864         /*
2865          * Installing events is tricky because we cannot rely on ctx->is_active
2866          * to be set in case this is the nr_events 0 -> 1 transition.
2867          *
2868          * Instead we use task_curr(), which tells us if the task is running.
2869          * However, since we use task_curr() outside of rq::lock, we can race
2870          * against the actual state. This means the result can be wrong.
2871          *
2872          * If we get a false positive, we retry, this is harmless.
2873          *
2874          * If we get a false negative, things are complicated. If we are after
2875          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2876          * value must be correct. If we're before, it doesn't matter since
2877          * perf_event_context_sched_in() will program the counter.
2878          *
2879          * However, this hinges on the remote context switch having observed
2880          * our task->perf_event_ctxp[] store, such that it will in fact take
2881          * ctx::lock in perf_event_context_sched_in().
2882          *
2883          * We do this by task_function_call(), if the IPI fails to hit the task
2884          * we know any future context switch of task must see the
2885          * perf_event_ctpx[] store.
2886          */
2887
2888         /*
2889          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2890          * task_cpu() load, such that if the IPI then does not find the task
2891          * running, a future context switch of that task must observe the
2892          * store.
2893          */
2894         smp_mb();
2895 again:
2896         if (!task_function_call(task, __perf_install_in_context, event))
2897                 return;
2898
2899         raw_spin_lock_irq(&ctx->lock);
2900         task = ctx->task;
2901         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2902                 /*
2903                  * Cannot happen because we already checked above (which also
2904                  * cannot happen), and we hold ctx->mutex, which serializes us
2905                  * against perf_event_exit_task_context().
2906                  */
2907                 raw_spin_unlock_irq(&ctx->lock);
2908                 return;
2909         }
2910         /*
2911          * If the task is not running, ctx->lock will avoid it becoming so,
2912          * thus we can safely install the event.
2913          */
2914         if (task_curr(task)) {
2915                 raw_spin_unlock_irq(&ctx->lock);
2916                 goto again;
2917         }
2918         add_event_to_ctx(event, ctx);
2919         raw_spin_unlock_irq(&ctx->lock);
2920 }
2921
2922 /*
2923  * Cross CPU call to enable a performance event
2924  */
2925 static void __perf_event_enable(struct perf_event *event,
2926                                 struct perf_cpu_context *cpuctx,
2927                                 struct perf_event_context *ctx,
2928                                 void *info)
2929 {
2930         struct perf_event *leader = event->group_leader;
2931         struct perf_event_context *task_ctx;
2932
2933         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2934             event->state <= PERF_EVENT_STATE_ERROR)
2935                 return;
2936
2937         if (ctx->is_active)
2938                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2939
2940         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2941         perf_cgroup_event_enable(event, ctx);
2942
2943         if (!ctx->is_active)
2944                 return;
2945
2946         if (!event_filter_match(event)) {
2947                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2948                 return;
2949         }
2950
2951         /*
2952          * If the event is in a group and isn't the group leader,
2953          * then don't put it on unless the group is on.
2954          */
2955         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2956                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2957                 return;
2958         }
2959
2960         task_ctx = cpuctx->task_ctx;
2961         if (ctx->task)
2962                 WARN_ON_ONCE(task_ctx != ctx);
2963
2964         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2965 }
2966
2967 /*
2968  * Enable an event.
2969  *
2970  * If event->ctx is a cloned context, callers must make sure that
2971  * every task struct that event->ctx->task could possibly point to
2972  * remains valid.  This condition is satisfied when called through
2973  * perf_event_for_each_child or perf_event_for_each as described
2974  * for perf_event_disable.
2975  */
2976 static void _perf_event_enable(struct perf_event *event)
2977 {
2978         struct perf_event_context *ctx = event->ctx;
2979
2980         raw_spin_lock_irq(&ctx->lock);
2981         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2982             event->state <  PERF_EVENT_STATE_ERROR) {
2983 out:
2984                 raw_spin_unlock_irq(&ctx->lock);
2985                 return;
2986         }
2987
2988         /*
2989          * If the event is in error state, clear that first.
2990          *
2991          * That way, if we see the event in error state below, we know that it
2992          * has gone back into error state, as distinct from the task having
2993          * been scheduled away before the cross-call arrived.
2994          */
2995         if (event->state == PERF_EVENT_STATE_ERROR) {
2996                 /*
2997                  * Detached SIBLING events cannot leave ERROR state.
2998                  */
2999                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3000                     event->group_leader == event)
3001                         goto out;
3002
3003                 event->state = PERF_EVENT_STATE_OFF;
3004         }
3005         raw_spin_unlock_irq(&ctx->lock);
3006
3007         event_function_call(event, __perf_event_enable, NULL);
3008 }
3009
3010 /*
3011  * See perf_event_disable();
3012  */
3013 void perf_event_enable(struct perf_event *event)
3014 {
3015         struct perf_event_context *ctx;
3016
3017         ctx = perf_event_ctx_lock(event);
3018         _perf_event_enable(event);
3019         perf_event_ctx_unlock(event, ctx);
3020 }
3021 EXPORT_SYMBOL_GPL(perf_event_enable);
3022
3023 struct stop_event_data {
3024         struct perf_event       *event;
3025         unsigned int            restart;
3026 };
3027
3028 static int __perf_event_stop(void *info)
3029 {
3030         struct stop_event_data *sd = info;
3031         struct perf_event *event = sd->event;
3032
3033         /* if it's already INACTIVE, do nothing */
3034         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3035                 return 0;
3036
3037         /* matches smp_wmb() in event_sched_in() */
3038         smp_rmb();
3039
3040         /*
3041          * There is a window with interrupts enabled before we get here,
3042          * so we need to check again lest we try to stop another CPU's event.
3043          */
3044         if (READ_ONCE(event->oncpu) != smp_processor_id())
3045                 return -EAGAIN;
3046
3047         event->pmu->stop(event, PERF_EF_UPDATE);
3048
3049         /*
3050          * May race with the actual stop (through perf_pmu_output_stop()),
3051          * but it is only used for events with AUX ring buffer, and such
3052          * events will refuse to restart because of rb::aux_mmap_count==0,
3053          * see comments in perf_aux_output_begin().
3054          *
3055          * Since this is happening on an event-local CPU, no trace is lost
3056          * while restarting.
3057          */
3058         if (sd->restart)
3059                 event->pmu->start(event, 0);
3060
3061         return 0;
3062 }
3063
3064 static int perf_event_stop(struct perf_event *event, int restart)
3065 {
3066         struct stop_event_data sd = {
3067                 .event          = event,
3068                 .restart        = restart,
3069         };
3070         int ret = 0;
3071
3072         do {
3073                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3074                         return 0;
3075
3076                 /* matches smp_wmb() in event_sched_in() */
3077                 smp_rmb();
3078
3079                 /*
3080                  * We only want to restart ACTIVE events, so if the event goes
3081                  * inactive here (event->oncpu==-1), there's nothing more to do;
3082                  * fall through with ret==-ENXIO.
3083                  */
3084                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3085                                         __perf_event_stop, &sd);
3086         } while (ret == -EAGAIN);
3087
3088         return ret;
3089 }
3090
3091 /*
3092  * In order to contain the amount of racy and tricky in the address filter
3093  * configuration management, it is a two part process:
3094  *
3095  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3096  *      we update the addresses of corresponding vmas in
3097  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3098  * (p2) when an event is scheduled in (pmu::add), it calls
3099  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3100  *      if the generation has changed since the previous call.
3101  *
3102  * If (p1) happens while the event is active, we restart it to force (p2).
3103  *
3104  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3105  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3106  *     ioctl;
3107  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3108  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3109  *     for reading;
3110  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3111  *     of exec.
3112  */
3113 void perf_event_addr_filters_sync(struct perf_event *event)
3114 {
3115         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3116
3117         if (!has_addr_filter(event))
3118                 return;
3119
3120         raw_spin_lock(&ifh->lock);
3121         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3122                 event->pmu->addr_filters_sync(event);
3123                 event->hw.addr_filters_gen = event->addr_filters_gen;
3124         }
3125         raw_spin_unlock(&ifh->lock);
3126 }
3127 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3128
3129 static int _perf_event_refresh(struct perf_event *event, int refresh)
3130 {
3131         /*
3132          * not supported on inherited events
3133          */
3134         if (event->attr.inherit || !is_sampling_event(event))
3135                 return -EINVAL;
3136
3137         atomic_add(refresh, &event->event_limit);
3138         _perf_event_enable(event);
3139
3140         return 0;
3141 }
3142
3143 /*
3144  * See perf_event_disable()
3145  */
3146 int perf_event_refresh(struct perf_event *event, int refresh)
3147 {
3148         struct perf_event_context *ctx;
3149         int ret;
3150
3151         ctx = perf_event_ctx_lock(event);
3152         ret = _perf_event_refresh(event, refresh);
3153         perf_event_ctx_unlock(event, ctx);
3154
3155         return ret;
3156 }
3157 EXPORT_SYMBOL_GPL(perf_event_refresh);
3158
3159 static int perf_event_modify_breakpoint(struct perf_event *bp,
3160                                          struct perf_event_attr *attr)
3161 {
3162         int err;
3163
3164         _perf_event_disable(bp);
3165
3166         err = modify_user_hw_breakpoint_check(bp, attr, true);
3167
3168         if (!bp->attr.disabled)
3169                 _perf_event_enable(bp);
3170
3171         return err;
3172 }
3173
3174 /*
3175  * Copy event-type-independent attributes that may be modified.
3176  */
3177 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3178                                         const struct perf_event_attr *from)
3179 {
3180         to->sig_data = from->sig_data;
3181 }
3182
3183 static int perf_event_modify_attr(struct perf_event *event,
3184                                   struct perf_event_attr *attr)
3185 {
3186         int (*func)(struct perf_event *, struct perf_event_attr *);
3187         struct perf_event *child;
3188         int err;
3189
3190         if (event->attr.type != attr->type)
3191                 return -EINVAL;
3192
3193         switch (event->attr.type) {
3194         case PERF_TYPE_BREAKPOINT:
3195                 func = perf_event_modify_breakpoint;
3196                 break;
3197         default:
3198                 /* Place holder for future additions. */
3199                 return -EOPNOTSUPP;
3200         }
3201
3202         WARN_ON_ONCE(event->ctx->parent_ctx);
3203
3204         mutex_lock(&event->child_mutex);
3205         /*
3206          * Event-type-independent attributes must be copied before event-type
3207          * modification, which will validate that final attributes match the
3208          * source attributes after all relevant attributes have been copied.
3209          */
3210         perf_event_modify_copy_attr(&event->attr, attr);
3211         err = func(event, attr);
3212         if (err)
3213                 goto out;
3214         list_for_each_entry(child, &event->child_list, child_list) {
3215                 perf_event_modify_copy_attr(&child->attr, attr);
3216                 err = func(child, attr);
3217                 if (err)
3218                         goto out;
3219         }
3220 out:
3221         mutex_unlock(&event->child_mutex);
3222         return err;
3223 }
3224
3225 static void ctx_sched_out(struct perf_event_context *ctx,
3226                           struct perf_cpu_context *cpuctx,
3227                           enum event_type_t event_type)
3228 {
3229         struct perf_event *event, *tmp;
3230         int is_active = ctx->is_active;
3231
3232         lockdep_assert_held(&ctx->lock);
3233
3234         if (likely(!ctx->nr_events)) {
3235                 /*
3236                  * See __perf_remove_from_context().
3237                  */
3238                 WARN_ON_ONCE(ctx->is_active);
3239                 if (ctx->task)
3240                         WARN_ON_ONCE(cpuctx->task_ctx);
3241                 return;
3242         }
3243
3244         /*
3245          * Always update time if it was set; not only when it changes.
3246          * Otherwise we can 'forget' to update time for any but the last
3247          * context we sched out. For example:
3248          *
3249          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3250          *   ctx_sched_out(.event_type = EVENT_PINNED)
3251          *
3252          * would only update time for the pinned events.
3253          */
3254         if (is_active & EVENT_TIME) {
3255                 /* update (and stop) ctx time */
3256                 update_context_time(ctx);
3257                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3258                 /*
3259                  * CPU-release for the below ->is_active store,
3260                  * see __load_acquire() in perf_event_time_now()
3261                  */
3262                 barrier();
3263         }
3264
3265         ctx->is_active &= ~event_type;
3266         if (!(ctx->is_active & EVENT_ALL))
3267                 ctx->is_active = 0;
3268
3269         if (ctx->task) {
3270                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3271                 if (!ctx->is_active)
3272                         cpuctx->task_ctx = NULL;
3273         }
3274
3275         is_active ^= ctx->is_active; /* changed bits */
3276
3277         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3278                 return;
3279
3280         perf_pmu_disable(ctx->pmu);
3281         if (is_active & EVENT_PINNED) {
3282                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3283                         group_sched_out(event, cpuctx, ctx);
3284         }
3285
3286         if (is_active & EVENT_FLEXIBLE) {
3287                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3288                         group_sched_out(event, cpuctx, ctx);
3289
3290                 /*
3291                  * Since we cleared EVENT_FLEXIBLE, also clear
3292                  * rotate_necessary, is will be reset by
3293                  * ctx_flexible_sched_in() when needed.
3294                  */
3295                 ctx->rotate_necessary = 0;
3296         }
3297         perf_pmu_enable(ctx->pmu);
3298 }
3299
3300 /*
3301  * Test whether two contexts are equivalent, i.e. whether they have both been
3302  * cloned from the same version of the same context.
3303  *
3304  * Equivalence is measured using a generation number in the context that is
3305  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3306  * and list_del_event().
3307  */
3308 static int context_equiv(struct perf_event_context *ctx1,
3309                          struct perf_event_context *ctx2)
3310 {
3311         lockdep_assert_held(&ctx1->lock);
3312         lockdep_assert_held(&ctx2->lock);
3313
3314         /* Pinning disables the swap optimization */
3315         if (ctx1->pin_count || ctx2->pin_count)
3316                 return 0;
3317
3318         /* If ctx1 is the parent of ctx2 */
3319         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3320                 return 1;
3321
3322         /* If ctx2 is the parent of ctx1 */
3323         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3324                 return 1;
3325
3326         /*
3327          * If ctx1 and ctx2 have the same parent; we flatten the parent
3328          * hierarchy, see perf_event_init_context().
3329          */
3330         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3331                         ctx1->parent_gen == ctx2->parent_gen)
3332                 return 1;
3333
3334         /* Unmatched */
3335         return 0;
3336 }
3337
3338 static void __perf_event_sync_stat(struct perf_event *event,
3339                                      struct perf_event *next_event)
3340 {
3341         u64 value;
3342
3343         if (!event->attr.inherit_stat)
3344                 return;
3345
3346         /*
3347          * Update the event value, we cannot use perf_event_read()
3348          * because we're in the middle of a context switch and have IRQs
3349          * disabled, which upsets smp_call_function_single(), however
3350          * we know the event must be on the current CPU, therefore we
3351          * don't need to use it.
3352          */
3353         if (event->state == PERF_EVENT_STATE_ACTIVE)
3354                 event->pmu->read(event);
3355
3356         perf_event_update_time(event);
3357
3358         /*
3359          * In order to keep per-task stats reliable we need to flip the event
3360          * values when we flip the contexts.
3361          */
3362         value = local64_read(&next_event->count);
3363         value = local64_xchg(&event->count, value);
3364         local64_set(&next_event->count, value);
3365
3366         swap(event->total_time_enabled, next_event->total_time_enabled);
3367         swap(event->total_time_running, next_event->total_time_running);
3368
3369         /*
3370          * Since we swizzled the values, update the user visible data too.
3371          */
3372         perf_event_update_userpage(event);
3373         perf_event_update_userpage(next_event);
3374 }
3375
3376 static void perf_event_sync_stat(struct perf_event_context *ctx,
3377                                    struct perf_event_context *next_ctx)
3378 {
3379         struct perf_event *event, *next_event;
3380
3381         if (!ctx->nr_stat)
3382                 return;
3383
3384         update_context_time(ctx);
3385
3386         event = list_first_entry(&ctx->event_list,
3387                                    struct perf_event, event_entry);
3388
3389         next_event = list_first_entry(&next_ctx->event_list,
3390                                         struct perf_event, event_entry);
3391
3392         while (&event->event_entry != &ctx->event_list &&
3393                &next_event->event_entry != &next_ctx->event_list) {
3394
3395                 __perf_event_sync_stat(event, next_event);
3396
3397                 event = list_next_entry(event, event_entry);
3398                 next_event = list_next_entry(next_event, event_entry);
3399         }
3400 }
3401
3402 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3403                                          struct task_struct *next)
3404 {
3405         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3406         struct perf_event_context *next_ctx;
3407         struct perf_event_context *parent, *next_parent;
3408         struct perf_cpu_context *cpuctx;
3409         int do_switch = 1;
3410         struct pmu *pmu;
3411
3412         if (likely(!ctx))
3413                 return;
3414
3415         pmu = ctx->pmu;
3416         cpuctx = __get_cpu_context(ctx);
3417         if (!cpuctx->task_ctx)
3418                 return;
3419
3420         rcu_read_lock();
3421         next_ctx = next->perf_event_ctxp[ctxn];
3422         if (!next_ctx)
3423                 goto unlock;
3424
3425         parent = rcu_dereference(ctx->parent_ctx);
3426         next_parent = rcu_dereference(next_ctx->parent_ctx);
3427
3428         /* If neither context have a parent context; they cannot be clones. */
3429         if (!parent && !next_parent)
3430                 goto unlock;
3431
3432         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3433                 /*
3434                  * Looks like the two contexts are clones, so we might be
3435                  * able to optimize the context switch.  We lock both
3436                  * contexts and check that they are clones under the
3437                  * lock (including re-checking that neither has been
3438                  * uncloned in the meantime).  It doesn't matter which
3439                  * order we take the locks because no other cpu could
3440                  * be trying to lock both of these tasks.
3441                  */
3442                 raw_spin_lock(&ctx->lock);
3443                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3444                 if (context_equiv(ctx, next_ctx)) {
3445
3446                         perf_pmu_disable(pmu);
3447
3448                         /* PMIs are disabled; ctx->nr_pending is stable. */
3449                         if (local_read(&ctx->nr_pending) ||
3450                             local_read(&next_ctx->nr_pending)) {
3451                                 /*
3452                                  * Must not swap out ctx when there's pending
3453                                  * events that rely on the ctx->task relation.
3454                                  */
3455                                 raw_spin_unlock(&next_ctx->lock);
3456                                 rcu_read_unlock();
3457                                 goto inside_switch;
3458                         }
3459
3460                         WRITE_ONCE(ctx->task, next);
3461                         WRITE_ONCE(next_ctx->task, task);
3462
3463                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3464                                 pmu->sched_task(ctx, false);
3465
3466                         /*
3467                          * PMU specific parts of task perf context can require
3468                          * additional synchronization. As an example of such
3469                          * synchronization see implementation details of Intel
3470                          * LBR call stack data profiling;
3471                          */
3472                         if (pmu->swap_task_ctx)
3473                                 pmu->swap_task_ctx(ctx, next_ctx);
3474                         else
3475                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3476
3477                         perf_pmu_enable(pmu);
3478
3479                         /*
3480                          * RCU_INIT_POINTER here is safe because we've not
3481                          * modified the ctx and the above modification of
3482                          * ctx->task and ctx->task_ctx_data are immaterial
3483                          * since those values are always verified under
3484                          * ctx->lock which we're now holding.
3485                          */
3486                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3487                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3488
3489                         do_switch = 0;
3490
3491                         perf_event_sync_stat(ctx, next_ctx);
3492                 }
3493                 raw_spin_unlock(&next_ctx->lock);
3494                 raw_spin_unlock(&ctx->lock);
3495         }
3496 unlock:
3497         rcu_read_unlock();
3498
3499         if (do_switch) {
3500                 raw_spin_lock(&ctx->lock);
3501                 perf_pmu_disable(pmu);
3502
3503 inside_switch:
3504                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3505                         pmu->sched_task(ctx, false);
3506                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3507
3508                 perf_pmu_enable(pmu);
3509                 raw_spin_unlock(&ctx->lock);
3510         }
3511 }
3512
3513 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3514
3515 void perf_sched_cb_dec(struct pmu *pmu)
3516 {
3517         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3518
3519         this_cpu_dec(perf_sched_cb_usages);
3520
3521         if (!--cpuctx->sched_cb_usage)
3522                 list_del(&cpuctx->sched_cb_entry);
3523 }
3524
3525
3526 void perf_sched_cb_inc(struct pmu *pmu)
3527 {
3528         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3529
3530         if (!cpuctx->sched_cb_usage++)
3531                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3532
3533         this_cpu_inc(perf_sched_cb_usages);
3534 }
3535
3536 /*
3537  * This function provides the context switch callback to the lower code
3538  * layer. It is invoked ONLY when the context switch callback is enabled.
3539  *
3540  * This callback is relevant even to per-cpu events; for example multi event
3541  * PEBS requires this to provide PID/TID information. This requires we flush
3542  * all queued PEBS records before we context switch to a new task.
3543  */
3544 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3545 {
3546         struct pmu *pmu;
3547
3548         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3549
3550         if (WARN_ON_ONCE(!pmu->sched_task))
3551                 return;
3552
3553         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3554         perf_pmu_disable(pmu);
3555
3556         pmu->sched_task(cpuctx->task_ctx, sched_in);
3557
3558         perf_pmu_enable(pmu);
3559         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3560 }
3561
3562 static void perf_pmu_sched_task(struct task_struct *prev,
3563                                 struct task_struct *next,
3564                                 bool sched_in)
3565 {
3566         struct perf_cpu_context *cpuctx;
3567
3568         if (prev == next)
3569                 return;
3570
3571         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3572                 /* will be handled in perf_event_context_sched_in/out */
3573                 if (cpuctx->task_ctx)
3574                         continue;
3575
3576                 __perf_pmu_sched_task(cpuctx, sched_in);
3577         }
3578 }
3579
3580 static void perf_event_switch(struct task_struct *task,
3581                               struct task_struct *next_prev, bool sched_in);
3582
3583 #define for_each_task_context_nr(ctxn)                                  \
3584         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3585
3586 /*
3587  * Called from scheduler to remove the events of the current task,
3588  * with interrupts disabled.
3589  *
3590  * We stop each event and update the event value in event->count.
3591  *
3592  * This does not protect us against NMI, but disable()
3593  * sets the disabled bit in the control field of event _before_
3594  * accessing the event control register. If a NMI hits, then it will
3595  * not restart the event.
3596  */
3597 void __perf_event_task_sched_out(struct task_struct *task,
3598                                  struct task_struct *next)
3599 {
3600         int ctxn;
3601
3602         if (__this_cpu_read(perf_sched_cb_usages))
3603                 perf_pmu_sched_task(task, next, false);
3604
3605         if (atomic_read(&nr_switch_events))
3606                 perf_event_switch(task, next, false);
3607
3608         for_each_task_context_nr(ctxn)
3609                 perf_event_context_sched_out(task, ctxn, next);
3610
3611         /*
3612          * if cgroup events exist on this CPU, then we need
3613          * to check if we have to switch out PMU state.
3614          * cgroup event are system-wide mode only
3615          */
3616         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3617                 perf_cgroup_switch(next);
3618 }
3619
3620 /*
3621  * Called with IRQs disabled
3622  */
3623 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3624                               enum event_type_t event_type)
3625 {
3626         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3627 }
3628
3629 static bool perf_less_group_idx(const void *l, const void *r)
3630 {
3631         const struct perf_event *le = *(const struct perf_event **)l;
3632         const struct perf_event *re = *(const struct perf_event **)r;
3633
3634         return le->group_index < re->group_index;
3635 }
3636
3637 static void swap_ptr(void *l, void *r)
3638 {
3639         void **lp = l, **rp = r;
3640
3641         swap(*lp, *rp);
3642 }
3643
3644 static const struct min_heap_callbacks perf_min_heap = {
3645         .elem_size = sizeof(struct perf_event *),
3646         .less = perf_less_group_idx,
3647         .swp = swap_ptr,
3648 };
3649
3650 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3651 {
3652         struct perf_event **itrs = heap->data;
3653
3654         if (event) {
3655                 itrs[heap->nr] = event;
3656                 heap->nr++;
3657         }
3658 }
3659
3660 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3661                                 struct perf_event_groups *groups, int cpu,
3662                                 int (*func)(struct perf_event *, void *),
3663                                 void *data)
3664 {
3665 #ifdef CONFIG_CGROUP_PERF
3666         struct cgroup_subsys_state *css = NULL;
3667 #endif
3668         /* Space for per CPU and/or any CPU event iterators. */
3669         struct perf_event *itrs[2];
3670         struct min_heap event_heap;
3671         struct perf_event **evt;
3672         int ret;
3673
3674         if (cpuctx) {
3675                 event_heap = (struct min_heap){
3676                         .data = cpuctx->heap,
3677                         .nr = 0,
3678                         .size = cpuctx->heap_size,
3679                 };
3680
3681                 lockdep_assert_held(&cpuctx->ctx.lock);
3682
3683 #ifdef CONFIG_CGROUP_PERF
3684                 if (cpuctx->cgrp)
3685                         css = &cpuctx->cgrp->css;
3686 #endif
3687         } else {
3688                 event_heap = (struct min_heap){
3689                         .data = itrs,
3690                         .nr = 0,
3691                         .size = ARRAY_SIZE(itrs),
3692                 };
3693                 /* Events not within a CPU context may be on any CPU. */
3694                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3695         }
3696         evt = event_heap.data;
3697
3698         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3699
3700 #ifdef CONFIG_CGROUP_PERF
3701         for (; css; css = css->parent)
3702                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3703 #endif
3704
3705         min_heapify_all(&event_heap, &perf_min_heap);
3706
3707         while (event_heap.nr) {
3708                 ret = func(*evt, data);
3709                 if (ret)
3710                         return ret;
3711
3712                 *evt = perf_event_groups_next(*evt);
3713                 if (*evt)
3714                         min_heapify(&event_heap, 0, &perf_min_heap);
3715                 else
3716                         min_heap_pop(&event_heap, &perf_min_heap);
3717         }
3718
3719         return 0;
3720 }
3721
3722 /*
3723  * Because the userpage is strictly per-event (there is no concept of context,
3724  * so there cannot be a context indirection), every userpage must be updated
3725  * when context time starts :-(
3726  *
3727  * IOW, we must not miss EVENT_TIME edges.
3728  */
3729 static inline bool event_update_userpage(struct perf_event *event)
3730 {
3731         if (likely(!atomic_read(&event->mmap_count)))
3732                 return false;
3733
3734         perf_event_update_time(event);
3735         perf_event_update_userpage(event);
3736
3737         return true;
3738 }
3739
3740 static inline void group_update_userpage(struct perf_event *group_event)
3741 {
3742         struct perf_event *event;
3743
3744         if (!event_update_userpage(group_event))
3745                 return;
3746
3747         for_each_sibling_event(event, group_event)
3748                 event_update_userpage(event);
3749 }
3750
3751 static int merge_sched_in(struct perf_event *event, void *data)
3752 {
3753         struct perf_event_context *ctx = event->ctx;
3754         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3755         int *can_add_hw = data;
3756
3757         if (event->state <= PERF_EVENT_STATE_OFF)
3758                 return 0;
3759
3760         if (!event_filter_match(event))
3761                 return 0;
3762
3763         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3764                 if (!group_sched_in(event, cpuctx, ctx))
3765                         list_add_tail(&event->active_list, get_event_list(event));
3766         }
3767
3768         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3769                 *can_add_hw = 0;
3770                 if (event->attr.pinned) {
3771                         perf_cgroup_event_disable(event, ctx);
3772                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3773                 } else {
3774                         ctx->rotate_necessary = 1;
3775                         perf_mux_hrtimer_restart(cpuctx);
3776                         group_update_userpage(event);
3777                 }
3778         }
3779
3780         return 0;
3781 }
3782
3783 static void
3784 ctx_pinned_sched_in(struct perf_event_context *ctx,
3785                     struct perf_cpu_context *cpuctx)
3786 {
3787         int can_add_hw = 1;
3788
3789         if (ctx != &cpuctx->ctx)
3790                 cpuctx = NULL;
3791
3792         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3793                            smp_processor_id(),
3794                            merge_sched_in, &can_add_hw);
3795 }
3796
3797 static void
3798 ctx_flexible_sched_in(struct perf_event_context *ctx,
3799                       struct perf_cpu_context *cpuctx)
3800 {
3801         int can_add_hw = 1;
3802
3803         if (ctx != &cpuctx->ctx)
3804                 cpuctx = NULL;
3805
3806         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3807                            smp_processor_id(),
3808                            merge_sched_in, &can_add_hw);
3809 }
3810
3811 static void
3812 ctx_sched_in(struct perf_event_context *ctx,
3813              struct perf_cpu_context *cpuctx,
3814              enum event_type_t event_type)
3815 {
3816         int is_active = ctx->is_active;
3817
3818         lockdep_assert_held(&ctx->lock);
3819
3820         if (likely(!ctx->nr_events))
3821                 return;
3822
3823         if (is_active ^ EVENT_TIME) {
3824                 /* start ctx time */
3825                 __update_context_time(ctx, false);
3826                 perf_cgroup_set_timestamp(cpuctx);
3827                 /*
3828                  * CPU-release for the below ->is_active store,
3829                  * see __load_acquire() in perf_event_time_now()
3830                  */
3831                 barrier();
3832         }
3833
3834         ctx->is_active |= (event_type | EVENT_TIME);
3835         if (ctx->task) {
3836                 if (!is_active)
3837                         cpuctx->task_ctx = ctx;
3838                 else
3839                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3840         }
3841
3842         is_active ^= ctx->is_active; /* changed bits */
3843
3844         /*
3845          * First go through the list and put on any pinned groups
3846          * in order to give them the best chance of going on.
3847          */
3848         if (is_active & EVENT_PINNED)
3849                 ctx_pinned_sched_in(ctx, cpuctx);
3850
3851         /* Then walk through the lower prio flexible groups */
3852         if (is_active & EVENT_FLEXIBLE)
3853                 ctx_flexible_sched_in(ctx, cpuctx);
3854 }
3855
3856 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3857                              enum event_type_t event_type)
3858 {
3859         struct perf_event_context *ctx = &cpuctx->ctx;
3860
3861         ctx_sched_in(ctx, cpuctx, event_type);
3862 }
3863
3864 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3865                                         struct task_struct *task)
3866 {
3867         struct perf_cpu_context *cpuctx;
3868         struct pmu *pmu;
3869
3870         cpuctx = __get_cpu_context(ctx);
3871
3872         /*
3873          * HACK: for HETEROGENEOUS the task context might have switched to a
3874          * different PMU, force (re)set the context,
3875          */
3876         pmu = ctx->pmu = cpuctx->ctx.pmu;
3877
3878         if (cpuctx->task_ctx == ctx) {
3879                 if (cpuctx->sched_cb_usage)
3880                         __perf_pmu_sched_task(cpuctx, true);
3881                 return;
3882         }
3883
3884         perf_ctx_lock(cpuctx, ctx);
3885         /*
3886          * We must check ctx->nr_events while holding ctx->lock, such
3887          * that we serialize against perf_install_in_context().
3888          */
3889         if (!ctx->nr_events)
3890                 goto unlock;
3891
3892         perf_pmu_disable(pmu);
3893         /*
3894          * We want to keep the following priority order:
3895          * cpu pinned (that don't need to move), task pinned,
3896          * cpu flexible, task flexible.
3897          *
3898          * However, if task's ctx is not carrying any pinned
3899          * events, no need to flip the cpuctx's events around.
3900          */
3901         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3902                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3903         perf_event_sched_in(cpuctx, ctx);
3904
3905         if (cpuctx->sched_cb_usage && pmu->sched_task)
3906                 pmu->sched_task(cpuctx->task_ctx, true);
3907
3908         perf_pmu_enable(pmu);
3909
3910 unlock:
3911         perf_ctx_unlock(cpuctx, ctx);
3912 }
3913
3914 /*
3915  * Called from scheduler to add the events of the current task
3916  * with interrupts disabled.
3917  *
3918  * We restore the event value and then enable it.
3919  *
3920  * This does not protect us against NMI, but enable()
3921  * sets the enabled bit in the control field of event _before_
3922  * accessing the event control register. If a NMI hits, then it will
3923  * keep the event running.
3924  */
3925 void __perf_event_task_sched_in(struct task_struct *prev,
3926                                 struct task_struct *task)
3927 {
3928         struct perf_event_context *ctx;
3929         int ctxn;
3930
3931         for_each_task_context_nr(ctxn) {
3932                 ctx = task->perf_event_ctxp[ctxn];
3933                 if (likely(!ctx))
3934                         continue;
3935
3936                 perf_event_context_sched_in(ctx, task);
3937         }
3938
3939         if (atomic_read(&nr_switch_events))
3940                 perf_event_switch(task, prev, true);
3941
3942         if (__this_cpu_read(perf_sched_cb_usages))
3943                 perf_pmu_sched_task(prev, task, true);
3944 }
3945
3946 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3947 {
3948         u64 frequency = event->attr.sample_freq;
3949         u64 sec = NSEC_PER_SEC;
3950         u64 divisor, dividend;
3951
3952         int count_fls, nsec_fls, frequency_fls, sec_fls;
3953
3954         count_fls = fls64(count);
3955         nsec_fls = fls64(nsec);
3956         frequency_fls = fls64(frequency);
3957         sec_fls = 30;
3958
3959         /*
3960          * We got @count in @nsec, with a target of sample_freq HZ
3961          * the target period becomes:
3962          *
3963          *             @count * 10^9
3964          * period = -------------------
3965          *          @nsec * sample_freq
3966          *
3967          */
3968
3969         /*
3970          * Reduce accuracy by one bit such that @a and @b converge
3971          * to a similar magnitude.
3972          */
3973 #define REDUCE_FLS(a, b)                \
3974 do {                                    \
3975         if (a##_fls > b##_fls) {        \
3976                 a >>= 1;                \
3977                 a##_fls--;              \
3978         } else {                        \
3979                 b >>= 1;                \
3980                 b##_fls--;              \
3981         }                               \
3982 } while (0)
3983
3984         /*
3985          * Reduce accuracy until either term fits in a u64, then proceed with
3986          * the other, so that finally we can do a u64/u64 division.
3987          */
3988         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3989                 REDUCE_FLS(nsec, frequency);
3990                 REDUCE_FLS(sec, count);
3991         }
3992
3993         if (count_fls + sec_fls > 64) {
3994                 divisor = nsec * frequency;
3995
3996                 while (count_fls + sec_fls > 64) {
3997                         REDUCE_FLS(count, sec);
3998                         divisor >>= 1;
3999                 }
4000
4001                 dividend = count * sec;
4002         } else {
4003                 dividend = count * sec;
4004
4005                 while (nsec_fls + frequency_fls > 64) {
4006                         REDUCE_FLS(nsec, frequency);
4007                         dividend >>= 1;
4008                 }
4009
4010                 divisor = nsec * frequency;
4011         }
4012
4013         if (!divisor)
4014                 return dividend;
4015
4016         return div64_u64(dividend, divisor);
4017 }
4018
4019 static DEFINE_PER_CPU(int, perf_throttled_count);
4020 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4021
4022 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4023 {
4024         struct hw_perf_event *hwc = &event->hw;
4025         s64 period, sample_period;
4026         s64 delta;
4027
4028         period = perf_calculate_period(event, nsec, count);
4029
4030         delta = (s64)(period - hwc->sample_period);
4031         delta = (delta + 7) / 8; /* low pass filter */
4032
4033         sample_period = hwc->sample_period + delta;
4034
4035         if (!sample_period)
4036                 sample_period = 1;
4037
4038         hwc->sample_period = sample_period;
4039
4040         if (local64_read(&hwc->period_left) > 8*sample_period) {
4041                 if (disable)
4042                         event->pmu->stop(event, PERF_EF_UPDATE);
4043
4044                 local64_set(&hwc->period_left, 0);
4045
4046                 if (disable)
4047                         event->pmu->start(event, PERF_EF_RELOAD);
4048         }
4049 }
4050
4051 /*
4052  * combine freq adjustment with unthrottling to avoid two passes over the
4053  * events. At the same time, make sure, having freq events does not change
4054  * the rate of unthrottling as that would introduce bias.
4055  */
4056 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4057                                            int needs_unthr)
4058 {
4059         struct perf_event *event;
4060         struct hw_perf_event *hwc;
4061         u64 now, period = TICK_NSEC;
4062         s64 delta;
4063
4064         /*
4065          * only need to iterate over all events iff:
4066          * - context have events in frequency mode (needs freq adjust)
4067          * - there are events to unthrottle on this cpu
4068          */
4069         if (!(ctx->nr_freq || needs_unthr))
4070                 return;
4071
4072         raw_spin_lock(&ctx->lock);
4073         perf_pmu_disable(ctx->pmu);
4074
4075         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4076                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4077                         continue;
4078
4079                 if (!event_filter_match(event))
4080                         continue;
4081
4082                 perf_pmu_disable(event->pmu);
4083
4084                 hwc = &event->hw;
4085
4086                 if (hwc->interrupts == MAX_INTERRUPTS) {
4087                         hwc->interrupts = 0;
4088                         perf_log_throttle(event, 1);
4089                         event->pmu->start(event, 0);
4090                 }
4091
4092                 if (!event->attr.freq || !event->attr.sample_freq)
4093                         goto next;
4094
4095                 /*
4096                  * stop the event and update event->count
4097                  */
4098                 event->pmu->stop(event, PERF_EF_UPDATE);
4099
4100                 now = local64_read(&event->count);
4101                 delta = now - hwc->freq_count_stamp;
4102                 hwc->freq_count_stamp = now;
4103
4104                 /*
4105                  * restart the event
4106                  * reload only if value has changed
4107                  * we have stopped the event so tell that
4108                  * to perf_adjust_period() to avoid stopping it
4109                  * twice.
4110                  */
4111                 if (delta > 0)
4112                         perf_adjust_period(event, period, delta, false);
4113
4114                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4115         next:
4116                 perf_pmu_enable(event->pmu);
4117         }
4118
4119         perf_pmu_enable(ctx->pmu);
4120         raw_spin_unlock(&ctx->lock);
4121 }
4122
4123 /*
4124  * Move @event to the tail of the @ctx's elegible events.
4125  */
4126 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4127 {
4128         /*
4129          * Rotate the first entry last of non-pinned groups. Rotation might be
4130          * disabled by the inheritance code.
4131          */
4132         if (ctx->rotate_disable)
4133                 return;
4134
4135         perf_event_groups_delete(&ctx->flexible_groups, event);
4136         perf_event_groups_insert(&ctx->flexible_groups, event);
4137 }
4138
4139 /* pick an event from the flexible_groups to rotate */
4140 static inline struct perf_event *
4141 ctx_event_to_rotate(struct perf_event_context *ctx)
4142 {
4143         struct perf_event *event;
4144
4145         /* pick the first active flexible event */
4146         event = list_first_entry_or_null(&ctx->flexible_active,
4147                                          struct perf_event, active_list);
4148
4149         /* if no active flexible event, pick the first event */
4150         if (!event) {
4151                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4152                                       typeof(*event), group_node);
4153         }
4154
4155         /*
4156          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4157          * finds there are unschedulable events, it will set it again.
4158          */
4159         ctx->rotate_necessary = 0;
4160
4161         return event;
4162 }
4163
4164 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4165 {
4166         struct perf_event *cpu_event = NULL, *task_event = NULL;
4167         struct perf_event_context *task_ctx = NULL;
4168         int cpu_rotate, task_rotate;
4169
4170         /*
4171          * Since we run this from IRQ context, nobody can install new
4172          * events, thus the event count values are stable.
4173          */
4174
4175         cpu_rotate = cpuctx->ctx.rotate_necessary;
4176         task_ctx = cpuctx->task_ctx;
4177         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4178
4179         if (!(cpu_rotate || task_rotate))
4180                 return false;
4181
4182         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4183         perf_pmu_disable(cpuctx->ctx.pmu);
4184
4185         if (task_rotate)
4186                 task_event = ctx_event_to_rotate(task_ctx);
4187         if (cpu_rotate)
4188                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4189
4190         /*
4191          * As per the order given at ctx_resched() first 'pop' task flexible
4192          * and then, if needed CPU flexible.
4193          */
4194         if (task_event || (task_ctx && cpu_event))
4195                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4196         if (cpu_event)
4197                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4198
4199         if (task_event)
4200                 rotate_ctx(task_ctx, task_event);
4201         if (cpu_event)
4202                 rotate_ctx(&cpuctx->ctx, cpu_event);
4203
4204         perf_event_sched_in(cpuctx, task_ctx);
4205
4206         perf_pmu_enable(cpuctx->ctx.pmu);
4207         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4208
4209         return true;
4210 }
4211
4212 void perf_event_task_tick(void)
4213 {
4214         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4215         struct perf_event_context *ctx, *tmp;
4216         int throttled;
4217
4218         lockdep_assert_irqs_disabled();
4219
4220         __this_cpu_inc(perf_throttled_seq);
4221         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4222         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4223
4224         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4225                 perf_adjust_freq_unthr_context(ctx, throttled);
4226 }
4227
4228 static int event_enable_on_exec(struct perf_event *event,
4229                                 struct perf_event_context *ctx)
4230 {
4231         if (!event->attr.enable_on_exec)
4232                 return 0;
4233
4234         event->attr.enable_on_exec = 0;
4235         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4236                 return 0;
4237
4238         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4239
4240         return 1;
4241 }
4242
4243 /*
4244  * Enable all of a task's events that have been marked enable-on-exec.
4245  * This expects task == current.
4246  */
4247 static void perf_event_enable_on_exec(int ctxn)
4248 {
4249         struct perf_event_context *ctx, *clone_ctx = NULL;
4250         enum event_type_t event_type = 0;
4251         struct perf_cpu_context *cpuctx;
4252         struct perf_event *event;
4253         unsigned long flags;
4254         int enabled = 0;
4255
4256         local_irq_save(flags);
4257         ctx = current->perf_event_ctxp[ctxn];
4258         if (!ctx || !ctx->nr_events)
4259                 goto out;
4260
4261         cpuctx = __get_cpu_context(ctx);
4262         perf_ctx_lock(cpuctx, ctx);
4263         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4264         list_for_each_entry(event, &ctx->event_list, event_entry) {
4265                 enabled |= event_enable_on_exec(event, ctx);
4266                 event_type |= get_event_type(event);
4267         }
4268
4269         /*
4270          * Unclone and reschedule this context if we enabled any event.
4271          */
4272         if (enabled) {
4273                 clone_ctx = unclone_ctx(ctx);
4274                 ctx_resched(cpuctx, ctx, event_type);
4275         } else {
4276                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
4277         }
4278         perf_ctx_unlock(cpuctx, ctx);
4279
4280 out:
4281         local_irq_restore(flags);
4282
4283         if (clone_ctx)
4284                 put_ctx(clone_ctx);
4285 }
4286
4287 static void perf_remove_from_owner(struct perf_event *event);
4288 static void perf_event_exit_event(struct perf_event *event,
4289                                   struct perf_event_context *ctx);
4290
4291 /*
4292  * Removes all events from the current task that have been marked
4293  * remove-on-exec, and feeds their values back to parent events.
4294  */
4295 static void perf_event_remove_on_exec(int ctxn)
4296 {
4297         struct perf_event_context *ctx, *clone_ctx = NULL;
4298         struct perf_event *event, *next;
4299         unsigned long flags;
4300         bool modified = false;
4301
4302         ctx = perf_pin_task_context(current, ctxn);
4303         if (!ctx)
4304                 return;
4305
4306         mutex_lock(&ctx->mutex);
4307
4308         if (WARN_ON_ONCE(ctx->task != current))
4309                 goto unlock;
4310
4311         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4312                 if (!event->attr.remove_on_exec)
4313                         continue;
4314
4315                 if (!is_kernel_event(event))
4316                         perf_remove_from_owner(event);
4317
4318                 modified = true;
4319
4320                 perf_event_exit_event(event, ctx);
4321         }
4322
4323         raw_spin_lock_irqsave(&ctx->lock, flags);
4324         if (modified)
4325                 clone_ctx = unclone_ctx(ctx);
4326         --ctx->pin_count;
4327         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4328
4329 unlock:
4330         mutex_unlock(&ctx->mutex);
4331
4332         put_ctx(ctx);
4333         if (clone_ctx)
4334                 put_ctx(clone_ctx);
4335 }
4336
4337 struct perf_read_data {
4338         struct perf_event *event;
4339         bool group;
4340         int ret;
4341 };
4342
4343 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4344 {
4345         u16 local_pkg, event_pkg;
4346
4347         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4348                 int local_cpu = smp_processor_id();
4349
4350                 event_pkg = topology_physical_package_id(event_cpu);
4351                 local_pkg = topology_physical_package_id(local_cpu);
4352
4353                 if (event_pkg == local_pkg)
4354                         return local_cpu;
4355         }
4356
4357         return event_cpu;
4358 }
4359
4360 /*
4361  * Cross CPU call to read the hardware event
4362  */
4363 static void __perf_event_read(void *info)
4364 {
4365         struct perf_read_data *data = info;
4366         struct perf_event *sub, *event = data->event;
4367         struct perf_event_context *ctx = event->ctx;
4368         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4369         struct pmu *pmu = event->pmu;
4370
4371         /*
4372          * If this is a task context, we need to check whether it is
4373          * the current task context of this cpu.  If not it has been
4374          * scheduled out before the smp call arrived.  In that case
4375          * event->count would have been updated to a recent sample
4376          * when the event was scheduled out.
4377          */
4378         if (ctx->task && cpuctx->task_ctx != ctx)
4379                 return;
4380
4381         raw_spin_lock(&ctx->lock);
4382         if (ctx->is_active & EVENT_TIME) {
4383                 update_context_time(ctx);
4384                 update_cgrp_time_from_event(event);
4385         }
4386
4387         perf_event_update_time(event);
4388         if (data->group)
4389                 perf_event_update_sibling_time(event);
4390
4391         if (event->state != PERF_EVENT_STATE_ACTIVE)
4392                 goto unlock;
4393
4394         if (!data->group) {
4395                 pmu->read(event);
4396                 data->ret = 0;
4397                 goto unlock;
4398         }
4399
4400         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4401
4402         pmu->read(event);
4403
4404         for_each_sibling_event(sub, event) {
4405                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4406                         /*
4407                          * Use sibling's PMU rather than @event's since
4408                          * sibling could be on different (eg: software) PMU.
4409                          */
4410                         sub->pmu->read(sub);
4411                 }
4412         }
4413
4414         data->ret = pmu->commit_txn(pmu);
4415
4416 unlock:
4417         raw_spin_unlock(&ctx->lock);
4418 }
4419
4420 static inline u64 perf_event_count(struct perf_event *event)
4421 {
4422         return local64_read(&event->count) + atomic64_read(&event->child_count);
4423 }
4424
4425 static void calc_timer_values(struct perf_event *event,
4426                                 u64 *now,
4427                                 u64 *enabled,
4428                                 u64 *running)
4429 {
4430         u64 ctx_time;
4431
4432         *now = perf_clock();
4433         ctx_time = perf_event_time_now(event, *now);
4434         __perf_update_times(event, ctx_time, enabled, running);
4435 }
4436
4437 /*
4438  * NMI-safe method to read a local event, that is an event that
4439  * is:
4440  *   - either for the current task, or for this CPU
4441  *   - does not have inherit set, for inherited task events
4442  *     will not be local and we cannot read them atomically
4443  *   - must not have a pmu::count method
4444  */
4445 int perf_event_read_local(struct perf_event *event, u64 *value,
4446                           u64 *enabled, u64 *running)
4447 {
4448         unsigned long flags;
4449         int ret = 0;
4450
4451         /*
4452          * Disabling interrupts avoids all counter scheduling (context
4453          * switches, timer based rotation and IPIs).
4454          */
4455         local_irq_save(flags);
4456
4457         /*
4458          * It must not be an event with inherit set, we cannot read
4459          * all child counters from atomic context.
4460          */
4461         if (event->attr.inherit) {
4462                 ret = -EOPNOTSUPP;
4463                 goto out;
4464         }
4465
4466         /* If this is a per-task event, it must be for current */
4467         if ((event->attach_state & PERF_ATTACH_TASK) &&
4468             event->hw.target != current) {
4469                 ret = -EINVAL;
4470                 goto out;
4471         }
4472
4473         /* If this is a per-CPU event, it must be for this CPU */
4474         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4475             event->cpu != smp_processor_id()) {
4476                 ret = -EINVAL;
4477                 goto out;
4478         }
4479
4480         /* If this is a pinned event it must be running on this CPU */
4481         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4482                 ret = -EBUSY;
4483                 goto out;
4484         }
4485
4486         /*
4487          * If the event is currently on this CPU, its either a per-task event,
4488          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4489          * oncpu == -1).
4490          */
4491         if (event->oncpu == smp_processor_id())
4492                 event->pmu->read(event);
4493
4494         *value = local64_read(&event->count);
4495         if (enabled || running) {
4496                 u64 __enabled, __running, __now;
4497
4498                 calc_timer_values(event, &__now, &__enabled, &__running);
4499                 if (enabled)
4500                         *enabled = __enabled;
4501                 if (running)
4502                         *running = __running;
4503         }
4504 out:
4505         local_irq_restore(flags);
4506
4507         return ret;
4508 }
4509
4510 static int perf_event_read(struct perf_event *event, bool group)
4511 {
4512         enum perf_event_state state = READ_ONCE(event->state);
4513         int event_cpu, ret = 0;
4514
4515         /*
4516          * If event is enabled and currently active on a CPU, update the
4517          * value in the event structure:
4518          */
4519 again:
4520         if (state == PERF_EVENT_STATE_ACTIVE) {
4521                 struct perf_read_data data;
4522
4523                 /*
4524                  * Orders the ->state and ->oncpu loads such that if we see
4525                  * ACTIVE we must also see the right ->oncpu.
4526                  *
4527                  * Matches the smp_wmb() from event_sched_in().
4528                  */
4529                 smp_rmb();
4530
4531                 event_cpu = READ_ONCE(event->oncpu);
4532                 if ((unsigned)event_cpu >= nr_cpu_ids)
4533                         return 0;
4534
4535                 data = (struct perf_read_data){
4536                         .event = event,
4537                         .group = group,
4538                         .ret = 0,
4539                 };
4540
4541                 preempt_disable();
4542                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4543
4544                 /*
4545                  * Purposely ignore the smp_call_function_single() return
4546                  * value.
4547                  *
4548                  * If event_cpu isn't a valid CPU it means the event got
4549                  * scheduled out and that will have updated the event count.
4550                  *
4551                  * Therefore, either way, we'll have an up-to-date event count
4552                  * after this.
4553                  */
4554                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4555                 preempt_enable();
4556                 ret = data.ret;
4557
4558         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4559                 struct perf_event_context *ctx = event->ctx;
4560                 unsigned long flags;
4561
4562                 raw_spin_lock_irqsave(&ctx->lock, flags);
4563                 state = event->state;
4564                 if (state != PERF_EVENT_STATE_INACTIVE) {
4565                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4566                         goto again;
4567                 }
4568
4569                 /*
4570                  * May read while context is not active (e.g., thread is
4571                  * blocked), in that case we cannot update context time
4572                  */
4573                 if (ctx->is_active & EVENT_TIME) {
4574                         update_context_time(ctx);
4575                         update_cgrp_time_from_event(event);
4576                 }
4577
4578                 perf_event_update_time(event);
4579                 if (group)
4580                         perf_event_update_sibling_time(event);
4581                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4582         }
4583
4584         return ret;
4585 }
4586
4587 /*
4588  * Initialize the perf_event context in a task_struct:
4589  */
4590 static void __perf_event_init_context(struct perf_event_context *ctx)
4591 {
4592         raw_spin_lock_init(&ctx->lock);
4593         mutex_init(&ctx->mutex);
4594         INIT_LIST_HEAD(&ctx->active_ctx_list);
4595         perf_event_groups_init(&ctx->pinned_groups);
4596         perf_event_groups_init(&ctx->flexible_groups);
4597         INIT_LIST_HEAD(&ctx->event_list);
4598         INIT_LIST_HEAD(&ctx->pinned_active);
4599         INIT_LIST_HEAD(&ctx->flexible_active);
4600         refcount_set(&ctx->refcount, 1);
4601 }
4602
4603 static struct perf_event_context *
4604 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4605 {
4606         struct perf_event_context *ctx;
4607
4608         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4609         if (!ctx)
4610                 return NULL;
4611
4612         __perf_event_init_context(ctx);
4613         if (task)
4614                 ctx->task = get_task_struct(task);
4615         ctx->pmu = pmu;
4616
4617         return ctx;
4618 }
4619
4620 static struct task_struct *
4621 find_lively_task_by_vpid(pid_t vpid)
4622 {
4623         struct task_struct *task;
4624
4625         rcu_read_lock();
4626         if (!vpid)
4627                 task = current;
4628         else
4629                 task = find_task_by_vpid(vpid);
4630         if (task)
4631                 get_task_struct(task);
4632         rcu_read_unlock();
4633
4634         if (!task)
4635                 return ERR_PTR(-ESRCH);
4636
4637         return task;
4638 }
4639
4640 /*
4641  * Returns a matching context with refcount and pincount.
4642  */
4643 static struct perf_event_context *
4644 find_get_context(struct pmu *pmu, struct task_struct *task,
4645                 struct perf_event *event)
4646 {
4647         struct perf_event_context *ctx, *clone_ctx = NULL;
4648         struct perf_cpu_context *cpuctx;
4649         void *task_ctx_data = NULL;
4650         unsigned long flags;
4651         int ctxn, err;
4652         int cpu = event->cpu;
4653
4654         if (!task) {
4655                 /* Must be root to operate on a CPU event: */
4656                 err = perf_allow_cpu(&event->attr);
4657                 if (err)
4658                         return ERR_PTR(err);
4659
4660                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4661                 ctx = &cpuctx->ctx;
4662                 get_ctx(ctx);
4663                 raw_spin_lock_irqsave(&ctx->lock, flags);
4664                 ++ctx->pin_count;
4665                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4666
4667                 return ctx;
4668         }
4669
4670         err = -EINVAL;
4671         ctxn = pmu->task_ctx_nr;
4672         if (ctxn < 0)
4673                 goto errout;
4674
4675         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4676                 task_ctx_data = alloc_task_ctx_data(pmu);
4677                 if (!task_ctx_data) {
4678                         err = -ENOMEM;
4679                         goto errout;
4680                 }
4681         }
4682
4683 retry:
4684         ctx = perf_lock_task_context(task, ctxn, &flags);
4685         if (ctx) {
4686                 clone_ctx = unclone_ctx(ctx);
4687                 ++ctx->pin_count;
4688
4689                 if (task_ctx_data && !ctx->task_ctx_data) {
4690                         ctx->task_ctx_data = task_ctx_data;
4691                         task_ctx_data = NULL;
4692                 }
4693                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4694
4695                 if (clone_ctx)
4696                         put_ctx(clone_ctx);
4697         } else {
4698                 ctx = alloc_perf_context(pmu, task);
4699                 err = -ENOMEM;
4700                 if (!ctx)
4701                         goto errout;
4702
4703                 if (task_ctx_data) {
4704                         ctx->task_ctx_data = task_ctx_data;
4705                         task_ctx_data = NULL;
4706                 }
4707
4708                 err = 0;
4709                 mutex_lock(&task->perf_event_mutex);
4710                 /*
4711                  * If it has already passed perf_event_exit_task().
4712                  * we must see PF_EXITING, it takes this mutex too.
4713                  */
4714                 if (task->flags & PF_EXITING)
4715                         err = -ESRCH;
4716                 else if (task->perf_event_ctxp[ctxn])
4717                         err = -EAGAIN;
4718                 else {
4719                         get_ctx(ctx);
4720                         ++ctx->pin_count;
4721                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4722                 }
4723                 mutex_unlock(&task->perf_event_mutex);
4724
4725                 if (unlikely(err)) {
4726                         put_ctx(ctx);
4727
4728                         if (err == -EAGAIN)
4729                                 goto retry;
4730                         goto errout;
4731                 }
4732         }
4733
4734         free_task_ctx_data(pmu, task_ctx_data);
4735         return ctx;
4736
4737 errout:
4738         free_task_ctx_data(pmu, task_ctx_data);
4739         return ERR_PTR(err);
4740 }
4741
4742 static void perf_event_free_filter(struct perf_event *event);
4743
4744 static void free_event_rcu(struct rcu_head *head)
4745 {
4746         struct perf_event *event;
4747
4748         event = container_of(head, struct perf_event, rcu_head);
4749         if (event->ns)
4750                 put_pid_ns(event->ns);
4751         perf_event_free_filter(event);
4752         kmem_cache_free(perf_event_cache, event);
4753 }
4754
4755 static void ring_buffer_attach(struct perf_event *event,
4756                                struct perf_buffer *rb);
4757
4758 static void detach_sb_event(struct perf_event *event)
4759 {
4760         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4761
4762         raw_spin_lock(&pel->lock);
4763         list_del_rcu(&event->sb_list);
4764         raw_spin_unlock(&pel->lock);
4765 }
4766
4767 static bool is_sb_event(struct perf_event *event)
4768 {
4769         struct perf_event_attr *attr = &event->attr;
4770
4771         if (event->parent)
4772                 return false;
4773
4774         if (event->attach_state & PERF_ATTACH_TASK)
4775                 return false;
4776
4777         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4778             attr->comm || attr->comm_exec ||
4779             attr->task || attr->ksymbol ||
4780             attr->context_switch || attr->text_poke ||
4781             attr->bpf_event)
4782                 return true;
4783         return false;
4784 }
4785
4786 static void unaccount_pmu_sb_event(struct perf_event *event)
4787 {
4788         if (is_sb_event(event))
4789                 detach_sb_event(event);
4790 }
4791
4792 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4793 {
4794         if (event->parent)
4795                 return;
4796
4797         if (is_cgroup_event(event))
4798                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4799 }
4800
4801 #ifdef CONFIG_NO_HZ_FULL
4802 static DEFINE_SPINLOCK(nr_freq_lock);
4803 #endif
4804
4805 static void unaccount_freq_event_nohz(void)
4806 {
4807 #ifdef CONFIG_NO_HZ_FULL
4808         spin_lock(&nr_freq_lock);
4809         if (atomic_dec_and_test(&nr_freq_events))
4810                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4811         spin_unlock(&nr_freq_lock);
4812 #endif
4813 }
4814
4815 static void unaccount_freq_event(void)
4816 {
4817         if (tick_nohz_full_enabled())
4818                 unaccount_freq_event_nohz();
4819         else
4820                 atomic_dec(&nr_freq_events);
4821 }
4822
4823 static void unaccount_event(struct perf_event *event)
4824 {
4825         bool dec = false;
4826
4827         if (event->parent)
4828                 return;
4829
4830         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4831                 dec = true;
4832         if (event->attr.mmap || event->attr.mmap_data)
4833                 atomic_dec(&nr_mmap_events);
4834         if (event->attr.build_id)
4835                 atomic_dec(&nr_build_id_events);
4836         if (event->attr.comm)
4837                 atomic_dec(&nr_comm_events);
4838         if (event->attr.namespaces)
4839                 atomic_dec(&nr_namespaces_events);
4840         if (event->attr.cgroup)
4841                 atomic_dec(&nr_cgroup_events);
4842         if (event->attr.task)
4843                 atomic_dec(&nr_task_events);
4844         if (event->attr.freq)
4845                 unaccount_freq_event();
4846         if (event->attr.context_switch) {
4847                 dec = true;
4848                 atomic_dec(&nr_switch_events);
4849         }
4850         if (is_cgroup_event(event))
4851                 dec = true;
4852         if (has_branch_stack(event))
4853                 dec = true;
4854         if (event->attr.ksymbol)
4855                 atomic_dec(&nr_ksymbol_events);
4856         if (event->attr.bpf_event)
4857                 atomic_dec(&nr_bpf_events);
4858         if (event->attr.text_poke)
4859                 atomic_dec(&nr_text_poke_events);
4860
4861         if (dec) {
4862                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4863                         schedule_delayed_work(&perf_sched_work, HZ);
4864         }
4865
4866         unaccount_event_cpu(event, event->cpu);
4867
4868         unaccount_pmu_sb_event(event);
4869 }
4870
4871 static void perf_sched_delayed(struct work_struct *work)
4872 {
4873         mutex_lock(&perf_sched_mutex);
4874         if (atomic_dec_and_test(&perf_sched_count))
4875                 static_branch_disable(&perf_sched_events);
4876         mutex_unlock(&perf_sched_mutex);
4877 }
4878
4879 /*
4880  * The following implement mutual exclusion of events on "exclusive" pmus
4881  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4882  * at a time, so we disallow creating events that might conflict, namely:
4883  *
4884  *  1) cpu-wide events in the presence of per-task events,
4885  *  2) per-task events in the presence of cpu-wide events,
4886  *  3) two matching events on the same context.
4887  *
4888  * The former two cases are handled in the allocation path (perf_event_alloc(),
4889  * _free_event()), the latter -- before the first perf_install_in_context().
4890  */
4891 static int exclusive_event_init(struct perf_event *event)
4892 {
4893         struct pmu *pmu = event->pmu;
4894
4895         if (!is_exclusive_pmu(pmu))
4896                 return 0;
4897
4898         /*
4899          * Prevent co-existence of per-task and cpu-wide events on the
4900          * same exclusive pmu.
4901          *
4902          * Negative pmu::exclusive_cnt means there are cpu-wide
4903          * events on this "exclusive" pmu, positive means there are
4904          * per-task events.
4905          *
4906          * Since this is called in perf_event_alloc() path, event::ctx
4907          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4908          * to mean "per-task event", because unlike other attach states it
4909          * never gets cleared.
4910          */
4911         if (event->attach_state & PERF_ATTACH_TASK) {
4912                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4913                         return -EBUSY;
4914         } else {
4915                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4916                         return -EBUSY;
4917         }
4918
4919         return 0;
4920 }
4921
4922 static void exclusive_event_destroy(struct perf_event *event)
4923 {
4924         struct pmu *pmu = event->pmu;
4925
4926         if (!is_exclusive_pmu(pmu))
4927                 return;
4928
4929         /* see comment in exclusive_event_init() */
4930         if (event->attach_state & PERF_ATTACH_TASK)
4931                 atomic_dec(&pmu->exclusive_cnt);
4932         else
4933                 atomic_inc(&pmu->exclusive_cnt);
4934 }
4935
4936 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4937 {
4938         if ((e1->pmu == e2->pmu) &&
4939             (e1->cpu == e2->cpu ||
4940              e1->cpu == -1 ||
4941              e2->cpu == -1))
4942                 return true;
4943         return false;
4944 }
4945
4946 static bool exclusive_event_installable(struct perf_event *event,
4947                                         struct perf_event_context *ctx)
4948 {
4949         struct perf_event *iter_event;
4950         struct pmu *pmu = event->pmu;
4951
4952         lockdep_assert_held(&ctx->mutex);
4953
4954         if (!is_exclusive_pmu(pmu))
4955                 return true;
4956
4957         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4958                 if (exclusive_event_match(iter_event, event))
4959                         return false;
4960         }
4961
4962         return true;
4963 }
4964
4965 static void perf_addr_filters_splice(struct perf_event *event,
4966                                        struct list_head *head);
4967
4968 static void _free_event(struct perf_event *event)
4969 {
4970         irq_work_sync(&event->pending_irq);
4971
4972         unaccount_event(event);
4973
4974         security_perf_event_free(event);
4975
4976         if (event->rb) {
4977                 /*
4978                  * Can happen when we close an event with re-directed output.
4979                  *
4980                  * Since we have a 0 refcount, perf_mmap_close() will skip
4981                  * over us; possibly making our ring_buffer_put() the last.
4982                  */
4983                 mutex_lock(&event->mmap_mutex);
4984                 ring_buffer_attach(event, NULL);
4985                 mutex_unlock(&event->mmap_mutex);
4986         }
4987
4988         if (is_cgroup_event(event))
4989                 perf_detach_cgroup(event);
4990
4991         if (!event->parent) {
4992                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4993                         put_callchain_buffers();
4994         }
4995
4996         perf_event_free_bpf_prog(event);
4997         perf_addr_filters_splice(event, NULL);
4998         kfree(event->addr_filter_ranges);
4999
5000         if (event->destroy)
5001                 event->destroy(event);
5002
5003         /*
5004          * Must be after ->destroy(), due to uprobe_perf_close() using
5005          * hw.target.
5006          */
5007         if (event->hw.target)
5008                 put_task_struct(event->hw.target);
5009
5010         /*
5011          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5012          * all task references must be cleaned up.
5013          */
5014         if (event->ctx)
5015                 put_ctx(event->ctx);
5016
5017         exclusive_event_destroy(event);
5018         module_put(event->pmu->module);
5019
5020         call_rcu(&event->rcu_head, free_event_rcu);
5021 }
5022
5023 /*
5024  * Used to free events which have a known refcount of 1, such as in error paths
5025  * where the event isn't exposed yet and inherited events.
5026  */
5027 static void free_event(struct perf_event *event)
5028 {
5029         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5030                                 "unexpected event refcount: %ld; ptr=%p\n",
5031                                 atomic_long_read(&event->refcount), event)) {
5032                 /* leak to avoid use-after-free */
5033                 return;
5034         }
5035
5036         _free_event(event);
5037 }
5038
5039 /*
5040  * Remove user event from the owner task.
5041  */
5042 static void perf_remove_from_owner(struct perf_event *event)
5043 {
5044         struct task_struct *owner;
5045
5046         rcu_read_lock();
5047         /*
5048          * Matches the smp_store_release() in perf_event_exit_task(). If we
5049          * observe !owner it means the list deletion is complete and we can
5050          * indeed free this event, otherwise we need to serialize on
5051          * owner->perf_event_mutex.
5052          */
5053         owner = READ_ONCE(event->owner);
5054         if (owner) {
5055                 /*
5056                  * Since delayed_put_task_struct() also drops the last
5057                  * task reference we can safely take a new reference
5058                  * while holding the rcu_read_lock().
5059                  */
5060                 get_task_struct(owner);
5061         }
5062         rcu_read_unlock();
5063
5064         if (owner) {
5065                 /*
5066                  * If we're here through perf_event_exit_task() we're already
5067                  * holding ctx->mutex which would be an inversion wrt. the
5068                  * normal lock order.
5069                  *
5070                  * However we can safely take this lock because its the child
5071                  * ctx->mutex.
5072                  */
5073                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5074
5075                 /*
5076                  * We have to re-check the event->owner field, if it is cleared
5077                  * we raced with perf_event_exit_task(), acquiring the mutex
5078                  * ensured they're done, and we can proceed with freeing the
5079                  * event.
5080                  */
5081                 if (event->owner) {
5082                         list_del_init(&event->owner_entry);
5083                         smp_store_release(&event->owner, NULL);
5084                 }
5085                 mutex_unlock(&owner->perf_event_mutex);
5086                 put_task_struct(owner);
5087         }
5088 }
5089
5090 static void put_event(struct perf_event *event)
5091 {
5092         if (!atomic_long_dec_and_test(&event->refcount))
5093                 return;
5094
5095         _free_event(event);
5096 }
5097
5098 /*
5099  * Kill an event dead; while event:refcount will preserve the event
5100  * object, it will not preserve its functionality. Once the last 'user'
5101  * gives up the object, we'll destroy the thing.
5102  */
5103 int perf_event_release_kernel(struct perf_event *event)
5104 {
5105         struct perf_event_context *ctx = event->ctx;
5106         struct perf_event *child, *tmp;
5107         LIST_HEAD(free_list);
5108
5109         /*
5110          * If we got here through err_file: fput(event_file); we will not have
5111          * attached to a context yet.
5112          */
5113         if (!ctx) {
5114                 WARN_ON_ONCE(event->attach_state &
5115                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5116                 goto no_ctx;
5117         }
5118
5119         if (!is_kernel_event(event))
5120                 perf_remove_from_owner(event);
5121
5122         ctx = perf_event_ctx_lock(event);
5123         WARN_ON_ONCE(ctx->parent_ctx);
5124         perf_remove_from_context(event, DETACH_GROUP);
5125
5126         raw_spin_lock_irq(&ctx->lock);
5127         /*
5128          * Mark this event as STATE_DEAD, there is no external reference to it
5129          * anymore.
5130          *
5131          * Anybody acquiring event->child_mutex after the below loop _must_
5132          * also see this, most importantly inherit_event() which will avoid
5133          * placing more children on the list.
5134          *
5135          * Thus this guarantees that we will in fact observe and kill _ALL_
5136          * child events.
5137          */
5138         event->state = PERF_EVENT_STATE_DEAD;
5139         raw_spin_unlock_irq(&ctx->lock);
5140
5141         perf_event_ctx_unlock(event, ctx);
5142
5143 again:
5144         mutex_lock(&event->child_mutex);
5145         list_for_each_entry(child, &event->child_list, child_list) {
5146
5147                 /*
5148                  * Cannot change, child events are not migrated, see the
5149                  * comment with perf_event_ctx_lock_nested().
5150                  */
5151                 ctx = READ_ONCE(child->ctx);
5152                 /*
5153                  * Since child_mutex nests inside ctx::mutex, we must jump
5154                  * through hoops. We start by grabbing a reference on the ctx.
5155                  *
5156                  * Since the event cannot get freed while we hold the
5157                  * child_mutex, the context must also exist and have a !0
5158                  * reference count.
5159                  */
5160                 get_ctx(ctx);
5161
5162                 /*
5163                  * Now that we have a ctx ref, we can drop child_mutex, and
5164                  * acquire ctx::mutex without fear of it going away. Then we
5165                  * can re-acquire child_mutex.
5166                  */
5167                 mutex_unlock(&event->child_mutex);
5168                 mutex_lock(&ctx->mutex);
5169                 mutex_lock(&event->child_mutex);
5170
5171                 /*
5172                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5173                  * state, if child is still the first entry, it didn't get freed
5174                  * and we can continue doing so.
5175                  */
5176                 tmp = list_first_entry_or_null(&event->child_list,
5177                                                struct perf_event, child_list);
5178                 if (tmp == child) {
5179                         perf_remove_from_context(child, DETACH_GROUP);
5180                         list_move(&child->child_list, &free_list);
5181                         /*
5182                          * This matches the refcount bump in inherit_event();
5183                          * this can't be the last reference.
5184                          */
5185                         put_event(event);
5186                 }
5187
5188                 mutex_unlock(&event->child_mutex);
5189                 mutex_unlock(&ctx->mutex);
5190                 put_ctx(ctx);
5191                 goto again;
5192         }
5193         mutex_unlock(&event->child_mutex);
5194
5195         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5196                 void *var = &child->ctx->refcount;
5197
5198                 list_del(&child->child_list);
5199                 free_event(child);
5200
5201                 /*
5202                  * Wake any perf_event_free_task() waiting for this event to be
5203                  * freed.
5204                  */
5205                 smp_mb(); /* pairs with wait_var_event() */
5206                 wake_up_var(var);
5207         }
5208
5209 no_ctx:
5210         put_event(event); /* Must be the 'last' reference */
5211         return 0;
5212 }
5213 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5214
5215 /*
5216  * Called when the last reference to the file is gone.
5217  */
5218 static int perf_release(struct inode *inode, struct file *file)
5219 {
5220         perf_event_release_kernel(file->private_data);
5221         return 0;
5222 }
5223
5224 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5225 {
5226         struct perf_event *child;
5227         u64 total = 0;
5228
5229         *enabled = 0;
5230         *running = 0;
5231
5232         mutex_lock(&event->child_mutex);
5233
5234         (void)perf_event_read(event, false);
5235         total += perf_event_count(event);
5236
5237         *enabled += event->total_time_enabled +
5238                         atomic64_read(&event->child_total_time_enabled);
5239         *running += event->total_time_running +
5240                         atomic64_read(&event->child_total_time_running);
5241
5242         list_for_each_entry(child, &event->child_list, child_list) {
5243                 (void)perf_event_read(child, false);
5244                 total += perf_event_count(child);
5245                 *enabled += child->total_time_enabled;
5246                 *running += child->total_time_running;
5247         }
5248         mutex_unlock(&event->child_mutex);
5249
5250         return total;
5251 }
5252
5253 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5254 {
5255         struct perf_event_context *ctx;
5256         u64 count;
5257
5258         ctx = perf_event_ctx_lock(event);
5259         count = __perf_event_read_value(event, enabled, running);
5260         perf_event_ctx_unlock(event, ctx);
5261
5262         return count;
5263 }
5264 EXPORT_SYMBOL_GPL(perf_event_read_value);
5265
5266 static int __perf_read_group_add(struct perf_event *leader,
5267                                         u64 read_format, u64 *values)
5268 {
5269         struct perf_event_context *ctx = leader->ctx;
5270         struct perf_event *sub;
5271         unsigned long flags;
5272         int n = 1; /* skip @nr */
5273         int ret;
5274
5275         ret = perf_event_read(leader, true);
5276         if (ret)
5277                 return ret;
5278
5279         raw_spin_lock_irqsave(&ctx->lock, flags);
5280
5281         /*
5282          * Since we co-schedule groups, {enabled,running} times of siblings
5283          * will be identical to those of the leader, so we only publish one
5284          * set.
5285          */
5286         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5287                 values[n++] += leader->total_time_enabled +
5288                         atomic64_read(&leader->child_total_time_enabled);
5289         }
5290
5291         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5292                 values[n++] += leader->total_time_running +
5293                         atomic64_read(&leader->child_total_time_running);
5294         }
5295
5296         /*
5297          * Write {count,id} tuples for every sibling.
5298          */
5299         values[n++] += perf_event_count(leader);
5300         if (read_format & PERF_FORMAT_ID)
5301                 values[n++] = primary_event_id(leader);
5302         if (read_format & PERF_FORMAT_LOST)
5303                 values[n++] = atomic64_read(&leader->lost_samples);
5304
5305         for_each_sibling_event(sub, leader) {
5306                 values[n++] += perf_event_count(sub);
5307                 if (read_format & PERF_FORMAT_ID)
5308                         values[n++] = primary_event_id(sub);
5309                 if (read_format & PERF_FORMAT_LOST)
5310                         values[n++] = atomic64_read(&sub->lost_samples);
5311         }
5312
5313         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5314         return 0;
5315 }
5316
5317 static int perf_read_group(struct perf_event *event,
5318                                    u64 read_format, char __user *buf)
5319 {
5320         struct perf_event *leader = event->group_leader, *child;
5321         struct perf_event_context *ctx = leader->ctx;
5322         int ret;
5323         u64 *values;
5324
5325         lockdep_assert_held(&ctx->mutex);
5326
5327         values = kzalloc(event->read_size, GFP_KERNEL);
5328         if (!values)
5329                 return -ENOMEM;
5330
5331         values[0] = 1 + leader->nr_siblings;
5332
5333         /*
5334          * By locking the child_mutex of the leader we effectively
5335          * lock the child list of all siblings.. XXX explain how.
5336          */
5337         mutex_lock(&leader->child_mutex);
5338
5339         ret = __perf_read_group_add(leader, read_format, values);
5340         if (ret)
5341                 goto unlock;
5342
5343         list_for_each_entry(child, &leader->child_list, child_list) {
5344                 ret = __perf_read_group_add(child, read_format, values);
5345                 if (ret)
5346                         goto unlock;
5347         }
5348
5349         mutex_unlock(&leader->child_mutex);
5350
5351         ret = event->read_size;
5352         if (copy_to_user(buf, values, event->read_size))
5353                 ret = -EFAULT;
5354         goto out;
5355
5356 unlock:
5357         mutex_unlock(&leader->child_mutex);
5358 out:
5359         kfree(values);
5360         return ret;
5361 }
5362
5363 static int perf_read_one(struct perf_event *event,
5364                                  u64 read_format, char __user *buf)
5365 {
5366         u64 enabled, running;
5367         u64 values[5];
5368         int n = 0;
5369
5370         values[n++] = __perf_event_read_value(event, &enabled, &running);
5371         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5372                 values[n++] = enabled;
5373         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5374                 values[n++] = running;
5375         if (read_format & PERF_FORMAT_ID)
5376                 values[n++] = primary_event_id(event);
5377         if (read_format & PERF_FORMAT_LOST)
5378                 values[n++] = atomic64_read(&event->lost_samples);
5379
5380         if (copy_to_user(buf, values, n * sizeof(u64)))
5381                 return -EFAULT;
5382
5383         return n * sizeof(u64);
5384 }
5385
5386 static bool is_event_hup(struct perf_event *event)
5387 {
5388         bool no_children;
5389
5390         if (event->state > PERF_EVENT_STATE_EXIT)
5391                 return false;
5392
5393         mutex_lock(&event->child_mutex);
5394         no_children = list_empty(&event->child_list);
5395         mutex_unlock(&event->child_mutex);
5396         return no_children;
5397 }
5398
5399 /*
5400  * Read the performance event - simple non blocking version for now
5401  */
5402 static ssize_t
5403 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5404 {
5405         u64 read_format = event->attr.read_format;
5406         int ret;
5407
5408         /*
5409          * Return end-of-file for a read on an event that is in
5410          * error state (i.e. because it was pinned but it couldn't be
5411          * scheduled on to the CPU at some point).
5412          */
5413         if (event->state == PERF_EVENT_STATE_ERROR)
5414                 return 0;
5415
5416         if (count < event->read_size)
5417                 return -ENOSPC;
5418
5419         WARN_ON_ONCE(event->ctx->parent_ctx);
5420         if (read_format & PERF_FORMAT_GROUP)
5421                 ret = perf_read_group(event, read_format, buf);
5422         else
5423                 ret = perf_read_one(event, read_format, buf);
5424
5425         return ret;
5426 }
5427
5428 static ssize_t
5429 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5430 {
5431         struct perf_event *event = file->private_data;
5432         struct perf_event_context *ctx;
5433         int ret;
5434
5435         ret = security_perf_event_read(event);
5436         if (ret)
5437                 return ret;
5438
5439         ctx = perf_event_ctx_lock(event);
5440         ret = __perf_read(event, buf, count);
5441         perf_event_ctx_unlock(event, ctx);
5442
5443         return ret;
5444 }
5445
5446 static __poll_t perf_poll(struct file *file, poll_table *wait)
5447 {
5448         struct perf_event *event = file->private_data;
5449         struct perf_buffer *rb;
5450         __poll_t events = EPOLLHUP;
5451
5452         poll_wait(file, &event->waitq, wait);
5453
5454         if (is_event_hup(event))
5455                 return events;
5456
5457         /*
5458          * Pin the event->rb by taking event->mmap_mutex; otherwise
5459          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5460          */
5461         mutex_lock(&event->mmap_mutex);
5462         rb = event->rb;
5463         if (rb)
5464                 events = atomic_xchg(&rb->poll, 0);
5465         mutex_unlock(&event->mmap_mutex);
5466         return events;
5467 }
5468
5469 static void _perf_event_reset(struct perf_event *event)
5470 {
5471         (void)perf_event_read(event, false);
5472         local64_set(&event->count, 0);
5473         perf_event_update_userpage(event);
5474 }
5475
5476 /* Assume it's not an event with inherit set. */
5477 u64 perf_event_pause(struct perf_event *event, bool reset)
5478 {
5479         struct perf_event_context *ctx;
5480         u64 count;
5481
5482         ctx = perf_event_ctx_lock(event);
5483         WARN_ON_ONCE(event->attr.inherit);
5484         _perf_event_disable(event);
5485         count = local64_read(&event->count);
5486         if (reset)
5487                 local64_set(&event->count, 0);
5488         perf_event_ctx_unlock(event, ctx);
5489
5490         return count;
5491 }
5492 EXPORT_SYMBOL_GPL(perf_event_pause);
5493
5494 /*
5495  * Holding the top-level event's child_mutex means that any
5496  * descendant process that has inherited this event will block
5497  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5498  * task existence requirements of perf_event_enable/disable.
5499  */
5500 static void perf_event_for_each_child(struct perf_event *event,
5501                                         void (*func)(struct perf_event *))
5502 {
5503         struct perf_event *child;
5504
5505         WARN_ON_ONCE(event->ctx->parent_ctx);
5506
5507         mutex_lock(&event->child_mutex);
5508         func(event);
5509         list_for_each_entry(child, &event->child_list, child_list)
5510                 func(child);
5511         mutex_unlock(&event->child_mutex);
5512 }
5513
5514 static void perf_event_for_each(struct perf_event *event,
5515                                   void (*func)(struct perf_event *))
5516 {
5517         struct perf_event_context *ctx = event->ctx;
5518         struct perf_event *sibling;
5519
5520         lockdep_assert_held(&ctx->mutex);
5521
5522         event = event->group_leader;
5523
5524         perf_event_for_each_child(event, func);
5525         for_each_sibling_event(sibling, event)
5526                 perf_event_for_each_child(sibling, func);
5527 }
5528
5529 static void __perf_event_period(struct perf_event *event,
5530                                 struct perf_cpu_context *cpuctx,
5531                                 struct perf_event_context *ctx,
5532                                 void *info)
5533 {
5534         u64 value = *((u64 *)info);
5535         bool active;
5536
5537         if (event->attr.freq) {
5538                 event->attr.sample_freq = value;
5539         } else {
5540                 event->attr.sample_period = value;
5541                 event->hw.sample_period = value;
5542         }
5543
5544         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5545         if (active) {
5546                 perf_pmu_disable(ctx->pmu);
5547                 /*
5548                  * We could be throttled; unthrottle now to avoid the tick
5549                  * trying to unthrottle while we already re-started the event.
5550                  */
5551                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5552                         event->hw.interrupts = 0;
5553                         perf_log_throttle(event, 1);
5554                 }
5555                 event->pmu->stop(event, PERF_EF_UPDATE);
5556         }
5557
5558         local64_set(&event->hw.period_left, 0);
5559
5560         if (active) {
5561                 event->pmu->start(event, PERF_EF_RELOAD);
5562                 perf_pmu_enable(ctx->pmu);
5563         }
5564 }
5565
5566 static int perf_event_check_period(struct perf_event *event, u64 value)
5567 {
5568         return event->pmu->check_period(event, value);
5569 }
5570
5571 static int _perf_event_period(struct perf_event *event, u64 value)
5572 {
5573         if (!is_sampling_event(event))
5574                 return -EINVAL;
5575
5576         if (!value)
5577                 return -EINVAL;
5578
5579         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5580                 return -EINVAL;
5581
5582         if (perf_event_check_period(event, value))
5583                 return -EINVAL;
5584
5585         if (!event->attr.freq && (value & (1ULL << 63)))
5586                 return -EINVAL;
5587
5588         event_function_call(event, __perf_event_period, &value);
5589
5590         return 0;
5591 }
5592
5593 int perf_event_period(struct perf_event *event, u64 value)
5594 {
5595         struct perf_event_context *ctx;
5596         int ret;
5597
5598         ctx = perf_event_ctx_lock(event);
5599         ret = _perf_event_period(event, value);
5600         perf_event_ctx_unlock(event, ctx);
5601
5602         return ret;
5603 }
5604 EXPORT_SYMBOL_GPL(perf_event_period);
5605
5606 static const struct file_operations perf_fops;
5607
5608 static inline int perf_fget_light(int fd, struct fd *p)
5609 {
5610         struct fd f = fdget(fd);
5611         if (!f.file)
5612                 return -EBADF;
5613
5614         if (f.file->f_op != &perf_fops) {
5615                 fdput(f);
5616                 return -EBADF;
5617         }
5618         *p = f;
5619         return 0;
5620 }
5621
5622 static int perf_event_set_output(struct perf_event *event,
5623                                  struct perf_event *output_event);
5624 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5625 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5626                           struct perf_event_attr *attr);
5627
5628 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5629 {
5630         void (*func)(struct perf_event *);
5631         u32 flags = arg;
5632
5633         switch (cmd) {
5634         case PERF_EVENT_IOC_ENABLE:
5635                 func = _perf_event_enable;
5636                 break;
5637         case PERF_EVENT_IOC_DISABLE:
5638                 func = _perf_event_disable;
5639                 break;
5640         case PERF_EVENT_IOC_RESET:
5641                 func = _perf_event_reset;
5642                 break;
5643
5644         case PERF_EVENT_IOC_REFRESH:
5645                 return _perf_event_refresh(event, arg);
5646
5647         case PERF_EVENT_IOC_PERIOD:
5648         {
5649                 u64 value;
5650
5651                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5652                         return -EFAULT;
5653
5654                 return _perf_event_period(event, value);
5655         }
5656         case PERF_EVENT_IOC_ID:
5657         {
5658                 u64 id = primary_event_id(event);
5659
5660                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5661                         return -EFAULT;
5662                 return 0;
5663         }
5664
5665         case PERF_EVENT_IOC_SET_OUTPUT:
5666         {
5667                 int ret;
5668                 if (arg != -1) {
5669                         struct perf_event *output_event;
5670                         struct fd output;
5671                         ret = perf_fget_light(arg, &output);
5672                         if (ret)
5673                                 return ret;
5674                         output_event = output.file->private_data;
5675                         ret = perf_event_set_output(event, output_event);
5676                         fdput(output);
5677                 } else {
5678                         ret = perf_event_set_output(event, NULL);
5679                 }
5680                 return ret;
5681         }
5682
5683         case PERF_EVENT_IOC_SET_FILTER:
5684                 return perf_event_set_filter(event, (void __user *)arg);
5685
5686         case PERF_EVENT_IOC_SET_BPF:
5687         {
5688                 struct bpf_prog *prog;
5689                 int err;
5690
5691                 prog = bpf_prog_get(arg);
5692                 if (IS_ERR(prog))
5693                         return PTR_ERR(prog);
5694
5695                 err = perf_event_set_bpf_prog(event, prog, 0);
5696                 if (err) {
5697                         bpf_prog_put(prog);
5698                         return err;
5699                 }
5700
5701                 return 0;
5702         }
5703
5704         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5705                 struct perf_buffer *rb;
5706
5707                 rcu_read_lock();
5708                 rb = rcu_dereference(event->rb);
5709                 if (!rb || !rb->nr_pages) {
5710                         rcu_read_unlock();
5711                         return -EINVAL;
5712                 }
5713                 rb_toggle_paused(rb, !!arg);
5714                 rcu_read_unlock();
5715                 return 0;
5716         }
5717
5718         case PERF_EVENT_IOC_QUERY_BPF:
5719                 return perf_event_query_prog_array(event, (void __user *)arg);
5720
5721         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5722                 struct perf_event_attr new_attr;
5723                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5724                                          &new_attr);
5725
5726                 if (err)
5727                         return err;
5728
5729                 return perf_event_modify_attr(event,  &new_attr);
5730         }
5731         default:
5732                 return -ENOTTY;
5733         }
5734
5735         if (flags & PERF_IOC_FLAG_GROUP)
5736                 perf_event_for_each(event, func);
5737         else
5738                 perf_event_for_each_child(event, func);
5739
5740         return 0;
5741 }
5742
5743 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5744 {
5745         struct perf_event *event = file->private_data;
5746         struct perf_event_context *ctx;
5747         long ret;
5748
5749         /* Treat ioctl like writes as it is likely a mutating operation. */
5750         ret = security_perf_event_write(event);
5751         if (ret)
5752                 return ret;
5753
5754         ctx = perf_event_ctx_lock(event);
5755         ret = _perf_ioctl(event, cmd, arg);
5756         perf_event_ctx_unlock(event, ctx);
5757
5758         return ret;
5759 }
5760
5761 #ifdef CONFIG_COMPAT
5762 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5763                                 unsigned long arg)
5764 {
5765         switch (_IOC_NR(cmd)) {
5766         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5767         case _IOC_NR(PERF_EVENT_IOC_ID):
5768         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5769         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5770                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5771                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5772                         cmd &= ~IOCSIZE_MASK;
5773                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5774                 }
5775                 break;
5776         }
5777         return perf_ioctl(file, cmd, arg);
5778 }
5779 #else
5780 # define perf_compat_ioctl NULL
5781 #endif
5782
5783 int perf_event_task_enable(void)
5784 {
5785         struct perf_event_context *ctx;
5786         struct perf_event *event;
5787
5788         mutex_lock(&current->perf_event_mutex);
5789         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5790                 ctx = perf_event_ctx_lock(event);
5791                 perf_event_for_each_child(event, _perf_event_enable);
5792                 perf_event_ctx_unlock(event, ctx);
5793         }
5794         mutex_unlock(&current->perf_event_mutex);
5795
5796         return 0;
5797 }
5798
5799 int perf_event_task_disable(void)
5800 {
5801         struct perf_event_context *ctx;
5802         struct perf_event *event;
5803
5804         mutex_lock(&current->perf_event_mutex);
5805         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5806                 ctx = perf_event_ctx_lock(event);
5807                 perf_event_for_each_child(event, _perf_event_disable);
5808                 perf_event_ctx_unlock(event, ctx);
5809         }
5810         mutex_unlock(&current->perf_event_mutex);
5811
5812         return 0;
5813 }
5814
5815 static int perf_event_index(struct perf_event *event)
5816 {
5817         if (event->hw.state & PERF_HES_STOPPED)
5818                 return 0;
5819
5820         if (event->state != PERF_EVENT_STATE_ACTIVE)
5821                 return 0;
5822
5823         return event->pmu->event_idx(event);
5824 }
5825
5826 static void perf_event_init_userpage(struct perf_event *event)
5827 {
5828         struct perf_event_mmap_page *userpg;
5829         struct perf_buffer *rb;
5830
5831         rcu_read_lock();
5832         rb = rcu_dereference(event->rb);
5833         if (!rb)
5834                 goto unlock;
5835
5836         userpg = rb->user_page;
5837
5838         /* Allow new userspace to detect that bit 0 is deprecated */
5839         userpg->cap_bit0_is_deprecated = 1;
5840         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5841         userpg->data_offset = PAGE_SIZE;
5842         userpg->data_size = perf_data_size(rb);
5843
5844 unlock:
5845         rcu_read_unlock();
5846 }
5847
5848 void __weak arch_perf_update_userpage(
5849         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5850 {
5851 }
5852
5853 /*
5854  * Callers need to ensure there can be no nesting of this function, otherwise
5855  * the seqlock logic goes bad. We can not serialize this because the arch
5856  * code calls this from NMI context.
5857  */
5858 void perf_event_update_userpage(struct perf_event *event)
5859 {
5860         struct perf_event_mmap_page *userpg;
5861         struct perf_buffer *rb;
5862         u64 enabled, running, now;
5863
5864         rcu_read_lock();
5865         rb = rcu_dereference(event->rb);
5866         if (!rb)
5867                 goto unlock;
5868
5869         /*
5870          * compute total_time_enabled, total_time_running
5871          * based on snapshot values taken when the event
5872          * was last scheduled in.
5873          *
5874          * we cannot simply called update_context_time()
5875          * because of locking issue as we can be called in
5876          * NMI context
5877          */
5878         calc_timer_values(event, &now, &enabled, &running);
5879
5880         userpg = rb->user_page;
5881         /*
5882          * Disable preemption to guarantee consistent time stamps are stored to
5883          * the user page.
5884          */
5885         preempt_disable();
5886         ++userpg->lock;
5887         barrier();
5888         userpg->index = perf_event_index(event);
5889         userpg->offset = perf_event_count(event);
5890         if (userpg->index)
5891                 userpg->offset -= local64_read(&event->hw.prev_count);
5892
5893         userpg->time_enabled = enabled +
5894                         atomic64_read(&event->child_total_time_enabled);
5895
5896         userpg->time_running = running +
5897                         atomic64_read(&event->child_total_time_running);
5898
5899         arch_perf_update_userpage(event, userpg, now);
5900
5901         barrier();
5902         ++userpg->lock;
5903         preempt_enable();
5904 unlock:
5905         rcu_read_unlock();
5906 }
5907 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5908
5909 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5910 {
5911         struct perf_event *event = vmf->vma->vm_file->private_data;
5912         struct perf_buffer *rb;
5913         vm_fault_t ret = VM_FAULT_SIGBUS;
5914
5915         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5916                 if (vmf->pgoff == 0)
5917                         ret = 0;
5918                 return ret;
5919         }
5920
5921         rcu_read_lock();
5922         rb = rcu_dereference(event->rb);
5923         if (!rb)
5924                 goto unlock;
5925
5926         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5927                 goto unlock;
5928
5929         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5930         if (!vmf->page)
5931                 goto unlock;
5932
5933         get_page(vmf->page);
5934         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5935         vmf->page->index   = vmf->pgoff;
5936
5937         ret = 0;
5938 unlock:
5939         rcu_read_unlock();
5940
5941         return ret;
5942 }
5943
5944 static void ring_buffer_attach(struct perf_event *event,
5945                                struct perf_buffer *rb)
5946 {
5947         struct perf_buffer *old_rb = NULL;
5948         unsigned long flags;
5949
5950         WARN_ON_ONCE(event->parent);
5951
5952         if (event->rb) {
5953                 /*
5954                  * Should be impossible, we set this when removing
5955                  * event->rb_entry and wait/clear when adding event->rb_entry.
5956                  */
5957                 WARN_ON_ONCE(event->rcu_pending);
5958
5959                 old_rb = event->rb;
5960                 spin_lock_irqsave(&old_rb->event_lock, flags);
5961                 list_del_rcu(&event->rb_entry);
5962                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5963
5964                 event->rcu_batches = get_state_synchronize_rcu();
5965                 event->rcu_pending = 1;
5966         }
5967
5968         if (rb) {
5969                 if (event->rcu_pending) {
5970                         cond_synchronize_rcu(event->rcu_batches);
5971                         event->rcu_pending = 0;
5972                 }
5973
5974                 spin_lock_irqsave(&rb->event_lock, flags);
5975                 list_add_rcu(&event->rb_entry, &rb->event_list);
5976                 spin_unlock_irqrestore(&rb->event_lock, flags);
5977         }
5978
5979         /*
5980          * Avoid racing with perf_mmap_close(AUX): stop the event
5981          * before swizzling the event::rb pointer; if it's getting
5982          * unmapped, its aux_mmap_count will be 0 and it won't
5983          * restart. See the comment in __perf_pmu_output_stop().
5984          *
5985          * Data will inevitably be lost when set_output is done in
5986          * mid-air, but then again, whoever does it like this is
5987          * not in for the data anyway.
5988          */
5989         if (has_aux(event))
5990                 perf_event_stop(event, 0);
5991
5992         rcu_assign_pointer(event->rb, rb);
5993
5994         if (old_rb) {
5995                 ring_buffer_put(old_rb);
5996                 /*
5997                  * Since we detached before setting the new rb, so that we
5998                  * could attach the new rb, we could have missed a wakeup.
5999                  * Provide it now.
6000                  */
6001                 wake_up_all(&event->waitq);
6002         }
6003 }
6004
6005 static void ring_buffer_wakeup(struct perf_event *event)
6006 {
6007         struct perf_buffer *rb;
6008
6009         if (event->parent)
6010                 event = event->parent;
6011
6012         rcu_read_lock();
6013         rb = rcu_dereference(event->rb);
6014         if (rb) {
6015                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6016                         wake_up_all(&event->waitq);
6017         }
6018         rcu_read_unlock();
6019 }
6020
6021 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6022 {
6023         struct perf_buffer *rb;
6024
6025         if (event->parent)
6026                 event = event->parent;
6027
6028         rcu_read_lock();
6029         rb = rcu_dereference(event->rb);
6030         if (rb) {
6031                 if (!refcount_inc_not_zero(&rb->refcount))
6032                         rb = NULL;
6033         }
6034         rcu_read_unlock();
6035
6036         return rb;
6037 }
6038
6039 void ring_buffer_put(struct perf_buffer *rb)
6040 {
6041         if (!refcount_dec_and_test(&rb->refcount))
6042                 return;
6043
6044         WARN_ON_ONCE(!list_empty(&rb->event_list));
6045
6046         call_rcu(&rb->rcu_head, rb_free_rcu);
6047 }
6048
6049 static void perf_mmap_open(struct vm_area_struct *vma)
6050 {
6051         struct perf_event *event = vma->vm_file->private_data;
6052
6053         atomic_inc(&event->mmap_count);
6054         atomic_inc(&event->rb->mmap_count);
6055
6056         if (vma->vm_pgoff)
6057                 atomic_inc(&event->rb->aux_mmap_count);
6058
6059         if (event->pmu->event_mapped)
6060                 event->pmu->event_mapped(event, vma->vm_mm);
6061 }
6062
6063 static void perf_pmu_output_stop(struct perf_event *event);
6064
6065 /*
6066  * A buffer can be mmap()ed multiple times; either directly through the same
6067  * event, or through other events by use of perf_event_set_output().
6068  *
6069  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6070  * the buffer here, where we still have a VM context. This means we need
6071  * to detach all events redirecting to us.
6072  */
6073 static void perf_mmap_close(struct vm_area_struct *vma)
6074 {
6075         struct perf_event *event = vma->vm_file->private_data;
6076         struct perf_buffer *rb = ring_buffer_get(event);
6077         struct user_struct *mmap_user = rb->mmap_user;
6078         int mmap_locked = rb->mmap_locked;
6079         unsigned long size = perf_data_size(rb);
6080         bool detach_rest = false;
6081
6082         if (event->pmu->event_unmapped)
6083                 event->pmu->event_unmapped(event, vma->vm_mm);
6084
6085         /*
6086          * rb->aux_mmap_count will always drop before rb->mmap_count and
6087          * event->mmap_count, so it is ok to use event->mmap_mutex to
6088          * serialize with perf_mmap here.
6089          */
6090         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6091             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6092                 /*
6093                  * Stop all AUX events that are writing to this buffer,
6094                  * so that we can free its AUX pages and corresponding PMU
6095                  * data. Note that after rb::aux_mmap_count dropped to zero,
6096                  * they won't start any more (see perf_aux_output_begin()).
6097                  */
6098                 perf_pmu_output_stop(event);
6099
6100                 /* now it's safe to free the pages */
6101                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6102                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6103
6104                 /* this has to be the last one */
6105                 rb_free_aux(rb);
6106                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6107
6108                 mutex_unlock(&event->mmap_mutex);
6109         }
6110
6111         if (atomic_dec_and_test(&rb->mmap_count))
6112                 detach_rest = true;
6113
6114         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6115                 goto out_put;
6116
6117         ring_buffer_attach(event, NULL);
6118         mutex_unlock(&event->mmap_mutex);
6119
6120         /* If there's still other mmap()s of this buffer, we're done. */
6121         if (!detach_rest)
6122                 goto out_put;
6123
6124         /*
6125          * No other mmap()s, detach from all other events that might redirect
6126          * into the now unreachable buffer. Somewhat complicated by the
6127          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6128          */
6129 again:
6130         rcu_read_lock();
6131         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6132                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6133                         /*
6134                          * This event is en-route to free_event() which will
6135                          * detach it and remove it from the list.
6136                          */
6137                         continue;
6138                 }
6139                 rcu_read_unlock();
6140
6141                 mutex_lock(&event->mmap_mutex);
6142                 /*
6143                  * Check we didn't race with perf_event_set_output() which can
6144                  * swizzle the rb from under us while we were waiting to
6145                  * acquire mmap_mutex.
6146                  *
6147                  * If we find a different rb; ignore this event, a next
6148                  * iteration will no longer find it on the list. We have to
6149                  * still restart the iteration to make sure we're not now
6150                  * iterating the wrong list.
6151                  */
6152                 if (event->rb == rb)
6153                         ring_buffer_attach(event, NULL);
6154
6155                 mutex_unlock(&event->mmap_mutex);
6156                 put_event(event);
6157
6158                 /*
6159                  * Restart the iteration; either we're on the wrong list or
6160                  * destroyed its integrity by doing a deletion.
6161                  */
6162                 goto again;
6163         }
6164         rcu_read_unlock();
6165
6166         /*
6167          * It could be there's still a few 0-ref events on the list; they'll
6168          * get cleaned up by free_event() -- they'll also still have their
6169          * ref on the rb and will free it whenever they are done with it.
6170          *
6171          * Aside from that, this buffer is 'fully' detached and unmapped,
6172          * undo the VM accounting.
6173          */
6174
6175         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6176                         &mmap_user->locked_vm);
6177         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6178         free_uid(mmap_user);
6179
6180 out_put:
6181         ring_buffer_put(rb); /* could be last */
6182 }
6183
6184 static const struct vm_operations_struct perf_mmap_vmops = {
6185         .open           = perf_mmap_open,
6186         .close          = perf_mmap_close, /* non mergeable */
6187         .fault          = perf_mmap_fault,
6188         .page_mkwrite   = perf_mmap_fault,
6189 };
6190
6191 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6192 {
6193         struct perf_event *event = file->private_data;
6194         unsigned long user_locked, user_lock_limit;
6195         struct user_struct *user = current_user();
6196         struct perf_buffer *rb = NULL;
6197         unsigned long locked, lock_limit;
6198         unsigned long vma_size;
6199         unsigned long nr_pages;
6200         long user_extra = 0, extra = 0;
6201         int ret = 0, flags = 0;
6202
6203         /*
6204          * Don't allow mmap() of inherited per-task counters. This would
6205          * create a performance issue due to all children writing to the
6206          * same rb.
6207          */
6208         if (event->cpu == -1 && event->attr.inherit)
6209                 return -EINVAL;
6210
6211         if (!(vma->vm_flags & VM_SHARED))
6212                 return -EINVAL;
6213
6214         ret = security_perf_event_read(event);
6215         if (ret)
6216                 return ret;
6217
6218         vma_size = vma->vm_end - vma->vm_start;
6219
6220         if (vma->vm_pgoff == 0) {
6221                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6222         } else {
6223                 /*
6224                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6225                  * mapped, all subsequent mappings should have the same size
6226                  * and offset. Must be above the normal perf buffer.
6227                  */
6228                 u64 aux_offset, aux_size;
6229
6230                 if (!event->rb)
6231                         return -EINVAL;
6232
6233                 nr_pages = vma_size / PAGE_SIZE;
6234
6235                 mutex_lock(&event->mmap_mutex);
6236                 ret = -EINVAL;
6237
6238                 rb = event->rb;
6239                 if (!rb)
6240                         goto aux_unlock;
6241
6242                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6243                 aux_size = READ_ONCE(rb->user_page->aux_size);
6244
6245                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6246                         goto aux_unlock;
6247
6248                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6249                         goto aux_unlock;
6250
6251                 /* already mapped with a different offset */
6252                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6253                         goto aux_unlock;
6254
6255                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6256                         goto aux_unlock;
6257
6258                 /* already mapped with a different size */
6259                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6260                         goto aux_unlock;
6261
6262                 if (!is_power_of_2(nr_pages))
6263                         goto aux_unlock;
6264
6265                 if (!atomic_inc_not_zero(&rb->mmap_count))
6266                         goto aux_unlock;
6267
6268                 if (rb_has_aux(rb)) {
6269                         atomic_inc(&rb->aux_mmap_count);
6270                         ret = 0;
6271                         goto unlock;
6272                 }
6273
6274                 atomic_set(&rb->aux_mmap_count, 1);
6275                 user_extra = nr_pages;
6276
6277                 goto accounting;
6278         }
6279
6280         /*
6281          * If we have rb pages ensure they're a power-of-two number, so we
6282          * can do bitmasks instead of modulo.
6283          */
6284         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6285                 return -EINVAL;
6286
6287         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6288                 return -EINVAL;
6289
6290         WARN_ON_ONCE(event->ctx->parent_ctx);
6291 again:
6292         mutex_lock(&event->mmap_mutex);
6293         if (event->rb) {
6294                 if (data_page_nr(event->rb) != nr_pages) {
6295                         ret = -EINVAL;
6296                         goto unlock;
6297                 }
6298
6299                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6300                         /*
6301                          * Raced against perf_mmap_close(); remove the
6302                          * event and try again.
6303                          */
6304                         ring_buffer_attach(event, NULL);
6305                         mutex_unlock(&event->mmap_mutex);
6306                         goto again;
6307                 }
6308
6309                 goto unlock;
6310         }
6311
6312         user_extra = nr_pages + 1;
6313
6314 accounting:
6315         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6316
6317         /*
6318          * Increase the limit linearly with more CPUs:
6319          */
6320         user_lock_limit *= num_online_cpus();
6321
6322         user_locked = atomic_long_read(&user->locked_vm);
6323
6324         /*
6325          * sysctl_perf_event_mlock may have changed, so that
6326          *     user->locked_vm > user_lock_limit
6327          */
6328         if (user_locked > user_lock_limit)
6329                 user_locked = user_lock_limit;
6330         user_locked += user_extra;
6331
6332         if (user_locked > user_lock_limit) {
6333                 /*
6334                  * charge locked_vm until it hits user_lock_limit;
6335                  * charge the rest from pinned_vm
6336                  */
6337                 extra = user_locked - user_lock_limit;
6338                 user_extra -= extra;
6339         }
6340
6341         lock_limit = rlimit(RLIMIT_MEMLOCK);
6342         lock_limit >>= PAGE_SHIFT;
6343         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6344
6345         if ((locked > lock_limit) && perf_is_paranoid() &&
6346                 !capable(CAP_IPC_LOCK)) {
6347                 ret = -EPERM;
6348                 goto unlock;
6349         }
6350
6351         WARN_ON(!rb && event->rb);
6352
6353         if (vma->vm_flags & VM_WRITE)
6354                 flags |= RING_BUFFER_WRITABLE;
6355
6356         if (!rb) {
6357                 rb = rb_alloc(nr_pages,
6358                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6359                               event->cpu, flags);
6360
6361                 if (!rb) {
6362                         ret = -ENOMEM;
6363                         goto unlock;
6364                 }
6365
6366                 atomic_set(&rb->mmap_count, 1);
6367                 rb->mmap_user = get_current_user();
6368                 rb->mmap_locked = extra;
6369
6370                 ring_buffer_attach(event, rb);
6371
6372                 perf_event_update_time(event);
6373                 perf_event_init_userpage(event);
6374                 perf_event_update_userpage(event);
6375         } else {
6376                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6377                                    event->attr.aux_watermark, flags);
6378                 if (!ret)
6379                         rb->aux_mmap_locked = extra;
6380         }
6381
6382 unlock:
6383         if (!ret) {
6384                 atomic_long_add(user_extra, &user->locked_vm);
6385                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6386
6387                 atomic_inc(&event->mmap_count);
6388         } else if (rb) {
6389                 atomic_dec(&rb->mmap_count);
6390         }
6391 aux_unlock:
6392         mutex_unlock(&event->mmap_mutex);
6393
6394         /*
6395          * Since pinned accounting is per vm we cannot allow fork() to copy our
6396          * vma.
6397          */
6398         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6399         vma->vm_ops = &perf_mmap_vmops;
6400
6401         if (event->pmu->event_mapped)
6402                 event->pmu->event_mapped(event, vma->vm_mm);
6403
6404         return ret;
6405 }
6406
6407 static int perf_fasync(int fd, struct file *filp, int on)
6408 {
6409         struct inode *inode = file_inode(filp);
6410         struct perf_event *event = filp->private_data;
6411         int retval;
6412
6413         inode_lock(inode);
6414         retval = fasync_helper(fd, filp, on, &event->fasync);
6415         inode_unlock(inode);
6416
6417         if (retval < 0)
6418                 return retval;
6419
6420         return 0;
6421 }
6422
6423 static const struct file_operations perf_fops = {
6424         .llseek                 = no_llseek,
6425         .release                = perf_release,
6426         .read                   = perf_read,
6427         .poll                   = perf_poll,
6428         .unlocked_ioctl         = perf_ioctl,
6429         .compat_ioctl           = perf_compat_ioctl,
6430         .mmap                   = perf_mmap,
6431         .fasync                 = perf_fasync,
6432 };
6433
6434 /*
6435  * Perf event wakeup
6436  *
6437  * If there's data, ensure we set the poll() state and publish everything
6438  * to user-space before waking everybody up.
6439  */
6440
6441 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6442 {
6443         /* only the parent has fasync state */
6444         if (event->parent)
6445                 event = event->parent;
6446         return &event->fasync;
6447 }
6448
6449 void perf_event_wakeup(struct perf_event *event)
6450 {
6451         ring_buffer_wakeup(event);
6452
6453         if (event->pending_kill) {
6454                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6455                 event->pending_kill = 0;
6456         }
6457 }
6458
6459 static void perf_sigtrap(struct perf_event *event)
6460 {
6461         /*
6462          * We'd expect this to only occur if the irq_work is delayed and either
6463          * ctx->task or current has changed in the meantime. This can be the
6464          * case on architectures that do not implement arch_irq_work_raise().
6465          */
6466         if (WARN_ON_ONCE(event->ctx->task != current))
6467                 return;
6468
6469         /*
6470          * Both perf_pending_task() and perf_pending_irq() can race with the
6471          * task exiting.
6472          */
6473         if (current->flags & PF_EXITING)
6474                 return;
6475
6476         send_sig_perf((void __user *)event->pending_addr,
6477                       event->attr.type, event->attr.sig_data);
6478 }
6479
6480 /*
6481  * Deliver the pending work in-event-context or follow the context.
6482  */
6483 static void __perf_pending_irq(struct perf_event *event)
6484 {
6485         int cpu = READ_ONCE(event->oncpu);
6486
6487         /*
6488          * If the event isn't running; we done. event_sched_out() will have
6489          * taken care of things.
6490          */
6491         if (cpu < 0)
6492                 return;
6493
6494         /*
6495          * Yay, we hit home and are in the context of the event.
6496          */
6497         if (cpu == smp_processor_id()) {
6498                 if (event->pending_sigtrap) {
6499                         event->pending_sigtrap = 0;
6500                         perf_sigtrap(event);
6501                         local_dec(&event->ctx->nr_pending);
6502                 }
6503                 if (event->pending_disable) {
6504                         event->pending_disable = 0;
6505                         perf_event_disable_local(event);
6506                 }
6507                 return;
6508         }
6509
6510         /*
6511          *  CPU-A                       CPU-B
6512          *
6513          *  perf_event_disable_inatomic()
6514          *    @pending_disable = CPU-A;
6515          *    irq_work_queue();
6516          *
6517          *  sched-out
6518          *    @pending_disable = -1;
6519          *
6520          *                              sched-in
6521          *                              perf_event_disable_inatomic()
6522          *                                @pending_disable = CPU-B;
6523          *                                irq_work_queue(); // FAILS
6524          *
6525          *  irq_work_run()
6526          *    perf_pending_irq()
6527          *
6528          * But the event runs on CPU-B and wants disabling there.
6529          */
6530         irq_work_queue_on(&event->pending_irq, cpu);
6531 }
6532
6533 static void perf_pending_irq(struct irq_work *entry)
6534 {
6535         struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6536         int rctx;
6537
6538         /*
6539          * If we 'fail' here, that's OK, it means recursion is already disabled
6540          * and we won't recurse 'further'.
6541          */
6542         rctx = perf_swevent_get_recursion_context();
6543
6544         /*
6545          * The wakeup isn't bound to the context of the event -- it can happen
6546          * irrespective of where the event is.
6547          */
6548         if (event->pending_wakeup) {
6549                 event->pending_wakeup = 0;
6550                 perf_event_wakeup(event);
6551         }
6552
6553         __perf_pending_irq(event);
6554
6555         if (rctx >= 0)
6556                 perf_swevent_put_recursion_context(rctx);
6557 }
6558
6559 static void perf_pending_task(struct callback_head *head)
6560 {
6561         struct perf_event *event = container_of(head, struct perf_event, pending_task);
6562         int rctx;
6563
6564         /*
6565          * If we 'fail' here, that's OK, it means recursion is already disabled
6566          * and we won't recurse 'further'.
6567          */
6568         preempt_disable_notrace();
6569         rctx = perf_swevent_get_recursion_context();
6570
6571         if (event->pending_work) {
6572                 event->pending_work = 0;
6573                 perf_sigtrap(event);
6574                 local_dec(&event->ctx->nr_pending);
6575         }
6576
6577         if (rctx >= 0)
6578                 perf_swevent_put_recursion_context(rctx);
6579         preempt_enable_notrace();
6580 }
6581
6582 #ifdef CONFIG_GUEST_PERF_EVENTS
6583 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6584
6585 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6586 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6587 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6588
6589 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6590 {
6591         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6592                 return;
6593
6594         rcu_assign_pointer(perf_guest_cbs, cbs);
6595         static_call_update(__perf_guest_state, cbs->state);
6596         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6597
6598         /* Implementing ->handle_intel_pt_intr is optional. */
6599         if (cbs->handle_intel_pt_intr)
6600                 static_call_update(__perf_guest_handle_intel_pt_intr,
6601                                    cbs->handle_intel_pt_intr);
6602 }
6603 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6604
6605 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6606 {
6607         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6608                 return;
6609
6610         rcu_assign_pointer(perf_guest_cbs, NULL);
6611         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6612         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6613         static_call_update(__perf_guest_handle_intel_pt_intr,
6614                            (void *)&__static_call_return0);
6615         synchronize_rcu();
6616 }
6617 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6618 #endif
6619
6620 static void
6621 perf_output_sample_regs(struct perf_output_handle *handle,
6622                         struct pt_regs *regs, u64 mask)
6623 {
6624         int bit;
6625         DECLARE_BITMAP(_mask, 64);
6626
6627         bitmap_from_u64(_mask, mask);
6628         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6629                 u64 val;
6630
6631                 val = perf_reg_value(regs, bit);
6632                 perf_output_put(handle, val);
6633         }
6634 }
6635
6636 static void perf_sample_regs_user(struct perf_regs *regs_user,
6637                                   struct pt_regs *regs)
6638 {
6639         if (user_mode(regs)) {
6640                 regs_user->abi = perf_reg_abi(current);
6641                 regs_user->regs = regs;
6642         } else if (!(current->flags & PF_KTHREAD)) {
6643                 perf_get_regs_user(regs_user, regs);
6644         } else {
6645                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6646                 regs_user->regs = NULL;
6647         }
6648 }
6649
6650 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6651                                   struct pt_regs *regs)
6652 {
6653         regs_intr->regs = regs;
6654         regs_intr->abi  = perf_reg_abi(current);
6655 }
6656
6657
6658 /*
6659  * Get remaining task size from user stack pointer.
6660  *
6661  * It'd be better to take stack vma map and limit this more
6662  * precisely, but there's no way to get it safely under interrupt,
6663  * so using TASK_SIZE as limit.
6664  */
6665 static u64 perf_ustack_task_size(struct pt_regs *regs)
6666 {
6667         unsigned long addr = perf_user_stack_pointer(regs);
6668
6669         if (!addr || addr >= TASK_SIZE)
6670                 return 0;
6671
6672         return TASK_SIZE - addr;
6673 }
6674
6675 static u16
6676 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6677                         struct pt_regs *regs)
6678 {
6679         u64 task_size;
6680
6681         /* No regs, no stack pointer, no dump. */
6682         if (!regs)
6683                 return 0;
6684
6685         /*
6686          * Check if we fit in with the requested stack size into the:
6687          * - TASK_SIZE
6688          *   If we don't, we limit the size to the TASK_SIZE.
6689          *
6690          * - remaining sample size
6691          *   If we don't, we customize the stack size to
6692          *   fit in to the remaining sample size.
6693          */
6694
6695         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6696         stack_size = min(stack_size, (u16) task_size);
6697
6698         /* Current header size plus static size and dynamic size. */
6699         header_size += 2 * sizeof(u64);
6700
6701         /* Do we fit in with the current stack dump size? */
6702         if ((u16) (header_size + stack_size) < header_size) {
6703                 /*
6704                  * If we overflow the maximum size for the sample,
6705                  * we customize the stack dump size to fit in.
6706                  */
6707                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6708                 stack_size = round_up(stack_size, sizeof(u64));
6709         }
6710
6711         return stack_size;
6712 }
6713
6714 static void
6715 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6716                           struct pt_regs *regs)
6717 {
6718         /* Case of a kernel thread, nothing to dump */
6719         if (!regs) {
6720                 u64 size = 0;
6721                 perf_output_put(handle, size);
6722         } else {
6723                 unsigned long sp;
6724                 unsigned int rem;
6725                 u64 dyn_size;
6726
6727                 /*
6728                  * We dump:
6729                  * static size
6730                  *   - the size requested by user or the best one we can fit
6731                  *     in to the sample max size
6732                  * data
6733                  *   - user stack dump data
6734                  * dynamic size
6735                  *   - the actual dumped size
6736                  */
6737
6738                 /* Static size. */
6739                 perf_output_put(handle, dump_size);
6740
6741                 /* Data. */
6742                 sp = perf_user_stack_pointer(regs);
6743                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6744                 dyn_size = dump_size - rem;
6745
6746                 perf_output_skip(handle, rem);
6747
6748                 /* Dynamic size. */
6749                 perf_output_put(handle, dyn_size);
6750         }
6751 }
6752
6753 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6754                                           struct perf_sample_data *data,
6755                                           size_t size)
6756 {
6757         struct perf_event *sampler = event->aux_event;
6758         struct perf_buffer *rb;
6759
6760         data->aux_size = 0;
6761
6762         if (!sampler)
6763                 goto out;
6764
6765         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6766                 goto out;
6767
6768         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6769                 goto out;
6770
6771         rb = ring_buffer_get(sampler);
6772         if (!rb)
6773                 goto out;
6774
6775         /*
6776          * If this is an NMI hit inside sampling code, don't take
6777          * the sample. See also perf_aux_sample_output().
6778          */
6779         if (READ_ONCE(rb->aux_in_sampling)) {
6780                 data->aux_size = 0;
6781         } else {
6782                 size = min_t(size_t, size, perf_aux_size(rb));
6783                 data->aux_size = ALIGN(size, sizeof(u64));
6784         }
6785         ring_buffer_put(rb);
6786
6787 out:
6788         return data->aux_size;
6789 }
6790
6791 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6792                                  struct perf_event *event,
6793                                  struct perf_output_handle *handle,
6794                                  unsigned long size)
6795 {
6796         unsigned long flags;
6797         long ret;
6798
6799         /*
6800          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6801          * paths. If we start calling them in NMI context, they may race with
6802          * the IRQ ones, that is, for example, re-starting an event that's just
6803          * been stopped, which is why we're using a separate callback that
6804          * doesn't change the event state.
6805          *
6806          * IRQs need to be disabled to prevent IPIs from racing with us.
6807          */
6808         local_irq_save(flags);
6809         /*
6810          * Guard against NMI hits inside the critical section;
6811          * see also perf_prepare_sample_aux().
6812          */
6813         WRITE_ONCE(rb->aux_in_sampling, 1);
6814         barrier();
6815
6816         ret = event->pmu->snapshot_aux(event, handle, size);
6817
6818         barrier();
6819         WRITE_ONCE(rb->aux_in_sampling, 0);
6820         local_irq_restore(flags);
6821
6822         return ret;
6823 }
6824
6825 static void perf_aux_sample_output(struct perf_event *event,
6826                                    struct perf_output_handle *handle,
6827                                    struct perf_sample_data *data)
6828 {
6829         struct perf_event *sampler = event->aux_event;
6830         struct perf_buffer *rb;
6831         unsigned long pad;
6832         long size;
6833
6834         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6835                 return;
6836
6837         rb = ring_buffer_get(sampler);
6838         if (!rb)
6839                 return;
6840
6841         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6842
6843         /*
6844          * An error here means that perf_output_copy() failed (returned a
6845          * non-zero surplus that it didn't copy), which in its current
6846          * enlightened implementation is not possible. If that changes, we'd
6847          * like to know.
6848          */
6849         if (WARN_ON_ONCE(size < 0))
6850                 goto out_put;
6851
6852         /*
6853          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6854          * perf_prepare_sample_aux(), so should not be more than that.
6855          */
6856         pad = data->aux_size - size;
6857         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6858                 pad = 8;
6859
6860         if (pad) {
6861                 u64 zero = 0;
6862                 perf_output_copy(handle, &zero, pad);
6863         }
6864
6865 out_put:
6866         ring_buffer_put(rb);
6867 }
6868
6869 static void __perf_event_header__init_id(struct perf_event_header *header,
6870                                          struct perf_sample_data *data,
6871                                          struct perf_event *event,
6872                                          u64 sample_type)
6873 {
6874         data->type = event->attr.sample_type;
6875         header->size += event->id_header_size;
6876
6877         if (sample_type & PERF_SAMPLE_TID) {
6878                 /* namespace issues */
6879                 data->tid_entry.pid = perf_event_pid(event, current);
6880                 data->tid_entry.tid = perf_event_tid(event, current);
6881         }
6882
6883         if (sample_type & PERF_SAMPLE_TIME)
6884                 data->time = perf_event_clock(event);
6885
6886         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6887                 data->id = primary_event_id(event);
6888
6889         if (sample_type & PERF_SAMPLE_STREAM_ID)
6890                 data->stream_id = event->id;
6891
6892         if (sample_type & PERF_SAMPLE_CPU) {
6893                 data->cpu_entry.cpu      = raw_smp_processor_id();
6894                 data->cpu_entry.reserved = 0;
6895         }
6896 }
6897
6898 void perf_event_header__init_id(struct perf_event_header *header,
6899                                 struct perf_sample_data *data,
6900                                 struct perf_event *event)
6901 {
6902         if (event->attr.sample_id_all)
6903                 __perf_event_header__init_id(header, data, event, event->attr.sample_type);
6904 }
6905
6906 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6907                                            struct perf_sample_data *data)
6908 {
6909         u64 sample_type = data->type;
6910
6911         if (sample_type & PERF_SAMPLE_TID)
6912                 perf_output_put(handle, data->tid_entry);
6913
6914         if (sample_type & PERF_SAMPLE_TIME)
6915                 perf_output_put(handle, data->time);
6916
6917         if (sample_type & PERF_SAMPLE_ID)
6918                 perf_output_put(handle, data->id);
6919
6920         if (sample_type & PERF_SAMPLE_STREAM_ID)
6921                 perf_output_put(handle, data->stream_id);
6922
6923         if (sample_type & PERF_SAMPLE_CPU)
6924                 perf_output_put(handle, data->cpu_entry);
6925
6926         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6927                 perf_output_put(handle, data->id);
6928 }
6929
6930 void perf_event__output_id_sample(struct perf_event *event,
6931                                   struct perf_output_handle *handle,
6932                                   struct perf_sample_data *sample)
6933 {
6934         if (event->attr.sample_id_all)
6935                 __perf_event__output_id_sample(handle, sample);
6936 }
6937
6938 static void perf_output_read_one(struct perf_output_handle *handle,
6939                                  struct perf_event *event,
6940                                  u64 enabled, u64 running)
6941 {
6942         u64 read_format = event->attr.read_format;
6943         u64 values[5];
6944         int n = 0;
6945
6946         values[n++] = perf_event_count(event);
6947         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6948                 values[n++] = enabled +
6949                         atomic64_read(&event->child_total_time_enabled);
6950         }
6951         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6952                 values[n++] = running +
6953                         atomic64_read(&event->child_total_time_running);
6954         }
6955         if (read_format & PERF_FORMAT_ID)
6956                 values[n++] = primary_event_id(event);
6957         if (read_format & PERF_FORMAT_LOST)
6958                 values[n++] = atomic64_read(&event->lost_samples);
6959
6960         __output_copy(handle, values, n * sizeof(u64));
6961 }
6962
6963 static void perf_output_read_group(struct perf_output_handle *handle,
6964                             struct perf_event *event,
6965                             u64 enabled, u64 running)
6966 {
6967         struct perf_event *leader = event->group_leader, *sub;
6968         u64 read_format = event->attr.read_format;
6969         unsigned long flags;
6970         u64 values[6];
6971         int n = 0;
6972
6973         /*
6974          * Disabling interrupts avoids all counter scheduling
6975          * (context switches, timer based rotation and IPIs).
6976          */
6977         local_irq_save(flags);
6978
6979         values[n++] = 1 + leader->nr_siblings;
6980
6981         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6982                 values[n++] = enabled;
6983
6984         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6985                 values[n++] = running;
6986
6987         if ((leader != event) &&
6988             (leader->state == PERF_EVENT_STATE_ACTIVE))
6989                 leader->pmu->read(leader);
6990
6991         values[n++] = perf_event_count(leader);
6992         if (read_format & PERF_FORMAT_ID)
6993                 values[n++] = primary_event_id(leader);
6994         if (read_format & PERF_FORMAT_LOST)
6995                 values[n++] = atomic64_read(&leader->lost_samples);
6996
6997         __output_copy(handle, values, n * sizeof(u64));
6998
6999         for_each_sibling_event(sub, leader) {
7000                 n = 0;
7001
7002                 if ((sub != event) &&
7003                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7004                         sub->pmu->read(sub);
7005
7006                 values[n++] = perf_event_count(sub);
7007                 if (read_format & PERF_FORMAT_ID)
7008                         values[n++] = primary_event_id(sub);
7009                 if (read_format & PERF_FORMAT_LOST)
7010                         values[n++] = atomic64_read(&sub->lost_samples);
7011
7012                 __output_copy(handle, values, n * sizeof(u64));
7013         }
7014
7015         local_irq_restore(flags);
7016 }
7017
7018 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7019                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7020
7021 /*
7022  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7023  *
7024  * The problem is that its both hard and excessively expensive to iterate the
7025  * child list, not to mention that its impossible to IPI the children running
7026  * on another CPU, from interrupt/NMI context.
7027  */
7028 static void perf_output_read(struct perf_output_handle *handle,
7029                              struct perf_event *event)
7030 {
7031         u64 enabled = 0, running = 0, now;
7032         u64 read_format = event->attr.read_format;
7033
7034         /*
7035          * compute total_time_enabled, total_time_running
7036          * based on snapshot values taken when the event
7037          * was last scheduled in.
7038          *
7039          * we cannot simply called update_context_time()
7040          * because of locking issue as we are called in
7041          * NMI context
7042          */
7043         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7044                 calc_timer_values(event, &now, &enabled, &running);
7045
7046         if (event->attr.read_format & PERF_FORMAT_GROUP)
7047                 perf_output_read_group(handle, event, enabled, running);
7048         else
7049                 perf_output_read_one(handle, event, enabled, running);
7050 }
7051
7052 void perf_output_sample(struct perf_output_handle *handle,
7053                         struct perf_event_header *header,
7054                         struct perf_sample_data *data,
7055                         struct perf_event *event)
7056 {
7057         u64 sample_type = data->type;
7058
7059         perf_output_put(handle, *header);
7060
7061         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7062                 perf_output_put(handle, data->id);
7063
7064         if (sample_type & PERF_SAMPLE_IP)
7065                 perf_output_put(handle, data->ip);
7066
7067         if (sample_type & PERF_SAMPLE_TID)
7068                 perf_output_put(handle, data->tid_entry);
7069
7070         if (sample_type & PERF_SAMPLE_TIME)
7071                 perf_output_put(handle, data->time);
7072
7073         if (sample_type & PERF_SAMPLE_ADDR)
7074                 perf_output_put(handle, data->addr);
7075
7076         if (sample_type & PERF_SAMPLE_ID)
7077                 perf_output_put(handle, data->id);
7078
7079         if (sample_type & PERF_SAMPLE_STREAM_ID)
7080                 perf_output_put(handle, data->stream_id);
7081
7082         if (sample_type & PERF_SAMPLE_CPU)
7083                 perf_output_put(handle, data->cpu_entry);
7084
7085         if (sample_type & PERF_SAMPLE_PERIOD)
7086                 perf_output_put(handle, data->period);
7087
7088         if (sample_type & PERF_SAMPLE_READ)
7089                 perf_output_read(handle, event);
7090
7091         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7092                 int size = 1;
7093
7094                 size += data->callchain->nr;
7095                 size *= sizeof(u64);
7096                 __output_copy(handle, data->callchain, size);
7097         }
7098
7099         if (sample_type & PERF_SAMPLE_RAW) {
7100                 struct perf_raw_record *raw = data->raw;
7101
7102                 if (raw) {
7103                         struct perf_raw_frag *frag = &raw->frag;
7104
7105                         perf_output_put(handle, raw->size);
7106                         do {
7107                                 if (frag->copy) {
7108                                         __output_custom(handle, frag->copy,
7109                                                         frag->data, frag->size);
7110                                 } else {
7111                                         __output_copy(handle, frag->data,
7112                                                       frag->size);
7113                                 }
7114                                 if (perf_raw_frag_last(frag))
7115                                         break;
7116                                 frag = frag->next;
7117                         } while (1);
7118                         if (frag->pad)
7119                                 __output_skip(handle, NULL, frag->pad);
7120                 } else {
7121                         struct {
7122                                 u32     size;
7123                                 u32     data;
7124                         } raw = {
7125                                 .size = sizeof(u32),
7126                                 .data = 0,
7127                         };
7128                         perf_output_put(handle, raw);
7129                 }
7130         }
7131
7132         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7133                 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) {
7134                         size_t size;
7135
7136                         size = data->br_stack->nr
7137                              * sizeof(struct perf_branch_entry);
7138
7139                         perf_output_put(handle, data->br_stack->nr);
7140                         if (branch_sample_hw_index(event))
7141                                 perf_output_put(handle, data->br_stack->hw_idx);
7142                         perf_output_copy(handle, data->br_stack->entries, size);
7143                 } else {
7144                         /*
7145                          * we always store at least the value of nr
7146                          */
7147                         u64 nr = 0;
7148                         perf_output_put(handle, nr);
7149                 }
7150         }
7151
7152         if (sample_type & PERF_SAMPLE_REGS_USER) {
7153                 u64 abi = data->regs_user.abi;
7154
7155                 /*
7156                  * If there are no regs to dump, notice it through
7157                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7158                  */
7159                 perf_output_put(handle, abi);
7160
7161                 if (abi) {
7162                         u64 mask = event->attr.sample_regs_user;
7163                         perf_output_sample_regs(handle,
7164                                                 data->regs_user.regs,
7165                                                 mask);
7166                 }
7167         }
7168
7169         if (sample_type & PERF_SAMPLE_STACK_USER) {
7170                 perf_output_sample_ustack(handle,
7171                                           data->stack_user_size,
7172                                           data->regs_user.regs);
7173         }
7174
7175         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7176                 perf_output_put(handle, data->weight.full);
7177
7178         if (sample_type & PERF_SAMPLE_DATA_SRC)
7179                 perf_output_put(handle, data->data_src.val);
7180
7181         if (sample_type & PERF_SAMPLE_TRANSACTION)
7182                 perf_output_put(handle, data->txn);
7183
7184         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7185                 u64 abi = data->regs_intr.abi;
7186                 /*
7187                  * If there are no regs to dump, notice it through
7188                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7189                  */
7190                 perf_output_put(handle, abi);
7191
7192                 if (abi) {
7193                         u64 mask = event->attr.sample_regs_intr;
7194
7195                         perf_output_sample_regs(handle,
7196                                                 data->regs_intr.regs,
7197                                                 mask);
7198                 }
7199         }
7200
7201         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7202                 perf_output_put(handle, data->phys_addr);
7203
7204         if (sample_type & PERF_SAMPLE_CGROUP)
7205                 perf_output_put(handle, data->cgroup);
7206
7207         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7208                 perf_output_put(handle, data->data_page_size);
7209
7210         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7211                 perf_output_put(handle, data->code_page_size);
7212
7213         if (sample_type & PERF_SAMPLE_AUX) {
7214                 perf_output_put(handle, data->aux_size);
7215
7216                 if (data->aux_size)
7217                         perf_aux_sample_output(event, handle, data);
7218         }
7219
7220         if (!event->attr.watermark) {
7221                 int wakeup_events = event->attr.wakeup_events;
7222
7223                 if (wakeup_events) {
7224                         struct perf_buffer *rb = handle->rb;
7225                         int events = local_inc_return(&rb->events);
7226
7227                         if (events >= wakeup_events) {
7228                                 local_sub(wakeup_events, &rb->events);
7229                                 local_inc(&rb->wakeup);
7230                         }
7231                 }
7232         }
7233 }
7234
7235 static u64 perf_virt_to_phys(u64 virt)
7236 {
7237         u64 phys_addr = 0;
7238
7239         if (!virt)
7240                 return 0;
7241
7242         if (virt >= TASK_SIZE) {
7243                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7244                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7245                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7246                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7247         } else {
7248                 /*
7249                  * Walking the pages tables for user address.
7250                  * Interrupts are disabled, so it prevents any tear down
7251                  * of the page tables.
7252                  * Try IRQ-safe get_user_page_fast_only first.
7253                  * If failed, leave phys_addr as 0.
7254                  */
7255                 if (current->mm != NULL) {
7256                         struct page *p;
7257
7258                         pagefault_disable();
7259                         if (get_user_page_fast_only(virt, 0, &p)) {
7260                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7261                                 put_page(p);
7262                         }
7263                         pagefault_enable();
7264                 }
7265         }
7266
7267         return phys_addr;
7268 }
7269
7270 /*
7271  * Return the pagetable size of a given virtual address.
7272  */
7273 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7274 {
7275         u64 size = 0;
7276
7277 #ifdef CONFIG_HAVE_FAST_GUP
7278         pgd_t *pgdp, pgd;
7279         p4d_t *p4dp, p4d;
7280         pud_t *pudp, pud;
7281         pmd_t *pmdp, pmd;
7282         pte_t *ptep, pte;
7283
7284         pgdp = pgd_offset(mm, addr);
7285         pgd = READ_ONCE(*pgdp);
7286         if (pgd_none(pgd))
7287                 return 0;
7288
7289         if (pgd_leaf(pgd))
7290                 return pgd_leaf_size(pgd);
7291
7292         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7293         p4d = READ_ONCE(*p4dp);
7294         if (!p4d_present(p4d))
7295                 return 0;
7296
7297         if (p4d_leaf(p4d))
7298                 return p4d_leaf_size(p4d);
7299
7300         pudp = pud_offset_lockless(p4dp, p4d, addr);
7301         pud = READ_ONCE(*pudp);
7302         if (!pud_present(pud))
7303                 return 0;
7304
7305         if (pud_leaf(pud))
7306                 return pud_leaf_size(pud);
7307
7308         pmdp = pmd_offset_lockless(pudp, pud, addr);
7309         pmd = READ_ONCE(*pmdp);
7310         if (!pmd_present(pmd))
7311                 return 0;
7312
7313         if (pmd_leaf(pmd))
7314                 return pmd_leaf_size(pmd);
7315
7316         ptep = pte_offset_map(&pmd, addr);
7317         pte = ptep_get_lockless(ptep);
7318         if (pte_present(pte))
7319                 size = pte_leaf_size(pte);
7320         pte_unmap(ptep);
7321 #endif /* CONFIG_HAVE_FAST_GUP */
7322
7323         return size;
7324 }
7325
7326 static u64 perf_get_page_size(unsigned long addr)
7327 {
7328         struct mm_struct *mm;
7329         unsigned long flags;
7330         u64 size;
7331
7332         if (!addr)
7333                 return 0;
7334
7335         /*
7336          * Software page-table walkers must disable IRQs,
7337          * which prevents any tear down of the page tables.
7338          */
7339         local_irq_save(flags);
7340
7341         mm = current->mm;
7342         if (!mm) {
7343                 /*
7344                  * For kernel threads and the like, use init_mm so that
7345                  * we can find kernel memory.
7346                  */
7347                 mm = &init_mm;
7348         }
7349
7350         size = perf_get_pgtable_size(mm, addr);
7351
7352         local_irq_restore(flags);
7353
7354         return size;
7355 }
7356
7357 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7358
7359 struct perf_callchain_entry *
7360 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7361 {
7362         bool kernel = !event->attr.exclude_callchain_kernel;
7363         bool user   = !event->attr.exclude_callchain_user;
7364         /* Disallow cross-task user callchains. */
7365         bool crosstask = event->ctx->task && event->ctx->task != current;
7366         const u32 max_stack = event->attr.sample_max_stack;
7367         struct perf_callchain_entry *callchain;
7368
7369         if (!kernel && !user)
7370                 return &__empty_callchain;
7371
7372         callchain = get_perf_callchain(regs, 0, kernel, user,
7373                                        max_stack, crosstask, true);
7374         return callchain ?: &__empty_callchain;
7375 }
7376
7377 void perf_prepare_sample(struct perf_event_header *header,
7378                          struct perf_sample_data *data,
7379                          struct perf_event *event,
7380                          struct pt_regs *regs)
7381 {
7382         u64 sample_type = event->attr.sample_type;
7383         u64 filtered_sample_type;
7384
7385         header->type = PERF_RECORD_SAMPLE;
7386         header->size = sizeof(*header) + event->header_size;
7387
7388         header->misc = 0;
7389         header->misc |= perf_misc_flags(regs);
7390
7391         /*
7392          * Clear the sample flags that have already been done by the
7393          * PMU driver.
7394          */
7395         filtered_sample_type = sample_type & ~data->sample_flags;
7396         __perf_event_header__init_id(header, data, event, filtered_sample_type);
7397
7398         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7399                 data->ip = perf_instruction_pointer(regs);
7400
7401         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7402                 int size = 1;
7403
7404                 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7405                         data->callchain = perf_callchain(event, regs);
7406
7407                 size += data->callchain->nr;
7408
7409                 header->size += size * sizeof(u64);
7410         }
7411
7412         if (sample_type & PERF_SAMPLE_RAW) {
7413                 struct perf_raw_record *raw = data->raw;
7414                 int size;
7415
7416                 if (raw && (data->sample_flags & PERF_SAMPLE_RAW)) {
7417                         struct perf_raw_frag *frag = &raw->frag;
7418                         u32 sum = 0;
7419
7420                         do {
7421                                 sum += frag->size;
7422                                 if (perf_raw_frag_last(frag))
7423                                         break;
7424                                 frag = frag->next;
7425                         } while (1);
7426
7427                         size = round_up(sum + sizeof(u32), sizeof(u64));
7428                         raw->size = size - sizeof(u32);
7429                         frag->pad = raw->size - sum;
7430                 } else {
7431                         size = sizeof(u64);
7432                         data->raw = NULL;
7433                 }
7434
7435                 header->size += size;
7436         }
7437
7438         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7439                 int size = sizeof(u64); /* nr */
7440                 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) {
7441                         if (branch_sample_hw_index(event))
7442                                 size += sizeof(u64);
7443
7444                         size += data->br_stack->nr
7445                               * sizeof(struct perf_branch_entry);
7446                 }
7447                 header->size += size;
7448         }
7449
7450         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7451                 perf_sample_regs_user(&data->regs_user, regs);
7452
7453         if (sample_type & PERF_SAMPLE_REGS_USER) {
7454                 /* regs dump ABI info */
7455                 int size = sizeof(u64);
7456
7457                 if (data->regs_user.regs) {
7458                         u64 mask = event->attr.sample_regs_user;
7459                         size += hweight64(mask) * sizeof(u64);
7460                 }
7461
7462                 header->size += size;
7463         }
7464
7465         if (sample_type & PERF_SAMPLE_STACK_USER) {
7466                 /*
7467                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7468                  * processed as the last one or have additional check added
7469                  * in case new sample type is added, because we could eat
7470                  * up the rest of the sample size.
7471                  */
7472                 u16 stack_size = event->attr.sample_stack_user;
7473                 u16 size = sizeof(u64);
7474
7475                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7476                                                      data->regs_user.regs);
7477
7478                 /*
7479                  * If there is something to dump, add space for the dump
7480                  * itself and for the field that tells the dynamic size,
7481                  * which is how many have been actually dumped.
7482                  */
7483                 if (stack_size)
7484                         size += sizeof(u64) + stack_size;
7485
7486                 data->stack_user_size = stack_size;
7487                 header->size += size;
7488         }
7489
7490         if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7491                 data->weight.full = 0;
7492
7493         if (filtered_sample_type & PERF_SAMPLE_DATA_SRC)
7494                 data->data_src.val = PERF_MEM_NA;
7495
7496         if (filtered_sample_type & PERF_SAMPLE_TRANSACTION)
7497                 data->txn = 0;
7498
7499         if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_DATA_PAGE_SIZE)) {
7500                 if (filtered_sample_type & PERF_SAMPLE_ADDR)
7501                         data->addr = 0;
7502         }
7503
7504         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7505                 /* regs dump ABI info */
7506                 int size = sizeof(u64);
7507
7508                 perf_sample_regs_intr(&data->regs_intr, regs);
7509
7510                 if (data->regs_intr.regs) {
7511                         u64 mask = event->attr.sample_regs_intr;
7512
7513                         size += hweight64(mask) * sizeof(u64);
7514                 }
7515
7516                 header->size += size;
7517         }
7518
7519         if (sample_type & PERF_SAMPLE_PHYS_ADDR &&
7520             filtered_sample_type & PERF_SAMPLE_PHYS_ADDR)
7521                 data->phys_addr = perf_virt_to_phys(data->addr);
7522
7523 #ifdef CONFIG_CGROUP_PERF
7524         if (sample_type & PERF_SAMPLE_CGROUP) {
7525                 struct cgroup *cgrp;
7526
7527                 /* protected by RCU */
7528                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7529                 data->cgroup = cgroup_id(cgrp);
7530         }
7531 #endif
7532
7533         /*
7534          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7535          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7536          * but the value will not dump to the userspace.
7537          */
7538         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7539                 data->data_page_size = perf_get_page_size(data->addr);
7540
7541         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7542                 data->code_page_size = perf_get_page_size(data->ip);
7543
7544         if (sample_type & PERF_SAMPLE_AUX) {
7545                 u64 size;
7546
7547                 header->size += sizeof(u64); /* size */
7548
7549                 /*
7550                  * Given the 16bit nature of header::size, an AUX sample can
7551                  * easily overflow it, what with all the preceding sample bits.
7552                  * Make sure this doesn't happen by using up to U16_MAX bytes
7553                  * per sample in total (rounded down to 8 byte boundary).
7554                  */
7555                 size = min_t(size_t, U16_MAX - header->size,
7556                              event->attr.aux_sample_size);
7557                 size = rounddown(size, 8);
7558                 size = perf_prepare_sample_aux(event, data, size);
7559
7560                 WARN_ON_ONCE(size + header->size > U16_MAX);
7561                 header->size += size;
7562         }
7563         /*
7564          * If you're adding more sample types here, you likely need to do
7565          * something about the overflowing header::size, like repurpose the
7566          * lowest 3 bits of size, which should be always zero at the moment.
7567          * This raises a more important question, do we really need 512k sized
7568          * samples and why, so good argumentation is in order for whatever you
7569          * do here next.
7570          */
7571         WARN_ON_ONCE(header->size & 7);
7572 }
7573
7574 static __always_inline int
7575 __perf_event_output(struct perf_event *event,
7576                     struct perf_sample_data *data,
7577                     struct pt_regs *regs,
7578                     int (*output_begin)(struct perf_output_handle *,
7579                                         struct perf_sample_data *,
7580                                         struct perf_event *,
7581                                         unsigned int))
7582 {
7583         struct perf_output_handle handle;
7584         struct perf_event_header header;
7585         int err;
7586
7587         /* protect the callchain buffers */
7588         rcu_read_lock();
7589
7590         perf_prepare_sample(&header, data, event, regs);
7591
7592         err = output_begin(&handle, data, event, header.size);
7593         if (err)
7594                 goto exit;
7595
7596         perf_output_sample(&handle, &header, data, event);
7597
7598         perf_output_end(&handle);
7599
7600 exit:
7601         rcu_read_unlock();
7602         return err;
7603 }
7604
7605 void
7606 perf_event_output_forward(struct perf_event *event,
7607                          struct perf_sample_data *data,
7608                          struct pt_regs *regs)
7609 {
7610         __perf_event_output(event, data, regs, perf_output_begin_forward);
7611 }
7612
7613 void
7614 perf_event_output_backward(struct perf_event *event,
7615                            struct perf_sample_data *data,
7616                            struct pt_regs *regs)
7617 {
7618         __perf_event_output(event, data, regs, perf_output_begin_backward);
7619 }
7620
7621 int
7622 perf_event_output(struct perf_event *event,
7623                   struct perf_sample_data *data,
7624                   struct pt_regs *regs)
7625 {
7626         return __perf_event_output(event, data, regs, perf_output_begin);
7627 }
7628
7629 /*
7630  * read event_id
7631  */
7632
7633 struct perf_read_event {
7634         struct perf_event_header        header;
7635
7636         u32                             pid;
7637         u32                             tid;
7638 };
7639
7640 static void
7641 perf_event_read_event(struct perf_event *event,
7642                         struct task_struct *task)
7643 {
7644         struct perf_output_handle handle;
7645         struct perf_sample_data sample;
7646         struct perf_read_event read_event = {
7647                 .header = {
7648                         .type = PERF_RECORD_READ,
7649                         .misc = 0,
7650                         .size = sizeof(read_event) + event->read_size,
7651                 },
7652                 .pid = perf_event_pid(event, task),
7653                 .tid = perf_event_tid(event, task),
7654         };
7655         int ret;
7656
7657         perf_event_header__init_id(&read_event.header, &sample, event);
7658         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7659         if (ret)
7660                 return;
7661
7662         perf_output_put(&handle, read_event);
7663         perf_output_read(&handle, event);
7664         perf_event__output_id_sample(event, &handle, &sample);
7665
7666         perf_output_end(&handle);
7667 }
7668
7669 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7670
7671 static void
7672 perf_iterate_ctx(struct perf_event_context *ctx,
7673                    perf_iterate_f output,
7674                    void *data, bool all)
7675 {
7676         struct perf_event *event;
7677
7678         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7679                 if (!all) {
7680                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7681                                 continue;
7682                         if (!event_filter_match(event))
7683                                 continue;
7684                 }
7685
7686                 output(event, data);
7687         }
7688 }
7689
7690 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7691 {
7692         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7693         struct perf_event *event;
7694
7695         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7696                 /*
7697                  * Skip events that are not fully formed yet; ensure that
7698                  * if we observe event->ctx, both event and ctx will be
7699                  * complete enough. See perf_install_in_context().
7700                  */
7701                 if (!smp_load_acquire(&event->ctx))
7702                         continue;
7703
7704                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7705                         continue;
7706                 if (!event_filter_match(event))
7707                         continue;
7708                 output(event, data);
7709         }
7710 }
7711
7712 /*
7713  * Iterate all events that need to receive side-band events.
7714  *
7715  * For new callers; ensure that account_pmu_sb_event() includes
7716  * your event, otherwise it might not get delivered.
7717  */
7718 static void
7719 perf_iterate_sb(perf_iterate_f output, void *data,
7720                struct perf_event_context *task_ctx)
7721 {
7722         struct perf_event_context *ctx;
7723         int ctxn;
7724
7725         rcu_read_lock();
7726         preempt_disable();
7727
7728         /*
7729          * If we have task_ctx != NULL we only notify the task context itself.
7730          * The task_ctx is set only for EXIT events before releasing task
7731          * context.
7732          */
7733         if (task_ctx) {
7734                 perf_iterate_ctx(task_ctx, output, data, false);
7735                 goto done;
7736         }
7737
7738         perf_iterate_sb_cpu(output, data);
7739
7740         for_each_task_context_nr(ctxn) {
7741                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7742                 if (ctx)
7743                         perf_iterate_ctx(ctx, output, data, false);
7744         }
7745 done:
7746         preempt_enable();
7747         rcu_read_unlock();
7748 }
7749
7750 /*
7751  * Clear all file-based filters at exec, they'll have to be
7752  * re-instated when/if these objects are mmapped again.
7753  */
7754 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7755 {
7756         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7757         struct perf_addr_filter *filter;
7758         unsigned int restart = 0, count = 0;
7759         unsigned long flags;
7760
7761         if (!has_addr_filter(event))
7762                 return;
7763
7764         raw_spin_lock_irqsave(&ifh->lock, flags);
7765         list_for_each_entry(filter, &ifh->list, entry) {
7766                 if (filter->path.dentry) {
7767                         event->addr_filter_ranges[count].start = 0;
7768                         event->addr_filter_ranges[count].size = 0;
7769                         restart++;
7770                 }
7771
7772                 count++;
7773         }
7774
7775         if (restart)
7776                 event->addr_filters_gen++;
7777         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7778
7779         if (restart)
7780                 perf_event_stop(event, 1);
7781 }
7782
7783 void perf_event_exec(void)
7784 {
7785         struct perf_event_context *ctx;
7786         int ctxn;
7787
7788         for_each_task_context_nr(ctxn) {
7789                 perf_event_enable_on_exec(ctxn);
7790                 perf_event_remove_on_exec(ctxn);
7791
7792                 rcu_read_lock();
7793                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7794                 if (ctx) {
7795                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7796                                          NULL, true);
7797                 }
7798                 rcu_read_unlock();
7799         }
7800 }
7801
7802 struct remote_output {
7803         struct perf_buffer      *rb;
7804         int                     err;
7805 };
7806
7807 static void __perf_event_output_stop(struct perf_event *event, void *data)
7808 {
7809         struct perf_event *parent = event->parent;
7810         struct remote_output *ro = data;
7811         struct perf_buffer *rb = ro->rb;
7812         struct stop_event_data sd = {
7813                 .event  = event,
7814         };
7815
7816         if (!has_aux(event))
7817                 return;
7818
7819         if (!parent)
7820                 parent = event;
7821
7822         /*
7823          * In case of inheritance, it will be the parent that links to the
7824          * ring-buffer, but it will be the child that's actually using it.
7825          *
7826          * We are using event::rb to determine if the event should be stopped,
7827          * however this may race with ring_buffer_attach() (through set_output),
7828          * which will make us skip the event that actually needs to be stopped.
7829          * So ring_buffer_attach() has to stop an aux event before re-assigning
7830          * its rb pointer.
7831          */
7832         if (rcu_dereference(parent->rb) == rb)
7833                 ro->err = __perf_event_stop(&sd);
7834 }
7835
7836 static int __perf_pmu_output_stop(void *info)
7837 {
7838         struct perf_event *event = info;
7839         struct pmu *pmu = event->ctx->pmu;
7840         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7841         struct remote_output ro = {
7842                 .rb     = event->rb,
7843         };
7844
7845         rcu_read_lock();
7846         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7847         if (cpuctx->task_ctx)
7848                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7849                                    &ro, false);
7850         rcu_read_unlock();
7851
7852         return ro.err;
7853 }
7854
7855 static void perf_pmu_output_stop(struct perf_event *event)
7856 {
7857         struct perf_event *iter;
7858         int err, cpu;
7859
7860 restart:
7861         rcu_read_lock();
7862         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7863                 /*
7864                  * For per-CPU events, we need to make sure that neither they
7865                  * nor their children are running; for cpu==-1 events it's
7866                  * sufficient to stop the event itself if it's active, since
7867                  * it can't have children.
7868                  */
7869                 cpu = iter->cpu;
7870                 if (cpu == -1)
7871                         cpu = READ_ONCE(iter->oncpu);
7872
7873                 if (cpu == -1)
7874                         continue;
7875
7876                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7877                 if (err == -EAGAIN) {
7878                         rcu_read_unlock();
7879                         goto restart;
7880                 }
7881         }
7882         rcu_read_unlock();
7883 }
7884
7885 /*
7886  * task tracking -- fork/exit
7887  *
7888  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7889  */
7890
7891 struct perf_task_event {
7892         struct task_struct              *task;
7893         struct perf_event_context       *task_ctx;
7894
7895         struct {
7896                 struct perf_event_header        header;
7897
7898                 u32                             pid;
7899                 u32                             ppid;
7900                 u32                             tid;
7901                 u32                             ptid;
7902                 u64                             time;
7903         } event_id;
7904 };
7905
7906 static int perf_event_task_match(struct perf_event *event)
7907 {
7908         return event->attr.comm  || event->attr.mmap ||
7909                event->attr.mmap2 || event->attr.mmap_data ||
7910                event->attr.task;
7911 }
7912
7913 static void perf_event_task_output(struct perf_event *event,
7914                                    void *data)
7915 {
7916         struct perf_task_event *task_event = data;
7917         struct perf_output_handle handle;
7918         struct perf_sample_data sample;
7919         struct task_struct *task = task_event->task;
7920         int ret, size = task_event->event_id.header.size;
7921
7922         if (!perf_event_task_match(event))
7923                 return;
7924
7925         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7926
7927         ret = perf_output_begin(&handle, &sample, event,
7928                                 task_event->event_id.header.size);
7929         if (ret)
7930                 goto out;
7931
7932         task_event->event_id.pid = perf_event_pid(event, task);
7933         task_event->event_id.tid = perf_event_tid(event, task);
7934
7935         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7936                 task_event->event_id.ppid = perf_event_pid(event,
7937                                                         task->real_parent);
7938                 task_event->event_id.ptid = perf_event_pid(event,
7939                                                         task->real_parent);
7940         } else {  /* PERF_RECORD_FORK */
7941                 task_event->event_id.ppid = perf_event_pid(event, current);
7942                 task_event->event_id.ptid = perf_event_tid(event, current);
7943         }
7944
7945         task_event->event_id.time = perf_event_clock(event);
7946
7947         perf_output_put(&handle, task_event->event_id);
7948
7949         perf_event__output_id_sample(event, &handle, &sample);
7950
7951         perf_output_end(&handle);
7952 out:
7953         task_event->event_id.header.size = size;
7954 }
7955
7956 static void perf_event_task(struct task_struct *task,
7957                               struct perf_event_context *task_ctx,
7958                               int new)
7959 {
7960         struct perf_task_event task_event;
7961
7962         if (!atomic_read(&nr_comm_events) &&
7963             !atomic_read(&nr_mmap_events) &&
7964             !atomic_read(&nr_task_events))
7965                 return;
7966
7967         task_event = (struct perf_task_event){
7968                 .task     = task,
7969                 .task_ctx = task_ctx,
7970                 .event_id    = {
7971                         .header = {
7972                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7973                                 .misc = 0,
7974                                 .size = sizeof(task_event.event_id),
7975                         },
7976                         /* .pid  */
7977                         /* .ppid */
7978                         /* .tid  */
7979                         /* .ptid */
7980                         /* .time */
7981                 },
7982         };
7983
7984         perf_iterate_sb(perf_event_task_output,
7985                        &task_event,
7986                        task_ctx);
7987 }
7988
7989 void perf_event_fork(struct task_struct *task)
7990 {
7991         perf_event_task(task, NULL, 1);
7992         perf_event_namespaces(task);
7993 }
7994
7995 /*
7996  * comm tracking
7997  */
7998
7999 struct perf_comm_event {
8000         struct task_struct      *task;
8001         char                    *comm;
8002         int                     comm_size;
8003
8004         struct {
8005                 struct perf_event_header        header;
8006
8007                 u32                             pid;
8008                 u32                             tid;
8009         } event_id;
8010 };
8011
8012 static int perf_event_comm_match(struct perf_event *event)
8013 {
8014         return event->attr.comm;
8015 }
8016
8017 static void perf_event_comm_output(struct perf_event *event,
8018                                    void *data)
8019 {
8020         struct perf_comm_event *comm_event = data;
8021         struct perf_output_handle handle;
8022         struct perf_sample_data sample;
8023         int size = comm_event->event_id.header.size;
8024         int ret;
8025
8026         if (!perf_event_comm_match(event))
8027                 return;
8028
8029         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8030         ret = perf_output_begin(&handle, &sample, event,
8031                                 comm_event->event_id.header.size);
8032
8033         if (ret)
8034                 goto out;
8035
8036         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8037         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8038
8039         perf_output_put(&handle, comm_event->event_id);
8040         __output_copy(&handle, comm_event->comm,
8041                                    comm_event->comm_size);
8042
8043         perf_event__output_id_sample(event, &handle, &sample);
8044
8045         perf_output_end(&handle);
8046 out:
8047         comm_event->event_id.header.size = size;
8048 }
8049
8050 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8051 {
8052         char comm[TASK_COMM_LEN];
8053         unsigned int size;
8054
8055         memset(comm, 0, sizeof(comm));
8056         strlcpy(comm, comm_event->task->comm, sizeof(comm));
8057         size = ALIGN(strlen(comm)+1, sizeof(u64));
8058
8059         comm_event->comm = comm;
8060         comm_event->comm_size = size;
8061
8062         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8063
8064         perf_iterate_sb(perf_event_comm_output,
8065                        comm_event,
8066                        NULL);
8067 }
8068
8069 void perf_event_comm(struct task_struct *task, bool exec)
8070 {
8071         struct perf_comm_event comm_event;
8072
8073         if (!atomic_read(&nr_comm_events))
8074                 return;
8075
8076         comm_event = (struct perf_comm_event){
8077                 .task   = task,
8078                 /* .comm      */
8079                 /* .comm_size */
8080                 .event_id  = {
8081                         .header = {
8082                                 .type = PERF_RECORD_COMM,
8083                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8084                                 /* .size */
8085                         },
8086                         /* .pid */
8087                         /* .tid */
8088                 },
8089         };
8090
8091         perf_event_comm_event(&comm_event);
8092 }
8093
8094 /*
8095  * namespaces tracking
8096  */
8097
8098 struct perf_namespaces_event {
8099         struct task_struct              *task;
8100
8101         struct {
8102                 struct perf_event_header        header;
8103
8104                 u32                             pid;
8105                 u32                             tid;
8106                 u64                             nr_namespaces;
8107                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8108         } event_id;
8109 };
8110
8111 static int perf_event_namespaces_match(struct perf_event *event)
8112 {
8113         return event->attr.namespaces;
8114 }
8115
8116 static void perf_event_namespaces_output(struct perf_event *event,
8117                                          void *data)
8118 {
8119         struct perf_namespaces_event *namespaces_event = data;
8120         struct perf_output_handle handle;
8121         struct perf_sample_data sample;
8122         u16 header_size = namespaces_event->event_id.header.size;
8123         int ret;
8124
8125         if (!perf_event_namespaces_match(event))
8126                 return;
8127
8128         perf_event_header__init_id(&namespaces_event->event_id.header,
8129                                    &sample, event);
8130         ret = perf_output_begin(&handle, &sample, event,
8131                                 namespaces_event->event_id.header.size);
8132         if (ret)
8133                 goto out;
8134
8135         namespaces_event->event_id.pid = perf_event_pid(event,
8136                                                         namespaces_event->task);
8137         namespaces_event->event_id.tid = perf_event_tid(event,
8138                                                         namespaces_event->task);
8139
8140         perf_output_put(&handle, namespaces_event->event_id);
8141
8142         perf_event__output_id_sample(event, &handle, &sample);
8143
8144         perf_output_end(&handle);
8145 out:
8146         namespaces_event->event_id.header.size = header_size;
8147 }
8148
8149 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8150                                    struct task_struct *task,
8151                                    const struct proc_ns_operations *ns_ops)
8152 {
8153         struct path ns_path;
8154         struct inode *ns_inode;
8155         int error;
8156
8157         error = ns_get_path(&ns_path, task, ns_ops);
8158         if (!error) {
8159                 ns_inode = ns_path.dentry->d_inode;
8160                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8161                 ns_link_info->ino = ns_inode->i_ino;
8162                 path_put(&ns_path);
8163         }
8164 }
8165
8166 void perf_event_namespaces(struct task_struct *task)
8167 {
8168         struct perf_namespaces_event namespaces_event;
8169         struct perf_ns_link_info *ns_link_info;
8170
8171         if (!atomic_read(&nr_namespaces_events))
8172                 return;
8173
8174         namespaces_event = (struct perf_namespaces_event){
8175                 .task   = task,
8176                 .event_id  = {
8177                         .header = {
8178                                 .type = PERF_RECORD_NAMESPACES,
8179                                 .misc = 0,
8180                                 .size = sizeof(namespaces_event.event_id),
8181                         },
8182                         /* .pid */
8183                         /* .tid */
8184                         .nr_namespaces = NR_NAMESPACES,
8185                         /* .link_info[NR_NAMESPACES] */
8186                 },
8187         };
8188
8189         ns_link_info = namespaces_event.event_id.link_info;
8190
8191         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8192                                task, &mntns_operations);
8193
8194 #ifdef CONFIG_USER_NS
8195         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8196                                task, &userns_operations);
8197 #endif
8198 #ifdef CONFIG_NET_NS
8199         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8200                                task, &netns_operations);
8201 #endif
8202 #ifdef CONFIG_UTS_NS
8203         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8204                                task, &utsns_operations);
8205 #endif
8206 #ifdef CONFIG_IPC_NS
8207         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8208                                task, &ipcns_operations);
8209 #endif
8210 #ifdef CONFIG_PID_NS
8211         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8212                                task, &pidns_operations);
8213 #endif
8214 #ifdef CONFIG_CGROUPS
8215         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8216                                task, &cgroupns_operations);
8217 #endif
8218
8219         perf_iterate_sb(perf_event_namespaces_output,
8220                         &namespaces_event,
8221                         NULL);
8222 }
8223
8224 /*
8225  * cgroup tracking
8226  */
8227 #ifdef CONFIG_CGROUP_PERF
8228
8229 struct perf_cgroup_event {
8230         char                            *path;
8231         int                             path_size;
8232         struct {
8233                 struct perf_event_header        header;
8234                 u64                             id;
8235                 char                            path[];
8236         } event_id;
8237 };
8238
8239 static int perf_event_cgroup_match(struct perf_event *event)
8240 {
8241         return event->attr.cgroup;
8242 }
8243
8244 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8245 {
8246         struct perf_cgroup_event *cgroup_event = data;
8247         struct perf_output_handle handle;
8248         struct perf_sample_data sample;
8249         u16 header_size = cgroup_event->event_id.header.size;
8250         int ret;
8251
8252         if (!perf_event_cgroup_match(event))
8253                 return;
8254
8255         perf_event_header__init_id(&cgroup_event->event_id.header,
8256                                    &sample, event);
8257         ret = perf_output_begin(&handle, &sample, event,
8258                                 cgroup_event->event_id.header.size);
8259         if (ret)
8260                 goto out;
8261
8262         perf_output_put(&handle, cgroup_event->event_id);
8263         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8264
8265         perf_event__output_id_sample(event, &handle, &sample);
8266
8267         perf_output_end(&handle);
8268 out:
8269         cgroup_event->event_id.header.size = header_size;
8270 }
8271
8272 static void perf_event_cgroup(struct cgroup *cgrp)
8273 {
8274         struct perf_cgroup_event cgroup_event;
8275         char path_enomem[16] = "//enomem";
8276         char *pathname;
8277         size_t size;
8278
8279         if (!atomic_read(&nr_cgroup_events))
8280                 return;
8281
8282         cgroup_event = (struct perf_cgroup_event){
8283                 .event_id  = {
8284                         .header = {
8285                                 .type = PERF_RECORD_CGROUP,
8286                                 .misc = 0,
8287                                 .size = sizeof(cgroup_event.event_id),
8288                         },
8289                         .id = cgroup_id(cgrp),
8290                 },
8291         };
8292
8293         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8294         if (pathname == NULL) {
8295                 cgroup_event.path = path_enomem;
8296         } else {
8297                 /* just to be sure to have enough space for alignment */
8298                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8299                 cgroup_event.path = pathname;
8300         }
8301
8302         /*
8303          * Since our buffer works in 8 byte units we need to align our string
8304          * size to a multiple of 8. However, we must guarantee the tail end is
8305          * zero'd out to avoid leaking random bits to userspace.
8306          */
8307         size = strlen(cgroup_event.path) + 1;
8308         while (!IS_ALIGNED(size, sizeof(u64)))
8309                 cgroup_event.path[size++] = '\0';
8310
8311         cgroup_event.event_id.header.size += size;
8312         cgroup_event.path_size = size;
8313
8314         perf_iterate_sb(perf_event_cgroup_output,
8315                         &cgroup_event,
8316                         NULL);
8317
8318         kfree(pathname);
8319 }
8320
8321 #endif
8322
8323 /*
8324  * mmap tracking
8325  */
8326
8327 struct perf_mmap_event {
8328         struct vm_area_struct   *vma;
8329
8330         const char              *file_name;
8331         int                     file_size;
8332         int                     maj, min;
8333         u64                     ino;
8334         u64                     ino_generation;
8335         u32                     prot, flags;
8336         u8                      build_id[BUILD_ID_SIZE_MAX];
8337         u32                     build_id_size;
8338
8339         struct {
8340                 struct perf_event_header        header;
8341
8342                 u32                             pid;
8343                 u32                             tid;
8344                 u64                             start;
8345                 u64                             len;
8346                 u64                             pgoff;
8347         } event_id;
8348 };
8349
8350 static int perf_event_mmap_match(struct perf_event *event,
8351                                  void *data)
8352 {
8353         struct perf_mmap_event *mmap_event = data;
8354         struct vm_area_struct *vma = mmap_event->vma;
8355         int executable = vma->vm_flags & VM_EXEC;
8356
8357         return (!executable && event->attr.mmap_data) ||
8358                (executable && (event->attr.mmap || event->attr.mmap2));
8359 }
8360
8361 static void perf_event_mmap_output(struct perf_event *event,
8362                                    void *data)
8363 {
8364         struct perf_mmap_event *mmap_event = data;
8365         struct perf_output_handle handle;
8366         struct perf_sample_data sample;
8367         int size = mmap_event->event_id.header.size;
8368         u32 type = mmap_event->event_id.header.type;
8369         bool use_build_id;
8370         int ret;
8371
8372         if (!perf_event_mmap_match(event, data))
8373                 return;
8374
8375         if (event->attr.mmap2) {
8376                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8377                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8378                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8379                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8380                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8381                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8382                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8383         }
8384
8385         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8386         ret = perf_output_begin(&handle, &sample, event,
8387                                 mmap_event->event_id.header.size);
8388         if (ret)
8389                 goto out;
8390
8391         mmap_event->event_id.pid = perf_event_pid(event, current);
8392         mmap_event->event_id.tid = perf_event_tid(event, current);
8393
8394         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8395
8396         if (event->attr.mmap2 && use_build_id)
8397                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8398
8399         perf_output_put(&handle, mmap_event->event_id);
8400
8401         if (event->attr.mmap2) {
8402                 if (use_build_id) {
8403                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8404
8405                         __output_copy(&handle, size, 4);
8406                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8407                 } else {
8408                         perf_output_put(&handle, mmap_event->maj);
8409                         perf_output_put(&handle, mmap_event->min);
8410                         perf_output_put(&handle, mmap_event->ino);
8411                         perf_output_put(&handle, mmap_event->ino_generation);
8412                 }
8413                 perf_output_put(&handle, mmap_event->prot);
8414                 perf_output_put(&handle, mmap_event->flags);
8415         }
8416
8417         __output_copy(&handle, mmap_event->file_name,
8418                                    mmap_event->file_size);
8419
8420         perf_event__output_id_sample(event, &handle, &sample);
8421
8422         perf_output_end(&handle);
8423 out:
8424         mmap_event->event_id.header.size = size;
8425         mmap_event->event_id.header.type = type;
8426 }
8427
8428 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8429 {
8430         struct vm_area_struct *vma = mmap_event->vma;
8431         struct file *file = vma->vm_file;
8432         int maj = 0, min = 0;
8433         u64 ino = 0, gen = 0;
8434         u32 prot = 0, flags = 0;
8435         unsigned int size;
8436         char tmp[16];
8437         char *buf = NULL;
8438         char *name;
8439
8440         if (vma->vm_flags & VM_READ)
8441                 prot |= PROT_READ;
8442         if (vma->vm_flags & VM_WRITE)
8443                 prot |= PROT_WRITE;
8444         if (vma->vm_flags & VM_EXEC)
8445                 prot |= PROT_EXEC;
8446
8447         if (vma->vm_flags & VM_MAYSHARE)
8448                 flags = MAP_SHARED;
8449         else
8450                 flags = MAP_PRIVATE;
8451
8452         if (vma->vm_flags & VM_LOCKED)
8453                 flags |= MAP_LOCKED;
8454         if (is_vm_hugetlb_page(vma))
8455                 flags |= MAP_HUGETLB;
8456
8457         if (file) {
8458                 struct inode *inode;
8459                 dev_t dev;
8460
8461                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8462                 if (!buf) {
8463                         name = "//enomem";
8464                         goto cpy_name;
8465                 }
8466                 /*
8467                  * d_path() works from the end of the rb backwards, so we
8468                  * need to add enough zero bytes after the string to handle
8469                  * the 64bit alignment we do later.
8470                  */
8471                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8472                 if (IS_ERR(name)) {
8473                         name = "//toolong";
8474                         goto cpy_name;
8475                 }
8476                 inode = file_inode(vma->vm_file);
8477                 dev = inode->i_sb->s_dev;
8478                 ino = inode->i_ino;
8479                 gen = inode->i_generation;
8480                 maj = MAJOR(dev);
8481                 min = MINOR(dev);
8482
8483                 goto got_name;
8484         } else {
8485                 if (vma->vm_ops && vma->vm_ops->name) {
8486                         name = (char *) vma->vm_ops->name(vma);
8487                         if (name)
8488                                 goto cpy_name;
8489                 }
8490
8491                 name = (char *)arch_vma_name(vma);
8492                 if (name)
8493                         goto cpy_name;
8494
8495                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8496                                 vma->vm_end >= vma->vm_mm->brk) {
8497                         name = "[heap]";
8498                         goto cpy_name;
8499                 }
8500                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8501                                 vma->vm_end >= vma->vm_mm->start_stack) {
8502                         name = "[stack]";
8503                         goto cpy_name;
8504                 }
8505
8506                 name = "//anon";
8507                 goto cpy_name;
8508         }
8509
8510 cpy_name:
8511         strlcpy(tmp, name, sizeof(tmp));
8512         name = tmp;
8513 got_name:
8514         /*
8515          * Since our buffer works in 8 byte units we need to align our string
8516          * size to a multiple of 8. However, we must guarantee the tail end is
8517          * zero'd out to avoid leaking random bits to userspace.
8518          */
8519         size = strlen(name)+1;
8520         while (!IS_ALIGNED(size, sizeof(u64)))
8521                 name[size++] = '\0';
8522
8523         mmap_event->file_name = name;
8524         mmap_event->file_size = size;
8525         mmap_event->maj = maj;
8526         mmap_event->min = min;
8527         mmap_event->ino = ino;
8528         mmap_event->ino_generation = gen;
8529         mmap_event->prot = prot;
8530         mmap_event->flags = flags;
8531
8532         if (!(vma->vm_flags & VM_EXEC))
8533                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8534
8535         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8536
8537         if (atomic_read(&nr_build_id_events))
8538                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8539
8540         perf_iterate_sb(perf_event_mmap_output,
8541                        mmap_event,
8542                        NULL);
8543
8544         kfree(buf);
8545 }
8546
8547 /*
8548  * Check whether inode and address range match filter criteria.
8549  */
8550 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8551                                      struct file *file, unsigned long offset,
8552                                      unsigned long size)
8553 {
8554         /* d_inode(NULL) won't be equal to any mapped user-space file */
8555         if (!filter->path.dentry)
8556                 return false;
8557
8558         if (d_inode(filter->path.dentry) != file_inode(file))
8559                 return false;
8560
8561         if (filter->offset > offset + size)
8562                 return false;
8563
8564         if (filter->offset + filter->size < offset)
8565                 return false;
8566
8567         return true;
8568 }
8569
8570 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8571                                         struct vm_area_struct *vma,
8572                                         struct perf_addr_filter_range *fr)
8573 {
8574         unsigned long vma_size = vma->vm_end - vma->vm_start;
8575         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8576         struct file *file = vma->vm_file;
8577
8578         if (!perf_addr_filter_match(filter, file, off, vma_size))
8579                 return false;
8580
8581         if (filter->offset < off) {
8582                 fr->start = vma->vm_start;
8583                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8584         } else {
8585                 fr->start = vma->vm_start + filter->offset - off;
8586                 fr->size = min(vma->vm_end - fr->start, filter->size);
8587         }
8588
8589         return true;
8590 }
8591
8592 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8593 {
8594         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8595         struct vm_area_struct *vma = data;
8596         struct perf_addr_filter *filter;
8597         unsigned int restart = 0, count = 0;
8598         unsigned long flags;
8599
8600         if (!has_addr_filter(event))
8601                 return;
8602
8603         if (!vma->vm_file)
8604                 return;
8605
8606         raw_spin_lock_irqsave(&ifh->lock, flags);
8607         list_for_each_entry(filter, &ifh->list, entry) {
8608                 if (perf_addr_filter_vma_adjust(filter, vma,
8609                                                 &event->addr_filter_ranges[count]))
8610                         restart++;
8611
8612                 count++;
8613         }
8614
8615         if (restart)
8616                 event->addr_filters_gen++;
8617         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8618
8619         if (restart)
8620                 perf_event_stop(event, 1);
8621 }
8622
8623 /*
8624  * Adjust all task's events' filters to the new vma
8625  */
8626 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8627 {
8628         struct perf_event_context *ctx;
8629         int ctxn;
8630
8631         /*
8632          * Data tracing isn't supported yet and as such there is no need
8633          * to keep track of anything that isn't related to executable code:
8634          */
8635         if (!(vma->vm_flags & VM_EXEC))
8636                 return;
8637
8638         rcu_read_lock();
8639         for_each_task_context_nr(ctxn) {
8640                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8641                 if (!ctx)
8642                         continue;
8643
8644                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8645         }
8646         rcu_read_unlock();
8647 }
8648
8649 void perf_event_mmap(struct vm_area_struct *vma)
8650 {
8651         struct perf_mmap_event mmap_event;
8652
8653         if (!atomic_read(&nr_mmap_events))
8654                 return;
8655
8656         mmap_event = (struct perf_mmap_event){
8657                 .vma    = vma,
8658                 /* .file_name */
8659                 /* .file_size */
8660                 .event_id  = {
8661                         .header = {
8662                                 .type = PERF_RECORD_MMAP,
8663                                 .misc = PERF_RECORD_MISC_USER,
8664                                 /* .size */
8665                         },
8666                         /* .pid */
8667                         /* .tid */
8668                         .start  = vma->vm_start,
8669                         .len    = vma->vm_end - vma->vm_start,
8670                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8671                 },
8672                 /* .maj (attr_mmap2 only) */
8673                 /* .min (attr_mmap2 only) */
8674                 /* .ino (attr_mmap2 only) */
8675                 /* .ino_generation (attr_mmap2 only) */
8676                 /* .prot (attr_mmap2 only) */
8677                 /* .flags (attr_mmap2 only) */
8678         };
8679
8680         perf_addr_filters_adjust(vma);
8681         perf_event_mmap_event(&mmap_event);
8682 }
8683
8684 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8685                           unsigned long size, u64 flags)
8686 {
8687         struct perf_output_handle handle;
8688         struct perf_sample_data sample;
8689         struct perf_aux_event {
8690                 struct perf_event_header        header;
8691                 u64                             offset;
8692                 u64                             size;
8693                 u64                             flags;
8694         } rec = {
8695                 .header = {
8696                         .type = PERF_RECORD_AUX,
8697                         .misc = 0,
8698                         .size = sizeof(rec),
8699                 },
8700                 .offset         = head,
8701                 .size           = size,
8702                 .flags          = flags,
8703         };
8704         int ret;
8705
8706         perf_event_header__init_id(&rec.header, &sample, event);
8707         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8708
8709         if (ret)
8710                 return;
8711
8712         perf_output_put(&handle, rec);
8713         perf_event__output_id_sample(event, &handle, &sample);
8714
8715         perf_output_end(&handle);
8716 }
8717
8718 /*
8719  * Lost/dropped samples logging
8720  */
8721 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8722 {
8723         struct perf_output_handle handle;
8724         struct perf_sample_data sample;
8725         int ret;
8726
8727         struct {
8728                 struct perf_event_header        header;
8729                 u64                             lost;
8730         } lost_samples_event = {
8731                 .header = {
8732                         .type = PERF_RECORD_LOST_SAMPLES,
8733                         .misc = 0,
8734                         .size = sizeof(lost_samples_event),
8735                 },
8736                 .lost           = lost,
8737         };
8738
8739         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8740
8741         ret = perf_output_begin(&handle, &sample, event,
8742                                 lost_samples_event.header.size);
8743         if (ret)
8744                 return;
8745
8746         perf_output_put(&handle, lost_samples_event);
8747         perf_event__output_id_sample(event, &handle, &sample);
8748         perf_output_end(&handle);
8749 }
8750
8751 /*
8752  * context_switch tracking
8753  */
8754
8755 struct perf_switch_event {
8756         struct task_struct      *task;
8757         struct task_struct      *next_prev;
8758
8759         struct {
8760                 struct perf_event_header        header;
8761                 u32                             next_prev_pid;
8762                 u32                             next_prev_tid;
8763         } event_id;
8764 };
8765
8766 static int perf_event_switch_match(struct perf_event *event)
8767 {
8768         return event->attr.context_switch;
8769 }
8770
8771 static void perf_event_switch_output(struct perf_event *event, void *data)
8772 {
8773         struct perf_switch_event *se = data;
8774         struct perf_output_handle handle;
8775         struct perf_sample_data sample;
8776         int ret;
8777
8778         if (!perf_event_switch_match(event))
8779                 return;
8780
8781         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8782         if (event->ctx->task) {
8783                 se->event_id.header.type = PERF_RECORD_SWITCH;
8784                 se->event_id.header.size = sizeof(se->event_id.header);
8785         } else {
8786                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8787                 se->event_id.header.size = sizeof(se->event_id);
8788                 se->event_id.next_prev_pid =
8789                                         perf_event_pid(event, se->next_prev);
8790                 se->event_id.next_prev_tid =
8791                                         perf_event_tid(event, se->next_prev);
8792         }
8793
8794         perf_event_header__init_id(&se->event_id.header, &sample, event);
8795
8796         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8797         if (ret)
8798                 return;
8799
8800         if (event->ctx->task)
8801                 perf_output_put(&handle, se->event_id.header);
8802         else
8803                 perf_output_put(&handle, se->event_id);
8804
8805         perf_event__output_id_sample(event, &handle, &sample);
8806
8807         perf_output_end(&handle);
8808 }
8809
8810 static void perf_event_switch(struct task_struct *task,
8811                               struct task_struct *next_prev, bool sched_in)
8812 {
8813         struct perf_switch_event switch_event;
8814
8815         /* N.B. caller checks nr_switch_events != 0 */
8816
8817         switch_event = (struct perf_switch_event){
8818                 .task           = task,
8819                 .next_prev      = next_prev,
8820                 .event_id       = {
8821                         .header = {
8822                                 /* .type */
8823                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8824                                 /* .size */
8825                         },
8826                         /* .next_prev_pid */
8827                         /* .next_prev_tid */
8828                 },
8829         };
8830
8831         if (!sched_in && task->on_rq) {
8832                 switch_event.event_id.header.misc |=
8833                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8834         }
8835
8836         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8837 }
8838
8839 /*
8840  * IRQ throttle logging
8841  */
8842
8843 static void perf_log_throttle(struct perf_event *event, int enable)
8844 {
8845         struct perf_output_handle handle;
8846         struct perf_sample_data sample;
8847         int ret;
8848
8849         struct {
8850                 struct perf_event_header        header;
8851                 u64                             time;
8852                 u64                             id;
8853                 u64                             stream_id;
8854         } throttle_event = {
8855                 .header = {
8856                         .type = PERF_RECORD_THROTTLE,
8857                         .misc = 0,
8858                         .size = sizeof(throttle_event),
8859                 },
8860                 .time           = perf_event_clock(event),
8861                 .id             = primary_event_id(event),
8862                 .stream_id      = event->id,
8863         };
8864
8865         if (enable)
8866                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8867
8868         perf_event_header__init_id(&throttle_event.header, &sample, event);
8869
8870         ret = perf_output_begin(&handle, &sample, event,
8871                                 throttle_event.header.size);
8872         if (ret)
8873                 return;
8874
8875         perf_output_put(&handle, throttle_event);
8876         perf_event__output_id_sample(event, &handle, &sample);
8877         perf_output_end(&handle);
8878 }
8879
8880 /*
8881  * ksymbol register/unregister tracking
8882  */
8883
8884 struct perf_ksymbol_event {
8885         const char      *name;
8886         int             name_len;
8887         struct {
8888                 struct perf_event_header        header;
8889                 u64                             addr;
8890                 u32                             len;
8891                 u16                             ksym_type;
8892                 u16                             flags;
8893         } event_id;
8894 };
8895
8896 static int perf_event_ksymbol_match(struct perf_event *event)
8897 {
8898         return event->attr.ksymbol;
8899 }
8900
8901 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8902 {
8903         struct perf_ksymbol_event *ksymbol_event = data;
8904         struct perf_output_handle handle;
8905         struct perf_sample_data sample;
8906         int ret;
8907
8908         if (!perf_event_ksymbol_match(event))
8909                 return;
8910
8911         perf_event_header__init_id(&ksymbol_event->event_id.header,
8912                                    &sample, event);
8913         ret = perf_output_begin(&handle, &sample, event,
8914                                 ksymbol_event->event_id.header.size);
8915         if (ret)
8916                 return;
8917
8918         perf_output_put(&handle, ksymbol_event->event_id);
8919         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8920         perf_event__output_id_sample(event, &handle, &sample);
8921
8922         perf_output_end(&handle);
8923 }
8924
8925 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8926                         const char *sym)
8927 {
8928         struct perf_ksymbol_event ksymbol_event;
8929         char name[KSYM_NAME_LEN];
8930         u16 flags = 0;
8931         int name_len;
8932
8933         if (!atomic_read(&nr_ksymbol_events))
8934                 return;
8935
8936         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8937             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8938                 goto err;
8939
8940         strlcpy(name, sym, KSYM_NAME_LEN);
8941         name_len = strlen(name) + 1;
8942         while (!IS_ALIGNED(name_len, sizeof(u64)))
8943                 name[name_len++] = '\0';
8944         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8945
8946         if (unregister)
8947                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8948
8949         ksymbol_event = (struct perf_ksymbol_event){
8950                 .name = name,
8951                 .name_len = name_len,
8952                 .event_id = {
8953                         .header = {
8954                                 .type = PERF_RECORD_KSYMBOL,
8955                                 .size = sizeof(ksymbol_event.event_id) +
8956                                         name_len,
8957                         },
8958                         .addr = addr,
8959                         .len = len,
8960                         .ksym_type = ksym_type,
8961                         .flags = flags,
8962                 },
8963         };
8964
8965         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8966         return;
8967 err:
8968         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8969 }
8970
8971 /*
8972  * bpf program load/unload tracking
8973  */
8974
8975 struct perf_bpf_event {
8976         struct bpf_prog *prog;
8977         struct {
8978                 struct perf_event_header        header;
8979                 u16                             type;
8980                 u16                             flags;
8981                 u32                             id;
8982                 u8                              tag[BPF_TAG_SIZE];
8983         } event_id;
8984 };
8985
8986 static int perf_event_bpf_match(struct perf_event *event)
8987 {
8988         return event->attr.bpf_event;
8989 }
8990
8991 static void perf_event_bpf_output(struct perf_event *event, void *data)
8992 {
8993         struct perf_bpf_event *bpf_event = data;
8994         struct perf_output_handle handle;
8995         struct perf_sample_data sample;
8996         int ret;
8997
8998         if (!perf_event_bpf_match(event))
8999                 return;
9000
9001         perf_event_header__init_id(&bpf_event->event_id.header,
9002                                    &sample, event);
9003         ret = perf_output_begin(&handle, data, event,
9004                                 bpf_event->event_id.header.size);
9005         if (ret)
9006                 return;
9007
9008         perf_output_put(&handle, bpf_event->event_id);
9009         perf_event__output_id_sample(event, &handle, &sample);
9010
9011         perf_output_end(&handle);
9012 }
9013
9014 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9015                                          enum perf_bpf_event_type type)
9016 {
9017         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9018         int i;
9019
9020         if (prog->aux->func_cnt == 0) {
9021                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9022                                    (u64)(unsigned long)prog->bpf_func,
9023                                    prog->jited_len, unregister,
9024                                    prog->aux->ksym.name);
9025         } else {
9026                 for (i = 0; i < prog->aux->func_cnt; i++) {
9027                         struct bpf_prog *subprog = prog->aux->func[i];
9028
9029                         perf_event_ksymbol(
9030                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9031                                 (u64)(unsigned long)subprog->bpf_func,
9032                                 subprog->jited_len, unregister,
9033                                 prog->aux->ksym.name);
9034                 }
9035         }
9036 }
9037
9038 void perf_event_bpf_event(struct bpf_prog *prog,
9039                           enum perf_bpf_event_type type,
9040                           u16 flags)
9041 {
9042         struct perf_bpf_event bpf_event;
9043
9044         if (type <= PERF_BPF_EVENT_UNKNOWN ||
9045             type >= PERF_BPF_EVENT_MAX)
9046                 return;
9047
9048         switch (type) {
9049         case PERF_BPF_EVENT_PROG_LOAD:
9050         case PERF_BPF_EVENT_PROG_UNLOAD:
9051                 if (atomic_read(&nr_ksymbol_events))
9052                         perf_event_bpf_emit_ksymbols(prog, type);
9053                 break;
9054         default:
9055                 break;
9056         }
9057
9058         if (!atomic_read(&nr_bpf_events))
9059                 return;
9060
9061         bpf_event = (struct perf_bpf_event){
9062                 .prog = prog,
9063                 .event_id = {
9064                         .header = {
9065                                 .type = PERF_RECORD_BPF_EVENT,
9066                                 .size = sizeof(bpf_event.event_id),
9067                         },
9068                         .type = type,
9069                         .flags = flags,
9070                         .id = prog->aux->id,
9071                 },
9072         };
9073
9074         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9075
9076         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9077         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9078 }
9079
9080 struct perf_text_poke_event {
9081         const void              *old_bytes;
9082         const void              *new_bytes;
9083         size_t                  pad;
9084         u16                     old_len;
9085         u16                     new_len;
9086
9087         struct {
9088                 struct perf_event_header        header;
9089
9090                 u64                             addr;
9091         } event_id;
9092 };
9093
9094 static int perf_event_text_poke_match(struct perf_event *event)
9095 {
9096         return event->attr.text_poke;
9097 }
9098
9099 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9100 {
9101         struct perf_text_poke_event *text_poke_event = data;
9102         struct perf_output_handle handle;
9103         struct perf_sample_data sample;
9104         u64 padding = 0;
9105         int ret;
9106
9107         if (!perf_event_text_poke_match(event))
9108                 return;
9109
9110         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9111
9112         ret = perf_output_begin(&handle, &sample, event,
9113                                 text_poke_event->event_id.header.size);
9114         if (ret)
9115                 return;
9116
9117         perf_output_put(&handle, text_poke_event->event_id);
9118         perf_output_put(&handle, text_poke_event->old_len);
9119         perf_output_put(&handle, text_poke_event->new_len);
9120
9121         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9122         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9123
9124         if (text_poke_event->pad)
9125                 __output_copy(&handle, &padding, text_poke_event->pad);
9126
9127         perf_event__output_id_sample(event, &handle, &sample);
9128
9129         perf_output_end(&handle);
9130 }
9131
9132 void perf_event_text_poke(const void *addr, const void *old_bytes,
9133                           size_t old_len, const void *new_bytes, size_t new_len)
9134 {
9135         struct perf_text_poke_event text_poke_event;
9136         size_t tot, pad;
9137
9138         if (!atomic_read(&nr_text_poke_events))
9139                 return;
9140
9141         tot  = sizeof(text_poke_event.old_len) + old_len;
9142         tot += sizeof(text_poke_event.new_len) + new_len;
9143         pad  = ALIGN(tot, sizeof(u64)) - tot;
9144
9145         text_poke_event = (struct perf_text_poke_event){
9146                 .old_bytes    = old_bytes,
9147                 .new_bytes    = new_bytes,
9148                 .pad          = pad,
9149                 .old_len      = old_len,
9150                 .new_len      = new_len,
9151                 .event_id  = {
9152                         .header = {
9153                                 .type = PERF_RECORD_TEXT_POKE,
9154                                 .misc = PERF_RECORD_MISC_KERNEL,
9155                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9156                         },
9157                         .addr = (unsigned long)addr,
9158                 },
9159         };
9160
9161         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9162 }
9163
9164 void perf_event_itrace_started(struct perf_event *event)
9165 {
9166         event->attach_state |= PERF_ATTACH_ITRACE;
9167 }
9168
9169 static void perf_log_itrace_start(struct perf_event *event)
9170 {
9171         struct perf_output_handle handle;
9172         struct perf_sample_data sample;
9173         struct perf_aux_event {
9174                 struct perf_event_header        header;
9175                 u32                             pid;
9176                 u32                             tid;
9177         } rec;
9178         int ret;
9179
9180         if (event->parent)
9181                 event = event->parent;
9182
9183         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9184             event->attach_state & PERF_ATTACH_ITRACE)
9185                 return;
9186
9187         rec.header.type = PERF_RECORD_ITRACE_START;
9188         rec.header.misc = 0;
9189         rec.header.size = sizeof(rec);
9190         rec.pid = perf_event_pid(event, current);
9191         rec.tid = perf_event_tid(event, current);
9192
9193         perf_event_header__init_id(&rec.header, &sample, event);
9194         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9195
9196         if (ret)
9197                 return;
9198
9199         perf_output_put(&handle, rec);
9200         perf_event__output_id_sample(event, &handle, &sample);
9201
9202         perf_output_end(&handle);
9203 }
9204
9205 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9206 {
9207         struct perf_output_handle handle;
9208         struct perf_sample_data sample;
9209         struct perf_aux_event {
9210                 struct perf_event_header        header;
9211                 u64                             hw_id;
9212         } rec;
9213         int ret;
9214
9215         if (event->parent)
9216                 event = event->parent;
9217
9218         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9219         rec.header.misc = 0;
9220         rec.header.size = sizeof(rec);
9221         rec.hw_id       = hw_id;
9222
9223         perf_event_header__init_id(&rec.header, &sample, event);
9224         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9225
9226         if (ret)
9227                 return;
9228
9229         perf_output_put(&handle, rec);
9230         perf_event__output_id_sample(event, &handle, &sample);
9231
9232         perf_output_end(&handle);
9233 }
9234
9235 static int
9236 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9237 {
9238         struct hw_perf_event *hwc = &event->hw;
9239         int ret = 0;
9240         u64 seq;
9241
9242         seq = __this_cpu_read(perf_throttled_seq);
9243         if (seq != hwc->interrupts_seq) {
9244                 hwc->interrupts_seq = seq;
9245                 hwc->interrupts = 1;
9246         } else {
9247                 hwc->interrupts++;
9248                 if (unlikely(throttle
9249                              && hwc->interrupts >= max_samples_per_tick)) {
9250                         __this_cpu_inc(perf_throttled_count);
9251                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9252                         hwc->interrupts = MAX_INTERRUPTS;
9253                         perf_log_throttle(event, 0);
9254                         ret = 1;
9255                 }
9256         }
9257
9258         if (event->attr.freq) {
9259                 u64 now = perf_clock();
9260                 s64 delta = now - hwc->freq_time_stamp;
9261
9262                 hwc->freq_time_stamp = now;
9263
9264                 if (delta > 0 && delta < 2*TICK_NSEC)
9265                         perf_adjust_period(event, delta, hwc->last_period, true);
9266         }
9267
9268         return ret;
9269 }
9270
9271 int perf_event_account_interrupt(struct perf_event *event)
9272 {
9273         return __perf_event_account_interrupt(event, 1);
9274 }
9275
9276 /*
9277  * Generic event overflow handling, sampling.
9278  */
9279
9280 static int __perf_event_overflow(struct perf_event *event,
9281                                  int throttle, struct perf_sample_data *data,
9282                                  struct pt_regs *regs)
9283 {
9284         int events = atomic_read(&event->event_limit);
9285         int ret = 0;
9286
9287         /*
9288          * Non-sampling counters might still use the PMI to fold short
9289          * hardware counters, ignore those.
9290          */
9291         if (unlikely(!is_sampling_event(event)))
9292                 return 0;
9293
9294         ret = __perf_event_account_interrupt(event, throttle);
9295
9296         /*
9297          * XXX event_limit might not quite work as expected on inherited
9298          * events
9299          */
9300
9301         event->pending_kill = POLL_IN;
9302         if (events && atomic_dec_and_test(&event->event_limit)) {
9303                 ret = 1;
9304                 event->pending_kill = POLL_HUP;
9305                 perf_event_disable_inatomic(event);
9306         }
9307
9308         if (event->attr.sigtrap) {
9309                 unsigned int pending_id = 1;
9310
9311                 if (regs)
9312                         pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9313                 if (!event->pending_sigtrap) {
9314                         event->pending_sigtrap = pending_id;
9315                         local_inc(&event->ctx->nr_pending);
9316                 } else if (event->attr.exclude_kernel) {
9317                         /*
9318                          * Should not be able to return to user space without
9319                          * consuming pending_sigtrap; with exceptions:
9320                          *
9321                          *  1. Where !exclude_kernel, events can overflow again
9322                          *     in the kernel without returning to user space.
9323                          *
9324                          *  2. Events that can overflow again before the IRQ-
9325                          *     work without user space progress (e.g. hrtimer).
9326                          *     To approximate progress (with false negatives),
9327                          *     check 32-bit hash of the current IP.
9328                          */
9329                         WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9330                 }
9331                 event->pending_addr = data->addr;
9332                 irq_work_queue(&event->pending_irq);
9333         }
9334
9335         READ_ONCE(event->overflow_handler)(event, data, regs);
9336
9337         if (*perf_event_fasync(event) && event->pending_kill) {
9338                 event->pending_wakeup = 1;
9339                 irq_work_queue(&event->pending_irq);
9340         }
9341
9342         return ret;
9343 }
9344
9345 int perf_event_overflow(struct perf_event *event,
9346                         struct perf_sample_data *data,
9347                         struct pt_regs *regs)
9348 {
9349         return __perf_event_overflow(event, 1, data, regs);
9350 }
9351
9352 /*
9353  * Generic software event infrastructure
9354  */
9355
9356 struct swevent_htable {
9357         struct swevent_hlist            *swevent_hlist;
9358         struct mutex                    hlist_mutex;
9359         int                             hlist_refcount;
9360
9361         /* Recursion avoidance in each contexts */
9362         int                             recursion[PERF_NR_CONTEXTS];
9363 };
9364
9365 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9366
9367 /*
9368  * We directly increment event->count and keep a second value in
9369  * event->hw.period_left to count intervals. This period event
9370  * is kept in the range [-sample_period, 0] so that we can use the
9371  * sign as trigger.
9372  */
9373
9374 u64 perf_swevent_set_period(struct perf_event *event)
9375 {
9376         struct hw_perf_event *hwc = &event->hw;
9377         u64 period = hwc->last_period;
9378         u64 nr, offset;
9379         s64 old, val;
9380
9381         hwc->last_period = hwc->sample_period;
9382
9383 again:
9384         old = val = local64_read(&hwc->period_left);
9385         if (val < 0)
9386                 return 0;
9387
9388         nr = div64_u64(period + val, period);
9389         offset = nr * period;
9390         val -= offset;
9391         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9392                 goto again;
9393
9394         return nr;
9395 }
9396
9397 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9398                                     struct perf_sample_data *data,
9399                                     struct pt_regs *regs)
9400 {
9401         struct hw_perf_event *hwc = &event->hw;
9402         int throttle = 0;
9403
9404         if (!overflow)
9405                 overflow = perf_swevent_set_period(event);
9406
9407         if (hwc->interrupts == MAX_INTERRUPTS)
9408                 return;
9409
9410         for (; overflow; overflow--) {
9411                 if (__perf_event_overflow(event, throttle,
9412                                             data, regs)) {
9413                         /*
9414                          * We inhibit the overflow from happening when
9415                          * hwc->interrupts == MAX_INTERRUPTS.
9416                          */
9417                         break;
9418                 }
9419                 throttle = 1;
9420         }
9421 }
9422
9423 static void perf_swevent_event(struct perf_event *event, u64 nr,
9424                                struct perf_sample_data *data,
9425                                struct pt_regs *regs)
9426 {
9427         struct hw_perf_event *hwc = &event->hw;
9428
9429         local64_add(nr, &event->count);
9430
9431         if (!regs)
9432                 return;
9433
9434         if (!is_sampling_event(event))
9435                 return;
9436
9437         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9438                 data->period = nr;
9439                 return perf_swevent_overflow(event, 1, data, regs);
9440         } else
9441                 data->period = event->hw.last_period;
9442
9443         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9444                 return perf_swevent_overflow(event, 1, data, regs);
9445
9446         if (local64_add_negative(nr, &hwc->period_left))
9447                 return;
9448
9449         perf_swevent_overflow(event, 0, data, regs);
9450 }
9451
9452 static int perf_exclude_event(struct perf_event *event,
9453                               struct pt_regs *regs)
9454 {
9455         if (event->hw.state & PERF_HES_STOPPED)
9456                 return 1;
9457
9458         if (regs) {
9459                 if (event->attr.exclude_user && user_mode(regs))
9460                         return 1;
9461
9462                 if (event->attr.exclude_kernel && !user_mode(regs))
9463                         return 1;
9464         }
9465
9466         return 0;
9467 }
9468
9469 static int perf_swevent_match(struct perf_event *event,
9470                                 enum perf_type_id type,
9471                                 u32 event_id,
9472                                 struct perf_sample_data *data,
9473                                 struct pt_regs *regs)
9474 {
9475         if (event->attr.type != type)
9476                 return 0;
9477
9478         if (event->attr.config != event_id)
9479                 return 0;
9480
9481         if (perf_exclude_event(event, regs))
9482                 return 0;
9483
9484         return 1;
9485 }
9486
9487 static inline u64 swevent_hash(u64 type, u32 event_id)
9488 {
9489         u64 val = event_id | (type << 32);
9490
9491         return hash_64(val, SWEVENT_HLIST_BITS);
9492 }
9493
9494 static inline struct hlist_head *
9495 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9496 {
9497         u64 hash = swevent_hash(type, event_id);
9498
9499         return &hlist->heads[hash];
9500 }
9501
9502 /* For the read side: events when they trigger */
9503 static inline struct hlist_head *
9504 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9505 {
9506         struct swevent_hlist *hlist;
9507
9508         hlist = rcu_dereference(swhash->swevent_hlist);
9509         if (!hlist)
9510                 return NULL;
9511
9512         return __find_swevent_head(hlist, type, event_id);
9513 }
9514
9515 /* For the event head insertion and removal in the hlist */
9516 static inline struct hlist_head *
9517 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9518 {
9519         struct swevent_hlist *hlist;
9520         u32 event_id = event->attr.config;
9521         u64 type = event->attr.type;
9522
9523         /*
9524          * Event scheduling is always serialized against hlist allocation
9525          * and release. Which makes the protected version suitable here.
9526          * The context lock guarantees that.
9527          */
9528         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9529                                           lockdep_is_held(&event->ctx->lock));
9530         if (!hlist)
9531                 return NULL;
9532
9533         return __find_swevent_head(hlist, type, event_id);
9534 }
9535
9536 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9537                                     u64 nr,
9538                                     struct perf_sample_data *data,
9539                                     struct pt_regs *regs)
9540 {
9541         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9542         struct perf_event *event;
9543         struct hlist_head *head;
9544
9545         rcu_read_lock();
9546         head = find_swevent_head_rcu(swhash, type, event_id);
9547         if (!head)
9548                 goto end;
9549
9550         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9551                 if (perf_swevent_match(event, type, event_id, data, regs))
9552                         perf_swevent_event(event, nr, data, regs);
9553         }
9554 end:
9555         rcu_read_unlock();
9556 }
9557
9558 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9559
9560 int perf_swevent_get_recursion_context(void)
9561 {
9562         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9563
9564         return get_recursion_context(swhash->recursion);
9565 }
9566 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9567
9568 void perf_swevent_put_recursion_context(int rctx)
9569 {
9570         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9571
9572         put_recursion_context(swhash->recursion, rctx);
9573 }
9574
9575 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9576 {
9577         struct perf_sample_data data;
9578
9579         if (WARN_ON_ONCE(!regs))
9580                 return;
9581
9582         perf_sample_data_init(&data, addr, 0);
9583         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9584 }
9585
9586 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9587 {
9588         int rctx;
9589
9590         preempt_disable_notrace();
9591         rctx = perf_swevent_get_recursion_context();
9592         if (unlikely(rctx < 0))
9593                 goto fail;
9594
9595         ___perf_sw_event(event_id, nr, regs, addr);
9596
9597         perf_swevent_put_recursion_context(rctx);
9598 fail:
9599         preempt_enable_notrace();
9600 }
9601
9602 static void perf_swevent_read(struct perf_event *event)
9603 {
9604 }
9605
9606 static int perf_swevent_add(struct perf_event *event, int flags)
9607 {
9608         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9609         struct hw_perf_event *hwc = &event->hw;
9610         struct hlist_head *head;
9611
9612         if (is_sampling_event(event)) {
9613                 hwc->last_period = hwc->sample_period;
9614                 perf_swevent_set_period(event);
9615         }
9616
9617         hwc->state = !(flags & PERF_EF_START);
9618
9619         head = find_swevent_head(swhash, event);
9620         if (WARN_ON_ONCE(!head))
9621                 return -EINVAL;
9622
9623         hlist_add_head_rcu(&event->hlist_entry, head);
9624         perf_event_update_userpage(event);
9625
9626         return 0;
9627 }
9628
9629 static void perf_swevent_del(struct perf_event *event, int flags)
9630 {
9631         hlist_del_rcu(&event->hlist_entry);
9632 }
9633
9634 static void perf_swevent_start(struct perf_event *event, int flags)
9635 {
9636         event->hw.state = 0;
9637 }
9638
9639 static void perf_swevent_stop(struct perf_event *event, int flags)
9640 {
9641         event->hw.state = PERF_HES_STOPPED;
9642 }
9643
9644 /* Deref the hlist from the update side */
9645 static inline struct swevent_hlist *
9646 swevent_hlist_deref(struct swevent_htable *swhash)
9647 {
9648         return rcu_dereference_protected(swhash->swevent_hlist,
9649                                          lockdep_is_held(&swhash->hlist_mutex));
9650 }
9651
9652 static void swevent_hlist_release(struct swevent_htable *swhash)
9653 {
9654         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9655
9656         if (!hlist)
9657                 return;
9658
9659         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9660         kfree_rcu(hlist, rcu_head);
9661 }
9662
9663 static void swevent_hlist_put_cpu(int cpu)
9664 {
9665         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9666
9667         mutex_lock(&swhash->hlist_mutex);
9668
9669         if (!--swhash->hlist_refcount)
9670                 swevent_hlist_release(swhash);
9671
9672         mutex_unlock(&swhash->hlist_mutex);
9673 }
9674
9675 static void swevent_hlist_put(void)
9676 {
9677         int cpu;
9678
9679         for_each_possible_cpu(cpu)
9680                 swevent_hlist_put_cpu(cpu);
9681 }
9682
9683 static int swevent_hlist_get_cpu(int cpu)
9684 {
9685         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9686         int err = 0;
9687
9688         mutex_lock(&swhash->hlist_mutex);
9689         if (!swevent_hlist_deref(swhash) &&
9690             cpumask_test_cpu(cpu, perf_online_mask)) {
9691                 struct swevent_hlist *hlist;
9692
9693                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9694                 if (!hlist) {
9695                         err = -ENOMEM;
9696                         goto exit;
9697                 }
9698                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9699         }
9700         swhash->hlist_refcount++;
9701 exit:
9702         mutex_unlock(&swhash->hlist_mutex);
9703
9704         return err;
9705 }
9706
9707 static int swevent_hlist_get(void)
9708 {
9709         int err, cpu, failed_cpu;
9710
9711         mutex_lock(&pmus_lock);
9712         for_each_possible_cpu(cpu) {
9713                 err = swevent_hlist_get_cpu(cpu);
9714                 if (err) {
9715                         failed_cpu = cpu;
9716                         goto fail;
9717                 }
9718         }
9719         mutex_unlock(&pmus_lock);
9720         return 0;
9721 fail:
9722         for_each_possible_cpu(cpu) {
9723                 if (cpu == failed_cpu)
9724                         break;
9725                 swevent_hlist_put_cpu(cpu);
9726         }
9727         mutex_unlock(&pmus_lock);
9728         return err;
9729 }
9730
9731 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9732
9733 static void sw_perf_event_destroy(struct perf_event *event)
9734 {
9735         u64 event_id = event->attr.config;
9736
9737         WARN_ON(event->parent);
9738
9739         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9740         swevent_hlist_put();
9741 }
9742
9743 static int perf_swevent_init(struct perf_event *event)
9744 {
9745         u64 event_id = event->attr.config;
9746
9747         if (event->attr.type != PERF_TYPE_SOFTWARE)
9748                 return -ENOENT;
9749
9750         /*
9751          * no branch sampling for software events
9752          */
9753         if (has_branch_stack(event))
9754                 return -EOPNOTSUPP;
9755
9756         switch (event_id) {
9757         case PERF_COUNT_SW_CPU_CLOCK:
9758         case PERF_COUNT_SW_TASK_CLOCK:
9759                 return -ENOENT;
9760
9761         default:
9762                 break;
9763         }
9764
9765         if (event_id >= PERF_COUNT_SW_MAX)
9766                 return -ENOENT;
9767
9768         if (!event->parent) {
9769                 int err;
9770
9771                 err = swevent_hlist_get();
9772                 if (err)
9773                         return err;
9774
9775                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9776                 event->destroy = sw_perf_event_destroy;
9777         }
9778
9779         return 0;
9780 }
9781
9782 static struct pmu perf_swevent = {
9783         .task_ctx_nr    = perf_sw_context,
9784
9785         .capabilities   = PERF_PMU_CAP_NO_NMI,
9786
9787         .event_init     = perf_swevent_init,
9788         .add            = perf_swevent_add,
9789         .del            = perf_swevent_del,
9790         .start          = perf_swevent_start,
9791         .stop           = perf_swevent_stop,
9792         .read           = perf_swevent_read,
9793 };
9794
9795 #ifdef CONFIG_EVENT_TRACING
9796
9797 static int perf_tp_filter_match(struct perf_event *event,
9798                                 struct perf_sample_data *data)
9799 {
9800         void *record = data->raw->frag.data;
9801
9802         /* only top level events have filters set */
9803         if (event->parent)
9804                 event = event->parent;
9805
9806         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9807                 return 1;
9808         return 0;
9809 }
9810
9811 static int perf_tp_event_match(struct perf_event *event,
9812                                 struct perf_sample_data *data,
9813                                 struct pt_regs *regs)
9814 {
9815         if (event->hw.state & PERF_HES_STOPPED)
9816                 return 0;
9817         /*
9818          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9819          */
9820         if (event->attr.exclude_kernel && !user_mode(regs))
9821                 return 0;
9822
9823         if (!perf_tp_filter_match(event, data))
9824                 return 0;
9825
9826         return 1;
9827 }
9828
9829 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9830                                struct trace_event_call *call, u64 count,
9831                                struct pt_regs *regs, struct hlist_head *head,
9832                                struct task_struct *task)
9833 {
9834         if (bpf_prog_array_valid(call)) {
9835                 *(struct pt_regs **)raw_data = regs;
9836                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9837                         perf_swevent_put_recursion_context(rctx);
9838                         return;
9839                 }
9840         }
9841         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9842                       rctx, task);
9843 }
9844 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9845
9846 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9847                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9848                    struct task_struct *task)
9849 {
9850         struct perf_sample_data data;
9851         struct perf_event *event;
9852
9853         struct perf_raw_record raw = {
9854                 .frag = {
9855                         .size = entry_size,
9856                         .data = record,
9857                 },
9858         };
9859
9860         perf_sample_data_init(&data, 0, 0);
9861         data.raw = &raw;
9862         data.sample_flags |= PERF_SAMPLE_RAW;
9863
9864         perf_trace_buf_update(record, event_type);
9865
9866         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9867                 if (perf_tp_event_match(event, &data, regs))
9868                         perf_swevent_event(event, count, &data, regs);
9869         }
9870
9871         /*
9872          * If we got specified a target task, also iterate its context and
9873          * deliver this event there too.
9874          */
9875         if (task && task != current) {
9876                 struct perf_event_context *ctx;
9877                 struct trace_entry *entry = record;
9878
9879                 rcu_read_lock();
9880                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9881                 if (!ctx)
9882                         goto unlock;
9883
9884                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9885                         if (event->cpu != smp_processor_id())
9886                                 continue;
9887                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9888                                 continue;
9889                         if (event->attr.config != entry->type)
9890                                 continue;
9891                         /* Cannot deliver synchronous signal to other task. */
9892                         if (event->attr.sigtrap)
9893                                 continue;
9894                         if (perf_tp_event_match(event, &data, regs))
9895                                 perf_swevent_event(event, count, &data, regs);
9896                 }
9897 unlock:
9898                 rcu_read_unlock();
9899         }
9900
9901         perf_swevent_put_recursion_context(rctx);
9902 }
9903 EXPORT_SYMBOL_GPL(perf_tp_event);
9904
9905 static void tp_perf_event_destroy(struct perf_event *event)
9906 {
9907         perf_trace_destroy(event);
9908 }
9909
9910 static int perf_tp_event_init(struct perf_event *event)
9911 {
9912         int err;
9913
9914         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9915                 return -ENOENT;
9916
9917         /*
9918          * no branch sampling for tracepoint events
9919          */
9920         if (has_branch_stack(event))
9921                 return -EOPNOTSUPP;
9922
9923         err = perf_trace_init(event);
9924         if (err)
9925                 return err;
9926
9927         event->destroy = tp_perf_event_destroy;
9928
9929         return 0;
9930 }
9931
9932 static struct pmu perf_tracepoint = {
9933         .task_ctx_nr    = perf_sw_context,
9934
9935         .event_init     = perf_tp_event_init,
9936         .add            = perf_trace_add,
9937         .del            = perf_trace_del,
9938         .start          = perf_swevent_start,
9939         .stop           = perf_swevent_stop,
9940         .read           = perf_swevent_read,
9941 };
9942
9943 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9944 /*
9945  * Flags in config, used by dynamic PMU kprobe and uprobe
9946  * The flags should match following PMU_FORMAT_ATTR().
9947  *
9948  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9949  *                               if not set, create kprobe/uprobe
9950  *
9951  * The following values specify a reference counter (or semaphore in the
9952  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9953  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9954  *
9955  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9956  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9957  */
9958 enum perf_probe_config {
9959         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9960         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9961         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9962 };
9963
9964 PMU_FORMAT_ATTR(retprobe, "config:0");
9965 #endif
9966
9967 #ifdef CONFIG_KPROBE_EVENTS
9968 static struct attribute *kprobe_attrs[] = {
9969         &format_attr_retprobe.attr,
9970         NULL,
9971 };
9972
9973 static struct attribute_group kprobe_format_group = {
9974         .name = "format",
9975         .attrs = kprobe_attrs,
9976 };
9977
9978 static const struct attribute_group *kprobe_attr_groups[] = {
9979         &kprobe_format_group,
9980         NULL,
9981 };
9982
9983 static int perf_kprobe_event_init(struct perf_event *event);
9984 static struct pmu perf_kprobe = {
9985         .task_ctx_nr    = perf_sw_context,
9986         .event_init     = perf_kprobe_event_init,
9987         .add            = perf_trace_add,
9988         .del            = perf_trace_del,
9989         .start          = perf_swevent_start,
9990         .stop           = perf_swevent_stop,
9991         .read           = perf_swevent_read,
9992         .attr_groups    = kprobe_attr_groups,
9993 };
9994
9995 static int perf_kprobe_event_init(struct perf_event *event)
9996 {
9997         int err;
9998         bool is_retprobe;
9999
10000         if (event->attr.type != perf_kprobe.type)
10001                 return -ENOENT;
10002
10003         if (!perfmon_capable())
10004                 return -EACCES;
10005
10006         /*
10007          * no branch sampling for probe events
10008          */
10009         if (has_branch_stack(event))
10010                 return -EOPNOTSUPP;
10011
10012         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10013         err = perf_kprobe_init(event, is_retprobe);
10014         if (err)
10015                 return err;
10016
10017         event->destroy = perf_kprobe_destroy;
10018
10019         return 0;
10020 }
10021 #endif /* CONFIG_KPROBE_EVENTS */
10022
10023 #ifdef CONFIG_UPROBE_EVENTS
10024 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10025
10026 static struct attribute *uprobe_attrs[] = {
10027         &format_attr_retprobe.attr,
10028         &format_attr_ref_ctr_offset.attr,
10029         NULL,
10030 };
10031
10032 static struct attribute_group uprobe_format_group = {
10033         .name = "format",
10034         .attrs = uprobe_attrs,
10035 };
10036
10037 static const struct attribute_group *uprobe_attr_groups[] = {
10038         &uprobe_format_group,
10039         NULL,
10040 };
10041
10042 static int perf_uprobe_event_init(struct perf_event *event);
10043 static struct pmu perf_uprobe = {
10044         .task_ctx_nr    = perf_sw_context,
10045         .event_init     = perf_uprobe_event_init,
10046         .add            = perf_trace_add,
10047         .del            = perf_trace_del,
10048         .start          = perf_swevent_start,
10049         .stop           = perf_swevent_stop,
10050         .read           = perf_swevent_read,
10051         .attr_groups    = uprobe_attr_groups,
10052 };
10053
10054 static int perf_uprobe_event_init(struct perf_event *event)
10055 {
10056         int err;
10057         unsigned long ref_ctr_offset;
10058         bool is_retprobe;
10059
10060         if (event->attr.type != perf_uprobe.type)
10061                 return -ENOENT;
10062
10063         if (!perfmon_capable())
10064                 return -EACCES;
10065
10066         /*
10067          * no branch sampling for probe events
10068          */
10069         if (has_branch_stack(event))
10070                 return -EOPNOTSUPP;
10071
10072         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10073         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10074         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10075         if (err)
10076                 return err;
10077
10078         event->destroy = perf_uprobe_destroy;
10079
10080         return 0;
10081 }
10082 #endif /* CONFIG_UPROBE_EVENTS */
10083
10084 static inline void perf_tp_register(void)
10085 {
10086         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10087 #ifdef CONFIG_KPROBE_EVENTS
10088         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10089 #endif
10090 #ifdef CONFIG_UPROBE_EVENTS
10091         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10092 #endif
10093 }
10094
10095 static void perf_event_free_filter(struct perf_event *event)
10096 {
10097         ftrace_profile_free_filter(event);
10098 }
10099
10100 #ifdef CONFIG_BPF_SYSCALL
10101 static void bpf_overflow_handler(struct perf_event *event,
10102                                  struct perf_sample_data *data,
10103                                  struct pt_regs *regs)
10104 {
10105         struct bpf_perf_event_data_kern ctx = {
10106                 .data = data,
10107                 .event = event,
10108         };
10109         struct bpf_prog *prog;
10110         int ret = 0;
10111
10112         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10113         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10114                 goto out;
10115         rcu_read_lock();
10116         prog = READ_ONCE(event->prog);
10117         if (prog) {
10118                 if (prog->call_get_stack &&
10119                     (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) &&
10120                     !(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) {
10121                         data->callchain = perf_callchain(event, regs);
10122                         data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
10123                 }
10124
10125                 ret = bpf_prog_run(prog, &ctx);
10126         }
10127         rcu_read_unlock();
10128 out:
10129         __this_cpu_dec(bpf_prog_active);
10130         if (!ret)
10131                 return;
10132
10133         event->orig_overflow_handler(event, data, regs);
10134 }
10135
10136 static int perf_event_set_bpf_handler(struct perf_event *event,
10137                                       struct bpf_prog *prog,
10138                                       u64 bpf_cookie)
10139 {
10140         if (event->overflow_handler_context)
10141                 /* hw breakpoint or kernel counter */
10142                 return -EINVAL;
10143
10144         if (event->prog)
10145                 return -EEXIST;
10146
10147         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10148                 return -EINVAL;
10149
10150         if (event->attr.precise_ip &&
10151             prog->call_get_stack &&
10152             (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10153              event->attr.exclude_callchain_kernel ||
10154              event->attr.exclude_callchain_user)) {
10155                 /*
10156                  * On perf_event with precise_ip, calling bpf_get_stack()
10157                  * may trigger unwinder warnings and occasional crashes.
10158                  * bpf_get_[stack|stackid] works around this issue by using
10159                  * callchain attached to perf_sample_data. If the
10160                  * perf_event does not full (kernel and user) callchain
10161                  * attached to perf_sample_data, do not allow attaching BPF
10162                  * program that calls bpf_get_[stack|stackid].
10163                  */
10164                 return -EPROTO;
10165         }
10166
10167         event->prog = prog;
10168         event->bpf_cookie = bpf_cookie;
10169         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10170         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10171         return 0;
10172 }
10173
10174 static void perf_event_free_bpf_handler(struct perf_event *event)
10175 {
10176         struct bpf_prog *prog = event->prog;
10177
10178         if (!prog)
10179                 return;
10180
10181         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10182         event->prog = NULL;
10183         bpf_prog_put(prog);
10184 }
10185 #else
10186 static int perf_event_set_bpf_handler(struct perf_event *event,
10187                                       struct bpf_prog *prog,
10188                                       u64 bpf_cookie)
10189 {
10190         return -EOPNOTSUPP;
10191 }
10192 static void perf_event_free_bpf_handler(struct perf_event *event)
10193 {
10194 }
10195 #endif
10196
10197 /*
10198  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10199  * with perf_event_open()
10200  */
10201 static inline bool perf_event_is_tracing(struct perf_event *event)
10202 {
10203         if (event->pmu == &perf_tracepoint)
10204                 return true;
10205 #ifdef CONFIG_KPROBE_EVENTS
10206         if (event->pmu == &perf_kprobe)
10207                 return true;
10208 #endif
10209 #ifdef CONFIG_UPROBE_EVENTS
10210         if (event->pmu == &perf_uprobe)
10211                 return true;
10212 #endif
10213         return false;
10214 }
10215
10216 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10217                             u64 bpf_cookie)
10218 {
10219         bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10220
10221         if (!perf_event_is_tracing(event))
10222                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10223
10224         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10225         is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10226         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10227         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10228         if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10229                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10230                 return -EINVAL;
10231
10232         if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10233             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10234             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10235                 return -EINVAL;
10236
10237         if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10238                 /* only uprobe programs are allowed to be sleepable */
10239                 return -EINVAL;
10240
10241         /* Kprobe override only works for kprobes, not uprobes. */
10242         if (prog->kprobe_override && !is_kprobe)
10243                 return -EINVAL;
10244
10245         if (is_tracepoint || is_syscall_tp) {
10246                 int off = trace_event_get_offsets(event->tp_event);
10247
10248                 if (prog->aux->max_ctx_offset > off)
10249                         return -EACCES;
10250         }
10251
10252         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10253 }
10254
10255 void perf_event_free_bpf_prog(struct perf_event *event)
10256 {
10257         if (!perf_event_is_tracing(event)) {
10258                 perf_event_free_bpf_handler(event);
10259                 return;
10260         }
10261         perf_event_detach_bpf_prog(event);
10262 }
10263
10264 #else
10265
10266 static inline void perf_tp_register(void)
10267 {
10268 }
10269
10270 static void perf_event_free_filter(struct perf_event *event)
10271 {
10272 }
10273
10274 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10275                             u64 bpf_cookie)
10276 {
10277         return -ENOENT;
10278 }
10279
10280 void perf_event_free_bpf_prog(struct perf_event *event)
10281 {
10282 }
10283 #endif /* CONFIG_EVENT_TRACING */
10284
10285 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10286 void perf_bp_event(struct perf_event *bp, void *data)
10287 {
10288         struct perf_sample_data sample;
10289         struct pt_regs *regs = data;
10290
10291         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10292
10293         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10294                 perf_swevent_event(bp, 1, &sample, regs);
10295 }
10296 #endif
10297
10298 /*
10299  * Allocate a new address filter
10300  */
10301 static struct perf_addr_filter *
10302 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10303 {
10304         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10305         struct perf_addr_filter *filter;
10306
10307         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10308         if (!filter)
10309                 return NULL;
10310
10311         INIT_LIST_HEAD(&filter->entry);
10312         list_add_tail(&filter->entry, filters);
10313
10314         return filter;
10315 }
10316
10317 static void free_filters_list(struct list_head *filters)
10318 {
10319         struct perf_addr_filter *filter, *iter;
10320
10321         list_for_each_entry_safe(filter, iter, filters, entry) {
10322                 path_put(&filter->path);
10323                 list_del(&filter->entry);
10324                 kfree(filter);
10325         }
10326 }
10327
10328 /*
10329  * Free existing address filters and optionally install new ones
10330  */
10331 static void perf_addr_filters_splice(struct perf_event *event,
10332                                      struct list_head *head)
10333 {
10334         unsigned long flags;
10335         LIST_HEAD(list);
10336
10337         if (!has_addr_filter(event))
10338                 return;
10339
10340         /* don't bother with children, they don't have their own filters */
10341         if (event->parent)
10342                 return;
10343
10344         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10345
10346         list_splice_init(&event->addr_filters.list, &list);
10347         if (head)
10348                 list_splice(head, &event->addr_filters.list);
10349
10350         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10351
10352         free_filters_list(&list);
10353 }
10354
10355 /*
10356  * Scan through mm's vmas and see if one of them matches the
10357  * @filter; if so, adjust filter's address range.
10358  * Called with mm::mmap_lock down for reading.
10359  */
10360 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10361                                    struct mm_struct *mm,
10362                                    struct perf_addr_filter_range *fr)
10363 {
10364         struct vm_area_struct *vma;
10365         VMA_ITERATOR(vmi, mm, 0);
10366
10367         for_each_vma(vmi, vma) {
10368                 if (!vma->vm_file)
10369                         continue;
10370
10371                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10372                         return;
10373         }
10374 }
10375
10376 /*
10377  * Update event's address range filters based on the
10378  * task's existing mappings, if any.
10379  */
10380 static void perf_event_addr_filters_apply(struct perf_event *event)
10381 {
10382         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10383         struct task_struct *task = READ_ONCE(event->ctx->task);
10384         struct perf_addr_filter *filter;
10385         struct mm_struct *mm = NULL;
10386         unsigned int count = 0;
10387         unsigned long flags;
10388
10389         /*
10390          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10391          * will stop on the parent's child_mutex that our caller is also holding
10392          */
10393         if (task == TASK_TOMBSTONE)
10394                 return;
10395
10396         if (ifh->nr_file_filters) {
10397                 mm = get_task_mm(task);
10398                 if (!mm)
10399                         goto restart;
10400
10401                 mmap_read_lock(mm);
10402         }
10403
10404         raw_spin_lock_irqsave(&ifh->lock, flags);
10405         list_for_each_entry(filter, &ifh->list, entry) {
10406                 if (filter->path.dentry) {
10407                         /*
10408                          * Adjust base offset if the filter is associated to a
10409                          * binary that needs to be mapped:
10410                          */
10411                         event->addr_filter_ranges[count].start = 0;
10412                         event->addr_filter_ranges[count].size = 0;
10413
10414                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10415                 } else {
10416                         event->addr_filter_ranges[count].start = filter->offset;
10417                         event->addr_filter_ranges[count].size  = filter->size;
10418                 }
10419
10420                 count++;
10421         }
10422
10423         event->addr_filters_gen++;
10424         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10425
10426         if (ifh->nr_file_filters) {
10427                 mmap_read_unlock(mm);
10428
10429                 mmput(mm);
10430         }
10431
10432 restart:
10433         perf_event_stop(event, 1);
10434 }
10435
10436 /*
10437  * Address range filtering: limiting the data to certain
10438  * instruction address ranges. Filters are ioctl()ed to us from
10439  * userspace as ascii strings.
10440  *
10441  * Filter string format:
10442  *
10443  * ACTION RANGE_SPEC
10444  * where ACTION is one of the
10445  *  * "filter": limit the trace to this region
10446  *  * "start": start tracing from this address
10447  *  * "stop": stop tracing at this address/region;
10448  * RANGE_SPEC is
10449  *  * for kernel addresses: <start address>[/<size>]
10450  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10451  *
10452  * if <size> is not specified or is zero, the range is treated as a single
10453  * address; not valid for ACTION=="filter".
10454  */
10455 enum {
10456         IF_ACT_NONE = -1,
10457         IF_ACT_FILTER,
10458         IF_ACT_START,
10459         IF_ACT_STOP,
10460         IF_SRC_FILE,
10461         IF_SRC_KERNEL,
10462         IF_SRC_FILEADDR,
10463         IF_SRC_KERNELADDR,
10464 };
10465
10466 enum {
10467         IF_STATE_ACTION = 0,
10468         IF_STATE_SOURCE,
10469         IF_STATE_END,
10470 };
10471
10472 static const match_table_t if_tokens = {
10473         { IF_ACT_FILTER,        "filter" },
10474         { IF_ACT_START,         "start" },
10475         { IF_ACT_STOP,          "stop" },
10476         { IF_SRC_FILE,          "%u/%u@%s" },
10477         { IF_SRC_KERNEL,        "%u/%u" },
10478         { IF_SRC_FILEADDR,      "%u@%s" },
10479         { IF_SRC_KERNELADDR,    "%u" },
10480         { IF_ACT_NONE,          NULL },
10481 };
10482
10483 /*
10484  * Address filter string parser
10485  */
10486 static int
10487 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10488                              struct list_head *filters)
10489 {
10490         struct perf_addr_filter *filter = NULL;
10491         char *start, *orig, *filename = NULL;
10492         substring_t args[MAX_OPT_ARGS];
10493         int state = IF_STATE_ACTION, token;
10494         unsigned int kernel = 0;
10495         int ret = -EINVAL;
10496
10497         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10498         if (!fstr)
10499                 return -ENOMEM;
10500
10501         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10502                 static const enum perf_addr_filter_action_t actions[] = {
10503                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10504                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10505                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10506                 };
10507                 ret = -EINVAL;
10508
10509                 if (!*start)
10510                         continue;
10511
10512                 /* filter definition begins */
10513                 if (state == IF_STATE_ACTION) {
10514                         filter = perf_addr_filter_new(event, filters);
10515                         if (!filter)
10516                                 goto fail;
10517                 }
10518
10519                 token = match_token(start, if_tokens, args);
10520                 switch (token) {
10521                 case IF_ACT_FILTER:
10522                 case IF_ACT_START:
10523                 case IF_ACT_STOP:
10524                         if (state != IF_STATE_ACTION)
10525                                 goto fail;
10526
10527                         filter->action = actions[token];
10528                         state = IF_STATE_SOURCE;
10529                         break;
10530
10531                 case IF_SRC_KERNELADDR:
10532                 case IF_SRC_KERNEL:
10533                         kernel = 1;
10534                         fallthrough;
10535
10536                 case IF_SRC_FILEADDR:
10537                 case IF_SRC_FILE:
10538                         if (state != IF_STATE_SOURCE)
10539                                 goto fail;
10540
10541                         *args[0].to = 0;
10542                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10543                         if (ret)
10544                                 goto fail;
10545
10546                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10547                                 *args[1].to = 0;
10548                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10549                                 if (ret)
10550                                         goto fail;
10551                         }
10552
10553                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10554                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10555
10556                                 kfree(filename);
10557                                 filename = match_strdup(&args[fpos]);
10558                                 if (!filename) {
10559                                         ret = -ENOMEM;
10560                                         goto fail;
10561                                 }
10562                         }
10563
10564                         state = IF_STATE_END;
10565                         break;
10566
10567                 default:
10568                         goto fail;
10569                 }
10570
10571                 /*
10572                  * Filter definition is fully parsed, validate and install it.
10573                  * Make sure that it doesn't contradict itself or the event's
10574                  * attribute.
10575                  */
10576                 if (state == IF_STATE_END) {
10577                         ret = -EINVAL;
10578
10579                         /*
10580                          * ACTION "filter" must have a non-zero length region
10581                          * specified.
10582                          */
10583                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10584                             !filter->size)
10585                                 goto fail;
10586
10587                         if (!kernel) {
10588                                 if (!filename)
10589                                         goto fail;
10590
10591                                 /*
10592                                  * For now, we only support file-based filters
10593                                  * in per-task events; doing so for CPU-wide
10594                                  * events requires additional context switching
10595                                  * trickery, since same object code will be
10596                                  * mapped at different virtual addresses in
10597                                  * different processes.
10598                                  */
10599                                 ret = -EOPNOTSUPP;
10600                                 if (!event->ctx->task)
10601                                         goto fail;
10602
10603                                 /* look up the path and grab its inode */
10604                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10605                                                 &filter->path);
10606                                 if (ret)
10607                                         goto fail;
10608
10609                                 ret = -EINVAL;
10610                                 if (!filter->path.dentry ||
10611                                     !S_ISREG(d_inode(filter->path.dentry)
10612                                              ->i_mode))
10613                                         goto fail;
10614
10615                                 event->addr_filters.nr_file_filters++;
10616                         }
10617
10618                         /* ready to consume more filters */
10619                         kfree(filename);
10620                         filename = NULL;
10621                         state = IF_STATE_ACTION;
10622                         filter = NULL;
10623                         kernel = 0;
10624                 }
10625         }
10626
10627         if (state != IF_STATE_ACTION)
10628                 goto fail;
10629
10630         kfree(filename);
10631         kfree(orig);
10632
10633         return 0;
10634
10635 fail:
10636         kfree(filename);
10637         free_filters_list(filters);
10638         kfree(orig);
10639
10640         return ret;
10641 }
10642
10643 static int
10644 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10645 {
10646         LIST_HEAD(filters);
10647         int ret;
10648
10649         /*
10650          * Since this is called in perf_ioctl() path, we're already holding
10651          * ctx::mutex.
10652          */
10653         lockdep_assert_held(&event->ctx->mutex);
10654
10655         if (WARN_ON_ONCE(event->parent))
10656                 return -EINVAL;
10657
10658         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10659         if (ret)
10660                 goto fail_clear_files;
10661
10662         ret = event->pmu->addr_filters_validate(&filters);
10663         if (ret)
10664                 goto fail_free_filters;
10665
10666         /* remove existing filters, if any */
10667         perf_addr_filters_splice(event, &filters);
10668
10669         /* install new filters */
10670         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10671
10672         return ret;
10673
10674 fail_free_filters:
10675         free_filters_list(&filters);
10676
10677 fail_clear_files:
10678         event->addr_filters.nr_file_filters = 0;
10679
10680         return ret;
10681 }
10682
10683 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10684 {
10685         int ret = -EINVAL;
10686         char *filter_str;
10687
10688         filter_str = strndup_user(arg, PAGE_SIZE);
10689         if (IS_ERR(filter_str))
10690                 return PTR_ERR(filter_str);
10691
10692 #ifdef CONFIG_EVENT_TRACING
10693         if (perf_event_is_tracing(event)) {
10694                 struct perf_event_context *ctx = event->ctx;
10695
10696                 /*
10697                  * Beware, here be dragons!!
10698                  *
10699                  * the tracepoint muck will deadlock against ctx->mutex, but
10700                  * the tracepoint stuff does not actually need it. So
10701                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10702                  * already have a reference on ctx.
10703                  *
10704                  * This can result in event getting moved to a different ctx,
10705                  * but that does not affect the tracepoint state.
10706                  */
10707                 mutex_unlock(&ctx->mutex);
10708                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10709                 mutex_lock(&ctx->mutex);
10710         } else
10711 #endif
10712         if (has_addr_filter(event))
10713                 ret = perf_event_set_addr_filter(event, filter_str);
10714
10715         kfree(filter_str);
10716         return ret;
10717 }
10718
10719 /*
10720  * hrtimer based swevent callback
10721  */
10722
10723 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10724 {
10725         enum hrtimer_restart ret = HRTIMER_RESTART;
10726         struct perf_sample_data data;
10727         struct pt_regs *regs;
10728         struct perf_event *event;
10729         u64 period;
10730
10731         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10732
10733         if (event->state != PERF_EVENT_STATE_ACTIVE)
10734                 return HRTIMER_NORESTART;
10735
10736         event->pmu->read(event);
10737
10738         perf_sample_data_init(&data, 0, event->hw.last_period);
10739         regs = get_irq_regs();
10740
10741         if (regs && !perf_exclude_event(event, regs)) {
10742                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10743                         if (__perf_event_overflow(event, 1, &data, regs))
10744                                 ret = HRTIMER_NORESTART;
10745         }
10746
10747         period = max_t(u64, 10000, event->hw.sample_period);
10748         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10749
10750         return ret;
10751 }
10752
10753 static void perf_swevent_start_hrtimer(struct perf_event *event)
10754 {
10755         struct hw_perf_event *hwc = &event->hw;
10756         s64 period;
10757
10758         if (!is_sampling_event(event))
10759                 return;
10760
10761         period = local64_read(&hwc->period_left);
10762         if (period) {
10763                 if (period < 0)
10764                         period = 10000;
10765
10766                 local64_set(&hwc->period_left, 0);
10767         } else {
10768                 period = max_t(u64, 10000, hwc->sample_period);
10769         }
10770         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10771                       HRTIMER_MODE_REL_PINNED_HARD);
10772 }
10773
10774 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10775 {
10776         struct hw_perf_event *hwc = &event->hw;
10777
10778         if (is_sampling_event(event)) {
10779                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10780                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10781
10782                 hrtimer_cancel(&hwc->hrtimer);
10783         }
10784 }
10785
10786 static void perf_swevent_init_hrtimer(struct perf_event *event)
10787 {
10788         struct hw_perf_event *hwc = &event->hw;
10789
10790         if (!is_sampling_event(event))
10791                 return;
10792
10793         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10794         hwc->hrtimer.function = perf_swevent_hrtimer;
10795
10796         /*
10797          * Since hrtimers have a fixed rate, we can do a static freq->period
10798          * mapping and avoid the whole period adjust feedback stuff.
10799          */
10800         if (event->attr.freq) {
10801                 long freq = event->attr.sample_freq;
10802
10803                 event->attr.sample_period = NSEC_PER_SEC / freq;
10804                 hwc->sample_period = event->attr.sample_period;
10805                 local64_set(&hwc->period_left, hwc->sample_period);
10806                 hwc->last_period = hwc->sample_period;
10807                 event->attr.freq = 0;
10808         }
10809 }
10810
10811 /*
10812  * Software event: cpu wall time clock
10813  */
10814
10815 static void cpu_clock_event_update(struct perf_event *event)
10816 {
10817         s64 prev;
10818         u64 now;
10819
10820         now = local_clock();
10821         prev = local64_xchg(&event->hw.prev_count, now);
10822         local64_add(now - prev, &event->count);
10823 }
10824
10825 static void cpu_clock_event_start(struct perf_event *event, int flags)
10826 {
10827         local64_set(&event->hw.prev_count, local_clock());
10828         perf_swevent_start_hrtimer(event);
10829 }
10830
10831 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10832 {
10833         perf_swevent_cancel_hrtimer(event);
10834         cpu_clock_event_update(event);
10835 }
10836
10837 static int cpu_clock_event_add(struct perf_event *event, int flags)
10838 {
10839         if (flags & PERF_EF_START)
10840                 cpu_clock_event_start(event, flags);
10841         perf_event_update_userpage(event);
10842
10843         return 0;
10844 }
10845
10846 static void cpu_clock_event_del(struct perf_event *event, int flags)
10847 {
10848         cpu_clock_event_stop(event, flags);
10849 }
10850
10851 static void cpu_clock_event_read(struct perf_event *event)
10852 {
10853         cpu_clock_event_update(event);
10854 }
10855
10856 static int cpu_clock_event_init(struct perf_event *event)
10857 {
10858         if (event->attr.type != PERF_TYPE_SOFTWARE)
10859                 return -ENOENT;
10860
10861         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10862                 return -ENOENT;
10863
10864         /*
10865          * no branch sampling for software events
10866          */
10867         if (has_branch_stack(event))
10868                 return -EOPNOTSUPP;
10869
10870         perf_swevent_init_hrtimer(event);
10871
10872         return 0;
10873 }
10874
10875 static struct pmu perf_cpu_clock = {
10876         .task_ctx_nr    = perf_sw_context,
10877
10878         .capabilities   = PERF_PMU_CAP_NO_NMI,
10879
10880         .event_init     = cpu_clock_event_init,
10881         .add            = cpu_clock_event_add,
10882         .del            = cpu_clock_event_del,
10883         .start          = cpu_clock_event_start,
10884         .stop           = cpu_clock_event_stop,
10885         .read           = cpu_clock_event_read,
10886 };
10887
10888 /*
10889  * Software event: task time clock
10890  */
10891
10892 static void task_clock_event_update(struct perf_event *event, u64 now)
10893 {
10894         u64 prev;
10895         s64 delta;
10896
10897         prev = local64_xchg(&event->hw.prev_count, now);
10898         delta = now - prev;
10899         local64_add(delta, &event->count);
10900 }
10901
10902 static void task_clock_event_start(struct perf_event *event, int flags)
10903 {
10904         local64_set(&event->hw.prev_count, event->ctx->time);
10905         perf_swevent_start_hrtimer(event);
10906 }
10907
10908 static void task_clock_event_stop(struct perf_event *event, int flags)
10909 {
10910         perf_swevent_cancel_hrtimer(event);
10911         task_clock_event_update(event, event->ctx->time);
10912 }
10913
10914 static int task_clock_event_add(struct perf_event *event, int flags)
10915 {
10916         if (flags & PERF_EF_START)
10917                 task_clock_event_start(event, flags);
10918         perf_event_update_userpage(event);
10919
10920         return 0;
10921 }
10922
10923 static void task_clock_event_del(struct perf_event *event, int flags)
10924 {
10925         task_clock_event_stop(event, PERF_EF_UPDATE);
10926 }
10927
10928 static void task_clock_event_read(struct perf_event *event)
10929 {
10930         u64 now = perf_clock();
10931         u64 delta = now - event->ctx->timestamp;
10932         u64 time = event->ctx->time + delta;
10933
10934         task_clock_event_update(event, time);
10935 }
10936
10937 static int task_clock_event_init(struct perf_event *event)
10938 {
10939         if (event->attr.type != PERF_TYPE_SOFTWARE)
10940                 return -ENOENT;
10941
10942         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10943                 return -ENOENT;
10944
10945         /*
10946          * no branch sampling for software events
10947          */
10948         if (has_branch_stack(event))
10949                 return -EOPNOTSUPP;
10950
10951         perf_swevent_init_hrtimer(event);
10952
10953         return 0;
10954 }
10955
10956 static struct pmu perf_task_clock = {
10957         .task_ctx_nr    = perf_sw_context,
10958
10959         .capabilities   = PERF_PMU_CAP_NO_NMI,
10960
10961         .event_init     = task_clock_event_init,
10962         .add            = task_clock_event_add,
10963         .del            = task_clock_event_del,
10964         .start          = task_clock_event_start,
10965         .stop           = task_clock_event_stop,
10966         .read           = task_clock_event_read,
10967 };
10968
10969 static void perf_pmu_nop_void(struct pmu *pmu)
10970 {
10971 }
10972
10973 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10974 {
10975 }
10976
10977 static int perf_pmu_nop_int(struct pmu *pmu)
10978 {
10979         return 0;
10980 }
10981
10982 static int perf_event_nop_int(struct perf_event *event, u64 value)
10983 {
10984         return 0;
10985 }
10986
10987 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10988
10989 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10990 {
10991         __this_cpu_write(nop_txn_flags, flags);
10992
10993         if (flags & ~PERF_PMU_TXN_ADD)
10994                 return;
10995
10996         perf_pmu_disable(pmu);
10997 }
10998
10999 static int perf_pmu_commit_txn(struct pmu *pmu)
11000 {
11001         unsigned int flags = __this_cpu_read(nop_txn_flags);
11002
11003         __this_cpu_write(nop_txn_flags, 0);
11004
11005         if (flags & ~PERF_PMU_TXN_ADD)
11006                 return 0;
11007
11008         perf_pmu_enable(pmu);
11009         return 0;
11010 }
11011
11012 static void perf_pmu_cancel_txn(struct pmu *pmu)
11013 {
11014         unsigned int flags =  __this_cpu_read(nop_txn_flags);
11015
11016         __this_cpu_write(nop_txn_flags, 0);
11017
11018         if (flags & ~PERF_PMU_TXN_ADD)
11019                 return;
11020
11021         perf_pmu_enable(pmu);
11022 }
11023
11024 static int perf_event_idx_default(struct perf_event *event)
11025 {
11026         return 0;
11027 }
11028
11029 /*
11030  * Ensures all contexts with the same task_ctx_nr have the same
11031  * pmu_cpu_context too.
11032  */
11033 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
11034 {
11035         struct pmu *pmu;
11036
11037         if (ctxn < 0)
11038                 return NULL;
11039
11040         list_for_each_entry(pmu, &pmus, entry) {
11041                 if (pmu->task_ctx_nr == ctxn)
11042                         return pmu->pmu_cpu_context;
11043         }
11044
11045         return NULL;
11046 }
11047
11048 static void free_pmu_context(struct pmu *pmu)
11049 {
11050         /*
11051          * Static contexts such as perf_sw_context have a global lifetime
11052          * and may be shared between different PMUs. Avoid freeing them
11053          * when a single PMU is going away.
11054          */
11055         if (pmu->task_ctx_nr > perf_invalid_context)
11056                 return;
11057
11058         free_percpu(pmu->pmu_cpu_context);
11059 }
11060
11061 /*
11062  * Let userspace know that this PMU supports address range filtering:
11063  */
11064 static ssize_t nr_addr_filters_show(struct device *dev,
11065                                     struct device_attribute *attr,
11066                                     char *page)
11067 {
11068         struct pmu *pmu = dev_get_drvdata(dev);
11069
11070         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11071 }
11072 DEVICE_ATTR_RO(nr_addr_filters);
11073
11074 static struct idr pmu_idr;
11075
11076 static ssize_t
11077 type_show(struct device *dev, struct device_attribute *attr, char *page)
11078 {
11079         struct pmu *pmu = dev_get_drvdata(dev);
11080
11081         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11082 }
11083 static DEVICE_ATTR_RO(type);
11084
11085 static ssize_t
11086 perf_event_mux_interval_ms_show(struct device *dev,
11087                                 struct device_attribute *attr,
11088                                 char *page)
11089 {
11090         struct pmu *pmu = dev_get_drvdata(dev);
11091
11092         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11093 }
11094
11095 static DEFINE_MUTEX(mux_interval_mutex);
11096
11097 static ssize_t
11098 perf_event_mux_interval_ms_store(struct device *dev,
11099                                  struct device_attribute *attr,
11100                                  const char *buf, size_t count)
11101 {
11102         struct pmu *pmu = dev_get_drvdata(dev);
11103         int timer, cpu, ret;
11104
11105         ret = kstrtoint(buf, 0, &timer);
11106         if (ret)
11107                 return ret;
11108
11109         if (timer < 1)
11110                 return -EINVAL;
11111
11112         /* same value, noting to do */
11113         if (timer == pmu->hrtimer_interval_ms)
11114                 return count;
11115
11116         mutex_lock(&mux_interval_mutex);
11117         pmu->hrtimer_interval_ms = timer;
11118
11119         /* update all cpuctx for this PMU */
11120         cpus_read_lock();
11121         for_each_online_cpu(cpu) {
11122                 struct perf_cpu_context *cpuctx;
11123                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11124                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11125
11126                 cpu_function_call(cpu,
11127                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11128         }
11129         cpus_read_unlock();
11130         mutex_unlock(&mux_interval_mutex);
11131
11132         return count;
11133 }
11134 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11135
11136 static struct attribute *pmu_dev_attrs[] = {
11137         &dev_attr_type.attr,
11138         &dev_attr_perf_event_mux_interval_ms.attr,
11139         NULL,
11140 };
11141 ATTRIBUTE_GROUPS(pmu_dev);
11142
11143 static int pmu_bus_running;
11144 static struct bus_type pmu_bus = {
11145         .name           = "event_source",
11146         .dev_groups     = pmu_dev_groups,
11147 };
11148
11149 static void pmu_dev_release(struct device *dev)
11150 {
11151         kfree(dev);
11152 }
11153
11154 static int pmu_dev_alloc(struct pmu *pmu)
11155 {
11156         int ret = -ENOMEM;
11157
11158         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11159         if (!pmu->dev)
11160                 goto out;
11161
11162         pmu->dev->groups = pmu->attr_groups;
11163         device_initialize(pmu->dev);
11164         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11165         if (ret)
11166                 goto free_dev;
11167
11168         dev_set_drvdata(pmu->dev, pmu);
11169         pmu->dev->bus = &pmu_bus;
11170         pmu->dev->release = pmu_dev_release;
11171         ret = device_add(pmu->dev);
11172         if (ret)
11173                 goto free_dev;
11174
11175         /* For PMUs with address filters, throw in an extra attribute: */
11176         if (pmu->nr_addr_filters)
11177                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11178
11179         if (ret)
11180                 goto del_dev;
11181
11182         if (pmu->attr_update)
11183                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11184
11185         if (ret)
11186                 goto del_dev;
11187
11188 out:
11189         return ret;
11190
11191 del_dev:
11192         device_del(pmu->dev);
11193
11194 free_dev:
11195         put_device(pmu->dev);
11196         goto out;
11197 }
11198
11199 static struct lock_class_key cpuctx_mutex;
11200 static struct lock_class_key cpuctx_lock;
11201
11202 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11203 {
11204         int cpu, ret, max = PERF_TYPE_MAX;
11205
11206         mutex_lock(&pmus_lock);
11207         ret = -ENOMEM;
11208         pmu->pmu_disable_count = alloc_percpu(int);
11209         if (!pmu->pmu_disable_count)
11210                 goto unlock;
11211
11212         pmu->type = -1;
11213         if (!name)
11214                 goto skip_type;
11215         pmu->name = name;
11216
11217         if (type != PERF_TYPE_SOFTWARE) {
11218                 if (type >= 0)
11219                         max = type;
11220
11221                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11222                 if (ret < 0)
11223                         goto free_pdc;
11224
11225                 WARN_ON(type >= 0 && ret != type);
11226
11227                 type = ret;
11228         }
11229         pmu->type = type;
11230
11231         if (pmu_bus_running) {
11232                 ret = pmu_dev_alloc(pmu);
11233                 if (ret)
11234                         goto free_idr;
11235         }
11236
11237 skip_type:
11238         if (pmu->task_ctx_nr == perf_hw_context) {
11239                 static int hw_context_taken = 0;
11240
11241                 /*
11242                  * Other than systems with heterogeneous CPUs, it never makes
11243                  * sense for two PMUs to share perf_hw_context. PMUs which are
11244                  * uncore must use perf_invalid_context.
11245                  */
11246                 if (WARN_ON_ONCE(hw_context_taken &&
11247                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11248                         pmu->task_ctx_nr = perf_invalid_context;
11249
11250                 hw_context_taken = 1;
11251         }
11252
11253         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11254         if (pmu->pmu_cpu_context)
11255                 goto got_cpu_context;
11256
11257         ret = -ENOMEM;
11258         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11259         if (!pmu->pmu_cpu_context)
11260                 goto free_dev;
11261
11262         for_each_possible_cpu(cpu) {
11263                 struct perf_cpu_context *cpuctx;
11264
11265                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11266                 __perf_event_init_context(&cpuctx->ctx);
11267                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11268                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11269                 cpuctx->ctx.pmu = pmu;
11270                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11271
11272                 __perf_mux_hrtimer_init(cpuctx, cpu);
11273
11274                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11275                 cpuctx->heap = cpuctx->heap_default;
11276         }
11277
11278 got_cpu_context:
11279         if (!pmu->start_txn) {
11280                 if (pmu->pmu_enable) {
11281                         /*
11282                          * If we have pmu_enable/pmu_disable calls, install
11283                          * transaction stubs that use that to try and batch
11284                          * hardware accesses.
11285                          */
11286                         pmu->start_txn  = perf_pmu_start_txn;
11287                         pmu->commit_txn = perf_pmu_commit_txn;
11288                         pmu->cancel_txn = perf_pmu_cancel_txn;
11289                 } else {
11290                         pmu->start_txn  = perf_pmu_nop_txn;
11291                         pmu->commit_txn = perf_pmu_nop_int;
11292                         pmu->cancel_txn = perf_pmu_nop_void;
11293                 }
11294         }
11295
11296         if (!pmu->pmu_enable) {
11297                 pmu->pmu_enable  = perf_pmu_nop_void;
11298                 pmu->pmu_disable = perf_pmu_nop_void;
11299         }
11300
11301         if (!pmu->check_period)
11302                 pmu->check_period = perf_event_nop_int;
11303
11304         if (!pmu->event_idx)
11305                 pmu->event_idx = perf_event_idx_default;
11306
11307         /*
11308          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11309          * since these cannot be in the IDR. This way the linear search
11310          * is fast, provided a valid software event is provided.
11311          */
11312         if (type == PERF_TYPE_SOFTWARE || !name)
11313                 list_add_rcu(&pmu->entry, &pmus);
11314         else
11315                 list_add_tail_rcu(&pmu->entry, &pmus);
11316
11317         atomic_set(&pmu->exclusive_cnt, 0);
11318         ret = 0;
11319 unlock:
11320         mutex_unlock(&pmus_lock);
11321
11322         return ret;
11323
11324 free_dev:
11325         device_del(pmu->dev);
11326         put_device(pmu->dev);
11327
11328 free_idr:
11329         if (pmu->type != PERF_TYPE_SOFTWARE)
11330                 idr_remove(&pmu_idr, pmu->type);
11331
11332 free_pdc:
11333         free_percpu(pmu->pmu_disable_count);
11334         goto unlock;
11335 }
11336 EXPORT_SYMBOL_GPL(perf_pmu_register);
11337
11338 void perf_pmu_unregister(struct pmu *pmu)
11339 {
11340         mutex_lock(&pmus_lock);
11341         list_del_rcu(&pmu->entry);
11342
11343         /*
11344          * We dereference the pmu list under both SRCU and regular RCU, so
11345          * synchronize against both of those.
11346          */
11347         synchronize_srcu(&pmus_srcu);
11348         synchronize_rcu();
11349
11350         free_percpu(pmu->pmu_disable_count);
11351         if (pmu->type != PERF_TYPE_SOFTWARE)
11352                 idr_remove(&pmu_idr, pmu->type);
11353         if (pmu_bus_running) {
11354                 if (pmu->nr_addr_filters)
11355                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11356                 device_del(pmu->dev);
11357                 put_device(pmu->dev);
11358         }
11359         free_pmu_context(pmu);
11360         mutex_unlock(&pmus_lock);
11361 }
11362 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11363
11364 static inline bool has_extended_regs(struct perf_event *event)
11365 {
11366         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11367                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11368 }
11369
11370 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11371 {
11372         struct perf_event_context *ctx = NULL;
11373         int ret;
11374
11375         if (!try_module_get(pmu->module))
11376                 return -ENODEV;
11377
11378         /*
11379          * A number of pmu->event_init() methods iterate the sibling_list to,
11380          * for example, validate if the group fits on the PMU. Therefore,
11381          * if this is a sibling event, acquire the ctx->mutex to protect
11382          * the sibling_list.
11383          */
11384         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11385                 /*
11386                  * This ctx->mutex can nest when we're called through
11387                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11388                  */
11389                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11390                                                  SINGLE_DEPTH_NESTING);
11391                 BUG_ON(!ctx);
11392         }
11393
11394         event->pmu = pmu;
11395         ret = pmu->event_init(event);
11396
11397         if (ctx)
11398                 perf_event_ctx_unlock(event->group_leader, ctx);
11399
11400         if (!ret) {
11401                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11402                     has_extended_regs(event))
11403                         ret = -EOPNOTSUPP;
11404
11405                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11406                     event_has_any_exclude_flag(event))
11407                         ret = -EINVAL;
11408
11409                 if (ret && event->destroy)
11410                         event->destroy(event);
11411         }
11412
11413         if (ret)
11414                 module_put(pmu->module);
11415
11416         return ret;
11417 }
11418
11419 static struct pmu *perf_init_event(struct perf_event *event)
11420 {
11421         bool extended_type = false;
11422         int idx, type, ret;
11423         struct pmu *pmu;
11424
11425         idx = srcu_read_lock(&pmus_srcu);
11426
11427         /* Try parent's PMU first: */
11428         if (event->parent && event->parent->pmu) {
11429                 pmu = event->parent->pmu;
11430                 ret = perf_try_init_event(pmu, event);
11431                 if (!ret)
11432                         goto unlock;
11433         }
11434
11435         /*
11436          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11437          * are often aliases for PERF_TYPE_RAW.
11438          */
11439         type = event->attr.type;
11440         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11441                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11442                 if (!type) {
11443                         type = PERF_TYPE_RAW;
11444                 } else {
11445                         extended_type = true;
11446                         event->attr.config &= PERF_HW_EVENT_MASK;
11447                 }
11448         }
11449
11450 again:
11451         rcu_read_lock();
11452         pmu = idr_find(&pmu_idr, type);
11453         rcu_read_unlock();
11454         if (pmu) {
11455                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11456                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11457                         goto fail;
11458
11459                 ret = perf_try_init_event(pmu, event);
11460                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11461                         type = event->attr.type;
11462                         goto again;
11463                 }
11464
11465                 if (ret)
11466                         pmu = ERR_PTR(ret);
11467
11468                 goto unlock;
11469         }
11470
11471         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11472                 ret = perf_try_init_event(pmu, event);
11473                 if (!ret)
11474                         goto unlock;
11475
11476                 if (ret != -ENOENT) {
11477                         pmu = ERR_PTR(ret);
11478                         goto unlock;
11479                 }
11480         }
11481 fail:
11482         pmu = ERR_PTR(-ENOENT);
11483 unlock:
11484         srcu_read_unlock(&pmus_srcu, idx);
11485
11486         return pmu;
11487 }
11488
11489 static void attach_sb_event(struct perf_event *event)
11490 {
11491         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11492
11493         raw_spin_lock(&pel->lock);
11494         list_add_rcu(&event->sb_list, &pel->list);
11495         raw_spin_unlock(&pel->lock);
11496 }
11497
11498 /*
11499  * We keep a list of all !task (and therefore per-cpu) events
11500  * that need to receive side-band records.
11501  *
11502  * This avoids having to scan all the various PMU per-cpu contexts
11503  * looking for them.
11504  */
11505 static void account_pmu_sb_event(struct perf_event *event)
11506 {
11507         if (is_sb_event(event))
11508                 attach_sb_event(event);
11509 }
11510
11511 static void account_event_cpu(struct perf_event *event, int cpu)
11512 {
11513         if (event->parent)
11514                 return;
11515
11516         if (is_cgroup_event(event))
11517                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11518 }
11519
11520 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11521 static void account_freq_event_nohz(void)
11522 {
11523 #ifdef CONFIG_NO_HZ_FULL
11524         /* Lock so we don't race with concurrent unaccount */
11525         spin_lock(&nr_freq_lock);
11526         if (atomic_inc_return(&nr_freq_events) == 1)
11527                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11528         spin_unlock(&nr_freq_lock);
11529 #endif
11530 }
11531
11532 static void account_freq_event(void)
11533 {
11534         if (tick_nohz_full_enabled())
11535                 account_freq_event_nohz();
11536         else
11537                 atomic_inc(&nr_freq_events);
11538 }
11539
11540
11541 static void account_event(struct perf_event *event)
11542 {
11543         bool inc = false;
11544
11545         if (event->parent)
11546                 return;
11547
11548         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11549                 inc = true;
11550         if (event->attr.mmap || event->attr.mmap_data)
11551                 atomic_inc(&nr_mmap_events);
11552         if (event->attr.build_id)
11553                 atomic_inc(&nr_build_id_events);
11554         if (event->attr.comm)
11555                 atomic_inc(&nr_comm_events);
11556         if (event->attr.namespaces)
11557                 atomic_inc(&nr_namespaces_events);
11558         if (event->attr.cgroup)
11559                 atomic_inc(&nr_cgroup_events);
11560         if (event->attr.task)
11561                 atomic_inc(&nr_task_events);
11562         if (event->attr.freq)
11563                 account_freq_event();
11564         if (event->attr.context_switch) {
11565                 atomic_inc(&nr_switch_events);
11566                 inc = true;
11567         }
11568         if (has_branch_stack(event))
11569                 inc = true;
11570         if (is_cgroup_event(event))
11571                 inc = true;
11572         if (event->attr.ksymbol)
11573                 atomic_inc(&nr_ksymbol_events);
11574         if (event->attr.bpf_event)
11575                 atomic_inc(&nr_bpf_events);
11576         if (event->attr.text_poke)
11577                 atomic_inc(&nr_text_poke_events);
11578
11579         if (inc) {
11580                 /*
11581                  * We need the mutex here because static_branch_enable()
11582                  * must complete *before* the perf_sched_count increment
11583                  * becomes visible.
11584                  */
11585                 if (atomic_inc_not_zero(&perf_sched_count))
11586                         goto enabled;
11587
11588                 mutex_lock(&perf_sched_mutex);
11589                 if (!atomic_read(&perf_sched_count)) {
11590                         static_branch_enable(&perf_sched_events);
11591                         /*
11592                          * Guarantee that all CPUs observe they key change and
11593                          * call the perf scheduling hooks before proceeding to
11594                          * install events that need them.
11595                          */
11596                         synchronize_rcu();
11597                 }
11598                 /*
11599                  * Now that we have waited for the sync_sched(), allow further
11600                  * increments to by-pass the mutex.
11601                  */
11602                 atomic_inc(&perf_sched_count);
11603                 mutex_unlock(&perf_sched_mutex);
11604         }
11605 enabled:
11606
11607         account_event_cpu(event, event->cpu);
11608
11609         account_pmu_sb_event(event);
11610 }
11611
11612 /*
11613  * Allocate and initialize an event structure
11614  */
11615 static struct perf_event *
11616 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11617                  struct task_struct *task,
11618                  struct perf_event *group_leader,
11619                  struct perf_event *parent_event,
11620                  perf_overflow_handler_t overflow_handler,
11621                  void *context, int cgroup_fd)
11622 {
11623         struct pmu *pmu;
11624         struct perf_event *event;
11625         struct hw_perf_event *hwc;
11626         long err = -EINVAL;
11627         int node;
11628
11629         if ((unsigned)cpu >= nr_cpu_ids) {
11630                 if (!task || cpu != -1)
11631                         return ERR_PTR(-EINVAL);
11632         }
11633         if (attr->sigtrap && !task) {
11634                 /* Requires a task: avoid signalling random tasks. */
11635                 return ERR_PTR(-EINVAL);
11636         }
11637
11638         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11639         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11640                                       node);
11641         if (!event)
11642                 return ERR_PTR(-ENOMEM);
11643
11644         /*
11645          * Single events are their own group leaders, with an
11646          * empty sibling list:
11647          */
11648         if (!group_leader)
11649                 group_leader = event;
11650
11651         mutex_init(&event->child_mutex);
11652         INIT_LIST_HEAD(&event->child_list);
11653
11654         INIT_LIST_HEAD(&event->event_entry);
11655         INIT_LIST_HEAD(&event->sibling_list);
11656         INIT_LIST_HEAD(&event->active_list);
11657         init_event_group(event);
11658         INIT_LIST_HEAD(&event->rb_entry);
11659         INIT_LIST_HEAD(&event->active_entry);
11660         INIT_LIST_HEAD(&event->addr_filters.list);
11661         INIT_HLIST_NODE(&event->hlist_entry);
11662
11663
11664         init_waitqueue_head(&event->waitq);
11665         init_irq_work(&event->pending_irq, perf_pending_irq);
11666         init_task_work(&event->pending_task, perf_pending_task);
11667
11668         mutex_init(&event->mmap_mutex);
11669         raw_spin_lock_init(&event->addr_filters.lock);
11670
11671         atomic_long_set(&event->refcount, 1);
11672         event->cpu              = cpu;
11673         event->attr             = *attr;
11674         event->group_leader     = group_leader;
11675         event->pmu              = NULL;
11676         event->oncpu            = -1;
11677
11678         event->parent           = parent_event;
11679
11680         event->ns               = get_pid_ns(task_active_pid_ns(current));
11681         event->id               = atomic64_inc_return(&perf_event_id);
11682
11683         event->state            = PERF_EVENT_STATE_INACTIVE;
11684
11685         if (parent_event)
11686                 event->event_caps = parent_event->event_caps;
11687
11688         if (task) {
11689                 event->attach_state = PERF_ATTACH_TASK;
11690                 /*
11691                  * XXX pmu::event_init needs to know what task to account to
11692                  * and we cannot use the ctx information because we need the
11693                  * pmu before we get a ctx.
11694                  */
11695                 event->hw.target = get_task_struct(task);
11696         }
11697
11698         event->clock = &local_clock;
11699         if (parent_event)
11700                 event->clock = parent_event->clock;
11701
11702         if (!overflow_handler && parent_event) {
11703                 overflow_handler = parent_event->overflow_handler;
11704                 context = parent_event->overflow_handler_context;
11705 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11706                 if (overflow_handler == bpf_overflow_handler) {
11707                         struct bpf_prog *prog = parent_event->prog;
11708
11709                         bpf_prog_inc(prog);
11710                         event->prog = prog;
11711                         event->orig_overflow_handler =
11712                                 parent_event->orig_overflow_handler;
11713                 }
11714 #endif
11715         }
11716
11717         if (overflow_handler) {
11718                 event->overflow_handler = overflow_handler;
11719                 event->overflow_handler_context = context;
11720         } else if (is_write_backward(event)){
11721                 event->overflow_handler = perf_event_output_backward;
11722                 event->overflow_handler_context = NULL;
11723         } else {
11724                 event->overflow_handler = perf_event_output_forward;
11725                 event->overflow_handler_context = NULL;
11726         }
11727
11728         perf_event__state_init(event);
11729
11730         pmu = NULL;
11731
11732         hwc = &event->hw;
11733         hwc->sample_period = attr->sample_period;
11734         if (attr->freq && attr->sample_freq)
11735                 hwc->sample_period = 1;
11736         hwc->last_period = hwc->sample_period;
11737
11738         local64_set(&hwc->period_left, hwc->sample_period);
11739
11740         /*
11741          * We currently do not support PERF_SAMPLE_READ on inherited events.
11742          * See perf_output_read().
11743          */
11744         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11745                 goto err_ns;
11746
11747         if (!has_branch_stack(event))
11748                 event->attr.branch_sample_type = 0;
11749
11750         pmu = perf_init_event(event);
11751         if (IS_ERR(pmu)) {
11752                 err = PTR_ERR(pmu);
11753                 goto err_ns;
11754         }
11755
11756         /*
11757          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11758          * be different on other CPUs in the uncore mask.
11759          */
11760         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11761                 err = -EINVAL;
11762                 goto err_pmu;
11763         }
11764
11765         if (event->attr.aux_output &&
11766             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11767                 err = -EOPNOTSUPP;
11768                 goto err_pmu;
11769         }
11770
11771         if (cgroup_fd != -1) {
11772                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11773                 if (err)
11774                         goto err_pmu;
11775         }
11776
11777         err = exclusive_event_init(event);
11778         if (err)
11779                 goto err_pmu;
11780
11781         if (has_addr_filter(event)) {
11782                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11783                                                     sizeof(struct perf_addr_filter_range),
11784                                                     GFP_KERNEL);
11785                 if (!event->addr_filter_ranges) {
11786                         err = -ENOMEM;
11787                         goto err_per_task;
11788                 }
11789
11790                 /*
11791                  * Clone the parent's vma offsets: they are valid until exec()
11792                  * even if the mm is not shared with the parent.
11793                  */
11794                 if (event->parent) {
11795                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11796
11797                         raw_spin_lock_irq(&ifh->lock);
11798                         memcpy(event->addr_filter_ranges,
11799                                event->parent->addr_filter_ranges,
11800                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11801                         raw_spin_unlock_irq(&ifh->lock);
11802                 }
11803
11804                 /* force hw sync on the address filters */
11805                 event->addr_filters_gen = 1;
11806         }
11807
11808         if (!event->parent) {
11809                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11810                         err = get_callchain_buffers(attr->sample_max_stack);
11811                         if (err)
11812                                 goto err_addr_filters;
11813                 }
11814         }
11815
11816         err = security_perf_event_alloc(event);
11817         if (err)
11818                 goto err_callchain_buffer;
11819
11820         /* symmetric to unaccount_event() in _free_event() */
11821         account_event(event);
11822
11823         return event;
11824
11825 err_callchain_buffer:
11826         if (!event->parent) {
11827                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11828                         put_callchain_buffers();
11829         }
11830 err_addr_filters:
11831         kfree(event->addr_filter_ranges);
11832
11833 err_per_task:
11834         exclusive_event_destroy(event);
11835
11836 err_pmu:
11837         if (is_cgroup_event(event))
11838                 perf_detach_cgroup(event);
11839         if (event->destroy)
11840                 event->destroy(event);
11841         module_put(pmu->module);
11842 err_ns:
11843         if (event->hw.target)
11844                 put_task_struct(event->hw.target);
11845         call_rcu(&event->rcu_head, free_event_rcu);
11846
11847         return ERR_PTR(err);
11848 }
11849
11850 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11851                           struct perf_event_attr *attr)
11852 {
11853         u32 size;
11854         int ret;
11855
11856         /* Zero the full structure, so that a short copy will be nice. */
11857         memset(attr, 0, sizeof(*attr));
11858
11859         ret = get_user(size, &uattr->size);
11860         if (ret)
11861                 return ret;
11862
11863         /* ABI compatibility quirk: */
11864         if (!size)
11865                 size = PERF_ATTR_SIZE_VER0;
11866         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11867                 goto err_size;
11868
11869         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11870         if (ret) {
11871                 if (ret == -E2BIG)
11872                         goto err_size;
11873                 return ret;
11874         }
11875
11876         attr->size = size;
11877
11878         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11879                 return -EINVAL;
11880
11881         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11882                 return -EINVAL;
11883
11884         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11885                 return -EINVAL;
11886
11887         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11888                 u64 mask = attr->branch_sample_type;
11889
11890                 /* only using defined bits */
11891                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11892                         return -EINVAL;
11893
11894                 /* at least one branch bit must be set */
11895                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11896                         return -EINVAL;
11897
11898                 /* propagate priv level, when not set for branch */
11899                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11900
11901                         /* exclude_kernel checked on syscall entry */
11902                         if (!attr->exclude_kernel)
11903                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11904
11905                         if (!attr->exclude_user)
11906                                 mask |= PERF_SAMPLE_BRANCH_USER;
11907
11908                         if (!attr->exclude_hv)
11909                                 mask |= PERF_SAMPLE_BRANCH_HV;
11910                         /*
11911                          * adjust user setting (for HW filter setup)
11912                          */
11913                         attr->branch_sample_type = mask;
11914                 }
11915                 /* privileged levels capture (kernel, hv): check permissions */
11916                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11917                         ret = perf_allow_kernel(attr);
11918                         if (ret)
11919                                 return ret;
11920                 }
11921         }
11922
11923         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11924                 ret = perf_reg_validate(attr->sample_regs_user);
11925                 if (ret)
11926                         return ret;
11927         }
11928
11929         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11930                 if (!arch_perf_have_user_stack_dump())
11931                         return -ENOSYS;
11932
11933                 /*
11934                  * We have __u32 type for the size, but so far
11935                  * we can only use __u16 as maximum due to the
11936                  * __u16 sample size limit.
11937                  */
11938                 if (attr->sample_stack_user >= USHRT_MAX)
11939                         return -EINVAL;
11940                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11941                         return -EINVAL;
11942         }
11943
11944         if (!attr->sample_max_stack)
11945                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11946
11947         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11948                 ret = perf_reg_validate(attr->sample_regs_intr);
11949
11950 #ifndef CONFIG_CGROUP_PERF
11951         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11952                 return -EINVAL;
11953 #endif
11954         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11955             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11956                 return -EINVAL;
11957
11958         if (!attr->inherit && attr->inherit_thread)
11959                 return -EINVAL;
11960
11961         if (attr->remove_on_exec && attr->enable_on_exec)
11962                 return -EINVAL;
11963
11964         if (attr->sigtrap && !attr->remove_on_exec)
11965                 return -EINVAL;
11966
11967 out:
11968         return ret;
11969
11970 err_size:
11971         put_user(sizeof(*attr), &uattr->size);
11972         ret = -E2BIG;
11973         goto out;
11974 }
11975
11976 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11977 {
11978         if (b < a)
11979                 swap(a, b);
11980
11981         mutex_lock(a);
11982         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11983 }
11984
11985 static int
11986 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11987 {
11988         struct perf_buffer *rb = NULL;
11989         int ret = -EINVAL;
11990
11991         if (!output_event) {
11992                 mutex_lock(&event->mmap_mutex);
11993                 goto set;
11994         }
11995
11996         /* don't allow circular references */
11997         if (event == output_event)
11998                 goto out;
11999
12000         /*
12001          * Don't allow cross-cpu buffers
12002          */
12003         if (output_event->cpu != event->cpu)
12004                 goto out;
12005
12006         /*
12007          * If its not a per-cpu rb, it must be the same task.
12008          */
12009         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
12010                 goto out;
12011
12012         /*
12013          * Mixing clocks in the same buffer is trouble you don't need.
12014          */
12015         if (output_event->clock != event->clock)
12016                 goto out;
12017
12018         /*
12019          * Either writing ring buffer from beginning or from end.
12020          * Mixing is not allowed.
12021          */
12022         if (is_write_backward(output_event) != is_write_backward(event))
12023                 goto out;
12024
12025         /*
12026          * If both events generate aux data, they must be on the same PMU
12027          */
12028         if (has_aux(event) && has_aux(output_event) &&
12029             event->pmu != output_event->pmu)
12030                 goto out;
12031
12032         /*
12033          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12034          * output_event is already on rb->event_list, and the list iteration
12035          * restarts after every removal, it is guaranteed this new event is
12036          * observed *OR* if output_event is already removed, it's guaranteed we
12037          * observe !rb->mmap_count.
12038          */
12039         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12040 set:
12041         /* Can't redirect output if we've got an active mmap() */
12042         if (atomic_read(&event->mmap_count))
12043                 goto unlock;
12044
12045         if (output_event) {
12046                 /* get the rb we want to redirect to */
12047                 rb = ring_buffer_get(output_event);
12048                 if (!rb)
12049                         goto unlock;
12050
12051                 /* did we race against perf_mmap_close() */
12052                 if (!atomic_read(&rb->mmap_count)) {
12053                         ring_buffer_put(rb);
12054                         goto unlock;
12055                 }
12056         }
12057
12058         ring_buffer_attach(event, rb);
12059
12060         ret = 0;
12061 unlock:
12062         mutex_unlock(&event->mmap_mutex);
12063         if (output_event)
12064                 mutex_unlock(&output_event->mmap_mutex);
12065
12066 out:
12067         return ret;
12068 }
12069
12070 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12071 {
12072         bool nmi_safe = false;
12073
12074         switch (clk_id) {
12075         case CLOCK_MONOTONIC:
12076                 event->clock = &ktime_get_mono_fast_ns;
12077                 nmi_safe = true;
12078                 break;
12079
12080         case CLOCK_MONOTONIC_RAW:
12081                 event->clock = &ktime_get_raw_fast_ns;
12082                 nmi_safe = true;
12083                 break;
12084
12085         case CLOCK_REALTIME:
12086                 event->clock = &ktime_get_real_ns;
12087                 break;
12088
12089         case CLOCK_BOOTTIME:
12090                 event->clock = &ktime_get_boottime_ns;
12091                 break;
12092
12093         case CLOCK_TAI:
12094                 event->clock = &ktime_get_clocktai_ns;
12095                 break;
12096
12097         default:
12098                 return -EINVAL;
12099         }
12100
12101         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12102                 return -EINVAL;
12103
12104         return 0;
12105 }
12106
12107 /*
12108  * Variation on perf_event_ctx_lock_nested(), except we take two context
12109  * mutexes.
12110  */
12111 static struct perf_event_context *
12112 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12113                              struct perf_event_context *ctx)
12114 {
12115         struct perf_event_context *gctx;
12116
12117 again:
12118         rcu_read_lock();
12119         gctx = READ_ONCE(group_leader->ctx);
12120         if (!refcount_inc_not_zero(&gctx->refcount)) {
12121                 rcu_read_unlock();
12122                 goto again;
12123         }
12124         rcu_read_unlock();
12125
12126         mutex_lock_double(&gctx->mutex, &ctx->mutex);
12127
12128         if (group_leader->ctx != gctx) {
12129                 mutex_unlock(&ctx->mutex);
12130                 mutex_unlock(&gctx->mutex);
12131                 put_ctx(gctx);
12132                 goto again;
12133         }
12134
12135         return gctx;
12136 }
12137
12138 static bool
12139 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12140 {
12141         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12142         bool is_capable = perfmon_capable();
12143
12144         if (attr->sigtrap) {
12145                 /*
12146                  * perf_event_attr::sigtrap sends signals to the other task.
12147                  * Require the current task to also have CAP_KILL.
12148                  */
12149                 rcu_read_lock();
12150                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12151                 rcu_read_unlock();
12152
12153                 /*
12154                  * If the required capabilities aren't available, checks for
12155                  * ptrace permissions: upgrade to ATTACH, since sending signals
12156                  * can effectively change the target task.
12157                  */
12158                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12159         }
12160
12161         /*
12162          * Preserve ptrace permission check for backwards compatibility. The
12163          * ptrace check also includes checks that the current task and other
12164          * task have matching uids, and is therefore not done here explicitly.
12165          */
12166         return is_capable || ptrace_may_access(task, ptrace_mode);
12167 }
12168
12169 /**
12170  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12171  *
12172  * @attr_uptr:  event_id type attributes for monitoring/sampling
12173  * @pid:                target pid
12174  * @cpu:                target cpu
12175  * @group_fd:           group leader event fd
12176  * @flags:              perf event open flags
12177  */
12178 SYSCALL_DEFINE5(perf_event_open,
12179                 struct perf_event_attr __user *, attr_uptr,
12180                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12181 {
12182         struct perf_event *group_leader = NULL, *output_event = NULL;
12183         struct perf_event *event, *sibling;
12184         struct perf_event_attr attr;
12185         struct perf_event_context *ctx, *gctx;
12186         struct file *event_file = NULL;
12187         struct fd group = {NULL, 0};
12188         struct task_struct *task = NULL;
12189         struct pmu *pmu;
12190         int event_fd;
12191         int move_group = 0;
12192         int err;
12193         int f_flags = O_RDWR;
12194         int cgroup_fd = -1;
12195
12196         /* for future expandability... */
12197         if (flags & ~PERF_FLAG_ALL)
12198                 return -EINVAL;
12199
12200         /* Do we allow access to perf_event_open(2) ? */
12201         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12202         if (err)
12203                 return err;
12204
12205         err = perf_copy_attr(attr_uptr, &attr);
12206         if (err)
12207                 return err;
12208
12209         if (!attr.exclude_kernel) {
12210                 err = perf_allow_kernel(&attr);
12211                 if (err)
12212                         return err;
12213         }
12214
12215         if (attr.namespaces) {
12216                 if (!perfmon_capable())
12217                         return -EACCES;
12218         }
12219
12220         if (attr.freq) {
12221                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12222                         return -EINVAL;
12223         } else {
12224                 if (attr.sample_period & (1ULL << 63))
12225                         return -EINVAL;
12226         }
12227
12228         /* Only privileged users can get physical addresses */
12229         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12230                 err = perf_allow_kernel(&attr);
12231                 if (err)
12232                         return err;
12233         }
12234
12235         /* REGS_INTR can leak data, lockdown must prevent this */
12236         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12237                 err = security_locked_down(LOCKDOWN_PERF);
12238                 if (err)
12239                         return err;
12240         }
12241
12242         /*
12243          * In cgroup mode, the pid argument is used to pass the fd
12244          * opened to the cgroup directory in cgroupfs. The cpu argument
12245          * designates the cpu on which to monitor threads from that
12246          * cgroup.
12247          */
12248         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12249                 return -EINVAL;
12250
12251         if (flags & PERF_FLAG_FD_CLOEXEC)
12252                 f_flags |= O_CLOEXEC;
12253
12254         event_fd = get_unused_fd_flags(f_flags);
12255         if (event_fd < 0)
12256                 return event_fd;
12257
12258         if (group_fd != -1) {
12259                 err = perf_fget_light(group_fd, &group);
12260                 if (err)
12261                         goto err_fd;
12262                 group_leader = group.file->private_data;
12263                 if (flags & PERF_FLAG_FD_OUTPUT)
12264                         output_event = group_leader;
12265                 if (flags & PERF_FLAG_FD_NO_GROUP)
12266                         group_leader = NULL;
12267         }
12268
12269         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12270                 task = find_lively_task_by_vpid(pid);
12271                 if (IS_ERR(task)) {
12272                         err = PTR_ERR(task);
12273                         goto err_group_fd;
12274                 }
12275         }
12276
12277         if (task && group_leader &&
12278             group_leader->attr.inherit != attr.inherit) {
12279                 err = -EINVAL;
12280                 goto err_task;
12281         }
12282
12283         if (flags & PERF_FLAG_PID_CGROUP)
12284                 cgroup_fd = pid;
12285
12286         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12287                                  NULL, NULL, cgroup_fd);
12288         if (IS_ERR(event)) {
12289                 err = PTR_ERR(event);
12290                 goto err_task;
12291         }
12292
12293         if (is_sampling_event(event)) {
12294                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12295                         err = -EOPNOTSUPP;
12296                         goto err_alloc;
12297                 }
12298         }
12299
12300         /*
12301          * Special case software events and allow them to be part of
12302          * any hardware group.
12303          */
12304         pmu = event->pmu;
12305
12306         if (attr.use_clockid) {
12307                 err = perf_event_set_clock(event, attr.clockid);
12308                 if (err)
12309                         goto err_alloc;
12310         }
12311
12312         if (pmu->task_ctx_nr == perf_sw_context)
12313                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12314
12315         if (group_leader) {
12316                 if (is_software_event(event) &&
12317                     !in_software_context(group_leader)) {
12318                         /*
12319                          * If the event is a sw event, but the group_leader
12320                          * is on hw context.
12321                          *
12322                          * Allow the addition of software events to hw
12323                          * groups, this is safe because software events
12324                          * never fail to schedule.
12325                          */
12326                         pmu = group_leader->ctx->pmu;
12327                 } else if (!is_software_event(event) &&
12328                            is_software_event(group_leader) &&
12329                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12330                         /*
12331                          * In case the group is a pure software group, and we
12332                          * try to add a hardware event, move the whole group to
12333                          * the hardware context.
12334                          */
12335                         move_group = 1;
12336                 }
12337         }
12338
12339         /*
12340          * Get the target context (task or percpu):
12341          */
12342         ctx = find_get_context(pmu, task, event);
12343         if (IS_ERR(ctx)) {
12344                 err = PTR_ERR(ctx);
12345                 goto err_alloc;
12346         }
12347
12348         /*
12349          * Look up the group leader (we will attach this event to it):
12350          */
12351         if (group_leader) {
12352                 err = -EINVAL;
12353
12354                 /*
12355                  * Do not allow a recursive hierarchy (this new sibling
12356                  * becoming part of another group-sibling):
12357                  */
12358                 if (group_leader->group_leader != group_leader)
12359                         goto err_context;
12360
12361                 /* All events in a group should have the same clock */
12362                 if (group_leader->clock != event->clock)
12363                         goto err_context;
12364
12365                 /*
12366                  * Make sure we're both events for the same CPU;
12367                  * grouping events for different CPUs is broken; since
12368                  * you can never concurrently schedule them anyhow.
12369                  */
12370                 if (group_leader->cpu != event->cpu)
12371                         goto err_context;
12372
12373                 /*
12374                  * Make sure we're both on the same task, or both
12375                  * per-CPU events.
12376                  */
12377                 if (group_leader->ctx->task != ctx->task)
12378                         goto err_context;
12379
12380                 /*
12381                  * Do not allow to attach to a group in a different task
12382                  * or CPU context. If we're moving SW events, we'll fix
12383                  * this up later, so allow that.
12384                  *
12385                  * Racy, not holding group_leader->ctx->mutex, see comment with
12386                  * perf_event_ctx_lock().
12387                  */
12388                 if (!move_group && group_leader->ctx != ctx)
12389                         goto err_context;
12390
12391                 /*
12392                  * Only a group leader can be exclusive or pinned
12393                  */
12394                 if (attr.exclusive || attr.pinned)
12395                         goto err_context;
12396         }
12397
12398         if (output_event) {
12399                 err = perf_event_set_output(event, output_event);
12400                 if (err)
12401                         goto err_context;
12402         }
12403
12404         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12405                                         f_flags);
12406         if (IS_ERR(event_file)) {
12407                 err = PTR_ERR(event_file);
12408                 event_file = NULL;
12409                 goto err_context;
12410         }
12411
12412         if (task) {
12413                 err = down_read_interruptible(&task->signal->exec_update_lock);
12414                 if (err)
12415                         goto err_file;
12416
12417                 /*
12418                  * We must hold exec_update_lock across this and any potential
12419                  * perf_install_in_context() call for this new event to
12420                  * serialize against exec() altering our credentials (and the
12421                  * perf_event_exit_task() that could imply).
12422                  */
12423                 err = -EACCES;
12424                 if (!perf_check_permission(&attr, task))
12425                         goto err_cred;
12426         }
12427
12428         if (move_group) {
12429                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12430
12431                 if (gctx->task == TASK_TOMBSTONE) {
12432                         err = -ESRCH;
12433                         goto err_locked;
12434                 }
12435
12436                 /*
12437                  * Check if we raced against another sys_perf_event_open() call
12438                  * moving the software group underneath us.
12439                  */
12440                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12441                         /*
12442                          * If someone moved the group out from under us, check
12443                          * if this new event wound up on the same ctx, if so
12444                          * its the regular !move_group case, otherwise fail.
12445                          */
12446                         if (gctx != ctx) {
12447                                 err = -EINVAL;
12448                                 goto err_locked;
12449                         } else {
12450                                 perf_event_ctx_unlock(group_leader, gctx);
12451                                 move_group = 0;
12452                                 goto not_move_group;
12453                         }
12454                 }
12455
12456                 /*
12457                  * Failure to create exclusive events returns -EBUSY.
12458                  */
12459                 err = -EBUSY;
12460                 if (!exclusive_event_installable(group_leader, ctx))
12461                         goto err_locked;
12462
12463                 for_each_sibling_event(sibling, group_leader) {
12464                         if (!exclusive_event_installable(sibling, ctx))
12465                                 goto err_locked;
12466                 }
12467         } else {
12468                 mutex_lock(&ctx->mutex);
12469
12470                 /*
12471                  * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12472                  * see the group_leader && !move_group test earlier.
12473                  */
12474                 if (group_leader && group_leader->ctx != ctx) {
12475                         err = -EINVAL;
12476                         goto err_locked;
12477                 }
12478         }
12479 not_move_group:
12480
12481         if (ctx->task == TASK_TOMBSTONE) {
12482                 err = -ESRCH;
12483                 goto err_locked;
12484         }
12485
12486         if (!perf_event_validate_size(event)) {
12487                 err = -E2BIG;
12488                 goto err_locked;
12489         }
12490
12491         if (!task) {
12492                 /*
12493                  * Check if the @cpu we're creating an event for is online.
12494                  *
12495                  * We use the perf_cpu_context::ctx::mutex to serialize against
12496                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12497                  */
12498                 struct perf_cpu_context *cpuctx =
12499                         container_of(ctx, struct perf_cpu_context, ctx);
12500
12501                 if (!cpuctx->online) {
12502                         err = -ENODEV;
12503                         goto err_locked;
12504                 }
12505         }
12506
12507         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12508                 err = -EINVAL;
12509                 goto err_locked;
12510         }
12511
12512         /*
12513          * Must be under the same ctx::mutex as perf_install_in_context(),
12514          * because we need to serialize with concurrent event creation.
12515          */
12516         if (!exclusive_event_installable(event, ctx)) {
12517                 err = -EBUSY;
12518                 goto err_locked;
12519         }
12520
12521         WARN_ON_ONCE(ctx->parent_ctx);
12522
12523         /*
12524          * This is the point on no return; we cannot fail hereafter. This is
12525          * where we start modifying current state.
12526          */
12527
12528         if (move_group) {
12529                 /*
12530                  * See perf_event_ctx_lock() for comments on the details
12531                  * of swizzling perf_event::ctx.
12532                  */
12533                 perf_remove_from_context(group_leader, 0);
12534                 put_ctx(gctx);
12535
12536                 for_each_sibling_event(sibling, group_leader) {
12537                         perf_remove_from_context(sibling, 0);
12538                         put_ctx(gctx);
12539                 }
12540
12541                 /*
12542                  * Wait for everybody to stop referencing the events through
12543                  * the old lists, before installing it on new lists.
12544                  */
12545                 synchronize_rcu();
12546
12547                 /*
12548                  * Install the group siblings before the group leader.
12549                  *
12550                  * Because a group leader will try and install the entire group
12551                  * (through the sibling list, which is still in-tact), we can
12552                  * end up with siblings installed in the wrong context.
12553                  *
12554                  * By installing siblings first we NO-OP because they're not
12555                  * reachable through the group lists.
12556                  */
12557                 for_each_sibling_event(sibling, group_leader) {
12558                         perf_event__state_init(sibling);
12559                         perf_install_in_context(ctx, sibling, sibling->cpu);
12560                         get_ctx(ctx);
12561                 }
12562
12563                 /*
12564                  * Removing from the context ends up with disabled
12565                  * event. What we want here is event in the initial
12566                  * startup state, ready to be add into new context.
12567                  */
12568                 perf_event__state_init(group_leader);
12569                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12570                 get_ctx(ctx);
12571         }
12572
12573         /*
12574          * Precalculate sample_data sizes; do while holding ctx::mutex such
12575          * that we're serialized against further additions and before
12576          * perf_install_in_context() which is the point the event is active and
12577          * can use these values.
12578          */
12579         perf_event__header_size(event);
12580         perf_event__id_header_size(event);
12581
12582         event->owner = current;
12583
12584         perf_install_in_context(ctx, event, event->cpu);
12585         perf_unpin_context(ctx);
12586
12587         if (move_group)
12588                 perf_event_ctx_unlock(group_leader, gctx);
12589         mutex_unlock(&ctx->mutex);
12590
12591         if (task) {
12592                 up_read(&task->signal->exec_update_lock);
12593                 put_task_struct(task);
12594         }
12595
12596         mutex_lock(&current->perf_event_mutex);
12597         list_add_tail(&event->owner_entry, &current->perf_event_list);
12598         mutex_unlock(&current->perf_event_mutex);
12599
12600         /*
12601          * Drop the reference on the group_event after placing the
12602          * new event on the sibling_list. This ensures destruction
12603          * of the group leader will find the pointer to itself in
12604          * perf_group_detach().
12605          */
12606         fdput(group);
12607         fd_install(event_fd, event_file);
12608         return event_fd;
12609
12610 err_locked:
12611         if (move_group)
12612                 perf_event_ctx_unlock(group_leader, gctx);
12613         mutex_unlock(&ctx->mutex);
12614 err_cred:
12615         if (task)
12616                 up_read(&task->signal->exec_update_lock);
12617 err_file:
12618         fput(event_file);
12619 err_context:
12620         perf_unpin_context(ctx);
12621         put_ctx(ctx);
12622 err_alloc:
12623         /*
12624          * If event_file is set, the fput() above will have called ->release()
12625          * and that will take care of freeing the event.
12626          */
12627         if (!event_file)
12628                 free_event(event);
12629 err_task:
12630         if (task)
12631                 put_task_struct(task);
12632 err_group_fd:
12633         fdput(group);
12634 err_fd:
12635         put_unused_fd(event_fd);
12636         return err;
12637 }
12638
12639 /**
12640  * perf_event_create_kernel_counter
12641  *
12642  * @attr: attributes of the counter to create
12643  * @cpu: cpu in which the counter is bound
12644  * @task: task to profile (NULL for percpu)
12645  * @overflow_handler: callback to trigger when we hit the event
12646  * @context: context data could be used in overflow_handler callback
12647  */
12648 struct perf_event *
12649 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12650                                  struct task_struct *task,
12651                                  perf_overflow_handler_t overflow_handler,
12652                                  void *context)
12653 {
12654         struct perf_event_context *ctx;
12655         struct perf_event *event;
12656         int err;
12657
12658         /*
12659          * Grouping is not supported for kernel events, neither is 'AUX',
12660          * make sure the caller's intentions are adjusted.
12661          */
12662         if (attr->aux_output)
12663                 return ERR_PTR(-EINVAL);
12664
12665         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12666                                  overflow_handler, context, -1);
12667         if (IS_ERR(event)) {
12668                 err = PTR_ERR(event);
12669                 goto err;
12670         }
12671
12672         /* Mark owner so we could distinguish it from user events. */
12673         event->owner = TASK_TOMBSTONE;
12674
12675         /*
12676          * Get the target context (task or percpu):
12677          */
12678         ctx = find_get_context(event->pmu, task, event);
12679         if (IS_ERR(ctx)) {
12680                 err = PTR_ERR(ctx);
12681                 goto err_free;
12682         }
12683
12684         WARN_ON_ONCE(ctx->parent_ctx);
12685         mutex_lock(&ctx->mutex);
12686         if (ctx->task == TASK_TOMBSTONE) {
12687                 err = -ESRCH;
12688                 goto err_unlock;
12689         }
12690
12691         if (!task) {
12692                 /*
12693                  * Check if the @cpu we're creating an event for is online.
12694                  *
12695                  * We use the perf_cpu_context::ctx::mutex to serialize against
12696                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12697                  */
12698                 struct perf_cpu_context *cpuctx =
12699                         container_of(ctx, struct perf_cpu_context, ctx);
12700                 if (!cpuctx->online) {
12701                         err = -ENODEV;
12702                         goto err_unlock;
12703                 }
12704         }
12705
12706         if (!exclusive_event_installable(event, ctx)) {
12707                 err = -EBUSY;
12708                 goto err_unlock;
12709         }
12710
12711         perf_install_in_context(ctx, event, event->cpu);
12712         perf_unpin_context(ctx);
12713         mutex_unlock(&ctx->mutex);
12714
12715         return event;
12716
12717 err_unlock:
12718         mutex_unlock(&ctx->mutex);
12719         perf_unpin_context(ctx);
12720         put_ctx(ctx);
12721 err_free:
12722         free_event(event);
12723 err:
12724         return ERR_PTR(err);
12725 }
12726 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12727
12728 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12729 {
12730         struct perf_event_context *src_ctx;
12731         struct perf_event_context *dst_ctx;
12732         struct perf_event *event, *tmp;
12733         LIST_HEAD(events);
12734
12735         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12736         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12737
12738         /*
12739          * See perf_event_ctx_lock() for comments on the details
12740          * of swizzling perf_event::ctx.
12741          */
12742         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12743         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12744                                  event_entry) {
12745                 perf_remove_from_context(event, 0);
12746                 unaccount_event_cpu(event, src_cpu);
12747                 put_ctx(src_ctx);
12748                 list_add(&event->migrate_entry, &events);
12749         }
12750
12751         /*
12752          * Wait for the events to quiesce before re-instating them.
12753          */
12754         synchronize_rcu();
12755
12756         /*
12757          * Re-instate events in 2 passes.
12758          *
12759          * Skip over group leaders and only install siblings on this first
12760          * pass, siblings will not get enabled without a leader, however a
12761          * leader will enable its siblings, even if those are still on the old
12762          * context.
12763          */
12764         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12765                 if (event->group_leader == event)
12766                         continue;
12767
12768                 list_del(&event->migrate_entry);
12769                 if (event->state >= PERF_EVENT_STATE_OFF)
12770                         event->state = PERF_EVENT_STATE_INACTIVE;
12771                 account_event_cpu(event, dst_cpu);
12772                 perf_install_in_context(dst_ctx, event, dst_cpu);
12773                 get_ctx(dst_ctx);
12774         }
12775
12776         /*
12777          * Once all the siblings are setup properly, install the group leaders
12778          * to make it go.
12779          */
12780         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12781                 list_del(&event->migrate_entry);
12782                 if (event->state >= PERF_EVENT_STATE_OFF)
12783                         event->state = PERF_EVENT_STATE_INACTIVE;
12784                 account_event_cpu(event, dst_cpu);
12785                 perf_install_in_context(dst_ctx, event, dst_cpu);
12786                 get_ctx(dst_ctx);
12787         }
12788         mutex_unlock(&dst_ctx->mutex);
12789         mutex_unlock(&src_ctx->mutex);
12790 }
12791 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12792
12793 static void sync_child_event(struct perf_event *child_event)
12794 {
12795         struct perf_event *parent_event = child_event->parent;
12796         u64 child_val;
12797
12798         if (child_event->attr.inherit_stat) {
12799                 struct task_struct *task = child_event->ctx->task;
12800
12801                 if (task && task != TASK_TOMBSTONE)
12802                         perf_event_read_event(child_event, task);
12803         }
12804
12805         child_val = perf_event_count(child_event);
12806
12807         /*
12808          * Add back the child's count to the parent's count:
12809          */
12810         atomic64_add(child_val, &parent_event->child_count);
12811         atomic64_add(child_event->total_time_enabled,
12812                      &parent_event->child_total_time_enabled);
12813         atomic64_add(child_event->total_time_running,
12814                      &parent_event->child_total_time_running);
12815 }
12816
12817 static void
12818 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12819 {
12820         struct perf_event *parent_event = event->parent;
12821         unsigned long detach_flags = 0;
12822
12823         if (parent_event) {
12824                 /*
12825                  * Do not destroy the 'original' grouping; because of the
12826                  * context switch optimization the original events could've
12827                  * ended up in a random child task.
12828                  *
12829                  * If we were to destroy the original group, all group related
12830                  * operations would cease to function properly after this
12831                  * random child dies.
12832                  *
12833                  * Do destroy all inherited groups, we don't care about those
12834                  * and being thorough is better.
12835                  */
12836                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12837                 mutex_lock(&parent_event->child_mutex);
12838         }
12839
12840         perf_remove_from_context(event, detach_flags);
12841
12842         raw_spin_lock_irq(&ctx->lock);
12843         if (event->state > PERF_EVENT_STATE_EXIT)
12844                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12845         raw_spin_unlock_irq(&ctx->lock);
12846
12847         /*
12848          * Child events can be freed.
12849          */
12850         if (parent_event) {
12851                 mutex_unlock(&parent_event->child_mutex);
12852                 /*
12853                  * Kick perf_poll() for is_event_hup();
12854                  */
12855                 perf_event_wakeup(parent_event);
12856                 free_event(event);
12857                 put_event(parent_event);
12858                 return;
12859         }
12860
12861         /*
12862          * Parent events are governed by their filedesc, retain them.
12863          */
12864         perf_event_wakeup(event);
12865 }
12866
12867 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12868 {
12869         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12870         struct perf_event *child_event, *next;
12871
12872         WARN_ON_ONCE(child != current);
12873
12874         child_ctx = perf_pin_task_context(child, ctxn);
12875         if (!child_ctx)
12876                 return;
12877
12878         /*
12879          * In order to reduce the amount of tricky in ctx tear-down, we hold
12880          * ctx::mutex over the entire thing. This serializes against almost
12881          * everything that wants to access the ctx.
12882          *
12883          * The exception is sys_perf_event_open() /
12884          * perf_event_create_kernel_count() which does find_get_context()
12885          * without ctx::mutex (it cannot because of the move_group double mutex
12886          * lock thing). See the comments in perf_install_in_context().
12887          */
12888         mutex_lock(&child_ctx->mutex);
12889
12890         /*
12891          * In a single ctx::lock section, de-schedule the events and detach the
12892          * context from the task such that we cannot ever get it scheduled back
12893          * in.
12894          */
12895         raw_spin_lock_irq(&child_ctx->lock);
12896         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12897
12898         /*
12899          * Now that the context is inactive, destroy the task <-> ctx relation
12900          * and mark the context dead.
12901          */
12902         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12903         put_ctx(child_ctx); /* cannot be last */
12904         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12905         put_task_struct(current); /* cannot be last */
12906
12907         clone_ctx = unclone_ctx(child_ctx);
12908         raw_spin_unlock_irq(&child_ctx->lock);
12909
12910         if (clone_ctx)
12911                 put_ctx(clone_ctx);
12912
12913         /*
12914          * Report the task dead after unscheduling the events so that we
12915          * won't get any samples after PERF_RECORD_EXIT. We can however still
12916          * get a few PERF_RECORD_READ events.
12917          */
12918         perf_event_task(child, child_ctx, 0);
12919
12920         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12921                 perf_event_exit_event(child_event, child_ctx);
12922
12923         mutex_unlock(&child_ctx->mutex);
12924
12925         put_ctx(child_ctx);
12926 }
12927
12928 /*
12929  * When a child task exits, feed back event values to parent events.
12930  *
12931  * Can be called with exec_update_lock held when called from
12932  * setup_new_exec().
12933  */
12934 void perf_event_exit_task(struct task_struct *child)
12935 {
12936         struct perf_event *event, *tmp;
12937         int ctxn;
12938
12939         mutex_lock(&child->perf_event_mutex);
12940         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12941                                  owner_entry) {
12942                 list_del_init(&event->owner_entry);
12943
12944                 /*
12945                  * Ensure the list deletion is visible before we clear
12946                  * the owner, closes a race against perf_release() where
12947                  * we need to serialize on the owner->perf_event_mutex.
12948                  */
12949                 smp_store_release(&event->owner, NULL);
12950         }
12951         mutex_unlock(&child->perf_event_mutex);
12952
12953         for_each_task_context_nr(ctxn)
12954                 perf_event_exit_task_context(child, ctxn);
12955
12956         /*
12957          * The perf_event_exit_task_context calls perf_event_task
12958          * with child's task_ctx, which generates EXIT events for
12959          * child contexts and sets child->perf_event_ctxp[] to NULL.
12960          * At this point we need to send EXIT events to cpu contexts.
12961          */
12962         perf_event_task(child, NULL, 0);
12963 }
12964
12965 static void perf_free_event(struct perf_event *event,
12966                             struct perf_event_context *ctx)
12967 {
12968         struct perf_event *parent = event->parent;
12969
12970         if (WARN_ON_ONCE(!parent))
12971                 return;
12972
12973         mutex_lock(&parent->child_mutex);
12974         list_del_init(&event->child_list);
12975         mutex_unlock(&parent->child_mutex);
12976
12977         put_event(parent);
12978
12979         raw_spin_lock_irq(&ctx->lock);
12980         perf_group_detach(event);
12981         list_del_event(event, ctx);
12982         raw_spin_unlock_irq(&ctx->lock);
12983         free_event(event);
12984 }
12985
12986 /*
12987  * Free a context as created by inheritance by perf_event_init_task() below,
12988  * used by fork() in case of fail.
12989  *
12990  * Even though the task has never lived, the context and events have been
12991  * exposed through the child_list, so we must take care tearing it all down.
12992  */
12993 void perf_event_free_task(struct task_struct *task)
12994 {
12995         struct perf_event_context *ctx;
12996         struct perf_event *event, *tmp;
12997         int ctxn;
12998
12999         for_each_task_context_nr(ctxn) {
13000                 ctx = task->perf_event_ctxp[ctxn];
13001                 if (!ctx)
13002                         continue;
13003
13004                 mutex_lock(&ctx->mutex);
13005                 raw_spin_lock_irq(&ctx->lock);
13006                 /*
13007                  * Destroy the task <-> ctx relation and mark the context dead.
13008                  *
13009                  * This is important because even though the task hasn't been
13010                  * exposed yet the context has been (through child_list).
13011                  */
13012                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
13013                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13014                 put_task_struct(task); /* cannot be last */
13015                 raw_spin_unlock_irq(&ctx->lock);
13016
13017                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13018                         perf_free_event(event, ctx);
13019
13020                 mutex_unlock(&ctx->mutex);
13021
13022                 /*
13023                  * perf_event_release_kernel() could've stolen some of our
13024                  * child events and still have them on its free_list. In that
13025                  * case we must wait for these events to have been freed (in
13026                  * particular all their references to this task must've been
13027                  * dropped).
13028                  *
13029                  * Without this copy_process() will unconditionally free this
13030                  * task (irrespective of its reference count) and
13031                  * _free_event()'s put_task_struct(event->hw.target) will be a
13032                  * use-after-free.
13033                  *
13034                  * Wait for all events to drop their context reference.
13035                  */
13036                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13037                 put_ctx(ctx); /* must be last */
13038         }
13039 }
13040
13041 void perf_event_delayed_put(struct task_struct *task)
13042 {
13043         int ctxn;
13044
13045         for_each_task_context_nr(ctxn)
13046                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
13047 }
13048
13049 struct file *perf_event_get(unsigned int fd)
13050 {
13051         struct file *file = fget(fd);
13052         if (!file)
13053                 return ERR_PTR(-EBADF);
13054
13055         if (file->f_op != &perf_fops) {
13056                 fput(file);
13057                 return ERR_PTR(-EBADF);
13058         }
13059
13060         return file;
13061 }
13062
13063 const struct perf_event *perf_get_event(struct file *file)
13064 {
13065         if (file->f_op != &perf_fops)
13066                 return ERR_PTR(-EINVAL);
13067
13068         return file->private_data;
13069 }
13070
13071 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13072 {
13073         if (!event)
13074                 return ERR_PTR(-EINVAL);
13075
13076         return &event->attr;
13077 }
13078
13079 /*
13080  * Inherit an event from parent task to child task.
13081  *
13082  * Returns:
13083  *  - valid pointer on success
13084  *  - NULL for orphaned events
13085  *  - IS_ERR() on error
13086  */
13087 static struct perf_event *
13088 inherit_event(struct perf_event *parent_event,
13089               struct task_struct *parent,
13090               struct perf_event_context *parent_ctx,
13091               struct task_struct *child,
13092               struct perf_event *group_leader,
13093               struct perf_event_context *child_ctx)
13094 {
13095         enum perf_event_state parent_state = parent_event->state;
13096         struct perf_event *child_event;
13097         unsigned long flags;
13098
13099         /*
13100          * Instead of creating recursive hierarchies of events,
13101          * we link inherited events back to the original parent,
13102          * which has a filp for sure, which we use as the reference
13103          * count:
13104          */
13105         if (parent_event->parent)
13106                 parent_event = parent_event->parent;
13107
13108         child_event = perf_event_alloc(&parent_event->attr,
13109                                            parent_event->cpu,
13110                                            child,
13111                                            group_leader, parent_event,
13112                                            NULL, NULL, -1);
13113         if (IS_ERR(child_event))
13114                 return child_event;
13115
13116
13117         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13118             !child_ctx->task_ctx_data) {
13119                 struct pmu *pmu = child_event->pmu;
13120
13121                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13122                 if (!child_ctx->task_ctx_data) {
13123                         free_event(child_event);
13124                         return ERR_PTR(-ENOMEM);
13125                 }
13126         }
13127
13128         /*
13129          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13130          * must be under the same lock in order to serialize against
13131          * perf_event_release_kernel(), such that either we must observe
13132          * is_orphaned_event() or they will observe us on the child_list.
13133          */
13134         mutex_lock(&parent_event->child_mutex);
13135         if (is_orphaned_event(parent_event) ||
13136             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13137                 mutex_unlock(&parent_event->child_mutex);
13138                 /* task_ctx_data is freed with child_ctx */
13139                 free_event(child_event);
13140                 return NULL;
13141         }
13142
13143         get_ctx(child_ctx);
13144
13145         /*
13146          * Make the child state follow the state of the parent event,
13147          * not its attr.disabled bit.  We hold the parent's mutex,
13148          * so we won't race with perf_event_{en, dis}able_family.
13149          */
13150         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13151                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13152         else
13153                 child_event->state = PERF_EVENT_STATE_OFF;
13154
13155         if (parent_event->attr.freq) {
13156                 u64 sample_period = parent_event->hw.sample_period;
13157                 struct hw_perf_event *hwc = &child_event->hw;
13158
13159                 hwc->sample_period = sample_period;
13160                 hwc->last_period   = sample_period;
13161
13162                 local64_set(&hwc->period_left, sample_period);
13163         }
13164
13165         child_event->ctx = child_ctx;
13166         child_event->overflow_handler = parent_event->overflow_handler;
13167         child_event->overflow_handler_context
13168                 = parent_event->overflow_handler_context;
13169
13170         /*
13171          * Precalculate sample_data sizes
13172          */
13173         perf_event__header_size(child_event);
13174         perf_event__id_header_size(child_event);
13175
13176         /*
13177          * Link it up in the child's context:
13178          */
13179         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13180         add_event_to_ctx(child_event, child_ctx);
13181         child_event->attach_state |= PERF_ATTACH_CHILD;
13182         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13183
13184         /*
13185          * Link this into the parent event's child list
13186          */
13187         list_add_tail(&child_event->child_list, &parent_event->child_list);
13188         mutex_unlock(&parent_event->child_mutex);
13189
13190         return child_event;
13191 }
13192
13193 /*
13194  * Inherits an event group.
13195  *
13196  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13197  * This matches with perf_event_release_kernel() removing all child events.
13198  *
13199  * Returns:
13200  *  - 0 on success
13201  *  - <0 on error
13202  */
13203 static int inherit_group(struct perf_event *parent_event,
13204               struct task_struct *parent,
13205               struct perf_event_context *parent_ctx,
13206               struct task_struct *child,
13207               struct perf_event_context *child_ctx)
13208 {
13209         struct perf_event *leader;
13210         struct perf_event *sub;
13211         struct perf_event *child_ctr;
13212
13213         leader = inherit_event(parent_event, parent, parent_ctx,
13214                                  child, NULL, child_ctx);
13215         if (IS_ERR(leader))
13216                 return PTR_ERR(leader);
13217         /*
13218          * @leader can be NULL here because of is_orphaned_event(). In this
13219          * case inherit_event() will create individual events, similar to what
13220          * perf_group_detach() would do anyway.
13221          */
13222         for_each_sibling_event(sub, parent_event) {
13223                 child_ctr = inherit_event(sub, parent, parent_ctx,
13224                                             child, leader, child_ctx);
13225                 if (IS_ERR(child_ctr))
13226                         return PTR_ERR(child_ctr);
13227
13228                 if (sub->aux_event == parent_event && child_ctr &&
13229                     !perf_get_aux_event(child_ctr, leader))
13230                         return -EINVAL;
13231         }
13232         return 0;
13233 }
13234
13235 /*
13236  * Creates the child task context and tries to inherit the event-group.
13237  *
13238  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13239  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13240  * consistent with perf_event_release_kernel() removing all child events.
13241  *
13242  * Returns:
13243  *  - 0 on success
13244  *  - <0 on error
13245  */
13246 static int
13247 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13248                    struct perf_event_context *parent_ctx,
13249                    struct task_struct *child, int ctxn,
13250                    u64 clone_flags, int *inherited_all)
13251 {
13252         int ret;
13253         struct perf_event_context *child_ctx;
13254
13255         if (!event->attr.inherit ||
13256             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13257             /* Do not inherit if sigtrap and signal handlers were cleared. */
13258             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13259                 *inherited_all = 0;
13260                 return 0;
13261         }
13262
13263         child_ctx = child->perf_event_ctxp[ctxn];
13264         if (!child_ctx) {
13265                 /*
13266                  * This is executed from the parent task context, so
13267                  * inherit events that have been marked for cloning.
13268                  * First allocate and initialize a context for the
13269                  * child.
13270                  */
13271                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13272                 if (!child_ctx)
13273                         return -ENOMEM;
13274
13275                 child->perf_event_ctxp[ctxn] = child_ctx;
13276         }
13277
13278         ret = inherit_group(event, parent, parent_ctx,
13279                             child, child_ctx);
13280
13281         if (ret)
13282                 *inherited_all = 0;
13283
13284         return ret;
13285 }
13286
13287 /*
13288  * Initialize the perf_event context in task_struct
13289  */
13290 static int perf_event_init_context(struct task_struct *child, int ctxn,
13291                                    u64 clone_flags)
13292 {
13293         struct perf_event_context *child_ctx, *parent_ctx;
13294         struct perf_event_context *cloned_ctx;
13295         struct perf_event *event;
13296         struct task_struct *parent = current;
13297         int inherited_all = 1;
13298         unsigned long flags;
13299         int ret = 0;
13300
13301         if (likely(!parent->perf_event_ctxp[ctxn]))
13302                 return 0;
13303
13304         /*
13305          * If the parent's context is a clone, pin it so it won't get
13306          * swapped under us.
13307          */
13308         parent_ctx = perf_pin_task_context(parent, ctxn);
13309         if (!parent_ctx)
13310                 return 0;
13311
13312         /*
13313          * No need to check if parent_ctx != NULL here; since we saw
13314          * it non-NULL earlier, the only reason for it to become NULL
13315          * is if we exit, and since we're currently in the middle of
13316          * a fork we can't be exiting at the same time.
13317          */
13318
13319         /*
13320          * Lock the parent list. No need to lock the child - not PID
13321          * hashed yet and not running, so nobody can access it.
13322          */
13323         mutex_lock(&parent_ctx->mutex);
13324
13325         /*
13326          * We dont have to disable NMIs - we are only looking at
13327          * the list, not manipulating it:
13328          */
13329         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13330                 ret = inherit_task_group(event, parent, parent_ctx,
13331                                          child, ctxn, clone_flags,
13332                                          &inherited_all);
13333                 if (ret)
13334                         goto out_unlock;
13335         }
13336
13337         /*
13338          * We can't hold ctx->lock when iterating the ->flexible_group list due
13339          * to allocations, but we need to prevent rotation because
13340          * rotate_ctx() will change the list from interrupt context.
13341          */
13342         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13343         parent_ctx->rotate_disable = 1;
13344         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13345
13346         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13347                 ret = inherit_task_group(event, parent, parent_ctx,
13348                                          child, ctxn, clone_flags,
13349                                          &inherited_all);
13350                 if (ret)
13351                         goto out_unlock;
13352         }
13353
13354         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13355         parent_ctx->rotate_disable = 0;
13356
13357         child_ctx = child->perf_event_ctxp[ctxn];
13358
13359         if (child_ctx && inherited_all) {
13360                 /*
13361                  * Mark the child context as a clone of the parent
13362                  * context, or of whatever the parent is a clone of.
13363                  *
13364                  * Note that if the parent is a clone, the holding of
13365                  * parent_ctx->lock avoids it from being uncloned.
13366                  */
13367                 cloned_ctx = parent_ctx->parent_ctx;
13368                 if (cloned_ctx) {
13369                         child_ctx->parent_ctx = cloned_ctx;
13370                         child_ctx->parent_gen = parent_ctx->parent_gen;
13371                 } else {
13372                         child_ctx->parent_ctx = parent_ctx;
13373                         child_ctx->parent_gen = parent_ctx->generation;
13374                 }
13375                 get_ctx(child_ctx->parent_ctx);
13376         }
13377
13378         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13379 out_unlock:
13380         mutex_unlock(&parent_ctx->mutex);
13381
13382         perf_unpin_context(parent_ctx);
13383         put_ctx(parent_ctx);
13384
13385         return ret;
13386 }
13387
13388 /*
13389  * Initialize the perf_event context in task_struct
13390  */
13391 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13392 {
13393         int ctxn, ret;
13394
13395         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13396         mutex_init(&child->perf_event_mutex);
13397         INIT_LIST_HEAD(&child->perf_event_list);
13398
13399         for_each_task_context_nr(ctxn) {
13400                 ret = perf_event_init_context(child, ctxn, clone_flags);
13401                 if (ret) {
13402                         perf_event_free_task(child);
13403                         return ret;
13404                 }
13405         }
13406
13407         return 0;
13408 }
13409
13410 static void __init perf_event_init_all_cpus(void)
13411 {
13412         struct swevent_htable *swhash;
13413         int cpu;
13414
13415         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13416
13417         for_each_possible_cpu(cpu) {
13418                 swhash = &per_cpu(swevent_htable, cpu);
13419                 mutex_init(&swhash->hlist_mutex);
13420                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13421
13422                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13423                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13424
13425 #ifdef CONFIG_CGROUP_PERF
13426                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13427 #endif
13428                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13429         }
13430 }
13431
13432 static void perf_swevent_init_cpu(unsigned int cpu)
13433 {
13434         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13435
13436         mutex_lock(&swhash->hlist_mutex);
13437         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13438                 struct swevent_hlist *hlist;
13439
13440                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13441                 WARN_ON(!hlist);
13442                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13443         }
13444         mutex_unlock(&swhash->hlist_mutex);
13445 }
13446
13447 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13448 static void __perf_event_exit_context(void *__info)
13449 {
13450         struct perf_event_context *ctx = __info;
13451         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13452         struct perf_event *event;
13453
13454         raw_spin_lock(&ctx->lock);
13455         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13456         list_for_each_entry(event, &ctx->event_list, event_entry)
13457                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13458         raw_spin_unlock(&ctx->lock);
13459 }
13460
13461 static void perf_event_exit_cpu_context(int cpu)
13462 {
13463         struct perf_cpu_context *cpuctx;
13464         struct perf_event_context *ctx;
13465         struct pmu *pmu;
13466
13467         mutex_lock(&pmus_lock);
13468         list_for_each_entry(pmu, &pmus, entry) {
13469                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13470                 ctx = &cpuctx->ctx;
13471
13472                 mutex_lock(&ctx->mutex);
13473                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13474                 cpuctx->online = 0;
13475                 mutex_unlock(&ctx->mutex);
13476         }
13477         cpumask_clear_cpu(cpu, perf_online_mask);
13478         mutex_unlock(&pmus_lock);
13479 }
13480 #else
13481
13482 static void perf_event_exit_cpu_context(int cpu) { }
13483
13484 #endif
13485
13486 int perf_event_init_cpu(unsigned int cpu)
13487 {
13488         struct perf_cpu_context *cpuctx;
13489         struct perf_event_context *ctx;
13490         struct pmu *pmu;
13491
13492         perf_swevent_init_cpu(cpu);
13493
13494         mutex_lock(&pmus_lock);
13495         cpumask_set_cpu(cpu, perf_online_mask);
13496         list_for_each_entry(pmu, &pmus, entry) {
13497                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13498                 ctx = &cpuctx->ctx;
13499
13500                 mutex_lock(&ctx->mutex);
13501                 cpuctx->online = 1;
13502                 mutex_unlock(&ctx->mutex);
13503         }
13504         mutex_unlock(&pmus_lock);
13505
13506         return 0;
13507 }
13508
13509 int perf_event_exit_cpu(unsigned int cpu)
13510 {
13511         perf_event_exit_cpu_context(cpu);
13512         return 0;
13513 }
13514
13515 static int
13516 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13517 {
13518         int cpu;
13519
13520         for_each_online_cpu(cpu)
13521                 perf_event_exit_cpu(cpu);
13522
13523         return NOTIFY_OK;
13524 }
13525
13526 /*
13527  * Run the perf reboot notifier at the very last possible moment so that
13528  * the generic watchdog code runs as long as possible.
13529  */
13530 static struct notifier_block perf_reboot_notifier = {
13531         .notifier_call = perf_reboot,
13532         .priority = INT_MIN,
13533 };
13534
13535 void __init perf_event_init(void)
13536 {
13537         int ret;
13538
13539         idr_init(&pmu_idr);
13540
13541         perf_event_init_all_cpus();
13542         init_srcu_struct(&pmus_srcu);
13543         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13544         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13545         perf_pmu_register(&perf_task_clock, NULL, -1);
13546         perf_tp_register();
13547         perf_event_init_cpu(smp_processor_id());
13548         register_reboot_notifier(&perf_reboot_notifier);
13549
13550         ret = init_hw_breakpoint();
13551         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13552
13553         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13554
13555         /*
13556          * Build time assertion that we keep the data_head at the intended
13557          * location.  IOW, validation we got the __reserved[] size right.
13558          */
13559         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13560                      != 1024);
13561 }
13562
13563 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13564                               char *page)
13565 {
13566         struct perf_pmu_events_attr *pmu_attr =
13567                 container_of(attr, struct perf_pmu_events_attr, attr);
13568
13569         if (pmu_attr->event_str)
13570                 return sprintf(page, "%s\n", pmu_attr->event_str);
13571
13572         return 0;
13573 }
13574 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13575
13576 static int __init perf_event_sysfs_init(void)
13577 {
13578         struct pmu *pmu;
13579         int ret;
13580
13581         mutex_lock(&pmus_lock);
13582
13583         ret = bus_register(&pmu_bus);
13584         if (ret)
13585                 goto unlock;
13586
13587         list_for_each_entry(pmu, &pmus, entry) {
13588                 if (!pmu->name || pmu->type < 0)
13589                         continue;
13590
13591                 ret = pmu_dev_alloc(pmu);
13592                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13593         }
13594         pmu_bus_running = 1;
13595         ret = 0;
13596
13597 unlock:
13598         mutex_unlock(&pmus_lock);
13599
13600         return ret;
13601 }
13602 device_initcall(perf_event_sysfs_init);
13603
13604 #ifdef CONFIG_CGROUP_PERF
13605 static struct cgroup_subsys_state *
13606 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13607 {
13608         struct perf_cgroup *jc;
13609
13610         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13611         if (!jc)
13612                 return ERR_PTR(-ENOMEM);
13613
13614         jc->info = alloc_percpu(struct perf_cgroup_info);
13615         if (!jc->info) {
13616                 kfree(jc);
13617                 return ERR_PTR(-ENOMEM);
13618         }
13619
13620         return &jc->css;
13621 }
13622
13623 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13624 {
13625         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13626
13627         free_percpu(jc->info);
13628         kfree(jc);
13629 }
13630
13631 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13632 {
13633         perf_event_cgroup(css->cgroup);
13634         return 0;
13635 }
13636
13637 static int __perf_cgroup_move(void *info)
13638 {
13639         struct task_struct *task = info;
13640         rcu_read_lock();
13641         perf_cgroup_switch(task);
13642         rcu_read_unlock();
13643         return 0;
13644 }
13645
13646 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13647 {
13648         struct task_struct *task;
13649         struct cgroup_subsys_state *css;
13650
13651         cgroup_taskset_for_each(task, css, tset)
13652                 task_function_call(task, __perf_cgroup_move, task);
13653 }
13654
13655 struct cgroup_subsys perf_event_cgrp_subsys = {
13656         .css_alloc      = perf_cgroup_css_alloc,
13657         .css_free       = perf_cgroup_css_free,
13658         .css_online     = perf_cgroup_css_online,
13659         .attach         = perf_cgroup_attach,
13660         /*
13661          * Implicitly enable on dfl hierarchy so that perf events can
13662          * always be filtered by cgroup2 path as long as perf_event
13663          * controller is not mounted on a legacy hierarchy.
13664          */
13665         .implicit_on_dfl = true,
13666         .threaded       = true,
13667 };
13668 #endif /* CONFIG_CGROUP_PERF */
13669
13670 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);