powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes
[platform/kernel/linux-starfive.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66         struct task_struct      *p;
67         remote_function_f       func;
68         void                    *info;
69         int                     ret;
70 };
71
72 static void remote_function(void *data)
73 {
74         struct remote_function_call *tfc = data;
75         struct task_struct *p = tfc->p;
76
77         if (p) {
78                 /* -EAGAIN */
79                 if (task_cpu(p) != smp_processor_id())
80                         return;
81
82                 /*
83                  * Now that we're on right CPU with IRQs disabled, we can test
84                  * if we hit the right task without races.
85                  */
86
87                 tfc->ret = -ESRCH; /* No such (running) process */
88                 if (p != current)
89                         return;
90         }
91
92         tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:          the task to evaluate
98  * @func:       the function to be called
99  * @info:       the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111         struct remote_function_call data = {
112                 .p      = p,
113                 .func   = func,
114                 .info   = info,
115                 .ret    = -EAGAIN,
116         };
117         int ret;
118
119         for (;;) {
120                 ret = smp_call_function_single(task_cpu(p), remote_function,
121                                                &data, 1);
122                 if (!ret)
123                         ret = data.ret;
124
125                 if (ret != -EAGAIN)
126                         break;
127
128                 cond_resched();
129         }
130
131         return ret;
132 }
133
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:        target cpu to queue this function
137  * @func:       the function to be called
138  * @info:       the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146         struct remote_function_call data = {
147                 .p      = NULL,
148                 .func   = func,
149                 .info   = info,
150                 .ret    = -ENXIO, /* No such CPU */
151         };
152
153         smp_call_function_single(cpu, remote_function, &data, 1);
154
155         return data.ret;
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185         lockdep_assert_irqs_disabled();
186         return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209                         struct perf_event_context *, void *);
210
211 struct event_function_struct {
212         struct perf_event *event;
213         event_f func;
214         void *data;
215 };
216
217 static int event_function(void *info)
218 {
219         struct event_function_struct *efs = info;
220         struct perf_event *event = efs->event;
221         struct perf_event_context *ctx = event->ctx;
222         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223         struct perf_event_context *task_ctx = cpuctx->task_ctx;
224         int ret = 0;
225
226         lockdep_assert_irqs_disabled();
227
228         perf_ctx_lock(cpuctx, task_ctx);
229         /*
230          * Since we do the IPI call without holding ctx->lock things can have
231          * changed, double check we hit the task we set out to hit.
232          */
233         if (ctx->task) {
234                 if (ctx->task != current) {
235                         ret = -ESRCH;
236                         goto unlock;
237                 }
238
239                 /*
240                  * We only use event_function_call() on established contexts,
241                  * and event_function() is only ever called when active (or
242                  * rather, we'll have bailed in task_function_call() or the
243                  * above ctx->task != current test), therefore we must have
244                  * ctx->is_active here.
245                  */
246                 WARN_ON_ONCE(!ctx->is_active);
247                 /*
248                  * And since we have ctx->is_active, cpuctx->task_ctx must
249                  * match.
250                  */
251                 WARN_ON_ONCE(task_ctx != ctx);
252         } else {
253                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254         }
255
256         efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258         perf_ctx_unlock(cpuctx, task_ctx);
259
260         return ret;
261 }
262
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265         struct perf_event_context *ctx = event->ctx;
266         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267         struct event_function_struct efs = {
268                 .event = event,
269                 .func = func,
270                 .data = data,
271         };
272
273         if (!event->parent) {
274                 /*
275                  * If this is a !child event, we must hold ctx::mutex to
276                  * stabilize the event->ctx relation. See
277                  * perf_event_ctx_lock().
278                  */
279                 lockdep_assert_held(&ctx->mutex);
280         }
281
282         if (!task) {
283                 cpu_function_call(event->cpu, event_function, &efs);
284                 return;
285         }
286
287         if (task == TASK_TOMBSTONE)
288                 return;
289
290 again:
291         if (!task_function_call(task, event_function, &efs))
292                 return;
293
294         raw_spin_lock_irq(&ctx->lock);
295         /*
296          * Reload the task pointer, it might have been changed by
297          * a concurrent perf_event_context_sched_out().
298          */
299         task = ctx->task;
300         if (task == TASK_TOMBSTONE) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 return;
303         }
304         if (ctx->is_active) {
305                 raw_spin_unlock_irq(&ctx->lock);
306                 goto again;
307         }
308         func(event, NULL, ctx, data);
309         raw_spin_unlock_irq(&ctx->lock);
310 }
311
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318         struct perf_event_context *ctx = event->ctx;
319         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320         struct task_struct *task = READ_ONCE(ctx->task);
321         struct perf_event_context *task_ctx = NULL;
322
323         lockdep_assert_irqs_disabled();
324
325         if (task) {
326                 if (task == TASK_TOMBSTONE)
327                         return;
328
329                 task_ctx = ctx;
330         }
331
332         perf_ctx_lock(cpuctx, task_ctx);
333
334         task = ctx->task;
335         if (task == TASK_TOMBSTONE)
336                 goto unlock;
337
338         if (task) {
339                 /*
340                  * We must be either inactive or active and the right task,
341                  * otherwise we're screwed, since we cannot IPI to somewhere
342                  * else.
343                  */
344                 if (ctx->is_active) {
345                         if (WARN_ON_ONCE(task != current))
346                                 goto unlock;
347
348                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349                                 goto unlock;
350                 }
351         } else {
352                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353         }
354
355         func(event, cpuctx, ctx, data);
356 unlock:
357         perf_ctx_unlock(cpuctx, task_ctx);
358 }
359
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361                        PERF_FLAG_FD_OUTPUT  |\
362                        PERF_FLAG_PID_CGROUP |\
363                        PERF_FLAG_FD_CLOEXEC)
364
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369         (PERF_SAMPLE_BRANCH_KERNEL |\
370          PERF_SAMPLE_BRANCH_HV)
371
372 enum event_type_t {
373         EVENT_FLEXIBLE = 0x1,
374         EVENT_PINNED = 0x2,
375         EVENT_TIME = 0x4,
376         /* see ctx_resched() for details */
377         EVENT_CPU = 0x8,
378         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
379 };
380
381 /*
382  * perf_sched_events : >0 events exist
383  */
384
385 static void perf_sched_delayed(struct work_struct *work);
386 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
387 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
388 static DEFINE_MUTEX(perf_sched_mutex);
389 static atomic_t perf_sched_count;
390
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void update_context_time(struct perf_event_context *ctx);
574 static u64 perf_event_time(struct perf_event *event);
575
576 void __weak perf_event_print_debug(void)        { }
577
578 static inline u64 perf_clock(void)
579 {
580         return local_clock();
581 }
582
583 static inline u64 perf_event_clock(struct perf_event *event)
584 {
585         return event->clock();
586 }
587
588 /*
589  * State based event timekeeping...
590  *
591  * The basic idea is to use event->state to determine which (if any) time
592  * fields to increment with the current delta. This means we only need to
593  * update timestamps when we change state or when they are explicitly requested
594  * (read).
595  *
596  * Event groups make things a little more complicated, but not terribly so. The
597  * rules for a group are that if the group leader is OFF the entire group is
598  * OFF, irrespecive of what the group member states are. This results in
599  * __perf_effective_state().
600  *
601  * A futher ramification is that when a group leader flips between OFF and
602  * !OFF, we need to update all group member times.
603  *
604  *
605  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
606  * need to make sure the relevant context time is updated before we try and
607  * update our timestamps.
608  */
609
610 static __always_inline enum perf_event_state
611 __perf_effective_state(struct perf_event *event)
612 {
613         struct perf_event *leader = event->group_leader;
614
615         if (leader->state <= PERF_EVENT_STATE_OFF)
616                 return leader->state;
617
618         return event->state;
619 }
620
621 static __always_inline void
622 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
623 {
624         enum perf_event_state state = __perf_effective_state(event);
625         u64 delta = now - event->tstamp;
626
627         *enabled = event->total_time_enabled;
628         if (state >= PERF_EVENT_STATE_INACTIVE)
629                 *enabled += delta;
630
631         *running = event->total_time_running;
632         if (state >= PERF_EVENT_STATE_ACTIVE)
633                 *running += delta;
634 }
635
636 static void perf_event_update_time(struct perf_event *event)
637 {
638         u64 now = perf_event_time(event);
639
640         __perf_update_times(event, now, &event->total_time_enabled,
641                                         &event->total_time_running);
642         event->tstamp = now;
643 }
644
645 static void perf_event_update_sibling_time(struct perf_event *leader)
646 {
647         struct perf_event *sibling;
648
649         for_each_sibling_event(sibling, leader)
650                 perf_event_update_time(sibling);
651 }
652
653 static void
654 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
655 {
656         if (event->state == state)
657                 return;
658
659         perf_event_update_time(event);
660         /*
661          * If a group leader gets enabled/disabled all its siblings
662          * are affected too.
663          */
664         if ((event->state < 0) ^ (state < 0))
665                 perf_event_update_sibling_time(event);
666
667         WRITE_ONCE(event->state, state);
668 }
669
670 /*
671  * UP store-release, load-acquire
672  */
673
674 #define __store_release(ptr, val)                                       \
675 do {                                                                    \
676         barrier();                                                      \
677         WRITE_ONCE(*(ptr), (val));                                      \
678 } while (0)
679
680 #define __load_acquire(ptr)                                             \
681 ({                                                                      \
682         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
683         barrier();                                                      \
684         ___p;                                                           \
685 })
686
687 static void perf_ctx_disable(struct perf_event_context *ctx)
688 {
689         struct perf_event_pmu_context *pmu_ctx;
690
691         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
692                 perf_pmu_disable(pmu_ctx->pmu);
693 }
694
695 static void perf_ctx_enable(struct perf_event_context *ctx)
696 {
697         struct perf_event_pmu_context *pmu_ctx;
698
699         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
700                 perf_pmu_enable(pmu_ctx->pmu);
701 }
702
703 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
704 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
705
706 #ifdef CONFIG_CGROUP_PERF
707
708 static inline bool
709 perf_cgroup_match(struct perf_event *event)
710 {
711         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
712
713         /* @event doesn't care about cgroup */
714         if (!event->cgrp)
715                 return true;
716
717         /* wants specific cgroup scope but @cpuctx isn't associated with any */
718         if (!cpuctx->cgrp)
719                 return false;
720
721         /*
722          * Cgroup scoping is recursive.  An event enabled for a cgroup is
723          * also enabled for all its descendant cgroups.  If @cpuctx's
724          * cgroup is a descendant of @event's (the test covers identity
725          * case), it's a match.
726          */
727         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
728                                     event->cgrp->css.cgroup);
729 }
730
731 static inline void perf_detach_cgroup(struct perf_event *event)
732 {
733         css_put(&event->cgrp->css);
734         event->cgrp = NULL;
735 }
736
737 static inline int is_cgroup_event(struct perf_event *event)
738 {
739         return event->cgrp != NULL;
740 }
741
742 static inline u64 perf_cgroup_event_time(struct perf_event *event)
743 {
744         struct perf_cgroup_info *t;
745
746         t = per_cpu_ptr(event->cgrp->info, event->cpu);
747         return t->time;
748 }
749
750 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
751 {
752         struct perf_cgroup_info *t;
753
754         t = per_cpu_ptr(event->cgrp->info, event->cpu);
755         if (!__load_acquire(&t->active))
756                 return t->time;
757         now += READ_ONCE(t->timeoffset);
758         return now;
759 }
760
761 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
762 {
763         if (adv)
764                 info->time += now - info->timestamp;
765         info->timestamp = now;
766         /*
767          * see update_context_time()
768          */
769         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
770 }
771
772 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
773 {
774         struct perf_cgroup *cgrp = cpuctx->cgrp;
775         struct cgroup_subsys_state *css;
776         struct perf_cgroup_info *info;
777
778         if (cgrp) {
779                 u64 now = perf_clock();
780
781                 for (css = &cgrp->css; css; css = css->parent) {
782                         cgrp = container_of(css, struct perf_cgroup, css);
783                         info = this_cpu_ptr(cgrp->info);
784
785                         __update_cgrp_time(info, now, true);
786                         if (final)
787                                 __store_release(&info->active, 0);
788                 }
789         }
790 }
791
792 static inline void update_cgrp_time_from_event(struct perf_event *event)
793 {
794         struct perf_cgroup_info *info;
795
796         /*
797          * ensure we access cgroup data only when needed and
798          * when we know the cgroup is pinned (css_get)
799          */
800         if (!is_cgroup_event(event))
801                 return;
802
803         info = this_cpu_ptr(event->cgrp->info);
804         /*
805          * Do not update time when cgroup is not active
806          */
807         if (info->active)
808                 __update_cgrp_time(info, perf_clock(), true);
809 }
810
811 static inline void
812 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
813 {
814         struct perf_event_context *ctx = &cpuctx->ctx;
815         struct perf_cgroup *cgrp = cpuctx->cgrp;
816         struct perf_cgroup_info *info;
817         struct cgroup_subsys_state *css;
818
819         /*
820          * ctx->lock held by caller
821          * ensure we do not access cgroup data
822          * unless we have the cgroup pinned (css_get)
823          */
824         if (!cgrp)
825                 return;
826
827         WARN_ON_ONCE(!ctx->nr_cgroups);
828
829         for (css = &cgrp->css; css; css = css->parent) {
830                 cgrp = container_of(css, struct perf_cgroup, css);
831                 info = this_cpu_ptr(cgrp->info);
832                 __update_cgrp_time(info, ctx->timestamp, false);
833                 __store_release(&info->active, 1);
834         }
835 }
836
837 /*
838  * reschedule events based on the cgroup constraint of task.
839  */
840 static void perf_cgroup_switch(struct task_struct *task)
841 {
842         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
843         struct perf_cgroup *cgrp;
844
845         /*
846          * cpuctx->cgrp is set when the first cgroup event enabled,
847          * and is cleared when the last cgroup event disabled.
848          */
849         if (READ_ONCE(cpuctx->cgrp) == NULL)
850                 return;
851
852         WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
853
854         cgrp = perf_cgroup_from_task(task, NULL);
855         if (READ_ONCE(cpuctx->cgrp) == cgrp)
856                 return;
857
858         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
859         perf_ctx_disable(&cpuctx->ctx);
860
861         ctx_sched_out(&cpuctx->ctx, EVENT_ALL);
862         /*
863          * must not be done before ctxswout due
864          * to update_cgrp_time_from_cpuctx() in
865          * ctx_sched_out()
866          */
867         cpuctx->cgrp = cgrp;
868         /*
869          * set cgrp before ctxsw in to allow
870          * perf_cgroup_set_timestamp() in ctx_sched_in()
871          * to not have to pass task around
872          */
873         ctx_sched_in(&cpuctx->ctx, EVENT_ALL);
874
875         perf_ctx_enable(&cpuctx->ctx);
876         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
877 }
878
879 static int perf_cgroup_ensure_storage(struct perf_event *event,
880                                 struct cgroup_subsys_state *css)
881 {
882         struct perf_cpu_context *cpuctx;
883         struct perf_event **storage;
884         int cpu, heap_size, ret = 0;
885
886         /*
887          * Allow storage to have sufficent space for an iterator for each
888          * possibly nested cgroup plus an iterator for events with no cgroup.
889          */
890         for (heap_size = 1; css; css = css->parent)
891                 heap_size++;
892
893         for_each_possible_cpu(cpu) {
894                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
895                 if (heap_size <= cpuctx->heap_size)
896                         continue;
897
898                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
899                                        GFP_KERNEL, cpu_to_node(cpu));
900                 if (!storage) {
901                         ret = -ENOMEM;
902                         break;
903                 }
904
905                 raw_spin_lock_irq(&cpuctx->ctx.lock);
906                 if (cpuctx->heap_size < heap_size) {
907                         swap(cpuctx->heap, storage);
908                         if (storage == cpuctx->heap_default)
909                                 storage = NULL;
910                         cpuctx->heap_size = heap_size;
911                 }
912                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
913
914                 kfree(storage);
915         }
916
917         return ret;
918 }
919
920 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
921                                       struct perf_event_attr *attr,
922                                       struct perf_event *group_leader)
923 {
924         struct perf_cgroup *cgrp;
925         struct cgroup_subsys_state *css;
926         struct fd f = fdget(fd);
927         int ret = 0;
928
929         if (!f.file)
930                 return -EBADF;
931
932         css = css_tryget_online_from_dir(f.file->f_path.dentry,
933                                          &perf_event_cgrp_subsys);
934         if (IS_ERR(css)) {
935                 ret = PTR_ERR(css);
936                 goto out;
937         }
938
939         ret = perf_cgroup_ensure_storage(event, css);
940         if (ret)
941                 goto out;
942
943         cgrp = container_of(css, struct perf_cgroup, css);
944         event->cgrp = cgrp;
945
946         /*
947          * all events in a group must monitor
948          * the same cgroup because a task belongs
949          * to only one perf cgroup at a time
950          */
951         if (group_leader && group_leader->cgrp != cgrp) {
952                 perf_detach_cgroup(event);
953                 ret = -EINVAL;
954         }
955 out:
956         fdput(f);
957         return ret;
958 }
959
960 static inline void
961 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
962 {
963         struct perf_cpu_context *cpuctx;
964
965         if (!is_cgroup_event(event))
966                 return;
967
968         /*
969          * Because cgroup events are always per-cpu events,
970          * @ctx == &cpuctx->ctx.
971          */
972         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
973
974         if (ctx->nr_cgroups++)
975                 return;
976
977         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
978 }
979
980 static inline void
981 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
982 {
983         struct perf_cpu_context *cpuctx;
984
985         if (!is_cgroup_event(event))
986                 return;
987
988         /*
989          * Because cgroup events are always per-cpu events,
990          * @ctx == &cpuctx->ctx.
991          */
992         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
993
994         if (--ctx->nr_cgroups)
995                 return;
996
997         cpuctx->cgrp = NULL;
998 }
999
1000 #else /* !CONFIG_CGROUP_PERF */
1001
1002 static inline bool
1003 perf_cgroup_match(struct perf_event *event)
1004 {
1005         return true;
1006 }
1007
1008 static inline void perf_detach_cgroup(struct perf_event *event)
1009 {}
1010
1011 static inline int is_cgroup_event(struct perf_event *event)
1012 {
1013         return 0;
1014 }
1015
1016 static inline void update_cgrp_time_from_event(struct perf_event *event)
1017 {
1018 }
1019
1020 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1021                                                 bool final)
1022 {
1023 }
1024
1025 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1026                                       struct perf_event_attr *attr,
1027                                       struct perf_event *group_leader)
1028 {
1029         return -EINVAL;
1030 }
1031
1032 static inline void
1033 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1034 {
1035 }
1036
1037 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1038 {
1039         return 0;
1040 }
1041
1042 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1043 {
1044         return 0;
1045 }
1046
1047 static inline void
1048 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1049 {
1050 }
1051
1052 static inline void
1053 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1054 {
1055 }
1056
1057 static void perf_cgroup_switch(struct task_struct *task)
1058 {
1059 }
1060 #endif
1061
1062 /*
1063  * set default to be dependent on timer tick just
1064  * like original code
1065  */
1066 #define PERF_CPU_HRTIMER (1000 / HZ)
1067 /*
1068  * function must be called with interrupts disabled
1069  */
1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1071 {
1072         struct perf_cpu_pmu_context *cpc;
1073         bool rotations;
1074
1075         lockdep_assert_irqs_disabled();
1076
1077         cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1078         rotations = perf_rotate_context(cpc);
1079
1080         raw_spin_lock(&cpc->hrtimer_lock);
1081         if (rotations)
1082                 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1083         else
1084                 cpc->hrtimer_active = 0;
1085         raw_spin_unlock(&cpc->hrtimer_lock);
1086
1087         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1088 }
1089
1090 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1091 {
1092         struct hrtimer *timer = &cpc->hrtimer;
1093         struct pmu *pmu = cpc->epc.pmu;
1094         u64 interval;
1095
1096         /*
1097          * check default is sane, if not set then force to
1098          * default interval (1/tick)
1099          */
1100         interval = pmu->hrtimer_interval_ms;
1101         if (interval < 1)
1102                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1103
1104         cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1105
1106         raw_spin_lock_init(&cpc->hrtimer_lock);
1107         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1108         timer->function = perf_mux_hrtimer_handler;
1109 }
1110
1111 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1112 {
1113         struct hrtimer *timer = &cpc->hrtimer;
1114         unsigned long flags;
1115
1116         raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1117         if (!cpc->hrtimer_active) {
1118                 cpc->hrtimer_active = 1;
1119                 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1120                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1121         }
1122         raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1123
1124         return 0;
1125 }
1126
1127 static int perf_mux_hrtimer_restart_ipi(void *arg)
1128 {
1129         return perf_mux_hrtimer_restart(arg);
1130 }
1131
1132 void perf_pmu_disable(struct pmu *pmu)
1133 {
1134         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1135         if (!(*count)++)
1136                 pmu->pmu_disable(pmu);
1137 }
1138
1139 void perf_pmu_enable(struct pmu *pmu)
1140 {
1141         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1142         if (!--(*count))
1143                 pmu->pmu_enable(pmu);
1144 }
1145
1146 static void perf_assert_pmu_disabled(struct pmu *pmu)
1147 {
1148         WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1149 }
1150
1151 static void get_ctx(struct perf_event_context *ctx)
1152 {
1153         refcount_inc(&ctx->refcount);
1154 }
1155
1156 static void *alloc_task_ctx_data(struct pmu *pmu)
1157 {
1158         if (pmu->task_ctx_cache)
1159                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1160
1161         return NULL;
1162 }
1163
1164 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1165 {
1166         if (pmu->task_ctx_cache && task_ctx_data)
1167                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1168 }
1169
1170 static void free_ctx(struct rcu_head *head)
1171 {
1172         struct perf_event_context *ctx;
1173
1174         ctx = container_of(head, struct perf_event_context, rcu_head);
1175         kfree(ctx);
1176 }
1177
1178 static void put_ctx(struct perf_event_context *ctx)
1179 {
1180         if (refcount_dec_and_test(&ctx->refcount)) {
1181                 if (ctx->parent_ctx)
1182                         put_ctx(ctx->parent_ctx);
1183                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1184                         put_task_struct(ctx->task);
1185                 call_rcu(&ctx->rcu_head, free_ctx);
1186         }
1187 }
1188
1189 /*
1190  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1191  * perf_pmu_migrate_context() we need some magic.
1192  *
1193  * Those places that change perf_event::ctx will hold both
1194  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1195  *
1196  * Lock ordering is by mutex address. There are two other sites where
1197  * perf_event_context::mutex nests and those are:
1198  *
1199  *  - perf_event_exit_task_context()    [ child , 0 ]
1200  *      perf_event_exit_event()
1201  *        put_event()                   [ parent, 1 ]
1202  *
1203  *  - perf_event_init_context()         [ parent, 0 ]
1204  *      inherit_task_group()
1205  *        inherit_group()
1206  *          inherit_event()
1207  *            perf_event_alloc()
1208  *              perf_init_event()
1209  *                perf_try_init_event() [ child , 1 ]
1210  *
1211  * While it appears there is an obvious deadlock here -- the parent and child
1212  * nesting levels are inverted between the two. This is in fact safe because
1213  * life-time rules separate them. That is an exiting task cannot fork, and a
1214  * spawning task cannot (yet) exit.
1215  *
1216  * But remember that these are parent<->child context relations, and
1217  * migration does not affect children, therefore these two orderings should not
1218  * interact.
1219  *
1220  * The change in perf_event::ctx does not affect children (as claimed above)
1221  * because the sys_perf_event_open() case will install a new event and break
1222  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1223  * concerned with cpuctx and that doesn't have children.
1224  *
1225  * The places that change perf_event::ctx will issue:
1226  *
1227  *   perf_remove_from_context();
1228  *   synchronize_rcu();
1229  *   perf_install_in_context();
1230  *
1231  * to affect the change. The remove_from_context() + synchronize_rcu() should
1232  * quiesce the event, after which we can install it in the new location. This
1233  * means that only external vectors (perf_fops, prctl) can perturb the event
1234  * while in transit. Therefore all such accessors should also acquire
1235  * perf_event_context::mutex to serialize against this.
1236  *
1237  * However; because event->ctx can change while we're waiting to acquire
1238  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1239  * function.
1240  *
1241  * Lock order:
1242  *    exec_update_lock
1243  *      task_struct::perf_event_mutex
1244  *        perf_event_context::mutex
1245  *          perf_event::child_mutex;
1246  *            perf_event_context::lock
1247  *          perf_event::mmap_mutex
1248  *          mmap_lock
1249  *            perf_addr_filters_head::lock
1250  *
1251  *    cpu_hotplug_lock
1252  *      pmus_lock
1253  *        cpuctx->mutex / perf_event_context::mutex
1254  */
1255 static struct perf_event_context *
1256 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1257 {
1258         struct perf_event_context *ctx;
1259
1260 again:
1261         rcu_read_lock();
1262         ctx = READ_ONCE(event->ctx);
1263         if (!refcount_inc_not_zero(&ctx->refcount)) {
1264                 rcu_read_unlock();
1265                 goto again;
1266         }
1267         rcu_read_unlock();
1268
1269         mutex_lock_nested(&ctx->mutex, nesting);
1270         if (event->ctx != ctx) {
1271                 mutex_unlock(&ctx->mutex);
1272                 put_ctx(ctx);
1273                 goto again;
1274         }
1275
1276         return ctx;
1277 }
1278
1279 static inline struct perf_event_context *
1280 perf_event_ctx_lock(struct perf_event *event)
1281 {
1282         return perf_event_ctx_lock_nested(event, 0);
1283 }
1284
1285 static void perf_event_ctx_unlock(struct perf_event *event,
1286                                   struct perf_event_context *ctx)
1287 {
1288         mutex_unlock(&ctx->mutex);
1289         put_ctx(ctx);
1290 }
1291
1292 /*
1293  * This must be done under the ctx->lock, such as to serialize against
1294  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1295  * calling scheduler related locks and ctx->lock nests inside those.
1296  */
1297 static __must_check struct perf_event_context *
1298 unclone_ctx(struct perf_event_context *ctx)
1299 {
1300         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1301
1302         lockdep_assert_held(&ctx->lock);
1303
1304         if (parent_ctx)
1305                 ctx->parent_ctx = NULL;
1306         ctx->generation++;
1307
1308         return parent_ctx;
1309 }
1310
1311 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1312                                 enum pid_type type)
1313 {
1314         u32 nr;
1315         /*
1316          * only top level events have the pid namespace they were created in
1317          */
1318         if (event->parent)
1319                 event = event->parent;
1320
1321         nr = __task_pid_nr_ns(p, type, event->ns);
1322         /* avoid -1 if it is idle thread or runs in another ns */
1323         if (!nr && !pid_alive(p))
1324                 nr = -1;
1325         return nr;
1326 }
1327
1328 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1329 {
1330         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1331 }
1332
1333 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1334 {
1335         return perf_event_pid_type(event, p, PIDTYPE_PID);
1336 }
1337
1338 /*
1339  * If we inherit events we want to return the parent event id
1340  * to userspace.
1341  */
1342 static u64 primary_event_id(struct perf_event *event)
1343 {
1344         u64 id = event->id;
1345
1346         if (event->parent)
1347                 id = event->parent->id;
1348
1349         return id;
1350 }
1351
1352 /*
1353  * Get the perf_event_context for a task and lock it.
1354  *
1355  * This has to cope with the fact that until it is locked,
1356  * the context could get moved to another task.
1357  */
1358 static struct perf_event_context *
1359 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1360 {
1361         struct perf_event_context *ctx;
1362
1363 retry:
1364         /*
1365          * One of the few rules of preemptible RCU is that one cannot do
1366          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1367          * part of the read side critical section was irqs-enabled -- see
1368          * rcu_read_unlock_special().
1369          *
1370          * Since ctx->lock nests under rq->lock we must ensure the entire read
1371          * side critical section has interrupts disabled.
1372          */
1373         local_irq_save(*flags);
1374         rcu_read_lock();
1375         ctx = rcu_dereference(task->perf_event_ctxp);
1376         if (ctx) {
1377                 /*
1378                  * If this context is a clone of another, it might
1379                  * get swapped for another underneath us by
1380                  * perf_event_task_sched_out, though the
1381                  * rcu_read_lock() protects us from any context
1382                  * getting freed.  Lock the context and check if it
1383                  * got swapped before we could get the lock, and retry
1384                  * if so.  If we locked the right context, then it
1385                  * can't get swapped on us any more.
1386                  */
1387                 raw_spin_lock(&ctx->lock);
1388                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1389                         raw_spin_unlock(&ctx->lock);
1390                         rcu_read_unlock();
1391                         local_irq_restore(*flags);
1392                         goto retry;
1393                 }
1394
1395                 if (ctx->task == TASK_TOMBSTONE ||
1396                     !refcount_inc_not_zero(&ctx->refcount)) {
1397                         raw_spin_unlock(&ctx->lock);
1398                         ctx = NULL;
1399                 } else {
1400                         WARN_ON_ONCE(ctx->task != task);
1401                 }
1402         }
1403         rcu_read_unlock();
1404         if (!ctx)
1405                 local_irq_restore(*flags);
1406         return ctx;
1407 }
1408
1409 /*
1410  * Get the context for a task and increment its pin_count so it
1411  * can't get swapped to another task.  This also increments its
1412  * reference count so that the context can't get freed.
1413  */
1414 static struct perf_event_context *
1415 perf_pin_task_context(struct task_struct *task)
1416 {
1417         struct perf_event_context *ctx;
1418         unsigned long flags;
1419
1420         ctx = perf_lock_task_context(task, &flags);
1421         if (ctx) {
1422                 ++ctx->pin_count;
1423                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1424         }
1425         return ctx;
1426 }
1427
1428 static void perf_unpin_context(struct perf_event_context *ctx)
1429 {
1430         unsigned long flags;
1431
1432         raw_spin_lock_irqsave(&ctx->lock, flags);
1433         --ctx->pin_count;
1434         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 }
1436
1437 /*
1438  * Update the record of the current time in a context.
1439  */
1440 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1441 {
1442         u64 now = perf_clock();
1443
1444         lockdep_assert_held(&ctx->lock);
1445
1446         if (adv)
1447                 ctx->time += now - ctx->timestamp;
1448         ctx->timestamp = now;
1449
1450         /*
1451          * The above: time' = time + (now - timestamp), can be re-arranged
1452          * into: time` = now + (time - timestamp), which gives a single value
1453          * offset to compute future time without locks on.
1454          *
1455          * See perf_event_time_now(), which can be used from NMI context where
1456          * it's (obviously) not possible to acquire ctx->lock in order to read
1457          * both the above values in a consistent manner.
1458          */
1459         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1460 }
1461
1462 static void update_context_time(struct perf_event_context *ctx)
1463 {
1464         __update_context_time(ctx, true);
1465 }
1466
1467 static u64 perf_event_time(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470
1471         if (unlikely(!ctx))
1472                 return 0;
1473
1474         if (is_cgroup_event(event))
1475                 return perf_cgroup_event_time(event);
1476
1477         return ctx->time;
1478 }
1479
1480 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1481 {
1482         struct perf_event_context *ctx = event->ctx;
1483
1484         if (unlikely(!ctx))
1485                 return 0;
1486
1487         if (is_cgroup_event(event))
1488                 return perf_cgroup_event_time_now(event, now);
1489
1490         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1491                 return ctx->time;
1492
1493         now += READ_ONCE(ctx->timeoffset);
1494         return now;
1495 }
1496
1497 static enum event_type_t get_event_type(struct perf_event *event)
1498 {
1499         struct perf_event_context *ctx = event->ctx;
1500         enum event_type_t event_type;
1501
1502         lockdep_assert_held(&ctx->lock);
1503
1504         /*
1505          * It's 'group type', really, because if our group leader is
1506          * pinned, so are we.
1507          */
1508         if (event->group_leader != event)
1509                 event = event->group_leader;
1510
1511         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1512         if (!ctx->task)
1513                 event_type |= EVENT_CPU;
1514
1515         return event_type;
1516 }
1517
1518 /*
1519  * Helper function to initialize event group nodes.
1520  */
1521 static void init_event_group(struct perf_event *event)
1522 {
1523         RB_CLEAR_NODE(&event->group_node);
1524         event->group_index = 0;
1525 }
1526
1527 /*
1528  * Extract pinned or flexible groups from the context
1529  * based on event attrs bits.
1530  */
1531 static struct perf_event_groups *
1532 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1533 {
1534         if (event->attr.pinned)
1535                 return &ctx->pinned_groups;
1536         else
1537                 return &ctx->flexible_groups;
1538 }
1539
1540 /*
1541  * Helper function to initializes perf_event_group trees.
1542  */
1543 static void perf_event_groups_init(struct perf_event_groups *groups)
1544 {
1545         groups->tree = RB_ROOT;
1546         groups->index = 0;
1547 }
1548
1549 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1550 {
1551         struct cgroup *cgroup = NULL;
1552
1553 #ifdef CONFIG_CGROUP_PERF
1554         if (event->cgrp)
1555                 cgroup = event->cgrp->css.cgroup;
1556 #endif
1557
1558         return cgroup;
1559 }
1560
1561 /*
1562  * Compare function for event groups;
1563  *
1564  * Implements complex key that first sorts by CPU and then by virtual index
1565  * which provides ordering when rotating groups for the same CPU.
1566  */
1567 static __always_inline int
1568 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1569                       const struct cgroup *left_cgroup, const u64 left_group_index,
1570                       const struct perf_event *right)
1571 {
1572         if (left_cpu < right->cpu)
1573                 return -1;
1574         if (left_cpu > right->cpu)
1575                 return 1;
1576
1577         if (left_pmu) {
1578                 if (left_pmu < right->pmu_ctx->pmu)
1579                         return -1;
1580                 if (left_pmu > right->pmu_ctx->pmu)
1581                         return 1;
1582         }
1583
1584 #ifdef CONFIG_CGROUP_PERF
1585         {
1586                 const struct cgroup *right_cgroup = event_cgroup(right);
1587
1588                 if (left_cgroup != right_cgroup) {
1589                         if (!left_cgroup) {
1590                                 /*
1591                                  * Left has no cgroup but right does, no
1592                                  * cgroups come first.
1593                                  */
1594                                 return -1;
1595                         }
1596                         if (!right_cgroup) {
1597                                 /*
1598                                  * Right has no cgroup but left does, no
1599                                  * cgroups come first.
1600                                  */
1601                                 return 1;
1602                         }
1603                         /* Two dissimilar cgroups, order by id. */
1604                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1605                                 return -1;
1606
1607                         return 1;
1608                 }
1609         }
1610 #endif
1611
1612         if (left_group_index < right->group_index)
1613                 return -1;
1614         if (left_group_index > right->group_index)
1615                 return 1;
1616
1617         return 0;
1618 }
1619
1620 #define __node_2_pe(node) \
1621         rb_entry((node), struct perf_event, group_node)
1622
1623 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1624 {
1625         struct perf_event *e = __node_2_pe(a);
1626         return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1627                                      e->group_index, __node_2_pe(b)) < 0;
1628 }
1629
1630 struct __group_key {
1631         int cpu;
1632         struct pmu *pmu;
1633         struct cgroup *cgroup;
1634 };
1635
1636 static inline int __group_cmp(const void *key, const struct rb_node *node)
1637 {
1638         const struct __group_key *a = key;
1639         const struct perf_event *b = __node_2_pe(node);
1640
1641         /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1642         return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1643 }
1644
1645 static inline int
1646 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1647 {
1648         const struct __group_key *a = key;
1649         const struct perf_event *b = __node_2_pe(node);
1650
1651         /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1652         return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1653                                      b->group_index, b);
1654 }
1655
1656 /*
1657  * Insert @event into @groups' tree; using
1658  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1659  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1660  */
1661 static void
1662 perf_event_groups_insert(struct perf_event_groups *groups,
1663                          struct perf_event *event)
1664 {
1665         event->group_index = ++groups->index;
1666
1667         rb_add(&event->group_node, &groups->tree, __group_less);
1668 }
1669
1670 /*
1671  * Helper function to insert event into the pinned or flexible groups.
1672  */
1673 static void
1674 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1675 {
1676         struct perf_event_groups *groups;
1677
1678         groups = get_event_groups(event, ctx);
1679         perf_event_groups_insert(groups, event);
1680 }
1681
1682 /*
1683  * Delete a group from a tree.
1684  */
1685 static void
1686 perf_event_groups_delete(struct perf_event_groups *groups,
1687                          struct perf_event *event)
1688 {
1689         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1690                      RB_EMPTY_ROOT(&groups->tree));
1691
1692         rb_erase(&event->group_node, &groups->tree);
1693         init_event_group(event);
1694 }
1695
1696 /*
1697  * Helper function to delete event from its groups.
1698  */
1699 static void
1700 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1701 {
1702         struct perf_event_groups *groups;
1703
1704         groups = get_event_groups(event, ctx);
1705         perf_event_groups_delete(groups, event);
1706 }
1707
1708 /*
1709  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1710  */
1711 static struct perf_event *
1712 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1713                         struct pmu *pmu, struct cgroup *cgrp)
1714 {
1715         struct __group_key key = {
1716                 .cpu = cpu,
1717                 .pmu = pmu,
1718                 .cgroup = cgrp,
1719         };
1720         struct rb_node *node;
1721
1722         node = rb_find_first(&key, &groups->tree, __group_cmp);
1723         if (node)
1724                 return __node_2_pe(node);
1725
1726         return NULL;
1727 }
1728
1729 static struct perf_event *
1730 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1731 {
1732         struct __group_key key = {
1733                 .cpu = event->cpu,
1734                 .pmu = pmu,
1735                 .cgroup = event_cgroup(event),
1736         };
1737         struct rb_node *next;
1738
1739         next = rb_next_match(&key, &event->group_node, __group_cmp);
1740         if (next)
1741                 return __node_2_pe(next);
1742
1743         return NULL;
1744 }
1745
1746 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)          \
1747         for (event = perf_event_groups_first(groups, cpu, pmu, NULL);   \
1748              event; event = perf_event_groups_next(event, pmu))
1749
1750 /*
1751  * Iterate through the whole groups tree.
1752  */
1753 #define perf_event_groups_for_each(event, groups)                       \
1754         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1755                                 typeof(*event), group_node); event;     \
1756                 event = rb_entry_safe(rb_next(&event->group_node),      \
1757                                 typeof(*event), group_node))
1758
1759 /*
1760  * Add an event from the lists for its context.
1761  * Must be called with ctx->mutex and ctx->lock held.
1762  */
1763 static void
1764 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1765 {
1766         lockdep_assert_held(&ctx->lock);
1767
1768         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1769         event->attach_state |= PERF_ATTACH_CONTEXT;
1770
1771         event->tstamp = perf_event_time(event);
1772
1773         /*
1774          * If we're a stand alone event or group leader, we go to the context
1775          * list, group events are kept attached to the group so that
1776          * perf_group_detach can, at all times, locate all siblings.
1777          */
1778         if (event->group_leader == event) {
1779                 event->group_caps = event->event_caps;
1780                 add_event_to_groups(event, ctx);
1781         }
1782
1783         list_add_rcu(&event->event_entry, &ctx->event_list);
1784         ctx->nr_events++;
1785         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1786                 ctx->nr_user++;
1787         if (event->attr.inherit_stat)
1788                 ctx->nr_stat++;
1789
1790         if (event->state > PERF_EVENT_STATE_OFF)
1791                 perf_cgroup_event_enable(event, ctx);
1792
1793         ctx->generation++;
1794         event->pmu_ctx->nr_events++;
1795 }
1796
1797 /*
1798  * Initialize event state based on the perf_event_attr::disabled.
1799  */
1800 static inline void perf_event__state_init(struct perf_event *event)
1801 {
1802         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1803                                               PERF_EVENT_STATE_INACTIVE;
1804 }
1805
1806 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1807 {
1808         int entry = sizeof(u64); /* value */
1809         int size = 0;
1810         int nr = 1;
1811
1812         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1813                 size += sizeof(u64);
1814
1815         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1816                 size += sizeof(u64);
1817
1818         if (event->attr.read_format & PERF_FORMAT_ID)
1819                 entry += sizeof(u64);
1820
1821         if (event->attr.read_format & PERF_FORMAT_LOST)
1822                 entry += sizeof(u64);
1823
1824         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1825                 nr += nr_siblings;
1826                 size += sizeof(u64);
1827         }
1828
1829         size += entry * nr;
1830         event->read_size = size;
1831 }
1832
1833 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1834 {
1835         struct perf_sample_data *data;
1836         u16 size = 0;
1837
1838         if (sample_type & PERF_SAMPLE_IP)
1839                 size += sizeof(data->ip);
1840
1841         if (sample_type & PERF_SAMPLE_ADDR)
1842                 size += sizeof(data->addr);
1843
1844         if (sample_type & PERF_SAMPLE_PERIOD)
1845                 size += sizeof(data->period);
1846
1847         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1848                 size += sizeof(data->weight.full);
1849
1850         if (sample_type & PERF_SAMPLE_READ)
1851                 size += event->read_size;
1852
1853         if (sample_type & PERF_SAMPLE_DATA_SRC)
1854                 size += sizeof(data->data_src.val);
1855
1856         if (sample_type & PERF_SAMPLE_TRANSACTION)
1857                 size += sizeof(data->txn);
1858
1859         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1860                 size += sizeof(data->phys_addr);
1861
1862         if (sample_type & PERF_SAMPLE_CGROUP)
1863                 size += sizeof(data->cgroup);
1864
1865         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1866                 size += sizeof(data->data_page_size);
1867
1868         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1869                 size += sizeof(data->code_page_size);
1870
1871         event->header_size = size;
1872 }
1873
1874 /*
1875  * Called at perf_event creation and when events are attached/detached from a
1876  * group.
1877  */
1878 static void perf_event__header_size(struct perf_event *event)
1879 {
1880         __perf_event_read_size(event,
1881                                event->group_leader->nr_siblings);
1882         __perf_event_header_size(event, event->attr.sample_type);
1883 }
1884
1885 static void perf_event__id_header_size(struct perf_event *event)
1886 {
1887         struct perf_sample_data *data;
1888         u64 sample_type = event->attr.sample_type;
1889         u16 size = 0;
1890
1891         if (sample_type & PERF_SAMPLE_TID)
1892                 size += sizeof(data->tid_entry);
1893
1894         if (sample_type & PERF_SAMPLE_TIME)
1895                 size += sizeof(data->time);
1896
1897         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1898                 size += sizeof(data->id);
1899
1900         if (sample_type & PERF_SAMPLE_ID)
1901                 size += sizeof(data->id);
1902
1903         if (sample_type & PERF_SAMPLE_STREAM_ID)
1904                 size += sizeof(data->stream_id);
1905
1906         if (sample_type & PERF_SAMPLE_CPU)
1907                 size += sizeof(data->cpu_entry);
1908
1909         event->id_header_size = size;
1910 }
1911
1912 static bool perf_event_validate_size(struct perf_event *event)
1913 {
1914         /*
1915          * The values computed here will be over-written when we actually
1916          * attach the event.
1917          */
1918         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1919         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1920         perf_event__id_header_size(event);
1921
1922         /*
1923          * Sum the lot; should not exceed the 64k limit we have on records.
1924          * Conservative limit to allow for callchains and other variable fields.
1925          */
1926         if (event->read_size + event->header_size +
1927             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1928                 return false;
1929
1930         return true;
1931 }
1932
1933 static void perf_group_attach(struct perf_event *event)
1934 {
1935         struct perf_event *group_leader = event->group_leader, *pos;
1936
1937         lockdep_assert_held(&event->ctx->lock);
1938
1939         /*
1940          * We can have double attach due to group movement (move_group) in
1941          * perf_event_open().
1942          */
1943         if (event->attach_state & PERF_ATTACH_GROUP)
1944                 return;
1945
1946         event->attach_state |= PERF_ATTACH_GROUP;
1947
1948         if (group_leader == event)
1949                 return;
1950
1951         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1952
1953         group_leader->group_caps &= event->event_caps;
1954
1955         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1956         group_leader->nr_siblings++;
1957
1958         perf_event__header_size(group_leader);
1959
1960         for_each_sibling_event(pos, group_leader)
1961                 perf_event__header_size(pos);
1962 }
1963
1964 /*
1965  * Remove an event from the lists for its context.
1966  * Must be called with ctx->mutex and ctx->lock held.
1967  */
1968 static void
1969 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1970 {
1971         WARN_ON_ONCE(event->ctx != ctx);
1972         lockdep_assert_held(&ctx->lock);
1973
1974         /*
1975          * We can have double detach due to exit/hot-unplug + close.
1976          */
1977         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1978                 return;
1979
1980         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1981
1982         ctx->nr_events--;
1983         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1984                 ctx->nr_user--;
1985         if (event->attr.inherit_stat)
1986                 ctx->nr_stat--;
1987
1988         list_del_rcu(&event->event_entry);
1989
1990         if (event->group_leader == event)
1991                 del_event_from_groups(event, ctx);
1992
1993         /*
1994          * If event was in error state, then keep it
1995          * that way, otherwise bogus counts will be
1996          * returned on read(). The only way to get out
1997          * of error state is by explicit re-enabling
1998          * of the event
1999          */
2000         if (event->state > PERF_EVENT_STATE_OFF) {
2001                 perf_cgroup_event_disable(event, ctx);
2002                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2003         }
2004
2005         ctx->generation++;
2006         event->pmu_ctx->nr_events--;
2007 }
2008
2009 static int
2010 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2011 {
2012         if (!has_aux(aux_event))
2013                 return 0;
2014
2015         if (!event->pmu->aux_output_match)
2016                 return 0;
2017
2018         return event->pmu->aux_output_match(aux_event);
2019 }
2020
2021 static void put_event(struct perf_event *event);
2022 static void event_sched_out(struct perf_event *event,
2023                             struct perf_event_context *ctx);
2024
2025 static void perf_put_aux_event(struct perf_event *event)
2026 {
2027         struct perf_event_context *ctx = event->ctx;
2028         struct perf_event *iter;
2029
2030         /*
2031          * If event uses aux_event tear down the link
2032          */
2033         if (event->aux_event) {
2034                 iter = event->aux_event;
2035                 event->aux_event = NULL;
2036                 put_event(iter);
2037                 return;
2038         }
2039
2040         /*
2041          * If the event is an aux_event, tear down all links to
2042          * it from other events.
2043          */
2044         for_each_sibling_event(iter, event->group_leader) {
2045                 if (iter->aux_event != event)
2046                         continue;
2047
2048                 iter->aux_event = NULL;
2049                 put_event(event);
2050
2051                 /*
2052                  * If it's ACTIVE, schedule it out and put it into ERROR
2053                  * state so that we don't try to schedule it again. Note
2054                  * that perf_event_enable() will clear the ERROR status.
2055                  */
2056                 event_sched_out(iter, ctx);
2057                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2058         }
2059 }
2060
2061 static bool perf_need_aux_event(struct perf_event *event)
2062 {
2063         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2064 }
2065
2066 static int perf_get_aux_event(struct perf_event *event,
2067                               struct perf_event *group_leader)
2068 {
2069         /*
2070          * Our group leader must be an aux event if we want to be
2071          * an aux_output. This way, the aux event will precede its
2072          * aux_output events in the group, and therefore will always
2073          * schedule first.
2074          */
2075         if (!group_leader)
2076                 return 0;
2077
2078         /*
2079          * aux_output and aux_sample_size are mutually exclusive.
2080          */
2081         if (event->attr.aux_output && event->attr.aux_sample_size)
2082                 return 0;
2083
2084         if (event->attr.aux_output &&
2085             !perf_aux_output_match(event, group_leader))
2086                 return 0;
2087
2088         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2089                 return 0;
2090
2091         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2092                 return 0;
2093
2094         /*
2095          * Link aux_outputs to their aux event; this is undone in
2096          * perf_group_detach() by perf_put_aux_event(). When the
2097          * group in torn down, the aux_output events loose their
2098          * link to the aux_event and can't schedule any more.
2099          */
2100         event->aux_event = group_leader;
2101
2102         return 1;
2103 }
2104
2105 static inline struct list_head *get_event_list(struct perf_event *event)
2106 {
2107         return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2108                                     &event->pmu_ctx->flexible_active;
2109 }
2110
2111 /*
2112  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2113  * cannot exist on their own, schedule them out and move them into the ERROR
2114  * state. Also see _perf_event_enable(), it will not be able to recover
2115  * this ERROR state.
2116  */
2117 static inline void perf_remove_sibling_event(struct perf_event *event)
2118 {
2119         event_sched_out(event, event->ctx);
2120         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2121 }
2122
2123 static void perf_group_detach(struct perf_event *event)
2124 {
2125         struct perf_event *leader = event->group_leader;
2126         struct perf_event *sibling, *tmp;
2127         struct perf_event_context *ctx = event->ctx;
2128
2129         lockdep_assert_held(&ctx->lock);
2130
2131         /*
2132          * We can have double detach due to exit/hot-unplug + close.
2133          */
2134         if (!(event->attach_state & PERF_ATTACH_GROUP))
2135                 return;
2136
2137         event->attach_state &= ~PERF_ATTACH_GROUP;
2138
2139         perf_put_aux_event(event);
2140
2141         /*
2142          * If this is a sibling, remove it from its group.
2143          */
2144         if (leader != event) {
2145                 list_del_init(&event->sibling_list);
2146                 event->group_leader->nr_siblings--;
2147                 goto out;
2148         }
2149
2150         /*
2151          * If this was a group event with sibling events then
2152          * upgrade the siblings to singleton events by adding them
2153          * to whatever list we are on.
2154          */
2155         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2156
2157                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2158                         perf_remove_sibling_event(sibling);
2159
2160                 sibling->group_leader = sibling;
2161                 list_del_init(&sibling->sibling_list);
2162
2163                 /* Inherit group flags from the previous leader */
2164                 sibling->group_caps = event->group_caps;
2165
2166                 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2167                         add_event_to_groups(sibling, event->ctx);
2168
2169                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2170                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2171                 }
2172
2173                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2174         }
2175
2176 out:
2177         for_each_sibling_event(tmp, leader)
2178                 perf_event__header_size(tmp);
2179
2180         perf_event__header_size(leader);
2181 }
2182
2183 static void sync_child_event(struct perf_event *child_event);
2184
2185 static void perf_child_detach(struct perf_event *event)
2186 {
2187         struct perf_event *parent_event = event->parent;
2188
2189         if (!(event->attach_state & PERF_ATTACH_CHILD))
2190                 return;
2191
2192         event->attach_state &= ~PERF_ATTACH_CHILD;
2193
2194         if (WARN_ON_ONCE(!parent_event))
2195                 return;
2196
2197         lockdep_assert_held(&parent_event->child_mutex);
2198
2199         sync_child_event(event);
2200         list_del_init(&event->child_list);
2201 }
2202
2203 static bool is_orphaned_event(struct perf_event *event)
2204 {
2205         return event->state == PERF_EVENT_STATE_DEAD;
2206 }
2207
2208 static inline int
2209 event_filter_match(struct perf_event *event)
2210 {
2211         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2212                perf_cgroup_match(event);
2213 }
2214
2215 static void
2216 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2217 {
2218         struct perf_event_pmu_context *epc = event->pmu_ctx;
2219         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2220         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2221
2222         // XXX cpc serialization, probably per-cpu IRQ disabled
2223
2224         WARN_ON_ONCE(event->ctx != ctx);
2225         lockdep_assert_held(&ctx->lock);
2226
2227         if (event->state != PERF_EVENT_STATE_ACTIVE)
2228                 return;
2229
2230         /*
2231          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2232          * we can schedule events _OUT_ individually through things like
2233          * __perf_remove_from_context().
2234          */
2235         list_del_init(&event->active_list);
2236
2237         perf_pmu_disable(event->pmu);
2238
2239         event->pmu->del(event, 0);
2240         event->oncpu = -1;
2241
2242         if (event->pending_disable) {
2243                 event->pending_disable = 0;
2244                 perf_cgroup_event_disable(event, ctx);
2245                 state = PERF_EVENT_STATE_OFF;
2246         }
2247
2248         if (event->pending_sigtrap) {
2249                 bool dec = true;
2250
2251                 event->pending_sigtrap = 0;
2252                 if (state != PERF_EVENT_STATE_OFF &&
2253                     !event->pending_work) {
2254                         event->pending_work = 1;
2255                         dec = false;
2256                         WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2257                         task_work_add(current, &event->pending_task, TWA_RESUME);
2258                 }
2259                 if (dec)
2260                         local_dec(&event->ctx->nr_pending);
2261         }
2262
2263         perf_event_set_state(event, state);
2264
2265         if (!is_software_event(event))
2266                 cpc->active_oncpu--;
2267         if (event->attr.freq && event->attr.sample_freq)
2268                 ctx->nr_freq--;
2269         if (event->attr.exclusive || !cpc->active_oncpu)
2270                 cpc->exclusive = 0;
2271
2272         perf_pmu_enable(event->pmu);
2273 }
2274
2275 static void
2276 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2277 {
2278         struct perf_event *event;
2279
2280         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2281                 return;
2282
2283         perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2284
2285         event_sched_out(group_event, ctx);
2286
2287         /*
2288          * Schedule out siblings (if any):
2289          */
2290         for_each_sibling_event(event, group_event)
2291                 event_sched_out(event, ctx);
2292 }
2293
2294 #define DETACH_GROUP    0x01UL
2295 #define DETACH_CHILD    0x02UL
2296 #define DETACH_DEAD     0x04UL
2297
2298 /*
2299  * Cross CPU call to remove a performance event
2300  *
2301  * We disable the event on the hardware level first. After that we
2302  * remove it from the context list.
2303  */
2304 static void
2305 __perf_remove_from_context(struct perf_event *event,
2306                            struct perf_cpu_context *cpuctx,
2307                            struct perf_event_context *ctx,
2308                            void *info)
2309 {
2310         struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2311         unsigned long flags = (unsigned long)info;
2312
2313         if (ctx->is_active & EVENT_TIME) {
2314                 update_context_time(ctx);
2315                 update_cgrp_time_from_cpuctx(cpuctx, false);
2316         }
2317
2318         /*
2319          * Ensure event_sched_out() switches to OFF, at the very least
2320          * this avoids raising perf_pending_task() at this time.
2321          */
2322         if (flags & DETACH_DEAD)
2323                 event->pending_disable = 1;
2324         event_sched_out(event, ctx);
2325         if (flags & DETACH_GROUP)
2326                 perf_group_detach(event);
2327         if (flags & DETACH_CHILD)
2328                 perf_child_detach(event);
2329         list_del_event(event, ctx);
2330         if (flags & DETACH_DEAD)
2331                 event->state = PERF_EVENT_STATE_DEAD;
2332
2333         if (!pmu_ctx->nr_events) {
2334                 pmu_ctx->rotate_necessary = 0;
2335
2336                 if (ctx->task && ctx->is_active) {
2337                         struct perf_cpu_pmu_context *cpc;
2338
2339                         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2340                         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2341                         cpc->task_epc = NULL;
2342                 }
2343         }
2344
2345         if (!ctx->nr_events && ctx->is_active) {
2346                 if (ctx == &cpuctx->ctx)
2347                         update_cgrp_time_from_cpuctx(cpuctx, true);
2348
2349                 ctx->is_active = 0;
2350                 if (ctx->task) {
2351                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2352                         cpuctx->task_ctx = NULL;
2353                 }
2354         }
2355 }
2356
2357 /*
2358  * Remove the event from a task's (or a CPU's) list of events.
2359  *
2360  * If event->ctx is a cloned context, callers must make sure that
2361  * every task struct that event->ctx->task could possibly point to
2362  * remains valid.  This is OK when called from perf_release since
2363  * that only calls us on the top-level context, which can't be a clone.
2364  * When called from perf_event_exit_task, it's OK because the
2365  * context has been detached from its task.
2366  */
2367 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2368 {
2369         struct perf_event_context *ctx = event->ctx;
2370
2371         lockdep_assert_held(&ctx->mutex);
2372
2373         /*
2374          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2375          * to work in the face of TASK_TOMBSTONE, unlike every other
2376          * event_function_call() user.
2377          */
2378         raw_spin_lock_irq(&ctx->lock);
2379         if (!ctx->is_active) {
2380                 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2381                                            ctx, (void *)flags);
2382                 raw_spin_unlock_irq(&ctx->lock);
2383                 return;
2384         }
2385         raw_spin_unlock_irq(&ctx->lock);
2386
2387         event_function_call(event, __perf_remove_from_context, (void *)flags);
2388 }
2389
2390 /*
2391  * Cross CPU call to disable a performance event
2392  */
2393 static void __perf_event_disable(struct perf_event *event,
2394                                  struct perf_cpu_context *cpuctx,
2395                                  struct perf_event_context *ctx,
2396                                  void *info)
2397 {
2398         if (event->state < PERF_EVENT_STATE_INACTIVE)
2399                 return;
2400
2401         if (ctx->is_active & EVENT_TIME) {
2402                 update_context_time(ctx);
2403                 update_cgrp_time_from_event(event);
2404         }
2405
2406         perf_pmu_disable(event->pmu_ctx->pmu);
2407
2408         if (event == event->group_leader)
2409                 group_sched_out(event, ctx);
2410         else
2411                 event_sched_out(event, ctx);
2412
2413         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2414         perf_cgroup_event_disable(event, ctx);
2415
2416         perf_pmu_enable(event->pmu_ctx->pmu);
2417 }
2418
2419 /*
2420  * Disable an event.
2421  *
2422  * If event->ctx is a cloned context, callers must make sure that
2423  * every task struct that event->ctx->task could possibly point to
2424  * remains valid.  This condition is satisfied when called through
2425  * perf_event_for_each_child or perf_event_for_each because they
2426  * hold the top-level event's child_mutex, so any descendant that
2427  * goes to exit will block in perf_event_exit_event().
2428  *
2429  * When called from perf_pending_irq it's OK because event->ctx
2430  * is the current context on this CPU and preemption is disabled,
2431  * hence we can't get into perf_event_task_sched_out for this context.
2432  */
2433 static void _perf_event_disable(struct perf_event *event)
2434 {
2435         struct perf_event_context *ctx = event->ctx;
2436
2437         raw_spin_lock_irq(&ctx->lock);
2438         if (event->state <= PERF_EVENT_STATE_OFF) {
2439                 raw_spin_unlock_irq(&ctx->lock);
2440                 return;
2441         }
2442         raw_spin_unlock_irq(&ctx->lock);
2443
2444         event_function_call(event, __perf_event_disable, NULL);
2445 }
2446
2447 void perf_event_disable_local(struct perf_event *event)
2448 {
2449         event_function_local(event, __perf_event_disable, NULL);
2450 }
2451
2452 /*
2453  * Strictly speaking kernel users cannot create groups and therefore this
2454  * interface does not need the perf_event_ctx_lock() magic.
2455  */
2456 void perf_event_disable(struct perf_event *event)
2457 {
2458         struct perf_event_context *ctx;
2459
2460         ctx = perf_event_ctx_lock(event);
2461         _perf_event_disable(event);
2462         perf_event_ctx_unlock(event, ctx);
2463 }
2464 EXPORT_SYMBOL_GPL(perf_event_disable);
2465
2466 void perf_event_disable_inatomic(struct perf_event *event)
2467 {
2468         event->pending_disable = 1;
2469         irq_work_queue(&event->pending_irq);
2470 }
2471
2472 #define MAX_INTERRUPTS (~0ULL)
2473
2474 static void perf_log_throttle(struct perf_event *event, int enable);
2475 static void perf_log_itrace_start(struct perf_event *event);
2476
2477 static int
2478 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2479 {
2480         struct perf_event_pmu_context *epc = event->pmu_ctx;
2481         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2482         int ret = 0;
2483
2484         WARN_ON_ONCE(event->ctx != ctx);
2485
2486         lockdep_assert_held(&ctx->lock);
2487
2488         if (event->state <= PERF_EVENT_STATE_OFF)
2489                 return 0;
2490
2491         WRITE_ONCE(event->oncpu, smp_processor_id());
2492         /*
2493          * Order event::oncpu write to happen before the ACTIVE state is
2494          * visible. This allows perf_event_{stop,read}() to observe the correct
2495          * ->oncpu if it sees ACTIVE.
2496          */
2497         smp_wmb();
2498         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2499
2500         /*
2501          * Unthrottle events, since we scheduled we might have missed several
2502          * ticks already, also for a heavily scheduling task there is little
2503          * guarantee it'll get a tick in a timely manner.
2504          */
2505         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2506                 perf_log_throttle(event, 1);
2507                 event->hw.interrupts = 0;
2508         }
2509
2510         perf_pmu_disable(event->pmu);
2511
2512         perf_log_itrace_start(event);
2513
2514         if (event->pmu->add(event, PERF_EF_START)) {
2515                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2516                 event->oncpu = -1;
2517                 ret = -EAGAIN;
2518                 goto out;
2519         }
2520
2521         if (!is_software_event(event))
2522                 cpc->active_oncpu++;
2523         if (event->attr.freq && event->attr.sample_freq)
2524                 ctx->nr_freq++;
2525
2526         if (event->attr.exclusive)
2527                 cpc->exclusive = 1;
2528
2529 out:
2530         perf_pmu_enable(event->pmu);
2531
2532         return ret;
2533 }
2534
2535 static int
2536 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2537 {
2538         struct perf_event *event, *partial_group = NULL;
2539         struct pmu *pmu = group_event->pmu_ctx->pmu;
2540
2541         if (group_event->state == PERF_EVENT_STATE_OFF)
2542                 return 0;
2543
2544         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2545
2546         if (event_sched_in(group_event, ctx))
2547                 goto error;
2548
2549         /*
2550          * Schedule in siblings as one group (if any):
2551          */
2552         for_each_sibling_event(event, group_event) {
2553                 if (event_sched_in(event, ctx)) {
2554                         partial_group = event;
2555                         goto group_error;
2556                 }
2557         }
2558
2559         if (!pmu->commit_txn(pmu))
2560                 return 0;
2561
2562 group_error:
2563         /*
2564          * Groups can be scheduled in as one unit only, so undo any
2565          * partial group before returning:
2566          * The events up to the failed event are scheduled out normally.
2567          */
2568         for_each_sibling_event(event, group_event) {
2569                 if (event == partial_group)
2570                         break;
2571
2572                 event_sched_out(event, ctx);
2573         }
2574         event_sched_out(group_event, ctx);
2575
2576 error:
2577         pmu->cancel_txn(pmu);
2578         return -EAGAIN;
2579 }
2580
2581 /*
2582  * Work out whether we can put this event group on the CPU now.
2583  */
2584 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2585 {
2586         struct perf_event_pmu_context *epc = event->pmu_ctx;
2587         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2588
2589         /*
2590          * Groups consisting entirely of software events can always go on.
2591          */
2592         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2593                 return 1;
2594         /*
2595          * If an exclusive group is already on, no other hardware
2596          * events can go on.
2597          */
2598         if (cpc->exclusive)
2599                 return 0;
2600         /*
2601          * If this group is exclusive and there are already
2602          * events on the CPU, it can't go on.
2603          */
2604         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2605                 return 0;
2606         /*
2607          * Otherwise, try to add it if all previous groups were able
2608          * to go on.
2609          */
2610         return can_add_hw;
2611 }
2612
2613 static void add_event_to_ctx(struct perf_event *event,
2614                                struct perf_event_context *ctx)
2615 {
2616         list_add_event(event, ctx);
2617         perf_group_attach(event);
2618 }
2619
2620 static void task_ctx_sched_out(struct perf_event_context *ctx,
2621                                 enum event_type_t event_type)
2622 {
2623         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2624
2625         if (!cpuctx->task_ctx)
2626                 return;
2627
2628         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2629                 return;
2630
2631         ctx_sched_out(ctx, event_type);
2632 }
2633
2634 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2635                                 struct perf_event_context *ctx)
2636 {
2637         ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2638         if (ctx)
2639                  ctx_sched_in(ctx, EVENT_PINNED);
2640         ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2641         if (ctx)
2642                  ctx_sched_in(ctx, EVENT_FLEXIBLE);
2643 }
2644
2645 /*
2646  * We want to maintain the following priority of scheduling:
2647  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2648  *  - task pinned (EVENT_PINNED)
2649  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2650  *  - task flexible (EVENT_FLEXIBLE).
2651  *
2652  * In order to avoid unscheduling and scheduling back in everything every
2653  * time an event is added, only do it for the groups of equal priority and
2654  * below.
2655  *
2656  * This can be called after a batch operation on task events, in which case
2657  * event_type is a bit mask of the types of events involved. For CPU events,
2658  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2659  */
2660 /*
2661  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2662  * event to the context or enabling existing event in the context. We can
2663  * probably optimize it by rescheduling only affected pmu_ctx.
2664  */
2665 static void ctx_resched(struct perf_cpu_context *cpuctx,
2666                         struct perf_event_context *task_ctx,
2667                         enum event_type_t event_type)
2668 {
2669         bool cpu_event = !!(event_type & EVENT_CPU);
2670
2671         /*
2672          * If pinned groups are involved, flexible groups also need to be
2673          * scheduled out.
2674          */
2675         if (event_type & EVENT_PINNED)
2676                 event_type |= EVENT_FLEXIBLE;
2677
2678         event_type &= EVENT_ALL;
2679
2680         perf_ctx_disable(&cpuctx->ctx);
2681         if (task_ctx) {
2682                 perf_ctx_disable(task_ctx);
2683                 task_ctx_sched_out(task_ctx, event_type);
2684         }
2685
2686         /*
2687          * Decide which cpu ctx groups to schedule out based on the types
2688          * of events that caused rescheduling:
2689          *  - EVENT_CPU: schedule out corresponding groups;
2690          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2691          *  - otherwise, do nothing more.
2692          */
2693         if (cpu_event)
2694                 ctx_sched_out(&cpuctx->ctx, event_type);
2695         else if (event_type & EVENT_PINNED)
2696                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2697
2698         perf_event_sched_in(cpuctx, task_ctx);
2699
2700         perf_ctx_enable(&cpuctx->ctx);
2701         if (task_ctx)
2702                 perf_ctx_enable(task_ctx);
2703 }
2704
2705 void perf_pmu_resched(struct pmu *pmu)
2706 {
2707         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2708         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2709
2710         perf_ctx_lock(cpuctx, task_ctx);
2711         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2712         perf_ctx_unlock(cpuctx, task_ctx);
2713 }
2714
2715 /*
2716  * Cross CPU call to install and enable a performance event
2717  *
2718  * Very similar to remote_function() + event_function() but cannot assume that
2719  * things like ctx->is_active and cpuctx->task_ctx are set.
2720  */
2721 static int  __perf_install_in_context(void *info)
2722 {
2723         struct perf_event *event = info;
2724         struct perf_event_context *ctx = event->ctx;
2725         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2726         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2727         bool reprogram = true;
2728         int ret = 0;
2729
2730         raw_spin_lock(&cpuctx->ctx.lock);
2731         if (ctx->task) {
2732                 raw_spin_lock(&ctx->lock);
2733                 task_ctx = ctx;
2734
2735                 reprogram = (ctx->task == current);
2736
2737                 /*
2738                  * If the task is running, it must be running on this CPU,
2739                  * otherwise we cannot reprogram things.
2740                  *
2741                  * If its not running, we don't care, ctx->lock will
2742                  * serialize against it becoming runnable.
2743                  */
2744                 if (task_curr(ctx->task) && !reprogram) {
2745                         ret = -ESRCH;
2746                         goto unlock;
2747                 }
2748
2749                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2750         } else if (task_ctx) {
2751                 raw_spin_lock(&task_ctx->lock);
2752         }
2753
2754 #ifdef CONFIG_CGROUP_PERF
2755         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2756                 /*
2757                  * If the current cgroup doesn't match the event's
2758                  * cgroup, we should not try to schedule it.
2759                  */
2760                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2761                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2762                                         event->cgrp->css.cgroup);
2763         }
2764 #endif
2765
2766         if (reprogram) {
2767                 ctx_sched_out(ctx, EVENT_TIME);
2768                 add_event_to_ctx(event, ctx);
2769                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2770         } else {
2771                 add_event_to_ctx(event, ctx);
2772         }
2773
2774 unlock:
2775         perf_ctx_unlock(cpuctx, task_ctx);
2776
2777         return ret;
2778 }
2779
2780 static bool exclusive_event_installable(struct perf_event *event,
2781                                         struct perf_event_context *ctx);
2782
2783 /*
2784  * Attach a performance event to a context.
2785  *
2786  * Very similar to event_function_call, see comment there.
2787  */
2788 static void
2789 perf_install_in_context(struct perf_event_context *ctx,
2790                         struct perf_event *event,
2791                         int cpu)
2792 {
2793         struct task_struct *task = READ_ONCE(ctx->task);
2794
2795         lockdep_assert_held(&ctx->mutex);
2796
2797         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2798
2799         if (event->cpu != -1)
2800                 WARN_ON_ONCE(event->cpu != cpu);
2801
2802         /*
2803          * Ensures that if we can observe event->ctx, both the event and ctx
2804          * will be 'complete'. See perf_iterate_sb_cpu().
2805          */
2806         smp_store_release(&event->ctx, ctx);
2807
2808         /*
2809          * perf_event_attr::disabled events will not run and can be initialized
2810          * without IPI. Except when this is the first event for the context, in
2811          * that case we need the magic of the IPI to set ctx->is_active.
2812          *
2813          * The IOC_ENABLE that is sure to follow the creation of a disabled
2814          * event will issue the IPI and reprogram the hardware.
2815          */
2816         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2817             ctx->nr_events && !is_cgroup_event(event)) {
2818                 raw_spin_lock_irq(&ctx->lock);
2819                 if (ctx->task == TASK_TOMBSTONE) {
2820                         raw_spin_unlock_irq(&ctx->lock);
2821                         return;
2822                 }
2823                 add_event_to_ctx(event, ctx);
2824                 raw_spin_unlock_irq(&ctx->lock);
2825                 return;
2826         }
2827
2828         if (!task) {
2829                 cpu_function_call(cpu, __perf_install_in_context, event);
2830                 return;
2831         }
2832
2833         /*
2834          * Should not happen, we validate the ctx is still alive before calling.
2835          */
2836         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2837                 return;
2838
2839         /*
2840          * Installing events is tricky because we cannot rely on ctx->is_active
2841          * to be set in case this is the nr_events 0 -> 1 transition.
2842          *
2843          * Instead we use task_curr(), which tells us if the task is running.
2844          * However, since we use task_curr() outside of rq::lock, we can race
2845          * against the actual state. This means the result can be wrong.
2846          *
2847          * If we get a false positive, we retry, this is harmless.
2848          *
2849          * If we get a false negative, things are complicated. If we are after
2850          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2851          * value must be correct. If we're before, it doesn't matter since
2852          * perf_event_context_sched_in() will program the counter.
2853          *
2854          * However, this hinges on the remote context switch having observed
2855          * our task->perf_event_ctxp[] store, such that it will in fact take
2856          * ctx::lock in perf_event_context_sched_in().
2857          *
2858          * We do this by task_function_call(), if the IPI fails to hit the task
2859          * we know any future context switch of task must see the
2860          * perf_event_ctpx[] store.
2861          */
2862
2863         /*
2864          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2865          * task_cpu() load, such that if the IPI then does not find the task
2866          * running, a future context switch of that task must observe the
2867          * store.
2868          */
2869         smp_mb();
2870 again:
2871         if (!task_function_call(task, __perf_install_in_context, event))
2872                 return;
2873
2874         raw_spin_lock_irq(&ctx->lock);
2875         task = ctx->task;
2876         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2877                 /*
2878                  * Cannot happen because we already checked above (which also
2879                  * cannot happen), and we hold ctx->mutex, which serializes us
2880                  * against perf_event_exit_task_context().
2881                  */
2882                 raw_spin_unlock_irq(&ctx->lock);
2883                 return;
2884         }
2885         /*
2886          * If the task is not running, ctx->lock will avoid it becoming so,
2887          * thus we can safely install the event.
2888          */
2889         if (task_curr(task)) {
2890                 raw_spin_unlock_irq(&ctx->lock);
2891                 goto again;
2892         }
2893         add_event_to_ctx(event, ctx);
2894         raw_spin_unlock_irq(&ctx->lock);
2895 }
2896
2897 /*
2898  * Cross CPU call to enable a performance event
2899  */
2900 static void __perf_event_enable(struct perf_event *event,
2901                                 struct perf_cpu_context *cpuctx,
2902                                 struct perf_event_context *ctx,
2903                                 void *info)
2904 {
2905         struct perf_event *leader = event->group_leader;
2906         struct perf_event_context *task_ctx;
2907
2908         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2909             event->state <= PERF_EVENT_STATE_ERROR)
2910                 return;
2911
2912         if (ctx->is_active)
2913                 ctx_sched_out(ctx, EVENT_TIME);
2914
2915         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2916         perf_cgroup_event_enable(event, ctx);
2917
2918         if (!ctx->is_active)
2919                 return;
2920
2921         if (!event_filter_match(event)) {
2922                 ctx_sched_in(ctx, EVENT_TIME);
2923                 return;
2924         }
2925
2926         /*
2927          * If the event is in a group and isn't the group leader,
2928          * then don't put it on unless the group is on.
2929          */
2930         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2931                 ctx_sched_in(ctx, EVENT_TIME);
2932                 return;
2933         }
2934
2935         task_ctx = cpuctx->task_ctx;
2936         if (ctx->task)
2937                 WARN_ON_ONCE(task_ctx != ctx);
2938
2939         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2940 }
2941
2942 /*
2943  * Enable an event.
2944  *
2945  * If event->ctx is a cloned context, callers must make sure that
2946  * every task struct that event->ctx->task could possibly point to
2947  * remains valid.  This condition is satisfied when called through
2948  * perf_event_for_each_child or perf_event_for_each as described
2949  * for perf_event_disable.
2950  */
2951 static void _perf_event_enable(struct perf_event *event)
2952 {
2953         struct perf_event_context *ctx = event->ctx;
2954
2955         raw_spin_lock_irq(&ctx->lock);
2956         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2957             event->state <  PERF_EVENT_STATE_ERROR) {
2958 out:
2959                 raw_spin_unlock_irq(&ctx->lock);
2960                 return;
2961         }
2962
2963         /*
2964          * If the event is in error state, clear that first.
2965          *
2966          * That way, if we see the event in error state below, we know that it
2967          * has gone back into error state, as distinct from the task having
2968          * been scheduled away before the cross-call arrived.
2969          */
2970         if (event->state == PERF_EVENT_STATE_ERROR) {
2971                 /*
2972                  * Detached SIBLING events cannot leave ERROR state.
2973                  */
2974                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
2975                     event->group_leader == event)
2976                         goto out;
2977
2978                 event->state = PERF_EVENT_STATE_OFF;
2979         }
2980         raw_spin_unlock_irq(&ctx->lock);
2981
2982         event_function_call(event, __perf_event_enable, NULL);
2983 }
2984
2985 /*
2986  * See perf_event_disable();
2987  */
2988 void perf_event_enable(struct perf_event *event)
2989 {
2990         struct perf_event_context *ctx;
2991
2992         ctx = perf_event_ctx_lock(event);
2993         _perf_event_enable(event);
2994         perf_event_ctx_unlock(event, ctx);
2995 }
2996 EXPORT_SYMBOL_GPL(perf_event_enable);
2997
2998 struct stop_event_data {
2999         struct perf_event       *event;
3000         unsigned int            restart;
3001 };
3002
3003 static int __perf_event_stop(void *info)
3004 {
3005         struct stop_event_data *sd = info;
3006         struct perf_event *event = sd->event;
3007
3008         /* if it's already INACTIVE, do nothing */
3009         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3010                 return 0;
3011
3012         /* matches smp_wmb() in event_sched_in() */
3013         smp_rmb();
3014
3015         /*
3016          * There is a window with interrupts enabled before we get here,
3017          * so we need to check again lest we try to stop another CPU's event.
3018          */
3019         if (READ_ONCE(event->oncpu) != smp_processor_id())
3020                 return -EAGAIN;
3021
3022         event->pmu->stop(event, PERF_EF_UPDATE);
3023
3024         /*
3025          * May race with the actual stop (through perf_pmu_output_stop()),
3026          * but it is only used for events with AUX ring buffer, and such
3027          * events will refuse to restart because of rb::aux_mmap_count==0,
3028          * see comments in perf_aux_output_begin().
3029          *
3030          * Since this is happening on an event-local CPU, no trace is lost
3031          * while restarting.
3032          */
3033         if (sd->restart)
3034                 event->pmu->start(event, 0);
3035
3036         return 0;
3037 }
3038
3039 static int perf_event_stop(struct perf_event *event, int restart)
3040 {
3041         struct stop_event_data sd = {
3042                 .event          = event,
3043                 .restart        = restart,
3044         };
3045         int ret = 0;
3046
3047         do {
3048                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3049                         return 0;
3050
3051                 /* matches smp_wmb() in event_sched_in() */
3052                 smp_rmb();
3053
3054                 /*
3055                  * We only want to restart ACTIVE events, so if the event goes
3056                  * inactive here (event->oncpu==-1), there's nothing more to do;
3057                  * fall through with ret==-ENXIO.
3058                  */
3059                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3060                                         __perf_event_stop, &sd);
3061         } while (ret == -EAGAIN);
3062
3063         return ret;
3064 }
3065
3066 /*
3067  * In order to contain the amount of racy and tricky in the address filter
3068  * configuration management, it is a two part process:
3069  *
3070  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3071  *      we update the addresses of corresponding vmas in
3072  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3073  * (p2) when an event is scheduled in (pmu::add), it calls
3074  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3075  *      if the generation has changed since the previous call.
3076  *
3077  * If (p1) happens while the event is active, we restart it to force (p2).
3078  *
3079  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3080  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3081  *     ioctl;
3082  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3083  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3084  *     for reading;
3085  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3086  *     of exec.
3087  */
3088 void perf_event_addr_filters_sync(struct perf_event *event)
3089 {
3090         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3091
3092         if (!has_addr_filter(event))
3093                 return;
3094
3095         raw_spin_lock(&ifh->lock);
3096         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3097                 event->pmu->addr_filters_sync(event);
3098                 event->hw.addr_filters_gen = event->addr_filters_gen;
3099         }
3100         raw_spin_unlock(&ifh->lock);
3101 }
3102 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3103
3104 static int _perf_event_refresh(struct perf_event *event, int refresh)
3105 {
3106         /*
3107          * not supported on inherited events
3108          */
3109         if (event->attr.inherit || !is_sampling_event(event))
3110                 return -EINVAL;
3111
3112         atomic_add(refresh, &event->event_limit);
3113         _perf_event_enable(event);
3114
3115         return 0;
3116 }
3117
3118 /*
3119  * See perf_event_disable()
3120  */
3121 int perf_event_refresh(struct perf_event *event, int refresh)
3122 {
3123         struct perf_event_context *ctx;
3124         int ret;
3125
3126         ctx = perf_event_ctx_lock(event);
3127         ret = _perf_event_refresh(event, refresh);
3128         perf_event_ctx_unlock(event, ctx);
3129
3130         return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(perf_event_refresh);
3133
3134 static int perf_event_modify_breakpoint(struct perf_event *bp,
3135                                          struct perf_event_attr *attr)
3136 {
3137         int err;
3138
3139         _perf_event_disable(bp);
3140
3141         err = modify_user_hw_breakpoint_check(bp, attr, true);
3142
3143         if (!bp->attr.disabled)
3144                 _perf_event_enable(bp);
3145
3146         return err;
3147 }
3148
3149 /*
3150  * Copy event-type-independent attributes that may be modified.
3151  */
3152 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3153                                         const struct perf_event_attr *from)
3154 {
3155         to->sig_data = from->sig_data;
3156 }
3157
3158 static int perf_event_modify_attr(struct perf_event *event,
3159                                   struct perf_event_attr *attr)
3160 {
3161         int (*func)(struct perf_event *, struct perf_event_attr *);
3162         struct perf_event *child;
3163         int err;
3164
3165         if (event->attr.type != attr->type)
3166                 return -EINVAL;
3167
3168         switch (event->attr.type) {
3169         case PERF_TYPE_BREAKPOINT:
3170                 func = perf_event_modify_breakpoint;
3171                 break;
3172         default:
3173                 /* Place holder for future additions. */
3174                 return -EOPNOTSUPP;
3175         }
3176
3177         WARN_ON_ONCE(event->ctx->parent_ctx);
3178
3179         mutex_lock(&event->child_mutex);
3180         /*
3181          * Event-type-independent attributes must be copied before event-type
3182          * modification, which will validate that final attributes match the
3183          * source attributes after all relevant attributes have been copied.
3184          */
3185         perf_event_modify_copy_attr(&event->attr, attr);
3186         err = func(event, attr);
3187         if (err)
3188                 goto out;
3189         list_for_each_entry(child, &event->child_list, child_list) {
3190                 perf_event_modify_copy_attr(&child->attr, attr);
3191                 err = func(child, attr);
3192                 if (err)
3193                         goto out;
3194         }
3195 out:
3196         mutex_unlock(&event->child_mutex);
3197         return err;
3198 }
3199
3200 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3201                                 enum event_type_t event_type)
3202 {
3203         struct perf_event_context *ctx = pmu_ctx->ctx;
3204         struct perf_event *event, *tmp;
3205         struct pmu *pmu = pmu_ctx->pmu;
3206
3207         if (ctx->task && !ctx->is_active) {
3208                 struct perf_cpu_pmu_context *cpc;
3209
3210                 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3211                 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3212                 cpc->task_epc = NULL;
3213         }
3214
3215         if (!event_type)
3216                 return;
3217
3218         perf_pmu_disable(pmu);
3219         if (event_type & EVENT_PINNED) {
3220                 list_for_each_entry_safe(event, tmp,
3221                                          &pmu_ctx->pinned_active,
3222                                          active_list)
3223                         group_sched_out(event, ctx);
3224         }
3225
3226         if (event_type & EVENT_FLEXIBLE) {
3227                 list_for_each_entry_safe(event, tmp,
3228                                          &pmu_ctx->flexible_active,
3229                                          active_list)
3230                         group_sched_out(event, ctx);
3231                 /*
3232                  * Since we cleared EVENT_FLEXIBLE, also clear
3233                  * rotate_necessary, is will be reset by
3234                  * ctx_flexible_sched_in() when needed.
3235                  */
3236                 pmu_ctx->rotate_necessary = 0;
3237         }
3238         perf_pmu_enable(pmu);
3239 }
3240
3241 static void
3242 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3243 {
3244         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3245         struct perf_event_pmu_context *pmu_ctx;
3246         int is_active = ctx->is_active;
3247
3248         lockdep_assert_held(&ctx->lock);
3249
3250         if (likely(!ctx->nr_events)) {
3251                 /*
3252                  * See __perf_remove_from_context().
3253                  */
3254                 WARN_ON_ONCE(ctx->is_active);
3255                 if (ctx->task)
3256                         WARN_ON_ONCE(cpuctx->task_ctx);
3257                 return;
3258         }
3259
3260         /*
3261          * Always update time if it was set; not only when it changes.
3262          * Otherwise we can 'forget' to update time for any but the last
3263          * context we sched out. For example:
3264          *
3265          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266          *   ctx_sched_out(.event_type = EVENT_PINNED)
3267          *
3268          * would only update time for the pinned events.
3269          */
3270         if (is_active & EVENT_TIME) {
3271                 /* update (and stop) ctx time */
3272                 update_context_time(ctx);
3273                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3274                 /*
3275                  * CPU-release for the below ->is_active store,
3276                  * see __load_acquire() in perf_event_time_now()
3277                  */
3278                 barrier();
3279         }
3280
3281         ctx->is_active &= ~event_type;
3282         if (!(ctx->is_active & EVENT_ALL))
3283                 ctx->is_active = 0;
3284
3285         if (ctx->task) {
3286                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3287                 if (!ctx->is_active)
3288                         cpuctx->task_ctx = NULL;
3289         }
3290
3291         is_active ^= ctx->is_active; /* changed bits */
3292
3293         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
3294                 __pmu_ctx_sched_out(pmu_ctx, is_active);
3295 }
3296
3297 /*
3298  * Test whether two contexts are equivalent, i.e. whether they have both been
3299  * cloned from the same version of the same context.
3300  *
3301  * Equivalence is measured using a generation number in the context that is
3302  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3303  * and list_del_event().
3304  */
3305 static int context_equiv(struct perf_event_context *ctx1,
3306                          struct perf_event_context *ctx2)
3307 {
3308         lockdep_assert_held(&ctx1->lock);
3309         lockdep_assert_held(&ctx2->lock);
3310
3311         /* Pinning disables the swap optimization */
3312         if (ctx1->pin_count || ctx2->pin_count)
3313                 return 0;
3314
3315         /* If ctx1 is the parent of ctx2 */
3316         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3317                 return 1;
3318
3319         /* If ctx2 is the parent of ctx1 */
3320         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3321                 return 1;
3322
3323         /*
3324          * If ctx1 and ctx2 have the same parent; we flatten the parent
3325          * hierarchy, see perf_event_init_context().
3326          */
3327         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3328                         ctx1->parent_gen == ctx2->parent_gen)
3329                 return 1;
3330
3331         /* Unmatched */
3332         return 0;
3333 }
3334
3335 static void __perf_event_sync_stat(struct perf_event *event,
3336                                      struct perf_event *next_event)
3337 {
3338         u64 value;
3339
3340         if (!event->attr.inherit_stat)
3341                 return;
3342
3343         /*
3344          * Update the event value, we cannot use perf_event_read()
3345          * because we're in the middle of a context switch and have IRQs
3346          * disabled, which upsets smp_call_function_single(), however
3347          * we know the event must be on the current CPU, therefore we
3348          * don't need to use it.
3349          */
3350         if (event->state == PERF_EVENT_STATE_ACTIVE)
3351                 event->pmu->read(event);
3352
3353         perf_event_update_time(event);
3354
3355         /*
3356          * In order to keep per-task stats reliable we need to flip the event
3357          * values when we flip the contexts.
3358          */
3359         value = local64_read(&next_event->count);
3360         value = local64_xchg(&event->count, value);
3361         local64_set(&next_event->count, value);
3362
3363         swap(event->total_time_enabled, next_event->total_time_enabled);
3364         swap(event->total_time_running, next_event->total_time_running);
3365
3366         /*
3367          * Since we swizzled the values, update the user visible data too.
3368          */
3369         perf_event_update_userpage(event);
3370         perf_event_update_userpage(next_event);
3371 }
3372
3373 static void perf_event_sync_stat(struct perf_event_context *ctx,
3374                                    struct perf_event_context *next_ctx)
3375 {
3376         struct perf_event *event, *next_event;
3377
3378         if (!ctx->nr_stat)
3379                 return;
3380
3381         update_context_time(ctx);
3382
3383         event = list_first_entry(&ctx->event_list,
3384                                    struct perf_event, event_entry);
3385
3386         next_event = list_first_entry(&next_ctx->event_list,
3387                                         struct perf_event, event_entry);
3388
3389         while (&event->event_entry != &ctx->event_list &&
3390                &next_event->event_entry != &next_ctx->event_list) {
3391
3392                 __perf_event_sync_stat(event, next_event);
3393
3394                 event = list_next_entry(event, event_entry);
3395                 next_event = list_next_entry(next_event, event_entry);
3396         }
3397 }
3398
3399 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)    \
3400         for (pos1 = list_first_entry(head1, typeof(*pos1), member),     \
3401              pos2 = list_first_entry(head2, typeof(*pos2), member);     \
3402              !list_entry_is_head(pos1, head1, member) &&                \
3403              !list_entry_is_head(pos2, head2, member);                  \
3404              pos1 = list_next_entry(pos1, member),                      \
3405              pos2 = list_next_entry(pos2, member))
3406
3407 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3408                                           struct perf_event_context *next_ctx)
3409 {
3410         struct perf_event_pmu_context *prev_epc, *next_epc;
3411
3412         if (!prev_ctx->nr_task_data)
3413                 return;
3414
3415         double_list_for_each_entry(prev_epc, next_epc,
3416                                    &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3417                                    pmu_ctx_entry) {
3418
3419                 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3420                         continue;
3421
3422                 /*
3423                  * PMU specific parts of task perf context can require
3424                  * additional synchronization. As an example of such
3425                  * synchronization see implementation details of Intel
3426                  * LBR call stack data profiling;
3427                  */
3428                 if (prev_epc->pmu->swap_task_ctx)
3429                         prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3430                 else
3431                         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3432         }
3433 }
3434
3435 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3436 {
3437         struct perf_event_pmu_context *pmu_ctx;
3438         struct perf_cpu_pmu_context *cpc;
3439
3440         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3441                 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3442
3443                 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3444                         pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3445         }
3446 }
3447
3448 static void
3449 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3450 {
3451         struct perf_event_context *ctx = task->perf_event_ctxp;
3452         struct perf_event_context *next_ctx;
3453         struct perf_event_context *parent, *next_parent;
3454         int do_switch = 1;
3455
3456         if (likely(!ctx))
3457                 return;
3458
3459         rcu_read_lock();
3460         next_ctx = rcu_dereference(next->perf_event_ctxp);
3461         if (!next_ctx)
3462                 goto unlock;
3463
3464         parent = rcu_dereference(ctx->parent_ctx);
3465         next_parent = rcu_dereference(next_ctx->parent_ctx);
3466
3467         /* If neither context have a parent context; they cannot be clones. */
3468         if (!parent && !next_parent)
3469                 goto unlock;
3470
3471         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3472                 /*
3473                  * Looks like the two contexts are clones, so we might be
3474                  * able to optimize the context switch.  We lock both
3475                  * contexts and check that they are clones under the
3476                  * lock (including re-checking that neither has been
3477                  * uncloned in the meantime).  It doesn't matter which
3478                  * order we take the locks because no other cpu could
3479                  * be trying to lock both of these tasks.
3480                  */
3481                 raw_spin_lock(&ctx->lock);
3482                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3483                 if (context_equiv(ctx, next_ctx)) {
3484
3485                         perf_ctx_disable(ctx);
3486
3487                         /* PMIs are disabled; ctx->nr_pending is stable. */
3488                         if (local_read(&ctx->nr_pending) ||
3489                             local_read(&next_ctx->nr_pending)) {
3490                                 /*
3491                                  * Must not swap out ctx when there's pending
3492                                  * events that rely on the ctx->task relation.
3493                                  */
3494                                 raw_spin_unlock(&next_ctx->lock);
3495                                 rcu_read_unlock();
3496                                 goto inside_switch;
3497                         }
3498
3499                         WRITE_ONCE(ctx->task, next);
3500                         WRITE_ONCE(next_ctx->task, task);
3501
3502                         perf_ctx_sched_task_cb(ctx, false);
3503                         perf_event_swap_task_ctx_data(ctx, next_ctx);
3504
3505                         perf_ctx_enable(ctx);
3506
3507                         /*
3508                          * RCU_INIT_POINTER here is safe because we've not
3509                          * modified the ctx and the above modification of
3510                          * ctx->task and ctx->task_ctx_data are immaterial
3511                          * since those values are always verified under
3512                          * ctx->lock which we're now holding.
3513                          */
3514                         RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3515                         RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3516
3517                         do_switch = 0;
3518
3519                         perf_event_sync_stat(ctx, next_ctx);
3520                 }
3521                 raw_spin_unlock(&next_ctx->lock);
3522                 raw_spin_unlock(&ctx->lock);
3523         }
3524 unlock:
3525         rcu_read_unlock();
3526
3527         if (do_switch) {
3528                 raw_spin_lock(&ctx->lock);
3529                 perf_ctx_disable(ctx);
3530
3531 inside_switch:
3532                 perf_ctx_sched_task_cb(ctx, false);
3533                 task_ctx_sched_out(ctx, EVENT_ALL);
3534
3535                 perf_ctx_enable(ctx);
3536                 raw_spin_unlock(&ctx->lock);
3537         }
3538 }
3539
3540 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3541 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3542
3543 void perf_sched_cb_dec(struct pmu *pmu)
3544 {
3545         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3546
3547         this_cpu_dec(perf_sched_cb_usages);
3548         barrier();
3549
3550         if (!--cpc->sched_cb_usage)
3551                 list_del(&cpc->sched_cb_entry);
3552 }
3553
3554
3555 void perf_sched_cb_inc(struct pmu *pmu)
3556 {
3557         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3558
3559         if (!cpc->sched_cb_usage++)
3560                 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3561
3562         barrier();
3563         this_cpu_inc(perf_sched_cb_usages);
3564 }
3565
3566 /*
3567  * This function provides the context switch callback to the lower code
3568  * layer. It is invoked ONLY when the context switch callback is enabled.
3569  *
3570  * This callback is relevant even to per-cpu events; for example multi event
3571  * PEBS requires this to provide PID/TID information. This requires we flush
3572  * all queued PEBS records before we context switch to a new task.
3573  */
3574 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3575 {
3576         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3577         struct pmu *pmu;
3578
3579         pmu = cpc->epc.pmu;
3580
3581         /* software PMUs will not have sched_task */
3582         if (WARN_ON_ONCE(!pmu->sched_task))
3583                 return;
3584
3585         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3586         perf_pmu_disable(pmu);
3587
3588         pmu->sched_task(cpc->task_epc, sched_in);
3589
3590         perf_pmu_enable(pmu);
3591         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3592 }
3593
3594 static void perf_pmu_sched_task(struct task_struct *prev,
3595                                 struct task_struct *next,
3596                                 bool sched_in)
3597 {
3598         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3599         struct perf_cpu_pmu_context *cpc;
3600
3601         /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3602         if (prev == next || cpuctx->task_ctx)
3603                 return;
3604
3605         list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3606                 __perf_pmu_sched_task(cpc, sched_in);
3607 }
3608
3609 static void perf_event_switch(struct task_struct *task,
3610                               struct task_struct *next_prev, bool sched_in);
3611
3612 /*
3613  * Called from scheduler to remove the events of the current task,
3614  * with interrupts disabled.
3615  *
3616  * We stop each event and update the event value in event->count.
3617  *
3618  * This does not protect us against NMI, but disable()
3619  * sets the disabled bit in the control field of event _before_
3620  * accessing the event control register. If a NMI hits, then it will
3621  * not restart the event.
3622  */
3623 void __perf_event_task_sched_out(struct task_struct *task,
3624                                  struct task_struct *next)
3625 {
3626         if (__this_cpu_read(perf_sched_cb_usages))
3627                 perf_pmu_sched_task(task, next, false);
3628
3629         if (atomic_read(&nr_switch_events))
3630                 perf_event_switch(task, next, false);
3631
3632         perf_event_context_sched_out(task, next);
3633
3634         /*
3635          * if cgroup events exist on this CPU, then we need
3636          * to check if we have to switch out PMU state.
3637          * cgroup event are system-wide mode only
3638          */
3639         perf_cgroup_switch(next);
3640 }
3641
3642 static bool perf_less_group_idx(const void *l, const void *r)
3643 {
3644         const struct perf_event *le = *(const struct perf_event **)l;
3645         const struct perf_event *re = *(const struct perf_event **)r;
3646
3647         return le->group_index < re->group_index;
3648 }
3649
3650 static void swap_ptr(void *l, void *r)
3651 {
3652         void **lp = l, **rp = r;
3653
3654         swap(*lp, *rp);
3655 }
3656
3657 static const struct min_heap_callbacks perf_min_heap = {
3658         .elem_size = sizeof(struct perf_event *),
3659         .less = perf_less_group_idx,
3660         .swp = swap_ptr,
3661 };
3662
3663 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3664 {
3665         struct perf_event **itrs = heap->data;
3666
3667         if (event) {
3668                 itrs[heap->nr] = event;
3669                 heap->nr++;
3670         }
3671 }
3672
3673 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3674 {
3675         struct perf_cpu_pmu_context *cpc;
3676
3677         if (!pmu_ctx->ctx->task)
3678                 return;
3679
3680         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3681         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3682         cpc->task_epc = pmu_ctx;
3683 }
3684
3685 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3686                                 struct perf_event_groups *groups, int cpu,
3687                                 struct pmu *pmu,
3688                                 int (*func)(struct perf_event *, void *),
3689                                 void *data)
3690 {
3691 #ifdef CONFIG_CGROUP_PERF
3692         struct cgroup_subsys_state *css = NULL;
3693 #endif
3694         struct perf_cpu_context *cpuctx = NULL;
3695         /* Space for per CPU and/or any CPU event iterators. */
3696         struct perf_event *itrs[2];
3697         struct min_heap event_heap;
3698         struct perf_event **evt;
3699         int ret;
3700
3701         if (pmu->filter && pmu->filter(pmu, cpu))
3702                 return 0;
3703
3704         if (!ctx->task) {
3705                 cpuctx = this_cpu_ptr(&perf_cpu_context);
3706                 event_heap = (struct min_heap){
3707                         .data = cpuctx->heap,
3708                         .nr = 0,
3709                         .size = cpuctx->heap_size,
3710                 };
3711
3712                 lockdep_assert_held(&cpuctx->ctx.lock);
3713
3714 #ifdef CONFIG_CGROUP_PERF
3715                 if (cpuctx->cgrp)
3716                         css = &cpuctx->cgrp->css;
3717 #endif
3718         } else {
3719                 event_heap = (struct min_heap){
3720                         .data = itrs,
3721                         .nr = 0,
3722                         .size = ARRAY_SIZE(itrs),
3723                 };
3724                 /* Events not within a CPU context may be on any CPU. */
3725                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3726         }
3727         evt = event_heap.data;
3728
3729         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3730
3731 #ifdef CONFIG_CGROUP_PERF
3732         for (; css; css = css->parent)
3733                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3734 #endif
3735
3736         if (event_heap.nr) {
3737                 __link_epc((*evt)->pmu_ctx);
3738                 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3739         }
3740
3741         min_heapify_all(&event_heap, &perf_min_heap);
3742
3743         while (event_heap.nr) {
3744                 ret = func(*evt, data);
3745                 if (ret)
3746                         return ret;
3747
3748                 *evt = perf_event_groups_next(*evt, pmu);
3749                 if (*evt)
3750                         min_heapify(&event_heap, 0, &perf_min_heap);
3751                 else
3752                         min_heap_pop(&event_heap, &perf_min_heap);
3753         }
3754
3755         return 0;
3756 }
3757
3758 /*
3759  * Because the userpage is strictly per-event (there is no concept of context,
3760  * so there cannot be a context indirection), every userpage must be updated
3761  * when context time starts :-(
3762  *
3763  * IOW, we must not miss EVENT_TIME edges.
3764  */
3765 static inline bool event_update_userpage(struct perf_event *event)
3766 {
3767         if (likely(!atomic_read(&event->mmap_count)))
3768                 return false;
3769
3770         perf_event_update_time(event);
3771         perf_event_update_userpage(event);
3772
3773         return true;
3774 }
3775
3776 static inline void group_update_userpage(struct perf_event *group_event)
3777 {
3778         struct perf_event *event;
3779
3780         if (!event_update_userpage(group_event))
3781                 return;
3782
3783         for_each_sibling_event(event, group_event)
3784                 event_update_userpage(event);
3785 }
3786
3787 static int merge_sched_in(struct perf_event *event, void *data)
3788 {
3789         struct perf_event_context *ctx = event->ctx;
3790         int *can_add_hw = data;
3791
3792         if (event->state <= PERF_EVENT_STATE_OFF)
3793                 return 0;
3794
3795         if (!event_filter_match(event))
3796                 return 0;
3797
3798         if (group_can_go_on(event, *can_add_hw)) {
3799                 if (!group_sched_in(event, ctx))
3800                         list_add_tail(&event->active_list, get_event_list(event));
3801         }
3802
3803         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3804                 *can_add_hw = 0;
3805                 if (event->attr.pinned) {
3806                         perf_cgroup_event_disable(event, ctx);
3807                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3808                 } else {
3809                         struct perf_cpu_pmu_context *cpc;
3810
3811                         event->pmu_ctx->rotate_necessary = 1;
3812                         cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3813                         perf_mux_hrtimer_restart(cpc);
3814                         group_update_userpage(event);
3815                 }
3816         }
3817
3818         return 0;
3819 }
3820
3821 static void ctx_pinned_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
3822 {
3823         struct perf_event_pmu_context *pmu_ctx;
3824         int can_add_hw = 1;
3825
3826         if (pmu) {
3827                 visit_groups_merge(ctx, &ctx->pinned_groups,
3828                                    smp_processor_id(), pmu,
3829                                    merge_sched_in, &can_add_hw);
3830         } else {
3831                 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3832                         can_add_hw = 1;
3833                         visit_groups_merge(ctx, &ctx->pinned_groups,
3834                                            smp_processor_id(), pmu_ctx->pmu,
3835                                            merge_sched_in, &can_add_hw);
3836                 }
3837         }
3838 }
3839
3840 static void ctx_flexible_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
3841 {
3842         struct perf_event_pmu_context *pmu_ctx;
3843         int can_add_hw = 1;
3844
3845         if (pmu) {
3846                 visit_groups_merge(ctx, &ctx->flexible_groups,
3847                                    smp_processor_id(), pmu,
3848                                    merge_sched_in, &can_add_hw);
3849         } else {
3850                 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3851                         can_add_hw = 1;
3852                         visit_groups_merge(ctx, &ctx->flexible_groups,
3853                                            smp_processor_id(), pmu_ctx->pmu,
3854                                            merge_sched_in, &can_add_hw);
3855                 }
3856         }
3857 }
3858
3859 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
3860 {
3861         ctx_flexible_sched_in(ctx, pmu);
3862 }
3863
3864 static void
3865 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3866 {
3867         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3868         int is_active = ctx->is_active;
3869
3870         lockdep_assert_held(&ctx->lock);
3871
3872         if (likely(!ctx->nr_events))
3873                 return;
3874
3875         if (!(is_active & EVENT_TIME)) {
3876                 /* start ctx time */
3877                 __update_context_time(ctx, false);
3878                 perf_cgroup_set_timestamp(cpuctx);
3879                 /*
3880                  * CPU-release for the below ->is_active store,
3881                  * see __load_acquire() in perf_event_time_now()
3882                  */
3883                 barrier();
3884         }
3885
3886         ctx->is_active |= (event_type | EVENT_TIME);
3887         if (ctx->task) {
3888                 if (!is_active)
3889                         cpuctx->task_ctx = ctx;
3890                 else
3891                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3892         }
3893
3894         is_active ^= ctx->is_active; /* changed bits */
3895
3896         /*
3897          * First go through the list and put on any pinned groups
3898          * in order to give them the best chance of going on.
3899          */
3900         if (is_active & EVENT_PINNED)
3901                 ctx_pinned_sched_in(ctx, NULL);
3902
3903         /* Then walk through the lower prio flexible groups */
3904         if (is_active & EVENT_FLEXIBLE)
3905                 ctx_flexible_sched_in(ctx, NULL);
3906 }
3907
3908 static void perf_event_context_sched_in(struct task_struct *task)
3909 {
3910         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3911         struct perf_event_context *ctx;
3912
3913         rcu_read_lock();
3914         ctx = rcu_dereference(task->perf_event_ctxp);
3915         if (!ctx)
3916                 goto rcu_unlock;
3917
3918         if (cpuctx->task_ctx == ctx) {
3919                 perf_ctx_lock(cpuctx, ctx);
3920                 perf_ctx_disable(ctx);
3921
3922                 perf_ctx_sched_task_cb(ctx, true);
3923
3924                 perf_ctx_enable(ctx);
3925                 perf_ctx_unlock(cpuctx, ctx);
3926                 goto rcu_unlock;
3927         }
3928
3929         perf_ctx_lock(cpuctx, ctx);
3930         /*
3931          * We must check ctx->nr_events while holding ctx->lock, such
3932          * that we serialize against perf_install_in_context().
3933          */
3934         if (!ctx->nr_events)
3935                 goto unlock;
3936
3937         perf_ctx_disable(ctx);
3938         /*
3939          * We want to keep the following priority order:
3940          * cpu pinned (that don't need to move), task pinned,
3941          * cpu flexible, task flexible.
3942          *
3943          * However, if task's ctx is not carrying any pinned
3944          * events, no need to flip the cpuctx's events around.
3945          */
3946         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3947                 perf_ctx_disable(&cpuctx->ctx);
3948                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3949         }
3950
3951         perf_event_sched_in(cpuctx, ctx);
3952
3953         perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3954
3955         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3956                 perf_ctx_enable(&cpuctx->ctx);
3957
3958         perf_ctx_enable(ctx);
3959
3960 unlock:
3961         perf_ctx_unlock(cpuctx, ctx);
3962 rcu_unlock:
3963         rcu_read_unlock();
3964 }
3965
3966 /*
3967  * Called from scheduler to add the events of the current task
3968  * with interrupts disabled.
3969  *
3970  * We restore the event value and then enable it.
3971  *
3972  * This does not protect us against NMI, but enable()
3973  * sets the enabled bit in the control field of event _before_
3974  * accessing the event control register. If a NMI hits, then it will
3975  * keep the event running.
3976  */
3977 void __perf_event_task_sched_in(struct task_struct *prev,
3978                                 struct task_struct *task)
3979 {
3980         perf_event_context_sched_in(task);
3981
3982         if (atomic_read(&nr_switch_events))
3983                 perf_event_switch(task, prev, true);
3984
3985         if (__this_cpu_read(perf_sched_cb_usages))
3986                 perf_pmu_sched_task(prev, task, true);
3987 }
3988
3989 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3990 {
3991         u64 frequency = event->attr.sample_freq;
3992         u64 sec = NSEC_PER_SEC;
3993         u64 divisor, dividend;
3994
3995         int count_fls, nsec_fls, frequency_fls, sec_fls;
3996
3997         count_fls = fls64(count);
3998         nsec_fls = fls64(nsec);
3999         frequency_fls = fls64(frequency);
4000         sec_fls = 30;
4001
4002         /*
4003          * We got @count in @nsec, with a target of sample_freq HZ
4004          * the target period becomes:
4005          *
4006          *             @count * 10^9
4007          * period = -------------------
4008          *          @nsec * sample_freq
4009          *
4010          */
4011
4012         /*
4013          * Reduce accuracy by one bit such that @a and @b converge
4014          * to a similar magnitude.
4015          */
4016 #define REDUCE_FLS(a, b)                \
4017 do {                                    \
4018         if (a##_fls > b##_fls) {        \
4019                 a >>= 1;                \
4020                 a##_fls--;              \
4021         } else {                        \
4022                 b >>= 1;                \
4023                 b##_fls--;              \
4024         }                               \
4025 } while (0)
4026
4027         /*
4028          * Reduce accuracy until either term fits in a u64, then proceed with
4029          * the other, so that finally we can do a u64/u64 division.
4030          */
4031         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4032                 REDUCE_FLS(nsec, frequency);
4033                 REDUCE_FLS(sec, count);
4034         }
4035
4036         if (count_fls + sec_fls > 64) {
4037                 divisor = nsec * frequency;
4038
4039                 while (count_fls + sec_fls > 64) {
4040                         REDUCE_FLS(count, sec);
4041                         divisor >>= 1;
4042                 }
4043
4044                 dividend = count * sec;
4045         } else {
4046                 dividend = count * sec;
4047
4048                 while (nsec_fls + frequency_fls > 64) {
4049                         REDUCE_FLS(nsec, frequency);
4050                         dividend >>= 1;
4051                 }
4052
4053                 divisor = nsec * frequency;
4054         }
4055
4056         if (!divisor)
4057                 return dividend;
4058
4059         return div64_u64(dividend, divisor);
4060 }
4061
4062 static DEFINE_PER_CPU(int, perf_throttled_count);
4063 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4064
4065 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4066 {
4067         struct hw_perf_event *hwc = &event->hw;
4068         s64 period, sample_period;
4069         s64 delta;
4070
4071         period = perf_calculate_period(event, nsec, count);
4072
4073         delta = (s64)(period - hwc->sample_period);
4074         delta = (delta + 7) / 8; /* low pass filter */
4075
4076         sample_period = hwc->sample_period + delta;
4077
4078         if (!sample_period)
4079                 sample_period = 1;
4080
4081         hwc->sample_period = sample_period;
4082
4083         if (local64_read(&hwc->period_left) > 8*sample_period) {
4084                 if (disable)
4085                         event->pmu->stop(event, PERF_EF_UPDATE);
4086
4087                 local64_set(&hwc->period_left, 0);
4088
4089                 if (disable)
4090                         event->pmu->start(event, PERF_EF_RELOAD);
4091         }
4092 }
4093
4094 /*
4095  * combine freq adjustment with unthrottling to avoid two passes over the
4096  * events. At the same time, make sure, having freq events does not change
4097  * the rate of unthrottling as that would introduce bias.
4098  */
4099 static void
4100 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4101 {
4102         struct perf_event *event;
4103         struct hw_perf_event *hwc;
4104         u64 now, period = TICK_NSEC;
4105         s64 delta;
4106
4107         /*
4108          * only need to iterate over all events iff:
4109          * - context have events in frequency mode (needs freq adjust)
4110          * - there are events to unthrottle on this cpu
4111          */
4112         if (!(ctx->nr_freq || unthrottle))
4113                 return;
4114
4115         raw_spin_lock(&ctx->lock);
4116
4117         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4118                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4119                         continue;
4120
4121                 // XXX use visit thingy to avoid the -1,cpu match
4122                 if (!event_filter_match(event))
4123                         continue;
4124
4125                 perf_pmu_disable(event->pmu);
4126
4127                 hwc = &event->hw;
4128
4129                 if (hwc->interrupts == MAX_INTERRUPTS) {
4130                         hwc->interrupts = 0;
4131                         perf_log_throttle(event, 1);
4132                         event->pmu->start(event, 0);
4133                 }
4134
4135                 if (!event->attr.freq || !event->attr.sample_freq)
4136                         goto next;
4137
4138                 /*
4139                  * stop the event and update event->count
4140                  */
4141                 event->pmu->stop(event, PERF_EF_UPDATE);
4142
4143                 now = local64_read(&event->count);
4144                 delta = now - hwc->freq_count_stamp;
4145                 hwc->freq_count_stamp = now;
4146
4147                 /*
4148                  * restart the event
4149                  * reload only if value has changed
4150                  * we have stopped the event so tell that
4151                  * to perf_adjust_period() to avoid stopping it
4152                  * twice.
4153                  */
4154                 if (delta > 0)
4155                         perf_adjust_period(event, period, delta, false);
4156
4157                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4158         next:
4159                 perf_pmu_enable(event->pmu);
4160         }
4161
4162         raw_spin_unlock(&ctx->lock);
4163 }
4164
4165 /*
4166  * Move @event to the tail of the @ctx's elegible events.
4167  */
4168 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4169 {
4170         /*
4171          * Rotate the first entry last of non-pinned groups. Rotation might be
4172          * disabled by the inheritance code.
4173          */
4174         if (ctx->rotate_disable)
4175                 return;
4176
4177         perf_event_groups_delete(&ctx->flexible_groups, event);
4178         perf_event_groups_insert(&ctx->flexible_groups, event);
4179 }
4180
4181 /* pick an event from the flexible_groups to rotate */
4182 static inline struct perf_event *
4183 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4184 {
4185         struct perf_event *event;
4186         struct rb_node *node;
4187         struct rb_root *tree;
4188         struct __group_key key = {
4189                 .pmu = pmu_ctx->pmu,
4190         };
4191
4192         /* pick the first active flexible event */
4193         event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4194                                          struct perf_event, active_list);
4195         if (event)
4196                 goto out;
4197
4198         /* if no active flexible event, pick the first event */
4199         tree = &pmu_ctx->ctx->flexible_groups.tree;
4200
4201         if (!pmu_ctx->ctx->task) {
4202                 key.cpu = smp_processor_id();
4203
4204                 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4205                 if (node)
4206                         event = __node_2_pe(node);
4207                 goto out;
4208         }
4209
4210         key.cpu = -1;
4211         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4212         if (node) {
4213                 event = __node_2_pe(node);
4214                 goto out;
4215         }
4216
4217         key.cpu = smp_processor_id();
4218         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4219         if (node)
4220                 event = __node_2_pe(node);
4221
4222 out:
4223         /*
4224          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4225          * finds there are unschedulable events, it will set it again.
4226          */
4227         pmu_ctx->rotate_necessary = 0;
4228
4229         return event;
4230 }
4231
4232 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4233 {
4234         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4235         struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4236         struct perf_event *cpu_event = NULL, *task_event = NULL;
4237         int cpu_rotate, task_rotate;
4238         struct pmu *pmu;
4239
4240         /*
4241          * Since we run this from IRQ context, nobody can install new
4242          * events, thus the event count values are stable.
4243          */
4244
4245         cpu_epc = &cpc->epc;
4246         pmu = cpu_epc->pmu;
4247         task_epc = cpc->task_epc;
4248
4249         cpu_rotate = cpu_epc->rotate_necessary;
4250         task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4251
4252         if (!(cpu_rotate || task_rotate))
4253                 return false;
4254
4255         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4256         perf_pmu_disable(pmu);
4257
4258         if (task_rotate)
4259                 task_event = ctx_event_to_rotate(task_epc);
4260         if (cpu_rotate)
4261                 cpu_event = ctx_event_to_rotate(cpu_epc);
4262
4263         /*
4264          * As per the order given at ctx_resched() first 'pop' task flexible
4265          * and then, if needed CPU flexible.
4266          */
4267         if (task_event || (task_epc && cpu_event)) {
4268                 update_context_time(task_epc->ctx);
4269                 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4270         }
4271
4272         if (cpu_event) {
4273                 update_context_time(&cpuctx->ctx);
4274                 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4275                 rotate_ctx(&cpuctx->ctx, cpu_event);
4276                 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4277         }
4278
4279         if (task_event)
4280                 rotate_ctx(task_epc->ctx, task_event);
4281
4282         if (task_event || (task_epc && cpu_event))
4283                 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4284
4285         perf_pmu_enable(pmu);
4286         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4287
4288         return true;
4289 }
4290
4291 void perf_event_task_tick(void)
4292 {
4293         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4294         struct perf_event_context *ctx;
4295         int throttled;
4296
4297         lockdep_assert_irqs_disabled();
4298
4299         __this_cpu_inc(perf_throttled_seq);
4300         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4301         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4302
4303         perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4304
4305         rcu_read_lock();
4306         ctx = rcu_dereference(current->perf_event_ctxp);
4307         if (ctx)
4308                 perf_adjust_freq_unthr_context(ctx, !!throttled);
4309         rcu_read_unlock();
4310 }
4311
4312 static int event_enable_on_exec(struct perf_event *event,
4313                                 struct perf_event_context *ctx)
4314 {
4315         if (!event->attr.enable_on_exec)
4316                 return 0;
4317
4318         event->attr.enable_on_exec = 0;
4319         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4320                 return 0;
4321
4322         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4323
4324         return 1;
4325 }
4326
4327 /*
4328  * Enable all of a task's events that have been marked enable-on-exec.
4329  * This expects task == current.
4330  */
4331 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4332 {
4333         struct perf_event_context *clone_ctx = NULL;
4334         enum event_type_t event_type = 0;
4335         struct perf_cpu_context *cpuctx;
4336         struct perf_event *event;
4337         unsigned long flags;
4338         int enabled = 0;
4339
4340         local_irq_save(flags);
4341         if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4342                 goto out;
4343
4344         if (!ctx->nr_events)
4345                 goto out;
4346
4347         cpuctx = this_cpu_ptr(&perf_cpu_context);
4348         perf_ctx_lock(cpuctx, ctx);
4349         ctx_sched_out(ctx, EVENT_TIME);
4350
4351         list_for_each_entry(event, &ctx->event_list, event_entry) {
4352                 enabled |= event_enable_on_exec(event, ctx);
4353                 event_type |= get_event_type(event);
4354         }
4355
4356         /*
4357          * Unclone and reschedule this context if we enabled any event.
4358          */
4359         if (enabled) {
4360                 clone_ctx = unclone_ctx(ctx);
4361                 ctx_resched(cpuctx, ctx, event_type);
4362         } else {
4363                 ctx_sched_in(ctx, EVENT_TIME);
4364         }
4365         perf_ctx_unlock(cpuctx, ctx);
4366
4367 out:
4368         local_irq_restore(flags);
4369
4370         if (clone_ctx)
4371                 put_ctx(clone_ctx);
4372 }
4373
4374 static void perf_remove_from_owner(struct perf_event *event);
4375 static void perf_event_exit_event(struct perf_event *event,
4376                                   struct perf_event_context *ctx);
4377
4378 /*
4379  * Removes all events from the current task that have been marked
4380  * remove-on-exec, and feeds their values back to parent events.
4381  */
4382 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4383 {
4384         struct perf_event_context *clone_ctx = NULL;
4385         struct perf_event *event, *next;
4386         unsigned long flags;
4387         bool modified = false;
4388
4389         mutex_lock(&ctx->mutex);
4390
4391         if (WARN_ON_ONCE(ctx->task != current))
4392                 goto unlock;
4393
4394         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4395                 if (!event->attr.remove_on_exec)
4396                         continue;
4397
4398                 if (!is_kernel_event(event))
4399                         perf_remove_from_owner(event);
4400
4401                 modified = true;
4402
4403                 perf_event_exit_event(event, ctx);
4404         }
4405
4406         raw_spin_lock_irqsave(&ctx->lock, flags);
4407         if (modified)
4408                 clone_ctx = unclone_ctx(ctx);
4409         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4410
4411 unlock:
4412         mutex_unlock(&ctx->mutex);
4413
4414         if (clone_ctx)
4415                 put_ctx(clone_ctx);
4416 }
4417
4418 struct perf_read_data {
4419         struct perf_event *event;
4420         bool group;
4421         int ret;
4422 };
4423
4424 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4425 {
4426         u16 local_pkg, event_pkg;
4427
4428         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4429                 int local_cpu = smp_processor_id();
4430
4431                 event_pkg = topology_physical_package_id(event_cpu);
4432                 local_pkg = topology_physical_package_id(local_cpu);
4433
4434                 if (event_pkg == local_pkg)
4435                         return local_cpu;
4436         }
4437
4438         return event_cpu;
4439 }
4440
4441 /*
4442  * Cross CPU call to read the hardware event
4443  */
4444 static void __perf_event_read(void *info)
4445 {
4446         struct perf_read_data *data = info;
4447         struct perf_event *sub, *event = data->event;
4448         struct perf_event_context *ctx = event->ctx;
4449         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4450         struct pmu *pmu = event->pmu;
4451
4452         /*
4453          * If this is a task context, we need to check whether it is
4454          * the current task context of this cpu.  If not it has been
4455          * scheduled out before the smp call arrived.  In that case
4456          * event->count would have been updated to a recent sample
4457          * when the event was scheduled out.
4458          */
4459         if (ctx->task && cpuctx->task_ctx != ctx)
4460                 return;
4461
4462         raw_spin_lock(&ctx->lock);
4463         if (ctx->is_active & EVENT_TIME) {
4464                 update_context_time(ctx);
4465                 update_cgrp_time_from_event(event);
4466         }
4467
4468         perf_event_update_time(event);
4469         if (data->group)
4470                 perf_event_update_sibling_time(event);
4471
4472         if (event->state != PERF_EVENT_STATE_ACTIVE)
4473                 goto unlock;
4474
4475         if (!data->group) {
4476                 pmu->read(event);
4477                 data->ret = 0;
4478                 goto unlock;
4479         }
4480
4481         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4482
4483         pmu->read(event);
4484
4485         for_each_sibling_event(sub, event) {
4486                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4487                         /*
4488                          * Use sibling's PMU rather than @event's since
4489                          * sibling could be on different (eg: software) PMU.
4490                          */
4491                         sub->pmu->read(sub);
4492                 }
4493         }
4494
4495         data->ret = pmu->commit_txn(pmu);
4496
4497 unlock:
4498         raw_spin_unlock(&ctx->lock);
4499 }
4500
4501 static inline u64 perf_event_count(struct perf_event *event)
4502 {
4503         return local64_read(&event->count) + atomic64_read(&event->child_count);
4504 }
4505
4506 static void calc_timer_values(struct perf_event *event,
4507                                 u64 *now,
4508                                 u64 *enabled,
4509                                 u64 *running)
4510 {
4511         u64 ctx_time;
4512
4513         *now = perf_clock();
4514         ctx_time = perf_event_time_now(event, *now);
4515         __perf_update_times(event, ctx_time, enabled, running);
4516 }
4517
4518 /*
4519  * NMI-safe method to read a local event, that is an event that
4520  * is:
4521  *   - either for the current task, or for this CPU
4522  *   - does not have inherit set, for inherited task events
4523  *     will not be local and we cannot read them atomically
4524  *   - must not have a pmu::count method
4525  */
4526 int perf_event_read_local(struct perf_event *event, u64 *value,
4527                           u64 *enabled, u64 *running)
4528 {
4529         unsigned long flags;
4530         int ret = 0;
4531
4532         /*
4533          * Disabling interrupts avoids all counter scheduling (context
4534          * switches, timer based rotation and IPIs).
4535          */
4536         local_irq_save(flags);
4537
4538         /*
4539          * It must not be an event with inherit set, we cannot read
4540          * all child counters from atomic context.
4541          */
4542         if (event->attr.inherit) {
4543                 ret = -EOPNOTSUPP;
4544                 goto out;
4545         }
4546
4547         /* If this is a per-task event, it must be for current */
4548         if ((event->attach_state & PERF_ATTACH_TASK) &&
4549             event->hw.target != current) {
4550                 ret = -EINVAL;
4551                 goto out;
4552         }
4553
4554         /* If this is a per-CPU event, it must be for this CPU */
4555         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4556             event->cpu != smp_processor_id()) {
4557                 ret = -EINVAL;
4558                 goto out;
4559         }
4560
4561         /* If this is a pinned event it must be running on this CPU */
4562         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4563                 ret = -EBUSY;
4564                 goto out;
4565         }
4566
4567         /*
4568          * If the event is currently on this CPU, its either a per-task event,
4569          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4570          * oncpu == -1).
4571          */
4572         if (event->oncpu == smp_processor_id())
4573                 event->pmu->read(event);
4574
4575         *value = local64_read(&event->count);
4576         if (enabled || running) {
4577                 u64 __enabled, __running, __now;
4578
4579                 calc_timer_values(event, &__now, &__enabled, &__running);
4580                 if (enabled)
4581                         *enabled = __enabled;
4582                 if (running)
4583                         *running = __running;
4584         }
4585 out:
4586         local_irq_restore(flags);
4587
4588         return ret;
4589 }
4590
4591 static int perf_event_read(struct perf_event *event, bool group)
4592 {
4593         enum perf_event_state state = READ_ONCE(event->state);
4594         int event_cpu, ret = 0;
4595
4596         /*
4597          * If event is enabled and currently active on a CPU, update the
4598          * value in the event structure:
4599          */
4600 again:
4601         if (state == PERF_EVENT_STATE_ACTIVE) {
4602                 struct perf_read_data data;
4603
4604                 /*
4605                  * Orders the ->state and ->oncpu loads such that if we see
4606                  * ACTIVE we must also see the right ->oncpu.
4607                  *
4608                  * Matches the smp_wmb() from event_sched_in().
4609                  */
4610                 smp_rmb();
4611
4612                 event_cpu = READ_ONCE(event->oncpu);
4613                 if ((unsigned)event_cpu >= nr_cpu_ids)
4614                         return 0;
4615
4616                 data = (struct perf_read_data){
4617                         .event = event,
4618                         .group = group,
4619                         .ret = 0,
4620                 };
4621
4622                 preempt_disable();
4623                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4624
4625                 /*
4626                  * Purposely ignore the smp_call_function_single() return
4627                  * value.
4628                  *
4629                  * If event_cpu isn't a valid CPU it means the event got
4630                  * scheduled out and that will have updated the event count.
4631                  *
4632                  * Therefore, either way, we'll have an up-to-date event count
4633                  * after this.
4634                  */
4635                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4636                 preempt_enable();
4637                 ret = data.ret;
4638
4639         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4640                 struct perf_event_context *ctx = event->ctx;
4641                 unsigned long flags;
4642
4643                 raw_spin_lock_irqsave(&ctx->lock, flags);
4644                 state = event->state;
4645                 if (state != PERF_EVENT_STATE_INACTIVE) {
4646                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4647                         goto again;
4648                 }
4649
4650                 /*
4651                  * May read while context is not active (e.g., thread is
4652                  * blocked), in that case we cannot update context time
4653                  */
4654                 if (ctx->is_active & EVENT_TIME) {
4655                         update_context_time(ctx);
4656                         update_cgrp_time_from_event(event);
4657                 }
4658
4659                 perf_event_update_time(event);
4660                 if (group)
4661                         perf_event_update_sibling_time(event);
4662                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4663         }
4664
4665         return ret;
4666 }
4667
4668 /*
4669  * Initialize the perf_event context in a task_struct:
4670  */
4671 static void __perf_event_init_context(struct perf_event_context *ctx)
4672 {
4673         raw_spin_lock_init(&ctx->lock);
4674         mutex_init(&ctx->mutex);
4675         INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4676         perf_event_groups_init(&ctx->pinned_groups);
4677         perf_event_groups_init(&ctx->flexible_groups);
4678         INIT_LIST_HEAD(&ctx->event_list);
4679         refcount_set(&ctx->refcount, 1);
4680 }
4681
4682 static void
4683 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4684 {
4685         epc->pmu = pmu;
4686         INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4687         INIT_LIST_HEAD(&epc->pinned_active);
4688         INIT_LIST_HEAD(&epc->flexible_active);
4689         atomic_set(&epc->refcount, 1);
4690 }
4691
4692 static struct perf_event_context *
4693 alloc_perf_context(struct task_struct *task)
4694 {
4695         struct perf_event_context *ctx;
4696
4697         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4698         if (!ctx)
4699                 return NULL;
4700
4701         __perf_event_init_context(ctx);
4702         if (task)
4703                 ctx->task = get_task_struct(task);
4704
4705         return ctx;
4706 }
4707
4708 static struct task_struct *
4709 find_lively_task_by_vpid(pid_t vpid)
4710 {
4711         struct task_struct *task;
4712
4713         rcu_read_lock();
4714         if (!vpid)
4715                 task = current;
4716         else
4717                 task = find_task_by_vpid(vpid);
4718         if (task)
4719                 get_task_struct(task);
4720         rcu_read_unlock();
4721
4722         if (!task)
4723                 return ERR_PTR(-ESRCH);
4724
4725         return task;
4726 }
4727
4728 /*
4729  * Returns a matching context with refcount and pincount.
4730  */
4731 static struct perf_event_context *
4732 find_get_context(struct task_struct *task, struct perf_event *event)
4733 {
4734         struct perf_event_context *ctx, *clone_ctx = NULL;
4735         struct perf_cpu_context *cpuctx;
4736         unsigned long flags;
4737         int err;
4738
4739         if (!task) {
4740                 /* Must be root to operate on a CPU event: */
4741                 err = perf_allow_cpu(&event->attr);
4742                 if (err)
4743                         return ERR_PTR(err);
4744
4745                 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4746                 ctx = &cpuctx->ctx;
4747                 get_ctx(ctx);
4748                 raw_spin_lock_irqsave(&ctx->lock, flags);
4749                 ++ctx->pin_count;
4750                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4751
4752                 return ctx;
4753         }
4754
4755         err = -EINVAL;
4756 retry:
4757         ctx = perf_lock_task_context(task, &flags);
4758         if (ctx) {
4759                 clone_ctx = unclone_ctx(ctx);
4760                 ++ctx->pin_count;
4761
4762                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4763
4764                 if (clone_ctx)
4765                         put_ctx(clone_ctx);
4766         } else {
4767                 ctx = alloc_perf_context(task);
4768                 err = -ENOMEM;
4769                 if (!ctx)
4770                         goto errout;
4771
4772                 err = 0;
4773                 mutex_lock(&task->perf_event_mutex);
4774                 /*
4775                  * If it has already passed perf_event_exit_task().
4776                  * we must see PF_EXITING, it takes this mutex too.
4777                  */
4778                 if (task->flags & PF_EXITING)
4779                         err = -ESRCH;
4780                 else if (task->perf_event_ctxp)
4781                         err = -EAGAIN;
4782                 else {
4783                         get_ctx(ctx);
4784                         ++ctx->pin_count;
4785                         rcu_assign_pointer(task->perf_event_ctxp, ctx);
4786                 }
4787                 mutex_unlock(&task->perf_event_mutex);
4788
4789                 if (unlikely(err)) {
4790                         put_ctx(ctx);
4791
4792                         if (err == -EAGAIN)
4793                                 goto retry;
4794                         goto errout;
4795                 }
4796         }
4797
4798         return ctx;
4799
4800 errout:
4801         return ERR_PTR(err);
4802 }
4803
4804 static struct perf_event_pmu_context *
4805 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4806                      struct perf_event *event)
4807 {
4808         struct perf_event_pmu_context *new = NULL, *epc;
4809         void *task_ctx_data = NULL;
4810
4811         if (!ctx->task) {
4812                 struct perf_cpu_pmu_context *cpc;
4813
4814                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4815                 epc = &cpc->epc;
4816                 raw_spin_lock_irq(&ctx->lock);
4817                 if (!epc->ctx) {
4818                         atomic_set(&epc->refcount, 1);
4819                         epc->embedded = 1;
4820                         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4821                         epc->ctx = ctx;
4822                 } else {
4823                         WARN_ON_ONCE(epc->ctx != ctx);
4824                         atomic_inc(&epc->refcount);
4825                 }
4826                 raw_spin_unlock_irq(&ctx->lock);
4827                 return epc;
4828         }
4829
4830         new = kzalloc(sizeof(*epc), GFP_KERNEL);
4831         if (!new)
4832                 return ERR_PTR(-ENOMEM);
4833
4834         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4835                 task_ctx_data = alloc_task_ctx_data(pmu);
4836                 if (!task_ctx_data) {
4837                         kfree(new);
4838                         return ERR_PTR(-ENOMEM);
4839                 }
4840         }
4841
4842         __perf_init_event_pmu_context(new, pmu);
4843
4844         /*
4845          * XXX
4846          *
4847          * lockdep_assert_held(&ctx->mutex);
4848          *
4849          * can't because perf_event_init_task() doesn't actually hold the
4850          * child_ctx->mutex.
4851          */
4852
4853         raw_spin_lock_irq(&ctx->lock);
4854         list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4855                 if (epc->pmu == pmu) {
4856                         WARN_ON_ONCE(epc->ctx != ctx);
4857                         atomic_inc(&epc->refcount);
4858                         goto found_epc;
4859                 }
4860         }
4861
4862         epc = new;
4863         new = NULL;
4864
4865         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4866         epc->ctx = ctx;
4867
4868 found_epc:
4869         if (task_ctx_data && !epc->task_ctx_data) {
4870                 epc->task_ctx_data = task_ctx_data;
4871                 task_ctx_data = NULL;
4872                 ctx->nr_task_data++;
4873         }
4874         raw_spin_unlock_irq(&ctx->lock);
4875
4876         free_task_ctx_data(pmu, task_ctx_data);
4877         kfree(new);
4878
4879         return epc;
4880 }
4881
4882 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4883 {
4884         WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4885 }
4886
4887 static void free_epc_rcu(struct rcu_head *head)
4888 {
4889         struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4890
4891         kfree(epc->task_ctx_data);
4892         kfree(epc);
4893 }
4894
4895 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4896 {
4897         struct perf_event_context *ctx = epc->ctx;
4898         unsigned long flags;
4899
4900         /*
4901          * XXX
4902          *
4903          * lockdep_assert_held(&ctx->mutex);
4904          *
4905          * can't because of the call-site in _free_event()/put_event()
4906          * which isn't always called under ctx->mutex.
4907          */
4908         if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4909                 return;
4910
4911         WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4912
4913         list_del_init(&epc->pmu_ctx_entry);
4914         epc->ctx = NULL;
4915
4916         WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4917         WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4918
4919         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4920
4921         if (epc->embedded)
4922                 return;
4923
4924         call_rcu(&epc->rcu_head, free_epc_rcu);
4925 }
4926
4927 static void perf_event_free_filter(struct perf_event *event);
4928
4929 static void free_event_rcu(struct rcu_head *head)
4930 {
4931         struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4932
4933         if (event->ns)
4934                 put_pid_ns(event->ns);
4935         perf_event_free_filter(event);
4936         kmem_cache_free(perf_event_cache, event);
4937 }
4938
4939 static void ring_buffer_attach(struct perf_event *event,
4940                                struct perf_buffer *rb);
4941
4942 static void detach_sb_event(struct perf_event *event)
4943 {
4944         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4945
4946         raw_spin_lock(&pel->lock);
4947         list_del_rcu(&event->sb_list);
4948         raw_spin_unlock(&pel->lock);
4949 }
4950
4951 static bool is_sb_event(struct perf_event *event)
4952 {
4953         struct perf_event_attr *attr = &event->attr;
4954
4955         if (event->parent)
4956                 return false;
4957
4958         if (event->attach_state & PERF_ATTACH_TASK)
4959                 return false;
4960
4961         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4962             attr->comm || attr->comm_exec ||
4963             attr->task || attr->ksymbol ||
4964             attr->context_switch || attr->text_poke ||
4965             attr->bpf_event)
4966                 return true;
4967         return false;
4968 }
4969
4970 static void unaccount_pmu_sb_event(struct perf_event *event)
4971 {
4972         if (is_sb_event(event))
4973                 detach_sb_event(event);
4974 }
4975
4976 #ifdef CONFIG_NO_HZ_FULL
4977 static DEFINE_SPINLOCK(nr_freq_lock);
4978 #endif
4979
4980 static void unaccount_freq_event_nohz(void)
4981 {
4982 #ifdef CONFIG_NO_HZ_FULL
4983         spin_lock(&nr_freq_lock);
4984         if (atomic_dec_and_test(&nr_freq_events))
4985                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4986         spin_unlock(&nr_freq_lock);
4987 #endif
4988 }
4989
4990 static void unaccount_freq_event(void)
4991 {
4992         if (tick_nohz_full_enabled())
4993                 unaccount_freq_event_nohz();
4994         else
4995                 atomic_dec(&nr_freq_events);
4996 }
4997
4998 static void unaccount_event(struct perf_event *event)
4999 {
5000         bool dec = false;
5001
5002         if (event->parent)
5003                 return;
5004
5005         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5006                 dec = true;
5007         if (event->attr.mmap || event->attr.mmap_data)
5008                 atomic_dec(&nr_mmap_events);
5009         if (event->attr.build_id)
5010                 atomic_dec(&nr_build_id_events);
5011         if (event->attr.comm)
5012                 atomic_dec(&nr_comm_events);
5013         if (event->attr.namespaces)
5014                 atomic_dec(&nr_namespaces_events);
5015         if (event->attr.cgroup)
5016                 atomic_dec(&nr_cgroup_events);
5017         if (event->attr.task)
5018                 atomic_dec(&nr_task_events);
5019         if (event->attr.freq)
5020                 unaccount_freq_event();
5021         if (event->attr.context_switch) {
5022                 dec = true;
5023                 atomic_dec(&nr_switch_events);
5024         }
5025         if (is_cgroup_event(event))
5026                 dec = true;
5027         if (has_branch_stack(event))
5028                 dec = true;
5029         if (event->attr.ksymbol)
5030                 atomic_dec(&nr_ksymbol_events);
5031         if (event->attr.bpf_event)
5032                 atomic_dec(&nr_bpf_events);
5033         if (event->attr.text_poke)
5034                 atomic_dec(&nr_text_poke_events);
5035
5036         if (dec) {
5037                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5038                         schedule_delayed_work(&perf_sched_work, HZ);
5039         }
5040
5041         unaccount_pmu_sb_event(event);
5042 }
5043
5044 static void perf_sched_delayed(struct work_struct *work)
5045 {
5046         mutex_lock(&perf_sched_mutex);
5047         if (atomic_dec_and_test(&perf_sched_count))
5048                 static_branch_disable(&perf_sched_events);
5049         mutex_unlock(&perf_sched_mutex);
5050 }
5051
5052 /*
5053  * The following implement mutual exclusion of events on "exclusive" pmus
5054  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5055  * at a time, so we disallow creating events that might conflict, namely:
5056  *
5057  *  1) cpu-wide events in the presence of per-task events,
5058  *  2) per-task events in the presence of cpu-wide events,
5059  *  3) two matching events on the same perf_event_context.
5060  *
5061  * The former two cases are handled in the allocation path (perf_event_alloc(),
5062  * _free_event()), the latter -- before the first perf_install_in_context().
5063  */
5064 static int exclusive_event_init(struct perf_event *event)
5065 {
5066         struct pmu *pmu = event->pmu;
5067
5068         if (!is_exclusive_pmu(pmu))
5069                 return 0;
5070
5071         /*
5072          * Prevent co-existence of per-task and cpu-wide events on the
5073          * same exclusive pmu.
5074          *
5075          * Negative pmu::exclusive_cnt means there are cpu-wide
5076          * events on this "exclusive" pmu, positive means there are
5077          * per-task events.
5078          *
5079          * Since this is called in perf_event_alloc() path, event::ctx
5080          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5081          * to mean "per-task event", because unlike other attach states it
5082          * never gets cleared.
5083          */
5084         if (event->attach_state & PERF_ATTACH_TASK) {
5085                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5086                         return -EBUSY;
5087         } else {
5088                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5089                         return -EBUSY;
5090         }
5091
5092         return 0;
5093 }
5094
5095 static void exclusive_event_destroy(struct perf_event *event)
5096 {
5097         struct pmu *pmu = event->pmu;
5098
5099         if (!is_exclusive_pmu(pmu))
5100                 return;
5101
5102         /* see comment in exclusive_event_init() */
5103         if (event->attach_state & PERF_ATTACH_TASK)
5104                 atomic_dec(&pmu->exclusive_cnt);
5105         else
5106                 atomic_inc(&pmu->exclusive_cnt);
5107 }
5108
5109 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5110 {
5111         if ((e1->pmu == e2->pmu) &&
5112             (e1->cpu == e2->cpu ||
5113              e1->cpu == -1 ||
5114              e2->cpu == -1))
5115                 return true;
5116         return false;
5117 }
5118
5119 static bool exclusive_event_installable(struct perf_event *event,
5120                                         struct perf_event_context *ctx)
5121 {
5122         struct perf_event *iter_event;
5123         struct pmu *pmu = event->pmu;
5124
5125         lockdep_assert_held(&ctx->mutex);
5126
5127         if (!is_exclusive_pmu(pmu))
5128                 return true;
5129
5130         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5131                 if (exclusive_event_match(iter_event, event))
5132                         return false;
5133         }
5134
5135         return true;
5136 }
5137
5138 static void perf_addr_filters_splice(struct perf_event *event,
5139                                        struct list_head *head);
5140
5141 static void _free_event(struct perf_event *event)
5142 {
5143         irq_work_sync(&event->pending_irq);
5144
5145         unaccount_event(event);
5146
5147         security_perf_event_free(event);
5148
5149         if (event->rb) {
5150                 /*
5151                  * Can happen when we close an event with re-directed output.
5152                  *
5153                  * Since we have a 0 refcount, perf_mmap_close() will skip
5154                  * over us; possibly making our ring_buffer_put() the last.
5155                  */
5156                 mutex_lock(&event->mmap_mutex);
5157                 ring_buffer_attach(event, NULL);
5158                 mutex_unlock(&event->mmap_mutex);
5159         }
5160
5161         if (is_cgroup_event(event))
5162                 perf_detach_cgroup(event);
5163
5164         if (!event->parent) {
5165                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5166                         put_callchain_buffers();
5167         }
5168
5169         perf_event_free_bpf_prog(event);
5170         perf_addr_filters_splice(event, NULL);
5171         kfree(event->addr_filter_ranges);
5172
5173         if (event->destroy)
5174                 event->destroy(event);
5175
5176         /*
5177          * Must be after ->destroy(), due to uprobe_perf_close() using
5178          * hw.target.
5179          */
5180         if (event->hw.target)
5181                 put_task_struct(event->hw.target);
5182
5183         if (event->pmu_ctx)
5184                 put_pmu_ctx(event->pmu_ctx);
5185
5186         /*
5187          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5188          * all task references must be cleaned up.
5189          */
5190         if (event->ctx)
5191                 put_ctx(event->ctx);
5192
5193         exclusive_event_destroy(event);
5194         module_put(event->pmu->module);
5195
5196         call_rcu(&event->rcu_head, free_event_rcu);
5197 }
5198
5199 /*
5200  * Used to free events which have a known refcount of 1, such as in error paths
5201  * where the event isn't exposed yet and inherited events.
5202  */
5203 static void free_event(struct perf_event *event)
5204 {
5205         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5206                                 "unexpected event refcount: %ld; ptr=%p\n",
5207                                 atomic_long_read(&event->refcount), event)) {
5208                 /* leak to avoid use-after-free */
5209                 return;
5210         }
5211
5212         _free_event(event);
5213 }
5214
5215 /*
5216  * Remove user event from the owner task.
5217  */
5218 static void perf_remove_from_owner(struct perf_event *event)
5219 {
5220         struct task_struct *owner;
5221
5222         rcu_read_lock();
5223         /*
5224          * Matches the smp_store_release() in perf_event_exit_task(). If we
5225          * observe !owner it means the list deletion is complete and we can
5226          * indeed free this event, otherwise we need to serialize on
5227          * owner->perf_event_mutex.
5228          */
5229         owner = READ_ONCE(event->owner);
5230         if (owner) {
5231                 /*
5232                  * Since delayed_put_task_struct() also drops the last
5233                  * task reference we can safely take a new reference
5234                  * while holding the rcu_read_lock().
5235                  */
5236                 get_task_struct(owner);
5237         }
5238         rcu_read_unlock();
5239
5240         if (owner) {
5241                 /*
5242                  * If we're here through perf_event_exit_task() we're already
5243                  * holding ctx->mutex which would be an inversion wrt. the
5244                  * normal lock order.
5245                  *
5246                  * However we can safely take this lock because its the child
5247                  * ctx->mutex.
5248                  */
5249                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5250
5251                 /*
5252                  * We have to re-check the event->owner field, if it is cleared
5253                  * we raced with perf_event_exit_task(), acquiring the mutex
5254                  * ensured they're done, and we can proceed with freeing the
5255                  * event.
5256                  */
5257                 if (event->owner) {
5258                         list_del_init(&event->owner_entry);
5259                         smp_store_release(&event->owner, NULL);
5260                 }
5261                 mutex_unlock(&owner->perf_event_mutex);
5262                 put_task_struct(owner);
5263         }
5264 }
5265
5266 static void put_event(struct perf_event *event)
5267 {
5268         if (!atomic_long_dec_and_test(&event->refcount))
5269                 return;
5270
5271         _free_event(event);
5272 }
5273
5274 /*
5275  * Kill an event dead; while event:refcount will preserve the event
5276  * object, it will not preserve its functionality. Once the last 'user'
5277  * gives up the object, we'll destroy the thing.
5278  */
5279 int perf_event_release_kernel(struct perf_event *event)
5280 {
5281         struct perf_event_context *ctx = event->ctx;
5282         struct perf_event *child, *tmp;
5283         LIST_HEAD(free_list);
5284
5285         /*
5286          * If we got here through err_alloc: free_event(event); we will not
5287          * have attached to a context yet.
5288          */
5289         if (!ctx) {
5290                 WARN_ON_ONCE(event->attach_state &
5291                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5292                 goto no_ctx;
5293         }
5294
5295         if (!is_kernel_event(event))
5296                 perf_remove_from_owner(event);
5297
5298         ctx = perf_event_ctx_lock(event);
5299         WARN_ON_ONCE(ctx->parent_ctx);
5300
5301         /*
5302          * Mark this event as STATE_DEAD, there is no external reference to it
5303          * anymore.
5304          *
5305          * Anybody acquiring event->child_mutex after the below loop _must_
5306          * also see this, most importantly inherit_event() which will avoid
5307          * placing more children on the list.
5308          *
5309          * Thus this guarantees that we will in fact observe and kill _ALL_
5310          * child events.
5311          */
5312         perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5313
5314         perf_event_ctx_unlock(event, ctx);
5315
5316 again:
5317         mutex_lock(&event->child_mutex);
5318         list_for_each_entry(child, &event->child_list, child_list) {
5319
5320                 /*
5321                  * Cannot change, child events are not migrated, see the
5322                  * comment with perf_event_ctx_lock_nested().
5323                  */
5324                 ctx = READ_ONCE(child->ctx);
5325                 /*
5326                  * Since child_mutex nests inside ctx::mutex, we must jump
5327                  * through hoops. We start by grabbing a reference on the ctx.
5328                  *
5329                  * Since the event cannot get freed while we hold the
5330                  * child_mutex, the context must also exist and have a !0
5331                  * reference count.
5332                  */
5333                 get_ctx(ctx);
5334
5335                 /*
5336                  * Now that we have a ctx ref, we can drop child_mutex, and
5337                  * acquire ctx::mutex without fear of it going away. Then we
5338                  * can re-acquire child_mutex.
5339                  */
5340                 mutex_unlock(&event->child_mutex);
5341                 mutex_lock(&ctx->mutex);
5342                 mutex_lock(&event->child_mutex);
5343
5344                 /*
5345                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5346                  * state, if child is still the first entry, it didn't get freed
5347                  * and we can continue doing so.
5348                  */
5349                 tmp = list_first_entry_or_null(&event->child_list,
5350                                                struct perf_event, child_list);
5351                 if (tmp == child) {
5352                         perf_remove_from_context(child, DETACH_GROUP);
5353                         list_move(&child->child_list, &free_list);
5354                         /*
5355                          * This matches the refcount bump in inherit_event();
5356                          * this can't be the last reference.
5357                          */
5358                         put_event(event);
5359                 }
5360
5361                 mutex_unlock(&event->child_mutex);
5362                 mutex_unlock(&ctx->mutex);
5363                 put_ctx(ctx);
5364                 goto again;
5365         }
5366         mutex_unlock(&event->child_mutex);
5367
5368         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5369                 void *var = &child->ctx->refcount;
5370
5371                 list_del(&child->child_list);
5372                 free_event(child);
5373
5374                 /*
5375                  * Wake any perf_event_free_task() waiting for this event to be
5376                  * freed.
5377                  */
5378                 smp_mb(); /* pairs with wait_var_event() */
5379                 wake_up_var(var);
5380         }
5381
5382 no_ctx:
5383         put_event(event); /* Must be the 'last' reference */
5384         return 0;
5385 }
5386 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5387
5388 /*
5389  * Called when the last reference to the file is gone.
5390  */
5391 static int perf_release(struct inode *inode, struct file *file)
5392 {
5393         perf_event_release_kernel(file->private_data);
5394         return 0;
5395 }
5396
5397 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5398 {
5399         struct perf_event *child;
5400         u64 total = 0;
5401
5402         *enabled = 0;
5403         *running = 0;
5404
5405         mutex_lock(&event->child_mutex);
5406
5407         (void)perf_event_read(event, false);
5408         total += perf_event_count(event);
5409
5410         *enabled += event->total_time_enabled +
5411                         atomic64_read(&event->child_total_time_enabled);
5412         *running += event->total_time_running +
5413                         atomic64_read(&event->child_total_time_running);
5414
5415         list_for_each_entry(child, &event->child_list, child_list) {
5416                 (void)perf_event_read(child, false);
5417                 total += perf_event_count(child);
5418                 *enabled += child->total_time_enabled;
5419                 *running += child->total_time_running;
5420         }
5421         mutex_unlock(&event->child_mutex);
5422
5423         return total;
5424 }
5425
5426 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5427 {
5428         struct perf_event_context *ctx;
5429         u64 count;
5430
5431         ctx = perf_event_ctx_lock(event);
5432         count = __perf_event_read_value(event, enabled, running);
5433         perf_event_ctx_unlock(event, ctx);
5434
5435         return count;
5436 }
5437 EXPORT_SYMBOL_GPL(perf_event_read_value);
5438
5439 static int __perf_read_group_add(struct perf_event *leader,
5440                                         u64 read_format, u64 *values)
5441 {
5442         struct perf_event_context *ctx = leader->ctx;
5443         struct perf_event *sub;
5444         unsigned long flags;
5445         int n = 1; /* skip @nr */
5446         int ret;
5447
5448         ret = perf_event_read(leader, true);
5449         if (ret)
5450                 return ret;
5451
5452         raw_spin_lock_irqsave(&ctx->lock, flags);
5453
5454         /*
5455          * Since we co-schedule groups, {enabled,running} times of siblings
5456          * will be identical to those of the leader, so we only publish one
5457          * set.
5458          */
5459         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5460                 values[n++] += leader->total_time_enabled +
5461                         atomic64_read(&leader->child_total_time_enabled);
5462         }
5463
5464         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5465                 values[n++] += leader->total_time_running +
5466                         atomic64_read(&leader->child_total_time_running);
5467         }
5468
5469         /*
5470          * Write {count,id} tuples for every sibling.
5471          */
5472         values[n++] += perf_event_count(leader);
5473         if (read_format & PERF_FORMAT_ID)
5474                 values[n++] = primary_event_id(leader);
5475         if (read_format & PERF_FORMAT_LOST)
5476                 values[n++] = atomic64_read(&leader->lost_samples);
5477
5478         for_each_sibling_event(sub, leader) {
5479                 values[n++] += perf_event_count(sub);
5480                 if (read_format & PERF_FORMAT_ID)
5481                         values[n++] = primary_event_id(sub);
5482                 if (read_format & PERF_FORMAT_LOST)
5483                         values[n++] = atomic64_read(&sub->lost_samples);
5484         }
5485
5486         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5487         return 0;
5488 }
5489
5490 static int perf_read_group(struct perf_event *event,
5491                                    u64 read_format, char __user *buf)
5492 {
5493         struct perf_event *leader = event->group_leader, *child;
5494         struct perf_event_context *ctx = leader->ctx;
5495         int ret;
5496         u64 *values;
5497
5498         lockdep_assert_held(&ctx->mutex);
5499
5500         values = kzalloc(event->read_size, GFP_KERNEL);
5501         if (!values)
5502                 return -ENOMEM;
5503
5504         values[0] = 1 + leader->nr_siblings;
5505
5506         /*
5507          * By locking the child_mutex of the leader we effectively
5508          * lock the child list of all siblings.. XXX explain how.
5509          */
5510         mutex_lock(&leader->child_mutex);
5511
5512         ret = __perf_read_group_add(leader, read_format, values);
5513         if (ret)
5514                 goto unlock;
5515
5516         list_for_each_entry(child, &leader->child_list, child_list) {
5517                 ret = __perf_read_group_add(child, read_format, values);
5518                 if (ret)
5519                         goto unlock;
5520         }
5521
5522         mutex_unlock(&leader->child_mutex);
5523
5524         ret = event->read_size;
5525         if (copy_to_user(buf, values, event->read_size))
5526                 ret = -EFAULT;
5527         goto out;
5528
5529 unlock:
5530         mutex_unlock(&leader->child_mutex);
5531 out:
5532         kfree(values);
5533         return ret;
5534 }
5535
5536 static int perf_read_one(struct perf_event *event,
5537                                  u64 read_format, char __user *buf)
5538 {
5539         u64 enabled, running;
5540         u64 values[5];
5541         int n = 0;
5542
5543         values[n++] = __perf_event_read_value(event, &enabled, &running);
5544         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5545                 values[n++] = enabled;
5546         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5547                 values[n++] = running;
5548         if (read_format & PERF_FORMAT_ID)
5549                 values[n++] = primary_event_id(event);
5550         if (read_format & PERF_FORMAT_LOST)
5551                 values[n++] = atomic64_read(&event->lost_samples);
5552
5553         if (copy_to_user(buf, values, n * sizeof(u64)))
5554                 return -EFAULT;
5555
5556         return n * sizeof(u64);
5557 }
5558
5559 static bool is_event_hup(struct perf_event *event)
5560 {
5561         bool no_children;
5562
5563         if (event->state > PERF_EVENT_STATE_EXIT)
5564                 return false;
5565
5566         mutex_lock(&event->child_mutex);
5567         no_children = list_empty(&event->child_list);
5568         mutex_unlock(&event->child_mutex);
5569         return no_children;
5570 }
5571
5572 /*
5573  * Read the performance event - simple non blocking version for now
5574  */
5575 static ssize_t
5576 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5577 {
5578         u64 read_format = event->attr.read_format;
5579         int ret;
5580
5581         /*
5582          * Return end-of-file for a read on an event that is in
5583          * error state (i.e. because it was pinned but it couldn't be
5584          * scheduled on to the CPU at some point).
5585          */
5586         if (event->state == PERF_EVENT_STATE_ERROR)
5587                 return 0;
5588
5589         if (count < event->read_size)
5590                 return -ENOSPC;
5591
5592         WARN_ON_ONCE(event->ctx->parent_ctx);
5593         if (read_format & PERF_FORMAT_GROUP)
5594                 ret = perf_read_group(event, read_format, buf);
5595         else
5596                 ret = perf_read_one(event, read_format, buf);
5597
5598         return ret;
5599 }
5600
5601 static ssize_t
5602 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5603 {
5604         struct perf_event *event = file->private_data;
5605         struct perf_event_context *ctx;
5606         int ret;
5607
5608         ret = security_perf_event_read(event);
5609         if (ret)
5610                 return ret;
5611
5612         ctx = perf_event_ctx_lock(event);
5613         ret = __perf_read(event, buf, count);
5614         perf_event_ctx_unlock(event, ctx);
5615
5616         return ret;
5617 }
5618
5619 static __poll_t perf_poll(struct file *file, poll_table *wait)
5620 {
5621         struct perf_event *event = file->private_data;
5622         struct perf_buffer *rb;
5623         __poll_t events = EPOLLHUP;
5624
5625         poll_wait(file, &event->waitq, wait);
5626
5627         if (is_event_hup(event))
5628                 return events;
5629
5630         /*
5631          * Pin the event->rb by taking event->mmap_mutex; otherwise
5632          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5633          */
5634         mutex_lock(&event->mmap_mutex);
5635         rb = event->rb;
5636         if (rb)
5637                 events = atomic_xchg(&rb->poll, 0);
5638         mutex_unlock(&event->mmap_mutex);
5639         return events;
5640 }
5641
5642 static void _perf_event_reset(struct perf_event *event)
5643 {
5644         (void)perf_event_read(event, false);
5645         local64_set(&event->count, 0);
5646         perf_event_update_userpage(event);
5647 }
5648
5649 /* Assume it's not an event with inherit set. */
5650 u64 perf_event_pause(struct perf_event *event, bool reset)
5651 {
5652         struct perf_event_context *ctx;
5653         u64 count;
5654
5655         ctx = perf_event_ctx_lock(event);
5656         WARN_ON_ONCE(event->attr.inherit);
5657         _perf_event_disable(event);
5658         count = local64_read(&event->count);
5659         if (reset)
5660                 local64_set(&event->count, 0);
5661         perf_event_ctx_unlock(event, ctx);
5662
5663         return count;
5664 }
5665 EXPORT_SYMBOL_GPL(perf_event_pause);
5666
5667 /*
5668  * Holding the top-level event's child_mutex means that any
5669  * descendant process that has inherited this event will block
5670  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5671  * task existence requirements of perf_event_enable/disable.
5672  */
5673 static void perf_event_for_each_child(struct perf_event *event,
5674                                         void (*func)(struct perf_event *))
5675 {
5676         struct perf_event *child;
5677
5678         WARN_ON_ONCE(event->ctx->parent_ctx);
5679
5680         mutex_lock(&event->child_mutex);
5681         func(event);
5682         list_for_each_entry(child, &event->child_list, child_list)
5683                 func(child);
5684         mutex_unlock(&event->child_mutex);
5685 }
5686
5687 static void perf_event_for_each(struct perf_event *event,
5688                                   void (*func)(struct perf_event *))
5689 {
5690         struct perf_event_context *ctx = event->ctx;
5691         struct perf_event *sibling;
5692
5693         lockdep_assert_held(&ctx->mutex);
5694
5695         event = event->group_leader;
5696
5697         perf_event_for_each_child(event, func);
5698         for_each_sibling_event(sibling, event)
5699                 perf_event_for_each_child(sibling, func);
5700 }
5701
5702 static void __perf_event_period(struct perf_event *event,
5703                                 struct perf_cpu_context *cpuctx,
5704                                 struct perf_event_context *ctx,
5705                                 void *info)
5706 {
5707         u64 value = *((u64 *)info);
5708         bool active;
5709
5710         if (event->attr.freq) {
5711                 event->attr.sample_freq = value;
5712         } else {
5713                 event->attr.sample_period = value;
5714                 event->hw.sample_period = value;
5715         }
5716
5717         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5718         if (active) {
5719                 perf_pmu_disable(event->pmu);
5720                 /*
5721                  * We could be throttled; unthrottle now to avoid the tick
5722                  * trying to unthrottle while we already re-started the event.
5723                  */
5724                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5725                         event->hw.interrupts = 0;
5726                         perf_log_throttle(event, 1);
5727                 }
5728                 event->pmu->stop(event, PERF_EF_UPDATE);
5729         }
5730
5731         local64_set(&event->hw.period_left, 0);
5732
5733         if (active) {
5734                 event->pmu->start(event, PERF_EF_RELOAD);
5735                 perf_pmu_enable(event->pmu);
5736         }
5737 }
5738
5739 static int perf_event_check_period(struct perf_event *event, u64 value)
5740 {
5741         return event->pmu->check_period(event, value);
5742 }
5743
5744 static int _perf_event_period(struct perf_event *event, u64 value)
5745 {
5746         if (!is_sampling_event(event))
5747                 return -EINVAL;
5748
5749         if (!value)
5750                 return -EINVAL;
5751
5752         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5753                 return -EINVAL;
5754
5755         if (perf_event_check_period(event, value))
5756                 return -EINVAL;
5757
5758         if (!event->attr.freq && (value & (1ULL << 63)))
5759                 return -EINVAL;
5760
5761         event_function_call(event, __perf_event_period, &value);
5762
5763         return 0;
5764 }
5765
5766 int perf_event_period(struct perf_event *event, u64 value)
5767 {
5768         struct perf_event_context *ctx;
5769         int ret;
5770
5771         ctx = perf_event_ctx_lock(event);
5772         ret = _perf_event_period(event, value);
5773         perf_event_ctx_unlock(event, ctx);
5774
5775         return ret;
5776 }
5777 EXPORT_SYMBOL_GPL(perf_event_period);
5778
5779 static const struct file_operations perf_fops;
5780
5781 static inline int perf_fget_light(int fd, struct fd *p)
5782 {
5783         struct fd f = fdget(fd);
5784         if (!f.file)
5785                 return -EBADF;
5786
5787         if (f.file->f_op != &perf_fops) {
5788                 fdput(f);
5789                 return -EBADF;
5790         }
5791         *p = f;
5792         return 0;
5793 }
5794
5795 static int perf_event_set_output(struct perf_event *event,
5796                                  struct perf_event *output_event);
5797 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5798 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5799                           struct perf_event_attr *attr);
5800
5801 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5802 {
5803         void (*func)(struct perf_event *);
5804         u32 flags = arg;
5805
5806         switch (cmd) {
5807         case PERF_EVENT_IOC_ENABLE:
5808                 func = _perf_event_enable;
5809                 break;
5810         case PERF_EVENT_IOC_DISABLE:
5811                 func = _perf_event_disable;
5812                 break;
5813         case PERF_EVENT_IOC_RESET:
5814                 func = _perf_event_reset;
5815                 break;
5816
5817         case PERF_EVENT_IOC_REFRESH:
5818                 return _perf_event_refresh(event, arg);
5819
5820         case PERF_EVENT_IOC_PERIOD:
5821         {
5822                 u64 value;
5823
5824                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5825                         return -EFAULT;
5826
5827                 return _perf_event_period(event, value);
5828         }
5829         case PERF_EVENT_IOC_ID:
5830         {
5831                 u64 id = primary_event_id(event);
5832
5833                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5834                         return -EFAULT;
5835                 return 0;
5836         }
5837
5838         case PERF_EVENT_IOC_SET_OUTPUT:
5839         {
5840                 int ret;
5841                 if (arg != -1) {
5842                         struct perf_event *output_event;
5843                         struct fd output;
5844                         ret = perf_fget_light(arg, &output);
5845                         if (ret)
5846                                 return ret;
5847                         output_event = output.file->private_data;
5848                         ret = perf_event_set_output(event, output_event);
5849                         fdput(output);
5850                 } else {
5851                         ret = perf_event_set_output(event, NULL);
5852                 }
5853                 return ret;
5854         }
5855
5856         case PERF_EVENT_IOC_SET_FILTER:
5857                 return perf_event_set_filter(event, (void __user *)arg);
5858
5859         case PERF_EVENT_IOC_SET_BPF:
5860         {
5861                 struct bpf_prog *prog;
5862                 int err;
5863
5864                 prog = bpf_prog_get(arg);
5865                 if (IS_ERR(prog))
5866                         return PTR_ERR(prog);
5867
5868                 err = perf_event_set_bpf_prog(event, prog, 0);
5869                 if (err) {
5870                         bpf_prog_put(prog);
5871                         return err;
5872                 }
5873
5874                 return 0;
5875         }
5876
5877         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5878                 struct perf_buffer *rb;
5879
5880                 rcu_read_lock();
5881                 rb = rcu_dereference(event->rb);
5882                 if (!rb || !rb->nr_pages) {
5883                         rcu_read_unlock();
5884                         return -EINVAL;
5885                 }
5886                 rb_toggle_paused(rb, !!arg);
5887                 rcu_read_unlock();
5888                 return 0;
5889         }
5890
5891         case PERF_EVENT_IOC_QUERY_BPF:
5892                 return perf_event_query_prog_array(event, (void __user *)arg);
5893
5894         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5895                 struct perf_event_attr new_attr;
5896                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5897                                          &new_attr);
5898
5899                 if (err)
5900                         return err;
5901
5902                 return perf_event_modify_attr(event,  &new_attr);
5903         }
5904         default:
5905                 return -ENOTTY;
5906         }
5907
5908         if (flags & PERF_IOC_FLAG_GROUP)
5909                 perf_event_for_each(event, func);
5910         else
5911                 perf_event_for_each_child(event, func);
5912
5913         return 0;
5914 }
5915
5916 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5917 {
5918         struct perf_event *event = file->private_data;
5919         struct perf_event_context *ctx;
5920         long ret;
5921
5922         /* Treat ioctl like writes as it is likely a mutating operation. */
5923         ret = security_perf_event_write(event);
5924         if (ret)
5925                 return ret;
5926
5927         ctx = perf_event_ctx_lock(event);
5928         ret = _perf_ioctl(event, cmd, arg);
5929         perf_event_ctx_unlock(event, ctx);
5930
5931         return ret;
5932 }
5933
5934 #ifdef CONFIG_COMPAT
5935 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5936                                 unsigned long arg)
5937 {
5938         switch (_IOC_NR(cmd)) {
5939         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5940         case _IOC_NR(PERF_EVENT_IOC_ID):
5941         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5942         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5943                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5944                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5945                         cmd &= ~IOCSIZE_MASK;
5946                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5947                 }
5948                 break;
5949         }
5950         return perf_ioctl(file, cmd, arg);
5951 }
5952 #else
5953 # define perf_compat_ioctl NULL
5954 #endif
5955
5956 int perf_event_task_enable(void)
5957 {
5958         struct perf_event_context *ctx;
5959         struct perf_event *event;
5960
5961         mutex_lock(&current->perf_event_mutex);
5962         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5963                 ctx = perf_event_ctx_lock(event);
5964                 perf_event_for_each_child(event, _perf_event_enable);
5965                 perf_event_ctx_unlock(event, ctx);
5966         }
5967         mutex_unlock(&current->perf_event_mutex);
5968
5969         return 0;
5970 }
5971
5972 int perf_event_task_disable(void)
5973 {
5974         struct perf_event_context *ctx;
5975         struct perf_event *event;
5976
5977         mutex_lock(&current->perf_event_mutex);
5978         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5979                 ctx = perf_event_ctx_lock(event);
5980                 perf_event_for_each_child(event, _perf_event_disable);
5981                 perf_event_ctx_unlock(event, ctx);
5982         }
5983         mutex_unlock(&current->perf_event_mutex);
5984
5985         return 0;
5986 }
5987
5988 static int perf_event_index(struct perf_event *event)
5989 {
5990         if (event->hw.state & PERF_HES_STOPPED)
5991                 return 0;
5992
5993         if (event->state != PERF_EVENT_STATE_ACTIVE)
5994                 return 0;
5995
5996         return event->pmu->event_idx(event);
5997 }
5998
5999 static void perf_event_init_userpage(struct perf_event *event)
6000 {
6001         struct perf_event_mmap_page *userpg;
6002         struct perf_buffer *rb;
6003
6004         rcu_read_lock();
6005         rb = rcu_dereference(event->rb);
6006         if (!rb)
6007                 goto unlock;
6008
6009         userpg = rb->user_page;
6010
6011         /* Allow new userspace to detect that bit 0 is deprecated */
6012         userpg->cap_bit0_is_deprecated = 1;
6013         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6014         userpg->data_offset = PAGE_SIZE;
6015         userpg->data_size = perf_data_size(rb);
6016
6017 unlock:
6018         rcu_read_unlock();
6019 }
6020
6021 void __weak arch_perf_update_userpage(
6022         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6023 {
6024 }
6025
6026 /*
6027  * Callers need to ensure there can be no nesting of this function, otherwise
6028  * the seqlock logic goes bad. We can not serialize this because the arch
6029  * code calls this from NMI context.
6030  */
6031 void perf_event_update_userpage(struct perf_event *event)
6032 {
6033         struct perf_event_mmap_page *userpg;
6034         struct perf_buffer *rb;
6035         u64 enabled, running, now;
6036
6037         rcu_read_lock();
6038         rb = rcu_dereference(event->rb);
6039         if (!rb)
6040                 goto unlock;
6041
6042         /*
6043          * compute total_time_enabled, total_time_running
6044          * based on snapshot values taken when the event
6045          * was last scheduled in.
6046          *
6047          * we cannot simply called update_context_time()
6048          * because of locking issue as we can be called in
6049          * NMI context
6050          */
6051         calc_timer_values(event, &now, &enabled, &running);
6052
6053         userpg = rb->user_page;
6054         /*
6055          * Disable preemption to guarantee consistent time stamps are stored to
6056          * the user page.
6057          */
6058         preempt_disable();
6059         ++userpg->lock;
6060         barrier();
6061         userpg->index = perf_event_index(event);
6062         userpg->offset = perf_event_count(event);
6063         if (userpg->index)
6064                 userpg->offset -= local64_read(&event->hw.prev_count);
6065
6066         userpg->time_enabled = enabled +
6067                         atomic64_read(&event->child_total_time_enabled);
6068
6069         userpg->time_running = running +
6070                         atomic64_read(&event->child_total_time_running);
6071
6072         arch_perf_update_userpage(event, userpg, now);
6073
6074         barrier();
6075         ++userpg->lock;
6076         preempt_enable();
6077 unlock:
6078         rcu_read_unlock();
6079 }
6080 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6081
6082 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6083 {
6084         struct perf_event *event = vmf->vma->vm_file->private_data;
6085         struct perf_buffer *rb;
6086         vm_fault_t ret = VM_FAULT_SIGBUS;
6087
6088         if (vmf->flags & FAULT_FLAG_MKWRITE) {
6089                 if (vmf->pgoff == 0)
6090                         ret = 0;
6091                 return ret;
6092         }
6093
6094         rcu_read_lock();
6095         rb = rcu_dereference(event->rb);
6096         if (!rb)
6097                 goto unlock;
6098
6099         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6100                 goto unlock;
6101
6102         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6103         if (!vmf->page)
6104                 goto unlock;
6105
6106         get_page(vmf->page);
6107         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6108         vmf->page->index   = vmf->pgoff;
6109
6110         ret = 0;
6111 unlock:
6112         rcu_read_unlock();
6113
6114         return ret;
6115 }
6116
6117 static void ring_buffer_attach(struct perf_event *event,
6118                                struct perf_buffer *rb)
6119 {
6120         struct perf_buffer *old_rb = NULL;
6121         unsigned long flags;
6122
6123         WARN_ON_ONCE(event->parent);
6124
6125         if (event->rb) {
6126                 /*
6127                  * Should be impossible, we set this when removing
6128                  * event->rb_entry and wait/clear when adding event->rb_entry.
6129                  */
6130                 WARN_ON_ONCE(event->rcu_pending);
6131
6132                 old_rb = event->rb;
6133                 spin_lock_irqsave(&old_rb->event_lock, flags);
6134                 list_del_rcu(&event->rb_entry);
6135                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6136
6137                 event->rcu_batches = get_state_synchronize_rcu();
6138                 event->rcu_pending = 1;
6139         }
6140
6141         if (rb) {
6142                 if (event->rcu_pending) {
6143                         cond_synchronize_rcu(event->rcu_batches);
6144                         event->rcu_pending = 0;
6145                 }
6146
6147                 spin_lock_irqsave(&rb->event_lock, flags);
6148                 list_add_rcu(&event->rb_entry, &rb->event_list);
6149                 spin_unlock_irqrestore(&rb->event_lock, flags);
6150         }
6151
6152         /*
6153          * Avoid racing with perf_mmap_close(AUX): stop the event
6154          * before swizzling the event::rb pointer; if it's getting
6155          * unmapped, its aux_mmap_count will be 0 and it won't
6156          * restart. See the comment in __perf_pmu_output_stop().
6157          *
6158          * Data will inevitably be lost when set_output is done in
6159          * mid-air, but then again, whoever does it like this is
6160          * not in for the data anyway.
6161          */
6162         if (has_aux(event))
6163                 perf_event_stop(event, 0);
6164
6165         rcu_assign_pointer(event->rb, rb);
6166
6167         if (old_rb) {
6168                 ring_buffer_put(old_rb);
6169                 /*
6170                  * Since we detached before setting the new rb, so that we
6171                  * could attach the new rb, we could have missed a wakeup.
6172                  * Provide it now.
6173                  */
6174                 wake_up_all(&event->waitq);
6175         }
6176 }
6177
6178 static void ring_buffer_wakeup(struct perf_event *event)
6179 {
6180         struct perf_buffer *rb;
6181
6182         if (event->parent)
6183                 event = event->parent;
6184
6185         rcu_read_lock();
6186         rb = rcu_dereference(event->rb);
6187         if (rb) {
6188                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6189                         wake_up_all(&event->waitq);
6190         }
6191         rcu_read_unlock();
6192 }
6193
6194 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6195 {
6196         struct perf_buffer *rb;
6197
6198         if (event->parent)
6199                 event = event->parent;
6200
6201         rcu_read_lock();
6202         rb = rcu_dereference(event->rb);
6203         if (rb) {
6204                 if (!refcount_inc_not_zero(&rb->refcount))
6205                         rb = NULL;
6206         }
6207         rcu_read_unlock();
6208
6209         return rb;
6210 }
6211
6212 void ring_buffer_put(struct perf_buffer *rb)
6213 {
6214         if (!refcount_dec_and_test(&rb->refcount))
6215                 return;
6216
6217         WARN_ON_ONCE(!list_empty(&rb->event_list));
6218
6219         call_rcu(&rb->rcu_head, rb_free_rcu);
6220 }
6221
6222 static void perf_mmap_open(struct vm_area_struct *vma)
6223 {
6224         struct perf_event *event = vma->vm_file->private_data;
6225
6226         atomic_inc(&event->mmap_count);
6227         atomic_inc(&event->rb->mmap_count);
6228
6229         if (vma->vm_pgoff)
6230                 atomic_inc(&event->rb->aux_mmap_count);
6231
6232         if (event->pmu->event_mapped)
6233                 event->pmu->event_mapped(event, vma->vm_mm);
6234 }
6235
6236 static void perf_pmu_output_stop(struct perf_event *event);
6237
6238 /*
6239  * A buffer can be mmap()ed multiple times; either directly through the same
6240  * event, or through other events by use of perf_event_set_output().
6241  *
6242  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6243  * the buffer here, where we still have a VM context. This means we need
6244  * to detach all events redirecting to us.
6245  */
6246 static void perf_mmap_close(struct vm_area_struct *vma)
6247 {
6248         struct perf_event *event = vma->vm_file->private_data;
6249         struct perf_buffer *rb = ring_buffer_get(event);
6250         struct user_struct *mmap_user = rb->mmap_user;
6251         int mmap_locked = rb->mmap_locked;
6252         unsigned long size = perf_data_size(rb);
6253         bool detach_rest = false;
6254
6255         if (event->pmu->event_unmapped)
6256                 event->pmu->event_unmapped(event, vma->vm_mm);
6257
6258         /*
6259          * rb->aux_mmap_count will always drop before rb->mmap_count and
6260          * event->mmap_count, so it is ok to use event->mmap_mutex to
6261          * serialize with perf_mmap here.
6262          */
6263         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6264             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6265                 /*
6266                  * Stop all AUX events that are writing to this buffer,
6267                  * so that we can free its AUX pages and corresponding PMU
6268                  * data. Note that after rb::aux_mmap_count dropped to zero,
6269                  * they won't start any more (see perf_aux_output_begin()).
6270                  */
6271                 perf_pmu_output_stop(event);
6272
6273                 /* now it's safe to free the pages */
6274                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6275                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6276
6277                 /* this has to be the last one */
6278                 rb_free_aux(rb);
6279                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6280
6281                 mutex_unlock(&event->mmap_mutex);
6282         }
6283
6284         if (atomic_dec_and_test(&rb->mmap_count))
6285                 detach_rest = true;
6286
6287         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6288                 goto out_put;
6289
6290         ring_buffer_attach(event, NULL);
6291         mutex_unlock(&event->mmap_mutex);
6292
6293         /* If there's still other mmap()s of this buffer, we're done. */
6294         if (!detach_rest)
6295                 goto out_put;
6296
6297         /*
6298          * No other mmap()s, detach from all other events that might redirect
6299          * into the now unreachable buffer. Somewhat complicated by the
6300          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6301          */
6302 again:
6303         rcu_read_lock();
6304         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6305                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6306                         /*
6307                          * This event is en-route to free_event() which will
6308                          * detach it and remove it from the list.
6309                          */
6310                         continue;
6311                 }
6312                 rcu_read_unlock();
6313
6314                 mutex_lock(&event->mmap_mutex);
6315                 /*
6316                  * Check we didn't race with perf_event_set_output() which can
6317                  * swizzle the rb from under us while we were waiting to
6318                  * acquire mmap_mutex.
6319                  *
6320                  * If we find a different rb; ignore this event, a next
6321                  * iteration will no longer find it on the list. We have to
6322                  * still restart the iteration to make sure we're not now
6323                  * iterating the wrong list.
6324                  */
6325                 if (event->rb == rb)
6326                         ring_buffer_attach(event, NULL);
6327
6328                 mutex_unlock(&event->mmap_mutex);
6329                 put_event(event);
6330
6331                 /*
6332                  * Restart the iteration; either we're on the wrong list or
6333                  * destroyed its integrity by doing a deletion.
6334                  */
6335                 goto again;
6336         }
6337         rcu_read_unlock();
6338
6339         /*
6340          * It could be there's still a few 0-ref events on the list; they'll
6341          * get cleaned up by free_event() -- they'll also still have their
6342          * ref on the rb and will free it whenever they are done with it.
6343          *
6344          * Aside from that, this buffer is 'fully' detached and unmapped,
6345          * undo the VM accounting.
6346          */
6347
6348         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6349                         &mmap_user->locked_vm);
6350         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6351         free_uid(mmap_user);
6352
6353 out_put:
6354         ring_buffer_put(rb); /* could be last */
6355 }
6356
6357 static const struct vm_operations_struct perf_mmap_vmops = {
6358         .open           = perf_mmap_open,
6359         .close          = perf_mmap_close, /* non mergeable */
6360         .fault          = perf_mmap_fault,
6361         .page_mkwrite   = perf_mmap_fault,
6362 };
6363
6364 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6365 {
6366         struct perf_event *event = file->private_data;
6367         unsigned long user_locked, user_lock_limit;
6368         struct user_struct *user = current_user();
6369         struct perf_buffer *rb = NULL;
6370         unsigned long locked, lock_limit;
6371         unsigned long vma_size;
6372         unsigned long nr_pages;
6373         long user_extra = 0, extra = 0;
6374         int ret = 0, flags = 0;
6375
6376         /*
6377          * Don't allow mmap() of inherited per-task counters. This would
6378          * create a performance issue due to all children writing to the
6379          * same rb.
6380          */
6381         if (event->cpu == -1 && event->attr.inherit)
6382                 return -EINVAL;
6383
6384         if (!(vma->vm_flags & VM_SHARED))
6385                 return -EINVAL;
6386
6387         ret = security_perf_event_read(event);
6388         if (ret)
6389                 return ret;
6390
6391         vma_size = vma->vm_end - vma->vm_start;
6392
6393         if (vma->vm_pgoff == 0) {
6394                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6395         } else {
6396                 /*
6397                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6398                  * mapped, all subsequent mappings should have the same size
6399                  * and offset. Must be above the normal perf buffer.
6400                  */
6401                 u64 aux_offset, aux_size;
6402
6403                 if (!event->rb)
6404                         return -EINVAL;
6405
6406                 nr_pages = vma_size / PAGE_SIZE;
6407
6408                 mutex_lock(&event->mmap_mutex);
6409                 ret = -EINVAL;
6410
6411                 rb = event->rb;
6412                 if (!rb)
6413                         goto aux_unlock;
6414
6415                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6416                 aux_size = READ_ONCE(rb->user_page->aux_size);
6417
6418                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6419                         goto aux_unlock;
6420
6421                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6422                         goto aux_unlock;
6423
6424                 /* already mapped with a different offset */
6425                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6426                         goto aux_unlock;
6427
6428                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6429                         goto aux_unlock;
6430
6431                 /* already mapped with a different size */
6432                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6433                         goto aux_unlock;
6434
6435                 if (!is_power_of_2(nr_pages))
6436                         goto aux_unlock;
6437
6438                 if (!atomic_inc_not_zero(&rb->mmap_count))
6439                         goto aux_unlock;
6440
6441                 if (rb_has_aux(rb)) {
6442                         atomic_inc(&rb->aux_mmap_count);
6443                         ret = 0;
6444                         goto unlock;
6445                 }
6446
6447                 atomic_set(&rb->aux_mmap_count, 1);
6448                 user_extra = nr_pages;
6449
6450                 goto accounting;
6451         }
6452
6453         /*
6454          * If we have rb pages ensure they're a power-of-two number, so we
6455          * can do bitmasks instead of modulo.
6456          */
6457         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6458                 return -EINVAL;
6459
6460         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6461                 return -EINVAL;
6462
6463         WARN_ON_ONCE(event->ctx->parent_ctx);
6464 again:
6465         mutex_lock(&event->mmap_mutex);
6466         if (event->rb) {
6467                 if (data_page_nr(event->rb) != nr_pages) {
6468                         ret = -EINVAL;
6469                         goto unlock;
6470                 }
6471
6472                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6473                         /*
6474                          * Raced against perf_mmap_close(); remove the
6475                          * event and try again.
6476                          */
6477                         ring_buffer_attach(event, NULL);
6478                         mutex_unlock(&event->mmap_mutex);
6479                         goto again;
6480                 }
6481
6482                 goto unlock;
6483         }
6484
6485         user_extra = nr_pages + 1;
6486
6487 accounting:
6488         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6489
6490         /*
6491          * Increase the limit linearly with more CPUs:
6492          */
6493         user_lock_limit *= num_online_cpus();
6494
6495         user_locked = atomic_long_read(&user->locked_vm);
6496
6497         /*
6498          * sysctl_perf_event_mlock may have changed, so that
6499          *     user->locked_vm > user_lock_limit
6500          */
6501         if (user_locked > user_lock_limit)
6502                 user_locked = user_lock_limit;
6503         user_locked += user_extra;
6504
6505         if (user_locked > user_lock_limit) {
6506                 /*
6507                  * charge locked_vm until it hits user_lock_limit;
6508                  * charge the rest from pinned_vm
6509                  */
6510                 extra = user_locked - user_lock_limit;
6511                 user_extra -= extra;
6512         }
6513
6514         lock_limit = rlimit(RLIMIT_MEMLOCK);
6515         lock_limit >>= PAGE_SHIFT;
6516         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6517
6518         if ((locked > lock_limit) && perf_is_paranoid() &&
6519                 !capable(CAP_IPC_LOCK)) {
6520                 ret = -EPERM;
6521                 goto unlock;
6522         }
6523
6524         WARN_ON(!rb && event->rb);
6525
6526         if (vma->vm_flags & VM_WRITE)
6527                 flags |= RING_BUFFER_WRITABLE;
6528
6529         if (!rb) {
6530                 rb = rb_alloc(nr_pages,
6531                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6532                               event->cpu, flags);
6533
6534                 if (!rb) {
6535                         ret = -ENOMEM;
6536                         goto unlock;
6537                 }
6538
6539                 atomic_set(&rb->mmap_count, 1);
6540                 rb->mmap_user = get_current_user();
6541                 rb->mmap_locked = extra;
6542
6543                 ring_buffer_attach(event, rb);
6544
6545                 perf_event_update_time(event);
6546                 perf_event_init_userpage(event);
6547                 perf_event_update_userpage(event);
6548         } else {
6549                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6550                                    event->attr.aux_watermark, flags);
6551                 if (!ret)
6552                         rb->aux_mmap_locked = extra;
6553         }
6554
6555 unlock:
6556         if (!ret) {
6557                 atomic_long_add(user_extra, &user->locked_vm);
6558                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6559
6560                 atomic_inc(&event->mmap_count);
6561         } else if (rb) {
6562                 atomic_dec(&rb->mmap_count);
6563         }
6564 aux_unlock:
6565         mutex_unlock(&event->mmap_mutex);
6566
6567         /*
6568          * Since pinned accounting is per vm we cannot allow fork() to copy our
6569          * vma.
6570          */
6571         vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6572         vma->vm_ops = &perf_mmap_vmops;
6573
6574         if (event->pmu->event_mapped)
6575                 event->pmu->event_mapped(event, vma->vm_mm);
6576
6577         return ret;
6578 }
6579
6580 static int perf_fasync(int fd, struct file *filp, int on)
6581 {
6582         struct inode *inode = file_inode(filp);
6583         struct perf_event *event = filp->private_data;
6584         int retval;
6585
6586         inode_lock(inode);
6587         retval = fasync_helper(fd, filp, on, &event->fasync);
6588         inode_unlock(inode);
6589
6590         if (retval < 0)
6591                 return retval;
6592
6593         return 0;
6594 }
6595
6596 static const struct file_operations perf_fops = {
6597         .llseek                 = no_llseek,
6598         .release                = perf_release,
6599         .read                   = perf_read,
6600         .poll                   = perf_poll,
6601         .unlocked_ioctl         = perf_ioctl,
6602         .compat_ioctl           = perf_compat_ioctl,
6603         .mmap                   = perf_mmap,
6604         .fasync                 = perf_fasync,
6605 };
6606
6607 /*
6608  * Perf event wakeup
6609  *
6610  * If there's data, ensure we set the poll() state and publish everything
6611  * to user-space before waking everybody up.
6612  */
6613
6614 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6615 {
6616         /* only the parent has fasync state */
6617         if (event->parent)
6618                 event = event->parent;
6619         return &event->fasync;
6620 }
6621
6622 void perf_event_wakeup(struct perf_event *event)
6623 {
6624         ring_buffer_wakeup(event);
6625
6626         if (event->pending_kill) {
6627                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6628                 event->pending_kill = 0;
6629         }
6630 }
6631
6632 static void perf_sigtrap(struct perf_event *event)
6633 {
6634         /*
6635          * We'd expect this to only occur if the irq_work is delayed and either
6636          * ctx->task or current has changed in the meantime. This can be the
6637          * case on architectures that do not implement arch_irq_work_raise().
6638          */
6639         if (WARN_ON_ONCE(event->ctx->task != current))
6640                 return;
6641
6642         /*
6643          * Both perf_pending_task() and perf_pending_irq() can race with the
6644          * task exiting.
6645          */
6646         if (current->flags & PF_EXITING)
6647                 return;
6648
6649         send_sig_perf((void __user *)event->pending_addr,
6650                       event->orig_type, event->attr.sig_data);
6651 }
6652
6653 /*
6654  * Deliver the pending work in-event-context or follow the context.
6655  */
6656 static void __perf_pending_irq(struct perf_event *event)
6657 {
6658         int cpu = READ_ONCE(event->oncpu);
6659
6660         /*
6661          * If the event isn't running; we done. event_sched_out() will have
6662          * taken care of things.
6663          */
6664         if (cpu < 0)
6665                 return;
6666
6667         /*
6668          * Yay, we hit home and are in the context of the event.
6669          */
6670         if (cpu == smp_processor_id()) {
6671                 if (event->pending_sigtrap) {
6672                         event->pending_sigtrap = 0;
6673                         perf_sigtrap(event);
6674                         local_dec(&event->ctx->nr_pending);
6675                 }
6676                 if (event->pending_disable) {
6677                         event->pending_disable = 0;
6678                         perf_event_disable_local(event);
6679                 }
6680                 return;
6681         }
6682
6683         /*
6684          *  CPU-A                       CPU-B
6685          *
6686          *  perf_event_disable_inatomic()
6687          *    @pending_disable = CPU-A;
6688          *    irq_work_queue();
6689          *
6690          *  sched-out
6691          *    @pending_disable = -1;
6692          *
6693          *                              sched-in
6694          *                              perf_event_disable_inatomic()
6695          *                                @pending_disable = CPU-B;
6696          *                                irq_work_queue(); // FAILS
6697          *
6698          *  irq_work_run()
6699          *    perf_pending_irq()
6700          *
6701          * But the event runs on CPU-B and wants disabling there.
6702          */
6703         irq_work_queue_on(&event->pending_irq, cpu);
6704 }
6705
6706 static void perf_pending_irq(struct irq_work *entry)
6707 {
6708         struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6709         int rctx;
6710
6711         /*
6712          * If we 'fail' here, that's OK, it means recursion is already disabled
6713          * and we won't recurse 'further'.
6714          */
6715         rctx = perf_swevent_get_recursion_context();
6716
6717         /*
6718          * The wakeup isn't bound to the context of the event -- it can happen
6719          * irrespective of where the event is.
6720          */
6721         if (event->pending_wakeup) {
6722                 event->pending_wakeup = 0;
6723                 perf_event_wakeup(event);
6724         }
6725
6726         __perf_pending_irq(event);
6727
6728         if (rctx >= 0)
6729                 perf_swevent_put_recursion_context(rctx);
6730 }
6731
6732 static void perf_pending_task(struct callback_head *head)
6733 {
6734         struct perf_event *event = container_of(head, struct perf_event, pending_task);
6735         int rctx;
6736
6737         /*
6738          * If we 'fail' here, that's OK, it means recursion is already disabled
6739          * and we won't recurse 'further'.
6740          */
6741         preempt_disable_notrace();
6742         rctx = perf_swevent_get_recursion_context();
6743
6744         if (event->pending_work) {
6745                 event->pending_work = 0;
6746                 perf_sigtrap(event);
6747                 local_dec(&event->ctx->nr_pending);
6748         }
6749
6750         if (rctx >= 0)
6751                 perf_swevent_put_recursion_context(rctx);
6752         preempt_enable_notrace();
6753
6754         put_event(event);
6755 }
6756
6757 #ifdef CONFIG_GUEST_PERF_EVENTS
6758 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6759
6760 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6761 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6762 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6763
6764 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6765 {
6766         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6767                 return;
6768
6769         rcu_assign_pointer(perf_guest_cbs, cbs);
6770         static_call_update(__perf_guest_state, cbs->state);
6771         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6772
6773         /* Implementing ->handle_intel_pt_intr is optional. */
6774         if (cbs->handle_intel_pt_intr)
6775                 static_call_update(__perf_guest_handle_intel_pt_intr,
6776                                    cbs->handle_intel_pt_intr);
6777 }
6778 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6779
6780 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6781 {
6782         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6783                 return;
6784
6785         rcu_assign_pointer(perf_guest_cbs, NULL);
6786         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6787         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6788         static_call_update(__perf_guest_handle_intel_pt_intr,
6789                            (void *)&__static_call_return0);
6790         synchronize_rcu();
6791 }
6792 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6793 #endif
6794
6795 static void
6796 perf_output_sample_regs(struct perf_output_handle *handle,
6797                         struct pt_regs *regs, u64 mask)
6798 {
6799         int bit;
6800         DECLARE_BITMAP(_mask, 64);
6801
6802         bitmap_from_u64(_mask, mask);
6803         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6804                 u64 val;
6805
6806                 val = perf_reg_value(regs, bit);
6807                 perf_output_put(handle, val);
6808         }
6809 }
6810
6811 static void perf_sample_regs_user(struct perf_regs *regs_user,
6812                                   struct pt_regs *regs)
6813 {
6814         if (user_mode(regs)) {
6815                 regs_user->abi = perf_reg_abi(current);
6816                 regs_user->regs = regs;
6817         } else if (!(current->flags & PF_KTHREAD)) {
6818                 perf_get_regs_user(regs_user, regs);
6819         } else {
6820                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6821                 regs_user->regs = NULL;
6822         }
6823 }
6824
6825 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6826                                   struct pt_regs *regs)
6827 {
6828         regs_intr->regs = regs;
6829         regs_intr->abi  = perf_reg_abi(current);
6830 }
6831
6832
6833 /*
6834  * Get remaining task size from user stack pointer.
6835  *
6836  * It'd be better to take stack vma map and limit this more
6837  * precisely, but there's no way to get it safely under interrupt,
6838  * so using TASK_SIZE as limit.
6839  */
6840 static u64 perf_ustack_task_size(struct pt_regs *regs)
6841 {
6842         unsigned long addr = perf_user_stack_pointer(regs);
6843
6844         if (!addr || addr >= TASK_SIZE)
6845                 return 0;
6846
6847         return TASK_SIZE - addr;
6848 }
6849
6850 static u16
6851 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6852                         struct pt_regs *regs)
6853 {
6854         u64 task_size;
6855
6856         /* No regs, no stack pointer, no dump. */
6857         if (!regs)
6858                 return 0;
6859
6860         /*
6861          * Check if we fit in with the requested stack size into the:
6862          * - TASK_SIZE
6863          *   If we don't, we limit the size to the TASK_SIZE.
6864          *
6865          * - remaining sample size
6866          *   If we don't, we customize the stack size to
6867          *   fit in to the remaining sample size.
6868          */
6869
6870         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6871         stack_size = min(stack_size, (u16) task_size);
6872
6873         /* Current header size plus static size and dynamic size. */
6874         header_size += 2 * sizeof(u64);
6875
6876         /* Do we fit in with the current stack dump size? */
6877         if ((u16) (header_size + stack_size) < header_size) {
6878                 /*
6879                  * If we overflow the maximum size for the sample,
6880                  * we customize the stack dump size to fit in.
6881                  */
6882                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6883                 stack_size = round_up(stack_size, sizeof(u64));
6884         }
6885
6886         return stack_size;
6887 }
6888
6889 static void
6890 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6891                           struct pt_regs *regs)
6892 {
6893         /* Case of a kernel thread, nothing to dump */
6894         if (!regs) {
6895                 u64 size = 0;
6896                 perf_output_put(handle, size);
6897         } else {
6898                 unsigned long sp;
6899                 unsigned int rem;
6900                 u64 dyn_size;
6901
6902                 /*
6903                  * We dump:
6904                  * static size
6905                  *   - the size requested by user or the best one we can fit
6906                  *     in to the sample max size
6907                  * data
6908                  *   - user stack dump data
6909                  * dynamic size
6910                  *   - the actual dumped size
6911                  */
6912
6913                 /* Static size. */
6914                 perf_output_put(handle, dump_size);
6915
6916                 /* Data. */
6917                 sp = perf_user_stack_pointer(regs);
6918                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6919                 dyn_size = dump_size - rem;
6920
6921                 perf_output_skip(handle, rem);
6922
6923                 /* Dynamic size. */
6924                 perf_output_put(handle, dyn_size);
6925         }
6926 }
6927
6928 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6929                                           struct perf_sample_data *data,
6930                                           size_t size)
6931 {
6932         struct perf_event *sampler = event->aux_event;
6933         struct perf_buffer *rb;
6934
6935         data->aux_size = 0;
6936
6937         if (!sampler)
6938                 goto out;
6939
6940         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6941                 goto out;
6942
6943         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6944                 goto out;
6945
6946         rb = ring_buffer_get(sampler);
6947         if (!rb)
6948                 goto out;
6949
6950         /*
6951          * If this is an NMI hit inside sampling code, don't take
6952          * the sample. See also perf_aux_sample_output().
6953          */
6954         if (READ_ONCE(rb->aux_in_sampling)) {
6955                 data->aux_size = 0;
6956         } else {
6957                 size = min_t(size_t, size, perf_aux_size(rb));
6958                 data->aux_size = ALIGN(size, sizeof(u64));
6959         }
6960         ring_buffer_put(rb);
6961
6962 out:
6963         return data->aux_size;
6964 }
6965
6966 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6967                                  struct perf_event *event,
6968                                  struct perf_output_handle *handle,
6969                                  unsigned long size)
6970 {
6971         unsigned long flags;
6972         long ret;
6973
6974         /*
6975          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6976          * paths. If we start calling them in NMI context, they may race with
6977          * the IRQ ones, that is, for example, re-starting an event that's just
6978          * been stopped, which is why we're using a separate callback that
6979          * doesn't change the event state.
6980          *
6981          * IRQs need to be disabled to prevent IPIs from racing with us.
6982          */
6983         local_irq_save(flags);
6984         /*
6985          * Guard against NMI hits inside the critical section;
6986          * see also perf_prepare_sample_aux().
6987          */
6988         WRITE_ONCE(rb->aux_in_sampling, 1);
6989         barrier();
6990
6991         ret = event->pmu->snapshot_aux(event, handle, size);
6992
6993         barrier();
6994         WRITE_ONCE(rb->aux_in_sampling, 0);
6995         local_irq_restore(flags);
6996
6997         return ret;
6998 }
6999
7000 static void perf_aux_sample_output(struct perf_event *event,
7001                                    struct perf_output_handle *handle,
7002                                    struct perf_sample_data *data)
7003 {
7004         struct perf_event *sampler = event->aux_event;
7005         struct perf_buffer *rb;
7006         unsigned long pad;
7007         long size;
7008
7009         if (WARN_ON_ONCE(!sampler || !data->aux_size))
7010                 return;
7011
7012         rb = ring_buffer_get(sampler);
7013         if (!rb)
7014                 return;
7015
7016         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7017
7018         /*
7019          * An error here means that perf_output_copy() failed (returned a
7020          * non-zero surplus that it didn't copy), which in its current
7021          * enlightened implementation is not possible. If that changes, we'd
7022          * like to know.
7023          */
7024         if (WARN_ON_ONCE(size < 0))
7025                 goto out_put;
7026
7027         /*
7028          * The pad comes from ALIGN()ing data->aux_size up to u64 in
7029          * perf_prepare_sample_aux(), so should not be more than that.
7030          */
7031         pad = data->aux_size - size;
7032         if (WARN_ON_ONCE(pad >= sizeof(u64)))
7033                 pad = 8;
7034
7035         if (pad) {
7036                 u64 zero = 0;
7037                 perf_output_copy(handle, &zero, pad);
7038         }
7039
7040 out_put:
7041         ring_buffer_put(rb);
7042 }
7043
7044 /*
7045  * A set of common sample data types saved even for non-sample records
7046  * when event->attr.sample_id_all is set.
7047  */
7048 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |       \
7049                              PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |   \
7050                              PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7051
7052 static void __perf_event_header__init_id(struct perf_sample_data *data,
7053                                          struct perf_event *event,
7054                                          u64 sample_type)
7055 {
7056         data->type = event->attr.sample_type;
7057         data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7058
7059         if (sample_type & PERF_SAMPLE_TID) {
7060                 /* namespace issues */
7061                 data->tid_entry.pid = perf_event_pid(event, current);
7062                 data->tid_entry.tid = perf_event_tid(event, current);
7063         }
7064
7065         if (sample_type & PERF_SAMPLE_TIME)
7066                 data->time = perf_event_clock(event);
7067
7068         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7069                 data->id = primary_event_id(event);
7070
7071         if (sample_type & PERF_SAMPLE_STREAM_ID)
7072                 data->stream_id = event->id;
7073
7074         if (sample_type & PERF_SAMPLE_CPU) {
7075                 data->cpu_entry.cpu      = raw_smp_processor_id();
7076                 data->cpu_entry.reserved = 0;
7077         }
7078 }
7079
7080 void perf_event_header__init_id(struct perf_event_header *header,
7081                                 struct perf_sample_data *data,
7082                                 struct perf_event *event)
7083 {
7084         if (event->attr.sample_id_all) {
7085                 header->size += event->id_header_size;
7086                 __perf_event_header__init_id(data, event, event->attr.sample_type);
7087         }
7088 }
7089
7090 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7091                                            struct perf_sample_data *data)
7092 {
7093         u64 sample_type = data->type;
7094
7095         if (sample_type & PERF_SAMPLE_TID)
7096                 perf_output_put(handle, data->tid_entry);
7097
7098         if (sample_type & PERF_SAMPLE_TIME)
7099                 perf_output_put(handle, data->time);
7100
7101         if (sample_type & PERF_SAMPLE_ID)
7102                 perf_output_put(handle, data->id);
7103
7104         if (sample_type & PERF_SAMPLE_STREAM_ID)
7105                 perf_output_put(handle, data->stream_id);
7106
7107         if (sample_type & PERF_SAMPLE_CPU)
7108                 perf_output_put(handle, data->cpu_entry);
7109
7110         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7111                 perf_output_put(handle, data->id);
7112 }
7113
7114 void perf_event__output_id_sample(struct perf_event *event,
7115                                   struct perf_output_handle *handle,
7116                                   struct perf_sample_data *sample)
7117 {
7118         if (event->attr.sample_id_all)
7119                 __perf_event__output_id_sample(handle, sample);
7120 }
7121
7122 static void perf_output_read_one(struct perf_output_handle *handle,
7123                                  struct perf_event *event,
7124                                  u64 enabled, u64 running)
7125 {
7126         u64 read_format = event->attr.read_format;
7127         u64 values[5];
7128         int n = 0;
7129
7130         values[n++] = perf_event_count(event);
7131         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7132                 values[n++] = enabled +
7133                         atomic64_read(&event->child_total_time_enabled);
7134         }
7135         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7136                 values[n++] = running +
7137                         atomic64_read(&event->child_total_time_running);
7138         }
7139         if (read_format & PERF_FORMAT_ID)
7140                 values[n++] = primary_event_id(event);
7141         if (read_format & PERF_FORMAT_LOST)
7142                 values[n++] = atomic64_read(&event->lost_samples);
7143
7144         __output_copy(handle, values, n * sizeof(u64));
7145 }
7146
7147 static void perf_output_read_group(struct perf_output_handle *handle,
7148                             struct perf_event *event,
7149                             u64 enabled, u64 running)
7150 {
7151         struct perf_event *leader = event->group_leader, *sub;
7152         u64 read_format = event->attr.read_format;
7153         unsigned long flags;
7154         u64 values[6];
7155         int n = 0;
7156
7157         /*
7158          * Disabling interrupts avoids all counter scheduling
7159          * (context switches, timer based rotation and IPIs).
7160          */
7161         local_irq_save(flags);
7162
7163         values[n++] = 1 + leader->nr_siblings;
7164
7165         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7166                 values[n++] = enabled;
7167
7168         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7169                 values[n++] = running;
7170
7171         if ((leader != event) &&
7172             (leader->state == PERF_EVENT_STATE_ACTIVE))
7173                 leader->pmu->read(leader);
7174
7175         values[n++] = perf_event_count(leader);
7176         if (read_format & PERF_FORMAT_ID)
7177                 values[n++] = primary_event_id(leader);
7178         if (read_format & PERF_FORMAT_LOST)
7179                 values[n++] = atomic64_read(&leader->lost_samples);
7180
7181         __output_copy(handle, values, n * sizeof(u64));
7182
7183         for_each_sibling_event(sub, leader) {
7184                 n = 0;
7185
7186                 if ((sub != event) &&
7187                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7188                         sub->pmu->read(sub);
7189
7190                 values[n++] = perf_event_count(sub);
7191                 if (read_format & PERF_FORMAT_ID)
7192                         values[n++] = primary_event_id(sub);
7193                 if (read_format & PERF_FORMAT_LOST)
7194                         values[n++] = atomic64_read(&sub->lost_samples);
7195
7196                 __output_copy(handle, values, n * sizeof(u64));
7197         }
7198
7199         local_irq_restore(flags);
7200 }
7201
7202 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7203                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7204
7205 /*
7206  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7207  *
7208  * The problem is that its both hard and excessively expensive to iterate the
7209  * child list, not to mention that its impossible to IPI the children running
7210  * on another CPU, from interrupt/NMI context.
7211  */
7212 static void perf_output_read(struct perf_output_handle *handle,
7213                              struct perf_event *event)
7214 {
7215         u64 enabled = 0, running = 0, now;
7216         u64 read_format = event->attr.read_format;
7217
7218         /*
7219          * compute total_time_enabled, total_time_running
7220          * based on snapshot values taken when the event
7221          * was last scheduled in.
7222          *
7223          * we cannot simply called update_context_time()
7224          * because of locking issue as we are called in
7225          * NMI context
7226          */
7227         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7228                 calc_timer_values(event, &now, &enabled, &running);
7229
7230         if (event->attr.read_format & PERF_FORMAT_GROUP)
7231                 perf_output_read_group(handle, event, enabled, running);
7232         else
7233                 perf_output_read_one(handle, event, enabled, running);
7234 }
7235
7236 void perf_output_sample(struct perf_output_handle *handle,
7237                         struct perf_event_header *header,
7238                         struct perf_sample_data *data,
7239                         struct perf_event *event)
7240 {
7241         u64 sample_type = data->type;
7242
7243         perf_output_put(handle, *header);
7244
7245         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7246                 perf_output_put(handle, data->id);
7247
7248         if (sample_type & PERF_SAMPLE_IP)
7249                 perf_output_put(handle, data->ip);
7250
7251         if (sample_type & PERF_SAMPLE_TID)
7252                 perf_output_put(handle, data->tid_entry);
7253
7254         if (sample_type & PERF_SAMPLE_TIME)
7255                 perf_output_put(handle, data->time);
7256
7257         if (sample_type & PERF_SAMPLE_ADDR)
7258                 perf_output_put(handle, data->addr);
7259
7260         if (sample_type & PERF_SAMPLE_ID)
7261                 perf_output_put(handle, data->id);
7262
7263         if (sample_type & PERF_SAMPLE_STREAM_ID)
7264                 perf_output_put(handle, data->stream_id);
7265
7266         if (sample_type & PERF_SAMPLE_CPU)
7267                 perf_output_put(handle, data->cpu_entry);
7268
7269         if (sample_type & PERF_SAMPLE_PERIOD)
7270                 perf_output_put(handle, data->period);
7271
7272         if (sample_type & PERF_SAMPLE_READ)
7273                 perf_output_read(handle, event);
7274
7275         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7276                 int size = 1;
7277
7278                 size += data->callchain->nr;
7279                 size *= sizeof(u64);
7280                 __output_copy(handle, data->callchain, size);
7281         }
7282
7283         if (sample_type & PERF_SAMPLE_RAW) {
7284                 struct perf_raw_record *raw = data->raw;
7285
7286                 if (raw) {
7287                         struct perf_raw_frag *frag = &raw->frag;
7288
7289                         perf_output_put(handle, raw->size);
7290                         do {
7291                                 if (frag->copy) {
7292                                         __output_custom(handle, frag->copy,
7293                                                         frag->data, frag->size);
7294                                 } else {
7295                                         __output_copy(handle, frag->data,
7296                                                       frag->size);
7297                                 }
7298                                 if (perf_raw_frag_last(frag))
7299                                         break;
7300                                 frag = frag->next;
7301                         } while (1);
7302                         if (frag->pad)
7303                                 __output_skip(handle, NULL, frag->pad);
7304                 } else {
7305                         struct {
7306                                 u32     size;
7307                                 u32     data;
7308                         } raw = {
7309                                 .size = sizeof(u32),
7310                                 .data = 0,
7311                         };
7312                         perf_output_put(handle, raw);
7313                 }
7314         }
7315
7316         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7317                 if (data->br_stack) {
7318                         size_t size;
7319
7320                         size = data->br_stack->nr
7321                              * sizeof(struct perf_branch_entry);
7322
7323                         perf_output_put(handle, data->br_stack->nr);
7324                         if (branch_sample_hw_index(event))
7325                                 perf_output_put(handle, data->br_stack->hw_idx);
7326                         perf_output_copy(handle, data->br_stack->entries, size);
7327                 } else {
7328                         /*
7329                          * we always store at least the value of nr
7330                          */
7331                         u64 nr = 0;
7332                         perf_output_put(handle, nr);
7333                 }
7334         }
7335
7336         if (sample_type & PERF_SAMPLE_REGS_USER) {
7337                 u64 abi = data->regs_user.abi;
7338
7339                 /*
7340                  * If there are no regs to dump, notice it through
7341                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7342                  */
7343                 perf_output_put(handle, abi);
7344
7345                 if (abi) {
7346                         u64 mask = event->attr.sample_regs_user;
7347                         perf_output_sample_regs(handle,
7348                                                 data->regs_user.regs,
7349                                                 mask);
7350                 }
7351         }
7352
7353         if (sample_type & PERF_SAMPLE_STACK_USER) {
7354                 perf_output_sample_ustack(handle,
7355                                           data->stack_user_size,
7356                                           data->regs_user.regs);
7357         }
7358
7359         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7360                 perf_output_put(handle, data->weight.full);
7361
7362         if (sample_type & PERF_SAMPLE_DATA_SRC)
7363                 perf_output_put(handle, data->data_src.val);
7364
7365         if (sample_type & PERF_SAMPLE_TRANSACTION)
7366                 perf_output_put(handle, data->txn);
7367
7368         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7369                 u64 abi = data->regs_intr.abi;
7370                 /*
7371                  * If there are no regs to dump, notice it through
7372                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7373                  */
7374                 perf_output_put(handle, abi);
7375
7376                 if (abi) {
7377                         u64 mask = event->attr.sample_regs_intr;
7378
7379                         perf_output_sample_regs(handle,
7380                                                 data->regs_intr.regs,
7381                                                 mask);
7382                 }
7383         }
7384
7385         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7386                 perf_output_put(handle, data->phys_addr);
7387
7388         if (sample_type & PERF_SAMPLE_CGROUP)
7389                 perf_output_put(handle, data->cgroup);
7390
7391         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7392                 perf_output_put(handle, data->data_page_size);
7393
7394         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7395                 perf_output_put(handle, data->code_page_size);
7396
7397         if (sample_type & PERF_SAMPLE_AUX) {
7398                 perf_output_put(handle, data->aux_size);
7399
7400                 if (data->aux_size)
7401                         perf_aux_sample_output(event, handle, data);
7402         }
7403
7404         if (!event->attr.watermark) {
7405                 int wakeup_events = event->attr.wakeup_events;
7406
7407                 if (wakeup_events) {
7408                         struct perf_buffer *rb = handle->rb;
7409                         int events = local_inc_return(&rb->events);
7410
7411                         if (events >= wakeup_events) {
7412                                 local_sub(wakeup_events, &rb->events);
7413                                 local_inc(&rb->wakeup);
7414                         }
7415                 }
7416         }
7417 }
7418
7419 static u64 perf_virt_to_phys(u64 virt)
7420 {
7421         u64 phys_addr = 0;
7422
7423         if (!virt)
7424                 return 0;
7425
7426         if (virt >= TASK_SIZE) {
7427                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7428                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7429                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7430                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7431         } else {
7432                 /*
7433                  * Walking the pages tables for user address.
7434                  * Interrupts are disabled, so it prevents any tear down
7435                  * of the page tables.
7436                  * Try IRQ-safe get_user_page_fast_only first.
7437                  * If failed, leave phys_addr as 0.
7438                  */
7439                 if (current->mm != NULL) {
7440                         struct page *p;
7441
7442                         pagefault_disable();
7443                         if (get_user_page_fast_only(virt, 0, &p)) {
7444                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7445                                 put_page(p);
7446                         }
7447                         pagefault_enable();
7448                 }
7449         }
7450
7451         return phys_addr;
7452 }
7453
7454 /*
7455  * Return the pagetable size of a given virtual address.
7456  */
7457 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7458 {
7459         u64 size = 0;
7460
7461 #ifdef CONFIG_HAVE_FAST_GUP
7462         pgd_t *pgdp, pgd;
7463         p4d_t *p4dp, p4d;
7464         pud_t *pudp, pud;
7465         pmd_t *pmdp, pmd;
7466         pte_t *ptep, pte;
7467
7468         pgdp = pgd_offset(mm, addr);
7469         pgd = READ_ONCE(*pgdp);
7470         if (pgd_none(pgd))
7471                 return 0;
7472
7473         if (pgd_leaf(pgd))
7474                 return pgd_leaf_size(pgd);
7475
7476         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7477         p4d = READ_ONCE(*p4dp);
7478         if (!p4d_present(p4d))
7479                 return 0;
7480
7481         if (p4d_leaf(p4d))
7482                 return p4d_leaf_size(p4d);
7483
7484         pudp = pud_offset_lockless(p4dp, p4d, addr);
7485         pud = READ_ONCE(*pudp);
7486         if (!pud_present(pud))
7487                 return 0;
7488
7489         if (pud_leaf(pud))
7490                 return pud_leaf_size(pud);
7491
7492         pmdp = pmd_offset_lockless(pudp, pud, addr);
7493 again:
7494         pmd = pmdp_get_lockless(pmdp);
7495         if (!pmd_present(pmd))
7496                 return 0;
7497
7498         if (pmd_leaf(pmd))
7499                 return pmd_leaf_size(pmd);
7500
7501         ptep = pte_offset_map(&pmd, addr);
7502         if (!ptep)
7503                 goto again;
7504
7505         pte = ptep_get_lockless(ptep);
7506         if (pte_present(pte))
7507                 size = pte_leaf_size(pte);
7508         pte_unmap(ptep);
7509 #endif /* CONFIG_HAVE_FAST_GUP */
7510
7511         return size;
7512 }
7513
7514 static u64 perf_get_page_size(unsigned long addr)
7515 {
7516         struct mm_struct *mm;
7517         unsigned long flags;
7518         u64 size;
7519
7520         if (!addr)
7521                 return 0;
7522
7523         /*
7524          * Software page-table walkers must disable IRQs,
7525          * which prevents any tear down of the page tables.
7526          */
7527         local_irq_save(flags);
7528
7529         mm = current->mm;
7530         if (!mm) {
7531                 /*
7532                  * For kernel threads and the like, use init_mm so that
7533                  * we can find kernel memory.
7534                  */
7535                 mm = &init_mm;
7536         }
7537
7538         size = perf_get_pgtable_size(mm, addr);
7539
7540         local_irq_restore(flags);
7541
7542         return size;
7543 }
7544
7545 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7546
7547 struct perf_callchain_entry *
7548 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7549 {
7550         bool kernel = !event->attr.exclude_callchain_kernel;
7551         bool user   = !event->attr.exclude_callchain_user;
7552         /* Disallow cross-task user callchains. */
7553         bool crosstask = event->ctx->task && event->ctx->task != current;
7554         const u32 max_stack = event->attr.sample_max_stack;
7555         struct perf_callchain_entry *callchain;
7556
7557         if (!kernel && !user)
7558                 return &__empty_callchain;
7559
7560         callchain = get_perf_callchain(regs, 0, kernel, user,
7561                                        max_stack, crosstask, true);
7562         return callchain ?: &__empty_callchain;
7563 }
7564
7565 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7566 {
7567         return d * !!(flags & s);
7568 }
7569
7570 void perf_prepare_sample(struct perf_sample_data *data,
7571                          struct perf_event *event,
7572                          struct pt_regs *regs)
7573 {
7574         u64 sample_type = event->attr.sample_type;
7575         u64 filtered_sample_type;
7576
7577         /*
7578          * Add the sample flags that are dependent to others.  And clear the
7579          * sample flags that have already been done by the PMU driver.
7580          */
7581         filtered_sample_type = sample_type;
7582         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7583                                            PERF_SAMPLE_IP);
7584         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7585                                            PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7586         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7587                                            PERF_SAMPLE_REGS_USER);
7588         filtered_sample_type &= ~data->sample_flags;
7589
7590         if (filtered_sample_type == 0) {
7591                 /* Make sure it has the correct data->type for output */
7592                 data->type = event->attr.sample_type;
7593                 return;
7594         }
7595
7596         __perf_event_header__init_id(data, event, filtered_sample_type);
7597
7598         if (filtered_sample_type & PERF_SAMPLE_IP) {
7599                 data->ip = perf_instruction_pointer(regs);
7600                 data->sample_flags |= PERF_SAMPLE_IP;
7601         }
7602
7603         if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7604                 perf_sample_save_callchain(data, event, regs);
7605
7606         if (filtered_sample_type & PERF_SAMPLE_RAW) {
7607                 data->raw = NULL;
7608                 data->dyn_size += sizeof(u64);
7609                 data->sample_flags |= PERF_SAMPLE_RAW;
7610         }
7611
7612         if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7613                 data->br_stack = NULL;
7614                 data->dyn_size += sizeof(u64);
7615                 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7616         }
7617
7618         if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7619                 perf_sample_regs_user(&data->regs_user, regs);
7620
7621         /*
7622          * It cannot use the filtered_sample_type here as REGS_USER can be set
7623          * by STACK_USER (using __cond_set() above) and we don't want to update
7624          * the dyn_size if it's not requested by users.
7625          */
7626         if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7627                 /* regs dump ABI info */
7628                 int size = sizeof(u64);
7629
7630                 if (data->regs_user.regs) {
7631                         u64 mask = event->attr.sample_regs_user;
7632                         size += hweight64(mask) * sizeof(u64);
7633                 }
7634
7635                 data->dyn_size += size;
7636                 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7637         }
7638
7639         if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7640                 /*
7641                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7642                  * processed as the last one or have additional check added
7643                  * in case new sample type is added, because we could eat
7644                  * up the rest of the sample size.
7645                  */
7646                 u16 stack_size = event->attr.sample_stack_user;
7647                 u16 header_size = perf_sample_data_size(data, event);
7648                 u16 size = sizeof(u64);
7649
7650                 stack_size = perf_sample_ustack_size(stack_size, header_size,
7651                                                      data->regs_user.regs);
7652
7653                 /*
7654                  * If there is something to dump, add space for the dump
7655                  * itself and for the field that tells the dynamic size,
7656                  * which is how many have been actually dumped.
7657                  */
7658                 if (stack_size)
7659                         size += sizeof(u64) + stack_size;
7660
7661                 data->stack_user_size = stack_size;
7662                 data->dyn_size += size;
7663                 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7664         }
7665
7666         if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7667                 data->weight.full = 0;
7668                 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7669         }
7670
7671         if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7672                 data->data_src.val = PERF_MEM_NA;
7673                 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7674         }
7675
7676         if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7677                 data->txn = 0;
7678                 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7679         }
7680
7681         if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7682                 data->addr = 0;
7683                 data->sample_flags |= PERF_SAMPLE_ADDR;
7684         }
7685
7686         if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7687                 /* regs dump ABI info */
7688                 int size = sizeof(u64);
7689
7690                 perf_sample_regs_intr(&data->regs_intr, regs);
7691
7692                 if (data->regs_intr.regs) {
7693                         u64 mask = event->attr.sample_regs_intr;
7694
7695                         size += hweight64(mask) * sizeof(u64);
7696                 }
7697
7698                 data->dyn_size += size;
7699                 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7700         }
7701
7702         if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7703                 data->phys_addr = perf_virt_to_phys(data->addr);
7704                 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7705         }
7706
7707 #ifdef CONFIG_CGROUP_PERF
7708         if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7709                 struct cgroup *cgrp;
7710
7711                 /* protected by RCU */
7712                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7713                 data->cgroup = cgroup_id(cgrp);
7714                 data->sample_flags |= PERF_SAMPLE_CGROUP;
7715         }
7716 #endif
7717
7718         /*
7719          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7720          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7721          * but the value will not dump to the userspace.
7722          */
7723         if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7724                 data->data_page_size = perf_get_page_size(data->addr);
7725                 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7726         }
7727
7728         if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7729                 data->code_page_size = perf_get_page_size(data->ip);
7730                 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7731         }
7732
7733         if (filtered_sample_type & PERF_SAMPLE_AUX) {
7734                 u64 size;
7735                 u16 header_size = perf_sample_data_size(data, event);
7736
7737                 header_size += sizeof(u64); /* size */
7738
7739                 /*
7740                  * Given the 16bit nature of header::size, an AUX sample can
7741                  * easily overflow it, what with all the preceding sample bits.
7742                  * Make sure this doesn't happen by using up to U16_MAX bytes
7743                  * per sample in total (rounded down to 8 byte boundary).
7744                  */
7745                 size = min_t(size_t, U16_MAX - header_size,
7746                              event->attr.aux_sample_size);
7747                 size = rounddown(size, 8);
7748                 size = perf_prepare_sample_aux(event, data, size);
7749
7750                 WARN_ON_ONCE(size + header_size > U16_MAX);
7751                 data->dyn_size += size + sizeof(u64); /* size above */
7752                 data->sample_flags |= PERF_SAMPLE_AUX;
7753         }
7754 }
7755
7756 void perf_prepare_header(struct perf_event_header *header,
7757                          struct perf_sample_data *data,
7758                          struct perf_event *event,
7759                          struct pt_regs *regs)
7760 {
7761         header->type = PERF_RECORD_SAMPLE;
7762         header->size = perf_sample_data_size(data, event);
7763         header->misc = perf_misc_flags(regs);
7764
7765         /*
7766          * If you're adding more sample types here, you likely need to do
7767          * something about the overflowing header::size, like repurpose the
7768          * lowest 3 bits of size, which should be always zero at the moment.
7769          * This raises a more important question, do we really need 512k sized
7770          * samples and why, so good argumentation is in order for whatever you
7771          * do here next.
7772          */
7773         WARN_ON_ONCE(header->size & 7);
7774 }
7775
7776 static __always_inline int
7777 __perf_event_output(struct perf_event *event,
7778                     struct perf_sample_data *data,
7779                     struct pt_regs *regs,
7780                     int (*output_begin)(struct perf_output_handle *,
7781                                         struct perf_sample_data *,
7782                                         struct perf_event *,
7783                                         unsigned int))
7784 {
7785         struct perf_output_handle handle;
7786         struct perf_event_header header;
7787         int err;
7788
7789         /* protect the callchain buffers */
7790         rcu_read_lock();
7791
7792         perf_prepare_sample(data, event, regs);
7793         perf_prepare_header(&header, data, event, regs);
7794
7795         err = output_begin(&handle, data, event, header.size);
7796         if (err)
7797                 goto exit;
7798
7799         perf_output_sample(&handle, &header, data, event);
7800
7801         perf_output_end(&handle);
7802
7803 exit:
7804         rcu_read_unlock();
7805         return err;
7806 }
7807
7808 void
7809 perf_event_output_forward(struct perf_event *event,
7810                          struct perf_sample_data *data,
7811                          struct pt_regs *regs)
7812 {
7813         __perf_event_output(event, data, regs, perf_output_begin_forward);
7814 }
7815
7816 void
7817 perf_event_output_backward(struct perf_event *event,
7818                            struct perf_sample_data *data,
7819                            struct pt_regs *regs)
7820 {
7821         __perf_event_output(event, data, regs, perf_output_begin_backward);
7822 }
7823
7824 int
7825 perf_event_output(struct perf_event *event,
7826                   struct perf_sample_data *data,
7827                   struct pt_regs *regs)
7828 {
7829         return __perf_event_output(event, data, regs, perf_output_begin);
7830 }
7831
7832 /*
7833  * read event_id
7834  */
7835
7836 struct perf_read_event {
7837         struct perf_event_header        header;
7838
7839         u32                             pid;
7840         u32                             tid;
7841 };
7842
7843 static void
7844 perf_event_read_event(struct perf_event *event,
7845                         struct task_struct *task)
7846 {
7847         struct perf_output_handle handle;
7848         struct perf_sample_data sample;
7849         struct perf_read_event read_event = {
7850                 .header = {
7851                         .type = PERF_RECORD_READ,
7852                         .misc = 0,
7853                         .size = sizeof(read_event) + event->read_size,
7854                 },
7855                 .pid = perf_event_pid(event, task),
7856                 .tid = perf_event_tid(event, task),
7857         };
7858         int ret;
7859
7860         perf_event_header__init_id(&read_event.header, &sample, event);
7861         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7862         if (ret)
7863                 return;
7864
7865         perf_output_put(&handle, read_event);
7866         perf_output_read(&handle, event);
7867         perf_event__output_id_sample(event, &handle, &sample);
7868
7869         perf_output_end(&handle);
7870 }
7871
7872 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7873
7874 static void
7875 perf_iterate_ctx(struct perf_event_context *ctx,
7876                    perf_iterate_f output,
7877                    void *data, bool all)
7878 {
7879         struct perf_event *event;
7880
7881         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7882                 if (!all) {
7883                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7884                                 continue;
7885                         if (!event_filter_match(event))
7886                                 continue;
7887                 }
7888
7889                 output(event, data);
7890         }
7891 }
7892
7893 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7894 {
7895         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7896         struct perf_event *event;
7897
7898         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7899                 /*
7900                  * Skip events that are not fully formed yet; ensure that
7901                  * if we observe event->ctx, both event and ctx will be
7902                  * complete enough. See perf_install_in_context().
7903                  */
7904                 if (!smp_load_acquire(&event->ctx))
7905                         continue;
7906
7907                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7908                         continue;
7909                 if (!event_filter_match(event))
7910                         continue;
7911                 output(event, data);
7912         }
7913 }
7914
7915 /*
7916  * Iterate all events that need to receive side-band events.
7917  *
7918  * For new callers; ensure that account_pmu_sb_event() includes
7919  * your event, otherwise it might not get delivered.
7920  */
7921 static void
7922 perf_iterate_sb(perf_iterate_f output, void *data,
7923                struct perf_event_context *task_ctx)
7924 {
7925         struct perf_event_context *ctx;
7926
7927         rcu_read_lock();
7928         preempt_disable();
7929
7930         /*
7931          * If we have task_ctx != NULL we only notify the task context itself.
7932          * The task_ctx is set only for EXIT events before releasing task
7933          * context.
7934          */
7935         if (task_ctx) {
7936                 perf_iterate_ctx(task_ctx, output, data, false);
7937                 goto done;
7938         }
7939
7940         perf_iterate_sb_cpu(output, data);
7941
7942         ctx = rcu_dereference(current->perf_event_ctxp);
7943         if (ctx)
7944                 perf_iterate_ctx(ctx, output, data, false);
7945 done:
7946         preempt_enable();
7947         rcu_read_unlock();
7948 }
7949
7950 /*
7951  * Clear all file-based filters at exec, they'll have to be
7952  * re-instated when/if these objects are mmapped again.
7953  */
7954 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7955 {
7956         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7957         struct perf_addr_filter *filter;
7958         unsigned int restart = 0, count = 0;
7959         unsigned long flags;
7960
7961         if (!has_addr_filter(event))
7962                 return;
7963
7964         raw_spin_lock_irqsave(&ifh->lock, flags);
7965         list_for_each_entry(filter, &ifh->list, entry) {
7966                 if (filter->path.dentry) {
7967                         event->addr_filter_ranges[count].start = 0;
7968                         event->addr_filter_ranges[count].size = 0;
7969                         restart++;
7970                 }
7971
7972                 count++;
7973         }
7974
7975         if (restart)
7976                 event->addr_filters_gen++;
7977         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7978
7979         if (restart)
7980                 perf_event_stop(event, 1);
7981 }
7982
7983 void perf_event_exec(void)
7984 {
7985         struct perf_event_context *ctx;
7986
7987         ctx = perf_pin_task_context(current);
7988         if (!ctx)
7989                 return;
7990
7991         perf_event_enable_on_exec(ctx);
7992         perf_event_remove_on_exec(ctx);
7993         perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
7994
7995         perf_unpin_context(ctx);
7996         put_ctx(ctx);
7997 }
7998
7999 struct remote_output {
8000         struct perf_buffer      *rb;
8001         int                     err;
8002 };
8003
8004 static void __perf_event_output_stop(struct perf_event *event, void *data)
8005 {
8006         struct perf_event *parent = event->parent;
8007         struct remote_output *ro = data;
8008         struct perf_buffer *rb = ro->rb;
8009         struct stop_event_data sd = {
8010                 .event  = event,
8011         };
8012
8013         if (!has_aux(event))
8014                 return;
8015
8016         if (!parent)
8017                 parent = event;
8018
8019         /*
8020          * In case of inheritance, it will be the parent that links to the
8021          * ring-buffer, but it will be the child that's actually using it.
8022          *
8023          * We are using event::rb to determine if the event should be stopped,
8024          * however this may race with ring_buffer_attach() (through set_output),
8025          * which will make us skip the event that actually needs to be stopped.
8026          * So ring_buffer_attach() has to stop an aux event before re-assigning
8027          * its rb pointer.
8028          */
8029         if (rcu_dereference(parent->rb) == rb)
8030                 ro->err = __perf_event_stop(&sd);
8031 }
8032
8033 static int __perf_pmu_output_stop(void *info)
8034 {
8035         struct perf_event *event = info;
8036         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8037         struct remote_output ro = {
8038                 .rb     = event->rb,
8039         };
8040
8041         rcu_read_lock();
8042         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8043         if (cpuctx->task_ctx)
8044                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8045                                    &ro, false);
8046         rcu_read_unlock();
8047
8048         return ro.err;
8049 }
8050
8051 static void perf_pmu_output_stop(struct perf_event *event)
8052 {
8053         struct perf_event *iter;
8054         int err, cpu;
8055
8056 restart:
8057         rcu_read_lock();
8058         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8059                 /*
8060                  * For per-CPU events, we need to make sure that neither they
8061                  * nor their children are running; for cpu==-1 events it's
8062                  * sufficient to stop the event itself if it's active, since
8063                  * it can't have children.
8064                  */
8065                 cpu = iter->cpu;
8066                 if (cpu == -1)
8067                         cpu = READ_ONCE(iter->oncpu);
8068
8069                 if (cpu == -1)
8070                         continue;
8071
8072                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8073                 if (err == -EAGAIN) {
8074                         rcu_read_unlock();
8075                         goto restart;
8076                 }
8077         }
8078         rcu_read_unlock();
8079 }
8080
8081 /*
8082  * task tracking -- fork/exit
8083  *
8084  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8085  */
8086
8087 struct perf_task_event {
8088         struct task_struct              *task;
8089         struct perf_event_context       *task_ctx;
8090
8091         struct {
8092                 struct perf_event_header        header;
8093
8094                 u32                             pid;
8095                 u32                             ppid;
8096                 u32                             tid;
8097                 u32                             ptid;
8098                 u64                             time;
8099         } event_id;
8100 };
8101
8102 static int perf_event_task_match(struct perf_event *event)
8103 {
8104         return event->attr.comm  || event->attr.mmap ||
8105                event->attr.mmap2 || event->attr.mmap_data ||
8106                event->attr.task;
8107 }
8108
8109 static void perf_event_task_output(struct perf_event *event,
8110                                    void *data)
8111 {
8112         struct perf_task_event *task_event = data;
8113         struct perf_output_handle handle;
8114         struct perf_sample_data sample;
8115         struct task_struct *task = task_event->task;
8116         int ret, size = task_event->event_id.header.size;
8117
8118         if (!perf_event_task_match(event))
8119                 return;
8120
8121         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8122
8123         ret = perf_output_begin(&handle, &sample, event,
8124                                 task_event->event_id.header.size);
8125         if (ret)
8126                 goto out;
8127
8128         task_event->event_id.pid = perf_event_pid(event, task);
8129         task_event->event_id.tid = perf_event_tid(event, task);
8130
8131         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8132                 task_event->event_id.ppid = perf_event_pid(event,
8133                                                         task->real_parent);
8134                 task_event->event_id.ptid = perf_event_pid(event,
8135                                                         task->real_parent);
8136         } else {  /* PERF_RECORD_FORK */
8137                 task_event->event_id.ppid = perf_event_pid(event, current);
8138                 task_event->event_id.ptid = perf_event_tid(event, current);
8139         }
8140
8141         task_event->event_id.time = perf_event_clock(event);
8142
8143         perf_output_put(&handle, task_event->event_id);
8144
8145         perf_event__output_id_sample(event, &handle, &sample);
8146
8147         perf_output_end(&handle);
8148 out:
8149         task_event->event_id.header.size = size;
8150 }
8151
8152 static void perf_event_task(struct task_struct *task,
8153                               struct perf_event_context *task_ctx,
8154                               int new)
8155 {
8156         struct perf_task_event task_event;
8157
8158         if (!atomic_read(&nr_comm_events) &&
8159             !atomic_read(&nr_mmap_events) &&
8160             !atomic_read(&nr_task_events))
8161                 return;
8162
8163         task_event = (struct perf_task_event){
8164                 .task     = task,
8165                 .task_ctx = task_ctx,
8166                 .event_id    = {
8167                         .header = {
8168                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8169                                 .misc = 0,
8170                                 .size = sizeof(task_event.event_id),
8171                         },
8172                         /* .pid  */
8173                         /* .ppid */
8174                         /* .tid  */
8175                         /* .ptid */
8176                         /* .time */
8177                 },
8178         };
8179
8180         perf_iterate_sb(perf_event_task_output,
8181                        &task_event,
8182                        task_ctx);
8183 }
8184
8185 void perf_event_fork(struct task_struct *task)
8186 {
8187         perf_event_task(task, NULL, 1);
8188         perf_event_namespaces(task);
8189 }
8190
8191 /*
8192  * comm tracking
8193  */
8194
8195 struct perf_comm_event {
8196         struct task_struct      *task;
8197         char                    *comm;
8198         int                     comm_size;
8199
8200         struct {
8201                 struct perf_event_header        header;
8202
8203                 u32                             pid;
8204                 u32                             tid;
8205         } event_id;
8206 };
8207
8208 static int perf_event_comm_match(struct perf_event *event)
8209 {
8210         return event->attr.comm;
8211 }
8212
8213 static void perf_event_comm_output(struct perf_event *event,
8214                                    void *data)
8215 {
8216         struct perf_comm_event *comm_event = data;
8217         struct perf_output_handle handle;
8218         struct perf_sample_data sample;
8219         int size = comm_event->event_id.header.size;
8220         int ret;
8221
8222         if (!perf_event_comm_match(event))
8223                 return;
8224
8225         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8226         ret = perf_output_begin(&handle, &sample, event,
8227                                 comm_event->event_id.header.size);
8228
8229         if (ret)
8230                 goto out;
8231
8232         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8233         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8234
8235         perf_output_put(&handle, comm_event->event_id);
8236         __output_copy(&handle, comm_event->comm,
8237                                    comm_event->comm_size);
8238
8239         perf_event__output_id_sample(event, &handle, &sample);
8240
8241         perf_output_end(&handle);
8242 out:
8243         comm_event->event_id.header.size = size;
8244 }
8245
8246 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8247 {
8248         char comm[TASK_COMM_LEN];
8249         unsigned int size;
8250
8251         memset(comm, 0, sizeof(comm));
8252         strscpy(comm, comm_event->task->comm, sizeof(comm));
8253         size = ALIGN(strlen(comm)+1, sizeof(u64));
8254
8255         comm_event->comm = comm;
8256         comm_event->comm_size = size;
8257
8258         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8259
8260         perf_iterate_sb(perf_event_comm_output,
8261                        comm_event,
8262                        NULL);
8263 }
8264
8265 void perf_event_comm(struct task_struct *task, bool exec)
8266 {
8267         struct perf_comm_event comm_event;
8268
8269         if (!atomic_read(&nr_comm_events))
8270                 return;
8271
8272         comm_event = (struct perf_comm_event){
8273                 .task   = task,
8274                 /* .comm      */
8275                 /* .comm_size */
8276                 .event_id  = {
8277                         .header = {
8278                                 .type = PERF_RECORD_COMM,
8279                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8280                                 /* .size */
8281                         },
8282                         /* .pid */
8283                         /* .tid */
8284                 },
8285         };
8286
8287         perf_event_comm_event(&comm_event);
8288 }
8289
8290 /*
8291  * namespaces tracking
8292  */
8293
8294 struct perf_namespaces_event {
8295         struct task_struct              *task;
8296
8297         struct {
8298                 struct perf_event_header        header;
8299
8300                 u32                             pid;
8301                 u32                             tid;
8302                 u64                             nr_namespaces;
8303                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8304         } event_id;
8305 };
8306
8307 static int perf_event_namespaces_match(struct perf_event *event)
8308 {
8309         return event->attr.namespaces;
8310 }
8311
8312 static void perf_event_namespaces_output(struct perf_event *event,
8313                                          void *data)
8314 {
8315         struct perf_namespaces_event *namespaces_event = data;
8316         struct perf_output_handle handle;
8317         struct perf_sample_data sample;
8318         u16 header_size = namespaces_event->event_id.header.size;
8319         int ret;
8320
8321         if (!perf_event_namespaces_match(event))
8322                 return;
8323
8324         perf_event_header__init_id(&namespaces_event->event_id.header,
8325                                    &sample, event);
8326         ret = perf_output_begin(&handle, &sample, event,
8327                                 namespaces_event->event_id.header.size);
8328         if (ret)
8329                 goto out;
8330
8331         namespaces_event->event_id.pid = perf_event_pid(event,
8332                                                         namespaces_event->task);
8333         namespaces_event->event_id.tid = perf_event_tid(event,
8334                                                         namespaces_event->task);
8335
8336         perf_output_put(&handle, namespaces_event->event_id);
8337
8338         perf_event__output_id_sample(event, &handle, &sample);
8339
8340         perf_output_end(&handle);
8341 out:
8342         namespaces_event->event_id.header.size = header_size;
8343 }
8344
8345 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8346                                    struct task_struct *task,
8347                                    const struct proc_ns_operations *ns_ops)
8348 {
8349         struct path ns_path;
8350         struct inode *ns_inode;
8351         int error;
8352
8353         error = ns_get_path(&ns_path, task, ns_ops);
8354         if (!error) {
8355                 ns_inode = ns_path.dentry->d_inode;
8356                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8357                 ns_link_info->ino = ns_inode->i_ino;
8358                 path_put(&ns_path);
8359         }
8360 }
8361
8362 void perf_event_namespaces(struct task_struct *task)
8363 {
8364         struct perf_namespaces_event namespaces_event;
8365         struct perf_ns_link_info *ns_link_info;
8366
8367         if (!atomic_read(&nr_namespaces_events))
8368                 return;
8369
8370         namespaces_event = (struct perf_namespaces_event){
8371                 .task   = task,
8372                 .event_id  = {
8373                         .header = {
8374                                 .type = PERF_RECORD_NAMESPACES,
8375                                 .misc = 0,
8376                                 .size = sizeof(namespaces_event.event_id),
8377                         },
8378                         /* .pid */
8379                         /* .tid */
8380                         .nr_namespaces = NR_NAMESPACES,
8381                         /* .link_info[NR_NAMESPACES] */
8382                 },
8383         };
8384
8385         ns_link_info = namespaces_event.event_id.link_info;
8386
8387         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8388                                task, &mntns_operations);
8389
8390 #ifdef CONFIG_USER_NS
8391         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8392                                task, &userns_operations);
8393 #endif
8394 #ifdef CONFIG_NET_NS
8395         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8396                                task, &netns_operations);
8397 #endif
8398 #ifdef CONFIG_UTS_NS
8399         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8400                                task, &utsns_operations);
8401 #endif
8402 #ifdef CONFIG_IPC_NS
8403         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8404                                task, &ipcns_operations);
8405 #endif
8406 #ifdef CONFIG_PID_NS
8407         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8408                                task, &pidns_operations);
8409 #endif
8410 #ifdef CONFIG_CGROUPS
8411         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8412                                task, &cgroupns_operations);
8413 #endif
8414
8415         perf_iterate_sb(perf_event_namespaces_output,
8416                         &namespaces_event,
8417                         NULL);
8418 }
8419
8420 /*
8421  * cgroup tracking
8422  */
8423 #ifdef CONFIG_CGROUP_PERF
8424
8425 struct perf_cgroup_event {
8426         char                            *path;
8427         int                             path_size;
8428         struct {
8429                 struct perf_event_header        header;
8430                 u64                             id;
8431                 char                            path[];
8432         } event_id;
8433 };
8434
8435 static int perf_event_cgroup_match(struct perf_event *event)
8436 {
8437         return event->attr.cgroup;
8438 }
8439
8440 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8441 {
8442         struct perf_cgroup_event *cgroup_event = data;
8443         struct perf_output_handle handle;
8444         struct perf_sample_data sample;
8445         u16 header_size = cgroup_event->event_id.header.size;
8446         int ret;
8447
8448         if (!perf_event_cgroup_match(event))
8449                 return;
8450
8451         perf_event_header__init_id(&cgroup_event->event_id.header,
8452                                    &sample, event);
8453         ret = perf_output_begin(&handle, &sample, event,
8454                                 cgroup_event->event_id.header.size);
8455         if (ret)
8456                 goto out;
8457
8458         perf_output_put(&handle, cgroup_event->event_id);
8459         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8460
8461         perf_event__output_id_sample(event, &handle, &sample);
8462
8463         perf_output_end(&handle);
8464 out:
8465         cgroup_event->event_id.header.size = header_size;
8466 }
8467
8468 static void perf_event_cgroup(struct cgroup *cgrp)
8469 {
8470         struct perf_cgroup_event cgroup_event;
8471         char path_enomem[16] = "//enomem";
8472         char *pathname;
8473         size_t size;
8474
8475         if (!atomic_read(&nr_cgroup_events))
8476                 return;
8477
8478         cgroup_event = (struct perf_cgroup_event){
8479                 .event_id  = {
8480                         .header = {
8481                                 .type = PERF_RECORD_CGROUP,
8482                                 .misc = 0,
8483                                 .size = sizeof(cgroup_event.event_id),
8484                         },
8485                         .id = cgroup_id(cgrp),
8486                 },
8487         };
8488
8489         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8490         if (pathname == NULL) {
8491                 cgroup_event.path = path_enomem;
8492         } else {
8493                 /* just to be sure to have enough space for alignment */
8494                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8495                 cgroup_event.path = pathname;
8496         }
8497
8498         /*
8499          * Since our buffer works in 8 byte units we need to align our string
8500          * size to a multiple of 8. However, we must guarantee the tail end is
8501          * zero'd out to avoid leaking random bits to userspace.
8502          */
8503         size = strlen(cgroup_event.path) + 1;
8504         while (!IS_ALIGNED(size, sizeof(u64)))
8505                 cgroup_event.path[size++] = '\0';
8506
8507         cgroup_event.event_id.header.size += size;
8508         cgroup_event.path_size = size;
8509
8510         perf_iterate_sb(perf_event_cgroup_output,
8511                         &cgroup_event,
8512                         NULL);
8513
8514         kfree(pathname);
8515 }
8516
8517 #endif
8518
8519 /*
8520  * mmap tracking
8521  */
8522
8523 struct perf_mmap_event {
8524         struct vm_area_struct   *vma;
8525
8526         const char              *file_name;
8527         int                     file_size;
8528         int                     maj, min;
8529         u64                     ino;
8530         u64                     ino_generation;
8531         u32                     prot, flags;
8532         u8                      build_id[BUILD_ID_SIZE_MAX];
8533         u32                     build_id_size;
8534
8535         struct {
8536                 struct perf_event_header        header;
8537
8538                 u32                             pid;
8539                 u32                             tid;
8540                 u64                             start;
8541                 u64                             len;
8542                 u64                             pgoff;
8543         } event_id;
8544 };
8545
8546 static int perf_event_mmap_match(struct perf_event *event,
8547                                  void *data)
8548 {
8549         struct perf_mmap_event *mmap_event = data;
8550         struct vm_area_struct *vma = mmap_event->vma;
8551         int executable = vma->vm_flags & VM_EXEC;
8552
8553         return (!executable && event->attr.mmap_data) ||
8554                (executable && (event->attr.mmap || event->attr.mmap2));
8555 }
8556
8557 static void perf_event_mmap_output(struct perf_event *event,
8558                                    void *data)
8559 {
8560         struct perf_mmap_event *mmap_event = data;
8561         struct perf_output_handle handle;
8562         struct perf_sample_data sample;
8563         int size = mmap_event->event_id.header.size;
8564         u32 type = mmap_event->event_id.header.type;
8565         bool use_build_id;
8566         int ret;
8567
8568         if (!perf_event_mmap_match(event, data))
8569                 return;
8570
8571         if (event->attr.mmap2) {
8572                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8573                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8574                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8575                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8576                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8577                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8578                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8579         }
8580
8581         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8582         ret = perf_output_begin(&handle, &sample, event,
8583                                 mmap_event->event_id.header.size);
8584         if (ret)
8585                 goto out;
8586
8587         mmap_event->event_id.pid = perf_event_pid(event, current);
8588         mmap_event->event_id.tid = perf_event_tid(event, current);
8589
8590         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8591
8592         if (event->attr.mmap2 && use_build_id)
8593                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8594
8595         perf_output_put(&handle, mmap_event->event_id);
8596
8597         if (event->attr.mmap2) {
8598                 if (use_build_id) {
8599                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8600
8601                         __output_copy(&handle, size, 4);
8602                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8603                 } else {
8604                         perf_output_put(&handle, mmap_event->maj);
8605                         perf_output_put(&handle, mmap_event->min);
8606                         perf_output_put(&handle, mmap_event->ino);
8607                         perf_output_put(&handle, mmap_event->ino_generation);
8608                 }
8609                 perf_output_put(&handle, mmap_event->prot);
8610                 perf_output_put(&handle, mmap_event->flags);
8611         }
8612
8613         __output_copy(&handle, mmap_event->file_name,
8614                                    mmap_event->file_size);
8615
8616         perf_event__output_id_sample(event, &handle, &sample);
8617
8618         perf_output_end(&handle);
8619 out:
8620         mmap_event->event_id.header.size = size;
8621         mmap_event->event_id.header.type = type;
8622 }
8623
8624 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8625 {
8626         struct vm_area_struct *vma = mmap_event->vma;
8627         struct file *file = vma->vm_file;
8628         int maj = 0, min = 0;
8629         u64 ino = 0, gen = 0;
8630         u32 prot = 0, flags = 0;
8631         unsigned int size;
8632         char tmp[16];
8633         char *buf = NULL;
8634         char *name = NULL;
8635
8636         if (vma->vm_flags & VM_READ)
8637                 prot |= PROT_READ;
8638         if (vma->vm_flags & VM_WRITE)
8639                 prot |= PROT_WRITE;
8640         if (vma->vm_flags & VM_EXEC)
8641                 prot |= PROT_EXEC;
8642
8643         if (vma->vm_flags & VM_MAYSHARE)
8644                 flags = MAP_SHARED;
8645         else
8646                 flags = MAP_PRIVATE;
8647
8648         if (vma->vm_flags & VM_LOCKED)
8649                 flags |= MAP_LOCKED;
8650         if (is_vm_hugetlb_page(vma))
8651                 flags |= MAP_HUGETLB;
8652
8653         if (file) {
8654                 struct inode *inode;
8655                 dev_t dev;
8656
8657                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8658                 if (!buf) {
8659                         name = "//enomem";
8660                         goto cpy_name;
8661                 }
8662                 /*
8663                  * d_path() works from the end of the rb backwards, so we
8664                  * need to add enough zero bytes after the string to handle
8665                  * the 64bit alignment we do later.
8666                  */
8667                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8668                 if (IS_ERR(name)) {
8669                         name = "//toolong";
8670                         goto cpy_name;
8671                 }
8672                 inode = file_inode(vma->vm_file);
8673                 dev = inode->i_sb->s_dev;
8674                 ino = inode->i_ino;
8675                 gen = inode->i_generation;
8676                 maj = MAJOR(dev);
8677                 min = MINOR(dev);
8678
8679                 goto got_name;
8680         } else {
8681                 if (vma->vm_ops && vma->vm_ops->name)
8682                         name = (char *) vma->vm_ops->name(vma);
8683                 if (!name)
8684                         name = (char *)arch_vma_name(vma);
8685                 if (!name) {
8686                         if (vma_is_initial_heap(vma))
8687                                 name = "[heap]";
8688                         else if (vma_is_initial_stack(vma))
8689                                 name = "[stack]";
8690                         else
8691                                 name = "//anon";
8692                 }
8693         }
8694
8695 cpy_name:
8696         strscpy(tmp, name, sizeof(tmp));
8697         name = tmp;
8698 got_name:
8699         /*
8700          * Since our buffer works in 8 byte units we need to align our string
8701          * size to a multiple of 8. However, we must guarantee the tail end is
8702          * zero'd out to avoid leaking random bits to userspace.
8703          */
8704         size = strlen(name)+1;
8705         while (!IS_ALIGNED(size, sizeof(u64)))
8706                 name[size++] = '\0';
8707
8708         mmap_event->file_name = name;
8709         mmap_event->file_size = size;
8710         mmap_event->maj = maj;
8711         mmap_event->min = min;
8712         mmap_event->ino = ino;
8713         mmap_event->ino_generation = gen;
8714         mmap_event->prot = prot;
8715         mmap_event->flags = flags;
8716
8717         if (!(vma->vm_flags & VM_EXEC))
8718                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8719
8720         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8721
8722         if (atomic_read(&nr_build_id_events))
8723                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8724
8725         perf_iterate_sb(perf_event_mmap_output,
8726                        mmap_event,
8727                        NULL);
8728
8729         kfree(buf);
8730 }
8731
8732 /*
8733  * Check whether inode and address range match filter criteria.
8734  */
8735 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8736                                      struct file *file, unsigned long offset,
8737                                      unsigned long size)
8738 {
8739         /* d_inode(NULL) won't be equal to any mapped user-space file */
8740         if (!filter->path.dentry)
8741                 return false;
8742
8743         if (d_inode(filter->path.dentry) != file_inode(file))
8744                 return false;
8745
8746         if (filter->offset > offset + size)
8747                 return false;
8748
8749         if (filter->offset + filter->size < offset)
8750                 return false;
8751
8752         return true;
8753 }
8754
8755 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8756                                         struct vm_area_struct *vma,
8757                                         struct perf_addr_filter_range *fr)
8758 {
8759         unsigned long vma_size = vma->vm_end - vma->vm_start;
8760         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8761         struct file *file = vma->vm_file;
8762
8763         if (!perf_addr_filter_match(filter, file, off, vma_size))
8764                 return false;
8765
8766         if (filter->offset < off) {
8767                 fr->start = vma->vm_start;
8768                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8769         } else {
8770                 fr->start = vma->vm_start + filter->offset - off;
8771                 fr->size = min(vma->vm_end - fr->start, filter->size);
8772         }
8773
8774         return true;
8775 }
8776
8777 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8778 {
8779         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8780         struct vm_area_struct *vma = data;
8781         struct perf_addr_filter *filter;
8782         unsigned int restart = 0, count = 0;
8783         unsigned long flags;
8784
8785         if (!has_addr_filter(event))
8786                 return;
8787
8788         if (!vma->vm_file)
8789                 return;
8790
8791         raw_spin_lock_irqsave(&ifh->lock, flags);
8792         list_for_each_entry(filter, &ifh->list, entry) {
8793                 if (perf_addr_filter_vma_adjust(filter, vma,
8794                                                 &event->addr_filter_ranges[count]))
8795                         restart++;
8796
8797                 count++;
8798         }
8799
8800         if (restart)
8801                 event->addr_filters_gen++;
8802         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8803
8804         if (restart)
8805                 perf_event_stop(event, 1);
8806 }
8807
8808 /*
8809  * Adjust all task's events' filters to the new vma
8810  */
8811 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8812 {
8813         struct perf_event_context *ctx;
8814
8815         /*
8816          * Data tracing isn't supported yet and as such there is no need
8817          * to keep track of anything that isn't related to executable code:
8818          */
8819         if (!(vma->vm_flags & VM_EXEC))
8820                 return;
8821
8822         rcu_read_lock();
8823         ctx = rcu_dereference(current->perf_event_ctxp);
8824         if (ctx)
8825                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8826         rcu_read_unlock();
8827 }
8828
8829 void perf_event_mmap(struct vm_area_struct *vma)
8830 {
8831         struct perf_mmap_event mmap_event;
8832
8833         if (!atomic_read(&nr_mmap_events))
8834                 return;
8835
8836         mmap_event = (struct perf_mmap_event){
8837                 .vma    = vma,
8838                 /* .file_name */
8839                 /* .file_size */
8840                 .event_id  = {
8841                         .header = {
8842                                 .type = PERF_RECORD_MMAP,
8843                                 .misc = PERF_RECORD_MISC_USER,
8844                                 /* .size */
8845                         },
8846                         /* .pid */
8847                         /* .tid */
8848                         .start  = vma->vm_start,
8849                         .len    = vma->vm_end - vma->vm_start,
8850                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8851                 },
8852                 /* .maj (attr_mmap2 only) */
8853                 /* .min (attr_mmap2 only) */
8854                 /* .ino (attr_mmap2 only) */
8855                 /* .ino_generation (attr_mmap2 only) */
8856                 /* .prot (attr_mmap2 only) */
8857                 /* .flags (attr_mmap2 only) */
8858         };
8859
8860         perf_addr_filters_adjust(vma);
8861         perf_event_mmap_event(&mmap_event);
8862 }
8863
8864 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8865                           unsigned long size, u64 flags)
8866 {
8867         struct perf_output_handle handle;
8868         struct perf_sample_data sample;
8869         struct perf_aux_event {
8870                 struct perf_event_header        header;
8871                 u64                             offset;
8872                 u64                             size;
8873                 u64                             flags;
8874         } rec = {
8875                 .header = {
8876                         .type = PERF_RECORD_AUX,
8877                         .misc = 0,
8878                         .size = sizeof(rec),
8879                 },
8880                 .offset         = head,
8881                 .size           = size,
8882                 .flags          = flags,
8883         };
8884         int ret;
8885
8886         perf_event_header__init_id(&rec.header, &sample, event);
8887         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8888
8889         if (ret)
8890                 return;
8891
8892         perf_output_put(&handle, rec);
8893         perf_event__output_id_sample(event, &handle, &sample);
8894
8895         perf_output_end(&handle);
8896 }
8897
8898 /*
8899  * Lost/dropped samples logging
8900  */
8901 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8902 {
8903         struct perf_output_handle handle;
8904         struct perf_sample_data sample;
8905         int ret;
8906
8907         struct {
8908                 struct perf_event_header        header;
8909                 u64                             lost;
8910         } lost_samples_event = {
8911                 .header = {
8912                         .type = PERF_RECORD_LOST_SAMPLES,
8913                         .misc = 0,
8914                         .size = sizeof(lost_samples_event),
8915                 },
8916                 .lost           = lost,
8917         };
8918
8919         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8920
8921         ret = perf_output_begin(&handle, &sample, event,
8922                                 lost_samples_event.header.size);
8923         if (ret)
8924                 return;
8925
8926         perf_output_put(&handle, lost_samples_event);
8927         perf_event__output_id_sample(event, &handle, &sample);
8928         perf_output_end(&handle);
8929 }
8930
8931 /*
8932  * context_switch tracking
8933  */
8934
8935 struct perf_switch_event {
8936         struct task_struct      *task;
8937         struct task_struct      *next_prev;
8938
8939         struct {
8940                 struct perf_event_header        header;
8941                 u32                             next_prev_pid;
8942                 u32                             next_prev_tid;
8943         } event_id;
8944 };
8945
8946 static int perf_event_switch_match(struct perf_event *event)
8947 {
8948         return event->attr.context_switch;
8949 }
8950
8951 static void perf_event_switch_output(struct perf_event *event, void *data)
8952 {
8953         struct perf_switch_event *se = data;
8954         struct perf_output_handle handle;
8955         struct perf_sample_data sample;
8956         int ret;
8957
8958         if (!perf_event_switch_match(event))
8959                 return;
8960
8961         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8962         if (event->ctx->task) {
8963                 se->event_id.header.type = PERF_RECORD_SWITCH;
8964                 se->event_id.header.size = sizeof(se->event_id.header);
8965         } else {
8966                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8967                 se->event_id.header.size = sizeof(se->event_id);
8968                 se->event_id.next_prev_pid =
8969                                         perf_event_pid(event, se->next_prev);
8970                 se->event_id.next_prev_tid =
8971                                         perf_event_tid(event, se->next_prev);
8972         }
8973
8974         perf_event_header__init_id(&se->event_id.header, &sample, event);
8975
8976         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8977         if (ret)
8978                 return;
8979
8980         if (event->ctx->task)
8981                 perf_output_put(&handle, se->event_id.header);
8982         else
8983                 perf_output_put(&handle, se->event_id);
8984
8985         perf_event__output_id_sample(event, &handle, &sample);
8986
8987         perf_output_end(&handle);
8988 }
8989
8990 static void perf_event_switch(struct task_struct *task,
8991                               struct task_struct *next_prev, bool sched_in)
8992 {
8993         struct perf_switch_event switch_event;
8994
8995         /* N.B. caller checks nr_switch_events != 0 */
8996
8997         switch_event = (struct perf_switch_event){
8998                 .task           = task,
8999                 .next_prev      = next_prev,
9000                 .event_id       = {
9001                         .header = {
9002                                 /* .type */
9003                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9004                                 /* .size */
9005                         },
9006                         /* .next_prev_pid */
9007                         /* .next_prev_tid */
9008                 },
9009         };
9010
9011         if (!sched_in && task->on_rq) {
9012                 switch_event.event_id.header.misc |=
9013                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9014         }
9015
9016         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9017 }
9018
9019 /*
9020  * IRQ throttle logging
9021  */
9022
9023 static void perf_log_throttle(struct perf_event *event, int enable)
9024 {
9025         struct perf_output_handle handle;
9026         struct perf_sample_data sample;
9027         int ret;
9028
9029         struct {
9030                 struct perf_event_header        header;
9031                 u64                             time;
9032                 u64                             id;
9033                 u64                             stream_id;
9034         } throttle_event = {
9035                 .header = {
9036                         .type = PERF_RECORD_THROTTLE,
9037                         .misc = 0,
9038                         .size = sizeof(throttle_event),
9039                 },
9040                 .time           = perf_event_clock(event),
9041                 .id             = primary_event_id(event),
9042                 .stream_id      = event->id,
9043         };
9044
9045         if (enable)
9046                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9047
9048         perf_event_header__init_id(&throttle_event.header, &sample, event);
9049
9050         ret = perf_output_begin(&handle, &sample, event,
9051                                 throttle_event.header.size);
9052         if (ret)
9053                 return;
9054
9055         perf_output_put(&handle, throttle_event);
9056         perf_event__output_id_sample(event, &handle, &sample);
9057         perf_output_end(&handle);
9058 }
9059
9060 /*
9061  * ksymbol register/unregister tracking
9062  */
9063
9064 struct perf_ksymbol_event {
9065         const char      *name;
9066         int             name_len;
9067         struct {
9068                 struct perf_event_header        header;
9069                 u64                             addr;
9070                 u32                             len;
9071                 u16                             ksym_type;
9072                 u16                             flags;
9073         } event_id;
9074 };
9075
9076 static int perf_event_ksymbol_match(struct perf_event *event)
9077 {
9078         return event->attr.ksymbol;
9079 }
9080
9081 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9082 {
9083         struct perf_ksymbol_event *ksymbol_event = data;
9084         struct perf_output_handle handle;
9085         struct perf_sample_data sample;
9086         int ret;
9087
9088         if (!perf_event_ksymbol_match(event))
9089                 return;
9090
9091         perf_event_header__init_id(&ksymbol_event->event_id.header,
9092                                    &sample, event);
9093         ret = perf_output_begin(&handle, &sample, event,
9094                                 ksymbol_event->event_id.header.size);
9095         if (ret)
9096                 return;
9097
9098         perf_output_put(&handle, ksymbol_event->event_id);
9099         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9100         perf_event__output_id_sample(event, &handle, &sample);
9101
9102         perf_output_end(&handle);
9103 }
9104
9105 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9106                         const char *sym)
9107 {
9108         struct perf_ksymbol_event ksymbol_event;
9109         char name[KSYM_NAME_LEN];
9110         u16 flags = 0;
9111         int name_len;
9112
9113         if (!atomic_read(&nr_ksymbol_events))
9114                 return;
9115
9116         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9117             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9118                 goto err;
9119
9120         strscpy(name, sym, KSYM_NAME_LEN);
9121         name_len = strlen(name) + 1;
9122         while (!IS_ALIGNED(name_len, sizeof(u64)))
9123                 name[name_len++] = '\0';
9124         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9125
9126         if (unregister)
9127                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9128
9129         ksymbol_event = (struct perf_ksymbol_event){
9130                 .name = name,
9131                 .name_len = name_len,
9132                 .event_id = {
9133                         .header = {
9134                                 .type = PERF_RECORD_KSYMBOL,
9135                                 .size = sizeof(ksymbol_event.event_id) +
9136                                         name_len,
9137                         },
9138                         .addr = addr,
9139                         .len = len,
9140                         .ksym_type = ksym_type,
9141                         .flags = flags,
9142                 },
9143         };
9144
9145         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9146         return;
9147 err:
9148         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9149 }
9150
9151 /*
9152  * bpf program load/unload tracking
9153  */
9154
9155 struct perf_bpf_event {
9156         struct bpf_prog *prog;
9157         struct {
9158                 struct perf_event_header        header;
9159                 u16                             type;
9160                 u16                             flags;
9161                 u32                             id;
9162                 u8                              tag[BPF_TAG_SIZE];
9163         } event_id;
9164 };
9165
9166 static int perf_event_bpf_match(struct perf_event *event)
9167 {
9168         return event->attr.bpf_event;
9169 }
9170
9171 static void perf_event_bpf_output(struct perf_event *event, void *data)
9172 {
9173         struct perf_bpf_event *bpf_event = data;
9174         struct perf_output_handle handle;
9175         struct perf_sample_data sample;
9176         int ret;
9177
9178         if (!perf_event_bpf_match(event))
9179                 return;
9180
9181         perf_event_header__init_id(&bpf_event->event_id.header,
9182                                    &sample, event);
9183         ret = perf_output_begin(&handle, &sample, event,
9184                                 bpf_event->event_id.header.size);
9185         if (ret)
9186                 return;
9187
9188         perf_output_put(&handle, bpf_event->event_id);
9189         perf_event__output_id_sample(event, &handle, &sample);
9190
9191         perf_output_end(&handle);
9192 }
9193
9194 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9195                                          enum perf_bpf_event_type type)
9196 {
9197         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9198         int i;
9199
9200         if (prog->aux->func_cnt == 0) {
9201                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9202                                    (u64)(unsigned long)prog->bpf_func,
9203                                    prog->jited_len, unregister,
9204                                    prog->aux->ksym.name);
9205         } else {
9206                 for (i = 0; i < prog->aux->func_cnt; i++) {
9207                         struct bpf_prog *subprog = prog->aux->func[i];
9208
9209                         perf_event_ksymbol(
9210                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9211                                 (u64)(unsigned long)subprog->bpf_func,
9212                                 subprog->jited_len, unregister,
9213                                 subprog->aux->ksym.name);
9214                 }
9215         }
9216 }
9217
9218 void perf_event_bpf_event(struct bpf_prog *prog,
9219                           enum perf_bpf_event_type type,
9220                           u16 flags)
9221 {
9222         struct perf_bpf_event bpf_event;
9223
9224         if (type <= PERF_BPF_EVENT_UNKNOWN ||
9225             type >= PERF_BPF_EVENT_MAX)
9226                 return;
9227
9228         switch (type) {
9229         case PERF_BPF_EVENT_PROG_LOAD:
9230         case PERF_BPF_EVENT_PROG_UNLOAD:
9231                 if (atomic_read(&nr_ksymbol_events))
9232                         perf_event_bpf_emit_ksymbols(prog, type);
9233                 break;
9234         default:
9235                 break;
9236         }
9237
9238         if (!atomic_read(&nr_bpf_events))
9239                 return;
9240
9241         bpf_event = (struct perf_bpf_event){
9242                 .prog = prog,
9243                 .event_id = {
9244                         .header = {
9245                                 .type = PERF_RECORD_BPF_EVENT,
9246                                 .size = sizeof(bpf_event.event_id),
9247                         },
9248                         .type = type,
9249                         .flags = flags,
9250                         .id = prog->aux->id,
9251                 },
9252         };
9253
9254         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9255
9256         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9257         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9258 }
9259
9260 struct perf_text_poke_event {
9261         const void              *old_bytes;
9262         const void              *new_bytes;
9263         size_t                  pad;
9264         u16                     old_len;
9265         u16                     new_len;
9266
9267         struct {
9268                 struct perf_event_header        header;
9269
9270                 u64                             addr;
9271         } event_id;
9272 };
9273
9274 static int perf_event_text_poke_match(struct perf_event *event)
9275 {
9276         return event->attr.text_poke;
9277 }
9278
9279 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9280 {
9281         struct perf_text_poke_event *text_poke_event = data;
9282         struct perf_output_handle handle;
9283         struct perf_sample_data sample;
9284         u64 padding = 0;
9285         int ret;
9286
9287         if (!perf_event_text_poke_match(event))
9288                 return;
9289
9290         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9291
9292         ret = perf_output_begin(&handle, &sample, event,
9293                                 text_poke_event->event_id.header.size);
9294         if (ret)
9295                 return;
9296
9297         perf_output_put(&handle, text_poke_event->event_id);
9298         perf_output_put(&handle, text_poke_event->old_len);
9299         perf_output_put(&handle, text_poke_event->new_len);
9300
9301         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9302         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9303
9304         if (text_poke_event->pad)
9305                 __output_copy(&handle, &padding, text_poke_event->pad);
9306
9307         perf_event__output_id_sample(event, &handle, &sample);
9308
9309         perf_output_end(&handle);
9310 }
9311
9312 void perf_event_text_poke(const void *addr, const void *old_bytes,
9313                           size_t old_len, const void *new_bytes, size_t new_len)
9314 {
9315         struct perf_text_poke_event text_poke_event;
9316         size_t tot, pad;
9317
9318         if (!atomic_read(&nr_text_poke_events))
9319                 return;
9320
9321         tot  = sizeof(text_poke_event.old_len) + old_len;
9322         tot += sizeof(text_poke_event.new_len) + new_len;
9323         pad  = ALIGN(tot, sizeof(u64)) - tot;
9324
9325         text_poke_event = (struct perf_text_poke_event){
9326                 .old_bytes    = old_bytes,
9327                 .new_bytes    = new_bytes,
9328                 .pad          = pad,
9329                 .old_len      = old_len,
9330                 .new_len      = new_len,
9331                 .event_id  = {
9332                         .header = {
9333                                 .type = PERF_RECORD_TEXT_POKE,
9334                                 .misc = PERF_RECORD_MISC_KERNEL,
9335                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9336                         },
9337                         .addr = (unsigned long)addr,
9338                 },
9339         };
9340
9341         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9342 }
9343
9344 void perf_event_itrace_started(struct perf_event *event)
9345 {
9346         event->attach_state |= PERF_ATTACH_ITRACE;
9347 }
9348
9349 static void perf_log_itrace_start(struct perf_event *event)
9350 {
9351         struct perf_output_handle handle;
9352         struct perf_sample_data sample;
9353         struct perf_aux_event {
9354                 struct perf_event_header        header;
9355                 u32                             pid;
9356                 u32                             tid;
9357         } rec;
9358         int ret;
9359
9360         if (event->parent)
9361                 event = event->parent;
9362
9363         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9364             event->attach_state & PERF_ATTACH_ITRACE)
9365                 return;
9366
9367         rec.header.type = PERF_RECORD_ITRACE_START;
9368         rec.header.misc = 0;
9369         rec.header.size = sizeof(rec);
9370         rec.pid = perf_event_pid(event, current);
9371         rec.tid = perf_event_tid(event, current);
9372
9373         perf_event_header__init_id(&rec.header, &sample, event);
9374         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9375
9376         if (ret)
9377                 return;
9378
9379         perf_output_put(&handle, rec);
9380         perf_event__output_id_sample(event, &handle, &sample);
9381
9382         perf_output_end(&handle);
9383 }
9384
9385 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9386 {
9387         struct perf_output_handle handle;
9388         struct perf_sample_data sample;
9389         struct perf_aux_event {
9390                 struct perf_event_header        header;
9391                 u64                             hw_id;
9392         } rec;
9393         int ret;
9394
9395         if (event->parent)
9396                 event = event->parent;
9397
9398         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9399         rec.header.misc = 0;
9400         rec.header.size = sizeof(rec);
9401         rec.hw_id       = hw_id;
9402
9403         perf_event_header__init_id(&rec.header, &sample, event);
9404         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9405
9406         if (ret)
9407                 return;
9408
9409         perf_output_put(&handle, rec);
9410         perf_event__output_id_sample(event, &handle, &sample);
9411
9412         perf_output_end(&handle);
9413 }
9414 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9415
9416 static int
9417 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9418 {
9419         struct hw_perf_event *hwc = &event->hw;
9420         int ret = 0;
9421         u64 seq;
9422
9423         seq = __this_cpu_read(perf_throttled_seq);
9424         if (seq != hwc->interrupts_seq) {
9425                 hwc->interrupts_seq = seq;
9426                 hwc->interrupts = 1;
9427         } else {
9428                 hwc->interrupts++;
9429                 if (unlikely(throttle &&
9430                              hwc->interrupts > max_samples_per_tick)) {
9431                         __this_cpu_inc(perf_throttled_count);
9432                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9433                         hwc->interrupts = MAX_INTERRUPTS;
9434                         perf_log_throttle(event, 0);
9435                         ret = 1;
9436                 }
9437         }
9438
9439         if (event->attr.freq) {
9440                 u64 now = perf_clock();
9441                 s64 delta = now - hwc->freq_time_stamp;
9442
9443                 hwc->freq_time_stamp = now;
9444
9445                 if (delta > 0 && delta < 2*TICK_NSEC)
9446                         perf_adjust_period(event, delta, hwc->last_period, true);
9447         }
9448
9449         return ret;
9450 }
9451
9452 int perf_event_account_interrupt(struct perf_event *event)
9453 {
9454         return __perf_event_account_interrupt(event, 1);
9455 }
9456
9457 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9458 {
9459         /*
9460          * Due to interrupt latency (AKA "skid"), we may enter the
9461          * kernel before taking an overflow, even if the PMU is only
9462          * counting user events.
9463          */
9464         if (event->attr.exclude_kernel && !user_mode(regs))
9465                 return false;
9466
9467         return true;
9468 }
9469
9470 /*
9471  * Generic event overflow handling, sampling.
9472  */
9473
9474 static int __perf_event_overflow(struct perf_event *event,
9475                                  int throttle, struct perf_sample_data *data,
9476                                  struct pt_regs *regs)
9477 {
9478         int events = atomic_read(&event->event_limit);
9479         int ret = 0;
9480
9481         /*
9482          * Non-sampling counters might still use the PMI to fold short
9483          * hardware counters, ignore those.
9484          */
9485         if (unlikely(!is_sampling_event(event)))
9486                 return 0;
9487
9488         ret = __perf_event_account_interrupt(event, throttle);
9489
9490         /*
9491          * XXX event_limit might not quite work as expected on inherited
9492          * events
9493          */
9494
9495         event->pending_kill = POLL_IN;
9496         if (events && atomic_dec_and_test(&event->event_limit)) {
9497                 ret = 1;
9498                 event->pending_kill = POLL_HUP;
9499                 perf_event_disable_inatomic(event);
9500         }
9501
9502         if (event->attr.sigtrap) {
9503                 /*
9504                  * The desired behaviour of sigtrap vs invalid samples is a bit
9505                  * tricky; on the one hand, one should not loose the SIGTRAP if
9506                  * it is the first event, on the other hand, we should also not
9507                  * trigger the WARN or override the data address.
9508                  */
9509                 bool valid_sample = sample_is_allowed(event, regs);
9510                 unsigned int pending_id = 1;
9511
9512                 if (regs)
9513                         pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9514                 if (!event->pending_sigtrap) {
9515                         event->pending_sigtrap = pending_id;
9516                         local_inc(&event->ctx->nr_pending);
9517                 } else if (event->attr.exclude_kernel && valid_sample) {
9518                         /*
9519                          * Should not be able to return to user space without
9520                          * consuming pending_sigtrap; with exceptions:
9521                          *
9522                          *  1. Where !exclude_kernel, events can overflow again
9523                          *     in the kernel without returning to user space.
9524                          *
9525                          *  2. Events that can overflow again before the IRQ-
9526                          *     work without user space progress (e.g. hrtimer).
9527                          *     To approximate progress (with false negatives),
9528                          *     check 32-bit hash of the current IP.
9529                          */
9530                         WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9531                 }
9532
9533                 event->pending_addr = 0;
9534                 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9535                         event->pending_addr = data->addr;
9536                 irq_work_queue(&event->pending_irq);
9537         }
9538
9539         READ_ONCE(event->overflow_handler)(event, data, regs);
9540
9541         if (*perf_event_fasync(event) && event->pending_kill) {
9542                 event->pending_wakeup = 1;
9543                 irq_work_queue(&event->pending_irq);
9544         }
9545
9546         return ret;
9547 }
9548
9549 int perf_event_overflow(struct perf_event *event,
9550                         struct perf_sample_data *data,
9551                         struct pt_regs *regs)
9552 {
9553         return __perf_event_overflow(event, 1, data, regs);
9554 }
9555
9556 /*
9557  * Generic software event infrastructure
9558  */
9559
9560 struct swevent_htable {
9561         struct swevent_hlist            *swevent_hlist;
9562         struct mutex                    hlist_mutex;
9563         int                             hlist_refcount;
9564
9565         /* Recursion avoidance in each contexts */
9566         int                             recursion[PERF_NR_CONTEXTS];
9567 };
9568
9569 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9570
9571 /*
9572  * We directly increment event->count and keep a second value in
9573  * event->hw.period_left to count intervals. This period event
9574  * is kept in the range [-sample_period, 0] so that we can use the
9575  * sign as trigger.
9576  */
9577
9578 u64 perf_swevent_set_period(struct perf_event *event)
9579 {
9580         struct hw_perf_event *hwc = &event->hw;
9581         u64 period = hwc->last_period;
9582         u64 nr, offset;
9583         s64 old, val;
9584
9585         hwc->last_period = hwc->sample_period;
9586
9587         old = local64_read(&hwc->period_left);
9588         do {
9589                 val = old;
9590                 if (val < 0)
9591                         return 0;
9592
9593                 nr = div64_u64(period + val, period);
9594                 offset = nr * period;
9595                 val -= offset;
9596         } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9597
9598         return nr;
9599 }
9600
9601 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9602                                     struct perf_sample_data *data,
9603                                     struct pt_regs *regs)
9604 {
9605         struct hw_perf_event *hwc = &event->hw;
9606         int throttle = 0;
9607
9608         if (!overflow)
9609                 overflow = perf_swevent_set_period(event);
9610
9611         if (hwc->interrupts == MAX_INTERRUPTS)
9612                 return;
9613
9614         for (; overflow; overflow--) {
9615                 if (__perf_event_overflow(event, throttle,
9616                                             data, regs)) {
9617                         /*
9618                          * We inhibit the overflow from happening when
9619                          * hwc->interrupts == MAX_INTERRUPTS.
9620                          */
9621                         break;
9622                 }
9623                 throttle = 1;
9624         }
9625 }
9626
9627 static void perf_swevent_event(struct perf_event *event, u64 nr,
9628                                struct perf_sample_data *data,
9629                                struct pt_regs *regs)
9630 {
9631         struct hw_perf_event *hwc = &event->hw;
9632
9633         local64_add(nr, &event->count);
9634
9635         if (!regs)
9636                 return;
9637
9638         if (!is_sampling_event(event))
9639                 return;
9640
9641         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9642                 data->period = nr;
9643                 return perf_swevent_overflow(event, 1, data, regs);
9644         } else
9645                 data->period = event->hw.last_period;
9646
9647         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9648                 return perf_swevent_overflow(event, 1, data, regs);
9649
9650         if (local64_add_negative(nr, &hwc->period_left))
9651                 return;
9652
9653         perf_swevent_overflow(event, 0, data, regs);
9654 }
9655
9656 static int perf_exclude_event(struct perf_event *event,
9657                               struct pt_regs *regs)
9658 {
9659         if (event->hw.state & PERF_HES_STOPPED)
9660                 return 1;
9661
9662         if (regs) {
9663                 if (event->attr.exclude_user && user_mode(regs))
9664                         return 1;
9665
9666                 if (event->attr.exclude_kernel && !user_mode(regs))
9667                         return 1;
9668         }
9669
9670         return 0;
9671 }
9672
9673 static int perf_swevent_match(struct perf_event *event,
9674                                 enum perf_type_id type,
9675                                 u32 event_id,
9676                                 struct perf_sample_data *data,
9677                                 struct pt_regs *regs)
9678 {
9679         if (event->attr.type != type)
9680                 return 0;
9681
9682         if (event->attr.config != event_id)
9683                 return 0;
9684
9685         if (perf_exclude_event(event, regs))
9686                 return 0;
9687
9688         return 1;
9689 }
9690
9691 static inline u64 swevent_hash(u64 type, u32 event_id)
9692 {
9693         u64 val = event_id | (type << 32);
9694
9695         return hash_64(val, SWEVENT_HLIST_BITS);
9696 }
9697
9698 static inline struct hlist_head *
9699 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9700 {
9701         u64 hash = swevent_hash(type, event_id);
9702
9703         return &hlist->heads[hash];
9704 }
9705
9706 /* For the read side: events when they trigger */
9707 static inline struct hlist_head *
9708 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9709 {
9710         struct swevent_hlist *hlist;
9711
9712         hlist = rcu_dereference(swhash->swevent_hlist);
9713         if (!hlist)
9714                 return NULL;
9715
9716         return __find_swevent_head(hlist, type, event_id);
9717 }
9718
9719 /* For the event head insertion and removal in the hlist */
9720 static inline struct hlist_head *
9721 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9722 {
9723         struct swevent_hlist *hlist;
9724         u32 event_id = event->attr.config;
9725         u64 type = event->attr.type;
9726
9727         /*
9728          * Event scheduling is always serialized against hlist allocation
9729          * and release. Which makes the protected version suitable here.
9730          * The context lock guarantees that.
9731          */
9732         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9733                                           lockdep_is_held(&event->ctx->lock));
9734         if (!hlist)
9735                 return NULL;
9736
9737         return __find_swevent_head(hlist, type, event_id);
9738 }
9739
9740 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9741                                     u64 nr,
9742                                     struct perf_sample_data *data,
9743                                     struct pt_regs *regs)
9744 {
9745         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9746         struct perf_event *event;
9747         struct hlist_head *head;
9748
9749         rcu_read_lock();
9750         head = find_swevent_head_rcu(swhash, type, event_id);
9751         if (!head)
9752                 goto end;
9753
9754         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9755                 if (perf_swevent_match(event, type, event_id, data, regs))
9756                         perf_swevent_event(event, nr, data, regs);
9757         }
9758 end:
9759         rcu_read_unlock();
9760 }
9761
9762 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9763
9764 int perf_swevent_get_recursion_context(void)
9765 {
9766         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9767
9768         return get_recursion_context(swhash->recursion);
9769 }
9770 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9771
9772 void perf_swevent_put_recursion_context(int rctx)
9773 {
9774         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9775
9776         put_recursion_context(swhash->recursion, rctx);
9777 }
9778
9779 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9780 {
9781         struct perf_sample_data data;
9782
9783         if (WARN_ON_ONCE(!regs))
9784                 return;
9785
9786         perf_sample_data_init(&data, addr, 0);
9787         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9788 }
9789
9790 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9791 {
9792         int rctx;
9793
9794         preempt_disable_notrace();
9795         rctx = perf_swevent_get_recursion_context();
9796         if (unlikely(rctx < 0))
9797                 goto fail;
9798
9799         ___perf_sw_event(event_id, nr, regs, addr);
9800
9801         perf_swevent_put_recursion_context(rctx);
9802 fail:
9803         preempt_enable_notrace();
9804 }
9805
9806 static void perf_swevent_read(struct perf_event *event)
9807 {
9808 }
9809
9810 static int perf_swevent_add(struct perf_event *event, int flags)
9811 {
9812         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9813         struct hw_perf_event *hwc = &event->hw;
9814         struct hlist_head *head;
9815
9816         if (is_sampling_event(event)) {
9817                 hwc->last_period = hwc->sample_period;
9818                 perf_swevent_set_period(event);
9819         }
9820
9821         hwc->state = !(flags & PERF_EF_START);
9822
9823         head = find_swevent_head(swhash, event);
9824         if (WARN_ON_ONCE(!head))
9825                 return -EINVAL;
9826
9827         hlist_add_head_rcu(&event->hlist_entry, head);
9828         perf_event_update_userpage(event);
9829
9830         return 0;
9831 }
9832
9833 static void perf_swevent_del(struct perf_event *event, int flags)
9834 {
9835         hlist_del_rcu(&event->hlist_entry);
9836 }
9837
9838 static void perf_swevent_start(struct perf_event *event, int flags)
9839 {
9840         event->hw.state = 0;
9841 }
9842
9843 static void perf_swevent_stop(struct perf_event *event, int flags)
9844 {
9845         event->hw.state = PERF_HES_STOPPED;
9846 }
9847
9848 /* Deref the hlist from the update side */
9849 static inline struct swevent_hlist *
9850 swevent_hlist_deref(struct swevent_htable *swhash)
9851 {
9852         return rcu_dereference_protected(swhash->swevent_hlist,
9853                                          lockdep_is_held(&swhash->hlist_mutex));
9854 }
9855
9856 static void swevent_hlist_release(struct swevent_htable *swhash)
9857 {
9858         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9859
9860         if (!hlist)
9861                 return;
9862
9863         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9864         kfree_rcu(hlist, rcu_head);
9865 }
9866
9867 static void swevent_hlist_put_cpu(int cpu)
9868 {
9869         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9870
9871         mutex_lock(&swhash->hlist_mutex);
9872
9873         if (!--swhash->hlist_refcount)
9874                 swevent_hlist_release(swhash);
9875
9876         mutex_unlock(&swhash->hlist_mutex);
9877 }
9878
9879 static void swevent_hlist_put(void)
9880 {
9881         int cpu;
9882
9883         for_each_possible_cpu(cpu)
9884                 swevent_hlist_put_cpu(cpu);
9885 }
9886
9887 static int swevent_hlist_get_cpu(int cpu)
9888 {
9889         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9890         int err = 0;
9891
9892         mutex_lock(&swhash->hlist_mutex);
9893         if (!swevent_hlist_deref(swhash) &&
9894             cpumask_test_cpu(cpu, perf_online_mask)) {
9895                 struct swevent_hlist *hlist;
9896
9897                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9898                 if (!hlist) {
9899                         err = -ENOMEM;
9900                         goto exit;
9901                 }
9902                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9903         }
9904         swhash->hlist_refcount++;
9905 exit:
9906         mutex_unlock(&swhash->hlist_mutex);
9907
9908         return err;
9909 }
9910
9911 static int swevent_hlist_get(void)
9912 {
9913         int err, cpu, failed_cpu;
9914
9915         mutex_lock(&pmus_lock);
9916         for_each_possible_cpu(cpu) {
9917                 err = swevent_hlist_get_cpu(cpu);
9918                 if (err) {
9919                         failed_cpu = cpu;
9920                         goto fail;
9921                 }
9922         }
9923         mutex_unlock(&pmus_lock);
9924         return 0;
9925 fail:
9926         for_each_possible_cpu(cpu) {
9927                 if (cpu == failed_cpu)
9928                         break;
9929                 swevent_hlist_put_cpu(cpu);
9930         }
9931         mutex_unlock(&pmus_lock);
9932         return err;
9933 }
9934
9935 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9936
9937 static void sw_perf_event_destroy(struct perf_event *event)
9938 {
9939         u64 event_id = event->attr.config;
9940
9941         WARN_ON(event->parent);
9942
9943         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9944         swevent_hlist_put();
9945 }
9946
9947 static struct pmu perf_cpu_clock; /* fwd declaration */
9948 static struct pmu perf_task_clock;
9949
9950 static int perf_swevent_init(struct perf_event *event)
9951 {
9952         u64 event_id = event->attr.config;
9953
9954         if (event->attr.type != PERF_TYPE_SOFTWARE)
9955                 return -ENOENT;
9956
9957         /*
9958          * no branch sampling for software events
9959          */
9960         if (has_branch_stack(event))
9961                 return -EOPNOTSUPP;
9962
9963         switch (event_id) {
9964         case PERF_COUNT_SW_CPU_CLOCK:
9965                 event->attr.type = perf_cpu_clock.type;
9966                 return -ENOENT;
9967         case PERF_COUNT_SW_TASK_CLOCK:
9968                 event->attr.type = perf_task_clock.type;
9969                 return -ENOENT;
9970
9971         default:
9972                 break;
9973         }
9974
9975         if (event_id >= PERF_COUNT_SW_MAX)
9976                 return -ENOENT;
9977
9978         if (!event->parent) {
9979                 int err;
9980
9981                 err = swevent_hlist_get();
9982                 if (err)
9983                         return err;
9984
9985                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9986                 event->destroy = sw_perf_event_destroy;
9987         }
9988
9989         return 0;
9990 }
9991
9992 static struct pmu perf_swevent = {
9993         .task_ctx_nr    = perf_sw_context,
9994
9995         .capabilities   = PERF_PMU_CAP_NO_NMI,
9996
9997         .event_init     = perf_swevent_init,
9998         .add            = perf_swevent_add,
9999         .del            = perf_swevent_del,
10000         .start          = perf_swevent_start,
10001         .stop           = perf_swevent_stop,
10002         .read           = perf_swevent_read,
10003 };
10004
10005 #ifdef CONFIG_EVENT_TRACING
10006
10007 static void tp_perf_event_destroy(struct perf_event *event)
10008 {
10009         perf_trace_destroy(event);
10010 }
10011
10012 static int perf_tp_event_init(struct perf_event *event)
10013 {
10014         int err;
10015
10016         if (event->attr.type != PERF_TYPE_TRACEPOINT)
10017                 return -ENOENT;
10018
10019         /*
10020          * no branch sampling for tracepoint events
10021          */
10022         if (has_branch_stack(event))
10023                 return -EOPNOTSUPP;
10024
10025         err = perf_trace_init(event);
10026         if (err)
10027                 return err;
10028
10029         event->destroy = tp_perf_event_destroy;
10030
10031         return 0;
10032 }
10033
10034 static struct pmu perf_tracepoint = {
10035         .task_ctx_nr    = perf_sw_context,
10036
10037         .event_init     = perf_tp_event_init,
10038         .add            = perf_trace_add,
10039         .del            = perf_trace_del,
10040         .start          = perf_swevent_start,
10041         .stop           = perf_swevent_stop,
10042         .read           = perf_swevent_read,
10043 };
10044
10045 static int perf_tp_filter_match(struct perf_event *event,
10046                                 struct perf_sample_data *data)
10047 {
10048         void *record = data->raw->frag.data;
10049
10050         /* only top level events have filters set */
10051         if (event->parent)
10052                 event = event->parent;
10053
10054         if (likely(!event->filter) || filter_match_preds(event->filter, record))
10055                 return 1;
10056         return 0;
10057 }
10058
10059 static int perf_tp_event_match(struct perf_event *event,
10060                                 struct perf_sample_data *data,
10061                                 struct pt_regs *regs)
10062 {
10063         if (event->hw.state & PERF_HES_STOPPED)
10064                 return 0;
10065         /*
10066          * If exclude_kernel, only trace user-space tracepoints (uprobes)
10067          */
10068         if (event->attr.exclude_kernel && !user_mode(regs))
10069                 return 0;
10070
10071         if (!perf_tp_filter_match(event, data))
10072                 return 0;
10073
10074         return 1;
10075 }
10076
10077 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10078                                struct trace_event_call *call, u64 count,
10079                                struct pt_regs *regs, struct hlist_head *head,
10080                                struct task_struct *task)
10081 {
10082         if (bpf_prog_array_valid(call)) {
10083                 *(struct pt_regs **)raw_data = regs;
10084                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10085                         perf_swevent_put_recursion_context(rctx);
10086                         return;
10087                 }
10088         }
10089         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10090                       rctx, task);
10091 }
10092 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10093
10094 static void __perf_tp_event_target_task(u64 count, void *record,
10095                                         struct pt_regs *regs,
10096                                         struct perf_sample_data *data,
10097                                         struct perf_event *event)
10098 {
10099         struct trace_entry *entry = record;
10100
10101         if (event->attr.config != entry->type)
10102                 return;
10103         /* Cannot deliver synchronous signal to other task. */
10104         if (event->attr.sigtrap)
10105                 return;
10106         if (perf_tp_event_match(event, data, regs))
10107                 perf_swevent_event(event, count, data, regs);
10108 }
10109
10110 static void perf_tp_event_target_task(u64 count, void *record,
10111                                       struct pt_regs *regs,
10112                                       struct perf_sample_data *data,
10113                                       struct perf_event_context *ctx)
10114 {
10115         unsigned int cpu = smp_processor_id();
10116         struct pmu *pmu = &perf_tracepoint;
10117         struct perf_event *event, *sibling;
10118
10119         perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10120                 __perf_tp_event_target_task(count, record, regs, data, event);
10121                 for_each_sibling_event(sibling, event)
10122                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10123         }
10124
10125         perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10126                 __perf_tp_event_target_task(count, record, regs, data, event);
10127                 for_each_sibling_event(sibling, event)
10128                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10129         }
10130 }
10131
10132 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10133                    struct pt_regs *regs, struct hlist_head *head, int rctx,
10134                    struct task_struct *task)
10135 {
10136         struct perf_sample_data data;
10137         struct perf_event *event;
10138
10139         struct perf_raw_record raw = {
10140                 .frag = {
10141                         .size = entry_size,
10142                         .data = record,
10143                 },
10144         };
10145
10146         perf_sample_data_init(&data, 0, 0);
10147         perf_sample_save_raw_data(&data, &raw);
10148
10149         perf_trace_buf_update(record, event_type);
10150
10151         hlist_for_each_entry_rcu(event, head, hlist_entry) {
10152                 if (perf_tp_event_match(event, &data, regs)) {
10153                         perf_swevent_event(event, count, &data, regs);
10154
10155                         /*
10156                          * Here use the same on-stack perf_sample_data,
10157                          * some members in data are event-specific and
10158                          * need to be re-computed for different sweveents.
10159                          * Re-initialize data->sample_flags safely to avoid
10160                          * the problem that next event skips preparing data
10161                          * because data->sample_flags is set.
10162                          */
10163                         perf_sample_data_init(&data, 0, 0);
10164                         perf_sample_save_raw_data(&data, &raw);
10165                 }
10166         }
10167
10168         /*
10169          * If we got specified a target task, also iterate its context and
10170          * deliver this event there too.
10171          */
10172         if (task && task != current) {
10173                 struct perf_event_context *ctx;
10174
10175                 rcu_read_lock();
10176                 ctx = rcu_dereference(task->perf_event_ctxp);
10177                 if (!ctx)
10178                         goto unlock;
10179
10180                 raw_spin_lock(&ctx->lock);
10181                 perf_tp_event_target_task(count, record, regs, &data, ctx);
10182                 raw_spin_unlock(&ctx->lock);
10183 unlock:
10184                 rcu_read_unlock();
10185         }
10186
10187         perf_swevent_put_recursion_context(rctx);
10188 }
10189 EXPORT_SYMBOL_GPL(perf_tp_event);
10190
10191 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10192 /*
10193  * Flags in config, used by dynamic PMU kprobe and uprobe
10194  * The flags should match following PMU_FORMAT_ATTR().
10195  *
10196  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10197  *                               if not set, create kprobe/uprobe
10198  *
10199  * The following values specify a reference counter (or semaphore in the
10200  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10201  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10202  *
10203  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
10204  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
10205  */
10206 enum perf_probe_config {
10207         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10208         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10209         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10210 };
10211
10212 PMU_FORMAT_ATTR(retprobe, "config:0");
10213 #endif
10214
10215 #ifdef CONFIG_KPROBE_EVENTS
10216 static struct attribute *kprobe_attrs[] = {
10217         &format_attr_retprobe.attr,
10218         NULL,
10219 };
10220
10221 static struct attribute_group kprobe_format_group = {
10222         .name = "format",
10223         .attrs = kprobe_attrs,
10224 };
10225
10226 static const struct attribute_group *kprobe_attr_groups[] = {
10227         &kprobe_format_group,
10228         NULL,
10229 };
10230
10231 static int perf_kprobe_event_init(struct perf_event *event);
10232 static struct pmu perf_kprobe = {
10233         .task_ctx_nr    = perf_sw_context,
10234         .event_init     = perf_kprobe_event_init,
10235         .add            = perf_trace_add,
10236         .del            = perf_trace_del,
10237         .start          = perf_swevent_start,
10238         .stop           = perf_swevent_stop,
10239         .read           = perf_swevent_read,
10240         .attr_groups    = kprobe_attr_groups,
10241 };
10242
10243 static int perf_kprobe_event_init(struct perf_event *event)
10244 {
10245         int err;
10246         bool is_retprobe;
10247
10248         if (event->attr.type != perf_kprobe.type)
10249                 return -ENOENT;
10250
10251         if (!perfmon_capable())
10252                 return -EACCES;
10253
10254         /*
10255          * no branch sampling for probe events
10256          */
10257         if (has_branch_stack(event))
10258                 return -EOPNOTSUPP;
10259
10260         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10261         err = perf_kprobe_init(event, is_retprobe);
10262         if (err)
10263                 return err;
10264
10265         event->destroy = perf_kprobe_destroy;
10266
10267         return 0;
10268 }
10269 #endif /* CONFIG_KPROBE_EVENTS */
10270
10271 #ifdef CONFIG_UPROBE_EVENTS
10272 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10273
10274 static struct attribute *uprobe_attrs[] = {
10275         &format_attr_retprobe.attr,
10276         &format_attr_ref_ctr_offset.attr,
10277         NULL,
10278 };
10279
10280 static struct attribute_group uprobe_format_group = {
10281         .name = "format",
10282         .attrs = uprobe_attrs,
10283 };
10284
10285 static const struct attribute_group *uprobe_attr_groups[] = {
10286         &uprobe_format_group,
10287         NULL,
10288 };
10289
10290 static int perf_uprobe_event_init(struct perf_event *event);
10291 static struct pmu perf_uprobe = {
10292         .task_ctx_nr    = perf_sw_context,
10293         .event_init     = perf_uprobe_event_init,
10294         .add            = perf_trace_add,
10295         .del            = perf_trace_del,
10296         .start          = perf_swevent_start,
10297         .stop           = perf_swevent_stop,
10298         .read           = perf_swevent_read,
10299         .attr_groups    = uprobe_attr_groups,
10300 };
10301
10302 static int perf_uprobe_event_init(struct perf_event *event)
10303 {
10304         int err;
10305         unsigned long ref_ctr_offset;
10306         bool is_retprobe;
10307
10308         if (event->attr.type != perf_uprobe.type)
10309                 return -ENOENT;
10310
10311         if (!perfmon_capable())
10312                 return -EACCES;
10313
10314         /*
10315          * no branch sampling for probe events
10316          */
10317         if (has_branch_stack(event))
10318                 return -EOPNOTSUPP;
10319
10320         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10321         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10322         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10323         if (err)
10324                 return err;
10325
10326         event->destroy = perf_uprobe_destroy;
10327
10328         return 0;
10329 }
10330 #endif /* CONFIG_UPROBE_EVENTS */
10331
10332 static inline void perf_tp_register(void)
10333 {
10334         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10335 #ifdef CONFIG_KPROBE_EVENTS
10336         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10337 #endif
10338 #ifdef CONFIG_UPROBE_EVENTS
10339         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10340 #endif
10341 }
10342
10343 static void perf_event_free_filter(struct perf_event *event)
10344 {
10345         ftrace_profile_free_filter(event);
10346 }
10347
10348 #ifdef CONFIG_BPF_SYSCALL
10349 static void bpf_overflow_handler(struct perf_event *event,
10350                                  struct perf_sample_data *data,
10351                                  struct pt_regs *regs)
10352 {
10353         struct bpf_perf_event_data_kern ctx = {
10354                 .data = data,
10355                 .event = event,
10356         };
10357         struct bpf_prog *prog;
10358         int ret = 0;
10359
10360         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10361         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10362                 goto out;
10363         rcu_read_lock();
10364         prog = READ_ONCE(event->prog);
10365         if (prog) {
10366                 perf_prepare_sample(data, event, regs);
10367                 ret = bpf_prog_run(prog, &ctx);
10368         }
10369         rcu_read_unlock();
10370 out:
10371         __this_cpu_dec(bpf_prog_active);
10372         if (!ret)
10373                 return;
10374
10375         event->orig_overflow_handler(event, data, regs);
10376 }
10377
10378 static int perf_event_set_bpf_handler(struct perf_event *event,
10379                                       struct bpf_prog *prog,
10380                                       u64 bpf_cookie)
10381 {
10382         if (event->overflow_handler_context)
10383                 /* hw breakpoint or kernel counter */
10384                 return -EINVAL;
10385
10386         if (event->prog)
10387                 return -EEXIST;
10388
10389         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10390                 return -EINVAL;
10391
10392         if (event->attr.precise_ip &&
10393             prog->call_get_stack &&
10394             (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10395              event->attr.exclude_callchain_kernel ||
10396              event->attr.exclude_callchain_user)) {
10397                 /*
10398                  * On perf_event with precise_ip, calling bpf_get_stack()
10399                  * may trigger unwinder warnings and occasional crashes.
10400                  * bpf_get_[stack|stackid] works around this issue by using
10401                  * callchain attached to perf_sample_data. If the
10402                  * perf_event does not full (kernel and user) callchain
10403                  * attached to perf_sample_data, do not allow attaching BPF
10404                  * program that calls bpf_get_[stack|stackid].
10405                  */
10406                 return -EPROTO;
10407         }
10408
10409         event->prog = prog;
10410         event->bpf_cookie = bpf_cookie;
10411         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10412         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10413         return 0;
10414 }
10415
10416 static void perf_event_free_bpf_handler(struct perf_event *event)
10417 {
10418         struct bpf_prog *prog = event->prog;
10419
10420         if (!prog)
10421                 return;
10422
10423         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10424         event->prog = NULL;
10425         bpf_prog_put(prog);
10426 }
10427 #else
10428 static int perf_event_set_bpf_handler(struct perf_event *event,
10429                                       struct bpf_prog *prog,
10430                                       u64 bpf_cookie)
10431 {
10432         return -EOPNOTSUPP;
10433 }
10434 static void perf_event_free_bpf_handler(struct perf_event *event)
10435 {
10436 }
10437 #endif
10438
10439 /*
10440  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10441  * with perf_event_open()
10442  */
10443 static inline bool perf_event_is_tracing(struct perf_event *event)
10444 {
10445         if (event->pmu == &perf_tracepoint)
10446                 return true;
10447 #ifdef CONFIG_KPROBE_EVENTS
10448         if (event->pmu == &perf_kprobe)
10449                 return true;
10450 #endif
10451 #ifdef CONFIG_UPROBE_EVENTS
10452         if (event->pmu == &perf_uprobe)
10453                 return true;
10454 #endif
10455         return false;
10456 }
10457
10458 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10459                             u64 bpf_cookie)
10460 {
10461         bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10462
10463         if (!perf_event_is_tracing(event))
10464                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10465
10466         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10467         is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10468         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10469         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10470         if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10471                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10472                 return -EINVAL;
10473
10474         if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10475             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10476             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10477                 return -EINVAL;
10478
10479         if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10480                 /* only uprobe programs are allowed to be sleepable */
10481                 return -EINVAL;
10482
10483         /* Kprobe override only works for kprobes, not uprobes. */
10484         if (prog->kprobe_override && !is_kprobe)
10485                 return -EINVAL;
10486
10487         if (is_tracepoint || is_syscall_tp) {
10488                 int off = trace_event_get_offsets(event->tp_event);
10489
10490                 if (prog->aux->max_ctx_offset > off)
10491                         return -EACCES;
10492         }
10493
10494         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10495 }
10496
10497 void perf_event_free_bpf_prog(struct perf_event *event)
10498 {
10499         if (!perf_event_is_tracing(event)) {
10500                 perf_event_free_bpf_handler(event);
10501                 return;
10502         }
10503         perf_event_detach_bpf_prog(event);
10504 }
10505
10506 #else
10507
10508 static inline void perf_tp_register(void)
10509 {
10510 }
10511
10512 static void perf_event_free_filter(struct perf_event *event)
10513 {
10514 }
10515
10516 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10517                             u64 bpf_cookie)
10518 {
10519         return -ENOENT;
10520 }
10521
10522 void perf_event_free_bpf_prog(struct perf_event *event)
10523 {
10524 }
10525 #endif /* CONFIG_EVENT_TRACING */
10526
10527 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10528 void perf_bp_event(struct perf_event *bp, void *data)
10529 {
10530         struct perf_sample_data sample;
10531         struct pt_regs *regs = data;
10532
10533         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10534
10535         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10536                 perf_swevent_event(bp, 1, &sample, regs);
10537 }
10538 #endif
10539
10540 /*
10541  * Allocate a new address filter
10542  */
10543 static struct perf_addr_filter *
10544 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10545 {
10546         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10547         struct perf_addr_filter *filter;
10548
10549         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10550         if (!filter)
10551                 return NULL;
10552
10553         INIT_LIST_HEAD(&filter->entry);
10554         list_add_tail(&filter->entry, filters);
10555
10556         return filter;
10557 }
10558
10559 static void free_filters_list(struct list_head *filters)
10560 {
10561         struct perf_addr_filter *filter, *iter;
10562
10563         list_for_each_entry_safe(filter, iter, filters, entry) {
10564                 path_put(&filter->path);
10565                 list_del(&filter->entry);
10566                 kfree(filter);
10567         }
10568 }
10569
10570 /*
10571  * Free existing address filters and optionally install new ones
10572  */
10573 static void perf_addr_filters_splice(struct perf_event *event,
10574                                      struct list_head *head)
10575 {
10576         unsigned long flags;
10577         LIST_HEAD(list);
10578
10579         if (!has_addr_filter(event))
10580                 return;
10581
10582         /* don't bother with children, they don't have their own filters */
10583         if (event->parent)
10584                 return;
10585
10586         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10587
10588         list_splice_init(&event->addr_filters.list, &list);
10589         if (head)
10590                 list_splice(head, &event->addr_filters.list);
10591
10592         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10593
10594         free_filters_list(&list);
10595 }
10596
10597 /*
10598  * Scan through mm's vmas and see if one of them matches the
10599  * @filter; if so, adjust filter's address range.
10600  * Called with mm::mmap_lock down for reading.
10601  */
10602 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10603                                    struct mm_struct *mm,
10604                                    struct perf_addr_filter_range *fr)
10605 {
10606         struct vm_area_struct *vma;
10607         VMA_ITERATOR(vmi, mm, 0);
10608
10609         for_each_vma(vmi, vma) {
10610                 if (!vma->vm_file)
10611                         continue;
10612
10613                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10614                         return;
10615         }
10616 }
10617
10618 /*
10619  * Update event's address range filters based on the
10620  * task's existing mappings, if any.
10621  */
10622 static void perf_event_addr_filters_apply(struct perf_event *event)
10623 {
10624         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10625         struct task_struct *task = READ_ONCE(event->ctx->task);
10626         struct perf_addr_filter *filter;
10627         struct mm_struct *mm = NULL;
10628         unsigned int count = 0;
10629         unsigned long flags;
10630
10631         /*
10632          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10633          * will stop on the parent's child_mutex that our caller is also holding
10634          */
10635         if (task == TASK_TOMBSTONE)
10636                 return;
10637
10638         if (ifh->nr_file_filters) {
10639                 mm = get_task_mm(task);
10640                 if (!mm)
10641                         goto restart;
10642
10643                 mmap_read_lock(mm);
10644         }
10645
10646         raw_spin_lock_irqsave(&ifh->lock, flags);
10647         list_for_each_entry(filter, &ifh->list, entry) {
10648                 if (filter->path.dentry) {
10649                         /*
10650                          * Adjust base offset if the filter is associated to a
10651                          * binary that needs to be mapped:
10652                          */
10653                         event->addr_filter_ranges[count].start = 0;
10654                         event->addr_filter_ranges[count].size = 0;
10655
10656                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10657                 } else {
10658                         event->addr_filter_ranges[count].start = filter->offset;
10659                         event->addr_filter_ranges[count].size  = filter->size;
10660                 }
10661
10662                 count++;
10663         }
10664
10665         event->addr_filters_gen++;
10666         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10667
10668         if (ifh->nr_file_filters) {
10669                 mmap_read_unlock(mm);
10670
10671                 mmput(mm);
10672         }
10673
10674 restart:
10675         perf_event_stop(event, 1);
10676 }
10677
10678 /*
10679  * Address range filtering: limiting the data to certain
10680  * instruction address ranges. Filters are ioctl()ed to us from
10681  * userspace as ascii strings.
10682  *
10683  * Filter string format:
10684  *
10685  * ACTION RANGE_SPEC
10686  * where ACTION is one of the
10687  *  * "filter": limit the trace to this region
10688  *  * "start": start tracing from this address
10689  *  * "stop": stop tracing at this address/region;
10690  * RANGE_SPEC is
10691  *  * for kernel addresses: <start address>[/<size>]
10692  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10693  *
10694  * if <size> is not specified or is zero, the range is treated as a single
10695  * address; not valid for ACTION=="filter".
10696  */
10697 enum {
10698         IF_ACT_NONE = -1,
10699         IF_ACT_FILTER,
10700         IF_ACT_START,
10701         IF_ACT_STOP,
10702         IF_SRC_FILE,
10703         IF_SRC_KERNEL,
10704         IF_SRC_FILEADDR,
10705         IF_SRC_KERNELADDR,
10706 };
10707
10708 enum {
10709         IF_STATE_ACTION = 0,
10710         IF_STATE_SOURCE,
10711         IF_STATE_END,
10712 };
10713
10714 static const match_table_t if_tokens = {
10715         { IF_ACT_FILTER,        "filter" },
10716         { IF_ACT_START,         "start" },
10717         { IF_ACT_STOP,          "stop" },
10718         { IF_SRC_FILE,          "%u/%u@%s" },
10719         { IF_SRC_KERNEL,        "%u/%u" },
10720         { IF_SRC_FILEADDR,      "%u@%s" },
10721         { IF_SRC_KERNELADDR,    "%u" },
10722         { IF_ACT_NONE,          NULL },
10723 };
10724
10725 /*
10726  * Address filter string parser
10727  */
10728 static int
10729 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10730                              struct list_head *filters)
10731 {
10732         struct perf_addr_filter *filter = NULL;
10733         char *start, *orig, *filename = NULL;
10734         substring_t args[MAX_OPT_ARGS];
10735         int state = IF_STATE_ACTION, token;
10736         unsigned int kernel = 0;
10737         int ret = -EINVAL;
10738
10739         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10740         if (!fstr)
10741                 return -ENOMEM;
10742
10743         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10744                 static const enum perf_addr_filter_action_t actions[] = {
10745                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10746                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10747                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10748                 };
10749                 ret = -EINVAL;
10750
10751                 if (!*start)
10752                         continue;
10753
10754                 /* filter definition begins */
10755                 if (state == IF_STATE_ACTION) {
10756                         filter = perf_addr_filter_new(event, filters);
10757                         if (!filter)
10758                                 goto fail;
10759                 }
10760
10761                 token = match_token(start, if_tokens, args);
10762                 switch (token) {
10763                 case IF_ACT_FILTER:
10764                 case IF_ACT_START:
10765                 case IF_ACT_STOP:
10766                         if (state != IF_STATE_ACTION)
10767                                 goto fail;
10768
10769                         filter->action = actions[token];
10770                         state = IF_STATE_SOURCE;
10771                         break;
10772
10773                 case IF_SRC_KERNELADDR:
10774                 case IF_SRC_KERNEL:
10775                         kernel = 1;
10776                         fallthrough;
10777
10778                 case IF_SRC_FILEADDR:
10779                 case IF_SRC_FILE:
10780                         if (state != IF_STATE_SOURCE)
10781                                 goto fail;
10782
10783                         *args[0].to = 0;
10784                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10785                         if (ret)
10786                                 goto fail;
10787
10788                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10789                                 *args[1].to = 0;
10790                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10791                                 if (ret)
10792                                         goto fail;
10793                         }
10794
10795                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10796                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10797
10798                                 kfree(filename);
10799                                 filename = match_strdup(&args[fpos]);
10800                                 if (!filename) {
10801                                         ret = -ENOMEM;
10802                                         goto fail;
10803                                 }
10804                         }
10805
10806                         state = IF_STATE_END;
10807                         break;
10808
10809                 default:
10810                         goto fail;
10811                 }
10812
10813                 /*
10814                  * Filter definition is fully parsed, validate and install it.
10815                  * Make sure that it doesn't contradict itself or the event's
10816                  * attribute.
10817                  */
10818                 if (state == IF_STATE_END) {
10819                         ret = -EINVAL;
10820
10821                         /*
10822                          * ACTION "filter" must have a non-zero length region
10823                          * specified.
10824                          */
10825                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10826                             !filter->size)
10827                                 goto fail;
10828
10829                         if (!kernel) {
10830                                 if (!filename)
10831                                         goto fail;
10832
10833                                 /*
10834                                  * For now, we only support file-based filters
10835                                  * in per-task events; doing so for CPU-wide
10836                                  * events requires additional context switching
10837                                  * trickery, since same object code will be
10838                                  * mapped at different virtual addresses in
10839                                  * different processes.
10840                                  */
10841                                 ret = -EOPNOTSUPP;
10842                                 if (!event->ctx->task)
10843                                         goto fail;
10844
10845                                 /* look up the path and grab its inode */
10846                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10847                                                 &filter->path);
10848                                 if (ret)
10849                                         goto fail;
10850
10851                                 ret = -EINVAL;
10852                                 if (!filter->path.dentry ||
10853                                     !S_ISREG(d_inode(filter->path.dentry)
10854                                              ->i_mode))
10855                                         goto fail;
10856
10857                                 event->addr_filters.nr_file_filters++;
10858                         }
10859
10860                         /* ready to consume more filters */
10861                         kfree(filename);
10862                         filename = NULL;
10863                         state = IF_STATE_ACTION;
10864                         filter = NULL;
10865                         kernel = 0;
10866                 }
10867         }
10868
10869         if (state != IF_STATE_ACTION)
10870                 goto fail;
10871
10872         kfree(filename);
10873         kfree(orig);
10874
10875         return 0;
10876
10877 fail:
10878         kfree(filename);
10879         free_filters_list(filters);
10880         kfree(orig);
10881
10882         return ret;
10883 }
10884
10885 static int
10886 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10887 {
10888         LIST_HEAD(filters);
10889         int ret;
10890
10891         /*
10892          * Since this is called in perf_ioctl() path, we're already holding
10893          * ctx::mutex.
10894          */
10895         lockdep_assert_held(&event->ctx->mutex);
10896
10897         if (WARN_ON_ONCE(event->parent))
10898                 return -EINVAL;
10899
10900         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10901         if (ret)
10902                 goto fail_clear_files;
10903
10904         ret = event->pmu->addr_filters_validate(&filters);
10905         if (ret)
10906                 goto fail_free_filters;
10907
10908         /* remove existing filters, if any */
10909         perf_addr_filters_splice(event, &filters);
10910
10911         /* install new filters */
10912         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10913
10914         return ret;
10915
10916 fail_free_filters:
10917         free_filters_list(&filters);
10918
10919 fail_clear_files:
10920         event->addr_filters.nr_file_filters = 0;
10921
10922         return ret;
10923 }
10924
10925 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10926 {
10927         int ret = -EINVAL;
10928         char *filter_str;
10929
10930         filter_str = strndup_user(arg, PAGE_SIZE);
10931         if (IS_ERR(filter_str))
10932                 return PTR_ERR(filter_str);
10933
10934 #ifdef CONFIG_EVENT_TRACING
10935         if (perf_event_is_tracing(event)) {
10936                 struct perf_event_context *ctx = event->ctx;
10937
10938                 /*
10939                  * Beware, here be dragons!!
10940                  *
10941                  * the tracepoint muck will deadlock against ctx->mutex, but
10942                  * the tracepoint stuff does not actually need it. So
10943                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10944                  * already have a reference on ctx.
10945                  *
10946                  * This can result in event getting moved to a different ctx,
10947                  * but that does not affect the tracepoint state.
10948                  */
10949                 mutex_unlock(&ctx->mutex);
10950                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10951                 mutex_lock(&ctx->mutex);
10952         } else
10953 #endif
10954         if (has_addr_filter(event))
10955                 ret = perf_event_set_addr_filter(event, filter_str);
10956
10957         kfree(filter_str);
10958         return ret;
10959 }
10960
10961 /*
10962  * hrtimer based swevent callback
10963  */
10964
10965 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10966 {
10967         enum hrtimer_restart ret = HRTIMER_RESTART;
10968         struct perf_sample_data data;
10969         struct pt_regs *regs;
10970         struct perf_event *event;
10971         u64 period;
10972
10973         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10974
10975         if (event->state != PERF_EVENT_STATE_ACTIVE)
10976                 return HRTIMER_NORESTART;
10977
10978         event->pmu->read(event);
10979
10980         perf_sample_data_init(&data, 0, event->hw.last_period);
10981         regs = get_irq_regs();
10982
10983         if (regs && !perf_exclude_event(event, regs)) {
10984                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10985                         if (__perf_event_overflow(event, 1, &data, regs))
10986                                 ret = HRTIMER_NORESTART;
10987         }
10988
10989         period = max_t(u64, 10000, event->hw.sample_period);
10990         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10991
10992         return ret;
10993 }
10994
10995 static void perf_swevent_start_hrtimer(struct perf_event *event)
10996 {
10997         struct hw_perf_event *hwc = &event->hw;
10998         s64 period;
10999
11000         if (!is_sampling_event(event))
11001                 return;
11002
11003         period = local64_read(&hwc->period_left);
11004         if (period) {
11005                 if (period < 0)
11006                         period = 10000;
11007
11008                 local64_set(&hwc->period_left, 0);
11009         } else {
11010                 period = max_t(u64, 10000, hwc->sample_period);
11011         }
11012         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11013                       HRTIMER_MODE_REL_PINNED_HARD);
11014 }
11015
11016 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11017 {
11018         struct hw_perf_event *hwc = &event->hw;
11019
11020         if (is_sampling_event(event)) {
11021                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11022                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11023
11024                 hrtimer_cancel(&hwc->hrtimer);
11025         }
11026 }
11027
11028 static void perf_swevent_init_hrtimer(struct perf_event *event)
11029 {
11030         struct hw_perf_event *hwc = &event->hw;
11031
11032         if (!is_sampling_event(event))
11033                 return;
11034
11035         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11036         hwc->hrtimer.function = perf_swevent_hrtimer;
11037
11038         /*
11039          * Since hrtimers have a fixed rate, we can do a static freq->period
11040          * mapping and avoid the whole period adjust feedback stuff.
11041          */
11042         if (event->attr.freq) {
11043                 long freq = event->attr.sample_freq;
11044
11045                 event->attr.sample_period = NSEC_PER_SEC / freq;
11046                 hwc->sample_period = event->attr.sample_period;
11047                 local64_set(&hwc->period_left, hwc->sample_period);
11048                 hwc->last_period = hwc->sample_period;
11049                 event->attr.freq = 0;
11050         }
11051 }
11052
11053 /*
11054  * Software event: cpu wall time clock
11055  */
11056
11057 static void cpu_clock_event_update(struct perf_event *event)
11058 {
11059         s64 prev;
11060         u64 now;
11061
11062         now = local_clock();
11063         prev = local64_xchg(&event->hw.prev_count, now);
11064         local64_add(now - prev, &event->count);
11065 }
11066
11067 static void cpu_clock_event_start(struct perf_event *event, int flags)
11068 {
11069         local64_set(&event->hw.prev_count, local_clock());
11070         perf_swevent_start_hrtimer(event);
11071 }
11072
11073 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11074 {
11075         perf_swevent_cancel_hrtimer(event);
11076         cpu_clock_event_update(event);
11077 }
11078
11079 static int cpu_clock_event_add(struct perf_event *event, int flags)
11080 {
11081         if (flags & PERF_EF_START)
11082                 cpu_clock_event_start(event, flags);
11083         perf_event_update_userpage(event);
11084
11085         return 0;
11086 }
11087
11088 static void cpu_clock_event_del(struct perf_event *event, int flags)
11089 {
11090         cpu_clock_event_stop(event, flags);
11091 }
11092
11093 static void cpu_clock_event_read(struct perf_event *event)
11094 {
11095         cpu_clock_event_update(event);
11096 }
11097
11098 static int cpu_clock_event_init(struct perf_event *event)
11099 {
11100         if (event->attr.type != perf_cpu_clock.type)
11101                 return -ENOENT;
11102
11103         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11104                 return -ENOENT;
11105
11106         /*
11107          * no branch sampling for software events
11108          */
11109         if (has_branch_stack(event))
11110                 return -EOPNOTSUPP;
11111
11112         perf_swevent_init_hrtimer(event);
11113
11114         return 0;
11115 }
11116
11117 static struct pmu perf_cpu_clock = {
11118         .task_ctx_nr    = perf_sw_context,
11119
11120         .capabilities   = PERF_PMU_CAP_NO_NMI,
11121         .dev            = PMU_NULL_DEV,
11122
11123         .event_init     = cpu_clock_event_init,
11124         .add            = cpu_clock_event_add,
11125         .del            = cpu_clock_event_del,
11126         .start          = cpu_clock_event_start,
11127         .stop           = cpu_clock_event_stop,
11128         .read           = cpu_clock_event_read,
11129 };
11130
11131 /*
11132  * Software event: task time clock
11133  */
11134
11135 static void task_clock_event_update(struct perf_event *event, u64 now)
11136 {
11137         u64 prev;
11138         s64 delta;
11139
11140         prev = local64_xchg(&event->hw.prev_count, now);
11141         delta = now - prev;
11142         local64_add(delta, &event->count);
11143 }
11144
11145 static void task_clock_event_start(struct perf_event *event, int flags)
11146 {
11147         local64_set(&event->hw.prev_count, event->ctx->time);
11148         perf_swevent_start_hrtimer(event);
11149 }
11150
11151 static void task_clock_event_stop(struct perf_event *event, int flags)
11152 {
11153         perf_swevent_cancel_hrtimer(event);
11154         task_clock_event_update(event, event->ctx->time);
11155 }
11156
11157 static int task_clock_event_add(struct perf_event *event, int flags)
11158 {
11159         if (flags & PERF_EF_START)
11160                 task_clock_event_start(event, flags);
11161         perf_event_update_userpage(event);
11162
11163         return 0;
11164 }
11165
11166 static void task_clock_event_del(struct perf_event *event, int flags)
11167 {
11168         task_clock_event_stop(event, PERF_EF_UPDATE);
11169 }
11170
11171 static void task_clock_event_read(struct perf_event *event)
11172 {
11173         u64 now = perf_clock();
11174         u64 delta = now - event->ctx->timestamp;
11175         u64 time = event->ctx->time + delta;
11176
11177         task_clock_event_update(event, time);
11178 }
11179
11180 static int task_clock_event_init(struct perf_event *event)
11181 {
11182         if (event->attr.type != perf_task_clock.type)
11183                 return -ENOENT;
11184
11185         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11186                 return -ENOENT;
11187
11188         /*
11189          * no branch sampling for software events
11190          */
11191         if (has_branch_stack(event))
11192                 return -EOPNOTSUPP;
11193
11194         perf_swevent_init_hrtimer(event);
11195
11196         return 0;
11197 }
11198
11199 static struct pmu perf_task_clock = {
11200         .task_ctx_nr    = perf_sw_context,
11201
11202         .capabilities   = PERF_PMU_CAP_NO_NMI,
11203         .dev            = PMU_NULL_DEV,
11204
11205         .event_init     = task_clock_event_init,
11206         .add            = task_clock_event_add,
11207         .del            = task_clock_event_del,
11208         .start          = task_clock_event_start,
11209         .stop           = task_clock_event_stop,
11210         .read           = task_clock_event_read,
11211 };
11212
11213 static void perf_pmu_nop_void(struct pmu *pmu)
11214 {
11215 }
11216
11217 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11218 {
11219 }
11220
11221 static int perf_pmu_nop_int(struct pmu *pmu)
11222 {
11223         return 0;
11224 }
11225
11226 static int perf_event_nop_int(struct perf_event *event, u64 value)
11227 {
11228         return 0;
11229 }
11230
11231 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11232
11233 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11234 {
11235         __this_cpu_write(nop_txn_flags, flags);
11236
11237         if (flags & ~PERF_PMU_TXN_ADD)
11238                 return;
11239
11240         perf_pmu_disable(pmu);
11241 }
11242
11243 static int perf_pmu_commit_txn(struct pmu *pmu)
11244 {
11245         unsigned int flags = __this_cpu_read(nop_txn_flags);
11246
11247         __this_cpu_write(nop_txn_flags, 0);
11248
11249         if (flags & ~PERF_PMU_TXN_ADD)
11250                 return 0;
11251
11252         perf_pmu_enable(pmu);
11253         return 0;
11254 }
11255
11256 static void perf_pmu_cancel_txn(struct pmu *pmu)
11257 {
11258         unsigned int flags =  __this_cpu_read(nop_txn_flags);
11259
11260         __this_cpu_write(nop_txn_flags, 0);
11261
11262         if (flags & ~PERF_PMU_TXN_ADD)
11263                 return;
11264
11265         perf_pmu_enable(pmu);
11266 }
11267
11268 static int perf_event_idx_default(struct perf_event *event)
11269 {
11270         return 0;
11271 }
11272
11273 static void free_pmu_context(struct pmu *pmu)
11274 {
11275         free_percpu(pmu->cpu_pmu_context);
11276 }
11277
11278 /*
11279  * Let userspace know that this PMU supports address range filtering:
11280  */
11281 static ssize_t nr_addr_filters_show(struct device *dev,
11282                                     struct device_attribute *attr,
11283                                     char *page)
11284 {
11285         struct pmu *pmu = dev_get_drvdata(dev);
11286
11287         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11288 }
11289 DEVICE_ATTR_RO(nr_addr_filters);
11290
11291 static struct idr pmu_idr;
11292
11293 static ssize_t
11294 type_show(struct device *dev, struct device_attribute *attr, char *page)
11295 {
11296         struct pmu *pmu = dev_get_drvdata(dev);
11297
11298         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11299 }
11300 static DEVICE_ATTR_RO(type);
11301
11302 static ssize_t
11303 perf_event_mux_interval_ms_show(struct device *dev,
11304                                 struct device_attribute *attr,
11305                                 char *page)
11306 {
11307         struct pmu *pmu = dev_get_drvdata(dev);
11308
11309         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11310 }
11311
11312 static DEFINE_MUTEX(mux_interval_mutex);
11313
11314 static ssize_t
11315 perf_event_mux_interval_ms_store(struct device *dev,
11316                                  struct device_attribute *attr,
11317                                  const char *buf, size_t count)
11318 {
11319         struct pmu *pmu = dev_get_drvdata(dev);
11320         int timer, cpu, ret;
11321
11322         ret = kstrtoint(buf, 0, &timer);
11323         if (ret)
11324                 return ret;
11325
11326         if (timer < 1)
11327                 return -EINVAL;
11328
11329         /* same value, noting to do */
11330         if (timer == pmu->hrtimer_interval_ms)
11331                 return count;
11332
11333         mutex_lock(&mux_interval_mutex);
11334         pmu->hrtimer_interval_ms = timer;
11335
11336         /* update all cpuctx for this PMU */
11337         cpus_read_lock();
11338         for_each_online_cpu(cpu) {
11339                 struct perf_cpu_pmu_context *cpc;
11340                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11341                 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11342
11343                 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11344         }
11345         cpus_read_unlock();
11346         mutex_unlock(&mux_interval_mutex);
11347
11348         return count;
11349 }
11350 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11351
11352 static struct attribute *pmu_dev_attrs[] = {
11353         &dev_attr_type.attr,
11354         &dev_attr_perf_event_mux_interval_ms.attr,
11355         NULL,
11356 };
11357 ATTRIBUTE_GROUPS(pmu_dev);
11358
11359 static int pmu_bus_running;
11360 static struct bus_type pmu_bus = {
11361         .name           = "event_source",
11362         .dev_groups     = pmu_dev_groups,
11363 };
11364
11365 static void pmu_dev_release(struct device *dev)
11366 {
11367         kfree(dev);
11368 }
11369
11370 static int pmu_dev_alloc(struct pmu *pmu)
11371 {
11372         int ret = -ENOMEM;
11373
11374         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11375         if (!pmu->dev)
11376                 goto out;
11377
11378         pmu->dev->groups = pmu->attr_groups;
11379         device_initialize(pmu->dev);
11380
11381         dev_set_drvdata(pmu->dev, pmu);
11382         pmu->dev->bus = &pmu_bus;
11383         pmu->dev->parent = pmu->parent;
11384         pmu->dev->release = pmu_dev_release;
11385
11386         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11387         if (ret)
11388                 goto free_dev;
11389
11390         ret = device_add(pmu->dev);
11391         if (ret)
11392                 goto free_dev;
11393
11394         /* For PMUs with address filters, throw in an extra attribute: */
11395         if (pmu->nr_addr_filters)
11396                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11397
11398         if (ret)
11399                 goto del_dev;
11400
11401         if (pmu->attr_update)
11402                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11403
11404         if (ret)
11405                 goto del_dev;
11406
11407 out:
11408         return ret;
11409
11410 del_dev:
11411         device_del(pmu->dev);
11412
11413 free_dev:
11414         put_device(pmu->dev);
11415         goto out;
11416 }
11417
11418 static struct lock_class_key cpuctx_mutex;
11419 static struct lock_class_key cpuctx_lock;
11420
11421 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11422 {
11423         int cpu, ret, max = PERF_TYPE_MAX;
11424
11425         mutex_lock(&pmus_lock);
11426         ret = -ENOMEM;
11427         pmu->pmu_disable_count = alloc_percpu(int);
11428         if (!pmu->pmu_disable_count)
11429                 goto unlock;
11430
11431         pmu->type = -1;
11432         if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11433                 ret = -EINVAL;
11434                 goto free_pdc;
11435         }
11436
11437         pmu->name = name;
11438
11439         if (type >= 0)
11440                 max = type;
11441
11442         ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11443         if (ret < 0)
11444                 goto free_pdc;
11445
11446         WARN_ON(type >= 0 && ret != type);
11447
11448         type = ret;
11449         pmu->type = type;
11450
11451         if (pmu_bus_running && !pmu->dev) {
11452                 ret = pmu_dev_alloc(pmu);
11453                 if (ret)
11454                         goto free_idr;
11455         }
11456
11457         ret = -ENOMEM;
11458         pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11459         if (!pmu->cpu_pmu_context)
11460                 goto free_dev;
11461
11462         for_each_possible_cpu(cpu) {
11463                 struct perf_cpu_pmu_context *cpc;
11464
11465                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11466                 __perf_init_event_pmu_context(&cpc->epc, pmu);
11467                 __perf_mux_hrtimer_init(cpc, cpu);
11468         }
11469
11470         if (!pmu->start_txn) {
11471                 if (pmu->pmu_enable) {
11472                         /*
11473                          * If we have pmu_enable/pmu_disable calls, install
11474                          * transaction stubs that use that to try and batch
11475                          * hardware accesses.
11476                          */
11477                         pmu->start_txn  = perf_pmu_start_txn;
11478                         pmu->commit_txn = perf_pmu_commit_txn;
11479                         pmu->cancel_txn = perf_pmu_cancel_txn;
11480                 } else {
11481                         pmu->start_txn  = perf_pmu_nop_txn;
11482                         pmu->commit_txn = perf_pmu_nop_int;
11483                         pmu->cancel_txn = perf_pmu_nop_void;
11484                 }
11485         }
11486
11487         if (!pmu->pmu_enable) {
11488                 pmu->pmu_enable  = perf_pmu_nop_void;
11489                 pmu->pmu_disable = perf_pmu_nop_void;
11490         }
11491
11492         if (!pmu->check_period)
11493                 pmu->check_period = perf_event_nop_int;
11494
11495         if (!pmu->event_idx)
11496                 pmu->event_idx = perf_event_idx_default;
11497
11498         list_add_rcu(&pmu->entry, &pmus);
11499         atomic_set(&pmu->exclusive_cnt, 0);
11500         ret = 0;
11501 unlock:
11502         mutex_unlock(&pmus_lock);
11503
11504         return ret;
11505
11506 free_dev:
11507         if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11508                 device_del(pmu->dev);
11509                 put_device(pmu->dev);
11510         }
11511
11512 free_idr:
11513         idr_remove(&pmu_idr, pmu->type);
11514
11515 free_pdc:
11516         free_percpu(pmu->pmu_disable_count);
11517         goto unlock;
11518 }
11519 EXPORT_SYMBOL_GPL(perf_pmu_register);
11520
11521 void perf_pmu_unregister(struct pmu *pmu)
11522 {
11523         mutex_lock(&pmus_lock);
11524         list_del_rcu(&pmu->entry);
11525
11526         /*
11527          * We dereference the pmu list under both SRCU and regular RCU, so
11528          * synchronize against both of those.
11529          */
11530         synchronize_srcu(&pmus_srcu);
11531         synchronize_rcu();
11532
11533         free_percpu(pmu->pmu_disable_count);
11534         idr_remove(&pmu_idr, pmu->type);
11535         if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11536                 if (pmu->nr_addr_filters)
11537                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11538                 device_del(pmu->dev);
11539                 put_device(pmu->dev);
11540         }
11541         free_pmu_context(pmu);
11542         mutex_unlock(&pmus_lock);
11543 }
11544 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11545
11546 static inline bool has_extended_regs(struct perf_event *event)
11547 {
11548         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11549                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11550 }
11551
11552 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11553 {
11554         struct perf_event_context *ctx = NULL;
11555         int ret;
11556
11557         if (!try_module_get(pmu->module))
11558                 return -ENODEV;
11559
11560         /*
11561          * A number of pmu->event_init() methods iterate the sibling_list to,
11562          * for example, validate if the group fits on the PMU. Therefore,
11563          * if this is a sibling event, acquire the ctx->mutex to protect
11564          * the sibling_list.
11565          */
11566         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11567                 /*
11568                  * This ctx->mutex can nest when we're called through
11569                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11570                  */
11571                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11572                                                  SINGLE_DEPTH_NESTING);
11573                 BUG_ON(!ctx);
11574         }
11575
11576         event->pmu = pmu;
11577         ret = pmu->event_init(event);
11578
11579         if (ctx)
11580                 perf_event_ctx_unlock(event->group_leader, ctx);
11581
11582         if (!ret) {
11583                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11584                     has_extended_regs(event))
11585                         ret = -EOPNOTSUPP;
11586
11587                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11588                     event_has_any_exclude_flag(event))
11589                         ret = -EINVAL;
11590
11591                 if (ret && event->destroy)
11592                         event->destroy(event);
11593         }
11594
11595         if (ret)
11596                 module_put(pmu->module);
11597
11598         return ret;
11599 }
11600
11601 static struct pmu *perf_init_event(struct perf_event *event)
11602 {
11603         bool extended_type = false;
11604         int idx, type, ret;
11605         struct pmu *pmu;
11606
11607         idx = srcu_read_lock(&pmus_srcu);
11608
11609         /*
11610          * Save original type before calling pmu->event_init() since certain
11611          * pmus overwrites event->attr.type to forward event to another pmu.
11612          */
11613         event->orig_type = event->attr.type;
11614
11615         /* Try parent's PMU first: */
11616         if (event->parent && event->parent->pmu) {
11617                 pmu = event->parent->pmu;
11618                 ret = perf_try_init_event(pmu, event);
11619                 if (!ret)
11620                         goto unlock;
11621         }
11622
11623         /*
11624          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11625          * are often aliases for PERF_TYPE_RAW.
11626          */
11627         type = event->attr.type;
11628         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11629                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11630                 if (!type) {
11631                         type = PERF_TYPE_RAW;
11632                 } else {
11633                         extended_type = true;
11634                         event->attr.config &= PERF_HW_EVENT_MASK;
11635                 }
11636         }
11637
11638 again:
11639         rcu_read_lock();
11640         pmu = idr_find(&pmu_idr, type);
11641         rcu_read_unlock();
11642         if (pmu) {
11643                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11644                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11645                         goto fail;
11646
11647                 ret = perf_try_init_event(pmu, event);
11648                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11649                         type = event->attr.type;
11650                         goto again;
11651                 }
11652
11653                 if (ret)
11654                         pmu = ERR_PTR(ret);
11655
11656                 goto unlock;
11657         }
11658
11659         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11660                 ret = perf_try_init_event(pmu, event);
11661                 if (!ret)
11662                         goto unlock;
11663
11664                 if (ret != -ENOENT) {
11665                         pmu = ERR_PTR(ret);
11666                         goto unlock;
11667                 }
11668         }
11669 fail:
11670         pmu = ERR_PTR(-ENOENT);
11671 unlock:
11672         srcu_read_unlock(&pmus_srcu, idx);
11673
11674         return pmu;
11675 }
11676
11677 static void attach_sb_event(struct perf_event *event)
11678 {
11679         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11680
11681         raw_spin_lock(&pel->lock);
11682         list_add_rcu(&event->sb_list, &pel->list);
11683         raw_spin_unlock(&pel->lock);
11684 }
11685
11686 /*
11687  * We keep a list of all !task (and therefore per-cpu) events
11688  * that need to receive side-band records.
11689  *
11690  * This avoids having to scan all the various PMU per-cpu contexts
11691  * looking for them.
11692  */
11693 static void account_pmu_sb_event(struct perf_event *event)
11694 {
11695         if (is_sb_event(event))
11696                 attach_sb_event(event);
11697 }
11698
11699 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11700 static void account_freq_event_nohz(void)
11701 {
11702 #ifdef CONFIG_NO_HZ_FULL
11703         /* Lock so we don't race with concurrent unaccount */
11704         spin_lock(&nr_freq_lock);
11705         if (atomic_inc_return(&nr_freq_events) == 1)
11706                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11707         spin_unlock(&nr_freq_lock);
11708 #endif
11709 }
11710
11711 static void account_freq_event(void)
11712 {
11713         if (tick_nohz_full_enabled())
11714                 account_freq_event_nohz();
11715         else
11716                 atomic_inc(&nr_freq_events);
11717 }
11718
11719
11720 static void account_event(struct perf_event *event)
11721 {
11722         bool inc = false;
11723
11724         if (event->parent)
11725                 return;
11726
11727         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11728                 inc = true;
11729         if (event->attr.mmap || event->attr.mmap_data)
11730                 atomic_inc(&nr_mmap_events);
11731         if (event->attr.build_id)
11732                 atomic_inc(&nr_build_id_events);
11733         if (event->attr.comm)
11734                 atomic_inc(&nr_comm_events);
11735         if (event->attr.namespaces)
11736                 atomic_inc(&nr_namespaces_events);
11737         if (event->attr.cgroup)
11738                 atomic_inc(&nr_cgroup_events);
11739         if (event->attr.task)
11740                 atomic_inc(&nr_task_events);
11741         if (event->attr.freq)
11742                 account_freq_event();
11743         if (event->attr.context_switch) {
11744                 atomic_inc(&nr_switch_events);
11745                 inc = true;
11746         }
11747         if (has_branch_stack(event))
11748                 inc = true;
11749         if (is_cgroup_event(event))
11750                 inc = true;
11751         if (event->attr.ksymbol)
11752                 atomic_inc(&nr_ksymbol_events);
11753         if (event->attr.bpf_event)
11754                 atomic_inc(&nr_bpf_events);
11755         if (event->attr.text_poke)
11756                 atomic_inc(&nr_text_poke_events);
11757
11758         if (inc) {
11759                 /*
11760                  * We need the mutex here because static_branch_enable()
11761                  * must complete *before* the perf_sched_count increment
11762                  * becomes visible.
11763                  */
11764                 if (atomic_inc_not_zero(&perf_sched_count))
11765                         goto enabled;
11766
11767                 mutex_lock(&perf_sched_mutex);
11768                 if (!atomic_read(&perf_sched_count)) {
11769                         static_branch_enable(&perf_sched_events);
11770                         /*
11771                          * Guarantee that all CPUs observe they key change and
11772                          * call the perf scheduling hooks before proceeding to
11773                          * install events that need them.
11774                          */
11775                         synchronize_rcu();
11776                 }
11777                 /*
11778                  * Now that we have waited for the sync_sched(), allow further
11779                  * increments to by-pass the mutex.
11780                  */
11781                 atomic_inc(&perf_sched_count);
11782                 mutex_unlock(&perf_sched_mutex);
11783         }
11784 enabled:
11785
11786         account_pmu_sb_event(event);
11787 }
11788
11789 /*
11790  * Allocate and initialize an event structure
11791  */
11792 static struct perf_event *
11793 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11794                  struct task_struct *task,
11795                  struct perf_event *group_leader,
11796                  struct perf_event *parent_event,
11797                  perf_overflow_handler_t overflow_handler,
11798                  void *context, int cgroup_fd)
11799 {
11800         struct pmu *pmu;
11801         struct perf_event *event;
11802         struct hw_perf_event *hwc;
11803         long err = -EINVAL;
11804         int node;
11805
11806         if ((unsigned)cpu >= nr_cpu_ids) {
11807                 if (!task || cpu != -1)
11808                         return ERR_PTR(-EINVAL);
11809         }
11810         if (attr->sigtrap && !task) {
11811                 /* Requires a task: avoid signalling random tasks. */
11812                 return ERR_PTR(-EINVAL);
11813         }
11814
11815         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11816         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11817                                       node);
11818         if (!event)
11819                 return ERR_PTR(-ENOMEM);
11820
11821         /*
11822          * Single events are their own group leaders, with an
11823          * empty sibling list:
11824          */
11825         if (!group_leader)
11826                 group_leader = event;
11827
11828         mutex_init(&event->child_mutex);
11829         INIT_LIST_HEAD(&event->child_list);
11830
11831         INIT_LIST_HEAD(&event->event_entry);
11832         INIT_LIST_HEAD(&event->sibling_list);
11833         INIT_LIST_HEAD(&event->active_list);
11834         init_event_group(event);
11835         INIT_LIST_HEAD(&event->rb_entry);
11836         INIT_LIST_HEAD(&event->active_entry);
11837         INIT_LIST_HEAD(&event->addr_filters.list);
11838         INIT_HLIST_NODE(&event->hlist_entry);
11839
11840
11841         init_waitqueue_head(&event->waitq);
11842         init_irq_work(&event->pending_irq, perf_pending_irq);
11843         init_task_work(&event->pending_task, perf_pending_task);
11844
11845         mutex_init(&event->mmap_mutex);
11846         raw_spin_lock_init(&event->addr_filters.lock);
11847
11848         atomic_long_set(&event->refcount, 1);
11849         event->cpu              = cpu;
11850         event->attr             = *attr;
11851         event->group_leader     = group_leader;
11852         event->pmu              = NULL;
11853         event->oncpu            = -1;
11854
11855         event->parent           = parent_event;
11856
11857         event->ns               = get_pid_ns(task_active_pid_ns(current));
11858         event->id               = atomic64_inc_return(&perf_event_id);
11859
11860         event->state            = PERF_EVENT_STATE_INACTIVE;
11861
11862         if (parent_event)
11863                 event->event_caps = parent_event->event_caps;
11864
11865         if (task) {
11866                 event->attach_state = PERF_ATTACH_TASK;
11867                 /*
11868                  * XXX pmu::event_init needs to know what task to account to
11869                  * and we cannot use the ctx information because we need the
11870                  * pmu before we get a ctx.
11871                  */
11872                 event->hw.target = get_task_struct(task);
11873         }
11874
11875         event->clock = &local_clock;
11876         if (parent_event)
11877                 event->clock = parent_event->clock;
11878
11879         if (!overflow_handler && parent_event) {
11880                 overflow_handler = parent_event->overflow_handler;
11881                 context = parent_event->overflow_handler_context;
11882 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11883                 if (overflow_handler == bpf_overflow_handler) {
11884                         struct bpf_prog *prog = parent_event->prog;
11885
11886                         bpf_prog_inc(prog);
11887                         event->prog = prog;
11888                         event->orig_overflow_handler =
11889                                 parent_event->orig_overflow_handler;
11890                 }
11891 #endif
11892         }
11893
11894         if (overflow_handler) {
11895                 event->overflow_handler = overflow_handler;
11896                 event->overflow_handler_context = context;
11897         } else if (is_write_backward(event)){
11898                 event->overflow_handler = perf_event_output_backward;
11899                 event->overflow_handler_context = NULL;
11900         } else {
11901                 event->overflow_handler = perf_event_output_forward;
11902                 event->overflow_handler_context = NULL;
11903         }
11904
11905         perf_event__state_init(event);
11906
11907         pmu = NULL;
11908
11909         hwc = &event->hw;
11910         hwc->sample_period = attr->sample_period;
11911         if (attr->freq && attr->sample_freq)
11912                 hwc->sample_period = 1;
11913         hwc->last_period = hwc->sample_period;
11914
11915         local64_set(&hwc->period_left, hwc->sample_period);
11916
11917         /*
11918          * We currently do not support PERF_SAMPLE_READ on inherited events.
11919          * See perf_output_read().
11920          */
11921         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11922                 goto err_ns;
11923
11924         if (!has_branch_stack(event))
11925                 event->attr.branch_sample_type = 0;
11926
11927         pmu = perf_init_event(event);
11928         if (IS_ERR(pmu)) {
11929                 err = PTR_ERR(pmu);
11930                 goto err_ns;
11931         }
11932
11933         /*
11934          * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11935          * events (they don't make sense as the cgroup will be different
11936          * on other CPUs in the uncore mask).
11937          */
11938         if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
11939                 err = -EINVAL;
11940                 goto err_pmu;
11941         }
11942
11943         if (event->attr.aux_output &&
11944             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11945                 err = -EOPNOTSUPP;
11946                 goto err_pmu;
11947         }
11948
11949         if (cgroup_fd != -1) {
11950                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11951                 if (err)
11952                         goto err_pmu;
11953         }
11954
11955         err = exclusive_event_init(event);
11956         if (err)
11957                 goto err_pmu;
11958
11959         if (has_addr_filter(event)) {
11960                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11961                                                     sizeof(struct perf_addr_filter_range),
11962                                                     GFP_KERNEL);
11963                 if (!event->addr_filter_ranges) {
11964                         err = -ENOMEM;
11965                         goto err_per_task;
11966                 }
11967
11968                 /*
11969                  * Clone the parent's vma offsets: they are valid until exec()
11970                  * even if the mm is not shared with the parent.
11971                  */
11972                 if (event->parent) {
11973                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11974
11975                         raw_spin_lock_irq(&ifh->lock);
11976                         memcpy(event->addr_filter_ranges,
11977                                event->parent->addr_filter_ranges,
11978                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11979                         raw_spin_unlock_irq(&ifh->lock);
11980                 }
11981
11982                 /* force hw sync on the address filters */
11983                 event->addr_filters_gen = 1;
11984         }
11985
11986         if (!event->parent) {
11987                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11988                         err = get_callchain_buffers(attr->sample_max_stack);
11989                         if (err)
11990                                 goto err_addr_filters;
11991                 }
11992         }
11993
11994         err = security_perf_event_alloc(event);
11995         if (err)
11996                 goto err_callchain_buffer;
11997
11998         /* symmetric to unaccount_event() in _free_event() */
11999         account_event(event);
12000
12001         return event;
12002
12003 err_callchain_buffer:
12004         if (!event->parent) {
12005                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12006                         put_callchain_buffers();
12007         }
12008 err_addr_filters:
12009         kfree(event->addr_filter_ranges);
12010
12011 err_per_task:
12012         exclusive_event_destroy(event);
12013
12014 err_pmu:
12015         if (is_cgroup_event(event))
12016                 perf_detach_cgroup(event);
12017         if (event->destroy)
12018                 event->destroy(event);
12019         module_put(pmu->module);
12020 err_ns:
12021         if (event->hw.target)
12022                 put_task_struct(event->hw.target);
12023         call_rcu(&event->rcu_head, free_event_rcu);
12024
12025         return ERR_PTR(err);
12026 }
12027
12028 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12029                           struct perf_event_attr *attr)
12030 {
12031         u32 size;
12032         int ret;
12033
12034         /* Zero the full structure, so that a short copy will be nice. */
12035         memset(attr, 0, sizeof(*attr));
12036
12037         ret = get_user(size, &uattr->size);
12038         if (ret)
12039                 return ret;
12040
12041         /* ABI compatibility quirk: */
12042         if (!size)
12043                 size = PERF_ATTR_SIZE_VER0;
12044         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12045                 goto err_size;
12046
12047         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12048         if (ret) {
12049                 if (ret == -E2BIG)
12050                         goto err_size;
12051                 return ret;
12052         }
12053
12054         attr->size = size;
12055
12056         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12057                 return -EINVAL;
12058
12059         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12060                 return -EINVAL;
12061
12062         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12063                 return -EINVAL;
12064
12065         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12066                 u64 mask = attr->branch_sample_type;
12067
12068                 /* only using defined bits */
12069                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12070                         return -EINVAL;
12071
12072                 /* at least one branch bit must be set */
12073                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12074                         return -EINVAL;
12075
12076                 /* propagate priv level, when not set for branch */
12077                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12078
12079                         /* exclude_kernel checked on syscall entry */
12080                         if (!attr->exclude_kernel)
12081                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12082
12083                         if (!attr->exclude_user)
12084                                 mask |= PERF_SAMPLE_BRANCH_USER;
12085
12086                         if (!attr->exclude_hv)
12087                                 mask |= PERF_SAMPLE_BRANCH_HV;
12088                         /*
12089                          * adjust user setting (for HW filter setup)
12090                          */
12091                         attr->branch_sample_type = mask;
12092                 }
12093                 /* privileged levels capture (kernel, hv): check permissions */
12094                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12095                         ret = perf_allow_kernel(attr);
12096                         if (ret)
12097                                 return ret;
12098                 }
12099         }
12100
12101         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12102                 ret = perf_reg_validate(attr->sample_regs_user);
12103                 if (ret)
12104                         return ret;
12105         }
12106
12107         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12108                 if (!arch_perf_have_user_stack_dump())
12109                         return -ENOSYS;
12110
12111                 /*
12112                  * We have __u32 type for the size, but so far
12113                  * we can only use __u16 as maximum due to the
12114                  * __u16 sample size limit.
12115                  */
12116                 if (attr->sample_stack_user >= USHRT_MAX)
12117                         return -EINVAL;
12118                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12119                         return -EINVAL;
12120         }
12121
12122         if (!attr->sample_max_stack)
12123                 attr->sample_max_stack = sysctl_perf_event_max_stack;
12124
12125         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12126                 ret = perf_reg_validate(attr->sample_regs_intr);
12127
12128 #ifndef CONFIG_CGROUP_PERF
12129         if (attr->sample_type & PERF_SAMPLE_CGROUP)
12130                 return -EINVAL;
12131 #endif
12132         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12133             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12134                 return -EINVAL;
12135
12136         if (!attr->inherit && attr->inherit_thread)
12137                 return -EINVAL;
12138
12139         if (attr->remove_on_exec && attr->enable_on_exec)
12140                 return -EINVAL;
12141
12142         if (attr->sigtrap && !attr->remove_on_exec)
12143                 return -EINVAL;
12144
12145 out:
12146         return ret;
12147
12148 err_size:
12149         put_user(sizeof(*attr), &uattr->size);
12150         ret = -E2BIG;
12151         goto out;
12152 }
12153
12154 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12155 {
12156         if (b < a)
12157                 swap(a, b);
12158
12159         mutex_lock(a);
12160         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12161 }
12162
12163 static int
12164 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12165 {
12166         struct perf_buffer *rb = NULL;
12167         int ret = -EINVAL;
12168
12169         if (!output_event) {
12170                 mutex_lock(&event->mmap_mutex);
12171                 goto set;
12172         }
12173
12174         /* don't allow circular references */
12175         if (event == output_event)
12176                 goto out;
12177
12178         /*
12179          * Don't allow cross-cpu buffers
12180          */
12181         if (output_event->cpu != event->cpu)
12182                 goto out;
12183
12184         /*
12185          * If its not a per-cpu rb, it must be the same task.
12186          */
12187         if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12188                 goto out;
12189
12190         /*
12191          * Mixing clocks in the same buffer is trouble you don't need.
12192          */
12193         if (output_event->clock != event->clock)
12194                 goto out;
12195
12196         /*
12197          * Either writing ring buffer from beginning or from end.
12198          * Mixing is not allowed.
12199          */
12200         if (is_write_backward(output_event) != is_write_backward(event))
12201                 goto out;
12202
12203         /*
12204          * If both events generate aux data, they must be on the same PMU
12205          */
12206         if (has_aux(event) && has_aux(output_event) &&
12207             event->pmu != output_event->pmu)
12208                 goto out;
12209
12210         /*
12211          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12212          * output_event is already on rb->event_list, and the list iteration
12213          * restarts after every removal, it is guaranteed this new event is
12214          * observed *OR* if output_event is already removed, it's guaranteed we
12215          * observe !rb->mmap_count.
12216          */
12217         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12218 set:
12219         /* Can't redirect output if we've got an active mmap() */
12220         if (atomic_read(&event->mmap_count))
12221                 goto unlock;
12222
12223         if (output_event) {
12224                 /* get the rb we want to redirect to */
12225                 rb = ring_buffer_get(output_event);
12226                 if (!rb)
12227                         goto unlock;
12228
12229                 /* did we race against perf_mmap_close() */
12230                 if (!atomic_read(&rb->mmap_count)) {
12231                         ring_buffer_put(rb);
12232                         goto unlock;
12233                 }
12234         }
12235
12236         ring_buffer_attach(event, rb);
12237
12238         ret = 0;
12239 unlock:
12240         mutex_unlock(&event->mmap_mutex);
12241         if (output_event)
12242                 mutex_unlock(&output_event->mmap_mutex);
12243
12244 out:
12245         return ret;
12246 }
12247
12248 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12249 {
12250         bool nmi_safe = false;
12251
12252         switch (clk_id) {
12253         case CLOCK_MONOTONIC:
12254                 event->clock = &ktime_get_mono_fast_ns;
12255                 nmi_safe = true;
12256                 break;
12257
12258         case CLOCK_MONOTONIC_RAW:
12259                 event->clock = &ktime_get_raw_fast_ns;
12260                 nmi_safe = true;
12261                 break;
12262
12263         case CLOCK_REALTIME:
12264                 event->clock = &ktime_get_real_ns;
12265                 break;
12266
12267         case CLOCK_BOOTTIME:
12268                 event->clock = &ktime_get_boottime_ns;
12269                 break;
12270
12271         case CLOCK_TAI:
12272                 event->clock = &ktime_get_clocktai_ns;
12273                 break;
12274
12275         default:
12276                 return -EINVAL;
12277         }
12278
12279         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12280                 return -EINVAL;
12281
12282         return 0;
12283 }
12284
12285 static bool
12286 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12287 {
12288         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12289         bool is_capable = perfmon_capable();
12290
12291         if (attr->sigtrap) {
12292                 /*
12293                  * perf_event_attr::sigtrap sends signals to the other task.
12294                  * Require the current task to also have CAP_KILL.
12295                  */
12296                 rcu_read_lock();
12297                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12298                 rcu_read_unlock();
12299
12300                 /*
12301                  * If the required capabilities aren't available, checks for
12302                  * ptrace permissions: upgrade to ATTACH, since sending signals
12303                  * can effectively change the target task.
12304                  */
12305                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12306         }
12307
12308         /*
12309          * Preserve ptrace permission check for backwards compatibility. The
12310          * ptrace check also includes checks that the current task and other
12311          * task have matching uids, and is therefore not done here explicitly.
12312          */
12313         return is_capable || ptrace_may_access(task, ptrace_mode);
12314 }
12315
12316 /**
12317  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12318  *
12319  * @attr_uptr:  event_id type attributes for monitoring/sampling
12320  * @pid:                target pid
12321  * @cpu:                target cpu
12322  * @group_fd:           group leader event fd
12323  * @flags:              perf event open flags
12324  */
12325 SYSCALL_DEFINE5(perf_event_open,
12326                 struct perf_event_attr __user *, attr_uptr,
12327                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12328 {
12329         struct perf_event *group_leader = NULL, *output_event = NULL;
12330         struct perf_event_pmu_context *pmu_ctx;
12331         struct perf_event *event, *sibling;
12332         struct perf_event_attr attr;
12333         struct perf_event_context *ctx;
12334         struct file *event_file = NULL;
12335         struct fd group = {NULL, 0};
12336         struct task_struct *task = NULL;
12337         struct pmu *pmu;
12338         int event_fd;
12339         int move_group = 0;
12340         int err;
12341         int f_flags = O_RDWR;
12342         int cgroup_fd = -1;
12343
12344         /* for future expandability... */
12345         if (flags & ~PERF_FLAG_ALL)
12346                 return -EINVAL;
12347
12348         err = perf_copy_attr(attr_uptr, &attr);
12349         if (err)
12350                 return err;
12351
12352         /* Do we allow access to perf_event_open(2) ? */
12353         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12354         if (err)
12355                 return err;
12356
12357         if (!attr.exclude_kernel) {
12358                 err = perf_allow_kernel(&attr);
12359                 if (err)
12360                         return err;
12361         }
12362
12363         if (attr.namespaces) {
12364                 if (!perfmon_capable())
12365                         return -EACCES;
12366         }
12367
12368         if (attr.freq) {
12369                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12370                         return -EINVAL;
12371         } else {
12372                 if (attr.sample_period & (1ULL << 63))
12373                         return -EINVAL;
12374         }
12375
12376         /* Only privileged users can get physical addresses */
12377         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12378                 err = perf_allow_kernel(&attr);
12379                 if (err)
12380                         return err;
12381         }
12382
12383         /* REGS_INTR can leak data, lockdown must prevent this */
12384         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12385                 err = security_locked_down(LOCKDOWN_PERF);
12386                 if (err)
12387                         return err;
12388         }
12389
12390         /*
12391          * In cgroup mode, the pid argument is used to pass the fd
12392          * opened to the cgroup directory in cgroupfs. The cpu argument
12393          * designates the cpu on which to monitor threads from that
12394          * cgroup.
12395          */
12396         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12397                 return -EINVAL;
12398
12399         if (flags & PERF_FLAG_FD_CLOEXEC)
12400                 f_flags |= O_CLOEXEC;
12401
12402         event_fd = get_unused_fd_flags(f_flags);
12403         if (event_fd < 0)
12404                 return event_fd;
12405
12406         if (group_fd != -1) {
12407                 err = perf_fget_light(group_fd, &group);
12408                 if (err)
12409                         goto err_fd;
12410                 group_leader = group.file->private_data;
12411                 if (flags & PERF_FLAG_FD_OUTPUT)
12412                         output_event = group_leader;
12413                 if (flags & PERF_FLAG_FD_NO_GROUP)
12414                         group_leader = NULL;
12415         }
12416
12417         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12418                 task = find_lively_task_by_vpid(pid);
12419                 if (IS_ERR(task)) {
12420                         err = PTR_ERR(task);
12421                         goto err_group_fd;
12422                 }
12423         }
12424
12425         if (task && group_leader &&
12426             group_leader->attr.inherit != attr.inherit) {
12427                 err = -EINVAL;
12428                 goto err_task;
12429         }
12430
12431         if (flags & PERF_FLAG_PID_CGROUP)
12432                 cgroup_fd = pid;
12433
12434         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12435                                  NULL, NULL, cgroup_fd);
12436         if (IS_ERR(event)) {
12437                 err = PTR_ERR(event);
12438                 goto err_task;
12439         }
12440
12441         if (is_sampling_event(event)) {
12442                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12443                         err = -EOPNOTSUPP;
12444                         goto err_alloc;
12445                 }
12446         }
12447
12448         /*
12449          * Special case software events and allow them to be part of
12450          * any hardware group.
12451          */
12452         pmu = event->pmu;
12453
12454         if (attr.use_clockid) {
12455                 err = perf_event_set_clock(event, attr.clockid);
12456                 if (err)
12457                         goto err_alloc;
12458         }
12459
12460         if (pmu->task_ctx_nr == perf_sw_context)
12461                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12462
12463         if (task) {
12464                 err = down_read_interruptible(&task->signal->exec_update_lock);
12465                 if (err)
12466                         goto err_alloc;
12467
12468                 /*
12469                  * We must hold exec_update_lock across this and any potential
12470                  * perf_install_in_context() call for this new event to
12471                  * serialize against exec() altering our credentials (and the
12472                  * perf_event_exit_task() that could imply).
12473                  */
12474                 err = -EACCES;
12475                 if (!perf_check_permission(&attr, task))
12476                         goto err_cred;
12477         }
12478
12479         /*
12480          * Get the target context (task or percpu):
12481          */
12482         ctx = find_get_context(task, event);
12483         if (IS_ERR(ctx)) {
12484                 err = PTR_ERR(ctx);
12485                 goto err_cred;
12486         }
12487
12488         mutex_lock(&ctx->mutex);
12489
12490         if (ctx->task == TASK_TOMBSTONE) {
12491                 err = -ESRCH;
12492                 goto err_locked;
12493         }
12494
12495         if (!task) {
12496                 /*
12497                  * Check if the @cpu we're creating an event for is online.
12498                  *
12499                  * We use the perf_cpu_context::ctx::mutex to serialize against
12500                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12501                  */
12502                 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12503
12504                 if (!cpuctx->online) {
12505                         err = -ENODEV;
12506                         goto err_locked;
12507                 }
12508         }
12509
12510         if (group_leader) {
12511                 err = -EINVAL;
12512
12513                 /*
12514                  * Do not allow a recursive hierarchy (this new sibling
12515                  * becoming part of another group-sibling):
12516                  */
12517                 if (group_leader->group_leader != group_leader)
12518                         goto err_locked;
12519
12520                 /* All events in a group should have the same clock */
12521                 if (group_leader->clock != event->clock)
12522                         goto err_locked;
12523
12524                 /*
12525                  * Make sure we're both events for the same CPU;
12526                  * grouping events for different CPUs is broken; since
12527                  * you can never concurrently schedule them anyhow.
12528                  */
12529                 if (group_leader->cpu != event->cpu)
12530                         goto err_locked;
12531
12532                 /*
12533                  * Make sure we're both on the same context; either task or cpu.
12534                  */
12535                 if (group_leader->ctx != ctx)
12536                         goto err_locked;
12537
12538                 /*
12539                  * Only a group leader can be exclusive or pinned
12540                  */
12541                 if (attr.exclusive || attr.pinned)
12542                         goto err_locked;
12543
12544                 if (is_software_event(event) &&
12545                     !in_software_context(group_leader)) {
12546                         /*
12547                          * If the event is a sw event, but the group_leader
12548                          * is on hw context.
12549                          *
12550                          * Allow the addition of software events to hw
12551                          * groups, this is safe because software events
12552                          * never fail to schedule.
12553                          *
12554                          * Note the comment that goes with struct
12555                          * perf_event_pmu_context.
12556                          */
12557                         pmu = group_leader->pmu_ctx->pmu;
12558                 } else if (!is_software_event(event)) {
12559                         if (is_software_event(group_leader) &&
12560                             (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12561                                 /*
12562                                  * In case the group is a pure software group, and we
12563                                  * try to add a hardware event, move the whole group to
12564                                  * the hardware context.
12565                                  */
12566                                 move_group = 1;
12567                         }
12568
12569                         /* Don't allow group of multiple hw events from different pmus */
12570                         if (!in_software_context(group_leader) &&
12571                             group_leader->pmu_ctx->pmu != pmu)
12572                                 goto err_locked;
12573                 }
12574         }
12575
12576         /*
12577          * Now that we're certain of the pmu; find the pmu_ctx.
12578          */
12579         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12580         if (IS_ERR(pmu_ctx)) {
12581                 err = PTR_ERR(pmu_ctx);
12582                 goto err_locked;
12583         }
12584         event->pmu_ctx = pmu_ctx;
12585
12586         if (output_event) {
12587                 err = perf_event_set_output(event, output_event);
12588                 if (err)
12589                         goto err_context;
12590         }
12591
12592         if (!perf_event_validate_size(event)) {
12593                 err = -E2BIG;
12594                 goto err_context;
12595         }
12596
12597         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12598                 err = -EINVAL;
12599                 goto err_context;
12600         }
12601
12602         /*
12603          * Must be under the same ctx::mutex as perf_install_in_context(),
12604          * because we need to serialize with concurrent event creation.
12605          */
12606         if (!exclusive_event_installable(event, ctx)) {
12607                 err = -EBUSY;
12608                 goto err_context;
12609         }
12610
12611         WARN_ON_ONCE(ctx->parent_ctx);
12612
12613         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12614         if (IS_ERR(event_file)) {
12615                 err = PTR_ERR(event_file);
12616                 event_file = NULL;
12617                 goto err_context;
12618         }
12619
12620         /*
12621          * This is the point on no return; we cannot fail hereafter. This is
12622          * where we start modifying current state.
12623          */
12624
12625         if (move_group) {
12626                 perf_remove_from_context(group_leader, 0);
12627                 put_pmu_ctx(group_leader->pmu_ctx);
12628
12629                 for_each_sibling_event(sibling, group_leader) {
12630                         perf_remove_from_context(sibling, 0);
12631                         put_pmu_ctx(sibling->pmu_ctx);
12632                 }
12633
12634                 /*
12635                  * Install the group siblings before the group leader.
12636                  *
12637                  * Because a group leader will try and install the entire group
12638                  * (through the sibling list, which is still in-tact), we can
12639                  * end up with siblings installed in the wrong context.
12640                  *
12641                  * By installing siblings first we NO-OP because they're not
12642                  * reachable through the group lists.
12643                  */
12644                 for_each_sibling_event(sibling, group_leader) {
12645                         sibling->pmu_ctx = pmu_ctx;
12646                         get_pmu_ctx(pmu_ctx);
12647                         perf_event__state_init(sibling);
12648                         perf_install_in_context(ctx, sibling, sibling->cpu);
12649                 }
12650
12651                 /*
12652                  * Removing from the context ends up with disabled
12653                  * event. What we want here is event in the initial
12654                  * startup state, ready to be add into new context.
12655                  */
12656                 group_leader->pmu_ctx = pmu_ctx;
12657                 get_pmu_ctx(pmu_ctx);
12658                 perf_event__state_init(group_leader);
12659                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12660         }
12661
12662         /*
12663          * Precalculate sample_data sizes; do while holding ctx::mutex such
12664          * that we're serialized against further additions and before
12665          * perf_install_in_context() which is the point the event is active and
12666          * can use these values.
12667          */
12668         perf_event__header_size(event);
12669         perf_event__id_header_size(event);
12670
12671         event->owner = current;
12672
12673         perf_install_in_context(ctx, event, event->cpu);
12674         perf_unpin_context(ctx);
12675
12676         mutex_unlock(&ctx->mutex);
12677
12678         if (task) {
12679                 up_read(&task->signal->exec_update_lock);
12680                 put_task_struct(task);
12681         }
12682
12683         mutex_lock(&current->perf_event_mutex);
12684         list_add_tail(&event->owner_entry, &current->perf_event_list);
12685         mutex_unlock(&current->perf_event_mutex);
12686
12687         /*
12688          * Drop the reference on the group_event after placing the
12689          * new event on the sibling_list. This ensures destruction
12690          * of the group leader will find the pointer to itself in
12691          * perf_group_detach().
12692          */
12693         fdput(group);
12694         fd_install(event_fd, event_file);
12695         return event_fd;
12696
12697 err_context:
12698         put_pmu_ctx(event->pmu_ctx);
12699         event->pmu_ctx = NULL; /* _free_event() */
12700 err_locked:
12701         mutex_unlock(&ctx->mutex);
12702         perf_unpin_context(ctx);
12703         put_ctx(ctx);
12704 err_cred:
12705         if (task)
12706                 up_read(&task->signal->exec_update_lock);
12707 err_alloc:
12708         free_event(event);
12709 err_task:
12710         if (task)
12711                 put_task_struct(task);
12712 err_group_fd:
12713         fdput(group);
12714 err_fd:
12715         put_unused_fd(event_fd);
12716         return err;
12717 }
12718
12719 /**
12720  * perf_event_create_kernel_counter
12721  *
12722  * @attr: attributes of the counter to create
12723  * @cpu: cpu in which the counter is bound
12724  * @task: task to profile (NULL for percpu)
12725  * @overflow_handler: callback to trigger when we hit the event
12726  * @context: context data could be used in overflow_handler callback
12727  */
12728 struct perf_event *
12729 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12730                                  struct task_struct *task,
12731                                  perf_overflow_handler_t overflow_handler,
12732                                  void *context)
12733 {
12734         struct perf_event_pmu_context *pmu_ctx;
12735         struct perf_event_context *ctx;
12736         struct perf_event *event;
12737         struct pmu *pmu;
12738         int err;
12739
12740         /*
12741          * Grouping is not supported for kernel events, neither is 'AUX',
12742          * make sure the caller's intentions are adjusted.
12743          */
12744         if (attr->aux_output)
12745                 return ERR_PTR(-EINVAL);
12746
12747         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12748                                  overflow_handler, context, -1);
12749         if (IS_ERR(event)) {
12750                 err = PTR_ERR(event);
12751                 goto err;
12752         }
12753
12754         /* Mark owner so we could distinguish it from user events. */
12755         event->owner = TASK_TOMBSTONE;
12756         pmu = event->pmu;
12757
12758         if (pmu->task_ctx_nr == perf_sw_context)
12759                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12760
12761         /*
12762          * Get the target context (task or percpu):
12763          */
12764         ctx = find_get_context(task, event);
12765         if (IS_ERR(ctx)) {
12766                 err = PTR_ERR(ctx);
12767                 goto err_alloc;
12768         }
12769
12770         WARN_ON_ONCE(ctx->parent_ctx);
12771         mutex_lock(&ctx->mutex);
12772         if (ctx->task == TASK_TOMBSTONE) {
12773                 err = -ESRCH;
12774                 goto err_unlock;
12775         }
12776
12777         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12778         if (IS_ERR(pmu_ctx)) {
12779                 err = PTR_ERR(pmu_ctx);
12780                 goto err_unlock;
12781         }
12782         event->pmu_ctx = pmu_ctx;
12783
12784         if (!task) {
12785                 /*
12786                  * Check if the @cpu we're creating an event for is online.
12787                  *
12788                  * We use the perf_cpu_context::ctx::mutex to serialize against
12789                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12790                  */
12791                 struct perf_cpu_context *cpuctx =
12792                         container_of(ctx, struct perf_cpu_context, ctx);
12793                 if (!cpuctx->online) {
12794                         err = -ENODEV;
12795                         goto err_pmu_ctx;
12796                 }
12797         }
12798
12799         if (!exclusive_event_installable(event, ctx)) {
12800                 err = -EBUSY;
12801                 goto err_pmu_ctx;
12802         }
12803
12804         perf_install_in_context(ctx, event, event->cpu);
12805         perf_unpin_context(ctx);
12806         mutex_unlock(&ctx->mutex);
12807
12808         return event;
12809
12810 err_pmu_ctx:
12811         put_pmu_ctx(pmu_ctx);
12812         event->pmu_ctx = NULL; /* _free_event() */
12813 err_unlock:
12814         mutex_unlock(&ctx->mutex);
12815         perf_unpin_context(ctx);
12816         put_ctx(ctx);
12817 err_alloc:
12818         free_event(event);
12819 err:
12820         return ERR_PTR(err);
12821 }
12822 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12823
12824 static void __perf_pmu_remove(struct perf_event_context *ctx,
12825                               int cpu, struct pmu *pmu,
12826                               struct perf_event_groups *groups,
12827                               struct list_head *events)
12828 {
12829         struct perf_event *event, *sibling;
12830
12831         perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12832                 perf_remove_from_context(event, 0);
12833                 put_pmu_ctx(event->pmu_ctx);
12834                 list_add(&event->migrate_entry, events);
12835
12836                 for_each_sibling_event(sibling, event) {
12837                         perf_remove_from_context(sibling, 0);
12838                         put_pmu_ctx(sibling->pmu_ctx);
12839                         list_add(&sibling->migrate_entry, events);
12840                 }
12841         }
12842 }
12843
12844 static void __perf_pmu_install_event(struct pmu *pmu,
12845                                      struct perf_event_context *ctx,
12846                                      int cpu, struct perf_event *event)
12847 {
12848         struct perf_event_pmu_context *epc;
12849
12850         event->cpu = cpu;
12851         epc = find_get_pmu_context(pmu, ctx, event);
12852         event->pmu_ctx = epc;
12853
12854         if (event->state >= PERF_EVENT_STATE_OFF)
12855                 event->state = PERF_EVENT_STATE_INACTIVE;
12856         perf_install_in_context(ctx, event, cpu);
12857 }
12858
12859 static void __perf_pmu_install(struct perf_event_context *ctx,
12860                                int cpu, struct pmu *pmu, struct list_head *events)
12861 {
12862         struct perf_event *event, *tmp;
12863
12864         /*
12865          * Re-instate events in 2 passes.
12866          *
12867          * Skip over group leaders and only install siblings on this first
12868          * pass, siblings will not get enabled without a leader, however a
12869          * leader will enable its siblings, even if those are still on the old
12870          * context.
12871          */
12872         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12873                 if (event->group_leader == event)
12874                         continue;
12875
12876                 list_del(&event->migrate_entry);
12877                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12878         }
12879
12880         /*
12881          * Once all the siblings are setup properly, install the group leaders
12882          * to make it go.
12883          */
12884         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12885                 list_del(&event->migrate_entry);
12886                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12887         }
12888 }
12889
12890 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12891 {
12892         struct perf_event_context *src_ctx, *dst_ctx;
12893         LIST_HEAD(events);
12894
12895         src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12896         dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12897
12898         /*
12899          * See perf_event_ctx_lock() for comments on the details
12900          * of swizzling perf_event::ctx.
12901          */
12902         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12903
12904         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12905         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12906
12907         if (!list_empty(&events)) {
12908                 /*
12909                  * Wait for the events to quiesce before re-instating them.
12910                  */
12911                 synchronize_rcu();
12912
12913                 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
12914         }
12915
12916         mutex_unlock(&dst_ctx->mutex);
12917         mutex_unlock(&src_ctx->mutex);
12918 }
12919 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12920
12921 static void sync_child_event(struct perf_event *child_event)
12922 {
12923         struct perf_event *parent_event = child_event->parent;
12924         u64 child_val;
12925
12926         if (child_event->attr.inherit_stat) {
12927                 struct task_struct *task = child_event->ctx->task;
12928
12929                 if (task && task != TASK_TOMBSTONE)
12930                         perf_event_read_event(child_event, task);
12931         }
12932
12933         child_val = perf_event_count(child_event);
12934
12935         /*
12936          * Add back the child's count to the parent's count:
12937          */
12938         atomic64_add(child_val, &parent_event->child_count);
12939         atomic64_add(child_event->total_time_enabled,
12940                      &parent_event->child_total_time_enabled);
12941         atomic64_add(child_event->total_time_running,
12942                      &parent_event->child_total_time_running);
12943 }
12944
12945 static void
12946 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12947 {
12948         struct perf_event *parent_event = event->parent;
12949         unsigned long detach_flags = 0;
12950
12951         if (parent_event) {
12952                 /*
12953                  * Do not destroy the 'original' grouping; because of the
12954                  * context switch optimization the original events could've
12955                  * ended up in a random child task.
12956                  *
12957                  * If we were to destroy the original group, all group related
12958                  * operations would cease to function properly after this
12959                  * random child dies.
12960                  *
12961                  * Do destroy all inherited groups, we don't care about those
12962                  * and being thorough is better.
12963                  */
12964                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12965                 mutex_lock(&parent_event->child_mutex);
12966         }
12967
12968         perf_remove_from_context(event, detach_flags);
12969
12970         raw_spin_lock_irq(&ctx->lock);
12971         if (event->state > PERF_EVENT_STATE_EXIT)
12972                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12973         raw_spin_unlock_irq(&ctx->lock);
12974
12975         /*
12976          * Child events can be freed.
12977          */
12978         if (parent_event) {
12979                 mutex_unlock(&parent_event->child_mutex);
12980                 /*
12981                  * Kick perf_poll() for is_event_hup();
12982                  */
12983                 perf_event_wakeup(parent_event);
12984                 free_event(event);
12985                 put_event(parent_event);
12986                 return;
12987         }
12988
12989         /*
12990          * Parent events are governed by their filedesc, retain them.
12991          */
12992         perf_event_wakeup(event);
12993 }
12994
12995 static void perf_event_exit_task_context(struct task_struct *child)
12996 {
12997         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12998         struct perf_event *child_event, *next;
12999
13000         WARN_ON_ONCE(child != current);
13001
13002         child_ctx = perf_pin_task_context(child);
13003         if (!child_ctx)
13004                 return;
13005
13006         /*
13007          * In order to reduce the amount of tricky in ctx tear-down, we hold
13008          * ctx::mutex over the entire thing. This serializes against almost
13009          * everything that wants to access the ctx.
13010          *
13011          * The exception is sys_perf_event_open() /
13012          * perf_event_create_kernel_count() which does find_get_context()
13013          * without ctx::mutex (it cannot because of the move_group double mutex
13014          * lock thing). See the comments in perf_install_in_context().
13015          */
13016         mutex_lock(&child_ctx->mutex);
13017
13018         /*
13019          * In a single ctx::lock section, de-schedule the events and detach the
13020          * context from the task such that we cannot ever get it scheduled back
13021          * in.
13022          */
13023         raw_spin_lock_irq(&child_ctx->lock);
13024         task_ctx_sched_out(child_ctx, EVENT_ALL);
13025
13026         /*
13027          * Now that the context is inactive, destroy the task <-> ctx relation
13028          * and mark the context dead.
13029          */
13030         RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13031         put_ctx(child_ctx); /* cannot be last */
13032         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13033         put_task_struct(current); /* cannot be last */
13034
13035         clone_ctx = unclone_ctx(child_ctx);
13036         raw_spin_unlock_irq(&child_ctx->lock);
13037
13038         if (clone_ctx)
13039                 put_ctx(clone_ctx);
13040
13041         /*
13042          * Report the task dead after unscheduling the events so that we
13043          * won't get any samples after PERF_RECORD_EXIT. We can however still
13044          * get a few PERF_RECORD_READ events.
13045          */
13046         perf_event_task(child, child_ctx, 0);
13047
13048         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13049                 perf_event_exit_event(child_event, child_ctx);
13050
13051         mutex_unlock(&child_ctx->mutex);
13052
13053         put_ctx(child_ctx);
13054 }
13055
13056 /*
13057  * When a child task exits, feed back event values to parent events.
13058  *
13059  * Can be called with exec_update_lock held when called from
13060  * setup_new_exec().
13061  */
13062 void perf_event_exit_task(struct task_struct *child)
13063 {
13064         struct perf_event *event, *tmp;
13065
13066         mutex_lock(&child->perf_event_mutex);
13067         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13068                                  owner_entry) {
13069                 list_del_init(&event->owner_entry);
13070
13071                 /*
13072                  * Ensure the list deletion is visible before we clear
13073                  * the owner, closes a race against perf_release() where
13074                  * we need to serialize on the owner->perf_event_mutex.
13075                  */
13076                 smp_store_release(&event->owner, NULL);
13077         }
13078         mutex_unlock(&child->perf_event_mutex);
13079
13080         perf_event_exit_task_context(child);
13081
13082         /*
13083          * The perf_event_exit_task_context calls perf_event_task
13084          * with child's task_ctx, which generates EXIT events for
13085          * child contexts and sets child->perf_event_ctxp[] to NULL.
13086          * At this point we need to send EXIT events to cpu contexts.
13087          */
13088         perf_event_task(child, NULL, 0);
13089 }
13090
13091 static void perf_free_event(struct perf_event *event,
13092                             struct perf_event_context *ctx)
13093 {
13094         struct perf_event *parent = event->parent;
13095
13096         if (WARN_ON_ONCE(!parent))
13097                 return;
13098
13099         mutex_lock(&parent->child_mutex);
13100         list_del_init(&event->child_list);
13101         mutex_unlock(&parent->child_mutex);
13102
13103         put_event(parent);
13104
13105         raw_spin_lock_irq(&ctx->lock);
13106         perf_group_detach(event);
13107         list_del_event(event, ctx);
13108         raw_spin_unlock_irq(&ctx->lock);
13109         free_event(event);
13110 }
13111
13112 /*
13113  * Free a context as created by inheritance by perf_event_init_task() below,
13114  * used by fork() in case of fail.
13115  *
13116  * Even though the task has never lived, the context and events have been
13117  * exposed through the child_list, so we must take care tearing it all down.
13118  */
13119 void perf_event_free_task(struct task_struct *task)
13120 {
13121         struct perf_event_context *ctx;
13122         struct perf_event *event, *tmp;
13123
13124         ctx = rcu_access_pointer(task->perf_event_ctxp);
13125         if (!ctx)
13126                 return;
13127
13128         mutex_lock(&ctx->mutex);
13129         raw_spin_lock_irq(&ctx->lock);
13130         /*
13131          * Destroy the task <-> ctx relation and mark the context dead.
13132          *
13133          * This is important because even though the task hasn't been
13134          * exposed yet the context has been (through child_list).
13135          */
13136         RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13137         WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13138         put_task_struct(task); /* cannot be last */
13139         raw_spin_unlock_irq(&ctx->lock);
13140
13141
13142         list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13143                 perf_free_event(event, ctx);
13144
13145         mutex_unlock(&ctx->mutex);
13146
13147         /*
13148          * perf_event_release_kernel() could've stolen some of our
13149          * child events and still have them on its free_list. In that
13150          * case we must wait for these events to have been freed (in
13151          * particular all their references to this task must've been
13152          * dropped).
13153          *
13154          * Without this copy_process() will unconditionally free this
13155          * task (irrespective of its reference count) and
13156          * _free_event()'s put_task_struct(event->hw.target) will be a
13157          * use-after-free.
13158          *
13159          * Wait for all events to drop their context reference.
13160          */
13161         wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13162         put_ctx(ctx); /* must be last */
13163 }
13164
13165 void perf_event_delayed_put(struct task_struct *task)
13166 {
13167         WARN_ON_ONCE(task->perf_event_ctxp);
13168 }
13169
13170 struct file *perf_event_get(unsigned int fd)
13171 {
13172         struct file *file = fget(fd);
13173         if (!file)
13174                 return ERR_PTR(-EBADF);
13175
13176         if (file->f_op != &perf_fops) {
13177                 fput(file);
13178                 return ERR_PTR(-EBADF);
13179         }
13180
13181         return file;
13182 }
13183
13184 const struct perf_event *perf_get_event(struct file *file)
13185 {
13186         if (file->f_op != &perf_fops)
13187                 return ERR_PTR(-EINVAL);
13188
13189         return file->private_data;
13190 }
13191
13192 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13193 {
13194         if (!event)
13195                 return ERR_PTR(-EINVAL);
13196
13197         return &event->attr;
13198 }
13199
13200 /*
13201  * Inherit an event from parent task to child task.
13202  *
13203  * Returns:
13204  *  - valid pointer on success
13205  *  - NULL for orphaned events
13206  *  - IS_ERR() on error
13207  */
13208 static struct perf_event *
13209 inherit_event(struct perf_event *parent_event,
13210               struct task_struct *parent,
13211               struct perf_event_context *parent_ctx,
13212               struct task_struct *child,
13213               struct perf_event *group_leader,
13214               struct perf_event_context *child_ctx)
13215 {
13216         enum perf_event_state parent_state = parent_event->state;
13217         struct perf_event_pmu_context *pmu_ctx;
13218         struct perf_event *child_event;
13219         unsigned long flags;
13220
13221         /*
13222          * Instead of creating recursive hierarchies of events,
13223          * we link inherited events back to the original parent,
13224          * which has a filp for sure, which we use as the reference
13225          * count:
13226          */
13227         if (parent_event->parent)
13228                 parent_event = parent_event->parent;
13229
13230         child_event = perf_event_alloc(&parent_event->attr,
13231                                            parent_event->cpu,
13232                                            child,
13233                                            group_leader, parent_event,
13234                                            NULL, NULL, -1);
13235         if (IS_ERR(child_event))
13236                 return child_event;
13237
13238         pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13239         if (IS_ERR(pmu_ctx)) {
13240                 free_event(child_event);
13241                 return ERR_CAST(pmu_ctx);
13242         }
13243         child_event->pmu_ctx = pmu_ctx;
13244
13245         /*
13246          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13247          * must be under the same lock in order to serialize against
13248          * perf_event_release_kernel(), such that either we must observe
13249          * is_orphaned_event() or they will observe us on the child_list.
13250          */
13251         mutex_lock(&parent_event->child_mutex);
13252         if (is_orphaned_event(parent_event) ||
13253             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13254                 mutex_unlock(&parent_event->child_mutex);
13255                 /* task_ctx_data is freed with child_ctx */
13256                 free_event(child_event);
13257                 return NULL;
13258         }
13259
13260         get_ctx(child_ctx);
13261
13262         /*
13263          * Make the child state follow the state of the parent event,
13264          * not its attr.disabled bit.  We hold the parent's mutex,
13265          * so we won't race with perf_event_{en, dis}able_family.
13266          */
13267         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13268                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13269         else
13270                 child_event->state = PERF_EVENT_STATE_OFF;
13271
13272         if (parent_event->attr.freq) {
13273                 u64 sample_period = parent_event->hw.sample_period;
13274                 struct hw_perf_event *hwc = &child_event->hw;
13275
13276                 hwc->sample_period = sample_period;
13277                 hwc->last_period   = sample_period;
13278
13279                 local64_set(&hwc->period_left, sample_period);
13280         }
13281
13282         child_event->ctx = child_ctx;
13283         child_event->overflow_handler = parent_event->overflow_handler;
13284         child_event->overflow_handler_context
13285                 = parent_event->overflow_handler_context;
13286
13287         /*
13288          * Precalculate sample_data sizes
13289          */
13290         perf_event__header_size(child_event);
13291         perf_event__id_header_size(child_event);
13292
13293         /*
13294          * Link it up in the child's context:
13295          */
13296         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13297         add_event_to_ctx(child_event, child_ctx);
13298         child_event->attach_state |= PERF_ATTACH_CHILD;
13299         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13300
13301         /*
13302          * Link this into the parent event's child list
13303          */
13304         list_add_tail(&child_event->child_list, &parent_event->child_list);
13305         mutex_unlock(&parent_event->child_mutex);
13306
13307         return child_event;
13308 }
13309
13310 /*
13311  * Inherits an event group.
13312  *
13313  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13314  * This matches with perf_event_release_kernel() removing all child events.
13315  *
13316  * Returns:
13317  *  - 0 on success
13318  *  - <0 on error
13319  */
13320 static int inherit_group(struct perf_event *parent_event,
13321               struct task_struct *parent,
13322               struct perf_event_context *parent_ctx,
13323               struct task_struct *child,
13324               struct perf_event_context *child_ctx)
13325 {
13326         struct perf_event *leader;
13327         struct perf_event *sub;
13328         struct perf_event *child_ctr;
13329
13330         leader = inherit_event(parent_event, parent, parent_ctx,
13331                                  child, NULL, child_ctx);
13332         if (IS_ERR(leader))
13333                 return PTR_ERR(leader);
13334         /*
13335          * @leader can be NULL here because of is_orphaned_event(). In this
13336          * case inherit_event() will create individual events, similar to what
13337          * perf_group_detach() would do anyway.
13338          */
13339         for_each_sibling_event(sub, parent_event) {
13340                 child_ctr = inherit_event(sub, parent, parent_ctx,
13341                                             child, leader, child_ctx);
13342                 if (IS_ERR(child_ctr))
13343                         return PTR_ERR(child_ctr);
13344
13345                 if (sub->aux_event == parent_event && child_ctr &&
13346                     !perf_get_aux_event(child_ctr, leader))
13347                         return -EINVAL;
13348         }
13349         return 0;
13350 }
13351
13352 /*
13353  * Creates the child task context and tries to inherit the event-group.
13354  *
13355  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13356  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13357  * consistent with perf_event_release_kernel() removing all child events.
13358  *
13359  * Returns:
13360  *  - 0 on success
13361  *  - <0 on error
13362  */
13363 static int
13364 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13365                    struct perf_event_context *parent_ctx,
13366                    struct task_struct *child,
13367                    u64 clone_flags, int *inherited_all)
13368 {
13369         struct perf_event_context *child_ctx;
13370         int ret;
13371
13372         if (!event->attr.inherit ||
13373             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13374             /* Do not inherit if sigtrap and signal handlers were cleared. */
13375             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13376                 *inherited_all = 0;
13377                 return 0;
13378         }
13379
13380         child_ctx = child->perf_event_ctxp;
13381         if (!child_ctx) {
13382                 /*
13383                  * This is executed from the parent task context, so
13384                  * inherit events that have been marked for cloning.
13385                  * First allocate and initialize a context for the
13386                  * child.
13387                  */
13388                 child_ctx = alloc_perf_context(child);
13389                 if (!child_ctx)
13390                         return -ENOMEM;
13391
13392                 child->perf_event_ctxp = child_ctx;
13393         }
13394
13395         ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13396         if (ret)
13397                 *inherited_all = 0;
13398
13399         return ret;
13400 }
13401
13402 /*
13403  * Initialize the perf_event context in task_struct
13404  */
13405 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13406 {
13407         struct perf_event_context *child_ctx, *parent_ctx;
13408         struct perf_event_context *cloned_ctx;
13409         struct perf_event *event;
13410         struct task_struct *parent = current;
13411         int inherited_all = 1;
13412         unsigned long flags;
13413         int ret = 0;
13414
13415         if (likely(!parent->perf_event_ctxp))
13416                 return 0;
13417
13418         /*
13419          * If the parent's context is a clone, pin it so it won't get
13420          * swapped under us.
13421          */
13422         parent_ctx = perf_pin_task_context(parent);
13423         if (!parent_ctx)
13424                 return 0;
13425
13426         /*
13427          * No need to check if parent_ctx != NULL here; since we saw
13428          * it non-NULL earlier, the only reason for it to become NULL
13429          * is if we exit, and since we're currently in the middle of
13430          * a fork we can't be exiting at the same time.
13431          */
13432
13433         /*
13434          * Lock the parent list. No need to lock the child - not PID
13435          * hashed yet and not running, so nobody can access it.
13436          */
13437         mutex_lock(&parent_ctx->mutex);
13438
13439         /*
13440          * We dont have to disable NMIs - we are only looking at
13441          * the list, not manipulating it:
13442          */
13443         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13444                 ret = inherit_task_group(event, parent, parent_ctx,
13445                                          child, clone_flags, &inherited_all);
13446                 if (ret)
13447                         goto out_unlock;
13448         }
13449
13450         /*
13451          * We can't hold ctx->lock when iterating the ->flexible_group list due
13452          * to allocations, but we need to prevent rotation because
13453          * rotate_ctx() will change the list from interrupt context.
13454          */
13455         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13456         parent_ctx->rotate_disable = 1;
13457         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13458
13459         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13460                 ret = inherit_task_group(event, parent, parent_ctx,
13461                                          child, clone_flags, &inherited_all);
13462                 if (ret)
13463                         goto out_unlock;
13464         }
13465
13466         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13467         parent_ctx->rotate_disable = 0;
13468
13469         child_ctx = child->perf_event_ctxp;
13470
13471         if (child_ctx && inherited_all) {
13472                 /*
13473                  * Mark the child context as a clone of the parent
13474                  * context, or of whatever the parent is a clone of.
13475                  *
13476                  * Note that if the parent is a clone, the holding of
13477                  * parent_ctx->lock avoids it from being uncloned.
13478                  */
13479                 cloned_ctx = parent_ctx->parent_ctx;
13480                 if (cloned_ctx) {
13481                         child_ctx->parent_ctx = cloned_ctx;
13482                         child_ctx->parent_gen = parent_ctx->parent_gen;
13483                 } else {
13484                         child_ctx->parent_ctx = parent_ctx;
13485                         child_ctx->parent_gen = parent_ctx->generation;
13486                 }
13487                 get_ctx(child_ctx->parent_ctx);
13488         }
13489
13490         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13491 out_unlock:
13492         mutex_unlock(&parent_ctx->mutex);
13493
13494         perf_unpin_context(parent_ctx);
13495         put_ctx(parent_ctx);
13496
13497         return ret;
13498 }
13499
13500 /*
13501  * Initialize the perf_event context in task_struct
13502  */
13503 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13504 {
13505         int ret;
13506
13507         child->perf_event_ctxp = NULL;
13508         mutex_init(&child->perf_event_mutex);
13509         INIT_LIST_HEAD(&child->perf_event_list);
13510
13511         ret = perf_event_init_context(child, clone_flags);
13512         if (ret) {
13513                 perf_event_free_task(child);
13514                 return ret;
13515         }
13516
13517         return 0;
13518 }
13519
13520 static void __init perf_event_init_all_cpus(void)
13521 {
13522         struct swevent_htable *swhash;
13523         struct perf_cpu_context *cpuctx;
13524         int cpu;
13525
13526         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13527
13528         for_each_possible_cpu(cpu) {
13529                 swhash = &per_cpu(swevent_htable, cpu);
13530                 mutex_init(&swhash->hlist_mutex);
13531
13532                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13533                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13534
13535                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13536
13537                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13538                 __perf_event_init_context(&cpuctx->ctx);
13539                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13540                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13541                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13542                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13543                 cpuctx->heap = cpuctx->heap_default;
13544         }
13545 }
13546
13547 static void perf_swevent_init_cpu(unsigned int cpu)
13548 {
13549         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13550
13551         mutex_lock(&swhash->hlist_mutex);
13552         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13553                 struct swevent_hlist *hlist;
13554
13555                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13556                 WARN_ON(!hlist);
13557                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13558         }
13559         mutex_unlock(&swhash->hlist_mutex);
13560 }
13561
13562 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13563 static void __perf_event_exit_context(void *__info)
13564 {
13565         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13566         struct perf_event_context *ctx = __info;
13567         struct perf_event *event;
13568
13569         raw_spin_lock(&ctx->lock);
13570         ctx_sched_out(ctx, EVENT_TIME);
13571         list_for_each_entry(event, &ctx->event_list, event_entry)
13572                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13573         raw_spin_unlock(&ctx->lock);
13574 }
13575
13576 static void perf_event_exit_cpu_context(int cpu)
13577 {
13578         struct perf_cpu_context *cpuctx;
13579         struct perf_event_context *ctx;
13580
13581         // XXX simplify cpuctx->online
13582         mutex_lock(&pmus_lock);
13583         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13584         ctx = &cpuctx->ctx;
13585
13586         mutex_lock(&ctx->mutex);
13587         smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13588         cpuctx->online = 0;
13589         mutex_unlock(&ctx->mutex);
13590         cpumask_clear_cpu(cpu, perf_online_mask);
13591         mutex_unlock(&pmus_lock);
13592 }
13593 #else
13594
13595 static void perf_event_exit_cpu_context(int cpu) { }
13596
13597 #endif
13598
13599 int perf_event_init_cpu(unsigned int cpu)
13600 {
13601         struct perf_cpu_context *cpuctx;
13602         struct perf_event_context *ctx;
13603
13604         perf_swevent_init_cpu(cpu);
13605
13606         mutex_lock(&pmus_lock);
13607         cpumask_set_cpu(cpu, perf_online_mask);
13608         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13609         ctx = &cpuctx->ctx;
13610
13611         mutex_lock(&ctx->mutex);
13612         cpuctx->online = 1;
13613         mutex_unlock(&ctx->mutex);
13614         mutex_unlock(&pmus_lock);
13615
13616         return 0;
13617 }
13618
13619 int perf_event_exit_cpu(unsigned int cpu)
13620 {
13621         perf_event_exit_cpu_context(cpu);
13622         return 0;
13623 }
13624
13625 static int
13626 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13627 {
13628         int cpu;
13629
13630         for_each_online_cpu(cpu)
13631                 perf_event_exit_cpu(cpu);
13632
13633         return NOTIFY_OK;
13634 }
13635
13636 /*
13637  * Run the perf reboot notifier at the very last possible moment so that
13638  * the generic watchdog code runs as long as possible.
13639  */
13640 static struct notifier_block perf_reboot_notifier = {
13641         .notifier_call = perf_reboot,
13642         .priority = INT_MIN,
13643 };
13644
13645 void __init perf_event_init(void)
13646 {
13647         int ret;
13648
13649         idr_init(&pmu_idr);
13650
13651         perf_event_init_all_cpus();
13652         init_srcu_struct(&pmus_srcu);
13653         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13654         perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13655         perf_pmu_register(&perf_task_clock, "task_clock", -1);
13656         perf_tp_register();
13657         perf_event_init_cpu(smp_processor_id());
13658         register_reboot_notifier(&perf_reboot_notifier);
13659
13660         ret = init_hw_breakpoint();
13661         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13662
13663         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13664
13665         /*
13666          * Build time assertion that we keep the data_head at the intended
13667          * location.  IOW, validation we got the __reserved[] size right.
13668          */
13669         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13670                      != 1024);
13671 }
13672
13673 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13674                               char *page)
13675 {
13676         struct perf_pmu_events_attr *pmu_attr =
13677                 container_of(attr, struct perf_pmu_events_attr, attr);
13678
13679         if (pmu_attr->event_str)
13680                 return sprintf(page, "%s\n", pmu_attr->event_str);
13681
13682         return 0;
13683 }
13684 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13685
13686 static int __init perf_event_sysfs_init(void)
13687 {
13688         struct pmu *pmu;
13689         int ret;
13690
13691         mutex_lock(&pmus_lock);
13692
13693         ret = bus_register(&pmu_bus);
13694         if (ret)
13695                 goto unlock;
13696
13697         list_for_each_entry(pmu, &pmus, entry) {
13698                 if (pmu->dev)
13699                         continue;
13700
13701                 ret = pmu_dev_alloc(pmu);
13702                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13703         }
13704         pmu_bus_running = 1;
13705         ret = 0;
13706
13707 unlock:
13708         mutex_unlock(&pmus_lock);
13709
13710         return ret;
13711 }
13712 device_initcall(perf_event_sysfs_init);
13713
13714 #ifdef CONFIG_CGROUP_PERF
13715 static struct cgroup_subsys_state *
13716 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13717 {
13718         struct perf_cgroup *jc;
13719
13720         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13721         if (!jc)
13722                 return ERR_PTR(-ENOMEM);
13723
13724         jc->info = alloc_percpu(struct perf_cgroup_info);
13725         if (!jc->info) {
13726                 kfree(jc);
13727                 return ERR_PTR(-ENOMEM);
13728         }
13729
13730         return &jc->css;
13731 }
13732
13733 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13734 {
13735         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13736
13737         free_percpu(jc->info);
13738         kfree(jc);
13739 }
13740
13741 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13742 {
13743         perf_event_cgroup(css->cgroup);
13744         return 0;
13745 }
13746
13747 static int __perf_cgroup_move(void *info)
13748 {
13749         struct task_struct *task = info;
13750
13751         preempt_disable();
13752         perf_cgroup_switch(task);
13753         preempt_enable();
13754
13755         return 0;
13756 }
13757
13758 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13759 {
13760         struct task_struct *task;
13761         struct cgroup_subsys_state *css;
13762
13763         cgroup_taskset_for_each(task, css, tset)
13764                 task_function_call(task, __perf_cgroup_move, task);
13765 }
13766
13767 struct cgroup_subsys perf_event_cgrp_subsys = {
13768         .css_alloc      = perf_cgroup_css_alloc,
13769         .css_free       = perf_cgroup_css_free,
13770         .css_online     = perf_cgroup_css_online,
13771         .attach         = perf_cgroup_attach,
13772         /*
13773          * Implicitly enable on dfl hierarchy so that perf events can
13774          * always be filtered by cgroup2 path as long as perf_event
13775          * controller is not mounted on a legacy hierarchy.
13776          */
13777         .implicit_on_dfl = true,
13778         .threaded       = true,
13779 };
13780 #endif /* CONFIG_CGROUP_PERF */
13781
13782 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);