net: stmmac: use GFP_DMA32
[platform/kernel/linux-starfive.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66         struct task_struct      *p;
67         remote_function_f       func;
68         void                    *info;
69         int                     ret;
70 };
71
72 static void remote_function(void *data)
73 {
74         struct remote_function_call *tfc = data;
75         struct task_struct *p = tfc->p;
76
77         if (p) {
78                 /* -EAGAIN */
79                 if (task_cpu(p) != smp_processor_id())
80                         return;
81
82                 /*
83                  * Now that we're on right CPU with IRQs disabled, we can test
84                  * if we hit the right task without races.
85                  */
86
87                 tfc->ret = -ESRCH; /* No such (running) process */
88                 if (p != current)
89                         return;
90         }
91
92         tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:          the task to evaluate
98  * @func:       the function to be called
99  * @info:       the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111         struct remote_function_call data = {
112                 .p      = p,
113                 .func   = func,
114                 .info   = info,
115                 .ret    = -EAGAIN,
116         };
117         int ret;
118
119         for (;;) {
120                 ret = smp_call_function_single(task_cpu(p), remote_function,
121                                                &data, 1);
122                 if (!ret)
123                         ret = data.ret;
124
125                 if (ret != -EAGAIN)
126                         break;
127
128                 cond_resched();
129         }
130
131         return ret;
132 }
133
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:        target cpu to queue this function
137  * @func:       the function to be called
138  * @info:       the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146         struct remote_function_call data = {
147                 .p      = NULL,
148                 .func   = func,
149                 .info   = info,
150                 .ret    = -ENXIO, /* No such CPU */
151         };
152
153         smp_call_function_single(cpu, remote_function, &data, 1);
154
155         return data.ret;
156 }
157
158 static inline struct perf_cpu_context *
159 __get_cpu_context(struct perf_event_context *ctx)
160 {
161         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
162 }
163
164 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
165                           struct perf_event_context *ctx)
166 {
167         raw_spin_lock(&cpuctx->ctx.lock);
168         if (ctx)
169                 raw_spin_lock(&ctx->lock);
170 }
171
172 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
173                             struct perf_event_context *ctx)
174 {
175         if (ctx)
176                 raw_spin_unlock(&ctx->lock);
177         raw_spin_unlock(&cpuctx->ctx.lock);
178 }
179
180 #define TASK_TOMBSTONE ((void *)-1L)
181
182 static bool is_kernel_event(struct perf_event *event)
183 {
184         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
185 }
186
187 /*
188  * On task ctx scheduling...
189  *
190  * When !ctx->nr_events a task context will not be scheduled. This means
191  * we can disable the scheduler hooks (for performance) without leaving
192  * pending task ctx state.
193  *
194  * This however results in two special cases:
195  *
196  *  - removing the last event from a task ctx; this is relatively straight
197  *    forward and is done in __perf_remove_from_context.
198  *
199  *  - adding the first event to a task ctx; this is tricky because we cannot
200  *    rely on ctx->is_active and therefore cannot use event_function_call().
201  *    See perf_install_in_context().
202  *
203  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
204  */
205
206 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
207                         struct perf_event_context *, void *);
208
209 struct event_function_struct {
210         struct perf_event *event;
211         event_f func;
212         void *data;
213 };
214
215 static int event_function(void *info)
216 {
217         struct event_function_struct *efs = info;
218         struct perf_event *event = efs->event;
219         struct perf_event_context *ctx = event->ctx;
220         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
221         struct perf_event_context *task_ctx = cpuctx->task_ctx;
222         int ret = 0;
223
224         lockdep_assert_irqs_disabled();
225
226         perf_ctx_lock(cpuctx, task_ctx);
227         /*
228          * Since we do the IPI call without holding ctx->lock things can have
229          * changed, double check we hit the task we set out to hit.
230          */
231         if (ctx->task) {
232                 if (ctx->task != current) {
233                         ret = -ESRCH;
234                         goto unlock;
235                 }
236
237                 /*
238                  * We only use event_function_call() on established contexts,
239                  * and event_function() is only ever called when active (or
240                  * rather, we'll have bailed in task_function_call() or the
241                  * above ctx->task != current test), therefore we must have
242                  * ctx->is_active here.
243                  */
244                 WARN_ON_ONCE(!ctx->is_active);
245                 /*
246                  * And since we have ctx->is_active, cpuctx->task_ctx must
247                  * match.
248                  */
249                 WARN_ON_ONCE(task_ctx != ctx);
250         } else {
251                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
252         }
253
254         efs->func(event, cpuctx, ctx, efs->data);
255 unlock:
256         perf_ctx_unlock(cpuctx, task_ctx);
257
258         return ret;
259 }
260
261 static void event_function_call(struct perf_event *event, event_f func, void *data)
262 {
263         struct perf_event_context *ctx = event->ctx;
264         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
265         struct event_function_struct efs = {
266                 .event = event,
267                 .func = func,
268                 .data = data,
269         };
270
271         if (!event->parent) {
272                 /*
273                  * If this is a !child event, we must hold ctx::mutex to
274                  * stabilize the event->ctx relation. See
275                  * perf_event_ctx_lock().
276                  */
277                 lockdep_assert_held(&ctx->mutex);
278         }
279
280         if (!task) {
281                 cpu_function_call(event->cpu, event_function, &efs);
282                 return;
283         }
284
285         if (task == TASK_TOMBSTONE)
286                 return;
287
288 again:
289         if (!task_function_call(task, event_function, &efs))
290                 return;
291
292         raw_spin_lock_irq(&ctx->lock);
293         /*
294          * Reload the task pointer, it might have been changed by
295          * a concurrent perf_event_context_sched_out().
296          */
297         task = ctx->task;
298         if (task == TASK_TOMBSTONE) {
299                 raw_spin_unlock_irq(&ctx->lock);
300                 return;
301         }
302         if (ctx->is_active) {
303                 raw_spin_unlock_irq(&ctx->lock);
304                 goto again;
305         }
306         func(event, NULL, ctx, data);
307         raw_spin_unlock_irq(&ctx->lock);
308 }
309
310 /*
311  * Similar to event_function_call() + event_function(), but hard assumes IRQs
312  * are already disabled and we're on the right CPU.
313  */
314 static void event_function_local(struct perf_event *event, event_f func, void *data)
315 {
316         struct perf_event_context *ctx = event->ctx;
317         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
318         struct task_struct *task = READ_ONCE(ctx->task);
319         struct perf_event_context *task_ctx = NULL;
320
321         lockdep_assert_irqs_disabled();
322
323         if (task) {
324                 if (task == TASK_TOMBSTONE)
325                         return;
326
327                 task_ctx = ctx;
328         }
329
330         perf_ctx_lock(cpuctx, task_ctx);
331
332         task = ctx->task;
333         if (task == TASK_TOMBSTONE)
334                 goto unlock;
335
336         if (task) {
337                 /*
338                  * We must be either inactive or active and the right task,
339                  * otherwise we're screwed, since we cannot IPI to somewhere
340                  * else.
341                  */
342                 if (ctx->is_active) {
343                         if (WARN_ON_ONCE(task != current))
344                                 goto unlock;
345
346                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
347                                 goto unlock;
348                 }
349         } else {
350                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
351         }
352
353         func(event, cpuctx, ctx, data);
354 unlock:
355         perf_ctx_unlock(cpuctx, task_ctx);
356 }
357
358 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
359                        PERF_FLAG_FD_OUTPUT  |\
360                        PERF_FLAG_PID_CGROUP |\
361                        PERF_FLAG_FD_CLOEXEC)
362
363 /*
364  * branch priv levels that need permission checks
365  */
366 #define PERF_SAMPLE_BRANCH_PERM_PLM \
367         (PERF_SAMPLE_BRANCH_KERNEL |\
368          PERF_SAMPLE_BRANCH_HV)
369
370 enum event_type_t {
371         EVENT_FLEXIBLE = 0x1,
372         EVENT_PINNED = 0x2,
373         EVENT_TIME = 0x4,
374         /* see ctx_resched() for details */
375         EVENT_CPU = 0x8,
376         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
377 };
378
379 /*
380  * perf_sched_events : >0 events exist
381  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
382  */
383
384 static void perf_sched_delayed(struct work_struct *work);
385 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
386 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
387 static DEFINE_MUTEX(perf_sched_mutex);
388 static atomic_t perf_sched_count;
389
390 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
391 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE         100000
428 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
430
431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
435
436 static int perf_sample_allowed_ns __read_mostly =
437         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438
439 static void update_perf_cpu_limits(void)
440 {
441         u64 tmp = perf_sample_period_ns;
442
443         tmp *= sysctl_perf_cpu_time_max_percent;
444         tmp = div_u64(tmp, 100);
445         if (!tmp)
446                 tmp = 1;
447
448         WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450
451 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
452
453 int perf_proc_update_handler(struct ctl_table *table, int write,
454                 void *buffer, size_t *lenp, loff_t *ppos)
455 {
456         int ret;
457         int perf_cpu = sysctl_perf_cpu_time_max_percent;
458         /*
459          * If throttling is disabled don't allow the write:
460          */
461         if (write && (perf_cpu == 100 || perf_cpu == 0))
462                 return -EINVAL;
463
464         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465         if (ret || !write)
466                 return ret;
467
468         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470         update_perf_cpu_limits();
471
472         return 0;
473 }
474
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478                 void *buffer, size_t *lenp, loff_t *ppos)
479 {
480         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481
482         if (ret || !write)
483                 return ret;
484
485         if (sysctl_perf_cpu_time_max_percent == 100 ||
486             sysctl_perf_cpu_time_max_percent == 0) {
487                 printk(KERN_WARNING
488                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489                 WRITE_ONCE(perf_sample_allowed_ns, 0);
490         } else {
491                 update_perf_cpu_limits();
492         }
493
494         return 0;
495 }
496
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505
506 static u64 __report_avg;
507 static u64 __report_allowed;
508
509 static void perf_duration_warn(struct irq_work *w)
510 {
511         printk_ratelimited(KERN_INFO
512                 "perf: interrupt took too long (%lld > %lld), lowering "
513                 "kernel.perf_event_max_sample_rate to %d\n",
514                 __report_avg, __report_allowed,
515                 sysctl_perf_event_sample_rate);
516 }
517
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523         u64 running_len;
524         u64 avg_len;
525         u32 max;
526
527         if (max_len == 0)
528                 return;
529
530         /* Decay the counter by 1 average sample. */
531         running_len = __this_cpu_read(running_sample_length);
532         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533         running_len += sample_len_ns;
534         __this_cpu_write(running_sample_length, running_len);
535
536         /*
537          * Note: this will be biased artifically low until we have
538          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539          * from having to maintain a count.
540          */
541         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542         if (avg_len <= max_len)
543                 return;
544
545         __report_avg = avg_len;
546         __report_allowed = max_len;
547
548         /*
549          * Compute a throttle threshold 25% below the current duration.
550          */
551         avg_len += avg_len / 4;
552         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553         if (avg_len < max)
554                 max /= (u32)avg_len;
555         else
556                 max = 1;
557
558         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559         WRITE_ONCE(max_samples_per_tick, max);
560
561         sysctl_perf_event_sample_rate = max * HZ;
562         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563
564         if (!irq_work_queue(&perf_duration_work)) {
565                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566                              "kernel.perf_event_max_sample_rate to %d\n",
567                              __report_avg, __report_allowed,
568                              sysctl_perf_event_sample_rate);
569         }
570 }
571
572 static atomic64_t perf_event_id;
573
574 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
575                               enum event_type_t event_type);
576
577 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
578                              enum event_type_t event_type);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 /*
678  * UP store-release, load-acquire
679  */
680
681 #define __store_release(ptr, val)                                       \
682 do {                                                                    \
683         barrier();                                                      \
684         WRITE_ONCE(*(ptr), (val));                                      \
685 } while (0)
686
687 #define __load_acquire(ptr)                                             \
688 ({                                                                      \
689         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
690         barrier();                                                      \
691         ___p;                                                           \
692 })
693
694 #ifdef CONFIG_CGROUP_PERF
695
696 static inline bool
697 perf_cgroup_match(struct perf_event *event)
698 {
699         struct perf_event_context *ctx = event->ctx;
700         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
701
702         /* @event doesn't care about cgroup */
703         if (!event->cgrp)
704                 return true;
705
706         /* wants specific cgroup scope but @cpuctx isn't associated with any */
707         if (!cpuctx->cgrp)
708                 return false;
709
710         /*
711          * Cgroup scoping is recursive.  An event enabled for a cgroup is
712          * also enabled for all its descendant cgroups.  If @cpuctx's
713          * cgroup is a descendant of @event's (the test covers identity
714          * case), it's a match.
715          */
716         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
717                                     event->cgrp->css.cgroup);
718 }
719
720 static inline void perf_detach_cgroup(struct perf_event *event)
721 {
722         css_put(&event->cgrp->css);
723         event->cgrp = NULL;
724 }
725
726 static inline int is_cgroup_event(struct perf_event *event)
727 {
728         return event->cgrp != NULL;
729 }
730
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733         struct perf_cgroup_info *t;
734
735         t = per_cpu_ptr(event->cgrp->info, event->cpu);
736         return t->time;
737 }
738
739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
740 {
741         struct perf_cgroup_info *t;
742
743         t = per_cpu_ptr(event->cgrp->info, event->cpu);
744         if (!__load_acquire(&t->active))
745                 return t->time;
746         now += READ_ONCE(t->timeoffset);
747         return now;
748 }
749
750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
751 {
752         if (adv)
753                 info->time += now - info->timestamp;
754         info->timestamp = now;
755         /*
756          * see update_context_time()
757          */
758         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
759 }
760
761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
762 {
763         struct perf_cgroup *cgrp = cpuctx->cgrp;
764         struct cgroup_subsys_state *css;
765         struct perf_cgroup_info *info;
766
767         if (cgrp) {
768                 u64 now = perf_clock();
769
770                 for (css = &cgrp->css; css; css = css->parent) {
771                         cgrp = container_of(css, struct perf_cgroup, css);
772                         info = this_cpu_ptr(cgrp->info);
773
774                         __update_cgrp_time(info, now, true);
775                         if (final)
776                                 __store_release(&info->active, 0);
777                 }
778         }
779 }
780
781 static inline void update_cgrp_time_from_event(struct perf_event *event)
782 {
783         struct perf_cgroup_info *info;
784
785         /*
786          * ensure we access cgroup data only when needed and
787          * when we know the cgroup is pinned (css_get)
788          */
789         if (!is_cgroup_event(event))
790                 return;
791
792         info = this_cpu_ptr(event->cgrp->info);
793         /*
794          * Do not update time when cgroup is not active
795          */
796         if (info->active)
797                 __update_cgrp_time(info, perf_clock(), true);
798 }
799
800 static inline void
801 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
802 {
803         struct perf_event_context *ctx = &cpuctx->ctx;
804         struct perf_cgroup *cgrp = cpuctx->cgrp;
805         struct perf_cgroup_info *info;
806         struct cgroup_subsys_state *css;
807
808         /*
809          * ctx->lock held by caller
810          * ensure we do not access cgroup data
811          * unless we have the cgroup pinned (css_get)
812          */
813         if (!cgrp)
814                 return;
815
816         WARN_ON_ONCE(!ctx->nr_cgroups);
817
818         for (css = &cgrp->css; css; css = css->parent) {
819                 cgrp = container_of(css, struct perf_cgroup, css);
820                 info = this_cpu_ptr(cgrp->info);
821                 __update_cgrp_time(info, ctx->timestamp, false);
822                 __store_release(&info->active, 1);
823         }
824 }
825
826 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
827
828 /*
829  * reschedule events based on the cgroup constraint of task.
830  */
831 static void perf_cgroup_switch(struct task_struct *task)
832 {
833         struct perf_cgroup *cgrp;
834         struct perf_cpu_context *cpuctx, *tmp;
835         struct list_head *list;
836         unsigned long flags;
837
838         /*
839          * Disable interrupts and preemption to avoid this CPU's
840          * cgrp_cpuctx_entry to change under us.
841          */
842         local_irq_save(flags);
843
844         cgrp = perf_cgroup_from_task(task, NULL);
845
846         list = this_cpu_ptr(&cgrp_cpuctx_list);
847         list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
848                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
849                 if (READ_ONCE(cpuctx->cgrp) == cgrp)
850                         continue;
851
852                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
853                 perf_pmu_disable(cpuctx->ctx.pmu);
854
855                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
856                 /*
857                  * must not be done before ctxswout due
858                  * to update_cgrp_time_from_cpuctx() in
859                  * ctx_sched_out()
860                  */
861                 cpuctx->cgrp = cgrp;
862                 /*
863                  * set cgrp before ctxsw in to allow
864                  * perf_cgroup_set_timestamp() in ctx_sched_in()
865                  * to not have to pass task around
866                  */
867                 cpu_ctx_sched_in(cpuctx, EVENT_ALL);
868
869                 perf_pmu_enable(cpuctx->ctx.pmu);
870                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
871         }
872
873         local_irq_restore(flags);
874 }
875
876 static int perf_cgroup_ensure_storage(struct perf_event *event,
877                                 struct cgroup_subsys_state *css)
878 {
879         struct perf_cpu_context *cpuctx;
880         struct perf_event **storage;
881         int cpu, heap_size, ret = 0;
882
883         /*
884          * Allow storage to have sufficent space for an iterator for each
885          * possibly nested cgroup plus an iterator for events with no cgroup.
886          */
887         for (heap_size = 1; css; css = css->parent)
888                 heap_size++;
889
890         for_each_possible_cpu(cpu) {
891                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
892                 if (heap_size <= cpuctx->heap_size)
893                         continue;
894
895                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
896                                        GFP_KERNEL, cpu_to_node(cpu));
897                 if (!storage) {
898                         ret = -ENOMEM;
899                         break;
900                 }
901
902                 raw_spin_lock_irq(&cpuctx->ctx.lock);
903                 if (cpuctx->heap_size < heap_size) {
904                         swap(cpuctx->heap, storage);
905                         if (storage == cpuctx->heap_default)
906                                 storage = NULL;
907                         cpuctx->heap_size = heap_size;
908                 }
909                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
910
911                 kfree(storage);
912         }
913
914         return ret;
915 }
916
917 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
918                                       struct perf_event_attr *attr,
919                                       struct perf_event *group_leader)
920 {
921         struct perf_cgroup *cgrp;
922         struct cgroup_subsys_state *css;
923         struct fd f = fdget(fd);
924         int ret = 0;
925
926         if (!f.file)
927                 return -EBADF;
928
929         css = css_tryget_online_from_dir(f.file->f_path.dentry,
930                                          &perf_event_cgrp_subsys);
931         if (IS_ERR(css)) {
932                 ret = PTR_ERR(css);
933                 goto out;
934         }
935
936         ret = perf_cgroup_ensure_storage(event, css);
937         if (ret)
938                 goto out;
939
940         cgrp = container_of(css, struct perf_cgroup, css);
941         event->cgrp = cgrp;
942
943         /*
944          * all events in a group must monitor
945          * the same cgroup because a task belongs
946          * to only one perf cgroup at a time
947          */
948         if (group_leader && group_leader->cgrp != cgrp) {
949                 perf_detach_cgroup(event);
950                 ret = -EINVAL;
951         }
952 out:
953         fdput(f);
954         return ret;
955 }
956
957 static inline void
958 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
959 {
960         struct perf_cpu_context *cpuctx;
961
962         if (!is_cgroup_event(event))
963                 return;
964
965         /*
966          * Because cgroup events are always per-cpu events,
967          * @ctx == &cpuctx->ctx.
968          */
969         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
970
971         if (ctx->nr_cgroups++)
972                 return;
973
974         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
975         list_add(&cpuctx->cgrp_cpuctx_entry,
976                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
977 }
978
979 static inline void
980 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
981 {
982         struct perf_cpu_context *cpuctx;
983
984         if (!is_cgroup_event(event))
985                 return;
986
987         /*
988          * Because cgroup events are always per-cpu events,
989          * @ctx == &cpuctx->ctx.
990          */
991         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
992
993         if (--ctx->nr_cgroups)
994                 return;
995
996         cpuctx->cgrp = NULL;
997         list_del(&cpuctx->cgrp_cpuctx_entry);
998 }
999
1000 #else /* !CONFIG_CGROUP_PERF */
1001
1002 static inline bool
1003 perf_cgroup_match(struct perf_event *event)
1004 {
1005         return true;
1006 }
1007
1008 static inline void perf_detach_cgroup(struct perf_event *event)
1009 {}
1010
1011 static inline int is_cgroup_event(struct perf_event *event)
1012 {
1013         return 0;
1014 }
1015
1016 static inline void update_cgrp_time_from_event(struct perf_event *event)
1017 {
1018 }
1019
1020 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1021                                                 bool final)
1022 {
1023 }
1024
1025 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1026                                       struct perf_event_attr *attr,
1027                                       struct perf_event *group_leader)
1028 {
1029         return -EINVAL;
1030 }
1031
1032 static inline void
1033 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1034 {
1035 }
1036
1037 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1038 {
1039         return 0;
1040 }
1041
1042 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1043 {
1044         return 0;
1045 }
1046
1047 static inline void
1048 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1049 {
1050 }
1051
1052 static inline void
1053 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1054 {
1055 }
1056
1057 static void perf_cgroup_switch(struct task_struct *task)
1058 {
1059 }
1060 #endif
1061
1062 /*
1063  * set default to be dependent on timer tick just
1064  * like original code
1065  */
1066 #define PERF_CPU_HRTIMER (1000 / HZ)
1067 /*
1068  * function must be called with interrupts disabled
1069  */
1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1071 {
1072         struct perf_cpu_context *cpuctx;
1073         bool rotations;
1074
1075         lockdep_assert_irqs_disabled();
1076
1077         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1078         rotations = perf_rotate_context(cpuctx);
1079
1080         raw_spin_lock(&cpuctx->hrtimer_lock);
1081         if (rotations)
1082                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1083         else
1084                 cpuctx->hrtimer_active = 0;
1085         raw_spin_unlock(&cpuctx->hrtimer_lock);
1086
1087         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1088 }
1089
1090 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1091 {
1092         struct hrtimer *timer = &cpuctx->hrtimer;
1093         struct pmu *pmu = cpuctx->ctx.pmu;
1094         u64 interval;
1095
1096         /* no multiplexing needed for SW PMU */
1097         if (pmu->task_ctx_nr == perf_sw_context)
1098                 return;
1099
1100         /*
1101          * check default is sane, if not set then force to
1102          * default interval (1/tick)
1103          */
1104         interval = pmu->hrtimer_interval_ms;
1105         if (interval < 1)
1106                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1107
1108         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1109
1110         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1111         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1112         timer->function = perf_mux_hrtimer_handler;
1113 }
1114
1115 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1116 {
1117         struct hrtimer *timer = &cpuctx->hrtimer;
1118         struct pmu *pmu = cpuctx->ctx.pmu;
1119         unsigned long flags;
1120
1121         /* not for SW PMU */
1122         if (pmu->task_ctx_nr == perf_sw_context)
1123                 return 0;
1124
1125         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1126         if (!cpuctx->hrtimer_active) {
1127                 cpuctx->hrtimer_active = 1;
1128                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1129                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1130         }
1131         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1132
1133         return 0;
1134 }
1135
1136 void perf_pmu_disable(struct pmu *pmu)
1137 {
1138         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1139         if (!(*count)++)
1140                 pmu->pmu_disable(pmu);
1141 }
1142
1143 void perf_pmu_enable(struct pmu *pmu)
1144 {
1145         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146         if (!--(*count))
1147                 pmu->pmu_enable(pmu);
1148 }
1149
1150 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1151
1152 /*
1153  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1154  * perf_event_task_tick() are fully serialized because they're strictly cpu
1155  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1156  * disabled, while perf_event_task_tick is called from IRQ context.
1157  */
1158 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1159 {
1160         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1161
1162         lockdep_assert_irqs_disabled();
1163
1164         WARN_ON(!list_empty(&ctx->active_ctx_list));
1165
1166         list_add(&ctx->active_ctx_list, head);
1167 }
1168
1169 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1170 {
1171         lockdep_assert_irqs_disabled();
1172
1173         WARN_ON(list_empty(&ctx->active_ctx_list));
1174
1175         list_del_init(&ctx->active_ctx_list);
1176 }
1177
1178 static void get_ctx(struct perf_event_context *ctx)
1179 {
1180         refcount_inc(&ctx->refcount);
1181 }
1182
1183 static void *alloc_task_ctx_data(struct pmu *pmu)
1184 {
1185         if (pmu->task_ctx_cache)
1186                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1187
1188         return NULL;
1189 }
1190
1191 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1192 {
1193         if (pmu->task_ctx_cache && task_ctx_data)
1194                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1195 }
1196
1197 static void free_ctx(struct rcu_head *head)
1198 {
1199         struct perf_event_context *ctx;
1200
1201         ctx = container_of(head, struct perf_event_context, rcu_head);
1202         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1203         kfree(ctx);
1204 }
1205
1206 static void put_ctx(struct perf_event_context *ctx)
1207 {
1208         if (refcount_dec_and_test(&ctx->refcount)) {
1209                 if (ctx->parent_ctx)
1210                         put_ctx(ctx->parent_ctx);
1211                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1212                         put_task_struct(ctx->task);
1213                 call_rcu(&ctx->rcu_head, free_ctx);
1214         }
1215 }
1216
1217 /*
1218  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1219  * perf_pmu_migrate_context() we need some magic.
1220  *
1221  * Those places that change perf_event::ctx will hold both
1222  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1223  *
1224  * Lock ordering is by mutex address. There are two other sites where
1225  * perf_event_context::mutex nests and those are:
1226  *
1227  *  - perf_event_exit_task_context()    [ child , 0 ]
1228  *      perf_event_exit_event()
1229  *        put_event()                   [ parent, 1 ]
1230  *
1231  *  - perf_event_init_context()         [ parent, 0 ]
1232  *      inherit_task_group()
1233  *        inherit_group()
1234  *          inherit_event()
1235  *            perf_event_alloc()
1236  *              perf_init_event()
1237  *                perf_try_init_event() [ child , 1 ]
1238  *
1239  * While it appears there is an obvious deadlock here -- the parent and child
1240  * nesting levels are inverted between the two. This is in fact safe because
1241  * life-time rules separate them. That is an exiting task cannot fork, and a
1242  * spawning task cannot (yet) exit.
1243  *
1244  * But remember that these are parent<->child context relations, and
1245  * migration does not affect children, therefore these two orderings should not
1246  * interact.
1247  *
1248  * The change in perf_event::ctx does not affect children (as claimed above)
1249  * because the sys_perf_event_open() case will install a new event and break
1250  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1251  * concerned with cpuctx and that doesn't have children.
1252  *
1253  * The places that change perf_event::ctx will issue:
1254  *
1255  *   perf_remove_from_context();
1256  *   synchronize_rcu();
1257  *   perf_install_in_context();
1258  *
1259  * to affect the change. The remove_from_context() + synchronize_rcu() should
1260  * quiesce the event, after which we can install it in the new location. This
1261  * means that only external vectors (perf_fops, prctl) can perturb the event
1262  * while in transit. Therefore all such accessors should also acquire
1263  * perf_event_context::mutex to serialize against this.
1264  *
1265  * However; because event->ctx can change while we're waiting to acquire
1266  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1267  * function.
1268  *
1269  * Lock order:
1270  *    exec_update_lock
1271  *      task_struct::perf_event_mutex
1272  *        perf_event_context::mutex
1273  *          perf_event::child_mutex;
1274  *            perf_event_context::lock
1275  *          perf_event::mmap_mutex
1276  *          mmap_lock
1277  *            perf_addr_filters_head::lock
1278  *
1279  *    cpu_hotplug_lock
1280  *      pmus_lock
1281  *        cpuctx->mutex / perf_event_context::mutex
1282  */
1283 static struct perf_event_context *
1284 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1285 {
1286         struct perf_event_context *ctx;
1287
1288 again:
1289         rcu_read_lock();
1290         ctx = READ_ONCE(event->ctx);
1291         if (!refcount_inc_not_zero(&ctx->refcount)) {
1292                 rcu_read_unlock();
1293                 goto again;
1294         }
1295         rcu_read_unlock();
1296
1297         mutex_lock_nested(&ctx->mutex, nesting);
1298         if (event->ctx != ctx) {
1299                 mutex_unlock(&ctx->mutex);
1300                 put_ctx(ctx);
1301                 goto again;
1302         }
1303
1304         return ctx;
1305 }
1306
1307 static inline struct perf_event_context *
1308 perf_event_ctx_lock(struct perf_event *event)
1309 {
1310         return perf_event_ctx_lock_nested(event, 0);
1311 }
1312
1313 static void perf_event_ctx_unlock(struct perf_event *event,
1314                                   struct perf_event_context *ctx)
1315 {
1316         mutex_unlock(&ctx->mutex);
1317         put_ctx(ctx);
1318 }
1319
1320 /*
1321  * This must be done under the ctx->lock, such as to serialize against
1322  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1323  * calling scheduler related locks and ctx->lock nests inside those.
1324  */
1325 static __must_check struct perf_event_context *
1326 unclone_ctx(struct perf_event_context *ctx)
1327 {
1328         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1329
1330         lockdep_assert_held(&ctx->lock);
1331
1332         if (parent_ctx)
1333                 ctx->parent_ctx = NULL;
1334         ctx->generation++;
1335
1336         return parent_ctx;
1337 }
1338
1339 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1340                                 enum pid_type type)
1341 {
1342         u32 nr;
1343         /*
1344          * only top level events have the pid namespace they were created in
1345          */
1346         if (event->parent)
1347                 event = event->parent;
1348
1349         nr = __task_pid_nr_ns(p, type, event->ns);
1350         /* avoid -1 if it is idle thread or runs in another ns */
1351         if (!nr && !pid_alive(p))
1352                 nr = -1;
1353         return nr;
1354 }
1355
1356 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1357 {
1358         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1359 }
1360
1361 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1362 {
1363         return perf_event_pid_type(event, p, PIDTYPE_PID);
1364 }
1365
1366 /*
1367  * If we inherit events we want to return the parent event id
1368  * to userspace.
1369  */
1370 static u64 primary_event_id(struct perf_event *event)
1371 {
1372         u64 id = event->id;
1373
1374         if (event->parent)
1375                 id = event->parent->id;
1376
1377         return id;
1378 }
1379
1380 /*
1381  * Get the perf_event_context for a task and lock it.
1382  *
1383  * This has to cope with the fact that until it is locked,
1384  * the context could get moved to another task.
1385  */
1386 static struct perf_event_context *
1387 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1388 {
1389         struct perf_event_context *ctx;
1390
1391 retry:
1392         /*
1393          * One of the few rules of preemptible RCU is that one cannot do
1394          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1395          * part of the read side critical section was irqs-enabled -- see
1396          * rcu_read_unlock_special().
1397          *
1398          * Since ctx->lock nests under rq->lock we must ensure the entire read
1399          * side critical section has interrupts disabled.
1400          */
1401         local_irq_save(*flags);
1402         rcu_read_lock();
1403         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1404         if (ctx) {
1405                 /*
1406                  * If this context is a clone of another, it might
1407                  * get swapped for another underneath us by
1408                  * perf_event_task_sched_out, though the
1409                  * rcu_read_lock() protects us from any context
1410                  * getting freed.  Lock the context and check if it
1411                  * got swapped before we could get the lock, and retry
1412                  * if so.  If we locked the right context, then it
1413                  * can't get swapped on us any more.
1414                  */
1415                 raw_spin_lock(&ctx->lock);
1416                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1417                         raw_spin_unlock(&ctx->lock);
1418                         rcu_read_unlock();
1419                         local_irq_restore(*flags);
1420                         goto retry;
1421                 }
1422
1423                 if (ctx->task == TASK_TOMBSTONE ||
1424                     !refcount_inc_not_zero(&ctx->refcount)) {
1425                         raw_spin_unlock(&ctx->lock);
1426                         ctx = NULL;
1427                 } else {
1428                         WARN_ON_ONCE(ctx->task != task);
1429                 }
1430         }
1431         rcu_read_unlock();
1432         if (!ctx)
1433                 local_irq_restore(*flags);
1434         return ctx;
1435 }
1436
1437 /*
1438  * Get the context for a task and increment its pin_count so it
1439  * can't get swapped to another task.  This also increments its
1440  * reference count so that the context can't get freed.
1441  */
1442 static struct perf_event_context *
1443 perf_pin_task_context(struct task_struct *task, int ctxn)
1444 {
1445         struct perf_event_context *ctx;
1446         unsigned long flags;
1447
1448         ctx = perf_lock_task_context(task, ctxn, &flags);
1449         if (ctx) {
1450                 ++ctx->pin_count;
1451                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1452         }
1453         return ctx;
1454 }
1455
1456 static void perf_unpin_context(struct perf_event_context *ctx)
1457 {
1458         unsigned long flags;
1459
1460         raw_spin_lock_irqsave(&ctx->lock, flags);
1461         --ctx->pin_count;
1462         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1463 }
1464
1465 /*
1466  * Update the record of the current time in a context.
1467  */
1468 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1469 {
1470         u64 now = perf_clock();
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         if (adv)
1475                 ctx->time += now - ctx->timestamp;
1476         ctx->timestamp = now;
1477
1478         /*
1479          * The above: time' = time + (now - timestamp), can be re-arranged
1480          * into: time` = now + (time - timestamp), which gives a single value
1481          * offset to compute future time without locks on.
1482          *
1483          * See perf_event_time_now(), which can be used from NMI context where
1484          * it's (obviously) not possible to acquire ctx->lock in order to read
1485          * both the above values in a consistent manner.
1486          */
1487         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1488 }
1489
1490 static void update_context_time(struct perf_event_context *ctx)
1491 {
1492         __update_context_time(ctx, true);
1493 }
1494
1495 static u64 perf_event_time(struct perf_event *event)
1496 {
1497         struct perf_event_context *ctx = event->ctx;
1498
1499         if (unlikely(!ctx))
1500                 return 0;
1501
1502         if (is_cgroup_event(event))
1503                 return perf_cgroup_event_time(event);
1504
1505         return ctx->time;
1506 }
1507
1508 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1509 {
1510         struct perf_event_context *ctx = event->ctx;
1511
1512         if (unlikely(!ctx))
1513                 return 0;
1514
1515         if (is_cgroup_event(event))
1516                 return perf_cgroup_event_time_now(event, now);
1517
1518         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1519                 return ctx->time;
1520
1521         now += READ_ONCE(ctx->timeoffset);
1522         return now;
1523 }
1524
1525 static enum event_type_t get_event_type(struct perf_event *event)
1526 {
1527         struct perf_event_context *ctx = event->ctx;
1528         enum event_type_t event_type;
1529
1530         lockdep_assert_held(&ctx->lock);
1531
1532         /*
1533          * It's 'group type', really, because if our group leader is
1534          * pinned, so are we.
1535          */
1536         if (event->group_leader != event)
1537                 event = event->group_leader;
1538
1539         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1540         if (!ctx->task)
1541                 event_type |= EVENT_CPU;
1542
1543         return event_type;
1544 }
1545
1546 /*
1547  * Helper function to initialize event group nodes.
1548  */
1549 static void init_event_group(struct perf_event *event)
1550 {
1551         RB_CLEAR_NODE(&event->group_node);
1552         event->group_index = 0;
1553 }
1554
1555 /*
1556  * Extract pinned or flexible groups from the context
1557  * based on event attrs bits.
1558  */
1559 static struct perf_event_groups *
1560 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1561 {
1562         if (event->attr.pinned)
1563                 return &ctx->pinned_groups;
1564         else
1565                 return &ctx->flexible_groups;
1566 }
1567
1568 /*
1569  * Helper function to initializes perf_event_group trees.
1570  */
1571 static void perf_event_groups_init(struct perf_event_groups *groups)
1572 {
1573         groups->tree = RB_ROOT;
1574         groups->index = 0;
1575 }
1576
1577 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1578 {
1579         struct cgroup *cgroup = NULL;
1580
1581 #ifdef CONFIG_CGROUP_PERF
1582         if (event->cgrp)
1583                 cgroup = event->cgrp->css.cgroup;
1584 #endif
1585
1586         return cgroup;
1587 }
1588
1589 /*
1590  * Compare function for event groups;
1591  *
1592  * Implements complex key that first sorts by CPU and then by virtual index
1593  * which provides ordering when rotating groups for the same CPU.
1594  */
1595 static __always_inline int
1596 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1597                       const u64 left_group_index, const struct perf_event *right)
1598 {
1599         if (left_cpu < right->cpu)
1600                 return -1;
1601         if (left_cpu > right->cpu)
1602                 return 1;
1603
1604 #ifdef CONFIG_CGROUP_PERF
1605         {
1606                 const struct cgroup *right_cgroup = event_cgroup(right);
1607
1608                 if (left_cgroup != right_cgroup) {
1609                         if (!left_cgroup) {
1610                                 /*
1611                                  * Left has no cgroup but right does, no
1612                                  * cgroups come first.
1613                                  */
1614                                 return -1;
1615                         }
1616                         if (!right_cgroup) {
1617                                 /*
1618                                  * Right has no cgroup but left does, no
1619                                  * cgroups come first.
1620                                  */
1621                                 return 1;
1622                         }
1623                         /* Two dissimilar cgroups, order by id. */
1624                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1625                                 return -1;
1626
1627                         return 1;
1628                 }
1629         }
1630 #endif
1631
1632         if (left_group_index < right->group_index)
1633                 return -1;
1634         if (left_group_index > right->group_index)
1635                 return 1;
1636
1637         return 0;
1638 }
1639
1640 #define __node_2_pe(node) \
1641         rb_entry((node), struct perf_event, group_node)
1642
1643 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1644 {
1645         struct perf_event *e = __node_2_pe(a);
1646         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1647                                      __node_2_pe(b)) < 0;
1648 }
1649
1650 struct __group_key {
1651         int cpu;
1652         struct cgroup *cgroup;
1653 };
1654
1655 static inline int __group_cmp(const void *key, const struct rb_node *node)
1656 {
1657         const struct __group_key *a = key;
1658         const struct perf_event *b = __node_2_pe(node);
1659
1660         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1661         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1662 }
1663
1664 /*
1665  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1666  * key (see perf_event_groups_less). This places it last inside the CPU
1667  * subtree.
1668  */
1669 static void
1670 perf_event_groups_insert(struct perf_event_groups *groups,
1671                          struct perf_event *event)
1672 {
1673         event->group_index = ++groups->index;
1674
1675         rb_add(&event->group_node, &groups->tree, __group_less);
1676 }
1677
1678 /*
1679  * Helper function to insert event into the pinned or flexible groups.
1680  */
1681 static void
1682 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1683 {
1684         struct perf_event_groups *groups;
1685
1686         groups = get_event_groups(event, ctx);
1687         perf_event_groups_insert(groups, event);
1688 }
1689
1690 /*
1691  * Delete a group from a tree.
1692  */
1693 static void
1694 perf_event_groups_delete(struct perf_event_groups *groups,
1695                          struct perf_event *event)
1696 {
1697         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1698                      RB_EMPTY_ROOT(&groups->tree));
1699
1700         rb_erase(&event->group_node, &groups->tree);
1701         init_event_group(event);
1702 }
1703
1704 /*
1705  * Helper function to delete event from its groups.
1706  */
1707 static void
1708 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1709 {
1710         struct perf_event_groups *groups;
1711
1712         groups = get_event_groups(event, ctx);
1713         perf_event_groups_delete(groups, event);
1714 }
1715
1716 /*
1717  * Get the leftmost event in the cpu/cgroup subtree.
1718  */
1719 static struct perf_event *
1720 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1721                         struct cgroup *cgrp)
1722 {
1723         struct __group_key key = {
1724                 .cpu = cpu,
1725                 .cgroup = cgrp,
1726         };
1727         struct rb_node *node;
1728
1729         node = rb_find_first(&key, &groups->tree, __group_cmp);
1730         if (node)
1731                 return __node_2_pe(node);
1732
1733         return NULL;
1734 }
1735
1736 /*
1737  * Like rb_entry_next_safe() for the @cpu subtree.
1738  */
1739 static struct perf_event *
1740 perf_event_groups_next(struct perf_event *event)
1741 {
1742         struct __group_key key = {
1743                 .cpu = event->cpu,
1744                 .cgroup = event_cgroup(event),
1745         };
1746         struct rb_node *next;
1747
1748         next = rb_next_match(&key, &event->group_node, __group_cmp);
1749         if (next)
1750                 return __node_2_pe(next);
1751
1752         return NULL;
1753 }
1754
1755 /*
1756  * Iterate through the whole groups tree.
1757  */
1758 #define perf_event_groups_for_each(event, groups)                       \
1759         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1760                                 typeof(*event), group_node); event;     \
1761                 event = rb_entry_safe(rb_next(&event->group_node),      \
1762                                 typeof(*event), group_node))
1763
1764 /*
1765  * Add an event from the lists for its context.
1766  * Must be called with ctx->mutex and ctx->lock held.
1767  */
1768 static void
1769 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1770 {
1771         lockdep_assert_held(&ctx->lock);
1772
1773         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1774         event->attach_state |= PERF_ATTACH_CONTEXT;
1775
1776         event->tstamp = perf_event_time(event);
1777
1778         /*
1779          * If we're a stand alone event or group leader, we go to the context
1780          * list, group events are kept attached to the group so that
1781          * perf_group_detach can, at all times, locate all siblings.
1782          */
1783         if (event->group_leader == event) {
1784                 event->group_caps = event->event_caps;
1785                 add_event_to_groups(event, ctx);
1786         }
1787
1788         list_add_rcu(&event->event_entry, &ctx->event_list);
1789         ctx->nr_events++;
1790         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1791                 ctx->nr_user++;
1792         if (event->attr.inherit_stat)
1793                 ctx->nr_stat++;
1794
1795         if (event->state > PERF_EVENT_STATE_OFF)
1796                 perf_cgroup_event_enable(event, ctx);
1797
1798         ctx->generation++;
1799 }
1800
1801 /*
1802  * Initialize event state based on the perf_event_attr::disabled.
1803  */
1804 static inline void perf_event__state_init(struct perf_event *event)
1805 {
1806         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1807                                               PERF_EVENT_STATE_INACTIVE;
1808 }
1809
1810 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1811 {
1812         int entry = sizeof(u64); /* value */
1813         int size = 0;
1814         int nr = 1;
1815
1816         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1817                 size += sizeof(u64);
1818
1819         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1820                 size += sizeof(u64);
1821
1822         if (event->attr.read_format & PERF_FORMAT_ID)
1823                 entry += sizeof(u64);
1824
1825         if (event->attr.read_format & PERF_FORMAT_LOST)
1826                 entry += sizeof(u64);
1827
1828         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1829                 nr += nr_siblings;
1830                 size += sizeof(u64);
1831         }
1832
1833         size += entry * nr;
1834         event->read_size = size;
1835 }
1836
1837 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1838 {
1839         struct perf_sample_data *data;
1840         u16 size = 0;
1841
1842         if (sample_type & PERF_SAMPLE_IP)
1843                 size += sizeof(data->ip);
1844
1845         if (sample_type & PERF_SAMPLE_ADDR)
1846                 size += sizeof(data->addr);
1847
1848         if (sample_type & PERF_SAMPLE_PERIOD)
1849                 size += sizeof(data->period);
1850
1851         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1852                 size += sizeof(data->weight.full);
1853
1854         if (sample_type & PERF_SAMPLE_READ)
1855                 size += event->read_size;
1856
1857         if (sample_type & PERF_SAMPLE_DATA_SRC)
1858                 size += sizeof(data->data_src.val);
1859
1860         if (sample_type & PERF_SAMPLE_TRANSACTION)
1861                 size += sizeof(data->txn);
1862
1863         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1864                 size += sizeof(data->phys_addr);
1865
1866         if (sample_type & PERF_SAMPLE_CGROUP)
1867                 size += sizeof(data->cgroup);
1868
1869         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1870                 size += sizeof(data->data_page_size);
1871
1872         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1873                 size += sizeof(data->code_page_size);
1874
1875         event->header_size = size;
1876 }
1877
1878 /*
1879  * Called at perf_event creation and when events are attached/detached from a
1880  * group.
1881  */
1882 static void perf_event__header_size(struct perf_event *event)
1883 {
1884         __perf_event_read_size(event,
1885                                event->group_leader->nr_siblings);
1886         __perf_event_header_size(event, event->attr.sample_type);
1887 }
1888
1889 static void perf_event__id_header_size(struct perf_event *event)
1890 {
1891         struct perf_sample_data *data;
1892         u64 sample_type = event->attr.sample_type;
1893         u16 size = 0;
1894
1895         if (sample_type & PERF_SAMPLE_TID)
1896                 size += sizeof(data->tid_entry);
1897
1898         if (sample_type & PERF_SAMPLE_TIME)
1899                 size += sizeof(data->time);
1900
1901         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1902                 size += sizeof(data->id);
1903
1904         if (sample_type & PERF_SAMPLE_ID)
1905                 size += sizeof(data->id);
1906
1907         if (sample_type & PERF_SAMPLE_STREAM_ID)
1908                 size += sizeof(data->stream_id);
1909
1910         if (sample_type & PERF_SAMPLE_CPU)
1911                 size += sizeof(data->cpu_entry);
1912
1913         event->id_header_size = size;
1914 }
1915
1916 static bool perf_event_validate_size(struct perf_event *event)
1917 {
1918         /*
1919          * The values computed here will be over-written when we actually
1920          * attach the event.
1921          */
1922         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1923         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1924         perf_event__id_header_size(event);
1925
1926         /*
1927          * Sum the lot; should not exceed the 64k limit we have on records.
1928          * Conservative limit to allow for callchains and other variable fields.
1929          */
1930         if (event->read_size + event->header_size +
1931             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1932                 return false;
1933
1934         return true;
1935 }
1936
1937 static void perf_group_attach(struct perf_event *event)
1938 {
1939         struct perf_event *group_leader = event->group_leader, *pos;
1940
1941         lockdep_assert_held(&event->ctx->lock);
1942
1943         /*
1944          * We can have double attach due to group movement in perf_event_open.
1945          */
1946         if (event->attach_state & PERF_ATTACH_GROUP)
1947                 return;
1948
1949         event->attach_state |= PERF_ATTACH_GROUP;
1950
1951         if (group_leader == event)
1952                 return;
1953
1954         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1955
1956         group_leader->group_caps &= event->event_caps;
1957
1958         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1959         group_leader->nr_siblings++;
1960
1961         perf_event__header_size(group_leader);
1962
1963         for_each_sibling_event(pos, group_leader)
1964                 perf_event__header_size(pos);
1965 }
1966
1967 /*
1968  * Remove an event from the lists for its context.
1969  * Must be called with ctx->mutex and ctx->lock held.
1970  */
1971 static void
1972 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1973 {
1974         WARN_ON_ONCE(event->ctx != ctx);
1975         lockdep_assert_held(&ctx->lock);
1976
1977         /*
1978          * We can have double detach due to exit/hot-unplug + close.
1979          */
1980         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1981                 return;
1982
1983         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1984
1985         ctx->nr_events--;
1986         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1987                 ctx->nr_user--;
1988         if (event->attr.inherit_stat)
1989                 ctx->nr_stat--;
1990
1991         list_del_rcu(&event->event_entry);
1992
1993         if (event->group_leader == event)
1994                 del_event_from_groups(event, ctx);
1995
1996         /*
1997          * If event was in error state, then keep it
1998          * that way, otherwise bogus counts will be
1999          * returned on read(). The only way to get out
2000          * of error state is by explicit re-enabling
2001          * of the event
2002          */
2003         if (event->state > PERF_EVENT_STATE_OFF) {
2004                 perf_cgroup_event_disable(event, ctx);
2005                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2006         }
2007
2008         ctx->generation++;
2009 }
2010
2011 static int
2012 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2013 {
2014         if (!has_aux(aux_event))
2015                 return 0;
2016
2017         if (!event->pmu->aux_output_match)
2018                 return 0;
2019
2020         return event->pmu->aux_output_match(aux_event);
2021 }
2022
2023 static void put_event(struct perf_event *event);
2024 static void event_sched_out(struct perf_event *event,
2025                             struct perf_cpu_context *cpuctx,
2026                             struct perf_event_context *ctx);
2027
2028 static void perf_put_aux_event(struct perf_event *event)
2029 {
2030         struct perf_event_context *ctx = event->ctx;
2031         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2032         struct perf_event *iter;
2033
2034         /*
2035          * If event uses aux_event tear down the link
2036          */
2037         if (event->aux_event) {
2038                 iter = event->aux_event;
2039                 event->aux_event = NULL;
2040                 put_event(iter);
2041                 return;
2042         }
2043
2044         /*
2045          * If the event is an aux_event, tear down all links to
2046          * it from other events.
2047          */
2048         for_each_sibling_event(iter, event->group_leader) {
2049                 if (iter->aux_event != event)
2050                         continue;
2051
2052                 iter->aux_event = NULL;
2053                 put_event(event);
2054
2055                 /*
2056                  * If it's ACTIVE, schedule it out and put it into ERROR
2057                  * state so that we don't try to schedule it again. Note
2058                  * that perf_event_enable() will clear the ERROR status.
2059                  */
2060                 event_sched_out(iter, cpuctx, ctx);
2061                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2062         }
2063 }
2064
2065 static bool perf_need_aux_event(struct perf_event *event)
2066 {
2067         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2068 }
2069
2070 static int perf_get_aux_event(struct perf_event *event,
2071                               struct perf_event *group_leader)
2072 {
2073         /*
2074          * Our group leader must be an aux event if we want to be
2075          * an aux_output. This way, the aux event will precede its
2076          * aux_output events in the group, and therefore will always
2077          * schedule first.
2078          */
2079         if (!group_leader)
2080                 return 0;
2081
2082         /*
2083          * aux_output and aux_sample_size are mutually exclusive.
2084          */
2085         if (event->attr.aux_output && event->attr.aux_sample_size)
2086                 return 0;
2087
2088         if (event->attr.aux_output &&
2089             !perf_aux_output_match(event, group_leader))
2090                 return 0;
2091
2092         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2093                 return 0;
2094
2095         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2096                 return 0;
2097
2098         /*
2099          * Link aux_outputs to their aux event; this is undone in
2100          * perf_group_detach() by perf_put_aux_event(). When the
2101          * group in torn down, the aux_output events loose their
2102          * link to the aux_event and can't schedule any more.
2103          */
2104         event->aux_event = group_leader;
2105
2106         return 1;
2107 }
2108
2109 static inline struct list_head *get_event_list(struct perf_event *event)
2110 {
2111         struct perf_event_context *ctx = event->ctx;
2112         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2113 }
2114
2115 /*
2116  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2117  * cannot exist on their own, schedule them out and move them into the ERROR
2118  * state. Also see _perf_event_enable(), it will not be able to recover
2119  * this ERROR state.
2120  */
2121 static inline void perf_remove_sibling_event(struct perf_event *event)
2122 {
2123         struct perf_event_context *ctx = event->ctx;
2124         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2125
2126         event_sched_out(event, cpuctx, ctx);
2127         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2128 }
2129
2130 static void perf_group_detach(struct perf_event *event)
2131 {
2132         struct perf_event *leader = event->group_leader;
2133         struct perf_event *sibling, *tmp;
2134         struct perf_event_context *ctx = event->ctx;
2135
2136         lockdep_assert_held(&ctx->lock);
2137
2138         /*
2139          * We can have double detach due to exit/hot-unplug + close.
2140          */
2141         if (!(event->attach_state & PERF_ATTACH_GROUP))
2142                 return;
2143
2144         event->attach_state &= ~PERF_ATTACH_GROUP;
2145
2146         perf_put_aux_event(event);
2147
2148         /*
2149          * If this is a sibling, remove it from its group.
2150          */
2151         if (leader != event) {
2152                 list_del_init(&event->sibling_list);
2153                 event->group_leader->nr_siblings--;
2154                 goto out;
2155         }
2156
2157         /*
2158          * If this was a group event with sibling events then
2159          * upgrade the siblings to singleton events by adding them
2160          * to whatever list we are on.
2161          */
2162         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2163
2164                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2165                         perf_remove_sibling_event(sibling);
2166
2167                 sibling->group_leader = sibling;
2168                 list_del_init(&sibling->sibling_list);
2169
2170                 /* Inherit group flags from the previous leader */
2171                 sibling->group_caps = event->group_caps;
2172
2173                 if (!RB_EMPTY_NODE(&event->group_node)) {
2174                         add_event_to_groups(sibling, event->ctx);
2175
2176                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2177                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2178                 }
2179
2180                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2181         }
2182
2183 out:
2184         for_each_sibling_event(tmp, leader)
2185                 perf_event__header_size(tmp);
2186
2187         perf_event__header_size(leader);
2188 }
2189
2190 static void sync_child_event(struct perf_event *child_event);
2191
2192 static void perf_child_detach(struct perf_event *event)
2193 {
2194         struct perf_event *parent_event = event->parent;
2195
2196         if (!(event->attach_state & PERF_ATTACH_CHILD))
2197                 return;
2198
2199         event->attach_state &= ~PERF_ATTACH_CHILD;
2200
2201         if (WARN_ON_ONCE(!parent_event))
2202                 return;
2203
2204         lockdep_assert_held(&parent_event->child_mutex);
2205
2206         sync_child_event(event);
2207         list_del_init(&event->child_list);
2208 }
2209
2210 static bool is_orphaned_event(struct perf_event *event)
2211 {
2212         return event->state == PERF_EVENT_STATE_DEAD;
2213 }
2214
2215 static inline int __pmu_filter_match(struct perf_event *event)
2216 {
2217         struct pmu *pmu = event->pmu;
2218         return pmu->filter_match ? pmu->filter_match(event) : 1;
2219 }
2220
2221 /*
2222  * Check whether we should attempt to schedule an event group based on
2223  * PMU-specific filtering. An event group can consist of HW and SW events,
2224  * potentially with a SW leader, so we must check all the filters, to
2225  * determine whether a group is schedulable:
2226  */
2227 static inline int pmu_filter_match(struct perf_event *event)
2228 {
2229         struct perf_event *sibling;
2230         unsigned long flags;
2231         int ret = 1;
2232
2233         if (!__pmu_filter_match(event))
2234                 return 0;
2235
2236         local_irq_save(flags);
2237         for_each_sibling_event(sibling, event) {
2238                 if (!__pmu_filter_match(sibling)) {
2239                         ret = 0;
2240                         break;
2241                 }
2242         }
2243         local_irq_restore(flags);
2244
2245         return ret;
2246 }
2247
2248 static inline int
2249 event_filter_match(struct perf_event *event)
2250 {
2251         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2252                perf_cgroup_match(event) && pmu_filter_match(event);
2253 }
2254
2255 static void
2256 event_sched_out(struct perf_event *event,
2257                   struct perf_cpu_context *cpuctx,
2258                   struct perf_event_context *ctx)
2259 {
2260         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2261
2262         WARN_ON_ONCE(event->ctx != ctx);
2263         lockdep_assert_held(&ctx->lock);
2264
2265         if (event->state != PERF_EVENT_STATE_ACTIVE)
2266                 return;
2267
2268         /*
2269          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270          * we can schedule events _OUT_ individually through things like
2271          * __perf_remove_from_context().
2272          */
2273         list_del_init(&event->active_list);
2274
2275         perf_pmu_disable(event->pmu);
2276
2277         event->pmu->del(event, 0);
2278         event->oncpu = -1;
2279
2280         if (event->pending_disable) {
2281                 event->pending_disable = 0;
2282                 perf_cgroup_event_disable(event, ctx);
2283                 state = PERF_EVENT_STATE_OFF;
2284         }
2285
2286         if (event->pending_sigtrap) {
2287                 bool dec = true;
2288
2289                 event->pending_sigtrap = 0;
2290                 if (state != PERF_EVENT_STATE_OFF &&
2291                     !event->pending_work) {
2292                         event->pending_work = 1;
2293                         dec = false;
2294                         WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2295                         task_work_add(current, &event->pending_task, TWA_RESUME);
2296                 }
2297                 if (dec)
2298                         local_dec(&event->ctx->nr_pending);
2299         }
2300
2301         perf_event_set_state(event, state);
2302
2303         if (!is_software_event(event))
2304                 cpuctx->active_oncpu--;
2305         if (!--ctx->nr_active)
2306                 perf_event_ctx_deactivate(ctx);
2307         if (event->attr.freq && event->attr.sample_freq)
2308                 ctx->nr_freq--;
2309         if (event->attr.exclusive || !cpuctx->active_oncpu)
2310                 cpuctx->exclusive = 0;
2311
2312         perf_pmu_enable(event->pmu);
2313 }
2314
2315 static void
2316 group_sched_out(struct perf_event *group_event,
2317                 struct perf_cpu_context *cpuctx,
2318                 struct perf_event_context *ctx)
2319 {
2320         struct perf_event *event;
2321
2322         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2323                 return;
2324
2325         perf_pmu_disable(ctx->pmu);
2326
2327         event_sched_out(group_event, cpuctx, ctx);
2328
2329         /*
2330          * Schedule out siblings (if any):
2331          */
2332         for_each_sibling_event(event, group_event)
2333                 event_sched_out(event, cpuctx, ctx);
2334
2335         perf_pmu_enable(ctx->pmu);
2336 }
2337
2338 #define DETACH_GROUP    0x01UL
2339 #define DETACH_CHILD    0x02UL
2340 #define DETACH_DEAD     0x04UL
2341
2342 /*
2343  * Cross CPU call to remove a performance event
2344  *
2345  * We disable the event on the hardware level first. After that we
2346  * remove it from the context list.
2347  */
2348 static void
2349 __perf_remove_from_context(struct perf_event *event,
2350                            struct perf_cpu_context *cpuctx,
2351                            struct perf_event_context *ctx,
2352                            void *info)
2353 {
2354         unsigned long flags = (unsigned long)info;
2355
2356         if (ctx->is_active & EVENT_TIME) {
2357                 update_context_time(ctx);
2358                 update_cgrp_time_from_cpuctx(cpuctx, false);
2359         }
2360
2361         /*
2362          * Ensure event_sched_out() switches to OFF, at the very least
2363          * this avoids raising perf_pending_task() at this time.
2364          */
2365         if (flags & DETACH_DEAD)
2366                 event->pending_disable = 1;
2367         event_sched_out(event, cpuctx, ctx);
2368         if (flags & DETACH_GROUP)
2369                 perf_group_detach(event);
2370         if (flags & DETACH_CHILD)
2371                 perf_child_detach(event);
2372         list_del_event(event, ctx);
2373         if (flags & DETACH_DEAD)
2374                 event->state = PERF_EVENT_STATE_DEAD;
2375
2376         if (!ctx->nr_events && ctx->is_active) {
2377                 if (ctx == &cpuctx->ctx)
2378                         update_cgrp_time_from_cpuctx(cpuctx, true);
2379
2380                 ctx->is_active = 0;
2381                 ctx->rotate_necessary = 0;
2382                 if (ctx->task) {
2383                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2384                         cpuctx->task_ctx = NULL;
2385                 }
2386         }
2387 }
2388
2389 /*
2390  * Remove the event from a task's (or a CPU's) list of events.
2391  *
2392  * If event->ctx is a cloned context, callers must make sure that
2393  * every task struct that event->ctx->task could possibly point to
2394  * remains valid.  This is OK when called from perf_release since
2395  * that only calls us on the top-level context, which can't be a clone.
2396  * When called from perf_event_exit_task, it's OK because the
2397  * context has been detached from its task.
2398  */
2399 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2400 {
2401         struct perf_event_context *ctx = event->ctx;
2402
2403         lockdep_assert_held(&ctx->mutex);
2404
2405         /*
2406          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2407          * to work in the face of TASK_TOMBSTONE, unlike every other
2408          * event_function_call() user.
2409          */
2410         raw_spin_lock_irq(&ctx->lock);
2411         /*
2412          * Cgroup events are per-cpu events, and must IPI because of
2413          * cgrp_cpuctx_list.
2414          */
2415         if (!ctx->is_active && !is_cgroup_event(event)) {
2416                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2417                                            ctx, (void *)flags);
2418                 raw_spin_unlock_irq(&ctx->lock);
2419                 return;
2420         }
2421         raw_spin_unlock_irq(&ctx->lock);
2422
2423         event_function_call(event, __perf_remove_from_context, (void *)flags);
2424 }
2425
2426 /*
2427  * Cross CPU call to disable a performance event
2428  */
2429 static void __perf_event_disable(struct perf_event *event,
2430                                  struct perf_cpu_context *cpuctx,
2431                                  struct perf_event_context *ctx,
2432                                  void *info)
2433 {
2434         if (event->state < PERF_EVENT_STATE_INACTIVE)
2435                 return;
2436
2437         if (ctx->is_active & EVENT_TIME) {
2438                 update_context_time(ctx);
2439                 update_cgrp_time_from_event(event);
2440         }
2441
2442         if (event == event->group_leader)
2443                 group_sched_out(event, cpuctx, ctx);
2444         else
2445                 event_sched_out(event, cpuctx, ctx);
2446
2447         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2448         perf_cgroup_event_disable(event, ctx);
2449 }
2450
2451 /*
2452  * Disable an event.
2453  *
2454  * If event->ctx is a cloned context, callers must make sure that
2455  * every task struct that event->ctx->task could possibly point to
2456  * remains valid.  This condition is satisfied when called through
2457  * perf_event_for_each_child or perf_event_for_each because they
2458  * hold the top-level event's child_mutex, so any descendant that
2459  * goes to exit will block in perf_event_exit_event().
2460  *
2461  * When called from perf_pending_irq it's OK because event->ctx
2462  * is the current context on this CPU and preemption is disabled,
2463  * hence we can't get into perf_event_task_sched_out for this context.
2464  */
2465 static void _perf_event_disable(struct perf_event *event)
2466 {
2467         struct perf_event_context *ctx = event->ctx;
2468
2469         raw_spin_lock_irq(&ctx->lock);
2470         if (event->state <= PERF_EVENT_STATE_OFF) {
2471                 raw_spin_unlock_irq(&ctx->lock);
2472                 return;
2473         }
2474         raw_spin_unlock_irq(&ctx->lock);
2475
2476         event_function_call(event, __perf_event_disable, NULL);
2477 }
2478
2479 void perf_event_disable_local(struct perf_event *event)
2480 {
2481         event_function_local(event, __perf_event_disable, NULL);
2482 }
2483
2484 /*
2485  * Strictly speaking kernel users cannot create groups and therefore this
2486  * interface does not need the perf_event_ctx_lock() magic.
2487  */
2488 void perf_event_disable(struct perf_event *event)
2489 {
2490         struct perf_event_context *ctx;
2491
2492         ctx = perf_event_ctx_lock(event);
2493         _perf_event_disable(event);
2494         perf_event_ctx_unlock(event, ctx);
2495 }
2496 EXPORT_SYMBOL_GPL(perf_event_disable);
2497
2498 void perf_event_disable_inatomic(struct perf_event *event)
2499 {
2500         event->pending_disable = 1;
2501         irq_work_queue(&event->pending_irq);
2502 }
2503
2504 #define MAX_INTERRUPTS (~0ULL)
2505
2506 static void perf_log_throttle(struct perf_event *event, int enable);
2507 static void perf_log_itrace_start(struct perf_event *event);
2508
2509 static int
2510 event_sched_in(struct perf_event *event,
2511                  struct perf_cpu_context *cpuctx,
2512                  struct perf_event_context *ctx)
2513 {
2514         int ret = 0;
2515
2516         WARN_ON_ONCE(event->ctx != ctx);
2517
2518         lockdep_assert_held(&ctx->lock);
2519
2520         if (event->state <= PERF_EVENT_STATE_OFF)
2521                 return 0;
2522
2523         WRITE_ONCE(event->oncpu, smp_processor_id());
2524         /*
2525          * Order event::oncpu write to happen before the ACTIVE state is
2526          * visible. This allows perf_event_{stop,read}() to observe the correct
2527          * ->oncpu if it sees ACTIVE.
2528          */
2529         smp_wmb();
2530         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2531
2532         /*
2533          * Unthrottle events, since we scheduled we might have missed several
2534          * ticks already, also for a heavily scheduling task there is little
2535          * guarantee it'll get a tick in a timely manner.
2536          */
2537         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2538                 perf_log_throttle(event, 1);
2539                 event->hw.interrupts = 0;
2540         }
2541
2542         perf_pmu_disable(event->pmu);
2543
2544         perf_log_itrace_start(event);
2545
2546         if (event->pmu->add(event, PERF_EF_START)) {
2547                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2548                 event->oncpu = -1;
2549                 ret = -EAGAIN;
2550                 goto out;
2551         }
2552
2553         if (!is_software_event(event))
2554                 cpuctx->active_oncpu++;
2555         if (!ctx->nr_active++)
2556                 perf_event_ctx_activate(ctx);
2557         if (event->attr.freq && event->attr.sample_freq)
2558                 ctx->nr_freq++;
2559
2560         if (event->attr.exclusive)
2561                 cpuctx->exclusive = 1;
2562
2563 out:
2564         perf_pmu_enable(event->pmu);
2565
2566         return ret;
2567 }
2568
2569 static int
2570 group_sched_in(struct perf_event *group_event,
2571                struct perf_cpu_context *cpuctx,
2572                struct perf_event_context *ctx)
2573 {
2574         struct perf_event *event, *partial_group = NULL;
2575         struct pmu *pmu = ctx->pmu;
2576
2577         if (group_event->state == PERF_EVENT_STATE_OFF)
2578                 return 0;
2579
2580         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2581
2582         if (event_sched_in(group_event, cpuctx, ctx))
2583                 goto error;
2584
2585         /*
2586          * Schedule in siblings as one group (if any):
2587          */
2588         for_each_sibling_event(event, group_event) {
2589                 if (event_sched_in(event, cpuctx, ctx)) {
2590                         partial_group = event;
2591                         goto group_error;
2592                 }
2593         }
2594
2595         if (!pmu->commit_txn(pmu))
2596                 return 0;
2597
2598 group_error:
2599         /*
2600          * Groups can be scheduled in as one unit only, so undo any
2601          * partial group before returning:
2602          * The events up to the failed event are scheduled out normally.
2603          */
2604         for_each_sibling_event(event, group_event) {
2605                 if (event == partial_group)
2606                         break;
2607
2608                 event_sched_out(event, cpuctx, ctx);
2609         }
2610         event_sched_out(group_event, cpuctx, ctx);
2611
2612 error:
2613         pmu->cancel_txn(pmu);
2614         return -EAGAIN;
2615 }
2616
2617 /*
2618  * Work out whether we can put this event group on the CPU now.
2619  */
2620 static int group_can_go_on(struct perf_event *event,
2621                            struct perf_cpu_context *cpuctx,
2622                            int can_add_hw)
2623 {
2624         /*
2625          * Groups consisting entirely of software events can always go on.
2626          */
2627         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2628                 return 1;
2629         /*
2630          * If an exclusive group is already on, no other hardware
2631          * events can go on.
2632          */
2633         if (cpuctx->exclusive)
2634                 return 0;
2635         /*
2636          * If this group is exclusive and there are already
2637          * events on the CPU, it can't go on.
2638          */
2639         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2640                 return 0;
2641         /*
2642          * Otherwise, try to add it if all previous groups were able
2643          * to go on.
2644          */
2645         return can_add_hw;
2646 }
2647
2648 static void add_event_to_ctx(struct perf_event *event,
2649                                struct perf_event_context *ctx)
2650 {
2651         list_add_event(event, ctx);
2652         perf_group_attach(event);
2653 }
2654
2655 static void ctx_sched_out(struct perf_event_context *ctx,
2656                           struct perf_cpu_context *cpuctx,
2657                           enum event_type_t event_type);
2658 static void
2659 ctx_sched_in(struct perf_event_context *ctx,
2660              struct perf_cpu_context *cpuctx,
2661              enum event_type_t event_type);
2662
2663 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2664                                struct perf_event_context *ctx,
2665                                enum event_type_t event_type)
2666 {
2667         if (!cpuctx->task_ctx)
2668                 return;
2669
2670         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671                 return;
2672
2673         ctx_sched_out(ctx, cpuctx, event_type);
2674 }
2675
2676 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2677                                 struct perf_event_context *ctx)
2678 {
2679         cpu_ctx_sched_in(cpuctx, EVENT_PINNED);
2680         if (ctx)
2681                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
2682         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
2683         if (ctx)
2684                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
2685 }
2686
2687 /*
2688  * We want to maintain the following priority of scheduling:
2689  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2690  *  - task pinned (EVENT_PINNED)
2691  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2692  *  - task flexible (EVENT_FLEXIBLE).
2693  *
2694  * In order to avoid unscheduling and scheduling back in everything every
2695  * time an event is added, only do it for the groups of equal priority and
2696  * below.
2697  *
2698  * This can be called after a batch operation on task events, in which case
2699  * event_type is a bit mask of the types of events involved. For CPU events,
2700  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2701  */
2702 static void ctx_resched(struct perf_cpu_context *cpuctx,
2703                         struct perf_event_context *task_ctx,
2704                         enum event_type_t event_type)
2705 {
2706         enum event_type_t ctx_event_type;
2707         bool cpu_event = !!(event_type & EVENT_CPU);
2708
2709         /*
2710          * If pinned groups are involved, flexible groups also need to be
2711          * scheduled out.
2712          */
2713         if (event_type & EVENT_PINNED)
2714                 event_type |= EVENT_FLEXIBLE;
2715
2716         ctx_event_type = event_type & EVENT_ALL;
2717
2718         perf_pmu_disable(cpuctx->ctx.pmu);
2719         if (task_ctx)
2720                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2721
2722         /*
2723          * Decide which cpu ctx groups to schedule out based on the types
2724          * of events that caused rescheduling:
2725          *  - EVENT_CPU: schedule out corresponding groups;
2726          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2727          *  - otherwise, do nothing more.
2728          */
2729         if (cpu_event)
2730                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2731         else if (ctx_event_type & EVENT_PINNED)
2732                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2733
2734         perf_event_sched_in(cpuctx, task_ctx);
2735         perf_pmu_enable(cpuctx->ctx.pmu);
2736 }
2737
2738 void perf_pmu_resched(struct pmu *pmu)
2739 {
2740         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2741         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2742
2743         perf_ctx_lock(cpuctx, task_ctx);
2744         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2745         perf_ctx_unlock(cpuctx, task_ctx);
2746 }
2747
2748 /*
2749  * Cross CPU call to install and enable a performance event
2750  *
2751  * Very similar to remote_function() + event_function() but cannot assume that
2752  * things like ctx->is_active and cpuctx->task_ctx are set.
2753  */
2754 static int  __perf_install_in_context(void *info)
2755 {
2756         struct perf_event *event = info;
2757         struct perf_event_context *ctx = event->ctx;
2758         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2759         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2760         bool reprogram = true;
2761         int ret = 0;
2762
2763         raw_spin_lock(&cpuctx->ctx.lock);
2764         if (ctx->task) {
2765                 raw_spin_lock(&ctx->lock);
2766                 task_ctx = ctx;
2767
2768                 reprogram = (ctx->task == current);
2769
2770                 /*
2771                  * If the task is running, it must be running on this CPU,
2772                  * otherwise we cannot reprogram things.
2773                  *
2774                  * If its not running, we don't care, ctx->lock will
2775                  * serialize against it becoming runnable.
2776                  */
2777                 if (task_curr(ctx->task) && !reprogram) {
2778                         ret = -ESRCH;
2779                         goto unlock;
2780                 }
2781
2782                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2783         } else if (task_ctx) {
2784                 raw_spin_lock(&task_ctx->lock);
2785         }
2786
2787 #ifdef CONFIG_CGROUP_PERF
2788         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2789                 /*
2790                  * If the current cgroup doesn't match the event's
2791                  * cgroup, we should not try to schedule it.
2792                  */
2793                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2794                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2795                                         event->cgrp->css.cgroup);
2796         }
2797 #endif
2798
2799         if (reprogram) {
2800                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2801                 add_event_to_ctx(event, ctx);
2802                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2803         } else {
2804                 add_event_to_ctx(event, ctx);
2805         }
2806
2807 unlock:
2808         perf_ctx_unlock(cpuctx, task_ctx);
2809
2810         return ret;
2811 }
2812
2813 static bool exclusive_event_installable(struct perf_event *event,
2814                                         struct perf_event_context *ctx);
2815
2816 /*
2817  * Attach a performance event to a context.
2818  *
2819  * Very similar to event_function_call, see comment there.
2820  */
2821 static void
2822 perf_install_in_context(struct perf_event_context *ctx,
2823                         struct perf_event *event,
2824                         int cpu)
2825 {
2826         struct task_struct *task = READ_ONCE(ctx->task);
2827
2828         lockdep_assert_held(&ctx->mutex);
2829
2830         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2831
2832         if (event->cpu != -1)
2833                 event->cpu = cpu;
2834
2835         /*
2836          * Ensures that if we can observe event->ctx, both the event and ctx
2837          * will be 'complete'. See perf_iterate_sb_cpu().
2838          */
2839         smp_store_release(&event->ctx, ctx);
2840
2841         /*
2842          * perf_event_attr::disabled events will not run and can be initialized
2843          * without IPI. Except when this is the first event for the context, in
2844          * that case we need the magic of the IPI to set ctx->is_active.
2845          * Similarly, cgroup events for the context also needs the IPI to
2846          * manipulate the cgrp_cpuctx_list.
2847          *
2848          * The IOC_ENABLE that is sure to follow the creation of a disabled
2849          * event will issue the IPI and reprogram the hardware.
2850          */
2851         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2852             ctx->nr_events && !is_cgroup_event(event)) {
2853                 raw_spin_lock_irq(&ctx->lock);
2854                 if (ctx->task == TASK_TOMBSTONE) {
2855                         raw_spin_unlock_irq(&ctx->lock);
2856                         return;
2857                 }
2858                 add_event_to_ctx(event, ctx);
2859                 raw_spin_unlock_irq(&ctx->lock);
2860                 return;
2861         }
2862
2863         if (!task) {
2864                 cpu_function_call(cpu, __perf_install_in_context, event);
2865                 return;
2866         }
2867
2868         /*
2869          * Should not happen, we validate the ctx is still alive before calling.
2870          */
2871         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2872                 return;
2873
2874         /*
2875          * Installing events is tricky because we cannot rely on ctx->is_active
2876          * to be set in case this is the nr_events 0 -> 1 transition.
2877          *
2878          * Instead we use task_curr(), which tells us if the task is running.
2879          * However, since we use task_curr() outside of rq::lock, we can race
2880          * against the actual state. This means the result can be wrong.
2881          *
2882          * If we get a false positive, we retry, this is harmless.
2883          *
2884          * If we get a false negative, things are complicated. If we are after
2885          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2886          * value must be correct. If we're before, it doesn't matter since
2887          * perf_event_context_sched_in() will program the counter.
2888          *
2889          * However, this hinges on the remote context switch having observed
2890          * our task->perf_event_ctxp[] store, such that it will in fact take
2891          * ctx::lock in perf_event_context_sched_in().
2892          *
2893          * We do this by task_function_call(), if the IPI fails to hit the task
2894          * we know any future context switch of task must see the
2895          * perf_event_ctpx[] store.
2896          */
2897
2898         /*
2899          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2900          * task_cpu() load, such that if the IPI then does not find the task
2901          * running, a future context switch of that task must observe the
2902          * store.
2903          */
2904         smp_mb();
2905 again:
2906         if (!task_function_call(task, __perf_install_in_context, event))
2907                 return;
2908
2909         raw_spin_lock_irq(&ctx->lock);
2910         task = ctx->task;
2911         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2912                 /*
2913                  * Cannot happen because we already checked above (which also
2914                  * cannot happen), and we hold ctx->mutex, which serializes us
2915                  * against perf_event_exit_task_context().
2916                  */
2917                 raw_spin_unlock_irq(&ctx->lock);
2918                 return;
2919         }
2920         /*
2921          * If the task is not running, ctx->lock will avoid it becoming so,
2922          * thus we can safely install the event.
2923          */
2924         if (task_curr(task)) {
2925                 raw_spin_unlock_irq(&ctx->lock);
2926                 goto again;
2927         }
2928         add_event_to_ctx(event, ctx);
2929         raw_spin_unlock_irq(&ctx->lock);
2930 }
2931
2932 /*
2933  * Cross CPU call to enable a performance event
2934  */
2935 static void __perf_event_enable(struct perf_event *event,
2936                                 struct perf_cpu_context *cpuctx,
2937                                 struct perf_event_context *ctx,
2938                                 void *info)
2939 {
2940         struct perf_event *leader = event->group_leader;
2941         struct perf_event_context *task_ctx;
2942
2943         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2944             event->state <= PERF_EVENT_STATE_ERROR)
2945                 return;
2946
2947         if (ctx->is_active)
2948                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2949
2950         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2951         perf_cgroup_event_enable(event, ctx);
2952
2953         if (!ctx->is_active)
2954                 return;
2955
2956         if (!event_filter_match(event)) {
2957                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2958                 return;
2959         }
2960
2961         /*
2962          * If the event is in a group and isn't the group leader,
2963          * then don't put it on unless the group is on.
2964          */
2965         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2966                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2967                 return;
2968         }
2969
2970         task_ctx = cpuctx->task_ctx;
2971         if (ctx->task)
2972                 WARN_ON_ONCE(task_ctx != ctx);
2973
2974         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2975 }
2976
2977 /*
2978  * Enable an event.
2979  *
2980  * If event->ctx is a cloned context, callers must make sure that
2981  * every task struct that event->ctx->task could possibly point to
2982  * remains valid.  This condition is satisfied when called through
2983  * perf_event_for_each_child or perf_event_for_each as described
2984  * for perf_event_disable.
2985  */
2986 static void _perf_event_enable(struct perf_event *event)
2987 {
2988         struct perf_event_context *ctx = event->ctx;
2989
2990         raw_spin_lock_irq(&ctx->lock);
2991         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2992             event->state <  PERF_EVENT_STATE_ERROR) {
2993 out:
2994                 raw_spin_unlock_irq(&ctx->lock);
2995                 return;
2996         }
2997
2998         /*
2999          * If the event is in error state, clear that first.
3000          *
3001          * That way, if we see the event in error state below, we know that it
3002          * has gone back into error state, as distinct from the task having
3003          * been scheduled away before the cross-call arrived.
3004          */
3005         if (event->state == PERF_EVENT_STATE_ERROR) {
3006                 /*
3007                  * Detached SIBLING events cannot leave ERROR state.
3008                  */
3009                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3010                     event->group_leader == event)
3011                         goto out;
3012
3013                 event->state = PERF_EVENT_STATE_OFF;
3014         }
3015         raw_spin_unlock_irq(&ctx->lock);
3016
3017         event_function_call(event, __perf_event_enable, NULL);
3018 }
3019
3020 /*
3021  * See perf_event_disable();
3022  */
3023 void perf_event_enable(struct perf_event *event)
3024 {
3025         struct perf_event_context *ctx;
3026
3027         ctx = perf_event_ctx_lock(event);
3028         _perf_event_enable(event);
3029         perf_event_ctx_unlock(event, ctx);
3030 }
3031 EXPORT_SYMBOL_GPL(perf_event_enable);
3032
3033 struct stop_event_data {
3034         struct perf_event       *event;
3035         unsigned int            restart;
3036 };
3037
3038 static int __perf_event_stop(void *info)
3039 {
3040         struct stop_event_data *sd = info;
3041         struct perf_event *event = sd->event;
3042
3043         /* if it's already INACTIVE, do nothing */
3044         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3045                 return 0;
3046
3047         /* matches smp_wmb() in event_sched_in() */
3048         smp_rmb();
3049
3050         /*
3051          * There is a window with interrupts enabled before we get here,
3052          * so we need to check again lest we try to stop another CPU's event.
3053          */
3054         if (READ_ONCE(event->oncpu) != smp_processor_id())
3055                 return -EAGAIN;
3056
3057         event->pmu->stop(event, PERF_EF_UPDATE);
3058
3059         /*
3060          * May race with the actual stop (through perf_pmu_output_stop()),
3061          * but it is only used for events with AUX ring buffer, and such
3062          * events will refuse to restart because of rb::aux_mmap_count==0,
3063          * see comments in perf_aux_output_begin().
3064          *
3065          * Since this is happening on an event-local CPU, no trace is lost
3066          * while restarting.
3067          */
3068         if (sd->restart)
3069                 event->pmu->start(event, 0);
3070
3071         return 0;
3072 }
3073
3074 static int perf_event_stop(struct perf_event *event, int restart)
3075 {
3076         struct stop_event_data sd = {
3077                 .event          = event,
3078                 .restart        = restart,
3079         };
3080         int ret = 0;
3081
3082         do {
3083                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3084                         return 0;
3085
3086                 /* matches smp_wmb() in event_sched_in() */
3087                 smp_rmb();
3088
3089                 /*
3090                  * We only want to restart ACTIVE events, so if the event goes
3091                  * inactive here (event->oncpu==-1), there's nothing more to do;
3092                  * fall through with ret==-ENXIO.
3093                  */
3094                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3095                                         __perf_event_stop, &sd);
3096         } while (ret == -EAGAIN);
3097
3098         return ret;
3099 }
3100
3101 /*
3102  * In order to contain the amount of racy and tricky in the address filter
3103  * configuration management, it is a two part process:
3104  *
3105  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3106  *      we update the addresses of corresponding vmas in
3107  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3108  * (p2) when an event is scheduled in (pmu::add), it calls
3109  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3110  *      if the generation has changed since the previous call.
3111  *
3112  * If (p1) happens while the event is active, we restart it to force (p2).
3113  *
3114  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3115  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3116  *     ioctl;
3117  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3118  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3119  *     for reading;
3120  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3121  *     of exec.
3122  */
3123 void perf_event_addr_filters_sync(struct perf_event *event)
3124 {
3125         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3126
3127         if (!has_addr_filter(event))
3128                 return;
3129
3130         raw_spin_lock(&ifh->lock);
3131         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3132                 event->pmu->addr_filters_sync(event);
3133                 event->hw.addr_filters_gen = event->addr_filters_gen;
3134         }
3135         raw_spin_unlock(&ifh->lock);
3136 }
3137 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3138
3139 static int _perf_event_refresh(struct perf_event *event, int refresh)
3140 {
3141         /*
3142          * not supported on inherited events
3143          */
3144         if (event->attr.inherit || !is_sampling_event(event))
3145                 return -EINVAL;
3146
3147         atomic_add(refresh, &event->event_limit);
3148         _perf_event_enable(event);
3149
3150         return 0;
3151 }
3152
3153 /*
3154  * See perf_event_disable()
3155  */
3156 int perf_event_refresh(struct perf_event *event, int refresh)
3157 {
3158         struct perf_event_context *ctx;
3159         int ret;
3160
3161         ctx = perf_event_ctx_lock(event);
3162         ret = _perf_event_refresh(event, refresh);
3163         perf_event_ctx_unlock(event, ctx);
3164
3165         return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(perf_event_refresh);
3168
3169 static int perf_event_modify_breakpoint(struct perf_event *bp,
3170                                          struct perf_event_attr *attr)
3171 {
3172         int err;
3173
3174         _perf_event_disable(bp);
3175
3176         err = modify_user_hw_breakpoint_check(bp, attr, true);
3177
3178         if (!bp->attr.disabled)
3179                 _perf_event_enable(bp);
3180
3181         return err;
3182 }
3183
3184 /*
3185  * Copy event-type-independent attributes that may be modified.
3186  */
3187 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3188                                         const struct perf_event_attr *from)
3189 {
3190         to->sig_data = from->sig_data;
3191 }
3192
3193 static int perf_event_modify_attr(struct perf_event *event,
3194                                   struct perf_event_attr *attr)
3195 {
3196         int (*func)(struct perf_event *, struct perf_event_attr *);
3197         struct perf_event *child;
3198         int err;
3199
3200         if (event->attr.type != attr->type)
3201                 return -EINVAL;
3202
3203         switch (event->attr.type) {
3204         case PERF_TYPE_BREAKPOINT:
3205                 func = perf_event_modify_breakpoint;
3206                 break;
3207         default:
3208                 /* Place holder for future additions. */
3209                 return -EOPNOTSUPP;
3210         }
3211
3212         WARN_ON_ONCE(event->ctx->parent_ctx);
3213
3214         mutex_lock(&event->child_mutex);
3215         /*
3216          * Event-type-independent attributes must be copied before event-type
3217          * modification, which will validate that final attributes match the
3218          * source attributes after all relevant attributes have been copied.
3219          */
3220         perf_event_modify_copy_attr(&event->attr, attr);
3221         err = func(event, attr);
3222         if (err)
3223                 goto out;
3224         list_for_each_entry(child, &event->child_list, child_list) {
3225                 perf_event_modify_copy_attr(&child->attr, attr);
3226                 err = func(child, attr);
3227                 if (err)
3228                         goto out;
3229         }
3230 out:
3231         mutex_unlock(&event->child_mutex);
3232         return err;
3233 }
3234
3235 static void ctx_sched_out(struct perf_event_context *ctx,
3236                           struct perf_cpu_context *cpuctx,
3237                           enum event_type_t event_type)
3238 {
3239         struct perf_event *event, *tmp;
3240         int is_active = ctx->is_active;
3241
3242         lockdep_assert_held(&ctx->lock);
3243
3244         if (likely(!ctx->nr_events)) {
3245                 /*
3246                  * See __perf_remove_from_context().
3247                  */
3248                 WARN_ON_ONCE(ctx->is_active);
3249                 if (ctx->task)
3250                         WARN_ON_ONCE(cpuctx->task_ctx);
3251                 return;
3252         }
3253
3254         /*
3255          * Always update time if it was set; not only when it changes.
3256          * Otherwise we can 'forget' to update time for any but the last
3257          * context we sched out. For example:
3258          *
3259          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3260          *   ctx_sched_out(.event_type = EVENT_PINNED)
3261          *
3262          * would only update time for the pinned events.
3263          */
3264         if (is_active & EVENT_TIME) {
3265                 /* update (and stop) ctx time */
3266                 update_context_time(ctx);
3267                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3268                 /*
3269                  * CPU-release for the below ->is_active store,
3270                  * see __load_acquire() in perf_event_time_now()
3271                  */
3272                 barrier();
3273         }
3274
3275         ctx->is_active &= ~event_type;
3276         if (!(ctx->is_active & EVENT_ALL))
3277                 ctx->is_active = 0;
3278
3279         if (ctx->task) {
3280                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3281                 if (!ctx->is_active)
3282                         cpuctx->task_ctx = NULL;
3283         }
3284
3285         is_active ^= ctx->is_active; /* changed bits */
3286
3287         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3288                 return;
3289
3290         perf_pmu_disable(ctx->pmu);
3291         if (is_active & EVENT_PINNED) {
3292                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3293                         group_sched_out(event, cpuctx, ctx);
3294         }
3295
3296         if (is_active & EVENT_FLEXIBLE) {
3297                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3298                         group_sched_out(event, cpuctx, ctx);
3299
3300                 /*
3301                  * Since we cleared EVENT_FLEXIBLE, also clear
3302                  * rotate_necessary, is will be reset by
3303                  * ctx_flexible_sched_in() when needed.
3304                  */
3305                 ctx->rotate_necessary = 0;
3306         }
3307         perf_pmu_enable(ctx->pmu);
3308 }
3309
3310 /*
3311  * Test whether two contexts are equivalent, i.e. whether they have both been
3312  * cloned from the same version of the same context.
3313  *
3314  * Equivalence is measured using a generation number in the context that is
3315  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3316  * and list_del_event().
3317  */
3318 static int context_equiv(struct perf_event_context *ctx1,
3319                          struct perf_event_context *ctx2)
3320 {
3321         lockdep_assert_held(&ctx1->lock);
3322         lockdep_assert_held(&ctx2->lock);
3323
3324         /* Pinning disables the swap optimization */
3325         if (ctx1->pin_count || ctx2->pin_count)
3326                 return 0;
3327
3328         /* If ctx1 is the parent of ctx2 */
3329         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3330                 return 1;
3331
3332         /* If ctx2 is the parent of ctx1 */
3333         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3334                 return 1;
3335
3336         /*
3337          * If ctx1 and ctx2 have the same parent; we flatten the parent
3338          * hierarchy, see perf_event_init_context().
3339          */
3340         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3341                         ctx1->parent_gen == ctx2->parent_gen)
3342                 return 1;
3343
3344         /* Unmatched */
3345         return 0;
3346 }
3347
3348 static void __perf_event_sync_stat(struct perf_event *event,
3349                                      struct perf_event *next_event)
3350 {
3351         u64 value;
3352
3353         if (!event->attr.inherit_stat)
3354                 return;
3355
3356         /*
3357          * Update the event value, we cannot use perf_event_read()
3358          * because we're in the middle of a context switch and have IRQs
3359          * disabled, which upsets smp_call_function_single(), however
3360          * we know the event must be on the current CPU, therefore we
3361          * don't need to use it.
3362          */
3363         if (event->state == PERF_EVENT_STATE_ACTIVE)
3364                 event->pmu->read(event);
3365
3366         perf_event_update_time(event);
3367
3368         /*
3369          * In order to keep per-task stats reliable we need to flip the event
3370          * values when we flip the contexts.
3371          */
3372         value = local64_read(&next_event->count);
3373         value = local64_xchg(&event->count, value);
3374         local64_set(&next_event->count, value);
3375
3376         swap(event->total_time_enabled, next_event->total_time_enabled);
3377         swap(event->total_time_running, next_event->total_time_running);
3378
3379         /*
3380          * Since we swizzled the values, update the user visible data too.
3381          */
3382         perf_event_update_userpage(event);
3383         perf_event_update_userpage(next_event);
3384 }
3385
3386 static void perf_event_sync_stat(struct perf_event_context *ctx,
3387                                    struct perf_event_context *next_ctx)
3388 {
3389         struct perf_event *event, *next_event;
3390
3391         if (!ctx->nr_stat)
3392                 return;
3393
3394         update_context_time(ctx);
3395
3396         event = list_first_entry(&ctx->event_list,
3397                                    struct perf_event, event_entry);
3398
3399         next_event = list_first_entry(&next_ctx->event_list,
3400                                         struct perf_event, event_entry);
3401
3402         while (&event->event_entry != &ctx->event_list &&
3403                &next_event->event_entry != &next_ctx->event_list) {
3404
3405                 __perf_event_sync_stat(event, next_event);
3406
3407                 event = list_next_entry(event, event_entry);
3408                 next_event = list_next_entry(next_event, event_entry);
3409         }
3410 }
3411
3412 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3413                                          struct task_struct *next)
3414 {
3415         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3416         struct perf_event_context *next_ctx;
3417         struct perf_event_context *parent, *next_parent;
3418         struct perf_cpu_context *cpuctx;
3419         int do_switch = 1;
3420         struct pmu *pmu;
3421
3422         if (likely(!ctx))
3423                 return;
3424
3425         pmu = ctx->pmu;
3426         cpuctx = __get_cpu_context(ctx);
3427         if (!cpuctx->task_ctx)
3428                 return;
3429
3430         rcu_read_lock();
3431         next_ctx = next->perf_event_ctxp[ctxn];
3432         if (!next_ctx)
3433                 goto unlock;
3434
3435         parent = rcu_dereference(ctx->parent_ctx);
3436         next_parent = rcu_dereference(next_ctx->parent_ctx);
3437
3438         /* If neither context have a parent context; they cannot be clones. */
3439         if (!parent && !next_parent)
3440                 goto unlock;
3441
3442         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3443                 /*
3444                  * Looks like the two contexts are clones, so we might be
3445                  * able to optimize the context switch.  We lock both
3446                  * contexts and check that they are clones under the
3447                  * lock (including re-checking that neither has been
3448                  * uncloned in the meantime).  It doesn't matter which
3449                  * order we take the locks because no other cpu could
3450                  * be trying to lock both of these tasks.
3451                  */
3452                 raw_spin_lock(&ctx->lock);
3453                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3454                 if (context_equiv(ctx, next_ctx)) {
3455
3456                         perf_pmu_disable(pmu);
3457
3458                         /* PMIs are disabled; ctx->nr_pending is stable. */
3459                         if (local_read(&ctx->nr_pending) ||
3460                             local_read(&next_ctx->nr_pending)) {
3461                                 /*
3462                                  * Must not swap out ctx when there's pending
3463                                  * events that rely on the ctx->task relation.
3464                                  */
3465                                 raw_spin_unlock(&next_ctx->lock);
3466                                 rcu_read_unlock();
3467                                 goto inside_switch;
3468                         }
3469
3470                         WRITE_ONCE(ctx->task, next);
3471                         WRITE_ONCE(next_ctx->task, task);
3472
3473                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3474                                 pmu->sched_task(ctx, false);
3475
3476                         /*
3477                          * PMU specific parts of task perf context can require
3478                          * additional synchronization. As an example of such
3479                          * synchronization see implementation details of Intel
3480                          * LBR call stack data profiling;
3481                          */
3482                         if (pmu->swap_task_ctx)
3483                                 pmu->swap_task_ctx(ctx, next_ctx);
3484                         else
3485                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3486
3487                         perf_pmu_enable(pmu);
3488
3489                         /*
3490                          * RCU_INIT_POINTER here is safe because we've not
3491                          * modified the ctx and the above modification of
3492                          * ctx->task and ctx->task_ctx_data are immaterial
3493                          * since those values are always verified under
3494                          * ctx->lock which we're now holding.
3495                          */
3496                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3497                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3498
3499                         do_switch = 0;
3500
3501                         perf_event_sync_stat(ctx, next_ctx);
3502                 }
3503                 raw_spin_unlock(&next_ctx->lock);
3504                 raw_spin_unlock(&ctx->lock);
3505         }
3506 unlock:
3507         rcu_read_unlock();
3508
3509         if (do_switch) {
3510                 raw_spin_lock(&ctx->lock);
3511                 perf_pmu_disable(pmu);
3512
3513 inside_switch:
3514                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3515                         pmu->sched_task(ctx, false);
3516                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3517
3518                 perf_pmu_enable(pmu);
3519                 raw_spin_unlock(&ctx->lock);
3520         }
3521 }
3522
3523 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3524
3525 void perf_sched_cb_dec(struct pmu *pmu)
3526 {
3527         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3528
3529         this_cpu_dec(perf_sched_cb_usages);
3530
3531         if (!--cpuctx->sched_cb_usage)
3532                 list_del(&cpuctx->sched_cb_entry);
3533 }
3534
3535
3536 void perf_sched_cb_inc(struct pmu *pmu)
3537 {
3538         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3539
3540         if (!cpuctx->sched_cb_usage++)
3541                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3542
3543         this_cpu_inc(perf_sched_cb_usages);
3544 }
3545
3546 /*
3547  * This function provides the context switch callback to the lower code
3548  * layer. It is invoked ONLY when the context switch callback is enabled.
3549  *
3550  * This callback is relevant even to per-cpu events; for example multi event
3551  * PEBS requires this to provide PID/TID information. This requires we flush
3552  * all queued PEBS records before we context switch to a new task.
3553  */
3554 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3555 {
3556         struct pmu *pmu;
3557
3558         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3559
3560         if (WARN_ON_ONCE(!pmu->sched_task))
3561                 return;
3562
3563         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3564         perf_pmu_disable(pmu);
3565
3566         pmu->sched_task(cpuctx->task_ctx, sched_in);
3567
3568         perf_pmu_enable(pmu);
3569         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3570 }
3571
3572 static void perf_pmu_sched_task(struct task_struct *prev,
3573                                 struct task_struct *next,
3574                                 bool sched_in)
3575 {
3576         struct perf_cpu_context *cpuctx;
3577
3578         if (prev == next)
3579                 return;
3580
3581         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3582                 /* will be handled in perf_event_context_sched_in/out */
3583                 if (cpuctx->task_ctx)
3584                         continue;
3585
3586                 __perf_pmu_sched_task(cpuctx, sched_in);
3587         }
3588 }
3589
3590 static void perf_event_switch(struct task_struct *task,
3591                               struct task_struct *next_prev, bool sched_in);
3592
3593 #define for_each_task_context_nr(ctxn)                                  \
3594         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3595
3596 /*
3597  * Called from scheduler to remove the events of the current task,
3598  * with interrupts disabled.
3599  *
3600  * We stop each event and update the event value in event->count.
3601  *
3602  * This does not protect us against NMI, but disable()
3603  * sets the disabled bit in the control field of event _before_
3604  * accessing the event control register. If a NMI hits, then it will
3605  * not restart the event.
3606  */
3607 void __perf_event_task_sched_out(struct task_struct *task,
3608                                  struct task_struct *next)
3609 {
3610         int ctxn;
3611
3612         if (__this_cpu_read(perf_sched_cb_usages))
3613                 perf_pmu_sched_task(task, next, false);
3614
3615         if (atomic_read(&nr_switch_events))
3616                 perf_event_switch(task, next, false);
3617
3618         for_each_task_context_nr(ctxn)
3619                 perf_event_context_sched_out(task, ctxn, next);
3620
3621         /*
3622          * if cgroup events exist on this CPU, then we need
3623          * to check if we have to switch out PMU state.
3624          * cgroup event are system-wide mode only
3625          */
3626         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3627                 perf_cgroup_switch(next);
3628 }
3629
3630 /*
3631  * Called with IRQs disabled
3632  */
3633 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3634                               enum event_type_t event_type)
3635 {
3636         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3637 }
3638
3639 static bool perf_less_group_idx(const void *l, const void *r)
3640 {
3641         const struct perf_event *le = *(const struct perf_event **)l;
3642         const struct perf_event *re = *(const struct perf_event **)r;
3643
3644         return le->group_index < re->group_index;
3645 }
3646
3647 static void swap_ptr(void *l, void *r)
3648 {
3649         void **lp = l, **rp = r;
3650
3651         swap(*lp, *rp);
3652 }
3653
3654 static const struct min_heap_callbacks perf_min_heap = {
3655         .elem_size = sizeof(struct perf_event *),
3656         .less = perf_less_group_idx,
3657         .swp = swap_ptr,
3658 };
3659
3660 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3661 {
3662         struct perf_event **itrs = heap->data;
3663
3664         if (event) {
3665                 itrs[heap->nr] = event;
3666                 heap->nr++;
3667         }
3668 }
3669
3670 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3671                                 struct perf_event_groups *groups, int cpu,
3672                                 int (*func)(struct perf_event *, void *),
3673                                 void *data)
3674 {
3675 #ifdef CONFIG_CGROUP_PERF
3676         struct cgroup_subsys_state *css = NULL;
3677 #endif
3678         /* Space for per CPU and/or any CPU event iterators. */
3679         struct perf_event *itrs[2];
3680         struct min_heap event_heap;
3681         struct perf_event **evt;
3682         int ret;
3683
3684         if (cpuctx) {
3685                 event_heap = (struct min_heap){
3686                         .data = cpuctx->heap,
3687                         .nr = 0,
3688                         .size = cpuctx->heap_size,
3689                 };
3690
3691                 lockdep_assert_held(&cpuctx->ctx.lock);
3692
3693 #ifdef CONFIG_CGROUP_PERF
3694                 if (cpuctx->cgrp)
3695                         css = &cpuctx->cgrp->css;
3696 #endif
3697         } else {
3698                 event_heap = (struct min_heap){
3699                         .data = itrs,
3700                         .nr = 0,
3701                         .size = ARRAY_SIZE(itrs),
3702                 };
3703                 /* Events not within a CPU context may be on any CPU. */
3704                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3705         }
3706         evt = event_heap.data;
3707
3708         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3709
3710 #ifdef CONFIG_CGROUP_PERF
3711         for (; css; css = css->parent)
3712                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3713 #endif
3714
3715         min_heapify_all(&event_heap, &perf_min_heap);
3716
3717         while (event_heap.nr) {
3718                 ret = func(*evt, data);
3719                 if (ret)
3720                         return ret;
3721
3722                 *evt = perf_event_groups_next(*evt);
3723                 if (*evt)
3724                         min_heapify(&event_heap, 0, &perf_min_heap);
3725                 else
3726                         min_heap_pop(&event_heap, &perf_min_heap);
3727         }
3728
3729         return 0;
3730 }
3731
3732 /*
3733  * Because the userpage is strictly per-event (there is no concept of context,
3734  * so there cannot be a context indirection), every userpage must be updated
3735  * when context time starts :-(
3736  *
3737  * IOW, we must not miss EVENT_TIME edges.
3738  */
3739 static inline bool event_update_userpage(struct perf_event *event)
3740 {
3741         if (likely(!atomic_read(&event->mmap_count)))
3742                 return false;
3743
3744         perf_event_update_time(event);
3745         perf_event_update_userpage(event);
3746
3747         return true;
3748 }
3749
3750 static inline void group_update_userpage(struct perf_event *group_event)
3751 {
3752         struct perf_event *event;
3753
3754         if (!event_update_userpage(group_event))
3755                 return;
3756
3757         for_each_sibling_event(event, group_event)
3758                 event_update_userpage(event);
3759 }
3760
3761 static int merge_sched_in(struct perf_event *event, void *data)
3762 {
3763         struct perf_event_context *ctx = event->ctx;
3764         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3765         int *can_add_hw = data;
3766
3767         if (event->state <= PERF_EVENT_STATE_OFF)
3768                 return 0;
3769
3770         if (!event_filter_match(event))
3771                 return 0;
3772
3773         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3774                 if (!group_sched_in(event, cpuctx, ctx))
3775                         list_add_tail(&event->active_list, get_event_list(event));
3776         }
3777
3778         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3779                 *can_add_hw = 0;
3780                 if (event->attr.pinned) {
3781                         perf_cgroup_event_disable(event, ctx);
3782                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3783                 } else {
3784                         ctx->rotate_necessary = 1;
3785                         perf_mux_hrtimer_restart(cpuctx);
3786                         group_update_userpage(event);
3787                 }
3788         }
3789
3790         return 0;
3791 }
3792
3793 static void
3794 ctx_pinned_sched_in(struct perf_event_context *ctx,
3795                     struct perf_cpu_context *cpuctx)
3796 {
3797         int can_add_hw = 1;
3798
3799         if (ctx != &cpuctx->ctx)
3800                 cpuctx = NULL;
3801
3802         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3803                            smp_processor_id(),
3804                            merge_sched_in, &can_add_hw);
3805 }
3806
3807 static void
3808 ctx_flexible_sched_in(struct perf_event_context *ctx,
3809                       struct perf_cpu_context *cpuctx)
3810 {
3811         int can_add_hw = 1;
3812
3813         if (ctx != &cpuctx->ctx)
3814                 cpuctx = NULL;
3815
3816         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3817                            smp_processor_id(),
3818                            merge_sched_in, &can_add_hw);
3819 }
3820
3821 static void
3822 ctx_sched_in(struct perf_event_context *ctx,
3823              struct perf_cpu_context *cpuctx,
3824              enum event_type_t event_type)
3825 {
3826         int is_active = ctx->is_active;
3827
3828         lockdep_assert_held(&ctx->lock);
3829
3830         if (likely(!ctx->nr_events))
3831                 return;
3832
3833         if (is_active ^ EVENT_TIME) {
3834                 /* start ctx time */
3835                 __update_context_time(ctx, false);
3836                 perf_cgroup_set_timestamp(cpuctx);
3837                 /*
3838                  * CPU-release for the below ->is_active store,
3839                  * see __load_acquire() in perf_event_time_now()
3840                  */
3841                 barrier();
3842         }
3843
3844         ctx->is_active |= (event_type | EVENT_TIME);
3845         if (ctx->task) {
3846                 if (!is_active)
3847                         cpuctx->task_ctx = ctx;
3848                 else
3849                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3850         }
3851
3852         is_active ^= ctx->is_active; /* changed bits */
3853
3854         /*
3855          * First go through the list and put on any pinned groups
3856          * in order to give them the best chance of going on.
3857          */
3858         if (is_active & EVENT_PINNED)
3859                 ctx_pinned_sched_in(ctx, cpuctx);
3860
3861         /* Then walk through the lower prio flexible groups */
3862         if (is_active & EVENT_FLEXIBLE)
3863                 ctx_flexible_sched_in(ctx, cpuctx);
3864 }
3865
3866 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3867                              enum event_type_t event_type)
3868 {
3869         struct perf_event_context *ctx = &cpuctx->ctx;
3870
3871         ctx_sched_in(ctx, cpuctx, event_type);
3872 }
3873
3874 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3875                                         struct task_struct *task)
3876 {
3877         struct perf_cpu_context *cpuctx;
3878         struct pmu *pmu;
3879
3880         cpuctx = __get_cpu_context(ctx);
3881
3882         /*
3883          * HACK: for HETEROGENEOUS the task context might have switched to a
3884          * different PMU, force (re)set the context,
3885          */
3886         pmu = ctx->pmu = cpuctx->ctx.pmu;
3887
3888         if (cpuctx->task_ctx == ctx) {
3889                 if (cpuctx->sched_cb_usage)
3890                         __perf_pmu_sched_task(cpuctx, true);
3891                 return;
3892         }
3893
3894         perf_ctx_lock(cpuctx, ctx);
3895         /*
3896          * We must check ctx->nr_events while holding ctx->lock, such
3897          * that we serialize against perf_install_in_context().
3898          */
3899         if (!ctx->nr_events)
3900                 goto unlock;
3901
3902         perf_pmu_disable(pmu);
3903         /*
3904          * We want to keep the following priority order:
3905          * cpu pinned (that don't need to move), task pinned,
3906          * cpu flexible, task flexible.
3907          *
3908          * However, if task's ctx is not carrying any pinned
3909          * events, no need to flip the cpuctx's events around.
3910          */
3911         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3912                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3913         perf_event_sched_in(cpuctx, ctx);
3914
3915         if (cpuctx->sched_cb_usage && pmu->sched_task)
3916                 pmu->sched_task(cpuctx->task_ctx, true);
3917
3918         perf_pmu_enable(pmu);
3919
3920 unlock:
3921         perf_ctx_unlock(cpuctx, ctx);
3922 }
3923
3924 /*
3925  * Called from scheduler to add the events of the current task
3926  * with interrupts disabled.
3927  *
3928  * We restore the event value and then enable it.
3929  *
3930  * This does not protect us against NMI, but enable()
3931  * sets the enabled bit in the control field of event _before_
3932  * accessing the event control register. If a NMI hits, then it will
3933  * keep the event running.
3934  */
3935 void __perf_event_task_sched_in(struct task_struct *prev,
3936                                 struct task_struct *task)
3937 {
3938         struct perf_event_context *ctx;
3939         int ctxn;
3940
3941         for_each_task_context_nr(ctxn) {
3942                 ctx = task->perf_event_ctxp[ctxn];
3943                 if (likely(!ctx))
3944                         continue;
3945
3946                 perf_event_context_sched_in(ctx, task);
3947         }
3948
3949         if (atomic_read(&nr_switch_events))
3950                 perf_event_switch(task, prev, true);
3951
3952         if (__this_cpu_read(perf_sched_cb_usages))
3953                 perf_pmu_sched_task(prev, task, true);
3954 }
3955
3956 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3957 {
3958         u64 frequency = event->attr.sample_freq;
3959         u64 sec = NSEC_PER_SEC;
3960         u64 divisor, dividend;
3961
3962         int count_fls, nsec_fls, frequency_fls, sec_fls;
3963
3964         count_fls = fls64(count);
3965         nsec_fls = fls64(nsec);
3966         frequency_fls = fls64(frequency);
3967         sec_fls = 30;
3968
3969         /*
3970          * We got @count in @nsec, with a target of sample_freq HZ
3971          * the target period becomes:
3972          *
3973          *             @count * 10^9
3974          * period = -------------------
3975          *          @nsec * sample_freq
3976          *
3977          */
3978
3979         /*
3980          * Reduce accuracy by one bit such that @a and @b converge
3981          * to a similar magnitude.
3982          */
3983 #define REDUCE_FLS(a, b)                \
3984 do {                                    \
3985         if (a##_fls > b##_fls) {        \
3986                 a >>= 1;                \
3987                 a##_fls--;              \
3988         } else {                        \
3989                 b >>= 1;                \
3990                 b##_fls--;              \
3991         }                               \
3992 } while (0)
3993
3994         /*
3995          * Reduce accuracy until either term fits in a u64, then proceed with
3996          * the other, so that finally we can do a u64/u64 division.
3997          */
3998         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3999                 REDUCE_FLS(nsec, frequency);
4000                 REDUCE_FLS(sec, count);
4001         }
4002
4003         if (count_fls + sec_fls > 64) {
4004                 divisor = nsec * frequency;
4005
4006                 while (count_fls + sec_fls > 64) {
4007                         REDUCE_FLS(count, sec);
4008                         divisor >>= 1;
4009                 }
4010
4011                 dividend = count * sec;
4012         } else {
4013                 dividend = count * sec;
4014
4015                 while (nsec_fls + frequency_fls > 64) {
4016                         REDUCE_FLS(nsec, frequency);
4017                         dividend >>= 1;
4018                 }
4019
4020                 divisor = nsec * frequency;
4021         }
4022
4023         if (!divisor)
4024                 return dividend;
4025
4026         return div64_u64(dividend, divisor);
4027 }
4028
4029 static DEFINE_PER_CPU(int, perf_throttled_count);
4030 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4031
4032 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4033 {
4034         struct hw_perf_event *hwc = &event->hw;
4035         s64 period, sample_period;
4036         s64 delta;
4037
4038         period = perf_calculate_period(event, nsec, count);
4039
4040         delta = (s64)(period - hwc->sample_period);
4041         delta = (delta + 7) / 8; /* low pass filter */
4042
4043         sample_period = hwc->sample_period + delta;
4044
4045         if (!sample_period)
4046                 sample_period = 1;
4047
4048         hwc->sample_period = sample_period;
4049
4050         if (local64_read(&hwc->period_left) > 8*sample_period) {
4051                 if (disable)
4052                         event->pmu->stop(event, PERF_EF_UPDATE);
4053
4054                 local64_set(&hwc->period_left, 0);
4055
4056                 if (disable)
4057                         event->pmu->start(event, PERF_EF_RELOAD);
4058         }
4059 }
4060
4061 /*
4062  * combine freq adjustment with unthrottling to avoid two passes over the
4063  * events. At the same time, make sure, having freq events does not change
4064  * the rate of unthrottling as that would introduce bias.
4065  */
4066 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4067                                            int needs_unthr)
4068 {
4069         struct perf_event *event;
4070         struct hw_perf_event *hwc;
4071         u64 now, period = TICK_NSEC;
4072         s64 delta;
4073
4074         /*
4075          * only need to iterate over all events iff:
4076          * - context have events in frequency mode (needs freq adjust)
4077          * - there are events to unthrottle on this cpu
4078          */
4079         if (!(ctx->nr_freq || needs_unthr))
4080                 return;
4081
4082         raw_spin_lock(&ctx->lock);
4083         perf_pmu_disable(ctx->pmu);
4084
4085         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4086                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4087                         continue;
4088
4089                 if (!event_filter_match(event))
4090                         continue;
4091
4092                 perf_pmu_disable(event->pmu);
4093
4094                 hwc = &event->hw;
4095
4096                 if (hwc->interrupts == MAX_INTERRUPTS) {
4097                         hwc->interrupts = 0;
4098                         perf_log_throttle(event, 1);
4099                         event->pmu->start(event, 0);
4100                 }
4101
4102                 if (!event->attr.freq || !event->attr.sample_freq)
4103                         goto next;
4104
4105                 /*
4106                  * stop the event and update event->count
4107                  */
4108                 event->pmu->stop(event, PERF_EF_UPDATE);
4109
4110                 now = local64_read(&event->count);
4111                 delta = now - hwc->freq_count_stamp;
4112                 hwc->freq_count_stamp = now;
4113
4114                 /*
4115                  * restart the event
4116                  * reload only if value has changed
4117                  * we have stopped the event so tell that
4118                  * to perf_adjust_period() to avoid stopping it
4119                  * twice.
4120                  */
4121                 if (delta > 0)
4122                         perf_adjust_period(event, period, delta, false);
4123
4124                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4125         next:
4126                 perf_pmu_enable(event->pmu);
4127         }
4128
4129         perf_pmu_enable(ctx->pmu);
4130         raw_spin_unlock(&ctx->lock);
4131 }
4132
4133 /*
4134  * Move @event to the tail of the @ctx's elegible events.
4135  */
4136 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4137 {
4138         /*
4139          * Rotate the first entry last of non-pinned groups. Rotation might be
4140          * disabled by the inheritance code.
4141          */
4142         if (ctx->rotate_disable)
4143                 return;
4144
4145         perf_event_groups_delete(&ctx->flexible_groups, event);
4146         perf_event_groups_insert(&ctx->flexible_groups, event);
4147 }
4148
4149 /* pick an event from the flexible_groups to rotate */
4150 static inline struct perf_event *
4151 ctx_event_to_rotate(struct perf_event_context *ctx)
4152 {
4153         struct perf_event *event;
4154
4155         /* pick the first active flexible event */
4156         event = list_first_entry_or_null(&ctx->flexible_active,
4157                                          struct perf_event, active_list);
4158
4159         /* if no active flexible event, pick the first event */
4160         if (!event) {
4161                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4162                                       typeof(*event), group_node);
4163         }
4164
4165         /*
4166          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4167          * finds there are unschedulable events, it will set it again.
4168          */
4169         ctx->rotate_necessary = 0;
4170
4171         return event;
4172 }
4173
4174 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4175 {
4176         struct perf_event *cpu_event = NULL, *task_event = NULL;
4177         struct perf_event_context *task_ctx = NULL;
4178         int cpu_rotate, task_rotate;
4179
4180         /*
4181          * Since we run this from IRQ context, nobody can install new
4182          * events, thus the event count values are stable.
4183          */
4184
4185         cpu_rotate = cpuctx->ctx.rotate_necessary;
4186         task_ctx = cpuctx->task_ctx;
4187         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4188
4189         if (!(cpu_rotate || task_rotate))
4190                 return false;
4191
4192         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4193         perf_pmu_disable(cpuctx->ctx.pmu);
4194
4195         if (task_rotate)
4196                 task_event = ctx_event_to_rotate(task_ctx);
4197         if (cpu_rotate)
4198                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4199
4200         /*
4201          * As per the order given at ctx_resched() first 'pop' task flexible
4202          * and then, if needed CPU flexible.
4203          */
4204         if (task_event || (task_ctx && cpu_event))
4205                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4206         if (cpu_event)
4207                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4208
4209         if (task_event)
4210                 rotate_ctx(task_ctx, task_event);
4211         if (cpu_event)
4212                 rotate_ctx(&cpuctx->ctx, cpu_event);
4213
4214         perf_event_sched_in(cpuctx, task_ctx);
4215
4216         perf_pmu_enable(cpuctx->ctx.pmu);
4217         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4218
4219         return true;
4220 }
4221
4222 void perf_event_task_tick(void)
4223 {
4224         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4225         struct perf_event_context *ctx, *tmp;
4226         int throttled;
4227
4228         lockdep_assert_irqs_disabled();
4229
4230         __this_cpu_inc(perf_throttled_seq);
4231         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4232         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4233
4234         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4235                 perf_adjust_freq_unthr_context(ctx, throttled);
4236 }
4237
4238 static int event_enable_on_exec(struct perf_event *event,
4239                                 struct perf_event_context *ctx)
4240 {
4241         if (!event->attr.enable_on_exec)
4242                 return 0;
4243
4244         event->attr.enable_on_exec = 0;
4245         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4246                 return 0;
4247
4248         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4249
4250         return 1;
4251 }
4252
4253 /*
4254  * Enable all of a task's events that have been marked enable-on-exec.
4255  * This expects task == current.
4256  */
4257 static void perf_event_enable_on_exec(int ctxn)
4258 {
4259         struct perf_event_context *ctx, *clone_ctx = NULL;
4260         enum event_type_t event_type = 0;
4261         struct perf_cpu_context *cpuctx;
4262         struct perf_event *event;
4263         unsigned long flags;
4264         int enabled = 0;
4265
4266         local_irq_save(flags);
4267         ctx = current->perf_event_ctxp[ctxn];
4268         if (!ctx || !ctx->nr_events)
4269                 goto out;
4270
4271         cpuctx = __get_cpu_context(ctx);
4272         perf_ctx_lock(cpuctx, ctx);
4273         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4274         list_for_each_entry(event, &ctx->event_list, event_entry) {
4275                 enabled |= event_enable_on_exec(event, ctx);
4276                 event_type |= get_event_type(event);
4277         }
4278
4279         /*
4280          * Unclone and reschedule this context if we enabled any event.
4281          */
4282         if (enabled) {
4283                 clone_ctx = unclone_ctx(ctx);
4284                 ctx_resched(cpuctx, ctx, event_type);
4285         } else {
4286                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
4287         }
4288         perf_ctx_unlock(cpuctx, ctx);
4289
4290 out:
4291         local_irq_restore(flags);
4292
4293         if (clone_ctx)
4294                 put_ctx(clone_ctx);
4295 }
4296
4297 static void perf_remove_from_owner(struct perf_event *event);
4298 static void perf_event_exit_event(struct perf_event *event,
4299                                   struct perf_event_context *ctx);
4300
4301 /*
4302  * Removes all events from the current task that have been marked
4303  * remove-on-exec, and feeds their values back to parent events.
4304  */
4305 static void perf_event_remove_on_exec(int ctxn)
4306 {
4307         struct perf_event_context *ctx, *clone_ctx = NULL;
4308         struct perf_event *event, *next;
4309         unsigned long flags;
4310         bool modified = false;
4311
4312         ctx = perf_pin_task_context(current, ctxn);
4313         if (!ctx)
4314                 return;
4315
4316         mutex_lock(&ctx->mutex);
4317
4318         if (WARN_ON_ONCE(ctx->task != current))
4319                 goto unlock;
4320
4321         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4322                 if (!event->attr.remove_on_exec)
4323                         continue;
4324
4325                 if (!is_kernel_event(event))
4326                         perf_remove_from_owner(event);
4327
4328                 modified = true;
4329
4330                 perf_event_exit_event(event, ctx);
4331         }
4332
4333         raw_spin_lock_irqsave(&ctx->lock, flags);
4334         if (modified)
4335                 clone_ctx = unclone_ctx(ctx);
4336         --ctx->pin_count;
4337         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4338
4339 unlock:
4340         mutex_unlock(&ctx->mutex);
4341
4342         put_ctx(ctx);
4343         if (clone_ctx)
4344                 put_ctx(clone_ctx);
4345 }
4346
4347 struct perf_read_data {
4348         struct perf_event *event;
4349         bool group;
4350         int ret;
4351 };
4352
4353 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4354 {
4355         u16 local_pkg, event_pkg;
4356
4357         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4358                 int local_cpu = smp_processor_id();
4359
4360                 event_pkg = topology_physical_package_id(event_cpu);
4361                 local_pkg = topology_physical_package_id(local_cpu);
4362
4363                 if (event_pkg == local_pkg)
4364                         return local_cpu;
4365         }
4366
4367         return event_cpu;
4368 }
4369
4370 /*
4371  * Cross CPU call to read the hardware event
4372  */
4373 static void __perf_event_read(void *info)
4374 {
4375         struct perf_read_data *data = info;
4376         struct perf_event *sub, *event = data->event;
4377         struct perf_event_context *ctx = event->ctx;
4378         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4379         struct pmu *pmu = event->pmu;
4380
4381         /*
4382          * If this is a task context, we need to check whether it is
4383          * the current task context of this cpu.  If not it has been
4384          * scheduled out before the smp call arrived.  In that case
4385          * event->count would have been updated to a recent sample
4386          * when the event was scheduled out.
4387          */
4388         if (ctx->task && cpuctx->task_ctx != ctx)
4389                 return;
4390
4391         raw_spin_lock(&ctx->lock);
4392         if (ctx->is_active & EVENT_TIME) {
4393                 update_context_time(ctx);
4394                 update_cgrp_time_from_event(event);
4395         }
4396
4397         perf_event_update_time(event);
4398         if (data->group)
4399                 perf_event_update_sibling_time(event);
4400
4401         if (event->state != PERF_EVENT_STATE_ACTIVE)
4402                 goto unlock;
4403
4404         if (!data->group) {
4405                 pmu->read(event);
4406                 data->ret = 0;
4407                 goto unlock;
4408         }
4409
4410         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4411
4412         pmu->read(event);
4413
4414         for_each_sibling_event(sub, event) {
4415                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4416                         /*
4417                          * Use sibling's PMU rather than @event's since
4418                          * sibling could be on different (eg: software) PMU.
4419                          */
4420                         sub->pmu->read(sub);
4421                 }
4422         }
4423
4424         data->ret = pmu->commit_txn(pmu);
4425
4426 unlock:
4427         raw_spin_unlock(&ctx->lock);
4428 }
4429
4430 static inline u64 perf_event_count(struct perf_event *event)
4431 {
4432         return local64_read(&event->count) + atomic64_read(&event->child_count);
4433 }
4434
4435 static void calc_timer_values(struct perf_event *event,
4436                                 u64 *now,
4437                                 u64 *enabled,
4438                                 u64 *running)
4439 {
4440         u64 ctx_time;
4441
4442         *now = perf_clock();
4443         ctx_time = perf_event_time_now(event, *now);
4444         __perf_update_times(event, ctx_time, enabled, running);
4445 }
4446
4447 /*
4448  * NMI-safe method to read a local event, that is an event that
4449  * is:
4450  *   - either for the current task, or for this CPU
4451  *   - does not have inherit set, for inherited task events
4452  *     will not be local and we cannot read them atomically
4453  *   - must not have a pmu::count method
4454  */
4455 int perf_event_read_local(struct perf_event *event, u64 *value,
4456                           u64 *enabled, u64 *running)
4457 {
4458         unsigned long flags;
4459         int ret = 0;
4460
4461         /*
4462          * Disabling interrupts avoids all counter scheduling (context
4463          * switches, timer based rotation and IPIs).
4464          */
4465         local_irq_save(flags);
4466
4467         /*
4468          * It must not be an event with inherit set, we cannot read
4469          * all child counters from atomic context.
4470          */
4471         if (event->attr.inherit) {
4472                 ret = -EOPNOTSUPP;
4473                 goto out;
4474         }
4475
4476         /* If this is a per-task event, it must be for current */
4477         if ((event->attach_state & PERF_ATTACH_TASK) &&
4478             event->hw.target != current) {
4479                 ret = -EINVAL;
4480                 goto out;
4481         }
4482
4483         /* If this is a per-CPU event, it must be for this CPU */
4484         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4485             event->cpu != smp_processor_id()) {
4486                 ret = -EINVAL;
4487                 goto out;
4488         }
4489
4490         /* If this is a pinned event it must be running on this CPU */
4491         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4492                 ret = -EBUSY;
4493                 goto out;
4494         }
4495
4496         /*
4497          * If the event is currently on this CPU, its either a per-task event,
4498          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4499          * oncpu == -1).
4500          */
4501         if (event->oncpu == smp_processor_id())
4502                 event->pmu->read(event);
4503
4504         *value = local64_read(&event->count);
4505         if (enabled || running) {
4506                 u64 __enabled, __running, __now;
4507
4508                 calc_timer_values(event, &__now, &__enabled, &__running);
4509                 if (enabled)
4510                         *enabled = __enabled;
4511                 if (running)
4512                         *running = __running;
4513         }
4514 out:
4515         local_irq_restore(flags);
4516
4517         return ret;
4518 }
4519
4520 static int perf_event_read(struct perf_event *event, bool group)
4521 {
4522         enum perf_event_state state = READ_ONCE(event->state);
4523         int event_cpu, ret = 0;
4524
4525         /*
4526          * If event is enabled and currently active on a CPU, update the
4527          * value in the event structure:
4528          */
4529 again:
4530         if (state == PERF_EVENT_STATE_ACTIVE) {
4531                 struct perf_read_data data;
4532
4533                 /*
4534                  * Orders the ->state and ->oncpu loads such that if we see
4535                  * ACTIVE we must also see the right ->oncpu.
4536                  *
4537                  * Matches the smp_wmb() from event_sched_in().
4538                  */
4539                 smp_rmb();
4540
4541                 event_cpu = READ_ONCE(event->oncpu);
4542                 if ((unsigned)event_cpu >= nr_cpu_ids)
4543                         return 0;
4544
4545                 data = (struct perf_read_data){
4546                         .event = event,
4547                         .group = group,
4548                         .ret = 0,
4549                 };
4550
4551                 preempt_disable();
4552                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4553
4554                 /*
4555                  * Purposely ignore the smp_call_function_single() return
4556                  * value.
4557                  *
4558                  * If event_cpu isn't a valid CPU it means the event got
4559                  * scheduled out and that will have updated the event count.
4560                  *
4561                  * Therefore, either way, we'll have an up-to-date event count
4562                  * after this.
4563                  */
4564                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4565                 preempt_enable();
4566                 ret = data.ret;
4567
4568         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4569                 struct perf_event_context *ctx = event->ctx;
4570                 unsigned long flags;
4571
4572                 raw_spin_lock_irqsave(&ctx->lock, flags);
4573                 state = event->state;
4574                 if (state != PERF_EVENT_STATE_INACTIVE) {
4575                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4576                         goto again;
4577                 }
4578
4579                 /*
4580                  * May read while context is not active (e.g., thread is
4581                  * blocked), in that case we cannot update context time
4582                  */
4583                 if (ctx->is_active & EVENT_TIME) {
4584                         update_context_time(ctx);
4585                         update_cgrp_time_from_event(event);
4586                 }
4587
4588                 perf_event_update_time(event);
4589                 if (group)
4590                         perf_event_update_sibling_time(event);
4591                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4592         }
4593
4594         return ret;
4595 }
4596
4597 /*
4598  * Initialize the perf_event context in a task_struct:
4599  */
4600 static void __perf_event_init_context(struct perf_event_context *ctx)
4601 {
4602         raw_spin_lock_init(&ctx->lock);
4603         mutex_init(&ctx->mutex);
4604         INIT_LIST_HEAD(&ctx->active_ctx_list);
4605         perf_event_groups_init(&ctx->pinned_groups);
4606         perf_event_groups_init(&ctx->flexible_groups);
4607         INIT_LIST_HEAD(&ctx->event_list);
4608         INIT_LIST_HEAD(&ctx->pinned_active);
4609         INIT_LIST_HEAD(&ctx->flexible_active);
4610         refcount_set(&ctx->refcount, 1);
4611 }
4612
4613 static struct perf_event_context *
4614 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4615 {
4616         struct perf_event_context *ctx;
4617
4618         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4619         if (!ctx)
4620                 return NULL;
4621
4622         __perf_event_init_context(ctx);
4623         if (task)
4624                 ctx->task = get_task_struct(task);
4625         ctx->pmu = pmu;
4626
4627         return ctx;
4628 }
4629
4630 static struct task_struct *
4631 find_lively_task_by_vpid(pid_t vpid)
4632 {
4633         struct task_struct *task;
4634
4635         rcu_read_lock();
4636         if (!vpid)
4637                 task = current;
4638         else
4639                 task = find_task_by_vpid(vpid);
4640         if (task)
4641                 get_task_struct(task);
4642         rcu_read_unlock();
4643
4644         if (!task)
4645                 return ERR_PTR(-ESRCH);
4646
4647         return task;
4648 }
4649
4650 /*
4651  * Returns a matching context with refcount and pincount.
4652  */
4653 static struct perf_event_context *
4654 find_get_context(struct pmu *pmu, struct task_struct *task,
4655                 struct perf_event *event)
4656 {
4657         struct perf_event_context *ctx, *clone_ctx = NULL;
4658         struct perf_cpu_context *cpuctx;
4659         void *task_ctx_data = NULL;
4660         unsigned long flags;
4661         int ctxn, err;
4662         int cpu = event->cpu;
4663
4664         if (!task) {
4665                 /* Must be root to operate on a CPU event: */
4666                 err = perf_allow_cpu(&event->attr);
4667                 if (err)
4668                         return ERR_PTR(err);
4669
4670                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4671                 ctx = &cpuctx->ctx;
4672                 get_ctx(ctx);
4673                 raw_spin_lock_irqsave(&ctx->lock, flags);
4674                 ++ctx->pin_count;
4675                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4676
4677                 return ctx;
4678         }
4679
4680         err = -EINVAL;
4681         ctxn = pmu->task_ctx_nr;
4682         if (ctxn < 0)
4683                 goto errout;
4684
4685         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4686                 task_ctx_data = alloc_task_ctx_data(pmu);
4687                 if (!task_ctx_data) {
4688                         err = -ENOMEM;
4689                         goto errout;
4690                 }
4691         }
4692
4693 retry:
4694         ctx = perf_lock_task_context(task, ctxn, &flags);
4695         if (ctx) {
4696                 clone_ctx = unclone_ctx(ctx);
4697                 ++ctx->pin_count;
4698
4699                 if (task_ctx_data && !ctx->task_ctx_data) {
4700                         ctx->task_ctx_data = task_ctx_data;
4701                         task_ctx_data = NULL;
4702                 }
4703                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4704
4705                 if (clone_ctx)
4706                         put_ctx(clone_ctx);
4707         } else {
4708                 ctx = alloc_perf_context(pmu, task);
4709                 err = -ENOMEM;
4710                 if (!ctx)
4711                         goto errout;
4712
4713                 if (task_ctx_data) {
4714                         ctx->task_ctx_data = task_ctx_data;
4715                         task_ctx_data = NULL;
4716                 }
4717
4718                 err = 0;
4719                 mutex_lock(&task->perf_event_mutex);
4720                 /*
4721                  * If it has already passed perf_event_exit_task().
4722                  * we must see PF_EXITING, it takes this mutex too.
4723                  */
4724                 if (task->flags & PF_EXITING)
4725                         err = -ESRCH;
4726                 else if (task->perf_event_ctxp[ctxn])
4727                         err = -EAGAIN;
4728                 else {
4729                         get_ctx(ctx);
4730                         ++ctx->pin_count;
4731                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4732                 }
4733                 mutex_unlock(&task->perf_event_mutex);
4734
4735                 if (unlikely(err)) {
4736                         put_ctx(ctx);
4737
4738                         if (err == -EAGAIN)
4739                                 goto retry;
4740                         goto errout;
4741                 }
4742         }
4743
4744         free_task_ctx_data(pmu, task_ctx_data);
4745         return ctx;
4746
4747 errout:
4748         free_task_ctx_data(pmu, task_ctx_data);
4749         return ERR_PTR(err);
4750 }
4751
4752 static void perf_event_free_filter(struct perf_event *event);
4753
4754 static void free_event_rcu(struct rcu_head *head)
4755 {
4756         struct perf_event *event;
4757
4758         event = container_of(head, struct perf_event, rcu_head);
4759         if (event->ns)
4760                 put_pid_ns(event->ns);
4761         perf_event_free_filter(event);
4762         kmem_cache_free(perf_event_cache, event);
4763 }
4764
4765 static void ring_buffer_attach(struct perf_event *event,
4766                                struct perf_buffer *rb);
4767
4768 static void detach_sb_event(struct perf_event *event)
4769 {
4770         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4771
4772         raw_spin_lock(&pel->lock);
4773         list_del_rcu(&event->sb_list);
4774         raw_spin_unlock(&pel->lock);
4775 }
4776
4777 static bool is_sb_event(struct perf_event *event)
4778 {
4779         struct perf_event_attr *attr = &event->attr;
4780
4781         if (event->parent)
4782                 return false;
4783
4784         if (event->attach_state & PERF_ATTACH_TASK)
4785                 return false;
4786
4787         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4788             attr->comm || attr->comm_exec ||
4789             attr->task || attr->ksymbol ||
4790             attr->context_switch || attr->text_poke ||
4791             attr->bpf_event)
4792                 return true;
4793         return false;
4794 }
4795
4796 static void unaccount_pmu_sb_event(struct perf_event *event)
4797 {
4798         if (is_sb_event(event))
4799                 detach_sb_event(event);
4800 }
4801
4802 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4803 {
4804         if (event->parent)
4805                 return;
4806
4807         if (is_cgroup_event(event))
4808                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4809 }
4810
4811 #ifdef CONFIG_NO_HZ_FULL
4812 static DEFINE_SPINLOCK(nr_freq_lock);
4813 #endif
4814
4815 static void unaccount_freq_event_nohz(void)
4816 {
4817 #ifdef CONFIG_NO_HZ_FULL
4818         spin_lock(&nr_freq_lock);
4819         if (atomic_dec_and_test(&nr_freq_events))
4820                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4821         spin_unlock(&nr_freq_lock);
4822 #endif
4823 }
4824
4825 static void unaccount_freq_event(void)
4826 {
4827         if (tick_nohz_full_enabled())
4828                 unaccount_freq_event_nohz();
4829         else
4830                 atomic_dec(&nr_freq_events);
4831 }
4832
4833 static void unaccount_event(struct perf_event *event)
4834 {
4835         bool dec = false;
4836
4837         if (event->parent)
4838                 return;
4839
4840         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4841                 dec = true;
4842         if (event->attr.mmap || event->attr.mmap_data)
4843                 atomic_dec(&nr_mmap_events);
4844         if (event->attr.build_id)
4845                 atomic_dec(&nr_build_id_events);
4846         if (event->attr.comm)
4847                 atomic_dec(&nr_comm_events);
4848         if (event->attr.namespaces)
4849                 atomic_dec(&nr_namespaces_events);
4850         if (event->attr.cgroup)
4851                 atomic_dec(&nr_cgroup_events);
4852         if (event->attr.task)
4853                 atomic_dec(&nr_task_events);
4854         if (event->attr.freq)
4855                 unaccount_freq_event();
4856         if (event->attr.context_switch) {
4857                 dec = true;
4858                 atomic_dec(&nr_switch_events);
4859         }
4860         if (is_cgroup_event(event))
4861                 dec = true;
4862         if (has_branch_stack(event))
4863                 dec = true;
4864         if (event->attr.ksymbol)
4865                 atomic_dec(&nr_ksymbol_events);
4866         if (event->attr.bpf_event)
4867                 atomic_dec(&nr_bpf_events);
4868         if (event->attr.text_poke)
4869                 atomic_dec(&nr_text_poke_events);
4870
4871         if (dec) {
4872                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4873                         schedule_delayed_work(&perf_sched_work, HZ);
4874         }
4875
4876         unaccount_event_cpu(event, event->cpu);
4877
4878         unaccount_pmu_sb_event(event);
4879 }
4880
4881 static void perf_sched_delayed(struct work_struct *work)
4882 {
4883         mutex_lock(&perf_sched_mutex);
4884         if (atomic_dec_and_test(&perf_sched_count))
4885                 static_branch_disable(&perf_sched_events);
4886         mutex_unlock(&perf_sched_mutex);
4887 }
4888
4889 /*
4890  * The following implement mutual exclusion of events on "exclusive" pmus
4891  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4892  * at a time, so we disallow creating events that might conflict, namely:
4893  *
4894  *  1) cpu-wide events in the presence of per-task events,
4895  *  2) per-task events in the presence of cpu-wide events,
4896  *  3) two matching events on the same context.
4897  *
4898  * The former two cases are handled in the allocation path (perf_event_alloc(),
4899  * _free_event()), the latter -- before the first perf_install_in_context().
4900  */
4901 static int exclusive_event_init(struct perf_event *event)
4902 {
4903         struct pmu *pmu = event->pmu;
4904
4905         if (!is_exclusive_pmu(pmu))
4906                 return 0;
4907
4908         /*
4909          * Prevent co-existence of per-task and cpu-wide events on the
4910          * same exclusive pmu.
4911          *
4912          * Negative pmu::exclusive_cnt means there are cpu-wide
4913          * events on this "exclusive" pmu, positive means there are
4914          * per-task events.
4915          *
4916          * Since this is called in perf_event_alloc() path, event::ctx
4917          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4918          * to mean "per-task event", because unlike other attach states it
4919          * never gets cleared.
4920          */
4921         if (event->attach_state & PERF_ATTACH_TASK) {
4922                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4923                         return -EBUSY;
4924         } else {
4925                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4926                         return -EBUSY;
4927         }
4928
4929         return 0;
4930 }
4931
4932 static void exclusive_event_destroy(struct perf_event *event)
4933 {
4934         struct pmu *pmu = event->pmu;
4935
4936         if (!is_exclusive_pmu(pmu))
4937                 return;
4938
4939         /* see comment in exclusive_event_init() */
4940         if (event->attach_state & PERF_ATTACH_TASK)
4941                 atomic_dec(&pmu->exclusive_cnt);
4942         else
4943                 atomic_inc(&pmu->exclusive_cnt);
4944 }
4945
4946 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4947 {
4948         if ((e1->pmu == e2->pmu) &&
4949             (e1->cpu == e2->cpu ||
4950              e1->cpu == -1 ||
4951              e2->cpu == -1))
4952                 return true;
4953         return false;
4954 }
4955
4956 static bool exclusive_event_installable(struct perf_event *event,
4957                                         struct perf_event_context *ctx)
4958 {
4959         struct perf_event *iter_event;
4960         struct pmu *pmu = event->pmu;
4961
4962         lockdep_assert_held(&ctx->mutex);
4963
4964         if (!is_exclusive_pmu(pmu))
4965                 return true;
4966
4967         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4968                 if (exclusive_event_match(iter_event, event))
4969                         return false;
4970         }
4971
4972         return true;
4973 }
4974
4975 static void perf_addr_filters_splice(struct perf_event *event,
4976                                        struct list_head *head);
4977
4978 static void _free_event(struct perf_event *event)
4979 {
4980         irq_work_sync(&event->pending_irq);
4981
4982         unaccount_event(event);
4983
4984         security_perf_event_free(event);
4985
4986         if (event->rb) {
4987                 /*
4988                  * Can happen when we close an event with re-directed output.
4989                  *
4990                  * Since we have a 0 refcount, perf_mmap_close() will skip
4991                  * over us; possibly making our ring_buffer_put() the last.
4992                  */
4993                 mutex_lock(&event->mmap_mutex);
4994                 ring_buffer_attach(event, NULL);
4995                 mutex_unlock(&event->mmap_mutex);
4996         }
4997
4998         if (is_cgroup_event(event))
4999                 perf_detach_cgroup(event);
5000
5001         if (!event->parent) {
5002                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5003                         put_callchain_buffers();
5004         }
5005
5006         perf_event_free_bpf_prog(event);
5007         perf_addr_filters_splice(event, NULL);
5008         kfree(event->addr_filter_ranges);
5009
5010         if (event->destroy)
5011                 event->destroy(event);
5012
5013         /*
5014          * Must be after ->destroy(), due to uprobe_perf_close() using
5015          * hw.target.
5016          */
5017         if (event->hw.target)
5018                 put_task_struct(event->hw.target);
5019
5020         /*
5021          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5022          * all task references must be cleaned up.
5023          */
5024         if (event->ctx)
5025                 put_ctx(event->ctx);
5026
5027         exclusive_event_destroy(event);
5028         module_put(event->pmu->module);
5029
5030         call_rcu(&event->rcu_head, free_event_rcu);
5031 }
5032
5033 /*
5034  * Used to free events which have a known refcount of 1, such as in error paths
5035  * where the event isn't exposed yet and inherited events.
5036  */
5037 static void free_event(struct perf_event *event)
5038 {
5039         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5040                                 "unexpected event refcount: %ld; ptr=%p\n",
5041                                 atomic_long_read(&event->refcount), event)) {
5042                 /* leak to avoid use-after-free */
5043                 return;
5044         }
5045
5046         _free_event(event);
5047 }
5048
5049 /*
5050  * Remove user event from the owner task.
5051  */
5052 static void perf_remove_from_owner(struct perf_event *event)
5053 {
5054         struct task_struct *owner;
5055
5056         rcu_read_lock();
5057         /*
5058          * Matches the smp_store_release() in perf_event_exit_task(). If we
5059          * observe !owner it means the list deletion is complete and we can
5060          * indeed free this event, otherwise we need to serialize on
5061          * owner->perf_event_mutex.
5062          */
5063         owner = READ_ONCE(event->owner);
5064         if (owner) {
5065                 /*
5066                  * Since delayed_put_task_struct() also drops the last
5067                  * task reference we can safely take a new reference
5068                  * while holding the rcu_read_lock().
5069                  */
5070                 get_task_struct(owner);
5071         }
5072         rcu_read_unlock();
5073
5074         if (owner) {
5075                 /*
5076                  * If we're here through perf_event_exit_task() we're already
5077                  * holding ctx->mutex which would be an inversion wrt. the
5078                  * normal lock order.
5079                  *
5080                  * However we can safely take this lock because its the child
5081                  * ctx->mutex.
5082                  */
5083                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5084
5085                 /*
5086                  * We have to re-check the event->owner field, if it is cleared
5087                  * we raced with perf_event_exit_task(), acquiring the mutex
5088                  * ensured they're done, and we can proceed with freeing the
5089                  * event.
5090                  */
5091                 if (event->owner) {
5092                         list_del_init(&event->owner_entry);
5093                         smp_store_release(&event->owner, NULL);
5094                 }
5095                 mutex_unlock(&owner->perf_event_mutex);
5096                 put_task_struct(owner);
5097         }
5098 }
5099
5100 static void put_event(struct perf_event *event)
5101 {
5102         if (!atomic_long_dec_and_test(&event->refcount))
5103                 return;
5104
5105         _free_event(event);
5106 }
5107
5108 /*
5109  * Kill an event dead; while event:refcount will preserve the event
5110  * object, it will not preserve its functionality. Once the last 'user'
5111  * gives up the object, we'll destroy the thing.
5112  */
5113 int perf_event_release_kernel(struct perf_event *event)
5114 {
5115         struct perf_event_context *ctx = event->ctx;
5116         struct perf_event *child, *tmp;
5117         LIST_HEAD(free_list);
5118
5119         /*
5120          * If we got here through err_file: fput(event_file); we will not have
5121          * attached to a context yet.
5122          */
5123         if (!ctx) {
5124                 WARN_ON_ONCE(event->attach_state &
5125                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5126                 goto no_ctx;
5127         }
5128
5129         if (!is_kernel_event(event))
5130                 perf_remove_from_owner(event);
5131
5132         ctx = perf_event_ctx_lock(event);
5133         WARN_ON_ONCE(ctx->parent_ctx);
5134
5135         /*
5136          * Mark this event as STATE_DEAD, there is no external reference to it
5137          * anymore.
5138          *
5139          * Anybody acquiring event->child_mutex after the below loop _must_
5140          * also see this, most importantly inherit_event() which will avoid
5141          * placing more children on the list.
5142          *
5143          * Thus this guarantees that we will in fact observe and kill _ALL_
5144          * child events.
5145          */
5146         perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5147
5148         perf_event_ctx_unlock(event, ctx);
5149
5150 again:
5151         mutex_lock(&event->child_mutex);
5152         list_for_each_entry(child, &event->child_list, child_list) {
5153
5154                 /*
5155                  * Cannot change, child events are not migrated, see the
5156                  * comment with perf_event_ctx_lock_nested().
5157                  */
5158                 ctx = READ_ONCE(child->ctx);
5159                 /*
5160                  * Since child_mutex nests inside ctx::mutex, we must jump
5161                  * through hoops. We start by grabbing a reference on the ctx.
5162                  *
5163                  * Since the event cannot get freed while we hold the
5164                  * child_mutex, the context must also exist and have a !0
5165                  * reference count.
5166                  */
5167                 get_ctx(ctx);
5168
5169                 /*
5170                  * Now that we have a ctx ref, we can drop child_mutex, and
5171                  * acquire ctx::mutex without fear of it going away. Then we
5172                  * can re-acquire child_mutex.
5173                  */
5174                 mutex_unlock(&event->child_mutex);
5175                 mutex_lock(&ctx->mutex);
5176                 mutex_lock(&event->child_mutex);
5177
5178                 /*
5179                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5180                  * state, if child is still the first entry, it didn't get freed
5181                  * and we can continue doing so.
5182                  */
5183                 tmp = list_first_entry_or_null(&event->child_list,
5184                                                struct perf_event, child_list);
5185                 if (tmp == child) {
5186                         perf_remove_from_context(child, DETACH_GROUP);
5187                         list_move(&child->child_list, &free_list);
5188                         /*
5189                          * This matches the refcount bump in inherit_event();
5190                          * this can't be the last reference.
5191                          */
5192                         put_event(event);
5193                 }
5194
5195                 mutex_unlock(&event->child_mutex);
5196                 mutex_unlock(&ctx->mutex);
5197                 put_ctx(ctx);
5198                 goto again;
5199         }
5200         mutex_unlock(&event->child_mutex);
5201
5202         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5203                 void *var = &child->ctx->refcount;
5204
5205                 list_del(&child->child_list);
5206                 free_event(child);
5207
5208                 /*
5209                  * Wake any perf_event_free_task() waiting for this event to be
5210                  * freed.
5211                  */
5212                 smp_mb(); /* pairs with wait_var_event() */
5213                 wake_up_var(var);
5214         }
5215
5216 no_ctx:
5217         put_event(event); /* Must be the 'last' reference */
5218         return 0;
5219 }
5220 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5221
5222 /*
5223  * Called when the last reference to the file is gone.
5224  */
5225 static int perf_release(struct inode *inode, struct file *file)
5226 {
5227         perf_event_release_kernel(file->private_data);
5228         return 0;
5229 }
5230
5231 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5232 {
5233         struct perf_event *child;
5234         u64 total = 0;
5235
5236         *enabled = 0;
5237         *running = 0;
5238
5239         mutex_lock(&event->child_mutex);
5240
5241         (void)perf_event_read(event, false);
5242         total += perf_event_count(event);
5243
5244         *enabled += event->total_time_enabled +
5245                         atomic64_read(&event->child_total_time_enabled);
5246         *running += event->total_time_running +
5247                         atomic64_read(&event->child_total_time_running);
5248
5249         list_for_each_entry(child, &event->child_list, child_list) {
5250                 (void)perf_event_read(child, false);
5251                 total += perf_event_count(child);
5252                 *enabled += child->total_time_enabled;
5253                 *running += child->total_time_running;
5254         }
5255         mutex_unlock(&event->child_mutex);
5256
5257         return total;
5258 }
5259
5260 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5261 {
5262         struct perf_event_context *ctx;
5263         u64 count;
5264
5265         ctx = perf_event_ctx_lock(event);
5266         count = __perf_event_read_value(event, enabled, running);
5267         perf_event_ctx_unlock(event, ctx);
5268
5269         return count;
5270 }
5271 EXPORT_SYMBOL_GPL(perf_event_read_value);
5272
5273 static int __perf_read_group_add(struct perf_event *leader,
5274                                         u64 read_format, u64 *values)
5275 {
5276         struct perf_event_context *ctx = leader->ctx;
5277         struct perf_event *sub;
5278         unsigned long flags;
5279         int n = 1; /* skip @nr */
5280         int ret;
5281
5282         ret = perf_event_read(leader, true);
5283         if (ret)
5284                 return ret;
5285
5286         raw_spin_lock_irqsave(&ctx->lock, flags);
5287
5288         /*
5289          * Since we co-schedule groups, {enabled,running} times of siblings
5290          * will be identical to those of the leader, so we only publish one
5291          * set.
5292          */
5293         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5294                 values[n++] += leader->total_time_enabled +
5295                         atomic64_read(&leader->child_total_time_enabled);
5296         }
5297
5298         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5299                 values[n++] += leader->total_time_running +
5300                         atomic64_read(&leader->child_total_time_running);
5301         }
5302
5303         /*
5304          * Write {count,id} tuples for every sibling.
5305          */
5306         values[n++] += perf_event_count(leader);
5307         if (read_format & PERF_FORMAT_ID)
5308                 values[n++] = primary_event_id(leader);
5309         if (read_format & PERF_FORMAT_LOST)
5310                 values[n++] = atomic64_read(&leader->lost_samples);
5311
5312         for_each_sibling_event(sub, leader) {
5313                 values[n++] += perf_event_count(sub);
5314                 if (read_format & PERF_FORMAT_ID)
5315                         values[n++] = primary_event_id(sub);
5316                 if (read_format & PERF_FORMAT_LOST)
5317                         values[n++] = atomic64_read(&sub->lost_samples);
5318         }
5319
5320         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5321         return 0;
5322 }
5323
5324 static int perf_read_group(struct perf_event *event,
5325                                    u64 read_format, char __user *buf)
5326 {
5327         struct perf_event *leader = event->group_leader, *child;
5328         struct perf_event_context *ctx = leader->ctx;
5329         int ret;
5330         u64 *values;
5331
5332         lockdep_assert_held(&ctx->mutex);
5333
5334         values = kzalloc(event->read_size, GFP_KERNEL);
5335         if (!values)
5336                 return -ENOMEM;
5337
5338         values[0] = 1 + leader->nr_siblings;
5339
5340         /*
5341          * By locking the child_mutex of the leader we effectively
5342          * lock the child list of all siblings.. XXX explain how.
5343          */
5344         mutex_lock(&leader->child_mutex);
5345
5346         ret = __perf_read_group_add(leader, read_format, values);
5347         if (ret)
5348                 goto unlock;
5349
5350         list_for_each_entry(child, &leader->child_list, child_list) {
5351                 ret = __perf_read_group_add(child, read_format, values);
5352                 if (ret)
5353                         goto unlock;
5354         }
5355
5356         mutex_unlock(&leader->child_mutex);
5357
5358         ret = event->read_size;
5359         if (copy_to_user(buf, values, event->read_size))
5360                 ret = -EFAULT;
5361         goto out;
5362
5363 unlock:
5364         mutex_unlock(&leader->child_mutex);
5365 out:
5366         kfree(values);
5367         return ret;
5368 }
5369
5370 static int perf_read_one(struct perf_event *event,
5371                                  u64 read_format, char __user *buf)
5372 {
5373         u64 enabled, running;
5374         u64 values[5];
5375         int n = 0;
5376
5377         values[n++] = __perf_event_read_value(event, &enabled, &running);
5378         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5379                 values[n++] = enabled;
5380         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5381                 values[n++] = running;
5382         if (read_format & PERF_FORMAT_ID)
5383                 values[n++] = primary_event_id(event);
5384         if (read_format & PERF_FORMAT_LOST)
5385                 values[n++] = atomic64_read(&event->lost_samples);
5386
5387         if (copy_to_user(buf, values, n * sizeof(u64)))
5388                 return -EFAULT;
5389
5390         return n * sizeof(u64);
5391 }
5392
5393 static bool is_event_hup(struct perf_event *event)
5394 {
5395         bool no_children;
5396
5397         if (event->state > PERF_EVENT_STATE_EXIT)
5398                 return false;
5399
5400         mutex_lock(&event->child_mutex);
5401         no_children = list_empty(&event->child_list);
5402         mutex_unlock(&event->child_mutex);
5403         return no_children;
5404 }
5405
5406 /*
5407  * Read the performance event - simple non blocking version for now
5408  */
5409 static ssize_t
5410 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5411 {
5412         u64 read_format = event->attr.read_format;
5413         int ret;
5414
5415         /*
5416          * Return end-of-file for a read on an event that is in
5417          * error state (i.e. because it was pinned but it couldn't be
5418          * scheduled on to the CPU at some point).
5419          */
5420         if (event->state == PERF_EVENT_STATE_ERROR)
5421                 return 0;
5422
5423         if (count < event->read_size)
5424                 return -ENOSPC;
5425
5426         WARN_ON_ONCE(event->ctx->parent_ctx);
5427         if (read_format & PERF_FORMAT_GROUP)
5428                 ret = perf_read_group(event, read_format, buf);
5429         else
5430                 ret = perf_read_one(event, read_format, buf);
5431
5432         return ret;
5433 }
5434
5435 static ssize_t
5436 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5437 {
5438         struct perf_event *event = file->private_data;
5439         struct perf_event_context *ctx;
5440         int ret;
5441
5442         ret = security_perf_event_read(event);
5443         if (ret)
5444                 return ret;
5445
5446         ctx = perf_event_ctx_lock(event);
5447         ret = __perf_read(event, buf, count);
5448         perf_event_ctx_unlock(event, ctx);
5449
5450         return ret;
5451 }
5452
5453 static __poll_t perf_poll(struct file *file, poll_table *wait)
5454 {
5455         struct perf_event *event = file->private_data;
5456         struct perf_buffer *rb;
5457         __poll_t events = EPOLLHUP;
5458
5459         poll_wait(file, &event->waitq, wait);
5460
5461         if (is_event_hup(event))
5462                 return events;
5463
5464         /*
5465          * Pin the event->rb by taking event->mmap_mutex; otherwise
5466          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5467          */
5468         mutex_lock(&event->mmap_mutex);
5469         rb = event->rb;
5470         if (rb)
5471                 events = atomic_xchg(&rb->poll, 0);
5472         mutex_unlock(&event->mmap_mutex);
5473         return events;
5474 }
5475
5476 static void _perf_event_reset(struct perf_event *event)
5477 {
5478         (void)perf_event_read(event, false);
5479         local64_set(&event->count, 0);
5480         perf_event_update_userpage(event);
5481 }
5482
5483 /* Assume it's not an event with inherit set. */
5484 u64 perf_event_pause(struct perf_event *event, bool reset)
5485 {
5486         struct perf_event_context *ctx;
5487         u64 count;
5488
5489         ctx = perf_event_ctx_lock(event);
5490         WARN_ON_ONCE(event->attr.inherit);
5491         _perf_event_disable(event);
5492         count = local64_read(&event->count);
5493         if (reset)
5494                 local64_set(&event->count, 0);
5495         perf_event_ctx_unlock(event, ctx);
5496
5497         return count;
5498 }
5499 EXPORT_SYMBOL_GPL(perf_event_pause);
5500
5501 /*
5502  * Holding the top-level event's child_mutex means that any
5503  * descendant process that has inherited this event will block
5504  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5505  * task existence requirements of perf_event_enable/disable.
5506  */
5507 static void perf_event_for_each_child(struct perf_event *event,
5508                                         void (*func)(struct perf_event *))
5509 {
5510         struct perf_event *child;
5511
5512         WARN_ON_ONCE(event->ctx->parent_ctx);
5513
5514         mutex_lock(&event->child_mutex);
5515         func(event);
5516         list_for_each_entry(child, &event->child_list, child_list)
5517                 func(child);
5518         mutex_unlock(&event->child_mutex);
5519 }
5520
5521 static void perf_event_for_each(struct perf_event *event,
5522                                   void (*func)(struct perf_event *))
5523 {
5524         struct perf_event_context *ctx = event->ctx;
5525         struct perf_event *sibling;
5526
5527         lockdep_assert_held(&ctx->mutex);
5528
5529         event = event->group_leader;
5530
5531         perf_event_for_each_child(event, func);
5532         for_each_sibling_event(sibling, event)
5533                 perf_event_for_each_child(sibling, func);
5534 }
5535
5536 static void __perf_event_period(struct perf_event *event,
5537                                 struct perf_cpu_context *cpuctx,
5538                                 struct perf_event_context *ctx,
5539                                 void *info)
5540 {
5541         u64 value = *((u64 *)info);
5542         bool active;
5543
5544         if (event->attr.freq) {
5545                 event->attr.sample_freq = value;
5546         } else {
5547                 event->attr.sample_period = value;
5548                 event->hw.sample_period = value;
5549         }
5550
5551         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5552         if (active) {
5553                 perf_pmu_disable(ctx->pmu);
5554                 /*
5555                  * We could be throttled; unthrottle now to avoid the tick
5556                  * trying to unthrottle while we already re-started the event.
5557                  */
5558                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5559                         event->hw.interrupts = 0;
5560                         perf_log_throttle(event, 1);
5561                 }
5562                 event->pmu->stop(event, PERF_EF_UPDATE);
5563         }
5564
5565         local64_set(&event->hw.period_left, 0);
5566
5567         if (active) {
5568                 event->pmu->start(event, PERF_EF_RELOAD);
5569                 perf_pmu_enable(ctx->pmu);
5570         }
5571 }
5572
5573 static int perf_event_check_period(struct perf_event *event, u64 value)
5574 {
5575         return event->pmu->check_period(event, value);
5576 }
5577
5578 static int _perf_event_period(struct perf_event *event, u64 value)
5579 {
5580         if (!is_sampling_event(event))
5581                 return -EINVAL;
5582
5583         if (!value)
5584                 return -EINVAL;
5585
5586         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5587                 return -EINVAL;
5588
5589         if (perf_event_check_period(event, value))
5590                 return -EINVAL;
5591
5592         if (!event->attr.freq && (value & (1ULL << 63)))
5593                 return -EINVAL;
5594
5595         event_function_call(event, __perf_event_period, &value);
5596
5597         return 0;
5598 }
5599
5600 int perf_event_period(struct perf_event *event, u64 value)
5601 {
5602         struct perf_event_context *ctx;
5603         int ret;
5604
5605         ctx = perf_event_ctx_lock(event);
5606         ret = _perf_event_period(event, value);
5607         perf_event_ctx_unlock(event, ctx);
5608
5609         return ret;
5610 }
5611 EXPORT_SYMBOL_GPL(perf_event_period);
5612
5613 static const struct file_operations perf_fops;
5614
5615 static inline int perf_fget_light(int fd, struct fd *p)
5616 {
5617         struct fd f = fdget(fd);
5618         if (!f.file)
5619                 return -EBADF;
5620
5621         if (f.file->f_op != &perf_fops) {
5622                 fdput(f);
5623                 return -EBADF;
5624         }
5625         *p = f;
5626         return 0;
5627 }
5628
5629 static int perf_event_set_output(struct perf_event *event,
5630                                  struct perf_event *output_event);
5631 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5632 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5633                           struct perf_event_attr *attr);
5634
5635 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5636 {
5637         void (*func)(struct perf_event *);
5638         u32 flags = arg;
5639
5640         switch (cmd) {
5641         case PERF_EVENT_IOC_ENABLE:
5642                 func = _perf_event_enable;
5643                 break;
5644         case PERF_EVENT_IOC_DISABLE:
5645                 func = _perf_event_disable;
5646                 break;
5647         case PERF_EVENT_IOC_RESET:
5648                 func = _perf_event_reset;
5649                 break;
5650
5651         case PERF_EVENT_IOC_REFRESH:
5652                 return _perf_event_refresh(event, arg);
5653
5654         case PERF_EVENT_IOC_PERIOD:
5655         {
5656                 u64 value;
5657
5658                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5659                         return -EFAULT;
5660
5661                 return _perf_event_period(event, value);
5662         }
5663         case PERF_EVENT_IOC_ID:
5664         {
5665                 u64 id = primary_event_id(event);
5666
5667                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5668                         return -EFAULT;
5669                 return 0;
5670         }
5671
5672         case PERF_EVENT_IOC_SET_OUTPUT:
5673         {
5674                 int ret;
5675                 if (arg != -1) {
5676                         struct perf_event *output_event;
5677                         struct fd output;
5678                         ret = perf_fget_light(arg, &output);
5679                         if (ret)
5680                                 return ret;
5681                         output_event = output.file->private_data;
5682                         ret = perf_event_set_output(event, output_event);
5683                         fdput(output);
5684                 } else {
5685                         ret = perf_event_set_output(event, NULL);
5686                 }
5687                 return ret;
5688         }
5689
5690         case PERF_EVENT_IOC_SET_FILTER:
5691                 return perf_event_set_filter(event, (void __user *)arg);
5692
5693         case PERF_EVENT_IOC_SET_BPF:
5694         {
5695                 struct bpf_prog *prog;
5696                 int err;
5697
5698                 prog = bpf_prog_get(arg);
5699                 if (IS_ERR(prog))
5700                         return PTR_ERR(prog);
5701
5702                 err = perf_event_set_bpf_prog(event, prog, 0);
5703                 if (err) {
5704                         bpf_prog_put(prog);
5705                         return err;
5706                 }
5707
5708                 return 0;
5709         }
5710
5711         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5712                 struct perf_buffer *rb;
5713
5714                 rcu_read_lock();
5715                 rb = rcu_dereference(event->rb);
5716                 if (!rb || !rb->nr_pages) {
5717                         rcu_read_unlock();
5718                         return -EINVAL;
5719                 }
5720                 rb_toggle_paused(rb, !!arg);
5721                 rcu_read_unlock();
5722                 return 0;
5723         }
5724
5725         case PERF_EVENT_IOC_QUERY_BPF:
5726                 return perf_event_query_prog_array(event, (void __user *)arg);
5727
5728         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5729                 struct perf_event_attr new_attr;
5730                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5731                                          &new_attr);
5732
5733                 if (err)
5734                         return err;
5735
5736                 return perf_event_modify_attr(event,  &new_attr);
5737         }
5738         default:
5739                 return -ENOTTY;
5740         }
5741
5742         if (flags & PERF_IOC_FLAG_GROUP)
5743                 perf_event_for_each(event, func);
5744         else
5745                 perf_event_for_each_child(event, func);
5746
5747         return 0;
5748 }
5749
5750 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5751 {
5752         struct perf_event *event = file->private_data;
5753         struct perf_event_context *ctx;
5754         long ret;
5755
5756         /* Treat ioctl like writes as it is likely a mutating operation. */
5757         ret = security_perf_event_write(event);
5758         if (ret)
5759                 return ret;
5760
5761         ctx = perf_event_ctx_lock(event);
5762         ret = _perf_ioctl(event, cmd, arg);
5763         perf_event_ctx_unlock(event, ctx);
5764
5765         return ret;
5766 }
5767
5768 #ifdef CONFIG_COMPAT
5769 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5770                                 unsigned long arg)
5771 {
5772         switch (_IOC_NR(cmd)) {
5773         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5774         case _IOC_NR(PERF_EVENT_IOC_ID):
5775         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5776         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5777                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5778                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5779                         cmd &= ~IOCSIZE_MASK;
5780                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5781                 }
5782                 break;
5783         }
5784         return perf_ioctl(file, cmd, arg);
5785 }
5786 #else
5787 # define perf_compat_ioctl NULL
5788 #endif
5789
5790 int perf_event_task_enable(void)
5791 {
5792         struct perf_event_context *ctx;
5793         struct perf_event *event;
5794
5795         mutex_lock(&current->perf_event_mutex);
5796         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5797                 ctx = perf_event_ctx_lock(event);
5798                 perf_event_for_each_child(event, _perf_event_enable);
5799                 perf_event_ctx_unlock(event, ctx);
5800         }
5801         mutex_unlock(&current->perf_event_mutex);
5802
5803         return 0;
5804 }
5805
5806 int perf_event_task_disable(void)
5807 {
5808         struct perf_event_context *ctx;
5809         struct perf_event *event;
5810
5811         mutex_lock(&current->perf_event_mutex);
5812         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5813                 ctx = perf_event_ctx_lock(event);
5814                 perf_event_for_each_child(event, _perf_event_disable);
5815                 perf_event_ctx_unlock(event, ctx);
5816         }
5817         mutex_unlock(&current->perf_event_mutex);
5818
5819         return 0;
5820 }
5821
5822 static int perf_event_index(struct perf_event *event)
5823 {
5824         if (event->hw.state & PERF_HES_STOPPED)
5825                 return 0;
5826
5827         if (event->state != PERF_EVENT_STATE_ACTIVE)
5828                 return 0;
5829
5830         return event->pmu->event_idx(event);
5831 }
5832
5833 static void perf_event_init_userpage(struct perf_event *event)
5834 {
5835         struct perf_event_mmap_page *userpg;
5836         struct perf_buffer *rb;
5837
5838         rcu_read_lock();
5839         rb = rcu_dereference(event->rb);
5840         if (!rb)
5841                 goto unlock;
5842
5843         userpg = rb->user_page;
5844
5845         /* Allow new userspace to detect that bit 0 is deprecated */
5846         userpg->cap_bit0_is_deprecated = 1;
5847         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5848         userpg->data_offset = PAGE_SIZE;
5849         userpg->data_size = perf_data_size(rb);
5850
5851 unlock:
5852         rcu_read_unlock();
5853 }
5854
5855 void __weak arch_perf_update_userpage(
5856         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5857 {
5858 }
5859
5860 /*
5861  * Callers need to ensure there can be no nesting of this function, otherwise
5862  * the seqlock logic goes bad. We can not serialize this because the arch
5863  * code calls this from NMI context.
5864  */
5865 void perf_event_update_userpage(struct perf_event *event)
5866 {
5867         struct perf_event_mmap_page *userpg;
5868         struct perf_buffer *rb;
5869         u64 enabled, running, now;
5870
5871         rcu_read_lock();
5872         rb = rcu_dereference(event->rb);
5873         if (!rb)
5874                 goto unlock;
5875
5876         /*
5877          * compute total_time_enabled, total_time_running
5878          * based on snapshot values taken when the event
5879          * was last scheduled in.
5880          *
5881          * we cannot simply called update_context_time()
5882          * because of locking issue as we can be called in
5883          * NMI context
5884          */
5885         calc_timer_values(event, &now, &enabled, &running);
5886
5887         userpg = rb->user_page;
5888         /*
5889          * Disable preemption to guarantee consistent time stamps are stored to
5890          * the user page.
5891          */
5892         preempt_disable();
5893         ++userpg->lock;
5894         barrier();
5895         userpg->index = perf_event_index(event);
5896         userpg->offset = perf_event_count(event);
5897         if (userpg->index)
5898                 userpg->offset -= local64_read(&event->hw.prev_count);
5899
5900         userpg->time_enabled = enabled +
5901                         atomic64_read(&event->child_total_time_enabled);
5902
5903         userpg->time_running = running +
5904                         atomic64_read(&event->child_total_time_running);
5905
5906         arch_perf_update_userpage(event, userpg, now);
5907
5908         barrier();
5909         ++userpg->lock;
5910         preempt_enable();
5911 unlock:
5912         rcu_read_unlock();
5913 }
5914 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5915
5916 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5917 {
5918         struct perf_event *event = vmf->vma->vm_file->private_data;
5919         struct perf_buffer *rb;
5920         vm_fault_t ret = VM_FAULT_SIGBUS;
5921
5922         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5923                 if (vmf->pgoff == 0)
5924                         ret = 0;
5925                 return ret;
5926         }
5927
5928         rcu_read_lock();
5929         rb = rcu_dereference(event->rb);
5930         if (!rb)
5931                 goto unlock;
5932
5933         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5934                 goto unlock;
5935
5936         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5937         if (!vmf->page)
5938                 goto unlock;
5939
5940         get_page(vmf->page);
5941         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5942         vmf->page->index   = vmf->pgoff;
5943
5944         ret = 0;
5945 unlock:
5946         rcu_read_unlock();
5947
5948         return ret;
5949 }
5950
5951 static void ring_buffer_attach(struct perf_event *event,
5952                                struct perf_buffer *rb)
5953 {
5954         struct perf_buffer *old_rb = NULL;
5955         unsigned long flags;
5956
5957         WARN_ON_ONCE(event->parent);
5958
5959         if (event->rb) {
5960                 /*
5961                  * Should be impossible, we set this when removing
5962                  * event->rb_entry and wait/clear when adding event->rb_entry.
5963                  */
5964                 WARN_ON_ONCE(event->rcu_pending);
5965
5966                 old_rb = event->rb;
5967                 spin_lock_irqsave(&old_rb->event_lock, flags);
5968                 list_del_rcu(&event->rb_entry);
5969                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5970
5971                 event->rcu_batches = get_state_synchronize_rcu();
5972                 event->rcu_pending = 1;
5973         }
5974
5975         if (rb) {
5976                 if (event->rcu_pending) {
5977                         cond_synchronize_rcu(event->rcu_batches);
5978                         event->rcu_pending = 0;
5979                 }
5980
5981                 spin_lock_irqsave(&rb->event_lock, flags);
5982                 list_add_rcu(&event->rb_entry, &rb->event_list);
5983                 spin_unlock_irqrestore(&rb->event_lock, flags);
5984         }
5985
5986         /*
5987          * Avoid racing with perf_mmap_close(AUX): stop the event
5988          * before swizzling the event::rb pointer; if it's getting
5989          * unmapped, its aux_mmap_count will be 0 and it won't
5990          * restart. See the comment in __perf_pmu_output_stop().
5991          *
5992          * Data will inevitably be lost when set_output is done in
5993          * mid-air, but then again, whoever does it like this is
5994          * not in for the data anyway.
5995          */
5996         if (has_aux(event))
5997                 perf_event_stop(event, 0);
5998
5999         rcu_assign_pointer(event->rb, rb);
6000
6001         if (old_rb) {
6002                 ring_buffer_put(old_rb);
6003                 /*
6004                  * Since we detached before setting the new rb, so that we
6005                  * could attach the new rb, we could have missed a wakeup.
6006                  * Provide it now.
6007                  */
6008                 wake_up_all(&event->waitq);
6009         }
6010 }
6011
6012 static void ring_buffer_wakeup(struct perf_event *event)
6013 {
6014         struct perf_buffer *rb;
6015
6016         if (event->parent)
6017                 event = event->parent;
6018
6019         rcu_read_lock();
6020         rb = rcu_dereference(event->rb);
6021         if (rb) {
6022                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6023                         wake_up_all(&event->waitq);
6024         }
6025         rcu_read_unlock();
6026 }
6027
6028 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6029 {
6030         struct perf_buffer *rb;
6031
6032         if (event->parent)
6033                 event = event->parent;
6034
6035         rcu_read_lock();
6036         rb = rcu_dereference(event->rb);
6037         if (rb) {
6038                 if (!refcount_inc_not_zero(&rb->refcount))
6039                         rb = NULL;
6040         }
6041         rcu_read_unlock();
6042
6043         return rb;
6044 }
6045
6046 void ring_buffer_put(struct perf_buffer *rb)
6047 {
6048         if (!refcount_dec_and_test(&rb->refcount))
6049                 return;
6050
6051         WARN_ON_ONCE(!list_empty(&rb->event_list));
6052
6053         call_rcu(&rb->rcu_head, rb_free_rcu);
6054 }
6055
6056 static void perf_mmap_open(struct vm_area_struct *vma)
6057 {
6058         struct perf_event *event = vma->vm_file->private_data;
6059
6060         atomic_inc(&event->mmap_count);
6061         atomic_inc(&event->rb->mmap_count);
6062
6063         if (vma->vm_pgoff)
6064                 atomic_inc(&event->rb->aux_mmap_count);
6065
6066         if (event->pmu->event_mapped)
6067                 event->pmu->event_mapped(event, vma->vm_mm);
6068 }
6069
6070 static void perf_pmu_output_stop(struct perf_event *event);
6071
6072 /*
6073  * A buffer can be mmap()ed multiple times; either directly through the same
6074  * event, or through other events by use of perf_event_set_output().
6075  *
6076  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6077  * the buffer here, where we still have a VM context. This means we need
6078  * to detach all events redirecting to us.
6079  */
6080 static void perf_mmap_close(struct vm_area_struct *vma)
6081 {
6082         struct perf_event *event = vma->vm_file->private_data;
6083         struct perf_buffer *rb = ring_buffer_get(event);
6084         struct user_struct *mmap_user = rb->mmap_user;
6085         int mmap_locked = rb->mmap_locked;
6086         unsigned long size = perf_data_size(rb);
6087         bool detach_rest = false;
6088
6089         if (event->pmu->event_unmapped)
6090                 event->pmu->event_unmapped(event, vma->vm_mm);
6091
6092         /*
6093          * rb->aux_mmap_count will always drop before rb->mmap_count and
6094          * event->mmap_count, so it is ok to use event->mmap_mutex to
6095          * serialize with perf_mmap here.
6096          */
6097         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6098             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6099                 /*
6100                  * Stop all AUX events that are writing to this buffer,
6101                  * so that we can free its AUX pages and corresponding PMU
6102                  * data. Note that after rb::aux_mmap_count dropped to zero,
6103                  * they won't start any more (see perf_aux_output_begin()).
6104                  */
6105                 perf_pmu_output_stop(event);
6106
6107                 /* now it's safe to free the pages */
6108                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6109                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6110
6111                 /* this has to be the last one */
6112                 rb_free_aux(rb);
6113                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6114
6115                 mutex_unlock(&event->mmap_mutex);
6116         }
6117
6118         if (atomic_dec_and_test(&rb->mmap_count))
6119                 detach_rest = true;
6120
6121         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6122                 goto out_put;
6123
6124         ring_buffer_attach(event, NULL);
6125         mutex_unlock(&event->mmap_mutex);
6126
6127         /* If there's still other mmap()s of this buffer, we're done. */
6128         if (!detach_rest)
6129                 goto out_put;
6130
6131         /*
6132          * No other mmap()s, detach from all other events that might redirect
6133          * into the now unreachable buffer. Somewhat complicated by the
6134          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6135          */
6136 again:
6137         rcu_read_lock();
6138         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6139                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6140                         /*
6141                          * This event is en-route to free_event() which will
6142                          * detach it and remove it from the list.
6143                          */
6144                         continue;
6145                 }
6146                 rcu_read_unlock();
6147
6148                 mutex_lock(&event->mmap_mutex);
6149                 /*
6150                  * Check we didn't race with perf_event_set_output() which can
6151                  * swizzle the rb from under us while we were waiting to
6152                  * acquire mmap_mutex.
6153                  *
6154                  * If we find a different rb; ignore this event, a next
6155                  * iteration will no longer find it on the list. We have to
6156                  * still restart the iteration to make sure we're not now
6157                  * iterating the wrong list.
6158                  */
6159                 if (event->rb == rb)
6160                         ring_buffer_attach(event, NULL);
6161
6162                 mutex_unlock(&event->mmap_mutex);
6163                 put_event(event);
6164
6165                 /*
6166                  * Restart the iteration; either we're on the wrong list or
6167                  * destroyed its integrity by doing a deletion.
6168                  */
6169                 goto again;
6170         }
6171         rcu_read_unlock();
6172
6173         /*
6174          * It could be there's still a few 0-ref events on the list; they'll
6175          * get cleaned up by free_event() -- they'll also still have their
6176          * ref on the rb and will free it whenever they are done with it.
6177          *
6178          * Aside from that, this buffer is 'fully' detached and unmapped,
6179          * undo the VM accounting.
6180          */
6181
6182         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6183                         &mmap_user->locked_vm);
6184         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6185         free_uid(mmap_user);
6186
6187 out_put:
6188         ring_buffer_put(rb); /* could be last */
6189 }
6190
6191 static const struct vm_operations_struct perf_mmap_vmops = {
6192         .open           = perf_mmap_open,
6193         .close          = perf_mmap_close, /* non mergeable */
6194         .fault          = perf_mmap_fault,
6195         .page_mkwrite   = perf_mmap_fault,
6196 };
6197
6198 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6199 {
6200         struct perf_event *event = file->private_data;
6201         unsigned long user_locked, user_lock_limit;
6202         struct user_struct *user = current_user();
6203         struct perf_buffer *rb = NULL;
6204         unsigned long locked, lock_limit;
6205         unsigned long vma_size;
6206         unsigned long nr_pages;
6207         long user_extra = 0, extra = 0;
6208         int ret = 0, flags = 0;
6209
6210         /*
6211          * Don't allow mmap() of inherited per-task counters. This would
6212          * create a performance issue due to all children writing to the
6213          * same rb.
6214          */
6215         if (event->cpu == -1 && event->attr.inherit)
6216                 return -EINVAL;
6217
6218         if (!(vma->vm_flags & VM_SHARED))
6219                 return -EINVAL;
6220
6221         ret = security_perf_event_read(event);
6222         if (ret)
6223                 return ret;
6224
6225         vma_size = vma->vm_end - vma->vm_start;
6226
6227         if (vma->vm_pgoff == 0) {
6228                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6229         } else {
6230                 /*
6231                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6232                  * mapped, all subsequent mappings should have the same size
6233                  * and offset. Must be above the normal perf buffer.
6234                  */
6235                 u64 aux_offset, aux_size;
6236
6237                 if (!event->rb)
6238                         return -EINVAL;
6239
6240                 nr_pages = vma_size / PAGE_SIZE;
6241
6242                 mutex_lock(&event->mmap_mutex);
6243                 ret = -EINVAL;
6244
6245                 rb = event->rb;
6246                 if (!rb)
6247                         goto aux_unlock;
6248
6249                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6250                 aux_size = READ_ONCE(rb->user_page->aux_size);
6251
6252                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6253                         goto aux_unlock;
6254
6255                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6256                         goto aux_unlock;
6257
6258                 /* already mapped with a different offset */
6259                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6260                         goto aux_unlock;
6261
6262                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6263                         goto aux_unlock;
6264
6265                 /* already mapped with a different size */
6266                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6267                         goto aux_unlock;
6268
6269                 if (!is_power_of_2(nr_pages))
6270                         goto aux_unlock;
6271
6272                 if (!atomic_inc_not_zero(&rb->mmap_count))
6273                         goto aux_unlock;
6274
6275                 if (rb_has_aux(rb)) {
6276                         atomic_inc(&rb->aux_mmap_count);
6277                         ret = 0;
6278                         goto unlock;
6279                 }
6280
6281                 atomic_set(&rb->aux_mmap_count, 1);
6282                 user_extra = nr_pages;
6283
6284                 goto accounting;
6285         }
6286
6287         /*
6288          * If we have rb pages ensure they're a power-of-two number, so we
6289          * can do bitmasks instead of modulo.
6290          */
6291         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6292                 return -EINVAL;
6293
6294         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6295                 return -EINVAL;
6296
6297         WARN_ON_ONCE(event->ctx->parent_ctx);
6298 again:
6299         mutex_lock(&event->mmap_mutex);
6300         if (event->rb) {
6301                 if (data_page_nr(event->rb) != nr_pages) {
6302                         ret = -EINVAL;
6303                         goto unlock;
6304                 }
6305
6306                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6307                         /*
6308                          * Raced against perf_mmap_close(); remove the
6309                          * event and try again.
6310                          */
6311                         ring_buffer_attach(event, NULL);
6312                         mutex_unlock(&event->mmap_mutex);
6313                         goto again;
6314                 }
6315
6316                 goto unlock;
6317         }
6318
6319         user_extra = nr_pages + 1;
6320
6321 accounting:
6322         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6323
6324         /*
6325          * Increase the limit linearly with more CPUs:
6326          */
6327         user_lock_limit *= num_online_cpus();
6328
6329         user_locked = atomic_long_read(&user->locked_vm);
6330
6331         /*
6332          * sysctl_perf_event_mlock may have changed, so that
6333          *     user->locked_vm > user_lock_limit
6334          */
6335         if (user_locked > user_lock_limit)
6336                 user_locked = user_lock_limit;
6337         user_locked += user_extra;
6338
6339         if (user_locked > user_lock_limit) {
6340                 /*
6341                  * charge locked_vm until it hits user_lock_limit;
6342                  * charge the rest from pinned_vm
6343                  */
6344                 extra = user_locked - user_lock_limit;
6345                 user_extra -= extra;
6346         }
6347
6348         lock_limit = rlimit(RLIMIT_MEMLOCK);
6349         lock_limit >>= PAGE_SHIFT;
6350         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6351
6352         if ((locked > lock_limit) && perf_is_paranoid() &&
6353                 !capable(CAP_IPC_LOCK)) {
6354                 ret = -EPERM;
6355                 goto unlock;
6356         }
6357
6358         WARN_ON(!rb && event->rb);
6359
6360         if (vma->vm_flags & VM_WRITE)
6361                 flags |= RING_BUFFER_WRITABLE;
6362
6363         if (!rb) {
6364                 rb = rb_alloc(nr_pages,
6365                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6366                               event->cpu, flags);
6367
6368                 if (!rb) {
6369                         ret = -ENOMEM;
6370                         goto unlock;
6371                 }
6372
6373                 atomic_set(&rb->mmap_count, 1);
6374                 rb->mmap_user = get_current_user();
6375                 rb->mmap_locked = extra;
6376
6377                 ring_buffer_attach(event, rb);
6378
6379                 perf_event_update_time(event);
6380                 perf_event_init_userpage(event);
6381                 perf_event_update_userpage(event);
6382         } else {
6383                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6384                                    event->attr.aux_watermark, flags);
6385                 if (!ret)
6386                         rb->aux_mmap_locked = extra;
6387         }
6388
6389 unlock:
6390         if (!ret) {
6391                 atomic_long_add(user_extra, &user->locked_vm);
6392                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6393
6394                 atomic_inc(&event->mmap_count);
6395         } else if (rb) {
6396                 atomic_dec(&rb->mmap_count);
6397         }
6398 aux_unlock:
6399         mutex_unlock(&event->mmap_mutex);
6400
6401         /*
6402          * Since pinned accounting is per vm we cannot allow fork() to copy our
6403          * vma.
6404          */
6405         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6406         vma->vm_ops = &perf_mmap_vmops;
6407
6408         if (event->pmu->event_mapped)
6409                 event->pmu->event_mapped(event, vma->vm_mm);
6410
6411         return ret;
6412 }
6413
6414 static int perf_fasync(int fd, struct file *filp, int on)
6415 {
6416         struct inode *inode = file_inode(filp);
6417         struct perf_event *event = filp->private_data;
6418         int retval;
6419
6420         inode_lock(inode);
6421         retval = fasync_helper(fd, filp, on, &event->fasync);
6422         inode_unlock(inode);
6423
6424         if (retval < 0)
6425                 return retval;
6426
6427         return 0;
6428 }
6429
6430 static const struct file_operations perf_fops = {
6431         .llseek                 = no_llseek,
6432         .release                = perf_release,
6433         .read                   = perf_read,
6434         .poll                   = perf_poll,
6435         .unlocked_ioctl         = perf_ioctl,
6436         .compat_ioctl           = perf_compat_ioctl,
6437         .mmap                   = perf_mmap,
6438         .fasync                 = perf_fasync,
6439 };
6440
6441 /*
6442  * Perf event wakeup
6443  *
6444  * If there's data, ensure we set the poll() state and publish everything
6445  * to user-space before waking everybody up.
6446  */
6447
6448 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6449 {
6450         /* only the parent has fasync state */
6451         if (event->parent)
6452                 event = event->parent;
6453         return &event->fasync;
6454 }
6455
6456 void perf_event_wakeup(struct perf_event *event)
6457 {
6458         ring_buffer_wakeup(event);
6459
6460         if (event->pending_kill) {
6461                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6462                 event->pending_kill = 0;
6463         }
6464 }
6465
6466 static void perf_sigtrap(struct perf_event *event)
6467 {
6468         /*
6469          * We'd expect this to only occur if the irq_work is delayed and either
6470          * ctx->task or current has changed in the meantime. This can be the
6471          * case on architectures that do not implement arch_irq_work_raise().
6472          */
6473         if (WARN_ON_ONCE(event->ctx->task != current))
6474                 return;
6475
6476         /*
6477          * Both perf_pending_task() and perf_pending_irq() can race with the
6478          * task exiting.
6479          */
6480         if (current->flags & PF_EXITING)
6481                 return;
6482
6483         send_sig_perf((void __user *)event->pending_addr,
6484                       event->attr.type, event->attr.sig_data);
6485 }
6486
6487 /*
6488  * Deliver the pending work in-event-context or follow the context.
6489  */
6490 static void __perf_pending_irq(struct perf_event *event)
6491 {
6492         int cpu = READ_ONCE(event->oncpu);
6493
6494         /*
6495          * If the event isn't running; we done. event_sched_out() will have
6496          * taken care of things.
6497          */
6498         if (cpu < 0)
6499                 return;
6500
6501         /*
6502          * Yay, we hit home and are in the context of the event.
6503          */
6504         if (cpu == smp_processor_id()) {
6505                 if (event->pending_sigtrap) {
6506                         event->pending_sigtrap = 0;
6507                         perf_sigtrap(event);
6508                         local_dec(&event->ctx->nr_pending);
6509                 }
6510                 if (event->pending_disable) {
6511                         event->pending_disable = 0;
6512                         perf_event_disable_local(event);
6513                 }
6514                 return;
6515         }
6516
6517         /*
6518          *  CPU-A                       CPU-B
6519          *
6520          *  perf_event_disable_inatomic()
6521          *    @pending_disable = CPU-A;
6522          *    irq_work_queue();
6523          *
6524          *  sched-out
6525          *    @pending_disable = -1;
6526          *
6527          *                              sched-in
6528          *                              perf_event_disable_inatomic()
6529          *                                @pending_disable = CPU-B;
6530          *                                irq_work_queue(); // FAILS
6531          *
6532          *  irq_work_run()
6533          *    perf_pending_irq()
6534          *
6535          * But the event runs on CPU-B and wants disabling there.
6536          */
6537         irq_work_queue_on(&event->pending_irq, cpu);
6538 }
6539
6540 static void perf_pending_irq(struct irq_work *entry)
6541 {
6542         struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6543         int rctx;
6544
6545         /*
6546          * If we 'fail' here, that's OK, it means recursion is already disabled
6547          * and we won't recurse 'further'.
6548          */
6549         rctx = perf_swevent_get_recursion_context();
6550
6551         /*
6552          * The wakeup isn't bound to the context of the event -- it can happen
6553          * irrespective of where the event is.
6554          */
6555         if (event->pending_wakeup) {
6556                 event->pending_wakeup = 0;
6557                 perf_event_wakeup(event);
6558         }
6559
6560         __perf_pending_irq(event);
6561
6562         if (rctx >= 0)
6563                 perf_swevent_put_recursion_context(rctx);
6564 }
6565
6566 static void perf_pending_task(struct callback_head *head)
6567 {
6568         struct perf_event *event = container_of(head, struct perf_event, pending_task);
6569         int rctx;
6570
6571         /*
6572          * If we 'fail' here, that's OK, it means recursion is already disabled
6573          * and we won't recurse 'further'.
6574          */
6575         preempt_disable_notrace();
6576         rctx = perf_swevent_get_recursion_context();
6577
6578         if (event->pending_work) {
6579                 event->pending_work = 0;
6580                 perf_sigtrap(event);
6581                 local_dec(&event->ctx->nr_pending);
6582         }
6583
6584         if (rctx >= 0)
6585                 perf_swevent_put_recursion_context(rctx);
6586         preempt_enable_notrace();
6587
6588         put_event(event);
6589 }
6590
6591 #ifdef CONFIG_GUEST_PERF_EVENTS
6592 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6593
6594 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6595 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6596 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6597
6598 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6599 {
6600         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6601                 return;
6602
6603         rcu_assign_pointer(perf_guest_cbs, cbs);
6604         static_call_update(__perf_guest_state, cbs->state);
6605         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6606
6607         /* Implementing ->handle_intel_pt_intr is optional. */
6608         if (cbs->handle_intel_pt_intr)
6609                 static_call_update(__perf_guest_handle_intel_pt_intr,
6610                                    cbs->handle_intel_pt_intr);
6611 }
6612 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6613
6614 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6615 {
6616         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6617                 return;
6618
6619         rcu_assign_pointer(perf_guest_cbs, NULL);
6620         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6621         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6622         static_call_update(__perf_guest_handle_intel_pt_intr,
6623                            (void *)&__static_call_return0);
6624         synchronize_rcu();
6625 }
6626 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6627 #endif
6628
6629 static void
6630 perf_output_sample_regs(struct perf_output_handle *handle,
6631                         struct pt_regs *regs, u64 mask)
6632 {
6633         int bit;
6634         DECLARE_BITMAP(_mask, 64);
6635
6636         bitmap_from_u64(_mask, mask);
6637         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6638                 u64 val;
6639
6640                 val = perf_reg_value(regs, bit);
6641                 perf_output_put(handle, val);
6642         }
6643 }
6644
6645 static void perf_sample_regs_user(struct perf_regs *regs_user,
6646                                   struct pt_regs *regs)
6647 {
6648         if (user_mode(regs)) {
6649                 regs_user->abi = perf_reg_abi(current);
6650                 regs_user->regs = regs;
6651         } else if (!(current->flags & PF_KTHREAD)) {
6652                 perf_get_regs_user(regs_user, regs);
6653         } else {
6654                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6655                 regs_user->regs = NULL;
6656         }
6657 }
6658
6659 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6660                                   struct pt_regs *regs)
6661 {
6662         regs_intr->regs = regs;
6663         regs_intr->abi  = perf_reg_abi(current);
6664 }
6665
6666
6667 /*
6668  * Get remaining task size from user stack pointer.
6669  *
6670  * It'd be better to take stack vma map and limit this more
6671  * precisely, but there's no way to get it safely under interrupt,
6672  * so using TASK_SIZE as limit.
6673  */
6674 static u64 perf_ustack_task_size(struct pt_regs *regs)
6675 {
6676         unsigned long addr = perf_user_stack_pointer(regs);
6677
6678         if (!addr || addr >= TASK_SIZE)
6679                 return 0;
6680
6681         return TASK_SIZE - addr;
6682 }
6683
6684 static u16
6685 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6686                         struct pt_regs *regs)
6687 {
6688         u64 task_size;
6689
6690         /* No regs, no stack pointer, no dump. */
6691         if (!regs)
6692                 return 0;
6693
6694         /*
6695          * Check if we fit in with the requested stack size into the:
6696          * - TASK_SIZE
6697          *   If we don't, we limit the size to the TASK_SIZE.
6698          *
6699          * - remaining sample size
6700          *   If we don't, we customize the stack size to
6701          *   fit in to the remaining sample size.
6702          */
6703
6704         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6705         stack_size = min(stack_size, (u16) task_size);
6706
6707         /* Current header size plus static size and dynamic size. */
6708         header_size += 2 * sizeof(u64);
6709
6710         /* Do we fit in with the current stack dump size? */
6711         if ((u16) (header_size + stack_size) < header_size) {
6712                 /*
6713                  * If we overflow the maximum size for the sample,
6714                  * we customize the stack dump size to fit in.
6715                  */
6716                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6717                 stack_size = round_up(stack_size, sizeof(u64));
6718         }
6719
6720         return stack_size;
6721 }
6722
6723 static void
6724 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6725                           struct pt_regs *regs)
6726 {
6727         /* Case of a kernel thread, nothing to dump */
6728         if (!regs) {
6729                 u64 size = 0;
6730                 perf_output_put(handle, size);
6731         } else {
6732                 unsigned long sp;
6733                 unsigned int rem;
6734                 u64 dyn_size;
6735
6736                 /*
6737                  * We dump:
6738                  * static size
6739                  *   - the size requested by user or the best one we can fit
6740                  *     in to the sample max size
6741                  * data
6742                  *   - user stack dump data
6743                  * dynamic size
6744                  *   - the actual dumped size
6745                  */
6746
6747                 /* Static size. */
6748                 perf_output_put(handle, dump_size);
6749
6750                 /* Data. */
6751                 sp = perf_user_stack_pointer(regs);
6752                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6753                 dyn_size = dump_size - rem;
6754
6755                 perf_output_skip(handle, rem);
6756
6757                 /* Dynamic size. */
6758                 perf_output_put(handle, dyn_size);
6759         }
6760 }
6761
6762 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6763                                           struct perf_sample_data *data,
6764                                           size_t size)
6765 {
6766         struct perf_event *sampler = event->aux_event;
6767         struct perf_buffer *rb;
6768
6769         data->aux_size = 0;
6770
6771         if (!sampler)
6772                 goto out;
6773
6774         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6775                 goto out;
6776
6777         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6778                 goto out;
6779
6780         rb = ring_buffer_get(sampler);
6781         if (!rb)
6782                 goto out;
6783
6784         /*
6785          * If this is an NMI hit inside sampling code, don't take
6786          * the sample. See also perf_aux_sample_output().
6787          */
6788         if (READ_ONCE(rb->aux_in_sampling)) {
6789                 data->aux_size = 0;
6790         } else {
6791                 size = min_t(size_t, size, perf_aux_size(rb));
6792                 data->aux_size = ALIGN(size, sizeof(u64));
6793         }
6794         ring_buffer_put(rb);
6795
6796 out:
6797         return data->aux_size;
6798 }
6799
6800 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6801                                  struct perf_event *event,
6802                                  struct perf_output_handle *handle,
6803                                  unsigned long size)
6804 {
6805         unsigned long flags;
6806         long ret;
6807
6808         /*
6809          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6810          * paths. If we start calling them in NMI context, they may race with
6811          * the IRQ ones, that is, for example, re-starting an event that's just
6812          * been stopped, which is why we're using a separate callback that
6813          * doesn't change the event state.
6814          *
6815          * IRQs need to be disabled to prevent IPIs from racing with us.
6816          */
6817         local_irq_save(flags);
6818         /*
6819          * Guard against NMI hits inside the critical section;
6820          * see also perf_prepare_sample_aux().
6821          */
6822         WRITE_ONCE(rb->aux_in_sampling, 1);
6823         barrier();
6824
6825         ret = event->pmu->snapshot_aux(event, handle, size);
6826
6827         barrier();
6828         WRITE_ONCE(rb->aux_in_sampling, 0);
6829         local_irq_restore(flags);
6830
6831         return ret;
6832 }
6833
6834 static void perf_aux_sample_output(struct perf_event *event,
6835                                    struct perf_output_handle *handle,
6836                                    struct perf_sample_data *data)
6837 {
6838         struct perf_event *sampler = event->aux_event;
6839         struct perf_buffer *rb;
6840         unsigned long pad;
6841         long size;
6842
6843         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6844                 return;
6845
6846         rb = ring_buffer_get(sampler);
6847         if (!rb)
6848                 return;
6849
6850         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6851
6852         /*
6853          * An error here means that perf_output_copy() failed (returned a
6854          * non-zero surplus that it didn't copy), which in its current
6855          * enlightened implementation is not possible. If that changes, we'd
6856          * like to know.
6857          */
6858         if (WARN_ON_ONCE(size < 0))
6859                 goto out_put;
6860
6861         /*
6862          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6863          * perf_prepare_sample_aux(), so should not be more than that.
6864          */
6865         pad = data->aux_size - size;
6866         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6867                 pad = 8;
6868
6869         if (pad) {
6870                 u64 zero = 0;
6871                 perf_output_copy(handle, &zero, pad);
6872         }
6873
6874 out_put:
6875         ring_buffer_put(rb);
6876 }
6877
6878 static void __perf_event_header__init_id(struct perf_event_header *header,
6879                                          struct perf_sample_data *data,
6880                                          struct perf_event *event,
6881                                          u64 sample_type)
6882 {
6883         data->type = event->attr.sample_type;
6884         header->size += event->id_header_size;
6885
6886         if (sample_type & PERF_SAMPLE_TID) {
6887                 /* namespace issues */
6888                 data->tid_entry.pid = perf_event_pid(event, current);
6889                 data->tid_entry.tid = perf_event_tid(event, current);
6890         }
6891
6892         if (sample_type & PERF_SAMPLE_TIME)
6893                 data->time = perf_event_clock(event);
6894
6895         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6896                 data->id = primary_event_id(event);
6897
6898         if (sample_type & PERF_SAMPLE_STREAM_ID)
6899                 data->stream_id = event->id;
6900
6901         if (sample_type & PERF_SAMPLE_CPU) {
6902                 data->cpu_entry.cpu      = raw_smp_processor_id();
6903                 data->cpu_entry.reserved = 0;
6904         }
6905 }
6906
6907 void perf_event_header__init_id(struct perf_event_header *header,
6908                                 struct perf_sample_data *data,
6909                                 struct perf_event *event)
6910 {
6911         if (event->attr.sample_id_all)
6912                 __perf_event_header__init_id(header, data, event, event->attr.sample_type);
6913 }
6914
6915 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6916                                            struct perf_sample_data *data)
6917 {
6918         u64 sample_type = data->type;
6919
6920         if (sample_type & PERF_SAMPLE_TID)
6921                 perf_output_put(handle, data->tid_entry);
6922
6923         if (sample_type & PERF_SAMPLE_TIME)
6924                 perf_output_put(handle, data->time);
6925
6926         if (sample_type & PERF_SAMPLE_ID)
6927                 perf_output_put(handle, data->id);
6928
6929         if (sample_type & PERF_SAMPLE_STREAM_ID)
6930                 perf_output_put(handle, data->stream_id);
6931
6932         if (sample_type & PERF_SAMPLE_CPU)
6933                 perf_output_put(handle, data->cpu_entry);
6934
6935         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6936                 perf_output_put(handle, data->id);
6937 }
6938
6939 void perf_event__output_id_sample(struct perf_event *event,
6940                                   struct perf_output_handle *handle,
6941                                   struct perf_sample_data *sample)
6942 {
6943         if (event->attr.sample_id_all)
6944                 __perf_event__output_id_sample(handle, sample);
6945 }
6946
6947 static void perf_output_read_one(struct perf_output_handle *handle,
6948                                  struct perf_event *event,
6949                                  u64 enabled, u64 running)
6950 {
6951         u64 read_format = event->attr.read_format;
6952         u64 values[5];
6953         int n = 0;
6954
6955         values[n++] = perf_event_count(event);
6956         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6957                 values[n++] = enabled +
6958                         atomic64_read(&event->child_total_time_enabled);
6959         }
6960         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6961                 values[n++] = running +
6962                         atomic64_read(&event->child_total_time_running);
6963         }
6964         if (read_format & PERF_FORMAT_ID)
6965                 values[n++] = primary_event_id(event);
6966         if (read_format & PERF_FORMAT_LOST)
6967                 values[n++] = atomic64_read(&event->lost_samples);
6968
6969         __output_copy(handle, values, n * sizeof(u64));
6970 }
6971
6972 static void perf_output_read_group(struct perf_output_handle *handle,
6973                             struct perf_event *event,
6974                             u64 enabled, u64 running)
6975 {
6976         struct perf_event *leader = event->group_leader, *sub;
6977         u64 read_format = event->attr.read_format;
6978         unsigned long flags;
6979         u64 values[6];
6980         int n = 0;
6981
6982         /*
6983          * Disabling interrupts avoids all counter scheduling
6984          * (context switches, timer based rotation and IPIs).
6985          */
6986         local_irq_save(flags);
6987
6988         values[n++] = 1 + leader->nr_siblings;
6989
6990         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6991                 values[n++] = enabled;
6992
6993         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6994                 values[n++] = running;
6995
6996         if ((leader != event) &&
6997             (leader->state == PERF_EVENT_STATE_ACTIVE))
6998                 leader->pmu->read(leader);
6999
7000         values[n++] = perf_event_count(leader);
7001         if (read_format & PERF_FORMAT_ID)
7002                 values[n++] = primary_event_id(leader);
7003         if (read_format & PERF_FORMAT_LOST)
7004                 values[n++] = atomic64_read(&leader->lost_samples);
7005
7006         __output_copy(handle, values, n * sizeof(u64));
7007
7008         for_each_sibling_event(sub, leader) {
7009                 n = 0;
7010
7011                 if ((sub != event) &&
7012                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7013                         sub->pmu->read(sub);
7014
7015                 values[n++] = perf_event_count(sub);
7016                 if (read_format & PERF_FORMAT_ID)
7017                         values[n++] = primary_event_id(sub);
7018                 if (read_format & PERF_FORMAT_LOST)
7019                         values[n++] = atomic64_read(&sub->lost_samples);
7020
7021                 __output_copy(handle, values, n * sizeof(u64));
7022         }
7023
7024         local_irq_restore(flags);
7025 }
7026
7027 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7028                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7029
7030 /*
7031  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7032  *
7033  * The problem is that its both hard and excessively expensive to iterate the
7034  * child list, not to mention that its impossible to IPI the children running
7035  * on another CPU, from interrupt/NMI context.
7036  */
7037 static void perf_output_read(struct perf_output_handle *handle,
7038                              struct perf_event *event)
7039 {
7040         u64 enabled = 0, running = 0, now;
7041         u64 read_format = event->attr.read_format;
7042
7043         /*
7044          * compute total_time_enabled, total_time_running
7045          * based on snapshot values taken when the event
7046          * was last scheduled in.
7047          *
7048          * we cannot simply called update_context_time()
7049          * because of locking issue as we are called in
7050          * NMI context
7051          */
7052         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7053                 calc_timer_values(event, &now, &enabled, &running);
7054
7055         if (event->attr.read_format & PERF_FORMAT_GROUP)
7056                 perf_output_read_group(handle, event, enabled, running);
7057         else
7058                 perf_output_read_one(handle, event, enabled, running);
7059 }
7060
7061 void perf_output_sample(struct perf_output_handle *handle,
7062                         struct perf_event_header *header,
7063                         struct perf_sample_data *data,
7064                         struct perf_event *event)
7065 {
7066         u64 sample_type = data->type;
7067
7068         perf_output_put(handle, *header);
7069
7070         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7071                 perf_output_put(handle, data->id);
7072
7073         if (sample_type & PERF_SAMPLE_IP)
7074                 perf_output_put(handle, data->ip);
7075
7076         if (sample_type & PERF_SAMPLE_TID)
7077                 perf_output_put(handle, data->tid_entry);
7078
7079         if (sample_type & PERF_SAMPLE_TIME)
7080                 perf_output_put(handle, data->time);
7081
7082         if (sample_type & PERF_SAMPLE_ADDR)
7083                 perf_output_put(handle, data->addr);
7084
7085         if (sample_type & PERF_SAMPLE_ID)
7086                 perf_output_put(handle, data->id);
7087
7088         if (sample_type & PERF_SAMPLE_STREAM_ID)
7089                 perf_output_put(handle, data->stream_id);
7090
7091         if (sample_type & PERF_SAMPLE_CPU)
7092                 perf_output_put(handle, data->cpu_entry);
7093
7094         if (sample_type & PERF_SAMPLE_PERIOD)
7095                 perf_output_put(handle, data->period);
7096
7097         if (sample_type & PERF_SAMPLE_READ)
7098                 perf_output_read(handle, event);
7099
7100         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7101                 int size = 1;
7102
7103                 size += data->callchain->nr;
7104                 size *= sizeof(u64);
7105                 __output_copy(handle, data->callchain, size);
7106         }
7107
7108         if (sample_type & PERF_SAMPLE_RAW) {
7109                 struct perf_raw_record *raw = data->raw;
7110
7111                 if (raw) {
7112                         struct perf_raw_frag *frag = &raw->frag;
7113
7114                         perf_output_put(handle, raw->size);
7115                         do {
7116                                 if (frag->copy) {
7117                                         __output_custom(handle, frag->copy,
7118                                                         frag->data, frag->size);
7119                                 } else {
7120                                         __output_copy(handle, frag->data,
7121                                                       frag->size);
7122                                 }
7123                                 if (perf_raw_frag_last(frag))
7124                                         break;
7125                                 frag = frag->next;
7126                         } while (1);
7127                         if (frag->pad)
7128                                 __output_skip(handle, NULL, frag->pad);
7129                 } else {
7130                         struct {
7131                                 u32     size;
7132                                 u32     data;
7133                         } raw = {
7134                                 .size = sizeof(u32),
7135                                 .data = 0,
7136                         };
7137                         perf_output_put(handle, raw);
7138                 }
7139         }
7140
7141         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7142                 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) {
7143                         size_t size;
7144
7145                         size = data->br_stack->nr
7146                              * sizeof(struct perf_branch_entry);
7147
7148                         perf_output_put(handle, data->br_stack->nr);
7149                         if (branch_sample_hw_index(event))
7150                                 perf_output_put(handle, data->br_stack->hw_idx);
7151                         perf_output_copy(handle, data->br_stack->entries, size);
7152                 } else {
7153                         /*
7154                          * we always store at least the value of nr
7155                          */
7156                         u64 nr = 0;
7157                         perf_output_put(handle, nr);
7158                 }
7159         }
7160
7161         if (sample_type & PERF_SAMPLE_REGS_USER) {
7162                 u64 abi = data->regs_user.abi;
7163
7164                 /*
7165                  * If there are no regs to dump, notice it through
7166                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7167                  */
7168                 perf_output_put(handle, abi);
7169
7170                 if (abi) {
7171                         u64 mask = event->attr.sample_regs_user;
7172                         perf_output_sample_regs(handle,
7173                                                 data->regs_user.regs,
7174                                                 mask);
7175                 }
7176         }
7177
7178         if (sample_type & PERF_SAMPLE_STACK_USER) {
7179                 perf_output_sample_ustack(handle,
7180                                           data->stack_user_size,
7181                                           data->regs_user.regs);
7182         }
7183
7184         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7185                 perf_output_put(handle, data->weight.full);
7186
7187         if (sample_type & PERF_SAMPLE_DATA_SRC)
7188                 perf_output_put(handle, data->data_src.val);
7189
7190         if (sample_type & PERF_SAMPLE_TRANSACTION)
7191                 perf_output_put(handle, data->txn);
7192
7193         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7194                 u64 abi = data->regs_intr.abi;
7195                 /*
7196                  * If there are no regs to dump, notice it through
7197                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7198                  */
7199                 perf_output_put(handle, abi);
7200
7201                 if (abi) {
7202                         u64 mask = event->attr.sample_regs_intr;
7203
7204                         perf_output_sample_regs(handle,
7205                                                 data->regs_intr.regs,
7206                                                 mask);
7207                 }
7208         }
7209
7210         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7211                 perf_output_put(handle, data->phys_addr);
7212
7213         if (sample_type & PERF_SAMPLE_CGROUP)
7214                 perf_output_put(handle, data->cgroup);
7215
7216         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7217                 perf_output_put(handle, data->data_page_size);
7218
7219         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7220                 perf_output_put(handle, data->code_page_size);
7221
7222         if (sample_type & PERF_SAMPLE_AUX) {
7223                 perf_output_put(handle, data->aux_size);
7224
7225                 if (data->aux_size)
7226                         perf_aux_sample_output(event, handle, data);
7227         }
7228
7229         if (!event->attr.watermark) {
7230                 int wakeup_events = event->attr.wakeup_events;
7231
7232                 if (wakeup_events) {
7233                         struct perf_buffer *rb = handle->rb;
7234                         int events = local_inc_return(&rb->events);
7235
7236                         if (events >= wakeup_events) {
7237                                 local_sub(wakeup_events, &rb->events);
7238                                 local_inc(&rb->wakeup);
7239                         }
7240                 }
7241         }
7242 }
7243
7244 static u64 perf_virt_to_phys(u64 virt)
7245 {
7246         u64 phys_addr = 0;
7247
7248         if (!virt)
7249                 return 0;
7250
7251         if (virt >= TASK_SIZE) {
7252                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7253                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7254                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7255                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7256         } else {
7257                 /*
7258                  * Walking the pages tables for user address.
7259                  * Interrupts are disabled, so it prevents any tear down
7260                  * of the page tables.
7261                  * Try IRQ-safe get_user_page_fast_only first.
7262                  * If failed, leave phys_addr as 0.
7263                  */
7264                 if (current->mm != NULL) {
7265                         struct page *p;
7266
7267                         pagefault_disable();
7268                         if (get_user_page_fast_only(virt, 0, &p)) {
7269                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7270                                 put_page(p);
7271                         }
7272                         pagefault_enable();
7273                 }
7274         }
7275
7276         return phys_addr;
7277 }
7278
7279 /*
7280  * Return the pagetable size of a given virtual address.
7281  */
7282 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7283 {
7284         u64 size = 0;
7285
7286 #ifdef CONFIG_HAVE_FAST_GUP
7287         pgd_t *pgdp, pgd;
7288         p4d_t *p4dp, p4d;
7289         pud_t *pudp, pud;
7290         pmd_t *pmdp, pmd;
7291         pte_t *ptep, pte;
7292
7293         pgdp = pgd_offset(mm, addr);
7294         pgd = READ_ONCE(*pgdp);
7295         if (pgd_none(pgd))
7296                 return 0;
7297
7298         if (pgd_leaf(pgd))
7299                 return pgd_leaf_size(pgd);
7300
7301         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7302         p4d = READ_ONCE(*p4dp);
7303         if (!p4d_present(p4d))
7304                 return 0;
7305
7306         if (p4d_leaf(p4d))
7307                 return p4d_leaf_size(p4d);
7308
7309         pudp = pud_offset_lockless(p4dp, p4d, addr);
7310         pud = READ_ONCE(*pudp);
7311         if (!pud_present(pud))
7312                 return 0;
7313
7314         if (pud_leaf(pud))
7315                 return pud_leaf_size(pud);
7316
7317         pmdp = pmd_offset_lockless(pudp, pud, addr);
7318         pmd = READ_ONCE(*pmdp);
7319         if (!pmd_present(pmd))
7320                 return 0;
7321
7322         if (pmd_leaf(pmd))
7323                 return pmd_leaf_size(pmd);
7324
7325         ptep = pte_offset_map(&pmd, addr);
7326         pte = ptep_get_lockless(ptep);
7327         if (pte_present(pte))
7328                 size = pte_leaf_size(pte);
7329         pte_unmap(ptep);
7330 #endif /* CONFIG_HAVE_FAST_GUP */
7331
7332         return size;
7333 }
7334
7335 static u64 perf_get_page_size(unsigned long addr)
7336 {
7337         struct mm_struct *mm;
7338         unsigned long flags;
7339         u64 size;
7340
7341         if (!addr)
7342                 return 0;
7343
7344         /*
7345          * Software page-table walkers must disable IRQs,
7346          * which prevents any tear down of the page tables.
7347          */
7348         local_irq_save(flags);
7349
7350         mm = current->mm;
7351         if (!mm) {
7352                 /*
7353                  * For kernel threads and the like, use init_mm so that
7354                  * we can find kernel memory.
7355                  */
7356                 mm = &init_mm;
7357         }
7358
7359         size = perf_get_pgtable_size(mm, addr);
7360
7361         local_irq_restore(flags);
7362
7363         return size;
7364 }
7365
7366 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7367
7368 struct perf_callchain_entry *
7369 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7370 {
7371         bool kernel = !event->attr.exclude_callchain_kernel;
7372         bool user   = !event->attr.exclude_callchain_user;
7373         /* Disallow cross-task user callchains. */
7374         bool crosstask = event->ctx->task && event->ctx->task != current;
7375         const u32 max_stack = event->attr.sample_max_stack;
7376         struct perf_callchain_entry *callchain;
7377
7378         if (!kernel && !user)
7379                 return &__empty_callchain;
7380
7381         callchain = get_perf_callchain(regs, 0, kernel, user,
7382                                        max_stack, crosstask, true);
7383         return callchain ?: &__empty_callchain;
7384 }
7385
7386 void perf_prepare_sample(struct perf_event_header *header,
7387                          struct perf_sample_data *data,
7388                          struct perf_event *event,
7389                          struct pt_regs *regs)
7390 {
7391         u64 sample_type = event->attr.sample_type;
7392         u64 filtered_sample_type;
7393
7394         header->type = PERF_RECORD_SAMPLE;
7395         header->size = sizeof(*header) + event->header_size;
7396
7397         header->misc = 0;
7398         header->misc |= perf_misc_flags(regs);
7399
7400         /*
7401          * Clear the sample flags that have already been done by the
7402          * PMU driver.
7403          */
7404         filtered_sample_type = sample_type & ~data->sample_flags;
7405         __perf_event_header__init_id(header, data, event, filtered_sample_type);
7406
7407         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7408                 data->ip = perf_instruction_pointer(regs);
7409
7410         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7411                 int size = 1;
7412
7413                 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7414                         data->callchain = perf_callchain(event, regs);
7415
7416                 size += data->callchain->nr;
7417
7418                 header->size += size * sizeof(u64);
7419         }
7420
7421         if (sample_type & PERF_SAMPLE_RAW) {
7422                 struct perf_raw_record *raw = data->raw;
7423                 int size;
7424
7425                 if (raw && (data->sample_flags & PERF_SAMPLE_RAW)) {
7426                         struct perf_raw_frag *frag = &raw->frag;
7427                         u32 sum = 0;
7428
7429                         do {
7430                                 sum += frag->size;
7431                                 if (perf_raw_frag_last(frag))
7432                                         break;
7433                                 frag = frag->next;
7434                         } while (1);
7435
7436                         size = round_up(sum + sizeof(u32), sizeof(u64));
7437                         raw->size = size - sizeof(u32);
7438                         frag->pad = raw->size - sum;
7439                 } else {
7440                         size = sizeof(u64);
7441                         data->raw = NULL;
7442                 }
7443
7444                 header->size += size;
7445         }
7446
7447         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7448                 int size = sizeof(u64); /* nr */
7449                 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) {
7450                         if (branch_sample_hw_index(event))
7451                                 size += sizeof(u64);
7452
7453                         size += data->br_stack->nr
7454                               * sizeof(struct perf_branch_entry);
7455                 }
7456                 header->size += size;
7457         }
7458
7459         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7460                 perf_sample_regs_user(&data->regs_user, regs);
7461
7462         if (sample_type & PERF_SAMPLE_REGS_USER) {
7463                 /* regs dump ABI info */
7464                 int size = sizeof(u64);
7465
7466                 if (data->regs_user.regs) {
7467                         u64 mask = event->attr.sample_regs_user;
7468                         size += hweight64(mask) * sizeof(u64);
7469                 }
7470
7471                 header->size += size;
7472         }
7473
7474         if (sample_type & PERF_SAMPLE_STACK_USER) {
7475                 /*
7476                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7477                  * processed as the last one or have additional check added
7478                  * in case new sample type is added, because we could eat
7479                  * up the rest of the sample size.
7480                  */
7481                 u16 stack_size = event->attr.sample_stack_user;
7482                 u16 size = sizeof(u64);
7483
7484                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7485                                                      data->regs_user.regs);
7486
7487                 /*
7488                  * If there is something to dump, add space for the dump
7489                  * itself and for the field that tells the dynamic size,
7490                  * which is how many have been actually dumped.
7491                  */
7492                 if (stack_size)
7493                         size += sizeof(u64) + stack_size;
7494
7495                 data->stack_user_size = stack_size;
7496                 header->size += size;
7497         }
7498
7499         if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7500                 data->weight.full = 0;
7501
7502         if (filtered_sample_type & PERF_SAMPLE_DATA_SRC)
7503                 data->data_src.val = PERF_MEM_NA;
7504
7505         if (filtered_sample_type & PERF_SAMPLE_TRANSACTION)
7506                 data->txn = 0;
7507
7508         if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_DATA_PAGE_SIZE)) {
7509                 if (filtered_sample_type & PERF_SAMPLE_ADDR)
7510                         data->addr = 0;
7511         }
7512
7513         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7514                 /* regs dump ABI info */
7515                 int size = sizeof(u64);
7516
7517                 perf_sample_regs_intr(&data->regs_intr, regs);
7518
7519                 if (data->regs_intr.regs) {
7520                         u64 mask = event->attr.sample_regs_intr;
7521
7522                         size += hweight64(mask) * sizeof(u64);
7523                 }
7524
7525                 header->size += size;
7526         }
7527
7528         if (sample_type & PERF_SAMPLE_PHYS_ADDR &&
7529             filtered_sample_type & PERF_SAMPLE_PHYS_ADDR)
7530                 data->phys_addr = perf_virt_to_phys(data->addr);
7531
7532 #ifdef CONFIG_CGROUP_PERF
7533         if (sample_type & PERF_SAMPLE_CGROUP) {
7534                 struct cgroup *cgrp;
7535
7536                 /* protected by RCU */
7537                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7538                 data->cgroup = cgroup_id(cgrp);
7539         }
7540 #endif
7541
7542         /*
7543          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7544          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7545          * but the value will not dump to the userspace.
7546          */
7547         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7548                 data->data_page_size = perf_get_page_size(data->addr);
7549
7550         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7551                 data->code_page_size = perf_get_page_size(data->ip);
7552
7553         if (sample_type & PERF_SAMPLE_AUX) {
7554                 u64 size;
7555
7556                 header->size += sizeof(u64); /* size */
7557
7558                 /*
7559                  * Given the 16bit nature of header::size, an AUX sample can
7560                  * easily overflow it, what with all the preceding sample bits.
7561                  * Make sure this doesn't happen by using up to U16_MAX bytes
7562                  * per sample in total (rounded down to 8 byte boundary).
7563                  */
7564                 size = min_t(size_t, U16_MAX - header->size,
7565                              event->attr.aux_sample_size);
7566                 size = rounddown(size, 8);
7567                 size = perf_prepare_sample_aux(event, data, size);
7568
7569                 WARN_ON_ONCE(size + header->size > U16_MAX);
7570                 header->size += size;
7571         }
7572         /*
7573          * If you're adding more sample types here, you likely need to do
7574          * something about the overflowing header::size, like repurpose the
7575          * lowest 3 bits of size, which should be always zero at the moment.
7576          * This raises a more important question, do we really need 512k sized
7577          * samples and why, so good argumentation is in order for whatever you
7578          * do here next.
7579          */
7580         WARN_ON_ONCE(header->size & 7);
7581 }
7582
7583 static __always_inline int
7584 __perf_event_output(struct perf_event *event,
7585                     struct perf_sample_data *data,
7586                     struct pt_regs *regs,
7587                     int (*output_begin)(struct perf_output_handle *,
7588                                         struct perf_sample_data *,
7589                                         struct perf_event *,
7590                                         unsigned int))
7591 {
7592         struct perf_output_handle handle;
7593         struct perf_event_header header;
7594         int err;
7595
7596         /* protect the callchain buffers */
7597         rcu_read_lock();
7598
7599         perf_prepare_sample(&header, data, event, regs);
7600
7601         err = output_begin(&handle, data, event, header.size);
7602         if (err)
7603                 goto exit;
7604
7605         perf_output_sample(&handle, &header, data, event);
7606
7607         perf_output_end(&handle);
7608
7609 exit:
7610         rcu_read_unlock();
7611         return err;
7612 }
7613
7614 void
7615 perf_event_output_forward(struct perf_event *event,
7616                          struct perf_sample_data *data,
7617                          struct pt_regs *regs)
7618 {
7619         __perf_event_output(event, data, regs, perf_output_begin_forward);
7620 }
7621
7622 void
7623 perf_event_output_backward(struct perf_event *event,
7624                            struct perf_sample_data *data,
7625                            struct pt_regs *regs)
7626 {
7627         __perf_event_output(event, data, regs, perf_output_begin_backward);
7628 }
7629
7630 int
7631 perf_event_output(struct perf_event *event,
7632                   struct perf_sample_data *data,
7633                   struct pt_regs *regs)
7634 {
7635         return __perf_event_output(event, data, regs, perf_output_begin);
7636 }
7637
7638 /*
7639  * read event_id
7640  */
7641
7642 struct perf_read_event {
7643         struct perf_event_header        header;
7644
7645         u32                             pid;
7646         u32                             tid;
7647 };
7648
7649 static void
7650 perf_event_read_event(struct perf_event *event,
7651                         struct task_struct *task)
7652 {
7653         struct perf_output_handle handle;
7654         struct perf_sample_data sample;
7655         struct perf_read_event read_event = {
7656                 .header = {
7657                         .type = PERF_RECORD_READ,
7658                         .misc = 0,
7659                         .size = sizeof(read_event) + event->read_size,
7660                 },
7661                 .pid = perf_event_pid(event, task),
7662                 .tid = perf_event_tid(event, task),
7663         };
7664         int ret;
7665
7666         perf_event_header__init_id(&read_event.header, &sample, event);
7667         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7668         if (ret)
7669                 return;
7670
7671         perf_output_put(&handle, read_event);
7672         perf_output_read(&handle, event);
7673         perf_event__output_id_sample(event, &handle, &sample);
7674
7675         perf_output_end(&handle);
7676 }
7677
7678 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7679
7680 static void
7681 perf_iterate_ctx(struct perf_event_context *ctx,
7682                    perf_iterate_f output,
7683                    void *data, bool all)
7684 {
7685         struct perf_event *event;
7686
7687         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7688                 if (!all) {
7689                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7690                                 continue;
7691                         if (!event_filter_match(event))
7692                                 continue;
7693                 }
7694
7695                 output(event, data);
7696         }
7697 }
7698
7699 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7700 {
7701         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7702         struct perf_event *event;
7703
7704         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7705                 /*
7706                  * Skip events that are not fully formed yet; ensure that
7707                  * if we observe event->ctx, both event and ctx will be
7708                  * complete enough. See perf_install_in_context().
7709                  */
7710                 if (!smp_load_acquire(&event->ctx))
7711                         continue;
7712
7713                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7714                         continue;
7715                 if (!event_filter_match(event))
7716                         continue;
7717                 output(event, data);
7718         }
7719 }
7720
7721 /*
7722  * Iterate all events that need to receive side-band events.
7723  *
7724  * For new callers; ensure that account_pmu_sb_event() includes
7725  * your event, otherwise it might not get delivered.
7726  */
7727 static void
7728 perf_iterate_sb(perf_iterate_f output, void *data,
7729                struct perf_event_context *task_ctx)
7730 {
7731         struct perf_event_context *ctx;
7732         int ctxn;
7733
7734         rcu_read_lock();
7735         preempt_disable();
7736
7737         /*
7738          * If we have task_ctx != NULL we only notify the task context itself.
7739          * The task_ctx is set only for EXIT events before releasing task
7740          * context.
7741          */
7742         if (task_ctx) {
7743                 perf_iterate_ctx(task_ctx, output, data, false);
7744                 goto done;
7745         }
7746
7747         perf_iterate_sb_cpu(output, data);
7748
7749         for_each_task_context_nr(ctxn) {
7750                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7751                 if (ctx)
7752                         perf_iterate_ctx(ctx, output, data, false);
7753         }
7754 done:
7755         preempt_enable();
7756         rcu_read_unlock();
7757 }
7758
7759 /*
7760  * Clear all file-based filters at exec, they'll have to be
7761  * re-instated when/if these objects are mmapped again.
7762  */
7763 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7764 {
7765         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7766         struct perf_addr_filter *filter;
7767         unsigned int restart = 0, count = 0;
7768         unsigned long flags;
7769
7770         if (!has_addr_filter(event))
7771                 return;
7772
7773         raw_spin_lock_irqsave(&ifh->lock, flags);
7774         list_for_each_entry(filter, &ifh->list, entry) {
7775                 if (filter->path.dentry) {
7776                         event->addr_filter_ranges[count].start = 0;
7777                         event->addr_filter_ranges[count].size = 0;
7778                         restart++;
7779                 }
7780
7781                 count++;
7782         }
7783
7784         if (restart)
7785                 event->addr_filters_gen++;
7786         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7787
7788         if (restart)
7789                 perf_event_stop(event, 1);
7790 }
7791
7792 void perf_event_exec(void)
7793 {
7794         struct perf_event_context *ctx;
7795         int ctxn;
7796
7797         for_each_task_context_nr(ctxn) {
7798                 perf_event_enable_on_exec(ctxn);
7799                 perf_event_remove_on_exec(ctxn);
7800
7801                 rcu_read_lock();
7802                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7803                 if (ctx) {
7804                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7805                                          NULL, true);
7806                 }
7807                 rcu_read_unlock();
7808         }
7809 }
7810
7811 struct remote_output {
7812         struct perf_buffer      *rb;
7813         int                     err;
7814 };
7815
7816 static void __perf_event_output_stop(struct perf_event *event, void *data)
7817 {
7818         struct perf_event *parent = event->parent;
7819         struct remote_output *ro = data;
7820         struct perf_buffer *rb = ro->rb;
7821         struct stop_event_data sd = {
7822                 .event  = event,
7823         };
7824
7825         if (!has_aux(event))
7826                 return;
7827
7828         if (!parent)
7829                 parent = event;
7830
7831         /*
7832          * In case of inheritance, it will be the parent that links to the
7833          * ring-buffer, but it will be the child that's actually using it.
7834          *
7835          * We are using event::rb to determine if the event should be stopped,
7836          * however this may race with ring_buffer_attach() (through set_output),
7837          * which will make us skip the event that actually needs to be stopped.
7838          * So ring_buffer_attach() has to stop an aux event before re-assigning
7839          * its rb pointer.
7840          */
7841         if (rcu_dereference(parent->rb) == rb)
7842                 ro->err = __perf_event_stop(&sd);
7843 }
7844
7845 static int __perf_pmu_output_stop(void *info)
7846 {
7847         struct perf_event *event = info;
7848         struct pmu *pmu = event->ctx->pmu;
7849         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7850         struct remote_output ro = {
7851                 .rb     = event->rb,
7852         };
7853
7854         rcu_read_lock();
7855         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7856         if (cpuctx->task_ctx)
7857                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7858                                    &ro, false);
7859         rcu_read_unlock();
7860
7861         return ro.err;
7862 }
7863
7864 static void perf_pmu_output_stop(struct perf_event *event)
7865 {
7866         struct perf_event *iter;
7867         int err, cpu;
7868
7869 restart:
7870         rcu_read_lock();
7871         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7872                 /*
7873                  * For per-CPU events, we need to make sure that neither they
7874                  * nor their children are running; for cpu==-1 events it's
7875                  * sufficient to stop the event itself if it's active, since
7876                  * it can't have children.
7877                  */
7878                 cpu = iter->cpu;
7879                 if (cpu == -1)
7880                         cpu = READ_ONCE(iter->oncpu);
7881
7882                 if (cpu == -1)
7883                         continue;
7884
7885                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7886                 if (err == -EAGAIN) {
7887                         rcu_read_unlock();
7888                         goto restart;
7889                 }
7890         }
7891         rcu_read_unlock();
7892 }
7893
7894 /*
7895  * task tracking -- fork/exit
7896  *
7897  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7898  */
7899
7900 struct perf_task_event {
7901         struct task_struct              *task;
7902         struct perf_event_context       *task_ctx;
7903
7904         struct {
7905                 struct perf_event_header        header;
7906
7907                 u32                             pid;
7908                 u32                             ppid;
7909                 u32                             tid;
7910                 u32                             ptid;
7911                 u64                             time;
7912         } event_id;
7913 };
7914
7915 static int perf_event_task_match(struct perf_event *event)
7916 {
7917         return event->attr.comm  || event->attr.mmap ||
7918                event->attr.mmap2 || event->attr.mmap_data ||
7919                event->attr.task;
7920 }
7921
7922 static void perf_event_task_output(struct perf_event *event,
7923                                    void *data)
7924 {
7925         struct perf_task_event *task_event = data;
7926         struct perf_output_handle handle;
7927         struct perf_sample_data sample;
7928         struct task_struct *task = task_event->task;
7929         int ret, size = task_event->event_id.header.size;
7930
7931         if (!perf_event_task_match(event))
7932                 return;
7933
7934         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7935
7936         ret = perf_output_begin(&handle, &sample, event,
7937                                 task_event->event_id.header.size);
7938         if (ret)
7939                 goto out;
7940
7941         task_event->event_id.pid = perf_event_pid(event, task);
7942         task_event->event_id.tid = perf_event_tid(event, task);
7943
7944         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7945                 task_event->event_id.ppid = perf_event_pid(event,
7946                                                         task->real_parent);
7947                 task_event->event_id.ptid = perf_event_pid(event,
7948                                                         task->real_parent);
7949         } else {  /* PERF_RECORD_FORK */
7950                 task_event->event_id.ppid = perf_event_pid(event, current);
7951                 task_event->event_id.ptid = perf_event_tid(event, current);
7952         }
7953
7954         task_event->event_id.time = perf_event_clock(event);
7955
7956         perf_output_put(&handle, task_event->event_id);
7957
7958         perf_event__output_id_sample(event, &handle, &sample);
7959
7960         perf_output_end(&handle);
7961 out:
7962         task_event->event_id.header.size = size;
7963 }
7964
7965 static void perf_event_task(struct task_struct *task,
7966                               struct perf_event_context *task_ctx,
7967                               int new)
7968 {
7969         struct perf_task_event task_event;
7970
7971         if (!atomic_read(&nr_comm_events) &&
7972             !atomic_read(&nr_mmap_events) &&
7973             !atomic_read(&nr_task_events))
7974                 return;
7975
7976         task_event = (struct perf_task_event){
7977                 .task     = task,
7978                 .task_ctx = task_ctx,
7979                 .event_id    = {
7980                         .header = {
7981                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7982                                 .misc = 0,
7983                                 .size = sizeof(task_event.event_id),
7984                         },
7985                         /* .pid  */
7986                         /* .ppid */
7987                         /* .tid  */
7988                         /* .ptid */
7989                         /* .time */
7990                 },
7991         };
7992
7993         perf_iterate_sb(perf_event_task_output,
7994                        &task_event,
7995                        task_ctx);
7996 }
7997
7998 void perf_event_fork(struct task_struct *task)
7999 {
8000         perf_event_task(task, NULL, 1);
8001         perf_event_namespaces(task);
8002 }
8003
8004 /*
8005  * comm tracking
8006  */
8007
8008 struct perf_comm_event {
8009         struct task_struct      *task;
8010         char                    *comm;
8011         int                     comm_size;
8012
8013         struct {
8014                 struct perf_event_header        header;
8015
8016                 u32                             pid;
8017                 u32                             tid;
8018         } event_id;
8019 };
8020
8021 static int perf_event_comm_match(struct perf_event *event)
8022 {
8023         return event->attr.comm;
8024 }
8025
8026 static void perf_event_comm_output(struct perf_event *event,
8027                                    void *data)
8028 {
8029         struct perf_comm_event *comm_event = data;
8030         struct perf_output_handle handle;
8031         struct perf_sample_data sample;
8032         int size = comm_event->event_id.header.size;
8033         int ret;
8034
8035         if (!perf_event_comm_match(event))
8036                 return;
8037
8038         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8039         ret = perf_output_begin(&handle, &sample, event,
8040                                 comm_event->event_id.header.size);
8041
8042         if (ret)
8043                 goto out;
8044
8045         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8046         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8047
8048         perf_output_put(&handle, comm_event->event_id);
8049         __output_copy(&handle, comm_event->comm,
8050                                    comm_event->comm_size);
8051
8052         perf_event__output_id_sample(event, &handle, &sample);
8053
8054         perf_output_end(&handle);
8055 out:
8056         comm_event->event_id.header.size = size;
8057 }
8058
8059 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8060 {
8061         char comm[TASK_COMM_LEN];
8062         unsigned int size;
8063
8064         memset(comm, 0, sizeof(comm));
8065         strlcpy(comm, comm_event->task->comm, sizeof(comm));
8066         size = ALIGN(strlen(comm)+1, sizeof(u64));
8067
8068         comm_event->comm = comm;
8069         comm_event->comm_size = size;
8070
8071         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8072
8073         perf_iterate_sb(perf_event_comm_output,
8074                        comm_event,
8075                        NULL);
8076 }
8077
8078 void perf_event_comm(struct task_struct *task, bool exec)
8079 {
8080         struct perf_comm_event comm_event;
8081
8082         if (!atomic_read(&nr_comm_events))
8083                 return;
8084
8085         comm_event = (struct perf_comm_event){
8086                 .task   = task,
8087                 /* .comm      */
8088                 /* .comm_size */
8089                 .event_id  = {
8090                         .header = {
8091                                 .type = PERF_RECORD_COMM,
8092                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8093                                 /* .size */
8094                         },
8095                         /* .pid */
8096                         /* .tid */
8097                 },
8098         };
8099
8100         perf_event_comm_event(&comm_event);
8101 }
8102
8103 /*
8104  * namespaces tracking
8105  */
8106
8107 struct perf_namespaces_event {
8108         struct task_struct              *task;
8109
8110         struct {
8111                 struct perf_event_header        header;
8112
8113                 u32                             pid;
8114                 u32                             tid;
8115                 u64                             nr_namespaces;
8116                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8117         } event_id;
8118 };
8119
8120 static int perf_event_namespaces_match(struct perf_event *event)
8121 {
8122         return event->attr.namespaces;
8123 }
8124
8125 static void perf_event_namespaces_output(struct perf_event *event,
8126                                          void *data)
8127 {
8128         struct perf_namespaces_event *namespaces_event = data;
8129         struct perf_output_handle handle;
8130         struct perf_sample_data sample;
8131         u16 header_size = namespaces_event->event_id.header.size;
8132         int ret;
8133
8134         if (!perf_event_namespaces_match(event))
8135                 return;
8136
8137         perf_event_header__init_id(&namespaces_event->event_id.header,
8138                                    &sample, event);
8139         ret = perf_output_begin(&handle, &sample, event,
8140                                 namespaces_event->event_id.header.size);
8141         if (ret)
8142                 goto out;
8143
8144         namespaces_event->event_id.pid = perf_event_pid(event,
8145                                                         namespaces_event->task);
8146         namespaces_event->event_id.tid = perf_event_tid(event,
8147                                                         namespaces_event->task);
8148
8149         perf_output_put(&handle, namespaces_event->event_id);
8150
8151         perf_event__output_id_sample(event, &handle, &sample);
8152
8153         perf_output_end(&handle);
8154 out:
8155         namespaces_event->event_id.header.size = header_size;
8156 }
8157
8158 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8159                                    struct task_struct *task,
8160                                    const struct proc_ns_operations *ns_ops)
8161 {
8162         struct path ns_path;
8163         struct inode *ns_inode;
8164         int error;
8165
8166         error = ns_get_path(&ns_path, task, ns_ops);
8167         if (!error) {
8168                 ns_inode = ns_path.dentry->d_inode;
8169                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8170                 ns_link_info->ino = ns_inode->i_ino;
8171                 path_put(&ns_path);
8172         }
8173 }
8174
8175 void perf_event_namespaces(struct task_struct *task)
8176 {
8177         struct perf_namespaces_event namespaces_event;
8178         struct perf_ns_link_info *ns_link_info;
8179
8180         if (!atomic_read(&nr_namespaces_events))
8181                 return;
8182
8183         namespaces_event = (struct perf_namespaces_event){
8184                 .task   = task,
8185                 .event_id  = {
8186                         .header = {
8187                                 .type = PERF_RECORD_NAMESPACES,
8188                                 .misc = 0,
8189                                 .size = sizeof(namespaces_event.event_id),
8190                         },
8191                         /* .pid */
8192                         /* .tid */
8193                         .nr_namespaces = NR_NAMESPACES,
8194                         /* .link_info[NR_NAMESPACES] */
8195                 },
8196         };
8197
8198         ns_link_info = namespaces_event.event_id.link_info;
8199
8200         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8201                                task, &mntns_operations);
8202
8203 #ifdef CONFIG_USER_NS
8204         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8205                                task, &userns_operations);
8206 #endif
8207 #ifdef CONFIG_NET_NS
8208         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8209                                task, &netns_operations);
8210 #endif
8211 #ifdef CONFIG_UTS_NS
8212         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8213                                task, &utsns_operations);
8214 #endif
8215 #ifdef CONFIG_IPC_NS
8216         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8217                                task, &ipcns_operations);
8218 #endif
8219 #ifdef CONFIG_PID_NS
8220         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8221                                task, &pidns_operations);
8222 #endif
8223 #ifdef CONFIG_CGROUPS
8224         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8225                                task, &cgroupns_operations);
8226 #endif
8227
8228         perf_iterate_sb(perf_event_namespaces_output,
8229                         &namespaces_event,
8230                         NULL);
8231 }
8232
8233 /*
8234  * cgroup tracking
8235  */
8236 #ifdef CONFIG_CGROUP_PERF
8237
8238 struct perf_cgroup_event {
8239         char                            *path;
8240         int                             path_size;
8241         struct {
8242                 struct perf_event_header        header;
8243                 u64                             id;
8244                 char                            path[];
8245         } event_id;
8246 };
8247
8248 static int perf_event_cgroup_match(struct perf_event *event)
8249 {
8250         return event->attr.cgroup;
8251 }
8252
8253 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8254 {
8255         struct perf_cgroup_event *cgroup_event = data;
8256         struct perf_output_handle handle;
8257         struct perf_sample_data sample;
8258         u16 header_size = cgroup_event->event_id.header.size;
8259         int ret;
8260
8261         if (!perf_event_cgroup_match(event))
8262                 return;
8263
8264         perf_event_header__init_id(&cgroup_event->event_id.header,
8265                                    &sample, event);
8266         ret = perf_output_begin(&handle, &sample, event,
8267                                 cgroup_event->event_id.header.size);
8268         if (ret)
8269                 goto out;
8270
8271         perf_output_put(&handle, cgroup_event->event_id);
8272         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8273
8274         perf_event__output_id_sample(event, &handle, &sample);
8275
8276         perf_output_end(&handle);
8277 out:
8278         cgroup_event->event_id.header.size = header_size;
8279 }
8280
8281 static void perf_event_cgroup(struct cgroup *cgrp)
8282 {
8283         struct perf_cgroup_event cgroup_event;
8284         char path_enomem[16] = "//enomem";
8285         char *pathname;
8286         size_t size;
8287
8288         if (!atomic_read(&nr_cgroup_events))
8289                 return;
8290
8291         cgroup_event = (struct perf_cgroup_event){
8292                 .event_id  = {
8293                         .header = {
8294                                 .type = PERF_RECORD_CGROUP,
8295                                 .misc = 0,
8296                                 .size = sizeof(cgroup_event.event_id),
8297                         },
8298                         .id = cgroup_id(cgrp),
8299                 },
8300         };
8301
8302         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8303         if (pathname == NULL) {
8304                 cgroup_event.path = path_enomem;
8305         } else {
8306                 /* just to be sure to have enough space for alignment */
8307                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8308                 cgroup_event.path = pathname;
8309         }
8310
8311         /*
8312          * Since our buffer works in 8 byte units we need to align our string
8313          * size to a multiple of 8. However, we must guarantee the tail end is
8314          * zero'd out to avoid leaking random bits to userspace.
8315          */
8316         size = strlen(cgroup_event.path) + 1;
8317         while (!IS_ALIGNED(size, sizeof(u64)))
8318                 cgroup_event.path[size++] = '\0';
8319
8320         cgroup_event.event_id.header.size += size;
8321         cgroup_event.path_size = size;
8322
8323         perf_iterate_sb(perf_event_cgroup_output,
8324                         &cgroup_event,
8325                         NULL);
8326
8327         kfree(pathname);
8328 }
8329
8330 #endif
8331
8332 /*
8333  * mmap tracking
8334  */
8335
8336 struct perf_mmap_event {
8337         struct vm_area_struct   *vma;
8338
8339         const char              *file_name;
8340         int                     file_size;
8341         int                     maj, min;
8342         u64                     ino;
8343         u64                     ino_generation;
8344         u32                     prot, flags;
8345         u8                      build_id[BUILD_ID_SIZE_MAX];
8346         u32                     build_id_size;
8347
8348         struct {
8349                 struct perf_event_header        header;
8350
8351                 u32                             pid;
8352                 u32                             tid;
8353                 u64                             start;
8354                 u64                             len;
8355                 u64                             pgoff;
8356         } event_id;
8357 };
8358
8359 static int perf_event_mmap_match(struct perf_event *event,
8360                                  void *data)
8361 {
8362         struct perf_mmap_event *mmap_event = data;
8363         struct vm_area_struct *vma = mmap_event->vma;
8364         int executable = vma->vm_flags & VM_EXEC;
8365
8366         return (!executable && event->attr.mmap_data) ||
8367                (executable && (event->attr.mmap || event->attr.mmap2));
8368 }
8369
8370 static void perf_event_mmap_output(struct perf_event *event,
8371                                    void *data)
8372 {
8373         struct perf_mmap_event *mmap_event = data;
8374         struct perf_output_handle handle;
8375         struct perf_sample_data sample;
8376         int size = mmap_event->event_id.header.size;
8377         u32 type = mmap_event->event_id.header.type;
8378         bool use_build_id;
8379         int ret;
8380
8381         if (!perf_event_mmap_match(event, data))
8382                 return;
8383
8384         if (event->attr.mmap2) {
8385                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8386                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8387                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8388                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8389                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8390                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8391                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8392         }
8393
8394         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8395         ret = perf_output_begin(&handle, &sample, event,
8396                                 mmap_event->event_id.header.size);
8397         if (ret)
8398                 goto out;
8399
8400         mmap_event->event_id.pid = perf_event_pid(event, current);
8401         mmap_event->event_id.tid = perf_event_tid(event, current);
8402
8403         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8404
8405         if (event->attr.mmap2 && use_build_id)
8406                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8407
8408         perf_output_put(&handle, mmap_event->event_id);
8409
8410         if (event->attr.mmap2) {
8411                 if (use_build_id) {
8412                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8413
8414                         __output_copy(&handle, size, 4);
8415                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8416                 } else {
8417                         perf_output_put(&handle, mmap_event->maj);
8418                         perf_output_put(&handle, mmap_event->min);
8419                         perf_output_put(&handle, mmap_event->ino);
8420                         perf_output_put(&handle, mmap_event->ino_generation);
8421                 }
8422                 perf_output_put(&handle, mmap_event->prot);
8423                 perf_output_put(&handle, mmap_event->flags);
8424         }
8425
8426         __output_copy(&handle, mmap_event->file_name,
8427                                    mmap_event->file_size);
8428
8429         perf_event__output_id_sample(event, &handle, &sample);
8430
8431         perf_output_end(&handle);
8432 out:
8433         mmap_event->event_id.header.size = size;
8434         mmap_event->event_id.header.type = type;
8435 }
8436
8437 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8438 {
8439         struct vm_area_struct *vma = mmap_event->vma;
8440         struct file *file = vma->vm_file;
8441         int maj = 0, min = 0;
8442         u64 ino = 0, gen = 0;
8443         u32 prot = 0, flags = 0;
8444         unsigned int size;
8445         char tmp[16];
8446         char *buf = NULL;
8447         char *name;
8448
8449         if (vma->vm_flags & VM_READ)
8450                 prot |= PROT_READ;
8451         if (vma->vm_flags & VM_WRITE)
8452                 prot |= PROT_WRITE;
8453         if (vma->vm_flags & VM_EXEC)
8454                 prot |= PROT_EXEC;
8455
8456         if (vma->vm_flags & VM_MAYSHARE)
8457                 flags = MAP_SHARED;
8458         else
8459                 flags = MAP_PRIVATE;
8460
8461         if (vma->vm_flags & VM_LOCKED)
8462                 flags |= MAP_LOCKED;
8463         if (is_vm_hugetlb_page(vma))
8464                 flags |= MAP_HUGETLB;
8465
8466         if (file) {
8467                 struct inode *inode;
8468                 dev_t dev;
8469
8470                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8471                 if (!buf) {
8472                         name = "//enomem";
8473                         goto cpy_name;
8474                 }
8475                 /*
8476                  * d_path() works from the end of the rb backwards, so we
8477                  * need to add enough zero bytes after the string to handle
8478                  * the 64bit alignment we do later.
8479                  */
8480                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8481                 if (IS_ERR(name)) {
8482                         name = "//toolong";
8483                         goto cpy_name;
8484                 }
8485                 inode = file_inode(vma->vm_file);
8486                 dev = inode->i_sb->s_dev;
8487                 ino = inode->i_ino;
8488                 gen = inode->i_generation;
8489                 maj = MAJOR(dev);
8490                 min = MINOR(dev);
8491
8492                 goto got_name;
8493         } else {
8494                 if (vma->vm_ops && vma->vm_ops->name) {
8495                         name = (char *) vma->vm_ops->name(vma);
8496                         if (name)
8497                                 goto cpy_name;
8498                 }
8499
8500                 name = (char *)arch_vma_name(vma);
8501                 if (name)
8502                         goto cpy_name;
8503
8504                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8505                                 vma->vm_end >= vma->vm_mm->brk) {
8506                         name = "[heap]";
8507                         goto cpy_name;
8508                 }
8509                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8510                                 vma->vm_end >= vma->vm_mm->start_stack) {
8511                         name = "[stack]";
8512                         goto cpy_name;
8513                 }
8514
8515                 name = "//anon";
8516                 goto cpy_name;
8517         }
8518
8519 cpy_name:
8520         strlcpy(tmp, name, sizeof(tmp));
8521         name = tmp;
8522 got_name:
8523         /*
8524          * Since our buffer works in 8 byte units we need to align our string
8525          * size to a multiple of 8. However, we must guarantee the tail end is
8526          * zero'd out to avoid leaking random bits to userspace.
8527          */
8528         size = strlen(name)+1;
8529         while (!IS_ALIGNED(size, sizeof(u64)))
8530                 name[size++] = '\0';
8531
8532         mmap_event->file_name = name;
8533         mmap_event->file_size = size;
8534         mmap_event->maj = maj;
8535         mmap_event->min = min;
8536         mmap_event->ino = ino;
8537         mmap_event->ino_generation = gen;
8538         mmap_event->prot = prot;
8539         mmap_event->flags = flags;
8540
8541         if (!(vma->vm_flags & VM_EXEC))
8542                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8543
8544         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8545
8546         if (atomic_read(&nr_build_id_events))
8547                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8548
8549         perf_iterate_sb(perf_event_mmap_output,
8550                        mmap_event,
8551                        NULL);
8552
8553         kfree(buf);
8554 }
8555
8556 /*
8557  * Check whether inode and address range match filter criteria.
8558  */
8559 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8560                                      struct file *file, unsigned long offset,
8561                                      unsigned long size)
8562 {
8563         /* d_inode(NULL) won't be equal to any mapped user-space file */
8564         if (!filter->path.dentry)
8565                 return false;
8566
8567         if (d_inode(filter->path.dentry) != file_inode(file))
8568                 return false;
8569
8570         if (filter->offset > offset + size)
8571                 return false;
8572
8573         if (filter->offset + filter->size < offset)
8574                 return false;
8575
8576         return true;
8577 }
8578
8579 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8580                                         struct vm_area_struct *vma,
8581                                         struct perf_addr_filter_range *fr)
8582 {
8583         unsigned long vma_size = vma->vm_end - vma->vm_start;
8584         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8585         struct file *file = vma->vm_file;
8586
8587         if (!perf_addr_filter_match(filter, file, off, vma_size))
8588                 return false;
8589
8590         if (filter->offset < off) {
8591                 fr->start = vma->vm_start;
8592                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8593         } else {
8594                 fr->start = vma->vm_start + filter->offset - off;
8595                 fr->size = min(vma->vm_end - fr->start, filter->size);
8596         }
8597
8598         return true;
8599 }
8600
8601 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8602 {
8603         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8604         struct vm_area_struct *vma = data;
8605         struct perf_addr_filter *filter;
8606         unsigned int restart = 0, count = 0;
8607         unsigned long flags;
8608
8609         if (!has_addr_filter(event))
8610                 return;
8611
8612         if (!vma->vm_file)
8613                 return;
8614
8615         raw_spin_lock_irqsave(&ifh->lock, flags);
8616         list_for_each_entry(filter, &ifh->list, entry) {
8617                 if (perf_addr_filter_vma_adjust(filter, vma,
8618                                                 &event->addr_filter_ranges[count]))
8619                         restart++;
8620
8621                 count++;
8622         }
8623
8624         if (restart)
8625                 event->addr_filters_gen++;
8626         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8627
8628         if (restart)
8629                 perf_event_stop(event, 1);
8630 }
8631
8632 /*
8633  * Adjust all task's events' filters to the new vma
8634  */
8635 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8636 {
8637         struct perf_event_context *ctx;
8638         int ctxn;
8639
8640         /*
8641          * Data tracing isn't supported yet and as such there is no need
8642          * to keep track of anything that isn't related to executable code:
8643          */
8644         if (!(vma->vm_flags & VM_EXEC))
8645                 return;
8646
8647         rcu_read_lock();
8648         for_each_task_context_nr(ctxn) {
8649                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8650                 if (!ctx)
8651                         continue;
8652
8653                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8654         }
8655         rcu_read_unlock();
8656 }
8657
8658 void perf_event_mmap(struct vm_area_struct *vma)
8659 {
8660         struct perf_mmap_event mmap_event;
8661
8662         if (!atomic_read(&nr_mmap_events))
8663                 return;
8664
8665         mmap_event = (struct perf_mmap_event){
8666                 .vma    = vma,
8667                 /* .file_name */
8668                 /* .file_size */
8669                 .event_id  = {
8670                         .header = {
8671                                 .type = PERF_RECORD_MMAP,
8672                                 .misc = PERF_RECORD_MISC_USER,
8673                                 /* .size */
8674                         },
8675                         /* .pid */
8676                         /* .tid */
8677                         .start  = vma->vm_start,
8678                         .len    = vma->vm_end - vma->vm_start,
8679                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8680                 },
8681                 /* .maj (attr_mmap2 only) */
8682                 /* .min (attr_mmap2 only) */
8683                 /* .ino (attr_mmap2 only) */
8684                 /* .ino_generation (attr_mmap2 only) */
8685                 /* .prot (attr_mmap2 only) */
8686                 /* .flags (attr_mmap2 only) */
8687         };
8688
8689         perf_addr_filters_adjust(vma);
8690         perf_event_mmap_event(&mmap_event);
8691 }
8692
8693 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8694                           unsigned long size, u64 flags)
8695 {
8696         struct perf_output_handle handle;
8697         struct perf_sample_data sample;
8698         struct perf_aux_event {
8699                 struct perf_event_header        header;
8700                 u64                             offset;
8701                 u64                             size;
8702                 u64                             flags;
8703         } rec = {
8704                 .header = {
8705                         .type = PERF_RECORD_AUX,
8706                         .misc = 0,
8707                         .size = sizeof(rec),
8708                 },
8709                 .offset         = head,
8710                 .size           = size,
8711                 .flags          = flags,
8712         };
8713         int ret;
8714
8715         perf_event_header__init_id(&rec.header, &sample, event);
8716         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8717
8718         if (ret)
8719                 return;
8720
8721         perf_output_put(&handle, rec);
8722         perf_event__output_id_sample(event, &handle, &sample);
8723
8724         perf_output_end(&handle);
8725 }
8726
8727 /*
8728  * Lost/dropped samples logging
8729  */
8730 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8731 {
8732         struct perf_output_handle handle;
8733         struct perf_sample_data sample;
8734         int ret;
8735
8736         struct {
8737                 struct perf_event_header        header;
8738                 u64                             lost;
8739         } lost_samples_event = {
8740                 .header = {
8741                         .type = PERF_RECORD_LOST_SAMPLES,
8742                         .misc = 0,
8743                         .size = sizeof(lost_samples_event),
8744                 },
8745                 .lost           = lost,
8746         };
8747
8748         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8749
8750         ret = perf_output_begin(&handle, &sample, event,
8751                                 lost_samples_event.header.size);
8752         if (ret)
8753                 return;
8754
8755         perf_output_put(&handle, lost_samples_event);
8756         perf_event__output_id_sample(event, &handle, &sample);
8757         perf_output_end(&handle);
8758 }
8759
8760 /*
8761  * context_switch tracking
8762  */
8763
8764 struct perf_switch_event {
8765         struct task_struct      *task;
8766         struct task_struct      *next_prev;
8767
8768         struct {
8769                 struct perf_event_header        header;
8770                 u32                             next_prev_pid;
8771                 u32                             next_prev_tid;
8772         } event_id;
8773 };
8774
8775 static int perf_event_switch_match(struct perf_event *event)
8776 {
8777         return event->attr.context_switch;
8778 }
8779
8780 static void perf_event_switch_output(struct perf_event *event, void *data)
8781 {
8782         struct perf_switch_event *se = data;
8783         struct perf_output_handle handle;
8784         struct perf_sample_data sample;
8785         int ret;
8786
8787         if (!perf_event_switch_match(event))
8788                 return;
8789
8790         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8791         if (event->ctx->task) {
8792                 se->event_id.header.type = PERF_RECORD_SWITCH;
8793                 se->event_id.header.size = sizeof(se->event_id.header);
8794         } else {
8795                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8796                 se->event_id.header.size = sizeof(se->event_id);
8797                 se->event_id.next_prev_pid =
8798                                         perf_event_pid(event, se->next_prev);
8799                 se->event_id.next_prev_tid =
8800                                         perf_event_tid(event, se->next_prev);
8801         }
8802
8803         perf_event_header__init_id(&se->event_id.header, &sample, event);
8804
8805         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8806         if (ret)
8807                 return;
8808
8809         if (event->ctx->task)
8810                 perf_output_put(&handle, se->event_id.header);
8811         else
8812                 perf_output_put(&handle, se->event_id);
8813
8814         perf_event__output_id_sample(event, &handle, &sample);
8815
8816         perf_output_end(&handle);
8817 }
8818
8819 static void perf_event_switch(struct task_struct *task,
8820                               struct task_struct *next_prev, bool sched_in)
8821 {
8822         struct perf_switch_event switch_event;
8823
8824         /* N.B. caller checks nr_switch_events != 0 */
8825
8826         switch_event = (struct perf_switch_event){
8827                 .task           = task,
8828                 .next_prev      = next_prev,
8829                 .event_id       = {
8830                         .header = {
8831                                 /* .type */
8832                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8833                                 /* .size */
8834                         },
8835                         /* .next_prev_pid */
8836                         /* .next_prev_tid */
8837                 },
8838         };
8839
8840         if (!sched_in && task->on_rq) {
8841                 switch_event.event_id.header.misc |=
8842                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8843         }
8844
8845         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8846 }
8847
8848 /*
8849  * IRQ throttle logging
8850  */
8851
8852 static void perf_log_throttle(struct perf_event *event, int enable)
8853 {
8854         struct perf_output_handle handle;
8855         struct perf_sample_data sample;
8856         int ret;
8857
8858         struct {
8859                 struct perf_event_header        header;
8860                 u64                             time;
8861                 u64                             id;
8862                 u64                             stream_id;
8863         } throttle_event = {
8864                 .header = {
8865                         .type = PERF_RECORD_THROTTLE,
8866                         .misc = 0,
8867                         .size = sizeof(throttle_event),
8868                 },
8869                 .time           = perf_event_clock(event),
8870                 .id             = primary_event_id(event),
8871                 .stream_id      = event->id,
8872         };
8873
8874         if (enable)
8875                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8876
8877         perf_event_header__init_id(&throttle_event.header, &sample, event);
8878
8879         ret = perf_output_begin(&handle, &sample, event,
8880                                 throttle_event.header.size);
8881         if (ret)
8882                 return;
8883
8884         perf_output_put(&handle, throttle_event);
8885         perf_event__output_id_sample(event, &handle, &sample);
8886         perf_output_end(&handle);
8887 }
8888
8889 /*
8890  * ksymbol register/unregister tracking
8891  */
8892
8893 struct perf_ksymbol_event {
8894         const char      *name;
8895         int             name_len;
8896         struct {
8897                 struct perf_event_header        header;
8898                 u64                             addr;
8899                 u32                             len;
8900                 u16                             ksym_type;
8901                 u16                             flags;
8902         } event_id;
8903 };
8904
8905 static int perf_event_ksymbol_match(struct perf_event *event)
8906 {
8907         return event->attr.ksymbol;
8908 }
8909
8910 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8911 {
8912         struct perf_ksymbol_event *ksymbol_event = data;
8913         struct perf_output_handle handle;
8914         struct perf_sample_data sample;
8915         int ret;
8916
8917         if (!perf_event_ksymbol_match(event))
8918                 return;
8919
8920         perf_event_header__init_id(&ksymbol_event->event_id.header,
8921                                    &sample, event);
8922         ret = perf_output_begin(&handle, &sample, event,
8923                                 ksymbol_event->event_id.header.size);
8924         if (ret)
8925                 return;
8926
8927         perf_output_put(&handle, ksymbol_event->event_id);
8928         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8929         perf_event__output_id_sample(event, &handle, &sample);
8930
8931         perf_output_end(&handle);
8932 }
8933
8934 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8935                         const char *sym)
8936 {
8937         struct perf_ksymbol_event ksymbol_event;
8938         char name[KSYM_NAME_LEN];
8939         u16 flags = 0;
8940         int name_len;
8941
8942         if (!atomic_read(&nr_ksymbol_events))
8943                 return;
8944
8945         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8946             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8947                 goto err;
8948
8949         strlcpy(name, sym, KSYM_NAME_LEN);
8950         name_len = strlen(name) + 1;
8951         while (!IS_ALIGNED(name_len, sizeof(u64)))
8952                 name[name_len++] = '\0';
8953         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8954
8955         if (unregister)
8956                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8957
8958         ksymbol_event = (struct perf_ksymbol_event){
8959                 .name = name,
8960                 .name_len = name_len,
8961                 .event_id = {
8962                         .header = {
8963                                 .type = PERF_RECORD_KSYMBOL,
8964                                 .size = sizeof(ksymbol_event.event_id) +
8965                                         name_len,
8966                         },
8967                         .addr = addr,
8968                         .len = len,
8969                         .ksym_type = ksym_type,
8970                         .flags = flags,
8971                 },
8972         };
8973
8974         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8975         return;
8976 err:
8977         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8978 }
8979
8980 /*
8981  * bpf program load/unload tracking
8982  */
8983
8984 struct perf_bpf_event {
8985         struct bpf_prog *prog;
8986         struct {
8987                 struct perf_event_header        header;
8988                 u16                             type;
8989                 u16                             flags;
8990                 u32                             id;
8991                 u8                              tag[BPF_TAG_SIZE];
8992         } event_id;
8993 };
8994
8995 static int perf_event_bpf_match(struct perf_event *event)
8996 {
8997         return event->attr.bpf_event;
8998 }
8999
9000 static void perf_event_bpf_output(struct perf_event *event, void *data)
9001 {
9002         struct perf_bpf_event *bpf_event = data;
9003         struct perf_output_handle handle;
9004         struct perf_sample_data sample;
9005         int ret;
9006
9007         if (!perf_event_bpf_match(event))
9008                 return;
9009
9010         perf_event_header__init_id(&bpf_event->event_id.header,
9011                                    &sample, event);
9012         ret = perf_output_begin(&handle, data, event,
9013                                 bpf_event->event_id.header.size);
9014         if (ret)
9015                 return;
9016
9017         perf_output_put(&handle, bpf_event->event_id);
9018         perf_event__output_id_sample(event, &handle, &sample);
9019
9020         perf_output_end(&handle);
9021 }
9022
9023 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9024                                          enum perf_bpf_event_type type)
9025 {
9026         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9027         int i;
9028
9029         if (prog->aux->func_cnt == 0) {
9030                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9031                                    (u64)(unsigned long)prog->bpf_func,
9032                                    prog->jited_len, unregister,
9033                                    prog->aux->ksym.name);
9034         } else {
9035                 for (i = 0; i < prog->aux->func_cnt; i++) {
9036                         struct bpf_prog *subprog = prog->aux->func[i];
9037
9038                         perf_event_ksymbol(
9039                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9040                                 (u64)(unsigned long)subprog->bpf_func,
9041                                 subprog->jited_len, unregister,
9042                                 subprog->aux->ksym.name);
9043                 }
9044         }
9045 }
9046
9047 void perf_event_bpf_event(struct bpf_prog *prog,
9048                           enum perf_bpf_event_type type,
9049                           u16 flags)
9050 {
9051         struct perf_bpf_event bpf_event;
9052
9053         if (type <= PERF_BPF_EVENT_UNKNOWN ||
9054             type >= PERF_BPF_EVENT_MAX)
9055                 return;
9056
9057         switch (type) {
9058         case PERF_BPF_EVENT_PROG_LOAD:
9059         case PERF_BPF_EVENT_PROG_UNLOAD:
9060                 if (atomic_read(&nr_ksymbol_events))
9061                         perf_event_bpf_emit_ksymbols(prog, type);
9062                 break;
9063         default:
9064                 break;
9065         }
9066
9067         if (!atomic_read(&nr_bpf_events))
9068                 return;
9069
9070         bpf_event = (struct perf_bpf_event){
9071                 .prog = prog,
9072                 .event_id = {
9073                         .header = {
9074                                 .type = PERF_RECORD_BPF_EVENT,
9075                                 .size = sizeof(bpf_event.event_id),
9076                         },
9077                         .type = type,
9078                         .flags = flags,
9079                         .id = prog->aux->id,
9080                 },
9081         };
9082
9083         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9084
9085         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9086         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9087 }
9088
9089 struct perf_text_poke_event {
9090         const void              *old_bytes;
9091         const void              *new_bytes;
9092         size_t                  pad;
9093         u16                     old_len;
9094         u16                     new_len;
9095
9096         struct {
9097                 struct perf_event_header        header;
9098
9099                 u64                             addr;
9100         } event_id;
9101 };
9102
9103 static int perf_event_text_poke_match(struct perf_event *event)
9104 {
9105         return event->attr.text_poke;
9106 }
9107
9108 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9109 {
9110         struct perf_text_poke_event *text_poke_event = data;
9111         struct perf_output_handle handle;
9112         struct perf_sample_data sample;
9113         u64 padding = 0;
9114         int ret;
9115
9116         if (!perf_event_text_poke_match(event))
9117                 return;
9118
9119         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9120
9121         ret = perf_output_begin(&handle, &sample, event,
9122                                 text_poke_event->event_id.header.size);
9123         if (ret)
9124                 return;
9125
9126         perf_output_put(&handle, text_poke_event->event_id);
9127         perf_output_put(&handle, text_poke_event->old_len);
9128         perf_output_put(&handle, text_poke_event->new_len);
9129
9130         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9131         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9132
9133         if (text_poke_event->pad)
9134                 __output_copy(&handle, &padding, text_poke_event->pad);
9135
9136         perf_event__output_id_sample(event, &handle, &sample);
9137
9138         perf_output_end(&handle);
9139 }
9140
9141 void perf_event_text_poke(const void *addr, const void *old_bytes,
9142                           size_t old_len, const void *new_bytes, size_t new_len)
9143 {
9144         struct perf_text_poke_event text_poke_event;
9145         size_t tot, pad;
9146
9147         if (!atomic_read(&nr_text_poke_events))
9148                 return;
9149
9150         tot  = sizeof(text_poke_event.old_len) + old_len;
9151         tot += sizeof(text_poke_event.new_len) + new_len;
9152         pad  = ALIGN(tot, sizeof(u64)) - tot;
9153
9154         text_poke_event = (struct perf_text_poke_event){
9155                 .old_bytes    = old_bytes,
9156                 .new_bytes    = new_bytes,
9157                 .pad          = pad,
9158                 .old_len      = old_len,
9159                 .new_len      = new_len,
9160                 .event_id  = {
9161                         .header = {
9162                                 .type = PERF_RECORD_TEXT_POKE,
9163                                 .misc = PERF_RECORD_MISC_KERNEL,
9164                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9165                         },
9166                         .addr = (unsigned long)addr,
9167                 },
9168         };
9169
9170         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9171 }
9172
9173 void perf_event_itrace_started(struct perf_event *event)
9174 {
9175         event->attach_state |= PERF_ATTACH_ITRACE;
9176 }
9177
9178 static void perf_log_itrace_start(struct perf_event *event)
9179 {
9180         struct perf_output_handle handle;
9181         struct perf_sample_data sample;
9182         struct perf_aux_event {
9183                 struct perf_event_header        header;
9184                 u32                             pid;
9185                 u32                             tid;
9186         } rec;
9187         int ret;
9188
9189         if (event->parent)
9190                 event = event->parent;
9191
9192         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9193             event->attach_state & PERF_ATTACH_ITRACE)
9194                 return;
9195
9196         rec.header.type = PERF_RECORD_ITRACE_START;
9197         rec.header.misc = 0;
9198         rec.header.size = sizeof(rec);
9199         rec.pid = perf_event_pid(event, current);
9200         rec.tid = perf_event_tid(event, current);
9201
9202         perf_event_header__init_id(&rec.header, &sample, event);
9203         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9204
9205         if (ret)
9206                 return;
9207
9208         perf_output_put(&handle, rec);
9209         perf_event__output_id_sample(event, &handle, &sample);
9210
9211         perf_output_end(&handle);
9212 }
9213
9214 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9215 {
9216         struct perf_output_handle handle;
9217         struct perf_sample_data sample;
9218         struct perf_aux_event {
9219                 struct perf_event_header        header;
9220                 u64                             hw_id;
9221         } rec;
9222         int ret;
9223
9224         if (event->parent)
9225                 event = event->parent;
9226
9227         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9228         rec.header.misc = 0;
9229         rec.header.size = sizeof(rec);
9230         rec.hw_id       = hw_id;
9231
9232         perf_event_header__init_id(&rec.header, &sample, event);
9233         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9234
9235         if (ret)
9236                 return;
9237
9238         perf_output_put(&handle, rec);
9239         perf_event__output_id_sample(event, &handle, &sample);
9240
9241         perf_output_end(&handle);
9242 }
9243
9244 static int
9245 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9246 {
9247         struct hw_perf_event *hwc = &event->hw;
9248         int ret = 0;
9249         u64 seq;
9250
9251         seq = __this_cpu_read(perf_throttled_seq);
9252         if (seq != hwc->interrupts_seq) {
9253                 hwc->interrupts_seq = seq;
9254                 hwc->interrupts = 1;
9255         } else {
9256                 hwc->interrupts++;
9257                 if (unlikely(throttle
9258                              && hwc->interrupts >= max_samples_per_tick)) {
9259                         __this_cpu_inc(perf_throttled_count);
9260                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9261                         hwc->interrupts = MAX_INTERRUPTS;
9262                         perf_log_throttle(event, 0);
9263                         ret = 1;
9264                 }
9265         }
9266
9267         if (event->attr.freq) {
9268                 u64 now = perf_clock();
9269                 s64 delta = now - hwc->freq_time_stamp;
9270
9271                 hwc->freq_time_stamp = now;
9272
9273                 if (delta > 0 && delta < 2*TICK_NSEC)
9274                         perf_adjust_period(event, delta, hwc->last_period, true);
9275         }
9276
9277         return ret;
9278 }
9279
9280 int perf_event_account_interrupt(struct perf_event *event)
9281 {
9282         return __perf_event_account_interrupt(event, 1);
9283 }
9284
9285 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9286 {
9287         /*
9288          * Due to interrupt latency (AKA "skid"), we may enter the
9289          * kernel before taking an overflow, even if the PMU is only
9290          * counting user events.
9291          */
9292         if (event->attr.exclude_kernel && !user_mode(regs))
9293                 return false;
9294
9295         return true;
9296 }
9297
9298 /*
9299  * Generic event overflow handling, sampling.
9300  */
9301
9302 static int __perf_event_overflow(struct perf_event *event,
9303                                  int throttle, struct perf_sample_data *data,
9304                                  struct pt_regs *regs)
9305 {
9306         int events = atomic_read(&event->event_limit);
9307         int ret = 0;
9308
9309         /*
9310          * Non-sampling counters might still use the PMI to fold short
9311          * hardware counters, ignore those.
9312          */
9313         if (unlikely(!is_sampling_event(event)))
9314                 return 0;
9315
9316         ret = __perf_event_account_interrupt(event, throttle);
9317
9318         /*
9319          * XXX event_limit might not quite work as expected on inherited
9320          * events
9321          */
9322
9323         event->pending_kill = POLL_IN;
9324         if (events && atomic_dec_and_test(&event->event_limit)) {
9325                 ret = 1;
9326                 event->pending_kill = POLL_HUP;
9327                 perf_event_disable_inatomic(event);
9328         }
9329
9330         if (event->attr.sigtrap) {
9331                 /*
9332                  * The desired behaviour of sigtrap vs invalid samples is a bit
9333                  * tricky; on the one hand, one should not loose the SIGTRAP if
9334                  * it is the first event, on the other hand, we should also not
9335                  * trigger the WARN or override the data address.
9336                  */
9337                 bool valid_sample = sample_is_allowed(event, regs);
9338                 unsigned int pending_id = 1;
9339
9340                 if (regs)
9341                         pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9342                 if (!event->pending_sigtrap) {
9343                         event->pending_sigtrap = pending_id;
9344                         local_inc(&event->ctx->nr_pending);
9345                 } else if (event->attr.exclude_kernel && valid_sample) {
9346                         /*
9347                          * Should not be able to return to user space without
9348                          * consuming pending_sigtrap; with exceptions:
9349                          *
9350                          *  1. Where !exclude_kernel, events can overflow again
9351                          *     in the kernel without returning to user space.
9352                          *
9353                          *  2. Events that can overflow again before the IRQ-
9354                          *     work without user space progress (e.g. hrtimer).
9355                          *     To approximate progress (with false negatives),
9356                          *     check 32-bit hash of the current IP.
9357                          */
9358                         WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9359                 }
9360
9361                 event->pending_addr = 0;
9362                 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9363                         event->pending_addr = data->addr;
9364                 irq_work_queue(&event->pending_irq);
9365         }
9366
9367         READ_ONCE(event->overflow_handler)(event, data, regs);
9368
9369         if (*perf_event_fasync(event) && event->pending_kill) {
9370                 event->pending_wakeup = 1;
9371                 irq_work_queue(&event->pending_irq);
9372         }
9373
9374         return ret;
9375 }
9376
9377 int perf_event_overflow(struct perf_event *event,
9378                         struct perf_sample_data *data,
9379                         struct pt_regs *regs)
9380 {
9381         return __perf_event_overflow(event, 1, data, regs);
9382 }
9383
9384 /*
9385  * Generic software event infrastructure
9386  */
9387
9388 struct swevent_htable {
9389         struct swevent_hlist            *swevent_hlist;
9390         struct mutex                    hlist_mutex;
9391         int                             hlist_refcount;
9392
9393         /* Recursion avoidance in each contexts */
9394         int                             recursion[PERF_NR_CONTEXTS];
9395 };
9396
9397 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9398
9399 /*
9400  * We directly increment event->count and keep a second value in
9401  * event->hw.period_left to count intervals. This period event
9402  * is kept in the range [-sample_period, 0] so that we can use the
9403  * sign as trigger.
9404  */
9405
9406 u64 perf_swevent_set_period(struct perf_event *event)
9407 {
9408         struct hw_perf_event *hwc = &event->hw;
9409         u64 period = hwc->last_period;
9410         u64 nr, offset;
9411         s64 old, val;
9412
9413         hwc->last_period = hwc->sample_period;
9414
9415 again:
9416         old = val = local64_read(&hwc->period_left);
9417         if (val < 0)
9418                 return 0;
9419
9420         nr = div64_u64(period + val, period);
9421         offset = nr * period;
9422         val -= offset;
9423         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9424                 goto again;
9425
9426         return nr;
9427 }
9428
9429 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9430                                     struct perf_sample_data *data,
9431                                     struct pt_regs *regs)
9432 {
9433         struct hw_perf_event *hwc = &event->hw;
9434         int throttle = 0;
9435
9436         if (!overflow)
9437                 overflow = perf_swevent_set_period(event);
9438
9439         if (hwc->interrupts == MAX_INTERRUPTS)
9440                 return;
9441
9442         for (; overflow; overflow--) {
9443                 if (__perf_event_overflow(event, throttle,
9444                                             data, regs)) {
9445                         /*
9446                          * We inhibit the overflow from happening when
9447                          * hwc->interrupts == MAX_INTERRUPTS.
9448                          */
9449                         break;
9450                 }
9451                 throttle = 1;
9452         }
9453 }
9454
9455 static void perf_swevent_event(struct perf_event *event, u64 nr,
9456                                struct perf_sample_data *data,
9457                                struct pt_regs *regs)
9458 {
9459         struct hw_perf_event *hwc = &event->hw;
9460
9461         local64_add(nr, &event->count);
9462
9463         if (!regs)
9464                 return;
9465
9466         if (!is_sampling_event(event))
9467                 return;
9468
9469         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9470                 data->period = nr;
9471                 return perf_swevent_overflow(event, 1, data, regs);
9472         } else
9473                 data->period = event->hw.last_period;
9474
9475         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9476                 return perf_swevent_overflow(event, 1, data, regs);
9477
9478         if (local64_add_negative(nr, &hwc->period_left))
9479                 return;
9480
9481         perf_swevent_overflow(event, 0, data, regs);
9482 }
9483
9484 static int perf_exclude_event(struct perf_event *event,
9485                               struct pt_regs *regs)
9486 {
9487         if (event->hw.state & PERF_HES_STOPPED)
9488                 return 1;
9489
9490         if (regs) {
9491                 if (event->attr.exclude_user && user_mode(regs))
9492                         return 1;
9493
9494                 if (event->attr.exclude_kernel && !user_mode(regs))
9495                         return 1;
9496         }
9497
9498         return 0;
9499 }
9500
9501 static int perf_swevent_match(struct perf_event *event,
9502                                 enum perf_type_id type,
9503                                 u32 event_id,
9504                                 struct perf_sample_data *data,
9505                                 struct pt_regs *regs)
9506 {
9507         if (event->attr.type != type)
9508                 return 0;
9509
9510         if (event->attr.config != event_id)
9511                 return 0;
9512
9513         if (perf_exclude_event(event, regs))
9514                 return 0;
9515
9516         return 1;
9517 }
9518
9519 static inline u64 swevent_hash(u64 type, u32 event_id)
9520 {
9521         u64 val = event_id | (type << 32);
9522
9523         return hash_64(val, SWEVENT_HLIST_BITS);
9524 }
9525
9526 static inline struct hlist_head *
9527 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9528 {
9529         u64 hash = swevent_hash(type, event_id);
9530
9531         return &hlist->heads[hash];
9532 }
9533
9534 /* For the read side: events when they trigger */
9535 static inline struct hlist_head *
9536 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9537 {
9538         struct swevent_hlist *hlist;
9539
9540         hlist = rcu_dereference(swhash->swevent_hlist);
9541         if (!hlist)
9542                 return NULL;
9543
9544         return __find_swevent_head(hlist, type, event_id);
9545 }
9546
9547 /* For the event head insertion and removal in the hlist */
9548 static inline struct hlist_head *
9549 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9550 {
9551         struct swevent_hlist *hlist;
9552         u32 event_id = event->attr.config;
9553         u64 type = event->attr.type;
9554
9555         /*
9556          * Event scheduling is always serialized against hlist allocation
9557          * and release. Which makes the protected version suitable here.
9558          * The context lock guarantees that.
9559          */
9560         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9561                                           lockdep_is_held(&event->ctx->lock));
9562         if (!hlist)
9563                 return NULL;
9564
9565         return __find_swevent_head(hlist, type, event_id);
9566 }
9567
9568 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9569                                     u64 nr,
9570                                     struct perf_sample_data *data,
9571                                     struct pt_regs *regs)
9572 {
9573         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9574         struct perf_event *event;
9575         struct hlist_head *head;
9576
9577         rcu_read_lock();
9578         head = find_swevent_head_rcu(swhash, type, event_id);
9579         if (!head)
9580                 goto end;
9581
9582         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9583                 if (perf_swevent_match(event, type, event_id, data, regs))
9584                         perf_swevent_event(event, nr, data, regs);
9585         }
9586 end:
9587         rcu_read_unlock();
9588 }
9589
9590 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9591
9592 int perf_swevent_get_recursion_context(void)
9593 {
9594         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9595
9596         return get_recursion_context(swhash->recursion);
9597 }
9598 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9599
9600 void perf_swevent_put_recursion_context(int rctx)
9601 {
9602         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9603
9604         put_recursion_context(swhash->recursion, rctx);
9605 }
9606
9607 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9608 {
9609         struct perf_sample_data data;
9610
9611         if (WARN_ON_ONCE(!regs))
9612                 return;
9613
9614         perf_sample_data_init(&data, addr, 0);
9615         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9616 }
9617
9618 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9619 {
9620         int rctx;
9621
9622         preempt_disable_notrace();
9623         rctx = perf_swevent_get_recursion_context();
9624         if (unlikely(rctx < 0))
9625                 goto fail;
9626
9627         ___perf_sw_event(event_id, nr, regs, addr);
9628
9629         perf_swevent_put_recursion_context(rctx);
9630 fail:
9631         preempt_enable_notrace();
9632 }
9633
9634 static void perf_swevent_read(struct perf_event *event)
9635 {
9636 }
9637
9638 static int perf_swevent_add(struct perf_event *event, int flags)
9639 {
9640         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9641         struct hw_perf_event *hwc = &event->hw;
9642         struct hlist_head *head;
9643
9644         if (is_sampling_event(event)) {
9645                 hwc->last_period = hwc->sample_period;
9646                 perf_swevent_set_period(event);
9647         }
9648
9649         hwc->state = !(flags & PERF_EF_START);
9650
9651         head = find_swevent_head(swhash, event);
9652         if (WARN_ON_ONCE(!head))
9653                 return -EINVAL;
9654
9655         hlist_add_head_rcu(&event->hlist_entry, head);
9656         perf_event_update_userpage(event);
9657
9658         return 0;
9659 }
9660
9661 static void perf_swevent_del(struct perf_event *event, int flags)
9662 {
9663         hlist_del_rcu(&event->hlist_entry);
9664 }
9665
9666 static void perf_swevent_start(struct perf_event *event, int flags)
9667 {
9668         event->hw.state = 0;
9669 }
9670
9671 static void perf_swevent_stop(struct perf_event *event, int flags)
9672 {
9673         event->hw.state = PERF_HES_STOPPED;
9674 }
9675
9676 /* Deref the hlist from the update side */
9677 static inline struct swevent_hlist *
9678 swevent_hlist_deref(struct swevent_htable *swhash)
9679 {
9680         return rcu_dereference_protected(swhash->swevent_hlist,
9681                                          lockdep_is_held(&swhash->hlist_mutex));
9682 }
9683
9684 static void swevent_hlist_release(struct swevent_htable *swhash)
9685 {
9686         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9687
9688         if (!hlist)
9689                 return;
9690
9691         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9692         kfree_rcu(hlist, rcu_head);
9693 }
9694
9695 static void swevent_hlist_put_cpu(int cpu)
9696 {
9697         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9698
9699         mutex_lock(&swhash->hlist_mutex);
9700
9701         if (!--swhash->hlist_refcount)
9702                 swevent_hlist_release(swhash);
9703
9704         mutex_unlock(&swhash->hlist_mutex);
9705 }
9706
9707 static void swevent_hlist_put(void)
9708 {
9709         int cpu;
9710
9711         for_each_possible_cpu(cpu)
9712                 swevent_hlist_put_cpu(cpu);
9713 }
9714
9715 static int swevent_hlist_get_cpu(int cpu)
9716 {
9717         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9718         int err = 0;
9719
9720         mutex_lock(&swhash->hlist_mutex);
9721         if (!swevent_hlist_deref(swhash) &&
9722             cpumask_test_cpu(cpu, perf_online_mask)) {
9723                 struct swevent_hlist *hlist;
9724
9725                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9726                 if (!hlist) {
9727                         err = -ENOMEM;
9728                         goto exit;
9729                 }
9730                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9731         }
9732         swhash->hlist_refcount++;
9733 exit:
9734         mutex_unlock(&swhash->hlist_mutex);
9735
9736         return err;
9737 }
9738
9739 static int swevent_hlist_get(void)
9740 {
9741         int err, cpu, failed_cpu;
9742
9743         mutex_lock(&pmus_lock);
9744         for_each_possible_cpu(cpu) {
9745                 err = swevent_hlist_get_cpu(cpu);
9746                 if (err) {
9747                         failed_cpu = cpu;
9748                         goto fail;
9749                 }
9750         }
9751         mutex_unlock(&pmus_lock);
9752         return 0;
9753 fail:
9754         for_each_possible_cpu(cpu) {
9755                 if (cpu == failed_cpu)
9756                         break;
9757                 swevent_hlist_put_cpu(cpu);
9758         }
9759         mutex_unlock(&pmus_lock);
9760         return err;
9761 }
9762
9763 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9764
9765 static void sw_perf_event_destroy(struct perf_event *event)
9766 {
9767         u64 event_id = event->attr.config;
9768
9769         WARN_ON(event->parent);
9770
9771         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9772         swevent_hlist_put();
9773 }
9774
9775 static int perf_swevent_init(struct perf_event *event)
9776 {
9777         u64 event_id = event->attr.config;
9778
9779         if (event->attr.type != PERF_TYPE_SOFTWARE)
9780                 return -ENOENT;
9781
9782         /*
9783          * no branch sampling for software events
9784          */
9785         if (has_branch_stack(event))
9786                 return -EOPNOTSUPP;
9787
9788         switch (event_id) {
9789         case PERF_COUNT_SW_CPU_CLOCK:
9790         case PERF_COUNT_SW_TASK_CLOCK:
9791                 return -ENOENT;
9792
9793         default:
9794                 break;
9795         }
9796
9797         if (event_id >= PERF_COUNT_SW_MAX)
9798                 return -ENOENT;
9799
9800         if (!event->parent) {
9801                 int err;
9802
9803                 err = swevent_hlist_get();
9804                 if (err)
9805                         return err;
9806
9807                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9808                 event->destroy = sw_perf_event_destroy;
9809         }
9810
9811         return 0;
9812 }
9813
9814 static struct pmu perf_swevent = {
9815         .task_ctx_nr    = perf_sw_context,
9816
9817         .capabilities   = PERF_PMU_CAP_NO_NMI,
9818
9819         .event_init     = perf_swevent_init,
9820         .add            = perf_swevent_add,
9821         .del            = perf_swevent_del,
9822         .start          = perf_swevent_start,
9823         .stop           = perf_swevent_stop,
9824         .read           = perf_swevent_read,
9825 };
9826
9827 #ifdef CONFIG_EVENT_TRACING
9828
9829 static int perf_tp_filter_match(struct perf_event *event,
9830                                 struct perf_sample_data *data)
9831 {
9832         void *record = data->raw->frag.data;
9833
9834         /* only top level events have filters set */
9835         if (event->parent)
9836                 event = event->parent;
9837
9838         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9839                 return 1;
9840         return 0;
9841 }
9842
9843 static int perf_tp_event_match(struct perf_event *event,
9844                                 struct perf_sample_data *data,
9845                                 struct pt_regs *regs)
9846 {
9847         if (event->hw.state & PERF_HES_STOPPED)
9848                 return 0;
9849         /*
9850          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9851          */
9852         if (event->attr.exclude_kernel && !user_mode(regs))
9853                 return 0;
9854
9855         if (!perf_tp_filter_match(event, data))
9856                 return 0;
9857
9858         return 1;
9859 }
9860
9861 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9862                                struct trace_event_call *call, u64 count,
9863                                struct pt_regs *regs, struct hlist_head *head,
9864                                struct task_struct *task)
9865 {
9866         if (bpf_prog_array_valid(call)) {
9867                 *(struct pt_regs **)raw_data = regs;
9868                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9869                         perf_swevent_put_recursion_context(rctx);
9870                         return;
9871                 }
9872         }
9873         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9874                       rctx, task);
9875 }
9876 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9877
9878 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9879                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9880                    struct task_struct *task)
9881 {
9882         struct perf_sample_data data;
9883         struct perf_event *event;
9884
9885         struct perf_raw_record raw = {
9886                 .frag = {
9887                         .size = entry_size,
9888                         .data = record,
9889                 },
9890         };
9891
9892         perf_sample_data_init(&data, 0, 0);
9893         data.raw = &raw;
9894         data.sample_flags |= PERF_SAMPLE_RAW;
9895
9896         perf_trace_buf_update(record, event_type);
9897
9898         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9899                 if (perf_tp_event_match(event, &data, regs))
9900                         perf_swevent_event(event, count, &data, regs);
9901         }
9902
9903         /*
9904          * If we got specified a target task, also iterate its context and
9905          * deliver this event there too.
9906          */
9907         if (task && task != current) {
9908                 struct perf_event_context *ctx;
9909                 struct trace_entry *entry = record;
9910
9911                 rcu_read_lock();
9912                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9913                 if (!ctx)
9914                         goto unlock;
9915
9916                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9917                         if (event->cpu != smp_processor_id())
9918                                 continue;
9919                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9920                                 continue;
9921                         if (event->attr.config != entry->type)
9922                                 continue;
9923                         /* Cannot deliver synchronous signal to other task. */
9924                         if (event->attr.sigtrap)
9925                                 continue;
9926                         if (perf_tp_event_match(event, &data, regs))
9927                                 perf_swevent_event(event, count, &data, regs);
9928                 }
9929 unlock:
9930                 rcu_read_unlock();
9931         }
9932
9933         perf_swevent_put_recursion_context(rctx);
9934 }
9935 EXPORT_SYMBOL_GPL(perf_tp_event);
9936
9937 static void tp_perf_event_destroy(struct perf_event *event)
9938 {
9939         perf_trace_destroy(event);
9940 }
9941
9942 static int perf_tp_event_init(struct perf_event *event)
9943 {
9944         int err;
9945
9946         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9947                 return -ENOENT;
9948
9949         /*
9950          * no branch sampling for tracepoint events
9951          */
9952         if (has_branch_stack(event))
9953                 return -EOPNOTSUPP;
9954
9955         err = perf_trace_init(event);
9956         if (err)
9957                 return err;
9958
9959         event->destroy = tp_perf_event_destroy;
9960
9961         return 0;
9962 }
9963
9964 static struct pmu perf_tracepoint = {
9965         .task_ctx_nr    = perf_sw_context,
9966
9967         .event_init     = perf_tp_event_init,
9968         .add            = perf_trace_add,
9969         .del            = perf_trace_del,
9970         .start          = perf_swevent_start,
9971         .stop           = perf_swevent_stop,
9972         .read           = perf_swevent_read,
9973 };
9974
9975 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9976 /*
9977  * Flags in config, used by dynamic PMU kprobe and uprobe
9978  * The flags should match following PMU_FORMAT_ATTR().
9979  *
9980  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9981  *                               if not set, create kprobe/uprobe
9982  *
9983  * The following values specify a reference counter (or semaphore in the
9984  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9985  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9986  *
9987  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9988  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9989  */
9990 enum perf_probe_config {
9991         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9992         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9993         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9994 };
9995
9996 PMU_FORMAT_ATTR(retprobe, "config:0");
9997 #endif
9998
9999 #ifdef CONFIG_KPROBE_EVENTS
10000 static struct attribute *kprobe_attrs[] = {
10001         &format_attr_retprobe.attr,
10002         NULL,
10003 };
10004
10005 static struct attribute_group kprobe_format_group = {
10006         .name = "format",
10007         .attrs = kprobe_attrs,
10008 };
10009
10010 static const struct attribute_group *kprobe_attr_groups[] = {
10011         &kprobe_format_group,
10012         NULL,
10013 };
10014
10015 static int perf_kprobe_event_init(struct perf_event *event);
10016 static struct pmu perf_kprobe = {
10017         .task_ctx_nr    = perf_sw_context,
10018         .event_init     = perf_kprobe_event_init,
10019         .add            = perf_trace_add,
10020         .del            = perf_trace_del,
10021         .start          = perf_swevent_start,
10022         .stop           = perf_swevent_stop,
10023         .read           = perf_swevent_read,
10024         .attr_groups    = kprobe_attr_groups,
10025 };
10026
10027 static int perf_kprobe_event_init(struct perf_event *event)
10028 {
10029         int err;
10030         bool is_retprobe;
10031
10032         if (event->attr.type != perf_kprobe.type)
10033                 return -ENOENT;
10034
10035         if (!perfmon_capable())
10036                 return -EACCES;
10037
10038         /*
10039          * no branch sampling for probe events
10040          */
10041         if (has_branch_stack(event))
10042                 return -EOPNOTSUPP;
10043
10044         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10045         err = perf_kprobe_init(event, is_retprobe);
10046         if (err)
10047                 return err;
10048
10049         event->destroy = perf_kprobe_destroy;
10050
10051         return 0;
10052 }
10053 #endif /* CONFIG_KPROBE_EVENTS */
10054
10055 #ifdef CONFIG_UPROBE_EVENTS
10056 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10057
10058 static struct attribute *uprobe_attrs[] = {
10059         &format_attr_retprobe.attr,
10060         &format_attr_ref_ctr_offset.attr,
10061         NULL,
10062 };
10063
10064 static struct attribute_group uprobe_format_group = {
10065         .name = "format",
10066         .attrs = uprobe_attrs,
10067 };
10068
10069 static const struct attribute_group *uprobe_attr_groups[] = {
10070         &uprobe_format_group,
10071         NULL,
10072 };
10073
10074 static int perf_uprobe_event_init(struct perf_event *event);
10075 static struct pmu perf_uprobe = {
10076         .task_ctx_nr    = perf_sw_context,
10077         .event_init     = perf_uprobe_event_init,
10078         .add            = perf_trace_add,
10079         .del            = perf_trace_del,
10080         .start          = perf_swevent_start,
10081         .stop           = perf_swevent_stop,
10082         .read           = perf_swevent_read,
10083         .attr_groups    = uprobe_attr_groups,
10084 };
10085
10086 static int perf_uprobe_event_init(struct perf_event *event)
10087 {
10088         int err;
10089         unsigned long ref_ctr_offset;
10090         bool is_retprobe;
10091
10092         if (event->attr.type != perf_uprobe.type)
10093                 return -ENOENT;
10094
10095         if (!perfmon_capable())
10096                 return -EACCES;
10097
10098         /*
10099          * no branch sampling for probe events
10100          */
10101         if (has_branch_stack(event))
10102                 return -EOPNOTSUPP;
10103
10104         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10105         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10106         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10107         if (err)
10108                 return err;
10109
10110         event->destroy = perf_uprobe_destroy;
10111
10112         return 0;
10113 }
10114 #endif /* CONFIG_UPROBE_EVENTS */
10115
10116 static inline void perf_tp_register(void)
10117 {
10118         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10119 #ifdef CONFIG_KPROBE_EVENTS
10120         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10121 #endif
10122 #ifdef CONFIG_UPROBE_EVENTS
10123         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10124 #endif
10125 }
10126
10127 static void perf_event_free_filter(struct perf_event *event)
10128 {
10129         ftrace_profile_free_filter(event);
10130 }
10131
10132 #ifdef CONFIG_BPF_SYSCALL
10133 static void bpf_overflow_handler(struct perf_event *event,
10134                                  struct perf_sample_data *data,
10135                                  struct pt_regs *regs)
10136 {
10137         struct bpf_perf_event_data_kern ctx = {
10138                 .data = data,
10139                 .event = event,
10140         };
10141         struct bpf_prog *prog;
10142         int ret = 0;
10143
10144         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10145         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10146                 goto out;
10147         rcu_read_lock();
10148         prog = READ_ONCE(event->prog);
10149         if (prog) {
10150                 if (prog->call_get_stack &&
10151                     (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) &&
10152                     !(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) {
10153                         data->callchain = perf_callchain(event, regs);
10154                         data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
10155                 }
10156
10157                 ret = bpf_prog_run(prog, &ctx);
10158         }
10159         rcu_read_unlock();
10160 out:
10161         __this_cpu_dec(bpf_prog_active);
10162         if (!ret)
10163                 return;
10164
10165         event->orig_overflow_handler(event, data, regs);
10166 }
10167
10168 static int perf_event_set_bpf_handler(struct perf_event *event,
10169                                       struct bpf_prog *prog,
10170                                       u64 bpf_cookie)
10171 {
10172         if (event->overflow_handler_context)
10173                 /* hw breakpoint or kernel counter */
10174                 return -EINVAL;
10175
10176         if (event->prog)
10177                 return -EEXIST;
10178
10179         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10180                 return -EINVAL;
10181
10182         if (event->attr.precise_ip &&
10183             prog->call_get_stack &&
10184             (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10185              event->attr.exclude_callchain_kernel ||
10186              event->attr.exclude_callchain_user)) {
10187                 /*
10188                  * On perf_event with precise_ip, calling bpf_get_stack()
10189                  * may trigger unwinder warnings and occasional crashes.
10190                  * bpf_get_[stack|stackid] works around this issue by using
10191                  * callchain attached to perf_sample_data. If the
10192                  * perf_event does not full (kernel and user) callchain
10193                  * attached to perf_sample_data, do not allow attaching BPF
10194                  * program that calls bpf_get_[stack|stackid].
10195                  */
10196                 return -EPROTO;
10197         }
10198
10199         event->prog = prog;
10200         event->bpf_cookie = bpf_cookie;
10201         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10202         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10203         return 0;
10204 }
10205
10206 static void perf_event_free_bpf_handler(struct perf_event *event)
10207 {
10208         struct bpf_prog *prog = event->prog;
10209
10210         if (!prog)
10211                 return;
10212
10213         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10214         event->prog = NULL;
10215         bpf_prog_put(prog);
10216 }
10217 #else
10218 static int perf_event_set_bpf_handler(struct perf_event *event,
10219                                       struct bpf_prog *prog,
10220                                       u64 bpf_cookie)
10221 {
10222         return -EOPNOTSUPP;
10223 }
10224 static void perf_event_free_bpf_handler(struct perf_event *event)
10225 {
10226 }
10227 #endif
10228
10229 /*
10230  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10231  * with perf_event_open()
10232  */
10233 static inline bool perf_event_is_tracing(struct perf_event *event)
10234 {
10235         if (event->pmu == &perf_tracepoint)
10236                 return true;
10237 #ifdef CONFIG_KPROBE_EVENTS
10238         if (event->pmu == &perf_kprobe)
10239                 return true;
10240 #endif
10241 #ifdef CONFIG_UPROBE_EVENTS
10242         if (event->pmu == &perf_uprobe)
10243                 return true;
10244 #endif
10245         return false;
10246 }
10247
10248 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10249                             u64 bpf_cookie)
10250 {
10251         bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10252
10253         if (!perf_event_is_tracing(event))
10254                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10255
10256         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10257         is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10258         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10259         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10260         if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10261                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10262                 return -EINVAL;
10263
10264         if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10265             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10266             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10267                 return -EINVAL;
10268
10269         if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10270                 /* only uprobe programs are allowed to be sleepable */
10271                 return -EINVAL;
10272
10273         /* Kprobe override only works for kprobes, not uprobes. */
10274         if (prog->kprobe_override && !is_kprobe)
10275                 return -EINVAL;
10276
10277         if (is_tracepoint || is_syscall_tp) {
10278                 int off = trace_event_get_offsets(event->tp_event);
10279
10280                 if (prog->aux->max_ctx_offset > off)
10281                         return -EACCES;
10282         }
10283
10284         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10285 }
10286
10287 void perf_event_free_bpf_prog(struct perf_event *event)
10288 {
10289         if (!perf_event_is_tracing(event)) {
10290                 perf_event_free_bpf_handler(event);
10291                 return;
10292         }
10293         perf_event_detach_bpf_prog(event);
10294 }
10295
10296 #else
10297
10298 static inline void perf_tp_register(void)
10299 {
10300 }
10301
10302 static void perf_event_free_filter(struct perf_event *event)
10303 {
10304 }
10305
10306 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10307                             u64 bpf_cookie)
10308 {
10309         return -ENOENT;
10310 }
10311
10312 void perf_event_free_bpf_prog(struct perf_event *event)
10313 {
10314 }
10315 #endif /* CONFIG_EVENT_TRACING */
10316
10317 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10318 void perf_bp_event(struct perf_event *bp, void *data)
10319 {
10320         struct perf_sample_data sample;
10321         struct pt_regs *regs = data;
10322
10323         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10324
10325         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10326                 perf_swevent_event(bp, 1, &sample, regs);
10327 }
10328 #endif
10329
10330 /*
10331  * Allocate a new address filter
10332  */
10333 static struct perf_addr_filter *
10334 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10335 {
10336         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10337         struct perf_addr_filter *filter;
10338
10339         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10340         if (!filter)
10341                 return NULL;
10342
10343         INIT_LIST_HEAD(&filter->entry);
10344         list_add_tail(&filter->entry, filters);
10345
10346         return filter;
10347 }
10348
10349 static void free_filters_list(struct list_head *filters)
10350 {
10351         struct perf_addr_filter *filter, *iter;
10352
10353         list_for_each_entry_safe(filter, iter, filters, entry) {
10354                 path_put(&filter->path);
10355                 list_del(&filter->entry);
10356                 kfree(filter);
10357         }
10358 }
10359
10360 /*
10361  * Free existing address filters and optionally install new ones
10362  */
10363 static void perf_addr_filters_splice(struct perf_event *event,
10364                                      struct list_head *head)
10365 {
10366         unsigned long flags;
10367         LIST_HEAD(list);
10368
10369         if (!has_addr_filter(event))
10370                 return;
10371
10372         /* don't bother with children, they don't have their own filters */
10373         if (event->parent)
10374                 return;
10375
10376         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10377
10378         list_splice_init(&event->addr_filters.list, &list);
10379         if (head)
10380                 list_splice(head, &event->addr_filters.list);
10381
10382         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10383
10384         free_filters_list(&list);
10385 }
10386
10387 /*
10388  * Scan through mm's vmas and see if one of them matches the
10389  * @filter; if so, adjust filter's address range.
10390  * Called with mm::mmap_lock down for reading.
10391  */
10392 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10393                                    struct mm_struct *mm,
10394                                    struct perf_addr_filter_range *fr)
10395 {
10396         struct vm_area_struct *vma;
10397         VMA_ITERATOR(vmi, mm, 0);
10398
10399         for_each_vma(vmi, vma) {
10400                 if (!vma->vm_file)
10401                         continue;
10402
10403                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10404                         return;
10405         }
10406 }
10407
10408 /*
10409  * Update event's address range filters based on the
10410  * task's existing mappings, if any.
10411  */
10412 static void perf_event_addr_filters_apply(struct perf_event *event)
10413 {
10414         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10415         struct task_struct *task = READ_ONCE(event->ctx->task);
10416         struct perf_addr_filter *filter;
10417         struct mm_struct *mm = NULL;
10418         unsigned int count = 0;
10419         unsigned long flags;
10420
10421         /*
10422          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10423          * will stop on the parent's child_mutex that our caller is also holding
10424          */
10425         if (task == TASK_TOMBSTONE)
10426                 return;
10427
10428         if (ifh->nr_file_filters) {
10429                 mm = get_task_mm(task);
10430                 if (!mm)
10431                         goto restart;
10432
10433                 mmap_read_lock(mm);
10434         }
10435
10436         raw_spin_lock_irqsave(&ifh->lock, flags);
10437         list_for_each_entry(filter, &ifh->list, entry) {
10438                 if (filter->path.dentry) {
10439                         /*
10440                          * Adjust base offset if the filter is associated to a
10441                          * binary that needs to be mapped:
10442                          */
10443                         event->addr_filter_ranges[count].start = 0;
10444                         event->addr_filter_ranges[count].size = 0;
10445
10446                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10447                 } else {
10448                         event->addr_filter_ranges[count].start = filter->offset;
10449                         event->addr_filter_ranges[count].size  = filter->size;
10450                 }
10451
10452                 count++;
10453         }
10454
10455         event->addr_filters_gen++;
10456         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10457
10458         if (ifh->nr_file_filters) {
10459                 mmap_read_unlock(mm);
10460
10461                 mmput(mm);
10462         }
10463
10464 restart:
10465         perf_event_stop(event, 1);
10466 }
10467
10468 /*
10469  * Address range filtering: limiting the data to certain
10470  * instruction address ranges. Filters are ioctl()ed to us from
10471  * userspace as ascii strings.
10472  *
10473  * Filter string format:
10474  *
10475  * ACTION RANGE_SPEC
10476  * where ACTION is one of the
10477  *  * "filter": limit the trace to this region
10478  *  * "start": start tracing from this address
10479  *  * "stop": stop tracing at this address/region;
10480  * RANGE_SPEC is
10481  *  * for kernel addresses: <start address>[/<size>]
10482  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10483  *
10484  * if <size> is not specified or is zero, the range is treated as a single
10485  * address; not valid for ACTION=="filter".
10486  */
10487 enum {
10488         IF_ACT_NONE = -1,
10489         IF_ACT_FILTER,
10490         IF_ACT_START,
10491         IF_ACT_STOP,
10492         IF_SRC_FILE,
10493         IF_SRC_KERNEL,
10494         IF_SRC_FILEADDR,
10495         IF_SRC_KERNELADDR,
10496 };
10497
10498 enum {
10499         IF_STATE_ACTION = 0,
10500         IF_STATE_SOURCE,
10501         IF_STATE_END,
10502 };
10503
10504 static const match_table_t if_tokens = {
10505         { IF_ACT_FILTER,        "filter" },
10506         { IF_ACT_START,         "start" },
10507         { IF_ACT_STOP,          "stop" },
10508         { IF_SRC_FILE,          "%u/%u@%s" },
10509         { IF_SRC_KERNEL,        "%u/%u" },
10510         { IF_SRC_FILEADDR,      "%u@%s" },
10511         { IF_SRC_KERNELADDR,    "%u" },
10512         { IF_ACT_NONE,          NULL },
10513 };
10514
10515 /*
10516  * Address filter string parser
10517  */
10518 static int
10519 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10520                              struct list_head *filters)
10521 {
10522         struct perf_addr_filter *filter = NULL;
10523         char *start, *orig, *filename = NULL;
10524         substring_t args[MAX_OPT_ARGS];
10525         int state = IF_STATE_ACTION, token;
10526         unsigned int kernel = 0;
10527         int ret = -EINVAL;
10528
10529         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10530         if (!fstr)
10531                 return -ENOMEM;
10532
10533         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10534                 static const enum perf_addr_filter_action_t actions[] = {
10535                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10536                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10537                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10538                 };
10539                 ret = -EINVAL;
10540
10541                 if (!*start)
10542                         continue;
10543
10544                 /* filter definition begins */
10545                 if (state == IF_STATE_ACTION) {
10546                         filter = perf_addr_filter_new(event, filters);
10547                         if (!filter)
10548                                 goto fail;
10549                 }
10550
10551                 token = match_token(start, if_tokens, args);
10552                 switch (token) {
10553                 case IF_ACT_FILTER:
10554                 case IF_ACT_START:
10555                 case IF_ACT_STOP:
10556                         if (state != IF_STATE_ACTION)
10557                                 goto fail;
10558
10559                         filter->action = actions[token];
10560                         state = IF_STATE_SOURCE;
10561                         break;
10562
10563                 case IF_SRC_KERNELADDR:
10564                 case IF_SRC_KERNEL:
10565                         kernel = 1;
10566                         fallthrough;
10567
10568                 case IF_SRC_FILEADDR:
10569                 case IF_SRC_FILE:
10570                         if (state != IF_STATE_SOURCE)
10571                                 goto fail;
10572
10573                         *args[0].to = 0;
10574                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10575                         if (ret)
10576                                 goto fail;
10577
10578                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10579                                 *args[1].to = 0;
10580                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10581                                 if (ret)
10582                                         goto fail;
10583                         }
10584
10585                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10586                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10587
10588                                 kfree(filename);
10589                                 filename = match_strdup(&args[fpos]);
10590                                 if (!filename) {
10591                                         ret = -ENOMEM;
10592                                         goto fail;
10593                                 }
10594                         }
10595
10596                         state = IF_STATE_END;
10597                         break;
10598
10599                 default:
10600                         goto fail;
10601                 }
10602
10603                 /*
10604                  * Filter definition is fully parsed, validate and install it.
10605                  * Make sure that it doesn't contradict itself or the event's
10606                  * attribute.
10607                  */
10608                 if (state == IF_STATE_END) {
10609                         ret = -EINVAL;
10610
10611                         /*
10612                          * ACTION "filter" must have a non-zero length region
10613                          * specified.
10614                          */
10615                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10616                             !filter->size)
10617                                 goto fail;
10618
10619                         if (!kernel) {
10620                                 if (!filename)
10621                                         goto fail;
10622
10623                                 /*
10624                                  * For now, we only support file-based filters
10625                                  * in per-task events; doing so for CPU-wide
10626                                  * events requires additional context switching
10627                                  * trickery, since same object code will be
10628                                  * mapped at different virtual addresses in
10629                                  * different processes.
10630                                  */
10631                                 ret = -EOPNOTSUPP;
10632                                 if (!event->ctx->task)
10633                                         goto fail;
10634
10635                                 /* look up the path and grab its inode */
10636                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10637                                                 &filter->path);
10638                                 if (ret)
10639                                         goto fail;
10640
10641                                 ret = -EINVAL;
10642                                 if (!filter->path.dentry ||
10643                                     !S_ISREG(d_inode(filter->path.dentry)
10644                                              ->i_mode))
10645                                         goto fail;
10646
10647                                 event->addr_filters.nr_file_filters++;
10648                         }
10649
10650                         /* ready to consume more filters */
10651                         kfree(filename);
10652                         filename = NULL;
10653                         state = IF_STATE_ACTION;
10654                         filter = NULL;
10655                         kernel = 0;
10656                 }
10657         }
10658
10659         if (state != IF_STATE_ACTION)
10660                 goto fail;
10661
10662         kfree(filename);
10663         kfree(orig);
10664
10665         return 0;
10666
10667 fail:
10668         kfree(filename);
10669         free_filters_list(filters);
10670         kfree(orig);
10671
10672         return ret;
10673 }
10674
10675 static int
10676 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10677 {
10678         LIST_HEAD(filters);
10679         int ret;
10680
10681         /*
10682          * Since this is called in perf_ioctl() path, we're already holding
10683          * ctx::mutex.
10684          */
10685         lockdep_assert_held(&event->ctx->mutex);
10686
10687         if (WARN_ON_ONCE(event->parent))
10688                 return -EINVAL;
10689
10690         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10691         if (ret)
10692                 goto fail_clear_files;
10693
10694         ret = event->pmu->addr_filters_validate(&filters);
10695         if (ret)
10696                 goto fail_free_filters;
10697
10698         /* remove existing filters, if any */
10699         perf_addr_filters_splice(event, &filters);
10700
10701         /* install new filters */
10702         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10703
10704         return ret;
10705
10706 fail_free_filters:
10707         free_filters_list(&filters);
10708
10709 fail_clear_files:
10710         event->addr_filters.nr_file_filters = 0;
10711
10712         return ret;
10713 }
10714
10715 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10716 {
10717         int ret = -EINVAL;
10718         char *filter_str;
10719
10720         filter_str = strndup_user(arg, PAGE_SIZE);
10721         if (IS_ERR(filter_str))
10722                 return PTR_ERR(filter_str);
10723
10724 #ifdef CONFIG_EVENT_TRACING
10725         if (perf_event_is_tracing(event)) {
10726                 struct perf_event_context *ctx = event->ctx;
10727
10728                 /*
10729                  * Beware, here be dragons!!
10730                  *
10731                  * the tracepoint muck will deadlock against ctx->mutex, but
10732                  * the tracepoint stuff does not actually need it. So
10733                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10734                  * already have a reference on ctx.
10735                  *
10736                  * This can result in event getting moved to a different ctx,
10737                  * but that does not affect the tracepoint state.
10738                  */
10739                 mutex_unlock(&ctx->mutex);
10740                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10741                 mutex_lock(&ctx->mutex);
10742         } else
10743 #endif
10744         if (has_addr_filter(event))
10745                 ret = perf_event_set_addr_filter(event, filter_str);
10746
10747         kfree(filter_str);
10748         return ret;
10749 }
10750
10751 /*
10752  * hrtimer based swevent callback
10753  */
10754
10755 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10756 {
10757         enum hrtimer_restart ret = HRTIMER_RESTART;
10758         struct perf_sample_data data;
10759         struct pt_regs *regs;
10760         struct perf_event *event;
10761         u64 period;
10762
10763         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10764
10765         if (event->state != PERF_EVENT_STATE_ACTIVE)
10766                 return HRTIMER_NORESTART;
10767
10768         event->pmu->read(event);
10769
10770         perf_sample_data_init(&data, 0, event->hw.last_period);
10771         regs = get_irq_regs();
10772
10773         if (regs && !perf_exclude_event(event, regs)) {
10774                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10775                         if (__perf_event_overflow(event, 1, &data, regs))
10776                                 ret = HRTIMER_NORESTART;
10777         }
10778
10779         period = max_t(u64, 10000, event->hw.sample_period);
10780         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10781
10782         return ret;
10783 }
10784
10785 static void perf_swevent_start_hrtimer(struct perf_event *event)
10786 {
10787         struct hw_perf_event *hwc = &event->hw;
10788         s64 period;
10789
10790         if (!is_sampling_event(event))
10791                 return;
10792
10793         period = local64_read(&hwc->period_left);
10794         if (period) {
10795                 if (period < 0)
10796                         period = 10000;
10797
10798                 local64_set(&hwc->period_left, 0);
10799         } else {
10800                 period = max_t(u64, 10000, hwc->sample_period);
10801         }
10802         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10803                       HRTIMER_MODE_REL_PINNED_HARD);
10804 }
10805
10806 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10807 {
10808         struct hw_perf_event *hwc = &event->hw;
10809
10810         if (is_sampling_event(event)) {
10811                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10812                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10813
10814                 hrtimer_cancel(&hwc->hrtimer);
10815         }
10816 }
10817
10818 static void perf_swevent_init_hrtimer(struct perf_event *event)
10819 {
10820         struct hw_perf_event *hwc = &event->hw;
10821
10822         if (!is_sampling_event(event))
10823                 return;
10824
10825         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10826         hwc->hrtimer.function = perf_swevent_hrtimer;
10827
10828         /*
10829          * Since hrtimers have a fixed rate, we can do a static freq->period
10830          * mapping and avoid the whole period adjust feedback stuff.
10831          */
10832         if (event->attr.freq) {
10833                 long freq = event->attr.sample_freq;
10834
10835                 event->attr.sample_period = NSEC_PER_SEC / freq;
10836                 hwc->sample_period = event->attr.sample_period;
10837                 local64_set(&hwc->period_left, hwc->sample_period);
10838                 hwc->last_period = hwc->sample_period;
10839                 event->attr.freq = 0;
10840         }
10841 }
10842
10843 /*
10844  * Software event: cpu wall time clock
10845  */
10846
10847 static void cpu_clock_event_update(struct perf_event *event)
10848 {
10849         s64 prev;
10850         u64 now;
10851
10852         now = local_clock();
10853         prev = local64_xchg(&event->hw.prev_count, now);
10854         local64_add(now - prev, &event->count);
10855 }
10856
10857 static void cpu_clock_event_start(struct perf_event *event, int flags)
10858 {
10859         local64_set(&event->hw.prev_count, local_clock());
10860         perf_swevent_start_hrtimer(event);
10861 }
10862
10863 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10864 {
10865         perf_swevent_cancel_hrtimer(event);
10866         cpu_clock_event_update(event);
10867 }
10868
10869 static int cpu_clock_event_add(struct perf_event *event, int flags)
10870 {
10871         if (flags & PERF_EF_START)
10872                 cpu_clock_event_start(event, flags);
10873         perf_event_update_userpage(event);
10874
10875         return 0;
10876 }
10877
10878 static void cpu_clock_event_del(struct perf_event *event, int flags)
10879 {
10880         cpu_clock_event_stop(event, flags);
10881 }
10882
10883 static void cpu_clock_event_read(struct perf_event *event)
10884 {
10885         cpu_clock_event_update(event);
10886 }
10887
10888 static int cpu_clock_event_init(struct perf_event *event)
10889 {
10890         if (event->attr.type != PERF_TYPE_SOFTWARE)
10891                 return -ENOENT;
10892
10893         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10894                 return -ENOENT;
10895
10896         /*
10897          * no branch sampling for software events
10898          */
10899         if (has_branch_stack(event))
10900                 return -EOPNOTSUPP;
10901
10902         perf_swevent_init_hrtimer(event);
10903
10904         return 0;
10905 }
10906
10907 static struct pmu perf_cpu_clock = {
10908         .task_ctx_nr    = perf_sw_context,
10909
10910         .capabilities   = PERF_PMU_CAP_NO_NMI,
10911
10912         .event_init     = cpu_clock_event_init,
10913         .add            = cpu_clock_event_add,
10914         .del            = cpu_clock_event_del,
10915         .start          = cpu_clock_event_start,
10916         .stop           = cpu_clock_event_stop,
10917         .read           = cpu_clock_event_read,
10918 };
10919
10920 /*
10921  * Software event: task time clock
10922  */
10923
10924 static void task_clock_event_update(struct perf_event *event, u64 now)
10925 {
10926         u64 prev;
10927         s64 delta;
10928
10929         prev = local64_xchg(&event->hw.prev_count, now);
10930         delta = now - prev;
10931         local64_add(delta, &event->count);
10932 }
10933
10934 static void task_clock_event_start(struct perf_event *event, int flags)
10935 {
10936         local64_set(&event->hw.prev_count, event->ctx->time);
10937         perf_swevent_start_hrtimer(event);
10938 }
10939
10940 static void task_clock_event_stop(struct perf_event *event, int flags)
10941 {
10942         perf_swevent_cancel_hrtimer(event);
10943         task_clock_event_update(event, event->ctx->time);
10944 }
10945
10946 static int task_clock_event_add(struct perf_event *event, int flags)
10947 {
10948         if (flags & PERF_EF_START)
10949                 task_clock_event_start(event, flags);
10950         perf_event_update_userpage(event);
10951
10952         return 0;
10953 }
10954
10955 static void task_clock_event_del(struct perf_event *event, int flags)
10956 {
10957         task_clock_event_stop(event, PERF_EF_UPDATE);
10958 }
10959
10960 static void task_clock_event_read(struct perf_event *event)
10961 {
10962         u64 now = perf_clock();
10963         u64 delta = now - event->ctx->timestamp;
10964         u64 time = event->ctx->time + delta;
10965
10966         task_clock_event_update(event, time);
10967 }
10968
10969 static int task_clock_event_init(struct perf_event *event)
10970 {
10971         if (event->attr.type != PERF_TYPE_SOFTWARE)
10972                 return -ENOENT;
10973
10974         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10975                 return -ENOENT;
10976
10977         /*
10978          * no branch sampling for software events
10979          */
10980         if (has_branch_stack(event))
10981                 return -EOPNOTSUPP;
10982
10983         perf_swevent_init_hrtimer(event);
10984
10985         return 0;
10986 }
10987
10988 static struct pmu perf_task_clock = {
10989         .task_ctx_nr    = perf_sw_context,
10990
10991         .capabilities   = PERF_PMU_CAP_NO_NMI,
10992
10993         .event_init     = task_clock_event_init,
10994         .add            = task_clock_event_add,
10995         .del            = task_clock_event_del,
10996         .start          = task_clock_event_start,
10997         .stop           = task_clock_event_stop,
10998         .read           = task_clock_event_read,
10999 };
11000
11001 static void perf_pmu_nop_void(struct pmu *pmu)
11002 {
11003 }
11004
11005 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11006 {
11007 }
11008
11009 static int perf_pmu_nop_int(struct pmu *pmu)
11010 {
11011         return 0;
11012 }
11013
11014 static int perf_event_nop_int(struct perf_event *event, u64 value)
11015 {
11016         return 0;
11017 }
11018
11019 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11020
11021 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11022 {
11023         __this_cpu_write(nop_txn_flags, flags);
11024
11025         if (flags & ~PERF_PMU_TXN_ADD)
11026                 return;
11027
11028         perf_pmu_disable(pmu);
11029 }
11030
11031 static int perf_pmu_commit_txn(struct pmu *pmu)
11032 {
11033         unsigned int flags = __this_cpu_read(nop_txn_flags);
11034
11035         __this_cpu_write(nop_txn_flags, 0);
11036
11037         if (flags & ~PERF_PMU_TXN_ADD)
11038                 return 0;
11039
11040         perf_pmu_enable(pmu);
11041         return 0;
11042 }
11043
11044 static void perf_pmu_cancel_txn(struct pmu *pmu)
11045 {
11046         unsigned int flags =  __this_cpu_read(nop_txn_flags);
11047
11048         __this_cpu_write(nop_txn_flags, 0);
11049
11050         if (flags & ~PERF_PMU_TXN_ADD)
11051                 return;
11052
11053         perf_pmu_enable(pmu);
11054 }
11055
11056 static int perf_event_idx_default(struct perf_event *event)
11057 {
11058         return 0;
11059 }
11060
11061 /*
11062  * Ensures all contexts with the same task_ctx_nr have the same
11063  * pmu_cpu_context too.
11064  */
11065 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
11066 {
11067         struct pmu *pmu;
11068
11069         if (ctxn < 0)
11070                 return NULL;
11071
11072         list_for_each_entry(pmu, &pmus, entry) {
11073                 if (pmu->task_ctx_nr == ctxn)
11074                         return pmu->pmu_cpu_context;
11075         }
11076
11077         return NULL;
11078 }
11079
11080 static void free_pmu_context(struct pmu *pmu)
11081 {
11082         /*
11083          * Static contexts such as perf_sw_context have a global lifetime
11084          * and may be shared between different PMUs. Avoid freeing them
11085          * when a single PMU is going away.
11086          */
11087         if (pmu->task_ctx_nr > perf_invalid_context)
11088                 return;
11089
11090         free_percpu(pmu->pmu_cpu_context);
11091 }
11092
11093 /*
11094  * Let userspace know that this PMU supports address range filtering:
11095  */
11096 static ssize_t nr_addr_filters_show(struct device *dev,
11097                                     struct device_attribute *attr,
11098                                     char *page)
11099 {
11100         struct pmu *pmu = dev_get_drvdata(dev);
11101
11102         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11103 }
11104 DEVICE_ATTR_RO(nr_addr_filters);
11105
11106 static struct idr pmu_idr;
11107
11108 static ssize_t
11109 type_show(struct device *dev, struct device_attribute *attr, char *page)
11110 {
11111         struct pmu *pmu = dev_get_drvdata(dev);
11112
11113         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11114 }
11115 static DEVICE_ATTR_RO(type);
11116
11117 static ssize_t
11118 perf_event_mux_interval_ms_show(struct device *dev,
11119                                 struct device_attribute *attr,
11120                                 char *page)
11121 {
11122         struct pmu *pmu = dev_get_drvdata(dev);
11123
11124         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11125 }
11126
11127 static DEFINE_MUTEX(mux_interval_mutex);
11128
11129 static ssize_t
11130 perf_event_mux_interval_ms_store(struct device *dev,
11131                                  struct device_attribute *attr,
11132                                  const char *buf, size_t count)
11133 {
11134         struct pmu *pmu = dev_get_drvdata(dev);
11135         int timer, cpu, ret;
11136
11137         ret = kstrtoint(buf, 0, &timer);
11138         if (ret)
11139                 return ret;
11140
11141         if (timer < 1)
11142                 return -EINVAL;
11143
11144         /* same value, noting to do */
11145         if (timer == pmu->hrtimer_interval_ms)
11146                 return count;
11147
11148         mutex_lock(&mux_interval_mutex);
11149         pmu->hrtimer_interval_ms = timer;
11150
11151         /* update all cpuctx for this PMU */
11152         cpus_read_lock();
11153         for_each_online_cpu(cpu) {
11154                 struct perf_cpu_context *cpuctx;
11155                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11156                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11157
11158                 cpu_function_call(cpu,
11159                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11160         }
11161         cpus_read_unlock();
11162         mutex_unlock(&mux_interval_mutex);
11163
11164         return count;
11165 }
11166 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11167
11168 static struct attribute *pmu_dev_attrs[] = {
11169         &dev_attr_type.attr,
11170         &dev_attr_perf_event_mux_interval_ms.attr,
11171         NULL,
11172 };
11173 ATTRIBUTE_GROUPS(pmu_dev);
11174
11175 static int pmu_bus_running;
11176 static struct bus_type pmu_bus = {
11177         .name           = "event_source",
11178         .dev_groups     = pmu_dev_groups,
11179 };
11180
11181 static void pmu_dev_release(struct device *dev)
11182 {
11183         kfree(dev);
11184 }
11185
11186 static int pmu_dev_alloc(struct pmu *pmu)
11187 {
11188         int ret = -ENOMEM;
11189
11190         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11191         if (!pmu->dev)
11192                 goto out;
11193
11194         pmu->dev->groups = pmu->attr_groups;
11195         device_initialize(pmu->dev);
11196
11197         dev_set_drvdata(pmu->dev, pmu);
11198         pmu->dev->bus = &pmu_bus;
11199         pmu->dev->release = pmu_dev_release;
11200
11201         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11202         if (ret)
11203                 goto free_dev;
11204
11205         ret = device_add(pmu->dev);
11206         if (ret)
11207                 goto free_dev;
11208
11209         /* For PMUs with address filters, throw in an extra attribute: */
11210         if (pmu->nr_addr_filters)
11211                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11212
11213         if (ret)
11214                 goto del_dev;
11215
11216         if (pmu->attr_update)
11217                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11218
11219         if (ret)
11220                 goto del_dev;
11221
11222 out:
11223         return ret;
11224
11225 del_dev:
11226         device_del(pmu->dev);
11227
11228 free_dev:
11229         put_device(pmu->dev);
11230         goto out;
11231 }
11232
11233 static struct lock_class_key cpuctx_mutex;
11234 static struct lock_class_key cpuctx_lock;
11235
11236 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11237 {
11238         int cpu, ret, max = PERF_TYPE_MAX;
11239
11240         mutex_lock(&pmus_lock);
11241         ret = -ENOMEM;
11242         pmu->pmu_disable_count = alloc_percpu(int);
11243         if (!pmu->pmu_disable_count)
11244                 goto unlock;
11245
11246         pmu->type = -1;
11247         if (!name)
11248                 goto skip_type;
11249         pmu->name = name;
11250
11251         if (type != PERF_TYPE_SOFTWARE) {
11252                 if (type >= 0)
11253                         max = type;
11254
11255                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11256                 if (ret < 0)
11257                         goto free_pdc;
11258
11259                 WARN_ON(type >= 0 && ret != type);
11260
11261                 type = ret;
11262         }
11263         pmu->type = type;
11264
11265         if (pmu_bus_running) {
11266                 ret = pmu_dev_alloc(pmu);
11267                 if (ret)
11268                         goto free_idr;
11269         }
11270
11271 skip_type:
11272         if (pmu->task_ctx_nr == perf_hw_context) {
11273                 static int hw_context_taken = 0;
11274
11275                 /*
11276                  * Other than systems with heterogeneous CPUs, it never makes
11277                  * sense for two PMUs to share perf_hw_context. PMUs which are
11278                  * uncore must use perf_invalid_context.
11279                  */
11280                 if (WARN_ON_ONCE(hw_context_taken &&
11281                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11282                         pmu->task_ctx_nr = perf_invalid_context;
11283
11284                 hw_context_taken = 1;
11285         }
11286
11287         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11288         if (pmu->pmu_cpu_context)
11289                 goto got_cpu_context;
11290
11291         ret = -ENOMEM;
11292         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11293         if (!pmu->pmu_cpu_context)
11294                 goto free_dev;
11295
11296         for_each_possible_cpu(cpu) {
11297                 struct perf_cpu_context *cpuctx;
11298
11299                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11300                 __perf_event_init_context(&cpuctx->ctx);
11301                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11302                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11303                 cpuctx->ctx.pmu = pmu;
11304                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11305
11306                 __perf_mux_hrtimer_init(cpuctx, cpu);
11307
11308                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11309                 cpuctx->heap = cpuctx->heap_default;
11310         }
11311
11312 got_cpu_context:
11313         if (!pmu->start_txn) {
11314                 if (pmu->pmu_enable) {
11315                         /*
11316                          * If we have pmu_enable/pmu_disable calls, install
11317                          * transaction stubs that use that to try and batch
11318                          * hardware accesses.
11319                          */
11320                         pmu->start_txn  = perf_pmu_start_txn;
11321                         pmu->commit_txn = perf_pmu_commit_txn;
11322                         pmu->cancel_txn = perf_pmu_cancel_txn;
11323                 } else {
11324                         pmu->start_txn  = perf_pmu_nop_txn;
11325                         pmu->commit_txn = perf_pmu_nop_int;
11326                         pmu->cancel_txn = perf_pmu_nop_void;
11327                 }
11328         }
11329
11330         if (!pmu->pmu_enable) {
11331                 pmu->pmu_enable  = perf_pmu_nop_void;
11332                 pmu->pmu_disable = perf_pmu_nop_void;
11333         }
11334
11335         if (!pmu->check_period)
11336                 pmu->check_period = perf_event_nop_int;
11337
11338         if (!pmu->event_idx)
11339                 pmu->event_idx = perf_event_idx_default;
11340
11341         /*
11342          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11343          * since these cannot be in the IDR. This way the linear search
11344          * is fast, provided a valid software event is provided.
11345          */
11346         if (type == PERF_TYPE_SOFTWARE || !name)
11347                 list_add_rcu(&pmu->entry, &pmus);
11348         else
11349                 list_add_tail_rcu(&pmu->entry, &pmus);
11350
11351         atomic_set(&pmu->exclusive_cnt, 0);
11352         ret = 0;
11353 unlock:
11354         mutex_unlock(&pmus_lock);
11355
11356         return ret;
11357
11358 free_dev:
11359         device_del(pmu->dev);
11360         put_device(pmu->dev);
11361
11362 free_idr:
11363         if (pmu->type != PERF_TYPE_SOFTWARE)
11364                 idr_remove(&pmu_idr, pmu->type);
11365
11366 free_pdc:
11367         free_percpu(pmu->pmu_disable_count);
11368         goto unlock;
11369 }
11370 EXPORT_SYMBOL_GPL(perf_pmu_register);
11371
11372 void perf_pmu_unregister(struct pmu *pmu)
11373 {
11374         mutex_lock(&pmus_lock);
11375         list_del_rcu(&pmu->entry);
11376
11377         /*
11378          * We dereference the pmu list under both SRCU and regular RCU, so
11379          * synchronize against both of those.
11380          */
11381         synchronize_srcu(&pmus_srcu);
11382         synchronize_rcu();
11383
11384         free_percpu(pmu->pmu_disable_count);
11385         if (pmu->type != PERF_TYPE_SOFTWARE)
11386                 idr_remove(&pmu_idr, pmu->type);
11387         if (pmu_bus_running) {
11388                 if (pmu->nr_addr_filters)
11389                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11390                 device_del(pmu->dev);
11391                 put_device(pmu->dev);
11392         }
11393         free_pmu_context(pmu);
11394         mutex_unlock(&pmus_lock);
11395 }
11396 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11397
11398 static inline bool has_extended_regs(struct perf_event *event)
11399 {
11400         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11401                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11402 }
11403
11404 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11405 {
11406         struct perf_event_context *ctx = NULL;
11407         int ret;
11408
11409         if (!try_module_get(pmu->module))
11410                 return -ENODEV;
11411
11412         /*
11413          * A number of pmu->event_init() methods iterate the sibling_list to,
11414          * for example, validate if the group fits on the PMU. Therefore,
11415          * if this is a sibling event, acquire the ctx->mutex to protect
11416          * the sibling_list.
11417          */
11418         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11419                 /*
11420                  * This ctx->mutex can nest when we're called through
11421                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11422                  */
11423                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11424                                                  SINGLE_DEPTH_NESTING);
11425                 BUG_ON(!ctx);
11426         }
11427
11428         event->pmu = pmu;
11429         ret = pmu->event_init(event);
11430
11431         if (ctx)
11432                 perf_event_ctx_unlock(event->group_leader, ctx);
11433
11434         if (!ret) {
11435                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11436                     has_extended_regs(event))
11437                         ret = -EOPNOTSUPP;
11438
11439                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11440                     event_has_any_exclude_flag(event))
11441                         ret = -EINVAL;
11442
11443                 if (ret && event->destroy)
11444                         event->destroy(event);
11445         }
11446
11447         if (ret)
11448                 module_put(pmu->module);
11449
11450         return ret;
11451 }
11452
11453 static struct pmu *perf_init_event(struct perf_event *event)
11454 {
11455         bool extended_type = false;
11456         int idx, type, ret;
11457         struct pmu *pmu;
11458
11459         idx = srcu_read_lock(&pmus_srcu);
11460
11461         /* Try parent's PMU first: */
11462         if (event->parent && event->parent->pmu) {
11463                 pmu = event->parent->pmu;
11464                 ret = perf_try_init_event(pmu, event);
11465                 if (!ret)
11466                         goto unlock;
11467         }
11468
11469         /*
11470          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11471          * are often aliases for PERF_TYPE_RAW.
11472          */
11473         type = event->attr.type;
11474         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11475                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11476                 if (!type) {
11477                         type = PERF_TYPE_RAW;
11478                 } else {
11479                         extended_type = true;
11480                         event->attr.config &= PERF_HW_EVENT_MASK;
11481                 }
11482         }
11483
11484 again:
11485         rcu_read_lock();
11486         pmu = idr_find(&pmu_idr, type);
11487         rcu_read_unlock();
11488         if (pmu) {
11489                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11490                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11491                         goto fail;
11492
11493                 ret = perf_try_init_event(pmu, event);
11494                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11495                         type = event->attr.type;
11496                         goto again;
11497                 }
11498
11499                 if (ret)
11500                         pmu = ERR_PTR(ret);
11501
11502                 goto unlock;
11503         }
11504
11505         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11506                 ret = perf_try_init_event(pmu, event);
11507                 if (!ret)
11508                         goto unlock;
11509
11510                 if (ret != -ENOENT) {
11511                         pmu = ERR_PTR(ret);
11512                         goto unlock;
11513                 }
11514         }
11515 fail:
11516         pmu = ERR_PTR(-ENOENT);
11517 unlock:
11518         srcu_read_unlock(&pmus_srcu, idx);
11519
11520         return pmu;
11521 }
11522
11523 static void attach_sb_event(struct perf_event *event)
11524 {
11525         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11526
11527         raw_spin_lock(&pel->lock);
11528         list_add_rcu(&event->sb_list, &pel->list);
11529         raw_spin_unlock(&pel->lock);
11530 }
11531
11532 /*
11533  * We keep a list of all !task (and therefore per-cpu) events
11534  * that need to receive side-band records.
11535  *
11536  * This avoids having to scan all the various PMU per-cpu contexts
11537  * looking for them.
11538  */
11539 static void account_pmu_sb_event(struct perf_event *event)
11540 {
11541         if (is_sb_event(event))
11542                 attach_sb_event(event);
11543 }
11544
11545 static void account_event_cpu(struct perf_event *event, int cpu)
11546 {
11547         if (event->parent)
11548                 return;
11549
11550         if (is_cgroup_event(event))
11551                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11552 }
11553
11554 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11555 static void account_freq_event_nohz(void)
11556 {
11557 #ifdef CONFIG_NO_HZ_FULL
11558         /* Lock so we don't race with concurrent unaccount */
11559         spin_lock(&nr_freq_lock);
11560         if (atomic_inc_return(&nr_freq_events) == 1)
11561                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11562         spin_unlock(&nr_freq_lock);
11563 #endif
11564 }
11565
11566 static void account_freq_event(void)
11567 {
11568         if (tick_nohz_full_enabled())
11569                 account_freq_event_nohz();
11570         else
11571                 atomic_inc(&nr_freq_events);
11572 }
11573
11574
11575 static void account_event(struct perf_event *event)
11576 {
11577         bool inc = false;
11578
11579         if (event->parent)
11580                 return;
11581
11582         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11583                 inc = true;
11584         if (event->attr.mmap || event->attr.mmap_data)
11585                 atomic_inc(&nr_mmap_events);
11586         if (event->attr.build_id)
11587                 atomic_inc(&nr_build_id_events);
11588         if (event->attr.comm)
11589                 atomic_inc(&nr_comm_events);
11590         if (event->attr.namespaces)
11591                 atomic_inc(&nr_namespaces_events);
11592         if (event->attr.cgroup)
11593                 atomic_inc(&nr_cgroup_events);
11594         if (event->attr.task)
11595                 atomic_inc(&nr_task_events);
11596         if (event->attr.freq)
11597                 account_freq_event();
11598         if (event->attr.context_switch) {
11599                 atomic_inc(&nr_switch_events);
11600                 inc = true;
11601         }
11602         if (has_branch_stack(event))
11603                 inc = true;
11604         if (is_cgroup_event(event))
11605                 inc = true;
11606         if (event->attr.ksymbol)
11607                 atomic_inc(&nr_ksymbol_events);
11608         if (event->attr.bpf_event)
11609                 atomic_inc(&nr_bpf_events);
11610         if (event->attr.text_poke)
11611                 atomic_inc(&nr_text_poke_events);
11612
11613         if (inc) {
11614                 /*
11615                  * We need the mutex here because static_branch_enable()
11616                  * must complete *before* the perf_sched_count increment
11617                  * becomes visible.
11618                  */
11619                 if (atomic_inc_not_zero(&perf_sched_count))
11620                         goto enabled;
11621
11622                 mutex_lock(&perf_sched_mutex);
11623                 if (!atomic_read(&perf_sched_count)) {
11624                         static_branch_enable(&perf_sched_events);
11625                         /*
11626                          * Guarantee that all CPUs observe they key change and
11627                          * call the perf scheduling hooks before proceeding to
11628                          * install events that need them.
11629                          */
11630                         synchronize_rcu();
11631                 }
11632                 /*
11633                  * Now that we have waited for the sync_sched(), allow further
11634                  * increments to by-pass the mutex.
11635                  */
11636                 atomic_inc(&perf_sched_count);
11637                 mutex_unlock(&perf_sched_mutex);
11638         }
11639 enabled:
11640
11641         account_event_cpu(event, event->cpu);
11642
11643         account_pmu_sb_event(event);
11644 }
11645
11646 /*
11647  * Allocate and initialize an event structure
11648  */
11649 static struct perf_event *
11650 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11651                  struct task_struct *task,
11652                  struct perf_event *group_leader,
11653                  struct perf_event *parent_event,
11654                  perf_overflow_handler_t overflow_handler,
11655                  void *context, int cgroup_fd)
11656 {
11657         struct pmu *pmu;
11658         struct perf_event *event;
11659         struct hw_perf_event *hwc;
11660         long err = -EINVAL;
11661         int node;
11662
11663         if ((unsigned)cpu >= nr_cpu_ids) {
11664                 if (!task || cpu != -1)
11665                         return ERR_PTR(-EINVAL);
11666         }
11667         if (attr->sigtrap && !task) {
11668                 /* Requires a task: avoid signalling random tasks. */
11669                 return ERR_PTR(-EINVAL);
11670         }
11671
11672         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11673         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11674                                       node);
11675         if (!event)
11676                 return ERR_PTR(-ENOMEM);
11677
11678         /*
11679          * Single events are their own group leaders, with an
11680          * empty sibling list:
11681          */
11682         if (!group_leader)
11683                 group_leader = event;
11684
11685         mutex_init(&event->child_mutex);
11686         INIT_LIST_HEAD(&event->child_list);
11687
11688         INIT_LIST_HEAD(&event->event_entry);
11689         INIT_LIST_HEAD(&event->sibling_list);
11690         INIT_LIST_HEAD(&event->active_list);
11691         init_event_group(event);
11692         INIT_LIST_HEAD(&event->rb_entry);
11693         INIT_LIST_HEAD(&event->active_entry);
11694         INIT_LIST_HEAD(&event->addr_filters.list);
11695         INIT_HLIST_NODE(&event->hlist_entry);
11696
11697
11698         init_waitqueue_head(&event->waitq);
11699         init_irq_work(&event->pending_irq, perf_pending_irq);
11700         init_task_work(&event->pending_task, perf_pending_task);
11701
11702         mutex_init(&event->mmap_mutex);
11703         raw_spin_lock_init(&event->addr_filters.lock);
11704
11705         atomic_long_set(&event->refcount, 1);
11706         event->cpu              = cpu;
11707         event->attr             = *attr;
11708         event->group_leader     = group_leader;
11709         event->pmu              = NULL;
11710         event->oncpu            = -1;
11711
11712         event->parent           = parent_event;
11713
11714         event->ns               = get_pid_ns(task_active_pid_ns(current));
11715         event->id               = atomic64_inc_return(&perf_event_id);
11716
11717         event->state            = PERF_EVENT_STATE_INACTIVE;
11718
11719         if (parent_event)
11720                 event->event_caps = parent_event->event_caps;
11721
11722         if (task) {
11723                 event->attach_state = PERF_ATTACH_TASK;
11724                 /*
11725                  * XXX pmu::event_init needs to know what task to account to
11726                  * and we cannot use the ctx information because we need the
11727                  * pmu before we get a ctx.
11728                  */
11729                 event->hw.target = get_task_struct(task);
11730         }
11731
11732         event->clock = &local_clock;
11733         if (parent_event)
11734                 event->clock = parent_event->clock;
11735
11736         if (!overflow_handler && parent_event) {
11737                 overflow_handler = parent_event->overflow_handler;
11738                 context = parent_event->overflow_handler_context;
11739 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11740                 if (overflow_handler == bpf_overflow_handler) {
11741                         struct bpf_prog *prog = parent_event->prog;
11742
11743                         bpf_prog_inc(prog);
11744                         event->prog = prog;
11745                         event->orig_overflow_handler =
11746                                 parent_event->orig_overflow_handler;
11747                 }
11748 #endif
11749         }
11750
11751         if (overflow_handler) {
11752                 event->overflow_handler = overflow_handler;
11753                 event->overflow_handler_context = context;
11754         } else if (is_write_backward(event)){
11755                 event->overflow_handler = perf_event_output_backward;
11756                 event->overflow_handler_context = NULL;
11757         } else {
11758                 event->overflow_handler = perf_event_output_forward;
11759                 event->overflow_handler_context = NULL;
11760         }
11761
11762         perf_event__state_init(event);
11763
11764         pmu = NULL;
11765
11766         hwc = &event->hw;
11767         hwc->sample_period = attr->sample_period;
11768         if (attr->freq && attr->sample_freq)
11769                 hwc->sample_period = 1;
11770         hwc->last_period = hwc->sample_period;
11771
11772         local64_set(&hwc->period_left, hwc->sample_period);
11773
11774         /*
11775          * We currently do not support PERF_SAMPLE_READ on inherited events.
11776          * See perf_output_read().
11777          */
11778         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11779                 goto err_ns;
11780
11781         if (!has_branch_stack(event))
11782                 event->attr.branch_sample_type = 0;
11783
11784         pmu = perf_init_event(event);
11785         if (IS_ERR(pmu)) {
11786                 err = PTR_ERR(pmu);
11787                 goto err_ns;
11788         }
11789
11790         /*
11791          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11792          * be different on other CPUs in the uncore mask.
11793          */
11794         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11795                 err = -EINVAL;
11796                 goto err_pmu;
11797         }
11798
11799         if (event->attr.aux_output &&
11800             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11801                 err = -EOPNOTSUPP;
11802                 goto err_pmu;
11803         }
11804
11805         if (cgroup_fd != -1) {
11806                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11807                 if (err)
11808                         goto err_pmu;
11809         }
11810
11811         err = exclusive_event_init(event);
11812         if (err)
11813                 goto err_pmu;
11814
11815         if (has_addr_filter(event)) {
11816                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11817                                                     sizeof(struct perf_addr_filter_range),
11818                                                     GFP_KERNEL);
11819                 if (!event->addr_filter_ranges) {
11820                         err = -ENOMEM;
11821                         goto err_per_task;
11822                 }
11823
11824                 /*
11825                  * Clone the parent's vma offsets: they are valid until exec()
11826                  * even if the mm is not shared with the parent.
11827                  */
11828                 if (event->parent) {
11829                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11830
11831                         raw_spin_lock_irq(&ifh->lock);
11832                         memcpy(event->addr_filter_ranges,
11833                                event->parent->addr_filter_ranges,
11834                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11835                         raw_spin_unlock_irq(&ifh->lock);
11836                 }
11837
11838                 /* force hw sync on the address filters */
11839                 event->addr_filters_gen = 1;
11840         }
11841
11842         if (!event->parent) {
11843                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11844                         err = get_callchain_buffers(attr->sample_max_stack);
11845                         if (err)
11846                                 goto err_addr_filters;
11847                 }
11848         }
11849
11850         err = security_perf_event_alloc(event);
11851         if (err)
11852                 goto err_callchain_buffer;
11853
11854         /* symmetric to unaccount_event() in _free_event() */
11855         account_event(event);
11856
11857         return event;
11858
11859 err_callchain_buffer:
11860         if (!event->parent) {
11861                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11862                         put_callchain_buffers();
11863         }
11864 err_addr_filters:
11865         kfree(event->addr_filter_ranges);
11866
11867 err_per_task:
11868         exclusive_event_destroy(event);
11869
11870 err_pmu:
11871         if (is_cgroup_event(event))
11872                 perf_detach_cgroup(event);
11873         if (event->destroy)
11874                 event->destroy(event);
11875         module_put(pmu->module);
11876 err_ns:
11877         if (event->hw.target)
11878                 put_task_struct(event->hw.target);
11879         call_rcu(&event->rcu_head, free_event_rcu);
11880
11881         return ERR_PTR(err);
11882 }
11883
11884 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11885                           struct perf_event_attr *attr)
11886 {
11887         u32 size;
11888         int ret;
11889
11890         /* Zero the full structure, so that a short copy will be nice. */
11891         memset(attr, 0, sizeof(*attr));
11892
11893         ret = get_user(size, &uattr->size);
11894         if (ret)
11895                 return ret;
11896
11897         /* ABI compatibility quirk: */
11898         if (!size)
11899                 size = PERF_ATTR_SIZE_VER0;
11900         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11901                 goto err_size;
11902
11903         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11904         if (ret) {
11905                 if (ret == -E2BIG)
11906                         goto err_size;
11907                 return ret;
11908         }
11909
11910         attr->size = size;
11911
11912         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11913                 return -EINVAL;
11914
11915         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11916                 return -EINVAL;
11917
11918         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11919                 return -EINVAL;
11920
11921         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11922                 u64 mask = attr->branch_sample_type;
11923
11924                 /* only using defined bits */
11925                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11926                         return -EINVAL;
11927
11928                 /* at least one branch bit must be set */
11929                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11930                         return -EINVAL;
11931
11932                 /* propagate priv level, when not set for branch */
11933                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11934
11935                         /* exclude_kernel checked on syscall entry */
11936                         if (!attr->exclude_kernel)
11937                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11938
11939                         if (!attr->exclude_user)
11940                                 mask |= PERF_SAMPLE_BRANCH_USER;
11941
11942                         if (!attr->exclude_hv)
11943                                 mask |= PERF_SAMPLE_BRANCH_HV;
11944                         /*
11945                          * adjust user setting (for HW filter setup)
11946                          */
11947                         attr->branch_sample_type = mask;
11948                 }
11949                 /* privileged levels capture (kernel, hv): check permissions */
11950                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11951                         ret = perf_allow_kernel(attr);
11952                         if (ret)
11953                                 return ret;
11954                 }
11955         }
11956
11957         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11958                 ret = perf_reg_validate(attr->sample_regs_user);
11959                 if (ret)
11960                         return ret;
11961         }
11962
11963         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11964                 if (!arch_perf_have_user_stack_dump())
11965                         return -ENOSYS;
11966
11967                 /*
11968                  * We have __u32 type for the size, but so far
11969                  * we can only use __u16 as maximum due to the
11970                  * __u16 sample size limit.
11971                  */
11972                 if (attr->sample_stack_user >= USHRT_MAX)
11973                         return -EINVAL;
11974                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11975                         return -EINVAL;
11976         }
11977
11978         if (!attr->sample_max_stack)
11979                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11980
11981         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11982                 ret = perf_reg_validate(attr->sample_regs_intr);
11983
11984 #ifndef CONFIG_CGROUP_PERF
11985         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11986                 return -EINVAL;
11987 #endif
11988         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11989             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11990                 return -EINVAL;
11991
11992         if (!attr->inherit && attr->inherit_thread)
11993                 return -EINVAL;
11994
11995         if (attr->remove_on_exec && attr->enable_on_exec)
11996                 return -EINVAL;
11997
11998         if (attr->sigtrap && !attr->remove_on_exec)
11999                 return -EINVAL;
12000
12001 out:
12002         return ret;
12003
12004 err_size:
12005         put_user(sizeof(*attr), &uattr->size);
12006         ret = -E2BIG;
12007         goto out;
12008 }
12009
12010 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12011 {
12012         if (b < a)
12013                 swap(a, b);
12014
12015         mutex_lock(a);
12016         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12017 }
12018
12019 static int
12020 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12021 {
12022         struct perf_buffer *rb = NULL;
12023         int ret = -EINVAL;
12024
12025         if (!output_event) {
12026                 mutex_lock(&event->mmap_mutex);
12027                 goto set;
12028         }
12029
12030         /* don't allow circular references */
12031         if (event == output_event)
12032                 goto out;
12033
12034         /*
12035          * Don't allow cross-cpu buffers
12036          */
12037         if (output_event->cpu != event->cpu)
12038                 goto out;
12039
12040         /*
12041          * If its not a per-cpu rb, it must be the same task.
12042          */
12043         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
12044                 goto out;
12045
12046         /*
12047          * Mixing clocks in the same buffer is trouble you don't need.
12048          */
12049         if (output_event->clock != event->clock)
12050                 goto out;
12051
12052         /*
12053          * Either writing ring buffer from beginning or from end.
12054          * Mixing is not allowed.
12055          */
12056         if (is_write_backward(output_event) != is_write_backward(event))
12057                 goto out;
12058
12059         /*
12060          * If both events generate aux data, they must be on the same PMU
12061          */
12062         if (has_aux(event) && has_aux(output_event) &&
12063             event->pmu != output_event->pmu)
12064                 goto out;
12065
12066         /*
12067          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12068          * output_event is already on rb->event_list, and the list iteration
12069          * restarts after every removal, it is guaranteed this new event is
12070          * observed *OR* if output_event is already removed, it's guaranteed we
12071          * observe !rb->mmap_count.
12072          */
12073         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12074 set:
12075         /* Can't redirect output if we've got an active mmap() */
12076         if (atomic_read(&event->mmap_count))
12077                 goto unlock;
12078
12079         if (output_event) {
12080                 /* get the rb we want to redirect to */
12081                 rb = ring_buffer_get(output_event);
12082                 if (!rb)
12083                         goto unlock;
12084
12085                 /* did we race against perf_mmap_close() */
12086                 if (!atomic_read(&rb->mmap_count)) {
12087                         ring_buffer_put(rb);
12088                         goto unlock;
12089                 }
12090         }
12091
12092         ring_buffer_attach(event, rb);
12093
12094         ret = 0;
12095 unlock:
12096         mutex_unlock(&event->mmap_mutex);
12097         if (output_event)
12098                 mutex_unlock(&output_event->mmap_mutex);
12099
12100 out:
12101         return ret;
12102 }
12103
12104 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12105 {
12106         bool nmi_safe = false;
12107
12108         switch (clk_id) {
12109         case CLOCK_MONOTONIC:
12110                 event->clock = &ktime_get_mono_fast_ns;
12111                 nmi_safe = true;
12112                 break;
12113
12114         case CLOCK_MONOTONIC_RAW:
12115                 event->clock = &ktime_get_raw_fast_ns;
12116                 nmi_safe = true;
12117                 break;
12118
12119         case CLOCK_REALTIME:
12120                 event->clock = &ktime_get_real_ns;
12121                 break;
12122
12123         case CLOCK_BOOTTIME:
12124                 event->clock = &ktime_get_boottime_ns;
12125                 break;
12126
12127         case CLOCK_TAI:
12128                 event->clock = &ktime_get_clocktai_ns;
12129                 break;
12130
12131         default:
12132                 return -EINVAL;
12133         }
12134
12135         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12136                 return -EINVAL;
12137
12138         return 0;
12139 }
12140
12141 /*
12142  * Variation on perf_event_ctx_lock_nested(), except we take two context
12143  * mutexes.
12144  */
12145 static struct perf_event_context *
12146 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12147                              struct perf_event_context *ctx)
12148 {
12149         struct perf_event_context *gctx;
12150
12151 again:
12152         rcu_read_lock();
12153         gctx = READ_ONCE(group_leader->ctx);
12154         if (!refcount_inc_not_zero(&gctx->refcount)) {
12155                 rcu_read_unlock();
12156                 goto again;
12157         }
12158         rcu_read_unlock();
12159
12160         mutex_lock_double(&gctx->mutex, &ctx->mutex);
12161
12162         if (group_leader->ctx != gctx) {
12163                 mutex_unlock(&ctx->mutex);
12164                 mutex_unlock(&gctx->mutex);
12165                 put_ctx(gctx);
12166                 goto again;
12167         }
12168
12169         return gctx;
12170 }
12171
12172 static bool
12173 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12174 {
12175         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12176         bool is_capable = perfmon_capable();
12177
12178         if (attr->sigtrap) {
12179                 /*
12180                  * perf_event_attr::sigtrap sends signals to the other task.
12181                  * Require the current task to also have CAP_KILL.
12182                  */
12183                 rcu_read_lock();
12184                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12185                 rcu_read_unlock();
12186
12187                 /*
12188                  * If the required capabilities aren't available, checks for
12189                  * ptrace permissions: upgrade to ATTACH, since sending signals
12190                  * can effectively change the target task.
12191                  */
12192                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12193         }
12194
12195         /*
12196          * Preserve ptrace permission check for backwards compatibility. The
12197          * ptrace check also includes checks that the current task and other
12198          * task have matching uids, and is therefore not done here explicitly.
12199          */
12200         return is_capable || ptrace_may_access(task, ptrace_mode);
12201 }
12202
12203 /**
12204  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12205  *
12206  * @attr_uptr:  event_id type attributes for monitoring/sampling
12207  * @pid:                target pid
12208  * @cpu:                target cpu
12209  * @group_fd:           group leader event fd
12210  * @flags:              perf event open flags
12211  */
12212 SYSCALL_DEFINE5(perf_event_open,
12213                 struct perf_event_attr __user *, attr_uptr,
12214                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12215 {
12216         struct perf_event *group_leader = NULL, *output_event = NULL;
12217         struct perf_event *event, *sibling;
12218         struct perf_event_attr attr;
12219         struct perf_event_context *ctx, *gctx;
12220         struct file *event_file = NULL;
12221         struct fd group = {NULL, 0};
12222         struct task_struct *task = NULL;
12223         struct pmu *pmu;
12224         int event_fd;
12225         int move_group = 0;
12226         int err;
12227         int f_flags = O_RDWR;
12228         int cgroup_fd = -1;
12229
12230         /* for future expandability... */
12231         if (flags & ~PERF_FLAG_ALL)
12232                 return -EINVAL;
12233
12234         err = perf_copy_attr(attr_uptr, &attr);
12235         if (err)
12236                 return err;
12237
12238         /* Do we allow access to perf_event_open(2) ? */
12239         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12240         if (err)
12241                 return err;
12242
12243         if (!attr.exclude_kernel) {
12244                 err = perf_allow_kernel(&attr);
12245                 if (err)
12246                         return err;
12247         }
12248
12249         if (attr.namespaces) {
12250                 if (!perfmon_capable())
12251                         return -EACCES;
12252         }
12253
12254         if (attr.freq) {
12255                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12256                         return -EINVAL;
12257         } else {
12258                 if (attr.sample_period & (1ULL << 63))
12259                         return -EINVAL;
12260         }
12261
12262         /* Only privileged users can get physical addresses */
12263         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12264                 err = perf_allow_kernel(&attr);
12265                 if (err)
12266                         return err;
12267         }
12268
12269         /* REGS_INTR can leak data, lockdown must prevent this */
12270         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12271                 err = security_locked_down(LOCKDOWN_PERF);
12272                 if (err)
12273                         return err;
12274         }
12275
12276         /*
12277          * In cgroup mode, the pid argument is used to pass the fd
12278          * opened to the cgroup directory in cgroupfs. The cpu argument
12279          * designates the cpu on which to monitor threads from that
12280          * cgroup.
12281          */
12282         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12283                 return -EINVAL;
12284
12285         if (flags & PERF_FLAG_FD_CLOEXEC)
12286                 f_flags |= O_CLOEXEC;
12287
12288         event_fd = get_unused_fd_flags(f_flags);
12289         if (event_fd < 0)
12290                 return event_fd;
12291
12292         if (group_fd != -1) {
12293                 err = perf_fget_light(group_fd, &group);
12294                 if (err)
12295                         goto err_fd;
12296                 group_leader = group.file->private_data;
12297                 if (flags & PERF_FLAG_FD_OUTPUT)
12298                         output_event = group_leader;
12299                 if (flags & PERF_FLAG_FD_NO_GROUP)
12300                         group_leader = NULL;
12301         }
12302
12303         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12304                 task = find_lively_task_by_vpid(pid);
12305                 if (IS_ERR(task)) {
12306                         err = PTR_ERR(task);
12307                         goto err_group_fd;
12308                 }
12309         }
12310
12311         if (task && group_leader &&
12312             group_leader->attr.inherit != attr.inherit) {
12313                 err = -EINVAL;
12314                 goto err_task;
12315         }
12316
12317         if (flags & PERF_FLAG_PID_CGROUP)
12318                 cgroup_fd = pid;
12319
12320         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12321                                  NULL, NULL, cgroup_fd);
12322         if (IS_ERR(event)) {
12323                 err = PTR_ERR(event);
12324                 goto err_task;
12325         }
12326
12327         if (is_sampling_event(event)) {
12328                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12329                         err = -EOPNOTSUPP;
12330                         goto err_alloc;
12331                 }
12332         }
12333
12334         /*
12335          * Special case software events and allow them to be part of
12336          * any hardware group.
12337          */
12338         pmu = event->pmu;
12339
12340         if (attr.use_clockid) {
12341                 err = perf_event_set_clock(event, attr.clockid);
12342                 if (err)
12343                         goto err_alloc;
12344         }
12345
12346         if (pmu->task_ctx_nr == perf_sw_context)
12347                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12348
12349         if (group_leader) {
12350                 if (is_software_event(event) &&
12351                     !in_software_context(group_leader)) {
12352                         /*
12353                          * If the event is a sw event, but the group_leader
12354                          * is on hw context.
12355                          *
12356                          * Allow the addition of software events to hw
12357                          * groups, this is safe because software events
12358                          * never fail to schedule.
12359                          */
12360                         pmu = group_leader->ctx->pmu;
12361                 } else if (!is_software_event(event) &&
12362                            is_software_event(group_leader) &&
12363                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12364                         /*
12365                          * In case the group is a pure software group, and we
12366                          * try to add a hardware event, move the whole group to
12367                          * the hardware context.
12368                          */
12369                         move_group = 1;
12370                 }
12371         }
12372
12373         /*
12374          * Get the target context (task or percpu):
12375          */
12376         ctx = find_get_context(pmu, task, event);
12377         if (IS_ERR(ctx)) {
12378                 err = PTR_ERR(ctx);
12379                 goto err_alloc;
12380         }
12381
12382         /*
12383          * Look up the group leader (we will attach this event to it):
12384          */
12385         if (group_leader) {
12386                 err = -EINVAL;
12387
12388                 /*
12389                  * Do not allow a recursive hierarchy (this new sibling
12390                  * becoming part of another group-sibling):
12391                  */
12392                 if (group_leader->group_leader != group_leader)
12393                         goto err_context;
12394
12395                 /* All events in a group should have the same clock */
12396                 if (group_leader->clock != event->clock)
12397                         goto err_context;
12398
12399                 /*
12400                  * Make sure we're both events for the same CPU;
12401                  * grouping events for different CPUs is broken; since
12402                  * you can never concurrently schedule them anyhow.
12403                  */
12404                 if (group_leader->cpu != event->cpu)
12405                         goto err_context;
12406
12407                 /*
12408                  * Make sure we're both on the same task, or both
12409                  * per-CPU events.
12410                  */
12411                 if (group_leader->ctx->task != ctx->task)
12412                         goto err_context;
12413
12414                 /*
12415                  * Do not allow to attach to a group in a different task
12416                  * or CPU context. If we're moving SW events, we'll fix
12417                  * this up later, so allow that.
12418                  *
12419                  * Racy, not holding group_leader->ctx->mutex, see comment with
12420                  * perf_event_ctx_lock().
12421                  */
12422                 if (!move_group && group_leader->ctx != ctx)
12423                         goto err_context;
12424
12425                 /*
12426                  * Only a group leader can be exclusive or pinned
12427                  */
12428                 if (attr.exclusive || attr.pinned)
12429                         goto err_context;
12430         }
12431
12432         if (output_event) {
12433                 err = perf_event_set_output(event, output_event);
12434                 if (err)
12435                         goto err_context;
12436         }
12437
12438         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12439                                         f_flags);
12440         if (IS_ERR(event_file)) {
12441                 err = PTR_ERR(event_file);
12442                 event_file = NULL;
12443                 goto err_context;
12444         }
12445
12446         if (task) {
12447                 err = down_read_interruptible(&task->signal->exec_update_lock);
12448                 if (err)
12449                         goto err_file;
12450
12451                 /*
12452                  * We must hold exec_update_lock across this and any potential
12453                  * perf_install_in_context() call for this new event to
12454                  * serialize against exec() altering our credentials (and the
12455                  * perf_event_exit_task() that could imply).
12456                  */
12457                 err = -EACCES;
12458                 if (!perf_check_permission(&attr, task))
12459                         goto err_cred;
12460         }
12461
12462         if (move_group) {
12463                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12464
12465                 if (gctx->task == TASK_TOMBSTONE) {
12466                         err = -ESRCH;
12467                         goto err_locked;
12468                 }
12469
12470                 /*
12471                  * Check if we raced against another sys_perf_event_open() call
12472                  * moving the software group underneath us.
12473                  */
12474                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12475                         /*
12476                          * If someone moved the group out from under us, check
12477                          * if this new event wound up on the same ctx, if so
12478                          * its the regular !move_group case, otherwise fail.
12479                          */
12480                         if (gctx != ctx) {
12481                                 err = -EINVAL;
12482                                 goto err_locked;
12483                         } else {
12484                                 perf_event_ctx_unlock(group_leader, gctx);
12485                                 move_group = 0;
12486                                 goto not_move_group;
12487                         }
12488                 }
12489
12490                 /*
12491                  * Failure to create exclusive events returns -EBUSY.
12492                  */
12493                 err = -EBUSY;
12494                 if (!exclusive_event_installable(group_leader, ctx))
12495                         goto err_locked;
12496
12497                 for_each_sibling_event(sibling, group_leader) {
12498                         if (!exclusive_event_installable(sibling, ctx))
12499                                 goto err_locked;
12500                 }
12501         } else {
12502                 mutex_lock(&ctx->mutex);
12503
12504                 /*
12505                  * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12506                  * see the group_leader && !move_group test earlier.
12507                  */
12508                 if (group_leader && group_leader->ctx != ctx) {
12509                         err = -EINVAL;
12510                         goto err_locked;
12511                 }
12512         }
12513 not_move_group:
12514
12515         if (ctx->task == TASK_TOMBSTONE) {
12516                 err = -ESRCH;
12517                 goto err_locked;
12518         }
12519
12520         if (!perf_event_validate_size(event)) {
12521                 err = -E2BIG;
12522                 goto err_locked;
12523         }
12524
12525         if (!task) {
12526                 /*
12527                  * Check if the @cpu we're creating an event for is online.
12528                  *
12529                  * We use the perf_cpu_context::ctx::mutex to serialize against
12530                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12531                  */
12532                 struct perf_cpu_context *cpuctx =
12533                         container_of(ctx, struct perf_cpu_context, ctx);
12534
12535                 if (!cpuctx->online) {
12536                         err = -ENODEV;
12537                         goto err_locked;
12538                 }
12539         }
12540
12541         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12542                 err = -EINVAL;
12543                 goto err_locked;
12544         }
12545
12546         /*
12547          * Must be under the same ctx::mutex as perf_install_in_context(),
12548          * because we need to serialize with concurrent event creation.
12549          */
12550         if (!exclusive_event_installable(event, ctx)) {
12551                 err = -EBUSY;
12552                 goto err_locked;
12553         }
12554
12555         WARN_ON_ONCE(ctx->parent_ctx);
12556
12557         /*
12558          * This is the point on no return; we cannot fail hereafter. This is
12559          * where we start modifying current state.
12560          */
12561
12562         if (move_group) {
12563                 /*
12564                  * See perf_event_ctx_lock() for comments on the details
12565                  * of swizzling perf_event::ctx.
12566                  */
12567                 perf_remove_from_context(group_leader, 0);
12568                 put_ctx(gctx);
12569
12570                 for_each_sibling_event(sibling, group_leader) {
12571                         perf_remove_from_context(sibling, 0);
12572                         put_ctx(gctx);
12573                 }
12574
12575                 /*
12576                  * Wait for everybody to stop referencing the events through
12577                  * the old lists, before installing it on new lists.
12578                  */
12579                 synchronize_rcu();
12580
12581                 /*
12582                  * Install the group siblings before the group leader.
12583                  *
12584                  * Because a group leader will try and install the entire group
12585                  * (through the sibling list, which is still in-tact), we can
12586                  * end up with siblings installed in the wrong context.
12587                  *
12588                  * By installing siblings first we NO-OP because they're not
12589                  * reachable through the group lists.
12590                  */
12591                 for_each_sibling_event(sibling, group_leader) {
12592                         perf_event__state_init(sibling);
12593                         perf_install_in_context(ctx, sibling, sibling->cpu);
12594                         get_ctx(ctx);
12595                 }
12596
12597                 /*
12598                  * Removing from the context ends up with disabled
12599                  * event. What we want here is event in the initial
12600                  * startup state, ready to be add into new context.
12601                  */
12602                 perf_event__state_init(group_leader);
12603                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12604                 get_ctx(ctx);
12605         }
12606
12607         /*
12608          * Precalculate sample_data sizes; do while holding ctx::mutex such
12609          * that we're serialized against further additions and before
12610          * perf_install_in_context() which is the point the event is active and
12611          * can use these values.
12612          */
12613         perf_event__header_size(event);
12614         perf_event__id_header_size(event);
12615
12616         event->owner = current;
12617
12618         perf_install_in_context(ctx, event, event->cpu);
12619         perf_unpin_context(ctx);
12620
12621         if (move_group)
12622                 perf_event_ctx_unlock(group_leader, gctx);
12623         mutex_unlock(&ctx->mutex);
12624
12625         if (task) {
12626                 up_read(&task->signal->exec_update_lock);
12627                 put_task_struct(task);
12628         }
12629
12630         mutex_lock(&current->perf_event_mutex);
12631         list_add_tail(&event->owner_entry, &current->perf_event_list);
12632         mutex_unlock(&current->perf_event_mutex);
12633
12634         /*
12635          * Drop the reference on the group_event after placing the
12636          * new event on the sibling_list. This ensures destruction
12637          * of the group leader will find the pointer to itself in
12638          * perf_group_detach().
12639          */
12640         fdput(group);
12641         fd_install(event_fd, event_file);
12642         return event_fd;
12643
12644 err_locked:
12645         if (move_group)
12646                 perf_event_ctx_unlock(group_leader, gctx);
12647         mutex_unlock(&ctx->mutex);
12648 err_cred:
12649         if (task)
12650                 up_read(&task->signal->exec_update_lock);
12651 err_file:
12652         fput(event_file);
12653 err_context:
12654         perf_unpin_context(ctx);
12655         put_ctx(ctx);
12656 err_alloc:
12657         /*
12658          * If event_file is set, the fput() above will have called ->release()
12659          * and that will take care of freeing the event.
12660          */
12661         if (!event_file)
12662                 free_event(event);
12663 err_task:
12664         if (task)
12665                 put_task_struct(task);
12666 err_group_fd:
12667         fdput(group);
12668 err_fd:
12669         put_unused_fd(event_fd);
12670         return err;
12671 }
12672
12673 /**
12674  * perf_event_create_kernel_counter
12675  *
12676  * @attr: attributes of the counter to create
12677  * @cpu: cpu in which the counter is bound
12678  * @task: task to profile (NULL for percpu)
12679  * @overflow_handler: callback to trigger when we hit the event
12680  * @context: context data could be used in overflow_handler callback
12681  */
12682 struct perf_event *
12683 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12684                                  struct task_struct *task,
12685                                  perf_overflow_handler_t overflow_handler,
12686                                  void *context)
12687 {
12688         struct perf_event_context *ctx;
12689         struct perf_event *event;
12690         int err;
12691
12692         /*
12693          * Grouping is not supported for kernel events, neither is 'AUX',
12694          * make sure the caller's intentions are adjusted.
12695          */
12696         if (attr->aux_output)
12697                 return ERR_PTR(-EINVAL);
12698
12699         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12700                                  overflow_handler, context, -1);
12701         if (IS_ERR(event)) {
12702                 err = PTR_ERR(event);
12703                 goto err;
12704         }
12705
12706         /* Mark owner so we could distinguish it from user events. */
12707         event->owner = TASK_TOMBSTONE;
12708
12709         /*
12710          * Get the target context (task or percpu):
12711          */
12712         ctx = find_get_context(event->pmu, task, event);
12713         if (IS_ERR(ctx)) {
12714                 err = PTR_ERR(ctx);
12715                 goto err_free;
12716         }
12717
12718         WARN_ON_ONCE(ctx->parent_ctx);
12719         mutex_lock(&ctx->mutex);
12720         if (ctx->task == TASK_TOMBSTONE) {
12721                 err = -ESRCH;
12722                 goto err_unlock;
12723         }
12724
12725         if (!task) {
12726                 /*
12727                  * Check if the @cpu we're creating an event for is online.
12728                  *
12729                  * We use the perf_cpu_context::ctx::mutex to serialize against
12730                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12731                  */
12732                 struct perf_cpu_context *cpuctx =
12733                         container_of(ctx, struct perf_cpu_context, ctx);
12734                 if (!cpuctx->online) {
12735                         err = -ENODEV;
12736                         goto err_unlock;
12737                 }
12738         }
12739
12740         if (!exclusive_event_installable(event, ctx)) {
12741                 err = -EBUSY;
12742                 goto err_unlock;
12743         }
12744
12745         perf_install_in_context(ctx, event, event->cpu);
12746         perf_unpin_context(ctx);
12747         mutex_unlock(&ctx->mutex);
12748
12749         return event;
12750
12751 err_unlock:
12752         mutex_unlock(&ctx->mutex);
12753         perf_unpin_context(ctx);
12754         put_ctx(ctx);
12755 err_free:
12756         free_event(event);
12757 err:
12758         return ERR_PTR(err);
12759 }
12760 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12761
12762 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12763 {
12764         struct perf_event_context *src_ctx;
12765         struct perf_event_context *dst_ctx;
12766         struct perf_event *event, *tmp;
12767         LIST_HEAD(events);
12768
12769         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12770         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12771
12772         /*
12773          * See perf_event_ctx_lock() for comments on the details
12774          * of swizzling perf_event::ctx.
12775          */
12776         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12777         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12778                                  event_entry) {
12779                 perf_remove_from_context(event, 0);
12780                 unaccount_event_cpu(event, src_cpu);
12781                 put_ctx(src_ctx);
12782                 list_add(&event->migrate_entry, &events);
12783         }
12784
12785         /*
12786          * Wait for the events to quiesce before re-instating them.
12787          */
12788         synchronize_rcu();
12789
12790         /*
12791          * Re-instate events in 2 passes.
12792          *
12793          * Skip over group leaders and only install siblings on this first
12794          * pass, siblings will not get enabled without a leader, however a
12795          * leader will enable its siblings, even if those are still on the old
12796          * context.
12797          */
12798         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12799                 if (event->group_leader == event)
12800                         continue;
12801
12802                 list_del(&event->migrate_entry);
12803                 if (event->state >= PERF_EVENT_STATE_OFF)
12804                         event->state = PERF_EVENT_STATE_INACTIVE;
12805                 account_event_cpu(event, dst_cpu);
12806                 perf_install_in_context(dst_ctx, event, dst_cpu);
12807                 get_ctx(dst_ctx);
12808         }
12809
12810         /*
12811          * Once all the siblings are setup properly, install the group leaders
12812          * to make it go.
12813          */
12814         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12815                 list_del(&event->migrate_entry);
12816                 if (event->state >= PERF_EVENT_STATE_OFF)
12817                         event->state = PERF_EVENT_STATE_INACTIVE;
12818                 account_event_cpu(event, dst_cpu);
12819                 perf_install_in_context(dst_ctx, event, dst_cpu);
12820                 get_ctx(dst_ctx);
12821         }
12822         mutex_unlock(&dst_ctx->mutex);
12823         mutex_unlock(&src_ctx->mutex);
12824 }
12825 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12826
12827 static void sync_child_event(struct perf_event *child_event)
12828 {
12829         struct perf_event *parent_event = child_event->parent;
12830         u64 child_val;
12831
12832         if (child_event->attr.inherit_stat) {
12833                 struct task_struct *task = child_event->ctx->task;
12834
12835                 if (task && task != TASK_TOMBSTONE)
12836                         perf_event_read_event(child_event, task);
12837         }
12838
12839         child_val = perf_event_count(child_event);
12840
12841         /*
12842          * Add back the child's count to the parent's count:
12843          */
12844         atomic64_add(child_val, &parent_event->child_count);
12845         atomic64_add(child_event->total_time_enabled,
12846                      &parent_event->child_total_time_enabled);
12847         atomic64_add(child_event->total_time_running,
12848                      &parent_event->child_total_time_running);
12849 }
12850
12851 static void
12852 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12853 {
12854         struct perf_event *parent_event = event->parent;
12855         unsigned long detach_flags = 0;
12856
12857         if (parent_event) {
12858                 /*
12859                  * Do not destroy the 'original' grouping; because of the
12860                  * context switch optimization the original events could've
12861                  * ended up in a random child task.
12862                  *
12863                  * If we were to destroy the original group, all group related
12864                  * operations would cease to function properly after this
12865                  * random child dies.
12866                  *
12867                  * Do destroy all inherited groups, we don't care about those
12868                  * and being thorough is better.
12869                  */
12870                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12871                 mutex_lock(&parent_event->child_mutex);
12872         }
12873
12874         perf_remove_from_context(event, detach_flags);
12875
12876         raw_spin_lock_irq(&ctx->lock);
12877         if (event->state > PERF_EVENT_STATE_EXIT)
12878                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12879         raw_spin_unlock_irq(&ctx->lock);
12880
12881         /*
12882          * Child events can be freed.
12883          */
12884         if (parent_event) {
12885                 mutex_unlock(&parent_event->child_mutex);
12886                 /*
12887                  * Kick perf_poll() for is_event_hup();
12888                  */
12889                 perf_event_wakeup(parent_event);
12890                 free_event(event);
12891                 put_event(parent_event);
12892                 return;
12893         }
12894
12895         /*
12896          * Parent events are governed by their filedesc, retain them.
12897          */
12898         perf_event_wakeup(event);
12899 }
12900
12901 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12902 {
12903         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12904         struct perf_event *child_event, *next;
12905
12906         WARN_ON_ONCE(child != current);
12907
12908         child_ctx = perf_pin_task_context(child, ctxn);
12909         if (!child_ctx)
12910                 return;
12911
12912         /*
12913          * In order to reduce the amount of tricky in ctx tear-down, we hold
12914          * ctx::mutex over the entire thing. This serializes against almost
12915          * everything that wants to access the ctx.
12916          *
12917          * The exception is sys_perf_event_open() /
12918          * perf_event_create_kernel_count() which does find_get_context()
12919          * without ctx::mutex (it cannot because of the move_group double mutex
12920          * lock thing). See the comments in perf_install_in_context().
12921          */
12922         mutex_lock(&child_ctx->mutex);
12923
12924         /*
12925          * In a single ctx::lock section, de-schedule the events and detach the
12926          * context from the task such that we cannot ever get it scheduled back
12927          * in.
12928          */
12929         raw_spin_lock_irq(&child_ctx->lock);
12930         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12931
12932         /*
12933          * Now that the context is inactive, destroy the task <-> ctx relation
12934          * and mark the context dead.
12935          */
12936         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12937         put_ctx(child_ctx); /* cannot be last */
12938         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12939         put_task_struct(current); /* cannot be last */
12940
12941         clone_ctx = unclone_ctx(child_ctx);
12942         raw_spin_unlock_irq(&child_ctx->lock);
12943
12944         if (clone_ctx)
12945                 put_ctx(clone_ctx);
12946
12947         /*
12948          * Report the task dead after unscheduling the events so that we
12949          * won't get any samples after PERF_RECORD_EXIT. We can however still
12950          * get a few PERF_RECORD_READ events.
12951          */
12952         perf_event_task(child, child_ctx, 0);
12953
12954         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12955                 perf_event_exit_event(child_event, child_ctx);
12956
12957         mutex_unlock(&child_ctx->mutex);
12958
12959         put_ctx(child_ctx);
12960 }
12961
12962 /*
12963  * When a child task exits, feed back event values to parent events.
12964  *
12965  * Can be called with exec_update_lock held when called from
12966  * setup_new_exec().
12967  */
12968 void perf_event_exit_task(struct task_struct *child)
12969 {
12970         struct perf_event *event, *tmp;
12971         int ctxn;
12972
12973         mutex_lock(&child->perf_event_mutex);
12974         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12975                                  owner_entry) {
12976                 list_del_init(&event->owner_entry);
12977
12978                 /*
12979                  * Ensure the list deletion is visible before we clear
12980                  * the owner, closes a race against perf_release() where
12981                  * we need to serialize on the owner->perf_event_mutex.
12982                  */
12983                 smp_store_release(&event->owner, NULL);
12984         }
12985         mutex_unlock(&child->perf_event_mutex);
12986
12987         for_each_task_context_nr(ctxn)
12988                 perf_event_exit_task_context(child, ctxn);
12989
12990         /*
12991          * The perf_event_exit_task_context calls perf_event_task
12992          * with child's task_ctx, which generates EXIT events for
12993          * child contexts and sets child->perf_event_ctxp[] to NULL.
12994          * At this point we need to send EXIT events to cpu contexts.
12995          */
12996         perf_event_task(child, NULL, 0);
12997 }
12998
12999 static void perf_free_event(struct perf_event *event,
13000                             struct perf_event_context *ctx)
13001 {
13002         struct perf_event *parent = event->parent;
13003
13004         if (WARN_ON_ONCE(!parent))
13005                 return;
13006
13007         mutex_lock(&parent->child_mutex);
13008         list_del_init(&event->child_list);
13009         mutex_unlock(&parent->child_mutex);
13010
13011         put_event(parent);
13012
13013         raw_spin_lock_irq(&ctx->lock);
13014         perf_group_detach(event);
13015         list_del_event(event, ctx);
13016         raw_spin_unlock_irq(&ctx->lock);
13017         free_event(event);
13018 }
13019
13020 /*
13021  * Free a context as created by inheritance by perf_event_init_task() below,
13022  * used by fork() in case of fail.
13023  *
13024  * Even though the task has never lived, the context and events have been
13025  * exposed through the child_list, so we must take care tearing it all down.
13026  */
13027 void perf_event_free_task(struct task_struct *task)
13028 {
13029         struct perf_event_context *ctx;
13030         struct perf_event *event, *tmp;
13031         int ctxn;
13032
13033         for_each_task_context_nr(ctxn) {
13034                 ctx = task->perf_event_ctxp[ctxn];
13035                 if (!ctx)
13036                         continue;
13037
13038                 mutex_lock(&ctx->mutex);
13039                 raw_spin_lock_irq(&ctx->lock);
13040                 /*
13041                  * Destroy the task <-> ctx relation and mark the context dead.
13042                  *
13043                  * This is important because even though the task hasn't been
13044                  * exposed yet the context has been (through child_list).
13045                  */
13046                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
13047                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13048                 put_task_struct(task); /* cannot be last */
13049                 raw_spin_unlock_irq(&ctx->lock);
13050
13051                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13052                         perf_free_event(event, ctx);
13053
13054                 mutex_unlock(&ctx->mutex);
13055
13056                 /*
13057                  * perf_event_release_kernel() could've stolen some of our
13058                  * child events and still have them on its free_list. In that
13059                  * case we must wait for these events to have been freed (in
13060                  * particular all their references to this task must've been
13061                  * dropped).
13062                  *
13063                  * Without this copy_process() will unconditionally free this
13064                  * task (irrespective of its reference count) and
13065                  * _free_event()'s put_task_struct(event->hw.target) will be a
13066                  * use-after-free.
13067                  *
13068                  * Wait for all events to drop their context reference.
13069                  */
13070                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13071                 put_ctx(ctx); /* must be last */
13072         }
13073 }
13074
13075 void perf_event_delayed_put(struct task_struct *task)
13076 {
13077         int ctxn;
13078
13079         for_each_task_context_nr(ctxn)
13080                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
13081 }
13082
13083 struct file *perf_event_get(unsigned int fd)
13084 {
13085         struct file *file = fget(fd);
13086         if (!file)
13087                 return ERR_PTR(-EBADF);
13088
13089         if (file->f_op != &perf_fops) {
13090                 fput(file);
13091                 return ERR_PTR(-EBADF);
13092         }
13093
13094         return file;
13095 }
13096
13097 const struct perf_event *perf_get_event(struct file *file)
13098 {
13099         if (file->f_op != &perf_fops)
13100                 return ERR_PTR(-EINVAL);
13101
13102         return file->private_data;
13103 }
13104
13105 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13106 {
13107         if (!event)
13108                 return ERR_PTR(-EINVAL);
13109
13110         return &event->attr;
13111 }
13112
13113 /*
13114  * Inherit an event from parent task to child task.
13115  *
13116  * Returns:
13117  *  - valid pointer on success
13118  *  - NULL for orphaned events
13119  *  - IS_ERR() on error
13120  */
13121 static struct perf_event *
13122 inherit_event(struct perf_event *parent_event,
13123               struct task_struct *parent,
13124               struct perf_event_context *parent_ctx,
13125               struct task_struct *child,
13126               struct perf_event *group_leader,
13127               struct perf_event_context *child_ctx)
13128 {
13129         enum perf_event_state parent_state = parent_event->state;
13130         struct perf_event *child_event;
13131         unsigned long flags;
13132
13133         /*
13134          * Instead of creating recursive hierarchies of events,
13135          * we link inherited events back to the original parent,
13136          * which has a filp for sure, which we use as the reference
13137          * count:
13138          */
13139         if (parent_event->parent)
13140                 parent_event = parent_event->parent;
13141
13142         child_event = perf_event_alloc(&parent_event->attr,
13143                                            parent_event->cpu,
13144                                            child,
13145                                            group_leader, parent_event,
13146                                            NULL, NULL, -1);
13147         if (IS_ERR(child_event))
13148                 return child_event;
13149
13150
13151         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13152             !child_ctx->task_ctx_data) {
13153                 struct pmu *pmu = child_event->pmu;
13154
13155                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13156                 if (!child_ctx->task_ctx_data) {
13157                         free_event(child_event);
13158                         return ERR_PTR(-ENOMEM);
13159                 }
13160         }
13161
13162         /*
13163          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13164          * must be under the same lock in order to serialize against
13165          * perf_event_release_kernel(), such that either we must observe
13166          * is_orphaned_event() or they will observe us on the child_list.
13167          */
13168         mutex_lock(&parent_event->child_mutex);
13169         if (is_orphaned_event(parent_event) ||
13170             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13171                 mutex_unlock(&parent_event->child_mutex);
13172                 /* task_ctx_data is freed with child_ctx */
13173                 free_event(child_event);
13174                 return NULL;
13175         }
13176
13177         get_ctx(child_ctx);
13178
13179         /*
13180          * Make the child state follow the state of the parent event,
13181          * not its attr.disabled bit.  We hold the parent's mutex,
13182          * so we won't race with perf_event_{en, dis}able_family.
13183          */
13184         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13185                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13186         else
13187                 child_event->state = PERF_EVENT_STATE_OFF;
13188
13189         if (parent_event->attr.freq) {
13190                 u64 sample_period = parent_event->hw.sample_period;
13191                 struct hw_perf_event *hwc = &child_event->hw;
13192
13193                 hwc->sample_period = sample_period;
13194                 hwc->last_period   = sample_period;
13195
13196                 local64_set(&hwc->period_left, sample_period);
13197         }
13198
13199         child_event->ctx = child_ctx;
13200         child_event->overflow_handler = parent_event->overflow_handler;
13201         child_event->overflow_handler_context
13202                 = parent_event->overflow_handler_context;
13203
13204         /*
13205          * Precalculate sample_data sizes
13206          */
13207         perf_event__header_size(child_event);
13208         perf_event__id_header_size(child_event);
13209
13210         /*
13211          * Link it up in the child's context:
13212          */
13213         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13214         add_event_to_ctx(child_event, child_ctx);
13215         child_event->attach_state |= PERF_ATTACH_CHILD;
13216         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13217
13218         /*
13219          * Link this into the parent event's child list
13220          */
13221         list_add_tail(&child_event->child_list, &parent_event->child_list);
13222         mutex_unlock(&parent_event->child_mutex);
13223
13224         return child_event;
13225 }
13226
13227 /*
13228  * Inherits an event group.
13229  *
13230  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13231  * This matches with perf_event_release_kernel() removing all child events.
13232  *
13233  * Returns:
13234  *  - 0 on success
13235  *  - <0 on error
13236  */
13237 static int inherit_group(struct perf_event *parent_event,
13238               struct task_struct *parent,
13239               struct perf_event_context *parent_ctx,
13240               struct task_struct *child,
13241               struct perf_event_context *child_ctx)
13242 {
13243         struct perf_event *leader;
13244         struct perf_event *sub;
13245         struct perf_event *child_ctr;
13246
13247         leader = inherit_event(parent_event, parent, parent_ctx,
13248                                  child, NULL, child_ctx);
13249         if (IS_ERR(leader))
13250                 return PTR_ERR(leader);
13251         /*
13252          * @leader can be NULL here because of is_orphaned_event(). In this
13253          * case inherit_event() will create individual events, similar to what
13254          * perf_group_detach() would do anyway.
13255          */
13256         for_each_sibling_event(sub, parent_event) {
13257                 child_ctr = inherit_event(sub, parent, parent_ctx,
13258                                             child, leader, child_ctx);
13259                 if (IS_ERR(child_ctr))
13260                         return PTR_ERR(child_ctr);
13261
13262                 if (sub->aux_event == parent_event && child_ctr &&
13263                     !perf_get_aux_event(child_ctr, leader))
13264                         return -EINVAL;
13265         }
13266         return 0;
13267 }
13268
13269 /*
13270  * Creates the child task context and tries to inherit the event-group.
13271  *
13272  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13273  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13274  * consistent with perf_event_release_kernel() removing all child events.
13275  *
13276  * Returns:
13277  *  - 0 on success
13278  *  - <0 on error
13279  */
13280 static int
13281 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13282                    struct perf_event_context *parent_ctx,
13283                    struct task_struct *child, int ctxn,
13284                    u64 clone_flags, int *inherited_all)
13285 {
13286         int ret;
13287         struct perf_event_context *child_ctx;
13288
13289         if (!event->attr.inherit ||
13290             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13291             /* Do not inherit if sigtrap and signal handlers were cleared. */
13292             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13293                 *inherited_all = 0;
13294                 return 0;
13295         }
13296
13297         child_ctx = child->perf_event_ctxp[ctxn];
13298         if (!child_ctx) {
13299                 /*
13300                  * This is executed from the parent task context, so
13301                  * inherit events that have been marked for cloning.
13302                  * First allocate and initialize a context for the
13303                  * child.
13304                  */
13305                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13306                 if (!child_ctx)
13307                         return -ENOMEM;
13308
13309                 child->perf_event_ctxp[ctxn] = child_ctx;
13310         }
13311
13312         ret = inherit_group(event, parent, parent_ctx,
13313                             child, child_ctx);
13314
13315         if (ret)
13316                 *inherited_all = 0;
13317
13318         return ret;
13319 }
13320
13321 /*
13322  * Initialize the perf_event context in task_struct
13323  */
13324 static int perf_event_init_context(struct task_struct *child, int ctxn,
13325                                    u64 clone_flags)
13326 {
13327         struct perf_event_context *child_ctx, *parent_ctx;
13328         struct perf_event_context *cloned_ctx;
13329         struct perf_event *event;
13330         struct task_struct *parent = current;
13331         int inherited_all = 1;
13332         unsigned long flags;
13333         int ret = 0;
13334
13335         if (likely(!parent->perf_event_ctxp[ctxn]))
13336                 return 0;
13337
13338         /*
13339          * If the parent's context is a clone, pin it so it won't get
13340          * swapped under us.
13341          */
13342         parent_ctx = perf_pin_task_context(parent, ctxn);
13343         if (!parent_ctx)
13344                 return 0;
13345
13346         /*
13347          * No need to check if parent_ctx != NULL here; since we saw
13348          * it non-NULL earlier, the only reason for it to become NULL
13349          * is if we exit, and since we're currently in the middle of
13350          * a fork we can't be exiting at the same time.
13351          */
13352
13353         /*
13354          * Lock the parent list. No need to lock the child - not PID
13355          * hashed yet and not running, so nobody can access it.
13356          */
13357         mutex_lock(&parent_ctx->mutex);
13358
13359         /*
13360          * We dont have to disable NMIs - we are only looking at
13361          * the list, not manipulating it:
13362          */
13363         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13364                 ret = inherit_task_group(event, parent, parent_ctx,
13365                                          child, ctxn, clone_flags,
13366                                          &inherited_all);
13367                 if (ret)
13368                         goto out_unlock;
13369         }
13370
13371         /*
13372          * We can't hold ctx->lock when iterating the ->flexible_group list due
13373          * to allocations, but we need to prevent rotation because
13374          * rotate_ctx() will change the list from interrupt context.
13375          */
13376         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13377         parent_ctx->rotate_disable = 1;
13378         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13379
13380         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13381                 ret = inherit_task_group(event, parent, parent_ctx,
13382                                          child, ctxn, clone_flags,
13383                                          &inherited_all);
13384                 if (ret)
13385                         goto out_unlock;
13386         }
13387
13388         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13389         parent_ctx->rotate_disable = 0;
13390
13391         child_ctx = child->perf_event_ctxp[ctxn];
13392
13393         if (child_ctx && inherited_all) {
13394                 /*
13395                  * Mark the child context as a clone of the parent
13396                  * context, or of whatever the parent is a clone of.
13397                  *
13398                  * Note that if the parent is a clone, the holding of
13399                  * parent_ctx->lock avoids it from being uncloned.
13400                  */
13401                 cloned_ctx = parent_ctx->parent_ctx;
13402                 if (cloned_ctx) {
13403                         child_ctx->parent_ctx = cloned_ctx;
13404                         child_ctx->parent_gen = parent_ctx->parent_gen;
13405                 } else {
13406                         child_ctx->parent_ctx = parent_ctx;
13407                         child_ctx->parent_gen = parent_ctx->generation;
13408                 }
13409                 get_ctx(child_ctx->parent_ctx);
13410         }
13411
13412         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13413 out_unlock:
13414         mutex_unlock(&parent_ctx->mutex);
13415
13416         perf_unpin_context(parent_ctx);
13417         put_ctx(parent_ctx);
13418
13419         return ret;
13420 }
13421
13422 /*
13423  * Initialize the perf_event context in task_struct
13424  */
13425 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13426 {
13427         int ctxn, ret;
13428
13429         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13430         mutex_init(&child->perf_event_mutex);
13431         INIT_LIST_HEAD(&child->perf_event_list);
13432
13433         for_each_task_context_nr(ctxn) {
13434                 ret = perf_event_init_context(child, ctxn, clone_flags);
13435                 if (ret) {
13436                         perf_event_free_task(child);
13437                         return ret;
13438                 }
13439         }
13440
13441         return 0;
13442 }
13443
13444 static void __init perf_event_init_all_cpus(void)
13445 {
13446         struct swevent_htable *swhash;
13447         int cpu;
13448
13449         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13450
13451         for_each_possible_cpu(cpu) {
13452                 swhash = &per_cpu(swevent_htable, cpu);
13453                 mutex_init(&swhash->hlist_mutex);
13454                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13455
13456                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13457                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13458
13459 #ifdef CONFIG_CGROUP_PERF
13460                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13461 #endif
13462                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13463         }
13464 }
13465
13466 static void perf_swevent_init_cpu(unsigned int cpu)
13467 {
13468         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13469
13470         mutex_lock(&swhash->hlist_mutex);
13471         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13472                 struct swevent_hlist *hlist;
13473
13474                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13475                 WARN_ON(!hlist);
13476                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13477         }
13478         mutex_unlock(&swhash->hlist_mutex);
13479 }
13480
13481 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13482 static void __perf_event_exit_context(void *__info)
13483 {
13484         struct perf_event_context *ctx = __info;
13485         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13486         struct perf_event *event;
13487
13488         raw_spin_lock(&ctx->lock);
13489         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13490         list_for_each_entry(event, &ctx->event_list, event_entry)
13491                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13492         raw_spin_unlock(&ctx->lock);
13493 }
13494
13495 static void perf_event_exit_cpu_context(int cpu)
13496 {
13497         struct perf_cpu_context *cpuctx;
13498         struct perf_event_context *ctx;
13499         struct pmu *pmu;
13500
13501         mutex_lock(&pmus_lock);
13502         list_for_each_entry(pmu, &pmus, entry) {
13503                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13504                 ctx = &cpuctx->ctx;
13505
13506                 mutex_lock(&ctx->mutex);
13507                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13508                 cpuctx->online = 0;
13509                 mutex_unlock(&ctx->mutex);
13510         }
13511         cpumask_clear_cpu(cpu, perf_online_mask);
13512         mutex_unlock(&pmus_lock);
13513 }
13514 #else
13515
13516 static void perf_event_exit_cpu_context(int cpu) { }
13517
13518 #endif
13519
13520 int perf_event_init_cpu(unsigned int cpu)
13521 {
13522         struct perf_cpu_context *cpuctx;
13523         struct perf_event_context *ctx;
13524         struct pmu *pmu;
13525
13526         perf_swevent_init_cpu(cpu);
13527
13528         mutex_lock(&pmus_lock);
13529         cpumask_set_cpu(cpu, perf_online_mask);
13530         list_for_each_entry(pmu, &pmus, entry) {
13531                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13532                 ctx = &cpuctx->ctx;
13533
13534                 mutex_lock(&ctx->mutex);
13535                 cpuctx->online = 1;
13536                 mutex_unlock(&ctx->mutex);
13537         }
13538         mutex_unlock(&pmus_lock);
13539
13540         return 0;
13541 }
13542
13543 int perf_event_exit_cpu(unsigned int cpu)
13544 {
13545         perf_event_exit_cpu_context(cpu);
13546         return 0;
13547 }
13548
13549 static int
13550 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13551 {
13552         int cpu;
13553
13554         for_each_online_cpu(cpu)
13555                 perf_event_exit_cpu(cpu);
13556
13557         return NOTIFY_OK;
13558 }
13559
13560 /*
13561  * Run the perf reboot notifier at the very last possible moment so that
13562  * the generic watchdog code runs as long as possible.
13563  */
13564 static struct notifier_block perf_reboot_notifier = {
13565         .notifier_call = perf_reboot,
13566         .priority = INT_MIN,
13567 };
13568
13569 void __init perf_event_init(void)
13570 {
13571         int ret;
13572
13573         idr_init(&pmu_idr);
13574
13575         perf_event_init_all_cpus();
13576         init_srcu_struct(&pmus_srcu);
13577         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13578         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13579         perf_pmu_register(&perf_task_clock, NULL, -1);
13580         perf_tp_register();
13581         perf_event_init_cpu(smp_processor_id());
13582         register_reboot_notifier(&perf_reboot_notifier);
13583
13584         ret = init_hw_breakpoint();
13585         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13586
13587         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13588
13589         /*
13590          * Build time assertion that we keep the data_head at the intended
13591          * location.  IOW, validation we got the __reserved[] size right.
13592          */
13593         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13594                      != 1024);
13595 }
13596
13597 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13598                               char *page)
13599 {
13600         struct perf_pmu_events_attr *pmu_attr =
13601                 container_of(attr, struct perf_pmu_events_attr, attr);
13602
13603         if (pmu_attr->event_str)
13604                 return sprintf(page, "%s\n", pmu_attr->event_str);
13605
13606         return 0;
13607 }
13608 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13609
13610 static int __init perf_event_sysfs_init(void)
13611 {
13612         struct pmu *pmu;
13613         int ret;
13614
13615         mutex_lock(&pmus_lock);
13616
13617         ret = bus_register(&pmu_bus);
13618         if (ret)
13619                 goto unlock;
13620
13621         list_for_each_entry(pmu, &pmus, entry) {
13622                 if (!pmu->name || pmu->type < 0)
13623                         continue;
13624
13625                 ret = pmu_dev_alloc(pmu);
13626                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13627         }
13628         pmu_bus_running = 1;
13629         ret = 0;
13630
13631 unlock:
13632         mutex_unlock(&pmus_lock);
13633
13634         return ret;
13635 }
13636 device_initcall(perf_event_sysfs_init);
13637
13638 #ifdef CONFIG_CGROUP_PERF
13639 static struct cgroup_subsys_state *
13640 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13641 {
13642         struct perf_cgroup *jc;
13643
13644         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13645         if (!jc)
13646                 return ERR_PTR(-ENOMEM);
13647
13648         jc->info = alloc_percpu(struct perf_cgroup_info);
13649         if (!jc->info) {
13650                 kfree(jc);
13651                 return ERR_PTR(-ENOMEM);
13652         }
13653
13654         return &jc->css;
13655 }
13656
13657 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13658 {
13659         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13660
13661         free_percpu(jc->info);
13662         kfree(jc);
13663 }
13664
13665 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13666 {
13667         perf_event_cgroup(css->cgroup);
13668         return 0;
13669 }
13670
13671 static int __perf_cgroup_move(void *info)
13672 {
13673         struct task_struct *task = info;
13674         rcu_read_lock();
13675         perf_cgroup_switch(task);
13676         rcu_read_unlock();
13677         return 0;
13678 }
13679
13680 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13681 {
13682         struct task_struct *task;
13683         struct cgroup_subsys_state *css;
13684
13685         cgroup_taskset_for_each(task, css, tset)
13686                 task_function_call(task, __perf_cgroup_move, task);
13687 }
13688
13689 struct cgroup_subsys perf_event_cgrp_subsys = {
13690         .css_alloc      = perf_cgroup_css_alloc,
13691         .css_free       = perf_cgroup_css_free,
13692         .css_online     = perf_cgroup_css_online,
13693         .attach         = perf_cgroup_attach,
13694         /*
13695          * Implicitly enable on dfl hierarchy so that perf events can
13696          * always be filtered by cgroup2 path as long as perf_event
13697          * controller is not mounted on a legacy hierarchy.
13698          */
13699         .implicit_on_dfl = true,
13700         .threaded       = true,
13701 };
13702 #endif /* CONFIG_CGROUP_PERF */
13703
13704 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);