perf: Fix perf_event_validate_size()
[platform/kernel/linux-starfive.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66         struct task_struct      *p;
67         remote_function_f       func;
68         void                    *info;
69         int                     ret;
70 };
71
72 static void remote_function(void *data)
73 {
74         struct remote_function_call *tfc = data;
75         struct task_struct *p = tfc->p;
76
77         if (p) {
78                 /* -EAGAIN */
79                 if (task_cpu(p) != smp_processor_id())
80                         return;
81
82                 /*
83                  * Now that we're on right CPU with IRQs disabled, we can test
84                  * if we hit the right task without races.
85                  */
86
87                 tfc->ret = -ESRCH; /* No such (running) process */
88                 if (p != current)
89                         return;
90         }
91
92         tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:          the task to evaluate
98  * @func:       the function to be called
99  * @info:       the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111         struct remote_function_call data = {
112                 .p      = p,
113                 .func   = func,
114                 .info   = info,
115                 .ret    = -EAGAIN,
116         };
117         int ret;
118
119         for (;;) {
120                 ret = smp_call_function_single(task_cpu(p), remote_function,
121                                                &data, 1);
122                 if (!ret)
123                         ret = data.ret;
124
125                 if (ret != -EAGAIN)
126                         break;
127
128                 cond_resched();
129         }
130
131         return ret;
132 }
133
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:        target cpu to queue this function
137  * @func:       the function to be called
138  * @info:       the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146         struct remote_function_call data = {
147                 .p      = NULL,
148                 .func   = func,
149                 .info   = info,
150                 .ret    = -ENXIO, /* No such CPU */
151         };
152
153         smp_call_function_single(cpu, remote_function, &data, 1);
154
155         return data.ret;
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185         lockdep_assert_irqs_disabled();
186         return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209                         struct perf_event_context *, void *);
210
211 struct event_function_struct {
212         struct perf_event *event;
213         event_f func;
214         void *data;
215 };
216
217 static int event_function(void *info)
218 {
219         struct event_function_struct *efs = info;
220         struct perf_event *event = efs->event;
221         struct perf_event_context *ctx = event->ctx;
222         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223         struct perf_event_context *task_ctx = cpuctx->task_ctx;
224         int ret = 0;
225
226         lockdep_assert_irqs_disabled();
227
228         perf_ctx_lock(cpuctx, task_ctx);
229         /*
230          * Since we do the IPI call without holding ctx->lock things can have
231          * changed, double check we hit the task we set out to hit.
232          */
233         if (ctx->task) {
234                 if (ctx->task != current) {
235                         ret = -ESRCH;
236                         goto unlock;
237                 }
238
239                 /*
240                  * We only use event_function_call() on established contexts,
241                  * and event_function() is only ever called when active (or
242                  * rather, we'll have bailed in task_function_call() or the
243                  * above ctx->task != current test), therefore we must have
244                  * ctx->is_active here.
245                  */
246                 WARN_ON_ONCE(!ctx->is_active);
247                 /*
248                  * And since we have ctx->is_active, cpuctx->task_ctx must
249                  * match.
250                  */
251                 WARN_ON_ONCE(task_ctx != ctx);
252         } else {
253                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254         }
255
256         efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258         perf_ctx_unlock(cpuctx, task_ctx);
259
260         return ret;
261 }
262
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265         struct perf_event_context *ctx = event->ctx;
266         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267         struct event_function_struct efs = {
268                 .event = event,
269                 .func = func,
270                 .data = data,
271         };
272
273         if (!event->parent) {
274                 /*
275                  * If this is a !child event, we must hold ctx::mutex to
276                  * stabilize the event->ctx relation. See
277                  * perf_event_ctx_lock().
278                  */
279                 lockdep_assert_held(&ctx->mutex);
280         }
281
282         if (!task) {
283                 cpu_function_call(event->cpu, event_function, &efs);
284                 return;
285         }
286
287         if (task == TASK_TOMBSTONE)
288                 return;
289
290 again:
291         if (!task_function_call(task, event_function, &efs))
292                 return;
293
294         raw_spin_lock_irq(&ctx->lock);
295         /*
296          * Reload the task pointer, it might have been changed by
297          * a concurrent perf_event_context_sched_out().
298          */
299         task = ctx->task;
300         if (task == TASK_TOMBSTONE) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 return;
303         }
304         if (ctx->is_active) {
305                 raw_spin_unlock_irq(&ctx->lock);
306                 goto again;
307         }
308         func(event, NULL, ctx, data);
309         raw_spin_unlock_irq(&ctx->lock);
310 }
311
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318         struct perf_event_context *ctx = event->ctx;
319         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320         struct task_struct *task = READ_ONCE(ctx->task);
321         struct perf_event_context *task_ctx = NULL;
322
323         lockdep_assert_irqs_disabled();
324
325         if (task) {
326                 if (task == TASK_TOMBSTONE)
327                         return;
328
329                 task_ctx = ctx;
330         }
331
332         perf_ctx_lock(cpuctx, task_ctx);
333
334         task = ctx->task;
335         if (task == TASK_TOMBSTONE)
336                 goto unlock;
337
338         if (task) {
339                 /*
340                  * We must be either inactive or active and the right task,
341                  * otherwise we're screwed, since we cannot IPI to somewhere
342                  * else.
343                  */
344                 if (ctx->is_active) {
345                         if (WARN_ON_ONCE(task != current))
346                                 goto unlock;
347
348                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349                                 goto unlock;
350                 }
351         } else {
352                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353         }
354
355         func(event, cpuctx, ctx, data);
356 unlock:
357         perf_ctx_unlock(cpuctx, task_ctx);
358 }
359
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361                        PERF_FLAG_FD_OUTPUT  |\
362                        PERF_FLAG_PID_CGROUP |\
363                        PERF_FLAG_FD_CLOEXEC)
364
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369         (PERF_SAMPLE_BRANCH_KERNEL |\
370          PERF_SAMPLE_BRANCH_HV)
371
372 enum event_type_t {
373         EVENT_FLEXIBLE = 0x1,
374         EVENT_PINNED = 0x2,
375         EVENT_TIME = 0x4,
376         /* see ctx_resched() for details */
377         EVENT_CPU = 0x8,
378         EVENT_CGROUP = 0x10,
379         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381
382 /*
383  * perf_sched_events : >0 events exist
384  */
385
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE         100000
428 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
430
431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
435
436 static int perf_sample_allowed_ns __read_mostly =
437         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438
439 static void update_perf_cpu_limits(void)
440 {
441         u64 tmp = perf_sample_period_ns;
442
443         tmp *= sysctl_perf_cpu_time_max_percent;
444         tmp = div_u64(tmp, 100);
445         if (!tmp)
446                 tmp = 1;
447
448         WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452
453 int perf_proc_update_handler(struct ctl_table *table, int write,
454                 void *buffer, size_t *lenp, loff_t *ppos)
455 {
456         int ret;
457         int perf_cpu = sysctl_perf_cpu_time_max_percent;
458         /*
459          * If throttling is disabled don't allow the write:
460          */
461         if (write && (perf_cpu == 100 || perf_cpu == 0))
462                 return -EINVAL;
463
464         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465         if (ret || !write)
466                 return ret;
467
468         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470         update_perf_cpu_limits();
471
472         return 0;
473 }
474
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478                 void *buffer, size_t *lenp, loff_t *ppos)
479 {
480         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481
482         if (ret || !write)
483                 return ret;
484
485         if (sysctl_perf_cpu_time_max_percent == 100 ||
486             sysctl_perf_cpu_time_max_percent == 0) {
487                 printk(KERN_WARNING
488                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489                 WRITE_ONCE(perf_sample_allowed_ns, 0);
490         } else {
491                 update_perf_cpu_limits();
492         }
493
494         return 0;
495 }
496
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505
506 static u64 __report_avg;
507 static u64 __report_allowed;
508
509 static void perf_duration_warn(struct irq_work *w)
510 {
511         printk_ratelimited(KERN_INFO
512                 "perf: interrupt took too long (%lld > %lld), lowering "
513                 "kernel.perf_event_max_sample_rate to %d\n",
514                 __report_avg, __report_allowed,
515                 sysctl_perf_event_sample_rate);
516 }
517
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523         u64 running_len;
524         u64 avg_len;
525         u32 max;
526
527         if (max_len == 0)
528                 return;
529
530         /* Decay the counter by 1 average sample. */
531         running_len = __this_cpu_read(running_sample_length);
532         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533         running_len += sample_len_ns;
534         __this_cpu_write(running_sample_length, running_len);
535
536         /*
537          * Note: this will be biased artifically low until we have
538          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539          * from having to maintain a count.
540          */
541         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542         if (avg_len <= max_len)
543                 return;
544
545         __report_avg = avg_len;
546         __report_allowed = max_len;
547
548         /*
549          * Compute a throttle threshold 25% below the current duration.
550          */
551         avg_len += avg_len / 4;
552         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553         if (avg_len < max)
554                 max /= (u32)avg_len;
555         else
556                 max = 1;
557
558         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559         WRITE_ONCE(max_samples_per_tick, max);
560
561         sysctl_perf_event_sample_rate = max * HZ;
562         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563
564         if (!irq_work_queue(&perf_duration_work)) {
565                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566                              "kernel.perf_event_max_sample_rate to %d\n",
567                              __report_avg, __report_allowed,
568                              sysctl_perf_event_sample_rate);
569         }
570 }
571
572 static atomic64_t perf_event_id;
573
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576
577 void __weak perf_event_print_debug(void)        { }
578
579 static inline u64 perf_clock(void)
580 {
581         return local_clock();
582 }
583
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586         return event->clock();
587 }
588
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614         struct perf_event *leader = event->group_leader;
615
616         if (leader->state <= PERF_EVENT_STATE_OFF)
617                 return leader->state;
618
619         return event->state;
620 }
621
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625         enum perf_event_state state = __perf_effective_state(event);
626         u64 delta = now - event->tstamp;
627
628         *enabled = event->total_time_enabled;
629         if (state >= PERF_EVENT_STATE_INACTIVE)
630                 *enabled += delta;
631
632         *running = event->total_time_running;
633         if (state >= PERF_EVENT_STATE_ACTIVE)
634                 *running += delta;
635 }
636
637 static void perf_event_update_time(struct perf_event *event)
638 {
639         u64 now = perf_event_time(event);
640
641         __perf_update_times(event, now, &event->total_time_enabled,
642                                         &event->total_time_running);
643         event->tstamp = now;
644 }
645
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648         struct perf_event *sibling;
649
650         for_each_sibling_event(sibling, leader)
651                 perf_event_update_time(sibling);
652 }
653
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657         if (event->state == state)
658                 return;
659
660         perf_event_update_time(event);
661         /*
662          * If a group leader gets enabled/disabled all its siblings
663          * are affected too.
664          */
665         if ((event->state < 0) ^ (state < 0))
666                 perf_event_update_sibling_time(event);
667
668         WRITE_ONCE(event->state, state);
669 }
670
671 /*
672  * UP store-release, load-acquire
673  */
674
675 #define __store_release(ptr, val)                                       \
676 do {                                                                    \
677         barrier();                                                      \
678         WRITE_ONCE(*(ptr), (val));                                      \
679 } while (0)
680
681 #define __load_acquire(ptr)                                             \
682 ({                                                                      \
683         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
684         barrier();                                                      \
685         ___p;                                                           \
686 })
687
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690         struct perf_event_pmu_context *pmu_ctx;
691
692         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693                 if (cgroup && !pmu_ctx->nr_cgroups)
694                         continue;
695                 perf_pmu_disable(pmu_ctx->pmu);
696         }
697 }
698
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701         struct perf_event_pmu_context *pmu_ctx;
702
703         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704                 if (cgroup && !pmu_ctx->nr_cgroups)
705                         continue;
706                 perf_pmu_enable(pmu_ctx->pmu);
707         }
708 }
709
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712
713 #ifdef CONFIG_CGROUP_PERF
714
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719
720         /* @event doesn't care about cgroup */
721         if (!event->cgrp)
722                 return true;
723
724         /* wants specific cgroup scope but @cpuctx isn't associated with any */
725         if (!cpuctx->cgrp)
726                 return false;
727
728         /*
729          * Cgroup scoping is recursive.  An event enabled for a cgroup is
730          * also enabled for all its descendant cgroups.  If @cpuctx's
731          * cgroup is a descendant of @event's (the test covers identity
732          * case), it's a match.
733          */
734         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735                                     event->cgrp->css.cgroup);
736 }
737
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740         css_put(&event->cgrp->css);
741         event->cgrp = NULL;
742 }
743
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746         return event->cgrp != NULL;
747 }
748
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751         struct perf_cgroup_info *t;
752
753         t = per_cpu_ptr(event->cgrp->info, event->cpu);
754         return t->time;
755 }
756
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759         struct perf_cgroup_info *t;
760
761         t = per_cpu_ptr(event->cgrp->info, event->cpu);
762         if (!__load_acquire(&t->active))
763                 return t->time;
764         now += READ_ONCE(t->timeoffset);
765         return now;
766 }
767
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770         if (adv)
771                 info->time += now - info->timestamp;
772         info->timestamp = now;
773         /*
774          * see update_context_time()
775          */
776         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781         struct perf_cgroup *cgrp = cpuctx->cgrp;
782         struct cgroup_subsys_state *css;
783         struct perf_cgroup_info *info;
784
785         if (cgrp) {
786                 u64 now = perf_clock();
787
788                 for (css = &cgrp->css; css; css = css->parent) {
789                         cgrp = container_of(css, struct perf_cgroup, css);
790                         info = this_cpu_ptr(cgrp->info);
791
792                         __update_cgrp_time(info, now, true);
793                         if (final)
794                                 __store_release(&info->active, 0);
795                 }
796         }
797 }
798
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801         struct perf_cgroup_info *info;
802
803         /*
804          * ensure we access cgroup data only when needed and
805          * when we know the cgroup is pinned (css_get)
806          */
807         if (!is_cgroup_event(event))
808                 return;
809
810         info = this_cpu_ptr(event->cgrp->info);
811         /*
812          * Do not update time when cgroup is not active
813          */
814         if (info->active)
815                 __update_cgrp_time(info, perf_clock(), true);
816 }
817
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821         struct perf_event_context *ctx = &cpuctx->ctx;
822         struct perf_cgroup *cgrp = cpuctx->cgrp;
823         struct perf_cgroup_info *info;
824         struct cgroup_subsys_state *css;
825
826         /*
827          * ctx->lock held by caller
828          * ensure we do not access cgroup data
829          * unless we have the cgroup pinned (css_get)
830          */
831         if (!cgrp)
832                 return;
833
834         WARN_ON_ONCE(!ctx->nr_cgroups);
835
836         for (css = &cgrp->css; css; css = css->parent) {
837                 cgrp = container_of(css, struct perf_cgroup, css);
838                 info = this_cpu_ptr(cgrp->info);
839                 __update_cgrp_time(info, ctx->timestamp, false);
840                 __store_release(&info->active, 1);
841         }
842 }
843
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850         struct perf_cgroup *cgrp;
851
852         /*
853          * cpuctx->cgrp is set when the first cgroup event enabled,
854          * and is cleared when the last cgroup event disabled.
855          */
856         if (READ_ONCE(cpuctx->cgrp) == NULL)
857                 return;
858
859         WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860
861         cgrp = perf_cgroup_from_task(task, NULL);
862         if (READ_ONCE(cpuctx->cgrp) == cgrp)
863                 return;
864
865         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866         perf_ctx_disable(&cpuctx->ctx, true);
867
868         ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869         /*
870          * must not be done before ctxswout due
871          * to update_cgrp_time_from_cpuctx() in
872          * ctx_sched_out()
873          */
874         cpuctx->cgrp = cgrp;
875         /*
876          * set cgrp before ctxsw in to allow
877          * perf_cgroup_set_timestamp() in ctx_sched_in()
878          * to not have to pass task around
879          */
880         ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881
882         perf_ctx_enable(&cpuctx->ctx, true);
883         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887                                 struct cgroup_subsys_state *css)
888 {
889         struct perf_cpu_context *cpuctx;
890         struct perf_event **storage;
891         int cpu, heap_size, ret = 0;
892
893         /*
894          * Allow storage to have sufficent space for an iterator for each
895          * possibly nested cgroup plus an iterator for events with no cgroup.
896          */
897         for (heap_size = 1; css; css = css->parent)
898                 heap_size++;
899
900         for_each_possible_cpu(cpu) {
901                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902                 if (heap_size <= cpuctx->heap_size)
903                         continue;
904
905                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906                                        GFP_KERNEL, cpu_to_node(cpu));
907                 if (!storage) {
908                         ret = -ENOMEM;
909                         break;
910                 }
911
912                 raw_spin_lock_irq(&cpuctx->ctx.lock);
913                 if (cpuctx->heap_size < heap_size) {
914                         swap(cpuctx->heap, storage);
915                         if (storage == cpuctx->heap_default)
916                                 storage = NULL;
917                         cpuctx->heap_size = heap_size;
918                 }
919                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
920
921                 kfree(storage);
922         }
923
924         return ret;
925 }
926
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928                                       struct perf_event_attr *attr,
929                                       struct perf_event *group_leader)
930 {
931         struct perf_cgroup *cgrp;
932         struct cgroup_subsys_state *css;
933         struct fd f = fdget(fd);
934         int ret = 0;
935
936         if (!f.file)
937                 return -EBADF;
938
939         css = css_tryget_online_from_dir(f.file->f_path.dentry,
940                                          &perf_event_cgrp_subsys);
941         if (IS_ERR(css)) {
942                 ret = PTR_ERR(css);
943                 goto out;
944         }
945
946         ret = perf_cgroup_ensure_storage(event, css);
947         if (ret)
948                 goto out;
949
950         cgrp = container_of(css, struct perf_cgroup, css);
951         event->cgrp = cgrp;
952
953         /*
954          * all events in a group must monitor
955          * the same cgroup because a task belongs
956          * to only one perf cgroup at a time
957          */
958         if (group_leader && group_leader->cgrp != cgrp) {
959                 perf_detach_cgroup(event);
960                 ret = -EINVAL;
961         }
962 out:
963         fdput(f);
964         return ret;
965 }
966
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970         struct perf_cpu_context *cpuctx;
971
972         if (!is_cgroup_event(event))
973                 return;
974
975         event->pmu_ctx->nr_cgroups++;
976
977         /*
978          * Because cgroup events are always per-cpu events,
979          * @ctx == &cpuctx->ctx.
980          */
981         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982
983         if (ctx->nr_cgroups++)
984                 return;
985
986         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992         struct perf_cpu_context *cpuctx;
993
994         if (!is_cgroup_event(event))
995                 return;
996
997         event->pmu_ctx->nr_cgroups--;
998
999         /*
1000          * Because cgroup events are always per-cpu events,
1001          * @ctx == &cpuctx->ctx.
1002          */
1003         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005         if (--ctx->nr_cgroups)
1006                 return;
1007
1008         cpuctx->cgrp = NULL;
1009 }
1010
1011 #else /* !CONFIG_CGROUP_PERF */
1012
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016         return true;
1017 }
1018
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024         return 0;
1025 }
1026
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032                                                 bool final)
1033 {
1034 }
1035
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037                                       struct perf_event_attr *attr,
1038                                       struct perf_event *group_leader)
1039 {
1040         return -EINVAL;
1041 }
1042
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050         return 0;
1051 }
1052
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055         return 0;
1056 }
1057
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083         struct perf_cpu_pmu_context *cpc;
1084         bool rotations;
1085
1086         lockdep_assert_irqs_disabled();
1087
1088         cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089         rotations = perf_rotate_context(cpc);
1090
1091         raw_spin_lock(&cpc->hrtimer_lock);
1092         if (rotations)
1093                 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094         else
1095                 cpc->hrtimer_active = 0;
1096         raw_spin_unlock(&cpc->hrtimer_lock);
1097
1098         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103         struct hrtimer *timer = &cpc->hrtimer;
1104         struct pmu *pmu = cpc->epc.pmu;
1105         u64 interval;
1106
1107         /*
1108          * check default is sane, if not set then force to
1109          * default interval (1/tick)
1110          */
1111         interval = pmu->hrtimer_interval_ms;
1112         if (interval < 1)
1113                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114
1115         cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116
1117         raw_spin_lock_init(&cpc->hrtimer_lock);
1118         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119         timer->function = perf_mux_hrtimer_handler;
1120 }
1121
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124         struct hrtimer *timer = &cpc->hrtimer;
1125         unsigned long flags;
1126
1127         raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128         if (!cpc->hrtimer_active) {
1129                 cpc->hrtimer_active = 1;
1130                 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132         }
1133         raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134
1135         return 0;
1136 }
1137
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140         return perf_mux_hrtimer_restart(arg);
1141 }
1142
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146         if (!(*count)++)
1147                 pmu->pmu_disable(pmu);
1148 }
1149
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153         if (!--(*count))
1154                 pmu->pmu_enable(pmu);
1155 }
1156
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159         WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164         refcount_inc(&ctx->refcount);
1165 }
1166
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169         if (pmu->task_ctx_cache)
1170                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171
1172         return NULL;
1173 }
1174
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177         if (pmu->task_ctx_cache && task_ctx_data)
1178                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183         struct perf_event_context *ctx;
1184
1185         ctx = container_of(head, struct perf_event_context, rcu_head);
1186         kfree(ctx);
1187 }
1188
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191         if (refcount_dec_and_test(&ctx->refcount)) {
1192                 if (ctx->parent_ctx)
1193                         put_ctx(ctx->parent_ctx);
1194                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195                         put_task_struct(ctx->task);
1196                 call_rcu(&ctx->rcu_head, free_ctx);
1197         }
1198 }
1199
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()    [ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()                   [ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()         [ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event() [ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *      task_struct::perf_event_mutex
1255  *        perf_event_context::mutex
1256  *          perf_event::child_mutex;
1257  *            perf_event_context::lock
1258  *          perf_event::mmap_mutex
1259  *          mmap_lock
1260  *            perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *        cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269         struct perf_event_context *ctx;
1270
1271 again:
1272         rcu_read_lock();
1273         ctx = READ_ONCE(event->ctx);
1274         if (!refcount_inc_not_zero(&ctx->refcount)) {
1275                 rcu_read_unlock();
1276                 goto again;
1277         }
1278         rcu_read_unlock();
1279
1280         mutex_lock_nested(&ctx->mutex, nesting);
1281         if (event->ctx != ctx) {
1282                 mutex_unlock(&ctx->mutex);
1283                 put_ctx(ctx);
1284                 goto again;
1285         }
1286
1287         return ctx;
1288 }
1289
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293         return perf_event_ctx_lock_nested(event, 0);
1294 }
1295
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297                                   struct perf_event_context *ctx)
1298 {
1299         mutex_unlock(&ctx->mutex);
1300         put_ctx(ctx);
1301 }
1302
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312
1313         lockdep_assert_held(&ctx->lock);
1314
1315         if (parent_ctx)
1316                 ctx->parent_ctx = NULL;
1317         ctx->generation++;
1318
1319         return parent_ctx;
1320 }
1321
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323                                 enum pid_type type)
1324 {
1325         u32 nr;
1326         /*
1327          * only top level events have the pid namespace they were created in
1328          */
1329         if (event->parent)
1330                 event = event->parent;
1331
1332         nr = __task_pid_nr_ns(p, type, event->ns);
1333         /* avoid -1 if it is idle thread or runs in another ns */
1334         if (!nr && !pid_alive(p))
1335                 nr = -1;
1336         return nr;
1337 }
1338
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346         return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355         u64 id = event->id;
1356
1357         if (event->parent)
1358                 id = event->parent->id;
1359
1360         return id;
1361 }
1362
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372         struct perf_event_context *ctx;
1373
1374 retry:
1375         /*
1376          * One of the few rules of preemptible RCU is that one cannot do
1377          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378          * part of the read side critical section was irqs-enabled -- see
1379          * rcu_read_unlock_special().
1380          *
1381          * Since ctx->lock nests under rq->lock we must ensure the entire read
1382          * side critical section has interrupts disabled.
1383          */
1384         local_irq_save(*flags);
1385         rcu_read_lock();
1386         ctx = rcu_dereference(task->perf_event_ctxp);
1387         if (ctx) {
1388                 /*
1389                  * If this context is a clone of another, it might
1390                  * get swapped for another underneath us by
1391                  * perf_event_task_sched_out, though the
1392                  * rcu_read_lock() protects us from any context
1393                  * getting freed.  Lock the context and check if it
1394                  * got swapped before we could get the lock, and retry
1395                  * if so.  If we locked the right context, then it
1396                  * can't get swapped on us any more.
1397                  */
1398                 raw_spin_lock(&ctx->lock);
1399                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400                         raw_spin_unlock(&ctx->lock);
1401                         rcu_read_unlock();
1402                         local_irq_restore(*flags);
1403                         goto retry;
1404                 }
1405
1406                 if (ctx->task == TASK_TOMBSTONE ||
1407                     !refcount_inc_not_zero(&ctx->refcount)) {
1408                         raw_spin_unlock(&ctx->lock);
1409                         ctx = NULL;
1410                 } else {
1411                         WARN_ON_ONCE(ctx->task != task);
1412                 }
1413         }
1414         rcu_read_unlock();
1415         if (!ctx)
1416                 local_irq_restore(*flags);
1417         return ctx;
1418 }
1419
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428         struct perf_event_context *ctx;
1429         unsigned long flags;
1430
1431         ctx = perf_lock_task_context(task, &flags);
1432         if (ctx) {
1433                 ++ctx->pin_count;
1434                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435         }
1436         return ctx;
1437 }
1438
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441         unsigned long flags;
1442
1443         raw_spin_lock_irqsave(&ctx->lock, flags);
1444         --ctx->pin_count;
1445         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453         u64 now = perf_clock();
1454
1455         lockdep_assert_held(&ctx->lock);
1456
1457         if (adv)
1458                 ctx->time += now - ctx->timestamp;
1459         ctx->timestamp = now;
1460
1461         /*
1462          * The above: time' = time + (now - timestamp), can be re-arranged
1463          * into: time` = now + (time - timestamp), which gives a single value
1464          * offset to compute future time without locks on.
1465          *
1466          * See perf_event_time_now(), which can be used from NMI context where
1467          * it's (obviously) not possible to acquire ctx->lock in order to read
1468          * both the above values in a consistent manner.
1469          */
1470         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475         __update_context_time(ctx, true);
1476 }
1477
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480         struct perf_event_context *ctx = event->ctx;
1481
1482         if (unlikely(!ctx))
1483                 return 0;
1484
1485         if (is_cgroup_event(event))
1486                 return perf_cgroup_event_time(event);
1487
1488         return ctx->time;
1489 }
1490
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493         struct perf_event_context *ctx = event->ctx;
1494
1495         if (unlikely(!ctx))
1496                 return 0;
1497
1498         if (is_cgroup_event(event))
1499                 return perf_cgroup_event_time_now(event, now);
1500
1501         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502                 return ctx->time;
1503
1504         now += READ_ONCE(ctx->timeoffset);
1505         return now;
1506 }
1507
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510         struct perf_event_context *ctx = event->ctx;
1511         enum event_type_t event_type;
1512
1513         lockdep_assert_held(&ctx->lock);
1514
1515         /*
1516          * It's 'group type', really, because if our group leader is
1517          * pinned, so are we.
1518          */
1519         if (event->group_leader != event)
1520                 event = event->group_leader;
1521
1522         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523         if (!ctx->task)
1524                 event_type |= EVENT_CPU;
1525
1526         return event_type;
1527 }
1528
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534         RB_CLEAR_NODE(&event->group_node);
1535         event->group_index = 0;
1536 }
1537
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545         if (event->attr.pinned)
1546                 return &ctx->pinned_groups;
1547         else
1548                 return &ctx->flexible_groups;
1549 }
1550
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556         groups->tree = RB_ROOT;
1557         groups->index = 0;
1558 }
1559
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562         struct cgroup *cgroup = NULL;
1563
1564 #ifdef CONFIG_CGROUP_PERF
1565         if (event->cgrp)
1566                 cgroup = event->cgrp->css.cgroup;
1567 #endif
1568
1569         return cgroup;
1570 }
1571
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580                       const struct cgroup *left_cgroup, const u64 left_group_index,
1581                       const struct perf_event *right)
1582 {
1583         if (left_cpu < right->cpu)
1584                 return -1;
1585         if (left_cpu > right->cpu)
1586                 return 1;
1587
1588         if (left_pmu) {
1589                 if (left_pmu < right->pmu_ctx->pmu)
1590                         return -1;
1591                 if (left_pmu > right->pmu_ctx->pmu)
1592                         return 1;
1593         }
1594
1595 #ifdef CONFIG_CGROUP_PERF
1596         {
1597                 const struct cgroup *right_cgroup = event_cgroup(right);
1598
1599                 if (left_cgroup != right_cgroup) {
1600                         if (!left_cgroup) {
1601                                 /*
1602                                  * Left has no cgroup but right does, no
1603                                  * cgroups come first.
1604                                  */
1605                                 return -1;
1606                         }
1607                         if (!right_cgroup) {
1608                                 /*
1609                                  * Right has no cgroup but left does, no
1610                                  * cgroups come first.
1611                                  */
1612                                 return 1;
1613                         }
1614                         /* Two dissimilar cgroups, order by id. */
1615                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616                                 return -1;
1617
1618                         return 1;
1619                 }
1620         }
1621 #endif
1622
1623         if (left_group_index < right->group_index)
1624                 return -1;
1625         if (left_group_index > right->group_index)
1626                 return 1;
1627
1628         return 0;
1629 }
1630
1631 #define __node_2_pe(node) \
1632         rb_entry((node), struct perf_event, group_node)
1633
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636         struct perf_event *e = __node_2_pe(a);
1637         return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638                                      e->group_index, __node_2_pe(b)) < 0;
1639 }
1640
1641 struct __group_key {
1642         int cpu;
1643         struct pmu *pmu;
1644         struct cgroup *cgroup;
1645 };
1646
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649         const struct __group_key *a = key;
1650         const struct perf_event *b = __node_2_pe(node);
1651
1652         /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653         return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659         const struct __group_key *a = key;
1660         const struct perf_event *b = __node_2_pe(node);
1661
1662         /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663         return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664                                      b->group_index, b);
1665 }
1666
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674                          struct perf_event *event)
1675 {
1676         event->group_index = ++groups->index;
1677
1678         rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687         struct perf_event_groups *groups;
1688
1689         groups = get_event_groups(event, ctx);
1690         perf_event_groups_insert(groups, event);
1691 }
1692
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698                          struct perf_event *event)
1699 {
1700         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701                      RB_EMPTY_ROOT(&groups->tree));
1702
1703         rb_erase(&event->group_node, &groups->tree);
1704         init_event_group(event);
1705 }
1706
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713         struct perf_event_groups *groups;
1714
1715         groups = get_event_groups(event, ctx);
1716         perf_event_groups_delete(groups, event);
1717 }
1718
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724                         struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726         struct __group_key key = {
1727                 .cpu = cpu,
1728                 .pmu = pmu,
1729                 .cgroup = cgrp,
1730         };
1731         struct rb_node *node;
1732
1733         node = rb_find_first(&key, &groups->tree, __group_cmp);
1734         if (node)
1735                 return __node_2_pe(node);
1736
1737         return NULL;
1738 }
1739
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743         struct __group_key key = {
1744                 .cpu = event->cpu,
1745                 .pmu = pmu,
1746                 .cgroup = event_cgroup(event),
1747         };
1748         struct rb_node *next;
1749
1750         next = rb_next_match(&key, &event->group_node, __group_cmp);
1751         if (next)
1752                 return __node_2_pe(next);
1753
1754         return NULL;
1755 }
1756
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)          \
1758         for (event = perf_event_groups_first(groups, cpu, pmu, NULL);   \
1759              event; event = perf_event_groups_next(event, pmu))
1760
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)                       \
1765         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1766                                 typeof(*event), group_node); event;     \
1767                 event = rb_entry_safe(rb_next(&event->group_node),      \
1768                                 typeof(*event), group_node))
1769
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777         lockdep_assert_held(&ctx->lock);
1778
1779         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780         event->attach_state |= PERF_ATTACH_CONTEXT;
1781
1782         event->tstamp = perf_event_time(event);
1783
1784         /*
1785          * If we're a stand alone event or group leader, we go to the context
1786          * list, group events are kept attached to the group so that
1787          * perf_group_detach can, at all times, locate all siblings.
1788          */
1789         if (event->group_leader == event) {
1790                 event->group_caps = event->event_caps;
1791                 add_event_to_groups(event, ctx);
1792         }
1793
1794         list_add_rcu(&event->event_entry, &ctx->event_list);
1795         ctx->nr_events++;
1796         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797                 ctx->nr_user++;
1798         if (event->attr.inherit_stat)
1799                 ctx->nr_stat++;
1800
1801         if (event->state > PERF_EVENT_STATE_OFF)
1802                 perf_cgroup_event_enable(event, ctx);
1803
1804         ctx->generation++;
1805         event->pmu_ctx->nr_events++;
1806 }
1807
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814                                               PERF_EVENT_STATE_INACTIVE;
1815 }
1816
1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819         int entry = sizeof(u64); /* value */
1820         int size = 0;
1821         int nr = 1;
1822
1823         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824                 size += sizeof(u64);
1825
1826         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827                 size += sizeof(u64);
1828
1829         if (read_format & PERF_FORMAT_ID)
1830                 entry += sizeof(u64);
1831
1832         if (read_format & PERF_FORMAT_LOST)
1833                 entry += sizeof(u64);
1834
1835         if (read_format & PERF_FORMAT_GROUP) {
1836                 nr += nr_siblings;
1837                 size += sizeof(u64);
1838         }
1839
1840         /*
1841          * Since perf_event_validate_size() limits this to 16k and inhibits
1842          * adding more siblings, this will never overflow.
1843          */
1844         return size + nr * entry;
1845 }
1846
1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849         struct perf_sample_data *data;
1850         u16 size = 0;
1851
1852         if (sample_type & PERF_SAMPLE_IP)
1853                 size += sizeof(data->ip);
1854
1855         if (sample_type & PERF_SAMPLE_ADDR)
1856                 size += sizeof(data->addr);
1857
1858         if (sample_type & PERF_SAMPLE_PERIOD)
1859                 size += sizeof(data->period);
1860
1861         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862                 size += sizeof(data->weight.full);
1863
1864         if (sample_type & PERF_SAMPLE_READ)
1865                 size += event->read_size;
1866
1867         if (sample_type & PERF_SAMPLE_DATA_SRC)
1868                 size += sizeof(data->data_src.val);
1869
1870         if (sample_type & PERF_SAMPLE_TRANSACTION)
1871                 size += sizeof(data->txn);
1872
1873         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874                 size += sizeof(data->phys_addr);
1875
1876         if (sample_type & PERF_SAMPLE_CGROUP)
1877                 size += sizeof(data->cgroup);
1878
1879         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880                 size += sizeof(data->data_page_size);
1881
1882         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883                 size += sizeof(data->code_page_size);
1884
1885         event->header_size = size;
1886 }
1887
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894         event->read_size =
1895                 __perf_event_read_size(event->attr.read_format,
1896                                        event->group_leader->nr_siblings);
1897         __perf_event_header_size(event, event->attr.sample_type);
1898 }
1899
1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902         struct perf_sample_data *data;
1903         u64 sample_type = event->attr.sample_type;
1904         u16 size = 0;
1905
1906         if (sample_type & PERF_SAMPLE_TID)
1907                 size += sizeof(data->tid_entry);
1908
1909         if (sample_type & PERF_SAMPLE_TIME)
1910                 size += sizeof(data->time);
1911
1912         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913                 size += sizeof(data->id);
1914
1915         if (sample_type & PERF_SAMPLE_ID)
1916                 size += sizeof(data->id);
1917
1918         if (sample_type & PERF_SAMPLE_STREAM_ID)
1919                 size += sizeof(data->stream_id);
1920
1921         if (sample_type & PERF_SAMPLE_CPU)
1922                 size += sizeof(data->cpu_entry);
1923
1924         event->id_header_size = size;
1925 }
1926
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940         struct perf_event *sibling, *group_leader = event->group_leader;
1941
1942         if (__perf_event_read_size(event->attr.read_format,
1943                                    group_leader->nr_siblings + 1) > 16*1024)
1944                 return false;
1945
1946         if (__perf_event_read_size(group_leader->attr.read_format,
1947                                    group_leader->nr_siblings + 1) > 16*1024)
1948                 return false;
1949
1950         for_each_sibling_event(sibling, group_leader) {
1951                 if (__perf_event_read_size(sibling->attr.read_format,
1952                                            group_leader->nr_siblings + 1) > 16*1024)
1953                         return false;
1954         }
1955
1956         return true;
1957 }
1958
1959 static void perf_group_attach(struct perf_event *event)
1960 {
1961         struct perf_event *group_leader = event->group_leader, *pos;
1962
1963         lockdep_assert_held(&event->ctx->lock);
1964
1965         /*
1966          * We can have double attach due to group movement (move_group) in
1967          * perf_event_open().
1968          */
1969         if (event->attach_state & PERF_ATTACH_GROUP)
1970                 return;
1971
1972         event->attach_state |= PERF_ATTACH_GROUP;
1973
1974         if (group_leader == event)
1975                 return;
1976
1977         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1978
1979         group_leader->group_caps &= event->event_caps;
1980
1981         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1982         group_leader->nr_siblings++;
1983         group_leader->group_generation++;
1984
1985         perf_event__header_size(group_leader);
1986
1987         for_each_sibling_event(pos, group_leader)
1988                 perf_event__header_size(pos);
1989 }
1990
1991 /*
1992  * Remove an event from the lists for its context.
1993  * Must be called with ctx->mutex and ctx->lock held.
1994  */
1995 static void
1996 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1997 {
1998         WARN_ON_ONCE(event->ctx != ctx);
1999         lockdep_assert_held(&ctx->lock);
2000
2001         /*
2002          * We can have double detach due to exit/hot-unplug + close.
2003          */
2004         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2005                 return;
2006
2007         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2008
2009         ctx->nr_events--;
2010         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2011                 ctx->nr_user--;
2012         if (event->attr.inherit_stat)
2013                 ctx->nr_stat--;
2014
2015         list_del_rcu(&event->event_entry);
2016
2017         if (event->group_leader == event)
2018                 del_event_from_groups(event, ctx);
2019
2020         /*
2021          * If event was in error state, then keep it
2022          * that way, otherwise bogus counts will be
2023          * returned on read(). The only way to get out
2024          * of error state is by explicit re-enabling
2025          * of the event
2026          */
2027         if (event->state > PERF_EVENT_STATE_OFF) {
2028                 perf_cgroup_event_disable(event, ctx);
2029                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2030         }
2031
2032         ctx->generation++;
2033         event->pmu_ctx->nr_events--;
2034 }
2035
2036 static int
2037 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2038 {
2039         if (!has_aux(aux_event))
2040                 return 0;
2041
2042         if (!event->pmu->aux_output_match)
2043                 return 0;
2044
2045         return event->pmu->aux_output_match(aux_event);
2046 }
2047
2048 static void put_event(struct perf_event *event);
2049 static void event_sched_out(struct perf_event *event,
2050                             struct perf_event_context *ctx);
2051
2052 static void perf_put_aux_event(struct perf_event *event)
2053 {
2054         struct perf_event_context *ctx = event->ctx;
2055         struct perf_event *iter;
2056
2057         /*
2058          * If event uses aux_event tear down the link
2059          */
2060         if (event->aux_event) {
2061                 iter = event->aux_event;
2062                 event->aux_event = NULL;
2063                 put_event(iter);
2064                 return;
2065         }
2066
2067         /*
2068          * If the event is an aux_event, tear down all links to
2069          * it from other events.
2070          */
2071         for_each_sibling_event(iter, event->group_leader) {
2072                 if (iter->aux_event != event)
2073                         continue;
2074
2075                 iter->aux_event = NULL;
2076                 put_event(event);
2077
2078                 /*
2079                  * If it's ACTIVE, schedule it out and put it into ERROR
2080                  * state so that we don't try to schedule it again. Note
2081                  * that perf_event_enable() will clear the ERROR status.
2082                  */
2083                 event_sched_out(iter, ctx);
2084                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2085         }
2086 }
2087
2088 static bool perf_need_aux_event(struct perf_event *event)
2089 {
2090         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2091 }
2092
2093 static int perf_get_aux_event(struct perf_event *event,
2094                               struct perf_event *group_leader)
2095 {
2096         /*
2097          * Our group leader must be an aux event if we want to be
2098          * an aux_output. This way, the aux event will precede its
2099          * aux_output events in the group, and therefore will always
2100          * schedule first.
2101          */
2102         if (!group_leader)
2103                 return 0;
2104
2105         /*
2106          * aux_output and aux_sample_size are mutually exclusive.
2107          */
2108         if (event->attr.aux_output && event->attr.aux_sample_size)
2109                 return 0;
2110
2111         if (event->attr.aux_output &&
2112             !perf_aux_output_match(event, group_leader))
2113                 return 0;
2114
2115         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2116                 return 0;
2117
2118         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2119                 return 0;
2120
2121         /*
2122          * Link aux_outputs to their aux event; this is undone in
2123          * perf_group_detach() by perf_put_aux_event(). When the
2124          * group in torn down, the aux_output events loose their
2125          * link to the aux_event and can't schedule any more.
2126          */
2127         event->aux_event = group_leader;
2128
2129         return 1;
2130 }
2131
2132 static inline struct list_head *get_event_list(struct perf_event *event)
2133 {
2134         return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2135                                     &event->pmu_ctx->flexible_active;
2136 }
2137
2138 /*
2139  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2140  * cannot exist on their own, schedule them out and move them into the ERROR
2141  * state. Also see _perf_event_enable(), it will not be able to recover
2142  * this ERROR state.
2143  */
2144 static inline void perf_remove_sibling_event(struct perf_event *event)
2145 {
2146         event_sched_out(event, event->ctx);
2147         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2148 }
2149
2150 static void perf_group_detach(struct perf_event *event)
2151 {
2152         struct perf_event *leader = event->group_leader;
2153         struct perf_event *sibling, *tmp;
2154         struct perf_event_context *ctx = event->ctx;
2155
2156         lockdep_assert_held(&ctx->lock);
2157
2158         /*
2159          * We can have double detach due to exit/hot-unplug + close.
2160          */
2161         if (!(event->attach_state & PERF_ATTACH_GROUP))
2162                 return;
2163
2164         event->attach_state &= ~PERF_ATTACH_GROUP;
2165
2166         perf_put_aux_event(event);
2167
2168         /*
2169          * If this is a sibling, remove it from its group.
2170          */
2171         if (leader != event) {
2172                 list_del_init(&event->sibling_list);
2173                 event->group_leader->nr_siblings--;
2174                 event->group_leader->group_generation++;
2175                 goto out;
2176         }
2177
2178         /*
2179          * If this was a group event with sibling events then
2180          * upgrade the siblings to singleton events by adding them
2181          * to whatever list we are on.
2182          */
2183         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2184
2185                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2186                         perf_remove_sibling_event(sibling);
2187
2188                 sibling->group_leader = sibling;
2189                 list_del_init(&sibling->sibling_list);
2190
2191                 /* Inherit group flags from the previous leader */
2192                 sibling->group_caps = event->group_caps;
2193
2194                 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2195                         add_event_to_groups(sibling, event->ctx);
2196
2197                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2198                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2199                 }
2200
2201                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2202         }
2203
2204 out:
2205         for_each_sibling_event(tmp, leader)
2206                 perf_event__header_size(tmp);
2207
2208         perf_event__header_size(leader);
2209 }
2210
2211 static void sync_child_event(struct perf_event *child_event);
2212
2213 static void perf_child_detach(struct perf_event *event)
2214 {
2215         struct perf_event *parent_event = event->parent;
2216
2217         if (!(event->attach_state & PERF_ATTACH_CHILD))
2218                 return;
2219
2220         event->attach_state &= ~PERF_ATTACH_CHILD;
2221
2222         if (WARN_ON_ONCE(!parent_event))
2223                 return;
2224
2225         lockdep_assert_held(&parent_event->child_mutex);
2226
2227         sync_child_event(event);
2228         list_del_init(&event->child_list);
2229 }
2230
2231 static bool is_orphaned_event(struct perf_event *event)
2232 {
2233         return event->state == PERF_EVENT_STATE_DEAD;
2234 }
2235
2236 static inline int
2237 event_filter_match(struct perf_event *event)
2238 {
2239         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2240                perf_cgroup_match(event);
2241 }
2242
2243 static void
2244 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2245 {
2246         struct perf_event_pmu_context *epc = event->pmu_ctx;
2247         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2248         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2249
2250         // XXX cpc serialization, probably per-cpu IRQ disabled
2251
2252         WARN_ON_ONCE(event->ctx != ctx);
2253         lockdep_assert_held(&ctx->lock);
2254
2255         if (event->state != PERF_EVENT_STATE_ACTIVE)
2256                 return;
2257
2258         /*
2259          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2260          * we can schedule events _OUT_ individually through things like
2261          * __perf_remove_from_context().
2262          */
2263         list_del_init(&event->active_list);
2264
2265         perf_pmu_disable(event->pmu);
2266
2267         event->pmu->del(event, 0);
2268         event->oncpu = -1;
2269
2270         if (event->pending_disable) {
2271                 event->pending_disable = 0;
2272                 perf_cgroup_event_disable(event, ctx);
2273                 state = PERF_EVENT_STATE_OFF;
2274         }
2275
2276         if (event->pending_sigtrap) {
2277                 bool dec = true;
2278
2279                 event->pending_sigtrap = 0;
2280                 if (state != PERF_EVENT_STATE_OFF &&
2281                     !event->pending_work) {
2282                         event->pending_work = 1;
2283                         dec = false;
2284                         WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2285                         task_work_add(current, &event->pending_task, TWA_RESUME);
2286                 }
2287                 if (dec)
2288                         local_dec(&event->ctx->nr_pending);
2289         }
2290
2291         perf_event_set_state(event, state);
2292
2293         if (!is_software_event(event))
2294                 cpc->active_oncpu--;
2295         if (event->attr.freq && event->attr.sample_freq)
2296                 ctx->nr_freq--;
2297         if (event->attr.exclusive || !cpc->active_oncpu)
2298                 cpc->exclusive = 0;
2299
2300         perf_pmu_enable(event->pmu);
2301 }
2302
2303 static void
2304 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2305 {
2306         struct perf_event *event;
2307
2308         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2309                 return;
2310
2311         perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2312
2313         event_sched_out(group_event, ctx);
2314
2315         /*
2316          * Schedule out siblings (if any):
2317          */
2318         for_each_sibling_event(event, group_event)
2319                 event_sched_out(event, ctx);
2320 }
2321
2322 #define DETACH_GROUP    0x01UL
2323 #define DETACH_CHILD    0x02UL
2324 #define DETACH_DEAD     0x04UL
2325
2326 /*
2327  * Cross CPU call to remove a performance event
2328  *
2329  * We disable the event on the hardware level first. After that we
2330  * remove it from the context list.
2331  */
2332 static void
2333 __perf_remove_from_context(struct perf_event *event,
2334                            struct perf_cpu_context *cpuctx,
2335                            struct perf_event_context *ctx,
2336                            void *info)
2337 {
2338         struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2339         unsigned long flags = (unsigned long)info;
2340
2341         if (ctx->is_active & EVENT_TIME) {
2342                 update_context_time(ctx);
2343                 update_cgrp_time_from_cpuctx(cpuctx, false);
2344         }
2345
2346         /*
2347          * Ensure event_sched_out() switches to OFF, at the very least
2348          * this avoids raising perf_pending_task() at this time.
2349          */
2350         if (flags & DETACH_DEAD)
2351                 event->pending_disable = 1;
2352         event_sched_out(event, ctx);
2353         if (flags & DETACH_GROUP)
2354                 perf_group_detach(event);
2355         if (flags & DETACH_CHILD)
2356                 perf_child_detach(event);
2357         list_del_event(event, ctx);
2358         if (flags & DETACH_DEAD)
2359                 event->state = PERF_EVENT_STATE_DEAD;
2360
2361         if (!pmu_ctx->nr_events) {
2362                 pmu_ctx->rotate_necessary = 0;
2363
2364                 if (ctx->task && ctx->is_active) {
2365                         struct perf_cpu_pmu_context *cpc;
2366
2367                         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2368                         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2369                         cpc->task_epc = NULL;
2370                 }
2371         }
2372
2373         if (!ctx->nr_events && ctx->is_active) {
2374                 if (ctx == &cpuctx->ctx)
2375                         update_cgrp_time_from_cpuctx(cpuctx, true);
2376
2377                 ctx->is_active = 0;
2378                 if (ctx->task) {
2379                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2380                         cpuctx->task_ctx = NULL;
2381                 }
2382         }
2383 }
2384
2385 /*
2386  * Remove the event from a task's (or a CPU's) list of events.
2387  *
2388  * If event->ctx is a cloned context, callers must make sure that
2389  * every task struct that event->ctx->task could possibly point to
2390  * remains valid.  This is OK when called from perf_release since
2391  * that only calls us on the top-level context, which can't be a clone.
2392  * When called from perf_event_exit_task, it's OK because the
2393  * context has been detached from its task.
2394  */
2395 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2396 {
2397         struct perf_event_context *ctx = event->ctx;
2398
2399         lockdep_assert_held(&ctx->mutex);
2400
2401         /*
2402          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2403          * to work in the face of TASK_TOMBSTONE, unlike every other
2404          * event_function_call() user.
2405          */
2406         raw_spin_lock_irq(&ctx->lock);
2407         if (!ctx->is_active) {
2408                 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2409                                            ctx, (void *)flags);
2410                 raw_spin_unlock_irq(&ctx->lock);
2411                 return;
2412         }
2413         raw_spin_unlock_irq(&ctx->lock);
2414
2415         event_function_call(event, __perf_remove_from_context, (void *)flags);
2416 }
2417
2418 /*
2419  * Cross CPU call to disable a performance event
2420  */
2421 static void __perf_event_disable(struct perf_event *event,
2422                                  struct perf_cpu_context *cpuctx,
2423                                  struct perf_event_context *ctx,
2424                                  void *info)
2425 {
2426         if (event->state < PERF_EVENT_STATE_INACTIVE)
2427                 return;
2428
2429         if (ctx->is_active & EVENT_TIME) {
2430                 update_context_time(ctx);
2431                 update_cgrp_time_from_event(event);
2432         }
2433
2434         perf_pmu_disable(event->pmu_ctx->pmu);
2435
2436         if (event == event->group_leader)
2437                 group_sched_out(event, ctx);
2438         else
2439                 event_sched_out(event, ctx);
2440
2441         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2442         perf_cgroup_event_disable(event, ctx);
2443
2444         perf_pmu_enable(event->pmu_ctx->pmu);
2445 }
2446
2447 /*
2448  * Disable an event.
2449  *
2450  * If event->ctx is a cloned context, callers must make sure that
2451  * every task struct that event->ctx->task could possibly point to
2452  * remains valid.  This condition is satisfied when called through
2453  * perf_event_for_each_child or perf_event_for_each because they
2454  * hold the top-level event's child_mutex, so any descendant that
2455  * goes to exit will block in perf_event_exit_event().
2456  *
2457  * When called from perf_pending_irq it's OK because event->ctx
2458  * is the current context on this CPU and preemption is disabled,
2459  * hence we can't get into perf_event_task_sched_out for this context.
2460  */
2461 static void _perf_event_disable(struct perf_event *event)
2462 {
2463         struct perf_event_context *ctx = event->ctx;
2464
2465         raw_spin_lock_irq(&ctx->lock);
2466         if (event->state <= PERF_EVENT_STATE_OFF) {
2467                 raw_spin_unlock_irq(&ctx->lock);
2468                 return;
2469         }
2470         raw_spin_unlock_irq(&ctx->lock);
2471
2472         event_function_call(event, __perf_event_disable, NULL);
2473 }
2474
2475 void perf_event_disable_local(struct perf_event *event)
2476 {
2477         event_function_local(event, __perf_event_disable, NULL);
2478 }
2479
2480 /*
2481  * Strictly speaking kernel users cannot create groups and therefore this
2482  * interface does not need the perf_event_ctx_lock() magic.
2483  */
2484 void perf_event_disable(struct perf_event *event)
2485 {
2486         struct perf_event_context *ctx;
2487
2488         ctx = perf_event_ctx_lock(event);
2489         _perf_event_disable(event);
2490         perf_event_ctx_unlock(event, ctx);
2491 }
2492 EXPORT_SYMBOL_GPL(perf_event_disable);
2493
2494 void perf_event_disable_inatomic(struct perf_event *event)
2495 {
2496         event->pending_disable = 1;
2497         irq_work_queue(&event->pending_irq);
2498 }
2499
2500 #define MAX_INTERRUPTS (~0ULL)
2501
2502 static void perf_log_throttle(struct perf_event *event, int enable);
2503 static void perf_log_itrace_start(struct perf_event *event);
2504
2505 static int
2506 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2507 {
2508         struct perf_event_pmu_context *epc = event->pmu_ctx;
2509         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2510         int ret = 0;
2511
2512         WARN_ON_ONCE(event->ctx != ctx);
2513
2514         lockdep_assert_held(&ctx->lock);
2515
2516         if (event->state <= PERF_EVENT_STATE_OFF)
2517                 return 0;
2518
2519         WRITE_ONCE(event->oncpu, smp_processor_id());
2520         /*
2521          * Order event::oncpu write to happen before the ACTIVE state is
2522          * visible. This allows perf_event_{stop,read}() to observe the correct
2523          * ->oncpu if it sees ACTIVE.
2524          */
2525         smp_wmb();
2526         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2527
2528         /*
2529          * Unthrottle events, since we scheduled we might have missed several
2530          * ticks already, also for a heavily scheduling task there is little
2531          * guarantee it'll get a tick in a timely manner.
2532          */
2533         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2534                 perf_log_throttle(event, 1);
2535                 event->hw.interrupts = 0;
2536         }
2537
2538         perf_pmu_disable(event->pmu);
2539
2540         perf_log_itrace_start(event);
2541
2542         if (event->pmu->add(event, PERF_EF_START)) {
2543                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2544                 event->oncpu = -1;
2545                 ret = -EAGAIN;
2546                 goto out;
2547         }
2548
2549         if (!is_software_event(event))
2550                 cpc->active_oncpu++;
2551         if (event->attr.freq && event->attr.sample_freq)
2552                 ctx->nr_freq++;
2553
2554         if (event->attr.exclusive)
2555                 cpc->exclusive = 1;
2556
2557 out:
2558         perf_pmu_enable(event->pmu);
2559
2560         return ret;
2561 }
2562
2563 static int
2564 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2565 {
2566         struct perf_event *event, *partial_group = NULL;
2567         struct pmu *pmu = group_event->pmu_ctx->pmu;
2568
2569         if (group_event->state == PERF_EVENT_STATE_OFF)
2570                 return 0;
2571
2572         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2573
2574         if (event_sched_in(group_event, ctx))
2575                 goto error;
2576
2577         /*
2578          * Schedule in siblings as one group (if any):
2579          */
2580         for_each_sibling_event(event, group_event) {
2581                 if (event_sched_in(event, ctx)) {
2582                         partial_group = event;
2583                         goto group_error;
2584                 }
2585         }
2586
2587         if (!pmu->commit_txn(pmu))
2588                 return 0;
2589
2590 group_error:
2591         /*
2592          * Groups can be scheduled in as one unit only, so undo any
2593          * partial group before returning:
2594          * The events up to the failed event are scheduled out normally.
2595          */
2596         for_each_sibling_event(event, group_event) {
2597                 if (event == partial_group)
2598                         break;
2599
2600                 event_sched_out(event, ctx);
2601         }
2602         event_sched_out(group_event, ctx);
2603
2604 error:
2605         pmu->cancel_txn(pmu);
2606         return -EAGAIN;
2607 }
2608
2609 /*
2610  * Work out whether we can put this event group on the CPU now.
2611  */
2612 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2613 {
2614         struct perf_event_pmu_context *epc = event->pmu_ctx;
2615         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2616
2617         /*
2618          * Groups consisting entirely of software events can always go on.
2619          */
2620         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2621                 return 1;
2622         /*
2623          * If an exclusive group is already on, no other hardware
2624          * events can go on.
2625          */
2626         if (cpc->exclusive)
2627                 return 0;
2628         /*
2629          * If this group is exclusive and there are already
2630          * events on the CPU, it can't go on.
2631          */
2632         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2633                 return 0;
2634         /*
2635          * Otherwise, try to add it if all previous groups were able
2636          * to go on.
2637          */
2638         return can_add_hw;
2639 }
2640
2641 static void add_event_to_ctx(struct perf_event *event,
2642                                struct perf_event_context *ctx)
2643 {
2644         list_add_event(event, ctx);
2645         perf_group_attach(event);
2646 }
2647
2648 static void task_ctx_sched_out(struct perf_event_context *ctx,
2649                                 enum event_type_t event_type)
2650 {
2651         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2652
2653         if (!cpuctx->task_ctx)
2654                 return;
2655
2656         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2657                 return;
2658
2659         ctx_sched_out(ctx, event_type);
2660 }
2661
2662 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2663                                 struct perf_event_context *ctx)
2664 {
2665         ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2666         if (ctx)
2667                  ctx_sched_in(ctx, EVENT_PINNED);
2668         ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2669         if (ctx)
2670                  ctx_sched_in(ctx, EVENT_FLEXIBLE);
2671 }
2672
2673 /*
2674  * We want to maintain the following priority of scheduling:
2675  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2676  *  - task pinned (EVENT_PINNED)
2677  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2678  *  - task flexible (EVENT_FLEXIBLE).
2679  *
2680  * In order to avoid unscheduling and scheduling back in everything every
2681  * time an event is added, only do it for the groups of equal priority and
2682  * below.
2683  *
2684  * This can be called after a batch operation on task events, in which case
2685  * event_type is a bit mask of the types of events involved. For CPU events,
2686  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2687  */
2688 /*
2689  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2690  * event to the context or enabling existing event in the context. We can
2691  * probably optimize it by rescheduling only affected pmu_ctx.
2692  */
2693 static void ctx_resched(struct perf_cpu_context *cpuctx,
2694                         struct perf_event_context *task_ctx,
2695                         enum event_type_t event_type)
2696 {
2697         bool cpu_event = !!(event_type & EVENT_CPU);
2698
2699         /*
2700          * If pinned groups are involved, flexible groups also need to be
2701          * scheduled out.
2702          */
2703         if (event_type & EVENT_PINNED)
2704                 event_type |= EVENT_FLEXIBLE;
2705
2706         event_type &= EVENT_ALL;
2707
2708         perf_ctx_disable(&cpuctx->ctx, false);
2709         if (task_ctx) {
2710                 perf_ctx_disable(task_ctx, false);
2711                 task_ctx_sched_out(task_ctx, event_type);
2712         }
2713
2714         /*
2715          * Decide which cpu ctx groups to schedule out based on the types
2716          * of events that caused rescheduling:
2717          *  - EVENT_CPU: schedule out corresponding groups;
2718          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2719          *  - otherwise, do nothing more.
2720          */
2721         if (cpu_event)
2722                 ctx_sched_out(&cpuctx->ctx, event_type);
2723         else if (event_type & EVENT_PINNED)
2724                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2725
2726         perf_event_sched_in(cpuctx, task_ctx);
2727
2728         perf_ctx_enable(&cpuctx->ctx, false);
2729         if (task_ctx)
2730                 perf_ctx_enable(task_ctx, false);
2731 }
2732
2733 void perf_pmu_resched(struct pmu *pmu)
2734 {
2735         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2736         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2737
2738         perf_ctx_lock(cpuctx, task_ctx);
2739         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2740         perf_ctx_unlock(cpuctx, task_ctx);
2741 }
2742
2743 /*
2744  * Cross CPU call to install and enable a performance event
2745  *
2746  * Very similar to remote_function() + event_function() but cannot assume that
2747  * things like ctx->is_active and cpuctx->task_ctx are set.
2748  */
2749 static int  __perf_install_in_context(void *info)
2750 {
2751         struct perf_event *event = info;
2752         struct perf_event_context *ctx = event->ctx;
2753         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2754         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2755         bool reprogram = true;
2756         int ret = 0;
2757
2758         raw_spin_lock(&cpuctx->ctx.lock);
2759         if (ctx->task) {
2760                 raw_spin_lock(&ctx->lock);
2761                 task_ctx = ctx;
2762
2763                 reprogram = (ctx->task == current);
2764
2765                 /*
2766                  * If the task is running, it must be running on this CPU,
2767                  * otherwise we cannot reprogram things.
2768                  *
2769                  * If its not running, we don't care, ctx->lock will
2770                  * serialize against it becoming runnable.
2771                  */
2772                 if (task_curr(ctx->task) && !reprogram) {
2773                         ret = -ESRCH;
2774                         goto unlock;
2775                 }
2776
2777                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2778         } else if (task_ctx) {
2779                 raw_spin_lock(&task_ctx->lock);
2780         }
2781
2782 #ifdef CONFIG_CGROUP_PERF
2783         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2784                 /*
2785                  * If the current cgroup doesn't match the event's
2786                  * cgroup, we should not try to schedule it.
2787                  */
2788                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2789                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2790                                         event->cgrp->css.cgroup);
2791         }
2792 #endif
2793
2794         if (reprogram) {
2795                 ctx_sched_out(ctx, EVENT_TIME);
2796                 add_event_to_ctx(event, ctx);
2797                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2798         } else {
2799                 add_event_to_ctx(event, ctx);
2800         }
2801
2802 unlock:
2803         perf_ctx_unlock(cpuctx, task_ctx);
2804
2805         return ret;
2806 }
2807
2808 static bool exclusive_event_installable(struct perf_event *event,
2809                                         struct perf_event_context *ctx);
2810
2811 /*
2812  * Attach a performance event to a context.
2813  *
2814  * Very similar to event_function_call, see comment there.
2815  */
2816 static void
2817 perf_install_in_context(struct perf_event_context *ctx,
2818                         struct perf_event *event,
2819                         int cpu)
2820 {
2821         struct task_struct *task = READ_ONCE(ctx->task);
2822
2823         lockdep_assert_held(&ctx->mutex);
2824
2825         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2826
2827         if (event->cpu != -1)
2828                 WARN_ON_ONCE(event->cpu != cpu);
2829
2830         /*
2831          * Ensures that if we can observe event->ctx, both the event and ctx
2832          * will be 'complete'. See perf_iterate_sb_cpu().
2833          */
2834         smp_store_release(&event->ctx, ctx);
2835
2836         /*
2837          * perf_event_attr::disabled events will not run and can be initialized
2838          * without IPI. Except when this is the first event for the context, in
2839          * that case we need the magic of the IPI to set ctx->is_active.
2840          *
2841          * The IOC_ENABLE that is sure to follow the creation of a disabled
2842          * event will issue the IPI and reprogram the hardware.
2843          */
2844         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2845             ctx->nr_events && !is_cgroup_event(event)) {
2846                 raw_spin_lock_irq(&ctx->lock);
2847                 if (ctx->task == TASK_TOMBSTONE) {
2848                         raw_spin_unlock_irq(&ctx->lock);
2849                         return;
2850                 }
2851                 add_event_to_ctx(event, ctx);
2852                 raw_spin_unlock_irq(&ctx->lock);
2853                 return;
2854         }
2855
2856         if (!task) {
2857                 cpu_function_call(cpu, __perf_install_in_context, event);
2858                 return;
2859         }
2860
2861         /*
2862          * Should not happen, we validate the ctx is still alive before calling.
2863          */
2864         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2865                 return;
2866
2867         /*
2868          * Installing events is tricky because we cannot rely on ctx->is_active
2869          * to be set in case this is the nr_events 0 -> 1 transition.
2870          *
2871          * Instead we use task_curr(), which tells us if the task is running.
2872          * However, since we use task_curr() outside of rq::lock, we can race
2873          * against the actual state. This means the result can be wrong.
2874          *
2875          * If we get a false positive, we retry, this is harmless.
2876          *
2877          * If we get a false negative, things are complicated. If we are after
2878          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2879          * value must be correct. If we're before, it doesn't matter since
2880          * perf_event_context_sched_in() will program the counter.
2881          *
2882          * However, this hinges on the remote context switch having observed
2883          * our task->perf_event_ctxp[] store, such that it will in fact take
2884          * ctx::lock in perf_event_context_sched_in().
2885          *
2886          * We do this by task_function_call(), if the IPI fails to hit the task
2887          * we know any future context switch of task must see the
2888          * perf_event_ctpx[] store.
2889          */
2890
2891         /*
2892          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2893          * task_cpu() load, such that if the IPI then does not find the task
2894          * running, a future context switch of that task must observe the
2895          * store.
2896          */
2897         smp_mb();
2898 again:
2899         if (!task_function_call(task, __perf_install_in_context, event))
2900                 return;
2901
2902         raw_spin_lock_irq(&ctx->lock);
2903         task = ctx->task;
2904         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2905                 /*
2906                  * Cannot happen because we already checked above (which also
2907                  * cannot happen), and we hold ctx->mutex, which serializes us
2908                  * against perf_event_exit_task_context().
2909                  */
2910                 raw_spin_unlock_irq(&ctx->lock);
2911                 return;
2912         }
2913         /*
2914          * If the task is not running, ctx->lock will avoid it becoming so,
2915          * thus we can safely install the event.
2916          */
2917         if (task_curr(task)) {
2918                 raw_spin_unlock_irq(&ctx->lock);
2919                 goto again;
2920         }
2921         add_event_to_ctx(event, ctx);
2922         raw_spin_unlock_irq(&ctx->lock);
2923 }
2924
2925 /*
2926  * Cross CPU call to enable a performance event
2927  */
2928 static void __perf_event_enable(struct perf_event *event,
2929                                 struct perf_cpu_context *cpuctx,
2930                                 struct perf_event_context *ctx,
2931                                 void *info)
2932 {
2933         struct perf_event *leader = event->group_leader;
2934         struct perf_event_context *task_ctx;
2935
2936         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2937             event->state <= PERF_EVENT_STATE_ERROR)
2938                 return;
2939
2940         if (ctx->is_active)
2941                 ctx_sched_out(ctx, EVENT_TIME);
2942
2943         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2944         perf_cgroup_event_enable(event, ctx);
2945
2946         if (!ctx->is_active)
2947                 return;
2948
2949         if (!event_filter_match(event)) {
2950                 ctx_sched_in(ctx, EVENT_TIME);
2951                 return;
2952         }
2953
2954         /*
2955          * If the event is in a group and isn't the group leader,
2956          * then don't put it on unless the group is on.
2957          */
2958         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2959                 ctx_sched_in(ctx, EVENT_TIME);
2960                 return;
2961         }
2962
2963         task_ctx = cpuctx->task_ctx;
2964         if (ctx->task)
2965                 WARN_ON_ONCE(task_ctx != ctx);
2966
2967         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2968 }
2969
2970 /*
2971  * Enable an event.
2972  *
2973  * If event->ctx is a cloned context, callers must make sure that
2974  * every task struct that event->ctx->task could possibly point to
2975  * remains valid.  This condition is satisfied when called through
2976  * perf_event_for_each_child or perf_event_for_each as described
2977  * for perf_event_disable.
2978  */
2979 static void _perf_event_enable(struct perf_event *event)
2980 {
2981         struct perf_event_context *ctx = event->ctx;
2982
2983         raw_spin_lock_irq(&ctx->lock);
2984         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2985             event->state <  PERF_EVENT_STATE_ERROR) {
2986 out:
2987                 raw_spin_unlock_irq(&ctx->lock);
2988                 return;
2989         }
2990
2991         /*
2992          * If the event is in error state, clear that first.
2993          *
2994          * That way, if we see the event in error state below, we know that it
2995          * has gone back into error state, as distinct from the task having
2996          * been scheduled away before the cross-call arrived.
2997          */
2998         if (event->state == PERF_EVENT_STATE_ERROR) {
2999                 /*
3000                  * Detached SIBLING events cannot leave ERROR state.
3001                  */
3002                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3003                     event->group_leader == event)
3004                         goto out;
3005
3006                 event->state = PERF_EVENT_STATE_OFF;
3007         }
3008         raw_spin_unlock_irq(&ctx->lock);
3009
3010         event_function_call(event, __perf_event_enable, NULL);
3011 }
3012
3013 /*
3014  * See perf_event_disable();
3015  */
3016 void perf_event_enable(struct perf_event *event)
3017 {
3018         struct perf_event_context *ctx;
3019
3020         ctx = perf_event_ctx_lock(event);
3021         _perf_event_enable(event);
3022         perf_event_ctx_unlock(event, ctx);
3023 }
3024 EXPORT_SYMBOL_GPL(perf_event_enable);
3025
3026 struct stop_event_data {
3027         struct perf_event       *event;
3028         unsigned int            restart;
3029 };
3030
3031 static int __perf_event_stop(void *info)
3032 {
3033         struct stop_event_data *sd = info;
3034         struct perf_event *event = sd->event;
3035
3036         /* if it's already INACTIVE, do nothing */
3037         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3038                 return 0;
3039
3040         /* matches smp_wmb() in event_sched_in() */
3041         smp_rmb();
3042
3043         /*
3044          * There is a window with interrupts enabled before we get here,
3045          * so we need to check again lest we try to stop another CPU's event.
3046          */
3047         if (READ_ONCE(event->oncpu) != smp_processor_id())
3048                 return -EAGAIN;
3049
3050         event->pmu->stop(event, PERF_EF_UPDATE);
3051
3052         /*
3053          * May race with the actual stop (through perf_pmu_output_stop()),
3054          * but it is only used for events with AUX ring buffer, and such
3055          * events will refuse to restart because of rb::aux_mmap_count==0,
3056          * see comments in perf_aux_output_begin().
3057          *
3058          * Since this is happening on an event-local CPU, no trace is lost
3059          * while restarting.
3060          */
3061         if (sd->restart)
3062                 event->pmu->start(event, 0);
3063
3064         return 0;
3065 }
3066
3067 static int perf_event_stop(struct perf_event *event, int restart)
3068 {
3069         struct stop_event_data sd = {
3070                 .event          = event,
3071                 .restart        = restart,
3072         };
3073         int ret = 0;
3074
3075         do {
3076                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3077                         return 0;
3078
3079                 /* matches smp_wmb() in event_sched_in() */
3080                 smp_rmb();
3081
3082                 /*
3083                  * We only want to restart ACTIVE events, so if the event goes
3084                  * inactive here (event->oncpu==-1), there's nothing more to do;
3085                  * fall through with ret==-ENXIO.
3086                  */
3087                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3088                                         __perf_event_stop, &sd);
3089         } while (ret == -EAGAIN);
3090
3091         return ret;
3092 }
3093
3094 /*
3095  * In order to contain the amount of racy and tricky in the address filter
3096  * configuration management, it is a two part process:
3097  *
3098  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3099  *      we update the addresses of corresponding vmas in
3100  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3101  * (p2) when an event is scheduled in (pmu::add), it calls
3102  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3103  *      if the generation has changed since the previous call.
3104  *
3105  * If (p1) happens while the event is active, we restart it to force (p2).
3106  *
3107  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3108  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3109  *     ioctl;
3110  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3111  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3112  *     for reading;
3113  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3114  *     of exec.
3115  */
3116 void perf_event_addr_filters_sync(struct perf_event *event)
3117 {
3118         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3119
3120         if (!has_addr_filter(event))
3121                 return;
3122
3123         raw_spin_lock(&ifh->lock);
3124         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3125                 event->pmu->addr_filters_sync(event);
3126                 event->hw.addr_filters_gen = event->addr_filters_gen;
3127         }
3128         raw_spin_unlock(&ifh->lock);
3129 }
3130 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3131
3132 static int _perf_event_refresh(struct perf_event *event, int refresh)
3133 {
3134         /*
3135          * not supported on inherited events
3136          */
3137         if (event->attr.inherit || !is_sampling_event(event))
3138                 return -EINVAL;
3139
3140         atomic_add(refresh, &event->event_limit);
3141         _perf_event_enable(event);
3142
3143         return 0;
3144 }
3145
3146 /*
3147  * See perf_event_disable()
3148  */
3149 int perf_event_refresh(struct perf_event *event, int refresh)
3150 {
3151         struct perf_event_context *ctx;
3152         int ret;
3153
3154         ctx = perf_event_ctx_lock(event);
3155         ret = _perf_event_refresh(event, refresh);
3156         perf_event_ctx_unlock(event, ctx);
3157
3158         return ret;
3159 }
3160 EXPORT_SYMBOL_GPL(perf_event_refresh);
3161
3162 static int perf_event_modify_breakpoint(struct perf_event *bp,
3163                                          struct perf_event_attr *attr)
3164 {
3165         int err;
3166
3167         _perf_event_disable(bp);
3168
3169         err = modify_user_hw_breakpoint_check(bp, attr, true);
3170
3171         if (!bp->attr.disabled)
3172                 _perf_event_enable(bp);
3173
3174         return err;
3175 }
3176
3177 /*
3178  * Copy event-type-independent attributes that may be modified.
3179  */
3180 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3181                                         const struct perf_event_attr *from)
3182 {
3183         to->sig_data = from->sig_data;
3184 }
3185
3186 static int perf_event_modify_attr(struct perf_event *event,
3187                                   struct perf_event_attr *attr)
3188 {
3189         int (*func)(struct perf_event *, struct perf_event_attr *);
3190         struct perf_event *child;
3191         int err;
3192
3193         if (event->attr.type != attr->type)
3194                 return -EINVAL;
3195
3196         switch (event->attr.type) {
3197         case PERF_TYPE_BREAKPOINT:
3198                 func = perf_event_modify_breakpoint;
3199                 break;
3200         default:
3201                 /* Place holder for future additions. */
3202                 return -EOPNOTSUPP;
3203         }
3204
3205         WARN_ON_ONCE(event->ctx->parent_ctx);
3206
3207         mutex_lock(&event->child_mutex);
3208         /*
3209          * Event-type-independent attributes must be copied before event-type
3210          * modification, which will validate that final attributes match the
3211          * source attributes after all relevant attributes have been copied.
3212          */
3213         perf_event_modify_copy_attr(&event->attr, attr);
3214         err = func(event, attr);
3215         if (err)
3216                 goto out;
3217         list_for_each_entry(child, &event->child_list, child_list) {
3218                 perf_event_modify_copy_attr(&child->attr, attr);
3219                 err = func(child, attr);
3220                 if (err)
3221                         goto out;
3222         }
3223 out:
3224         mutex_unlock(&event->child_mutex);
3225         return err;
3226 }
3227
3228 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3229                                 enum event_type_t event_type)
3230 {
3231         struct perf_event_context *ctx = pmu_ctx->ctx;
3232         struct perf_event *event, *tmp;
3233         struct pmu *pmu = pmu_ctx->pmu;
3234
3235         if (ctx->task && !ctx->is_active) {
3236                 struct perf_cpu_pmu_context *cpc;
3237
3238                 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3239                 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3240                 cpc->task_epc = NULL;
3241         }
3242
3243         if (!event_type)
3244                 return;
3245
3246         perf_pmu_disable(pmu);
3247         if (event_type & EVENT_PINNED) {
3248                 list_for_each_entry_safe(event, tmp,
3249                                          &pmu_ctx->pinned_active,
3250                                          active_list)
3251                         group_sched_out(event, ctx);
3252         }
3253
3254         if (event_type & EVENT_FLEXIBLE) {
3255                 list_for_each_entry_safe(event, tmp,
3256                                          &pmu_ctx->flexible_active,
3257                                          active_list)
3258                         group_sched_out(event, ctx);
3259                 /*
3260                  * Since we cleared EVENT_FLEXIBLE, also clear
3261                  * rotate_necessary, is will be reset by
3262                  * ctx_flexible_sched_in() when needed.
3263                  */
3264                 pmu_ctx->rotate_necessary = 0;
3265         }
3266         perf_pmu_enable(pmu);
3267 }
3268
3269 static void
3270 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3271 {
3272         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3273         struct perf_event_pmu_context *pmu_ctx;
3274         int is_active = ctx->is_active;
3275         bool cgroup = event_type & EVENT_CGROUP;
3276
3277         event_type &= ~EVENT_CGROUP;
3278
3279         lockdep_assert_held(&ctx->lock);
3280
3281         if (likely(!ctx->nr_events)) {
3282                 /*
3283                  * See __perf_remove_from_context().
3284                  */
3285                 WARN_ON_ONCE(ctx->is_active);
3286                 if (ctx->task)
3287                         WARN_ON_ONCE(cpuctx->task_ctx);
3288                 return;
3289         }
3290
3291         /*
3292          * Always update time if it was set; not only when it changes.
3293          * Otherwise we can 'forget' to update time for any but the last
3294          * context we sched out. For example:
3295          *
3296          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3297          *   ctx_sched_out(.event_type = EVENT_PINNED)
3298          *
3299          * would only update time for the pinned events.
3300          */
3301         if (is_active & EVENT_TIME) {
3302                 /* update (and stop) ctx time */
3303                 update_context_time(ctx);
3304                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3305                 /*
3306                  * CPU-release for the below ->is_active store,
3307                  * see __load_acquire() in perf_event_time_now()
3308                  */
3309                 barrier();
3310         }
3311
3312         ctx->is_active &= ~event_type;
3313         if (!(ctx->is_active & EVENT_ALL))
3314                 ctx->is_active = 0;
3315
3316         if (ctx->task) {
3317                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3318                 if (!ctx->is_active)
3319                         cpuctx->task_ctx = NULL;
3320         }
3321
3322         is_active ^= ctx->is_active; /* changed bits */
3323
3324         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3325                 if (cgroup && !pmu_ctx->nr_cgroups)
3326                         continue;
3327                 __pmu_ctx_sched_out(pmu_ctx, is_active);
3328         }
3329 }
3330
3331 /*
3332  * Test whether two contexts are equivalent, i.e. whether they have both been
3333  * cloned from the same version of the same context.
3334  *
3335  * Equivalence is measured using a generation number in the context that is
3336  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3337  * and list_del_event().
3338  */
3339 static int context_equiv(struct perf_event_context *ctx1,
3340                          struct perf_event_context *ctx2)
3341 {
3342         lockdep_assert_held(&ctx1->lock);
3343         lockdep_assert_held(&ctx2->lock);
3344
3345         /* Pinning disables the swap optimization */
3346         if (ctx1->pin_count || ctx2->pin_count)
3347                 return 0;
3348
3349         /* If ctx1 is the parent of ctx2 */
3350         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3351                 return 1;
3352
3353         /* If ctx2 is the parent of ctx1 */
3354         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3355                 return 1;
3356
3357         /*
3358          * If ctx1 and ctx2 have the same parent; we flatten the parent
3359          * hierarchy, see perf_event_init_context().
3360          */
3361         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3362                         ctx1->parent_gen == ctx2->parent_gen)
3363                 return 1;
3364
3365         /* Unmatched */
3366         return 0;
3367 }
3368
3369 static void __perf_event_sync_stat(struct perf_event *event,
3370                                      struct perf_event *next_event)
3371 {
3372         u64 value;
3373
3374         if (!event->attr.inherit_stat)
3375                 return;
3376
3377         /*
3378          * Update the event value, we cannot use perf_event_read()
3379          * because we're in the middle of a context switch and have IRQs
3380          * disabled, which upsets smp_call_function_single(), however
3381          * we know the event must be on the current CPU, therefore we
3382          * don't need to use it.
3383          */
3384         if (event->state == PERF_EVENT_STATE_ACTIVE)
3385                 event->pmu->read(event);
3386
3387         perf_event_update_time(event);
3388
3389         /*
3390          * In order to keep per-task stats reliable we need to flip the event
3391          * values when we flip the contexts.
3392          */
3393         value = local64_read(&next_event->count);
3394         value = local64_xchg(&event->count, value);
3395         local64_set(&next_event->count, value);
3396
3397         swap(event->total_time_enabled, next_event->total_time_enabled);
3398         swap(event->total_time_running, next_event->total_time_running);
3399
3400         /*
3401          * Since we swizzled the values, update the user visible data too.
3402          */
3403         perf_event_update_userpage(event);
3404         perf_event_update_userpage(next_event);
3405 }
3406
3407 static void perf_event_sync_stat(struct perf_event_context *ctx,
3408                                    struct perf_event_context *next_ctx)
3409 {
3410         struct perf_event *event, *next_event;
3411
3412         if (!ctx->nr_stat)
3413                 return;
3414
3415         update_context_time(ctx);
3416
3417         event = list_first_entry(&ctx->event_list,
3418                                    struct perf_event, event_entry);
3419
3420         next_event = list_first_entry(&next_ctx->event_list,
3421                                         struct perf_event, event_entry);
3422
3423         while (&event->event_entry != &ctx->event_list &&
3424                &next_event->event_entry != &next_ctx->event_list) {
3425
3426                 __perf_event_sync_stat(event, next_event);
3427
3428                 event = list_next_entry(event, event_entry);
3429                 next_event = list_next_entry(next_event, event_entry);
3430         }
3431 }
3432
3433 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)    \
3434         for (pos1 = list_first_entry(head1, typeof(*pos1), member),     \
3435              pos2 = list_first_entry(head2, typeof(*pos2), member);     \
3436              !list_entry_is_head(pos1, head1, member) &&                \
3437              !list_entry_is_head(pos2, head2, member);                  \
3438              pos1 = list_next_entry(pos1, member),                      \
3439              pos2 = list_next_entry(pos2, member))
3440
3441 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3442                                           struct perf_event_context *next_ctx)
3443 {
3444         struct perf_event_pmu_context *prev_epc, *next_epc;
3445
3446         if (!prev_ctx->nr_task_data)
3447                 return;
3448
3449         double_list_for_each_entry(prev_epc, next_epc,
3450                                    &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3451                                    pmu_ctx_entry) {
3452
3453                 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3454                         continue;
3455
3456                 /*
3457                  * PMU specific parts of task perf context can require
3458                  * additional synchronization. As an example of such
3459                  * synchronization see implementation details of Intel
3460                  * LBR call stack data profiling;
3461                  */
3462                 if (prev_epc->pmu->swap_task_ctx)
3463                         prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3464                 else
3465                         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3466         }
3467 }
3468
3469 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3470 {
3471         struct perf_event_pmu_context *pmu_ctx;
3472         struct perf_cpu_pmu_context *cpc;
3473
3474         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3475                 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3476
3477                 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3478                         pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3479         }
3480 }
3481
3482 static void
3483 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3484 {
3485         struct perf_event_context *ctx = task->perf_event_ctxp;
3486         struct perf_event_context *next_ctx;
3487         struct perf_event_context *parent, *next_parent;
3488         int do_switch = 1;
3489
3490         if (likely(!ctx))
3491                 return;
3492
3493         rcu_read_lock();
3494         next_ctx = rcu_dereference(next->perf_event_ctxp);
3495         if (!next_ctx)
3496                 goto unlock;
3497
3498         parent = rcu_dereference(ctx->parent_ctx);
3499         next_parent = rcu_dereference(next_ctx->parent_ctx);
3500
3501         /* If neither context have a parent context; they cannot be clones. */
3502         if (!parent && !next_parent)
3503                 goto unlock;
3504
3505         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3506                 /*
3507                  * Looks like the two contexts are clones, so we might be
3508                  * able to optimize the context switch.  We lock both
3509                  * contexts and check that they are clones under the
3510                  * lock (including re-checking that neither has been
3511                  * uncloned in the meantime).  It doesn't matter which
3512                  * order we take the locks because no other cpu could
3513                  * be trying to lock both of these tasks.
3514                  */
3515                 raw_spin_lock(&ctx->lock);
3516                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3517                 if (context_equiv(ctx, next_ctx)) {
3518
3519                         perf_ctx_disable(ctx, false);
3520
3521                         /* PMIs are disabled; ctx->nr_pending is stable. */
3522                         if (local_read(&ctx->nr_pending) ||
3523                             local_read(&next_ctx->nr_pending)) {
3524                                 /*
3525                                  * Must not swap out ctx when there's pending
3526                                  * events that rely on the ctx->task relation.
3527                                  */
3528                                 raw_spin_unlock(&next_ctx->lock);
3529                                 rcu_read_unlock();
3530                                 goto inside_switch;
3531                         }
3532
3533                         WRITE_ONCE(ctx->task, next);
3534                         WRITE_ONCE(next_ctx->task, task);
3535
3536                         perf_ctx_sched_task_cb(ctx, false);
3537                         perf_event_swap_task_ctx_data(ctx, next_ctx);
3538
3539                         perf_ctx_enable(ctx, false);
3540
3541                         /*
3542                          * RCU_INIT_POINTER here is safe because we've not
3543                          * modified the ctx and the above modification of
3544                          * ctx->task and ctx->task_ctx_data are immaterial
3545                          * since those values are always verified under
3546                          * ctx->lock which we're now holding.
3547                          */
3548                         RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3549                         RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3550
3551                         do_switch = 0;
3552
3553                         perf_event_sync_stat(ctx, next_ctx);
3554                 }
3555                 raw_spin_unlock(&next_ctx->lock);
3556                 raw_spin_unlock(&ctx->lock);
3557         }
3558 unlock:
3559         rcu_read_unlock();
3560
3561         if (do_switch) {
3562                 raw_spin_lock(&ctx->lock);
3563                 perf_ctx_disable(ctx, false);
3564
3565 inside_switch:
3566                 perf_ctx_sched_task_cb(ctx, false);
3567                 task_ctx_sched_out(ctx, EVENT_ALL);
3568
3569                 perf_ctx_enable(ctx, false);
3570                 raw_spin_unlock(&ctx->lock);
3571         }
3572 }
3573
3574 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3575 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3576
3577 void perf_sched_cb_dec(struct pmu *pmu)
3578 {
3579         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3580
3581         this_cpu_dec(perf_sched_cb_usages);
3582         barrier();
3583
3584         if (!--cpc->sched_cb_usage)
3585                 list_del(&cpc->sched_cb_entry);
3586 }
3587
3588
3589 void perf_sched_cb_inc(struct pmu *pmu)
3590 {
3591         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3592
3593         if (!cpc->sched_cb_usage++)
3594                 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3595
3596         barrier();
3597         this_cpu_inc(perf_sched_cb_usages);
3598 }
3599
3600 /*
3601  * This function provides the context switch callback to the lower code
3602  * layer. It is invoked ONLY when the context switch callback is enabled.
3603  *
3604  * This callback is relevant even to per-cpu events; for example multi event
3605  * PEBS requires this to provide PID/TID information. This requires we flush
3606  * all queued PEBS records before we context switch to a new task.
3607  */
3608 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3609 {
3610         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3611         struct pmu *pmu;
3612
3613         pmu = cpc->epc.pmu;
3614
3615         /* software PMUs will not have sched_task */
3616         if (WARN_ON_ONCE(!pmu->sched_task))
3617                 return;
3618
3619         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3620         perf_pmu_disable(pmu);
3621
3622         pmu->sched_task(cpc->task_epc, sched_in);
3623
3624         perf_pmu_enable(pmu);
3625         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3626 }
3627
3628 static void perf_pmu_sched_task(struct task_struct *prev,
3629                                 struct task_struct *next,
3630                                 bool sched_in)
3631 {
3632         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3633         struct perf_cpu_pmu_context *cpc;
3634
3635         /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3636         if (prev == next || cpuctx->task_ctx)
3637                 return;
3638
3639         list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3640                 __perf_pmu_sched_task(cpc, sched_in);
3641 }
3642
3643 static void perf_event_switch(struct task_struct *task,
3644                               struct task_struct *next_prev, bool sched_in);
3645
3646 /*
3647  * Called from scheduler to remove the events of the current task,
3648  * with interrupts disabled.
3649  *
3650  * We stop each event and update the event value in event->count.
3651  *
3652  * This does not protect us against NMI, but disable()
3653  * sets the disabled bit in the control field of event _before_
3654  * accessing the event control register. If a NMI hits, then it will
3655  * not restart the event.
3656  */
3657 void __perf_event_task_sched_out(struct task_struct *task,
3658                                  struct task_struct *next)
3659 {
3660         if (__this_cpu_read(perf_sched_cb_usages))
3661                 perf_pmu_sched_task(task, next, false);
3662
3663         if (atomic_read(&nr_switch_events))
3664                 perf_event_switch(task, next, false);
3665
3666         perf_event_context_sched_out(task, next);
3667
3668         /*
3669          * if cgroup events exist on this CPU, then we need
3670          * to check if we have to switch out PMU state.
3671          * cgroup event are system-wide mode only
3672          */
3673         perf_cgroup_switch(next);
3674 }
3675
3676 static bool perf_less_group_idx(const void *l, const void *r)
3677 {
3678         const struct perf_event *le = *(const struct perf_event **)l;
3679         const struct perf_event *re = *(const struct perf_event **)r;
3680
3681         return le->group_index < re->group_index;
3682 }
3683
3684 static void swap_ptr(void *l, void *r)
3685 {
3686         void **lp = l, **rp = r;
3687
3688         swap(*lp, *rp);
3689 }
3690
3691 static const struct min_heap_callbacks perf_min_heap = {
3692         .elem_size = sizeof(struct perf_event *),
3693         .less = perf_less_group_idx,
3694         .swp = swap_ptr,
3695 };
3696
3697 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3698 {
3699         struct perf_event **itrs = heap->data;
3700
3701         if (event) {
3702                 itrs[heap->nr] = event;
3703                 heap->nr++;
3704         }
3705 }
3706
3707 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3708 {
3709         struct perf_cpu_pmu_context *cpc;
3710
3711         if (!pmu_ctx->ctx->task)
3712                 return;
3713
3714         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3715         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3716         cpc->task_epc = pmu_ctx;
3717 }
3718
3719 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3720                                 struct perf_event_groups *groups, int cpu,
3721                                 struct pmu *pmu,
3722                                 int (*func)(struct perf_event *, void *),
3723                                 void *data)
3724 {
3725 #ifdef CONFIG_CGROUP_PERF
3726         struct cgroup_subsys_state *css = NULL;
3727 #endif
3728         struct perf_cpu_context *cpuctx = NULL;
3729         /* Space for per CPU and/or any CPU event iterators. */
3730         struct perf_event *itrs[2];
3731         struct min_heap event_heap;
3732         struct perf_event **evt;
3733         int ret;
3734
3735         if (pmu->filter && pmu->filter(pmu, cpu))
3736                 return 0;
3737
3738         if (!ctx->task) {
3739                 cpuctx = this_cpu_ptr(&perf_cpu_context);
3740                 event_heap = (struct min_heap){
3741                         .data = cpuctx->heap,
3742                         .nr = 0,
3743                         .size = cpuctx->heap_size,
3744                 };
3745
3746                 lockdep_assert_held(&cpuctx->ctx.lock);
3747
3748 #ifdef CONFIG_CGROUP_PERF
3749                 if (cpuctx->cgrp)
3750                         css = &cpuctx->cgrp->css;
3751 #endif
3752         } else {
3753                 event_heap = (struct min_heap){
3754                         .data = itrs,
3755                         .nr = 0,
3756                         .size = ARRAY_SIZE(itrs),
3757                 };
3758                 /* Events not within a CPU context may be on any CPU. */
3759                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3760         }
3761         evt = event_heap.data;
3762
3763         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3764
3765 #ifdef CONFIG_CGROUP_PERF
3766         for (; css; css = css->parent)
3767                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3768 #endif
3769
3770         if (event_heap.nr) {
3771                 __link_epc((*evt)->pmu_ctx);
3772                 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3773         }
3774
3775         min_heapify_all(&event_heap, &perf_min_heap);
3776
3777         while (event_heap.nr) {
3778                 ret = func(*evt, data);
3779                 if (ret)
3780                         return ret;
3781
3782                 *evt = perf_event_groups_next(*evt, pmu);
3783                 if (*evt)
3784                         min_heapify(&event_heap, 0, &perf_min_heap);
3785                 else
3786                         min_heap_pop(&event_heap, &perf_min_heap);
3787         }
3788
3789         return 0;
3790 }
3791
3792 /*
3793  * Because the userpage is strictly per-event (there is no concept of context,
3794  * so there cannot be a context indirection), every userpage must be updated
3795  * when context time starts :-(
3796  *
3797  * IOW, we must not miss EVENT_TIME edges.
3798  */
3799 static inline bool event_update_userpage(struct perf_event *event)
3800 {
3801         if (likely(!atomic_read(&event->mmap_count)))
3802                 return false;
3803
3804         perf_event_update_time(event);
3805         perf_event_update_userpage(event);
3806
3807         return true;
3808 }
3809
3810 static inline void group_update_userpage(struct perf_event *group_event)
3811 {
3812         struct perf_event *event;
3813
3814         if (!event_update_userpage(group_event))
3815                 return;
3816
3817         for_each_sibling_event(event, group_event)
3818                 event_update_userpage(event);
3819 }
3820
3821 static int merge_sched_in(struct perf_event *event, void *data)
3822 {
3823         struct perf_event_context *ctx = event->ctx;
3824         int *can_add_hw = data;
3825
3826         if (event->state <= PERF_EVENT_STATE_OFF)
3827                 return 0;
3828
3829         if (!event_filter_match(event))
3830                 return 0;
3831
3832         if (group_can_go_on(event, *can_add_hw)) {
3833                 if (!group_sched_in(event, ctx))
3834                         list_add_tail(&event->active_list, get_event_list(event));
3835         }
3836
3837         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3838                 *can_add_hw = 0;
3839                 if (event->attr.pinned) {
3840                         perf_cgroup_event_disable(event, ctx);
3841                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3842                 } else {
3843                         struct perf_cpu_pmu_context *cpc;
3844
3845                         event->pmu_ctx->rotate_necessary = 1;
3846                         cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3847                         perf_mux_hrtimer_restart(cpc);
3848                         group_update_userpage(event);
3849                 }
3850         }
3851
3852         return 0;
3853 }
3854
3855 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3856                                 struct perf_event_groups *groups,
3857                                 struct pmu *pmu)
3858 {
3859         int can_add_hw = 1;
3860         visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3861                            merge_sched_in, &can_add_hw);
3862 }
3863
3864 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3865                                 struct perf_event_groups *groups,
3866                                 bool cgroup)
3867 {
3868         struct perf_event_pmu_context *pmu_ctx;
3869
3870         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3871                 if (cgroup && !pmu_ctx->nr_cgroups)
3872                         continue;
3873                 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3874         }
3875 }
3876
3877 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3878                                struct pmu *pmu)
3879 {
3880         pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3881 }
3882
3883 static void
3884 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3885 {
3886         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3887         int is_active = ctx->is_active;
3888         bool cgroup = event_type & EVENT_CGROUP;
3889
3890         event_type &= ~EVENT_CGROUP;
3891
3892         lockdep_assert_held(&ctx->lock);
3893
3894         if (likely(!ctx->nr_events))
3895                 return;
3896
3897         if (!(is_active & EVENT_TIME)) {
3898                 /* start ctx time */
3899                 __update_context_time(ctx, false);
3900                 perf_cgroup_set_timestamp(cpuctx);
3901                 /*
3902                  * CPU-release for the below ->is_active store,
3903                  * see __load_acquire() in perf_event_time_now()
3904                  */
3905                 barrier();
3906         }
3907
3908         ctx->is_active |= (event_type | EVENT_TIME);
3909         if (ctx->task) {
3910                 if (!is_active)
3911                         cpuctx->task_ctx = ctx;
3912                 else
3913                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3914         }
3915
3916         is_active ^= ctx->is_active; /* changed bits */
3917
3918         /*
3919          * First go through the list and put on any pinned groups
3920          * in order to give them the best chance of going on.
3921          */
3922         if (is_active & EVENT_PINNED)
3923                 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3924
3925         /* Then walk through the lower prio flexible groups */
3926         if (is_active & EVENT_FLEXIBLE)
3927                 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3928 }
3929
3930 static void perf_event_context_sched_in(struct task_struct *task)
3931 {
3932         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3933         struct perf_event_context *ctx;
3934
3935         rcu_read_lock();
3936         ctx = rcu_dereference(task->perf_event_ctxp);
3937         if (!ctx)
3938                 goto rcu_unlock;
3939
3940         if (cpuctx->task_ctx == ctx) {
3941                 perf_ctx_lock(cpuctx, ctx);
3942                 perf_ctx_disable(ctx, false);
3943
3944                 perf_ctx_sched_task_cb(ctx, true);
3945
3946                 perf_ctx_enable(ctx, false);
3947                 perf_ctx_unlock(cpuctx, ctx);
3948                 goto rcu_unlock;
3949         }
3950
3951         perf_ctx_lock(cpuctx, ctx);
3952         /*
3953          * We must check ctx->nr_events while holding ctx->lock, such
3954          * that we serialize against perf_install_in_context().
3955          */
3956         if (!ctx->nr_events)
3957                 goto unlock;
3958
3959         perf_ctx_disable(ctx, false);
3960         /*
3961          * We want to keep the following priority order:
3962          * cpu pinned (that don't need to move), task pinned,
3963          * cpu flexible, task flexible.
3964          *
3965          * However, if task's ctx is not carrying any pinned
3966          * events, no need to flip the cpuctx's events around.
3967          */
3968         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3969                 perf_ctx_disable(&cpuctx->ctx, false);
3970                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3971         }
3972
3973         perf_event_sched_in(cpuctx, ctx);
3974
3975         perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3976
3977         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3978                 perf_ctx_enable(&cpuctx->ctx, false);
3979
3980         perf_ctx_enable(ctx, false);
3981
3982 unlock:
3983         perf_ctx_unlock(cpuctx, ctx);
3984 rcu_unlock:
3985         rcu_read_unlock();
3986 }
3987
3988 /*
3989  * Called from scheduler to add the events of the current task
3990  * with interrupts disabled.
3991  *
3992  * We restore the event value and then enable it.
3993  *
3994  * This does not protect us against NMI, but enable()
3995  * sets the enabled bit in the control field of event _before_
3996  * accessing the event control register. If a NMI hits, then it will
3997  * keep the event running.
3998  */
3999 void __perf_event_task_sched_in(struct task_struct *prev,
4000                                 struct task_struct *task)
4001 {
4002         perf_event_context_sched_in(task);
4003
4004         if (atomic_read(&nr_switch_events))
4005                 perf_event_switch(task, prev, true);
4006
4007         if (__this_cpu_read(perf_sched_cb_usages))
4008                 perf_pmu_sched_task(prev, task, true);
4009 }
4010
4011 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4012 {
4013         u64 frequency = event->attr.sample_freq;
4014         u64 sec = NSEC_PER_SEC;
4015         u64 divisor, dividend;
4016
4017         int count_fls, nsec_fls, frequency_fls, sec_fls;
4018
4019         count_fls = fls64(count);
4020         nsec_fls = fls64(nsec);
4021         frequency_fls = fls64(frequency);
4022         sec_fls = 30;
4023
4024         /*
4025          * We got @count in @nsec, with a target of sample_freq HZ
4026          * the target period becomes:
4027          *
4028          *             @count * 10^9
4029          * period = -------------------
4030          *          @nsec * sample_freq
4031          *
4032          */
4033
4034         /*
4035          * Reduce accuracy by one bit such that @a and @b converge
4036          * to a similar magnitude.
4037          */
4038 #define REDUCE_FLS(a, b)                \
4039 do {                                    \
4040         if (a##_fls > b##_fls) {        \
4041                 a >>= 1;                \
4042                 a##_fls--;              \
4043         } else {                        \
4044                 b >>= 1;                \
4045                 b##_fls--;              \
4046         }                               \
4047 } while (0)
4048
4049         /*
4050          * Reduce accuracy until either term fits in a u64, then proceed with
4051          * the other, so that finally we can do a u64/u64 division.
4052          */
4053         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4054                 REDUCE_FLS(nsec, frequency);
4055                 REDUCE_FLS(sec, count);
4056         }
4057
4058         if (count_fls + sec_fls > 64) {
4059                 divisor = nsec * frequency;
4060
4061                 while (count_fls + sec_fls > 64) {
4062                         REDUCE_FLS(count, sec);
4063                         divisor >>= 1;
4064                 }
4065
4066                 dividend = count * sec;
4067         } else {
4068                 dividend = count * sec;
4069
4070                 while (nsec_fls + frequency_fls > 64) {
4071                         REDUCE_FLS(nsec, frequency);
4072                         dividend >>= 1;
4073                 }
4074
4075                 divisor = nsec * frequency;
4076         }
4077
4078         if (!divisor)
4079                 return dividend;
4080
4081         return div64_u64(dividend, divisor);
4082 }
4083
4084 static DEFINE_PER_CPU(int, perf_throttled_count);
4085 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4086
4087 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4088 {
4089         struct hw_perf_event *hwc = &event->hw;
4090         s64 period, sample_period;
4091         s64 delta;
4092
4093         period = perf_calculate_period(event, nsec, count);
4094
4095         delta = (s64)(period - hwc->sample_period);
4096         delta = (delta + 7) / 8; /* low pass filter */
4097
4098         sample_period = hwc->sample_period + delta;
4099
4100         if (!sample_period)
4101                 sample_period = 1;
4102
4103         hwc->sample_period = sample_period;
4104
4105         if (local64_read(&hwc->period_left) > 8*sample_period) {
4106                 if (disable)
4107                         event->pmu->stop(event, PERF_EF_UPDATE);
4108
4109                 local64_set(&hwc->period_left, 0);
4110
4111                 if (disable)
4112                         event->pmu->start(event, PERF_EF_RELOAD);
4113         }
4114 }
4115
4116 /*
4117  * combine freq adjustment with unthrottling to avoid two passes over the
4118  * events. At the same time, make sure, having freq events does not change
4119  * the rate of unthrottling as that would introduce bias.
4120  */
4121 static void
4122 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4123 {
4124         struct perf_event *event;
4125         struct hw_perf_event *hwc;
4126         u64 now, period = TICK_NSEC;
4127         s64 delta;
4128
4129         /*
4130          * only need to iterate over all events iff:
4131          * - context have events in frequency mode (needs freq adjust)
4132          * - there are events to unthrottle on this cpu
4133          */
4134         if (!(ctx->nr_freq || unthrottle))
4135                 return;
4136
4137         raw_spin_lock(&ctx->lock);
4138
4139         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4140                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4141                         continue;
4142
4143                 // XXX use visit thingy to avoid the -1,cpu match
4144                 if (!event_filter_match(event))
4145                         continue;
4146
4147                 perf_pmu_disable(event->pmu);
4148
4149                 hwc = &event->hw;
4150
4151                 if (hwc->interrupts == MAX_INTERRUPTS) {
4152                         hwc->interrupts = 0;
4153                         perf_log_throttle(event, 1);
4154                         event->pmu->start(event, 0);
4155                 }
4156
4157                 if (!event->attr.freq || !event->attr.sample_freq)
4158                         goto next;
4159
4160                 /*
4161                  * stop the event and update event->count
4162                  */
4163                 event->pmu->stop(event, PERF_EF_UPDATE);
4164
4165                 now = local64_read(&event->count);
4166                 delta = now - hwc->freq_count_stamp;
4167                 hwc->freq_count_stamp = now;
4168
4169                 /*
4170                  * restart the event
4171                  * reload only if value has changed
4172                  * we have stopped the event so tell that
4173                  * to perf_adjust_period() to avoid stopping it
4174                  * twice.
4175                  */
4176                 if (delta > 0)
4177                         perf_adjust_period(event, period, delta, false);
4178
4179                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4180         next:
4181                 perf_pmu_enable(event->pmu);
4182         }
4183
4184         raw_spin_unlock(&ctx->lock);
4185 }
4186
4187 /*
4188  * Move @event to the tail of the @ctx's elegible events.
4189  */
4190 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4191 {
4192         /*
4193          * Rotate the first entry last of non-pinned groups. Rotation might be
4194          * disabled by the inheritance code.
4195          */
4196         if (ctx->rotate_disable)
4197                 return;
4198
4199         perf_event_groups_delete(&ctx->flexible_groups, event);
4200         perf_event_groups_insert(&ctx->flexible_groups, event);
4201 }
4202
4203 /* pick an event from the flexible_groups to rotate */
4204 static inline struct perf_event *
4205 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4206 {
4207         struct perf_event *event;
4208         struct rb_node *node;
4209         struct rb_root *tree;
4210         struct __group_key key = {
4211                 .pmu = pmu_ctx->pmu,
4212         };
4213
4214         /* pick the first active flexible event */
4215         event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4216                                          struct perf_event, active_list);
4217         if (event)
4218                 goto out;
4219
4220         /* if no active flexible event, pick the first event */
4221         tree = &pmu_ctx->ctx->flexible_groups.tree;
4222
4223         if (!pmu_ctx->ctx->task) {
4224                 key.cpu = smp_processor_id();
4225
4226                 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4227                 if (node)
4228                         event = __node_2_pe(node);
4229                 goto out;
4230         }
4231
4232         key.cpu = -1;
4233         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4234         if (node) {
4235                 event = __node_2_pe(node);
4236                 goto out;
4237         }
4238
4239         key.cpu = smp_processor_id();
4240         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4241         if (node)
4242                 event = __node_2_pe(node);
4243
4244 out:
4245         /*
4246          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4247          * finds there are unschedulable events, it will set it again.
4248          */
4249         pmu_ctx->rotate_necessary = 0;
4250
4251         return event;
4252 }
4253
4254 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4255 {
4256         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4257         struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4258         struct perf_event *cpu_event = NULL, *task_event = NULL;
4259         int cpu_rotate, task_rotate;
4260         struct pmu *pmu;
4261
4262         /*
4263          * Since we run this from IRQ context, nobody can install new
4264          * events, thus the event count values are stable.
4265          */
4266
4267         cpu_epc = &cpc->epc;
4268         pmu = cpu_epc->pmu;
4269         task_epc = cpc->task_epc;
4270
4271         cpu_rotate = cpu_epc->rotate_necessary;
4272         task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4273
4274         if (!(cpu_rotate || task_rotate))
4275                 return false;
4276
4277         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4278         perf_pmu_disable(pmu);
4279
4280         if (task_rotate)
4281                 task_event = ctx_event_to_rotate(task_epc);
4282         if (cpu_rotate)
4283                 cpu_event = ctx_event_to_rotate(cpu_epc);
4284
4285         /*
4286          * As per the order given at ctx_resched() first 'pop' task flexible
4287          * and then, if needed CPU flexible.
4288          */
4289         if (task_event || (task_epc && cpu_event)) {
4290                 update_context_time(task_epc->ctx);
4291                 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4292         }
4293
4294         if (cpu_event) {
4295                 update_context_time(&cpuctx->ctx);
4296                 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4297                 rotate_ctx(&cpuctx->ctx, cpu_event);
4298                 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4299         }
4300
4301         if (task_event)
4302                 rotate_ctx(task_epc->ctx, task_event);
4303
4304         if (task_event || (task_epc && cpu_event))
4305                 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4306
4307         perf_pmu_enable(pmu);
4308         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4309
4310         return true;
4311 }
4312
4313 void perf_event_task_tick(void)
4314 {
4315         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4316         struct perf_event_context *ctx;
4317         int throttled;
4318
4319         lockdep_assert_irqs_disabled();
4320
4321         __this_cpu_inc(perf_throttled_seq);
4322         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4323         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4324
4325         perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4326
4327         rcu_read_lock();
4328         ctx = rcu_dereference(current->perf_event_ctxp);
4329         if (ctx)
4330                 perf_adjust_freq_unthr_context(ctx, !!throttled);
4331         rcu_read_unlock();
4332 }
4333
4334 static int event_enable_on_exec(struct perf_event *event,
4335                                 struct perf_event_context *ctx)
4336 {
4337         if (!event->attr.enable_on_exec)
4338                 return 0;
4339
4340         event->attr.enable_on_exec = 0;
4341         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4342                 return 0;
4343
4344         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4345
4346         return 1;
4347 }
4348
4349 /*
4350  * Enable all of a task's events that have been marked enable-on-exec.
4351  * This expects task == current.
4352  */
4353 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4354 {
4355         struct perf_event_context *clone_ctx = NULL;
4356         enum event_type_t event_type = 0;
4357         struct perf_cpu_context *cpuctx;
4358         struct perf_event *event;
4359         unsigned long flags;
4360         int enabled = 0;
4361
4362         local_irq_save(flags);
4363         if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4364                 goto out;
4365
4366         if (!ctx->nr_events)
4367                 goto out;
4368
4369         cpuctx = this_cpu_ptr(&perf_cpu_context);
4370         perf_ctx_lock(cpuctx, ctx);
4371         ctx_sched_out(ctx, EVENT_TIME);
4372
4373         list_for_each_entry(event, &ctx->event_list, event_entry) {
4374                 enabled |= event_enable_on_exec(event, ctx);
4375                 event_type |= get_event_type(event);
4376         }
4377
4378         /*
4379          * Unclone and reschedule this context if we enabled any event.
4380          */
4381         if (enabled) {
4382                 clone_ctx = unclone_ctx(ctx);
4383                 ctx_resched(cpuctx, ctx, event_type);
4384         } else {
4385                 ctx_sched_in(ctx, EVENT_TIME);
4386         }
4387         perf_ctx_unlock(cpuctx, ctx);
4388
4389 out:
4390         local_irq_restore(flags);
4391
4392         if (clone_ctx)
4393                 put_ctx(clone_ctx);
4394 }
4395
4396 static void perf_remove_from_owner(struct perf_event *event);
4397 static void perf_event_exit_event(struct perf_event *event,
4398                                   struct perf_event_context *ctx);
4399
4400 /*
4401  * Removes all events from the current task that have been marked
4402  * remove-on-exec, and feeds their values back to parent events.
4403  */
4404 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4405 {
4406         struct perf_event_context *clone_ctx = NULL;
4407         struct perf_event *event, *next;
4408         unsigned long flags;
4409         bool modified = false;
4410
4411         mutex_lock(&ctx->mutex);
4412
4413         if (WARN_ON_ONCE(ctx->task != current))
4414                 goto unlock;
4415
4416         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4417                 if (!event->attr.remove_on_exec)
4418                         continue;
4419
4420                 if (!is_kernel_event(event))
4421                         perf_remove_from_owner(event);
4422
4423                 modified = true;
4424
4425                 perf_event_exit_event(event, ctx);
4426         }
4427
4428         raw_spin_lock_irqsave(&ctx->lock, flags);
4429         if (modified)
4430                 clone_ctx = unclone_ctx(ctx);
4431         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4432
4433 unlock:
4434         mutex_unlock(&ctx->mutex);
4435
4436         if (clone_ctx)
4437                 put_ctx(clone_ctx);
4438 }
4439
4440 struct perf_read_data {
4441         struct perf_event *event;
4442         bool group;
4443         int ret;
4444 };
4445
4446 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4447 {
4448         u16 local_pkg, event_pkg;
4449
4450         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4451                 int local_cpu = smp_processor_id();
4452
4453                 event_pkg = topology_physical_package_id(event_cpu);
4454                 local_pkg = topology_physical_package_id(local_cpu);
4455
4456                 if (event_pkg == local_pkg)
4457                         return local_cpu;
4458         }
4459
4460         return event_cpu;
4461 }
4462
4463 /*
4464  * Cross CPU call to read the hardware event
4465  */
4466 static void __perf_event_read(void *info)
4467 {
4468         struct perf_read_data *data = info;
4469         struct perf_event *sub, *event = data->event;
4470         struct perf_event_context *ctx = event->ctx;
4471         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4472         struct pmu *pmu = event->pmu;
4473
4474         /*
4475          * If this is a task context, we need to check whether it is
4476          * the current task context of this cpu.  If not it has been
4477          * scheduled out before the smp call arrived.  In that case
4478          * event->count would have been updated to a recent sample
4479          * when the event was scheduled out.
4480          */
4481         if (ctx->task && cpuctx->task_ctx != ctx)
4482                 return;
4483
4484         raw_spin_lock(&ctx->lock);
4485         if (ctx->is_active & EVENT_TIME) {
4486                 update_context_time(ctx);
4487                 update_cgrp_time_from_event(event);
4488         }
4489
4490         perf_event_update_time(event);
4491         if (data->group)
4492                 perf_event_update_sibling_time(event);
4493
4494         if (event->state != PERF_EVENT_STATE_ACTIVE)
4495                 goto unlock;
4496
4497         if (!data->group) {
4498                 pmu->read(event);
4499                 data->ret = 0;
4500                 goto unlock;
4501         }
4502
4503         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4504
4505         pmu->read(event);
4506
4507         for_each_sibling_event(sub, event) {
4508                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4509                         /*
4510                          * Use sibling's PMU rather than @event's since
4511                          * sibling could be on different (eg: software) PMU.
4512                          */
4513                         sub->pmu->read(sub);
4514                 }
4515         }
4516
4517         data->ret = pmu->commit_txn(pmu);
4518
4519 unlock:
4520         raw_spin_unlock(&ctx->lock);
4521 }
4522
4523 static inline u64 perf_event_count(struct perf_event *event)
4524 {
4525         return local64_read(&event->count) + atomic64_read(&event->child_count);
4526 }
4527
4528 static void calc_timer_values(struct perf_event *event,
4529                                 u64 *now,
4530                                 u64 *enabled,
4531                                 u64 *running)
4532 {
4533         u64 ctx_time;
4534
4535         *now = perf_clock();
4536         ctx_time = perf_event_time_now(event, *now);
4537         __perf_update_times(event, ctx_time, enabled, running);
4538 }
4539
4540 /*
4541  * NMI-safe method to read a local event, that is an event that
4542  * is:
4543  *   - either for the current task, or for this CPU
4544  *   - does not have inherit set, for inherited task events
4545  *     will not be local and we cannot read them atomically
4546  *   - must not have a pmu::count method
4547  */
4548 int perf_event_read_local(struct perf_event *event, u64 *value,
4549                           u64 *enabled, u64 *running)
4550 {
4551         unsigned long flags;
4552         int ret = 0;
4553
4554         /*
4555          * Disabling interrupts avoids all counter scheduling (context
4556          * switches, timer based rotation and IPIs).
4557          */
4558         local_irq_save(flags);
4559
4560         /*
4561          * It must not be an event with inherit set, we cannot read
4562          * all child counters from atomic context.
4563          */
4564         if (event->attr.inherit) {
4565                 ret = -EOPNOTSUPP;
4566                 goto out;
4567         }
4568
4569         /* If this is a per-task event, it must be for current */
4570         if ((event->attach_state & PERF_ATTACH_TASK) &&
4571             event->hw.target != current) {
4572                 ret = -EINVAL;
4573                 goto out;
4574         }
4575
4576         /* If this is a per-CPU event, it must be for this CPU */
4577         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4578             event->cpu != smp_processor_id()) {
4579                 ret = -EINVAL;
4580                 goto out;
4581         }
4582
4583         /* If this is a pinned event it must be running on this CPU */
4584         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4585                 ret = -EBUSY;
4586                 goto out;
4587         }
4588
4589         /*
4590          * If the event is currently on this CPU, its either a per-task event,
4591          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4592          * oncpu == -1).
4593          */
4594         if (event->oncpu == smp_processor_id())
4595                 event->pmu->read(event);
4596
4597         *value = local64_read(&event->count);
4598         if (enabled || running) {
4599                 u64 __enabled, __running, __now;
4600
4601                 calc_timer_values(event, &__now, &__enabled, &__running);
4602                 if (enabled)
4603                         *enabled = __enabled;
4604                 if (running)
4605                         *running = __running;
4606         }
4607 out:
4608         local_irq_restore(flags);
4609
4610         return ret;
4611 }
4612
4613 static int perf_event_read(struct perf_event *event, bool group)
4614 {
4615         enum perf_event_state state = READ_ONCE(event->state);
4616         int event_cpu, ret = 0;
4617
4618         /*
4619          * If event is enabled and currently active on a CPU, update the
4620          * value in the event structure:
4621          */
4622 again:
4623         if (state == PERF_EVENT_STATE_ACTIVE) {
4624                 struct perf_read_data data;
4625
4626                 /*
4627                  * Orders the ->state and ->oncpu loads such that if we see
4628                  * ACTIVE we must also see the right ->oncpu.
4629                  *
4630                  * Matches the smp_wmb() from event_sched_in().
4631                  */
4632                 smp_rmb();
4633
4634                 event_cpu = READ_ONCE(event->oncpu);
4635                 if ((unsigned)event_cpu >= nr_cpu_ids)
4636                         return 0;
4637
4638                 data = (struct perf_read_data){
4639                         .event = event,
4640                         .group = group,
4641                         .ret = 0,
4642                 };
4643
4644                 preempt_disable();
4645                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4646
4647                 /*
4648                  * Purposely ignore the smp_call_function_single() return
4649                  * value.
4650                  *
4651                  * If event_cpu isn't a valid CPU it means the event got
4652                  * scheduled out and that will have updated the event count.
4653                  *
4654                  * Therefore, either way, we'll have an up-to-date event count
4655                  * after this.
4656                  */
4657                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4658                 preempt_enable();
4659                 ret = data.ret;
4660
4661         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4662                 struct perf_event_context *ctx = event->ctx;
4663                 unsigned long flags;
4664
4665                 raw_spin_lock_irqsave(&ctx->lock, flags);
4666                 state = event->state;
4667                 if (state != PERF_EVENT_STATE_INACTIVE) {
4668                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4669                         goto again;
4670                 }
4671
4672                 /*
4673                  * May read while context is not active (e.g., thread is
4674                  * blocked), in that case we cannot update context time
4675                  */
4676                 if (ctx->is_active & EVENT_TIME) {
4677                         update_context_time(ctx);
4678                         update_cgrp_time_from_event(event);
4679                 }
4680
4681                 perf_event_update_time(event);
4682                 if (group)
4683                         perf_event_update_sibling_time(event);
4684                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4685         }
4686
4687         return ret;
4688 }
4689
4690 /*
4691  * Initialize the perf_event context in a task_struct:
4692  */
4693 static void __perf_event_init_context(struct perf_event_context *ctx)
4694 {
4695         raw_spin_lock_init(&ctx->lock);
4696         mutex_init(&ctx->mutex);
4697         INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4698         perf_event_groups_init(&ctx->pinned_groups);
4699         perf_event_groups_init(&ctx->flexible_groups);
4700         INIT_LIST_HEAD(&ctx->event_list);
4701         refcount_set(&ctx->refcount, 1);
4702 }
4703
4704 static void
4705 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4706 {
4707         epc->pmu = pmu;
4708         INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4709         INIT_LIST_HEAD(&epc->pinned_active);
4710         INIT_LIST_HEAD(&epc->flexible_active);
4711         atomic_set(&epc->refcount, 1);
4712 }
4713
4714 static struct perf_event_context *
4715 alloc_perf_context(struct task_struct *task)
4716 {
4717         struct perf_event_context *ctx;
4718
4719         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4720         if (!ctx)
4721                 return NULL;
4722
4723         __perf_event_init_context(ctx);
4724         if (task)
4725                 ctx->task = get_task_struct(task);
4726
4727         return ctx;
4728 }
4729
4730 static struct task_struct *
4731 find_lively_task_by_vpid(pid_t vpid)
4732 {
4733         struct task_struct *task;
4734
4735         rcu_read_lock();
4736         if (!vpid)
4737                 task = current;
4738         else
4739                 task = find_task_by_vpid(vpid);
4740         if (task)
4741                 get_task_struct(task);
4742         rcu_read_unlock();
4743
4744         if (!task)
4745                 return ERR_PTR(-ESRCH);
4746
4747         return task;
4748 }
4749
4750 /*
4751  * Returns a matching context with refcount and pincount.
4752  */
4753 static struct perf_event_context *
4754 find_get_context(struct task_struct *task, struct perf_event *event)
4755 {
4756         struct perf_event_context *ctx, *clone_ctx = NULL;
4757         struct perf_cpu_context *cpuctx;
4758         unsigned long flags;
4759         int err;
4760
4761         if (!task) {
4762                 /* Must be root to operate on a CPU event: */
4763                 err = perf_allow_cpu(&event->attr);
4764                 if (err)
4765                         return ERR_PTR(err);
4766
4767                 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4768                 ctx = &cpuctx->ctx;
4769                 get_ctx(ctx);
4770                 raw_spin_lock_irqsave(&ctx->lock, flags);
4771                 ++ctx->pin_count;
4772                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4773
4774                 return ctx;
4775         }
4776
4777         err = -EINVAL;
4778 retry:
4779         ctx = perf_lock_task_context(task, &flags);
4780         if (ctx) {
4781                 clone_ctx = unclone_ctx(ctx);
4782                 ++ctx->pin_count;
4783
4784                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4785
4786                 if (clone_ctx)
4787                         put_ctx(clone_ctx);
4788         } else {
4789                 ctx = alloc_perf_context(task);
4790                 err = -ENOMEM;
4791                 if (!ctx)
4792                         goto errout;
4793
4794                 err = 0;
4795                 mutex_lock(&task->perf_event_mutex);
4796                 /*
4797                  * If it has already passed perf_event_exit_task().
4798                  * we must see PF_EXITING, it takes this mutex too.
4799                  */
4800                 if (task->flags & PF_EXITING)
4801                         err = -ESRCH;
4802                 else if (task->perf_event_ctxp)
4803                         err = -EAGAIN;
4804                 else {
4805                         get_ctx(ctx);
4806                         ++ctx->pin_count;
4807                         rcu_assign_pointer(task->perf_event_ctxp, ctx);
4808                 }
4809                 mutex_unlock(&task->perf_event_mutex);
4810
4811                 if (unlikely(err)) {
4812                         put_ctx(ctx);
4813
4814                         if (err == -EAGAIN)
4815                                 goto retry;
4816                         goto errout;
4817                 }
4818         }
4819
4820         return ctx;
4821
4822 errout:
4823         return ERR_PTR(err);
4824 }
4825
4826 static struct perf_event_pmu_context *
4827 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4828                      struct perf_event *event)
4829 {
4830         struct perf_event_pmu_context *new = NULL, *epc;
4831         void *task_ctx_data = NULL;
4832
4833         if (!ctx->task) {
4834                 /*
4835                  * perf_pmu_migrate_context() / __perf_pmu_install_event()
4836                  * relies on the fact that find_get_pmu_context() cannot fail
4837                  * for CPU contexts.
4838                  */
4839                 struct perf_cpu_pmu_context *cpc;
4840
4841                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4842                 epc = &cpc->epc;
4843                 raw_spin_lock_irq(&ctx->lock);
4844                 if (!epc->ctx) {
4845                         atomic_set(&epc->refcount, 1);
4846                         epc->embedded = 1;
4847                         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4848                         epc->ctx = ctx;
4849                 } else {
4850                         WARN_ON_ONCE(epc->ctx != ctx);
4851                         atomic_inc(&epc->refcount);
4852                 }
4853                 raw_spin_unlock_irq(&ctx->lock);
4854                 return epc;
4855         }
4856
4857         new = kzalloc(sizeof(*epc), GFP_KERNEL);
4858         if (!new)
4859                 return ERR_PTR(-ENOMEM);
4860
4861         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4862                 task_ctx_data = alloc_task_ctx_data(pmu);
4863                 if (!task_ctx_data) {
4864                         kfree(new);
4865                         return ERR_PTR(-ENOMEM);
4866                 }
4867         }
4868
4869         __perf_init_event_pmu_context(new, pmu);
4870
4871         /*
4872          * XXX
4873          *
4874          * lockdep_assert_held(&ctx->mutex);
4875          *
4876          * can't because perf_event_init_task() doesn't actually hold the
4877          * child_ctx->mutex.
4878          */
4879
4880         raw_spin_lock_irq(&ctx->lock);
4881         list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4882                 if (epc->pmu == pmu) {
4883                         WARN_ON_ONCE(epc->ctx != ctx);
4884                         atomic_inc(&epc->refcount);
4885                         goto found_epc;
4886                 }
4887         }
4888
4889         epc = new;
4890         new = NULL;
4891
4892         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4893         epc->ctx = ctx;
4894
4895 found_epc:
4896         if (task_ctx_data && !epc->task_ctx_data) {
4897                 epc->task_ctx_data = task_ctx_data;
4898                 task_ctx_data = NULL;
4899                 ctx->nr_task_data++;
4900         }
4901         raw_spin_unlock_irq(&ctx->lock);
4902
4903         free_task_ctx_data(pmu, task_ctx_data);
4904         kfree(new);
4905
4906         return epc;
4907 }
4908
4909 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4910 {
4911         WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4912 }
4913
4914 static void free_epc_rcu(struct rcu_head *head)
4915 {
4916         struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4917
4918         kfree(epc->task_ctx_data);
4919         kfree(epc);
4920 }
4921
4922 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4923 {
4924         struct perf_event_context *ctx = epc->ctx;
4925         unsigned long flags;
4926
4927         /*
4928          * XXX
4929          *
4930          * lockdep_assert_held(&ctx->mutex);
4931          *
4932          * can't because of the call-site in _free_event()/put_event()
4933          * which isn't always called under ctx->mutex.
4934          */
4935         if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4936                 return;
4937
4938         WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4939
4940         list_del_init(&epc->pmu_ctx_entry);
4941         epc->ctx = NULL;
4942
4943         WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4944         WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4945
4946         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4947
4948         if (epc->embedded)
4949                 return;
4950
4951         call_rcu(&epc->rcu_head, free_epc_rcu);
4952 }
4953
4954 static void perf_event_free_filter(struct perf_event *event);
4955
4956 static void free_event_rcu(struct rcu_head *head)
4957 {
4958         struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4959
4960         if (event->ns)
4961                 put_pid_ns(event->ns);
4962         perf_event_free_filter(event);
4963         kmem_cache_free(perf_event_cache, event);
4964 }
4965
4966 static void ring_buffer_attach(struct perf_event *event,
4967                                struct perf_buffer *rb);
4968
4969 static void detach_sb_event(struct perf_event *event)
4970 {
4971         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4972
4973         raw_spin_lock(&pel->lock);
4974         list_del_rcu(&event->sb_list);
4975         raw_spin_unlock(&pel->lock);
4976 }
4977
4978 static bool is_sb_event(struct perf_event *event)
4979 {
4980         struct perf_event_attr *attr = &event->attr;
4981
4982         if (event->parent)
4983                 return false;
4984
4985         if (event->attach_state & PERF_ATTACH_TASK)
4986                 return false;
4987
4988         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4989             attr->comm || attr->comm_exec ||
4990             attr->task || attr->ksymbol ||
4991             attr->context_switch || attr->text_poke ||
4992             attr->bpf_event)
4993                 return true;
4994         return false;
4995 }
4996
4997 static void unaccount_pmu_sb_event(struct perf_event *event)
4998 {
4999         if (is_sb_event(event))
5000                 detach_sb_event(event);
5001 }
5002
5003 #ifdef CONFIG_NO_HZ_FULL
5004 static DEFINE_SPINLOCK(nr_freq_lock);
5005 #endif
5006
5007 static void unaccount_freq_event_nohz(void)
5008 {
5009 #ifdef CONFIG_NO_HZ_FULL
5010         spin_lock(&nr_freq_lock);
5011         if (atomic_dec_and_test(&nr_freq_events))
5012                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5013         spin_unlock(&nr_freq_lock);
5014 #endif
5015 }
5016
5017 static void unaccount_freq_event(void)
5018 {
5019         if (tick_nohz_full_enabled())
5020                 unaccount_freq_event_nohz();
5021         else
5022                 atomic_dec(&nr_freq_events);
5023 }
5024
5025 static void unaccount_event(struct perf_event *event)
5026 {
5027         bool dec = false;
5028
5029         if (event->parent)
5030                 return;
5031
5032         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5033                 dec = true;
5034         if (event->attr.mmap || event->attr.mmap_data)
5035                 atomic_dec(&nr_mmap_events);
5036         if (event->attr.build_id)
5037                 atomic_dec(&nr_build_id_events);
5038         if (event->attr.comm)
5039                 atomic_dec(&nr_comm_events);
5040         if (event->attr.namespaces)
5041                 atomic_dec(&nr_namespaces_events);
5042         if (event->attr.cgroup)
5043                 atomic_dec(&nr_cgroup_events);
5044         if (event->attr.task)
5045                 atomic_dec(&nr_task_events);
5046         if (event->attr.freq)
5047                 unaccount_freq_event();
5048         if (event->attr.context_switch) {
5049                 dec = true;
5050                 atomic_dec(&nr_switch_events);
5051         }
5052         if (is_cgroup_event(event))
5053                 dec = true;
5054         if (has_branch_stack(event))
5055                 dec = true;
5056         if (event->attr.ksymbol)
5057                 atomic_dec(&nr_ksymbol_events);
5058         if (event->attr.bpf_event)
5059                 atomic_dec(&nr_bpf_events);
5060         if (event->attr.text_poke)
5061                 atomic_dec(&nr_text_poke_events);
5062
5063         if (dec) {
5064                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5065                         schedule_delayed_work(&perf_sched_work, HZ);
5066         }
5067
5068         unaccount_pmu_sb_event(event);
5069 }
5070
5071 static void perf_sched_delayed(struct work_struct *work)
5072 {
5073         mutex_lock(&perf_sched_mutex);
5074         if (atomic_dec_and_test(&perf_sched_count))
5075                 static_branch_disable(&perf_sched_events);
5076         mutex_unlock(&perf_sched_mutex);
5077 }
5078
5079 /*
5080  * The following implement mutual exclusion of events on "exclusive" pmus
5081  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5082  * at a time, so we disallow creating events that might conflict, namely:
5083  *
5084  *  1) cpu-wide events in the presence of per-task events,
5085  *  2) per-task events in the presence of cpu-wide events,
5086  *  3) two matching events on the same perf_event_context.
5087  *
5088  * The former two cases are handled in the allocation path (perf_event_alloc(),
5089  * _free_event()), the latter -- before the first perf_install_in_context().
5090  */
5091 static int exclusive_event_init(struct perf_event *event)
5092 {
5093         struct pmu *pmu = event->pmu;
5094
5095         if (!is_exclusive_pmu(pmu))
5096                 return 0;
5097
5098         /*
5099          * Prevent co-existence of per-task and cpu-wide events on the
5100          * same exclusive pmu.
5101          *
5102          * Negative pmu::exclusive_cnt means there are cpu-wide
5103          * events on this "exclusive" pmu, positive means there are
5104          * per-task events.
5105          *
5106          * Since this is called in perf_event_alloc() path, event::ctx
5107          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5108          * to mean "per-task event", because unlike other attach states it
5109          * never gets cleared.
5110          */
5111         if (event->attach_state & PERF_ATTACH_TASK) {
5112                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5113                         return -EBUSY;
5114         } else {
5115                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5116                         return -EBUSY;
5117         }
5118
5119         return 0;
5120 }
5121
5122 static void exclusive_event_destroy(struct perf_event *event)
5123 {
5124         struct pmu *pmu = event->pmu;
5125
5126         if (!is_exclusive_pmu(pmu))
5127                 return;
5128
5129         /* see comment in exclusive_event_init() */
5130         if (event->attach_state & PERF_ATTACH_TASK)
5131                 atomic_dec(&pmu->exclusive_cnt);
5132         else
5133                 atomic_inc(&pmu->exclusive_cnt);
5134 }
5135
5136 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5137 {
5138         if ((e1->pmu == e2->pmu) &&
5139             (e1->cpu == e2->cpu ||
5140              e1->cpu == -1 ||
5141              e2->cpu == -1))
5142                 return true;
5143         return false;
5144 }
5145
5146 static bool exclusive_event_installable(struct perf_event *event,
5147                                         struct perf_event_context *ctx)
5148 {
5149         struct perf_event *iter_event;
5150         struct pmu *pmu = event->pmu;
5151
5152         lockdep_assert_held(&ctx->mutex);
5153
5154         if (!is_exclusive_pmu(pmu))
5155                 return true;
5156
5157         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5158                 if (exclusive_event_match(iter_event, event))
5159                         return false;
5160         }
5161
5162         return true;
5163 }
5164
5165 static void perf_addr_filters_splice(struct perf_event *event,
5166                                        struct list_head *head);
5167
5168 static void _free_event(struct perf_event *event)
5169 {
5170         irq_work_sync(&event->pending_irq);
5171
5172         unaccount_event(event);
5173
5174         security_perf_event_free(event);
5175
5176         if (event->rb) {
5177                 /*
5178                  * Can happen when we close an event with re-directed output.
5179                  *
5180                  * Since we have a 0 refcount, perf_mmap_close() will skip
5181                  * over us; possibly making our ring_buffer_put() the last.
5182                  */
5183                 mutex_lock(&event->mmap_mutex);
5184                 ring_buffer_attach(event, NULL);
5185                 mutex_unlock(&event->mmap_mutex);
5186         }
5187
5188         if (is_cgroup_event(event))
5189                 perf_detach_cgroup(event);
5190
5191         if (!event->parent) {
5192                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5193                         put_callchain_buffers();
5194         }
5195
5196         perf_event_free_bpf_prog(event);
5197         perf_addr_filters_splice(event, NULL);
5198         kfree(event->addr_filter_ranges);
5199
5200         if (event->destroy)
5201                 event->destroy(event);
5202
5203         /*
5204          * Must be after ->destroy(), due to uprobe_perf_close() using
5205          * hw.target.
5206          */
5207         if (event->hw.target)
5208                 put_task_struct(event->hw.target);
5209
5210         if (event->pmu_ctx)
5211                 put_pmu_ctx(event->pmu_ctx);
5212
5213         /*
5214          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5215          * all task references must be cleaned up.
5216          */
5217         if (event->ctx)
5218                 put_ctx(event->ctx);
5219
5220         exclusive_event_destroy(event);
5221         module_put(event->pmu->module);
5222
5223         call_rcu(&event->rcu_head, free_event_rcu);
5224 }
5225
5226 /*
5227  * Used to free events which have a known refcount of 1, such as in error paths
5228  * where the event isn't exposed yet and inherited events.
5229  */
5230 static void free_event(struct perf_event *event)
5231 {
5232         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5233                                 "unexpected event refcount: %ld; ptr=%p\n",
5234                                 atomic_long_read(&event->refcount), event)) {
5235                 /* leak to avoid use-after-free */
5236                 return;
5237         }
5238
5239         _free_event(event);
5240 }
5241
5242 /*
5243  * Remove user event from the owner task.
5244  */
5245 static void perf_remove_from_owner(struct perf_event *event)
5246 {
5247         struct task_struct *owner;
5248
5249         rcu_read_lock();
5250         /*
5251          * Matches the smp_store_release() in perf_event_exit_task(). If we
5252          * observe !owner it means the list deletion is complete and we can
5253          * indeed free this event, otherwise we need to serialize on
5254          * owner->perf_event_mutex.
5255          */
5256         owner = READ_ONCE(event->owner);
5257         if (owner) {
5258                 /*
5259                  * Since delayed_put_task_struct() also drops the last
5260                  * task reference we can safely take a new reference
5261                  * while holding the rcu_read_lock().
5262                  */
5263                 get_task_struct(owner);
5264         }
5265         rcu_read_unlock();
5266
5267         if (owner) {
5268                 /*
5269                  * If we're here through perf_event_exit_task() we're already
5270                  * holding ctx->mutex which would be an inversion wrt. the
5271                  * normal lock order.
5272                  *
5273                  * However we can safely take this lock because its the child
5274                  * ctx->mutex.
5275                  */
5276                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5277
5278                 /*
5279                  * We have to re-check the event->owner field, if it is cleared
5280                  * we raced with perf_event_exit_task(), acquiring the mutex
5281                  * ensured they're done, and we can proceed with freeing the
5282                  * event.
5283                  */
5284                 if (event->owner) {
5285                         list_del_init(&event->owner_entry);
5286                         smp_store_release(&event->owner, NULL);
5287                 }
5288                 mutex_unlock(&owner->perf_event_mutex);
5289                 put_task_struct(owner);
5290         }
5291 }
5292
5293 static void put_event(struct perf_event *event)
5294 {
5295         if (!atomic_long_dec_and_test(&event->refcount))
5296                 return;
5297
5298         _free_event(event);
5299 }
5300
5301 /*
5302  * Kill an event dead; while event:refcount will preserve the event
5303  * object, it will not preserve its functionality. Once the last 'user'
5304  * gives up the object, we'll destroy the thing.
5305  */
5306 int perf_event_release_kernel(struct perf_event *event)
5307 {
5308         struct perf_event_context *ctx = event->ctx;
5309         struct perf_event *child, *tmp;
5310         LIST_HEAD(free_list);
5311
5312         /*
5313          * If we got here through err_alloc: free_event(event); we will not
5314          * have attached to a context yet.
5315          */
5316         if (!ctx) {
5317                 WARN_ON_ONCE(event->attach_state &
5318                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5319                 goto no_ctx;
5320         }
5321
5322         if (!is_kernel_event(event))
5323                 perf_remove_from_owner(event);
5324
5325         ctx = perf_event_ctx_lock(event);
5326         WARN_ON_ONCE(ctx->parent_ctx);
5327
5328         /*
5329          * Mark this event as STATE_DEAD, there is no external reference to it
5330          * anymore.
5331          *
5332          * Anybody acquiring event->child_mutex after the below loop _must_
5333          * also see this, most importantly inherit_event() which will avoid
5334          * placing more children on the list.
5335          *
5336          * Thus this guarantees that we will in fact observe and kill _ALL_
5337          * child events.
5338          */
5339         perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5340
5341         perf_event_ctx_unlock(event, ctx);
5342
5343 again:
5344         mutex_lock(&event->child_mutex);
5345         list_for_each_entry(child, &event->child_list, child_list) {
5346
5347                 /*
5348                  * Cannot change, child events are not migrated, see the
5349                  * comment with perf_event_ctx_lock_nested().
5350                  */
5351                 ctx = READ_ONCE(child->ctx);
5352                 /*
5353                  * Since child_mutex nests inside ctx::mutex, we must jump
5354                  * through hoops. We start by grabbing a reference on the ctx.
5355                  *
5356                  * Since the event cannot get freed while we hold the
5357                  * child_mutex, the context must also exist and have a !0
5358                  * reference count.
5359                  */
5360                 get_ctx(ctx);
5361
5362                 /*
5363                  * Now that we have a ctx ref, we can drop child_mutex, and
5364                  * acquire ctx::mutex without fear of it going away. Then we
5365                  * can re-acquire child_mutex.
5366                  */
5367                 mutex_unlock(&event->child_mutex);
5368                 mutex_lock(&ctx->mutex);
5369                 mutex_lock(&event->child_mutex);
5370
5371                 /*
5372                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5373                  * state, if child is still the first entry, it didn't get freed
5374                  * and we can continue doing so.
5375                  */
5376                 tmp = list_first_entry_or_null(&event->child_list,
5377                                                struct perf_event, child_list);
5378                 if (tmp == child) {
5379                         perf_remove_from_context(child, DETACH_GROUP);
5380                         list_move(&child->child_list, &free_list);
5381                         /*
5382                          * This matches the refcount bump in inherit_event();
5383                          * this can't be the last reference.
5384                          */
5385                         put_event(event);
5386                 }
5387
5388                 mutex_unlock(&event->child_mutex);
5389                 mutex_unlock(&ctx->mutex);
5390                 put_ctx(ctx);
5391                 goto again;
5392         }
5393         mutex_unlock(&event->child_mutex);
5394
5395         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5396                 void *var = &child->ctx->refcount;
5397
5398                 list_del(&child->child_list);
5399                 free_event(child);
5400
5401                 /*
5402                  * Wake any perf_event_free_task() waiting for this event to be
5403                  * freed.
5404                  */
5405                 smp_mb(); /* pairs with wait_var_event() */
5406                 wake_up_var(var);
5407         }
5408
5409 no_ctx:
5410         put_event(event); /* Must be the 'last' reference */
5411         return 0;
5412 }
5413 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5414
5415 /*
5416  * Called when the last reference to the file is gone.
5417  */
5418 static int perf_release(struct inode *inode, struct file *file)
5419 {
5420         perf_event_release_kernel(file->private_data);
5421         return 0;
5422 }
5423
5424 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5425 {
5426         struct perf_event *child;
5427         u64 total = 0;
5428
5429         *enabled = 0;
5430         *running = 0;
5431
5432         mutex_lock(&event->child_mutex);
5433
5434         (void)perf_event_read(event, false);
5435         total += perf_event_count(event);
5436
5437         *enabled += event->total_time_enabled +
5438                         atomic64_read(&event->child_total_time_enabled);
5439         *running += event->total_time_running +
5440                         atomic64_read(&event->child_total_time_running);
5441
5442         list_for_each_entry(child, &event->child_list, child_list) {
5443                 (void)perf_event_read(child, false);
5444                 total += perf_event_count(child);
5445                 *enabled += child->total_time_enabled;
5446                 *running += child->total_time_running;
5447         }
5448         mutex_unlock(&event->child_mutex);
5449
5450         return total;
5451 }
5452
5453 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5454 {
5455         struct perf_event_context *ctx;
5456         u64 count;
5457
5458         ctx = perf_event_ctx_lock(event);
5459         count = __perf_event_read_value(event, enabled, running);
5460         perf_event_ctx_unlock(event, ctx);
5461
5462         return count;
5463 }
5464 EXPORT_SYMBOL_GPL(perf_event_read_value);
5465
5466 static int __perf_read_group_add(struct perf_event *leader,
5467                                         u64 read_format, u64 *values)
5468 {
5469         struct perf_event_context *ctx = leader->ctx;
5470         struct perf_event *sub, *parent;
5471         unsigned long flags;
5472         int n = 1; /* skip @nr */
5473         int ret;
5474
5475         ret = perf_event_read(leader, true);
5476         if (ret)
5477                 return ret;
5478
5479         raw_spin_lock_irqsave(&ctx->lock, flags);
5480         /*
5481          * Verify the grouping between the parent and child (inherited)
5482          * events is still in tact.
5483          *
5484          * Specifically:
5485          *  - leader->ctx->lock pins leader->sibling_list
5486          *  - parent->child_mutex pins parent->child_list
5487          *  - parent->ctx->mutex pins parent->sibling_list
5488          *
5489          * Because parent->ctx != leader->ctx (and child_list nests inside
5490          * ctx->mutex), group destruction is not atomic between children, also
5491          * see perf_event_release_kernel(). Additionally, parent can grow the
5492          * group.
5493          *
5494          * Therefore it is possible to have parent and child groups in a
5495          * different configuration and summing over such a beast makes no sense
5496          * what so ever.
5497          *
5498          * Reject this.
5499          */
5500         parent = leader->parent;
5501         if (parent &&
5502             (parent->group_generation != leader->group_generation ||
5503              parent->nr_siblings != leader->nr_siblings)) {
5504                 ret = -ECHILD;
5505                 goto unlock;
5506         }
5507
5508         /*
5509          * Since we co-schedule groups, {enabled,running} times of siblings
5510          * will be identical to those of the leader, so we only publish one
5511          * set.
5512          */
5513         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5514                 values[n++] += leader->total_time_enabled +
5515                         atomic64_read(&leader->child_total_time_enabled);
5516         }
5517
5518         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5519                 values[n++] += leader->total_time_running +
5520                         atomic64_read(&leader->child_total_time_running);
5521         }
5522
5523         /*
5524          * Write {count,id} tuples for every sibling.
5525          */
5526         values[n++] += perf_event_count(leader);
5527         if (read_format & PERF_FORMAT_ID)
5528                 values[n++] = primary_event_id(leader);
5529         if (read_format & PERF_FORMAT_LOST)
5530                 values[n++] = atomic64_read(&leader->lost_samples);
5531
5532         for_each_sibling_event(sub, leader) {
5533                 values[n++] += perf_event_count(sub);
5534                 if (read_format & PERF_FORMAT_ID)
5535                         values[n++] = primary_event_id(sub);
5536                 if (read_format & PERF_FORMAT_LOST)
5537                         values[n++] = atomic64_read(&sub->lost_samples);
5538         }
5539
5540 unlock:
5541         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5542         return ret;
5543 }
5544
5545 static int perf_read_group(struct perf_event *event,
5546                                    u64 read_format, char __user *buf)
5547 {
5548         struct perf_event *leader = event->group_leader, *child;
5549         struct perf_event_context *ctx = leader->ctx;
5550         int ret;
5551         u64 *values;
5552
5553         lockdep_assert_held(&ctx->mutex);
5554
5555         values = kzalloc(event->read_size, GFP_KERNEL);
5556         if (!values)
5557                 return -ENOMEM;
5558
5559         values[0] = 1 + leader->nr_siblings;
5560
5561         mutex_lock(&leader->child_mutex);
5562
5563         ret = __perf_read_group_add(leader, read_format, values);
5564         if (ret)
5565                 goto unlock;
5566
5567         list_for_each_entry(child, &leader->child_list, child_list) {
5568                 ret = __perf_read_group_add(child, read_format, values);
5569                 if (ret)
5570                         goto unlock;
5571         }
5572
5573         mutex_unlock(&leader->child_mutex);
5574
5575         ret = event->read_size;
5576         if (copy_to_user(buf, values, event->read_size))
5577                 ret = -EFAULT;
5578         goto out;
5579
5580 unlock:
5581         mutex_unlock(&leader->child_mutex);
5582 out:
5583         kfree(values);
5584         return ret;
5585 }
5586
5587 static int perf_read_one(struct perf_event *event,
5588                                  u64 read_format, char __user *buf)
5589 {
5590         u64 enabled, running;
5591         u64 values[5];
5592         int n = 0;
5593
5594         values[n++] = __perf_event_read_value(event, &enabled, &running);
5595         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5596                 values[n++] = enabled;
5597         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5598                 values[n++] = running;
5599         if (read_format & PERF_FORMAT_ID)
5600                 values[n++] = primary_event_id(event);
5601         if (read_format & PERF_FORMAT_LOST)
5602                 values[n++] = atomic64_read(&event->lost_samples);
5603
5604         if (copy_to_user(buf, values, n * sizeof(u64)))
5605                 return -EFAULT;
5606
5607         return n * sizeof(u64);
5608 }
5609
5610 static bool is_event_hup(struct perf_event *event)
5611 {
5612         bool no_children;
5613
5614         if (event->state > PERF_EVENT_STATE_EXIT)
5615                 return false;
5616
5617         mutex_lock(&event->child_mutex);
5618         no_children = list_empty(&event->child_list);
5619         mutex_unlock(&event->child_mutex);
5620         return no_children;
5621 }
5622
5623 /*
5624  * Read the performance event - simple non blocking version for now
5625  */
5626 static ssize_t
5627 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5628 {
5629         u64 read_format = event->attr.read_format;
5630         int ret;
5631
5632         /*
5633          * Return end-of-file for a read on an event that is in
5634          * error state (i.e. because it was pinned but it couldn't be
5635          * scheduled on to the CPU at some point).
5636          */
5637         if (event->state == PERF_EVENT_STATE_ERROR)
5638                 return 0;
5639
5640         if (count < event->read_size)
5641                 return -ENOSPC;
5642
5643         WARN_ON_ONCE(event->ctx->parent_ctx);
5644         if (read_format & PERF_FORMAT_GROUP)
5645                 ret = perf_read_group(event, read_format, buf);
5646         else
5647                 ret = perf_read_one(event, read_format, buf);
5648
5649         return ret;
5650 }
5651
5652 static ssize_t
5653 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5654 {
5655         struct perf_event *event = file->private_data;
5656         struct perf_event_context *ctx;
5657         int ret;
5658
5659         ret = security_perf_event_read(event);
5660         if (ret)
5661                 return ret;
5662
5663         ctx = perf_event_ctx_lock(event);
5664         ret = __perf_read(event, buf, count);
5665         perf_event_ctx_unlock(event, ctx);
5666
5667         return ret;
5668 }
5669
5670 static __poll_t perf_poll(struct file *file, poll_table *wait)
5671 {
5672         struct perf_event *event = file->private_data;
5673         struct perf_buffer *rb;
5674         __poll_t events = EPOLLHUP;
5675
5676         poll_wait(file, &event->waitq, wait);
5677
5678         if (is_event_hup(event))
5679                 return events;
5680
5681         /*
5682          * Pin the event->rb by taking event->mmap_mutex; otherwise
5683          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5684          */
5685         mutex_lock(&event->mmap_mutex);
5686         rb = event->rb;
5687         if (rb)
5688                 events = atomic_xchg(&rb->poll, 0);
5689         mutex_unlock(&event->mmap_mutex);
5690         return events;
5691 }
5692
5693 static void _perf_event_reset(struct perf_event *event)
5694 {
5695         (void)perf_event_read(event, false);
5696         local64_set(&event->count, 0);
5697         perf_event_update_userpage(event);
5698 }
5699
5700 /* Assume it's not an event with inherit set. */
5701 u64 perf_event_pause(struct perf_event *event, bool reset)
5702 {
5703         struct perf_event_context *ctx;
5704         u64 count;
5705
5706         ctx = perf_event_ctx_lock(event);
5707         WARN_ON_ONCE(event->attr.inherit);
5708         _perf_event_disable(event);
5709         count = local64_read(&event->count);
5710         if (reset)
5711                 local64_set(&event->count, 0);
5712         perf_event_ctx_unlock(event, ctx);
5713
5714         return count;
5715 }
5716 EXPORT_SYMBOL_GPL(perf_event_pause);
5717
5718 /*
5719  * Holding the top-level event's child_mutex means that any
5720  * descendant process that has inherited this event will block
5721  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5722  * task existence requirements of perf_event_enable/disable.
5723  */
5724 static void perf_event_for_each_child(struct perf_event *event,
5725                                         void (*func)(struct perf_event *))
5726 {
5727         struct perf_event *child;
5728
5729         WARN_ON_ONCE(event->ctx->parent_ctx);
5730
5731         mutex_lock(&event->child_mutex);
5732         func(event);
5733         list_for_each_entry(child, &event->child_list, child_list)
5734                 func(child);
5735         mutex_unlock(&event->child_mutex);
5736 }
5737
5738 static void perf_event_for_each(struct perf_event *event,
5739                                   void (*func)(struct perf_event *))
5740 {
5741         struct perf_event_context *ctx = event->ctx;
5742         struct perf_event *sibling;
5743
5744         lockdep_assert_held(&ctx->mutex);
5745
5746         event = event->group_leader;
5747
5748         perf_event_for_each_child(event, func);
5749         for_each_sibling_event(sibling, event)
5750                 perf_event_for_each_child(sibling, func);
5751 }
5752
5753 static void __perf_event_period(struct perf_event *event,
5754                                 struct perf_cpu_context *cpuctx,
5755                                 struct perf_event_context *ctx,
5756                                 void *info)
5757 {
5758         u64 value = *((u64 *)info);
5759         bool active;
5760
5761         if (event->attr.freq) {
5762                 event->attr.sample_freq = value;
5763         } else {
5764                 event->attr.sample_period = value;
5765                 event->hw.sample_period = value;
5766         }
5767
5768         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5769         if (active) {
5770                 perf_pmu_disable(event->pmu);
5771                 /*
5772                  * We could be throttled; unthrottle now to avoid the tick
5773                  * trying to unthrottle while we already re-started the event.
5774                  */
5775                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5776                         event->hw.interrupts = 0;
5777                         perf_log_throttle(event, 1);
5778                 }
5779                 event->pmu->stop(event, PERF_EF_UPDATE);
5780         }
5781
5782         local64_set(&event->hw.period_left, 0);
5783
5784         if (active) {
5785                 event->pmu->start(event, PERF_EF_RELOAD);
5786                 perf_pmu_enable(event->pmu);
5787         }
5788 }
5789
5790 static int perf_event_check_period(struct perf_event *event, u64 value)
5791 {
5792         return event->pmu->check_period(event, value);
5793 }
5794
5795 static int _perf_event_period(struct perf_event *event, u64 value)
5796 {
5797         if (!is_sampling_event(event))
5798                 return -EINVAL;
5799
5800         if (!value)
5801                 return -EINVAL;
5802
5803         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5804                 return -EINVAL;
5805
5806         if (perf_event_check_period(event, value))
5807                 return -EINVAL;
5808
5809         if (!event->attr.freq && (value & (1ULL << 63)))
5810                 return -EINVAL;
5811
5812         event_function_call(event, __perf_event_period, &value);
5813
5814         return 0;
5815 }
5816
5817 int perf_event_period(struct perf_event *event, u64 value)
5818 {
5819         struct perf_event_context *ctx;
5820         int ret;
5821
5822         ctx = perf_event_ctx_lock(event);
5823         ret = _perf_event_period(event, value);
5824         perf_event_ctx_unlock(event, ctx);
5825
5826         return ret;
5827 }
5828 EXPORT_SYMBOL_GPL(perf_event_period);
5829
5830 static const struct file_operations perf_fops;
5831
5832 static inline int perf_fget_light(int fd, struct fd *p)
5833 {
5834         struct fd f = fdget(fd);
5835         if (!f.file)
5836                 return -EBADF;
5837
5838         if (f.file->f_op != &perf_fops) {
5839                 fdput(f);
5840                 return -EBADF;
5841         }
5842         *p = f;
5843         return 0;
5844 }
5845
5846 static int perf_event_set_output(struct perf_event *event,
5847                                  struct perf_event *output_event);
5848 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5849 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5850                           struct perf_event_attr *attr);
5851
5852 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5853 {
5854         void (*func)(struct perf_event *);
5855         u32 flags = arg;
5856
5857         switch (cmd) {
5858         case PERF_EVENT_IOC_ENABLE:
5859                 func = _perf_event_enable;
5860                 break;
5861         case PERF_EVENT_IOC_DISABLE:
5862                 func = _perf_event_disable;
5863                 break;
5864         case PERF_EVENT_IOC_RESET:
5865                 func = _perf_event_reset;
5866                 break;
5867
5868         case PERF_EVENT_IOC_REFRESH:
5869                 return _perf_event_refresh(event, arg);
5870
5871         case PERF_EVENT_IOC_PERIOD:
5872         {
5873                 u64 value;
5874
5875                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5876                         return -EFAULT;
5877
5878                 return _perf_event_period(event, value);
5879         }
5880         case PERF_EVENT_IOC_ID:
5881         {
5882                 u64 id = primary_event_id(event);
5883
5884                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5885                         return -EFAULT;
5886                 return 0;
5887         }
5888
5889         case PERF_EVENT_IOC_SET_OUTPUT:
5890         {
5891                 int ret;
5892                 if (arg != -1) {
5893                         struct perf_event *output_event;
5894                         struct fd output;
5895                         ret = perf_fget_light(arg, &output);
5896                         if (ret)
5897                                 return ret;
5898                         output_event = output.file->private_data;
5899                         ret = perf_event_set_output(event, output_event);
5900                         fdput(output);
5901                 } else {
5902                         ret = perf_event_set_output(event, NULL);
5903                 }
5904                 return ret;
5905         }
5906
5907         case PERF_EVENT_IOC_SET_FILTER:
5908                 return perf_event_set_filter(event, (void __user *)arg);
5909
5910         case PERF_EVENT_IOC_SET_BPF:
5911         {
5912                 struct bpf_prog *prog;
5913                 int err;
5914
5915                 prog = bpf_prog_get(arg);
5916                 if (IS_ERR(prog))
5917                         return PTR_ERR(prog);
5918
5919                 err = perf_event_set_bpf_prog(event, prog, 0);
5920                 if (err) {
5921                         bpf_prog_put(prog);
5922                         return err;
5923                 }
5924
5925                 return 0;
5926         }
5927
5928         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5929                 struct perf_buffer *rb;
5930
5931                 rcu_read_lock();
5932                 rb = rcu_dereference(event->rb);
5933                 if (!rb || !rb->nr_pages) {
5934                         rcu_read_unlock();
5935                         return -EINVAL;
5936                 }
5937                 rb_toggle_paused(rb, !!arg);
5938                 rcu_read_unlock();
5939                 return 0;
5940         }
5941
5942         case PERF_EVENT_IOC_QUERY_BPF:
5943                 return perf_event_query_prog_array(event, (void __user *)arg);
5944
5945         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5946                 struct perf_event_attr new_attr;
5947                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5948                                          &new_attr);
5949
5950                 if (err)
5951                         return err;
5952
5953                 return perf_event_modify_attr(event,  &new_attr);
5954         }
5955         default:
5956                 return -ENOTTY;
5957         }
5958
5959         if (flags & PERF_IOC_FLAG_GROUP)
5960                 perf_event_for_each(event, func);
5961         else
5962                 perf_event_for_each_child(event, func);
5963
5964         return 0;
5965 }
5966
5967 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5968 {
5969         struct perf_event *event = file->private_data;
5970         struct perf_event_context *ctx;
5971         long ret;
5972
5973         /* Treat ioctl like writes as it is likely a mutating operation. */
5974         ret = security_perf_event_write(event);
5975         if (ret)
5976                 return ret;
5977
5978         ctx = perf_event_ctx_lock(event);
5979         ret = _perf_ioctl(event, cmd, arg);
5980         perf_event_ctx_unlock(event, ctx);
5981
5982         return ret;
5983 }
5984
5985 #ifdef CONFIG_COMPAT
5986 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5987                                 unsigned long arg)
5988 {
5989         switch (_IOC_NR(cmd)) {
5990         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5991         case _IOC_NR(PERF_EVENT_IOC_ID):
5992         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5993         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5994                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5995                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5996                         cmd &= ~IOCSIZE_MASK;
5997                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5998                 }
5999                 break;
6000         }
6001         return perf_ioctl(file, cmd, arg);
6002 }
6003 #else
6004 # define perf_compat_ioctl NULL
6005 #endif
6006
6007 int perf_event_task_enable(void)
6008 {
6009         struct perf_event_context *ctx;
6010         struct perf_event *event;
6011
6012         mutex_lock(&current->perf_event_mutex);
6013         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6014                 ctx = perf_event_ctx_lock(event);
6015                 perf_event_for_each_child(event, _perf_event_enable);
6016                 perf_event_ctx_unlock(event, ctx);
6017         }
6018         mutex_unlock(&current->perf_event_mutex);
6019
6020         return 0;
6021 }
6022
6023 int perf_event_task_disable(void)
6024 {
6025         struct perf_event_context *ctx;
6026         struct perf_event *event;
6027
6028         mutex_lock(&current->perf_event_mutex);
6029         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6030                 ctx = perf_event_ctx_lock(event);
6031                 perf_event_for_each_child(event, _perf_event_disable);
6032                 perf_event_ctx_unlock(event, ctx);
6033         }
6034         mutex_unlock(&current->perf_event_mutex);
6035
6036         return 0;
6037 }
6038
6039 static int perf_event_index(struct perf_event *event)
6040 {
6041         if (event->hw.state & PERF_HES_STOPPED)
6042                 return 0;
6043
6044         if (event->state != PERF_EVENT_STATE_ACTIVE)
6045                 return 0;
6046
6047         return event->pmu->event_idx(event);
6048 }
6049
6050 static void perf_event_init_userpage(struct perf_event *event)
6051 {
6052         struct perf_event_mmap_page *userpg;
6053         struct perf_buffer *rb;
6054
6055         rcu_read_lock();
6056         rb = rcu_dereference(event->rb);
6057         if (!rb)
6058                 goto unlock;
6059
6060         userpg = rb->user_page;
6061
6062         /* Allow new userspace to detect that bit 0 is deprecated */
6063         userpg->cap_bit0_is_deprecated = 1;
6064         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6065         userpg->data_offset = PAGE_SIZE;
6066         userpg->data_size = perf_data_size(rb);
6067
6068 unlock:
6069         rcu_read_unlock();
6070 }
6071
6072 void __weak arch_perf_update_userpage(
6073         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6074 {
6075 }
6076
6077 /*
6078  * Callers need to ensure there can be no nesting of this function, otherwise
6079  * the seqlock logic goes bad. We can not serialize this because the arch
6080  * code calls this from NMI context.
6081  */
6082 void perf_event_update_userpage(struct perf_event *event)
6083 {
6084         struct perf_event_mmap_page *userpg;
6085         struct perf_buffer *rb;
6086         u64 enabled, running, now;
6087
6088         rcu_read_lock();
6089         rb = rcu_dereference(event->rb);
6090         if (!rb)
6091                 goto unlock;
6092
6093         /*
6094          * compute total_time_enabled, total_time_running
6095          * based on snapshot values taken when the event
6096          * was last scheduled in.
6097          *
6098          * we cannot simply called update_context_time()
6099          * because of locking issue as we can be called in
6100          * NMI context
6101          */
6102         calc_timer_values(event, &now, &enabled, &running);
6103
6104         userpg = rb->user_page;
6105         /*
6106          * Disable preemption to guarantee consistent time stamps are stored to
6107          * the user page.
6108          */
6109         preempt_disable();
6110         ++userpg->lock;
6111         barrier();
6112         userpg->index = perf_event_index(event);
6113         userpg->offset = perf_event_count(event);
6114         if (userpg->index)
6115                 userpg->offset -= local64_read(&event->hw.prev_count);
6116
6117         userpg->time_enabled = enabled +
6118                         atomic64_read(&event->child_total_time_enabled);
6119
6120         userpg->time_running = running +
6121                         atomic64_read(&event->child_total_time_running);
6122
6123         arch_perf_update_userpage(event, userpg, now);
6124
6125         barrier();
6126         ++userpg->lock;
6127         preempt_enable();
6128 unlock:
6129         rcu_read_unlock();
6130 }
6131 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6132
6133 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6134 {
6135         struct perf_event *event = vmf->vma->vm_file->private_data;
6136         struct perf_buffer *rb;
6137         vm_fault_t ret = VM_FAULT_SIGBUS;
6138
6139         if (vmf->flags & FAULT_FLAG_MKWRITE) {
6140                 if (vmf->pgoff == 0)
6141                         ret = 0;
6142                 return ret;
6143         }
6144
6145         rcu_read_lock();
6146         rb = rcu_dereference(event->rb);
6147         if (!rb)
6148                 goto unlock;
6149
6150         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6151                 goto unlock;
6152
6153         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6154         if (!vmf->page)
6155                 goto unlock;
6156
6157         get_page(vmf->page);
6158         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6159         vmf->page->index   = vmf->pgoff;
6160
6161         ret = 0;
6162 unlock:
6163         rcu_read_unlock();
6164
6165         return ret;
6166 }
6167
6168 static void ring_buffer_attach(struct perf_event *event,
6169                                struct perf_buffer *rb)
6170 {
6171         struct perf_buffer *old_rb = NULL;
6172         unsigned long flags;
6173
6174         WARN_ON_ONCE(event->parent);
6175
6176         if (event->rb) {
6177                 /*
6178                  * Should be impossible, we set this when removing
6179                  * event->rb_entry and wait/clear when adding event->rb_entry.
6180                  */
6181                 WARN_ON_ONCE(event->rcu_pending);
6182
6183                 old_rb = event->rb;
6184                 spin_lock_irqsave(&old_rb->event_lock, flags);
6185                 list_del_rcu(&event->rb_entry);
6186                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6187
6188                 event->rcu_batches = get_state_synchronize_rcu();
6189                 event->rcu_pending = 1;
6190         }
6191
6192         if (rb) {
6193                 if (event->rcu_pending) {
6194                         cond_synchronize_rcu(event->rcu_batches);
6195                         event->rcu_pending = 0;
6196                 }
6197
6198                 spin_lock_irqsave(&rb->event_lock, flags);
6199                 list_add_rcu(&event->rb_entry, &rb->event_list);
6200                 spin_unlock_irqrestore(&rb->event_lock, flags);
6201         }
6202
6203         /*
6204          * Avoid racing with perf_mmap_close(AUX): stop the event
6205          * before swizzling the event::rb pointer; if it's getting
6206          * unmapped, its aux_mmap_count will be 0 and it won't
6207          * restart. See the comment in __perf_pmu_output_stop().
6208          *
6209          * Data will inevitably be lost when set_output is done in
6210          * mid-air, but then again, whoever does it like this is
6211          * not in for the data anyway.
6212          */
6213         if (has_aux(event))
6214                 perf_event_stop(event, 0);
6215
6216         rcu_assign_pointer(event->rb, rb);
6217
6218         if (old_rb) {
6219                 ring_buffer_put(old_rb);
6220                 /*
6221                  * Since we detached before setting the new rb, so that we
6222                  * could attach the new rb, we could have missed a wakeup.
6223                  * Provide it now.
6224                  */
6225                 wake_up_all(&event->waitq);
6226         }
6227 }
6228
6229 static void ring_buffer_wakeup(struct perf_event *event)
6230 {
6231         struct perf_buffer *rb;
6232
6233         if (event->parent)
6234                 event = event->parent;
6235
6236         rcu_read_lock();
6237         rb = rcu_dereference(event->rb);
6238         if (rb) {
6239                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6240                         wake_up_all(&event->waitq);
6241         }
6242         rcu_read_unlock();
6243 }
6244
6245 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6246 {
6247         struct perf_buffer *rb;
6248
6249         if (event->parent)
6250                 event = event->parent;
6251
6252         rcu_read_lock();
6253         rb = rcu_dereference(event->rb);
6254         if (rb) {
6255                 if (!refcount_inc_not_zero(&rb->refcount))
6256                         rb = NULL;
6257         }
6258         rcu_read_unlock();
6259
6260         return rb;
6261 }
6262
6263 void ring_buffer_put(struct perf_buffer *rb)
6264 {
6265         if (!refcount_dec_and_test(&rb->refcount))
6266                 return;
6267
6268         WARN_ON_ONCE(!list_empty(&rb->event_list));
6269
6270         call_rcu(&rb->rcu_head, rb_free_rcu);
6271 }
6272
6273 static void perf_mmap_open(struct vm_area_struct *vma)
6274 {
6275         struct perf_event *event = vma->vm_file->private_data;
6276
6277         atomic_inc(&event->mmap_count);
6278         atomic_inc(&event->rb->mmap_count);
6279
6280         if (vma->vm_pgoff)
6281                 atomic_inc(&event->rb->aux_mmap_count);
6282
6283         if (event->pmu->event_mapped)
6284                 event->pmu->event_mapped(event, vma->vm_mm);
6285 }
6286
6287 static void perf_pmu_output_stop(struct perf_event *event);
6288
6289 /*
6290  * A buffer can be mmap()ed multiple times; either directly through the same
6291  * event, or through other events by use of perf_event_set_output().
6292  *
6293  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6294  * the buffer here, where we still have a VM context. This means we need
6295  * to detach all events redirecting to us.
6296  */
6297 static void perf_mmap_close(struct vm_area_struct *vma)
6298 {
6299         struct perf_event *event = vma->vm_file->private_data;
6300         struct perf_buffer *rb = ring_buffer_get(event);
6301         struct user_struct *mmap_user = rb->mmap_user;
6302         int mmap_locked = rb->mmap_locked;
6303         unsigned long size = perf_data_size(rb);
6304         bool detach_rest = false;
6305
6306         if (event->pmu->event_unmapped)
6307                 event->pmu->event_unmapped(event, vma->vm_mm);
6308
6309         /*
6310          * rb->aux_mmap_count will always drop before rb->mmap_count and
6311          * event->mmap_count, so it is ok to use event->mmap_mutex to
6312          * serialize with perf_mmap here.
6313          */
6314         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6315             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6316                 /*
6317                  * Stop all AUX events that are writing to this buffer,
6318                  * so that we can free its AUX pages and corresponding PMU
6319                  * data. Note that after rb::aux_mmap_count dropped to zero,
6320                  * they won't start any more (see perf_aux_output_begin()).
6321                  */
6322                 perf_pmu_output_stop(event);
6323
6324                 /* now it's safe to free the pages */
6325                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6326                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6327
6328                 /* this has to be the last one */
6329                 rb_free_aux(rb);
6330                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6331
6332                 mutex_unlock(&event->mmap_mutex);
6333         }
6334
6335         if (atomic_dec_and_test(&rb->mmap_count))
6336                 detach_rest = true;
6337
6338         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6339                 goto out_put;
6340
6341         ring_buffer_attach(event, NULL);
6342         mutex_unlock(&event->mmap_mutex);
6343
6344         /* If there's still other mmap()s of this buffer, we're done. */
6345         if (!detach_rest)
6346                 goto out_put;
6347
6348         /*
6349          * No other mmap()s, detach from all other events that might redirect
6350          * into the now unreachable buffer. Somewhat complicated by the
6351          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6352          */
6353 again:
6354         rcu_read_lock();
6355         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6356                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6357                         /*
6358                          * This event is en-route to free_event() which will
6359                          * detach it and remove it from the list.
6360                          */
6361                         continue;
6362                 }
6363                 rcu_read_unlock();
6364
6365                 mutex_lock(&event->mmap_mutex);
6366                 /*
6367                  * Check we didn't race with perf_event_set_output() which can
6368                  * swizzle the rb from under us while we were waiting to
6369                  * acquire mmap_mutex.
6370                  *
6371                  * If we find a different rb; ignore this event, a next
6372                  * iteration will no longer find it on the list. We have to
6373                  * still restart the iteration to make sure we're not now
6374                  * iterating the wrong list.
6375                  */
6376                 if (event->rb == rb)
6377                         ring_buffer_attach(event, NULL);
6378
6379                 mutex_unlock(&event->mmap_mutex);
6380                 put_event(event);
6381
6382                 /*
6383                  * Restart the iteration; either we're on the wrong list or
6384                  * destroyed its integrity by doing a deletion.
6385                  */
6386                 goto again;
6387         }
6388         rcu_read_unlock();
6389
6390         /*
6391          * It could be there's still a few 0-ref events on the list; they'll
6392          * get cleaned up by free_event() -- they'll also still have their
6393          * ref on the rb and will free it whenever they are done with it.
6394          *
6395          * Aside from that, this buffer is 'fully' detached and unmapped,
6396          * undo the VM accounting.
6397          */
6398
6399         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6400                         &mmap_user->locked_vm);
6401         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6402         free_uid(mmap_user);
6403
6404 out_put:
6405         ring_buffer_put(rb); /* could be last */
6406 }
6407
6408 static const struct vm_operations_struct perf_mmap_vmops = {
6409         .open           = perf_mmap_open,
6410         .close          = perf_mmap_close, /* non mergeable */
6411         .fault          = perf_mmap_fault,
6412         .page_mkwrite   = perf_mmap_fault,
6413 };
6414
6415 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6416 {
6417         struct perf_event *event = file->private_data;
6418         unsigned long user_locked, user_lock_limit;
6419         struct user_struct *user = current_user();
6420         struct perf_buffer *rb = NULL;
6421         unsigned long locked, lock_limit;
6422         unsigned long vma_size;
6423         unsigned long nr_pages;
6424         long user_extra = 0, extra = 0;
6425         int ret = 0, flags = 0;
6426
6427         /*
6428          * Don't allow mmap() of inherited per-task counters. This would
6429          * create a performance issue due to all children writing to the
6430          * same rb.
6431          */
6432         if (event->cpu == -1 && event->attr.inherit)
6433                 return -EINVAL;
6434
6435         if (!(vma->vm_flags & VM_SHARED))
6436                 return -EINVAL;
6437
6438         ret = security_perf_event_read(event);
6439         if (ret)
6440                 return ret;
6441
6442         vma_size = vma->vm_end - vma->vm_start;
6443
6444         if (vma->vm_pgoff == 0) {
6445                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6446         } else {
6447                 /*
6448                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6449                  * mapped, all subsequent mappings should have the same size
6450                  * and offset. Must be above the normal perf buffer.
6451                  */
6452                 u64 aux_offset, aux_size;
6453
6454                 if (!event->rb)
6455                         return -EINVAL;
6456
6457                 nr_pages = vma_size / PAGE_SIZE;
6458
6459                 mutex_lock(&event->mmap_mutex);
6460                 ret = -EINVAL;
6461
6462                 rb = event->rb;
6463                 if (!rb)
6464                         goto aux_unlock;
6465
6466                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6467                 aux_size = READ_ONCE(rb->user_page->aux_size);
6468
6469                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6470                         goto aux_unlock;
6471
6472                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6473                         goto aux_unlock;
6474
6475                 /* already mapped with a different offset */
6476                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6477                         goto aux_unlock;
6478
6479                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6480                         goto aux_unlock;
6481
6482                 /* already mapped with a different size */
6483                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6484                         goto aux_unlock;
6485
6486                 if (!is_power_of_2(nr_pages))
6487                         goto aux_unlock;
6488
6489                 if (!atomic_inc_not_zero(&rb->mmap_count))
6490                         goto aux_unlock;
6491
6492                 if (rb_has_aux(rb)) {
6493                         atomic_inc(&rb->aux_mmap_count);
6494                         ret = 0;
6495                         goto unlock;
6496                 }
6497
6498                 atomic_set(&rb->aux_mmap_count, 1);
6499                 user_extra = nr_pages;
6500
6501                 goto accounting;
6502         }
6503
6504         /*
6505          * If we have rb pages ensure they're a power-of-two number, so we
6506          * can do bitmasks instead of modulo.
6507          */
6508         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6509                 return -EINVAL;
6510
6511         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6512                 return -EINVAL;
6513
6514         WARN_ON_ONCE(event->ctx->parent_ctx);
6515 again:
6516         mutex_lock(&event->mmap_mutex);
6517         if (event->rb) {
6518                 if (data_page_nr(event->rb) != nr_pages) {
6519                         ret = -EINVAL;
6520                         goto unlock;
6521                 }
6522
6523                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6524                         /*
6525                          * Raced against perf_mmap_close(); remove the
6526                          * event and try again.
6527                          */
6528                         ring_buffer_attach(event, NULL);
6529                         mutex_unlock(&event->mmap_mutex);
6530                         goto again;
6531                 }
6532
6533                 goto unlock;
6534         }
6535
6536         user_extra = nr_pages + 1;
6537
6538 accounting:
6539         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6540
6541         /*
6542          * Increase the limit linearly with more CPUs:
6543          */
6544         user_lock_limit *= num_online_cpus();
6545
6546         user_locked = atomic_long_read(&user->locked_vm);
6547
6548         /*
6549          * sysctl_perf_event_mlock may have changed, so that
6550          *     user->locked_vm > user_lock_limit
6551          */
6552         if (user_locked > user_lock_limit)
6553                 user_locked = user_lock_limit;
6554         user_locked += user_extra;
6555
6556         if (user_locked > user_lock_limit) {
6557                 /*
6558                  * charge locked_vm until it hits user_lock_limit;
6559                  * charge the rest from pinned_vm
6560                  */
6561                 extra = user_locked - user_lock_limit;
6562                 user_extra -= extra;
6563         }
6564
6565         lock_limit = rlimit(RLIMIT_MEMLOCK);
6566         lock_limit >>= PAGE_SHIFT;
6567         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6568
6569         if ((locked > lock_limit) && perf_is_paranoid() &&
6570                 !capable(CAP_IPC_LOCK)) {
6571                 ret = -EPERM;
6572                 goto unlock;
6573         }
6574
6575         WARN_ON(!rb && event->rb);
6576
6577         if (vma->vm_flags & VM_WRITE)
6578                 flags |= RING_BUFFER_WRITABLE;
6579
6580         if (!rb) {
6581                 rb = rb_alloc(nr_pages,
6582                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6583                               event->cpu, flags);
6584
6585                 if (!rb) {
6586                         ret = -ENOMEM;
6587                         goto unlock;
6588                 }
6589
6590                 atomic_set(&rb->mmap_count, 1);
6591                 rb->mmap_user = get_current_user();
6592                 rb->mmap_locked = extra;
6593
6594                 ring_buffer_attach(event, rb);
6595
6596                 perf_event_update_time(event);
6597                 perf_event_init_userpage(event);
6598                 perf_event_update_userpage(event);
6599         } else {
6600                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6601                                    event->attr.aux_watermark, flags);
6602                 if (!ret)
6603                         rb->aux_mmap_locked = extra;
6604         }
6605
6606 unlock:
6607         if (!ret) {
6608                 atomic_long_add(user_extra, &user->locked_vm);
6609                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6610
6611                 atomic_inc(&event->mmap_count);
6612         } else if (rb) {
6613                 atomic_dec(&rb->mmap_count);
6614         }
6615 aux_unlock:
6616         mutex_unlock(&event->mmap_mutex);
6617
6618         /*
6619          * Since pinned accounting is per vm we cannot allow fork() to copy our
6620          * vma.
6621          */
6622         vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6623         vma->vm_ops = &perf_mmap_vmops;
6624
6625         if (event->pmu->event_mapped)
6626                 event->pmu->event_mapped(event, vma->vm_mm);
6627
6628         return ret;
6629 }
6630
6631 static int perf_fasync(int fd, struct file *filp, int on)
6632 {
6633         struct inode *inode = file_inode(filp);
6634         struct perf_event *event = filp->private_data;
6635         int retval;
6636
6637         inode_lock(inode);
6638         retval = fasync_helper(fd, filp, on, &event->fasync);
6639         inode_unlock(inode);
6640
6641         if (retval < 0)
6642                 return retval;
6643
6644         return 0;
6645 }
6646
6647 static const struct file_operations perf_fops = {
6648         .llseek                 = no_llseek,
6649         .release                = perf_release,
6650         .read                   = perf_read,
6651         .poll                   = perf_poll,
6652         .unlocked_ioctl         = perf_ioctl,
6653         .compat_ioctl           = perf_compat_ioctl,
6654         .mmap                   = perf_mmap,
6655         .fasync                 = perf_fasync,
6656 };
6657
6658 /*
6659  * Perf event wakeup
6660  *
6661  * If there's data, ensure we set the poll() state and publish everything
6662  * to user-space before waking everybody up.
6663  */
6664
6665 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6666 {
6667         /* only the parent has fasync state */
6668         if (event->parent)
6669                 event = event->parent;
6670         return &event->fasync;
6671 }
6672
6673 void perf_event_wakeup(struct perf_event *event)
6674 {
6675         ring_buffer_wakeup(event);
6676
6677         if (event->pending_kill) {
6678                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6679                 event->pending_kill = 0;
6680         }
6681 }
6682
6683 static void perf_sigtrap(struct perf_event *event)
6684 {
6685         /*
6686          * We'd expect this to only occur if the irq_work is delayed and either
6687          * ctx->task or current has changed in the meantime. This can be the
6688          * case on architectures that do not implement arch_irq_work_raise().
6689          */
6690         if (WARN_ON_ONCE(event->ctx->task != current))
6691                 return;
6692
6693         /*
6694          * Both perf_pending_task() and perf_pending_irq() can race with the
6695          * task exiting.
6696          */
6697         if (current->flags & PF_EXITING)
6698                 return;
6699
6700         send_sig_perf((void __user *)event->pending_addr,
6701                       event->orig_type, event->attr.sig_data);
6702 }
6703
6704 /*
6705  * Deliver the pending work in-event-context or follow the context.
6706  */
6707 static void __perf_pending_irq(struct perf_event *event)
6708 {
6709         int cpu = READ_ONCE(event->oncpu);
6710
6711         /*
6712          * If the event isn't running; we done. event_sched_out() will have
6713          * taken care of things.
6714          */
6715         if (cpu < 0)
6716                 return;
6717
6718         /*
6719          * Yay, we hit home and are in the context of the event.
6720          */
6721         if (cpu == smp_processor_id()) {
6722                 if (event->pending_sigtrap) {
6723                         event->pending_sigtrap = 0;
6724                         perf_sigtrap(event);
6725                         local_dec(&event->ctx->nr_pending);
6726                 }
6727                 if (event->pending_disable) {
6728                         event->pending_disable = 0;
6729                         perf_event_disable_local(event);
6730                 }
6731                 return;
6732         }
6733
6734         /*
6735          *  CPU-A                       CPU-B
6736          *
6737          *  perf_event_disable_inatomic()
6738          *    @pending_disable = CPU-A;
6739          *    irq_work_queue();
6740          *
6741          *  sched-out
6742          *    @pending_disable = -1;
6743          *
6744          *                              sched-in
6745          *                              perf_event_disable_inatomic()
6746          *                                @pending_disable = CPU-B;
6747          *                                irq_work_queue(); // FAILS
6748          *
6749          *  irq_work_run()
6750          *    perf_pending_irq()
6751          *
6752          * But the event runs on CPU-B and wants disabling there.
6753          */
6754         irq_work_queue_on(&event->pending_irq, cpu);
6755 }
6756
6757 static void perf_pending_irq(struct irq_work *entry)
6758 {
6759         struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6760         int rctx;
6761
6762         /*
6763          * If we 'fail' here, that's OK, it means recursion is already disabled
6764          * and we won't recurse 'further'.
6765          */
6766         rctx = perf_swevent_get_recursion_context();
6767
6768         /*
6769          * The wakeup isn't bound to the context of the event -- it can happen
6770          * irrespective of where the event is.
6771          */
6772         if (event->pending_wakeup) {
6773                 event->pending_wakeup = 0;
6774                 perf_event_wakeup(event);
6775         }
6776
6777         __perf_pending_irq(event);
6778
6779         if (rctx >= 0)
6780                 perf_swevent_put_recursion_context(rctx);
6781 }
6782
6783 static void perf_pending_task(struct callback_head *head)
6784 {
6785         struct perf_event *event = container_of(head, struct perf_event, pending_task);
6786         int rctx;
6787
6788         /*
6789          * If we 'fail' here, that's OK, it means recursion is already disabled
6790          * and we won't recurse 'further'.
6791          */
6792         preempt_disable_notrace();
6793         rctx = perf_swevent_get_recursion_context();
6794
6795         if (event->pending_work) {
6796                 event->pending_work = 0;
6797                 perf_sigtrap(event);
6798                 local_dec(&event->ctx->nr_pending);
6799         }
6800
6801         if (rctx >= 0)
6802                 perf_swevent_put_recursion_context(rctx);
6803         preempt_enable_notrace();
6804
6805         put_event(event);
6806 }
6807
6808 #ifdef CONFIG_GUEST_PERF_EVENTS
6809 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6810
6811 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6812 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6813 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6814
6815 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6816 {
6817         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6818                 return;
6819
6820         rcu_assign_pointer(perf_guest_cbs, cbs);
6821         static_call_update(__perf_guest_state, cbs->state);
6822         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6823
6824         /* Implementing ->handle_intel_pt_intr is optional. */
6825         if (cbs->handle_intel_pt_intr)
6826                 static_call_update(__perf_guest_handle_intel_pt_intr,
6827                                    cbs->handle_intel_pt_intr);
6828 }
6829 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6830
6831 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6832 {
6833         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6834                 return;
6835
6836         rcu_assign_pointer(perf_guest_cbs, NULL);
6837         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6838         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6839         static_call_update(__perf_guest_handle_intel_pt_intr,
6840                            (void *)&__static_call_return0);
6841         synchronize_rcu();
6842 }
6843 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6844 #endif
6845
6846 static void
6847 perf_output_sample_regs(struct perf_output_handle *handle,
6848                         struct pt_regs *regs, u64 mask)
6849 {
6850         int bit;
6851         DECLARE_BITMAP(_mask, 64);
6852
6853         bitmap_from_u64(_mask, mask);
6854         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6855                 u64 val;
6856
6857                 val = perf_reg_value(regs, bit);
6858                 perf_output_put(handle, val);
6859         }
6860 }
6861
6862 static void perf_sample_regs_user(struct perf_regs *regs_user,
6863                                   struct pt_regs *regs)
6864 {
6865         if (user_mode(regs)) {
6866                 regs_user->abi = perf_reg_abi(current);
6867                 regs_user->regs = regs;
6868         } else if (!(current->flags & PF_KTHREAD)) {
6869                 perf_get_regs_user(regs_user, regs);
6870         } else {
6871                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6872                 regs_user->regs = NULL;
6873         }
6874 }
6875
6876 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6877                                   struct pt_regs *regs)
6878 {
6879         regs_intr->regs = regs;
6880         regs_intr->abi  = perf_reg_abi(current);
6881 }
6882
6883
6884 /*
6885  * Get remaining task size from user stack pointer.
6886  *
6887  * It'd be better to take stack vma map and limit this more
6888  * precisely, but there's no way to get it safely under interrupt,
6889  * so using TASK_SIZE as limit.
6890  */
6891 static u64 perf_ustack_task_size(struct pt_regs *regs)
6892 {
6893         unsigned long addr = perf_user_stack_pointer(regs);
6894
6895         if (!addr || addr >= TASK_SIZE)
6896                 return 0;
6897
6898         return TASK_SIZE - addr;
6899 }
6900
6901 static u16
6902 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6903                         struct pt_regs *regs)
6904 {
6905         u64 task_size;
6906
6907         /* No regs, no stack pointer, no dump. */
6908         if (!regs)
6909                 return 0;
6910
6911         /*
6912          * Check if we fit in with the requested stack size into the:
6913          * - TASK_SIZE
6914          *   If we don't, we limit the size to the TASK_SIZE.
6915          *
6916          * - remaining sample size
6917          *   If we don't, we customize the stack size to
6918          *   fit in to the remaining sample size.
6919          */
6920
6921         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6922         stack_size = min(stack_size, (u16) task_size);
6923
6924         /* Current header size plus static size and dynamic size. */
6925         header_size += 2 * sizeof(u64);
6926
6927         /* Do we fit in with the current stack dump size? */
6928         if ((u16) (header_size + stack_size) < header_size) {
6929                 /*
6930                  * If we overflow the maximum size for the sample,
6931                  * we customize the stack dump size to fit in.
6932                  */
6933                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6934                 stack_size = round_up(stack_size, sizeof(u64));
6935         }
6936
6937         return stack_size;
6938 }
6939
6940 static void
6941 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6942                           struct pt_regs *regs)
6943 {
6944         /* Case of a kernel thread, nothing to dump */
6945         if (!regs) {
6946                 u64 size = 0;
6947                 perf_output_put(handle, size);
6948         } else {
6949                 unsigned long sp;
6950                 unsigned int rem;
6951                 u64 dyn_size;
6952
6953                 /*
6954                  * We dump:
6955                  * static size
6956                  *   - the size requested by user or the best one we can fit
6957                  *     in to the sample max size
6958                  * data
6959                  *   - user stack dump data
6960                  * dynamic size
6961                  *   - the actual dumped size
6962                  */
6963
6964                 /* Static size. */
6965                 perf_output_put(handle, dump_size);
6966
6967                 /* Data. */
6968                 sp = perf_user_stack_pointer(regs);
6969                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6970                 dyn_size = dump_size - rem;
6971
6972                 perf_output_skip(handle, rem);
6973
6974                 /* Dynamic size. */
6975                 perf_output_put(handle, dyn_size);
6976         }
6977 }
6978
6979 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6980                                           struct perf_sample_data *data,
6981                                           size_t size)
6982 {
6983         struct perf_event *sampler = event->aux_event;
6984         struct perf_buffer *rb;
6985
6986         data->aux_size = 0;
6987
6988         if (!sampler)
6989                 goto out;
6990
6991         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6992                 goto out;
6993
6994         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6995                 goto out;
6996
6997         rb = ring_buffer_get(sampler);
6998         if (!rb)
6999                 goto out;
7000
7001         /*
7002          * If this is an NMI hit inside sampling code, don't take
7003          * the sample. See also perf_aux_sample_output().
7004          */
7005         if (READ_ONCE(rb->aux_in_sampling)) {
7006                 data->aux_size = 0;
7007         } else {
7008                 size = min_t(size_t, size, perf_aux_size(rb));
7009                 data->aux_size = ALIGN(size, sizeof(u64));
7010         }
7011         ring_buffer_put(rb);
7012
7013 out:
7014         return data->aux_size;
7015 }
7016
7017 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7018                                  struct perf_event *event,
7019                                  struct perf_output_handle *handle,
7020                                  unsigned long size)
7021 {
7022         unsigned long flags;
7023         long ret;
7024
7025         /*
7026          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7027          * paths. If we start calling them in NMI context, they may race with
7028          * the IRQ ones, that is, for example, re-starting an event that's just
7029          * been stopped, which is why we're using a separate callback that
7030          * doesn't change the event state.
7031          *
7032          * IRQs need to be disabled to prevent IPIs from racing with us.
7033          */
7034         local_irq_save(flags);
7035         /*
7036          * Guard against NMI hits inside the critical section;
7037          * see also perf_prepare_sample_aux().
7038          */
7039         WRITE_ONCE(rb->aux_in_sampling, 1);
7040         barrier();
7041
7042         ret = event->pmu->snapshot_aux(event, handle, size);
7043
7044         barrier();
7045         WRITE_ONCE(rb->aux_in_sampling, 0);
7046         local_irq_restore(flags);
7047
7048         return ret;
7049 }
7050
7051 static void perf_aux_sample_output(struct perf_event *event,
7052                                    struct perf_output_handle *handle,
7053                                    struct perf_sample_data *data)
7054 {
7055         struct perf_event *sampler = event->aux_event;
7056         struct perf_buffer *rb;
7057         unsigned long pad;
7058         long size;
7059
7060         if (WARN_ON_ONCE(!sampler || !data->aux_size))
7061                 return;
7062
7063         rb = ring_buffer_get(sampler);
7064         if (!rb)
7065                 return;
7066
7067         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7068
7069         /*
7070          * An error here means that perf_output_copy() failed (returned a
7071          * non-zero surplus that it didn't copy), which in its current
7072          * enlightened implementation is not possible. If that changes, we'd
7073          * like to know.
7074          */
7075         if (WARN_ON_ONCE(size < 0))
7076                 goto out_put;
7077
7078         /*
7079          * The pad comes from ALIGN()ing data->aux_size up to u64 in
7080          * perf_prepare_sample_aux(), so should not be more than that.
7081          */
7082         pad = data->aux_size - size;
7083         if (WARN_ON_ONCE(pad >= sizeof(u64)))
7084                 pad = 8;
7085
7086         if (pad) {
7087                 u64 zero = 0;
7088                 perf_output_copy(handle, &zero, pad);
7089         }
7090
7091 out_put:
7092         ring_buffer_put(rb);
7093 }
7094
7095 /*
7096  * A set of common sample data types saved even for non-sample records
7097  * when event->attr.sample_id_all is set.
7098  */
7099 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |       \
7100                              PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |   \
7101                              PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7102
7103 static void __perf_event_header__init_id(struct perf_sample_data *data,
7104                                          struct perf_event *event,
7105                                          u64 sample_type)
7106 {
7107         data->type = event->attr.sample_type;
7108         data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7109
7110         if (sample_type & PERF_SAMPLE_TID) {
7111                 /* namespace issues */
7112                 data->tid_entry.pid = perf_event_pid(event, current);
7113                 data->tid_entry.tid = perf_event_tid(event, current);
7114         }
7115
7116         if (sample_type & PERF_SAMPLE_TIME)
7117                 data->time = perf_event_clock(event);
7118
7119         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7120                 data->id = primary_event_id(event);
7121
7122         if (sample_type & PERF_SAMPLE_STREAM_ID)
7123                 data->stream_id = event->id;
7124
7125         if (sample_type & PERF_SAMPLE_CPU) {
7126                 data->cpu_entry.cpu      = raw_smp_processor_id();
7127                 data->cpu_entry.reserved = 0;
7128         }
7129 }
7130
7131 void perf_event_header__init_id(struct perf_event_header *header,
7132                                 struct perf_sample_data *data,
7133                                 struct perf_event *event)
7134 {
7135         if (event->attr.sample_id_all) {
7136                 header->size += event->id_header_size;
7137                 __perf_event_header__init_id(data, event, event->attr.sample_type);
7138         }
7139 }
7140
7141 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7142                                            struct perf_sample_data *data)
7143 {
7144         u64 sample_type = data->type;
7145
7146         if (sample_type & PERF_SAMPLE_TID)
7147                 perf_output_put(handle, data->tid_entry);
7148
7149         if (sample_type & PERF_SAMPLE_TIME)
7150                 perf_output_put(handle, data->time);
7151
7152         if (sample_type & PERF_SAMPLE_ID)
7153                 perf_output_put(handle, data->id);
7154
7155         if (sample_type & PERF_SAMPLE_STREAM_ID)
7156                 perf_output_put(handle, data->stream_id);
7157
7158         if (sample_type & PERF_SAMPLE_CPU)
7159                 perf_output_put(handle, data->cpu_entry);
7160
7161         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7162                 perf_output_put(handle, data->id);
7163 }
7164
7165 void perf_event__output_id_sample(struct perf_event *event,
7166                                   struct perf_output_handle *handle,
7167                                   struct perf_sample_data *sample)
7168 {
7169         if (event->attr.sample_id_all)
7170                 __perf_event__output_id_sample(handle, sample);
7171 }
7172
7173 static void perf_output_read_one(struct perf_output_handle *handle,
7174                                  struct perf_event *event,
7175                                  u64 enabled, u64 running)
7176 {
7177         u64 read_format = event->attr.read_format;
7178         u64 values[5];
7179         int n = 0;
7180
7181         values[n++] = perf_event_count(event);
7182         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7183                 values[n++] = enabled +
7184                         atomic64_read(&event->child_total_time_enabled);
7185         }
7186         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7187                 values[n++] = running +
7188                         atomic64_read(&event->child_total_time_running);
7189         }
7190         if (read_format & PERF_FORMAT_ID)
7191                 values[n++] = primary_event_id(event);
7192         if (read_format & PERF_FORMAT_LOST)
7193                 values[n++] = atomic64_read(&event->lost_samples);
7194
7195         __output_copy(handle, values, n * sizeof(u64));
7196 }
7197
7198 static void perf_output_read_group(struct perf_output_handle *handle,
7199                             struct perf_event *event,
7200                             u64 enabled, u64 running)
7201 {
7202         struct perf_event *leader = event->group_leader, *sub;
7203         u64 read_format = event->attr.read_format;
7204         unsigned long flags;
7205         u64 values[6];
7206         int n = 0;
7207
7208         /*
7209          * Disabling interrupts avoids all counter scheduling
7210          * (context switches, timer based rotation and IPIs).
7211          */
7212         local_irq_save(flags);
7213
7214         values[n++] = 1 + leader->nr_siblings;
7215
7216         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7217                 values[n++] = enabled;
7218
7219         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7220                 values[n++] = running;
7221
7222         if ((leader != event) &&
7223             (leader->state == PERF_EVENT_STATE_ACTIVE))
7224                 leader->pmu->read(leader);
7225
7226         values[n++] = perf_event_count(leader);
7227         if (read_format & PERF_FORMAT_ID)
7228                 values[n++] = primary_event_id(leader);
7229         if (read_format & PERF_FORMAT_LOST)
7230                 values[n++] = atomic64_read(&leader->lost_samples);
7231
7232         __output_copy(handle, values, n * sizeof(u64));
7233
7234         for_each_sibling_event(sub, leader) {
7235                 n = 0;
7236
7237                 if ((sub != event) &&
7238                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7239                         sub->pmu->read(sub);
7240
7241                 values[n++] = perf_event_count(sub);
7242                 if (read_format & PERF_FORMAT_ID)
7243                         values[n++] = primary_event_id(sub);
7244                 if (read_format & PERF_FORMAT_LOST)
7245                         values[n++] = atomic64_read(&sub->lost_samples);
7246
7247                 __output_copy(handle, values, n * sizeof(u64));
7248         }
7249
7250         local_irq_restore(flags);
7251 }
7252
7253 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7254                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7255
7256 /*
7257  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7258  *
7259  * The problem is that its both hard and excessively expensive to iterate the
7260  * child list, not to mention that its impossible to IPI the children running
7261  * on another CPU, from interrupt/NMI context.
7262  */
7263 static void perf_output_read(struct perf_output_handle *handle,
7264                              struct perf_event *event)
7265 {
7266         u64 enabled = 0, running = 0, now;
7267         u64 read_format = event->attr.read_format;
7268
7269         /*
7270          * compute total_time_enabled, total_time_running
7271          * based on snapshot values taken when the event
7272          * was last scheduled in.
7273          *
7274          * we cannot simply called update_context_time()
7275          * because of locking issue as we are called in
7276          * NMI context
7277          */
7278         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7279                 calc_timer_values(event, &now, &enabled, &running);
7280
7281         if (event->attr.read_format & PERF_FORMAT_GROUP)
7282                 perf_output_read_group(handle, event, enabled, running);
7283         else
7284                 perf_output_read_one(handle, event, enabled, running);
7285 }
7286
7287 void perf_output_sample(struct perf_output_handle *handle,
7288                         struct perf_event_header *header,
7289                         struct perf_sample_data *data,
7290                         struct perf_event *event)
7291 {
7292         u64 sample_type = data->type;
7293
7294         perf_output_put(handle, *header);
7295
7296         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7297                 perf_output_put(handle, data->id);
7298
7299         if (sample_type & PERF_SAMPLE_IP)
7300                 perf_output_put(handle, data->ip);
7301
7302         if (sample_type & PERF_SAMPLE_TID)
7303                 perf_output_put(handle, data->tid_entry);
7304
7305         if (sample_type & PERF_SAMPLE_TIME)
7306                 perf_output_put(handle, data->time);
7307
7308         if (sample_type & PERF_SAMPLE_ADDR)
7309                 perf_output_put(handle, data->addr);
7310
7311         if (sample_type & PERF_SAMPLE_ID)
7312                 perf_output_put(handle, data->id);
7313
7314         if (sample_type & PERF_SAMPLE_STREAM_ID)
7315                 perf_output_put(handle, data->stream_id);
7316
7317         if (sample_type & PERF_SAMPLE_CPU)
7318                 perf_output_put(handle, data->cpu_entry);
7319
7320         if (sample_type & PERF_SAMPLE_PERIOD)
7321                 perf_output_put(handle, data->period);
7322
7323         if (sample_type & PERF_SAMPLE_READ)
7324                 perf_output_read(handle, event);
7325
7326         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7327                 int size = 1;
7328
7329                 size += data->callchain->nr;
7330                 size *= sizeof(u64);
7331                 __output_copy(handle, data->callchain, size);
7332         }
7333
7334         if (sample_type & PERF_SAMPLE_RAW) {
7335                 struct perf_raw_record *raw = data->raw;
7336
7337                 if (raw) {
7338                         struct perf_raw_frag *frag = &raw->frag;
7339
7340                         perf_output_put(handle, raw->size);
7341                         do {
7342                                 if (frag->copy) {
7343                                         __output_custom(handle, frag->copy,
7344                                                         frag->data, frag->size);
7345                                 } else {
7346                                         __output_copy(handle, frag->data,
7347                                                       frag->size);
7348                                 }
7349                                 if (perf_raw_frag_last(frag))
7350                                         break;
7351                                 frag = frag->next;
7352                         } while (1);
7353                         if (frag->pad)
7354                                 __output_skip(handle, NULL, frag->pad);
7355                 } else {
7356                         struct {
7357                                 u32     size;
7358                                 u32     data;
7359                         } raw = {
7360                                 .size = sizeof(u32),
7361                                 .data = 0,
7362                         };
7363                         perf_output_put(handle, raw);
7364                 }
7365         }
7366
7367         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7368                 if (data->br_stack) {
7369                         size_t size;
7370
7371                         size = data->br_stack->nr
7372                              * sizeof(struct perf_branch_entry);
7373
7374                         perf_output_put(handle, data->br_stack->nr);
7375                         if (branch_sample_hw_index(event))
7376                                 perf_output_put(handle, data->br_stack->hw_idx);
7377                         perf_output_copy(handle, data->br_stack->entries, size);
7378                 } else {
7379                         /*
7380                          * we always store at least the value of nr
7381                          */
7382                         u64 nr = 0;
7383                         perf_output_put(handle, nr);
7384                 }
7385         }
7386
7387         if (sample_type & PERF_SAMPLE_REGS_USER) {
7388                 u64 abi = data->regs_user.abi;
7389
7390                 /*
7391                  * If there are no regs to dump, notice it through
7392                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7393                  */
7394                 perf_output_put(handle, abi);
7395
7396                 if (abi) {
7397                         u64 mask = event->attr.sample_regs_user;
7398                         perf_output_sample_regs(handle,
7399                                                 data->regs_user.regs,
7400                                                 mask);
7401                 }
7402         }
7403
7404         if (sample_type & PERF_SAMPLE_STACK_USER) {
7405                 perf_output_sample_ustack(handle,
7406                                           data->stack_user_size,
7407                                           data->regs_user.regs);
7408         }
7409
7410         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7411                 perf_output_put(handle, data->weight.full);
7412
7413         if (sample_type & PERF_SAMPLE_DATA_SRC)
7414                 perf_output_put(handle, data->data_src.val);
7415
7416         if (sample_type & PERF_SAMPLE_TRANSACTION)
7417                 perf_output_put(handle, data->txn);
7418
7419         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7420                 u64 abi = data->regs_intr.abi;
7421                 /*
7422                  * If there are no regs to dump, notice it through
7423                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7424                  */
7425                 perf_output_put(handle, abi);
7426
7427                 if (abi) {
7428                         u64 mask = event->attr.sample_regs_intr;
7429
7430                         perf_output_sample_regs(handle,
7431                                                 data->regs_intr.regs,
7432                                                 mask);
7433                 }
7434         }
7435
7436         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7437                 perf_output_put(handle, data->phys_addr);
7438
7439         if (sample_type & PERF_SAMPLE_CGROUP)
7440                 perf_output_put(handle, data->cgroup);
7441
7442         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7443                 perf_output_put(handle, data->data_page_size);
7444
7445         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7446                 perf_output_put(handle, data->code_page_size);
7447
7448         if (sample_type & PERF_SAMPLE_AUX) {
7449                 perf_output_put(handle, data->aux_size);
7450
7451                 if (data->aux_size)
7452                         perf_aux_sample_output(event, handle, data);
7453         }
7454
7455         if (!event->attr.watermark) {
7456                 int wakeup_events = event->attr.wakeup_events;
7457
7458                 if (wakeup_events) {
7459                         struct perf_buffer *rb = handle->rb;
7460                         int events = local_inc_return(&rb->events);
7461
7462                         if (events >= wakeup_events) {
7463                                 local_sub(wakeup_events, &rb->events);
7464                                 local_inc(&rb->wakeup);
7465                         }
7466                 }
7467         }
7468 }
7469
7470 static u64 perf_virt_to_phys(u64 virt)
7471 {
7472         u64 phys_addr = 0;
7473
7474         if (!virt)
7475                 return 0;
7476
7477         if (virt >= TASK_SIZE) {
7478                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7479                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7480                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7481                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7482         } else {
7483                 /*
7484                  * Walking the pages tables for user address.
7485                  * Interrupts are disabled, so it prevents any tear down
7486                  * of the page tables.
7487                  * Try IRQ-safe get_user_page_fast_only first.
7488                  * If failed, leave phys_addr as 0.
7489                  */
7490                 if (current->mm != NULL) {
7491                         struct page *p;
7492
7493                         pagefault_disable();
7494                         if (get_user_page_fast_only(virt, 0, &p)) {
7495                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7496                                 put_page(p);
7497                         }
7498                         pagefault_enable();
7499                 }
7500         }
7501
7502         return phys_addr;
7503 }
7504
7505 /*
7506  * Return the pagetable size of a given virtual address.
7507  */
7508 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7509 {
7510         u64 size = 0;
7511
7512 #ifdef CONFIG_HAVE_FAST_GUP
7513         pgd_t *pgdp, pgd;
7514         p4d_t *p4dp, p4d;
7515         pud_t *pudp, pud;
7516         pmd_t *pmdp, pmd;
7517         pte_t *ptep, pte;
7518
7519         pgdp = pgd_offset(mm, addr);
7520         pgd = READ_ONCE(*pgdp);
7521         if (pgd_none(pgd))
7522                 return 0;
7523
7524         if (pgd_leaf(pgd))
7525                 return pgd_leaf_size(pgd);
7526
7527         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7528         p4d = READ_ONCE(*p4dp);
7529         if (!p4d_present(p4d))
7530                 return 0;
7531
7532         if (p4d_leaf(p4d))
7533                 return p4d_leaf_size(p4d);
7534
7535         pudp = pud_offset_lockless(p4dp, p4d, addr);
7536         pud = READ_ONCE(*pudp);
7537         if (!pud_present(pud))
7538                 return 0;
7539
7540         if (pud_leaf(pud))
7541                 return pud_leaf_size(pud);
7542
7543         pmdp = pmd_offset_lockless(pudp, pud, addr);
7544 again:
7545         pmd = pmdp_get_lockless(pmdp);
7546         if (!pmd_present(pmd))
7547                 return 0;
7548
7549         if (pmd_leaf(pmd))
7550                 return pmd_leaf_size(pmd);
7551
7552         ptep = pte_offset_map(&pmd, addr);
7553         if (!ptep)
7554                 goto again;
7555
7556         pte = ptep_get_lockless(ptep);
7557         if (pte_present(pte))
7558                 size = pte_leaf_size(pte);
7559         pte_unmap(ptep);
7560 #endif /* CONFIG_HAVE_FAST_GUP */
7561
7562         return size;
7563 }
7564
7565 static u64 perf_get_page_size(unsigned long addr)
7566 {
7567         struct mm_struct *mm;
7568         unsigned long flags;
7569         u64 size;
7570
7571         if (!addr)
7572                 return 0;
7573
7574         /*
7575          * Software page-table walkers must disable IRQs,
7576          * which prevents any tear down of the page tables.
7577          */
7578         local_irq_save(flags);
7579
7580         mm = current->mm;
7581         if (!mm) {
7582                 /*
7583                  * For kernel threads and the like, use init_mm so that
7584                  * we can find kernel memory.
7585                  */
7586                 mm = &init_mm;
7587         }
7588
7589         size = perf_get_pgtable_size(mm, addr);
7590
7591         local_irq_restore(flags);
7592
7593         return size;
7594 }
7595
7596 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7597
7598 struct perf_callchain_entry *
7599 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7600 {
7601         bool kernel = !event->attr.exclude_callchain_kernel;
7602         bool user   = !event->attr.exclude_callchain_user;
7603         /* Disallow cross-task user callchains. */
7604         bool crosstask = event->ctx->task && event->ctx->task != current;
7605         const u32 max_stack = event->attr.sample_max_stack;
7606         struct perf_callchain_entry *callchain;
7607
7608         if (!kernel && !user)
7609                 return &__empty_callchain;
7610
7611         callchain = get_perf_callchain(regs, 0, kernel, user,
7612                                        max_stack, crosstask, true);
7613         return callchain ?: &__empty_callchain;
7614 }
7615
7616 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7617 {
7618         return d * !!(flags & s);
7619 }
7620
7621 void perf_prepare_sample(struct perf_sample_data *data,
7622                          struct perf_event *event,
7623                          struct pt_regs *regs)
7624 {
7625         u64 sample_type = event->attr.sample_type;
7626         u64 filtered_sample_type;
7627
7628         /*
7629          * Add the sample flags that are dependent to others.  And clear the
7630          * sample flags that have already been done by the PMU driver.
7631          */
7632         filtered_sample_type = sample_type;
7633         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7634                                            PERF_SAMPLE_IP);
7635         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7636                                            PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7637         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7638                                            PERF_SAMPLE_REGS_USER);
7639         filtered_sample_type &= ~data->sample_flags;
7640
7641         if (filtered_sample_type == 0) {
7642                 /* Make sure it has the correct data->type for output */
7643                 data->type = event->attr.sample_type;
7644                 return;
7645         }
7646
7647         __perf_event_header__init_id(data, event, filtered_sample_type);
7648
7649         if (filtered_sample_type & PERF_SAMPLE_IP) {
7650                 data->ip = perf_instruction_pointer(regs);
7651                 data->sample_flags |= PERF_SAMPLE_IP;
7652         }
7653
7654         if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7655                 perf_sample_save_callchain(data, event, regs);
7656
7657         if (filtered_sample_type & PERF_SAMPLE_RAW) {
7658                 data->raw = NULL;
7659                 data->dyn_size += sizeof(u64);
7660                 data->sample_flags |= PERF_SAMPLE_RAW;
7661         }
7662
7663         if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7664                 data->br_stack = NULL;
7665                 data->dyn_size += sizeof(u64);
7666                 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7667         }
7668
7669         if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7670                 perf_sample_regs_user(&data->regs_user, regs);
7671
7672         /*
7673          * It cannot use the filtered_sample_type here as REGS_USER can be set
7674          * by STACK_USER (using __cond_set() above) and we don't want to update
7675          * the dyn_size if it's not requested by users.
7676          */
7677         if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7678                 /* regs dump ABI info */
7679                 int size = sizeof(u64);
7680
7681                 if (data->regs_user.regs) {
7682                         u64 mask = event->attr.sample_regs_user;
7683                         size += hweight64(mask) * sizeof(u64);
7684                 }
7685
7686                 data->dyn_size += size;
7687                 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7688         }
7689
7690         if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7691                 /*
7692                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7693                  * processed as the last one or have additional check added
7694                  * in case new sample type is added, because we could eat
7695                  * up the rest of the sample size.
7696                  */
7697                 u16 stack_size = event->attr.sample_stack_user;
7698                 u16 header_size = perf_sample_data_size(data, event);
7699                 u16 size = sizeof(u64);
7700
7701                 stack_size = perf_sample_ustack_size(stack_size, header_size,
7702                                                      data->regs_user.regs);
7703
7704                 /*
7705                  * If there is something to dump, add space for the dump
7706                  * itself and for the field that tells the dynamic size,
7707                  * which is how many have been actually dumped.
7708                  */
7709                 if (stack_size)
7710                         size += sizeof(u64) + stack_size;
7711
7712                 data->stack_user_size = stack_size;
7713                 data->dyn_size += size;
7714                 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7715         }
7716
7717         if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7718                 data->weight.full = 0;
7719                 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7720         }
7721
7722         if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7723                 data->data_src.val = PERF_MEM_NA;
7724                 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7725         }
7726
7727         if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7728                 data->txn = 0;
7729                 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7730         }
7731
7732         if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7733                 data->addr = 0;
7734                 data->sample_flags |= PERF_SAMPLE_ADDR;
7735         }
7736
7737         if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7738                 /* regs dump ABI info */
7739                 int size = sizeof(u64);
7740
7741                 perf_sample_regs_intr(&data->regs_intr, regs);
7742
7743                 if (data->regs_intr.regs) {
7744                         u64 mask = event->attr.sample_regs_intr;
7745
7746                         size += hweight64(mask) * sizeof(u64);
7747                 }
7748
7749                 data->dyn_size += size;
7750                 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7751         }
7752
7753         if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7754                 data->phys_addr = perf_virt_to_phys(data->addr);
7755                 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7756         }
7757
7758 #ifdef CONFIG_CGROUP_PERF
7759         if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7760                 struct cgroup *cgrp;
7761
7762                 /* protected by RCU */
7763                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7764                 data->cgroup = cgroup_id(cgrp);
7765                 data->sample_flags |= PERF_SAMPLE_CGROUP;
7766         }
7767 #endif
7768
7769         /*
7770          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7771          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7772          * but the value will not dump to the userspace.
7773          */
7774         if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7775                 data->data_page_size = perf_get_page_size(data->addr);
7776                 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7777         }
7778
7779         if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7780                 data->code_page_size = perf_get_page_size(data->ip);
7781                 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7782         }
7783
7784         if (filtered_sample_type & PERF_SAMPLE_AUX) {
7785                 u64 size;
7786                 u16 header_size = perf_sample_data_size(data, event);
7787
7788                 header_size += sizeof(u64); /* size */
7789
7790                 /*
7791                  * Given the 16bit nature of header::size, an AUX sample can
7792                  * easily overflow it, what with all the preceding sample bits.
7793                  * Make sure this doesn't happen by using up to U16_MAX bytes
7794                  * per sample in total (rounded down to 8 byte boundary).
7795                  */
7796                 size = min_t(size_t, U16_MAX - header_size,
7797                              event->attr.aux_sample_size);
7798                 size = rounddown(size, 8);
7799                 size = perf_prepare_sample_aux(event, data, size);
7800
7801                 WARN_ON_ONCE(size + header_size > U16_MAX);
7802                 data->dyn_size += size + sizeof(u64); /* size above */
7803                 data->sample_flags |= PERF_SAMPLE_AUX;
7804         }
7805 }
7806
7807 void perf_prepare_header(struct perf_event_header *header,
7808                          struct perf_sample_data *data,
7809                          struct perf_event *event,
7810                          struct pt_regs *regs)
7811 {
7812         header->type = PERF_RECORD_SAMPLE;
7813         header->size = perf_sample_data_size(data, event);
7814         header->misc = perf_misc_flags(regs);
7815
7816         /*
7817          * If you're adding more sample types here, you likely need to do
7818          * something about the overflowing header::size, like repurpose the
7819          * lowest 3 bits of size, which should be always zero at the moment.
7820          * This raises a more important question, do we really need 512k sized
7821          * samples and why, so good argumentation is in order for whatever you
7822          * do here next.
7823          */
7824         WARN_ON_ONCE(header->size & 7);
7825 }
7826
7827 static __always_inline int
7828 __perf_event_output(struct perf_event *event,
7829                     struct perf_sample_data *data,
7830                     struct pt_regs *regs,
7831                     int (*output_begin)(struct perf_output_handle *,
7832                                         struct perf_sample_data *,
7833                                         struct perf_event *,
7834                                         unsigned int))
7835 {
7836         struct perf_output_handle handle;
7837         struct perf_event_header header;
7838         int err;
7839
7840         /* protect the callchain buffers */
7841         rcu_read_lock();
7842
7843         perf_prepare_sample(data, event, regs);
7844         perf_prepare_header(&header, data, event, regs);
7845
7846         err = output_begin(&handle, data, event, header.size);
7847         if (err)
7848                 goto exit;
7849
7850         perf_output_sample(&handle, &header, data, event);
7851
7852         perf_output_end(&handle);
7853
7854 exit:
7855         rcu_read_unlock();
7856         return err;
7857 }
7858
7859 void
7860 perf_event_output_forward(struct perf_event *event,
7861                          struct perf_sample_data *data,
7862                          struct pt_regs *regs)
7863 {
7864         __perf_event_output(event, data, regs, perf_output_begin_forward);
7865 }
7866
7867 void
7868 perf_event_output_backward(struct perf_event *event,
7869                            struct perf_sample_data *data,
7870                            struct pt_regs *regs)
7871 {
7872         __perf_event_output(event, data, regs, perf_output_begin_backward);
7873 }
7874
7875 int
7876 perf_event_output(struct perf_event *event,
7877                   struct perf_sample_data *data,
7878                   struct pt_regs *regs)
7879 {
7880         return __perf_event_output(event, data, regs, perf_output_begin);
7881 }
7882
7883 /*
7884  * read event_id
7885  */
7886
7887 struct perf_read_event {
7888         struct perf_event_header        header;
7889
7890         u32                             pid;
7891         u32                             tid;
7892 };
7893
7894 static void
7895 perf_event_read_event(struct perf_event *event,
7896                         struct task_struct *task)
7897 {
7898         struct perf_output_handle handle;
7899         struct perf_sample_data sample;
7900         struct perf_read_event read_event = {
7901                 .header = {
7902                         .type = PERF_RECORD_READ,
7903                         .misc = 0,
7904                         .size = sizeof(read_event) + event->read_size,
7905                 },
7906                 .pid = perf_event_pid(event, task),
7907                 .tid = perf_event_tid(event, task),
7908         };
7909         int ret;
7910
7911         perf_event_header__init_id(&read_event.header, &sample, event);
7912         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7913         if (ret)
7914                 return;
7915
7916         perf_output_put(&handle, read_event);
7917         perf_output_read(&handle, event);
7918         perf_event__output_id_sample(event, &handle, &sample);
7919
7920         perf_output_end(&handle);
7921 }
7922
7923 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7924
7925 static void
7926 perf_iterate_ctx(struct perf_event_context *ctx,
7927                    perf_iterate_f output,
7928                    void *data, bool all)
7929 {
7930         struct perf_event *event;
7931
7932         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7933                 if (!all) {
7934                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7935                                 continue;
7936                         if (!event_filter_match(event))
7937                                 continue;
7938                 }
7939
7940                 output(event, data);
7941         }
7942 }
7943
7944 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7945 {
7946         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7947         struct perf_event *event;
7948
7949         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7950                 /*
7951                  * Skip events that are not fully formed yet; ensure that
7952                  * if we observe event->ctx, both event and ctx will be
7953                  * complete enough. See perf_install_in_context().
7954                  */
7955                 if (!smp_load_acquire(&event->ctx))
7956                         continue;
7957
7958                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7959                         continue;
7960                 if (!event_filter_match(event))
7961                         continue;
7962                 output(event, data);
7963         }
7964 }
7965
7966 /*
7967  * Iterate all events that need to receive side-band events.
7968  *
7969  * For new callers; ensure that account_pmu_sb_event() includes
7970  * your event, otherwise it might not get delivered.
7971  */
7972 static void
7973 perf_iterate_sb(perf_iterate_f output, void *data,
7974                struct perf_event_context *task_ctx)
7975 {
7976         struct perf_event_context *ctx;
7977
7978         rcu_read_lock();
7979         preempt_disable();
7980
7981         /*
7982          * If we have task_ctx != NULL we only notify the task context itself.
7983          * The task_ctx is set only for EXIT events before releasing task
7984          * context.
7985          */
7986         if (task_ctx) {
7987                 perf_iterate_ctx(task_ctx, output, data, false);
7988                 goto done;
7989         }
7990
7991         perf_iterate_sb_cpu(output, data);
7992
7993         ctx = rcu_dereference(current->perf_event_ctxp);
7994         if (ctx)
7995                 perf_iterate_ctx(ctx, output, data, false);
7996 done:
7997         preempt_enable();
7998         rcu_read_unlock();
7999 }
8000
8001 /*
8002  * Clear all file-based filters at exec, they'll have to be
8003  * re-instated when/if these objects are mmapped again.
8004  */
8005 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8006 {
8007         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8008         struct perf_addr_filter *filter;
8009         unsigned int restart = 0, count = 0;
8010         unsigned long flags;
8011
8012         if (!has_addr_filter(event))
8013                 return;
8014
8015         raw_spin_lock_irqsave(&ifh->lock, flags);
8016         list_for_each_entry(filter, &ifh->list, entry) {
8017                 if (filter->path.dentry) {
8018                         event->addr_filter_ranges[count].start = 0;
8019                         event->addr_filter_ranges[count].size = 0;
8020                         restart++;
8021                 }
8022
8023                 count++;
8024         }
8025
8026         if (restart)
8027                 event->addr_filters_gen++;
8028         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8029
8030         if (restart)
8031                 perf_event_stop(event, 1);
8032 }
8033
8034 void perf_event_exec(void)
8035 {
8036         struct perf_event_context *ctx;
8037
8038         ctx = perf_pin_task_context(current);
8039         if (!ctx)
8040                 return;
8041
8042         perf_event_enable_on_exec(ctx);
8043         perf_event_remove_on_exec(ctx);
8044         perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8045
8046         perf_unpin_context(ctx);
8047         put_ctx(ctx);
8048 }
8049
8050 struct remote_output {
8051         struct perf_buffer      *rb;
8052         int                     err;
8053 };
8054
8055 static void __perf_event_output_stop(struct perf_event *event, void *data)
8056 {
8057         struct perf_event *parent = event->parent;
8058         struct remote_output *ro = data;
8059         struct perf_buffer *rb = ro->rb;
8060         struct stop_event_data sd = {
8061                 .event  = event,
8062         };
8063
8064         if (!has_aux(event))
8065                 return;
8066
8067         if (!parent)
8068                 parent = event;
8069
8070         /*
8071          * In case of inheritance, it will be the parent that links to the
8072          * ring-buffer, but it will be the child that's actually using it.
8073          *
8074          * We are using event::rb to determine if the event should be stopped,
8075          * however this may race with ring_buffer_attach() (through set_output),
8076          * which will make us skip the event that actually needs to be stopped.
8077          * So ring_buffer_attach() has to stop an aux event before re-assigning
8078          * its rb pointer.
8079          */
8080         if (rcu_dereference(parent->rb) == rb)
8081                 ro->err = __perf_event_stop(&sd);
8082 }
8083
8084 static int __perf_pmu_output_stop(void *info)
8085 {
8086         struct perf_event *event = info;
8087         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8088         struct remote_output ro = {
8089                 .rb     = event->rb,
8090         };
8091
8092         rcu_read_lock();
8093         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8094         if (cpuctx->task_ctx)
8095                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8096                                    &ro, false);
8097         rcu_read_unlock();
8098
8099         return ro.err;
8100 }
8101
8102 static void perf_pmu_output_stop(struct perf_event *event)
8103 {
8104         struct perf_event *iter;
8105         int err, cpu;
8106
8107 restart:
8108         rcu_read_lock();
8109         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8110                 /*
8111                  * For per-CPU events, we need to make sure that neither they
8112                  * nor their children are running; for cpu==-1 events it's
8113                  * sufficient to stop the event itself if it's active, since
8114                  * it can't have children.
8115                  */
8116                 cpu = iter->cpu;
8117                 if (cpu == -1)
8118                         cpu = READ_ONCE(iter->oncpu);
8119
8120                 if (cpu == -1)
8121                         continue;
8122
8123                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8124                 if (err == -EAGAIN) {
8125                         rcu_read_unlock();
8126                         goto restart;
8127                 }
8128         }
8129         rcu_read_unlock();
8130 }
8131
8132 /*
8133  * task tracking -- fork/exit
8134  *
8135  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8136  */
8137
8138 struct perf_task_event {
8139         struct task_struct              *task;
8140         struct perf_event_context       *task_ctx;
8141
8142         struct {
8143                 struct perf_event_header        header;
8144
8145                 u32                             pid;
8146                 u32                             ppid;
8147                 u32                             tid;
8148                 u32                             ptid;
8149                 u64                             time;
8150         } event_id;
8151 };
8152
8153 static int perf_event_task_match(struct perf_event *event)
8154 {
8155         return event->attr.comm  || event->attr.mmap ||
8156                event->attr.mmap2 || event->attr.mmap_data ||
8157                event->attr.task;
8158 }
8159
8160 static void perf_event_task_output(struct perf_event *event,
8161                                    void *data)
8162 {
8163         struct perf_task_event *task_event = data;
8164         struct perf_output_handle handle;
8165         struct perf_sample_data sample;
8166         struct task_struct *task = task_event->task;
8167         int ret, size = task_event->event_id.header.size;
8168
8169         if (!perf_event_task_match(event))
8170                 return;
8171
8172         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8173
8174         ret = perf_output_begin(&handle, &sample, event,
8175                                 task_event->event_id.header.size);
8176         if (ret)
8177                 goto out;
8178
8179         task_event->event_id.pid = perf_event_pid(event, task);
8180         task_event->event_id.tid = perf_event_tid(event, task);
8181
8182         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8183                 task_event->event_id.ppid = perf_event_pid(event,
8184                                                         task->real_parent);
8185                 task_event->event_id.ptid = perf_event_pid(event,
8186                                                         task->real_parent);
8187         } else {  /* PERF_RECORD_FORK */
8188                 task_event->event_id.ppid = perf_event_pid(event, current);
8189                 task_event->event_id.ptid = perf_event_tid(event, current);
8190         }
8191
8192         task_event->event_id.time = perf_event_clock(event);
8193
8194         perf_output_put(&handle, task_event->event_id);
8195
8196         perf_event__output_id_sample(event, &handle, &sample);
8197
8198         perf_output_end(&handle);
8199 out:
8200         task_event->event_id.header.size = size;
8201 }
8202
8203 static void perf_event_task(struct task_struct *task,
8204                               struct perf_event_context *task_ctx,
8205                               int new)
8206 {
8207         struct perf_task_event task_event;
8208
8209         if (!atomic_read(&nr_comm_events) &&
8210             !atomic_read(&nr_mmap_events) &&
8211             !atomic_read(&nr_task_events))
8212                 return;
8213
8214         task_event = (struct perf_task_event){
8215                 .task     = task,
8216                 .task_ctx = task_ctx,
8217                 .event_id    = {
8218                         .header = {
8219                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8220                                 .misc = 0,
8221                                 .size = sizeof(task_event.event_id),
8222                         },
8223                         /* .pid  */
8224                         /* .ppid */
8225                         /* .tid  */
8226                         /* .ptid */
8227                         /* .time */
8228                 },
8229         };
8230
8231         perf_iterate_sb(perf_event_task_output,
8232                        &task_event,
8233                        task_ctx);
8234 }
8235
8236 void perf_event_fork(struct task_struct *task)
8237 {
8238         perf_event_task(task, NULL, 1);
8239         perf_event_namespaces(task);
8240 }
8241
8242 /*
8243  * comm tracking
8244  */
8245
8246 struct perf_comm_event {
8247         struct task_struct      *task;
8248         char                    *comm;
8249         int                     comm_size;
8250
8251         struct {
8252                 struct perf_event_header        header;
8253
8254                 u32                             pid;
8255                 u32                             tid;
8256         } event_id;
8257 };
8258
8259 static int perf_event_comm_match(struct perf_event *event)
8260 {
8261         return event->attr.comm;
8262 }
8263
8264 static void perf_event_comm_output(struct perf_event *event,
8265                                    void *data)
8266 {
8267         struct perf_comm_event *comm_event = data;
8268         struct perf_output_handle handle;
8269         struct perf_sample_data sample;
8270         int size = comm_event->event_id.header.size;
8271         int ret;
8272
8273         if (!perf_event_comm_match(event))
8274                 return;
8275
8276         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8277         ret = perf_output_begin(&handle, &sample, event,
8278                                 comm_event->event_id.header.size);
8279
8280         if (ret)
8281                 goto out;
8282
8283         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8284         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8285
8286         perf_output_put(&handle, comm_event->event_id);
8287         __output_copy(&handle, comm_event->comm,
8288                                    comm_event->comm_size);
8289
8290         perf_event__output_id_sample(event, &handle, &sample);
8291
8292         perf_output_end(&handle);
8293 out:
8294         comm_event->event_id.header.size = size;
8295 }
8296
8297 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8298 {
8299         char comm[TASK_COMM_LEN];
8300         unsigned int size;
8301
8302         memset(comm, 0, sizeof(comm));
8303         strscpy(comm, comm_event->task->comm, sizeof(comm));
8304         size = ALIGN(strlen(comm)+1, sizeof(u64));
8305
8306         comm_event->comm = comm;
8307         comm_event->comm_size = size;
8308
8309         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8310
8311         perf_iterate_sb(perf_event_comm_output,
8312                        comm_event,
8313                        NULL);
8314 }
8315
8316 void perf_event_comm(struct task_struct *task, bool exec)
8317 {
8318         struct perf_comm_event comm_event;
8319
8320         if (!atomic_read(&nr_comm_events))
8321                 return;
8322
8323         comm_event = (struct perf_comm_event){
8324                 .task   = task,
8325                 /* .comm      */
8326                 /* .comm_size */
8327                 .event_id  = {
8328                         .header = {
8329                                 .type = PERF_RECORD_COMM,
8330                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8331                                 /* .size */
8332                         },
8333                         /* .pid */
8334                         /* .tid */
8335                 },
8336         };
8337
8338         perf_event_comm_event(&comm_event);
8339 }
8340
8341 /*
8342  * namespaces tracking
8343  */
8344
8345 struct perf_namespaces_event {
8346         struct task_struct              *task;
8347
8348         struct {
8349                 struct perf_event_header        header;
8350
8351                 u32                             pid;
8352                 u32                             tid;
8353                 u64                             nr_namespaces;
8354                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8355         } event_id;
8356 };
8357
8358 static int perf_event_namespaces_match(struct perf_event *event)
8359 {
8360         return event->attr.namespaces;
8361 }
8362
8363 static void perf_event_namespaces_output(struct perf_event *event,
8364                                          void *data)
8365 {
8366         struct perf_namespaces_event *namespaces_event = data;
8367         struct perf_output_handle handle;
8368         struct perf_sample_data sample;
8369         u16 header_size = namespaces_event->event_id.header.size;
8370         int ret;
8371
8372         if (!perf_event_namespaces_match(event))
8373                 return;
8374
8375         perf_event_header__init_id(&namespaces_event->event_id.header,
8376                                    &sample, event);
8377         ret = perf_output_begin(&handle, &sample, event,
8378                                 namespaces_event->event_id.header.size);
8379         if (ret)
8380                 goto out;
8381
8382         namespaces_event->event_id.pid = perf_event_pid(event,
8383                                                         namespaces_event->task);
8384         namespaces_event->event_id.tid = perf_event_tid(event,
8385                                                         namespaces_event->task);
8386
8387         perf_output_put(&handle, namespaces_event->event_id);
8388
8389         perf_event__output_id_sample(event, &handle, &sample);
8390
8391         perf_output_end(&handle);
8392 out:
8393         namespaces_event->event_id.header.size = header_size;
8394 }
8395
8396 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8397                                    struct task_struct *task,
8398                                    const struct proc_ns_operations *ns_ops)
8399 {
8400         struct path ns_path;
8401         struct inode *ns_inode;
8402         int error;
8403
8404         error = ns_get_path(&ns_path, task, ns_ops);
8405         if (!error) {
8406                 ns_inode = ns_path.dentry->d_inode;
8407                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8408                 ns_link_info->ino = ns_inode->i_ino;
8409                 path_put(&ns_path);
8410         }
8411 }
8412
8413 void perf_event_namespaces(struct task_struct *task)
8414 {
8415         struct perf_namespaces_event namespaces_event;
8416         struct perf_ns_link_info *ns_link_info;
8417
8418         if (!atomic_read(&nr_namespaces_events))
8419                 return;
8420
8421         namespaces_event = (struct perf_namespaces_event){
8422                 .task   = task,
8423                 .event_id  = {
8424                         .header = {
8425                                 .type = PERF_RECORD_NAMESPACES,
8426                                 .misc = 0,
8427                                 .size = sizeof(namespaces_event.event_id),
8428                         },
8429                         /* .pid */
8430                         /* .tid */
8431                         .nr_namespaces = NR_NAMESPACES,
8432                         /* .link_info[NR_NAMESPACES] */
8433                 },
8434         };
8435
8436         ns_link_info = namespaces_event.event_id.link_info;
8437
8438         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8439                                task, &mntns_operations);
8440
8441 #ifdef CONFIG_USER_NS
8442         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8443                                task, &userns_operations);
8444 #endif
8445 #ifdef CONFIG_NET_NS
8446         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8447                                task, &netns_operations);
8448 #endif
8449 #ifdef CONFIG_UTS_NS
8450         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8451                                task, &utsns_operations);
8452 #endif
8453 #ifdef CONFIG_IPC_NS
8454         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8455                                task, &ipcns_operations);
8456 #endif
8457 #ifdef CONFIG_PID_NS
8458         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8459                                task, &pidns_operations);
8460 #endif
8461 #ifdef CONFIG_CGROUPS
8462         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8463                                task, &cgroupns_operations);
8464 #endif
8465
8466         perf_iterate_sb(perf_event_namespaces_output,
8467                         &namespaces_event,
8468                         NULL);
8469 }
8470
8471 /*
8472  * cgroup tracking
8473  */
8474 #ifdef CONFIG_CGROUP_PERF
8475
8476 struct perf_cgroup_event {
8477         char                            *path;
8478         int                             path_size;
8479         struct {
8480                 struct perf_event_header        header;
8481                 u64                             id;
8482                 char                            path[];
8483         } event_id;
8484 };
8485
8486 static int perf_event_cgroup_match(struct perf_event *event)
8487 {
8488         return event->attr.cgroup;
8489 }
8490
8491 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8492 {
8493         struct perf_cgroup_event *cgroup_event = data;
8494         struct perf_output_handle handle;
8495         struct perf_sample_data sample;
8496         u16 header_size = cgroup_event->event_id.header.size;
8497         int ret;
8498
8499         if (!perf_event_cgroup_match(event))
8500                 return;
8501
8502         perf_event_header__init_id(&cgroup_event->event_id.header,
8503                                    &sample, event);
8504         ret = perf_output_begin(&handle, &sample, event,
8505                                 cgroup_event->event_id.header.size);
8506         if (ret)
8507                 goto out;
8508
8509         perf_output_put(&handle, cgroup_event->event_id);
8510         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8511
8512         perf_event__output_id_sample(event, &handle, &sample);
8513
8514         perf_output_end(&handle);
8515 out:
8516         cgroup_event->event_id.header.size = header_size;
8517 }
8518
8519 static void perf_event_cgroup(struct cgroup *cgrp)
8520 {
8521         struct perf_cgroup_event cgroup_event;
8522         char path_enomem[16] = "//enomem";
8523         char *pathname;
8524         size_t size;
8525
8526         if (!atomic_read(&nr_cgroup_events))
8527                 return;
8528
8529         cgroup_event = (struct perf_cgroup_event){
8530                 .event_id  = {
8531                         .header = {
8532                                 .type = PERF_RECORD_CGROUP,
8533                                 .misc = 0,
8534                                 .size = sizeof(cgroup_event.event_id),
8535                         },
8536                         .id = cgroup_id(cgrp),
8537                 },
8538         };
8539
8540         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8541         if (pathname == NULL) {
8542                 cgroup_event.path = path_enomem;
8543         } else {
8544                 /* just to be sure to have enough space for alignment */
8545                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8546                 cgroup_event.path = pathname;
8547         }
8548
8549         /*
8550          * Since our buffer works in 8 byte units we need to align our string
8551          * size to a multiple of 8. However, we must guarantee the tail end is
8552          * zero'd out to avoid leaking random bits to userspace.
8553          */
8554         size = strlen(cgroup_event.path) + 1;
8555         while (!IS_ALIGNED(size, sizeof(u64)))
8556                 cgroup_event.path[size++] = '\0';
8557
8558         cgroup_event.event_id.header.size += size;
8559         cgroup_event.path_size = size;
8560
8561         perf_iterate_sb(perf_event_cgroup_output,
8562                         &cgroup_event,
8563                         NULL);
8564
8565         kfree(pathname);
8566 }
8567
8568 #endif
8569
8570 /*
8571  * mmap tracking
8572  */
8573
8574 struct perf_mmap_event {
8575         struct vm_area_struct   *vma;
8576
8577         const char              *file_name;
8578         int                     file_size;
8579         int                     maj, min;
8580         u64                     ino;
8581         u64                     ino_generation;
8582         u32                     prot, flags;
8583         u8                      build_id[BUILD_ID_SIZE_MAX];
8584         u32                     build_id_size;
8585
8586         struct {
8587                 struct perf_event_header        header;
8588
8589                 u32                             pid;
8590                 u32                             tid;
8591                 u64                             start;
8592                 u64                             len;
8593                 u64                             pgoff;
8594         } event_id;
8595 };
8596
8597 static int perf_event_mmap_match(struct perf_event *event,
8598                                  void *data)
8599 {
8600         struct perf_mmap_event *mmap_event = data;
8601         struct vm_area_struct *vma = mmap_event->vma;
8602         int executable = vma->vm_flags & VM_EXEC;
8603
8604         return (!executable && event->attr.mmap_data) ||
8605                (executable && (event->attr.mmap || event->attr.mmap2));
8606 }
8607
8608 static void perf_event_mmap_output(struct perf_event *event,
8609                                    void *data)
8610 {
8611         struct perf_mmap_event *mmap_event = data;
8612         struct perf_output_handle handle;
8613         struct perf_sample_data sample;
8614         int size = mmap_event->event_id.header.size;
8615         u32 type = mmap_event->event_id.header.type;
8616         bool use_build_id;
8617         int ret;
8618
8619         if (!perf_event_mmap_match(event, data))
8620                 return;
8621
8622         if (event->attr.mmap2) {
8623                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8624                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8625                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8626                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8627                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8628                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8629                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8630         }
8631
8632         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8633         ret = perf_output_begin(&handle, &sample, event,
8634                                 mmap_event->event_id.header.size);
8635         if (ret)
8636                 goto out;
8637
8638         mmap_event->event_id.pid = perf_event_pid(event, current);
8639         mmap_event->event_id.tid = perf_event_tid(event, current);
8640
8641         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8642
8643         if (event->attr.mmap2 && use_build_id)
8644                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8645
8646         perf_output_put(&handle, mmap_event->event_id);
8647
8648         if (event->attr.mmap2) {
8649                 if (use_build_id) {
8650                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8651
8652                         __output_copy(&handle, size, 4);
8653                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8654                 } else {
8655                         perf_output_put(&handle, mmap_event->maj);
8656                         perf_output_put(&handle, mmap_event->min);
8657                         perf_output_put(&handle, mmap_event->ino);
8658                         perf_output_put(&handle, mmap_event->ino_generation);
8659                 }
8660                 perf_output_put(&handle, mmap_event->prot);
8661                 perf_output_put(&handle, mmap_event->flags);
8662         }
8663
8664         __output_copy(&handle, mmap_event->file_name,
8665                                    mmap_event->file_size);
8666
8667         perf_event__output_id_sample(event, &handle, &sample);
8668
8669         perf_output_end(&handle);
8670 out:
8671         mmap_event->event_id.header.size = size;
8672         mmap_event->event_id.header.type = type;
8673 }
8674
8675 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8676 {
8677         struct vm_area_struct *vma = mmap_event->vma;
8678         struct file *file = vma->vm_file;
8679         int maj = 0, min = 0;
8680         u64 ino = 0, gen = 0;
8681         u32 prot = 0, flags = 0;
8682         unsigned int size;
8683         char tmp[16];
8684         char *buf = NULL;
8685         char *name = NULL;
8686
8687         if (vma->vm_flags & VM_READ)
8688                 prot |= PROT_READ;
8689         if (vma->vm_flags & VM_WRITE)
8690                 prot |= PROT_WRITE;
8691         if (vma->vm_flags & VM_EXEC)
8692                 prot |= PROT_EXEC;
8693
8694         if (vma->vm_flags & VM_MAYSHARE)
8695                 flags = MAP_SHARED;
8696         else
8697                 flags = MAP_PRIVATE;
8698
8699         if (vma->vm_flags & VM_LOCKED)
8700                 flags |= MAP_LOCKED;
8701         if (is_vm_hugetlb_page(vma))
8702                 flags |= MAP_HUGETLB;
8703
8704         if (file) {
8705                 struct inode *inode;
8706                 dev_t dev;
8707
8708                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8709                 if (!buf) {
8710                         name = "//enomem";
8711                         goto cpy_name;
8712                 }
8713                 /*
8714                  * d_path() works from the end of the rb backwards, so we
8715                  * need to add enough zero bytes after the string to handle
8716                  * the 64bit alignment we do later.
8717                  */
8718                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8719                 if (IS_ERR(name)) {
8720                         name = "//toolong";
8721                         goto cpy_name;
8722                 }
8723                 inode = file_inode(vma->vm_file);
8724                 dev = inode->i_sb->s_dev;
8725                 ino = inode->i_ino;
8726                 gen = inode->i_generation;
8727                 maj = MAJOR(dev);
8728                 min = MINOR(dev);
8729
8730                 goto got_name;
8731         } else {
8732                 if (vma->vm_ops && vma->vm_ops->name)
8733                         name = (char *) vma->vm_ops->name(vma);
8734                 if (!name)
8735                         name = (char *)arch_vma_name(vma);
8736                 if (!name) {
8737                         if (vma_is_initial_heap(vma))
8738                                 name = "[heap]";
8739                         else if (vma_is_initial_stack(vma))
8740                                 name = "[stack]";
8741                         else
8742                                 name = "//anon";
8743                 }
8744         }
8745
8746 cpy_name:
8747         strscpy(tmp, name, sizeof(tmp));
8748         name = tmp;
8749 got_name:
8750         /*
8751          * Since our buffer works in 8 byte units we need to align our string
8752          * size to a multiple of 8. However, we must guarantee the tail end is
8753          * zero'd out to avoid leaking random bits to userspace.
8754          */
8755         size = strlen(name)+1;
8756         while (!IS_ALIGNED(size, sizeof(u64)))
8757                 name[size++] = '\0';
8758
8759         mmap_event->file_name = name;
8760         mmap_event->file_size = size;
8761         mmap_event->maj = maj;
8762         mmap_event->min = min;
8763         mmap_event->ino = ino;
8764         mmap_event->ino_generation = gen;
8765         mmap_event->prot = prot;
8766         mmap_event->flags = flags;
8767
8768         if (!(vma->vm_flags & VM_EXEC))
8769                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8770
8771         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8772
8773         if (atomic_read(&nr_build_id_events))
8774                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8775
8776         perf_iterate_sb(perf_event_mmap_output,
8777                        mmap_event,
8778                        NULL);
8779
8780         kfree(buf);
8781 }
8782
8783 /*
8784  * Check whether inode and address range match filter criteria.
8785  */
8786 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8787                                      struct file *file, unsigned long offset,
8788                                      unsigned long size)
8789 {
8790         /* d_inode(NULL) won't be equal to any mapped user-space file */
8791         if (!filter->path.dentry)
8792                 return false;
8793
8794         if (d_inode(filter->path.dentry) != file_inode(file))
8795                 return false;
8796
8797         if (filter->offset > offset + size)
8798                 return false;
8799
8800         if (filter->offset + filter->size < offset)
8801                 return false;
8802
8803         return true;
8804 }
8805
8806 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8807                                         struct vm_area_struct *vma,
8808                                         struct perf_addr_filter_range *fr)
8809 {
8810         unsigned long vma_size = vma->vm_end - vma->vm_start;
8811         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8812         struct file *file = vma->vm_file;
8813
8814         if (!perf_addr_filter_match(filter, file, off, vma_size))
8815                 return false;
8816
8817         if (filter->offset < off) {
8818                 fr->start = vma->vm_start;
8819                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8820         } else {
8821                 fr->start = vma->vm_start + filter->offset - off;
8822                 fr->size = min(vma->vm_end - fr->start, filter->size);
8823         }
8824
8825         return true;
8826 }
8827
8828 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8829 {
8830         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8831         struct vm_area_struct *vma = data;
8832         struct perf_addr_filter *filter;
8833         unsigned int restart = 0, count = 0;
8834         unsigned long flags;
8835
8836         if (!has_addr_filter(event))
8837                 return;
8838
8839         if (!vma->vm_file)
8840                 return;
8841
8842         raw_spin_lock_irqsave(&ifh->lock, flags);
8843         list_for_each_entry(filter, &ifh->list, entry) {
8844                 if (perf_addr_filter_vma_adjust(filter, vma,
8845                                                 &event->addr_filter_ranges[count]))
8846                         restart++;
8847
8848                 count++;
8849         }
8850
8851         if (restart)
8852                 event->addr_filters_gen++;
8853         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8854
8855         if (restart)
8856                 perf_event_stop(event, 1);
8857 }
8858
8859 /*
8860  * Adjust all task's events' filters to the new vma
8861  */
8862 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8863 {
8864         struct perf_event_context *ctx;
8865
8866         /*
8867          * Data tracing isn't supported yet and as such there is no need
8868          * to keep track of anything that isn't related to executable code:
8869          */
8870         if (!(vma->vm_flags & VM_EXEC))
8871                 return;
8872
8873         rcu_read_lock();
8874         ctx = rcu_dereference(current->perf_event_ctxp);
8875         if (ctx)
8876                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8877         rcu_read_unlock();
8878 }
8879
8880 void perf_event_mmap(struct vm_area_struct *vma)
8881 {
8882         struct perf_mmap_event mmap_event;
8883
8884         if (!atomic_read(&nr_mmap_events))
8885                 return;
8886
8887         mmap_event = (struct perf_mmap_event){
8888                 .vma    = vma,
8889                 /* .file_name */
8890                 /* .file_size */
8891                 .event_id  = {
8892                         .header = {
8893                                 .type = PERF_RECORD_MMAP,
8894                                 .misc = PERF_RECORD_MISC_USER,
8895                                 /* .size */
8896                         },
8897                         /* .pid */
8898                         /* .tid */
8899                         .start  = vma->vm_start,
8900                         .len    = vma->vm_end - vma->vm_start,
8901                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8902                 },
8903                 /* .maj (attr_mmap2 only) */
8904                 /* .min (attr_mmap2 only) */
8905                 /* .ino (attr_mmap2 only) */
8906                 /* .ino_generation (attr_mmap2 only) */
8907                 /* .prot (attr_mmap2 only) */
8908                 /* .flags (attr_mmap2 only) */
8909         };
8910
8911         perf_addr_filters_adjust(vma);
8912         perf_event_mmap_event(&mmap_event);
8913 }
8914
8915 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8916                           unsigned long size, u64 flags)
8917 {
8918         struct perf_output_handle handle;
8919         struct perf_sample_data sample;
8920         struct perf_aux_event {
8921                 struct perf_event_header        header;
8922                 u64                             offset;
8923                 u64                             size;
8924                 u64                             flags;
8925         } rec = {
8926                 .header = {
8927                         .type = PERF_RECORD_AUX,
8928                         .misc = 0,
8929                         .size = sizeof(rec),
8930                 },
8931                 .offset         = head,
8932                 .size           = size,
8933                 .flags          = flags,
8934         };
8935         int ret;
8936
8937         perf_event_header__init_id(&rec.header, &sample, event);
8938         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8939
8940         if (ret)
8941                 return;
8942
8943         perf_output_put(&handle, rec);
8944         perf_event__output_id_sample(event, &handle, &sample);
8945
8946         perf_output_end(&handle);
8947 }
8948
8949 /*
8950  * Lost/dropped samples logging
8951  */
8952 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8953 {
8954         struct perf_output_handle handle;
8955         struct perf_sample_data sample;
8956         int ret;
8957
8958         struct {
8959                 struct perf_event_header        header;
8960                 u64                             lost;
8961         } lost_samples_event = {
8962                 .header = {
8963                         .type = PERF_RECORD_LOST_SAMPLES,
8964                         .misc = 0,
8965                         .size = sizeof(lost_samples_event),
8966                 },
8967                 .lost           = lost,
8968         };
8969
8970         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8971
8972         ret = perf_output_begin(&handle, &sample, event,
8973                                 lost_samples_event.header.size);
8974         if (ret)
8975                 return;
8976
8977         perf_output_put(&handle, lost_samples_event);
8978         perf_event__output_id_sample(event, &handle, &sample);
8979         perf_output_end(&handle);
8980 }
8981
8982 /*
8983  * context_switch tracking
8984  */
8985
8986 struct perf_switch_event {
8987         struct task_struct      *task;
8988         struct task_struct      *next_prev;
8989
8990         struct {
8991                 struct perf_event_header        header;
8992                 u32                             next_prev_pid;
8993                 u32                             next_prev_tid;
8994         } event_id;
8995 };
8996
8997 static int perf_event_switch_match(struct perf_event *event)
8998 {
8999         return event->attr.context_switch;
9000 }
9001
9002 static void perf_event_switch_output(struct perf_event *event, void *data)
9003 {
9004         struct perf_switch_event *se = data;
9005         struct perf_output_handle handle;
9006         struct perf_sample_data sample;
9007         int ret;
9008
9009         if (!perf_event_switch_match(event))
9010                 return;
9011
9012         /* Only CPU-wide events are allowed to see next/prev pid/tid */
9013         if (event->ctx->task) {
9014                 se->event_id.header.type = PERF_RECORD_SWITCH;
9015                 se->event_id.header.size = sizeof(se->event_id.header);
9016         } else {
9017                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9018                 se->event_id.header.size = sizeof(se->event_id);
9019                 se->event_id.next_prev_pid =
9020                                         perf_event_pid(event, se->next_prev);
9021                 se->event_id.next_prev_tid =
9022                                         perf_event_tid(event, se->next_prev);
9023         }
9024
9025         perf_event_header__init_id(&se->event_id.header, &sample, event);
9026
9027         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9028         if (ret)
9029                 return;
9030
9031         if (event->ctx->task)
9032                 perf_output_put(&handle, se->event_id.header);
9033         else
9034                 perf_output_put(&handle, se->event_id);
9035
9036         perf_event__output_id_sample(event, &handle, &sample);
9037
9038         perf_output_end(&handle);
9039 }
9040
9041 static void perf_event_switch(struct task_struct *task,
9042                               struct task_struct *next_prev, bool sched_in)
9043 {
9044         struct perf_switch_event switch_event;
9045
9046         /* N.B. caller checks nr_switch_events != 0 */
9047
9048         switch_event = (struct perf_switch_event){
9049                 .task           = task,
9050                 .next_prev      = next_prev,
9051                 .event_id       = {
9052                         .header = {
9053                                 /* .type */
9054                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9055                                 /* .size */
9056                         },
9057                         /* .next_prev_pid */
9058                         /* .next_prev_tid */
9059                 },
9060         };
9061
9062         if (!sched_in && task->on_rq) {
9063                 switch_event.event_id.header.misc |=
9064                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9065         }
9066
9067         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9068 }
9069
9070 /*
9071  * IRQ throttle logging
9072  */
9073
9074 static void perf_log_throttle(struct perf_event *event, int enable)
9075 {
9076         struct perf_output_handle handle;
9077         struct perf_sample_data sample;
9078         int ret;
9079
9080         struct {
9081                 struct perf_event_header        header;
9082                 u64                             time;
9083                 u64                             id;
9084                 u64                             stream_id;
9085         } throttle_event = {
9086                 .header = {
9087                         .type = PERF_RECORD_THROTTLE,
9088                         .misc = 0,
9089                         .size = sizeof(throttle_event),
9090                 },
9091                 .time           = perf_event_clock(event),
9092                 .id             = primary_event_id(event),
9093                 .stream_id      = event->id,
9094         };
9095
9096         if (enable)
9097                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9098
9099         perf_event_header__init_id(&throttle_event.header, &sample, event);
9100
9101         ret = perf_output_begin(&handle, &sample, event,
9102                                 throttle_event.header.size);
9103         if (ret)
9104                 return;
9105
9106         perf_output_put(&handle, throttle_event);
9107         perf_event__output_id_sample(event, &handle, &sample);
9108         perf_output_end(&handle);
9109 }
9110
9111 /*
9112  * ksymbol register/unregister tracking
9113  */
9114
9115 struct perf_ksymbol_event {
9116         const char      *name;
9117         int             name_len;
9118         struct {
9119                 struct perf_event_header        header;
9120                 u64                             addr;
9121                 u32                             len;
9122                 u16                             ksym_type;
9123                 u16                             flags;
9124         } event_id;
9125 };
9126
9127 static int perf_event_ksymbol_match(struct perf_event *event)
9128 {
9129         return event->attr.ksymbol;
9130 }
9131
9132 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9133 {
9134         struct perf_ksymbol_event *ksymbol_event = data;
9135         struct perf_output_handle handle;
9136         struct perf_sample_data sample;
9137         int ret;
9138
9139         if (!perf_event_ksymbol_match(event))
9140                 return;
9141
9142         perf_event_header__init_id(&ksymbol_event->event_id.header,
9143                                    &sample, event);
9144         ret = perf_output_begin(&handle, &sample, event,
9145                                 ksymbol_event->event_id.header.size);
9146         if (ret)
9147                 return;
9148
9149         perf_output_put(&handle, ksymbol_event->event_id);
9150         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9151         perf_event__output_id_sample(event, &handle, &sample);
9152
9153         perf_output_end(&handle);
9154 }
9155
9156 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9157                         const char *sym)
9158 {
9159         struct perf_ksymbol_event ksymbol_event;
9160         char name[KSYM_NAME_LEN];
9161         u16 flags = 0;
9162         int name_len;
9163
9164         if (!atomic_read(&nr_ksymbol_events))
9165                 return;
9166
9167         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9168             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9169                 goto err;
9170
9171         strscpy(name, sym, KSYM_NAME_LEN);
9172         name_len = strlen(name) + 1;
9173         while (!IS_ALIGNED(name_len, sizeof(u64)))
9174                 name[name_len++] = '\0';
9175         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9176
9177         if (unregister)
9178                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9179
9180         ksymbol_event = (struct perf_ksymbol_event){
9181                 .name = name,
9182                 .name_len = name_len,
9183                 .event_id = {
9184                         .header = {
9185                                 .type = PERF_RECORD_KSYMBOL,
9186                                 .size = sizeof(ksymbol_event.event_id) +
9187                                         name_len,
9188                         },
9189                         .addr = addr,
9190                         .len = len,
9191                         .ksym_type = ksym_type,
9192                         .flags = flags,
9193                 },
9194         };
9195
9196         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9197         return;
9198 err:
9199         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9200 }
9201
9202 /*
9203  * bpf program load/unload tracking
9204  */
9205
9206 struct perf_bpf_event {
9207         struct bpf_prog *prog;
9208         struct {
9209                 struct perf_event_header        header;
9210                 u16                             type;
9211                 u16                             flags;
9212                 u32                             id;
9213                 u8                              tag[BPF_TAG_SIZE];
9214         } event_id;
9215 };
9216
9217 static int perf_event_bpf_match(struct perf_event *event)
9218 {
9219         return event->attr.bpf_event;
9220 }
9221
9222 static void perf_event_bpf_output(struct perf_event *event, void *data)
9223 {
9224         struct perf_bpf_event *bpf_event = data;
9225         struct perf_output_handle handle;
9226         struct perf_sample_data sample;
9227         int ret;
9228
9229         if (!perf_event_bpf_match(event))
9230                 return;
9231
9232         perf_event_header__init_id(&bpf_event->event_id.header,
9233                                    &sample, event);
9234         ret = perf_output_begin(&handle, &sample, event,
9235                                 bpf_event->event_id.header.size);
9236         if (ret)
9237                 return;
9238
9239         perf_output_put(&handle, bpf_event->event_id);
9240         perf_event__output_id_sample(event, &handle, &sample);
9241
9242         perf_output_end(&handle);
9243 }
9244
9245 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9246                                          enum perf_bpf_event_type type)
9247 {
9248         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9249         int i;
9250
9251         if (prog->aux->func_cnt == 0) {
9252                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9253                                    (u64)(unsigned long)prog->bpf_func,
9254                                    prog->jited_len, unregister,
9255                                    prog->aux->ksym.name);
9256         } else {
9257                 for (i = 0; i < prog->aux->func_cnt; i++) {
9258                         struct bpf_prog *subprog = prog->aux->func[i];
9259
9260                         perf_event_ksymbol(
9261                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9262                                 (u64)(unsigned long)subprog->bpf_func,
9263                                 subprog->jited_len, unregister,
9264                                 subprog->aux->ksym.name);
9265                 }
9266         }
9267 }
9268
9269 void perf_event_bpf_event(struct bpf_prog *prog,
9270                           enum perf_bpf_event_type type,
9271                           u16 flags)
9272 {
9273         struct perf_bpf_event bpf_event;
9274
9275         if (type <= PERF_BPF_EVENT_UNKNOWN ||
9276             type >= PERF_BPF_EVENT_MAX)
9277                 return;
9278
9279         switch (type) {
9280         case PERF_BPF_EVENT_PROG_LOAD:
9281         case PERF_BPF_EVENT_PROG_UNLOAD:
9282                 if (atomic_read(&nr_ksymbol_events))
9283                         perf_event_bpf_emit_ksymbols(prog, type);
9284                 break;
9285         default:
9286                 break;
9287         }
9288
9289         if (!atomic_read(&nr_bpf_events))
9290                 return;
9291
9292         bpf_event = (struct perf_bpf_event){
9293                 .prog = prog,
9294                 .event_id = {
9295                         .header = {
9296                                 .type = PERF_RECORD_BPF_EVENT,
9297                                 .size = sizeof(bpf_event.event_id),
9298                         },
9299                         .type = type,
9300                         .flags = flags,
9301                         .id = prog->aux->id,
9302                 },
9303         };
9304
9305         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9306
9307         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9308         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9309 }
9310
9311 struct perf_text_poke_event {
9312         const void              *old_bytes;
9313         const void              *new_bytes;
9314         size_t                  pad;
9315         u16                     old_len;
9316         u16                     new_len;
9317
9318         struct {
9319                 struct perf_event_header        header;
9320
9321                 u64                             addr;
9322         } event_id;
9323 };
9324
9325 static int perf_event_text_poke_match(struct perf_event *event)
9326 {
9327         return event->attr.text_poke;
9328 }
9329
9330 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9331 {
9332         struct perf_text_poke_event *text_poke_event = data;
9333         struct perf_output_handle handle;
9334         struct perf_sample_data sample;
9335         u64 padding = 0;
9336         int ret;
9337
9338         if (!perf_event_text_poke_match(event))
9339                 return;
9340
9341         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9342
9343         ret = perf_output_begin(&handle, &sample, event,
9344                                 text_poke_event->event_id.header.size);
9345         if (ret)
9346                 return;
9347
9348         perf_output_put(&handle, text_poke_event->event_id);
9349         perf_output_put(&handle, text_poke_event->old_len);
9350         perf_output_put(&handle, text_poke_event->new_len);
9351
9352         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9353         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9354
9355         if (text_poke_event->pad)
9356                 __output_copy(&handle, &padding, text_poke_event->pad);
9357
9358         perf_event__output_id_sample(event, &handle, &sample);
9359
9360         perf_output_end(&handle);
9361 }
9362
9363 void perf_event_text_poke(const void *addr, const void *old_bytes,
9364                           size_t old_len, const void *new_bytes, size_t new_len)
9365 {
9366         struct perf_text_poke_event text_poke_event;
9367         size_t tot, pad;
9368
9369         if (!atomic_read(&nr_text_poke_events))
9370                 return;
9371
9372         tot  = sizeof(text_poke_event.old_len) + old_len;
9373         tot += sizeof(text_poke_event.new_len) + new_len;
9374         pad  = ALIGN(tot, sizeof(u64)) - tot;
9375
9376         text_poke_event = (struct perf_text_poke_event){
9377                 .old_bytes    = old_bytes,
9378                 .new_bytes    = new_bytes,
9379                 .pad          = pad,
9380                 .old_len      = old_len,
9381                 .new_len      = new_len,
9382                 .event_id  = {
9383                         .header = {
9384                                 .type = PERF_RECORD_TEXT_POKE,
9385                                 .misc = PERF_RECORD_MISC_KERNEL,
9386                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9387                         },
9388                         .addr = (unsigned long)addr,
9389                 },
9390         };
9391
9392         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9393 }
9394
9395 void perf_event_itrace_started(struct perf_event *event)
9396 {
9397         event->attach_state |= PERF_ATTACH_ITRACE;
9398 }
9399
9400 static void perf_log_itrace_start(struct perf_event *event)
9401 {
9402         struct perf_output_handle handle;
9403         struct perf_sample_data sample;
9404         struct perf_aux_event {
9405                 struct perf_event_header        header;
9406                 u32                             pid;
9407                 u32                             tid;
9408         } rec;
9409         int ret;
9410
9411         if (event->parent)
9412                 event = event->parent;
9413
9414         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9415             event->attach_state & PERF_ATTACH_ITRACE)
9416                 return;
9417
9418         rec.header.type = PERF_RECORD_ITRACE_START;
9419         rec.header.misc = 0;
9420         rec.header.size = sizeof(rec);
9421         rec.pid = perf_event_pid(event, current);
9422         rec.tid = perf_event_tid(event, current);
9423
9424         perf_event_header__init_id(&rec.header, &sample, event);
9425         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9426
9427         if (ret)
9428                 return;
9429
9430         perf_output_put(&handle, rec);
9431         perf_event__output_id_sample(event, &handle, &sample);
9432
9433         perf_output_end(&handle);
9434 }
9435
9436 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9437 {
9438         struct perf_output_handle handle;
9439         struct perf_sample_data sample;
9440         struct perf_aux_event {
9441                 struct perf_event_header        header;
9442                 u64                             hw_id;
9443         } rec;
9444         int ret;
9445
9446         if (event->parent)
9447                 event = event->parent;
9448
9449         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9450         rec.header.misc = 0;
9451         rec.header.size = sizeof(rec);
9452         rec.hw_id       = hw_id;
9453
9454         perf_event_header__init_id(&rec.header, &sample, event);
9455         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9456
9457         if (ret)
9458                 return;
9459
9460         perf_output_put(&handle, rec);
9461         perf_event__output_id_sample(event, &handle, &sample);
9462
9463         perf_output_end(&handle);
9464 }
9465 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9466
9467 static int
9468 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9469 {
9470         struct hw_perf_event *hwc = &event->hw;
9471         int ret = 0;
9472         u64 seq;
9473
9474         seq = __this_cpu_read(perf_throttled_seq);
9475         if (seq != hwc->interrupts_seq) {
9476                 hwc->interrupts_seq = seq;
9477                 hwc->interrupts = 1;
9478         } else {
9479                 hwc->interrupts++;
9480                 if (unlikely(throttle &&
9481                              hwc->interrupts > max_samples_per_tick)) {
9482                         __this_cpu_inc(perf_throttled_count);
9483                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9484                         hwc->interrupts = MAX_INTERRUPTS;
9485                         perf_log_throttle(event, 0);
9486                         ret = 1;
9487                 }
9488         }
9489
9490         if (event->attr.freq) {
9491                 u64 now = perf_clock();
9492                 s64 delta = now - hwc->freq_time_stamp;
9493
9494                 hwc->freq_time_stamp = now;
9495
9496                 if (delta > 0 && delta < 2*TICK_NSEC)
9497                         perf_adjust_period(event, delta, hwc->last_period, true);
9498         }
9499
9500         return ret;
9501 }
9502
9503 int perf_event_account_interrupt(struct perf_event *event)
9504 {
9505         return __perf_event_account_interrupt(event, 1);
9506 }
9507
9508 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9509 {
9510         /*
9511          * Due to interrupt latency (AKA "skid"), we may enter the
9512          * kernel before taking an overflow, even if the PMU is only
9513          * counting user events.
9514          */
9515         if (event->attr.exclude_kernel && !user_mode(regs))
9516                 return false;
9517
9518         return true;
9519 }
9520
9521 /*
9522  * Generic event overflow handling, sampling.
9523  */
9524
9525 static int __perf_event_overflow(struct perf_event *event,
9526                                  int throttle, struct perf_sample_data *data,
9527                                  struct pt_regs *regs)
9528 {
9529         int events = atomic_read(&event->event_limit);
9530         int ret = 0;
9531
9532         /*
9533          * Non-sampling counters might still use the PMI to fold short
9534          * hardware counters, ignore those.
9535          */
9536         if (unlikely(!is_sampling_event(event)))
9537                 return 0;
9538
9539         ret = __perf_event_account_interrupt(event, throttle);
9540
9541         /*
9542          * XXX event_limit might not quite work as expected on inherited
9543          * events
9544          */
9545
9546         event->pending_kill = POLL_IN;
9547         if (events && atomic_dec_and_test(&event->event_limit)) {
9548                 ret = 1;
9549                 event->pending_kill = POLL_HUP;
9550                 perf_event_disable_inatomic(event);
9551         }
9552
9553         if (event->attr.sigtrap) {
9554                 /*
9555                  * The desired behaviour of sigtrap vs invalid samples is a bit
9556                  * tricky; on the one hand, one should not loose the SIGTRAP if
9557                  * it is the first event, on the other hand, we should also not
9558                  * trigger the WARN or override the data address.
9559                  */
9560                 bool valid_sample = sample_is_allowed(event, regs);
9561                 unsigned int pending_id = 1;
9562
9563                 if (regs)
9564                         pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9565                 if (!event->pending_sigtrap) {
9566                         event->pending_sigtrap = pending_id;
9567                         local_inc(&event->ctx->nr_pending);
9568                 } else if (event->attr.exclude_kernel && valid_sample) {
9569                         /*
9570                          * Should not be able to return to user space without
9571                          * consuming pending_sigtrap; with exceptions:
9572                          *
9573                          *  1. Where !exclude_kernel, events can overflow again
9574                          *     in the kernel without returning to user space.
9575                          *
9576                          *  2. Events that can overflow again before the IRQ-
9577                          *     work without user space progress (e.g. hrtimer).
9578                          *     To approximate progress (with false negatives),
9579                          *     check 32-bit hash of the current IP.
9580                          */
9581                         WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9582                 }
9583
9584                 event->pending_addr = 0;
9585                 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9586                         event->pending_addr = data->addr;
9587                 irq_work_queue(&event->pending_irq);
9588         }
9589
9590         READ_ONCE(event->overflow_handler)(event, data, regs);
9591
9592         if (*perf_event_fasync(event) && event->pending_kill) {
9593                 event->pending_wakeup = 1;
9594                 irq_work_queue(&event->pending_irq);
9595         }
9596
9597         return ret;
9598 }
9599
9600 int perf_event_overflow(struct perf_event *event,
9601                         struct perf_sample_data *data,
9602                         struct pt_regs *regs)
9603 {
9604         return __perf_event_overflow(event, 1, data, regs);
9605 }
9606
9607 /*
9608  * Generic software event infrastructure
9609  */
9610
9611 struct swevent_htable {
9612         struct swevent_hlist            *swevent_hlist;
9613         struct mutex                    hlist_mutex;
9614         int                             hlist_refcount;
9615
9616         /* Recursion avoidance in each contexts */
9617         int                             recursion[PERF_NR_CONTEXTS];
9618 };
9619
9620 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9621
9622 /*
9623  * We directly increment event->count and keep a second value in
9624  * event->hw.period_left to count intervals. This period event
9625  * is kept in the range [-sample_period, 0] so that we can use the
9626  * sign as trigger.
9627  */
9628
9629 u64 perf_swevent_set_period(struct perf_event *event)
9630 {
9631         struct hw_perf_event *hwc = &event->hw;
9632         u64 period = hwc->last_period;
9633         u64 nr, offset;
9634         s64 old, val;
9635
9636         hwc->last_period = hwc->sample_period;
9637
9638         old = local64_read(&hwc->period_left);
9639         do {
9640                 val = old;
9641                 if (val < 0)
9642                         return 0;
9643
9644                 nr = div64_u64(period + val, period);
9645                 offset = nr * period;
9646                 val -= offset;
9647         } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9648
9649         return nr;
9650 }
9651
9652 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9653                                     struct perf_sample_data *data,
9654                                     struct pt_regs *regs)
9655 {
9656         struct hw_perf_event *hwc = &event->hw;
9657         int throttle = 0;
9658
9659         if (!overflow)
9660                 overflow = perf_swevent_set_period(event);
9661
9662         if (hwc->interrupts == MAX_INTERRUPTS)
9663                 return;
9664
9665         for (; overflow; overflow--) {
9666                 if (__perf_event_overflow(event, throttle,
9667                                             data, regs)) {
9668                         /*
9669                          * We inhibit the overflow from happening when
9670                          * hwc->interrupts == MAX_INTERRUPTS.
9671                          */
9672                         break;
9673                 }
9674                 throttle = 1;
9675         }
9676 }
9677
9678 static void perf_swevent_event(struct perf_event *event, u64 nr,
9679                                struct perf_sample_data *data,
9680                                struct pt_regs *regs)
9681 {
9682         struct hw_perf_event *hwc = &event->hw;
9683
9684         local64_add(nr, &event->count);
9685
9686         if (!regs)
9687                 return;
9688
9689         if (!is_sampling_event(event))
9690                 return;
9691
9692         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9693                 data->period = nr;
9694                 return perf_swevent_overflow(event, 1, data, regs);
9695         } else
9696                 data->period = event->hw.last_period;
9697
9698         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9699                 return perf_swevent_overflow(event, 1, data, regs);
9700
9701         if (local64_add_negative(nr, &hwc->period_left))
9702                 return;
9703
9704         perf_swevent_overflow(event, 0, data, regs);
9705 }
9706
9707 static int perf_exclude_event(struct perf_event *event,
9708                               struct pt_regs *regs)
9709 {
9710         if (event->hw.state & PERF_HES_STOPPED)
9711                 return 1;
9712
9713         if (regs) {
9714                 if (event->attr.exclude_user && user_mode(regs))
9715                         return 1;
9716
9717                 if (event->attr.exclude_kernel && !user_mode(regs))
9718                         return 1;
9719         }
9720
9721         return 0;
9722 }
9723
9724 static int perf_swevent_match(struct perf_event *event,
9725                                 enum perf_type_id type,
9726                                 u32 event_id,
9727                                 struct perf_sample_data *data,
9728                                 struct pt_regs *regs)
9729 {
9730         if (event->attr.type != type)
9731                 return 0;
9732
9733         if (event->attr.config != event_id)
9734                 return 0;
9735
9736         if (perf_exclude_event(event, regs))
9737                 return 0;
9738
9739         return 1;
9740 }
9741
9742 static inline u64 swevent_hash(u64 type, u32 event_id)
9743 {
9744         u64 val = event_id | (type << 32);
9745
9746         return hash_64(val, SWEVENT_HLIST_BITS);
9747 }
9748
9749 static inline struct hlist_head *
9750 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9751 {
9752         u64 hash = swevent_hash(type, event_id);
9753
9754         return &hlist->heads[hash];
9755 }
9756
9757 /* For the read side: events when they trigger */
9758 static inline struct hlist_head *
9759 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9760 {
9761         struct swevent_hlist *hlist;
9762
9763         hlist = rcu_dereference(swhash->swevent_hlist);
9764         if (!hlist)
9765                 return NULL;
9766
9767         return __find_swevent_head(hlist, type, event_id);
9768 }
9769
9770 /* For the event head insertion and removal in the hlist */
9771 static inline struct hlist_head *
9772 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9773 {
9774         struct swevent_hlist *hlist;
9775         u32 event_id = event->attr.config;
9776         u64 type = event->attr.type;
9777
9778         /*
9779          * Event scheduling is always serialized against hlist allocation
9780          * and release. Which makes the protected version suitable here.
9781          * The context lock guarantees that.
9782          */
9783         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9784                                           lockdep_is_held(&event->ctx->lock));
9785         if (!hlist)
9786                 return NULL;
9787
9788         return __find_swevent_head(hlist, type, event_id);
9789 }
9790
9791 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9792                                     u64 nr,
9793                                     struct perf_sample_data *data,
9794                                     struct pt_regs *regs)
9795 {
9796         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9797         struct perf_event *event;
9798         struct hlist_head *head;
9799
9800         rcu_read_lock();
9801         head = find_swevent_head_rcu(swhash, type, event_id);
9802         if (!head)
9803                 goto end;
9804
9805         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9806                 if (perf_swevent_match(event, type, event_id, data, regs))
9807                         perf_swevent_event(event, nr, data, regs);
9808         }
9809 end:
9810         rcu_read_unlock();
9811 }
9812
9813 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9814
9815 int perf_swevent_get_recursion_context(void)
9816 {
9817         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9818
9819         return get_recursion_context(swhash->recursion);
9820 }
9821 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9822
9823 void perf_swevent_put_recursion_context(int rctx)
9824 {
9825         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9826
9827         put_recursion_context(swhash->recursion, rctx);
9828 }
9829
9830 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9831 {
9832         struct perf_sample_data data;
9833
9834         if (WARN_ON_ONCE(!regs))
9835                 return;
9836
9837         perf_sample_data_init(&data, addr, 0);
9838         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9839 }
9840
9841 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9842 {
9843         int rctx;
9844
9845         preempt_disable_notrace();
9846         rctx = perf_swevent_get_recursion_context();
9847         if (unlikely(rctx < 0))
9848                 goto fail;
9849
9850         ___perf_sw_event(event_id, nr, regs, addr);
9851
9852         perf_swevent_put_recursion_context(rctx);
9853 fail:
9854         preempt_enable_notrace();
9855 }
9856
9857 static void perf_swevent_read(struct perf_event *event)
9858 {
9859 }
9860
9861 static int perf_swevent_add(struct perf_event *event, int flags)
9862 {
9863         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9864         struct hw_perf_event *hwc = &event->hw;
9865         struct hlist_head *head;
9866
9867         if (is_sampling_event(event)) {
9868                 hwc->last_period = hwc->sample_period;
9869                 perf_swevent_set_period(event);
9870         }
9871
9872         hwc->state = !(flags & PERF_EF_START);
9873
9874         head = find_swevent_head(swhash, event);
9875         if (WARN_ON_ONCE(!head))
9876                 return -EINVAL;
9877
9878         hlist_add_head_rcu(&event->hlist_entry, head);
9879         perf_event_update_userpage(event);
9880
9881         return 0;
9882 }
9883
9884 static void perf_swevent_del(struct perf_event *event, int flags)
9885 {
9886         hlist_del_rcu(&event->hlist_entry);
9887 }
9888
9889 static void perf_swevent_start(struct perf_event *event, int flags)
9890 {
9891         event->hw.state = 0;
9892 }
9893
9894 static void perf_swevent_stop(struct perf_event *event, int flags)
9895 {
9896         event->hw.state = PERF_HES_STOPPED;
9897 }
9898
9899 /* Deref the hlist from the update side */
9900 static inline struct swevent_hlist *
9901 swevent_hlist_deref(struct swevent_htable *swhash)
9902 {
9903         return rcu_dereference_protected(swhash->swevent_hlist,
9904                                          lockdep_is_held(&swhash->hlist_mutex));
9905 }
9906
9907 static void swevent_hlist_release(struct swevent_htable *swhash)
9908 {
9909         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9910
9911         if (!hlist)
9912                 return;
9913
9914         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9915         kfree_rcu(hlist, rcu_head);
9916 }
9917
9918 static void swevent_hlist_put_cpu(int cpu)
9919 {
9920         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9921
9922         mutex_lock(&swhash->hlist_mutex);
9923
9924         if (!--swhash->hlist_refcount)
9925                 swevent_hlist_release(swhash);
9926
9927         mutex_unlock(&swhash->hlist_mutex);
9928 }
9929
9930 static void swevent_hlist_put(void)
9931 {
9932         int cpu;
9933
9934         for_each_possible_cpu(cpu)
9935                 swevent_hlist_put_cpu(cpu);
9936 }
9937
9938 static int swevent_hlist_get_cpu(int cpu)
9939 {
9940         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9941         int err = 0;
9942
9943         mutex_lock(&swhash->hlist_mutex);
9944         if (!swevent_hlist_deref(swhash) &&
9945             cpumask_test_cpu(cpu, perf_online_mask)) {
9946                 struct swevent_hlist *hlist;
9947
9948                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9949                 if (!hlist) {
9950                         err = -ENOMEM;
9951                         goto exit;
9952                 }
9953                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9954         }
9955         swhash->hlist_refcount++;
9956 exit:
9957         mutex_unlock(&swhash->hlist_mutex);
9958
9959         return err;
9960 }
9961
9962 static int swevent_hlist_get(void)
9963 {
9964         int err, cpu, failed_cpu;
9965
9966         mutex_lock(&pmus_lock);
9967         for_each_possible_cpu(cpu) {
9968                 err = swevent_hlist_get_cpu(cpu);
9969                 if (err) {
9970                         failed_cpu = cpu;
9971                         goto fail;
9972                 }
9973         }
9974         mutex_unlock(&pmus_lock);
9975         return 0;
9976 fail:
9977         for_each_possible_cpu(cpu) {
9978                 if (cpu == failed_cpu)
9979                         break;
9980                 swevent_hlist_put_cpu(cpu);
9981         }
9982         mutex_unlock(&pmus_lock);
9983         return err;
9984 }
9985
9986 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9987
9988 static void sw_perf_event_destroy(struct perf_event *event)
9989 {
9990         u64 event_id = event->attr.config;
9991
9992         WARN_ON(event->parent);
9993
9994         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9995         swevent_hlist_put();
9996 }
9997
9998 static struct pmu perf_cpu_clock; /* fwd declaration */
9999 static struct pmu perf_task_clock;
10000
10001 static int perf_swevent_init(struct perf_event *event)
10002 {
10003         u64 event_id = event->attr.config;
10004
10005         if (event->attr.type != PERF_TYPE_SOFTWARE)
10006                 return -ENOENT;
10007
10008         /*
10009          * no branch sampling for software events
10010          */
10011         if (has_branch_stack(event))
10012                 return -EOPNOTSUPP;
10013
10014         switch (event_id) {
10015         case PERF_COUNT_SW_CPU_CLOCK:
10016                 event->attr.type = perf_cpu_clock.type;
10017                 return -ENOENT;
10018         case PERF_COUNT_SW_TASK_CLOCK:
10019                 event->attr.type = perf_task_clock.type;
10020                 return -ENOENT;
10021
10022         default:
10023                 break;
10024         }
10025
10026         if (event_id >= PERF_COUNT_SW_MAX)
10027                 return -ENOENT;
10028
10029         if (!event->parent) {
10030                 int err;
10031
10032                 err = swevent_hlist_get();
10033                 if (err)
10034                         return err;
10035
10036                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10037                 event->destroy = sw_perf_event_destroy;
10038         }
10039
10040         return 0;
10041 }
10042
10043 static struct pmu perf_swevent = {
10044         .task_ctx_nr    = perf_sw_context,
10045
10046         .capabilities   = PERF_PMU_CAP_NO_NMI,
10047
10048         .event_init     = perf_swevent_init,
10049         .add            = perf_swevent_add,
10050         .del            = perf_swevent_del,
10051         .start          = perf_swevent_start,
10052         .stop           = perf_swevent_stop,
10053         .read           = perf_swevent_read,
10054 };
10055
10056 #ifdef CONFIG_EVENT_TRACING
10057
10058 static void tp_perf_event_destroy(struct perf_event *event)
10059 {
10060         perf_trace_destroy(event);
10061 }
10062
10063 static int perf_tp_event_init(struct perf_event *event)
10064 {
10065         int err;
10066
10067         if (event->attr.type != PERF_TYPE_TRACEPOINT)
10068                 return -ENOENT;
10069
10070         /*
10071          * no branch sampling for tracepoint events
10072          */
10073         if (has_branch_stack(event))
10074                 return -EOPNOTSUPP;
10075
10076         err = perf_trace_init(event);
10077         if (err)
10078                 return err;
10079
10080         event->destroy = tp_perf_event_destroy;
10081
10082         return 0;
10083 }
10084
10085 static struct pmu perf_tracepoint = {
10086         .task_ctx_nr    = perf_sw_context,
10087
10088         .event_init     = perf_tp_event_init,
10089         .add            = perf_trace_add,
10090         .del            = perf_trace_del,
10091         .start          = perf_swevent_start,
10092         .stop           = perf_swevent_stop,
10093         .read           = perf_swevent_read,
10094 };
10095
10096 static int perf_tp_filter_match(struct perf_event *event,
10097                                 struct perf_sample_data *data)
10098 {
10099         void *record = data->raw->frag.data;
10100
10101         /* only top level events have filters set */
10102         if (event->parent)
10103                 event = event->parent;
10104
10105         if (likely(!event->filter) || filter_match_preds(event->filter, record))
10106                 return 1;
10107         return 0;
10108 }
10109
10110 static int perf_tp_event_match(struct perf_event *event,
10111                                 struct perf_sample_data *data,
10112                                 struct pt_regs *regs)
10113 {
10114         if (event->hw.state & PERF_HES_STOPPED)
10115                 return 0;
10116         /*
10117          * If exclude_kernel, only trace user-space tracepoints (uprobes)
10118          */
10119         if (event->attr.exclude_kernel && !user_mode(regs))
10120                 return 0;
10121
10122         if (!perf_tp_filter_match(event, data))
10123                 return 0;
10124
10125         return 1;
10126 }
10127
10128 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10129                                struct trace_event_call *call, u64 count,
10130                                struct pt_regs *regs, struct hlist_head *head,
10131                                struct task_struct *task)
10132 {
10133         if (bpf_prog_array_valid(call)) {
10134                 *(struct pt_regs **)raw_data = regs;
10135                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10136                         perf_swevent_put_recursion_context(rctx);
10137                         return;
10138                 }
10139         }
10140         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10141                       rctx, task);
10142 }
10143 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10144
10145 static void __perf_tp_event_target_task(u64 count, void *record,
10146                                         struct pt_regs *regs,
10147                                         struct perf_sample_data *data,
10148                                         struct perf_event *event)
10149 {
10150         struct trace_entry *entry = record;
10151
10152         if (event->attr.config != entry->type)
10153                 return;
10154         /* Cannot deliver synchronous signal to other task. */
10155         if (event->attr.sigtrap)
10156                 return;
10157         if (perf_tp_event_match(event, data, regs))
10158                 perf_swevent_event(event, count, data, regs);
10159 }
10160
10161 static void perf_tp_event_target_task(u64 count, void *record,
10162                                       struct pt_regs *regs,
10163                                       struct perf_sample_data *data,
10164                                       struct perf_event_context *ctx)
10165 {
10166         unsigned int cpu = smp_processor_id();
10167         struct pmu *pmu = &perf_tracepoint;
10168         struct perf_event *event, *sibling;
10169
10170         perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10171                 __perf_tp_event_target_task(count, record, regs, data, event);
10172                 for_each_sibling_event(sibling, event)
10173                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10174         }
10175
10176         perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10177                 __perf_tp_event_target_task(count, record, regs, data, event);
10178                 for_each_sibling_event(sibling, event)
10179                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10180         }
10181 }
10182
10183 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10184                    struct pt_regs *regs, struct hlist_head *head, int rctx,
10185                    struct task_struct *task)
10186 {
10187         struct perf_sample_data data;
10188         struct perf_event *event;
10189
10190         struct perf_raw_record raw = {
10191                 .frag = {
10192                         .size = entry_size,
10193                         .data = record,
10194                 },
10195         };
10196
10197         perf_sample_data_init(&data, 0, 0);
10198         perf_sample_save_raw_data(&data, &raw);
10199
10200         perf_trace_buf_update(record, event_type);
10201
10202         hlist_for_each_entry_rcu(event, head, hlist_entry) {
10203                 if (perf_tp_event_match(event, &data, regs)) {
10204                         perf_swevent_event(event, count, &data, regs);
10205
10206                         /*
10207                          * Here use the same on-stack perf_sample_data,
10208                          * some members in data are event-specific and
10209                          * need to be re-computed for different sweveents.
10210                          * Re-initialize data->sample_flags safely to avoid
10211                          * the problem that next event skips preparing data
10212                          * because data->sample_flags is set.
10213                          */
10214                         perf_sample_data_init(&data, 0, 0);
10215                         perf_sample_save_raw_data(&data, &raw);
10216                 }
10217         }
10218
10219         /*
10220          * If we got specified a target task, also iterate its context and
10221          * deliver this event there too.
10222          */
10223         if (task && task != current) {
10224                 struct perf_event_context *ctx;
10225
10226                 rcu_read_lock();
10227                 ctx = rcu_dereference(task->perf_event_ctxp);
10228                 if (!ctx)
10229                         goto unlock;
10230
10231                 raw_spin_lock(&ctx->lock);
10232                 perf_tp_event_target_task(count, record, regs, &data, ctx);
10233                 raw_spin_unlock(&ctx->lock);
10234 unlock:
10235                 rcu_read_unlock();
10236         }
10237
10238         perf_swevent_put_recursion_context(rctx);
10239 }
10240 EXPORT_SYMBOL_GPL(perf_tp_event);
10241
10242 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10243 /*
10244  * Flags in config, used by dynamic PMU kprobe and uprobe
10245  * The flags should match following PMU_FORMAT_ATTR().
10246  *
10247  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10248  *                               if not set, create kprobe/uprobe
10249  *
10250  * The following values specify a reference counter (or semaphore in the
10251  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10252  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10253  *
10254  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
10255  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
10256  */
10257 enum perf_probe_config {
10258         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10259         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10260         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10261 };
10262
10263 PMU_FORMAT_ATTR(retprobe, "config:0");
10264 #endif
10265
10266 #ifdef CONFIG_KPROBE_EVENTS
10267 static struct attribute *kprobe_attrs[] = {
10268         &format_attr_retprobe.attr,
10269         NULL,
10270 };
10271
10272 static struct attribute_group kprobe_format_group = {
10273         .name = "format",
10274         .attrs = kprobe_attrs,
10275 };
10276
10277 static const struct attribute_group *kprobe_attr_groups[] = {
10278         &kprobe_format_group,
10279         NULL,
10280 };
10281
10282 static int perf_kprobe_event_init(struct perf_event *event);
10283 static struct pmu perf_kprobe = {
10284         .task_ctx_nr    = perf_sw_context,
10285         .event_init     = perf_kprobe_event_init,
10286         .add            = perf_trace_add,
10287         .del            = perf_trace_del,
10288         .start          = perf_swevent_start,
10289         .stop           = perf_swevent_stop,
10290         .read           = perf_swevent_read,
10291         .attr_groups    = kprobe_attr_groups,
10292 };
10293
10294 static int perf_kprobe_event_init(struct perf_event *event)
10295 {
10296         int err;
10297         bool is_retprobe;
10298
10299         if (event->attr.type != perf_kprobe.type)
10300                 return -ENOENT;
10301
10302         if (!perfmon_capable())
10303                 return -EACCES;
10304
10305         /*
10306          * no branch sampling for probe events
10307          */
10308         if (has_branch_stack(event))
10309                 return -EOPNOTSUPP;
10310
10311         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10312         err = perf_kprobe_init(event, is_retprobe);
10313         if (err)
10314                 return err;
10315
10316         event->destroy = perf_kprobe_destroy;
10317
10318         return 0;
10319 }
10320 #endif /* CONFIG_KPROBE_EVENTS */
10321
10322 #ifdef CONFIG_UPROBE_EVENTS
10323 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10324
10325 static struct attribute *uprobe_attrs[] = {
10326         &format_attr_retprobe.attr,
10327         &format_attr_ref_ctr_offset.attr,
10328         NULL,
10329 };
10330
10331 static struct attribute_group uprobe_format_group = {
10332         .name = "format",
10333         .attrs = uprobe_attrs,
10334 };
10335
10336 static const struct attribute_group *uprobe_attr_groups[] = {
10337         &uprobe_format_group,
10338         NULL,
10339 };
10340
10341 static int perf_uprobe_event_init(struct perf_event *event);
10342 static struct pmu perf_uprobe = {
10343         .task_ctx_nr    = perf_sw_context,
10344         .event_init     = perf_uprobe_event_init,
10345         .add            = perf_trace_add,
10346         .del            = perf_trace_del,
10347         .start          = perf_swevent_start,
10348         .stop           = perf_swevent_stop,
10349         .read           = perf_swevent_read,
10350         .attr_groups    = uprobe_attr_groups,
10351 };
10352
10353 static int perf_uprobe_event_init(struct perf_event *event)
10354 {
10355         int err;
10356         unsigned long ref_ctr_offset;
10357         bool is_retprobe;
10358
10359         if (event->attr.type != perf_uprobe.type)
10360                 return -ENOENT;
10361
10362         if (!perfmon_capable())
10363                 return -EACCES;
10364
10365         /*
10366          * no branch sampling for probe events
10367          */
10368         if (has_branch_stack(event))
10369                 return -EOPNOTSUPP;
10370
10371         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10372         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10373         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10374         if (err)
10375                 return err;
10376
10377         event->destroy = perf_uprobe_destroy;
10378
10379         return 0;
10380 }
10381 #endif /* CONFIG_UPROBE_EVENTS */
10382
10383 static inline void perf_tp_register(void)
10384 {
10385         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10386 #ifdef CONFIG_KPROBE_EVENTS
10387         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10388 #endif
10389 #ifdef CONFIG_UPROBE_EVENTS
10390         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10391 #endif
10392 }
10393
10394 static void perf_event_free_filter(struct perf_event *event)
10395 {
10396         ftrace_profile_free_filter(event);
10397 }
10398
10399 #ifdef CONFIG_BPF_SYSCALL
10400 static void bpf_overflow_handler(struct perf_event *event,
10401                                  struct perf_sample_data *data,
10402                                  struct pt_regs *regs)
10403 {
10404         struct bpf_perf_event_data_kern ctx = {
10405                 .data = data,
10406                 .event = event,
10407         };
10408         struct bpf_prog *prog;
10409         int ret = 0;
10410
10411         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10412         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10413                 goto out;
10414         rcu_read_lock();
10415         prog = READ_ONCE(event->prog);
10416         if (prog) {
10417                 perf_prepare_sample(data, event, regs);
10418                 ret = bpf_prog_run(prog, &ctx);
10419         }
10420         rcu_read_unlock();
10421 out:
10422         __this_cpu_dec(bpf_prog_active);
10423         if (!ret)
10424                 return;
10425
10426         event->orig_overflow_handler(event, data, regs);
10427 }
10428
10429 static int perf_event_set_bpf_handler(struct perf_event *event,
10430                                       struct bpf_prog *prog,
10431                                       u64 bpf_cookie)
10432 {
10433         if (event->overflow_handler_context)
10434                 /* hw breakpoint or kernel counter */
10435                 return -EINVAL;
10436
10437         if (event->prog)
10438                 return -EEXIST;
10439
10440         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10441                 return -EINVAL;
10442
10443         if (event->attr.precise_ip &&
10444             prog->call_get_stack &&
10445             (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10446              event->attr.exclude_callchain_kernel ||
10447              event->attr.exclude_callchain_user)) {
10448                 /*
10449                  * On perf_event with precise_ip, calling bpf_get_stack()
10450                  * may trigger unwinder warnings and occasional crashes.
10451                  * bpf_get_[stack|stackid] works around this issue by using
10452                  * callchain attached to perf_sample_data. If the
10453                  * perf_event does not full (kernel and user) callchain
10454                  * attached to perf_sample_data, do not allow attaching BPF
10455                  * program that calls bpf_get_[stack|stackid].
10456                  */
10457                 return -EPROTO;
10458         }
10459
10460         event->prog = prog;
10461         event->bpf_cookie = bpf_cookie;
10462         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10463         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10464         return 0;
10465 }
10466
10467 static void perf_event_free_bpf_handler(struct perf_event *event)
10468 {
10469         struct bpf_prog *prog = event->prog;
10470
10471         if (!prog)
10472                 return;
10473
10474         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10475         event->prog = NULL;
10476         bpf_prog_put(prog);
10477 }
10478 #else
10479 static int perf_event_set_bpf_handler(struct perf_event *event,
10480                                       struct bpf_prog *prog,
10481                                       u64 bpf_cookie)
10482 {
10483         return -EOPNOTSUPP;
10484 }
10485 static void perf_event_free_bpf_handler(struct perf_event *event)
10486 {
10487 }
10488 #endif
10489
10490 /*
10491  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10492  * with perf_event_open()
10493  */
10494 static inline bool perf_event_is_tracing(struct perf_event *event)
10495 {
10496         if (event->pmu == &perf_tracepoint)
10497                 return true;
10498 #ifdef CONFIG_KPROBE_EVENTS
10499         if (event->pmu == &perf_kprobe)
10500                 return true;
10501 #endif
10502 #ifdef CONFIG_UPROBE_EVENTS
10503         if (event->pmu == &perf_uprobe)
10504                 return true;
10505 #endif
10506         return false;
10507 }
10508
10509 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10510                             u64 bpf_cookie)
10511 {
10512         bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10513
10514         if (!perf_event_is_tracing(event))
10515                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10516
10517         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10518         is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10519         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10520         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10521         if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10522                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10523                 return -EINVAL;
10524
10525         if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10526             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10527             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10528                 return -EINVAL;
10529
10530         if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10531                 /* only uprobe programs are allowed to be sleepable */
10532                 return -EINVAL;
10533
10534         /* Kprobe override only works for kprobes, not uprobes. */
10535         if (prog->kprobe_override && !is_kprobe)
10536                 return -EINVAL;
10537
10538         if (is_tracepoint || is_syscall_tp) {
10539                 int off = trace_event_get_offsets(event->tp_event);
10540
10541                 if (prog->aux->max_ctx_offset > off)
10542                         return -EACCES;
10543         }
10544
10545         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10546 }
10547
10548 void perf_event_free_bpf_prog(struct perf_event *event)
10549 {
10550         if (!perf_event_is_tracing(event)) {
10551                 perf_event_free_bpf_handler(event);
10552                 return;
10553         }
10554         perf_event_detach_bpf_prog(event);
10555 }
10556
10557 #else
10558
10559 static inline void perf_tp_register(void)
10560 {
10561 }
10562
10563 static void perf_event_free_filter(struct perf_event *event)
10564 {
10565 }
10566
10567 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10568                             u64 bpf_cookie)
10569 {
10570         return -ENOENT;
10571 }
10572
10573 void perf_event_free_bpf_prog(struct perf_event *event)
10574 {
10575 }
10576 #endif /* CONFIG_EVENT_TRACING */
10577
10578 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10579 void perf_bp_event(struct perf_event *bp, void *data)
10580 {
10581         struct perf_sample_data sample;
10582         struct pt_regs *regs = data;
10583
10584         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10585
10586         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10587                 perf_swevent_event(bp, 1, &sample, regs);
10588 }
10589 #endif
10590
10591 /*
10592  * Allocate a new address filter
10593  */
10594 static struct perf_addr_filter *
10595 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10596 {
10597         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10598         struct perf_addr_filter *filter;
10599
10600         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10601         if (!filter)
10602                 return NULL;
10603
10604         INIT_LIST_HEAD(&filter->entry);
10605         list_add_tail(&filter->entry, filters);
10606
10607         return filter;
10608 }
10609
10610 static void free_filters_list(struct list_head *filters)
10611 {
10612         struct perf_addr_filter *filter, *iter;
10613
10614         list_for_each_entry_safe(filter, iter, filters, entry) {
10615                 path_put(&filter->path);
10616                 list_del(&filter->entry);
10617                 kfree(filter);
10618         }
10619 }
10620
10621 /*
10622  * Free existing address filters and optionally install new ones
10623  */
10624 static void perf_addr_filters_splice(struct perf_event *event,
10625                                      struct list_head *head)
10626 {
10627         unsigned long flags;
10628         LIST_HEAD(list);
10629
10630         if (!has_addr_filter(event))
10631                 return;
10632
10633         /* don't bother with children, they don't have their own filters */
10634         if (event->parent)
10635                 return;
10636
10637         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10638
10639         list_splice_init(&event->addr_filters.list, &list);
10640         if (head)
10641                 list_splice(head, &event->addr_filters.list);
10642
10643         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10644
10645         free_filters_list(&list);
10646 }
10647
10648 /*
10649  * Scan through mm's vmas and see if one of them matches the
10650  * @filter; if so, adjust filter's address range.
10651  * Called with mm::mmap_lock down for reading.
10652  */
10653 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10654                                    struct mm_struct *mm,
10655                                    struct perf_addr_filter_range *fr)
10656 {
10657         struct vm_area_struct *vma;
10658         VMA_ITERATOR(vmi, mm, 0);
10659
10660         for_each_vma(vmi, vma) {
10661                 if (!vma->vm_file)
10662                         continue;
10663
10664                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10665                         return;
10666         }
10667 }
10668
10669 /*
10670  * Update event's address range filters based on the
10671  * task's existing mappings, if any.
10672  */
10673 static void perf_event_addr_filters_apply(struct perf_event *event)
10674 {
10675         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10676         struct task_struct *task = READ_ONCE(event->ctx->task);
10677         struct perf_addr_filter *filter;
10678         struct mm_struct *mm = NULL;
10679         unsigned int count = 0;
10680         unsigned long flags;
10681
10682         /*
10683          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10684          * will stop on the parent's child_mutex that our caller is also holding
10685          */
10686         if (task == TASK_TOMBSTONE)
10687                 return;
10688
10689         if (ifh->nr_file_filters) {
10690                 mm = get_task_mm(task);
10691                 if (!mm)
10692                         goto restart;
10693
10694                 mmap_read_lock(mm);
10695         }
10696
10697         raw_spin_lock_irqsave(&ifh->lock, flags);
10698         list_for_each_entry(filter, &ifh->list, entry) {
10699                 if (filter->path.dentry) {
10700                         /*
10701                          * Adjust base offset if the filter is associated to a
10702                          * binary that needs to be mapped:
10703                          */
10704                         event->addr_filter_ranges[count].start = 0;
10705                         event->addr_filter_ranges[count].size = 0;
10706
10707                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10708                 } else {
10709                         event->addr_filter_ranges[count].start = filter->offset;
10710                         event->addr_filter_ranges[count].size  = filter->size;
10711                 }
10712
10713                 count++;
10714         }
10715
10716         event->addr_filters_gen++;
10717         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10718
10719         if (ifh->nr_file_filters) {
10720                 mmap_read_unlock(mm);
10721
10722                 mmput(mm);
10723         }
10724
10725 restart:
10726         perf_event_stop(event, 1);
10727 }
10728
10729 /*
10730  * Address range filtering: limiting the data to certain
10731  * instruction address ranges. Filters are ioctl()ed to us from
10732  * userspace as ascii strings.
10733  *
10734  * Filter string format:
10735  *
10736  * ACTION RANGE_SPEC
10737  * where ACTION is one of the
10738  *  * "filter": limit the trace to this region
10739  *  * "start": start tracing from this address
10740  *  * "stop": stop tracing at this address/region;
10741  * RANGE_SPEC is
10742  *  * for kernel addresses: <start address>[/<size>]
10743  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10744  *
10745  * if <size> is not specified or is zero, the range is treated as a single
10746  * address; not valid for ACTION=="filter".
10747  */
10748 enum {
10749         IF_ACT_NONE = -1,
10750         IF_ACT_FILTER,
10751         IF_ACT_START,
10752         IF_ACT_STOP,
10753         IF_SRC_FILE,
10754         IF_SRC_KERNEL,
10755         IF_SRC_FILEADDR,
10756         IF_SRC_KERNELADDR,
10757 };
10758
10759 enum {
10760         IF_STATE_ACTION = 0,
10761         IF_STATE_SOURCE,
10762         IF_STATE_END,
10763 };
10764
10765 static const match_table_t if_tokens = {
10766         { IF_ACT_FILTER,        "filter" },
10767         { IF_ACT_START,         "start" },
10768         { IF_ACT_STOP,          "stop" },
10769         { IF_SRC_FILE,          "%u/%u@%s" },
10770         { IF_SRC_KERNEL,        "%u/%u" },
10771         { IF_SRC_FILEADDR,      "%u@%s" },
10772         { IF_SRC_KERNELADDR,    "%u" },
10773         { IF_ACT_NONE,          NULL },
10774 };
10775
10776 /*
10777  * Address filter string parser
10778  */
10779 static int
10780 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10781                              struct list_head *filters)
10782 {
10783         struct perf_addr_filter *filter = NULL;
10784         char *start, *orig, *filename = NULL;
10785         substring_t args[MAX_OPT_ARGS];
10786         int state = IF_STATE_ACTION, token;
10787         unsigned int kernel = 0;
10788         int ret = -EINVAL;
10789
10790         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10791         if (!fstr)
10792                 return -ENOMEM;
10793
10794         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10795                 static const enum perf_addr_filter_action_t actions[] = {
10796                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10797                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10798                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10799                 };
10800                 ret = -EINVAL;
10801
10802                 if (!*start)
10803                         continue;
10804
10805                 /* filter definition begins */
10806                 if (state == IF_STATE_ACTION) {
10807                         filter = perf_addr_filter_new(event, filters);
10808                         if (!filter)
10809                                 goto fail;
10810                 }
10811
10812                 token = match_token(start, if_tokens, args);
10813                 switch (token) {
10814                 case IF_ACT_FILTER:
10815                 case IF_ACT_START:
10816                 case IF_ACT_STOP:
10817                         if (state != IF_STATE_ACTION)
10818                                 goto fail;
10819
10820                         filter->action = actions[token];
10821                         state = IF_STATE_SOURCE;
10822                         break;
10823
10824                 case IF_SRC_KERNELADDR:
10825                 case IF_SRC_KERNEL:
10826                         kernel = 1;
10827                         fallthrough;
10828
10829                 case IF_SRC_FILEADDR:
10830                 case IF_SRC_FILE:
10831                         if (state != IF_STATE_SOURCE)
10832                                 goto fail;
10833
10834                         *args[0].to = 0;
10835                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10836                         if (ret)
10837                                 goto fail;
10838
10839                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10840                                 *args[1].to = 0;
10841                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10842                                 if (ret)
10843                                         goto fail;
10844                         }
10845
10846                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10847                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10848
10849                                 kfree(filename);
10850                                 filename = match_strdup(&args[fpos]);
10851                                 if (!filename) {
10852                                         ret = -ENOMEM;
10853                                         goto fail;
10854                                 }
10855                         }
10856
10857                         state = IF_STATE_END;
10858                         break;
10859
10860                 default:
10861                         goto fail;
10862                 }
10863
10864                 /*
10865                  * Filter definition is fully parsed, validate and install it.
10866                  * Make sure that it doesn't contradict itself or the event's
10867                  * attribute.
10868                  */
10869                 if (state == IF_STATE_END) {
10870                         ret = -EINVAL;
10871
10872                         /*
10873                          * ACTION "filter" must have a non-zero length region
10874                          * specified.
10875                          */
10876                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10877                             !filter->size)
10878                                 goto fail;
10879
10880                         if (!kernel) {
10881                                 if (!filename)
10882                                         goto fail;
10883
10884                                 /*
10885                                  * For now, we only support file-based filters
10886                                  * in per-task events; doing so for CPU-wide
10887                                  * events requires additional context switching
10888                                  * trickery, since same object code will be
10889                                  * mapped at different virtual addresses in
10890                                  * different processes.
10891                                  */
10892                                 ret = -EOPNOTSUPP;
10893                                 if (!event->ctx->task)
10894                                         goto fail;
10895
10896                                 /* look up the path and grab its inode */
10897                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10898                                                 &filter->path);
10899                                 if (ret)
10900                                         goto fail;
10901
10902                                 ret = -EINVAL;
10903                                 if (!filter->path.dentry ||
10904                                     !S_ISREG(d_inode(filter->path.dentry)
10905                                              ->i_mode))
10906                                         goto fail;
10907
10908                                 event->addr_filters.nr_file_filters++;
10909                         }
10910
10911                         /* ready to consume more filters */
10912                         kfree(filename);
10913                         filename = NULL;
10914                         state = IF_STATE_ACTION;
10915                         filter = NULL;
10916                         kernel = 0;
10917                 }
10918         }
10919
10920         if (state != IF_STATE_ACTION)
10921                 goto fail;
10922
10923         kfree(filename);
10924         kfree(orig);
10925
10926         return 0;
10927
10928 fail:
10929         kfree(filename);
10930         free_filters_list(filters);
10931         kfree(orig);
10932
10933         return ret;
10934 }
10935
10936 static int
10937 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10938 {
10939         LIST_HEAD(filters);
10940         int ret;
10941
10942         /*
10943          * Since this is called in perf_ioctl() path, we're already holding
10944          * ctx::mutex.
10945          */
10946         lockdep_assert_held(&event->ctx->mutex);
10947
10948         if (WARN_ON_ONCE(event->parent))
10949                 return -EINVAL;
10950
10951         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10952         if (ret)
10953                 goto fail_clear_files;
10954
10955         ret = event->pmu->addr_filters_validate(&filters);
10956         if (ret)
10957                 goto fail_free_filters;
10958
10959         /* remove existing filters, if any */
10960         perf_addr_filters_splice(event, &filters);
10961
10962         /* install new filters */
10963         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10964
10965         return ret;
10966
10967 fail_free_filters:
10968         free_filters_list(&filters);
10969
10970 fail_clear_files:
10971         event->addr_filters.nr_file_filters = 0;
10972
10973         return ret;
10974 }
10975
10976 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10977 {
10978         int ret = -EINVAL;
10979         char *filter_str;
10980
10981         filter_str = strndup_user(arg, PAGE_SIZE);
10982         if (IS_ERR(filter_str))
10983                 return PTR_ERR(filter_str);
10984
10985 #ifdef CONFIG_EVENT_TRACING
10986         if (perf_event_is_tracing(event)) {
10987                 struct perf_event_context *ctx = event->ctx;
10988
10989                 /*
10990                  * Beware, here be dragons!!
10991                  *
10992                  * the tracepoint muck will deadlock against ctx->mutex, but
10993                  * the tracepoint stuff does not actually need it. So
10994                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10995                  * already have a reference on ctx.
10996                  *
10997                  * This can result in event getting moved to a different ctx,
10998                  * but that does not affect the tracepoint state.
10999                  */
11000                 mutex_unlock(&ctx->mutex);
11001                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11002                 mutex_lock(&ctx->mutex);
11003         } else
11004 #endif
11005         if (has_addr_filter(event))
11006                 ret = perf_event_set_addr_filter(event, filter_str);
11007
11008         kfree(filter_str);
11009         return ret;
11010 }
11011
11012 /*
11013  * hrtimer based swevent callback
11014  */
11015
11016 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11017 {
11018         enum hrtimer_restart ret = HRTIMER_RESTART;
11019         struct perf_sample_data data;
11020         struct pt_regs *regs;
11021         struct perf_event *event;
11022         u64 period;
11023
11024         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11025
11026         if (event->state != PERF_EVENT_STATE_ACTIVE)
11027                 return HRTIMER_NORESTART;
11028
11029         event->pmu->read(event);
11030
11031         perf_sample_data_init(&data, 0, event->hw.last_period);
11032         regs = get_irq_regs();
11033
11034         if (regs && !perf_exclude_event(event, regs)) {
11035                 if (!(event->attr.exclude_idle && is_idle_task(current)))
11036                         if (__perf_event_overflow(event, 1, &data, regs))
11037                                 ret = HRTIMER_NORESTART;
11038         }
11039
11040         period = max_t(u64, 10000, event->hw.sample_period);
11041         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11042
11043         return ret;
11044 }
11045
11046 static void perf_swevent_start_hrtimer(struct perf_event *event)
11047 {
11048         struct hw_perf_event *hwc = &event->hw;
11049         s64 period;
11050
11051         if (!is_sampling_event(event))
11052                 return;
11053
11054         period = local64_read(&hwc->period_left);
11055         if (period) {
11056                 if (period < 0)
11057                         period = 10000;
11058
11059                 local64_set(&hwc->period_left, 0);
11060         } else {
11061                 period = max_t(u64, 10000, hwc->sample_period);
11062         }
11063         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11064                       HRTIMER_MODE_REL_PINNED_HARD);
11065 }
11066
11067 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11068 {
11069         struct hw_perf_event *hwc = &event->hw;
11070
11071         if (is_sampling_event(event)) {
11072                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11073                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11074
11075                 hrtimer_cancel(&hwc->hrtimer);
11076         }
11077 }
11078
11079 static void perf_swevent_init_hrtimer(struct perf_event *event)
11080 {
11081         struct hw_perf_event *hwc = &event->hw;
11082
11083         if (!is_sampling_event(event))
11084                 return;
11085
11086         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11087         hwc->hrtimer.function = perf_swevent_hrtimer;
11088
11089         /*
11090          * Since hrtimers have a fixed rate, we can do a static freq->period
11091          * mapping and avoid the whole period adjust feedback stuff.
11092          */
11093         if (event->attr.freq) {
11094                 long freq = event->attr.sample_freq;
11095
11096                 event->attr.sample_period = NSEC_PER_SEC / freq;
11097                 hwc->sample_period = event->attr.sample_period;
11098                 local64_set(&hwc->period_left, hwc->sample_period);
11099                 hwc->last_period = hwc->sample_period;
11100                 event->attr.freq = 0;
11101         }
11102 }
11103
11104 /*
11105  * Software event: cpu wall time clock
11106  */
11107
11108 static void cpu_clock_event_update(struct perf_event *event)
11109 {
11110         s64 prev;
11111         u64 now;
11112
11113         now = local_clock();
11114         prev = local64_xchg(&event->hw.prev_count, now);
11115         local64_add(now - prev, &event->count);
11116 }
11117
11118 static void cpu_clock_event_start(struct perf_event *event, int flags)
11119 {
11120         local64_set(&event->hw.prev_count, local_clock());
11121         perf_swevent_start_hrtimer(event);
11122 }
11123
11124 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11125 {
11126         perf_swevent_cancel_hrtimer(event);
11127         cpu_clock_event_update(event);
11128 }
11129
11130 static int cpu_clock_event_add(struct perf_event *event, int flags)
11131 {
11132         if (flags & PERF_EF_START)
11133                 cpu_clock_event_start(event, flags);
11134         perf_event_update_userpage(event);
11135
11136         return 0;
11137 }
11138
11139 static void cpu_clock_event_del(struct perf_event *event, int flags)
11140 {
11141         cpu_clock_event_stop(event, flags);
11142 }
11143
11144 static void cpu_clock_event_read(struct perf_event *event)
11145 {
11146         cpu_clock_event_update(event);
11147 }
11148
11149 static int cpu_clock_event_init(struct perf_event *event)
11150 {
11151         if (event->attr.type != perf_cpu_clock.type)
11152                 return -ENOENT;
11153
11154         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11155                 return -ENOENT;
11156
11157         /*
11158          * no branch sampling for software events
11159          */
11160         if (has_branch_stack(event))
11161                 return -EOPNOTSUPP;
11162
11163         perf_swevent_init_hrtimer(event);
11164
11165         return 0;
11166 }
11167
11168 static struct pmu perf_cpu_clock = {
11169         .task_ctx_nr    = perf_sw_context,
11170
11171         .capabilities   = PERF_PMU_CAP_NO_NMI,
11172         .dev            = PMU_NULL_DEV,
11173
11174         .event_init     = cpu_clock_event_init,
11175         .add            = cpu_clock_event_add,
11176         .del            = cpu_clock_event_del,
11177         .start          = cpu_clock_event_start,
11178         .stop           = cpu_clock_event_stop,
11179         .read           = cpu_clock_event_read,
11180 };
11181
11182 /*
11183  * Software event: task time clock
11184  */
11185
11186 static void task_clock_event_update(struct perf_event *event, u64 now)
11187 {
11188         u64 prev;
11189         s64 delta;
11190
11191         prev = local64_xchg(&event->hw.prev_count, now);
11192         delta = now - prev;
11193         local64_add(delta, &event->count);
11194 }
11195
11196 static void task_clock_event_start(struct perf_event *event, int flags)
11197 {
11198         local64_set(&event->hw.prev_count, event->ctx->time);
11199         perf_swevent_start_hrtimer(event);
11200 }
11201
11202 static void task_clock_event_stop(struct perf_event *event, int flags)
11203 {
11204         perf_swevent_cancel_hrtimer(event);
11205         task_clock_event_update(event, event->ctx->time);
11206 }
11207
11208 static int task_clock_event_add(struct perf_event *event, int flags)
11209 {
11210         if (flags & PERF_EF_START)
11211                 task_clock_event_start(event, flags);
11212         perf_event_update_userpage(event);
11213
11214         return 0;
11215 }
11216
11217 static void task_clock_event_del(struct perf_event *event, int flags)
11218 {
11219         task_clock_event_stop(event, PERF_EF_UPDATE);
11220 }
11221
11222 static void task_clock_event_read(struct perf_event *event)
11223 {
11224         u64 now = perf_clock();
11225         u64 delta = now - event->ctx->timestamp;
11226         u64 time = event->ctx->time + delta;
11227
11228         task_clock_event_update(event, time);
11229 }
11230
11231 static int task_clock_event_init(struct perf_event *event)
11232 {
11233         if (event->attr.type != perf_task_clock.type)
11234                 return -ENOENT;
11235
11236         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11237                 return -ENOENT;
11238
11239         /*
11240          * no branch sampling for software events
11241          */
11242         if (has_branch_stack(event))
11243                 return -EOPNOTSUPP;
11244
11245         perf_swevent_init_hrtimer(event);
11246
11247         return 0;
11248 }
11249
11250 static struct pmu perf_task_clock = {
11251         .task_ctx_nr    = perf_sw_context,
11252
11253         .capabilities   = PERF_PMU_CAP_NO_NMI,
11254         .dev            = PMU_NULL_DEV,
11255
11256         .event_init     = task_clock_event_init,
11257         .add            = task_clock_event_add,
11258         .del            = task_clock_event_del,
11259         .start          = task_clock_event_start,
11260         .stop           = task_clock_event_stop,
11261         .read           = task_clock_event_read,
11262 };
11263
11264 static void perf_pmu_nop_void(struct pmu *pmu)
11265 {
11266 }
11267
11268 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11269 {
11270 }
11271
11272 static int perf_pmu_nop_int(struct pmu *pmu)
11273 {
11274         return 0;
11275 }
11276
11277 static int perf_event_nop_int(struct perf_event *event, u64 value)
11278 {
11279         return 0;
11280 }
11281
11282 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11283
11284 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11285 {
11286         __this_cpu_write(nop_txn_flags, flags);
11287
11288         if (flags & ~PERF_PMU_TXN_ADD)
11289                 return;
11290
11291         perf_pmu_disable(pmu);
11292 }
11293
11294 static int perf_pmu_commit_txn(struct pmu *pmu)
11295 {
11296         unsigned int flags = __this_cpu_read(nop_txn_flags);
11297
11298         __this_cpu_write(nop_txn_flags, 0);
11299
11300         if (flags & ~PERF_PMU_TXN_ADD)
11301                 return 0;
11302
11303         perf_pmu_enable(pmu);
11304         return 0;
11305 }
11306
11307 static void perf_pmu_cancel_txn(struct pmu *pmu)
11308 {
11309         unsigned int flags =  __this_cpu_read(nop_txn_flags);
11310
11311         __this_cpu_write(nop_txn_flags, 0);
11312
11313         if (flags & ~PERF_PMU_TXN_ADD)
11314                 return;
11315
11316         perf_pmu_enable(pmu);
11317 }
11318
11319 static int perf_event_idx_default(struct perf_event *event)
11320 {
11321         return 0;
11322 }
11323
11324 static void free_pmu_context(struct pmu *pmu)
11325 {
11326         free_percpu(pmu->cpu_pmu_context);
11327 }
11328
11329 /*
11330  * Let userspace know that this PMU supports address range filtering:
11331  */
11332 static ssize_t nr_addr_filters_show(struct device *dev,
11333                                     struct device_attribute *attr,
11334                                     char *page)
11335 {
11336         struct pmu *pmu = dev_get_drvdata(dev);
11337
11338         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11339 }
11340 DEVICE_ATTR_RO(nr_addr_filters);
11341
11342 static struct idr pmu_idr;
11343
11344 static ssize_t
11345 type_show(struct device *dev, struct device_attribute *attr, char *page)
11346 {
11347         struct pmu *pmu = dev_get_drvdata(dev);
11348
11349         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11350 }
11351 static DEVICE_ATTR_RO(type);
11352
11353 static ssize_t
11354 perf_event_mux_interval_ms_show(struct device *dev,
11355                                 struct device_attribute *attr,
11356                                 char *page)
11357 {
11358         struct pmu *pmu = dev_get_drvdata(dev);
11359
11360         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11361 }
11362
11363 static DEFINE_MUTEX(mux_interval_mutex);
11364
11365 static ssize_t
11366 perf_event_mux_interval_ms_store(struct device *dev,
11367                                  struct device_attribute *attr,
11368                                  const char *buf, size_t count)
11369 {
11370         struct pmu *pmu = dev_get_drvdata(dev);
11371         int timer, cpu, ret;
11372
11373         ret = kstrtoint(buf, 0, &timer);
11374         if (ret)
11375                 return ret;
11376
11377         if (timer < 1)
11378                 return -EINVAL;
11379
11380         /* same value, noting to do */
11381         if (timer == pmu->hrtimer_interval_ms)
11382                 return count;
11383
11384         mutex_lock(&mux_interval_mutex);
11385         pmu->hrtimer_interval_ms = timer;
11386
11387         /* update all cpuctx for this PMU */
11388         cpus_read_lock();
11389         for_each_online_cpu(cpu) {
11390                 struct perf_cpu_pmu_context *cpc;
11391                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11392                 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11393
11394                 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11395         }
11396         cpus_read_unlock();
11397         mutex_unlock(&mux_interval_mutex);
11398
11399         return count;
11400 }
11401 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11402
11403 static struct attribute *pmu_dev_attrs[] = {
11404         &dev_attr_type.attr,
11405         &dev_attr_perf_event_mux_interval_ms.attr,
11406         NULL,
11407 };
11408 ATTRIBUTE_GROUPS(pmu_dev);
11409
11410 static int pmu_bus_running;
11411 static struct bus_type pmu_bus = {
11412         .name           = "event_source",
11413         .dev_groups     = pmu_dev_groups,
11414 };
11415
11416 static void pmu_dev_release(struct device *dev)
11417 {
11418         kfree(dev);
11419 }
11420
11421 static int pmu_dev_alloc(struct pmu *pmu)
11422 {
11423         int ret = -ENOMEM;
11424
11425         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11426         if (!pmu->dev)
11427                 goto out;
11428
11429         pmu->dev->groups = pmu->attr_groups;
11430         device_initialize(pmu->dev);
11431
11432         dev_set_drvdata(pmu->dev, pmu);
11433         pmu->dev->bus = &pmu_bus;
11434         pmu->dev->parent = pmu->parent;
11435         pmu->dev->release = pmu_dev_release;
11436
11437         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11438         if (ret)
11439                 goto free_dev;
11440
11441         ret = device_add(pmu->dev);
11442         if (ret)
11443                 goto free_dev;
11444
11445         /* For PMUs with address filters, throw in an extra attribute: */
11446         if (pmu->nr_addr_filters)
11447                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11448
11449         if (ret)
11450                 goto del_dev;
11451
11452         if (pmu->attr_update)
11453                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11454
11455         if (ret)
11456                 goto del_dev;
11457
11458 out:
11459         return ret;
11460
11461 del_dev:
11462         device_del(pmu->dev);
11463
11464 free_dev:
11465         put_device(pmu->dev);
11466         goto out;
11467 }
11468
11469 static struct lock_class_key cpuctx_mutex;
11470 static struct lock_class_key cpuctx_lock;
11471
11472 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11473 {
11474         int cpu, ret, max = PERF_TYPE_MAX;
11475
11476         mutex_lock(&pmus_lock);
11477         ret = -ENOMEM;
11478         pmu->pmu_disable_count = alloc_percpu(int);
11479         if (!pmu->pmu_disable_count)
11480                 goto unlock;
11481
11482         pmu->type = -1;
11483         if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11484                 ret = -EINVAL;
11485                 goto free_pdc;
11486         }
11487
11488         pmu->name = name;
11489
11490         if (type >= 0)
11491                 max = type;
11492
11493         ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11494         if (ret < 0)
11495                 goto free_pdc;
11496
11497         WARN_ON(type >= 0 && ret != type);
11498
11499         type = ret;
11500         pmu->type = type;
11501
11502         if (pmu_bus_running && !pmu->dev) {
11503                 ret = pmu_dev_alloc(pmu);
11504                 if (ret)
11505                         goto free_idr;
11506         }
11507
11508         ret = -ENOMEM;
11509         pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11510         if (!pmu->cpu_pmu_context)
11511                 goto free_dev;
11512
11513         for_each_possible_cpu(cpu) {
11514                 struct perf_cpu_pmu_context *cpc;
11515
11516                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11517                 __perf_init_event_pmu_context(&cpc->epc, pmu);
11518                 __perf_mux_hrtimer_init(cpc, cpu);
11519         }
11520
11521         if (!pmu->start_txn) {
11522                 if (pmu->pmu_enable) {
11523                         /*
11524                          * If we have pmu_enable/pmu_disable calls, install
11525                          * transaction stubs that use that to try and batch
11526                          * hardware accesses.
11527                          */
11528                         pmu->start_txn  = perf_pmu_start_txn;
11529                         pmu->commit_txn = perf_pmu_commit_txn;
11530                         pmu->cancel_txn = perf_pmu_cancel_txn;
11531                 } else {
11532                         pmu->start_txn  = perf_pmu_nop_txn;
11533                         pmu->commit_txn = perf_pmu_nop_int;
11534                         pmu->cancel_txn = perf_pmu_nop_void;
11535                 }
11536         }
11537
11538         if (!pmu->pmu_enable) {
11539                 pmu->pmu_enable  = perf_pmu_nop_void;
11540                 pmu->pmu_disable = perf_pmu_nop_void;
11541         }
11542
11543         if (!pmu->check_period)
11544                 pmu->check_period = perf_event_nop_int;
11545
11546         if (!pmu->event_idx)
11547                 pmu->event_idx = perf_event_idx_default;
11548
11549         list_add_rcu(&pmu->entry, &pmus);
11550         atomic_set(&pmu->exclusive_cnt, 0);
11551         ret = 0;
11552 unlock:
11553         mutex_unlock(&pmus_lock);
11554
11555         return ret;
11556
11557 free_dev:
11558         if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11559                 device_del(pmu->dev);
11560                 put_device(pmu->dev);
11561         }
11562
11563 free_idr:
11564         idr_remove(&pmu_idr, pmu->type);
11565
11566 free_pdc:
11567         free_percpu(pmu->pmu_disable_count);
11568         goto unlock;
11569 }
11570 EXPORT_SYMBOL_GPL(perf_pmu_register);
11571
11572 void perf_pmu_unregister(struct pmu *pmu)
11573 {
11574         mutex_lock(&pmus_lock);
11575         list_del_rcu(&pmu->entry);
11576
11577         /*
11578          * We dereference the pmu list under both SRCU and regular RCU, so
11579          * synchronize against both of those.
11580          */
11581         synchronize_srcu(&pmus_srcu);
11582         synchronize_rcu();
11583
11584         free_percpu(pmu->pmu_disable_count);
11585         idr_remove(&pmu_idr, pmu->type);
11586         if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11587                 if (pmu->nr_addr_filters)
11588                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11589                 device_del(pmu->dev);
11590                 put_device(pmu->dev);
11591         }
11592         free_pmu_context(pmu);
11593         mutex_unlock(&pmus_lock);
11594 }
11595 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11596
11597 static inline bool has_extended_regs(struct perf_event *event)
11598 {
11599         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11600                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11601 }
11602
11603 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11604 {
11605         struct perf_event_context *ctx = NULL;
11606         int ret;
11607
11608         if (!try_module_get(pmu->module))
11609                 return -ENODEV;
11610
11611         /*
11612          * A number of pmu->event_init() methods iterate the sibling_list to,
11613          * for example, validate if the group fits on the PMU. Therefore,
11614          * if this is a sibling event, acquire the ctx->mutex to protect
11615          * the sibling_list.
11616          */
11617         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11618                 /*
11619                  * This ctx->mutex can nest when we're called through
11620                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11621                  */
11622                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11623                                                  SINGLE_DEPTH_NESTING);
11624                 BUG_ON(!ctx);
11625         }
11626
11627         event->pmu = pmu;
11628         ret = pmu->event_init(event);
11629
11630         if (ctx)
11631                 perf_event_ctx_unlock(event->group_leader, ctx);
11632
11633         if (!ret) {
11634                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11635                     has_extended_regs(event))
11636                         ret = -EOPNOTSUPP;
11637
11638                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11639                     event_has_any_exclude_flag(event))
11640                         ret = -EINVAL;
11641
11642                 if (ret && event->destroy)
11643                         event->destroy(event);
11644         }
11645
11646         if (ret)
11647                 module_put(pmu->module);
11648
11649         return ret;
11650 }
11651
11652 static struct pmu *perf_init_event(struct perf_event *event)
11653 {
11654         bool extended_type = false;
11655         int idx, type, ret;
11656         struct pmu *pmu;
11657
11658         idx = srcu_read_lock(&pmus_srcu);
11659
11660         /*
11661          * Save original type before calling pmu->event_init() since certain
11662          * pmus overwrites event->attr.type to forward event to another pmu.
11663          */
11664         event->orig_type = event->attr.type;
11665
11666         /* Try parent's PMU first: */
11667         if (event->parent && event->parent->pmu) {
11668                 pmu = event->parent->pmu;
11669                 ret = perf_try_init_event(pmu, event);
11670                 if (!ret)
11671                         goto unlock;
11672         }
11673
11674         /*
11675          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11676          * are often aliases for PERF_TYPE_RAW.
11677          */
11678         type = event->attr.type;
11679         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11680                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11681                 if (!type) {
11682                         type = PERF_TYPE_RAW;
11683                 } else {
11684                         extended_type = true;
11685                         event->attr.config &= PERF_HW_EVENT_MASK;
11686                 }
11687         }
11688
11689 again:
11690         rcu_read_lock();
11691         pmu = idr_find(&pmu_idr, type);
11692         rcu_read_unlock();
11693         if (pmu) {
11694                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11695                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11696                         goto fail;
11697
11698                 ret = perf_try_init_event(pmu, event);
11699                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11700                         type = event->attr.type;
11701                         goto again;
11702                 }
11703
11704                 if (ret)
11705                         pmu = ERR_PTR(ret);
11706
11707                 goto unlock;
11708         }
11709
11710         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11711                 ret = perf_try_init_event(pmu, event);
11712                 if (!ret)
11713                         goto unlock;
11714
11715                 if (ret != -ENOENT) {
11716                         pmu = ERR_PTR(ret);
11717                         goto unlock;
11718                 }
11719         }
11720 fail:
11721         pmu = ERR_PTR(-ENOENT);
11722 unlock:
11723         srcu_read_unlock(&pmus_srcu, idx);
11724
11725         return pmu;
11726 }
11727
11728 static void attach_sb_event(struct perf_event *event)
11729 {
11730         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11731
11732         raw_spin_lock(&pel->lock);
11733         list_add_rcu(&event->sb_list, &pel->list);
11734         raw_spin_unlock(&pel->lock);
11735 }
11736
11737 /*
11738  * We keep a list of all !task (and therefore per-cpu) events
11739  * that need to receive side-band records.
11740  *
11741  * This avoids having to scan all the various PMU per-cpu contexts
11742  * looking for them.
11743  */
11744 static void account_pmu_sb_event(struct perf_event *event)
11745 {
11746         if (is_sb_event(event))
11747                 attach_sb_event(event);
11748 }
11749
11750 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11751 static void account_freq_event_nohz(void)
11752 {
11753 #ifdef CONFIG_NO_HZ_FULL
11754         /* Lock so we don't race with concurrent unaccount */
11755         spin_lock(&nr_freq_lock);
11756         if (atomic_inc_return(&nr_freq_events) == 1)
11757                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11758         spin_unlock(&nr_freq_lock);
11759 #endif
11760 }
11761
11762 static void account_freq_event(void)
11763 {
11764         if (tick_nohz_full_enabled())
11765                 account_freq_event_nohz();
11766         else
11767                 atomic_inc(&nr_freq_events);
11768 }
11769
11770
11771 static void account_event(struct perf_event *event)
11772 {
11773         bool inc = false;
11774
11775         if (event->parent)
11776                 return;
11777
11778         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11779                 inc = true;
11780         if (event->attr.mmap || event->attr.mmap_data)
11781                 atomic_inc(&nr_mmap_events);
11782         if (event->attr.build_id)
11783                 atomic_inc(&nr_build_id_events);
11784         if (event->attr.comm)
11785                 atomic_inc(&nr_comm_events);
11786         if (event->attr.namespaces)
11787                 atomic_inc(&nr_namespaces_events);
11788         if (event->attr.cgroup)
11789                 atomic_inc(&nr_cgroup_events);
11790         if (event->attr.task)
11791                 atomic_inc(&nr_task_events);
11792         if (event->attr.freq)
11793                 account_freq_event();
11794         if (event->attr.context_switch) {
11795                 atomic_inc(&nr_switch_events);
11796                 inc = true;
11797         }
11798         if (has_branch_stack(event))
11799                 inc = true;
11800         if (is_cgroup_event(event))
11801                 inc = true;
11802         if (event->attr.ksymbol)
11803                 atomic_inc(&nr_ksymbol_events);
11804         if (event->attr.bpf_event)
11805                 atomic_inc(&nr_bpf_events);
11806         if (event->attr.text_poke)
11807                 atomic_inc(&nr_text_poke_events);
11808
11809         if (inc) {
11810                 /*
11811                  * We need the mutex here because static_branch_enable()
11812                  * must complete *before* the perf_sched_count increment
11813                  * becomes visible.
11814                  */
11815                 if (atomic_inc_not_zero(&perf_sched_count))
11816                         goto enabled;
11817
11818                 mutex_lock(&perf_sched_mutex);
11819                 if (!atomic_read(&perf_sched_count)) {
11820                         static_branch_enable(&perf_sched_events);
11821                         /*
11822                          * Guarantee that all CPUs observe they key change and
11823                          * call the perf scheduling hooks before proceeding to
11824                          * install events that need them.
11825                          */
11826                         synchronize_rcu();
11827                 }
11828                 /*
11829                  * Now that we have waited for the sync_sched(), allow further
11830                  * increments to by-pass the mutex.
11831                  */
11832                 atomic_inc(&perf_sched_count);
11833                 mutex_unlock(&perf_sched_mutex);
11834         }
11835 enabled:
11836
11837         account_pmu_sb_event(event);
11838 }
11839
11840 /*
11841  * Allocate and initialize an event structure
11842  */
11843 static struct perf_event *
11844 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11845                  struct task_struct *task,
11846                  struct perf_event *group_leader,
11847                  struct perf_event *parent_event,
11848                  perf_overflow_handler_t overflow_handler,
11849                  void *context, int cgroup_fd)
11850 {
11851         struct pmu *pmu;
11852         struct perf_event *event;
11853         struct hw_perf_event *hwc;
11854         long err = -EINVAL;
11855         int node;
11856
11857         if ((unsigned)cpu >= nr_cpu_ids) {
11858                 if (!task || cpu != -1)
11859                         return ERR_PTR(-EINVAL);
11860         }
11861         if (attr->sigtrap && !task) {
11862                 /* Requires a task: avoid signalling random tasks. */
11863                 return ERR_PTR(-EINVAL);
11864         }
11865
11866         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11867         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11868                                       node);
11869         if (!event)
11870                 return ERR_PTR(-ENOMEM);
11871
11872         /*
11873          * Single events are their own group leaders, with an
11874          * empty sibling list:
11875          */
11876         if (!group_leader)
11877                 group_leader = event;
11878
11879         mutex_init(&event->child_mutex);
11880         INIT_LIST_HEAD(&event->child_list);
11881
11882         INIT_LIST_HEAD(&event->event_entry);
11883         INIT_LIST_HEAD(&event->sibling_list);
11884         INIT_LIST_HEAD(&event->active_list);
11885         init_event_group(event);
11886         INIT_LIST_HEAD(&event->rb_entry);
11887         INIT_LIST_HEAD(&event->active_entry);
11888         INIT_LIST_HEAD(&event->addr_filters.list);
11889         INIT_HLIST_NODE(&event->hlist_entry);
11890
11891
11892         init_waitqueue_head(&event->waitq);
11893         init_irq_work(&event->pending_irq, perf_pending_irq);
11894         init_task_work(&event->pending_task, perf_pending_task);
11895
11896         mutex_init(&event->mmap_mutex);
11897         raw_spin_lock_init(&event->addr_filters.lock);
11898
11899         atomic_long_set(&event->refcount, 1);
11900         event->cpu              = cpu;
11901         event->attr             = *attr;
11902         event->group_leader     = group_leader;
11903         event->pmu              = NULL;
11904         event->oncpu            = -1;
11905
11906         event->parent           = parent_event;
11907
11908         event->ns               = get_pid_ns(task_active_pid_ns(current));
11909         event->id               = atomic64_inc_return(&perf_event_id);
11910
11911         event->state            = PERF_EVENT_STATE_INACTIVE;
11912
11913         if (parent_event)
11914                 event->event_caps = parent_event->event_caps;
11915
11916         if (task) {
11917                 event->attach_state = PERF_ATTACH_TASK;
11918                 /*
11919                  * XXX pmu::event_init needs to know what task to account to
11920                  * and we cannot use the ctx information because we need the
11921                  * pmu before we get a ctx.
11922                  */
11923                 event->hw.target = get_task_struct(task);
11924         }
11925
11926         event->clock = &local_clock;
11927         if (parent_event)
11928                 event->clock = parent_event->clock;
11929
11930         if (!overflow_handler && parent_event) {
11931                 overflow_handler = parent_event->overflow_handler;
11932                 context = parent_event->overflow_handler_context;
11933 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11934                 if (overflow_handler == bpf_overflow_handler) {
11935                         struct bpf_prog *prog = parent_event->prog;
11936
11937                         bpf_prog_inc(prog);
11938                         event->prog = prog;
11939                         event->orig_overflow_handler =
11940                                 parent_event->orig_overflow_handler;
11941                 }
11942 #endif
11943         }
11944
11945         if (overflow_handler) {
11946                 event->overflow_handler = overflow_handler;
11947                 event->overflow_handler_context = context;
11948         } else if (is_write_backward(event)){
11949                 event->overflow_handler = perf_event_output_backward;
11950                 event->overflow_handler_context = NULL;
11951         } else {
11952                 event->overflow_handler = perf_event_output_forward;
11953                 event->overflow_handler_context = NULL;
11954         }
11955
11956         perf_event__state_init(event);
11957
11958         pmu = NULL;
11959
11960         hwc = &event->hw;
11961         hwc->sample_period = attr->sample_period;
11962         if (attr->freq && attr->sample_freq)
11963                 hwc->sample_period = 1;
11964         hwc->last_period = hwc->sample_period;
11965
11966         local64_set(&hwc->period_left, hwc->sample_period);
11967
11968         /*
11969          * We currently do not support PERF_SAMPLE_READ on inherited events.
11970          * See perf_output_read().
11971          */
11972         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11973                 goto err_ns;
11974
11975         if (!has_branch_stack(event))
11976                 event->attr.branch_sample_type = 0;
11977
11978         pmu = perf_init_event(event);
11979         if (IS_ERR(pmu)) {
11980                 err = PTR_ERR(pmu);
11981                 goto err_ns;
11982         }
11983
11984         /*
11985          * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11986          * events (they don't make sense as the cgroup will be different
11987          * on other CPUs in the uncore mask).
11988          */
11989         if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
11990                 err = -EINVAL;
11991                 goto err_pmu;
11992         }
11993
11994         if (event->attr.aux_output &&
11995             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11996                 err = -EOPNOTSUPP;
11997                 goto err_pmu;
11998         }
11999
12000         if (cgroup_fd != -1) {
12001                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12002                 if (err)
12003                         goto err_pmu;
12004         }
12005
12006         err = exclusive_event_init(event);
12007         if (err)
12008                 goto err_pmu;
12009
12010         if (has_addr_filter(event)) {
12011                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12012                                                     sizeof(struct perf_addr_filter_range),
12013                                                     GFP_KERNEL);
12014                 if (!event->addr_filter_ranges) {
12015                         err = -ENOMEM;
12016                         goto err_per_task;
12017                 }
12018
12019                 /*
12020                  * Clone the parent's vma offsets: they are valid until exec()
12021                  * even if the mm is not shared with the parent.
12022                  */
12023                 if (event->parent) {
12024                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12025
12026                         raw_spin_lock_irq(&ifh->lock);
12027                         memcpy(event->addr_filter_ranges,
12028                                event->parent->addr_filter_ranges,
12029                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12030                         raw_spin_unlock_irq(&ifh->lock);
12031                 }
12032
12033                 /* force hw sync on the address filters */
12034                 event->addr_filters_gen = 1;
12035         }
12036
12037         if (!event->parent) {
12038                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12039                         err = get_callchain_buffers(attr->sample_max_stack);
12040                         if (err)
12041                                 goto err_addr_filters;
12042                 }
12043         }
12044
12045         err = security_perf_event_alloc(event);
12046         if (err)
12047                 goto err_callchain_buffer;
12048
12049         /* symmetric to unaccount_event() in _free_event() */
12050         account_event(event);
12051
12052         return event;
12053
12054 err_callchain_buffer:
12055         if (!event->parent) {
12056                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12057                         put_callchain_buffers();
12058         }
12059 err_addr_filters:
12060         kfree(event->addr_filter_ranges);
12061
12062 err_per_task:
12063         exclusive_event_destroy(event);
12064
12065 err_pmu:
12066         if (is_cgroup_event(event))
12067                 perf_detach_cgroup(event);
12068         if (event->destroy)
12069                 event->destroy(event);
12070         module_put(pmu->module);
12071 err_ns:
12072         if (event->hw.target)
12073                 put_task_struct(event->hw.target);
12074         call_rcu(&event->rcu_head, free_event_rcu);
12075
12076         return ERR_PTR(err);
12077 }
12078
12079 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12080                           struct perf_event_attr *attr)
12081 {
12082         u32 size;
12083         int ret;
12084
12085         /* Zero the full structure, so that a short copy will be nice. */
12086         memset(attr, 0, sizeof(*attr));
12087
12088         ret = get_user(size, &uattr->size);
12089         if (ret)
12090                 return ret;
12091
12092         /* ABI compatibility quirk: */
12093         if (!size)
12094                 size = PERF_ATTR_SIZE_VER0;
12095         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12096                 goto err_size;
12097
12098         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12099         if (ret) {
12100                 if (ret == -E2BIG)
12101                         goto err_size;
12102                 return ret;
12103         }
12104
12105         attr->size = size;
12106
12107         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12108                 return -EINVAL;
12109
12110         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12111                 return -EINVAL;
12112
12113         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12114                 return -EINVAL;
12115
12116         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12117                 u64 mask = attr->branch_sample_type;
12118
12119                 /* only using defined bits */
12120                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12121                         return -EINVAL;
12122
12123                 /* at least one branch bit must be set */
12124                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12125                         return -EINVAL;
12126
12127                 /* propagate priv level, when not set for branch */
12128                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12129
12130                         /* exclude_kernel checked on syscall entry */
12131                         if (!attr->exclude_kernel)
12132                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12133
12134                         if (!attr->exclude_user)
12135                                 mask |= PERF_SAMPLE_BRANCH_USER;
12136
12137                         if (!attr->exclude_hv)
12138                                 mask |= PERF_SAMPLE_BRANCH_HV;
12139                         /*
12140                          * adjust user setting (for HW filter setup)
12141                          */
12142                         attr->branch_sample_type = mask;
12143                 }
12144                 /* privileged levels capture (kernel, hv): check permissions */
12145                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12146                         ret = perf_allow_kernel(attr);
12147                         if (ret)
12148                                 return ret;
12149                 }
12150         }
12151
12152         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12153                 ret = perf_reg_validate(attr->sample_regs_user);
12154                 if (ret)
12155                         return ret;
12156         }
12157
12158         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12159                 if (!arch_perf_have_user_stack_dump())
12160                         return -ENOSYS;
12161
12162                 /*
12163                  * We have __u32 type for the size, but so far
12164                  * we can only use __u16 as maximum due to the
12165                  * __u16 sample size limit.
12166                  */
12167                 if (attr->sample_stack_user >= USHRT_MAX)
12168                         return -EINVAL;
12169                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12170                         return -EINVAL;
12171         }
12172
12173         if (!attr->sample_max_stack)
12174                 attr->sample_max_stack = sysctl_perf_event_max_stack;
12175
12176         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12177                 ret = perf_reg_validate(attr->sample_regs_intr);
12178
12179 #ifndef CONFIG_CGROUP_PERF
12180         if (attr->sample_type & PERF_SAMPLE_CGROUP)
12181                 return -EINVAL;
12182 #endif
12183         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12184             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12185                 return -EINVAL;
12186
12187         if (!attr->inherit && attr->inherit_thread)
12188                 return -EINVAL;
12189
12190         if (attr->remove_on_exec && attr->enable_on_exec)
12191                 return -EINVAL;
12192
12193         if (attr->sigtrap && !attr->remove_on_exec)
12194                 return -EINVAL;
12195
12196 out:
12197         return ret;
12198
12199 err_size:
12200         put_user(sizeof(*attr), &uattr->size);
12201         ret = -E2BIG;
12202         goto out;
12203 }
12204
12205 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12206 {
12207         if (b < a)
12208                 swap(a, b);
12209
12210         mutex_lock(a);
12211         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12212 }
12213
12214 static int
12215 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12216 {
12217         struct perf_buffer *rb = NULL;
12218         int ret = -EINVAL;
12219
12220         if (!output_event) {
12221                 mutex_lock(&event->mmap_mutex);
12222                 goto set;
12223         }
12224
12225         /* don't allow circular references */
12226         if (event == output_event)
12227                 goto out;
12228
12229         /*
12230          * Don't allow cross-cpu buffers
12231          */
12232         if (output_event->cpu != event->cpu)
12233                 goto out;
12234
12235         /*
12236          * If its not a per-cpu rb, it must be the same task.
12237          */
12238         if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12239                 goto out;
12240
12241         /*
12242          * Mixing clocks in the same buffer is trouble you don't need.
12243          */
12244         if (output_event->clock != event->clock)
12245                 goto out;
12246
12247         /*
12248          * Either writing ring buffer from beginning or from end.
12249          * Mixing is not allowed.
12250          */
12251         if (is_write_backward(output_event) != is_write_backward(event))
12252                 goto out;
12253
12254         /*
12255          * If both events generate aux data, they must be on the same PMU
12256          */
12257         if (has_aux(event) && has_aux(output_event) &&
12258             event->pmu != output_event->pmu)
12259                 goto out;
12260
12261         /*
12262          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12263          * output_event is already on rb->event_list, and the list iteration
12264          * restarts after every removal, it is guaranteed this new event is
12265          * observed *OR* if output_event is already removed, it's guaranteed we
12266          * observe !rb->mmap_count.
12267          */
12268         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12269 set:
12270         /* Can't redirect output if we've got an active mmap() */
12271         if (atomic_read(&event->mmap_count))
12272                 goto unlock;
12273
12274         if (output_event) {
12275                 /* get the rb we want to redirect to */
12276                 rb = ring_buffer_get(output_event);
12277                 if (!rb)
12278                         goto unlock;
12279
12280                 /* did we race against perf_mmap_close() */
12281                 if (!atomic_read(&rb->mmap_count)) {
12282                         ring_buffer_put(rb);
12283                         goto unlock;
12284                 }
12285         }
12286
12287         ring_buffer_attach(event, rb);
12288
12289         ret = 0;
12290 unlock:
12291         mutex_unlock(&event->mmap_mutex);
12292         if (output_event)
12293                 mutex_unlock(&output_event->mmap_mutex);
12294
12295 out:
12296         return ret;
12297 }
12298
12299 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12300 {
12301         bool nmi_safe = false;
12302
12303         switch (clk_id) {
12304         case CLOCK_MONOTONIC:
12305                 event->clock = &ktime_get_mono_fast_ns;
12306                 nmi_safe = true;
12307                 break;
12308
12309         case CLOCK_MONOTONIC_RAW:
12310                 event->clock = &ktime_get_raw_fast_ns;
12311                 nmi_safe = true;
12312                 break;
12313
12314         case CLOCK_REALTIME:
12315                 event->clock = &ktime_get_real_ns;
12316                 break;
12317
12318         case CLOCK_BOOTTIME:
12319                 event->clock = &ktime_get_boottime_ns;
12320                 break;
12321
12322         case CLOCK_TAI:
12323                 event->clock = &ktime_get_clocktai_ns;
12324                 break;
12325
12326         default:
12327                 return -EINVAL;
12328         }
12329
12330         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12331                 return -EINVAL;
12332
12333         return 0;
12334 }
12335
12336 static bool
12337 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12338 {
12339         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12340         bool is_capable = perfmon_capable();
12341
12342         if (attr->sigtrap) {
12343                 /*
12344                  * perf_event_attr::sigtrap sends signals to the other task.
12345                  * Require the current task to also have CAP_KILL.
12346                  */
12347                 rcu_read_lock();
12348                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12349                 rcu_read_unlock();
12350
12351                 /*
12352                  * If the required capabilities aren't available, checks for
12353                  * ptrace permissions: upgrade to ATTACH, since sending signals
12354                  * can effectively change the target task.
12355                  */
12356                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12357         }
12358
12359         /*
12360          * Preserve ptrace permission check for backwards compatibility. The
12361          * ptrace check also includes checks that the current task and other
12362          * task have matching uids, and is therefore not done here explicitly.
12363          */
12364         return is_capable || ptrace_may_access(task, ptrace_mode);
12365 }
12366
12367 /**
12368  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12369  *
12370  * @attr_uptr:  event_id type attributes for monitoring/sampling
12371  * @pid:                target pid
12372  * @cpu:                target cpu
12373  * @group_fd:           group leader event fd
12374  * @flags:              perf event open flags
12375  */
12376 SYSCALL_DEFINE5(perf_event_open,
12377                 struct perf_event_attr __user *, attr_uptr,
12378                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12379 {
12380         struct perf_event *group_leader = NULL, *output_event = NULL;
12381         struct perf_event_pmu_context *pmu_ctx;
12382         struct perf_event *event, *sibling;
12383         struct perf_event_attr attr;
12384         struct perf_event_context *ctx;
12385         struct file *event_file = NULL;
12386         struct fd group = {NULL, 0};
12387         struct task_struct *task = NULL;
12388         struct pmu *pmu;
12389         int event_fd;
12390         int move_group = 0;
12391         int err;
12392         int f_flags = O_RDWR;
12393         int cgroup_fd = -1;
12394
12395         /* for future expandability... */
12396         if (flags & ~PERF_FLAG_ALL)
12397                 return -EINVAL;
12398
12399         err = perf_copy_attr(attr_uptr, &attr);
12400         if (err)
12401                 return err;
12402
12403         /* Do we allow access to perf_event_open(2) ? */
12404         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12405         if (err)
12406                 return err;
12407
12408         if (!attr.exclude_kernel) {
12409                 err = perf_allow_kernel(&attr);
12410                 if (err)
12411                         return err;
12412         }
12413
12414         if (attr.namespaces) {
12415                 if (!perfmon_capable())
12416                         return -EACCES;
12417         }
12418
12419         if (attr.freq) {
12420                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12421                         return -EINVAL;
12422         } else {
12423                 if (attr.sample_period & (1ULL << 63))
12424                         return -EINVAL;
12425         }
12426
12427         /* Only privileged users can get physical addresses */
12428         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12429                 err = perf_allow_kernel(&attr);
12430                 if (err)
12431                         return err;
12432         }
12433
12434         /* REGS_INTR can leak data, lockdown must prevent this */
12435         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12436                 err = security_locked_down(LOCKDOWN_PERF);
12437                 if (err)
12438                         return err;
12439         }
12440
12441         /*
12442          * In cgroup mode, the pid argument is used to pass the fd
12443          * opened to the cgroup directory in cgroupfs. The cpu argument
12444          * designates the cpu on which to monitor threads from that
12445          * cgroup.
12446          */
12447         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12448                 return -EINVAL;
12449
12450         if (flags & PERF_FLAG_FD_CLOEXEC)
12451                 f_flags |= O_CLOEXEC;
12452
12453         event_fd = get_unused_fd_flags(f_flags);
12454         if (event_fd < 0)
12455                 return event_fd;
12456
12457         if (group_fd != -1) {
12458                 err = perf_fget_light(group_fd, &group);
12459                 if (err)
12460                         goto err_fd;
12461                 group_leader = group.file->private_data;
12462                 if (flags & PERF_FLAG_FD_OUTPUT)
12463                         output_event = group_leader;
12464                 if (flags & PERF_FLAG_FD_NO_GROUP)
12465                         group_leader = NULL;
12466         }
12467
12468         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12469                 task = find_lively_task_by_vpid(pid);
12470                 if (IS_ERR(task)) {
12471                         err = PTR_ERR(task);
12472                         goto err_group_fd;
12473                 }
12474         }
12475
12476         if (task && group_leader &&
12477             group_leader->attr.inherit != attr.inherit) {
12478                 err = -EINVAL;
12479                 goto err_task;
12480         }
12481
12482         if (flags & PERF_FLAG_PID_CGROUP)
12483                 cgroup_fd = pid;
12484
12485         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12486                                  NULL, NULL, cgroup_fd);
12487         if (IS_ERR(event)) {
12488                 err = PTR_ERR(event);
12489                 goto err_task;
12490         }
12491
12492         if (is_sampling_event(event)) {
12493                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12494                         err = -EOPNOTSUPP;
12495                         goto err_alloc;
12496                 }
12497         }
12498
12499         /*
12500          * Special case software events and allow them to be part of
12501          * any hardware group.
12502          */
12503         pmu = event->pmu;
12504
12505         if (attr.use_clockid) {
12506                 err = perf_event_set_clock(event, attr.clockid);
12507                 if (err)
12508                         goto err_alloc;
12509         }
12510
12511         if (pmu->task_ctx_nr == perf_sw_context)
12512                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12513
12514         if (task) {
12515                 err = down_read_interruptible(&task->signal->exec_update_lock);
12516                 if (err)
12517                         goto err_alloc;
12518
12519                 /*
12520                  * We must hold exec_update_lock across this and any potential
12521                  * perf_install_in_context() call for this new event to
12522                  * serialize against exec() altering our credentials (and the
12523                  * perf_event_exit_task() that could imply).
12524                  */
12525                 err = -EACCES;
12526                 if (!perf_check_permission(&attr, task))
12527                         goto err_cred;
12528         }
12529
12530         /*
12531          * Get the target context (task or percpu):
12532          */
12533         ctx = find_get_context(task, event);
12534         if (IS_ERR(ctx)) {
12535                 err = PTR_ERR(ctx);
12536                 goto err_cred;
12537         }
12538
12539         mutex_lock(&ctx->mutex);
12540
12541         if (ctx->task == TASK_TOMBSTONE) {
12542                 err = -ESRCH;
12543                 goto err_locked;
12544         }
12545
12546         if (!task) {
12547                 /*
12548                  * Check if the @cpu we're creating an event for is online.
12549                  *
12550                  * We use the perf_cpu_context::ctx::mutex to serialize against
12551                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12552                  */
12553                 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12554
12555                 if (!cpuctx->online) {
12556                         err = -ENODEV;
12557                         goto err_locked;
12558                 }
12559         }
12560
12561         if (group_leader) {
12562                 err = -EINVAL;
12563
12564                 /*
12565                  * Do not allow a recursive hierarchy (this new sibling
12566                  * becoming part of another group-sibling):
12567                  */
12568                 if (group_leader->group_leader != group_leader)
12569                         goto err_locked;
12570
12571                 /* All events in a group should have the same clock */
12572                 if (group_leader->clock != event->clock)
12573                         goto err_locked;
12574
12575                 /*
12576                  * Make sure we're both events for the same CPU;
12577                  * grouping events for different CPUs is broken; since
12578                  * you can never concurrently schedule them anyhow.
12579                  */
12580                 if (group_leader->cpu != event->cpu)
12581                         goto err_locked;
12582
12583                 /*
12584                  * Make sure we're both on the same context; either task or cpu.
12585                  */
12586                 if (group_leader->ctx != ctx)
12587                         goto err_locked;
12588
12589                 /*
12590                  * Only a group leader can be exclusive or pinned
12591                  */
12592                 if (attr.exclusive || attr.pinned)
12593                         goto err_locked;
12594
12595                 if (is_software_event(event) &&
12596                     !in_software_context(group_leader)) {
12597                         /*
12598                          * If the event is a sw event, but the group_leader
12599                          * is on hw context.
12600                          *
12601                          * Allow the addition of software events to hw
12602                          * groups, this is safe because software events
12603                          * never fail to schedule.
12604                          *
12605                          * Note the comment that goes with struct
12606                          * perf_event_pmu_context.
12607                          */
12608                         pmu = group_leader->pmu_ctx->pmu;
12609                 } else if (!is_software_event(event)) {
12610                         if (is_software_event(group_leader) &&
12611                             (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12612                                 /*
12613                                  * In case the group is a pure software group, and we
12614                                  * try to add a hardware event, move the whole group to
12615                                  * the hardware context.
12616                                  */
12617                                 move_group = 1;
12618                         }
12619
12620                         /* Don't allow group of multiple hw events from different pmus */
12621                         if (!in_software_context(group_leader) &&
12622                             group_leader->pmu_ctx->pmu != pmu)
12623                                 goto err_locked;
12624                 }
12625         }
12626
12627         /*
12628          * Now that we're certain of the pmu; find the pmu_ctx.
12629          */
12630         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12631         if (IS_ERR(pmu_ctx)) {
12632                 err = PTR_ERR(pmu_ctx);
12633                 goto err_locked;
12634         }
12635         event->pmu_ctx = pmu_ctx;
12636
12637         if (output_event) {
12638                 err = perf_event_set_output(event, output_event);
12639                 if (err)
12640                         goto err_context;
12641         }
12642
12643         if (!perf_event_validate_size(event)) {
12644                 err = -E2BIG;
12645                 goto err_context;
12646         }
12647
12648         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12649                 err = -EINVAL;
12650                 goto err_context;
12651         }
12652
12653         /*
12654          * Must be under the same ctx::mutex as perf_install_in_context(),
12655          * because we need to serialize with concurrent event creation.
12656          */
12657         if (!exclusive_event_installable(event, ctx)) {
12658                 err = -EBUSY;
12659                 goto err_context;
12660         }
12661
12662         WARN_ON_ONCE(ctx->parent_ctx);
12663
12664         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12665         if (IS_ERR(event_file)) {
12666                 err = PTR_ERR(event_file);
12667                 event_file = NULL;
12668                 goto err_context;
12669         }
12670
12671         /*
12672          * This is the point on no return; we cannot fail hereafter. This is
12673          * where we start modifying current state.
12674          */
12675
12676         if (move_group) {
12677                 perf_remove_from_context(group_leader, 0);
12678                 put_pmu_ctx(group_leader->pmu_ctx);
12679
12680                 for_each_sibling_event(sibling, group_leader) {
12681                         perf_remove_from_context(sibling, 0);
12682                         put_pmu_ctx(sibling->pmu_ctx);
12683                 }
12684
12685                 /*
12686                  * Install the group siblings before the group leader.
12687                  *
12688                  * Because a group leader will try and install the entire group
12689                  * (through the sibling list, which is still in-tact), we can
12690                  * end up with siblings installed in the wrong context.
12691                  *
12692                  * By installing siblings first we NO-OP because they're not
12693                  * reachable through the group lists.
12694                  */
12695                 for_each_sibling_event(sibling, group_leader) {
12696                         sibling->pmu_ctx = pmu_ctx;
12697                         get_pmu_ctx(pmu_ctx);
12698                         perf_event__state_init(sibling);
12699                         perf_install_in_context(ctx, sibling, sibling->cpu);
12700                 }
12701
12702                 /*
12703                  * Removing from the context ends up with disabled
12704                  * event. What we want here is event in the initial
12705                  * startup state, ready to be add into new context.
12706                  */
12707                 group_leader->pmu_ctx = pmu_ctx;
12708                 get_pmu_ctx(pmu_ctx);
12709                 perf_event__state_init(group_leader);
12710                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12711         }
12712
12713         /*
12714          * Precalculate sample_data sizes; do while holding ctx::mutex such
12715          * that we're serialized against further additions and before
12716          * perf_install_in_context() which is the point the event is active and
12717          * can use these values.
12718          */
12719         perf_event__header_size(event);
12720         perf_event__id_header_size(event);
12721
12722         event->owner = current;
12723
12724         perf_install_in_context(ctx, event, event->cpu);
12725         perf_unpin_context(ctx);
12726
12727         mutex_unlock(&ctx->mutex);
12728
12729         if (task) {
12730                 up_read(&task->signal->exec_update_lock);
12731                 put_task_struct(task);
12732         }
12733
12734         mutex_lock(&current->perf_event_mutex);
12735         list_add_tail(&event->owner_entry, &current->perf_event_list);
12736         mutex_unlock(&current->perf_event_mutex);
12737
12738         /*
12739          * Drop the reference on the group_event after placing the
12740          * new event on the sibling_list. This ensures destruction
12741          * of the group leader will find the pointer to itself in
12742          * perf_group_detach().
12743          */
12744         fdput(group);
12745         fd_install(event_fd, event_file);
12746         return event_fd;
12747
12748 err_context:
12749         put_pmu_ctx(event->pmu_ctx);
12750         event->pmu_ctx = NULL; /* _free_event() */
12751 err_locked:
12752         mutex_unlock(&ctx->mutex);
12753         perf_unpin_context(ctx);
12754         put_ctx(ctx);
12755 err_cred:
12756         if (task)
12757                 up_read(&task->signal->exec_update_lock);
12758 err_alloc:
12759         free_event(event);
12760 err_task:
12761         if (task)
12762                 put_task_struct(task);
12763 err_group_fd:
12764         fdput(group);
12765 err_fd:
12766         put_unused_fd(event_fd);
12767         return err;
12768 }
12769
12770 /**
12771  * perf_event_create_kernel_counter
12772  *
12773  * @attr: attributes of the counter to create
12774  * @cpu: cpu in which the counter is bound
12775  * @task: task to profile (NULL for percpu)
12776  * @overflow_handler: callback to trigger when we hit the event
12777  * @context: context data could be used in overflow_handler callback
12778  */
12779 struct perf_event *
12780 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12781                                  struct task_struct *task,
12782                                  perf_overflow_handler_t overflow_handler,
12783                                  void *context)
12784 {
12785         struct perf_event_pmu_context *pmu_ctx;
12786         struct perf_event_context *ctx;
12787         struct perf_event *event;
12788         struct pmu *pmu;
12789         int err;
12790
12791         /*
12792          * Grouping is not supported for kernel events, neither is 'AUX',
12793          * make sure the caller's intentions are adjusted.
12794          */
12795         if (attr->aux_output)
12796                 return ERR_PTR(-EINVAL);
12797
12798         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12799                                  overflow_handler, context, -1);
12800         if (IS_ERR(event)) {
12801                 err = PTR_ERR(event);
12802                 goto err;
12803         }
12804
12805         /* Mark owner so we could distinguish it from user events. */
12806         event->owner = TASK_TOMBSTONE;
12807         pmu = event->pmu;
12808
12809         if (pmu->task_ctx_nr == perf_sw_context)
12810                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12811
12812         /*
12813          * Get the target context (task or percpu):
12814          */
12815         ctx = find_get_context(task, event);
12816         if (IS_ERR(ctx)) {
12817                 err = PTR_ERR(ctx);
12818                 goto err_alloc;
12819         }
12820
12821         WARN_ON_ONCE(ctx->parent_ctx);
12822         mutex_lock(&ctx->mutex);
12823         if (ctx->task == TASK_TOMBSTONE) {
12824                 err = -ESRCH;
12825                 goto err_unlock;
12826         }
12827
12828         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12829         if (IS_ERR(pmu_ctx)) {
12830                 err = PTR_ERR(pmu_ctx);
12831                 goto err_unlock;
12832         }
12833         event->pmu_ctx = pmu_ctx;
12834
12835         if (!task) {
12836                 /*
12837                  * Check if the @cpu we're creating an event for is online.
12838                  *
12839                  * We use the perf_cpu_context::ctx::mutex to serialize against
12840                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12841                  */
12842                 struct perf_cpu_context *cpuctx =
12843                         container_of(ctx, struct perf_cpu_context, ctx);
12844                 if (!cpuctx->online) {
12845                         err = -ENODEV;
12846                         goto err_pmu_ctx;
12847                 }
12848         }
12849
12850         if (!exclusive_event_installable(event, ctx)) {
12851                 err = -EBUSY;
12852                 goto err_pmu_ctx;
12853         }
12854
12855         perf_install_in_context(ctx, event, event->cpu);
12856         perf_unpin_context(ctx);
12857         mutex_unlock(&ctx->mutex);
12858
12859         return event;
12860
12861 err_pmu_ctx:
12862         put_pmu_ctx(pmu_ctx);
12863         event->pmu_ctx = NULL; /* _free_event() */
12864 err_unlock:
12865         mutex_unlock(&ctx->mutex);
12866         perf_unpin_context(ctx);
12867         put_ctx(ctx);
12868 err_alloc:
12869         free_event(event);
12870 err:
12871         return ERR_PTR(err);
12872 }
12873 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12874
12875 static void __perf_pmu_remove(struct perf_event_context *ctx,
12876                               int cpu, struct pmu *pmu,
12877                               struct perf_event_groups *groups,
12878                               struct list_head *events)
12879 {
12880         struct perf_event *event, *sibling;
12881
12882         perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12883                 perf_remove_from_context(event, 0);
12884                 put_pmu_ctx(event->pmu_ctx);
12885                 list_add(&event->migrate_entry, events);
12886
12887                 for_each_sibling_event(sibling, event) {
12888                         perf_remove_from_context(sibling, 0);
12889                         put_pmu_ctx(sibling->pmu_ctx);
12890                         list_add(&sibling->migrate_entry, events);
12891                 }
12892         }
12893 }
12894
12895 static void __perf_pmu_install_event(struct pmu *pmu,
12896                                      struct perf_event_context *ctx,
12897                                      int cpu, struct perf_event *event)
12898 {
12899         struct perf_event_pmu_context *epc;
12900         struct perf_event_context *old_ctx = event->ctx;
12901
12902         get_ctx(ctx); /* normally find_get_context() */
12903
12904         event->cpu = cpu;
12905         epc = find_get_pmu_context(pmu, ctx, event);
12906         event->pmu_ctx = epc;
12907
12908         if (event->state >= PERF_EVENT_STATE_OFF)
12909                 event->state = PERF_EVENT_STATE_INACTIVE;
12910         perf_install_in_context(ctx, event, cpu);
12911
12912         /*
12913          * Now that event->ctx is updated and visible, put the old ctx.
12914          */
12915         put_ctx(old_ctx);
12916 }
12917
12918 static void __perf_pmu_install(struct perf_event_context *ctx,
12919                                int cpu, struct pmu *pmu, struct list_head *events)
12920 {
12921         struct perf_event *event, *tmp;
12922
12923         /*
12924          * Re-instate events in 2 passes.
12925          *
12926          * Skip over group leaders and only install siblings on this first
12927          * pass, siblings will not get enabled without a leader, however a
12928          * leader will enable its siblings, even if those are still on the old
12929          * context.
12930          */
12931         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12932                 if (event->group_leader == event)
12933                         continue;
12934
12935                 list_del(&event->migrate_entry);
12936                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12937         }
12938
12939         /*
12940          * Once all the siblings are setup properly, install the group leaders
12941          * to make it go.
12942          */
12943         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12944                 list_del(&event->migrate_entry);
12945                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12946         }
12947 }
12948
12949 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12950 {
12951         struct perf_event_context *src_ctx, *dst_ctx;
12952         LIST_HEAD(events);
12953
12954         /*
12955          * Since per-cpu context is persistent, no need to grab an extra
12956          * reference.
12957          */
12958         src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12959         dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12960
12961         /*
12962          * See perf_event_ctx_lock() for comments on the details
12963          * of swizzling perf_event::ctx.
12964          */
12965         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12966
12967         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12968         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12969
12970         if (!list_empty(&events)) {
12971                 /*
12972                  * Wait for the events to quiesce before re-instating them.
12973                  */
12974                 synchronize_rcu();
12975
12976                 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
12977         }
12978
12979         mutex_unlock(&dst_ctx->mutex);
12980         mutex_unlock(&src_ctx->mutex);
12981 }
12982 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12983
12984 static void sync_child_event(struct perf_event *child_event)
12985 {
12986         struct perf_event *parent_event = child_event->parent;
12987         u64 child_val;
12988
12989         if (child_event->attr.inherit_stat) {
12990                 struct task_struct *task = child_event->ctx->task;
12991
12992                 if (task && task != TASK_TOMBSTONE)
12993                         perf_event_read_event(child_event, task);
12994         }
12995
12996         child_val = perf_event_count(child_event);
12997
12998         /*
12999          * Add back the child's count to the parent's count:
13000          */
13001         atomic64_add(child_val, &parent_event->child_count);
13002         atomic64_add(child_event->total_time_enabled,
13003                      &parent_event->child_total_time_enabled);
13004         atomic64_add(child_event->total_time_running,
13005                      &parent_event->child_total_time_running);
13006 }
13007
13008 static void
13009 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13010 {
13011         struct perf_event *parent_event = event->parent;
13012         unsigned long detach_flags = 0;
13013
13014         if (parent_event) {
13015                 /*
13016                  * Do not destroy the 'original' grouping; because of the
13017                  * context switch optimization the original events could've
13018                  * ended up in a random child task.
13019                  *
13020                  * If we were to destroy the original group, all group related
13021                  * operations would cease to function properly after this
13022                  * random child dies.
13023                  *
13024                  * Do destroy all inherited groups, we don't care about those
13025                  * and being thorough is better.
13026                  */
13027                 detach_flags = DETACH_GROUP | DETACH_CHILD;
13028                 mutex_lock(&parent_event->child_mutex);
13029         }
13030
13031         perf_remove_from_context(event, detach_flags);
13032
13033         raw_spin_lock_irq(&ctx->lock);
13034         if (event->state > PERF_EVENT_STATE_EXIT)
13035                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13036         raw_spin_unlock_irq(&ctx->lock);
13037
13038         /*
13039          * Child events can be freed.
13040          */
13041         if (parent_event) {
13042                 mutex_unlock(&parent_event->child_mutex);
13043                 /*
13044                  * Kick perf_poll() for is_event_hup();
13045                  */
13046                 perf_event_wakeup(parent_event);
13047                 free_event(event);
13048                 put_event(parent_event);
13049                 return;
13050         }
13051
13052         /*
13053          * Parent events are governed by their filedesc, retain them.
13054          */
13055         perf_event_wakeup(event);
13056 }
13057
13058 static void perf_event_exit_task_context(struct task_struct *child)
13059 {
13060         struct perf_event_context *child_ctx, *clone_ctx = NULL;
13061         struct perf_event *child_event, *next;
13062
13063         WARN_ON_ONCE(child != current);
13064
13065         child_ctx = perf_pin_task_context(child);
13066         if (!child_ctx)
13067                 return;
13068
13069         /*
13070          * In order to reduce the amount of tricky in ctx tear-down, we hold
13071          * ctx::mutex over the entire thing. This serializes against almost
13072          * everything that wants to access the ctx.
13073          *
13074          * The exception is sys_perf_event_open() /
13075          * perf_event_create_kernel_count() which does find_get_context()
13076          * without ctx::mutex (it cannot because of the move_group double mutex
13077          * lock thing). See the comments in perf_install_in_context().
13078          */
13079         mutex_lock(&child_ctx->mutex);
13080
13081         /*
13082          * In a single ctx::lock section, de-schedule the events and detach the
13083          * context from the task such that we cannot ever get it scheduled back
13084          * in.
13085          */
13086         raw_spin_lock_irq(&child_ctx->lock);
13087         task_ctx_sched_out(child_ctx, EVENT_ALL);
13088
13089         /*
13090          * Now that the context is inactive, destroy the task <-> ctx relation
13091          * and mark the context dead.
13092          */
13093         RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13094         put_ctx(child_ctx); /* cannot be last */
13095         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13096         put_task_struct(current); /* cannot be last */
13097
13098         clone_ctx = unclone_ctx(child_ctx);
13099         raw_spin_unlock_irq(&child_ctx->lock);
13100
13101         if (clone_ctx)
13102                 put_ctx(clone_ctx);
13103
13104         /*
13105          * Report the task dead after unscheduling the events so that we
13106          * won't get any samples after PERF_RECORD_EXIT. We can however still
13107          * get a few PERF_RECORD_READ events.
13108          */
13109         perf_event_task(child, child_ctx, 0);
13110
13111         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13112                 perf_event_exit_event(child_event, child_ctx);
13113
13114         mutex_unlock(&child_ctx->mutex);
13115
13116         put_ctx(child_ctx);
13117 }
13118
13119 /*
13120  * When a child task exits, feed back event values to parent events.
13121  *
13122  * Can be called with exec_update_lock held when called from
13123  * setup_new_exec().
13124  */
13125 void perf_event_exit_task(struct task_struct *child)
13126 {
13127         struct perf_event *event, *tmp;
13128
13129         mutex_lock(&child->perf_event_mutex);
13130         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13131                                  owner_entry) {
13132                 list_del_init(&event->owner_entry);
13133
13134                 /*
13135                  * Ensure the list deletion is visible before we clear
13136                  * the owner, closes a race against perf_release() where
13137                  * we need to serialize on the owner->perf_event_mutex.
13138                  */
13139                 smp_store_release(&event->owner, NULL);
13140         }
13141         mutex_unlock(&child->perf_event_mutex);
13142
13143         perf_event_exit_task_context(child);
13144
13145         /*
13146          * The perf_event_exit_task_context calls perf_event_task
13147          * with child's task_ctx, which generates EXIT events for
13148          * child contexts and sets child->perf_event_ctxp[] to NULL.
13149          * At this point we need to send EXIT events to cpu contexts.
13150          */
13151         perf_event_task(child, NULL, 0);
13152 }
13153
13154 static void perf_free_event(struct perf_event *event,
13155                             struct perf_event_context *ctx)
13156 {
13157         struct perf_event *parent = event->parent;
13158
13159         if (WARN_ON_ONCE(!parent))
13160                 return;
13161
13162         mutex_lock(&parent->child_mutex);
13163         list_del_init(&event->child_list);
13164         mutex_unlock(&parent->child_mutex);
13165
13166         put_event(parent);
13167
13168         raw_spin_lock_irq(&ctx->lock);
13169         perf_group_detach(event);
13170         list_del_event(event, ctx);
13171         raw_spin_unlock_irq(&ctx->lock);
13172         free_event(event);
13173 }
13174
13175 /*
13176  * Free a context as created by inheritance by perf_event_init_task() below,
13177  * used by fork() in case of fail.
13178  *
13179  * Even though the task has never lived, the context and events have been
13180  * exposed through the child_list, so we must take care tearing it all down.
13181  */
13182 void perf_event_free_task(struct task_struct *task)
13183 {
13184         struct perf_event_context *ctx;
13185         struct perf_event *event, *tmp;
13186
13187         ctx = rcu_access_pointer(task->perf_event_ctxp);
13188         if (!ctx)
13189                 return;
13190
13191         mutex_lock(&ctx->mutex);
13192         raw_spin_lock_irq(&ctx->lock);
13193         /*
13194          * Destroy the task <-> ctx relation and mark the context dead.
13195          *
13196          * This is important because even though the task hasn't been
13197          * exposed yet the context has been (through child_list).
13198          */
13199         RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13200         WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13201         put_task_struct(task); /* cannot be last */
13202         raw_spin_unlock_irq(&ctx->lock);
13203
13204
13205         list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13206                 perf_free_event(event, ctx);
13207
13208         mutex_unlock(&ctx->mutex);
13209
13210         /*
13211          * perf_event_release_kernel() could've stolen some of our
13212          * child events and still have them on its free_list. In that
13213          * case we must wait for these events to have been freed (in
13214          * particular all their references to this task must've been
13215          * dropped).
13216          *
13217          * Without this copy_process() will unconditionally free this
13218          * task (irrespective of its reference count) and
13219          * _free_event()'s put_task_struct(event->hw.target) will be a
13220          * use-after-free.
13221          *
13222          * Wait for all events to drop their context reference.
13223          */
13224         wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13225         put_ctx(ctx); /* must be last */
13226 }
13227
13228 void perf_event_delayed_put(struct task_struct *task)
13229 {
13230         WARN_ON_ONCE(task->perf_event_ctxp);
13231 }
13232
13233 struct file *perf_event_get(unsigned int fd)
13234 {
13235         struct file *file = fget(fd);
13236         if (!file)
13237                 return ERR_PTR(-EBADF);
13238
13239         if (file->f_op != &perf_fops) {
13240                 fput(file);
13241                 return ERR_PTR(-EBADF);
13242         }
13243
13244         return file;
13245 }
13246
13247 const struct perf_event *perf_get_event(struct file *file)
13248 {
13249         if (file->f_op != &perf_fops)
13250                 return ERR_PTR(-EINVAL);
13251
13252         return file->private_data;
13253 }
13254
13255 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13256 {
13257         if (!event)
13258                 return ERR_PTR(-EINVAL);
13259
13260         return &event->attr;
13261 }
13262
13263 /*
13264  * Inherit an event from parent task to child task.
13265  *
13266  * Returns:
13267  *  - valid pointer on success
13268  *  - NULL for orphaned events
13269  *  - IS_ERR() on error
13270  */
13271 static struct perf_event *
13272 inherit_event(struct perf_event *parent_event,
13273               struct task_struct *parent,
13274               struct perf_event_context *parent_ctx,
13275               struct task_struct *child,
13276               struct perf_event *group_leader,
13277               struct perf_event_context *child_ctx)
13278 {
13279         enum perf_event_state parent_state = parent_event->state;
13280         struct perf_event_pmu_context *pmu_ctx;
13281         struct perf_event *child_event;
13282         unsigned long flags;
13283
13284         /*
13285          * Instead of creating recursive hierarchies of events,
13286          * we link inherited events back to the original parent,
13287          * which has a filp for sure, which we use as the reference
13288          * count:
13289          */
13290         if (parent_event->parent)
13291                 parent_event = parent_event->parent;
13292
13293         child_event = perf_event_alloc(&parent_event->attr,
13294                                            parent_event->cpu,
13295                                            child,
13296                                            group_leader, parent_event,
13297                                            NULL, NULL, -1);
13298         if (IS_ERR(child_event))
13299                 return child_event;
13300
13301         pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13302         if (IS_ERR(pmu_ctx)) {
13303                 free_event(child_event);
13304                 return ERR_CAST(pmu_ctx);
13305         }
13306         child_event->pmu_ctx = pmu_ctx;
13307
13308         /*
13309          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13310          * must be under the same lock in order to serialize against
13311          * perf_event_release_kernel(), such that either we must observe
13312          * is_orphaned_event() or they will observe us on the child_list.
13313          */
13314         mutex_lock(&parent_event->child_mutex);
13315         if (is_orphaned_event(parent_event) ||
13316             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13317                 mutex_unlock(&parent_event->child_mutex);
13318                 /* task_ctx_data is freed with child_ctx */
13319                 free_event(child_event);
13320                 return NULL;
13321         }
13322
13323         get_ctx(child_ctx);
13324
13325         /*
13326          * Make the child state follow the state of the parent event,
13327          * not its attr.disabled bit.  We hold the parent's mutex,
13328          * so we won't race with perf_event_{en, dis}able_family.
13329          */
13330         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13331                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13332         else
13333                 child_event->state = PERF_EVENT_STATE_OFF;
13334
13335         if (parent_event->attr.freq) {
13336                 u64 sample_period = parent_event->hw.sample_period;
13337                 struct hw_perf_event *hwc = &child_event->hw;
13338
13339                 hwc->sample_period = sample_period;
13340                 hwc->last_period   = sample_period;
13341
13342                 local64_set(&hwc->period_left, sample_period);
13343         }
13344
13345         child_event->ctx = child_ctx;
13346         child_event->overflow_handler = parent_event->overflow_handler;
13347         child_event->overflow_handler_context
13348                 = parent_event->overflow_handler_context;
13349
13350         /*
13351          * Precalculate sample_data sizes
13352          */
13353         perf_event__header_size(child_event);
13354         perf_event__id_header_size(child_event);
13355
13356         /*
13357          * Link it up in the child's context:
13358          */
13359         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13360         add_event_to_ctx(child_event, child_ctx);
13361         child_event->attach_state |= PERF_ATTACH_CHILD;
13362         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13363
13364         /*
13365          * Link this into the parent event's child list
13366          */
13367         list_add_tail(&child_event->child_list, &parent_event->child_list);
13368         mutex_unlock(&parent_event->child_mutex);
13369
13370         return child_event;
13371 }
13372
13373 /*
13374  * Inherits an event group.
13375  *
13376  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13377  * This matches with perf_event_release_kernel() removing all child events.
13378  *
13379  * Returns:
13380  *  - 0 on success
13381  *  - <0 on error
13382  */
13383 static int inherit_group(struct perf_event *parent_event,
13384               struct task_struct *parent,
13385               struct perf_event_context *parent_ctx,
13386               struct task_struct *child,
13387               struct perf_event_context *child_ctx)
13388 {
13389         struct perf_event *leader;
13390         struct perf_event *sub;
13391         struct perf_event *child_ctr;
13392
13393         leader = inherit_event(parent_event, parent, parent_ctx,
13394                                  child, NULL, child_ctx);
13395         if (IS_ERR(leader))
13396                 return PTR_ERR(leader);
13397         /*
13398          * @leader can be NULL here because of is_orphaned_event(). In this
13399          * case inherit_event() will create individual events, similar to what
13400          * perf_group_detach() would do anyway.
13401          */
13402         for_each_sibling_event(sub, parent_event) {
13403                 child_ctr = inherit_event(sub, parent, parent_ctx,
13404                                             child, leader, child_ctx);
13405                 if (IS_ERR(child_ctr))
13406                         return PTR_ERR(child_ctr);
13407
13408                 if (sub->aux_event == parent_event && child_ctr &&
13409                     !perf_get_aux_event(child_ctr, leader))
13410                         return -EINVAL;
13411         }
13412         if (leader)
13413                 leader->group_generation = parent_event->group_generation;
13414         return 0;
13415 }
13416
13417 /*
13418  * Creates the child task context and tries to inherit the event-group.
13419  *
13420  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13421  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13422  * consistent with perf_event_release_kernel() removing all child events.
13423  *
13424  * Returns:
13425  *  - 0 on success
13426  *  - <0 on error
13427  */
13428 static int
13429 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13430                    struct perf_event_context *parent_ctx,
13431                    struct task_struct *child,
13432                    u64 clone_flags, int *inherited_all)
13433 {
13434         struct perf_event_context *child_ctx;
13435         int ret;
13436
13437         if (!event->attr.inherit ||
13438             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13439             /* Do not inherit if sigtrap and signal handlers were cleared. */
13440             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13441                 *inherited_all = 0;
13442                 return 0;
13443         }
13444
13445         child_ctx = child->perf_event_ctxp;
13446         if (!child_ctx) {
13447                 /*
13448                  * This is executed from the parent task context, so
13449                  * inherit events that have been marked for cloning.
13450                  * First allocate and initialize a context for the
13451                  * child.
13452                  */
13453                 child_ctx = alloc_perf_context(child);
13454                 if (!child_ctx)
13455                         return -ENOMEM;
13456
13457                 child->perf_event_ctxp = child_ctx;
13458         }
13459
13460         ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13461         if (ret)
13462                 *inherited_all = 0;
13463
13464         return ret;
13465 }
13466
13467 /*
13468  * Initialize the perf_event context in task_struct
13469  */
13470 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13471 {
13472         struct perf_event_context *child_ctx, *parent_ctx;
13473         struct perf_event_context *cloned_ctx;
13474         struct perf_event *event;
13475         struct task_struct *parent = current;
13476         int inherited_all = 1;
13477         unsigned long flags;
13478         int ret = 0;
13479
13480         if (likely(!parent->perf_event_ctxp))
13481                 return 0;
13482
13483         /*
13484          * If the parent's context is a clone, pin it so it won't get
13485          * swapped under us.
13486          */
13487         parent_ctx = perf_pin_task_context(parent);
13488         if (!parent_ctx)
13489                 return 0;
13490
13491         /*
13492          * No need to check if parent_ctx != NULL here; since we saw
13493          * it non-NULL earlier, the only reason for it to become NULL
13494          * is if we exit, and since we're currently in the middle of
13495          * a fork we can't be exiting at the same time.
13496          */
13497
13498         /*
13499          * Lock the parent list. No need to lock the child - not PID
13500          * hashed yet and not running, so nobody can access it.
13501          */
13502         mutex_lock(&parent_ctx->mutex);
13503
13504         /*
13505          * We dont have to disable NMIs - we are only looking at
13506          * the list, not manipulating it:
13507          */
13508         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13509                 ret = inherit_task_group(event, parent, parent_ctx,
13510                                          child, clone_flags, &inherited_all);
13511                 if (ret)
13512                         goto out_unlock;
13513         }
13514
13515         /*
13516          * We can't hold ctx->lock when iterating the ->flexible_group list due
13517          * to allocations, but we need to prevent rotation because
13518          * rotate_ctx() will change the list from interrupt context.
13519          */
13520         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13521         parent_ctx->rotate_disable = 1;
13522         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13523
13524         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13525                 ret = inherit_task_group(event, parent, parent_ctx,
13526                                          child, clone_flags, &inherited_all);
13527                 if (ret)
13528                         goto out_unlock;
13529         }
13530
13531         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13532         parent_ctx->rotate_disable = 0;
13533
13534         child_ctx = child->perf_event_ctxp;
13535
13536         if (child_ctx && inherited_all) {
13537                 /*
13538                  * Mark the child context as a clone of the parent
13539                  * context, or of whatever the parent is a clone of.
13540                  *
13541                  * Note that if the parent is a clone, the holding of
13542                  * parent_ctx->lock avoids it from being uncloned.
13543                  */
13544                 cloned_ctx = parent_ctx->parent_ctx;
13545                 if (cloned_ctx) {
13546                         child_ctx->parent_ctx = cloned_ctx;
13547                         child_ctx->parent_gen = parent_ctx->parent_gen;
13548                 } else {
13549                         child_ctx->parent_ctx = parent_ctx;
13550                         child_ctx->parent_gen = parent_ctx->generation;
13551                 }
13552                 get_ctx(child_ctx->parent_ctx);
13553         }
13554
13555         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13556 out_unlock:
13557         mutex_unlock(&parent_ctx->mutex);
13558
13559         perf_unpin_context(parent_ctx);
13560         put_ctx(parent_ctx);
13561
13562         return ret;
13563 }
13564
13565 /*
13566  * Initialize the perf_event context in task_struct
13567  */
13568 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13569 {
13570         int ret;
13571
13572         child->perf_event_ctxp = NULL;
13573         mutex_init(&child->perf_event_mutex);
13574         INIT_LIST_HEAD(&child->perf_event_list);
13575
13576         ret = perf_event_init_context(child, clone_flags);
13577         if (ret) {
13578                 perf_event_free_task(child);
13579                 return ret;
13580         }
13581
13582         return 0;
13583 }
13584
13585 static void __init perf_event_init_all_cpus(void)
13586 {
13587         struct swevent_htable *swhash;
13588         struct perf_cpu_context *cpuctx;
13589         int cpu;
13590
13591         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13592
13593         for_each_possible_cpu(cpu) {
13594                 swhash = &per_cpu(swevent_htable, cpu);
13595                 mutex_init(&swhash->hlist_mutex);
13596
13597                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13598                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13599
13600                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13601
13602                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13603                 __perf_event_init_context(&cpuctx->ctx);
13604                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13605                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13606                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13607                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13608                 cpuctx->heap = cpuctx->heap_default;
13609         }
13610 }
13611
13612 static void perf_swevent_init_cpu(unsigned int cpu)
13613 {
13614         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13615
13616         mutex_lock(&swhash->hlist_mutex);
13617         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13618                 struct swevent_hlist *hlist;
13619
13620                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13621                 WARN_ON(!hlist);
13622                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13623         }
13624         mutex_unlock(&swhash->hlist_mutex);
13625 }
13626
13627 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13628 static void __perf_event_exit_context(void *__info)
13629 {
13630         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13631         struct perf_event_context *ctx = __info;
13632         struct perf_event *event;
13633
13634         raw_spin_lock(&ctx->lock);
13635         ctx_sched_out(ctx, EVENT_TIME);
13636         list_for_each_entry(event, &ctx->event_list, event_entry)
13637                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13638         raw_spin_unlock(&ctx->lock);
13639 }
13640
13641 static void perf_event_exit_cpu_context(int cpu)
13642 {
13643         struct perf_cpu_context *cpuctx;
13644         struct perf_event_context *ctx;
13645
13646         // XXX simplify cpuctx->online
13647         mutex_lock(&pmus_lock);
13648         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13649         ctx = &cpuctx->ctx;
13650
13651         mutex_lock(&ctx->mutex);
13652         smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13653         cpuctx->online = 0;
13654         mutex_unlock(&ctx->mutex);
13655         cpumask_clear_cpu(cpu, perf_online_mask);
13656         mutex_unlock(&pmus_lock);
13657 }
13658 #else
13659
13660 static void perf_event_exit_cpu_context(int cpu) { }
13661
13662 #endif
13663
13664 int perf_event_init_cpu(unsigned int cpu)
13665 {
13666         struct perf_cpu_context *cpuctx;
13667         struct perf_event_context *ctx;
13668
13669         perf_swevent_init_cpu(cpu);
13670
13671         mutex_lock(&pmus_lock);
13672         cpumask_set_cpu(cpu, perf_online_mask);
13673         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13674         ctx = &cpuctx->ctx;
13675
13676         mutex_lock(&ctx->mutex);
13677         cpuctx->online = 1;
13678         mutex_unlock(&ctx->mutex);
13679         mutex_unlock(&pmus_lock);
13680
13681         return 0;
13682 }
13683
13684 int perf_event_exit_cpu(unsigned int cpu)
13685 {
13686         perf_event_exit_cpu_context(cpu);
13687         return 0;
13688 }
13689
13690 static int
13691 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13692 {
13693         int cpu;
13694
13695         for_each_online_cpu(cpu)
13696                 perf_event_exit_cpu(cpu);
13697
13698         return NOTIFY_OK;
13699 }
13700
13701 /*
13702  * Run the perf reboot notifier at the very last possible moment so that
13703  * the generic watchdog code runs as long as possible.
13704  */
13705 static struct notifier_block perf_reboot_notifier = {
13706         .notifier_call = perf_reboot,
13707         .priority = INT_MIN,
13708 };
13709
13710 void __init perf_event_init(void)
13711 {
13712         int ret;
13713
13714         idr_init(&pmu_idr);
13715
13716         perf_event_init_all_cpus();
13717         init_srcu_struct(&pmus_srcu);
13718         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13719         perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13720         perf_pmu_register(&perf_task_clock, "task_clock", -1);
13721         perf_tp_register();
13722         perf_event_init_cpu(smp_processor_id());
13723         register_reboot_notifier(&perf_reboot_notifier);
13724
13725         ret = init_hw_breakpoint();
13726         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13727
13728         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13729
13730         /*
13731          * Build time assertion that we keep the data_head at the intended
13732          * location.  IOW, validation we got the __reserved[] size right.
13733          */
13734         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13735                      != 1024);
13736 }
13737
13738 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13739                               char *page)
13740 {
13741         struct perf_pmu_events_attr *pmu_attr =
13742                 container_of(attr, struct perf_pmu_events_attr, attr);
13743
13744         if (pmu_attr->event_str)
13745                 return sprintf(page, "%s\n", pmu_attr->event_str);
13746
13747         return 0;
13748 }
13749 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13750
13751 static int __init perf_event_sysfs_init(void)
13752 {
13753         struct pmu *pmu;
13754         int ret;
13755
13756         mutex_lock(&pmus_lock);
13757
13758         ret = bus_register(&pmu_bus);
13759         if (ret)
13760                 goto unlock;
13761
13762         list_for_each_entry(pmu, &pmus, entry) {
13763                 if (pmu->dev)
13764                         continue;
13765
13766                 ret = pmu_dev_alloc(pmu);
13767                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13768         }
13769         pmu_bus_running = 1;
13770         ret = 0;
13771
13772 unlock:
13773         mutex_unlock(&pmus_lock);
13774
13775         return ret;
13776 }
13777 device_initcall(perf_event_sysfs_init);
13778
13779 #ifdef CONFIG_CGROUP_PERF
13780 static struct cgroup_subsys_state *
13781 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13782 {
13783         struct perf_cgroup *jc;
13784
13785         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13786         if (!jc)
13787                 return ERR_PTR(-ENOMEM);
13788
13789         jc->info = alloc_percpu(struct perf_cgroup_info);
13790         if (!jc->info) {
13791                 kfree(jc);
13792                 return ERR_PTR(-ENOMEM);
13793         }
13794
13795         return &jc->css;
13796 }
13797
13798 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13799 {
13800         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13801
13802         free_percpu(jc->info);
13803         kfree(jc);
13804 }
13805
13806 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13807 {
13808         perf_event_cgroup(css->cgroup);
13809         return 0;
13810 }
13811
13812 static int __perf_cgroup_move(void *info)
13813 {
13814         struct task_struct *task = info;
13815
13816         preempt_disable();
13817         perf_cgroup_switch(task);
13818         preempt_enable();
13819
13820         return 0;
13821 }
13822
13823 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13824 {
13825         struct task_struct *task;
13826         struct cgroup_subsys_state *css;
13827
13828         cgroup_taskset_for_each(task, css, tset)
13829                 task_function_call(task, __perf_cgroup_move, task);
13830 }
13831
13832 struct cgroup_subsys perf_event_cgrp_subsys = {
13833         .css_alloc      = perf_cgroup_css_alloc,
13834         .css_free       = perf_cgroup_css_free,
13835         .css_online     = perf_cgroup_css_online,
13836         .attach         = perf_cgroup_attach,
13837         /*
13838          * Implicitly enable on dfl hierarchy so that perf events can
13839          * always be filtered by cgroup2 path as long as perf_event
13840          * controller is not mounted on a legacy hierarchy.
13841          */
13842         .implicit_on_dfl = true,
13843         .threaded       = true,
13844 };
13845 #endif /* CONFIG_CGROUP_PERF */
13846
13847 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);