Merge remote-tracking branches 'regulator/topic/cpcap', 'regulator/topic/da9063'...
[platform/kernel/linux-rpi.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         WARN_ON_ONCE(!irqs_disabled());
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         WARN_ON_ONCE(!irqs_disabled());
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590         struct perf_event_context *ctx = event->ctx;
591         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593         /* @event doesn't care about cgroup */
594         if (!event->cgrp)
595                 return true;
596
597         /* wants specific cgroup scope but @cpuctx isn't associated with any */
598         if (!cpuctx->cgrp)
599                 return false;
600
601         /*
602          * Cgroup scoping is recursive.  An event enabled for a cgroup is
603          * also enabled for all its descendant cgroups.  If @cpuctx's
604          * cgroup is a descendant of @event's (the test covers identity
605          * case), it's a match.
606          */
607         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608                                     event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613         css_put(&event->cgrp->css);
614         event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619         return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624         struct perf_cgroup_info *t;
625
626         t = per_cpu_ptr(event->cgrp->info, event->cpu);
627         return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632         struct perf_cgroup_info *info;
633         u64 now;
634
635         now = perf_clock();
636
637         info = this_cpu_ptr(cgrp->info);
638
639         info->time += now - info->timestamp;
640         info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646         if (cgrp_out)
647                 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652         struct perf_cgroup *cgrp;
653
654         /*
655          * ensure we access cgroup data only when needed and
656          * when we know the cgroup is pinned (css_get)
657          */
658         if (!is_cgroup_event(event))
659                 return;
660
661         cgrp = perf_cgroup_from_task(current, event->ctx);
662         /*
663          * Do not update time when cgroup is not active
664          */
665         if (cgrp == event->cgrp)
666                 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671                           struct perf_event_context *ctx)
672 {
673         struct perf_cgroup *cgrp;
674         struct perf_cgroup_info *info;
675
676         /*
677          * ctx->lock held by caller
678          * ensure we do not access cgroup data
679          * unless we have the cgroup pinned (css_get)
680          */
681         if (!task || !ctx->nr_cgroups)
682                 return;
683
684         cgrp = perf_cgroup_from_task(task, ctx);
685         info = this_cpu_ptr(cgrp->info);
686         info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
693
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702         struct perf_cpu_context *cpuctx;
703         struct list_head *list;
704         unsigned long flags;
705
706         /*
707          * Disable interrupts and preemption to avoid this CPU's
708          * cgrp_cpuctx_entry to change under us.
709          */
710         local_irq_save(flags);
711
712         list = this_cpu_ptr(&cgrp_cpuctx_list);
713         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717                 perf_pmu_disable(cpuctx->ctx.pmu);
718
719                 if (mode & PERF_CGROUP_SWOUT) {
720                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721                         /*
722                          * must not be done before ctxswout due
723                          * to event_filter_match() in event_sched_out()
724                          */
725                         cpuctx->cgrp = NULL;
726                 }
727
728                 if (mode & PERF_CGROUP_SWIN) {
729                         WARN_ON_ONCE(cpuctx->cgrp);
730                         /*
731                          * set cgrp before ctxsw in to allow
732                          * event_filter_match() to not have to pass
733                          * task around
734                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
735                          * because cgorup events are only per-cpu
736                          */
737                         cpuctx->cgrp = perf_cgroup_from_task(task,
738                                                              &cpuctx->ctx);
739                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740                 }
741                 perf_pmu_enable(cpuctx->ctx.pmu);
742                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743         }
744
745         local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749                                          struct task_struct *next)
750 {
751         struct perf_cgroup *cgrp1;
752         struct perf_cgroup *cgrp2 = NULL;
753
754         rcu_read_lock();
755         /*
756          * we come here when we know perf_cgroup_events > 0
757          * we do not need to pass the ctx here because we know
758          * we are holding the rcu lock
759          */
760         cgrp1 = perf_cgroup_from_task(task, NULL);
761         cgrp2 = perf_cgroup_from_task(next, NULL);
762
763         /*
764          * only schedule out current cgroup events if we know
765          * that we are switching to a different cgroup. Otherwise,
766          * do no touch the cgroup events.
767          */
768         if (cgrp1 != cgrp2)
769                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771         rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775                                         struct task_struct *task)
776 {
777         struct perf_cgroup *cgrp1;
778         struct perf_cgroup *cgrp2 = NULL;
779
780         rcu_read_lock();
781         /*
782          * we come here when we know perf_cgroup_events > 0
783          * we do not need to pass the ctx here because we know
784          * we are holding the rcu lock
785          */
786         cgrp1 = perf_cgroup_from_task(task, NULL);
787         cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789         /*
790          * only need to schedule in cgroup events if we are changing
791          * cgroup during ctxsw. Cgroup events were not scheduled
792          * out of ctxsw out if that was not the case.
793          */
794         if (cgrp1 != cgrp2)
795                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797         rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801                                       struct perf_event_attr *attr,
802                                       struct perf_event *group_leader)
803 {
804         struct perf_cgroup *cgrp;
805         struct cgroup_subsys_state *css;
806         struct fd f = fdget(fd);
807         int ret = 0;
808
809         if (!f.file)
810                 return -EBADF;
811
812         css = css_tryget_online_from_dir(f.file->f_path.dentry,
813                                          &perf_event_cgrp_subsys);
814         if (IS_ERR(css)) {
815                 ret = PTR_ERR(css);
816                 goto out;
817         }
818
819         cgrp = container_of(css, struct perf_cgroup, css);
820         event->cgrp = cgrp;
821
822         /*
823          * all events in a group must monitor
824          * the same cgroup because a task belongs
825          * to only one perf cgroup at a time
826          */
827         if (group_leader && group_leader->cgrp != cgrp) {
828                 perf_detach_cgroup(event);
829                 ret = -EINVAL;
830         }
831 out:
832         fdput(f);
833         return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839         struct perf_cgroup_info *t;
840         t = per_cpu_ptr(event->cgrp->info, event->cpu);
841         event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847         /*
848          * when the current task's perf cgroup does not match
849          * the event's, we need to remember to call the
850          * perf_mark_enable() function the first time a task with
851          * a matching perf cgroup is scheduled in.
852          */
853         if (is_cgroup_event(event) && !perf_cgroup_match(event))
854                 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859                          struct perf_event_context *ctx)
860 {
861         struct perf_event *sub;
862         u64 tstamp = perf_event_time(event);
863
864         if (!event->cgrp_defer_enabled)
865                 return;
866
867         event->cgrp_defer_enabled = 0;
868
869         event->tstamp_enabled = tstamp - event->total_time_enabled;
870         list_for_each_entry(sub, &event->sibling_list, group_entry) {
871                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873                         sub->cgrp_defer_enabled = 0;
874                 }
875         }
876 }
877
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884                          struct perf_event_context *ctx, bool add)
885 {
886         struct perf_cpu_context *cpuctx;
887         struct list_head *cpuctx_entry;
888
889         if (!is_cgroup_event(event))
890                 return;
891
892         if (add && ctx->nr_cgroups++)
893                 return;
894         else if (!add && --ctx->nr_cgroups)
895                 return;
896         /*
897          * Because cgroup events are always per-cpu events,
898          * this will always be called from the right CPU.
899          */
900         cpuctx = __get_cpu_context(ctx);
901         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903         if (add) {
904                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905                 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906                         cpuctx->cgrp = event->cgrp;
907         } else {
908                 list_del(cpuctx_entry);
909                 cpuctx->cgrp = NULL;
910         }
911 }
912
913 #else /* !CONFIG_CGROUP_PERF */
914
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918         return true;
919 }
920
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926         return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938                                          struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943                                         struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956                           struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972         return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982                          struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988                          struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disabled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004         struct perf_cpu_context *cpuctx;
1005         int rotations = 0;
1006
1007         WARN_ON(!irqs_disabled());
1008
1009         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010         rotations = perf_rotate_context(cpuctx);
1011
1012         raw_spin_lock(&cpuctx->hrtimer_lock);
1013         if (rotations)
1014                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015         else
1016                 cpuctx->hrtimer_active = 0;
1017         raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024         struct hrtimer *timer = &cpuctx->hrtimer;
1025         struct pmu *pmu = cpuctx->ctx.pmu;
1026         u64 interval;
1027
1028         /* no multiplexing needed for SW PMU */
1029         if (pmu->task_ctx_nr == perf_sw_context)
1030                 return;
1031
1032         /*
1033          * check default is sane, if not set then force to
1034          * default interval (1/tick)
1035          */
1036         interval = pmu->hrtimer_interval_ms;
1037         if (interval < 1)
1038                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044         timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049         struct hrtimer *timer = &cpuctx->hrtimer;
1050         struct pmu *pmu = cpuctx->ctx.pmu;
1051         unsigned long flags;
1052
1053         /* not for SW PMU */
1054         if (pmu->task_ctx_nr == perf_sw_context)
1055                 return 0;
1056
1057         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058         if (!cpuctx->hrtimer_active) {
1059                 cpuctx->hrtimer_active = 1;
1060                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062         }
1063         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065         return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071         if (!(*count)++)
1072                 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078         if (!--(*count))
1079                 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094         WARN_ON(!irqs_disabled());
1095
1096         WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098         list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103         WARN_ON(!irqs_disabled());
1104
1105         WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107         list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117         struct perf_event_context *ctx;
1118
1119         ctx = container_of(head, struct perf_event_context, rcu_head);
1120         kfree(ctx->task_ctx_data);
1121         kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126         if (atomic_dec_and_test(&ctx->refcount)) {
1127                 if (ctx->parent_ctx)
1128                         put_ctx(ctx->parent_ctx);
1129                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                         put_task_struct(ctx->task);
1131                 call_rcu(&ctx->rcu_head, free_ctx);
1132         }
1133 }
1134
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()    [ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()                   [ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()         [ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event() [ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *      task_struct::perf_event_mutex
1190  *        perf_event_context::mutex
1191  *          perf_event::child_mutex;
1192  *            perf_event_context::lock
1193  *          perf_event::mmap_mutex
1194  *          mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199         struct perf_event_context *ctx;
1200
1201 again:
1202         rcu_read_lock();
1203         ctx = ACCESS_ONCE(event->ctx);
1204         if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                 rcu_read_unlock();
1206                 goto again;
1207         }
1208         rcu_read_unlock();
1209
1210         mutex_lock_nested(&ctx->mutex, nesting);
1211         if (event->ctx != ctx) {
1212                 mutex_unlock(&ctx->mutex);
1213                 put_ctx(ctx);
1214                 goto again;
1215         }
1216
1217         return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223         return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227                                   struct perf_event_context *ctx)
1228 {
1229         mutex_unlock(&ctx->mutex);
1230         put_ctx(ctx);
1231 }
1232
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243         lockdep_assert_held(&ctx->lock);
1244
1245         if (parent_ctx)
1246                 ctx->parent_ctx = NULL;
1247         ctx->generation++;
1248
1249         return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254         /*
1255          * only top level events have the pid namespace they were created in
1256          */
1257         if (event->parent)
1258                 event = event->parent;
1259
1260         return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265         /*
1266          * only top level events have the pid namespace they were created in
1267          */
1268         if (event->parent)
1269                 event = event->parent;
1270
1271         return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280         u64 id = event->id;
1281
1282         if (event->parent)
1283                 id = event->parent->id;
1284
1285         return id;
1286 }
1287
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297         struct perf_event_context *ctx;
1298
1299 retry:
1300         /*
1301          * One of the few rules of preemptible RCU is that one cannot do
1302          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303          * part of the read side critical section was irqs-enabled -- see
1304          * rcu_read_unlock_special().
1305          *
1306          * Since ctx->lock nests under rq->lock we must ensure the entire read
1307          * side critical section has interrupts disabled.
1308          */
1309         local_irq_save(*flags);
1310         rcu_read_lock();
1311         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312         if (ctx) {
1313                 /*
1314                  * If this context is a clone of another, it might
1315                  * get swapped for another underneath us by
1316                  * perf_event_task_sched_out, though the
1317                  * rcu_read_lock() protects us from any context
1318                  * getting freed.  Lock the context and check if it
1319                  * got swapped before we could get the lock, and retry
1320                  * if so.  If we locked the right context, then it
1321                  * can't get swapped on us any more.
1322                  */
1323                 raw_spin_lock(&ctx->lock);
1324                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325                         raw_spin_unlock(&ctx->lock);
1326                         rcu_read_unlock();
1327                         local_irq_restore(*flags);
1328                         goto retry;
1329                 }
1330
1331                 if (ctx->task == TASK_TOMBSTONE ||
1332                     !atomic_inc_not_zero(&ctx->refcount)) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         ctx = NULL;
1335                 } else {
1336                         WARN_ON_ONCE(ctx->task != task);
1337                 }
1338         }
1339         rcu_read_unlock();
1340         if (!ctx)
1341                 local_irq_restore(*flags);
1342         return ctx;
1343 }
1344
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353         struct perf_event_context *ctx;
1354         unsigned long flags;
1355
1356         ctx = perf_lock_task_context(task, ctxn, &flags);
1357         if (ctx) {
1358                 ++ctx->pin_count;
1359                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360         }
1361         return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366         unsigned long flags;
1367
1368         raw_spin_lock_irqsave(&ctx->lock, flags);
1369         --ctx->pin_count;
1370         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378         u64 now = perf_clock();
1379
1380         ctx->time += now - ctx->timestamp;
1381         ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386         struct perf_event_context *ctx = event->ctx;
1387
1388         if (is_cgroup_event(event))
1389                 return perf_cgroup_event_time(event);
1390
1391         return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399         struct perf_event_context *ctx = event->ctx;
1400         u64 run_end;
1401
1402         lockdep_assert_held(&ctx->lock);
1403
1404         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406                 return;
1407
1408         /*
1409          * in cgroup mode, time_enabled represents
1410          * the time the event was enabled AND active
1411          * tasks were in the monitored cgroup. This is
1412          * independent of the activity of the context as
1413          * there may be a mix of cgroup and non-cgroup events.
1414          *
1415          * That is why we treat cgroup events differently
1416          * here.
1417          */
1418         if (is_cgroup_event(event))
1419                 run_end = perf_cgroup_event_time(event);
1420         else if (ctx->is_active)
1421                 run_end = ctx->time;
1422         else
1423                 run_end = event->tstamp_stopped;
1424
1425         event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427         if (event->state == PERF_EVENT_STATE_INACTIVE)
1428                 run_end = event->tstamp_stopped;
1429         else
1430                 run_end = perf_event_time(event);
1431
1432         event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441         struct perf_event *event;
1442
1443         update_event_times(leader);
1444         list_for_each_entry(event, &leader->sibling_list, group_entry)
1445                 update_event_times(event);
1446 }
1447
1448 static enum event_type_t get_event_type(struct perf_event *event)
1449 {
1450         struct perf_event_context *ctx = event->ctx;
1451         enum event_type_t event_type;
1452
1453         lockdep_assert_held(&ctx->lock);
1454
1455         /*
1456          * It's 'group type', really, because if our group leader is
1457          * pinned, so are we.
1458          */
1459         if (event->group_leader != event)
1460                 event = event->group_leader;
1461
1462         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1463         if (!ctx->task)
1464                 event_type |= EVENT_CPU;
1465
1466         return event_type;
1467 }
1468
1469 static struct list_head *
1470 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472         if (event->attr.pinned)
1473                 return &ctx->pinned_groups;
1474         else
1475                 return &ctx->flexible_groups;
1476 }
1477
1478 /*
1479  * Add a event from the lists for its context.
1480  * Must be called with ctx->mutex and ctx->lock held.
1481  */
1482 static void
1483 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1484 {
1485         lockdep_assert_held(&ctx->lock);
1486
1487         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1488         event->attach_state |= PERF_ATTACH_CONTEXT;
1489
1490         /*
1491          * If we're a stand alone event or group leader, we go to the context
1492          * list, group events are kept attached to the group so that
1493          * perf_group_detach can, at all times, locate all siblings.
1494          */
1495         if (event->group_leader == event) {
1496                 struct list_head *list;
1497
1498                 event->group_caps = event->event_caps;
1499
1500                 list = ctx_group_list(event, ctx);
1501                 list_add_tail(&event->group_entry, list);
1502         }
1503
1504         list_update_cgroup_event(event, ctx, true);
1505
1506         list_add_rcu(&event->event_entry, &ctx->event_list);
1507         ctx->nr_events++;
1508         if (event->attr.inherit_stat)
1509                 ctx->nr_stat++;
1510
1511         ctx->generation++;
1512 }
1513
1514 /*
1515  * Initialize event state based on the perf_event_attr::disabled.
1516  */
1517 static inline void perf_event__state_init(struct perf_event *event)
1518 {
1519         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1520                                               PERF_EVENT_STATE_INACTIVE;
1521 }
1522
1523 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1524 {
1525         int entry = sizeof(u64); /* value */
1526         int size = 0;
1527         int nr = 1;
1528
1529         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1530                 size += sizeof(u64);
1531
1532         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1533                 size += sizeof(u64);
1534
1535         if (event->attr.read_format & PERF_FORMAT_ID)
1536                 entry += sizeof(u64);
1537
1538         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1539                 nr += nr_siblings;
1540                 size += sizeof(u64);
1541         }
1542
1543         size += entry * nr;
1544         event->read_size = size;
1545 }
1546
1547 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1548 {
1549         struct perf_sample_data *data;
1550         u16 size = 0;
1551
1552         if (sample_type & PERF_SAMPLE_IP)
1553                 size += sizeof(data->ip);
1554
1555         if (sample_type & PERF_SAMPLE_ADDR)
1556                 size += sizeof(data->addr);
1557
1558         if (sample_type & PERF_SAMPLE_PERIOD)
1559                 size += sizeof(data->period);
1560
1561         if (sample_type & PERF_SAMPLE_WEIGHT)
1562                 size += sizeof(data->weight);
1563
1564         if (sample_type & PERF_SAMPLE_READ)
1565                 size += event->read_size;
1566
1567         if (sample_type & PERF_SAMPLE_DATA_SRC)
1568                 size += sizeof(data->data_src.val);
1569
1570         if (sample_type & PERF_SAMPLE_TRANSACTION)
1571                 size += sizeof(data->txn);
1572
1573         event->header_size = size;
1574 }
1575
1576 /*
1577  * Called at perf_event creation and when events are attached/detached from a
1578  * group.
1579  */
1580 static void perf_event__header_size(struct perf_event *event)
1581 {
1582         __perf_event_read_size(event,
1583                                event->group_leader->nr_siblings);
1584         __perf_event_header_size(event, event->attr.sample_type);
1585 }
1586
1587 static void perf_event__id_header_size(struct perf_event *event)
1588 {
1589         struct perf_sample_data *data;
1590         u64 sample_type = event->attr.sample_type;
1591         u16 size = 0;
1592
1593         if (sample_type & PERF_SAMPLE_TID)
1594                 size += sizeof(data->tid_entry);
1595
1596         if (sample_type & PERF_SAMPLE_TIME)
1597                 size += sizeof(data->time);
1598
1599         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1600                 size += sizeof(data->id);
1601
1602         if (sample_type & PERF_SAMPLE_ID)
1603                 size += sizeof(data->id);
1604
1605         if (sample_type & PERF_SAMPLE_STREAM_ID)
1606                 size += sizeof(data->stream_id);
1607
1608         if (sample_type & PERF_SAMPLE_CPU)
1609                 size += sizeof(data->cpu_entry);
1610
1611         event->id_header_size = size;
1612 }
1613
1614 static bool perf_event_validate_size(struct perf_event *event)
1615 {
1616         /*
1617          * The values computed here will be over-written when we actually
1618          * attach the event.
1619          */
1620         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1621         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1622         perf_event__id_header_size(event);
1623
1624         /*
1625          * Sum the lot; should not exceed the 64k limit we have on records.
1626          * Conservative limit to allow for callchains and other variable fields.
1627          */
1628         if (event->read_size + event->header_size +
1629             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1630                 return false;
1631
1632         return true;
1633 }
1634
1635 static void perf_group_attach(struct perf_event *event)
1636 {
1637         struct perf_event *group_leader = event->group_leader, *pos;
1638
1639         lockdep_assert_held(&event->ctx->lock);
1640
1641         /*
1642          * We can have double attach due to group movement in perf_event_open.
1643          */
1644         if (event->attach_state & PERF_ATTACH_GROUP)
1645                 return;
1646
1647         event->attach_state |= PERF_ATTACH_GROUP;
1648
1649         if (group_leader == event)
1650                 return;
1651
1652         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1653
1654         group_leader->group_caps &= event->event_caps;
1655
1656         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1657         group_leader->nr_siblings++;
1658
1659         perf_event__header_size(group_leader);
1660
1661         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1662                 perf_event__header_size(pos);
1663 }
1664
1665 /*
1666  * Remove a event from the lists for its context.
1667  * Must be called with ctx->mutex and ctx->lock held.
1668  */
1669 static void
1670 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1671 {
1672         WARN_ON_ONCE(event->ctx != ctx);
1673         lockdep_assert_held(&ctx->lock);
1674
1675         /*
1676          * We can have double detach due to exit/hot-unplug + close.
1677          */
1678         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1679                 return;
1680
1681         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1682
1683         list_update_cgroup_event(event, ctx, false);
1684
1685         ctx->nr_events--;
1686         if (event->attr.inherit_stat)
1687                 ctx->nr_stat--;
1688
1689         list_del_rcu(&event->event_entry);
1690
1691         if (event->group_leader == event)
1692                 list_del_init(&event->group_entry);
1693
1694         update_group_times(event);
1695
1696         /*
1697          * If event was in error state, then keep it
1698          * that way, otherwise bogus counts will be
1699          * returned on read(). The only way to get out
1700          * of error state is by explicit re-enabling
1701          * of the event
1702          */
1703         if (event->state > PERF_EVENT_STATE_OFF)
1704                 event->state = PERF_EVENT_STATE_OFF;
1705
1706         ctx->generation++;
1707 }
1708
1709 static void perf_group_detach(struct perf_event *event)
1710 {
1711         struct perf_event *sibling, *tmp;
1712         struct list_head *list = NULL;
1713
1714         lockdep_assert_held(&event->ctx->lock);
1715
1716         /*
1717          * We can have double detach due to exit/hot-unplug + close.
1718          */
1719         if (!(event->attach_state & PERF_ATTACH_GROUP))
1720                 return;
1721
1722         event->attach_state &= ~PERF_ATTACH_GROUP;
1723
1724         /*
1725          * If this is a sibling, remove it from its group.
1726          */
1727         if (event->group_leader != event) {
1728                 list_del_init(&event->group_entry);
1729                 event->group_leader->nr_siblings--;
1730                 goto out;
1731         }
1732
1733         if (!list_empty(&event->group_entry))
1734                 list = &event->group_entry;
1735
1736         /*
1737          * If this was a group event with sibling events then
1738          * upgrade the siblings to singleton events by adding them
1739          * to whatever list we are on.
1740          */
1741         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1742                 if (list)
1743                         list_move_tail(&sibling->group_entry, list);
1744                 sibling->group_leader = sibling;
1745
1746                 /* Inherit group flags from the previous leader */
1747                 sibling->group_caps = event->group_caps;
1748
1749                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1750         }
1751
1752 out:
1753         perf_event__header_size(event->group_leader);
1754
1755         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1756                 perf_event__header_size(tmp);
1757 }
1758
1759 static bool is_orphaned_event(struct perf_event *event)
1760 {
1761         return event->state == PERF_EVENT_STATE_DEAD;
1762 }
1763
1764 static inline int __pmu_filter_match(struct perf_event *event)
1765 {
1766         struct pmu *pmu = event->pmu;
1767         return pmu->filter_match ? pmu->filter_match(event) : 1;
1768 }
1769
1770 /*
1771  * Check whether we should attempt to schedule an event group based on
1772  * PMU-specific filtering. An event group can consist of HW and SW events,
1773  * potentially with a SW leader, so we must check all the filters, to
1774  * determine whether a group is schedulable:
1775  */
1776 static inline int pmu_filter_match(struct perf_event *event)
1777 {
1778         struct perf_event *child;
1779
1780         if (!__pmu_filter_match(event))
1781                 return 0;
1782
1783         list_for_each_entry(child, &event->sibling_list, group_entry) {
1784                 if (!__pmu_filter_match(child))
1785                         return 0;
1786         }
1787
1788         return 1;
1789 }
1790
1791 static inline int
1792 event_filter_match(struct perf_event *event)
1793 {
1794         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1795                perf_cgroup_match(event) && pmu_filter_match(event);
1796 }
1797
1798 static void
1799 event_sched_out(struct perf_event *event,
1800                   struct perf_cpu_context *cpuctx,
1801                   struct perf_event_context *ctx)
1802 {
1803         u64 tstamp = perf_event_time(event);
1804         u64 delta;
1805
1806         WARN_ON_ONCE(event->ctx != ctx);
1807         lockdep_assert_held(&ctx->lock);
1808
1809         /*
1810          * An event which could not be activated because of
1811          * filter mismatch still needs to have its timings
1812          * maintained, otherwise bogus information is return
1813          * via read() for time_enabled, time_running:
1814          */
1815         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1816             !event_filter_match(event)) {
1817                 delta = tstamp - event->tstamp_stopped;
1818                 event->tstamp_running += delta;
1819                 event->tstamp_stopped = tstamp;
1820         }
1821
1822         if (event->state != PERF_EVENT_STATE_ACTIVE)
1823                 return;
1824
1825         perf_pmu_disable(event->pmu);
1826
1827         event->tstamp_stopped = tstamp;
1828         event->pmu->del(event, 0);
1829         event->oncpu = -1;
1830         event->state = PERF_EVENT_STATE_INACTIVE;
1831         if (event->pending_disable) {
1832                 event->pending_disable = 0;
1833                 event->state = PERF_EVENT_STATE_OFF;
1834         }
1835
1836         if (!is_software_event(event))
1837                 cpuctx->active_oncpu--;
1838         if (!--ctx->nr_active)
1839                 perf_event_ctx_deactivate(ctx);
1840         if (event->attr.freq && event->attr.sample_freq)
1841                 ctx->nr_freq--;
1842         if (event->attr.exclusive || !cpuctx->active_oncpu)
1843                 cpuctx->exclusive = 0;
1844
1845         perf_pmu_enable(event->pmu);
1846 }
1847
1848 static void
1849 group_sched_out(struct perf_event *group_event,
1850                 struct perf_cpu_context *cpuctx,
1851                 struct perf_event_context *ctx)
1852 {
1853         struct perf_event *event;
1854         int state = group_event->state;
1855
1856         perf_pmu_disable(ctx->pmu);
1857
1858         event_sched_out(group_event, cpuctx, ctx);
1859
1860         /*
1861          * Schedule out siblings (if any):
1862          */
1863         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1864                 event_sched_out(event, cpuctx, ctx);
1865
1866         perf_pmu_enable(ctx->pmu);
1867
1868         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1869                 cpuctx->exclusive = 0;
1870 }
1871
1872 #define DETACH_GROUP    0x01UL
1873
1874 /*
1875  * Cross CPU call to remove a performance event
1876  *
1877  * We disable the event on the hardware level first. After that we
1878  * remove it from the context list.
1879  */
1880 static void
1881 __perf_remove_from_context(struct perf_event *event,
1882                            struct perf_cpu_context *cpuctx,
1883                            struct perf_event_context *ctx,
1884                            void *info)
1885 {
1886         unsigned long flags = (unsigned long)info;
1887
1888         event_sched_out(event, cpuctx, ctx);
1889         if (flags & DETACH_GROUP)
1890                 perf_group_detach(event);
1891         list_del_event(event, ctx);
1892
1893         if (!ctx->nr_events && ctx->is_active) {
1894                 ctx->is_active = 0;
1895                 if (ctx->task) {
1896                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1897                         cpuctx->task_ctx = NULL;
1898                 }
1899         }
1900 }
1901
1902 /*
1903  * Remove the event from a task's (or a CPU's) list of events.
1904  *
1905  * If event->ctx is a cloned context, callers must make sure that
1906  * every task struct that event->ctx->task could possibly point to
1907  * remains valid.  This is OK when called from perf_release since
1908  * that only calls us on the top-level context, which can't be a clone.
1909  * When called from perf_event_exit_task, it's OK because the
1910  * context has been detached from its task.
1911  */
1912 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1913 {
1914         struct perf_event_context *ctx = event->ctx;
1915
1916         lockdep_assert_held(&ctx->mutex);
1917
1918         event_function_call(event, __perf_remove_from_context, (void *)flags);
1919
1920         /*
1921          * The above event_function_call() can NO-OP when it hits
1922          * TASK_TOMBSTONE. In that case we must already have been detached
1923          * from the context (by perf_event_exit_event()) but the grouping
1924          * might still be in-tact.
1925          */
1926         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1927         if ((flags & DETACH_GROUP) &&
1928             (event->attach_state & PERF_ATTACH_GROUP)) {
1929                 /*
1930                  * Since in that case we cannot possibly be scheduled, simply
1931                  * detach now.
1932                  */
1933                 raw_spin_lock_irq(&ctx->lock);
1934                 perf_group_detach(event);
1935                 raw_spin_unlock_irq(&ctx->lock);
1936         }
1937 }
1938
1939 /*
1940  * Cross CPU call to disable a performance event
1941  */
1942 static void __perf_event_disable(struct perf_event *event,
1943                                  struct perf_cpu_context *cpuctx,
1944                                  struct perf_event_context *ctx,
1945                                  void *info)
1946 {
1947         if (event->state < PERF_EVENT_STATE_INACTIVE)
1948                 return;
1949
1950         update_context_time(ctx);
1951         update_cgrp_time_from_event(event);
1952         update_group_times(event);
1953         if (event == event->group_leader)
1954                 group_sched_out(event, cpuctx, ctx);
1955         else
1956                 event_sched_out(event, cpuctx, ctx);
1957         event->state = PERF_EVENT_STATE_OFF;
1958 }
1959
1960 /*
1961  * Disable a event.
1962  *
1963  * If event->ctx is a cloned context, callers must make sure that
1964  * every task struct that event->ctx->task could possibly point to
1965  * remains valid.  This condition is satisifed when called through
1966  * perf_event_for_each_child or perf_event_for_each because they
1967  * hold the top-level event's child_mutex, so any descendant that
1968  * goes to exit will block in perf_event_exit_event().
1969  *
1970  * When called from perf_pending_event it's OK because event->ctx
1971  * is the current context on this CPU and preemption is disabled,
1972  * hence we can't get into perf_event_task_sched_out for this context.
1973  */
1974 static void _perf_event_disable(struct perf_event *event)
1975 {
1976         struct perf_event_context *ctx = event->ctx;
1977
1978         raw_spin_lock_irq(&ctx->lock);
1979         if (event->state <= PERF_EVENT_STATE_OFF) {
1980                 raw_spin_unlock_irq(&ctx->lock);
1981                 return;
1982         }
1983         raw_spin_unlock_irq(&ctx->lock);
1984
1985         event_function_call(event, __perf_event_disable, NULL);
1986 }
1987
1988 void perf_event_disable_local(struct perf_event *event)
1989 {
1990         event_function_local(event, __perf_event_disable, NULL);
1991 }
1992
1993 /*
1994  * Strictly speaking kernel users cannot create groups and therefore this
1995  * interface does not need the perf_event_ctx_lock() magic.
1996  */
1997 void perf_event_disable(struct perf_event *event)
1998 {
1999         struct perf_event_context *ctx;
2000
2001         ctx = perf_event_ctx_lock(event);
2002         _perf_event_disable(event);
2003         perf_event_ctx_unlock(event, ctx);
2004 }
2005 EXPORT_SYMBOL_GPL(perf_event_disable);
2006
2007 void perf_event_disable_inatomic(struct perf_event *event)
2008 {
2009         event->pending_disable = 1;
2010         irq_work_queue(&event->pending);
2011 }
2012
2013 static void perf_set_shadow_time(struct perf_event *event,
2014                                  struct perf_event_context *ctx,
2015                                  u64 tstamp)
2016 {
2017         /*
2018          * use the correct time source for the time snapshot
2019          *
2020          * We could get by without this by leveraging the
2021          * fact that to get to this function, the caller
2022          * has most likely already called update_context_time()
2023          * and update_cgrp_time_xx() and thus both timestamp
2024          * are identical (or very close). Given that tstamp is,
2025          * already adjusted for cgroup, we could say that:
2026          *    tstamp - ctx->timestamp
2027          * is equivalent to
2028          *    tstamp - cgrp->timestamp.
2029          *
2030          * Then, in perf_output_read(), the calculation would
2031          * work with no changes because:
2032          * - event is guaranteed scheduled in
2033          * - no scheduled out in between
2034          * - thus the timestamp would be the same
2035          *
2036          * But this is a bit hairy.
2037          *
2038          * So instead, we have an explicit cgroup call to remain
2039          * within the time time source all along. We believe it
2040          * is cleaner and simpler to understand.
2041          */
2042         if (is_cgroup_event(event))
2043                 perf_cgroup_set_shadow_time(event, tstamp);
2044         else
2045                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2046 }
2047
2048 #define MAX_INTERRUPTS (~0ULL)
2049
2050 static void perf_log_throttle(struct perf_event *event, int enable);
2051 static void perf_log_itrace_start(struct perf_event *event);
2052
2053 static int
2054 event_sched_in(struct perf_event *event,
2055                  struct perf_cpu_context *cpuctx,
2056                  struct perf_event_context *ctx)
2057 {
2058         u64 tstamp = perf_event_time(event);
2059         int ret = 0;
2060
2061         lockdep_assert_held(&ctx->lock);
2062
2063         if (event->state <= PERF_EVENT_STATE_OFF)
2064                 return 0;
2065
2066         WRITE_ONCE(event->oncpu, smp_processor_id());
2067         /*
2068          * Order event::oncpu write to happen before the ACTIVE state
2069          * is visible.
2070          */
2071         smp_wmb();
2072         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2073
2074         /*
2075          * Unthrottle events, since we scheduled we might have missed several
2076          * ticks already, also for a heavily scheduling task there is little
2077          * guarantee it'll get a tick in a timely manner.
2078          */
2079         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2080                 perf_log_throttle(event, 1);
2081                 event->hw.interrupts = 0;
2082         }
2083
2084         /*
2085          * The new state must be visible before we turn it on in the hardware:
2086          */
2087         smp_wmb();
2088
2089         perf_pmu_disable(event->pmu);
2090
2091         perf_set_shadow_time(event, ctx, tstamp);
2092
2093         perf_log_itrace_start(event);
2094
2095         if (event->pmu->add(event, PERF_EF_START)) {
2096                 event->state = PERF_EVENT_STATE_INACTIVE;
2097                 event->oncpu = -1;
2098                 ret = -EAGAIN;
2099                 goto out;
2100         }
2101
2102         event->tstamp_running += tstamp - event->tstamp_stopped;
2103
2104         if (!is_software_event(event))
2105                 cpuctx->active_oncpu++;
2106         if (!ctx->nr_active++)
2107                 perf_event_ctx_activate(ctx);
2108         if (event->attr.freq && event->attr.sample_freq)
2109                 ctx->nr_freq++;
2110
2111         if (event->attr.exclusive)
2112                 cpuctx->exclusive = 1;
2113
2114 out:
2115         perf_pmu_enable(event->pmu);
2116
2117         return ret;
2118 }
2119
2120 static int
2121 group_sched_in(struct perf_event *group_event,
2122                struct perf_cpu_context *cpuctx,
2123                struct perf_event_context *ctx)
2124 {
2125         struct perf_event *event, *partial_group = NULL;
2126         struct pmu *pmu = ctx->pmu;
2127         u64 now = ctx->time;
2128         bool simulate = false;
2129
2130         if (group_event->state == PERF_EVENT_STATE_OFF)
2131                 return 0;
2132
2133         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2134
2135         if (event_sched_in(group_event, cpuctx, ctx)) {
2136                 pmu->cancel_txn(pmu);
2137                 perf_mux_hrtimer_restart(cpuctx);
2138                 return -EAGAIN;
2139         }
2140
2141         /*
2142          * Schedule in siblings as one group (if any):
2143          */
2144         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2145                 if (event_sched_in(event, cpuctx, ctx)) {
2146                         partial_group = event;
2147                         goto group_error;
2148                 }
2149         }
2150
2151         if (!pmu->commit_txn(pmu))
2152                 return 0;
2153
2154 group_error:
2155         /*
2156          * Groups can be scheduled in as one unit only, so undo any
2157          * partial group before returning:
2158          * The events up to the failed event are scheduled out normally,
2159          * tstamp_stopped will be updated.
2160          *
2161          * The failed events and the remaining siblings need to have
2162          * their timings updated as if they had gone thru event_sched_in()
2163          * and event_sched_out(). This is required to get consistent timings
2164          * across the group. This also takes care of the case where the group
2165          * could never be scheduled by ensuring tstamp_stopped is set to mark
2166          * the time the event was actually stopped, such that time delta
2167          * calculation in update_event_times() is correct.
2168          */
2169         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2170                 if (event == partial_group)
2171                         simulate = true;
2172
2173                 if (simulate) {
2174                         event->tstamp_running += now - event->tstamp_stopped;
2175                         event->tstamp_stopped = now;
2176                 } else {
2177                         event_sched_out(event, cpuctx, ctx);
2178                 }
2179         }
2180         event_sched_out(group_event, cpuctx, ctx);
2181
2182         pmu->cancel_txn(pmu);
2183
2184         perf_mux_hrtimer_restart(cpuctx);
2185
2186         return -EAGAIN;
2187 }
2188
2189 /*
2190  * Work out whether we can put this event group on the CPU now.
2191  */
2192 static int group_can_go_on(struct perf_event *event,
2193                            struct perf_cpu_context *cpuctx,
2194                            int can_add_hw)
2195 {
2196         /*
2197          * Groups consisting entirely of software events can always go on.
2198          */
2199         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2200                 return 1;
2201         /*
2202          * If an exclusive group is already on, no other hardware
2203          * events can go on.
2204          */
2205         if (cpuctx->exclusive)
2206                 return 0;
2207         /*
2208          * If this group is exclusive and there are already
2209          * events on the CPU, it can't go on.
2210          */
2211         if (event->attr.exclusive && cpuctx->active_oncpu)
2212                 return 0;
2213         /*
2214          * Otherwise, try to add it if all previous groups were able
2215          * to go on.
2216          */
2217         return can_add_hw;
2218 }
2219
2220 /*
2221  * Complement to update_event_times(). This computes the tstamp_* values to
2222  * continue 'enabled' state from @now, and effectively discards the time
2223  * between the prior tstamp_stopped and now (as we were in the OFF state, or
2224  * just switched (context) time base).
2225  *
2226  * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2227  * cannot have been scheduled in yet. And going into INACTIVE state means
2228  * '@event->tstamp_stopped = @now'.
2229  *
2230  * Thus given the rules of update_event_times():
2231  *
2232  *   total_time_enabled = tstamp_stopped - tstamp_enabled
2233  *   total_time_running = tstamp_stopped - tstamp_running
2234  *
2235  * We can insert 'tstamp_stopped == now' and reverse them to compute new
2236  * tstamp_* values.
2237  */
2238 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2239 {
2240         WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2241
2242         event->tstamp_stopped = now;
2243         event->tstamp_enabled = now - event->total_time_enabled;
2244         event->tstamp_running = now - event->total_time_running;
2245 }
2246
2247 static void add_event_to_ctx(struct perf_event *event,
2248                                struct perf_event_context *ctx)
2249 {
2250         u64 tstamp = perf_event_time(event);
2251
2252         list_add_event(event, ctx);
2253         perf_group_attach(event);
2254         /*
2255          * We can be called with event->state == STATE_OFF when we create with
2256          * .disabled = 1. In that case the IOC_ENABLE will call this function.
2257          */
2258         if (event->state == PERF_EVENT_STATE_INACTIVE)
2259                 __perf_event_enable_time(event, tstamp);
2260 }
2261
2262 static void ctx_sched_out(struct perf_event_context *ctx,
2263                           struct perf_cpu_context *cpuctx,
2264                           enum event_type_t event_type);
2265 static void
2266 ctx_sched_in(struct perf_event_context *ctx,
2267              struct perf_cpu_context *cpuctx,
2268              enum event_type_t event_type,
2269              struct task_struct *task);
2270
2271 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2272                                struct perf_event_context *ctx,
2273                                enum event_type_t event_type)
2274 {
2275         if (!cpuctx->task_ctx)
2276                 return;
2277
2278         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2279                 return;
2280
2281         ctx_sched_out(ctx, cpuctx, event_type);
2282 }
2283
2284 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2285                                 struct perf_event_context *ctx,
2286                                 struct task_struct *task)
2287 {
2288         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2289         if (ctx)
2290                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2291         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2292         if (ctx)
2293                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2294 }
2295
2296 /*
2297  * We want to maintain the following priority of scheduling:
2298  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2299  *  - task pinned (EVENT_PINNED)
2300  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2301  *  - task flexible (EVENT_FLEXIBLE).
2302  *
2303  * In order to avoid unscheduling and scheduling back in everything every
2304  * time an event is added, only do it for the groups of equal priority and
2305  * below.
2306  *
2307  * This can be called after a batch operation on task events, in which case
2308  * event_type is a bit mask of the types of events involved. For CPU events,
2309  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2310  */
2311 static void ctx_resched(struct perf_cpu_context *cpuctx,
2312                         struct perf_event_context *task_ctx,
2313                         enum event_type_t event_type)
2314 {
2315         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2316         bool cpu_event = !!(event_type & EVENT_CPU);
2317
2318         /*
2319          * If pinned groups are involved, flexible groups also need to be
2320          * scheduled out.
2321          */
2322         if (event_type & EVENT_PINNED)
2323                 event_type |= EVENT_FLEXIBLE;
2324
2325         perf_pmu_disable(cpuctx->ctx.pmu);
2326         if (task_ctx)
2327                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2328
2329         /*
2330          * Decide which cpu ctx groups to schedule out based on the types
2331          * of events that caused rescheduling:
2332          *  - EVENT_CPU: schedule out corresponding groups;
2333          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2334          *  - otherwise, do nothing more.
2335          */
2336         if (cpu_event)
2337                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2338         else if (ctx_event_type & EVENT_PINNED)
2339                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2340
2341         perf_event_sched_in(cpuctx, task_ctx, current);
2342         perf_pmu_enable(cpuctx->ctx.pmu);
2343 }
2344
2345 /*
2346  * Cross CPU call to install and enable a performance event
2347  *
2348  * Very similar to remote_function() + event_function() but cannot assume that
2349  * things like ctx->is_active and cpuctx->task_ctx are set.
2350  */
2351 static int  __perf_install_in_context(void *info)
2352 {
2353         struct perf_event *event = info;
2354         struct perf_event_context *ctx = event->ctx;
2355         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2356         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2357         bool reprogram = true;
2358         int ret = 0;
2359
2360         raw_spin_lock(&cpuctx->ctx.lock);
2361         if (ctx->task) {
2362                 raw_spin_lock(&ctx->lock);
2363                 task_ctx = ctx;
2364
2365                 reprogram = (ctx->task == current);
2366
2367                 /*
2368                  * If the task is running, it must be running on this CPU,
2369                  * otherwise we cannot reprogram things.
2370                  *
2371                  * If its not running, we don't care, ctx->lock will
2372                  * serialize against it becoming runnable.
2373                  */
2374                 if (task_curr(ctx->task) && !reprogram) {
2375                         ret = -ESRCH;
2376                         goto unlock;
2377                 }
2378
2379                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2380         } else if (task_ctx) {
2381                 raw_spin_lock(&task_ctx->lock);
2382         }
2383
2384         if (reprogram) {
2385                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2386                 add_event_to_ctx(event, ctx);
2387                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2388         } else {
2389                 add_event_to_ctx(event, ctx);
2390         }
2391
2392 unlock:
2393         perf_ctx_unlock(cpuctx, task_ctx);
2394
2395         return ret;
2396 }
2397
2398 /*
2399  * Attach a performance event to a context.
2400  *
2401  * Very similar to event_function_call, see comment there.
2402  */
2403 static void
2404 perf_install_in_context(struct perf_event_context *ctx,
2405                         struct perf_event *event,
2406                         int cpu)
2407 {
2408         struct task_struct *task = READ_ONCE(ctx->task);
2409
2410         lockdep_assert_held(&ctx->mutex);
2411
2412         if (event->cpu != -1)
2413                 event->cpu = cpu;
2414
2415         /*
2416          * Ensures that if we can observe event->ctx, both the event and ctx
2417          * will be 'complete'. See perf_iterate_sb_cpu().
2418          */
2419         smp_store_release(&event->ctx, ctx);
2420
2421         if (!task) {
2422                 cpu_function_call(cpu, __perf_install_in_context, event);
2423                 return;
2424         }
2425
2426         /*
2427          * Should not happen, we validate the ctx is still alive before calling.
2428          */
2429         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2430                 return;
2431
2432         /*
2433          * Installing events is tricky because we cannot rely on ctx->is_active
2434          * to be set in case this is the nr_events 0 -> 1 transition.
2435          *
2436          * Instead we use task_curr(), which tells us if the task is running.
2437          * However, since we use task_curr() outside of rq::lock, we can race
2438          * against the actual state. This means the result can be wrong.
2439          *
2440          * If we get a false positive, we retry, this is harmless.
2441          *
2442          * If we get a false negative, things are complicated. If we are after
2443          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2444          * value must be correct. If we're before, it doesn't matter since
2445          * perf_event_context_sched_in() will program the counter.
2446          *
2447          * However, this hinges on the remote context switch having observed
2448          * our task->perf_event_ctxp[] store, such that it will in fact take
2449          * ctx::lock in perf_event_context_sched_in().
2450          *
2451          * We do this by task_function_call(), if the IPI fails to hit the task
2452          * we know any future context switch of task must see the
2453          * perf_event_ctpx[] store.
2454          */
2455
2456         /*
2457          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2458          * task_cpu() load, such that if the IPI then does not find the task
2459          * running, a future context switch of that task must observe the
2460          * store.
2461          */
2462         smp_mb();
2463 again:
2464         if (!task_function_call(task, __perf_install_in_context, event))
2465                 return;
2466
2467         raw_spin_lock_irq(&ctx->lock);
2468         task = ctx->task;
2469         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2470                 /*
2471                  * Cannot happen because we already checked above (which also
2472                  * cannot happen), and we hold ctx->mutex, which serializes us
2473                  * against perf_event_exit_task_context().
2474                  */
2475                 raw_spin_unlock_irq(&ctx->lock);
2476                 return;
2477         }
2478         /*
2479          * If the task is not running, ctx->lock will avoid it becoming so,
2480          * thus we can safely install the event.
2481          */
2482         if (task_curr(task)) {
2483                 raw_spin_unlock_irq(&ctx->lock);
2484                 goto again;
2485         }
2486         add_event_to_ctx(event, ctx);
2487         raw_spin_unlock_irq(&ctx->lock);
2488 }
2489
2490 /*
2491  * Put a event into inactive state and update time fields.
2492  * Enabling the leader of a group effectively enables all
2493  * the group members that aren't explicitly disabled, so we
2494  * have to update their ->tstamp_enabled also.
2495  * Note: this works for group members as well as group leaders
2496  * since the non-leader members' sibling_lists will be empty.
2497  */
2498 static void __perf_event_mark_enabled(struct perf_event *event)
2499 {
2500         struct perf_event *sub;
2501         u64 tstamp = perf_event_time(event);
2502
2503         event->state = PERF_EVENT_STATE_INACTIVE;
2504         __perf_event_enable_time(event, tstamp);
2505         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2506                 /* XXX should not be > INACTIVE if event isn't */
2507                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2508                         __perf_event_enable_time(sub, tstamp);
2509         }
2510 }
2511
2512 /*
2513  * Cross CPU call to enable a performance event
2514  */
2515 static void __perf_event_enable(struct perf_event *event,
2516                                 struct perf_cpu_context *cpuctx,
2517                                 struct perf_event_context *ctx,
2518                                 void *info)
2519 {
2520         struct perf_event *leader = event->group_leader;
2521         struct perf_event_context *task_ctx;
2522
2523         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2524             event->state <= PERF_EVENT_STATE_ERROR)
2525                 return;
2526
2527         if (ctx->is_active)
2528                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2529
2530         __perf_event_mark_enabled(event);
2531
2532         if (!ctx->is_active)
2533                 return;
2534
2535         if (!event_filter_match(event)) {
2536                 if (is_cgroup_event(event))
2537                         perf_cgroup_defer_enabled(event);
2538                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2539                 return;
2540         }
2541
2542         /*
2543          * If the event is in a group and isn't the group leader,
2544          * then don't put it on unless the group is on.
2545          */
2546         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2547                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2548                 return;
2549         }
2550
2551         task_ctx = cpuctx->task_ctx;
2552         if (ctx->task)
2553                 WARN_ON_ONCE(task_ctx != ctx);
2554
2555         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2556 }
2557
2558 /*
2559  * Enable a event.
2560  *
2561  * If event->ctx is a cloned context, callers must make sure that
2562  * every task struct that event->ctx->task could possibly point to
2563  * remains valid.  This condition is satisfied when called through
2564  * perf_event_for_each_child or perf_event_for_each as described
2565  * for perf_event_disable.
2566  */
2567 static void _perf_event_enable(struct perf_event *event)
2568 {
2569         struct perf_event_context *ctx = event->ctx;
2570
2571         raw_spin_lock_irq(&ctx->lock);
2572         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2573             event->state <  PERF_EVENT_STATE_ERROR) {
2574                 raw_spin_unlock_irq(&ctx->lock);
2575                 return;
2576         }
2577
2578         /*
2579          * If the event is in error state, clear that first.
2580          *
2581          * That way, if we see the event in error state below, we know that it
2582          * has gone back into error state, as distinct from the task having
2583          * been scheduled away before the cross-call arrived.
2584          */
2585         if (event->state == PERF_EVENT_STATE_ERROR)
2586                 event->state = PERF_EVENT_STATE_OFF;
2587         raw_spin_unlock_irq(&ctx->lock);
2588
2589         event_function_call(event, __perf_event_enable, NULL);
2590 }
2591
2592 /*
2593  * See perf_event_disable();
2594  */
2595 void perf_event_enable(struct perf_event *event)
2596 {
2597         struct perf_event_context *ctx;
2598
2599         ctx = perf_event_ctx_lock(event);
2600         _perf_event_enable(event);
2601         perf_event_ctx_unlock(event, ctx);
2602 }
2603 EXPORT_SYMBOL_GPL(perf_event_enable);
2604
2605 struct stop_event_data {
2606         struct perf_event       *event;
2607         unsigned int            restart;
2608 };
2609
2610 static int __perf_event_stop(void *info)
2611 {
2612         struct stop_event_data *sd = info;
2613         struct perf_event *event = sd->event;
2614
2615         /* if it's already INACTIVE, do nothing */
2616         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617                 return 0;
2618
2619         /* matches smp_wmb() in event_sched_in() */
2620         smp_rmb();
2621
2622         /*
2623          * There is a window with interrupts enabled before we get here,
2624          * so we need to check again lest we try to stop another CPU's event.
2625          */
2626         if (READ_ONCE(event->oncpu) != smp_processor_id())
2627                 return -EAGAIN;
2628
2629         event->pmu->stop(event, PERF_EF_UPDATE);
2630
2631         /*
2632          * May race with the actual stop (through perf_pmu_output_stop()),
2633          * but it is only used for events with AUX ring buffer, and such
2634          * events will refuse to restart because of rb::aux_mmap_count==0,
2635          * see comments in perf_aux_output_begin().
2636          *
2637          * Since this is happening on a event-local CPU, no trace is lost
2638          * while restarting.
2639          */
2640         if (sd->restart)
2641                 event->pmu->start(event, 0);
2642
2643         return 0;
2644 }
2645
2646 static int perf_event_stop(struct perf_event *event, int restart)
2647 {
2648         struct stop_event_data sd = {
2649                 .event          = event,
2650                 .restart        = restart,
2651         };
2652         int ret = 0;
2653
2654         do {
2655                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2656                         return 0;
2657
2658                 /* matches smp_wmb() in event_sched_in() */
2659                 smp_rmb();
2660
2661                 /*
2662                  * We only want to restart ACTIVE events, so if the event goes
2663                  * inactive here (event->oncpu==-1), there's nothing more to do;
2664                  * fall through with ret==-ENXIO.
2665                  */
2666                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2667                                         __perf_event_stop, &sd);
2668         } while (ret == -EAGAIN);
2669
2670         return ret;
2671 }
2672
2673 /*
2674  * In order to contain the amount of racy and tricky in the address filter
2675  * configuration management, it is a two part process:
2676  *
2677  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2678  *      we update the addresses of corresponding vmas in
2679  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2680  * (p2) when an event is scheduled in (pmu::add), it calls
2681  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2682  *      if the generation has changed since the previous call.
2683  *
2684  * If (p1) happens while the event is active, we restart it to force (p2).
2685  *
2686  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2687  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2688  *     ioctl;
2689  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2690  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2691  *     for reading;
2692  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2693  *     of exec.
2694  */
2695 void perf_event_addr_filters_sync(struct perf_event *event)
2696 {
2697         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2698
2699         if (!has_addr_filter(event))
2700                 return;
2701
2702         raw_spin_lock(&ifh->lock);
2703         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2704                 event->pmu->addr_filters_sync(event);
2705                 event->hw.addr_filters_gen = event->addr_filters_gen;
2706         }
2707         raw_spin_unlock(&ifh->lock);
2708 }
2709 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2710
2711 static int _perf_event_refresh(struct perf_event *event, int refresh)
2712 {
2713         /*
2714          * not supported on inherited events
2715          */
2716         if (event->attr.inherit || !is_sampling_event(event))
2717                 return -EINVAL;
2718
2719         atomic_add(refresh, &event->event_limit);
2720         _perf_event_enable(event);
2721
2722         return 0;
2723 }
2724
2725 /*
2726  * See perf_event_disable()
2727  */
2728 int perf_event_refresh(struct perf_event *event, int refresh)
2729 {
2730         struct perf_event_context *ctx;
2731         int ret;
2732
2733         ctx = perf_event_ctx_lock(event);
2734         ret = _perf_event_refresh(event, refresh);
2735         perf_event_ctx_unlock(event, ctx);
2736
2737         return ret;
2738 }
2739 EXPORT_SYMBOL_GPL(perf_event_refresh);
2740
2741 static void ctx_sched_out(struct perf_event_context *ctx,
2742                           struct perf_cpu_context *cpuctx,
2743                           enum event_type_t event_type)
2744 {
2745         int is_active = ctx->is_active;
2746         struct perf_event *event;
2747
2748         lockdep_assert_held(&ctx->lock);
2749
2750         if (likely(!ctx->nr_events)) {
2751                 /*
2752                  * See __perf_remove_from_context().
2753                  */
2754                 WARN_ON_ONCE(ctx->is_active);
2755                 if (ctx->task)
2756                         WARN_ON_ONCE(cpuctx->task_ctx);
2757                 return;
2758         }
2759
2760         ctx->is_active &= ~event_type;
2761         if (!(ctx->is_active & EVENT_ALL))
2762                 ctx->is_active = 0;
2763
2764         if (ctx->task) {
2765                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2766                 if (!ctx->is_active)
2767                         cpuctx->task_ctx = NULL;
2768         }
2769
2770         /*
2771          * Always update time if it was set; not only when it changes.
2772          * Otherwise we can 'forget' to update time for any but the last
2773          * context we sched out. For example:
2774          *
2775          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2776          *   ctx_sched_out(.event_type = EVENT_PINNED)
2777          *
2778          * would only update time for the pinned events.
2779          */
2780         if (is_active & EVENT_TIME) {
2781                 /* update (and stop) ctx time */
2782                 update_context_time(ctx);
2783                 update_cgrp_time_from_cpuctx(cpuctx);
2784         }
2785
2786         is_active ^= ctx->is_active; /* changed bits */
2787
2788         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2789                 return;
2790
2791         perf_pmu_disable(ctx->pmu);
2792         if (is_active & EVENT_PINNED) {
2793                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2794                         group_sched_out(event, cpuctx, ctx);
2795         }
2796
2797         if (is_active & EVENT_FLEXIBLE) {
2798                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2799                         group_sched_out(event, cpuctx, ctx);
2800         }
2801         perf_pmu_enable(ctx->pmu);
2802 }
2803
2804 /*
2805  * Test whether two contexts are equivalent, i.e. whether they have both been
2806  * cloned from the same version of the same context.
2807  *
2808  * Equivalence is measured using a generation number in the context that is
2809  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2810  * and list_del_event().
2811  */
2812 static int context_equiv(struct perf_event_context *ctx1,
2813                          struct perf_event_context *ctx2)
2814 {
2815         lockdep_assert_held(&ctx1->lock);
2816         lockdep_assert_held(&ctx2->lock);
2817
2818         /* Pinning disables the swap optimization */
2819         if (ctx1->pin_count || ctx2->pin_count)
2820                 return 0;
2821
2822         /* If ctx1 is the parent of ctx2 */
2823         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2824                 return 1;
2825
2826         /* If ctx2 is the parent of ctx1 */
2827         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2828                 return 1;
2829
2830         /*
2831          * If ctx1 and ctx2 have the same parent; we flatten the parent
2832          * hierarchy, see perf_event_init_context().
2833          */
2834         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2835                         ctx1->parent_gen == ctx2->parent_gen)
2836                 return 1;
2837
2838         /* Unmatched */
2839         return 0;
2840 }
2841
2842 static void __perf_event_sync_stat(struct perf_event *event,
2843                                      struct perf_event *next_event)
2844 {
2845         u64 value;
2846
2847         if (!event->attr.inherit_stat)
2848                 return;
2849
2850         /*
2851          * Update the event value, we cannot use perf_event_read()
2852          * because we're in the middle of a context switch and have IRQs
2853          * disabled, which upsets smp_call_function_single(), however
2854          * we know the event must be on the current CPU, therefore we
2855          * don't need to use it.
2856          */
2857         switch (event->state) {
2858         case PERF_EVENT_STATE_ACTIVE:
2859                 event->pmu->read(event);
2860                 /* fall-through */
2861
2862         case PERF_EVENT_STATE_INACTIVE:
2863                 update_event_times(event);
2864                 break;
2865
2866         default:
2867                 break;
2868         }
2869
2870         /*
2871          * In order to keep per-task stats reliable we need to flip the event
2872          * values when we flip the contexts.
2873          */
2874         value = local64_read(&next_event->count);
2875         value = local64_xchg(&event->count, value);
2876         local64_set(&next_event->count, value);
2877
2878         swap(event->total_time_enabled, next_event->total_time_enabled);
2879         swap(event->total_time_running, next_event->total_time_running);
2880
2881         /*
2882          * Since we swizzled the values, update the user visible data too.
2883          */
2884         perf_event_update_userpage(event);
2885         perf_event_update_userpage(next_event);
2886 }
2887
2888 static void perf_event_sync_stat(struct perf_event_context *ctx,
2889                                    struct perf_event_context *next_ctx)
2890 {
2891         struct perf_event *event, *next_event;
2892
2893         if (!ctx->nr_stat)
2894                 return;
2895
2896         update_context_time(ctx);
2897
2898         event = list_first_entry(&ctx->event_list,
2899                                    struct perf_event, event_entry);
2900
2901         next_event = list_first_entry(&next_ctx->event_list,
2902                                         struct perf_event, event_entry);
2903
2904         while (&event->event_entry != &ctx->event_list &&
2905                &next_event->event_entry != &next_ctx->event_list) {
2906
2907                 __perf_event_sync_stat(event, next_event);
2908
2909                 event = list_next_entry(event, event_entry);
2910                 next_event = list_next_entry(next_event, event_entry);
2911         }
2912 }
2913
2914 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2915                                          struct task_struct *next)
2916 {
2917         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2918         struct perf_event_context *next_ctx;
2919         struct perf_event_context *parent, *next_parent;
2920         struct perf_cpu_context *cpuctx;
2921         int do_switch = 1;
2922
2923         if (likely(!ctx))
2924                 return;
2925
2926         cpuctx = __get_cpu_context(ctx);
2927         if (!cpuctx->task_ctx)
2928                 return;
2929
2930         rcu_read_lock();
2931         next_ctx = next->perf_event_ctxp[ctxn];
2932         if (!next_ctx)
2933                 goto unlock;
2934
2935         parent = rcu_dereference(ctx->parent_ctx);
2936         next_parent = rcu_dereference(next_ctx->parent_ctx);
2937
2938         /* If neither context have a parent context; they cannot be clones. */
2939         if (!parent && !next_parent)
2940                 goto unlock;
2941
2942         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2943                 /*
2944                  * Looks like the two contexts are clones, so we might be
2945                  * able to optimize the context switch.  We lock both
2946                  * contexts and check that they are clones under the
2947                  * lock (including re-checking that neither has been
2948                  * uncloned in the meantime).  It doesn't matter which
2949                  * order we take the locks because no other cpu could
2950                  * be trying to lock both of these tasks.
2951                  */
2952                 raw_spin_lock(&ctx->lock);
2953                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2954                 if (context_equiv(ctx, next_ctx)) {
2955                         WRITE_ONCE(ctx->task, next);
2956                         WRITE_ONCE(next_ctx->task, task);
2957
2958                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2959
2960                         /*
2961                          * RCU_INIT_POINTER here is safe because we've not
2962                          * modified the ctx and the above modification of
2963                          * ctx->task and ctx->task_ctx_data are immaterial
2964                          * since those values are always verified under
2965                          * ctx->lock which we're now holding.
2966                          */
2967                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2968                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2969
2970                         do_switch = 0;
2971
2972                         perf_event_sync_stat(ctx, next_ctx);
2973                 }
2974                 raw_spin_unlock(&next_ctx->lock);
2975                 raw_spin_unlock(&ctx->lock);
2976         }
2977 unlock:
2978         rcu_read_unlock();
2979
2980         if (do_switch) {
2981                 raw_spin_lock(&ctx->lock);
2982                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2983                 raw_spin_unlock(&ctx->lock);
2984         }
2985 }
2986
2987 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2988
2989 void perf_sched_cb_dec(struct pmu *pmu)
2990 {
2991         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2992
2993         this_cpu_dec(perf_sched_cb_usages);
2994
2995         if (!--cpuctx->sched_cb_usage)
2996                 list_del(&cpuctx->sched_cb_entry);
2997 }
2998
2999
3000 void perf_sched_cb_inc(struct pmu *pmu)
3001 {
3002         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3003
3004         if (!cpuctx->sched_cb_usage++)
3005                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3006
3007         this_cpu_inc(perf_sched_cb_usages);
3008 }
3009
3010 /*
3011  * This function provides the context switch callback to the lower code
3012  * layer. It is invoked ONLY when the context switch callback is enabled.
3013  *
3014  * This callback is relevant even to per-cpu events; for example multi event
3015  * PEBS requires this to provide PID/TID information. This requires we flush
3016  * all queued PEBS records before we context switch to a new task.
3017  */
3018 static void perf_pmu_sched_task(struct task_struct *prev,
3019                                 struct task_struct *next,
3020                                 bool sched_in)
3021 {
3022         struct perf_cpu_context *cpuctx;
3023         struct pmu *pmu;
3024
3025         if (prev == next)
3026                 return;
3027
3028         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3029                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3030
3031                 if (WARN_ON_ONCE(!pmu->sched_task))
3032                         continue;
3033
3034                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3035                 perf_pmu_disable(pmu);
3036
3037                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3038
3039                 perf_pmu_enable(pmu);
3040                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3041         }
3042 }
3043
3044 static void perf_event_switch(struct task_struct *task,
3045                               struct task_struct *next_prev, bool sched_in);
3046
3047 #define for_each_task_context_nr(ctxn)                                  \
3048         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3049
3050 /*
3051  * Called from scheduler to remove the events of the current task,
3052  * with interrupts disabled.
3053  *
3054  * We stop each event and update the event value in event->count.
3055  *
3056  * This does not protect us against NMI, but disable()
3057  * sets the disabled bit in the control field of event _before_
3058  * accessing the event control register. If a NMI hits, then it will
3059  * not restart the event.
3060  */
3061 void __perf_event_task_sched_out(struct task_struct *task,
3062                                  struct task_struct *next)
3063 {
3064         int ctxn;
3065
3066         if (__this_cpu_read(perf_sched_cb_usages))
3067                 perf_pmu_sched_task(task, next, false);
3068
3069         if (atomic_read(&nr_switch_events))
3070                 perf_event_switch(task, next, false);
3071
3072         for_each_task_context_nr(ctxn)
3073                 perf_event_context_sched_out(task, ctxn, next);
3074
3075         /*
3076          * if cgroup events exist on this CPU, then we need
3077          * to check if we have to switch out PMU state.
3078          * cgroup event are system-wide mode only
3079          */
3080         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3081                 perf_cgroup_sched_out(task, next);
3082 }
3083
3084 /*
3085  * Called with IRQs disabled
3086  */
3087 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3088                               enum event_type_t event_type)
3089 {
3090         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3091 }
3092
3093 static void
3094 ctx_pinned_sched_in(struct perf_event_context *ctx,
3095                     struct perf_cpu_context *cpuctx)
3096 {
3097         struct perf_event *event;
3098
3099         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3100                 if (event->state <= PERF_EVENT_STATE_OFF)
3101                         continue;
3102                 if (!event_filter_match(event))
3103                         continue;
3104
3105                 /* may need to reset tstamp_enabled */
3106                 if (is_cgroup_event(event))
3107                         perf_cgroup_mark_enabled(event, ctx);
3108
3109                 if (group_can_go_on(event, cpuctx, 1))
3110                         group_sched_in(event, cpuctx, ctx);
3111
3112                 /*
3113                  * If this pinned group hasn't been scheduled,
3114                  * put it in error state.
3115                  */
3116                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3117                         update_group_times(event);
3118                         event->state = PERF_EVENT_STATE_ERROR;
3119                 }
3120         }
3121 }
3122
3123 static void
3124 ctx_flexible_sched_in(struct perf_event_context *ctx,
3125                       struct perf_cpu_context *cpuctx)
3126 {
3127         struct perf_event *event;
3128         int can_add_hw = 1;
3129
3130         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3131                 /* Ignore events in OFF or ERROR state */
3132                 if (event->state <= PERF_EVENT_STATE_OFF)
3133                         continue;
3134                 /*
3135                  * Listen to the 'cpu' scheduling filter constraint
3136                  * of events:
3137                  */
3138                 if (!event_filter_match(event))
3139                         continue;
3140
3141                 /* may need to reset tstamp_enabled */
3142                 if (is_cgroup_event(event))
3143                         perf_cgroup_mark_enabled(event, ctx);
3144
3145                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3146                         if (group_sched_in(event, cpuctx, ctx))
3147                                 can_add_hw = 0;
3148                 }
3149         }
3150 }
3151
3152 static void
3153 ctx_sched_in(struct perf_event_context *ctx,
3154              struct perf_cpu_context *cpuctx,
3155              enum event_type_t event_type,
3156              struct task_struct *task)
3157 {
3158         int is_active = ctx->is_active;
3159         u64 now;
3160
3161         lockdep_assert_held(&ctx->lock);
3162
3163         if (likely(!ctx->nr_events))
3164                 return;
3165
3166         ctx->is_active |= (event_type | EVENT_TIME);
3167         if (ctx->task) {
3168                 if (!is_active)
3169                         cpuctx->task_ctx = ctx;
3170                 else
3171                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3172         }
3173
3174         is_active ^= ctx->is_active; /* changed bits */
3175
3176         if (is_active & EVENT_TIME) {
3177                 /* start ctx time */
3178                 now = perf_clock();
3179                 ctx->timestamp = now;
3180                 perf_cgroup_set_timestamp(task, ctx);
3181         }
3182
3183         /*
3184          * First go through the list and put on any pinned groups
3185          * in order to give them the best chance of going on.
3186          */
3187         if (is_active & EVENT_PINNED)
3188                 ctx_pinned_sched_in(ctx, cpuctx);
3189
3190         /* Then walk through the lower prio flexible groups */
3191         if (is_active & EVENT_FLEXIBLE)
3192                 ctx_flexible_sched_in(ctx, cpuctx);
3193 }
3194
3195 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3196                              enum event_type_t event_type,
3197                              struct task_struct *task)
3198 {
3199         struct perf_event_context *ctx = &cpuctx->ctx;
3200
3201         ctx_sched_in(ctx, cpuctx, event_type, task);
3202 }
3203
3204 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3205                                         struct task_struct *task)
3206 {
3207         struct perf_cpu_context *cpuctx;
3208
3209         cpuctx = __get_cpu_context(ctx);
3210         if (cpuctx->task_ctx == ctx)
3211                 return;
3212
3213         perf_ctx_lock(cpuctx, ctx);
3214         perf_pmu_disable(ctx->pmu);
3215         /*
3216          * We want to keep the following priority order:
3217          * cpu pinned (that don't need to move), task pinned,
3218          * cpu flexible, task flexible.
3219          *
3220          * However, if task's ctx is not carrying any pinned
3221          * events, no need to flip the cpuctx's events around.
3222          */
3223         if (!list_empty(&ctx->pinned_groups))
3224                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3225         perf_event_sched_in(cpuctx, ctx, task);
3226         perf_pmu_enable(ctx->pmu);
3227         perf_ctx_unlock(cpuctx, ctx);
3228 }
3229
3230 /*
3231  * Called from scheduler to add the events of the current task
3232  * with interrupts disabled.
3233  *
3234  * We restore the event value and then enable it.
3235  *
3236  * This does not protect us against NMI, but enable()
3237  * sets the enabled bit in the control field of event _before_
3238  * accessing the event control register. If a NMI hits, then it will
3239  * keep the event running.
3240  */
3241 void __perf_event_task_sched_in(struct task_struct *prev,
3242                                 struct task_struct *task)
3243 {
3244         struct perf_event_context *ctx;
3245         int ctxn;
3246
3247         /*
3248          * If cgroup events exist on this CPU, then we need to check if we have
3249          * to switch in PMU state; cgroup event are system-wide mode only.
3250          *
3251          * Since cgroup events are CPU events, we must schedule these in before
3252          * we schedule in the task events.
3253          */
3254         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3255                 perf_cgroup_sched_in(prev, task);
3256
3257         for_each_task_context_nr(ctxn) {
3258                 ctx = task->perf_event_ctxp[ctxn];
3259                 if (likely(!ctx))
3260                         continue;
3261
3262                 perf_event_context_sched_in(ctx, task);
3263         }
3264
3265         if (atomic_read(&nr_switch_events))
3266                 perf_event_switch(task, prev, true);
3267
3268         if (__this_cpu_read(perf_sched_cb_usages))
3269                 perf_pmu_sched_task(prev, task, true);
3270 }
3271
3272 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3273 {
3274         u64 frequency = event->attr.sample_freq;
3275         u64 sec = NSEC_PER_SEC;
3276         u64 divisor, dividend;
3277
3278         int count_fls, nsec_fls, frequency_fls, sec_fls;
3279
3280         count_fls = fls64(count);
3281         nsec_fls = fls64(nsec);
3282         frequency_fls = fls64(frequency);
3283         sec_fls = 30;
3284
3285         /*
3286          * We got @count in @nsec, with a target of sample_freq HZ
3287          * the target period becomes:
3288          *
3289          *             @count * 10^9
3290          * period = -------------------
3291          *          @nsec * sample_freq
3292          *
3293          */
3294
3295         /*
3296          * Reduce accuracy by one bit such that @a and @b converge
3297          * to a similar magnitude.
3298          */
3299 #define REDUCE_FLS(a, b)                \
3300 do {                                    \
3301         if (a##_fls > b##_fls) {        \
3302                 a >>= 1;                \
3303                 a##_fls--;              \
3304         } else {                        \
3305                 b >>= 1;                \
3306                 b##_fls--;              \
3307         }                               \
3308 } while (0)
3309
3310         /*
3311          * Reduce accuracy until either term fits in a u64, then proceed with
3312          * the other, so that finally we can do a u64/u64 division.
3313          */
3314         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3315                 REDUCE_FLS(nsec, frequency);
3316                 REDUCE_FLS(sec, count);
3317         }
3318
3319         if (count_fls + sec_fls > 64) {
3320                 divisor = nsec * frequency;
3321
3322                 while (count_fls + sec_fls > 64) {
3323                         REDUCE_FLS(count, sec);
3324                         divisor >>= 1;
3325                 }
3326
3327                 dividend = count * sec;
3328         } else {
3329                 dividend = count * sec;
3330
3331                 while (nsec_fls + frequency_fls > 64) {
3332                         REDUCE_FLS(nsec, frequency);
3333                         dividend >>= 1;
3334                 }
3335
3336                 divisor = nsec * frequency;
3337         }
3338
3339         if (!divisor)
3340                 return dividend;
3341
3342         return div64_u64(dividend, divisor);
3343 }
3344
3345 static DEFINE_PER_CPU(int, perf_throttled_count);
3346 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3347
3348 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3349 {
3350         struct hw_perf_event *hwc = &event->hw;
3351         s64 period, sample_period;
3352         s64 delta;
3353
3354         period = perf_calculate_period(event, nsec, count);
3355
3356         delta = (s64)(period - hwc->sample_period);
3357         delta = (delta + 7) / 8; /* low pass filter */
3358
3359         sample_period = hwc->sample_period + delta;
3360
3361         if (!sample_period)
3362                 sample_period = 1;
3363
3364         hwc->sample_period = sample_period;
3365
3366         if (local64_read(&hwc->period_left) > 8*sample_period) {
3367                 if (disable)
3368                         event->pmu->stop(event, PERF_EF_UPDATE);
3369
3370                 local64_set(&hwc->period_left, 0);
3371
3372                 if (disable)
3373                         event->pmu->start(event, PERF_EF_RELOAD);
3374         }
3375 }
3376
3377 /*
3378  * combine freq adjustment with unthrottling to avoid two passes over the
3379  * events. At the same time, make sure, having freq events does not change
3380  * the rate of unthrottling as that would introduce bias.
3381  */
3382 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3383                                            int needs_unthr)
3384 {
3385         struct perf_event *event;
3386         struct hw_perf_event *hwc;
3387         u64 now, period = TICK_NSEC;
3388         s64 delta;
3389
3390         /*
3391          * only need to iterate over all events iff:
3392          * - context have events in frequency mode (needs freq adjust)
3393          * - there are events to unthrottle on this cpu
3394          */
3395         if (!(ctx->nr_freq || needs_unthr))
3396                 return;
3397
3398         raw_spin_lock(&ctx->lock);
3399         perf_pmu_disable(ctx->pmu);
3400
3401         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3402                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3403                         continue;
3404
3405                 if (!event_filter_match(event))
3406                         continue;
3407
3408                 perf_pmu_disable(event->pmu);
3409
3410                 hwc = &event->hw;
3411
3412                 if (hwc->interrupts == MAX_INTERRUPTS) {
3413                         hwc->interrupts = 0;
3414                         perf_log_throttle(event, 1);
3415                         event->pmu->start(event, 0);
3416                 }
3417
3418                 if (!event->attr.freq || !event->attr.sample_freq)
3419                         goto next;
3420
3421                 /*
3422                  * stop the event and update event->count
3423                  */
3424                 event->pmu->stop(event, PERF_EF_UPDATE);
3425
3426                 now = local64_read(&event->count);
3427                 delta = now - hwc->freq_count_stamp;
3428                 hwc->freq_count_stamp = now;
3429
3430                 /*
3431                  * restart the event
3432                  * reload only if value has changed
3433                  * we have stopped the event so tell that
3434                  * to perf_adjust_period() to avoid stopping it
3435                  * twice.
3436                  */
3437                 if (delta > 0)
3438                         perf_adjust_period(event, period, delta, false);
3439
3440                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3441         next:
3442                 perf_pmu_enable(event->pmu);
3443         }
3444
3445         perf_pmu_enable(ctx->pmu);
3446         raw_spin_unlock(&ctx->lock);
3447 }
3448
3449 /*
3450  * Round-robin a context's events:
3451  */
3452 static void rotate_ctx(struct perf_event_context *ctx)
3453 {
3454         /*
3455          * Rotate the first entry last of non-pinned groups. Rotation might be
3456          * disabled by the inheritance code.
3457          */
3458         if (!ctx->rotate_disable)
3459                 list_rotate_left(&ctx->flexible_groups);
3460 }
3461
3462 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3463 {
3464         struct perf_event_context *ctx = NULL;
3465         int rotate = 0;
3466
3467         if (cpuctx->ctx.nr_events) {
3468                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3469                         rotate = 1;
3470         }
3471
3472         ctx = cpuctx->task_ctx;
3473         if (ctx && ctx->nr_events) {
3474                 if (ctx->nr_events != ctx->nr_active)
3475                         rotate = 1;
3476         }
3477
3478         if (!rotate)
3479                 goto done;
3480
3481         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3482         perf_pmu_disable(cpuctx->ctx.pmu);
3483
3484         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3485         if (ctx)
3486                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3487
3488         rotate_ctx(&cpuctx->ctx);
3489         if (ctx)
3490                 rotate_ctx(ctx);
3491
3492         perf_event_sched_in(cpuctx, ctx, current);
3493
3494         perf_pmu_enable(cpuctx->ctx.pmu);
3495         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3496 done:
3497
3498         return rotate;
3499 }
3500
3501 void perf_event_task_tick(void)
3502 {
3503         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3504         struct perf_event_context *ctx, *tmp;
3505         int throttled;
3506
3507         WARN_ON(!irqs_disabled());
3508
3509         __this_cpu_inc(perf_throttled_seq);
3510         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3511         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3512
3513         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3514                 perf_adjust_freq_unthr_context(ctx, throttled);
3515 }
3516
3517 static int event_enable_on_exec(struct perf_event *event,
3518                                 struct perf_event_context *ctx)
3519 {
3520         if (!event->attr.enable_on_exec)
3521                 return 0;
3522
3523         event->attr.enable_on_exec = 0;
3524         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3525                 return 0;
3526
3527         __perf_event_mark_enabled(event);
3528
3529         return 1;
3530 }
3531
3532 /*
3533  * Enable all of a task's events that have been marked enable-on-exec.
3534  * This expects task == current.
3535  */
3536 static void perf_event_enable_on_exec(int ctxn)
3537 {
3538         struct perf_event_context *ctx, *clone_ctx = NULL;
3539         enum event_type_t event_type = 0;
3540         struct perf_cpu_context *cpuctx;
3541         struct perf_event *event;
3542         unsigned long flags;
3543         int enabled = 0;
3544
3545         local_irq_save(flags);
3546         ctx = current->perf_event_ctxp[ctxn];
3547         if (!ctx || !ctx->nr_events)
3548                 goto out;
3549
3550         cpuctx = __get_cpu_context(ctx);
3551         perf_ctx_lock(cpuctx, ctx);
3552         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3553         list_for_each_entry(event, &ctx->event_list, event_entry) {
3554                 enabled |= event_enable_on_exec(event, ctx);
3555                 event_type |= get_event_type(event);
3556         }
3557
3558         /*
3559          * Unclone and reschedule this context if we enabled any event.
3560          */
3561         if (enabled) {
3562                 clone_ctx = unclone_ctx(ctx);
3563                 ctx_resched(cpuctx, ctx, event_type);
3564         } else {
3565                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3566         }
3567         perf_ctx_unlock(cpuctx, ctx);
3568
3569 out:
3570         local_irq_restore(flags);
3571
3572         if (clone_ctx)
3573                 put_ctx(clone_ctx);
3574 }
3575
3576 struct perf_read_data {
3577         struct perf_event *event;
3578         bool group;
3579         int ret;
3580 };
3581
3582 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3583 {
3584         u16 local_pkg, event_pkg;
3585
3586         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3587                 int local_cpu = smp_processor_id();
3588
3589                 event_pkg = topology_physical_package_id(event_cpu);
3590                 local_pkg = topology_physical_package_id(local_cpu);
3591
3592                 if (event_pkg == local_pkg)
3593                         return local_cpu;
3594         }
3595
3596         return event_cpu;
3597 }
3598
3599 /*
3600  * Cross CPU call to read the hardware event
3601  */
3602 static void __perf_event_read(void *info)
3603 {
3604         struct perf_read_data *data = info;
3605         struct perf_event *sub, *event = data->event;
3606         struct perf_event_context *ctx = event->ctx;
3607         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3608         struct pmu *pmu = event->pmu;
3609
3610         /*
3611          * If this is a task context, we need to check whether it is
3612          * the current task context of this cpu.  If not it has been
3613          * scheduled out before the smp call arrived.  In that case
3614          * event->count would have been updated to a recent sample
3615          * when the event was scheduled out.
3616          */
3617         if (ctx->task && cpuctx->task_ctx != ctx)
3618                 return;
3619
3620         raw_spin_lock(&ctx->lock);
3621         if (ctx->is_active) {
3622                 update_context_time(ctx);
3623                 update_cgrp_time_from_event(event);
3624         }
3625
3626         update_event_times(event);
3627         if (event->state != PERF_EVENT_STATE_ACTIVE)
3628                 goto unlock;
3629
3630         if (!data->group) {
3631                 pmu->read(event);
3632                 data->ret = 0;
3633                 goto unlock;
3634         }
3635
3636         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3637
3638         pmu->read(event);
3639
3640         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3641                 update_event_times(sub);
3642                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3643                         /*
3644                          * Use sibling's PMU rather than @event's since
3645                          * sibling could be on different (eg: software) PMU.
3646                          */
3647                         sub->pmu->read(sub);
3648                 }
3649         }
3650
3651         data->ret = pmu->commit_txn(pmu);
3652
3653 unlock:
3654         raw_spin_unlock(&ctx->lock);
3655 }
3656
3657 static inline u64 perf_event_count(struct perf_event *event)
3658 {
3659         if (event->pmu->count)
3660                 return event->pmu->count(event);
3661
3662         return __perf_event_count(event);
3663 }
3664
3665 /*
3666  * NMI-safe method to read a local event, that is an event that
3667  * is:
3668  *   - either for the current task, or for this CPU
3669  *   - does not have inherit set, for inherited task events
3670  *     will not be local and we cannot read them atomically
3671  *   - must not have a pmu::count method
3672  */
3673 int perf_event_read_local(struct perf_event *event, u64 *value)
3674 {
3675         unsigned long flags;
3676         int ret = 0;
3677
3678         /*
3679          * Disabling interrupts avoids all counter scheduling (context
3680          * switches, timer based rotation and IPIs).
3681          */
3682         local_irq_save(flags);
3683
3684         /*
3685          * It must not be an event with inherit set, we cannot read
3686          * all child counters from atomic context.
3687          */
3688         if (event->attr.inherit) {
3689                 ret = -EOPNOTSUPP;
3690                 goto out;
3691         }
3692
3693         /*
3694          * It must not have a pmu::count method, those are not
3695          * NMI safe.
3696          */
3697         if (event->pmu->count) {
3698                 ret = -EOPNOTSUPP;
3699                 goto out;
3700         }
3701
3702         /* If this is a per-task event, it must be for current */
3703         if ((event->attach_state & PERF_ATTACH_TASK) &&
3704             event->hw.target != current) {
3705                 ret = -EINVAL;
3706                 goto out;
3707         }
3708
3709         /* If this is a per-CPU event, it must be for this CPU */
3710         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3711             event->cpu != smp_processor_id()) {
3712                 ret = -EINVAL;
3713                 goto out;
3714         }
3715
3716         /*
3717          * If the event is currently on this CPU, its either a per-task event,
3718          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3719          * oncpu == -1).
3720          */
3721         if (event->oncpu == smp_processor_id())
3722                 event->pmu->read(event);
3723
3724         *value = local64_read(&event->count);
3725 out:
3726         local_irq_restore(flags);
3727
3728         return ret;
3729 }
3730
3731 static int perf_event_read(struct perf_event *event, bool group)
3732 {
3733         int event_cpu, ret = 0;
3734
3735         /*
3736          * If event is enabled and currently active on a CPU, update the
3737          * value in the event structure:
3738          */
3739         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3740                 struct perf_read_data data = {
3741                         .event = event,
3742                         .group = group,
3743                         .ret = 0,
3744                 };
3745
3746                 event_cpu = READ_ONCE(event->oncpu);
3747                 if ((unsigned)event_cpu >= nr_cpu_ids)
3748                         return 0;
3749
3750                 preempt_disable();
3751                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3752
3753                 /*
3754                  * Purposely ignore the smp_call_function_single() return
3755                  * value.
3756                  *
3757                  * If event_cpu isn't a valid CPU it means the event got
3758                  * scheduled out and that will have updated the event count.
3759                  *
3760                  * Therefore, either way, we'll have an up-to-date event count
3761                  * after this.
3762                  */
3763                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3764                 preempt_enable();
3765                 ret = data.ret;
3766         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3767                 struct perf_event_context *ctx = event->ctx;
3768                 unsigned long flags;
3769
3770                 raw_spin_lock_irqsave(&ctx->lock, flags);
3771                 /*
3772                  * may read while context is not active
3773                  * (e.g., thread is blocked), in that case
3774                  * we cannot update context time
3775                  */
3776                 if (ctx->is_active) {
3777                         update_context_time(ctx);
3778                         update_cgrp_time_from_event(event);
3779                 }
3780                 if (group)
3781                         update_group_times(event);
3782                 else
3783                         update_event_times(event);
3784                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3785         }
3786
3787         return ret;
3788 }
3789
3790 /*
3791  * Initialize the perf_event context in a task_struct:
3792  */
3793 static void __perf_event_init_context(struct perf_event_context *ctx)
3794 {
3795         raw_spin_lock_init(&ctx->lock);
3796         mutex_init(&ctx->mutex);
3797         INIT_LIST_HEAD(&ctx->active_ctx_list);
3798         INIT_LIST_HEAD(&ctx->pinned_groups);
3799         INIT_LIST_HEAD(&ctx->flexible_groups);
3800         INIT_LIST_HEAD(&ctx->event_list);
3801         atomic_set(&ctx->refcount, 1);
3802 }
3803
3804 static struct perf_event_context *
3805 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3806 {
3807         struct perf_event_context *ctx;
3808
3809         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3810         if (!ctx)
3811                 return NULL;
3812
3813         __perf_event_init_context(ctx);
3814         if (task) {
3815                 ctx->task = task;
3816                 get_task_struct(task);
3817         }
3818         ctx->pmu = pmu;
3819
3820         return ctx;
3821 }
3822
3823 static struct task_struct *
3824 find_lively_task_by_vpid(pid_t vpid)
3825 {
3826         struct task_struct *task;
3827
3828         rcu_read_lock();
3829         if (!vpid)
3830                 task = current;
3831         else
3832                 task = find_task_by_vpid(vpid);
3833         if (task)
3834                 get_task_struct(task);
3835         rcu_read_unlock();
3836
3837         if (!task)
3838                 return ERR_PTR(-ESRCH);
3839
3840         return task;
3841 }
3842
3843 /*
3844  * Returns a matching context with refcount and pincount.
3845  */
3846 static struct perf_event_context *
3847 find_get_context(struct pmu *pmu, struct task_struct *task,
3848                 struct perf_event *event)
3849 {
3850         struct perf_event_context *ctx, *clone_ctx = NULL;
3851         struct perf_cpu_context *cpuctx;
3852         void *task_ctx_data = NULL;
3853         unsigned long flags;
3854         int ctxn, err;
3855         int cpu = event->cpu;
3856
3857         if (!task) {
3858                 /* Must be root to operate on a CPU event: */
3859                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3860                         return ERR_PTR(-EACCES);
3861
3862                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3863                 ctx = &cpuctx->ctx;
3864                 get_ctx(ctx);
3865                 ++ctx->pin_count;
3866
3867                 return ctx;
3868         }
3869
3870         err = -EINVAL;
3871         ctxn = pmu->task_ctx_nr;
3872         if (ctxn < 0)
3873                 goto errout;
3874
3875         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3876                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3877                 if (!task_ctx_data) {
3878                         err = -ENOMEM;
3879                         goto errout;
3880                 }
3881         }
3882
3883 retry:
3884         ctx = perf_lock_task_context(task, ctxn, &flags);
3885         if (ctx) {
3886                 clone_ctx = unclone_ctx(ctx);
3887                 ++ctx->pin_count;
3888
3889                 if (task_ctx_data && !ctx->task_ctx_data) {
3890                         ctx->task_ctx_data = task_ctx_data;
3891                         task_ctx_data = NULL;
3892                 }
3893                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3894
3895                 if (clone_ctx)
3896                         put_ctx(clone_ctx);
3897         } else {
3898                 ctx = alloc_perf_context(pmu, task);
3899                 err = -ENOMEM;
3900                 if (!ctx)
3901                         goto errout;
3902
3903                 if (task_ctx_data) {
3904                         ctx->task_ctx_data = task_ctx_data;
3905                         task_ctx_data = NULL;
3906                 }
3907
3908                 err = 0;
3909                 mutex_lock(&task->perf_event_mutex);
3910                 /*
3911                  * If it has already passed perf_event_exit_task().
3912                  * we must see PF_EXITING, it takes this mutex too.
3913                  */
3914                 if (task->flags & PF_EXITING)
3915                         err = -ESRCH;
3916                 else if (task->perf_event_ctxp[ctxn])
3917                         err = -EAGAIN;
3918                 else {
3919                         get_ctx(ctx);
3920                         ++ctx->pin_count;
3921                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3922                 }
3923                 mutex_unlock(&task->perf_event_mutex);
3924
3925                 if (unlikely(err)) {
3926                         put_ctx(ctx);
3927
3928                         if (err == -EAGAIN)
3929                                 goto retry;
3930                         goto errout;
3931                 }
3932         }
3933
3934         kfree(task_ctx_data);
3935         return ctx;
3936
3937 errout:
3938         kfree(task_ctx_data);
3939         return ERR_PTR(err);
3940 }
3941
3942 static void perf_event_free_filter(struct perf_event *event);
3943 static void perf_event_free_bpf_prog(struct perf_event *event);
3944
3945 static void free_event_rcu(struct rcu_head *head)
3946 {
3947         struct perf_event *event;
3948
3949         event = container_of(head, struct perf_event, rcu_head);
3950         if (event->ns)
3951                 put_pid_ns(event->ns);
3952         perf_event_free_filter(event);
3953         kfree(event);
3954 }
3955
3956 static void ring_buffer_attach(struct perf_event *event,
3957                                struct ring_buffer *rb);
3958
3959 static void detach_sb_event(struct perf_event *event)
3960 {
3961         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3962
3963         raw_spin_lock(&pel->lock);
3964         list_del_rcu(&event->sb_list);
3965         raw_spin_unlock(&pel->lock);
3966 }
3967
3968 static bool is_sb_event(struct perf_event *event)
3969 {
3970         struct perf_event_attr *attr = &event->attr;
3971
3972         if (event->parent)
3973                 return false;
3974
3975         if (event->attach_state & PERF_ATTACH_TASK)
3976                 return false;
3977
3978         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3979             attr->comm || attr->comm_exec ||
3980             attr->task ||
3981             attr->context_switch)
3982                 return true;
3983         return false;
3984 }
3985
3986 static void unaccount_pmu_sb_event(struct perf_event *event)
3987 {
3988         if (is_sb_event(event))
3989                 detach_sb_event(event);
3990 }
3991
3992 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3993 {
3994         if (event->parent)
3995                 return;
3996
3997         if (is_cgroup_event(event))
3998                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3999 }
4000
4001 #ifdef CONFIG_NO_HZ_FULL
4002 static DEFINE_SPINLOCK(nr_freq_lock);
4003 #endif
4004
4005 static void unaccount_freq_event_nohz(void)
4006 {
4007 #ifdef CONFIG_NO_HZ_FULL
4008         spin_lock(&nr_freq_lock);
4009         if (atomic_dec_and_test(&nr_freq_events))
4010                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4011         spin_unlock(&nr_freq_lock);
4012 #endif
4013 }
4014
4015 static void unaccount_freq_event(void)
4016 {
4017         if (tick_nohz_full_enabled())
4018                 unaccount_freq_event_nohz();
4019         else
4020                 atomic_dec(&nr_freq_events);
4021 }
4022
4023 static void unaccount_event(struct perf_event *event)
4024 {
4025         bool dec = false;
4026
4027         if (event->parent)
4028                 return;
4029
4030         if (event->attach_state & PERF_ATTACH_TASK)
4031                 dec = true;
4032         if (event->attr.mmap || event->attr.mmap_data)
4033                 atomic_dec(&nr_mmap_events);
4034         if (event->attr.comm)
4035                 atomic_dec(&nr_comm_events);
4036         if (event->attr.namespaces)
4037                 atomic_dec(&nr_namespaces_events);
4038         if (event->attr.task)
4039                 atomic_dec(&nr_task_events);
4040         if (event->attr.freq)
4041                 unaccount_freq_event();
4042         if (event->attr.context_switch) {
4043                 dec = true;
4044                 atomic_dec(&nr_switch_events);
4045         }
4046         if (is_cgroup_event(event))
4047                 dec = true;
4048         if (has_branch_stack(event))
4049                 dec = true;
4050
4051         if (dec) {
4052                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4053                         schedule_delayed_work(&perf_sched_work, HZ);
4054         }
4055
4056         unaccount_event_cpu(event, event->cpu);
4057
4058         unaccount_pmu_sb_event(event);
4059 }
4060
4061 static void perf_sched_delayed(struct work_struct *work)
4062 {
4063         mutex_lock(&perf_sched_mutex);
4064         if (atomic_dec_and_test(&perf_sched_count))
4065                 static_branch_disable(&perf_sched_events);
4066         mutex_unlock(&perf_sched_mutex);
4067 }
4068
4069 /*
4070  * The following implement mutual exclusion of events on "exclusive" pmus
4071  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4072  * at a time, so we disallow creating events that might conflict, namely:
4073  *
4074  *  1) cpu-wide events in the presence of per-task events,
4075  *  2) per-task events in the presence of cpu-wide events,
4076  *  3) two matching events on the same context.
4077  *
4078  * The former two cases are handled in the allocation path (perf_event_alloc(),
4079  * _free_event()), the latter -- before the first perf_install_in_context().
4080  */
4081 static int exclusive_event_init(struct perf_event *event)
4082 {
4083         struct pmu *pmu = event->pmu;
4084
4085         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4086                 return 0;
4087
4088         /*
4089          * Prevent co-existence of per-task and cpu-wide events on the
4090          * same exclusive pmu.
4091          *
4092          * Negative pmu::exclusive_cnt means there are cpu-wide
4093          * events on this "exclusive" pmu, positive means there are
4094          * per-task events.
4095          *
4096          * Since this is called in perf_event_alloc() path, event::ctx
4097          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4098          * to mean "per-task event", because unlike other attach states it
4099          * never gets cleared.
4100          */
4101         if (event->attach_state & PERF_ATTACH_TASK) {
4102                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4103                         return -EBUSY;
4104         } else {
4105                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4106                         return -EBUSY;
4107         }
4108
4109         return 0;
4110 }
4111
4112 static void exclusive_event_destroy(struct perf_event *event)
4113 {
4114         struct pmu *pmu = event->pmu;
4115
4116         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4117                 return;
4118
4119         /* see comment in exclusive_event_init() */
4120         if (event->attach_state & PERF_ATTACH_TASK)
4121                 atomic_dec(&pmu->exclusive_cnt);
4122         else
4123                 atomic_inc(&pmu->exclusive_cnt);
4124 }
4125
4126 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4127 {
4128         if ((e1->pmu == e2->pmu) &&
4129             (e1->cpu == e2->cpu ||
4130              e1->cpu == -1 ||
4131              e2->cpu == -1))
4132                 return true;
4133         return false;
4134 }
4135
4136 /* Called under the same ctx::mutex as perf_install_in_context() */
4137 static bool exclusive_event_installable(struct perf_event *event,
4138                                         struct perf_event_context *ctx)
4139 {
4140         struct perf_event *iter_event;
4141         struct pmu *pmu = event->pmu;
4142
4143         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4144                 return true;
4145
4146         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4147                 if (exclusive_event_match(iter_event, event))
4148                         return false;
4149         }
4150
4151         return true;
4152 }
4153
4154 static void perf_addr_filters_splice(struct perf_event *event,
4155                                        struct list_head *head);
4156
4157 static void _free_event(struct perf_event *event)
4158 {
4159         irq_work_sync(&event->pending);
4160
4161         unaccount_event(event);
4162
4163         if (event->rb) {
4164                 /*
4165                  * Can happen when we close an event with re-directed output.
4166                  *
4167                  * Since we have a 0 refcount, perf_mmap_close() will skip
4168                  * over us; possibly making our ring_buffer_put() the last.
4169                  */
4170                 mutex_lock(&event->mmap_mutex);
4171                 ring_buffer_attach(event, NULL);
4172                 mutex_unlock(&event->mmap_mutex);
4173         }
4174
4175         if (is_cgroup_event(event))
4176                 perf_detach_cgroup(event);
4177
4178         if (!event->parent) {
4179                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4180                         put_callchain_buffers();
4181         }
4182
4183         perf_event_free_bpf_prog(event);
4184         perf_addr_filters_splice(event, NULL);
4185         kfree(event->addr_filters_offs);
4186
4187         if (event->destroy)
4188                 event->destroy(event);
4189
4190         if (event->ctx)
4191                 put_ctx(event->ctx);
4192
4193         exclusive_event_destroy(event);
4194         module_put(event->pmu->module);
4195
4196         call_rcu(&event->rcu_head, free_event_rcu);
4197 }
4198
4199 /*
4200  * Used to free events which have a known refcount of 1, such as in error paths
4201  * where the event isn't exposed yet and inherited events.
4202  */
4203 static void free_event(struct perf_event *event)
4204 {
4205         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4206                                 "unexpected event refcount: %ld; ptr=%p\n",
4207                                 atomic_long_read(&event->refcount), event)) {
4208                 /* leak to avoid use-after-free */
4209                 return;
4210         }
4211
4212         _free_event(event);
4213 }
4214
4215 /*
4216  * Remove user event from the owner task.
4217  */
4218 static void perf_remove_from_owner(struct perf_event *event)
4219 {
4220         struct task_struct *owner;
4221
4222         rcu_read_lock();
4223         /*
4224          * Matches the smp_store_release() in perf_event_exit_task(). If we
4225          * observe !owner it means the list deletion is complete and we can
4226          * indeed free this event, otherwise we need to serialize on
4227          * owner->perf_event_mutex.
4228          */
4229         owner = lockless_dereference(event->owner);
4230         if (owner) {
4231                 /*
4232                  * Since delayed_put_task_struct() also drops the last
4233                  * task reference we can safely take a new reference
4234                  * while holding the rcu_read_lock().
4235                  */
4236                 get_task_struct(owner);
4237         }
4238         rcu_read_unlock();
4239
4240         if (owner) {
4241                 /*
4242                  * If we're here through perf_event_exit_task() we're already
4243                  * holding ctx->mutex which would be an inversion wrt. the
4244                  * normal lock order.
4245                  *
4246                  * However we can safely take this lock because its the child
4247                  * ctx->mutex.
4248                  */
4249                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4250
4251                 /*
4252                  * We have to re-check the event->owner field, if it is cleared
4253                  * we raced with perf_event_exit_task(), acquiring the mutex
4254                  * ensured they're done, and we can proceed with freeing the
4255                  * event.
4256                  */
4257                 if (event->owner) {
4258                         list_del_init(&event->owner_entry);
4259                         smp_store_release(&event->owner, NULL);
4260                 }
4261                 mutex_unlock(&owner->perf_event_mutex);
4262                 put_task_struct(owner);
4263         }
4264 }
4265
4266 static void put_event(struct perf_event *event)
4267 {
4268         if (!atomic_long_dec_and_test(&event->refcount))
4269                 return;
4270
4271         _free_event(event);
4272 }
4273
4274 /*
4275  * Kill an event dead; while event:refcount will preserve the event
4276  * object, it will not preserve its functionality. Once the last 'user'
4277  * gives up the object, we'll destroy the thing.
4278  */
4279 int perf_event_release_kernel(struct perf_event *event)
4280 {
4281         struct perf_event_context *ctx = event->ctx;
4282         struct perf_event *child, *tmp;
4283
4284         /*
4285          * If we got here through err_file: fput(event_file); we will not have
4286          * attached to a context yet.
4287          */
4288         if (!ctx) {
4289                 WARN_ON_ONCE(event->attach_state &
4290                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4291                 goto no_ctx;
4292         }
4293
4294         if (!is_kernel_event(event))
4295                 perf_remove_from_owner(event);
4296
4297         ctx = perf_event_ctx_lock(event);
4298         WARN_ON_ONCE(ctx->parent_ctx);
4299         perf_remove_from_context(event, DETACH_GROUP);
4300
4301         raw_spin_lock_irq(&ctx->lock);
4302         /*
4303          * Mark this event as STATE_DEAD, there is no external reference to it
4304          * anymore.
4305          *
4306          * Anybody acquiring event->child_mutex after the below loop _must_
4307          * also see this, most importantly inherit_event() which will avoid
4308          * placing more children on the list.
4309          *
4310          * Thus this guarantees that we will in fact observe and kill _ALL_
4311          * child events.
4312          */
4313         event->state = PERF_EVENT_STATE_DEAD;
4314         raw_spin_unlock_irq(&ctx->lock);
4315
4316         perf_event_ctx_unlock(event, ctx);
4317
4318 again:
4319         mutex_lock(&event->child_mutex);
4320         list_for_each_entry(child, &event->child_list, child_list) {
4321
4322                 /*
4323                  * Cannot change, child events are not migrated, see the
4324                  * comment with perf_event_ctx_lock_nested().
4325                  */
4326                 ctx = lockless_dereference(child->ctx);
4327                 /*
4328                  * Since child_mutex nests inside ctx::mutex, we must jump
4329                  * through hoops. We start by grabbing a reference on the ctx.
4330                  *
4331                  * Since the event cannot get freed while we hold the
4332                  * child_mutex, the context must also exist and have a !0
4333                  * reference count.
4334                  */
4335                 get_ctx(ctx);
4336
4337                 /*
4338                  * Now that we have a ctx ref, we can drop child_mutex, and
4339                  * acquire ctx::mutex without fear of it going away. Then we
4340                  * can re-acquire child_mutex.
4341                  */
4342                 mutex_unlock(&event->child_mutex);
4343                 mutex_lock(&ctx->mutex);
4344                 mutex_lock(&event->child_mutex);
4345
4346                 /*
4347                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4348                  * state, if child is still the first entry, it didn't get freed
4349                  * and we can continue doing so.
4350                  */
4351                 tmp = list_first_entry_or_null(&event->child_list,
4352                                                struct perf_event, child_list);
4353                 if (tmp == child) {
4354                         perf_remove_from_context(child, DETACH_GROUP);
4355                         list_del(&child->child_list);
4356                         free_event(child);
4357                         /*
4358                          * This matches the refcount bump in inherit_event();
4359                          * this can't be the last reference.
4360                          */
4361                         put_event(event);
4362                 }
4363
4364                 mutex_unlock(&event->child_mutex);
4365                 mutex_unlock(&ctx->mutex);
4366                 put_ctx(ctx);
4367                 goto again;
4368         }
4369         mutex_unlock(&event->child_mutex);
4370
4371 no_ctx:
4372         put_event(event); /* Must be the 'last' reference */
4373         return 0;
4374 }
4375 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4376
4377 /*
4378  * Called when the last reference to the file is gone.
4379  */
4380 static int perf_release(struct inode *inode, struct file *file)
4381 {
4382         perf_event_release_kernel(file->private_data);
4383         return 0;
4384 }
4385
4386 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4387 {
4388         struct perf_event *child;
4389         u64 total = 0;
4390
4391         *enabled = 0;
4392         *running = 0;
4393
4394         mutex_lock(&event->child_mutex);
4395
4396         (void)perf_event_read(event, false);
4397         total += perf_event_count(event);
4398
4399         *enabled += event->total_time_enabled +
4400                         atomic64_read(&event->child_total_time_enabled);
4401         *running += event->total_time_running +
4402                         atomic64_read(&event->child_total_time_running);
4403
4404         list_for_each_entry(child, &event->child_list, child_list) {
4405                 (void)perf_event_read(child, false);
4406                 total += perf_event_count(child);
4407                 *enabled += child->total_time_enabled;
4408                 *running += child->total_time_running;
4409         }
4410         mutex_unlock(&event->child_mutex);
4411
4412         return total;
4413 }
4414 EXPORT_SYMBOL_GPL(perf_event_read_value);
4415
4416 static int __perf_read_group_add(struct perf_event *leader,
4417                                         u64 read_format, u64 *values)
4418 {
4419         struct perf_event_context *ctx = leader->ctx;
4420         struct perf_event *sub;
4421         unsigned long flags;
4422         int n = 1; /* skip @nr */
4423         int ret;
4424
4425         ret = perf_event_read(leader, true);
4426         if (ret)
4427                 return ret;
4428
4429         /*
4430          * Since we co-schedule groups, {enabled,running} times of siblings
4431          * will be identical to those of the leader, so we only publish one
4432          * set.
4433          */
4434         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4435                 values[n++] += leader->total_time_enabled +
4436                         atomic64_read(&leader->child_total_time_enabled);
4437         }
4438
4439         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4440                 values[n++] += leader->total_time_running +
4441                         atomic64_read(&leader->child_total_time_running);
4442         }
4443
4444         /*
4445          * Write {count,id} tuples for every sibling.
4446          */
4447         values[n++] += perf_event_count(leader);
4448         if (read_format & PERF_FORMAT_ID)
4449                 values[n++] = primary_event_id(leader);
4450
4451         raw_spin_lock_irqsave(&ctx->lock, flags);
4452
4453         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4454                 values[n++] += perf_event_count(sub);
4455                 if (read_format & PERF_FORMAT_ID)
4456                         values[n++] = primary_event_id(sub);
4457         }
4458
4459         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4460         return 0;
4461 }
4462
4463 static int perf_read_group(struct perf_event *event,
4464                                    u64 read_format, char __user *buf)
4465 {
4466         struct perf_event *leader = event->group_leader, *child;
4467         struct perf_event_context *ctx = leader->ctx;
4468         int ret;
4469         u64 *values;
4470
4471         lockdep_assert_held(&ctx->mutex);
4472
4473         values = kzalloc(event->read_size, GFP_KERNEL);
4474         if (!values)
4475                 return -ENOMEM;
4476
4477         values[0] = 1 + leader->nr_siblings;
4478
4479         /*
4480          * By locking the child_mutex of the leader we effectively
4481          * lock the child list of all siblings.. XXX explain how.
4482          */
4483         mutex_lock(&leader->child_mutex);
4484
4485         ret = __perf_read_group_add(leader, read_format, values);
4486         if (ret)
4487                 goto unlock;
4488
4489         list_for_each_entry(child, &leader->child_list, child_list) {
4490                 ret = __perf_read_group_add(child, read_format, values);
4491                 if (ret)
4492                         goto unlock;
4493         }
4494
4495         mutex_unlock(&leader->child_mutex);
4496
4497         ret = event->read_size;
4498         if (copy_to_user(buf, values, event->read_size))
4499                 ret = -EFAULT;
4500         goto out;
4501
4502 unlock:
4503         mutex_unlock(&leader->child_mutex);
4504 out:
4505         kfree(values);
4506         return ret;
4507 }
4508
4509 static int perf_read_one(struct perf_event *event,
4510                                  u64 read_format, char __user *buf)
4511 {
4512         u64 enabled, running;
4513         u64 values[4];
4514         int n = 0;
4515
4516         values[n++] = perf_event_read_value(event, &enabled, &running);
4517         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4518                 values[n++] = enabled;
4519         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4520                 values[n++] = running;
4521         if (read_format & PERF_FORMAT_ID)
4522                 values[n++] = primary_event_id(event);
4523
4524         if (copy_to_user(buf, values, n * sizeof(u64)))
4525                 return -EFAULT;
4526
4527         return n * sizeof(u64);
4528 }
4529
4530 static bool is_event_hup(struct perf_event *event)
4531 {
4532         bool no_children;
4533
4534         if (event->state > PERF_EVENT_STATE_EXIT)
4535                 return false;
4536
4537         mutex_lock(&event->child_mutex);
4538         no_children = list_empty(&event->child_list);
4539         mutex_unlock(&event->child_mutex);
4540         return no_children;
4541 }
4542
4543 /*
4544  * Read the performance event - simple non blocking version for now
4545  */
4546 static ssize_t
4547 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4548 {
4549         u64 read_format = event->attr.read_format;
4550         int ret;
4551
4552         /*
4553          * Return end-of-file for a read on a event that is in
4554          * error state (i.e. because it was pinned but it couldn't be
4555          * scheduled on to the CPU at some point).
4556          */
4557         if (event->state == PERF_EVENT_STATE_ERROR)
4558                 return 0;
4559
4560         if (count < event->read_size)
4561                 return -ENOSPC;
4562
4563         WARN_ON_ONCE(event->ctx->parent_ctx);
4564         if (read_format & PERF_FORMAT_GROUP)
4565                 ret = perf_read_group(event, read_format, buf);
4566         else
4567                 ret = perf_read_one(event, read_format, buf);
4568
4569         return ret;
4570 }
4571
4572 static ssize_t
4573 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4574 {
4575         struct perf_event *event = file->private_data;
4576         struct perf_event_context *ctx;
4577         int ret;
4578
4579         ctx = perf_event_ctx_lock(event);
4580         ret = __perf_read(event, buf, count);
4581         perf_event_ctx_unlock(event, ctx);
4582
4583         return ret;
4584 }
4585
4586 static unsigned int perf_poll(struct file *file, poll_table *wait)
4587 {
4588         struct perf_event *event = file->private_data;
4589         struct ring_buffer *rb;
4590         unsigned int events = POLLHUP;
4591
4592         poll_wait(file, &event->waitq, wait);
4593
4594         if (is_event_hup(event))
4595                 return events;
4596
4597         /*
4598          * Pin the event->rb by taking event->mmap_mutex; otherwise
4599          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4600          */
4601         mutex_lock(&event->mmap_mutex);
4602         rb = event->rb;
4603         if (rb)
4604                 events = atomic_xchg(&rb->poll, 0);
4605         mutex_unlock(&event->mmap_mutex);
4606         return events;
4607 }
4608
4609 static void _perf_event_reset(struct perf_event *event)
4610 {
4611         (void)perf_event_read(event, false);
4612         local64_set(&event->count, 0);
4613         perf_event_update_userpage(event);
4614 }
4615
4616 /*
4617  * Holding the top-level event's child_mutex means that any
4618  * descendant process that has inherited this event will block
4619  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4620  * task existence requirements of perf_event_enable/disable.
4621  */
4622 static void perf_event_for_each_child(struct perf_event *event,
4623                                         void (*func)(struct perf_event *))
4624 {
4625         struct perf_event *child;
4626
4627         WARN_ON_ONCE(event->ctx->parent_ctx);
4628
4629         mutex_lock(&event->child_mutex);
4630         func(event);
4631         list_for_each_entry(child, &event->child_list, child_list)
4632                 func(child);
4633         mutex_unlock(&event->child_mutex);
4634 }
4635
4636 static void perf_event_for_each(struct perf_event *event,
4637                                   void (*func)(struct perf_event *))
4638 {
4639         struct perf_event_context *ctx = event->ctx;
4640         struct perf_event *sibling;
4641
4642         lockdep_assert_held(&ctx->mutex);
4643
4644         event = event->group_leader;
4645
4646         perf_event_for_each_child(event, func);
4647         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4648                 perf_event_for_each_child(sibling, func);
4649 }
4650
4651 static void __perf_event_period(struct perf_event *event,
4652                                 struct perf_cpu_context *cpuctx,
4653                                 struct perf_event_context *ctx,
4654                                 void *info)
4655 {
4656         u64 value = *((u64 *)info);
4657         bool active;
4658
4659         if (event->attr.freq) {
4660                 event->attr.sample_freq = value;
4661         } else {
4662                 event->attr.sample_period = value;
4663                 event->hw.sample_period = value;
4664         }
4665
4666         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4667         if (active) {
4668                 perf_pmu_disable(ctx->pmu);
4669                 /*
4670                  * We could be throttled; unthrottle now to avoid the tick
4671                  * trying to unthrottle while we already re-started the event.
4672                  */
4673                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4674                         event->hw.interrupts = 0;
4675                         perf_log_throttle(event, 1);
4676                 }
4677                 event->pmu->stop(event, PERF_EF_UPDATE);
4678         }
4679
4680         local64_set(&event->hw.period_left, 0);
4681
4682         if (active) {
4683                 event->pmu->start(event, PERF_EF_RELOAD);
4684                 perf_pmu_enable(ctx->pmu);
4685         }
4686 }
4687
4688 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4689 {
4690         u64 value;
4691
4692         if (!is_sampling_event(event))
4693                 return -EINVAL;
4694
4695         if (copy_from_user(&value, arg, sizeof(value)))
4696                 return -EFAULT;
4697
4698         if (!value)
4699                 return -EINVAL;
4700
4701         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4702                 return -EINVAL;
4703
4704         event_function_call(event, __perf_event_period, &value);
4705
4706         return 0;
4707 }
4708
4709 static const struct file_operations perf_fops;
4710
4711 static inline int perf_fget_light(int fd, struct fd *p)
4712 {
4713         struct fd f = fdget(fd);
4714         if (!f.file)
4715                 return -EBADF;
4716
4717         if (f.file->f_op != &perf_fops) {
4718                 fdput(f);
4719                 return -EBADF;
4720         }
4721         *p = f;
4722         return 0;
4723 }
4724
4725 static int perf_event_set_output(struct perf_event *event,
4726                                  struct perf_event *output_event);
4727 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4728 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4729
4730 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4731 {
4732         void (*func)(struct perf_event *);
4733         u32 flags = arg;
4734
4735         switch (cmd) {
4736         case PERF_EVENT_IOC_ENABLE:
4737                 func = _perf_event_enable;
4738                 break;
4739         case PERF_EVENT_IOC_DISABLE:
4740                 func = _perf_event_disable;
4741                 break;
4742         case PERF_EVENT_IOC_RESET:
4743                 func = _perf_event_reset;
4744                 break;
4745
4746         case PERF_EVENT_IOC_REFRESH:
4747                 return _perf_event_refresh(event, arg);
4748
4749         case PERF_EVENT_IOC_PERIOD:
4750                 return perf_event_period(event, (u64 __user *)arg);
4751
4752         case PERF_EVENT_IOC_ID:
4753         {
4754                 u64 id = primary_event_id(event);
4755
4756                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4757                         return -EFAULT;
4758                 return 0;
4759         }
4760
4761         case PERF_EVENT_IOC_SET_OUTPUT:
4762         {
4763                 int ret;
4764                 if (arg != -1) {
4765                         struct perf_event *output_event;
4766                         struct fd output;
4767                         ret = perf_fget_light(arg, &output);
4768                         if (ret)
4769                                 return ret;
4770                         output_event = output.file->private_data;
4771                         ret = perf_event_set_output(event, output_event);
4772                         fdput(output);
4773                 } else {
4774                         ret = perf_event_set_output(event, NULL);
4775                 }
4776                 return ret;
4777         }
4778
4779         case PERF_EVENT_IOC_SET_FILTER:
4780                 return perf_event_set_filter(event, (void __user *)arg);
4781
4782         case PERF_EVENT_IOC_SET_BPF:
4783                 return perf_event_set_bpf_prog(event, arg);
4784
4785         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4786                 struct ring_buffer *rb;
4787
4788                 rcu_read_lock();
4789                 rb = rcu_dereference(event->rb);
4790                 if (!rb || !rb->nr_pages) {
4791                         rcu_read_unlock();
4792                         return -EINVAL;
4793                 }
4794                 rb_toggle_paused(rb, !!arg);
4795                 rcu_read_unlock();
4796                 return 0;
4797         }
4798         default:
4799                 return -ENOTTY;
4800         }
4801
4802         if (flags & PERF_IOC_FLAG_GROUP)
4803                 perf_event_for_each(event, func);
4804         else
4805                 perf_event_for_each_child(event, func);
4806
4807         return 0;
4808 }
4809
4810 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4811 {
4812         struct perf_event *event = file->private_data;
4813         struct perf_event_context *ctx;
4814         long ret;
4815
4816         ctx = perf_event_ctx_lock(event);
4817         ret = _perf_ioctl(event, cmd, arg);
4818         perf_event_ctx_unlock(event, ctx);
4819
4820         return ret;
4821 }
4822
4823 #ifdef CONFIG_COMPAT
4824 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4825                                 unsigned long arg)
4826 {
4827         switch (_IOC_NR(cmd)) {
4828         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4829         case _IOC_NR(PERF_EVENT_IOC_ID):
4830                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4831                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4832                         cmd &= ~IOCSIZE_MASK;
4833                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4834                 }
4835                 break;
4836         }
4837         return perf_ioctl(file, cmd, arg);
4838 }
4839 #else
4840 # define perf_compat_ioctl NULL
4841 #endif
4842
4843 int perf_event_task_enable(void)
4844 {
4845         struct perf_event_context *ctx;
4846         struct perf_event *event;
4847
4848         mutex_lock(&current->perf_event_mutex);
4849         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4850                 ctx = perf_event_ctx_lock(event);
4851                 perf_event_for_each_child(event, _perf_event_enable);
4852                 perf_event_ctx_unlock(event, ctx);
4853         }
4854         mutex_unlock(&current->perf_event_mutex);
4855
4856         return 0;
4857 }
4858
4859 int perf_event_task_disable(void)
4860 {
4861         struct perf_event_context *ctx;
4862         struct perf_event *event;
4863
4864         mutex_lock(&current->perf_event_mutex);
4865         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4866                 ctx = perf_event_ctx_lock(event);
4867                 perf_event_for_each_child(event, _perf_event_disable);
4868                 perf_event_ctx_unlock(event, ctx);
4869         }
4870         mutex_unlock(&current->perf_event_mutex);
4871
4872         return 0;
4873 }
4874
4875 static int perf_event_index(struct perf_event *event)
4876 {
4877         if (event->hw.state & PERF_HES_STOPPED)
4878                 return 0;
4879
4880         if (event->state != PERF_EVENT_STATE_ACTIVE)
4881                 return 0;
4882
4883         return event->pmu->event_idx(event);
4884 }
4885
4886 static void calc_timer_values(struct perf_event *event,
4887                                 u64 *now,
4888                                 u64 *enabled,
4889                                 u64 *running)
4890 {
4891         u64 ctx_time;
4892
4893         *now = perf_clock();
4894         ctx_time = event->shadow_ctx_time + *now;
4895         *enabled = ctx_time - event->tstamp_enabled;
4896         *running = ctx_time - event->tstamp_running;
4897 }
4898
4899 static void perf_event_init_userpage(struct perf_event *event)
4900 {
4901         struct perf_event_mmap_page *userpg;
4902         struct ring_buffer *rb;
4903
4904         rcu_read_lock();
4905         rb = rcu_dereference(event->rb);
4906         if (!rb)
4907                 goto unlock;
4908
4909         userpg = rb->user_page;
4910
4911         /* Allow new userspace to detect that bit 0 is deprecated */
4912         userpg->cap_bit0_is_deprecated = 1;
4913         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4914         userpg->data_offset = PAGE_SIZE;
4915         userpg->data_size = perf_data_size(rb);
4916
4917 unlock:
4918         rcu_read_unlock();
4919 }
4920
4921 void __weak arch_perf_update_userpage(
4922         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4923 {
4924 }
4925
4926 /*
4927  * Callers need to ensure there can be no nesting of this function, otherwise
4928  * the seqlock logic goes bad. We can not serialize this because the arch
4929  * code calls this from NMI context.
4930  */
4931 void perf_event_update_userpage(struct perf_event *event)
4932 {
4933         struct perf_event_mmap_page *userpg;
4934         struct ring_buffer *rb;
4935         u64 enabled, running, now;
4936
4937         rcu_read_lock();
4938         rb = rcu_dereference(event->rb);
4939         if (!rb)
4940                 goto unlock;
4941
4942         /*
4943          * compute total_time_enabled, total_time_running
4944          * based on snapshot values taken when the event
4945          * was last scheduled in.
4946          *
4947          * we cannot simply called update_context_time()
4948          * because of locking issue as we can be called in
4949          * NMI context
4950          */
4951         calc_timer_values(event, &now, &enabled, &running);
4952
4953         userpg = rb->user_page;
4954         /*
4955          * Disable preemption so as to not let the corresponding user-space
4956          * spin too long if we get preempted.
4957          */
4958         preempt_disable();
4959         ++userpg->lock;
4960         barrier();
4961         userpg->index = perf_event_index(event);
4962         userpg->offset = perf_event_count(event);
4963         if (userpg->index)
4964                 userpg->offset -= local64_read(&event->hw.prev_count);
4965
4966         userpg->time_enabled = enabled +
4967                         atomic64_read(&event->child_total_time_enabled);
4968
4969         userpg->time_running = running +
4970                         atomic64_read(&event->child_total_time_running);
4971
4972         arch_perf_update_userpage(event, userpg, now);
4973
4974         barrier();
4975         ++userpg->lock;
4976         preempt_enable();
4977 unlock:
4978         rcu_read_unlock();
4979 }
4980
4981 static int perf_mmap_fault(struct vm_fault *vmf)
4982 {
4983         struct perf_event *event = vmf->vma->vm_file->private_data;
4984         struct ring_buffer *rb;
4985         int ret = VM_FAULT_SIGBUS;
4986
4987         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4988                 if (vmf->pgoff == 0)
4989                         ret = 0;
4990                 return ret;
4991         }
4992
4993         rcu_read_lock();
4994         rb = rcu_dereference(event->rb);
4995         if (!rb)
4996                 goto unlock;
4997
4998         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4999                 goto unlock;
5000
5001         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5002         if (!vmf->page)
5003                 goto unlock;
5004
5005         get_page(vmf->page);
5006         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5007         vmf->page->index   = vmf->pgoff;
5008
5009         ret = 0;
5010 unlock:
5011         rcu_read_unlock();
5012
5013         return ret;
5014 }
5015
5016 static void ring_buffer_attach(struct perf_event *event,
5017                                struct ring_buffer *rb)
5018 {
5019         struct ring_buffer *old_rb = NULL;
5020         unsigned long flags;
5021
5022         if (event->rb) {
5023                 /*
5024                  * Should be impossible, we set this when removing
5025                  * event->rb_entry and wait/clear when adding event->rb_entry.
5026                  */
5027                 WARN_ON_ONCE(event->rcu_pending);
5028
5029                 old_rb = event->rb;
5030                 spin_lock_irqsave(&old_rb->event_lock, flags);
5031                 list_del_rcu(&event->rb_entry);
5032                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5033
5034                 event->rcu_batches = get_state_synchronize_rcu();
5035                 event->rcu_pending = 1;
5036         }
5037
5038         if (rb) {
5039                 if (event->rcu_pending) {
5040                         cond_synchronize_rcu(event->rcu_batches);
5041                         event->rcu_pending = 0;
5042                 }
5043
5044                 spin_lock_irqsave(&rb->event_lock, flags);
5045                 list_add_rcu(&event->rb_entry, &rb->event_list);
5046                 spin_unlock_irqrestore(&rb->event_lock, flags);
5047         }
5048
5049         /*
5050          * Avoid racing with perf_mmap_close(AUX): stop the event
5051          * before swizzling the event::rb pointer; if it's getting
5052          * unmapped, its aux_mmap_count will be 0 and it won't
5053          * restart. See the comment in __perf_pmu_output_stop().
5054          *
5055          * Data will inevitably be lost when set_output is done in
5056          * mid-air, but then again, whoever does it like this is
5057          * not in for the data anyway.
5058          */
5059         if (has_aux(event))
5060                 perf_event_stop(event, 0);
5061
5062         rcu_assign_pointer(event->rb, rb);
5063
5064         if (old_rb) {
5065                 ring_buffer_put(old_rb);
5066                 /*
5067                  * Since we detached before setting the new rb, so that we
5068                  * could attach the new rb, we could have missed a wakeup.
5069                  * Provide it now.
5070                  */
5071                 wake_up_all(&event->waitq);
5072         }
5073 }
5074
5075 static void ring_buffer_wakeup(struct perf_event *event)
5076 {
5077         struct ring_buffer *rb;
5078
5079         rcu_read_lock();
5080         rb = rcu_dereference(event->rb);
5081         if (rb) {
5082                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5083                         wake_up_all(&event->waitq);
5084         }
5085         rcu_read_unlock();
5086 }
5087
5088 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5089 {
5090         struct ring_buffer *rb;
5091
5092         rcu_read_lock();
5093         rb = rcu_dereference(event->rb);
5094         if (rb) {
5095                 if (!atomic_inc_not_zero(&rb->refcount))
5096                         rb = NULL;
5097         }
5098         rcu_read_unlock();
5099
5100         return rb;
5101 }
5102
5103 void ring_buffer_put(struct ring_buffer *rb)
5104 {
5105         if (!atomic_dec_and_test(&rb->refcount))
5106                 return;
5107
5108         WARN_ON_ONCE(!list_empty(&rb->event_list));
5109
5110         call_rcu(&rb->rcu_head, rb_free_rcu);
5111 }
5112
5113 static void perf_mmap_open(struct vm_area_struct *vma)
5114 {
5115         struct perf_event *event = vma->vm_file->private_data;
5116
5117         atomic_inc(&event->mmap_count);
5118         atomic_inc(&event->rb->mmap_count);
5119
5120         if (vma->vm_pgoff)
5121                 atomic_inc(&event->rb->aux_mmap_count);
5122
5123         if (event->pmu->event_mapped)
5124                 event->pmu->event_mapped(event, vma->vm_mm);
5125 }
5126
5127 static void perf_pmu_output_stop(struct perf_event *event);
5128
5129 /*
5130  * A buffer can be mmap()ed multiple times; either directly through the same
5131  * event, or through other events by use of perf_event_set_output().
5132  *
5133  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5134  * the buffer here, where we still have a VM context. This means we need
5135  * to detach all events redirecting to us.
5136  */
5137 static void perf_mmap_close(struct vm_area_struct *vma)
5138 {
5139         struct perf_event *event = vma->vm_file->private_data;
5140
5141         struct ring_buffer *rb = ring_buffer_get(event);
5142         struct user_struct *mmap_user = rb->mmap_user;
5143         int mmap_locked = rb->mmap_locked;
5144         unsigned long size = perf_data_size(rb);
5145
5146         if (event->pmu->event_unmapped)
5147                 event->pmu->event_unmapped(event, vma->vm_mm);
5148
5149         /*
5150          * rb->aux_mmap_count will always drop before rb->mmap_count and
5151          * event->mmap_count, so it is ok to use event->mmap_mutex to
5152          * serialize with perf_mmap here.
5153          */
5154         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5155             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5156                 /*
5157                  * Stop all AUX events that are writing to this buffer,
5158                  * so that we can free its AUX pages and corresponding PMU
5159                  * data. Note that after rb::aux_mmap_count dropped to zero,
5160                  * they won't start any more (see perf_aux_output_begin()).
5161                  */
5162                 perf_pmu_output_stop(event);
5163
5164                 /* now it's safe to free the pages */
5165                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5166                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5167
5168                 /* this has to be the last one */
5169                 rb_free_aux(rb);
5170                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5171
5172                 mutex_unlock(&event->mmap_mutex);
5173         }
5174
5175         atomic_dec(&rb->mmap_count);
5176
5177         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5178                 goto out_put;
5179
5180         ring_buffer_attach(event, NULL);
5181         mutex_unlock(&event->mmap_mutex);
5182
5183         /* If there's still other mmap()s of this buffer, we're done. */
5184         if (atomic_read(&rb->mmap_count))
5185                 goto out_put;
5186
5187         /*
5188          * No other mmap()s, detach from all other events that might redirect
5189          * into the now unreachable buffer. Somewhat complicated by the
5190          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5191          */
5192 again:
5193         rcu_read_lock();
5194         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5195                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5196                         /*
5197                          * This event is en-route to free_event() which will
5198                          * detach it and remove it from the list.
5199                          */
5200                         continue;
5201                 }
5202                 rcu_read_unlock();
5203
5204                 mutex_lock(&event->mmap_mutex);
5205                 /*
5206                  * Check we didn't race with perf_event_set_output() which can
5207                  * swizzle the rb from under us while we were waiting to
5208                  * acquire mmap_mutex.
5209                  *
5210                  * If we find a different rb; ignore this event, a next
5211                  * iteration will no longer find it on the list. We have to
5212                  * still restart the iteration to make sure we're not now
5213                  * iterating the wrong list.
5214                  */
5215                 if (event->rb == rb)
5216                         ring_buffer_attach(event, NULL);
5217
5218                 mutex_unlock(&event->mmap_mutex);
5219                 put_event(event);
5220
5221                 /*
5222                  * Restart the iteration; either we're on the wrong list or
5223                  * destroyed its integrity by doing a deletion.
5224                  */
5225                 goto again;
5226         }
5227         rcu_read_unlock();
5228
5229         /*
5230          * It could be there's still a few 0-ref events on the list; they'll
5231          * get cleaned up by free_event() -- they'll also still have their
5232          * ref on the rb and will free it whenever they are done with it.
5233          *
5234          * Aside from that, this buffer is 'fully' detached and unmapped,
5235          * undo the VM accounting.
5236          */
5237
5238         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5239         vma->vm_mm->pinned_vm -= mmap_locked;
5240         free_uid(mmap_user);
5241
5242 out_put:
5243         ring_buffer_put(rb); /* could be last */
5244 }
5245
5246 static const struct vm_operations_struct perf_mmap_vmops = {
5247         .open           = perf_mmap_open,
5248         .close          = perf_mmap_close, /* non mergable */
5249         .fault          = perf_mmap_fault,
5250         .page_mkwrite   = perf_mmap_fault,
5251 };
5252
5253 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5254 {
5255         struct perf_event *event = file->private_data;
5256         unsigned long user_locked, user_lock_limit;
5257         struct user_struct *user = current_user();
5258         unsigned long locked, lock_limit;
5259         struct ring_buffer *rb = NULL;
5260         unsigned long vma_size;
5261         unsigned long nr_pages;
5262         long user_extra = 0, extra = 0;
5263         int ret = 0, flags = 0;
5264
5265         /*
5266          * Don't allow mmap() of inherited per-task counters. This would
5267          * create a performance issue due to all children writing to the
5268          * same rb.
5269          */
5270         if (event->cpu == -1 && event->attr.inherit)
5271                 return -EINVAL;
5272
5273         if (!(vma->vm_flags & VM_SHARED))
5274                 return -EINVAL;
5275
5276         vma_size = vma->vm_end - vma->vm_start;
5277
5278         if (vma->vm_pgoff == 0) {
5279                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5280         } else {
5281                 /*
5282                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5283                  * mapped, all subsequent mappings should have the same size
5284                  * and offset. Must be above the normal perf buffer.
5285                  */
5286                 u64 aux_offset, aux_size;
5287
5288                 if (!event->rb)
5289                         return -EINVAL;
5290
5291                 nr_pages = vma_size / PAGE_SIZE;
5292
5293                 mutex_lock(&event->mmap_mutex);
5294                 ret = -EINVAL;
5295
5296                 rb = event->rb;
5297                 if (!rb)
5298                         goto aux_unlock;
5299
5300                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5301                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5302
5303                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5304                         goto aux_unlock;
5305
5306                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5307                         goto aux_unlock;
5308
5309                 /* already mapped with a different offset */
5310                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5311                         goto aux_unlock;
5312
5313                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5314                         goto aux_unlock;
5315
5316                 /* already mapped with a different size */
5317                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5318                         goto aux_unlock;
5319
5320                 if (!is_power_of_2(nr_pages))
5321                         goto aux_unlock;
5322
5323                 if (!atomic_inc_not_zero(&rb->mmap_count))
5324                         goto aux_unlock;
5325
5326                 if (rb_has_aux(rb)) {
5327                         atomic_inc(&rb->aux_mmap_count);
5328                         ret = 0;
5329                         goto unlock;
5330                 }
5331
5332                 atomic_set(&rb->aux_mmap_count, 1);
5333                 user_extra = nr_pages;
5334
5335                 goto accounting;
5336         }
5337
5338         /*
5339          * If we have rb pages ensure they're a power-of-two number, so we
5340          * can do bitmasks instead of modulo.
5341          */
5342         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5343                 return -EINVAL;
5344
5345         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5346                 return -EINVAL;
5347
5348         WARN_ON_ONCE(event->ctx->parent_ctx);
5349 again:
5350         mutex_lock(&event->mmap_mutex);
5351         if (event->rb) {
5352                 if (event->rb->nr_pages != nr_pages) {
5353                         ret = -EINVAL;
5354                         goto unlock;
5355                 }
5356
5357                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5358                         /*
5359                          * Raced against perf_mmap_close() through
5360                          * perf_event_set_output(). Try again, hope for better
5361                          * luck.
5362                          */
5363                         mutex_unlock(&event->mmap_mutex);
5364                         goto again;
5365                 }
5366
5367                 goto unlock;
5368         }
5369
5370         user_extra = nr_pages + 1;
5371
5372 accounting:
5373         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5374
5375         /*
5376          * Increase the limit linearly with more CPUs:
5377          */
5378         user_lock_limit *= num_online_cpus();
5379
5380         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5381
5382         if (user_locked > user_lock_limit)
5383                 extra = user_locked - user_lock_limit;
5384
5385         lock_limit = rlimit(RLIMIT_MEMLOCK);
5386         lock_limit >>= PAGE_SHIFT;
5387         locked = vma->vm_mm->pinned_vm + extra;
5388
5389         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5390                 !capable(CAP_IPC_LOCK)) {
5391                 ret = -EPERM;
5392                 goto unlock;
5393         }
5394
5395         WARN_ON(!rb && event->rb);
5396
5397         if (vma->vm_flags & VM_WRITE)
5398                 flags |= RING_BUFFER_WRITABLE;
5399
5400         if (!rb) {
5401                 rb = rb_alloc(nr_pages,
5402                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5403                               event->cpu, flags);
5404
5405                 if (!rb) {
5406                         ret = -ENOMEM;
5407                         goto unlock;
5408                 }
5409
5410                 atomic_set(&rb->mmap_count, 1);
5411                 rb->mmap_user = get_current_user();
5412                 rb->mmap_locked = extra;
5413
5414                 ring_buffer_attach(event, rb);
5415
5416                 perf_event_init_userpage(event);
5417                 perf_event_update_userpage(event);
5418         } else {
5419                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5420                                    event->attr.aux_watermark, flags);
5421                 if (!ret)
5422                         rb->aux_mmap_locked = extra;
5423         }
5424
5425 unlock:
5426         if (!ret) {
5427                 atomic_long_add(user_extra, &user->locked_vm);
5428                 vma->vm_mm->pinned_vm += extra;
5429
5430                 atomic_inc(&event->mmap_count);
5431         } else if (rb) {
5432                 atomic_dec(&rb->mmap_count);
5433         }
5434 aux_unlock:
5435         mutex_unlock(&event->mmap_mutex);
5436
5437         /*
5438          * Since pinned accounting is per vm we cannot allow fork() to copy our
5439          * vma.
5440          */
5441         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5442         vma->vm_ops = &perf_mmap_vmops;
5443
5444         if (event->pmu->event_mapped)
5445                 event->pmu->event_mapped(event, vma->vm_mm);
5446
5447         return ret;
5448 }
5449
5450 static int perf_fasync(int fd, struct file *filp, int on)
5451 {
5452         struct inode *inode = file_inode(filp);
5453         struct perf_event *event = filp->private_data;
5454         int retval;
5455
5456         inode_lock(inode);
5457         retval = fasync_helper(fd, filp, on, &event->fasync);
5458         inode_unlock(inode);
5459
5460         if (retval < 0)
5461                 return retval;
5462
5463         return 0;
5464 }
5465
5466 static const struct file_operations perf_fops = {
5467         .llseek                 = no_llseek,
5468         .release                = perf_release,
5469         .read                   = perf_read,
5470         .poll                   = perf_poll,
5471         .unlocked_ioctl         = perf_ioctl,
5472         .compat_ioctl           = perf_compat_ioctl,
5473         .mmap                   = perf_mmap,
5474         .fasync                 = perf_fasync,
5475 };
5476
5477 /*
5478  * Perf event wakeup
5479  *
5480  * If there's data, ensure we set the poll() state and publish everything
5481  * to user-space before waking everybody up.
5482  */
5483
5484 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5485 {
5486         /* only the parent has fasync state */
5487         if (event->parent)
5488                 event = event->parent;
5489         return &event->fasync;
5490 }
5491
5492 void perf_event_wakeup(struct perf_event *event)
5493 {
5494         ring_buffer_wakeup(event);
5495
5496         if (event->pending_kill) {
5497                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5498                 event->pending_kill = 0;
5499         }
5500 }
5501
5502 static void perf_pending_event(struct irq_work *entry)
5503 {
5504         struct perf_event *event = container_of(entry,
5505                         struct perf_event, pending);
5506         int rctx;
5507
5508         rctx = perf_swevent_get_recursion_context();
5509         /*
5510          * If we 'fail' here, that's OK, it means recursion is already disabled
5511          * and we won't recurse 'further'.
5512          */
5513
5514         if (event->pending_disable) {
5515                 event->pending_disable = 0;
5516                 perf_event_disable_local(event);
5517         }
5518
5519         if (event->pending_wakeup) {
5520                 event->pending_wakeup = 0;
5521                 perf_event_wakeup(event);
5522         }
5523
5524         if (rctx >= 0)
5525                 perf_swevent_put_recursion_context(rctx);
5526 }
5527
5528 /*
5529  * We assume there is only KVM supporting the callbacks.
5530  * Later on, we might change it to a list if there is
5531  * another virtualization implementation supporting the callbacks.
5532  */
5533 struct perf_guest_info_callbacks *perf_guest_cbs;
5534
5535 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5536 {
5537         perf_guest_cbs = cbs;
5538         return 0;
5539 }
5540 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5541
5542 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5543 {
5544         perf_guest_cbs = NULL;
5545         return 0;
5546 }
5547 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5548
5549 static void
5550 perf_output_sample_regs(struct perf_output_handle *handle,
5551                         struct pt_regs *regs, u64 mask)
5552 {
5553         int bit;
5554         DECLARE_BITMAP(_mask, 64);
5555
5556         bitmap_from_u64(_mask, mask);
5557         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5558                 u64 val;
5559
5560                 val = perf_reg_value(regs, bit);
5561                 perf_output_put(handle, val);
5562         }
5563 }
5564
5565 static void perf_sample_regs_user(struct perf_regs *regs_user,
5566                                   struct pt_regs *regs,
5567                                   struct pt_regs *regs_user_copy)
5568 {
5569         if (user_mode(regs)) {
5570                 regs_user->abi = perf_reg_abi(current);
5571                 regs_user->regs = regs;
5572         } else if (current->mm) {
5573                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5574         } else {
5575                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5576                 regs_user->regs = NULL;
5577         }
5578 }
5579
5580 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5581                                   struct pt_regs *regs)
5582 {
5583         regs_intr->regs = regs;
5584         regs_intr->abi  = perf_reg_abi(current);
5585 }
5586
5587
5588 /*
5589  * Get remaining task size from user stack pointer.
5590  *
5591  * It'd be better to take stack vma map and limit this more
5592  * precisly, but there's no way to get it safely under interrupt,
5593  * so using TASK_SIZE as limit.
5594  */
5595 static u64 perf_ustack_task_size(struct pt_regs *regs)
5596 {
5597         unsigned long addr = perf_user_stack_pointer(regs);
5598
5599         if (!addr || addr >= TASK_SIZE)
5600                 return 0;
5601
5602         return TASK_SIZE - addr;
5603 }
5604
5605 static u16
5606 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5607                         struct pt_regs *regs)
5608 {
5609         u64 task_size;
5610
5611         /* No regs, no stack pointer, no dump. */
5612         if (!regs)
5613                 return 0;
5614
5615         /*
5616          * Check if we fit in with the requested stack size into the:
5617          * - TASK_SIZE
5618          *   If we don't, we limit the size to the TASK_SIZE.
5619          *
5620          * - remaining sample size
5621          *   If we don't, we customize the stack size to
5622          *   fit in to the remaining sample size.
5623          */
5624
5625         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5626         stack_size = min(stack_size, (u16) task_size);
5627
5628         /* Current header size plus static size and dynamic size. */
5629         header_size += 2 * sizeof(u64);
5630
5631         /* Do we fit in with the current stack dump size? */
5632         if ((u16) (header_size + stack_size) < header_size) {
5633                 /*
5634                  * If we overflow the maximum size for the sample,
5635                  * we customize the stack dump size to fit in.
5636                  */
5637                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5638                 stack_size = round_up(stack_size, sizeof(u64));
5639         }
5640
5641         return stack_size;
5642 }
5643
5644 static void
5645 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5646                           struct pt_regs *regs)
5647 {
5648         /* Case of a kernel thread, nothing to dump */
5649         if (!regs) {
5650                 u64 size = 0;
5651                 perf_output_put(handle, size);
5652         } else {
5653                 unsigned long sp;
5654                 unsigned int rem;
5655                 u64 dyn_size;
5656
5657                 /*
5658                  * We dump:
5659                  * static size
5660                  *   - the size requested by user or the best one we can fit
5661                  *     in to the sample max size
5662                  * data
5663                  *   - user stack dump data
5664                  * dynamic size
5665                  *   - the actual dumped size
5666                  */
5667
5668                 /* Static size. */
5669                 perf_output_put(handle, dump_size);
5670
5671                 /* Data. */
5672                 sp = perf_user_stack_pointer(regs);
5673                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5674                 dyn_size = dump_size - rem;
5675
5676                 perf_output_skip(handle, rem);
5677
5678                 /* Dynamic size. */
5679                 perf_output_put(handle, dyn_size);
5680         }
5681 }
5682
5683 static void __perf_event_header__init_id(struct perf_event_header *header,
5684                                          struct perf_sample_data *data,
5685                                          struct perf_event *event)
5686 {
5687         u64 sample_type = event->attr.sample_type;
5688
5689         data->type = sample_type;
5690         header->size += event->id_header_size;
5691
5692         if (sample_type & PERF_SAMPLE_TID) {
5693                 /* namespace issues */
5694                 data->tid_entry.pid = perf_event_pid(event, current);
5695                 data->tid_entry.tid = perf_event_tid(event, current);
5696         }
5697
5698         if (sample_type & PERF_SAMPLE_TIME)
5699                 data->time = perf_event_clock(event);
5700
5701         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5702                 data->id = primary_event_id(event);
5703
5704         if (sample_type & PERF_SAMPLE_STREAM_ID)
5705                 data->stream_id = event->id;
5706
5707         if (sample_type & PERF_SAMPLE_CPU) {
5708                 data->cpu_entry.cpu      = raw_smp_processor_id();
5709                 data->cpu_entry.reserved = 0;
5710         }
5711 }
5712
5713 void perf_event_header__init_id(struct perf_event_header *header,
5714                                 struct perf_sample_data *data,
5715                                 struct perf_event *event)
5716 {
5717         if (event->attr.sample_id_all)
5718                 __perf_event_header__init_id(header, data, event);
5719 }
5720
5721 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5722                                            struct perf_sample_data *data)
5723 {
5724         u64 sample_type = data->type;
5725
5726         if (sample_type & PERF_SAMPLE_TID)
5727                 perf_output_put(handle, data->tid_entry);
5728
5729         if (sample_type & PERF_SAMPLE_TIME)
5730                 perf_output_put(handle, data->time);
5731
5732         if (sample_type & PERF_SAMPLE_ID)
5733                 perf_output_put(handle, data->id);
5734
5735         if (sample_type & PERF_SAMPLE_STREAM_ID)
5736                 perf_output_put(handle, data->stream_id);
5737
5738         if (sample_type & PERF_SAMPLE_CPU)
5739                 perf_output_put(handle, data->cpu_entry);
5740
5741         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5742                 perf_output_put(handle, data->id);
5743 }
5744
5745 void perf_event__output_id_sample(struct perf_event *event,
5746                                   struct perf_output_handle *handle,
5747                                   struct perf_sample_data *sample)
5748 {
5749         if (event->attr.sample_id_all)
5750                 __perf_event__output_id_sample(handle, sample);
5751 }
5752
5753 static void perf_output_read_one(struct perf_output_handle *handle,
5754                                  struct perf_event *event,
5755                                  u64 enabled, u64 running)
5756 {
5757         u64 read_format = event->attr.read_format;
5758         u64 values[4];
5759         int n = 0;
5760
5761         values[n++] = perf_event_count(event);
5762         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5763                 values[n++] = enabled +
5764                         atomic64_read(&event->child_total_time_enabled);
5765         }
5766         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5767                 values[n++] = running +
5768                         atomic64_read(&event->child_total_time_running);
5769         }
5770         if (read_format & PERF_FORMAT_ID)
5771                 values[n++] = primary_event_id(event);
5772
5773         __output_copy(handle, values, n * sizeof(u64));
5774 }
5775
5776 static void perf_output_read_group(struct perf_output_handle *handle,
5777                             struct perf_event *event,
5778                             u64 enabled, u64 running)
5779 {
5780         struct perf_event *leader = event->group_leader, *sub;
5781         u64 read_format = event->attr.read_format;
5782         u64 values[5];
5783         int n = 0;
5784
5785         values[n++] = 1 + leader->nr_siblings;
5786
5787         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5788                 values[n++] = enabled;
5789
5790         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5791                 values[n++] = running;
5792
5793         if (leader != event)
5794                 leader->pmu->read(leader);
5795
5796         values[n++] = perf_event_count(leader);
5797         if (read_format & PERF_FORMAT_ID)
5798                 values[n++] = primary_event_id(leader);
5799
5800         __output_copy(handle, values, n * sizeof(u64));
5801
5802         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5803                 n = 0;
5804
5805                 if ((sub != event) &&
5806                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5807                         sub->pmu->read(sub);
5808
5809                 values[n++] = perf_event_count(sub);
5810                 if (read_format & PERF_FORMAT_ID)
5811                         values[n++] = primary_event_id(sub);
5812
5813                 __output_copy(handle, values, n * sizeof(u64));
5814         }
5815 }
5816
5817 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5818                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5819
5820 /*
5821  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5822  *
5823  * The problem is that its both hard and excessively expensive to iterate the
5824  * child list, not to mention that its impossible to IPI the children running
5825  * on another CPU, from interrupt/NMI context.
5826  */
5827 static void perf_output_read(struct perf_output_handle *handle,
5828                              struct perf_event *event)
5829 {
5830         u64 enabled = 0, running = 0, now;
5831         u64 read_format = event->attr.read_format;
5832
5833         /*
5834          * compute total_time_enabled, total_time_running
5835          * based on snapshot values taken when the event
5836          * was last scheduled in.
5837          *
5838          * we cannot simply called update_context_time()
5839          * because of locking issue as we are called in
5840          * NMI context
5841          */
5842         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5843                 calc_timer_values(event, &now, &enabled, &running);
5844
5845         if (event->attr.read_format & PERF_FORMAT_GROUP)
5846                 perf_output_read_group(handle, event, enabled, running);
5847         else
5848                 perf_output_read_one(handle, event, enabled, running);
5849 }
5850
5851 void perf_output_sample(struct perf_output_handle *handle,
5852                         struct perf_event_header *header,
5853                         struct perf_sample_data *data,
5854                         struct perf_event *event)
5855 {
5856         u64 sample_type = data->type;
5857
5858         perf_output_put(handle, *header);
5859
5860         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5861                 perf_output_put(handle, data->id);
5862
5863         if (sample_type & PERF_SAMPLE_IP)
5864                 perf_output_put(handle, data->ip);
5865
5866         if (sample_type & PERF_SAMPLE_TID)
5867                 perf_output_put(handle, data->tid_entry);
5868
5869         if (sample_type & PERF_SAMPLE_TIME)
5870                 perf_output_put(handle, data->time);
5871
5872         if (sample_type & PERF_SAMPLE_ADDR)
5873                 perf_output_put(handle, data->addr);
5874
5875         if (sample_type & PERF_SAMPLE_ID)
5876                 perf_output_put(handle, data->id);
5877
5878         if (sample_type & PERF_SAMPLE_STREAM_ID)
5879                 perf_output_put(handle, data->stream_id);
5880
5881         if (sample_type & PERF_SAMPLE_CPU)
5882                 perf_output_put(handle, data->cpu_entry);
5883
5884         if (sample_type & PERF_SAMPLE_PERIOD)
5885                 perf_output_put(handle, data->period);
5886
5887         if (sample_type & PERF_SAMPLE_READ)
5888                 perf_output_read(handle, event);
5889
5890         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5891                 if (data->callchain) {
5892                         int size = 1;
5893
5894                         if (data->callchain)
5895                                 size += data->callchain->nr;
5896
5897                         size *= sizeof(u64);
5898
5899                         __output_copy(handle, data->callchain, size);
5900                 } else {
5901                         u64 nr = 0;
5902                         perf_output_put(handle, nr);
5903                 }
5904         }
5905
5906         if (sample_type & PERF_SAMPLE_RAW) {
5907                 struct perf_raw_record *raw = data->raw;
5908
5909                 if (raw) {
5910                         struct perf_raw_frag *frag = &raw->frag;
5911
5912                         perf_output_put(handle, raw->size);
5913                         do {
5914                                 if (frag->copy) {
5915                                         __output_custom(handle, frag->copy,
5916                                                         frag->data, frag->size);
5917                                 } else {
5918                                         __output_copy(handle, frag->data,
5919                                                       frag->size);
5920                                 }
5921                                 if (perf_raw_frag_last(frag))
5922                                         break;
5923                                 frag = frag->next;
5924                         } while (1);
5925                         if (frag->pad)
5926                                 __output_skip(handle, NULL, frag->pad);
5927                 } else {
5928                         struct {
5929                                 u32     size;
5930                                 u32     data;
5931                         } raw = {
5932                                 .size = sizeof(u32),
5933                                 .data = 0,
5934                         };
5935                         perf_output_put(handle, raw);
5936                 }
5937         }
5938
5939         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5940                 if (data->br_stack) {
5941                         size_t size;
5942
5943                         size = data->br_stack->nr
5944                              * sizeof(struct perf_branch_entry);
5945
5946                         perf_output_put(handle, data->br_stack->nr);
5947                         perf_output_copy(handle, data->br_stack->entries, size);
5948                 } else {
5949                         /*
5950                          * we always store at least the value of nr
5951                          */
5952                         u64 nr = 0;
5953                         perf_output_put(handle, nr);
5954                 }
5955         }
5956
5957         if (sample_type & PERF_SAMPLE_REGS_USER) {
5958                 u64 abi = data->regs_user.abi;
5959
5960                 /*
5961                  * If there are no regs to dump, notice it through
5962                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5963                  */
5964                 perf_output_put(handle, abi);
5965
5966                 if (abi) {
5967                         u64 mask = event->attr.sample_regs_user;
5968                         perf_output_sample_regs(handle,
5969                                                 data->regs_user.regs,
5970                                                 mask);
5971                 }
5972         }
5973
5974         if (sample_type & PERF_SAMPLE_STACK_USER) {
5975                 perf_output_sample_ustack(handle,
5976                                           data->stack_user_size,
5977                                           data->regs_user.regs);
5978         }
5979
5980         if (sample_type & PERF_SAMPLE_WEIGHT)
5981                 perf_output_put(handle, data->weight);
5982
5983         if (sample_type & PERF_SAMPLE_DATA_SRC)
5984                 perf_output_put(handle, data->data_src.val);
5985
5986         if (sample_type & PERF_SAMPLE_TRANSACTION)
5987                 perf_output_put(handle, data->txn);
5988
5989         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5990                 u64 abi = data->regs_intr.abi;
5991                 /*
5992                  * If there are no regs to dump, notice it through
5993                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5994                  */
5995                 perf_output_put(handle, abi);
5996
5997                 if (abi) {
5998                         u64 mask = event->attr.sample_regs_intr;
5999
6000                         perf_output_sample_regs(handle,
6001                                                 data->regs_intr.regs,
6002                                                 mask);
6003                 }
6004         }
6005
6006         if (!event->attr.watermark) {
6007                 int wakeup_events = event->attr.wakeup_events;
6008
6009                 if (wakeup_events) {
6010                         struct ring_buffer *rb = handle->rb;
6011                         int events = local_inc_return(&rb->events);
6012
6013                         if (events >= wakeup_events) {
6014                                 local_sub(wakeup_events, &rb->events);
6015                                 local_inc(&rb->wakeup);
6016                         }
6017                 }
6018         }
6019 }
6020
6021 void perf_prepare_sample(struct perf_event_header *header,
6022                          struct perf_sample_data *data,
6023                          struct perf_event *event,
6024                          struct pt_regs *regs)
6025 {
6026         u64 sample_type = event->attr.sample_type;
6027
6028         header->type = PERF_RECORD_SAMPLE;
6029         header->size = sizeof(*header) + event->header_size;
6030
6031         header->misc = 0;
6032         header->misc |= perf_misc_flags(regs);
6033
6034         __perf_event_header__init_id(header, data, event);
6035
6036         if (sample_type & PERF_SAMPLE_IP)
6037                 data->ip = perf_instruction_pointer(regs);
6038
6039         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6040                 int size = 1;
6041
6042                 data->callchain = perf_callchain(event, regs);
6043
6044                 if (data->callchain)
6045                         size += data->callchain->nr;
6046
6047                 header->size += size * sizeof(u64);
6048         }
6049
6050         if (sample_type & PERF_SAMPLE_RAW) {
6051                 struct perf_raw_record *raw = data->raw;
6052                 int size;
6053
6054                 if (raw) {
6055                         struct perf_raw_frag *frag = &raw->frag;
6056                         u32 sum = 0;
6057
6058                         do {
6059                                 sum += frag->size;
6060                                 if (perf_raw_frag_last(frag))
6061                                         break;
6062                                 frag = frag->next;
6063                         } while (1);
6064
6065                         size = round_up(sum + sizeof(u32), sizeof(u64));
6066                         raw->size = size - sizeof(u32);
6067                         frag->pad = raw->size - sum;
6068                 } else {
6069                         size = sizeof(u64);
6070                 }
6071
6072                 header->size += size;
6073         }
6074
6075         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6076                 int size = sizeof(u64); /* nr */
6077                 if (data->br_stack) {
6078                         size += data->br_stack->nr
6079                               * sizeof(struct perf_branch_entry);
6080                 }
6081                 header->size += size;
6082         }
6083
6084         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6085                 perf_sample_regs_user(&data->regs_user, regs,
6086                                       &data->regs_user_copy);
6087
6088         if (sample_type & PERF_SAMPLE_REGS_USER) {
6089                 /* regs dump ABI info */
6090                 int size = sizeof(u64);
6091
6092                 if (data->regs_user.regs) {
6093                         u64 mask = event->attr.sample_regs_user;
6094                         size += hweight64(mask) * sizeof(u64);
6095                 }
6096
6097                 header->size += size;
6098         }
6099
6100         if (sample_type & PERF_SAMPLE_STACK_USER) {
6101                 /*
6102                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6103                  * processed as the last one or have additional check added
6104                  * in case new sample type is added, because we could eat
6105                  * up the rest of the sample size.
6106                  */
6107                 u16 stack_size = event->attr.sample_stack_user;
6108                 u16 size = sizeof(u64);
6109
6110                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6111                                                      data->regs_user.regs);
6112
6113                 /*
6114                  * If there is something to dump, add space for the dump
6115                  * itself and for the field that tells the dynamic size,
6116                  * which is how many have been actually dumped.
6117                  */
6118                 if (stack_size)
6119                         size += sizeof(u64) + stack_size;
6120
6121                 data->stack_user_size = stack_size;
6122                 header->size += size;
6123         }
6124
6125         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6126                 /* regs dump ABI info */
6127                 int size = sizeof(u64);
6128
6129                 perf_sample_regs_intr(&data->regs_intr, regs);
6130
6131                 if (data->regs_intr.regs) {
6132                         u64 mask = event->attr.sample_regs_intr;
6133
6134                         size += hweight64(mask) * sizeof(u64);
6135                 }
6136
6137                 header->size += size;
6138         }
6139 }
6140
6141 static void __always_inline
6142 __perf_event_output(struct perf_event *event,
6143                     struct perf_sample_data *data,
6144                     struct pt_regs *regs,
6145                     int (*output_begin)(struct perf_output_handle *,
6146                                         struct perf_event *,
6147                                         unsigned int))
6148 {
6149         struct perf_output_handle handle;
6150         struct perf_event_header header;
6151
6152         /* protect the callchain buffers */
6153         rcu_read_lock();
6154
6155         perf_prepare_sample(&header, data, event, regs);
6156
6157         if (output_begin(&handle, event, header.size))
6158                 goto exit;
6159
6160         perf_output_sample(&handle, &header, data, event);
6161
6162         perf_output_end(&handle);
6163
6164 exit:
6165         rcu_read_unlock();
6166 }
6167
6168 void
6169 perf_event_output_forward(struct perf_event *event,
6170                          struct perf_sample_data *data,
6171                          struct pt_regs *regs)
6172 {
6173         __perf_event_output(event, data, regs, perf_output_begin_forward);
6174 }
6175
6176 void
6177 perf_event_output_backward(struct perf_event *event,
6178                            struct perf_sample_data *data,
6179                            struct pt_regs *regs)
6180 {
6181         __perf_event_output(event, data, regs, perf_output_begin_backward);
6182 }
6183
6184 void
6185 perf_event_output(struct perf_event *event,
6186                   struct perf_sample_data *data,
6187                   struct pt_regs *regs)
6188 {
6189         __perf_event_output(event, data, regs, perf_output_begin);
6190 }
6191
6192 /*
6193  * read event_id
6194  */
6195
6196 struct perf_read_event {
6197         struct perf_event_header        header;
6198
6199         u32                             pid;
6200         u32                             tid;
6201 };
6202
6203 static void
6204 perf_event_read_event(struct perf_event *event,
6205                         struct task_struct *task)
6206 {
6207         struct perf_output_handle handle;
6208         struct perf_sample_data sample;
6209         struct perf_read_event read_event = {
6210                 .header = {
6211                         .type = PERF_RECORD_READ,
6212                         .misc = 0,
6213                         .size = sizeof(read_event) + event->read_size,
6214                 },
6215                 .pid = perf_event_pid(event, task),
6216                 .tid = perf_event_tid(event, task),
6217         };
6218         int ret;
6219
6220         perf_event_header__init_id(&read_event.header, &sample, event);
6221         ret = perf_output_begin(&handle, event, read_event.header.size);
6222         if (ret)
6223                 return;
6224
6225         perf_output_put(&handle, read_event);
6226         perf_output_read(&handle, event);
6227         perf_event__output_id_sample(event, &handle, &sample);
6228
6229         perf_output_end(&handle);
6230 }
6231
6232 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6233
6234 static void
6235 perf_iterate_ctx(struct perf_event_context *ctx,
6236                    perf_iterate_f output,
6237                    void *data, bool all)
6238 {
6239         struct perf_event *event;
6240
6241         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6242                 if (!all) {
6243                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6244                                 continue;
6245                         if (!event_filter_match(event))
6246                                 continue;
6247                 }
6248
6249                 output(event, data);
6250         }
6251 }
6252
6253 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6254 {
6255         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6256         struct perf_event *event;
6257
6258         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6259                 /*
6260                  * Skip events that are not fully formed yet; ensure that
6261                  * if we observe event->ctx, both event and ctx will be
6262                  * complete enough. See perf_install_in_context().
6263                  */
6264                 if (!smp_load_acquire(&event->ctx))
6265                         continue;
6266
6267                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6268                         continue;
6269                 if (!event_filter_match(event))
6270                         continue;
6271                 output(event, data);
6272         }
6273 }
6274
6275 /*
6276  * Iterate all events that need to receive side-band events.
6277  *
6278  * For new callers; ensure that account_pmu_sb_event() includes
6279  * your event, otherwise it might not get delivered.
6280  */
6281 static void
6282 perf_iterate_sb(perf_iterate_f output, void *data,
6283                struct perf_event_context *task_ctx)
6284 {
6285         struct perf_event_context *ctx;
6286         int ctxn;
6287
6288         rcu_read_lock();
6289         preempt_disable();
6290
6291         /*
6292          * If we have task_ctx != NULL we only notify the task context itself.
6293          * The task_ctx is set only for EXIT events before releasing task
6294          * context.
6295          */
6296         if (task_ctx) {
6297                 perf_iterate_ctx(task_ctx, output, data, false);
6298                 goto done;
6299         }
6300
6301         perf_iterate_sb_cpu(output, data);
6302
6303         for_each_task_context_nr(ctxn) {
6304                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6305                 if (ctx)
6306                         perf_iterate_ctx(ctx, output, data, false);
6307         }
6308 done:
6309         preempt_enable();
6310         rcu_read_unlock();
6311 }
6312
6313 /*
6314  * Clear all file-based filters at exec, they'll have to be
6315  * re-instated when/if these objects are mmapped again.
6316  */
6317 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6318 {
6319         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6320         struct perf_addr_filter *filter;
6321         unsigned int restart = 0, count = 0;
6322         unsigned long flags;
6323
6324         if (!has_addr_filter(event))
6325                 return;
6326
6327         raw_spin_lock_irqsave(&ifh->lock, flags);
6328         list_for_each_entry(filter, &ifh->list, entry) {
6329                 if (filter->inode) {
6330                         event->addr_filters_offs[count] = 0;
6331                         restart++;
6332                 }
6333
6334                 count++;
6335         }
6336
6337         if (restart)
6338                 event->addr_filters_gen++;
6339         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6340
6341         if (restart)
6342                 perf_event_stop(event, 1);
6343 }
6344
6345 void perf_event_exec(void)
6346 {
6347         struct perf_event_context *ctx;
6348         int ctxn;
6349
6350         rcu_read_lock();
6351         for_each_task_context_nr(ctxn) {
6352                 ctx = current->perf_event_ctxp[ctxn];
6353                 if (!ctx)
6354                         continue;
6355
6356                 perf_event_enable_on_exec(ctxn);
6357
6358                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6359                                    true);
6360         }
6361         rcu_read_unlock();
6362 }
6363
6364 struct remote_output {
6365         struct ring_buffer      *rb;
6366         int                     err;
6367 };
6368
6369 static void __perf_event_output_stop(struct perf_event *event, void *data)
6370 {
6371         struct perf_event *parent = event->parent;
6372         struct remote_output *ro = data;
6373         struct ring_buffer *rb = ro->rb;
6374         struct stop_event_data sd = {
6375                 .event  = event,
6376         };
6377
6378         if (!has_aux(event))
6379                 return;
6380
6381         if (!parent)
6382                 parent = event;
6383
6384         /*
6385          * In case of inheritance, it will be the parent that links to the
6386          * ring-buffer, but it will be the child that's actually using it.
6387          *
6388          * We are using event::rb to determine if the event should be stopped,
6389          * however this may race with ring_buffer_attach() (through set_output),
6390          * which will make us skip the event that actually needs to be stopped.
6391          * So ring_buffer_attach() has to stop an aux event before re-assigning
6392          * its rb pointer.
6393          */
6394         if (rcu_dereference(parent->rb) == rb)
6395                 ro->err = __perf_event_stop(&sd);
6396 }
6397
6398 static int __perf_pmu_output_stop(void *info)
6399 {
6400         struct perf_event *event = info;
6401         struct pmu *pmu = event->pmu;
6402         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6403         struct remote_output ro = {
6404                 .rb     = event->rb,
6405         };
6406
6407         rcu_read_lock();
6408         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6409         if (cpuctx->task_ctx)
6410                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6411                                    &ro, false);
6412         rcu_read_unlock();
6413
6414         return ro.err;
6415 }
6416
6417 static void perf_pmu_output_stop(struct perf_event *event)
6418 {
6419         struct perf_event *iter;
6420         int err, cpu;
6421
6422 restart:
6423         rcu_read_lock();
6424         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6425                 /*
6426                  * For per-CPU events, we need to make sure that neither they
6427                  * nor their children are running; for cpu==-1 events it's
6428                  * sufficient to stop the event itself if it's active, since
6429                  * it can't have children.
6430                  */
6431                 cpu = iter->cpu;
6432                 if (cpu == -1)
6433                         cpu = READ_ONCE(iter->oncpu);
6434
6435                 if (cpu == -1)
6436                         continue;
6437
6438                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6439                 if (err == -EAGAIN) {
6440                         rcu_read_unlock();
6441                         goto restart;
6442                 }
6443         }
6444         rcu_read_unlock();
6445 }
6446
6447 /*
6448  * task tracking -- fork/exit
6449  *
6450  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6451  */
6452
6453 struct perf_task_event {
6454         struct task_struct              *task;
6455         struct perf_event_context       *task_ctx;
6456
6457         struct {
6458                 struct perf_event_header        header;
6459
6460                 u32                             pid;
6461                 u32                             ppid;
6462                 u32                             tid;
6463                 u32                             ptid;
6464                 u64                             time;
6465         } event_id;
6466 };
6467
6468 static int perf_event_task_match(struct perf_event *event)
6469 {
6470         return event->attr.comm  || event->attr.mmap ||
6471                event->attr.mmap2 || event->attr.mmap_data ||
6472                event->attr.task;
6473 }
6474
6475 static void perf_event_task_output(struct perf_event *event,
6476                                    void *data)
6477 {
6478         struct perf_task_event *task_event = data;
6479         struct perf_output_handle handle;
6480         struct perf_sample_data sample;
6481         struct task_struct *task = task_event->task;
6482         int ret, size = task_event->event_id.header.size;
6483
6484         if (!perf_event_task_match(event))
6485                 return;
6486
6487         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6488
6489         ret = perf_output_begin(&handle, event,
6490                                 task_event->event_id.header.size);
6491         if (ret)
6492                 goto out;
6493
6494         task_event->event_id.pid = perf_event_pid(event, task);
6495         task_event->event_id.ppid = perf_event_pid(event, current);
6496
6497         task_event->event_id.tid = perf_event_tid(event, task);
6498         task_event->event_id.ptid = perf_event_tid(event, current);
6499
6500         task_event->event_id.time = perf_event_clock(event);
6501
6502         perf_output_put(&handle, task_event->event_id);
6503
6504         perf_event__output_id_sample(event, &handle, &sample);
6505
6506         perf_output_end(&handle);
6507 out:
6508         task_event->event_id.header.size = size;
6509 }
6510
6511 static void perf_event_task(struct task_struct *task,
6512                               struct perf_event_context *task_ctx,
6513                               int new)
6514 {
6515         struct perf_task_event task_event;
6516
6517         if (!atomic_read(&nr_comm_events) &&
6518             !atomic_read(&nr_mmap_events) &&
6519             !atomic_read(&nr_task_events))
6520                 return;
6521
6522         task_event = (struct perf_task_event){
6523                 .task     = task,
6524                 .task_ctx = task_ctx,
6525                 .event_id    = {
6526                         .header = {
6527                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6528                                 .misc = 0,
6529                                 .size = sizeof(task_event.event_id),
6530                         },
6531                         /* .pid  */
6532                         /* .ppid */
6533                         /* .tid  */
6534                         /* .ptid */
6535                         /* .time */
6536                 },
6537         };
6538
6539         perf_iterate_sb(perf_event_task_output,
6540                        &task_event,
6541                        task_ctx);
6542 }
6543
6544 void perf_event_fork(struct task_struct *task)
6545 {
6546         perf_event_task(task, NULL, 1);
6547         perf_event_namespaces(task);
6548 }
6549
6550 /*
6551  * comm tracking
6552  */
6553
6554 struct perf_comm_event {
6555         struct task_struct      *task;
6556         char                    *comm;
6557         int                     comm_size;
6558
6559         struct {
6560                 struct perf_event_header        header;
6561
6562                 u32                             pid;
6563                 u32                             tid;
6564         } event_id;
6565 };
6566
6567 static int perf_event_comm_match(struct perf_event *event)
6568 {
6569         return event->attr.comm;
6570 }
6571
6572 static void perf_event_comm_output(struct perf_event *event,
6573                                    void *data)
6574 {
6575         struct perf_comm_event *comm_event = data;
6576         struct perf_output_handle handle;
6577         struct perf_sample_data sample;
6578         int size = comm_event->event_id.header.size;
6579         int ret;
6580
6581         if (!perf_event_comm_match(event))
6582                 return;
6583
6584         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6585         ret = perf_output_begin(&handle, event,
6586                                 comm_event->event_id.header.size);
6587
6588         if (ret)
6589                 goto out;
6590
6591         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6592         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6593
6594         perf_output_put(&handle, comm_event->event_id);
6595         __output_copy(&handle, comm_event->comm,
6596                                    comm_event->comm_size);
6597
6598         perf_event__output_id_sample(event, &handle, &sample);
6599
6600         perf_output_end(&handle);
6601 out:
6602         comm_event->event_id.header.size = size;
6603 }
6604
6605 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6606 {
6607         char comm[TASK_COMM_LEN];
6608         unsigned int size;
6609
6610         memset(comm, 0, sizeof(comm));
6611         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6612         size = ALIGN(strlen(comm)+1, sizeof(u64));
6613
6614         comm_event->comm = comm;
6615         comm_event->comm_size = size;
6616
6617         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6618
6619         perf_iterate_sb(perf_event_comm_output,
6620                        comm_event,
6621                        NULL);
6622 }
6623
6624 void perf_event_comm(struct task_struct *task, bool exec)
6625 {
6626         struct perf_comm_event comm_event;
6627
6628         if (!atomic_read(&nr_comm_events))
6629                 return;
6630
6631         comm_event = (struct perf_comm_event){
6632                 .task   = task,
6633                 /* .comm      */
6634                 /* .comm_size */
6635                 .event_id  = {
6636                         .header = {
6637                                 .type = PERF_RECORD_COMM,
6638                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6639                                 /* .size */
6640                         },
6641                         /* .pid */
6642                         /* .tid */
6643                 },
6644         };
6645
6646         perf_event_comm_event(&comm_event);
6647 }
6648
6649 /*
6650  * namespaces tracking
6651  */
6652
6653 struct perf_namespaces_event {
6654         struct task_struct              *task;
6655
6656         struct {
6657                 struct perf_event_header        header;
6658
6659                 u32                             pid;
6660                 u32                             tid;
6661                 u64                             nr_namespaces;
6662                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6663         } event_id;
6664 };
6665
6666 static int perf_event_namespaces_match(struct perf_event *event)
6667 {
6668         return event->attr.namespaces;
6669 }
6670
6671 static void perf_event_namespaces_output(struct perf_event *event,
6672                                          void *data)
6673 {
6674         struct perf_namespaces_event *namespaces_event = data;
6675         struct perf_output_handle handle;
6676         struct perf_sample_data sample;
6677         int ret;
6678
6679         if (!perf_event_namespaces_match(event))
6680                 return;
6681
6682         perf_event_header__init_id(&namespaces_event->event_id.header,
6683                                    &sample, event);
6684         ret = perf_output_begin(&handle, event,
6685                                 namespaces_event->event_id.header.size);
6686         if (ret)
6687                 return;
6688
6689         namespaces_event->event_id.pid = perf_event_pid(event,
6690                                                         namespaces_event->task);
6691         namespaces_event->event_id.tid = perf_event_tid(event,
6692                                                         namespaces_event->task);
6693
6694         perf_output_put(&handle, namespaces_event->event_id);
6695
6696         perf_event__output_id_sample(event, &handle, &sample);
6697
6698         perf_output_end(&handle);
6699 }
6700
6701 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6702                                    struct task_struct *task,
6703                                    const struct proc_ns_operations *ns_ops)
6704 {
6705         struct path ns_path;
6706         struct inode *ns_inode;
6707         void *error;
6708
6709         error = ns_get_path(&ns_path, task, ns_ops);
6710         if (!error) {
6711                 ns_inode = ns_path.dentry->d_inode;
6712                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6713                 ns_link_info->ino = ns_inode->i_ino;
6714         }
6715 }
6716
6717 void perf_event_namespaces(struct task_struct *task)
6718 {
6719         struct perf_namespaces_event namespaces_event;
6720         struct perf_ns_link_info *ns_link_info;
6721
6722         if (!atomic_read(&nr_namespaces_events))
6723                 return;
6724
6725         namespaces_event = (struct perf_namespaces_event){
6726                 .task   = task,
6727                 .event_id  = {
6728                         .header = {
6729                                 .type = PERF_RECORD_NAMESPACES,
6730                                 .misc = 0,
6731                                 .size = sizeof(namespaces_event.event_id),
6732                         },
6733                         /* .pid */
6734                         /* .tid */
6735                         .nr_namespaces = NR_NAMESPACES,
6736                         /* .link_info[NR_NAMESPACES] */
6737                 },
6738         };
6739
6740         ns_link_info = namespaces_event.event_id.link_info;
6741
6742         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6743                                task, &mntns_operations);
6744
6745 #ifdef CONFIG_USER_NS
6746         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6747                                task, &userns_operations);
6748 #endif
6749 #ifdef CONFIG_NET_NS
6750         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6751                                task, &netns_operations);
6752 #endif
6753 #ifdef CONFIG_UTS_NS
6754         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6755                                task, &utsns_operations);
6756 #endif
6757 #ifdef CONFIG_IPC_NS
6758         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6759                                task, &ipcns_operations);
6760 #endif
6761 #ifdef CONFIG_PID_NS
6762         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6763                                task, &pidns_operations);
6764 #endif
6765 #ifdef CONFIG_CGROUPS
6766         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6767                                task, &cgroupns_operations);
6768 #endif
6769
6770         perf_iterate_sb(perf_event_namespaces_output,
6771                         &namespaces_event,
6772                         NULL);
6773 }
6774
6775 /*
6776  * mmap tracking
6777  */
6778
6779 struct perf_mmap_event {
6780         struct vm_area_struct   *vma;
6781
6782         const char              *file_name;
6783         int                     file_size;
6784         int                     maj, min;
6785         u64                     ino;
6786         u64                     ino_generation;
6787         u32                     prot, flags;
6788
6789         struct {
6790                 struct perf_event_header        header;
6791
6792                 u32                             pid;
6793                 u32                             tid;
6794                 u64                             start;
6795                 u64                             len;
6796                 u64                             pgoff;
6797         } event_id;
6798 };
6799
6800 static int perf_event_mmap_match(struct perf_event *event,
6801                                  void *data)
6802 {
6803         struct perf_mmap_event *mmap_event = data;
6804         struct vm_area_struct *vma = mmap_event->vma;
6805         int executable = vma->vm_flags & VM_EXEC;
6806
6807         return (!executable && event->attr.mmap_data) ||
6808                (executable && (event->attr.mmap || event->attr.mmap2));
6809 }
6810
6811 static void perf_event_mmap_output(struct perf_event *event,
6812                                    void *data)
6813 {
6814         struct perf_mmap_event *mmap_event = data;
6815         struct perf_output_handle handle;
6816         struct perf_sample_data sample;
6817         int size = mmap_event->event_id.header.size;
6818         int ret;
6819
6820         if (!perf_event_mmap_match(event, data))
6821                 return;
6822
6823         if (event->attr.mmap2) {
6824                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6825                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6826                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6827                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6828                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6829                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6830                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6831         }
6832
6833         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6834         ret = perf_output_begin(&handle, event,
6835                                 mmap_event->event_id.header.size);
6836         if (ret)
6837                 goto out;
6838
6839         mmap_event->event_id.pid = perf_event_pid(event, current);
6840         mmap_event->event_id.tid = perf_event_tid(event, current);
6841
6842         perf_output_put(&handle, mmap_event->event_id);
6843
6844         if (event->attr.mmap2) {
6845                 perf_output_put(&handle, mmap_event->maj);
6846                 perf_output_put(&handle, mmap_event->min);
6847                 perf_output_put(&handle, mmap_event->ino);
6848                 perf_output_put(&handle, mmap_event->ino_generation);
6849                 perf_output_put(&handle, mmap_event->prot);
6850                 perf_output_put(&handle, mmap_event->flags);
6851         }
6852
6853         __output_copy(&handle, mmap_event->file_name,
6854                                    mmap_event->file_size);
6855
6856         perf_event__output_id_sample(event, &handle, &sample);
6857
6858         perf_output_end(&handle);
6859 out:
6860         mmap_event->event_id.header.size = size;
6861 }
6862
6863 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6864 {
6865         struct vm_area_struct *vma = mmap_event->vma;
6866         struct file *file = vma->vm_file;
6867         int maj = 0, min = 0;
6868         u64 ino = 0, gen = 0;
6869         u32 prot = 0, flags = 0;
6870         unsigned int size;
6871         char tmp[16];
6872         char *buf = NULL;
6873         char *name;
6874
6875         if (vma->vm_flags & VM_READ)
6876                 prot |= PROT_READ;
6877         if (vma->vm_flags & VM_WRITE)
6878                 prot |= PROT_WRITE;
6879         if (vma->vm_flags & VM_EXEC)
6880                 prot |= PROT_EXEC;
6881
6882         if (vma->vm_flags & VM_MAYSHARE)
6883                 flags = MAP_SHARED;
6884         else
6885                 flags = MAP_PRIVATE;
6886
6887         if (vma->vm_flags & VM_DENYWRITE)
6888                 flags |= MAP_DENYWRITE;
6889         if (vma->vm_flags & VM_MAYEXEC)
6890                 flags |= MAP_EXECUTABLE;
6891         if (vma->vm_flags & VM_LOCKED)
6892                 flags |= MAP_LOCKED;
6893         if (vma->vm_flags & VM_HUGETLB)
6894                 flags |= MAP_HUGETLB;
6895
6896         if (file) {
6897                 struct inode *inode;
6898                 dev_t dev;
6899
6900                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6901                 if (!buf) {
6902                         name = "//enomem";
6903                         goto cpy_name;
6904                 }
6905                 /*
6906                  * d_path() works from the end of the rb backwards, so we
6907                  * need to add enough zero bytes after the string to handle
6908                  * the 64bit alignment we do later.
6909                  */
6910                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6911                 if (IS_ERR(name)) {
6912                         name = "//toolong";
6913                         goto cpy_name;
6914                 }
6915                 inode = file_inode(vma->vm_file);
6916                 dev = inode->i_sb->s_dev;
6917                 ino = inode->i_ino;
6918                 gen = inode->i_generation;
6919                 maj = MAJOR(dev);
6920                 min = MINOR(dev);
6921
6922                 goto got_name;
6923         } else {
6924                 if (vma->vm_ops && vma->vm_ops->name) {
6925                         name = (char *) vma->vm_ops->name(vma);
6926                         if (name)
6927                                 goto cpy_name;
6928                 }
6929
6930                 name = (char *)arch_vma_name(vma);
6931                 if (name)
6932                         goto cpy_name;
6933
6934                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6935                                 vma->vm_end >= vma->vm_mm->brk) {
6936                         name = "[heap]";
6937                         goto cpy_name;
6938                 }
6939                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6940                                 vma->vm_end >= vma->vm_mm->start_stack) {
6941                         name = "[stack]";
6942                         goto cpy_name;
6943                 }
6944
6945                 name = "//anon";
6946                 goto cpy_name;
6947         }
6948
6949 cpy_name:
6950         strlcpy(tmp, name, sizeof(tmp));
6951         name = tmp;
6952 got_name:
6953         /*
6954          * Since our buffer works in 8 byte units we need to align our string
6955          * size to a multiple of 8. However, we must guarantee the tail end is
6956          * zero'd out to avoid leaking random bits to userspace.
6957          */
6958         size = strlen(name)+1;
6959         while (!IS_ALIGNED(size, sizeof(u64)))
6960                 name[size++] = '\0';
6961
6962         mmap_event->file_name = name;
6963         mmap_event->file_size = size;
6964         mmap_event->maj = maj;
6965         mmap_event->min = min;
6966         mmap_event->ino = ino;
6967         mmap_event->ino_generation = gen;
6968         mmap_event->prot = prot;
6969         mmap_event->flags = flags;
6970
6971         if (!(vma->vm_flags & VM_EXEC))
6972                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6973
6974         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6975
6976         perf_iterate_sb(perf_event_mmap_output,
6977                        mmap_event,
6978                        NULL);
6979
6980         kfree(buf);
6981 }
6982
6983 /*
6984  * Check whether inode and address range match filter criteria.
6985  */
6986 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6987                                      struct file *file, unsigned long offset,
6988                                      unsigned long size)
6989 {
6990         if (filter->inode != file_inode(file))
6991                 return false;
6992
6993         if (filter->offset > offset + size)
6994                 return false;
6995
6996         if (filter->offset + filter->size < offset)
6997                 return false;
6998
6999         return true;
7000 }
7001
7002 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7003 {
7004         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7005         struct vm_area_struct *vma = data;
7006         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7007         struct file *file = vma->vm_file;
7008         struct perf_addr_filter *filter;
7009         unsigned int restart = 0, count = 0;
7010
7011         if (!has_addr_filter(event))
7012                 return;
7013
7014         if (!file)
7015                 return;
7016
7017         raw_spin_lock_irqsave(&ifh->lock, flags);
7018         list_for_each_entry(filter, &ifh->list, entry) {
7019                 if (perf_addr_filter_match(filter, file, off,
7020                                              vma->vm_end - vma->vm_start)) {
7021                         event->addr_filters_offs[count] = vma->vm_start;
7022                         restart++;
7023                 }
7024
7025                 count++;
7026         }
7027
7028         if (restart)
7029                 event->addr_filters_gen++;
7030         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7031
7032         if (restart)
7033                 perf_event_stop(event, 1);
7034 }
7035
7036 /*
7037  * Adjust all task's events' filters to the new vma
7038  */
7039 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7040 {
7041         struct perf_event_context *ctx;
7042         int ctxn;
7043
7044         /*
7045          * Data tracing isn't supported yet and as such there is no need
7046          * to keep track of anything that isn't related to executable code:
7047          */
7048         if (!(vma->vm_flags & VM_EXEC))
7049                 return;
7050
7051         rcu_read_lock();
7052         for_each_task_context_nr(ctxn) {
7053                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7054                 if (!ctx)
7055                         continue;
7056
7057                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7058         }
7059         rcu_read_unlock();
7060 }
7061
7062 void perf_event_mmap(struct vm_area_struct *vma)
7063 {
7064         struct perf_mmap_event mmap_event;
7065
7066         if (!atomic_read(&nr_mmap_events))
7067                 return;
7068
7069         mmap_event = (struct perf_mmap_event){
7070                 .vma    = vma,
7071                 /* .file_name */
7072                 /* .file_size */
7073                 .event_id  = {
7074                         .header = {
7075                                 .type = PERF_RECORD_MMAP,
7076                                 .misc = PERF_RECORD_MISC_USER,
7077                                 /* .size */
7078                         },
7079                         /* .pid */
7080                         /* .tid */
7081                         .start  = vma->vm_start,
7082                         .len    = vma->vm_end - vma->vm_start,
7083                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7084                 },
7085                 /* .maj (attr_mmap2 only) */
7086                 /* .min (attr_mmap2 only) */
7087                 /* .ino (attr_mmap2 only) */
7088                 /* .ino_generation (attr_mmap2 only) */
7089                 /* .prot (attr_mmap2 only) */
7090                 /* .flags (attr_mmap2 only) */
7091         };
7092
7093         perf_addr_filters_adjust(vma);
7094         perf_event_mmap_event(&mmap_event);
7095 }
7096
7097 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7098                           unsigned long size, u64 flags)
7099 {
7100         struct perf_output_handle handle;
7101         struct perf_sample_data sample;
7102         struct perf_aux_event {
7103                 struct perf_event_header        header;
7104                 u64                             offset;
7105                 u64                             size;
7106                 u64                             flags;
7107         } rec = {
7108                 .header = {
7109                         .type = PERF_RECORD_AUX,
7110                         .misc = 0,
7111                         .size = sizeof(rec),
7112                 },
7113                 .offset         = head,
7114                 .size           = size,
7115                 .flags          = flags,
7116         };
7117         int ret;
7118
7119         perf_event_header__init_id(&rec.header, &sample, event);
7120         ret = perf_output_begin(&handle, event, rec.header.size);
7121
7122         if (ret)
7123                 return;
7124
7125         perf_output_put(&handle, rec);
7126         perf_event__output_id_sample(event, &handle, &sample);
7127
7128         perf_output_end(&handle);
7129 }
7130
7131 /*
7132  * Lost/dropped samples logging
7133  */
7134 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7135 {
7136         struct perf_output_handle handle;
7137         struct perf_sample_data sample;
7138         int ret;
7139
7140         struct {
7141                 struct perf_event_header        header;
7142                 u64                             lost;
7143         } lost_samples_event = {
7144                 .header = {
7145                         .type = PERF_RECORD_LOST_SAMPLES,
7146                         .misc = 0,
7147                         .size = sizeof(lost_samples_event),
7148                 },
7149                 .lost           = lost,
7150         };
7151
7152         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7153
7154         ret = perf_output_begin(&handle, event,
7155                                 lost_samples_event.header.size);
7156         if (ret)
7157                 return;
7158
7159         perf_output_put(&handle, lost_samples_event);
7160         perf_event__output_id_sample(event, &handle, &sample);
7161         perf_output_end(&handle);
7162 }
7163
7164 /*
7165  * context_switch tracking
7166  */
7167
7168 struct perf_switch_event {
7169         struct task_struct      *task;
7170         struct task_struct      *next_prev;
7171
7172         struct {
7173                 struct perf_event_header        header;
7174                 u32                             next_prev_pid;
7175                 u32                             next_prev_tid;
7176         } event_id;
7177 };
7178
7179 static int perf_event_switch_match(struct perf_event *event)
7180 {
7181         return event->attr.context_switch;
7182 }
7183
7184 static void perf_event_switch_output(struct perf_event *event, void *data)
7185 {
7186         struct perf_switch_event *se = data;
7187         struct perf_output_handle handle;
7188         struct perf_sample_data sample;
7189         int ret;
7190
7191         if (!perf_event_switch_match(event))
7192                 return;
7193
7194         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7195         if (event->ctx->task) {
7196                 se->event_id.header.type = PERF_RECORD_SWITCH;
7197                 se->event_id.header.size = sizeof(se->event_id.header);
7198         } else {
7199                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7200                 se->event_id.header.size = sizeof(se->event_id);
7201                 se->event_id.next_prev_pid =
7202                                         perf_event_pid(event, se->next_prev);
7203                 se->event_id.next_prev_tid =
7204                                         perf_event_tid(event, se->next_prev);
7205         }
7206
7207         perf_event_header__init_id(&se->event_id.header, &sample, event);
7208
7209         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7210         if (ret)
7211                 return;
7212
7213         if (event->ctx->task)
7214                 perf_output_put(&handle, se->event_id.header);
7215         else
7216                 perf_output_put(&handle, se->event_id);
7217
7218         perf_event__output_id_sample(event, &handle, &sample);
7219
7220         perf_output_end(&handle);
7221 }
7222
7223 static void perf_event_switch(struct task_struct *task,
7224                               struct task_struct *next_prev, bool sched_in)
7225 {
7226         struct perf_switch_event switch_event;
7227
7228         /* N.B. caller checks nr_switch_events != 0 */
7229
7230         switch_event = (struct perf_switch_event){
7231                 .task           = task,
7232                 .next_prev      = next_prev,
7233                 .event_id       = {
7234                         .header = {
7235                                 /* .type */
7236                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7237                                 /* .size */
7238                         },
7239                         /* .next_prev_pid */
7240                         /* .next_prev_tid */
7241                 },
7242         };
7243
7244         perf_iterate_sb(perf_event_switch_output,
7245                        &switch_event,
7246                        NULL);
7247 }
7248
7249 /*
7250  * IRQ throttle logging
7251  */
7252
7253 static void perf_log_throttle(struct perf_event *event, int enable)
7254 {
7255         struct perf_output_handle handle;
7256         struct perf_sample_data sample;
7257         int ret;
7258
7259         struct {
7260                 struct perf_event_header        header;
7261                 u64                             time;
7262                 u64                             id;
7263                 u64                             stream_id;
7264         } throttle_event = {
7265                 .header = {
7266                         .type = PERF_RECORD_THROTTLE,
7267                         .misc = 0,
7268                         .size = sizeof(throttle_event),
7269                 },
7270                 .time           = perf_event_clock(event),
7271                 .id             = primary_event_id(event),
7272                 .stream_id      = event->id,
7273         };
7274
7275         if (enable)
7276                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7277
7278         perf_event_header__init_id(&throttle_event.header, &sample, event);
7279
7280         ret = perf_output_begin(&handle, event,
7281                                 throttle_event.header.size);
7282         if (ret)
7283                 return;
7284
7285         perf_output_put(&handle, throttle_event);
7286         perf_event__output_id_sample(event, &handle, &sample);
7287         perf_output_end(&handle);
7288 }
7289
7290 static void perf_log_itrace_start(struct perf_event *event)
7291 {
7292         struct perf_output_handle handle;
7293         struct perf_sample_data sample;
7294         struct perf_aux_event {
7295                 struct perf_event_header        header;
7296                 u32                             pid;
7297                 u32                             tid;
7298         } rec;
7299         int ret;
7300
7301         if (event->parent)
7302                 event = event->parent;
7303
7304         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7305             event->hw.itrace_started)
7306                 return;
7307
7308         rec.header.type = PERF_RECORD_ITRACE_START;
7309         rec.header.misc = 0;
7310         rec.header.size = sizeof(rec);
7311         rec.pid = perf_event_pid(event, current);
7312         rec.tid = perf_event_tid(event, current);
7313
7314         perf_event_header__init_id(&rec.header, &sample, event);
7315         ret = perf_output_begin(&handle, event, rec.header.size);
7316
7317         if (ret)
7318                 return;
7319
7320         perf_output_put(&handle, rec);
7321         perf_event__output_id_sample(event, &handle, &sample);
7322
7323         perf_output_end(&handle);
7324 }
7325
7326 static int
7327 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7328 {
7329         struct hw_perf_event *hwc = &event->hw;
7330         int ret = 0;
7331         u64 seq;
7332
7333         seq = __this_cpu_read(perf_throttled_seq);
7334         if (seq != hwc->interrupts_seq) {
7335                 hwc->interrupts_seq = seq;
7336                 hwc->interrupts = 1;
7337         } else {
7338                 hwc->interrupts++;
7339                 if (unlikely(throttle
7340                              && hwc->interrupts >= max_samples_per_tick)) {
7341                         __this_cpu_inc(perf_throttled_count);
7342                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7343                         hwc->interrupts = MAX_INTERRUPTS;
7344                         perf_log_throttle(event, 0);
7345                         ret = 1;
7346                 }
7347         }
7348
7349         if (event->attr.freq) {
7350                 u64 now = perf_clock();
7351                 s64 delta = now - hwc->freq_time_stamp;
7352
7353                 hwc->freq_time_stamp = now;
7354
7355                 if (delta > 0 && delta < 2*TICK_NSEC)
7356                         perf_adjust_period(event, delta, hwc->last_period, true);
7357         }
7358
7359         return ret;
7360 }
7361
7362 int perf_event_account_interrupt(struct perf_event *event)
7363 {
7364         return __perf_event_account_interrupt(event, 1);
7365 }
7366
7367 /*
7368  * Generic event overflow handling, sampling.
7369  */
7370
7371 static int __perf_event_overflow(struct perf_event *event,
7372                                    int throttle, struct perf_sample_data *data,
7373                                    struct pt_regs *regs)
7374 {
7375         int events = atomic_read(&event->event_limit);
7376         int ret = 0;
7377
7378         /*
7379          * Non-sampling counters might still use the PMI to fold short
7380          * hardware counters, ignore those.
7381          */
7382         if (unlikely(!is_sampling_event(event)))
7383                 return 0;
7384
7385         ret = __perf_event_account_interrupt(event, throttle);
7386
7387         /*
7388          * XXX event_limit might not quite work as expected on inherited
7389          * events
7390          */
7391
7392         event->pending_kill = POLL_IN;
7393         if (events && atomic_dec_and_test(&event->event_limit)) {
7394                 ret = 1;
7395                 event->pending_kill = POLL_HUP;
7396
7397                 perf_event_disable_inatomic(event);
7398         }
7399
7400         READ_ONCE(event->overflow_handler)(event, data, regs);
7401
7402         if (*perf_event_fasync(event) && event->pending_kill) {
7403                 event->pending_wakeup = 1;
7404                 irq_work_queue(&event->pending);
7405         }
7406
7407         return ret;
7408 }
7409
7410 int perf_event_overflow(struct perf_event *event,
7411                           struct perf_sample_data *data,
7412                           struct pt_regs *regs)
7413 {
7414         return __perf_event_overflow(event, 1, data, regs);
7415 }
7416
7417 /*
7418  * Generic software event infrastructure
7419  */
7420
7421 struct swevent_htable {
7422         struct swevent_hlist            *swevent_hlist;
7423         struct mutex                    hlist_mutex;
7424         int                             hlist_refcount;
7425
7426         /* Recursion avoidance in each contexts */
7427         int                             recursion[PERF_NR_CONTEXTS];
7428 };
7429
7430 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7431
7432 /*
7433  * We directly increment event->count and keep a second value in
7434  * event->hw.period_left to count intervals. This period event
7435  * is kept in the range [-sample_period, 0] so that we can use the
7436  * sign as trigger.
7437  */
7438
7439 u64 perf_swevent_set_period(struct perf_event *event)
7440 {
7441         struct hw_perf_event *hwc = &event->hw;
7442         u64 period = hwc->last_period;
7443         u64 nr, offset;
7444         s64 old, val;
7445
7446         hwc->last_period = hwc->sample_period;
7447
7448 again:
7449         old = val = local64_read(&hwc->period_left);
7450         if (val < 0)
7451                 return 0;
7452
7453         nr = div64_u64(period + val, period);
7454         offset = nr * period;
7455         val -= offset;
7456         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7457                 goto again;
7458
7459         return nr;
7460 }
7461
7462 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7463                                     struct perf_sample_data *data,
7464                                     struct pt_regs *regs)
7465 {
7466         struct hw_perf_event *hwc = &event->hw;
7467         int throttle = 0;
7468
7469         if (!overflow)
7470                 overflow = perf_swevent_set_period(event);
7471
7472         if (hwc->interrupts == MAX_INTERRUPTS)
7473                 return;
7474
7475         for (; overflow; overflow--) {
7476                 if (__perf_event_overflow(event, throttle,
7477                                             data, regs)) {
7478                         /*
7479                          * We inhibit the overflow from happening when
7480                          * hwc->interrupts == MAX_INTERRUPTS.
7481                          */
7482                         break;
7483                 }
7484                 throttle = 1;
7485         }
7486 }
7487
7488 static void perf_swevent_event(struct perf_event *event, u64 nr,
7489                                struct perf_sample_data *data,
7490                                struct pt_regs *regs)
7491 {
7492         struct hw_perf_event *hwc = &event->hw;
7493
7494         local64_add(nr, &event->count);
7495
7496         if (!regs)
7497                 return;
7498
7499         if (!is_sampling_event(event))
7500                 return;
7501
7502         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7503                 data->period = nr;
7504                 return perf_swevent_overflow(event, 1, data, regs);
7505         } else
7506                 data->period = event->hw.last_period;
7507
7508         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7509                 return perf_swevent_overflow(event, 1, data, regs);
7510
7511         if (local64_add_negative(nr, &hwc->period_left))
7512                 return;
7513
7514         perf_swevent_overflow(event, 0, data, regs);
7515 }
7516
7517 static int perf_exclude_event(struct perf_event *event,
7518                               struct pt_regs *regs)
7519 {
7520         if (event->hw.state & PERF_HES_STOPPED)
7521                 return 1;
7522
7523         if (regs) {
7524                 if (event->attr.exclude_user && user_mode(regs))
7525                         return 1;
7526
7527                 if (event->attr.exclude_kernel && !user_mode(regs))
7528                         return 1;
7529         }
7530
7531         return 0;
7532 }
7533
7534 static int perf_swevent_match(struct perf_event *event,
7535                                 enum perf_type_id type,
7536                                 u32 event_id,
7537                                 struct perf_sample_data *data,
7538                                 struct pt_regs *regs)
7539 {
7540         if (event->attr.type != type)
7541                 return 0;
7542
7543         if (event->attr.config != event_id)
7544                 return 0;
7545
7546         if (perf_exclude_event(event, regs))
7547                 return 0;
7548
7549         return 1;
7550 }
7551
7552 static inline u64 swevent_hash(u64 type, u32 event_id)
7553 {
7554         u64 val = event_id | (type << 32);
7555
7556         return hash_64(val, SWEVENT_HLIST_BITS);
7557 }
7558
7559 static inline struct hlist_head *
7560 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7561 {
7562         u64 hash = swevent_hash(type, event_id);
7563
7564         return &hlist->heads[hash];
7565 }
7566
7567 /* For the read side: events when they trigger */
7568 static inline struct hlist_head *
7569 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7570 {
7571         struct swevent_hlist *hlist;
7572
7573         hlist = rcu_dereference(swhash->swevent_hlist);
7574         if (!hlist)
7575                 return NULL;
7576
7577         return __find_swevent_head(hlist, type, event_id);
7578 }
7579
7580 /* For the event head insertion and removal in the hlist */
7581 static inline struct hlist_head *
7582 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7583 {
7584         struct swevent_hlist *hlist;
7585         u32 event_id = event->attr.config;
7586         u64 type = event->attr.type;
7587
7588         /*
7589          * Event scheduling is always serialized against hlist allocation
7590          * and release. Which makes the protected version suitable here.
7591          * The context lock guarantees that.
7592          */
7593         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7594                                           lockdep_is_held(&event->ctx->lock));
7595         if (!hlist)
7596                 return NULL;
7597
7598         return __find_swevent_head(hlist, type, event_id);
7599 }
7600
7601 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7602                                     u64 nr,
7603                                     struct perf_sample_data *data,
7604                                     struct pt_regs *regs)
7605 {
7606         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7607         struct perf_event *event;
7608         struct hlist_head *head;
7609
7610         rcu_read_lock();
7611         head = find_swevent_head_rcu(swhash, type, event_id);
7612         if (!head)
7613                 goto end;
7614
7615         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7616                 if (perf_swevent_match(event, type, event_id, data, regs))
7617                         perf_swevent_event(event, nr, data, regs);
7618         }
7619 end:
7620         rcu_read_unlock();
7621 }
7622
7623 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7624
7625 int perf_swevent_get_recursion_context(void)
7626 {
7627         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7628
7629         return get_recursion_context(swhash->recursion);
7630 }
7631 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7632
7633 void perf_swevent_put_recursion_context(int rctx)
7634 {
7635         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7636
7637         put_recursion_context(swhash->recursion, rctx);
7638 }
7639
7640 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7641 {
7642         struct perf_sample_data data;
7643
7644         if (WARN_ON_ONCE(!regs))
7645                 return;
7646
7647         perf_sample_data_init(&data, addr, 0);
7648         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7649 }
7650
7651 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7652 {
7653         int rctx;
7654
7655         preempt_disable_notrace();
7656         rctx = perf_swevent_get_recursion_context();
7657         if (unlikely(rctx < 0))
7658                 goto fail;
7659
7660         ___perf_sw_event(event_id, nr, regs, addr);
7661
7662         perf_swevent_put_recursion_context(rctx);
7663 fail:
7664         preempt_enable_notrace();
7665 }
7666
7667 static void perf_swevent_read(struct perf_event *event)
7668 {
7669 }
7670
7671 static int perf_swevent_add(struct perf_event *event, int flags)
7672 {
7673         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7674         struct hw_perf_event *hwc = &event->hw;
7675         struct hlist_head *head;
7676
7677         if (is_sampling_event(event)) {
7678                 hwc->last_period = hwc->sample_period;
7679                 perf_swevent_set_period(event);
7680         }
7681
7682         hwc->state = !(flags & PERF_EF_START);
7683
7684         head = find_swevent_head(swhash, event);
7685         if (WARN_ON_ONCE(!head))
7686                 return -EINVAL;
7687
7688         hlist_add_head_rcu(&event->hlist_entry, head);
7689         perf_event_update_userpage(event);
7690
7691         return 0;
7692 }
7693
7694 static void perf_swevent_del(struct perf_event *event, int flags)
7695 {
7696         hlist_del_rcu(&event->hlist_entry);
7697 }
7698
7699 static void perf_swevent_start(struct perf_event *event, int flags)
7700 {
7701         event->hw.state = 0;
7702 }
7703
7704 static void perf_swevent_stop(struct perf_event *event, int flags)
7705 {
7706         event->hw.state = PERF_HES_STOPPED;
7707 }
7708
7709 /* Deref the hlist from the update side */
7710 static inline struct swevent_hlist *
7711 swevent_hlist_deref(struct swevent_htable *swhash)
7712 {
7713         return rcu_dereference_protected(swhash->swevent_hlist,
7714                                          lockdep_is_held(&swhash->hlist_mutex));
7715 }
7716
7717 static void swevent_hlist_release(struct swevent_htable *swhash)
7718 {
7719         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7720
7721         if (!hlist)
7722                 return;
7723
7724         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7725         kfree_rcu(hlist, rcu_head);
7726 }
7727
7728 static void swevent_hlist_put_cpu(int cpu)
7729 {
7730         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7731
7732         mutex_lock(&swhash->hlist_mutex);
7733
7734         if (!--swhash->hlist_refcount)
7735                 swevent_hlist_release(swhash);
7736
7737         mutex_unlock(&swhash->hlist_mutex);
7738 }
7739
7740 static void swevent_hlist_put(void)
7741 {
7742         int cpu;
7743
7744         for_each_possible_cpu(cpu)
7745                 swevent_hlist_put_cpu(cpu);
7746 }
7747
7748 static int swevent_hlist_get_cpu(int cpu)
7749 {
7750         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7751         int err = 0;
7752
7753         mutex_lock(&swhash->hlist_mutex);
7754         if (!swevent_hlist_deref(swhash) &&
7755             cpumask_test_cpu(cpu, perf_online_mask)) {
7756                 struct swevent_hlist *hlist;
7757
7758                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7759                 if (!hlist) {
7760                         err = -ENOMEM;
7761                         goto exit;
7762                 }
7763                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7764         }
7765         swhash->hlist_refcount++;
7766 exit:
7767         mutex_unlock(&swhash->hlist_mutex);
7768
7769         return err;
7770 }
7771
7772 static int swevent_hlist_get(void)
7773 {
7774         int err, cpu, failed_cpu;
7775
7776         mutex_lock(&pmus_lock);
7777         for_each_possible_cpu(cpu) {
7778                 err = swevent_hlist_get_cpu(cpu);
7779                 if (err) {
7780                         failed_cpu = cpu;
7781                         goto fail;
7782                 }
7783         }
7784         mutex_unlock(&pmus_lock);
7785         return 0;
7786 fail:
7787         for_each_possible_cpu(cpu) {
7788                 if (cpu == failed_cpu)
7789                         break;
7790                 swevent_hlist_put_cpu(cpu);
7791         }
7792         mutex_unlock(&pmus_lock);
7793         return err;
7794 }
7795
7796 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7797
7798 static void sw_perf_event_destroy(struct perf_event *event)
7799 {
7800         u64 event_id = event->attr.config;
7801
7802         WARN_ON(event->parent);
7803
7804         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7805         swevent_hlist_put();
7806 }
7807
7808 static int perf_swevent_init(struct perf_event *event)
7809 {
7810         u64 event_id = event->attr.config;
7811
7812         if (event->attr.type != PERF_TYPE_SOFTWARE)
7813                 return -ENOENT;
7814
7815         /*
7816          * no branch sampling for software events
7817          */
7818         if (has_branch_stack(event))
7819                 return -EOPNOTSUPP;
7820
7821         switch (event_id) {
7822         case PERF_COUNT_SW_CPU_CLOCK:
7823         case PERF_COUNT_SW_TASK_CLOCK:
7824                 return -ENOENT;
7825
7826         default:
7827                 break;
7828         }
7829
7830         if (event_id >= PERF_COUNT_SW_MAX)
7831                 return -ENOENT;
7832
7833         if (!event->parent) {
7834                 int err;
7835
7836                 err = swevent_hlist_get();
7837                 if (err)
7838                         return err;
7839
7840                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7841                 event->destroy = sw_perf_event_destroy;
7842         }
7843
7844         return 0;
7845 }
7846
7847 static struct pmu perf_swevent = {
7848         .task_ctx_nr    = perf_sw_context,
7849
7850         .capabilities   = PERF_PMU_CAP_NO_NMI,
7851
7852         .event_init     = perf_swevent_init,
7853         .add            = perf_swevent_add,
7854         .del            = perf_swevent_del,
7855         .start          = perf_swevent_start,
7856         .stop           = perf_swevent_stop,
7857         .read           = perf_swevent_read,
7858 };
7859
7860 #ifdef CONFIG_EVENT_TRACING
7861
7862 static int perf_tp_filter_match(struct perf_event *event,
7863                                 struct perf_sample_data *data)
7864 {
7865         void *record = data->raw->frag.data;
7866
7867         /* only top level events have filters set */
7868         if (event->parent)
7869                 event = event->parent;
7870
7871         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7872                 return 1;
7873         return 0;
7874 }
7875
7876 static int perf_tp_event_match(struct perf_event *event,
7877                                 struct perf_sample_data *data,
7878                                 struct pt_regs *regs)
7879 {
7880         if (event->hw.state & PERF_HES_STOPPED)
7881                 return 0;
7882         /*
7883          * All tracepoints are from kernel-space.
7884          */
7885         if (event->attr.exclude_kernel)
7886                 return 0;
7887
7888         if (!perf_tp_filter_match(event, data))
7889                 return 0;
7890
7891         return 1;
7892 }
7893
7894 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7895                                struct trace_event_call *call, u64 count,
7896                                struct pt_regs *regs, struct hlist_head *head,
7897                                struct task_struct *task)
7898 {
7899         struct bpf_prog *prog = call->prog;
7900
7901         if (prog) {
7902                 *(struct pt_regs **)raw_data = regs;
7903                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7904                         perf_swevent_put_recursion_context(rctx);
7905                         return;
7906                 }
7907         }
7908         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7909                       rctx, task, NULL);
7910 }
7911 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7912
7913 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7914                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7915                    struct task_struct *task, struct perf_event *event)
7916 {
7917         struct perf_sample_data data;
7918
7919         struct perf_raw_record raw = {
7920                 .frag = {
7921                         .size = entry_size,
7922                         .data = record,
7923                 },
7924         };
7925
7926         perf_sample_data_init(&data, 0, 0);
7927         data.raw = &raw;
7928
7929         perf_trace_buf_update(record, event_type);
7930
7931         /* Use the given event instead of the hlist */
7932         if (event) {
7933                 if (perf_tp_event_match(event, &data, regs))
7934                         perf_swevent_event(event, count, &data, regs);
7935         } else {
7936                 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7937                         if (perf_tp_event_match(event, &data, regs))
7938                                 perf_swevent_event(event, count, &data, regs);
7939                 }
7940         }
7941
7942         /*
7943          * If we got specified a target task, also iterate its context and
7944          * deliver this event there too.
7945          */
7946         if (task && task != current) {
7947                 struct perf_event_context *ctx;
7948                 struct trace_entry *entry = record;
7949
7950                 rcu_read_lock();
7951                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7952                 if (!ctx)
7953                         goto unlock;
7954
7955                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7956                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7957                                 continue;
7958                         if (event->attr.config != entry->type)
7959                                 continue;
7960                         if (perf_tp_event_match(event, &data, regs))
7961                                 perf_swevent_event(event, count, &data, regs);
7962                 }
7963 unlock:
7964                 rcu_read_unlock();
7965         }
7966
7967         perf_swevent_put_recursion_context(rctx);
7968 }
7969 EXPORT_SYMBOL_GPL(perf_tp_event);
7970
7971 static void tp_perf_event_destroy(struct perf_event *event)
7972 {
7973         perf_trace_destroy(event);
7974 }
7975
7976 static int perf_tp_event_init(struct perf_event *event)
7977 {
7978         int err;
7979
7980         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7981                 return -ENOENT;
7982
7983         /*
7984          * no branch sampling for tracepoint events
7985          */
7986         if (has_branch_stack(event))
7987                 return -EOPNOTSUPP;
7988
7989         err = perf_trace_init(event);
7990         if (err)
7991                 return err;
7992
7993         event->destroy = tp_perf_event_destroy;
7994
7995         return 0;
7996 }
7997
7998 static struct pmu perf_tracepoint = {
7999         .task_ctx_nr    = perf_sw_context,
8000
8001         .event_init     = perf_tp_event_init,
8002         .add            = perf_trace_add,
8003         .del            = perf_trace_del,
8004         .start          = perf_swevent_start,
8005         .stop           = perf_swevent_stop,
8006         .read           = perf_swevent_read,
8007 };
8008
8009 static inline void perf_tp_register(void)
8010 {
8011         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8012 }
8013
8014 static void perf_event_free_filter(struct perf_event *event)
8015 {
8016         ftrace_profile_free_filter(event);
8017 }
8018
8019 #ifdef CONFIG_BPF_SYSCALL
8020 static void bpf_overflow_handler(struct perf_event *event,
8021                                  struct perf_sample_data *data,
8022                                  struct pt_regs *regs)
8023 {
8024         struct bpf_perf_event_data_kern ctx = {
8025                 .data = data,
8026                 .regs = regs,
8027         };
8028         int ret = 0;
8029
8030         preempt_disable();
8031         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8032                 goto out;
8033         rcu_read_lock();
8034         ret = BPF_PROG_RUN(event->prog, &ctx);
8035         rcu_read_unlock();
8036 out:
8037         __this_cpu_dec(bpf_prog_active);
8038         preempt_enable();
8039         if (!ret)
8040                 return;
8041
8042         event->orig_overflow_handler(event, data, regs);
8043 }
8044
8045 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8046 {
8047         struct bpf_prog *prog;
8048
8049         if (event->overflow_handler_context)
8050                 /* hw breakpoint or kernel counter */
8051                 return -EINVAL;
8052
8053         if (event->prog)
8054                 return -EEXIST;
8055
8056         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8057         if (IS_ERR(prog))
8058                 return PTR_ERR(prog);
8059
8060         event->prog = prog;
8061         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8062         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8063         return 0;
8064 }
8065
8066 static void perf_event_free_bpf_handler(struct perf_event *event)
8067 {
8068         struct bpf_prog *prog = event->prog;
8069
8070         if (!prog)
8071                 return;
8072
8073         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8074         event->prog = NULL;
8075         bpf_prog_put(prog);
8076 }
8077 #else
8078 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8079 {
8080         return -EOPNOTSUPP;
8081 }
8082 static void perf_event_free_bpf_handler(struct perf_event *event)
8083 {
8084 }
8085 #endif
8086
8087 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8088 {
8089         bool is_kprobe, is_tracepoint;
8090         struct bpf_prog *prog;
8091
8092         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8093                 return perf_event_set_bpf_handler(event, prog_fd);
8094
8095         if (event->tp_event->prog)
8096                 return -EEXIST;
8097
8098         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8099         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8100         if (!is_kprobe && !is_tracepoint)
8101                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8102                 return -EINVAL;
8103
8104         prog = bpf_prog_get(prog_fd);
8105         if (IS_ERR(prog))
8106                 return PTR_ERR(prog);
8107
8108         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8109             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8110                 /* valid fd, but invalid bpf program type */
8111                 bpf_prog_put(prog);
8112                 return -EINVAL;
8113         }
8114
8115         if (is_tracepoint) {
8116                 int off = trace_event_get_offsets(event->tp_event);
8117
8118                 if (prog->aux->max_ctx_offset > off) {
8119                         bpf_prog_put(prog);
8120                         return -EACCES;
8121                 }
8122         }
8123         event->tp_event->prog = prog;
8124
8125         return 0;
8126 }
8127
8128 static void perf_event_free_bpf_prog(struct perf_event *event)
8129 {
8130         struct bpf_prog *prog;
8131
8132         perf_event_free_bpf_handler(event);
8133
8134         if (!event->tp_event)
8135                 return;
8136
8137         prog = event->tp_event->prog;
8138         if (prog) {
8139                 event->tp_event->prog = NULL;
8140                 bpf_prog_put(prog);
8141         }
8142 }
8143
8144 #else
8145
8146 static inline void perf_tp_register(void)
8147 {
8148 }
8149
8150 static void perf_event_free_filter(struct perf_event *event)
8151 {
8152 }
8153
8154 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8155 {
8156         return -ENOENT;
8157 }
8158
8159 static void perf_event_free_bpf_prog(struct perf_event *event)
8160 {
8161 }
8162 #endif /* CONFIG_EVENT_TRACING */
8163
8164 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8165 void perf_bp_event(struct perf_event *bp, void *data)
8166 {
8167         struct perf_sample_data sample;
8168         struct pt_regs *regs = data;
8169
8170         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8171
8172         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8173                 perf_swevent_event(bp, 1, &sample, regs);
8174 }
8175 #endif
8176
8177 /*
8178  * Allocate a new address filter
8179  */
8180 static struct perf_addr_filter *
8181 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8182 {
8183         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8184         struct perf_addr_filter *filter;
8185
8186         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8187         if (!filter)
8188                 return NULL;
8189
8190         INIT_LIST_HEAD(&filter->entry);
8191         list_add_tail(&filter->entry, filters);
8192
8193         return filter;
8194 }
8195
8196 static void free_filters_list(struct list_head *filters)
8197 {
8198         struct perf_addr_filter *filter, *iter;
8199
8200         list_for_each_entry_safe(filter, iter, filters, entry) {
8201                 if (filter->inode)
8202                         iput(filter->inode);
8203                 list_del(&filter->entry);
8204                 kfree(filter);
8205         }
8206 }
8207
8208 /*
8209  * Free existing address filters and optionally install new ones
8210  */
8211 static void perf_addr_filters_splice(struct perf_event *event,
8212                                      struct list_head *head)
8213 {
8214         unsigned long flags;
8215         LIST_HEAD(list);
8216
8217         if (!has_addr_filter(event))
8218                 return;
8219
8220         /* don't bother with children, they don't have their own filters */
8221         if (event->parent)
8222                 return;
8223
8224         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8225
8226         list_splice_init(&event->addr_filters.list, &list);
8227         if (head)
8228                 list_splice(head, &event->addr_filters.list);
8229
8230         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8231
8232         free_filters_list(&list);
8233 }
8234
8235 /*
8236  * Scan through mm's vmas and see if one of them matches the
8237  * @filter; if so, adjust filter's address range.
8238  * Called with mm::mmap_sem down for reading.
8239  */
8240 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8241                                             struct mm_struct *mm)
8242 {
8243         struct vm_area_struct *vma;
8244
8245         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8246                 struct file *file = vma->vm_file;
8247                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8248                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8249
8250                 if (!file)
8251                         continue;
8252
8253                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8254                         continue;
8255
8256                 return vma->vm_start;
8257         }
8258
8259         return 0;
8260 }
8261
8262 /*
8263  * Update event's address range filters based on the
8264  * task's existing mappings, if any.
8265  */
8266 static void perf_event_addr_filters_apply(struct perf_event *event)
8267 {
8268         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8269         struct task_struct *task = READ_ONCE(event->ctx->task);
8270         struct perf_addr_filter *filter;
8271         struct mm_struct *mm = NULL;
8272         unsigned int count = 0;
8273         unsigned long flags;
8274
8275         /*
8276          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8277          * will stop on the parent's child_mutex that our caller is also holding
8278          */
8279         if (task == TASK_TOMBSTONE)
8280                 return;
8281
8282         if (!ifh->nr_file_filters)
8283                 return;
8284
8285         mm = get_task_mm(event->ctx->task);
8286         if (!mm)
8287                 goto restart;
8288
8289         down_read(&mm->mmap_sem);
8290
8291         raw_spin_lock_irqsave(&ifh->lock, flags);
8292         list_for_each_entry(filter, &ifh->list, entry) {
8293                 event->addr_filters_offs[count] = 0;
8294
8295                 /*
8296                  * Adjust base offset if the filter is associated to a binary
8297                  * that needs to be mapped:
8298                  */
8299                 if (filter->inode)
8300                         event->addr_filters_offs[count] =
8301                                 perf_addr_filter_apply(filter, mm);
8302
8303                 count++;
8304         }
8305
8306         event->addr_filters_gen++;
8307         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8308
8309         up_read(&mm->mmap_sem);
8310
8311         mmput(mm);
8312
8313 restart:
8314         perf_event_stop(event, 1);
8315 }
8316
8317 /*
8318  * Address range filtering: limiting the data to certain
8319  * instruction address ranges. Filters are ioctl()ed to us from
8320  * userspace as ascii strings.
8321  *
8322  * Filter string format:
8323  *
8324  * ACTION RANGE_SPEC
8325  * where ACTION is one of the
8326  *  * "filter": limit the trace to this region
8327  *  * "start": start tracing from this address
8328  *  * "stop": stop tracing at this address/region;
8329  * RANGE_SPEC is
8330  *  * for kernel addresses: <start address>[/<size>]
8331  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8332  *
8333  * if <size> is not specified, the range is treated as a single address.
8334  */
8335 enum {
8336         IF_ACT_NONE = -1,
8337         IF_ACT_FILTER,
8338         IF_ACT_START,
8339         IF_ACT_STOP,
8340         IF_SRC_FILE,
8341         IF_SRC_KERNEL,
8342         IF_SRC_FILEADDR,
8343         IF_SRC_KERNELADDR,
8344 };
8345
8346 enum {
8347         IF_STATE_ACTION = 0,
8348         IF_STATE_SOURCE,
8349         IF_STATE_END,
8350 };
8351
8352 static const match_table_t if_tokens = {
8353         { IF_ACT_FILTER,        "filter" },
8354         { IF_ACT_START,         "start" },
8355         { IF_ACT_STOP,          "stop" },
8356         { IF_SRC_FILE,          "%u/%u@%s" },
8357         { IF_SRC_KERNEL,        "%u/%u" },
8358         { IF_SRC_FILEADDR,      "%u@%s" },
8359         { IF_SRC_KERNELADDR,    "%u" },
8360         { IF_ACT_NONE,          NULL },
8361 };
8362
8363 /*
8364  * Address filter string parser
8365  */
8366 static int
8367 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8368                              struct list_head *filters)
8369 {
8370         struct perf_addr_filter *filter = NULL;
8371         char *start, *orig, *filename = NULL;
8372         struct path path;
8373         substring_t args[MAX_OPT_ARGS];
8374         int state = IF_STATE_ACTION, token;
8375         unsigned int kernel = 0;
8376         int ret = -EINVAL;
8377
8378         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8379         if (!fstr)
8380                 return -ENOMEM;
8381
8382         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8383                 ret = -EINVAL;
8384
8385                 if (!*start)
8386                         continue;
8387
8388                 /* filter definition begins */
8389                 if (state == IF_STATE_ACTION) {
8390                         filter = perf_addr_filter_new(event, filters);
8391                         if (!filter)
8392                                 goto fail;
8393                 }
8394
8395                 token = match_token(start, if_tokens, args);
8396                 switch (token) {
8397                 case IF_ACT_FILTER:
8398                 case IF_ACT_START:
8399                         filter->filter = 1;
8400
8401                 case IF_ACT_STOP:
8402                         if (state != IF_STATE_ACTION)
8403                                 goto fail;
8404
8405                         state = IF_STATE_SOURCE;
8406                         break;
8407
8408                 case IF_SRC_KERNELADDR:
8409                 case IF_SRC_KERNEL:
8410                         kernel = 1;
8411
8412                 case IF_SRC_FILEADDR:
8413                 case IF_SRC_FILE:
8414                         if (state != IF_STATE_SOURCE)
8415                                 goto fail;
8416
8417                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8418                                 filter->range = 1;
8419
8420                         *args[0].to = 0;
8421                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8422                         if (ret)
8423                                 goto fail;
8424
8425                         if (filter->range) {
8426                                 *args[1].to = 0;
8427                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8428                                 if (ret)
8429                                         goto fail;
8430                         }
8431
8432                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8433                                 int fpos = filter->range ? 2 : 1;
8434
8435                                 filename = match_strdup(&args[fpos]);
8436                                 if (!filename) {
8437                                         ret = -ENOMEM;
8438                                         goto fail;
8439                                 }
8440                         }
8441
8442                         state = IF_STATE_END;
8443                         break;
8444
8445                 default:
8446                         goto fail;
8447                 }
8448
8449                 /*
8450                  * Filter definition is fully parsed, validate and install it.
8451                  * Make sure that it doesn't contradict itself or the event's
8452                  * attribute.
8453                  */
8454                 if (state == IF_STATE_END) {
8455                         ret = -EINVAL;
8456                         if (kernel && event->attr.exclude_kernel)
8457                                 goto fail;
8458
8459                         if (!kernel) {
8460                                 if (!filename)
8461                                         goto fail;
8462
8463                                 /*
8464                                  * For now, we only support file-based filters
8465                                  * in per-task events; doing so for CPU-wide
8466                                  * events requires additional context switching
8467                                  * trickery, since same object code will be
8468                                  * mapped at different virtual addresses in
8469                                  * different processes.
8470                                  */
8471                                 ret = -EOPNOTSUPP;
8472                                 if (!event->ctx->task)
8473                                         goto fail_free_name;
8474
8475                                 /* look up the path and grab its inode */
8476                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8477                                 if (ret)
8478                                         goto fail_free_name;
8479
8480                                 filter->inode = igrab(d_inode(path.dentry));
8481                                 path_put(&path);
8482                                 kfree(filename);
8483                                 filename = NULL;
8484
8485                                 ret = -EINVAL;
8486                                 if (!filter->inode ||
8487                                     !S_ISREG(filter->inode->i_mode))
8488                                         /* free_filters_list() will iput() */
8489                                         goto fail;
8490
8491                                 event->addr_filters.nr_file_filters++;
8492                         }
8493
8494                         /* ready to consume more filters */
8495                         state = IF_STATE_ACTION;
8496                         filter = NULL;
8497                 }
8498         }
8499
8500         if (state != IF_STATE_ACTION)
8501                 goto fail;
8502
8503         kfree(orig);
8504
8505         return 0;
8506
8507 fail_free_name:
8508         kfree(filename);
8509 fail:
8510         free_filters_list(filters);
8511         kfree(orig);
8512
8513         return ret;
8514 }
8515
8516 static int
8517 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8518 {
8519         LIST_HEAD(filters);
8520         int ret;
8521
8522         /*
8523          * Since this is called in perf_ioctl() path, we're already holding
8524          * ctx::mutex.
8525          */
8526         lockdep_assert_held(&event->ctx->mutex);
8527
8528         if (WARN_ON_ONCE(event->parent))
8529                 return -EINVAL;
8530
8531         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8532         if (ret)
8533                 goto fail_clear_files;
8534
8535         ret = event->pmu->addr_filters_validate(&filters);
8536         if (ret)
8537                 goto fail_free_filters;
8538
8539         /* remove existing filters, if any */
8540         perf_addr_filters_splice(event, &filters);
8541
8542         /* install new filters */
8543         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8544
8545         return ret;
8546
8547 fail_free_filters:
8548         free_filters_list(&filters);
8549
8550 fail_clear_files:
8551         event->addr_filters.nr_file_filters = 0;
8552
8553         return ret;
8554 }
8555
8556 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8557 {
8558         char *filter_str;
8559         int ret = -EINVAL;
8560
8561         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8562             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8563             !has_addr_filter(event))
8564                 return -EINVAL;
8565
8566         filter_str = strndup_user(arg, PAGE_SIZE);
8567         if (IS_ERR(filter_str))
8568                 return PTR_ERR(filter_str);
8569
8570         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8571             event->attr.type == PERF_TYPE_TRACEPOINT)
8572                 ret = ftrace_profile_set_filter(event, event->attr.config,
8573                                                 filter_str);
8574         else if (has_addr_filter(event))
8575                 ret = perf_event_set_addr_filter(event, filter_str);
8576
8577         kfree(filter_str);
8578         return ret;
8579 }
8580
8581 /*
8582  * hrtimer based swevent callback
8583  */
8584
8585 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8586 {
8587         enum hrtimer_restart ret = HRTIMER_RESTART;
8588         struct perf_sample_data data;
8589         struct pt_regs *regs;
8590         struct perf_event *event;
8591         u64 period;
8592
8593         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8594
8595         if (event->state != PERF_EVENT_STATE_ACTIVE)
8596                 return HRTIMER_NORESTART;
8597
8598         event->pmu->read(event);
8599
8600         perf_sample_data_init(&data, 0, event->hw.last_period);
8601         regs = get_irq_regs();
8602
8603         if (regs && !perf_exclude_event(event, regs)) {
8604                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8605                         if (__perf_event_overflow(event, 1, &data, regs))
8606                                 ret = HRTIMER_NORESTART;
8607         }
8608
8609         period = max_t(u64, 10000, event->hw.sample_period);
8610         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8611
8612         return ret;
8613 }
8614
8615 static void perf_swevent_start_hrtimer(struct perf_event *event)
8616 {
8617         struct hw_perf_event *hwc = &event->hw;
8618         s64 period;
8619
8620         if (!is_sampling_event(event))
8621                 return;
8622
8623         period = local64_read(&hwc->period_left);
8624         if (period) {
8625                 if (period < 0)
8626                         period = 10000;
8627
8628                 local64_set(&hwc->period_left, 0);
8629         } else {
8630                 period = max_t(u64, 10000, hwc->sample_period);
8631         }
8632         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8633                       HRTIMER_MODE_REL_PINNED);
8634 }
8635
8636 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8637 {
8638         struct hw_perf_event *hwc = &event->hw;
8639
8640         if (is_sampling_event(event)) {
8641                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8642                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8643
8644                 hrtimer_cancel(&hwc->hrtimer);
8645         }
8646 }
8647
8648 static void perf_swevent_init_hrtimer(struct perf_event *event)
8649 {
8650         struct hw_perf_event *hwc = &event->hw;
8651
8652         if (!is_sampling_event(event))
8653                 return;
8654
8655         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8656         hwc->hrtimer.function = perf_swevent_hrtimer;
8657
8658         /*
8659          * Since hrtimers have a fixed rate, we can do a static freq->period
8660          * mapping and avoid the whole period adjust feedback stuff.
8661          */
8662         if (event->attr.freq) {
8663                 long freq = event->attr.sample_freq;
8664
8665                 event->attr.sample_period = NSEC_PER_SEC / freq;
8666                 hwc->sample_period = event->attr.sample_period;
8667                 local64_set(&hwc->period_left, hwc->sample_period);
8668                 hwc->last_period = hwc->sample_period;
8669                 event->attr.freq = 0;
8670         }
8671 }
8672
8673 /*
8674  * Software event: cpu wall time clock
8675  */
8676
8677 static void cpu_clock_event_update(struct perf_event *event)
8678 {
8679         s64 prev;
8680         u64 now;
8681
8682         now = local_clock();
8683         prev = local64_xchg(&event->hw.prev_count, now);
8684         local64_add(now - prev, &event->count);
8685 }
8686
8687 static void cpu_clock_event_start(struct perf_event *event, int flags)
8688 {
8689         local64_set(&event->hw.prev_count, local_clock());
8690         perf_swevent_start_hrtimer(event);
8691 }
8692
8693 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8694 {
8695         perf_swevent_cancel_hrtimer(event);
8696         cpu_clock_event_update(event);
8697 }
8698
8699 static int cpu_clock_event_add(struct perf_event *event, int flags)
8700 {
8701         if (flags & PERF_EF_START)
8702                 cpu_clock_event_start(event, flags);
8703         perf_event_update_userpage(event);
8704
8705         return 0;
8706 }
8707
8708 static void cpu_clock_event_del(struct perf_event *event, int flags)
8709 {
8710         cpu_clock_event_stop(event, flags);
8711 }
8712
8713 static void cpu_clock_event_read(struct perf_event *event)
8714 {
8715         cpu_clock_event_update(event);
8716 }
8717
8718 static int cpu_clock_event_init(struct perf_event *event)
8719 {
8720         if (event->attr.type != PERF_TYPE_SOFTWARE)
8721                 return -ENOENT;
8722
8723         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8724                 return -ENOENT;
8725
8726         /*
8727          * no branch sampling for software events
8728          */
8729         if (has_branch_stack(event))
8730                 return -EOPNOTSUPP;
8731
8732         perf_swevent_init_hrtimer(event);
8733
8734         return 0;
8735 }
8736
8737 static struct pmu perf_cpu_clock = {
8738         .task_ctx_nr    = perf_sw_context,
8739
8740         .capabilities   = PERF_PMU_CAP_NO_NMI,
8741
8742         .event_init     = cpu_clock_event_init,
8743         .add            = cpu_clock_event_add,
8744         .del            = cpu_clock_event_del,
8745         .start          = cpu_clock_event_start,
8746         .stop           = cpu_clock_event_stop,
8747         .read           = cpu_clock_event_read,
8748 };
8749
8750 /*
8751  * Software event: task time clock
8752  */
8753
8754 static void task_clock_event_update(struct perf_event *event, u64 now)
8755 {
8756         u64 prev;
8757         s64 delta;
8758
8759         prev = local64_xchg(&event->hw.prev_count, now);
8760         delta = now - prev;
8761         local64_add(delta, &event->count);
8762 }
8763
8764 static void task_clock_event_start(struct perf_event *event, int flags)
8765 {
8766         local64_set(&event->hw.prev_count, event->ctx->time);
8767         perf_swevent_start_hrtimer(event);
8768 }
8769
8770 static void task_clock_event_stop(struct perf_event *event, int flags)
8771 {
8772         perf_swevent_cancel_hrtimer(event);
8773         task_clock_event_update(event, event->ctx->time);
8774 }
8775
8776 static int task_clock_event_add(struct perf_event *event, int flags)
8777 {
8778         if (flags & PERF_EF_START)
8779                 task_clock_event_start(event, flags);
8780         perf_event_update_userpage(event);
8781
8782         return 0;
8783 }
8784
8785 static void task_clock_event_del(struct perf_event *event, int flags)
8786 {
8787         task_clock_event_stop(event, PERF_EF_UPDATE);
8788 }
8789
8790 static void task_clock_event_read(struct perf_event *event)
8791 {
8792         u64 now = perf_clock();
8793         u64 delta = now - event->ctx->timestamp;
8794         u64 time = event->ctx->time + delta;
8795
8796         task_clock_event_update(event, time);
8797 }
8798
8799 static int task_clock_event_init(struct perf_event *event)
8800 {
8801         if (event->attr.type != PERF_TYPE_SOFTWARE)
8802                 return -ENOENT;
8803
8804         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8805                 return -ENOENT;
8806
8807         /*
8808          * no branch sampling for software events
8809          */
8810         if (has_branch_stack(event))
8811                 return -EOPNOTSUPP;
8812
8813         perf_swevent_init_hrtimer(event);
8814
8815         return 0;
8816 }
8817
8818 static struct pmu perf_task_clock = {
8819         .task_ctx_nr    = perf_sw_context,
8820
8821         .capabilities   = PERF_PMU_CAP_NO_NMI,
8822
8823         .event_init     = task_clock_event_init,
8824         .add            = task_clock_event_add,
8825         .del            = task_clock_event_del,
8826         .start          = task_clock_event_start,
8827         .stop           = task_clock_event_stop,
8828         .read           = task_clock_event_read,
8829 };
8830
8831 static void perf_pmu_nop_void(struct pmu *pmu)
8832 {
8833 }
8834
8835 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8836 {
8837 }
8838
8839 static int perf_pmu_nop_int(struct pmu *pmu)
8840 {
8841         return 0;
8842 }
8843
8844 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8845
8846 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8847 {
8848         __this_cpu_write(nop_txn_flags, flags);
8849
8850         if (flags & ~PERF_PMU_TXN_ADD)
8851                 return;
8852
8853         perf_pmu_disable(pmu);
8854 }
8855
8856 static int perf_pmu_commit_txn(struct pmu *pmu)
8857 {
8858         unsigned int flags = __this_cpu_read(nop_txn_flags);
8859
8860         __this_cpu_write(nop_txn_flags, 0);
8861
8862         if (flags & ~PERF_PMU_TXN_ADD)
8863                 return 0;
8864
8865         perf_pmu_enable(pmu);
8866         return 0;
8867 }
8868
8869 static void perf_pmu_cancel_txn(struct pmu *pmu)
8870 {
8871         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8872
8873         __this_cpu_write(nop_txn_flags, 0);
8874
8875         if (flags & ~PERF_PMU_TXN_ADD)
8876                 return;
8877
8878         perf_pmu_enable(pmu);
8879 }
8880
8881 static int perf_event_idx_default(struct perf_event *event)
8882 {
8883         return 0;
8884 }
8885
8886 /*
8887  * Ensures all contexts with the same task_ctx_nr have the same
8888  * pmu_cpu_context too.
8889  */
8890 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8891 {
8892         struct pmu *pmu;
8893
8894         if (ctxn < 0)
8895                 return NULL;
8896
8897         list_for_each_entry(pmu, &pmus, entry) {
8898                 if (pmu->task_ctx_nr == ctxn)
8899                         return pmu->pmu_cpu_context;
8900         }
8901
8902         return NULL;
8903 }
8904
8905 static void free_pmu_context(struct pmu *pmu)
8906 {
8907         mutex_lock(&pmus_lock);
8908         free_percpu(pmu->pmu_cpu_context);
8909         mutex_unlock(&pmus_lock);
8910 }
8911
8912 /*
8913  * Let userspace know that this PMU supports address range filtering:
8914  */
8915 static ssize_t nr_addr_filters_show(struct device *dev,
8916                                     struct device_attribute *attr,
8917                                     char *page)
8918 {
8919         struct pmu *pmu = dev_get_drvdata(dev);
8920
8921         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8922 }
8923 DEVICE_ATTR_RO(nr_addr_filters);
8924
8925 static struct idr pmu_idr;
8926
8927 static ssize_t
8928 type_show(struct device *dev, struct device_attribute *attr, char *page)
8929 {
8930         struct pmu *pmu = dev_get_drvdata(dev);
8931
8932         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8933 }
8934 static DEVICE_ATTR_RO(type);
8935
8936 static ssize_t
8937 perf_event_mux_interval_ms_show(struct device *dev,
8938                                 struct device_attribute *attr,
8939                                 char *page)
8940 {
8941         struct pmu *pmu = dev_get_drvdata(dev);
8942
8943         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8944 }
8945
8946 static DEFINE_MUTEX(mux_interval_mutex);
8947
8948 static ssize_t
8949 perf_event_mux_interval_ms_store(struct device *dev,
8950                                  struct device_attribute *attr,
8951                                  const char *buf, size_t count)
8952 {
8953         struct pmu *pmu = dev_get_drvdata(dev);
8954         int timer, cpu, ret;
8955
8956         ret = kstrtoint(buf, 0, &timer);
8957         if (ret)
8958                 return ret;
8959
8960         if (timer < 1)
8961                 return -EINVAL;
8962
8963         /* same value, noting to do */
8964         if (timer == pmu->hrtimer_interval_ms)
8965                 return count;
8966
8967         mutex_lock(&mux_interval_mutex);
8968         pmu->hrtimer_interval_ms = timer;
8969
8970         /* update all cpuctx for this PMU */
8971         cpus_read_lock();
8972         for_each_online_cpu(cpu) {
8973                 struct perf_cpu_context *cpuctx;
8974                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8975                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8976
8977                 cpu_function_call(cpu,
8978                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8979         }
8980         cpus_read_unlock();
8981         mutex_unlock(&mux_interval_mutex);
8982
8983         return count;
8984 }
8985 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8986
8987 static struct attribute *pmu_dev_attrs[] = {
8988         &dev_attr_type.attr,
8989         &dev_attr_perf_event_mux_interval_ms.attr,
8990         NULL,
8991 };
8992 ATTRIBUTE_GROUPS(pmu_dev);
8993
8994 static int pmu_bus_running;
8995 static struct bus_type pmu_bus = {
8996         .name           = "event_source",
8997         .dev_groups     = pmu_dev_groups,
8998 };
8999
9000 static void pmu_dev_release(struct device *dev)
9001 {
9002         kfree(dev);
9003 }
9004
9005 static int pmu_dev_alloc(struct pmu *pmu)
9006 {
9007         int ret = -ENOMEM;
9008
9009         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9010         if (!pmu->dev)
9011                 goto out;
9012
9013         pmu->dev->groups = pmu->attr_groups;
9014         device_initialize(pmu->dev);
9015         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9016         if (ret)
9017                 goto free_dev;
9018
9019         dev_set_drvdata(pmu->dev, pmu);
9020         pmu->dev->bus = &pmu_bus;
9021         pmu->dev->release = pmu_dev_release;
9022         ret = device_add(pmu->dev);
9023         if (ret)
9024                 goto free_dev;
9025
9026         /* For PMUs with address filters, throw in an extra attribute: */
9027         if (pmu->nr_addr_filters)
9028                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9029
9030         if (ret)
9031                 goto del_dev;
9032
9033 out:
9034         return ret;
9035
9036 del_dev:
9037         device_del(pmu->dev);
9038
9039 free_dev:
9040         put_device(pmu->dev);
9041         goto out;
9042 }
9043
9044 static struct lock_class_key cpuctx_mutex;
9045 static struct lock_class_key cpuctx_lock;
9046
9047 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9048 {
9049         int cpu, ret;
9050
9051         mutex_lock(&pmus_lock);
9052         ret = -ENOMEM;
9053         pmu->pmu_disable_count = alloc_percpu(int);
9054         if (!pmu->pmu_disable_count)
9055                 goto unlock;
9056
9057         pmu->type = -1;
9058         if (!name)
9059                 goto skip_type;
9060         pmu->name = name;
9061
9062         if (type < 0) {
9063                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9064                 if (type < 0) {
9065                         ret = type;
9066                         goto free_pdc;
9067                 }
9068         }
9069         pmu->type = type;
9070
9071         if (pmu_bus_running) {
9072                 ret = pmu_dev_alloc(pmu);
9073                 if (ret)
9074                         goto free_idr;
9075         }
9076
9077 skip_type:
9078         if (pmu->task_ctx_nr == perf_hw_context) {
9079                 static int hw_context_taken = 0;
9080
9081                 /*
9082                  * Other than systems with heterogeneous CPUs, it never makes
9083                  * sense for two PMUs to share perf_hw_context. PMUs which are
9084                  * uncore must use perf_invalid_context.
9085                  */
9086                 if (WARN_ON_ONCE(hw_context_taken &&
9087                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9088                         pmu->task_ctx_nr = perf_invalid_context;
9089
9090                 hw_context_taken = 1;
9091         }
9092
9093         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9094         if (pmu->pmu_cpu_context)
9095                 goto got_cpu_context;
9096
9097         ret = -ENOMEM;
9098         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9099         if (!pmu->pmu_cpu_context)
9100                 goto free_dev;
9101
9102         for_each_possible_cpu(cpu) {
9103                 struct perf_cpu_context *cpuctx;
9104
9105                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9106                 __perf_event_init_context(&cpuctx->ctx);
9107                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9108                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9109                 cpuctx->ctx.pmu = pmu;
9110                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9111
9112                 __perf_mux_hrtimer_init(cpuctx, cpu);
9113         }
9114
9115 got_cpu_context:
9116         if (!pmu->start_txn) {
9117                 if (pmu->pmu_enable) {
9118                         /*
9119                          * If we have pmu_enable/pmu_disable calls, install
9120                          * transaction stubs that use that to try and batch
9121                          * hardware accesses.
9122                          */
9123                         pmu->start_txn  = perf_pmu_start_txn;
9124                         pmu->commit_txn = perf_pmu_commit_txn;
9125                         pmu->cancel_txn = perf_pmu_cancel_txn;
9126                 } else {
9127                         pmu->start_txn  = perf_pmu_nop_txn;
9128                         pmu->commit_txn = perf_pmu_nop_int;
9129                         pmu->cancel_txn = perf_pmu_nop_void;
9130                 }
9131         }
9132
9133         if (!pmu->pmu_enable) {
9134                 pmu->pmu_enable  = perf_pmu_nop_void;
9135                 pmu->pmu_disable = perf_pmu_nop_void;
9136         }
9137
9138         if (!pmu->event_idx)
9139                 pmu->event_idx = perf_event_idx_default;
9140
9141         list_add_rcu(&pmu->entry, &pmus);
9142         atomic_set(&pmu->exclusive_cnt, 0);
9143         ret = 0;
9144 unlock:
9145         mutex_unlock(&pmus_lock);
9146
9147         return ret;
9148
9149 free_dev:
9150         device_del(pmu->dev);
9151         put_device(pmu->dev);
9152
9153 free_idr:
9154         if (pmu->type >= PERF_TYPE_MAX)
9155                 idr_remove(&pmu_idr, pmu->type);
9156
9157 free_pdc:
9158         free_percpu(pmu->pmu_disable_count);
9159         goto unlock;
9160 }
9161 EXPORT_SYMBOL_GPL(perf_pmu_register);
9162
9163 void perf_pmu_unregister(struct pmu *pmu)
9164 {
9165         int remove_device;
9166
9167         mutex_lock(&pmus_lock);
9168         remove_device = pmu_bus_running;
9169         list_del_rcu(&pmu->entry);
9170         mutex_unlock(&pmus_lock);
9171
9172         /*
9173          * We dereference the pmu list under both SRCU and regular RCU, so
9174          * synchronize against both of those.
9175          */
9176         synchronize_srcu(&pmus_srcu);
9177         synchronize_rcu();
9178
9179         free_percpu(pmu->pmu_disable_count);
9180         if (pmu->type >= PERF_TYPE_MAX)
9181                 idr_remove(&pmu_idr, pmu->type);
9182         if (remove_device) {
9183                 if (pmu->nr_addr_filters)
9184                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9185                 device_del(pmu->dev);
9186                 put_device(pmu->dev);
9187         }
9188         free_pmu_context(pmu);
9189 }
9190 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9191
9192 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9193 {
9194         struct perf_event_context *ctx = NULL;
9195         int ret;
9196
9197         if (!try_module_get(pmu->module))
9198                 return -ENODEV;
9199
9200         if (event->group_leader != event) {
9201                 /*
9202                  * This ctx->mutex can nest when we're called through
9203                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9204                  */
9205                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9206                                                  SINGLE_DEPTH_NESTING);
9207                 BUG_ON(!ctx);
9208         }
9209
9210         event->pmu = pmu;
9211         ret = pmu->event_init(event);
9212
9213         if (ctx)
9214                 perf_event_ctx_unlock(event->group_leader, ctx);
9215
9216         if (ret)
9217                 module_put(pmu->module);
9218
9219         return ret;
9220 }
9221
9222 static struct pmu *perf_init_event(struct perf_event *event)
9223 {
9224         struct pmu *pmu;
9225         int idx;
9226         int ret;
9227
9228         idx = srcu_read_lock(&pmus_srcu);
9229
9230         /* Try parent's PMU first: */
9231         if (event->parent && event->parent->pmu) {
9232                 pmu = event->parent->pmu;
9233                 ret = perf_try_init_event(pmu, event);
9234                 if (!ret)
9235                         goto unlock;
9236         }
9237
9238         rcu_read_lock();
9239         pmu = idr_find(&pmu_idr, event->attr.type);
9240         rcu_read_unlock();
9241         if (pmu) {
9242                 ret = perf_try_init_event(pmu, event);
9243                 if (ret)
9244                         pmu = ERR_PTR(ret);
9245                 goto unlock;
9246         }
9247
9248         list_for_each_entry_rcu(pmu, &pmus, entry) {
9249                 ret = perf_try_init_event(pmu, event);
9250                 if (!ret)
9251                         goto unlock;
9252
9253                 if (ret != -ENOENT) {
9254                         pmu = ERR_PTR(ret);
9255                         goto unlock;
9256                 }
9257         }
9258         pmu = ERR_PTR(-ENOENT);
9259 unlock:
9260         srcu_read_unlock(&pmus_srcu, idx);
9261
9262         return pmu;
9263 }
9264
9265 static void attach_sb_event(struct perf_event *event)
9266 {
9267         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9268
9269         raw_spin_lock(&pel->lock);
9270         list_add_rcu(&event->sb_list, &pel->list);
9271         raw_spin_unlock(&pel->lock);
9272 }
9273
9274 /*
9275  * We keep a list of all !task (and therefore per-cpu) events
9276  * that need to receive side-band records.
9277  *
9278  * This avoids having to scan all the various PMU per-cpu contexts
9279  * looking for them.
9280  */
9281 static void account_pmu_sb_event(struct perf_event *event)
9282 {
9283         if (is_sb_event(event))
9284                 attach_sb_event(event);
9285 }
9286
9287 static void account_event_cpu(struct perf_event *event, int cpu)
9288 {
9289         if (event->parent)
9290                 return;
9291
9292         if (is_cgroup_event(event))
9293                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9294 }
9295
9296 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9297 static void account_freq_event_nohz(void)
9298 {
9299 #ifdef CONFIG_NO_HZ_FULL
9300         /* Lock so we don't race with concurrent unaccount */
9301         spin_lock(&nr_freq_lock);
9302         if (atomic_inc_return(&nr_freq_events) == 1)
9303                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9304         spin_unlock(&nr_freq_lock);
9305 #endif
9306 }
9307
9308 static void account_freq_event(void)
9309 {
9310         if (tick_nohz_full_enabled())
9311                 account_freq_event_nohz();
9312         else
9313                 atomic_inc(&nr_freq_events);
9314 }
9315
9316
9317 static void account_event(struct perf_event *event)
9318 {
9319         bool inc = false;
9320
9321         if (event->parent)
9322                 return;
9323
9324         if (event->attach_state & PERF_ATTACH_TASK)
9325                 inc = true;
9326         if (event->attr.mmap || event->attr.mmap_data)
9327                 atomic_inc(&nr_mmap_events);
9328         if (event->attr.comm)
9329                 atomic_inc(&nr_comm_events);
9330         if (event->attr.namespaces)
9331                 atomic_inc(&nr_namespaces_events);
9332         if (event->attr.task)
9333                 atomic_inc(&nr_task_events);
9334         if (event->attr.freq)
9335                 account_freq_event();
9336         if (event->attr.context_switch) {
9337                 atomic_inc(&nr_switch_events);
9338                 inc = true;
9339         }
9340         if (has_branch_stack(event))
9341                 inc = true;
9342         if (is_cgroup_event(event))
9343                 inc = true;
9344
9345         if (inc) {
9346                 if (atomic_inc_not_zero(&perf_sched_count))
9347                         goto enabled;
9348
9349                 mutex_lock(&perf_sched_mutex);
9350                 if (!atomic_read(&perf_sched_count)) {
9351                         static_branch_enable(&perf_sched_events);
9352                         /*
9353                          * Guarantee that all CPUs observe they key change and
9354                          * call the perf scheduling hooks before proceeding to
9355                          * install events that need them.
9356                          */
9357                         synchronize_sched();
9358                 }
9359                 /*
9360                  * Now that we have waited for the sync_sched(), allow further
9361                  * increments to by-pass the mutex.
9362                  */
9363                 atomic_inc(&perf_sched_count);
9364                 mutex_unlock(&perf_sched_mutex);
9365         }
9366 enabled:
9367
9368         account_event_cpu(event, event->cpu);
9369
9370         account_pmu_sb_event(event);
9371 }
9372
9373 /*
9374  * Allocate and initialize a event structure
9375  */
9376 static struct perf_event *
9377 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9378                  struct task_struct *task,
9379                  struct perf_event *group_leader,
9380                  struct perf_event *parent_event,
9381                  perf_overflow_handler_t overflow_handler,
9382                  void *context, int cgroup_fd)
9383 {
9384         struct pmu *pmu;
9385         struct perf_event *event;
9386         struct hw_perf_event *hwc;
9387         long err = -EINVAL;
9388
9389         if ((unsigned)cpu >= nr_cpu_ids) {
9390                 if (!task || cpu != -1)
9391                         return ERR_PTR(-EINVAL);
9392         }
9393
9394         event = kzalloc(sizeof(*event), GFP_KERNEL);
9395         if (!event)
9396                 return ERR_PTR(-ENOMEM);
9397
9398         /*
9399          * Single events are their own group leaders, with an
9400          * empty sibling list:
9401          */
9402         if (!group_leader)
9403                 group_leader = event;
9404
9405         mutex_init(&event->child_mutex);
9406         INIT_LIST_HEAD(&event->child_list);
9407
9408         INIT_LIST_HEAD(&event->group_entry);
9409         INIT_LIST_HEAD(&event->event_entry);
9410         INIT_LIST_HEAD(&event->sibling_list);
9411         INIT_LIST_HEAD(&event->rb_entry);
9412         INIT_LIST_HEAD(&event->active_entry);
9413         INIT_LIST_HEAD(&event->addr_filters.list);
9414         INIT_HLIST_NODE(&event->hlist_entry);
9415
9416
9417         init_waitqueue_head(&event->waitq);
9418         init_irq_work(&event->pending, perf_pending_event);
9419
9420         mutex_init(&event->mmap_mutex);
9421         raw_spin_lock_init(&event->addr_filters.lock);
9422
9423         atomic_long_set(&event->refcount, 1);
9424         event->cpu              = cpu;
9425         event->attr             = *attr;
9426         event->group_leader     = group_leader;
9427         event->pmu              = NULL;
9428         event->oncpu            = -1;
9429
9430         event->parent           = parent_event;
9431
9432         event->ns               = get_pid_ns(task_active_pid_ns(current));
9433         event->id               = atomic64_inc_return(&perf_event_id);
9434
9435         event->state            = PERF_EVENT_STATE_INACTIVE;
9436
9437         if (task) {
9438                 event->attach_state = PERF_ATTACH_TASK;
9439                 /*
9440                  * XXX pmu::event_init needs to know what task to account to
9441                  * and we cannot use the ctx information because we need the
9442                  * pmu before we get a ctx.
9443                  */
9444                 event->hw.target = task;
9445         }
9446
9447         event->clock = &local_clock;
9448         if (parent_event)
9449                 event->clock = parent_event->clock;
9450
9451         if (!overflow_handler && parent_event) {
9452                 overflow_handler = parent_event->overflow_handler;
9453                 context = parent_event->overflow_handler_context;
9454 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9455                 if (overflow_handler == bpf_overflow_handler) {
9456                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9457
9458                         if (IS_ERR(prog)) {
9459                                 err = PTR_ERR(prog);
9460                                 goto err_ns;
9461                         }
9462                         event->prog = prog;
9463                         event->orig_overflow_handler =
9464                                 parent_event->orig_overflow_handler;
9465                 }
9466 #endif
9467         }
9468
9469         if (overflow_handler) {
9470                 event->overflow_handler = overflow_handler;
9471                 event->overflow_handler_context = context;
9472         } else if (is_write_backward(event)){
9473                 event->overflow_handler = perf_event_output_backward;
9474                 event->overflow_handler_context = NULL;
9475         } else {
9476                 event->overflow_handler = perf_event_output_forward;
9477                 event->overflow_handler_context = NULL;
9478         }
9479
9480         perf_event__state_init(event);
9481
9482         pmu = NULL;
9483
9484         hwc = &event->hw;
9485         hwc->sample_period = attr->sample_period;
9486         if (attr->freq && attr->sample_freq)
9487                 hwc->sample_period = 1;
9488         hwc->last_period = hwc->sample_period;
9489
9490         local64_set(&hwc->period_left, hwc->sample_period);
9491
9492         /*
9493          * We currently do not support PERF_SAMPLE_READ on inherited events.
9494          * See perf_output_read().
9495          */
9496         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9497                 goto err_ns;
9498
9499         if (!has_branch_stack(event))
9500                 event->attr.branch_sample_type = 0;
9501
9502         if (cgroup_fd != -1) {
9503                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9504                 if (err)
9505                         goto err_ns;
9506         }
9507
9508         pmu = perf_init_event(event);
9509         if (IS_ERR(pmu)) {
9510                 err = PTR_ERR(pmu);
9511                 goto err_ns;
9512         }
9513
9514         err = exclusive_event_init(event);
9515         if (err)
9516                 goto err_pmu;
9517
9518         if (has_addr_filter(event)) {
9519                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9520                                                    sizeof(unsigned long),
9521                                                    GFP_KERNEL);
9522                 if (!event->addr_filters_offs) {
9523                         err = -ENOMEM;
9524                         goto err_per_task;
9525                 }
9526
9527                 /* force hw sync on the address filters */
9528                 event->addr_filters_gen = 1;
9529         }
9530
9531         if (!event->parent) {
9532                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9533                         err = get_callchain_buffers(attr->sample_max_stack);
9534                         if (err)
9535                                 goto err_addr_filters;
9536                 }
9537         }
9538
9539         /* symmetric to unaccount_event() in _free_event() */
9540         account_event(event);
9541
9542         return event;
9543
9544 err_addr_filters:
9545         kfree(event->addr_filters_offs);
9546
9547 err_per_task:
9548         exclusive_event_destroy(event);
9549
9550 err_pmu:
9551         if (event->destroy)
9552                 event->destroy(event);
9553         module_put(pmu->module);
9554 err_ns:
9555         if (is_cgroup_event(event))
9556                 perf_detach_cgroup(event);
9557         if (event->ns)
9558                 put_pid_ns(event->ns);
9559         kfree(event);
9560
9561         return ERR_PTR(err);
9562 }
9563
9564 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9565                           struct perf_event_attr *attr)
9566 {
9567         u32 size;
9568         int ret;
9569
9570         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9571                 return -EFAULT;
9572
9573         /*
9574          * zero the full structure, so that a short copy will be nice.
9575          */
9576         memset(attr, 0, sizeof(*attr));
9577
9578         ret = get_user(size, &uattr->size);
9579         if (ret)
9580                 return ret;
9581
9582         if (size > PAGE_SIZE)   /* silly large */
9583                 goto err_size;
9584
9585         if (!size)              /* abi compat */
9586                 size = PERF_ATTR_SIZE_VER0;
9587
9588         if (size < PERF_ATTR_SIZE_VER0)
9589                 goto err_size;
9590
9591         /*
9592          * If we're handed a bigger struct than we know of,
9593          * ensure all the unknown bits are 0 - i.e. new
9594          * user-space does not rely on any kernel feature
9595          * extensions we dont know about yet.
9596          */
9597         if (size > sizeof(*attr)) {
9598                 unsigned char __user *addr;
9599                 unsigned char __user *end;
9600                 unsigned char val;
9601
9602                 addr = (void __user *)uattr + sizeof(*attr);
9603                 end  = (void __user *)uattr + size;
9604
9605                 for (; addr < end; addr++) {
9606                         ret = get_user(val, addr);
9607                         if (ret)
9608                                 return ret;
9609                         if (val)
9610                                 goto err_size;
9611                 }
9612                 size = sizeof(*attr);
9613         }
9614
9615         ret = copy_from_user(attr, uattr, size);
9616         if (ret)
9617                 return -EFAULT;
9618
9619         attr->size = size;
9620
9621         if (attr->__reserved_1)
9622                 return -EINVAL;
9623
9624         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9625                 return -EINVAL;
9626
9627         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9628                 return -EINVAL;
9629
9630         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9631                 u64 mask = attr->branch_sample_type;
9632
9633                 /* only using defined bits */
9634                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9635                         return -EINVAL;
9636
9637                 /* at least one branch bit must be set */
9638                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9639                         return -EINVAL;
9640
9641                 /* propagate priv level, when not set for branch */
9642                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9643
9644                         /* exclude_kernel checked on syscall entry */
9645                         if (!attr->exclude_kernel)
9646                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9647
9648                         if (!attr->exclude_user)
9649                                 mask |= PERF_SAMPLE_BRANCH_USER;
9650
9651                         if (!attr->exclude_hv)
9652                                 mask |= PERF_SAMPLE_BRANCH_HV;
9653                         /*
9654                          * adjust user setting (for HW filter setup)
9655                          */
9656                         attr->branch_sample_type = mask;
9657                 }
9658                 /* privileged levels capture (kernel, hv): check permissions */
9659                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9660                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9661                         return -EACCES;
9662         }
9663
9664         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9665                 ret = perf_reg_validate(attr->sample_regs_user);
9666                 if (ret)
9667                         return ret;
9668         }
9669
9670         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9671                 if (!arch_perf_have_user_stack_dump())
9672                         return -ENOSYS;
9673
9674                 /*
9675                  * We have __u32 type for the size, but so far
9676                  * we can only use __u16 as maximum due to the
9677                  * __u16 sample size limit.
9678                  */
9679                 if (attr->sample_stack_user >= USHRT_MAX)
9680                         ret = -EINVAL;
9681                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9682                         ret = -EINVAL;
9683         }
9684
9685         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9686                 ret = perf_reg_validate(attr->sample_regs_intr);
9687 out:
9688         return ret;
9689
9690 err_size:
9691         put_user(sizeof(*attr), &uattr->size);
9692         ret = -E2BIG;
9693         goto out;
9694 }
9695
9696 static int
9697 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9698 {
9699         struct ring_buffer *rb = NULL;
9700         int ret = -EINVAL;
9701
9702         if (!output_event)
9703                 goto set;
9704
9705         /* don't allow circular references */
9706         if (event == output_event)
9707                 goto out;
9708
9709         /*
9710          * Don't allow cross-cpu buffers
9711          */
9712         if (output_event->cpu != event->cpu)
9713                 goto out;
9714
9715         /*
9716          * If its not a per-cpu rb, it must be the same task.
9717          */
9718         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9719                 goto out;
9720
9721         /*
9722          * Mixing clocks in the same buffer is trouble you don't need.
9723          */
9724         if (output_event->clock != event->clock)
9725                 goto out;
9726
9727         /*
9728          * Either writing ring buffer from beginning or from end.
9729          * Mixing is not allowed.
9730          */
9731         if (is_write_backward(output_event) != is_write_backward(event))
9732                 goto out;
9733
9734         /*
9735          * If both events generate aux data, they must be on the same PMU
9736          */
9737         if (has_aux(event) && has_aux(output_event) &&
9738             event->pmu != output_event->pmu)
9739                 goto out;
9740
9741 set:
9742         mutex_lock(&event->mmap_mutex);
9743         /* Can't redirect output if we've got an active mmap() */
9744         if (atomic_read(&event->mmap_count))
9745                 goto unlock;
9746
9747         if (output_event) {
9748                 /* get the rb we want to redirect to */
9749                 rb = ring_buffer_get(output_event);
9750                 if (!rb)
9751                         goto unlock;
9752         }
9753
9754         ring_buffer_attach(event, rb);
9755
9756         ret = 0;
9757 unlock:
9758         mutex_unlock(&event->mmap_mutex);
9759
9760 out:
9761         return ret;
9762 }
9763
9764 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9765 {
9766         if (b < a)
9767                 swap(a, b);
9768
9769         mutex_lock(a);
9770         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9771 }
9772
9773 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9774 {
9775         bool nmi_safe = false;
9776
9777         switch (clk_id) {
9778         case CLOCK_MONOTONIC:
9779                 event->clock = &ktime_get_mono_fast_ns;
9780                 nmi_safe = true;
9781                 break;
9782
9783         case CLOCK_MONOTONIC_RAW:
9784                 event->clock = &ktime_get_raw_fast_ns;
9785                 nmi_safe = true;
9786                 break;
9787
9788         case CLOCK_REALTIME:
9789                 event->clock = &ktime_get_real_ns;
9790                 break;
9791
9792         case CLOCK_BOOTTIME:
9793                 event->clock = &ktime_get_boot_ns;
9794                 break;
9795
9796         case CLOCK_TAI:
9797                 event->clock = &ktime_get_tai_ns;
9798                 break;
9799
9800         default:
9801                 return -EINVAL;
9802         }
9803
9804         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9805                 return -EINVAL;
9806
9807         return 0;
9808 }
9809
9810 /*
9811  * Variation on perf_event_ctx_lock_nested(), except we take two context
9812  * mutexes.
9813  */
9814 static struct perf_event_context *
9815 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9816                              struct perf_event_context *ctx)
9817 {
9818         struct perf_event_context *gctx;
9819
9820 again:
9821         rcu_read_lock();
9822         gctx = READ_ONCE(group_leader->ctx);
9823         if (!atomic_inc_not_zero(&gctx->refcount)) {
9824                 rcu_read_unlock();
9825                 goto again;
9826         }
9827         rcu_read_unlock();
9828
9829         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9830
9831         if (group_leader->ctx != gctx) {
9832                 mutex_unlock(&ctx->mutex);
9833                 mutex_unlock(&gctx->mutex);
9834                 put_ctx(gctx);
9835                 goto again;
9836         }
9837
9838         return gctx;
9839 }
9840
9841 /**
9842  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9843  *
9844  * @attr_uptr:  event_id type attributes for monitoring/sampling
9845  * @pid:                target pid
9846  * @cpu:                target cpu
9847  * @group_fd:           group leader event fd
9848  */
9849 SYSCALL_DEFINE5(perf_event_open,
9850                 struct perf_event_attr __user *, attr_uptr,
9851                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9852 {
9853         struct perf_event *group_leader = NULL, *output_event = NULL;
9854         struct perf_event *event, *sibling;
9855         struct perf_event_attr attr;
9856         struct perf_event_context *ctx, *uninitialized_var(gctx);
9857         struct file *event_file = NULL;
9858         struct fd group = {NULL, 0};
9859         struct task_struct *task = NULL;
9860         struct pmu *pmu;
9861         int event_fd;
9862         int move_group = 0;
9863         int err;
9864         int f_flags = O_RDWR;
9865         int cgroup_fd = -1;
9866
9867         /* for future expandability... */
9868         if (flags & ~PERF_FLAG_ALL)
9869                 return -EINVAL;
9870
9871         err = perf_copy_attr(attr_uptr, &attr);
9872         if (err)
9873                 return err;
9874
9875         if (!attr.exclude_kernel) {
9876                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9877                         return -EACCES;
9878         }
9879
9880         if (attr.namespaces) {
9881                 if (!capable(CAP_SYS_ADMIN))
9882                         return -EACCES;
9883         }
9884
9885         if (attr.freq) {
9886                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9887                         return -EINVAL;
9888         } else {
9889                 if (attr.sample_period & (1ULL << 63))
9890                         return -EINVAL;
9891         }
9892
9893         if (!attr.sample_max_stack)
9894                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9895
9896         /*
9897          * In cgroup mode, the pid argument is used to pass the fd
9898          * opened to the cgroup directory in cgroupfs. The cpu argument
9899          * designates the cpu on which to monitor threads from that
9900          * cgroup.
9901          */
9902         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9903                 return -EINVAL;
9904
9905         if (flags & PERF_FLAG_FD_CLOEXEC)
9906                 f_flags |= O_CLOEXEC;
9907
9908         event_fd = get_unused_fd_flags(f_flags);
9909         if (event_fd < 0)
9910                 return event_fd;
9911
9912         if (group_fd != -1) {
9913                 err = perf_fget_light(group_fd, &group);
9914                 if (err)
9915                         goto err_fd;
9916                 group_leader = group.file->private_data;
9917                 if (flags & PERF_FLAG_FD_OUTPUT)
9918                         output_event = group_leader;
9919                 if (flags & PERF_FLAG_FD_NO_GROUP)
9920                         group_leader = NULL;
9921         }
9922
9923         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9924                 task = find_lively_task_by_vpid(pid);
9925                 if (IS_ERR(task)) {
9926                         err = PTR_ERR(task);
9927                         goto err_group_fd;
9928                 }
9929         }
9930
9931         if (task && group_leader &&
9932             group_leader->attr.inherit != attr.inherit) {
9933                 err = -EINVAL;
9934                 goto err_task;
9935         }
9936
9937         if (task) {
9938                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9939                 if (err)
9940                         goto err_task;
9941
9942                 /*
9943                  * Reuse ptrace permission checks for now.
9944                  *
9945                  * We must hold cred_guard_mutex across this and any potential
9946                  * perf_install_in_context() call for this new event to
9947                  * serialize against exec() altering our credentials (and the
9948                  * perf_event_exit_task() that could imply).
9949                  */
9950                 err = -EACCES;
9951                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9952                         goto err_cred;
9953         }
9954
9955         if (flags & PERF_FLAG_PID_CGROUP)
9956                 cgroup_fd = pid;
9957
9958         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9959                                  NULL, NULL, cgroup_fd);
9960         if (IS_ERR(event)) {
9961                 err = PTR_ERR(event);
9962                 goto err_cred;
9963         }
9964
9965         if (is_sampling_event(event)) {
9966                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9967                         err = -EOPNOTSUPP;
9968                         goto err_alloc;
9969                 }
9970         }
9971
9972         /*
9973          * Special case software events and allow them to be part of
9974          * any hardware group.
9975          */
9976         pmu = event->pmu;
9977
9978         if (attr.use_clockid) {
9979                 err = perf_event_set_clock(event, attr.clockid);
9980                 if (err)
9981                         goto err_alloc;
9982         }
9983
9984         if (pmu->task_ctx_nr == perf_sw_context)
9985                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9986
9987         if (group_leader &&
9988             (is_software_event(event) != is_software_event(group_leader))) {
9989                 if (is_software_event(event)) {
9990                         /*
9991                          * If event and group_leader are not both a software
9992                          * event, and event is, then group leader is not.
9993                          *
9994                          * Allow the addition of software events to !software
9995                          * groups, this is safe because software events never
9996                          * fail to schedule.
9997                          */
9998                         pmu = group_leader->pmu;
9999                 } else if (is_software_event(group_leader) &&
10000                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10001                         /*
10002                          * In case the group is a pure software group, and we
10003                          * try to add a hardware event, move the whole group to
10004                          * the hardware context.
10005                          */
10006                         move_group = 1;
10007                 }
10008         }
10009
10010         /*
10011          * Get the target context (task or percpu):
10012          */
10013         ctx = find_get_context(pmu, task, event);
10014         if (IS_ERR(ctx)) {
10015                 err = PTR_ERR(ctx);
10016                 goto err_alloc;
10017         }
10018
10019         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10020                 err = -EBUSY;
10021                 goto err_context;
10022         }
10023
10024         /*
10025          * Look up the group leader (we will attach this event to it):
10026          */
10027         if (group_leader) {
10028                 err = -EINVAL;
10029
10030                 /*
10031                  * Do not allow a recursive hierarchy (this new sibling
10032                  * becoming part of another group-sibling):
10033                  */
10034                 if (group_leader->group_leader != group_leader)
10035                         goto err_context;
10036
10037                 /* All events in a group should have the same clock */
10038                 if (group_leader->clock != event->clock)
10039                         goto err_context;
10040
10041                 /*
10042                  * Make sure we're both events for the same CPU;
10043                  * grouping events for different CPUs is broken; since
10044                  * you can never concurrently schedule them anyhow.
10045                  */
10046                 if (group_leader->cpu != event->cpu)
10047                         goto err_context;
10048
10049                 /*
10050                  * Make sure we're both on the same task, or both
10051                  * per-CPU events.
10052                  */
10053                 if (group_leader->ctx->task != ctx->task)
10054                         goto err_context;
10055
10056                 /*
10057                  * Do not allow to attach to a group in a different task
10058                  * or CPU context. If we're moving SW events, we'll fix
10059                  * this up later, so allow that.
10060                  */
10061                 if (!move_group && group_leader->ctx != ctx)
10062                         goto err_context;
10063
10064                 /*
10065                  * Only a group leader can be exclusive or pinned
10066                  */
10067                 if (attr.exclusive || attr.pinned)
10068                         goto err_context;
10069         }
10070
10071         if (output_event) {
10072                 err = perf_event_set_output(event, output_event);
10073                 if (err)
10074                         goto err_context;
10075         }
10076
10077         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10078                                         f_flags);
10079         if (IS_ERR(event_file)) {
10080                 err = PTR_ERR(event_file);
10081                 event_file = NULL;
10082                 goto err_context;
10083         }
10084
10085         if (move_group) {
10086                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10087
10088                 if (gctx->task == TASK_TOMBSTONE) {
10089                         err = -ESRCH;
10090                         goto err_locked;
10091                 }
10092
10093                 /*
10094                  * Check if we raced against another sys_perf_event_open() call
10095                  * moving the software group underneath us.
10096                  */
10097                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10098                         /*
10099                          * If someone moved the group out from under us, check
10100                          * if this new event wound up on the same ctx, if so
10101                          * its the regular !move_group case, otherwise fail.
10102                          */
10103                         if (gctx != ctx) {
10104                                 err = -EINVAL;
10105                                 goto err_locked;
10106                         } else {
10107                                 perf_event_ctx_unlock(group_leader, gctx);
10108                                 move_group = 0;
10109                         }
10110                 }
10111         } else {
10112                 mutex_lock(&ctx->mutex);
10113         }
10114
10115         if (ctx->task == TASK_TOMBSTONE) {
10116                 err = -ESRCH;
10117                 goto err_locked;
10118         }
10119
10120         if (!perf_event_validate_size(event)) {
10121                 err = -E2BIG;
10122                 goto err_locked;
10123         }
10124
10125         if (!task) {
10126                 /*
10127                  * Check if the @cpu we're creating an event for is online.
10128                  *
10129                  * We use the perf_cpu_context::ctx::mutex to serialize against
10130                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10131                  */
10132                 struct perf_cpu_context *cpuctx =
10133                         container_of(ctx, struct perf_cpu_context, ctx);
10134
10135                 if (!cpuctx->online) {
10136                         err = -ENODEV;
10137                         goto err_locked;
10138                 }
10139         }
10140
10141
10142         /*
10143          * Must be under the same ctx::mutex as perf_install_in_context(),
10144          * because we need to serialize with concurrent event creation.
10145          */
10146         if (!exclusive_event_installable(event, ctx)) {
10147                 /* exclusive and group stuff are assumed mutually exclusive */
10148                 WARN_ON_ONCE(move_group);
10149
10150                 err = -EBUSY;
10151                 goto err_locked;
10152         }
10153
10154         WARN_ON_ONCE(ctx->parent_ctx);
10155
10156         /*
10157          * This is the point on no return; we cannot fail hereafter. This is
10158          * where we start modifying current state.
10159          */
10160
10161         if (move_group) {
10162                 /*
10163                  * See perf_event_ctx_lock() for comments on the details
10164                  * of swizzling perf_event::ctx.
10165                  */
10166                 perf_remove_from_context(group_leader, 0);
10167                 put_ctx(gctx);
10168
10169                 list_for_each_entry(sibling, &group_leader->sibling_list,
10170                                     group_entry) {
10171                         perf_remove_from_context(sibling, 0);
10172                         put_ctx(gctx);
10173                 }
10174
10175                 /*
10176                  * Wait for everybody to stop referencing the events through
10177                  * the old lists, before installing it on new lists.
10178                  */
10179                 synchronize_rcu();
10180
10181                 /*
10182                  * Install the group siblings before the group leader.
10183                  *
10184                  * Because a group leader will try and install the entire group
10185                  * (through the sibling list, which is still in-tact), we can
10186                  * end up with siblings installed in the wrong context.
10187                  *
10188                  * By installing siblings first we NO-OP because they're not
10189                  * reachable through the group lists.
10190                  */
10191                 list_for_each_entry(sibling, &group_leader->sibling_list,
10192                                     group_entry) {
10193                         perf_event__state_init(sibling);
10194                         perf_install_in_context(ctx, sibling, sibling->cpu);
10195                         get_ctx(ctx);
10196                 }
10197
10198                 /*
10199                  * Removing from the context ends up with disabled
10200                  * event. What we want here is event in the initial
10201                  * startup state, ready to be add into new context.
10202                  */
10203                 perf_event__state_init(group_leader);
10204                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10205                 get_ctx(ctx);
10206         }
10207
10208         /*
10209          * Precalculate sample_data sizes; do while holding ctx::mutex such
10210          * that we're serialized against further additions and before
10211          * perf_install_in_context() which is the point the event is active and
10212          * can use these values.
10213          */
10214         perf_event__header_size(event);
10215         perf_event__id_header_size(event);
10216
10217         event->owner = current;
10218
10219         perf_install_in_context(ctx, event, event->cpu);
10220         perf_unpin_context(ctx);
10221
10222         if (move_group)
10223                 perf_event_ctx_unlock(group_leader, gctx);
10224         mutex_unlock(&ctx->mutex);
10225
10226         if (task) {
10227                 mutex_unlock(&task->signal->cred_guard_mutex);
10228                 put_task_struct(task);
10229         }
10230
10231         mutex_lock(&current->perf_event_mutex);
10232         list_add_tail(&event->owner_entry, &current->perf_event_list);
10233         mutex_unlock(&current->perf_event_mutex);
10234
10235         /*
10236          * Drop the reference on the group_event after placing the
10237          * new event on the sibling_list. This ensures destruction
10238          * of the group leader will find the pointer to itself in
10239          * perf_group_detach().
10240          */
10241         fdput(group);
10242         fd_install(event_fd, event_file);
10243         return event_fd;
10244
10245 err_locked:
10246         if (move_group)
10247                 perf_event_ctx_unlock(group_leader, gctx);
10248         mutex_unlock(&ctx->mutex);
10249 /* err_file: */
10250         fput(event_file);
10251 err_context:
10252         perf_unpin_context(ctx);
10253         put_ctx(ctx);
10254 err_alloc:
10255         /*
10256          * If event_file is set, the fput() above will have called ->release()
10257          * and that will take care of freeing the event.
10258          */
10259         if (!event_file)
10260                 free_event(event);
10261 err_cred:
10262         if (task)
10263                 mutex_unlock(&task->signal->cred_guard_mutex);
10264 err_task:
10265         if (task)
10266                 put_task_struct(task);
10267 err_group_fd:
10268         fdput(group);
10269 err_fd:
10270         put_unused_fd(event_fd);
10271         return err;
10272 }
10273
10274 /**
10275  * perf_event_create_kernel_counter
10276  *
10277  * @attr: attributes of the counter to create
10278  * @cpu: cpu in which the counter is bound
10279  * @task: task to profile (NULL for percpu)
10280  */
10281 struct perf_event *
10282 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10283                                  struct task_struct *task,
10284                                  perf_overflow_handler_t overflow_handler,
10285                                  void *context)
10286 {
10287         struct perf_event_context *ctx;
10288         struct perf_event *event;
10289         int err;
10290
10291         /*
10292          * Get the target context (task or percpu):
10293          */
10294
10295         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10296                                  overflow_handler, context, -1);
10297         if (IS_ERR(event)) {
10298                 err = PTR_ERR(event);
10299                 goto err;
10300         }
10301
10302         /* Mark owner so we could distinguish it from user events. */
10303         event->owner = TASK_TOMBSTONE;
10304
10305         ctx = find_get_context(event->pmu, task, event);
10306         if (IS_ERR(ctx)) {
10307                 err = PTR_ERR(ctx);
10308                 goto err_free;
10309         }
10310
10311         WARN_ON_ONCE(ctx->parent_ctx);
10312         mutex_lock(&ctx->mutex);
10313         if (ctx->task == TASK_TOMBSTONE) {
10314                 err = -ESRCH;
10315                 goto err_unlock;
10316         }
10317
10318         if (!task) {
10319                 /*
10320                  * Check if the @cpu we're creating an event for is online.
10321                  *
10322                  * We use the perf_cpu_context::ctx::mutex to serialize against
10323                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10324                  */
10325                 struct perf_cpu_context *cpuctx =
10326                         container_of(ctx, struct perf_cpu_context, ctx);
10327                 if (!cpuctx->online) {
10328                         err = -ENODEV;
10329                         goto err_unlock;
10330                 }
10331         }
10332
10333         if (!exclusive_event_installable(event, ctx)) {
10334                 err = -EBUSY;
10335                 goto err_unlock;
10336         }
10337
10338         perf_install_in_context(ctx, event, cpu);
10339         perf_unpin_context(ctx);
10340         mutex_unlock(&ctx->mutex);
10341
10342         return event;
10343
10344 err_unlock:
10345         mutex_unlock(&ctx->mutex);
10346         perf_unpin_context(ctx);
10347         put_ctx(ctx);
10348 err_free:
10349         free_event(event);
10350 err:
10351         return ERR_PTR(err);
10352 }
10353 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10354
10355 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10356 {
10357         struct perf_event_context *src_ctx;
10358         struct perf_event_context *dst_ctx;
10359         struct perf_event *event, *tmp;
10360         LIST_HEAD(events);
10361
10362         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10363         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10364
10365         /*
10366          * See perf_event_ctx_lock() for comments on the details
10367          * of swizzling perf_event::ctx.
10368          */
10369         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10370         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10371                                  event_entry) {
10372                 perf_remove_from_context(event, 0);
10373                 unaccount_event_cpu(event, src_cpu);
10374                 put_ctx(src_ctx);
10375                 list_add(&event->migrate_entry, &events);
10376         }
10377
10378         /*
10379          * Wait for the events to quiesce before re-instating them.
10380          */
10381         synchronize_rcu();
10382
10383         /*
10384          * Re-instate events in 2 passes.
10385          *
10386          * Skip over group leaders and only install siblings on this first
10387          * pass, siblings will not get enabled without a leader, however a
10388          * leader will enable its siblings, even if those are still on the old
10389          * context.
10390          */
10391         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10392                 if (event->group_leader == event)
10393                         continue;
10394
10395                 list_del(&event->migrate_entry);
10396                 if (event->state >= PERF_EVENT_STATE_OFF)
10397                         event->state = PERF_EVENT_STATE_INACTIVE;
10398                 account_event_cpu(event, dst_cpu);
10399                 perf_install_in_context(dst_ctx, event, dst_cpu);
10400                 get_ctx(dst_ctx);
10401         }
10402
10403         /*
10404          * Once all the siblings are setup properly, install the group leaders
10405          * to make it go.
10406          */
10407         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10408                 list_del(&event->migrate_entry);
10409                 if (event->state >= PERF_EVENT_STATE_OFF)
10410                         event->state = PERF_EVENT_STATE_INACTIVE;
10411                 account_event_cpu(event, dst_cpu);
10412                 perf_install_in_context(dst_ctx, event, dst_cpu);
10413                 get_ctx(dst_ctx);
10414         }
10415         mutex_unlock(&dst_ctx->mutex);
10416         mutex_unlock(&src_ctx->mutex);
10417 }
10418 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10419
10420 static void sync_child_event(struct perf_event *child_event,
10421                                struct task_struct *child)
10422 {
10423         struct perf_event *parent_event = child_event->parent;
10424         u64 child_val;
10425
10426         if (child_event->attr.inherit_stat)
10427                 perf_event_read_event(child_event, child);
10428
10429         child_val = perf_event_count(child_event);
10430
10431         /*
10432          * Add back the child's count to the parent's count:
10433          */
10434         atomic64_add(child_val, &parent_event->child_count);
10435         atomic64_add(child_event->total_time_enabled,
10436                      &parent_event->child_total_time_enabled);
10437         atomic64_add(child_event->total_time_running,
10438                      &parent_event->child_total_time_running);
10439 }
10440
10441 static void
10442 perf_event_exit_event(struct perf_event *child_event,
10443                       struct perf_event_context *child_ctx,
10444                       struct task_struct *child)
10445 {
10446         struct perf_event *parent_event = child_event->parent;
10447
10448         /*
10449          * Do not destroy the 'original' grouping; because of the context
10450          * switch optimization the original events could've ended up in a
10451          * random child task.
10452          *
10453          * If we were to destroy the original group, all group related
10454          * operations would cease to function properly after this random
10455          * child dies.
10456          *
10457          * Do destroy all inherited groups, we don't care about those
10458          * and being thorough is better.
10459          */
10460         raw_spin_lock_irq(&child_ctx->lock);
10461         WARN_ON_ONCE(child_ctx->is_active);
10462
10463         if (parent_event)
10464                 perf_group_detach(child_event);
10465         list_del_event(child_event, child_ctx);
10466         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10467         raw_spin_unlock_irq(&child_ctx->lock);
10468
10469         /*
10470          * Parent events are governed by their filedesc, retain them.
10471          */
10472         if (!parent_event) {
10473                 perf_event_wakeup(child_event);
10474                 return;
10475         }
10476         /*
10477          * Child events can be cleaned up.
10478          */
10479
10480         sync_child_event(child_event, child);
10481
10482         /*
10483          * Remove this event from the parent's list
10484          */
10485         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10486         mutex_lock(&parent_event->child_mutex);
10487         list_del_init(&child_event->child_list);
10488         mutex_unlock(&parent_event->child_mutex);
10489
10490         /*
10491          * Kick perf_poll() for is_event_hup().
10492          */
10493         perf_event_wakeup(parent_event);
10494         free_event(child_event);
10495         put_event(parent_event);
10496 }
10497
10498 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10499 {
10500         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10501         struct perf_event *child_event, *next;
10502
10503         WARN_ON_ONCE(child != current);
10504
10505         child_ctx = perf_pin_task_context(child, ctxn);
10506         if (!child_ctx)
10507                 return;
10508
10509         /*
10510          * In order to reduce the amount of tricky in ctx tear-down, we hold
10511          * ctx::mutex over the entire thing. This serializes against almost
10512          * everything that wants to access the ctx.
10513          *
10514          * The exception is sys_perf_event_open() /
10515          * perf_event_create_kernel_count() which does find_get_context()
10516          * without ctx::mutex (it cannot because of the move_group double mutex
10517          * lock thing). See the comments in perf_install_in_context().
10518          */
10519         mutex_lock(&child_ctx->mutex);
10520
10521         /*
10522          * In a single ctx::lock section, de-schedule the events and detach the
10523          * context from the task such that we cannot ever get it scheduled back
10524          * in.
10525          */
10526         raw_spin_lock_irq(&child_ctx->lock);
10527         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10528
10529         /*
10530          * Now that the context is inactive, destroy the task <-> ctx relation
10531          * and mark the context dead.
10532          */
10533         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10534         put_ctx(child_ctx); /* cannot be last */
10535         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10536         put_task_struct(current); /* cannot be last */
10537
10538         clone_ctx = unclone_ctx(child_ctx);
10539         raw_spin_unlock_irq(&child_ctx->lock);
10540
10541         if (clone_ctx)
10542                 put_ctx(clone_ctx);
10543
10544         /*
10545          * Report the task dead after unscheduling the events so that we
10546          * won't get any samples after PERF_RECORD_EXIT. We can however still
10547          * get a few PERF_RECORD_READ events.
10548          */
10549         perf_event_task(child, child_ctx, 0);
10550
10551         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10552                 perf_event_exit_event(child_event, child_ctx, child);
10553
10554         mutex_unlock(&child_ctx->mutex);
10555
10556         put_ctx(child_ctx);
10557 }
10558
10559 /*
10560  * When a child task exits, feed back event values to parent events.
10561  *
10562  * Can be called with cred_guard_mutex held when called from
10563  * install_exec_creds().
10564  */
10565 void perf_event_exit_task(struct task_struct *child)
10566 {
10567         struct perf_event *event, *tmp;
10568         int ctxn;
10569
10570         mutex_lock(&child->perf_event_mutex);
10571         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10572                                  owner_entry) {
10573                 list_del_init(&event->owner_entry);
10574
10575                 /*
10576                  * Ensure the list deletion is visible before we clear
10577                  * the owner, closes a race against perf_release() where
10578                  * we need to serialize on the owner->perf_event_mutex.
10579                  */
10580                 smp_store_release(&event->owner, NULL);
10581         }
10582         mutex_unlock(&child->perf_event_mutex);
10583
10584         for_each_task_context_nr(ctxn)
10585                 perf_event_exit_task_context(child, ctxn);
10586
10587         /*
10588          * The perf_event_exit_task_context calls perf_event_task
10589          * with child's task_ctx, which generates EXIT events for
10590          * child contexts and sets child->perf_event_ctxp[] to NULL.
10591          * At this point we need to send EXIT events to cpu contexts.
10592          */
10593         perf_event_task(child, NULL, 0);
10594 }
10595
10596 static void perf_free_event(struct perf_event *event,
10597                             struct perf_event_context *ctx)
10598 {
10599         struct perf_event *parent = event->parent;
10600
10601         if (WARN_ON_ONCE(!parent))
10602                 return;
10603
10604         mutex_lock(&parent->child_mutex);
10605         list_del_init(&event->child_list);
10606         mutex_unlock(&parent->child_mutex);
10607
10608         put_event(parent);
10609
10610         raw_spin_lock_irq(&ctx->lock);
10611         perf_group_detach(event);
10612         list_del_event(event, ctx);
10613         raw_spin_unlock_irq(&ctx->lock);
10614         free_event(event);
10615 }
10616
10617 /*
10618  * Free an unexposed, unused context as created by inheritance by
10619  * perf_event_init_task below, used by fork() in case of fail.
10620  *
10621  * Not all locks are strictly required, but take them anyway to be nice and
10622  * help out with the lockdep assertions.
10623  */
10624 void perf_event_free_task(struct task_struct *task)
10625 {
10626         struct perf_event_context *ctx;
10627         struct perf_event *event, *tmp;
10628         int ctxn;
10629
10630         for_each_task_context_nr(ctxn) {
10631                 ctx = task->perf_event_ctxp[ctxn];
10632                 if (!ctx)
10633                         continue;
10634
10635                 mutex_lock(&ctx->mutex);
10636                 raw_spin_lock_irq(&ctx->lock);
10637                 /*
10638                  * Destroy the task <-> ctx relation and mark the context dead.
10639                  *
10640                  * This is important because even though the task hasn't been
10641                  * exposed yet the context has been (through child_list).
10642                  */
10643                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10644                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10645                 put_task_struct(task); /* cannot be last */
10646                 raw_spin_unlock_irq(&ctx->lock);
10647
10648                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10649                         perf_free_event(event, ctx);
10650
10651                 mutex_unlock(&ctx->mutex);
10652                 put_ctx(ctx);
10653         }
10654 }
10655
10656 void perf_event_delayed_put(struct task_struct *task)
10657 {
10658         int ctxn;
10659
10660         for_each_task_context_nr(ctxn)
10661                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10662 }
10663
10664 struct file *perf_event_get(unsigned int fd)
10665 {
10666         struct file *file;
10667
10668         file = fget_raw(fd);
10669         if (!file)
10670                 return ERR_PTR(-EBADF);
10671
10672         if (file->f_op != &perf_fops) {
10673                 fput(file);
10674                 return ERR_PTR(-EBADF);
10675         }
10676
10677         return file;
10678 }
10679
10680 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10681 {
10682         if (!event)
10683                 return ERR_PTR(-EINVAL);
10684
10685         return &event->attr;
10686 }
10687
10688 /*
10689  * Inherit a event from parent task to child task.
10690  *
10691  * Returns:
10692  *  - valid pointer on success
10693  *  - NULL for orphaned events
10694  *  - IS_ERR() on error
10695  */
10696 static struct perf_event *
10697 inherit_event(struct perf_event *parent_event,
10698               struct task_struct *parent,
10699               struct perf_event_context *parent_ctx,
10700               struct task_struct *child,
10701               struct perf_event *group_leader,
10702               struct perf_event_context *child_ctx)
10703 {
10704         enum perf_event_active_state parent_state = parent_event->state;
10705         struct perf_event *child_event;
10706         unsigned long flags;
10707
10708         /*
10709          * Instead of creating recursive hierarchies of events,
10710          * we link inherited events back to the original parent,
10711          * which has a filp for sure, which we use as the reference
10712          * count:
10713          */
10714         if (parent_event->parent)
10715                 parent_event = parent_event->parent;
10716
10717         child_event = perf_event_alloc(&parent_event->attr,
10718                                            parent_event->cpu,
10719                                            child,
10720                                            group_leader, parent_event,
10721                                            NULL, NULL, -1);
10722         if (IS_ERR(child_event))
10723                 return child_event;
10724
10725         /*
10726          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10727          * must be under the same lock in order to serialize against
10728          * perf_event_release_kernel(), such that either we must observe
10729          * is_orphaned_event() or they will observe us on the child_list.
10730          */
10731         mutex_lock(&parent_event->child_mutex);
10732         if (is_orphaned_event(parent_event) ||
10733             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10734                 mutex_unlock(&parent_event->child_mutex);
10735                 free_event(child_event);
10736                 return NULL;
10737         }
10738
10739         get_ctx(child_ctx);
10740
10741         /*
10742          * Make the child state follow the state of the parent event,
10743          * not its attr.disabled bit.  We hold the parent's mutex,
10744          * so we won't race with perf_event_{en, dis}able_family.
10745          */
10746         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10747                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10748         else
10749                 child_event->state = PERF_EVENT_STATE_OFF;
10750
10751         if (parent_event->attr.freq) {
10752                 u64 sample_period = parent_event->hw.sample_period;
10753                 struct hw_perf_event *hwc = &child_event->hw;
10754
10755                 hwc->sample_period = sample_period;
10756                 hwc->last_period   = sample_period;
10757
10758                 local64_set(&hwc->period_left, sample_period);
10759         }
10760
10761         child_event->ctx = child_ctx;
10762         child_event->overflow_handler = parent_event->overflow_handler;
10763         child_event->overflow_handler_context
10764                 = parent_event->overflow_handler_context;
10765
10766         /*
10767          * Precalculate sample_data sizes
10768          */
10769         perf_event__header_size(child_event);
10770         perf_event__id_header_size(child_event);
10771
10772         /*
10773          * Link it up in the child's context:
10774          */
10775         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10776         add_event_to_ctx(child_event, child_ctx);
10777         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10778
10779         /*
10780          * Link this into the parent event's child list
10781          */
10782         list_add_tail(&child_event->child_list, &parent_event->child_list);
10783         mutex_unlock(&parent_event->child_mutex);
10784
10785         return child_event;
10786 }
10787
10788 /*
10789  * Inherits an event group.
10790  *
10791  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10792  * This matches with perf_event_release_kernel() removing all child events.
10793  *
10794  * Returns:
10795  *  - 0 on success
10796  *  - <0 on error
10797  */
10798 static int inherit_group(struct perf_event *parent_event,
10799               struct task_struct *parent,
10800               struct perf_event_context *parent_ctx,
10801               struct task_struct *child,
10802               struct perf_event_context *child_ctx)
10803 {
10804         struct perf_event *leader;
10805         struct perf_event *sub;
10806         struct perf_event *child_ctr;
10807
10808         leader = inherit_event(parent_event, parent, parent_ctx,
10809                                  child, NULL, child_ctx);
10810         if (IS_ERR(leader))
10811                 return PTR_ERR(leader);
10812         /*
10813          * @leader can be NULL here because of is_orphaned_event(). In this
10814          * case inherit_event() will create individual events, similar to what
10815          * perf_group_detach() would do anyway.
10816          */
10817         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10818                 child_ctr = inherit_event(sub, parent, parent_ctx,
10819                                             child, leader, child_ctx);
10820                 if (IS_ERR(child_ctr))
10821                         return PTR_ERR(child_ctr);
10822         }
10823         return 0;
10824 }
10825
10826 /*
10827  * Creates the child task context and tries to inherit the event-group.
10828  *
10829  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10830  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10831  * consistent with perf_event_release_kernel() removing all child events.
10832  *
10833  * Returns:
10834  *  - 0 on success
10835  *  - <0 on error
10836  */
10837 static int
10838 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10839                    struct perf_event_context *parent_ctx,
10840                    struct task_struct *child, int ctxn,
10841                    int *inherited_all)
10842 {
10843         int ret;
10844         struct perf_event_context *child_ctx;
10845
10846         if (!event->attr.inherit) {
10847                 *inherited_all = 0;
10848                 return 0;
10849         }
10850
10851         child_ctx = child->perf_event_ctxp[ctxn];
10852         if (!child_ctx) {
10853                 /*
10854                  * This is executed from the parent task context, so
10855                  * inherit events that have been marked for cloning.
10856                  * First allocate and initialize a context for the
10857                  * child.
10858                  */
10859                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10860                 if (!child_ctx)
10861                         return -ENOMEM;
10862
10863                 child->perf_event_ctxp[ctxn] = child_ctx;
10864         }
10865
10866         ret = inherit_group(event, parent, parent_ctx,
10867                             child, child_ctx);
10868
10869         if (ret)
10870                 *inherited_all = 0;
10871
10872         return ret;
10873 }
10874
10875 /*
10876  * Initialize the perf_event context in task_struct
10877  */
10878 static int perf_event_init_context(struct task_struct *child, int ctxn)
10879 {
10880         struct perf_event_context *child_ctx, *parent_ctx;
10881         struct perf_event_context *cloned_ctx;
10882         struct perf_event *event;
10883         struct task_struct *parent = current;
10884         int inherited_all = 1;
10885         unsigned long flags;
10886         int ret = 0;
10887
10888         if (likely(!parent->perf_event_ctxp[ctxn]))
10889                 return 0;
10890
10891         /*
10892          * If the parent's context is a clone, pin it so it won't get
10893          * swapped under us.
10894          */
10895         parent_ctx = perf_pin_task_context(parent, ctxn);
10896         if (!parent_ctx)
10897                 return 0;
10898
10899         /*
10900          * No need to check if parent_ctx != NULL here; since we saw
10901          * it non-NULL earlier, the only reason for it to become NULL
10902          * is if we exit, and since we're currently in the middle of
10903          * a fork we can't be exiting at the same time.
10904          */
10905
10906         /*
10907          * Lock the parent list. No need to lock the child - not PID
10908          * hashed yet and not running, so nobody can access it.
10909          */
10910         mutex_lock(&parent_ctx->mutex);
10911
10912         /*
10913          * We dont have to disable NMIs - we are only looking at
10914          * the list, not manipulating it:
10915          */
10916         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10917                 ret = inherit_task_group(event, parent, parent_ctx,
10918                                          child, ctxn, &inherited_all);
10919                 if (ret)
10920                         goto out_unlock;
10921         }
10922
10923         /*
10924          * We can't hold ctx->lock when iterating the ->flexible_group list due
10925          * to allocations, but we need to prevent rotation because
10926          * rotate_ctx() will change the list from interrupt context.
10927          */
10928         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10929         parent_ctx->rotate_disable = 1;
10930         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10931
10932         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10933                 ret = inherit_task_group(event, parent, parent_ctx,
10934                                          child, ctxn, &inherited_all);
10935                 if (ret)
10936                         goto out_unlock;
10937         }
10938
10939         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10940         parent_ctx->rotate_disable = 0;
10941
10942         child_ctx = child->perf_event_ctxp[ctxn];
10943
10944         if (child_ctx && inherited_all) {
10945                 /*
10946                  * Mark the child context as a clone of the parent
10947                  * context, or of whatever the parent is a clone of.
10948                  *
10949                  * Note that if the parent is a clone, the holding of
10950                  * parent_ctx->lock avoids it from being uncloned.
10951                  */
10952                 cloned_ctx = parent_ctx->parent_ctx;
10953                 if (cloned_ctx) {
10954                         child_ctx->parent_ctx = cloned_ctx;
10955                         child_ctx->parent_gen = parent_ctx->parent_gen;
10956                 } else {
10957                         child_ctx->parent_ctx = parent_ctx;
10958                         child_ctx->parent_gen = parent_ctx->generation;
10959                 }
10960                 get_ctx(child_ctx->parent_ctx);
10961         }
10962
10963         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10964 out_unlock:
10965         mutex_unlock(&parent_ctx->mutex);
10966
10967         perf_unpin_context(parent_ctx);
10968         put_ctx(parent_ctx);
10969
10970         return ret;
10971 }
10972
10973 /*
10974  * Initialize the perf_event context in task_struct
10975  */
10976 int perf_event_init_task(struct task_struct *child)
10977 {
10978         int ctxn, ret;
10979
10980         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10981         mutex_init(&child->perf_event_mutex);
10982         INIT_LIST_HEAD(&child->perf_event_list);
10983
10984         for_each_task_context_nr(ctxn) {
10985                 ret = perf_event_init_context(child, ctxn);
10986                 if (ret) {
10987                         perf_event_free_task(child);
10988                         return ret;
10989                 }
10990         }
10991
10992         return 0;
10993 }
10994
10995 static void __init perf_event_init_all_cpus(void)
10996 {
10997         struct swevent_htable *swhash;
10998         int cpu;
10999
11000         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11001
11002         for_each_possible_cpu(cpu) {
11003                 swhash = &per_cpu(swevent_htable, cpu);
11004                 mutex_init(&swhash->hlist_mutex);
11005                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11006
11007                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11008                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11009
11010 #ifdef CONFIG_CGROUP_PERF
11011                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11012 #endif
11013                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11014         }
11015 }
11016
11017 void perf_swevent_init_cpu(unsigned int cpu)
11018 {
11019         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11020
11021         mutex_lock(&swhash->hlist_mutex);
11022         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11023                 struct swevent_hlist *hlist;
11024
11025                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11026                 WARN_ON(!hlist);
11027                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11028         }
11029         mutex_unlock(&swhash->hlist_mutex);
11030 }
11031
11032 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11033 static void __perf_event_exit_context(void *__info)
11034 {
11035         struct perf_event_context *ctx = __info;
11036         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11037         struct perf_event *event;
11038
11039         raw_spin_lock(&ctx->lock);
11040         list_for_each_entry(event, &ctx->event_list, event_entry)
11041                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11042         raw_spin_unlock(&ctx->lock);
11043 }
11044
11045 static void perf_event_exit_cpu_context(int cpu)
11046 {
11047         struct perf_cpu_context *cpuctx;
11048         struct perf_event_context *ctx;
11049         struct pmu *pmu;
11050
11051         mutex_lock(&pmus_lock);
11052         list_for_each_entry(pmu, &pmus, entry) {
11053                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11054                 ctx = &cpuctx->ctx;
11055
11056                 mutex_lock(&ctx->mutex);
11057                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11058                 cpuctx->online = 0;
11059                 mutex_unlock(&ctx->mutex);
11060         }
11061         cpumask_clear_cpu(cpu, perf_online_mask);
11062         mutex_unlock(&pmus_lock);
11063 }
11064 #else
11065
11066 static void perf_event_exit_cpu_context(int cpu) { }
11067
11068 #endif
11069
11070 int perf_event_init_cpu(unsigned int cpu)
11071 {
11072         struct perf_cpu_context *cpuctx;
11073         struct perf_event_context *ctx;
11074         struct pmu *pmu;
11075
11076         perf_swevent_init_cpu(cpu);
11077
11078         mutex_lock(&pmus_lock);
11079         cpumask_set_cpu(cpu, perf_online_mask);
11080         list_for_each_entry(pmu, &pmus, entry) {
11081                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11082                 ctx = &cpuctx->ctx;
11083
11084                 mutex_lock(&ctx->mutex);
11085                 cpuctx->online = 1;
11086                 mutex_unlock(&ctx->mutex);
11087         }
11088         mutex_unlock(&pmus_lock);
11089
11090         return 0;
11091 }
11092
11093 int perf_event_exit_cpu(unsigned int cpu)
11094 {
11095         perf_event_exit_cpu_context(cpu);
11096         return 0;
11097 }
11098
11099 static int
11100 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11101 {
11102         int cpu;
11103
11104         for_each_online_cpu(cpu)
11105                 perf_event_exit_cpu(cpu);
11106
11107         return NOTIFY_OK;
11108 }
11109
11110 /*
11111  * Run the perf reboot notifier at the very last possible moment so that
11112  * the generic watchdog code runs as long as possible.
11113  */
11114 static struct notifier_block perf_reboot_notifier = {
11115         .notifier_call = perf_reboot,
11116         .priority = INT_MIN,
11117 };
11118
11119 void __init perf_event_init(void)
11120 {
11121         int ret;
11122
11123         idr_init(&pmu_idr);
11124
11125         perf_event_init_all_cpus();
11126         init_srcu_struct(&pmus_srcu);
11127         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11128         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11129         perf_pmu_register(&perf_task_clock, NULL, -1);
11130         perf_tp_register();
11131         perf_event_init_cpu(smp_processor_id());
11132         register_reboot_notifier(&perf_reboot_notifier);
11133
11134         ret = init_hw_breakpoint();
11135         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11136
11137         /*
11138          * Build time assertion that we keep the data_head at the intended
11139          * location.  IOW, validation we got the __reserved[] size right.
11140          */
11141         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11142                      != 1024);
11143 }
11144
11145 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11146                               char *page)
11147 {
11148         struct perf_pmu_events_attr *pmu_attr =
11149                 container_of(attr, struct perf_pmu_events_attr, attr);
11150
11151         if (pmu_attr->event_str)
11152                 return sprintf(page, "%s\n", pmu_attr->event_str);
11153
11154         return 0;
11155 }
11156 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11157
11158 static int __init perf_event_sysfs_init(void)
11159 {
11160         struct pmu *pmu;
11161         int ret;
11162
11163         mutex_lock(&pmus_lock);
11164
11165         ret = bus_register(&pmu_bus);
11166         if (ret)
11167                 goto unlock;
11168
11169         list_for_each_entry(pmu, &pmus, entry) {
11170                 if (!pmu->name || pmu->type < 0)
11171                         continue;
11172
11173                 ret = pmu_dev_alloc(pmu);
11174                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11175         }
11176         pmu_bus_running = 1;
11177         ret = 0;
11178
11179 unlock:
11180         mutex_unlock(&pmus_lock);
11181
11182         return ret;
11183 }
11184 device_initcall(perf_event_sysfs_init);
11185
11186 #ifdef CONFIG_CGROUP_PERF
11187 static struct cgroup_subsys_state *
11188 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11189 {
11190         struct perf_cgroup *jc;
11191
11192         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11193         if (!jc)
11194                 return ERR_PTR(-ENOMEM);
11195
11196         jc->info = alloc_percpu(struct perf_cgroup_info);
11197         if (!jc->info) {
11198                 kfree(jc);
11199                 return ERR_PTR(-ENOMEM);
11200         }
11201
11202         return &jc->css;
11203 }
11204
11205 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11206 {
11207         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11208
11209         free_percpu(jc->info);
11210         kfree(jc);
11211 }
11212
11213 static int __perf_cgroup_move(void *info)
11214 {
11215         struct task_struct *task = info;
11216         rcu_read_lock();
11217         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11218         rcu_read_unlock();
11219         return 0;
11220 }
11221
11222 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11223 {
11224         struct task_struct *task;
11225         struct cgroup_subsys_state *css;
11226
11227         cgroup_taskset_for_each(task, css, tset)
11228                 task_function_call(task, __perf_cgroup_move, task);
11229 }
11230
11231 struct cgroup_subsys perf_event_cgrp_subsys = {
11232         .css_alloc      = perf_cgroup_css_alloc,
11233         .css_free       = perf_cgroup_css_free,
11234         .attach         = perf_cgroup_attach,
11235         /*
11236          * Implicitly enable on dfl hierarchy so that perf events can
11237          * always be filtered by cgroup2 path as long as perf_event
11238          * controller is not mounted on a legacy hierarchy.
11239          */
11240         .implicit_on_dfl = true,
11241 };
11242 #endif /* CONFIG_CGROUP_PERF */