1 // SPDX-License-Identifier: GPL-2.0
3 * Performance events core code:
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
55 #include <asm/irq_regs.h>
57 typedef int (*remote_function_f)(void *);
59 struct remote_function_call {
60 struct task_struct *p;
61 remote_function_f func;
66 static void remote_function(void *data)
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
73 if (task_cpu(p) != smp_processor_id())
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
81 tfc->ret = -ESRCH; /* No such (running) process */
86 tfc->ret = tfc->func(tfc->info);
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 struct remote_function_call data = {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
117 } while (ret == -EAGAIN);
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
127 * Calls the function @func on the remote cpu.
129 * returns: @func return value or -ENXIO when the cpu is offline
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 struct remote_function_call data = {
137 .ret = -ENXIO, /* No such CPU */
140 smp_call_function_single(cpu, remote_function, &data, 1);
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
154 raw_spin_lock(&cpuctx->ctx.lock);
156 raw_spin_lock(&ctx->lock);
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
167 #define TASK_TOMBSTONE ((void *)-1L)
169 static bool is_kernel_event(struct perf_event *event)
171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
175 * On task ctx scheduling...
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
181 * This however results in two special cases:
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
196 struct event_function_struct {
197 struct perf_event *event;
202 static int event_function(void *info)
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
206 struct perf_event_context *ctx = event->ctx;
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
211 lockdep_assert_irqs_disabled();
213 perf_ctx_lock(cpuctx, task_ctx);
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
219 if (ctx->task != current) {
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
231 WARN_ON_ONCE(!ctx->is_active);
233 * And since we have ctx->is_active, cpuctx->task_ctx must
236 WARN_ON_ONCE(task_ctx != ctx);
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
241 efs->func(event, cpuctx, ctx, efs->data);
243 perf_ctx_unlock(cpuctx, task_ctx);
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 struct perf_event_context *ctx = event->ctx;
251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 struct event_function_struct efs = {
258 if (!event->parent) {
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
264 lockdep_assert_held(&ctx->mutex);
268 cpu_function_call(event->cpu, event_function, &efs);
272 if (task == TASK_TOMBSTONE)
276 if (!task_function_call(task, event_function, &efs))
279 raw_spin_lock_irq(&ctx->lock);
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
293 func(event, NULL, ctx, data);
294 raw_spin_unlock_irq(&ctx->lock);
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
308 lockdep_assert_irqs_disabled();
311 if (task == TASK_TOMBSTONE)
317 perf_ctx_lock(cpuctx, task_ctx);
320 if (task == TASK_TOMBSTONE)
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
340 func(event, cpuctx, ctx, data);
342 perf_ctx_unlock(cpuctx, task_ctx);
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
351 * branch priv levels that need permission checks
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
358 EVENT_FLEXIBLE = 0x1,
361 /* see ctx_resched() for details */
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
396 * perf event paranoia level:
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
399 * 1 - disallow cpu events for unpriv
400 * 2 - disallow kernel profiling for unpriv
402 int sysctl_perf_event_paranoid __read_mostly = 2;
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
408 * max perf event sample rate
410 #define DEFAULT_MAX_SAMPLE_RATE 100000
411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
419 static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
422 static void update_perf_cpu_limits(void)
424 u64 tmp = perf_sample_period_ns;
426 tmp *= sysctl_perf_cpu_time_max_percent;
427 tmp = div_u64(tmp, 100);
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
443 * If throttling is disabled don't allow the write:
445 if (write && (perf_cpu == 100 || perf_cpu == 0))
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
476 update_perf_cpu_limits();
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
491 static u64 __report_avg;
492 static u64 __report_allowed;
494 static void perf_duration_warn(struct irq_work *w)
496 printk_ratelimited(KERN_INFO
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
505 void perf_sample_event_took(u64 sample_len_ns)
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 * from having to maintain a count.
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
530 __report_avg = avg_len;
531 __report_allowed = max_len;
534 * Compute a throttle threshold 25% below the current duration.
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
549 if (!irq_work_queue(&perf_duration_work)) {
550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 "kernel.perf_event_max_sample_rate to %d\n",
552 __report_avg, __report_allowed,
553 sysctl_perf_event_sample_rate);
557 static atomic64_t perf_event_id;
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 enum event_type_t event_type,
564 struct task_struct *task);
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
569 void __weak perf_event_print_debug(void) { }
571 extern __weak const char *perf_pmu_name(void)
576 static inline u64 perf_clock(void)
578 return local_clock();
581 static inline u64 perf_event_clock(struct perf_event *event)
583 return event->clock();
587 * State based event timekeeping...
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
611 struct perf_event *leader = event->group_leader;
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
634 static void perf_event_update_time(struct perf_event *event)
636 u64 now = perf_event_time(event);
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
643 static void perf_event_update_sibling_time(struct perf_event *leader)
645 struct perf_event *sibling;
647 for_each_sibling_event(sibling, leader)
648 perf_event_update_time(sibling);
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
654 if (event->state == state)
657 perf_event_update_time(event);
659 * If a group leader gets enabled/disabled all its siblings
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
665 WRITE_ONCE(event->state, state);
668 #ifdef CONFIG_CGROUP_PERF
671 perf_cgroup_match(struct perf_event *event)
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
676 /* @event doesn't care about cgroup */
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
694 static inline void perf_detach_cgroup(struct perf_event *event)
696 css_put(&event->cgrp->css);
700 static inline int is_cgroup_event(struct perf_event *event)
702 return event->cgrp != NULL;
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
707 struct perf_cgroup_info *t;
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
715 struct perf_cgroup_info *info;
720 info = this_cpu_ptr(cgrp->info);
722 info->time += now - info->timestamp;
723 info->timestamp = now;
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
741 struct perf_cgroup *cgrp;
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
747 if (!is_cgroup_event(event))
750 cgrp = perf_cgroup_from_task(current, event->ctx);
752 * Do not update time when cgroup is not active
754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 __update_cgrp_time(event->cgrp);
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
764 struct cgroup_subsys_state *css;
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
771 if (!task || !ctx->nr_cgroups)
774 cgrp = perf_cgroup_from_task(task, ctx);
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
789 * reschedule events based on the cgroup constraint of task.
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
796 struct perf_cpu_context *cpuctx;
797 struct list_head *list;
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
804 local_irq_save(flags);
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
831 cpuctx->cgrp = perf_cgroup_from_task(task,
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
839 local_irq_restore(flags);
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
850 * we come here when we know perf_cgroup_events > 0
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
854 cgrp1 = perf_cgroup_from_task(task, NULL);
855 cgrp2 = perf_cgroup_from_task(next, NULL);
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
876 * we come here when we know perf_cgroup_events > 0
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
880 cgrp1 = perf_cgroup_from_task(task, NULL);
881 cgrp2 = perf_cgroup_from_task(prev, NULL);
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
900 struct fd f = fdget(fd);
906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 &perf_event_cgrp_subsys);
913 cgrp = container_of(css, struct perf_cgroup, css);
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
943 list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
946 struct perf_cpu_context *cpuctx;
947 struct list_head *cpuctx_entry;
949 if (!is_cgroup_event(event))
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
956 cpuctx = __get_cpu_context(ctx);
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
964 if (add && !cpuctx->cgrp) {
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
971 if (add && ctx->nr_cgroups++)
973 else if (!add && --ctx->nr_cgroups)
976 /* no cgroup running */
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
984 list_del(cpuctx_entry);
987 #else /* !CONFIG_CGROUP_PERF */
990 perf_cgroup_match(struct perf_event *event)
995 static inline void perf_detach_cgroup(struct perf_event *event)
998 static inline int is_cgroup_event(struct perf_event *event)
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1050 list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1058 * set default to be dependent on timer tick just
1059 * like original code
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1063 * function must be called with interrupts disabled
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1067 struct perf_cpu_context *cpuctx;
1070 lockdep_assert_irqs_disabled();
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 rotations = perf_rotate_context(cpuctx);
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1087 struct hrtimer *timer = &cpuctx->hrtimer;
1088 struct pmu *pmu = cpuctx->ctx.pmu;
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1099 interval = pmu->hrtimer_interval_ms;
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107 timer->function = perf_mux_hrtimer_handler;
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1112 struct hrtimer *timer = &cpuctx->hrtimer;
1113 struct pmu *pmu = cpuctx->ctx.pmu;
1114 unsigned long flags;
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1131 void perf_pmu_disable(struct pmu *pmu)
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1135 pmu->pmu_disable(pmu);
1138 void perf_pmu_enable(struct pmu *pmu)
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1142 pmu->pmu_enable(pmu);
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1157 lockdep_assert_irqs_disabled();
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1161 list_add(&ctx->active_ctx_list, head);
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1166 lockdep_assert_irqs_disabled();
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1170 list_del_init(&ctx->active_ctx_list);
1173 static void get_ctx(struct perf_event_context *ctx)
1175 refcount_inc(&ctx->refcount);
1178 static void free_ctx(struct rcu_head *head)
1180 struct perf_event_context *ctx;
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1187 static void put_ctx(struct perf_event_context *ctx)
1189 if (refcount_dec_and_test(&ctx->refcount)) {
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 put_task_struct(ctx->task);
1194 call_rcu(&ctx->rcu_head, free_ctx);
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1208 * - perf_event_exit_task_context() [ child , 0 ]
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1216 * perf_event_alloc()
1218 * perf_try_init_event() [ child , 1 ]
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1234 * The places that change perf_event::ctx will issue:
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
1254 * perf_event::child_mutex;
1255 * perf_event_context::lock
1256 * perf_event::mmap_mutex
1258 * perf_addr_filters_head::lock
1262 * cpuctx->mutex / perf_event_context::mutex
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1267 struct perf_event_context *ctx;
1271 ctx = READ_ONCE(event->ctx);
1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
1278 mutex_lock_nested(&ctx->mutex, nesting);
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1291 return perf_event_ctx_lock_nested(event, 0);
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1297 mutex_unlock(&ctx->mutex);
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1311 lockdep_assert_held(&ctx->lock);
1314 ctx->parent_ctx = NULL;
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1325 * only top level events have the pid namespace they were created in
1328 event = event->parent;
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
1348 * If we inherit events we want to return the parent event id
1351 static u64 primary_event_id(struct perf_event *event)
1356 id = event->parent->id;
1362 * Get the perf_event_context for a task and lock it.
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1370 struct perf_event_context *ctx;
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 * part of the read side critical section was irqs-enabled -- see
1377 * rcu_read_unlock_special().
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 * side critical section has interrupts disabled.
1382 local_irq_save(*flags);
1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
1389 * perf_event_task_sched_out, though the
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1396 raw_spin_lock(&ctx->lock);
1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 raw_spin_unlock(&ctx->lock);
1400 local_irq_restore(*flags);
1404 if (ctx->task == TASK_TOMBSTONE ||
1405 !refcount_inc_not_zero(&ctx->refcount)) {
1406 raw_spin_unlock(&ctx->lock);
1409 WARN_ON_ONCE(ctx->task != task);
1414 local_irq_restore(*flags);
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1426 struct perf_event_context *ctx;
1427 unsigned long flags;
1429 ctx = perf_lock_task_context(task, ctxn, &flags);
1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1439 unsigned long flags;
1441 raw_spin_lock_irqsave(&ctx->lock, flags);
1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1447 * Update the record of the current time in a context.
1449 static void update_context_time(struct perf_event_context *ctx)
1451 u64 now = perf_clock();
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1457 static u64 perf_event_time(struct perf_event *event)
1459 struct perf_event_context *ctx = event->ctx;
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1464 return ctx ? ctx->time : 0;
1467 static enum event_type_t get_event_type(struct perf_event *event)
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1472 lockdep_assert_held(&ctx->lock);
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1483 event_type |= EVENT_CPU;
1489 * Helper function to initialize event group nodes.
1491 static void init_event_group(struct perf_event *event)
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1498 * Extract pinned or flexible groups from the context
1499 * based on event attrs bits.
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1507 return &ctx->flexible_groups;
1511 * Helper function to initializes perf_event_group trees.
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1515 groups->tree = RB_ROOT;
1520 * Compare function for event groups;
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1528 if (left->cpu < right->cpu)
1530 if (left->cpu > right->cpu)
1533 if (left->group_index < right->group_index)
1535 if (left->group_index > right->group_index)
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 struct perf_event *event)
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1554 event->group_index = ++groups->index;
1556 node = &groups->tree.rb_node;
1561 node_event = container_of(*node, struct perf_event, group_node);
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1566 node = &parent->rb_right;
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1574 * Helper function to insert event into the pinned or flexible groups.
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1579 struct perf_event_groups *groups;
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1586 * Delete a group from a tree.
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 struct perf_event *event)
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
1595 rb_erase(&event->group_node, &groups->tree);
1596 init_event_group(event);
1600 * Helper function to delete event from its groups.
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1605 struct perf_event_groups *groups;
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1612 * Get the leftmost event in the @cpu subtree.
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1621 node_event = container_of(node, struct perf_event, group_node);
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1629 node = node->rb_left;
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1642 struct perf_event *next;
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1652 * Iterate through the whole groups tree.
1654 #define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
1661 * Add an event from the lists for its context.
1662 * Must be called with ctx->mutex and ctx->lock held.
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1667 lockdep_assert_held(&ctx->lock);
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
1672 event->tstamp = perf_event_time(event);
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
1679 if (event->group_leader == event) {
1680 event->group_caps = event->event_caps;
1681 add_event_to_groups(event, ctx);
1684 list_update_cgroup_event(event, ctx, true);
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1688 if (event->attr.inherit_stat)
1695 * Initialize event state based on the perf_event_attr::disabled.
1697 static inline void perf_event__state_init(struct perf_event *event)
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1705 int entry = sizeof(u64); /* value */
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1720 size += sizeof(u64);
1724 event->read_size = size;
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1729 struct perf_sample_data *data;
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1756 event->header_size = size;
1760 * Called at perf_event creation and when events are attached/detached from a
1763 static void perf_event__header_size(struct perf_event *event)
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1770 static void perf_event__id_header_size(struct perf_event *event)
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1794 event->id_header_size = size;
1797 static bool perf_event_validate_size(struct perf_event *event)
1800 * The values computed here will be over-written when we actually
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1818 static void perf_group_attach(struct perf_event *event)
1820 struct perf_event *group_leader = event->group_leader, *pos;
1822 lockdep_assert_held(&event->ctx->lock);
1825 * We can have double attach due to group movement in perf_event_open.
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1830 event->attach_state |= PERF_ATTACH_GROUP;
1832 if (group_leader == event)
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1837 group_leader->group_caps &= event->event_caps;
1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 group_leader->nr_siblings++;
1842 perf_event__header_size(group_leader);
1844 for_each_sibling_event(pos, group_leader)
1845 perf_event__header_size(pos);
1849 * Remove an event from the lists for its context.
1850 * Must be called with ctx->mutex and ctx->lock held.
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1859 * We can have double detach due to exit/hot-unplug + close.
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1866 list_update_cgroup_event(event, ctx, false);
1869 if (event->attr.inherit_stat)
1872 list_del_rcu(&event->event_entry);
1874 if (event->group_leader == event)
1875 del_event_from_groups(event, ctx);
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1884 if (event->state > PERF_EVENT_STATE_OFF)
1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1890 static void perf_group_detach(struct perf_event *event)
1892 struct perf_event *sibling, *tmp;
1893 struct perf_event_context *ctx = event->ctx;
1895 lockdep_assert_held(&ctx->lock);
1898 * We can have double detach due to exit/hot-unplug + close.
1900 if (!(event->attach_state & PERF_ATTACH_GROUP))
1903 event->attach_state &= ~PERF_ATTACH_GROUP;
1906 * If this is a sibling, remove it from its group.
1908 if (event->group_leader != event) {
1909 list_del_init(&event->sibling_list);
1910 event->group_leader->nr_siblings--;
1915 * If this was a group event with sibling events then
1916 * upgrade the siblings to singleton events by adding them
1917 * to whatever list we are on.
1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1921 sibling->group_leader = sibling;
1922 list_del_init(&sibling->sibling_list);
1924 /* Inherit group flags from the previous leader */
1925 sibling->group_caps = event->group_caps;
1927 if (!RB_EMPTY_NODE(&event->group_node)) {
1928 add_event_to_groups(sibling, event->ctx);
1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931 struct list_head *list = sibling->attr.pinned ?
1932 &ctx->pinned_active : &ctx->flexible_active;
1934 list_add_tail(&sibling->active_list, list);
1938 WARN_ON_ONCE(sibling->ctx != event->ctx);
1942 perf_event__header_size(event->group_leader);
1944 for_each_sibling_event(tmp, event->group_leader)
1945 perf_event__header_size(tmp);
1948 static bool is_orphaned_event(struct perf_event *event)
1950 return event->state == PERF_EVENT_STATE_DEAD;
1953 static inline int __pmu_filter_match(struct perf_event *event)
1955 struct pmu *pmu = event->pmu;
1956 return pmu->filter_match ? pmu->filter_match(event) : 1;
1960 * Check whether we should attempt to schedule an event group based on
1961 * PMU-specific filtering. An event group can consist of HW and SW events,
1962 * potentially with a SW leader, so we must check all the filters, to
1963 * determine whether a group is schedulable:
1965 static inline int pmu_filter_match(struct perf_event *event)
1967 struct perf_event *sibling;
1969 if (!__pmu_filter_match(event))
1972 for_each_sibling_event(sibling, event) {
1973 if (!__pmu_filter_match(sibling))
1981 event_filter_match(struct perf_event *event)
1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984 perf_cgroup_match(event) && pmu_filter_match(event);
1988 event_sched_out(struct perf_event *event,
1989 struct perf_cpu_context *cpuctx,
1990 struct perf_event_context *ctx)
1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1994 WARN_ON_ONCE(event->ctx != ctx);
1995 lockdep_assert_held(&ctx->lock);
1997 if (event->state != PERF_EVENT_STATE_ACTIVE)
2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002 * we can schedule events _OUT_ individually through things like
2003 * __perf_remove_from_context().
2005 list_del_init(&event->active_list);
2007 perf_pmu_disable(event->pmu);
2009 event->pmu->del(event, 0);
2012 if (READ_ONCE(event->pending_disable) >= 0) {
2013 WRITE_ONCE(event->pending_disable, -1);
2014 state = PERF_EVENT_STATE_OFF;
2016 perf_event_set_state(event, state);
2018 if (!is_software_event(event))
2019 cpuctx->active_oncpu--;
2020 if (!--ctx->nr_active)
2021 perf_event_ctx_deactivate(ctx);
2022 if (event->attr.freq && event->attr.sample_freq)
2024 if (event->attr.exclusive || !cpuctx->active_oncpu)
2025 cpuctx->exclusive = 0;
2027 perf_pmu_enable(event->pmu);
2031 group_sched_out(struct perf_event *group_event,
2032 struct perf_cpu_context *cpuctx,
2033 struct perf_event_context *ctx)
2035 struct perf_event *event;
2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2040 perf_pmu_disable(ctx->pmu);
2042 event_sched_out(group_event, cpuctx, ctx);
2045 * Schedule out siblings (if any):
2047 for_each_sibling_event(event, group_event)
2048 event_sched_out(event, cpuctx, ctx);
2050 perf_pmu_enable(ctx->pmu);
2052 if (group_event->attr.exclusive)
2053 cpuctx->exclusive = 0;
2056 #define DETACH_GROUP 0x01UL
2059 * Cross CPU call to remove a performance event
2061 * We disable the event on the hardware level first. After that we
2062 * remove it from the context list.
2065 __perf_remove_from_context(struct perf_event *event,
2066 struct perf_cpu_context *cpuctx,
2067 struct perf_event_context *ctx,
2070 unsigned long flags = (unsigned long)info;
2072 if (ctx->is_active & EVENT_TIME) {
2073 update_context_time(ctx);
2074 update_cgrp_time_from_cpuctx(cpuctx);
2077 event_sched_out(event, cpuctx, ctx);
2078 if (flags & DETACH_GROUP)
2079 perf_group_detach(event);
2080 list_del_event(event, ctx);
2082 if (!ctx->nr_events && ctx->is_active) {
2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086 cpuctx->task_ctx = NULL;
2092 * Remove the event from a task's (or a CPU's) list of events.
2094 * If event->ctx is a cloned context, callers must make sure that
2095 * every task struct that event->ctx->task could possibly point to
2096 * remains valid. This is OK when called from perf_release since
2097 * that only calls us on the top-level context, which can't be a clone.
2098 * When called from perf_event_exit_task, it's OK because the
2099 * context has been detached from its task.
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2103 struct perf_event_context *ctx = event->ctx;
2105 lockdep_assert_held(&ctx->mutex);
2107 event_function_call(event, __perf_remove_from_context, (void *)flags);
2110 * The above event_function_call() can NO-OP when it hits
2111 * TASK_TOMBSTONE. In that case we must already have been detached
2112 * from the context (by perf_event_exit_event()) but the grouping
2113 * might still be in-tact.
2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116 if ((flags & DETACH_GROUP) &&
2117 (event->attach_state & PERF_ATTACH_GROUP)) {
2119 * Since in that case we cannot possibly be scheduled, simply
2122 raw_spin_lock_irq(&ctx->lock);
2123 perf_group_detach(event);
2124 raw_spin_unlock_irq(&ctx->lock);
2129 * Cross CPU call to disable a performance event
2131 static void __perf_event_disable(struct perf_event *event,
2132 struct perf_cpu_context *cpuctx,
2133 struct perf_event_context *ctx,
2136 if (event->state < PERF_EVENT_STATE_INACTIVE)
2139 if (ctx->is_active & EVENT_TIME) {
2140 update_context_time(ctx);
2141 update_cgrp_time_from_event(event);
2144 if (event == event->group_leader)
2145 group_sched_out(event, cpuctx, ctx);
2147 event_sched_out(event, cpuctx, ctx);
2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2155 * If event->ctx is a cloned context, callers must make sure that
2156 * every task struct that event->ctx->task could possibly point to
2157 * remains valid. This condition is satisifed when called through
2158 * perf_event_for_each_child or perf_event_for_each because they
2159 * hold the top-level event's child_mutex, so any descendant that
2160 * goes to exit will block in perf_event_exit_event().
2162 * When called from perf_pending_event it's OK because event->ctx
2163 * is the current context on this CPU and preemption is disabled,
2164 * hence we can't get into perf_event_task_sched_out for this context.
2166 static void _perf_event_disable(struct perf_event *event)
2168 struct perf_event_context *ctx = event->ctx;
2170 raw_spin_lock_irq(&ctx->lock);
2171 if (event->state <= PERF_EVENT_STATE_OFF) {
2172 raw_spin_unlock_irq(&ctx->lock);
2175 raw_spin_unlock_irq(&ctx->lock);
2177 event_function_call(event, __perf_event_disable, NULL);
2180 void perf_event_disable_local(struct perf_event *event)
2182 event_function_local(event, __perf_event_disable, NULL);
2186 * Strictly speaking kernel users cannot create groups and therefore this
2187 * interface does not need the perf_event_ctx_lock() magic.
2189 void perf_event_disable(struct perf_event *event)
2191 struct perf_event_context *ctx;
2193 ctx = perf_event_ctx_lock(event);
2194 _perf_event_disable(event);
2195 perf_event_ctx_unlock(event, ctx);
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2199 void perf_event_disable_inatomic(struct perf_event *event)
2201 WRITE_ONCE(event->pending_disable, smp_processor_id());
2202 /* can fail, see perf_pending_event_disable() */
2203 irq_work_queue(&event->pending);
2206 static void perf_set_shadow_time(struct perf_event *event,
2207 struct perf_event_context *ctx)
2210 * use the correct time source for the time snapshot
2212 * We could get by without this by leveraging the
2213 * fact that to get to this function, the caller
2214 * has most likely already called update_context_time()
2215 * and update_cgrp_time_xx() and thus both timestamp
2216 * are identical (or very close). Given that tstamp is,
2217 * already adjusted for cgroup, we could say that:
2218 * tstamp - ctx->timestamp
2220 * tstamp - cgrp->timestamp.
2222 * Then, in perf_output_read(), the calculation would
2223 * work with no changes because:
2224 * - event is guaranteed scheduled in
2225 * - no scheduled out in between
2226 * - thus the timestamp would be the same
2228 * But this is a bit hairy.
2230 * So instead, we have an explicit cgroup call to remain
2231 * within the time time source all along. We believe it
2232 * is cleaner and simpler to understand.
2234 if (is_cgroup_event(event))
2235 perf_cgroup_set_shadow_time(event, event->tstamp);
2237 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2240 #define MAX_INTERRUPTS (~0ULL)
2242 static void perf_log_throttle(struct perf_event *event, int enable);
2243 static void perf_log_itrace_start(struct perf_event *event);
2246 event_sched_in(struct perf_event *event,
2247 struct perf_cpu_context *cpuctx,
2248 struct perf_event_context *ctx)
2252 lockdep_assert_held(&ctx->lock);
2254 if (event->state <= PERF_EVENT_STATE_OFF)
2257 WRITE_ONCE(event->oncpu, smp_processor_id());
2259 * Order event::oncpu write to happen before the ACTIVE state is
2260 * visible. This allows perf_event_{stop,read}() to observe the correct
2261 * ->oncpu if it sees ACTIVE.
2264 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2267 * Unthrottle events, since we scheduled we might have missed several
2268 * ticks already, also for a heavily scheduling task there is little
2269 * guarantee it'll get a tick in a timely manner.
2271 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2272 perf_log_throttle(event, 1);
2273 event->hw.interrupts = 0;
2276 perf_pmu_disable(event->pmu);
2278 perf_set_shadow_time(event, ctx);
2280 perf_log_itrace_start(event);
2282 if (event->pmu->add(event, PERF_EF_START)) {
2283 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2289 if (!is_software_event(event))
2290 cpuctx->active_oncpu++;
2291 if (!ctx->nr_active++)
2292 perf_event_ctx_activate(ctx);
2293 if (event->attr.freq && event->attr.sample_freq)
2296 if (event->attr.exclusive)
2297 cpuctx->exclusive = 1;
2300 perf_pmu_enable(event->pmu);
2306 group_sched_in(struct perf_event *group_event,
2307 struct perf_cpu_context *cpuctx,
2308 struct perf_event_context *ctx)
2310 struct perf_event *event, *partial_group = NULL;
2311 struct pmu *pmu = ctx->pmu;
2313 if (group_event->state == PERF_EVENT_STATE_OFF)
2316 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2318 if (event_sched_in(group_event, cpuctx, ctx)) {
2319 pmu->cancel_txn(pmu);
2320 perf_mux_hrtimer_restart(cpuctx);
2325 * Schedule in siblings as one group (if any):
2327 for_each_sibling_event(event, group_event) {
2328 if (event_sched_in(event, cpuctx, ctx)) {
2329 partial_group = event;
2334 if (!pmu->commit_txn(pmu))
2339 * Groups can be scheduled in as one unit only, so undo any
2340 * partial group before returning:
2341 * The events up to the failed event are scheduled out normally.
2343 for_each_sibling_event(event, group_event) {
2344 if (event == partial_group)
2347 event_sched_out(event, cpuctx, ctx);
2349 event_sched_out(group_event, cpuctx, ctx);
2351 pmu->cancel_txn(pmu);
2353 perf_mux_hrtimer_restart(cpuctx);
2359 * Work out whether we can put this event group on the CPU now.
2361 static int group_can_go_on(struct perf_event *event,
2362 struct perf_cpu_context *cpuctx,
2366 * Groups consisting entirely of software events can always go on.
2368 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2371 * If an exclusive group is already on, no other hardware
2374 if (cpuctx->exclusive)
2377 * If this group is exclusive and there are already
2378 * events on the CPU, it can't go on.
2380 if (event->attr.exclusive && cpuctx->active_oncpu)
2383 * Otherwise, try to add it if all previous groups were able
2389 static void add_event_to_ctx(struct perf_event *event,
2390 struct perf_event_context *ctx)
2392 list_add_event(event, ctx);
2393 perf_group_attach(event);
2396 static void ctx_sched_out(struct perf_event_context *ctx,
2397 struct perf_cpu_context *cpuctx,
2398 enum event_type_t event_type);
2400 ctx_sched_in(struct perf_event_context *ctx,
2401 struct perf_cpu_context *cpuctx,
2402 enum event_type_t event_type,
2403 struct task_struct *task);
2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2406 struct perf_event_context *ctx,
2407 enum event_type_t event_type)
2409 if (!cpuctx->task_ctx)
2412 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2415 ctx_sched_out(ctx, cpuctx, event_type);
2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2419 struct perf_event_context *ctx,
2420 struct task_struct *task)
2422 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2424 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2425 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2427 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2431 * We want to maintain the following priority of scheduling:
2432 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2433 * - task pinned (EVENT_PINNED)
2434 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2435 * - task flexible (EVENT_FLEXIBLE).
2437 * In order to avoid unscheduling and scheduling back in everything every
2438 * time an event is added, only do it for the groups of equal priority and
2441 * This can be called after a batch operation on task events, in which case
2442 * event_type is a bit mask of the types of events involved. For CPU events,
2443 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2445 static void ctx_resched(struct perf_cpu_context *cpuctx,
2446 struct perf_event_context *task_ctx,
2447 enum event_type_t event_type)
2449 enum event_type_t ctx_event_type;
2450 bool cpu_event = !!(event_type & EVENT_CPU);
2453 * If pinned groups are involved, flexible groups also need to be
2456 if (event_type & EVENT_PINNED)
2457 event_type |= EVENT_FLEXIBLE;
2459 ctx_event_type = event_type & EVENT_ALL;
2461 perf_pmu_disable(cpuctx->ctx.pmu);
2463 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2466 * Decide which cpu ctx groups to schedule out based on the types
2467 * of events that caused rescheduling:
2468 * - EVENT_CPU: schedule out corresponding groups;
2469 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2470 * - otherwise, do nothing more.
2473 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2474 else if (ctx_event_type & EVENT_PINNED)
2475 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2477 perf_event_sched_in(cpuctx, task_ctx, current);
2478 perf_pmu_enable(cpuctx->ctx.pmu);
2481 void perf_pmu_resched(struct pmu *pmu)
2483 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2484 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2486 perf_ctx_lock(cpuctx, task_ctx);
2487 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2488 perf_ctx_unlock(cpuctx, task_ctx);
2492 * Cross CPU call to install and enable a performance event
2494 * Very similar to remote_function() + event_function() but cannot assume that
2495 * things like ctx->is_active and cpuctx->task_ctx are set.
2497 static int __perf_install_in_context(void *info)
2499 struct perf_event *event = info;
2500 struct perf_event_context *ctx = event->ctx;
2501 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2502 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2503 bool reprogram = true;
2506 raw_spin_lock(&cpuctx->ctx.lock);
2508 raw_spin_lock(&ctx->lock);
2511 reprogram = (ctx->task == current);
2514 * If the task is running, it must be running on this CPU,
2515 * otherwise we cannot reprogram things.
2517 * If its not running, we don't care, ctx->lock will
2518 * serialize against it becoming runnable.
2520 if (task_curr(ctx->task) && !reprogram) {
2525 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2526 } else if (task_ctx) {
2527 raw_spin_lock(&task_ctx->lock);
2530 #ifdef CONFIG_CGROUP_PERF
2531 if (is_cgroup_event(event)) {
2533 * If the current cgroup doesn't match the event's
2534 * cgroup, we should not try to schedule it.
2536 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2537 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2538 event->cgrp->css.cgroup);
2543 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2544 add_event_to_ctx(event, ctx);
2545 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2547 add_event_to_ctx(event, ctx);
2551 perf_ctx_unlock(cpuctx, task_ctx);
2556 static bool exclusive_event_installable(struct perf_event *event,
2557 struct perf_event_context *ctx);
2560 * Attach a performance event to a context.
2562 * Very similar to event_function_call, see comment there.
2565 perf_install_in_context(struct perf_event_context *ctx,
2566 struct perf_event *event,
2569 struct task_struct *task = READ_ONCE(ctx->task);
2571 lockdep_assert_held(&ctx->mutex);
2573 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2575 if (event->cpu != -1)
2579 * Ensures that if we can observe event->ctx, both the event and ctx
2580 * will be 'complete'. See perf_iterate_sb_cpu().
2582 smp_store_release(&event->ctx, ctx);
2585 cpu_function_call(cpu, __perf_install_in_context, event);
2590 * Should not happen, we validate the ctx is still alive before calling.
2592 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2596 * Installing events is tricky because we cannot rely on ctx->is_active
2597 * to be set in case this is the nr_events 0 -> 1 transition.
2599 * Instead we use task_curr(), which tells us if the task is running.
2600 * However, since we use task_curr() outside of rq::lock, we can race
2601 * against the actual state. This means the result can be wrong.
2603 * If we get a false positive, we retry, this is harmless.
2605 * If we get a false negative, things are complicated. If we are after
2606 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2607 * value must be correct. If we're before, it doesn't matter since
2608 * perf_event_context_sched_in() will program the counter.
2610 * However, this hinges on the remote context switch having observed
2611 * our task->perf_event_ctxp[] store, such that it will in fact take
2612 * ctx::lock in perf_event_context_sched_in().
2614 * We do this by task_function_call(), if the IPI fails to hit the task
2615 * we know any future context switch of task must see the
2616 * perf_event_ctpx[] store.
2620 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2621 * task_cpu() load, such that if the IPI then does not find the task
2622 * running, a future context switch of that task must observe the
2627 if (!task_function_call(task, __perf_install_in_context, event))
2630 raw_spin_lock_irq(&ctx->lock);
2632 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2634 * Cannot happen because we already checked above (which also
2635 * cannot happen), and we hold ctx->mutex, which serializes us
2636 * against perf_event_exit_task_context().
2638 raw_spin_unlock_irq(&ctx->lock);
2642 * If the task is not running, ctx->lock will avoid it becoming so,
2643 * thus we can safely install the event.
2645 if (task_curr(task)) {
2646 raw_spin_unlock_irq(&ctx->lock);
2649 add_event_to_ctx(event, ctx);
2650 raw_spin_unlock_irq(&ctx->lock);
2654 * Cross CPU call to enable a performance event
2656 static void __perf_event_enable(struct perf_event *event,
2657 struct perf_cpu_context *cpuctx,
2658 struct perf_event_context *ctx,
2661 struct perf_event *leader = event->group_leader;
2662 struct perf_event_context *task_ctx;
2664 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2665 event->state <= PERF_EVENT_STATE_ERROR)
2669 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2671 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2673 if (!ctx->is_active)
2676 if (!event_filter_match(event)) {
2677 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2682 * If the event is in a group and isn't the group leader,
2683 * then don't put it on unless the group is on.
2685 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2686 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2690 task_ctx = cpuctx->task_ctx;
2692 WARN_ON_ONCE(task_ctx != ctx);
2694 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2700 * If event->ctx is a cloned context, callers must make sure that
2701 * every task struct that event->ctx->task could possibly point to
2702 * remains valid. This condition is satisfied when called through
2703 * perf_event_for_each_child or perf_event_for_each as described
2704 * for perf_event_disable.
2706 static void _perf_event_enable(struct perf_event *event)
2708 struct perf_event_context *ctx = event->ctx;
2710 raw_spin_lock_irq(&ctx->lock);
2711 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2712 event->state < PERF_EVENT_STATE_ERROR) {
2713 raw_spin_unlock_irq(&ctx->lock);
2718 * If the event is in error state, clear that first.
2720 * That way, if we see the event in error state below, we know that it
2721 * has gone back into error state, as distinct from the task having
2722 * been scheduled away before the cross-call arrived.
2724 if (event->state == PERF_EVENT_STATE_ERROR)
2725 event->state = PERF_EVENT_STATE_OFF;
2726 raw_spin_unlock_irq(&ctx->lock);
2728 event_function_call(event, __perf_event_enable, NULL);
2732 * See perf_event_disable();
2734 void perf_event_enable(struct perf_event *event)
2736 struct perf_event_context *ctx;
2738 ctx = perf_event_ctx_lock(event);
2739 _perf_event_enable(event);
2740 perf_event_ctx_unlock(event, ctx);
2742 EXPORT_SYMBOL_GPL(perf_event_enable);
2744 struct stop_event_data {
2745 struct perf_event *event;
2746 unsigned int restart;
2749 static int __perf_event_stop(void *info)
2751 struct stop_event_data *sd = info;
2752 struct perf_event *event = sd->event;
2754 /* if it's already INACTIVE, do nothing */
2755 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2758 /* matches smp_wmb() in event_sched_in() */
2762 * There is a window with interrupts enabled before we get here,
2763 * so we need to check again lest we try to stop another CPU's event.
2765 if (READ_ONCE(event->oncpu) != smp_processor_id())
2768 event->pmu->stop(event, PERF_EF_UPDATE);
2771 * May race with the actual stop (through perf_pmu_output_stop()),
2772 * but it is only used for events with AUX ring buffer, and such
2773 * events will refuse to restart because of rb::aux_mmap_count==0,
2774 * see comments in perf_aux_output_begin().
2776 * Since this is happening on an event-local CPU, no trace is lost
2780 event->pmu->start(event, 0);
2785 static int perf_event_stop(struct perf_event *event, int restart)
2787 struct stop_event_data sd = {
2794 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2797 /* matches smp_wmb() in event_sched_in() */
2801 * We only want to restart ACTIVE events, so if the event goes
2802 * inactive here (event->oncpu==-1), there's nothing more to do;
2803 * fall through with ret==-ENXIO.
2805 ret = cpu_function_call(READ_ONCE(event->oncpu),
2806 __perf_event_stop, &sd);
2807 } while (ret == -EAGAIN);
2813 * In order to contain the amount of racy and tricky in the address filter
2814 * configuration management, it is a two part process:
2816 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2817 * we update the addresses of corresponding vmas in
2818 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
2819 * (p2) when an event is scheduled in (pmu::add), it calls
2820 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2821 * if the generation has changed since the previous call.
2823 * If (p1) happens while the event is active, we restart it to force (p2).
2825 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2826 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2828 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2829 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2831 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2834 void perf_event_addr_filters_sync(struct perf_event *event)
2836 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2838 if (!has_addr_filter(event))
2841 raw_spin_lock(&ifh->lock);
2842 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2843 event->pmu->addr_filters_sync(event);
2844 event->hw.addr_filters_gen = event->addr_filters_gen;
2846 raw_spin_unlock(&ifh->lock);
2848 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2850 static int _perf_event_refresh(struct perf_event *event, int refresh)
2853 * not supported on inherited events
2855 if (event->attr.inherit || !is_sampling_event(event))
2858 atomic_add(refresh, &event->event_limit);
2859 _perf_event_enable(event);
2865 * See perf_event_disable()
2867 int perf_event_refresh(struct perf_event *event, int refresh)
2869 struct perf_event_context *ctx;
2872 ctx = perf_event_ctx_lock(event);
2873 ret = _perf_event_refresh(event, refresh);
2874 perf_event_ctx_unlock(event, ctx);
2878 EXPORT_SYMBOL_GPL(perf_event_refresh);
2880 static int perf_event_modify_breakpoint(struct perf_event *bp,
2881 struct perf_event_attr *attr)
2885 _perf_event_disable(bp);
2887 err = modify_user_hw_breakpoint_check(bp, attr, true);
2889 if (!bp->attr.disabled)
2890 _perf_event_enable(bp);
2895 static int perf_event_modify_attr(struct perf_event *event,
2896 struct perf_event_attr *attr)
2898 if (event->attr.type != attr->type)
2901 switch (event->attr.type) {
2902 case PERF_TYPE_BREAKPOINT:
2903 return perf_event_modify_breakpoint(event, attr);
2905 /* Place holder for future additions. */
2910 static void ctx_sched_out(struct perf_event_context *ctx,
2911 struct perf_cpu_context *cpuctx,
2912 enum event_type_t event_type)
2914 struct perf_event *event, *tmp;
2915 int is_active = ctx->is_active;
2917 lockdep_assert_held(&ctx->lock);
2919 if (likely(!ctx->nr_events)) {
2921 * See __perf_remove_from_context().
2923 WARN_ON_ONCE(ctx->is_active);
2925 WARN_ON_ONCE(cpuctx->task_ctx);
2929 ctx->is_active &= ~event_type;
2930 if (!(ctx->is_active & EVENT_ALL))
2934 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2935 if (!ctx->is_active)
2936 cpuctx->task_ctx = NULL;
2940 * Always update time if it was set; not only when it changes.
2941 * Otherwise we can 'forget' to update time for any but the last
2942 * context we sched out. For example:
2944 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2945 * ctx_sched_out(.event_type = EVENT_PINNED)
2947 * would only update time for the pinned events.
2949 if (is_active & EVENT_TIME) {
2950 /* update (and stop) ctx time */
2951 update_context_time(ctx);
2952 update_cgrp_time_from_cpuctx(cpuctx);
2955 is_active ^= ctx->is_active; /* changed bits */
2957 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2961 * If we had been multiplexing, no rotations are necessary, now no events
2964 ctx->rotate_necessary = 0;
2966 perf_pmu_disable(ctx->pmu);
2967 if (is_active & EVENT_PINNED) {
2968 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2969 group_sched_out(event, cpuctx, ctx);
2972 if (is_active & EVENT_FLEXIBLE) {
2973 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2974 group_sched_out(event, cpuctx, ctx);
2976 perf_pmu_enable(ctx->pmu);
2980 * Test whether two contexts are equivalent, i.e. whether they have both been
2981 * cloned from the same version of the same context.
2983 * Equivalence is measured using a generation number in the context that is
2984 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2985 * and list_del_event().
2987 static int context_equiv(struct perf_event_context *ctx1,
2988 struct perf_event_context *ctx2)
2990 lockdep_assert_held(&ctx1->lock);
2991 lockdep_assert_held(&ctx2->lock);
2993 /* Pinning disables the swap optimization */
2994 if (ctx1->pin_count || ctx2->pin_count)
2997 /* If ctx1 is the parent of ctx2 */
2998 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3001 /* If ctx2 is the parent of ctx1 */
3002 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3006 * If ctx1 and ctx2 have the same parent; we flatten the parent
3007 * hierarchy, see perf_event_init_context().
3009 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3010 ctx1->parent_gen == ctx2->parent_gen)
3017 static void __perf_event_sync_stat(struct perf_event *event,
3018 struct perf_event *next_event)
3022 if (!event->attr.inherit_stat)
3026 * Update the event value, we cannot use perf_event_read()
3027 * because we're in the middle of a context switch and have IRQs
3028 * disabled, which upsets smp_call_function_single(), however
3029 * we know the event must be on the current CPU, therefore we
3030 * don't need to use it.
3032 if (event->state == PERF_EVENT_STATE_ACTIVE)
3033 event->pmu->read(event);
3035 perf_event_update_time(event);
3038 * In order to keep per-task stats reliable we need to flip the event
3039 * values when we flip the contexts.
3041 value = local64_read(&next_event->count);
3042 value = local64_xchg(&event->count, value);
3043 local64_set(&next_event->count, value);
3045 swap(event->total_time_enabled, next_event->total_time_enabled);
3046 swap(event->total_time_running, next_event->total_time_running);
3049 * Since we swizzled the values, update the user visible data too.
3051 perf_event_update_userpage(event);
3052 perf_event_update_userpage(next_event);
3055 static void perf_event_sync_stat(struct perf_event_context *ctx,
3056 struct perf_event_context *next_ctx)
3058 struct perf_event *event, *next_event;
3063 update_context_time(ctx);
3065 event = list_first_entry(&ctx->event_list,
3066 struct perf_event, event_entry);
3068 next_event = list_first_entry(&next_ctx->event_list,
3069 struct perf_event, event_entry);
3071 while (&event->event_entry != &ctx->event_list &&
3072 &next_event->event_entry != &next_ctx->event_list) {
3074 __perf_event_sync_stat(event, next_event);
3076 event = list_next_entry(event, event_entry);
3077 next_event = list_next_entry(next_event, event_entry);
3081 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3082 struct task_struct *next)
3084 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3085 struct perf_event_context *next_ctx;
3086 struct perf_event_context *parent, *next_parent;
3087 struct perf_cpu_context *cpuctx;
3093 cpuctx = __get_cpu_context(ctx);
3094 if (!cpuctx->task_ctx)
3098 next_ctx = next->perf_event_ctxp[ctxn];
3102 parent = rcu_dereference(ctx->parent_ctx);
3103 next_parent = rcu_dereference(next_ctx->parent_ctx);
3105 /* If neither context have a parent context; they cannot be clones. */
3106 if (!parent && !next_parent)
3109 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3111 * Looks like the two contexts are clones, so we might be
3112 * able to optimize the context switch. We lock both
3113 * contexts and check that they are clones under the
3114 * lock (including re-checking that neither has been
3115 * uncloned in the meantime). It doesn't matter which
3116 * order we take the locks because no other cpu could
3117 * be trying to lock both of these tasks.
3119 raw_spin_lock(&ctx->lock);
3120 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3121 if (context_equiv(ctx, next_ctx)) {
3122 WRITE_ONCE(ctx->task, next);
3123 WRITE_ONCE(next_ctx->task, task);
3125 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3128 * RCU_INIT_POINTER here is safe because we've not
3129 * modified the ctx and the above modification of
3130 * ctx->task and ctx->task_ctx_data are immaterial
3131 * since those values are always verified under
3132 * ctx->lock which we're now holding.
3134 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3135 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3139 perf_event_sync_stat(ctx, next_ctx);
3141 raw_spin_unlock(&next_ctx->lock);
3142 raw_spin_unlock(&ctx->lock);
3148 raw_spin_lock(&ctx->lock);
3149 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3150 raw_spin_unlock(&ctx->lock);
3154 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3156 void perf_sched_cb_dec(struct pmu *pmu)
3158 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3160 this_cpu_dec(perf_sched_cb_usages);
3162 if (!--cpuctx->sched_cb_usage)
3163 list_del(&cpuctx->sched_cb_entry);
3167 void perf_sched_cb_inc(struct pmu *pmu)
3169 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3171 if (!cpuctx->sched_cb_usage++)
3172 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3174 this_cpu_inc(perf_sched_cb_usages);
3178 * This function provides the context switch callback to the lower code
3179 * layer. It is invoked ONLY when the context switch callback is enabled.
3181 * This callback is relevant even to per-cpu events; for example multi event
3182 * PEBS requires this to provide PID/TID information. This requires we flush
3183 * all queued PEBS records before we context switch to a new task.
3185 static void perf_pmu_sched_task(struct task_struct *prev,
3186 struct task_struct *next,
3189 struct perf_cpu_context *cpuctx;
3195 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3196 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3198 if (WARN_ON_ONCE(!pmu->sched_task))
3201 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3202 perf_pmu_disable(pmu);
3204 pmu->sched_task(cpuctx->task_ctx, sched_in);
3206 perf_pmu_enable(pmu);
3207 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3211 static void perf_event_switch(struct task_struct *task,
3212 struct task_struct *next_prev, bool sched_in);
3214 #define for_each_task_context_nr(ctxn) \
3215 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3218 * Called from scheduler to remove the events of the current task,
3219 * with interrupts disabled.
3221 * We stop each event and update the event value in event->count.
3223 * This does not protect us against NMI, but disable()
3224 * sets the disabled bit in the control field of event _before_
3225 * accessing the event control register. If a NMI hits, then it will
3226 * not restart the event.
3228 void __perf_event_task_sched_out(struct task_struct *task,
3229 struct task_struct *next)
3233 if (__this_cpu_read(perf_sched_cb_usages))
3234 perf_pmu_sched_task(task, next, false);
3236 if (atomic_read(&nr_switch_events))
3237 perf_event_switch(task, next, false);
3239 for_each_task_context_nr(ctxn)
3240 perf_event_context_sched_out(task, ctxn, next);
3243 * if cgroup events exist on this CPU, then we need
3244 * to check if we have to switch out PMU state.
3245 * cgroup event are system-wide mode only
3247 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3248 perf_cgroup_sched_out(task, next);
3252 * Called with IRQs disabled
3254 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3255 enum event_type_t event_type)
3257 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3260 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3261 int (*func)(struct perf_event *, void *), void *data)
3263 struct perf_event **evt, *evt1, *evt2;
3266 evt1 = perf_event_groups_first(groups, -1);
3267 evt2 = perf_event_groups_first(groups, cpu);
3269 while (evt1 || evt2) {
3271 if (evt1->group_index < evt2->group_index)
3281 ret = func(*evt, data);
3285 *evt = perf_event_groups_next(*evt);
3291 struct sched_in_data {
3292 struct perf_event_context *ctx;
3293 struct perf_cpu_context *cpuctx;
3297 static int pinned_sched_in(struct perf_event *event, void *data)
3299 struct sched_in_data *sid = data;
3301 if (event->state <= PERF_EVENT_STATE_OFF)
3304 if (!event_filter_match(event))
3307 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3308 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3309 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3313 * If this pinned group hasn't been scheduled,
3314 * put it in error state.
3316 if (event->state == PERF_EVENT_STATE_INACTIVE)
3317 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3322 static int flexible_sched_in(struct perf_event *event, void *data)
3324 struct sched_in_data *sid = data;
3326 if (event->state <= PERF_EVENT_STATE_OFF)
3329 if (!event_filter_match(event))
3332 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3333 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3335 sid->can_add_hw = 0;
3336 sid->ctx->rotate_necessary = 1;
3339 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3346 ctx_pinned_sched_in(struct perf_event_context *ctx,
3347 struct perf_cpu_context *cpuctx)
3349 struct sched_in_data sid = {
3355 visit_groups_merge(&ctx->pinned_groups,
3357 pinned_sched_in, &sid);
3361 ctx_flexible_sched_in(struct perf_event_context *ctx,
3362 struct perf_cpu_context *cpuctx)
3364 struct sched_in_data sid = {
3370 visit_groups_merge(&ctx->flexible_groups,
3372 flexible_sched_in, &sid);
3376 ctx_sched_in(struct perf_event_context *ctx,
3377 struct perf_cpu_context *cpuctx,
3378 enum event_type_t event_type,
3379 struct task_struct *task)
3381 int is_active = ctx->is_active;
3384 lockdep_assert_held(&ctx->lock);
3386 if (likely(!ctx->nr_events))
3389 ctx->is_active |= (event_type | EVENT_TIME);
3392 cpuctx->task_ctx = ctx;
3394 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3397 is_active ^= ctx->is_active; /* changed bits */
3399 if (is_active & EVENT_TIME) {
3400 /* start ctx time */
3402 ctx->timestamp = now;
3403 perf_cgroup_set_timestamp(task, ctx);
3407 * First go through the list and put on any pinned groups
3408 * in order to give them the best chance of going on.
3410 if (is_active & EVENT_PINNED)
3411 ctx_pinned_sched_in(ctx, cpuctx);
3413 /* Then walk through the lower prio flexible groups */
3414 if (is_active & EVENT_FLEXIBLE)
3415 ctx_flexible_sched_in(ctx, cpuctx);
3418 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3419 enum event_type_t event_type,
3420 struct task_struct *task)
3422 struct perf_event_context *ctx = &cpuctx->ctx;
3424 ctx_sched_in(ctx, cpuctx, event_type, task);
3427 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3428 struct task_struct *task)
3430 struct perf_cpu_context *cpuctx;
3432 cpuctx = __get_cpu_context(ctx);
3433 if (cpuctx->task_ctx == ctx)
3436 perf_ctx_lock(cpuctx, ctx);
3438 * We must check ctx->nr_events while holding ctx->lock, such
3439 * that we serialize against perf_install_in_context().
3441 if (!ctx->nr_events)
3444 perf_pmu_disable(ctx->pmu);
3446 * We want to keep the following priority order:
3447 * cpu pinned (that don't need to move), task pinned,
3448 * cpu flexible, task flexible.
3450 * However, if task's ctx is not carrying any pinned
3451 * events, no need to flip the cpuctx's events around.
3453 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3454 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3455 perf_event_sched_in(cpuctx, ctx, task);
3456 perf_pmu_enable(ctx->pmu);
3459 perf_ctx_unlock(cpuctx, ctx);
3463 * Called from scheduler to add the events of the current task
3464 * with interrupts disabled.
3466 * We restore the event value and then enable it.
3468 * This does not protect us against NMI, but enable()
3469 * sets the enabled bit in the control field of event _before_
3470 * accessing the event control register. If a NMI hits, then it will
3471 * keep the event running.
3473 void __perf_event_task_sched_in(struct task_struct *prev,
3474 struct task_struct *task)
3476 struct perf_event_context *ctx;
3480 * If cgroup events exist on this CPU, then we need to check if we have
3481 * to switch in PMU state; cgroup event are system-wide mode only.
3483 * Since cgroup events are CPU events, we must schedule these in before
3484 * we schedule in the task events.
3486 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3487 perf_cgroup_sched_in(prev, task);
3489 for_each_task_context_nr(ctxn) {
3490 ctx = task->perf_event_ctxp[ctxn];
3494 perf_event_context_sched_in(ctx, task);
3497 if (atomic_read(&nr_switch_events))
3498 perf_event_switch(task, prev, true);
3500 if (__this_cpu_read(perf_sched_cb_usages))
3501 perf_pmu_sched_task(prev, task, true);
3504 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3506 u64 frequency = event->attr.sample_freq;
3507 u64 sec = NSEC_PER_SEC;
3508 u64 divisor, dividend;
3510 int count_fls, nsec_fls, frequency_fls, sec_fls;
3512 count_fls = fls64(count);
3513 nsec_fls = fls64(nsec);
3514 frequency_fls = fls64(frequency);
3518 * We got @count in @nsec, with a target of sample_freq HZ
3519 * the target period becomes:
3522 * period = -------------------
3523 * @nsec * sample_freq
3528 * Reduce accuracy by one bit such that @a and @b converge
3529 * to a similar magnitude.
3531 #define REDUCE_FLS(a, b) \
3533 if (a##_fls > b##_fls) { \
3543 * Reduce accuracy until either term fits in a u64, then proceed with
3544 * the other, so that finally we can do a u64/u64 division.
3546 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3547 REDUCE_FLS(nsec, frequency);
3548 REDUCE_FLS(sec, count);
3551 if (count_fls + sec_fls > 64) {
3552 divisor = nsec * frequency;
3554 while (count_fls + sec_fls > 64) {
3555 REDUCE_FLS(count, sec);
3559 dividend = count * sec;
3561 dividend = count * sec;
3563 while (nsec_fls + frequency_fls > 64) {
3564 REDUCE_FLS(nsec, frequency);
3568 divisor = nsec * frequency;
3574 return div64_u64(dividend, divisor);
3577 static DEFINE_PER_CPU(int, perf_throttled_count);
3578 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3580 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3582 struct hw_perf_event *hwc = &event->hw;
3583 s64 period, sample_period;
3586 period = perf_calculate_period(event, nsec, count);
3588 delta = (s64)(period - hwc->sample_period);
3589 delta = (delta + 7) / 8; /* low pass filter */
3591 sample_period = hwc->sample_period + delta;
3596 hwc->sample_period = sample_period;
3598 if (local64_read(&hwc->period_left) > 8*sample_period) {
3600 event->pmu->stop(event, PERF_EF_UPDATE);
3602 local64_set(&hwc->period_left, 0);
3605 event->pmu->start(event, PERF_EF_RELOAD);
3610 * combine freq adjustment with unthrottling to avoid two passes over the
3611 * events. At the same time, make sure, having freq events does not change
3612 * the rate of unthrottling as that would introduce bias.
3614 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3617 struct perf_event *event;
3618 struct hw_perf_event *hwc;
3619 u64 now, period = TICK_NSEC;
3623 * only need to iterate over all events iff:
3624 * - context have events in frequency mode (needs freq adjust)
3625 * - there are events to unthrottle on this cpu
3627 if (!(ctx->nr_freq || needs_unthr))
3630 raw_spin_lock(&ctx->lock);
3631 perf_pmu_disable(ctx->pmu);
3633 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3634 if (event->state != PERF_EVENT_STATE_ACTIVE)
3637 if (!event_filter_match(event))
3640 perf_pmu_disable(event->pmu);
3644 if (hwc->interrupts == MAX_INTERRUPTS) {
3645 hwc->interrupts = 0;
3646 perf_log_throttle(event, 1);
3647 event->pmu->start(event, 0);
3650 if (!event->attr.freq || !event->attr.sample_freq)
3654 * stop the event and update event->count
3656 event->pmu->stop(event, PERF_EF_UPDATE);
3658 now = local64_read(&event->count);
3659 delta = now - hwc->freq_count_stamp;
3660 hwc->freq_count_stamp = now;
3664 * reload only if value has changed
3665 * we have stopped the event so tell that
3666 * to perf_adjust_period() to avoid stopping it
3670 perf_adjust_period(event, period, delta, false);
3672 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3674 perf_pmu_enable(event->pmu);
3677 perf_pmu_enable(ctx->pmu);
3678 raw_spin_unlock(&ctx->lock);
3682 * Move @event to the tail of the @ctx's elegible events.
3684 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3687 * Rotate the first entry last of non-pinned groups. Rotation might be
3688 * disabled by the inheritance code.
3690 if (ctx->rotate_disable)
3693 perf_event_groups_delete(&ctx->flexible_groups, event);
3694 perf_event_groups_insert(&ctx->flexible_groups, event);
3697 static inline struct perf_event *
3698 ctx_first_active(struct perf_event_context *ctx)
3700 return list_first_entry_or_null(&ctx->flexible_active,
3701 struct perf_event, active_list);
3704 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3706 struct perf_event *cpu_event = NULL, *task_event = NULL;
3707 struct perf_event_context *task_ctx = NULL;
3708 int cpu_rotate, task_rotate;
3711 * Since we run this from IRQ context, nobody can install new
3712 * events, thus the event count values are stable.
3715 cpu_rotate = cpuctx->ctx.rotate_necessary;
3716 task_ctx = cpuctx->task_ctx;
3717 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3719 if (!(cpu_rotate || task_rotate))
3722 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3723 perf_pmu_disable(cpuctx->ctx.pmu);
3726 task_event = ctx_first_active(task_ctx);
3728 cpu_event = ctx_first_active(&cpuctx->ctx);
3731 * As per the order given at ctx_resched() first 'pop' task flexible
3732 * and then, if needed CPU flexible.
3734 if (task_event || (task_ctx && cpu_event))
3735 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3737 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3740 rotate_ctx(task_ctx, task_event);
3742 rotate_ctx(&cpuctx->ctx, cpu_event);
3744 perf_event_sched_in(cpuctx, task_ctx, current);
3746 perf_pmu_enable(cpuctx->ctx.pmu);
3747 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3752 void perf_event_task_tick(void)
3754 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3755 struct perf_event_context *ctx, *tmp;
3758 lockdep_assert_irqs_disabled();
3760 __this_cpu_inc(perf_throttled_seq);
3761 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3762 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3764 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3765 perf_adjust_freq_unthr_context(ctx, throttled);
3768 static int event_enable_on_exec(struct perf_event *event,
3769 struct perf_event_context *ctx)
3771 if (!event->attr.enable_on_exec)
3774 event->attr.enable_on_exec = 0;
3775 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3778 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3784 * Enable all of a task's events that have been marked enable-on-exec.
3785 * This expects task == current.
3787 static void perf_event_enable_on_exec(int ctxn)
3789 struct perf_event_context *ctx, *clone_ctx = NULL;
3790 enum event_type_t event_type = 0;
3791 struct perf_cpu_context *cpuctx;
3792 struct perf_event *event;
3793 unsigned long flags;
3796 local_irq_save(flags);
3797 ctx = current->perf_event_ctxp[ctxn];
3798 if (!ctx || !ctx->nr_events)
3801 cpuctx = __get_cpu_context(ctx);
3802 perf_ctx_lock(cpuctx, ctx);
3803 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3804 list_for_each_entry(event, &ctx->event_list, event_entry) {
3805 enabled |= event_enable_on_exec(event, ctx);
3806 event_type |= get_event_type(event);
3810 * Unclone and reschedule this context if we enabled any event.
3813 clone_ctx = unclone_ctx(ctx);
3814 ctx_resched(cpuctx, ctx, event_type);
3816 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3818 perf_ctx_unlock(cpuctx, ctx);
3821 local_irq_restore(flags);
3827 struct perf_read_data {
3828 struct perf_event *event;
3833 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3835 u16 local_pkg, event_pkg;
3837 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3838 int local_cpu = smp_processor_id();
3840 event_pkg = topology_physical_package_id(event_cpu);
3841 local_pkg = topology_physical_package_id(local_cpu);
3843 if (event_pkg == local_pkg)
3851 * Cross CPU call to read the hardware event
3853 static void __perf_event_read(void *info)
3855 struct perf_read_data *data = info;
3856 struct perf_event *sub, *event = data->event;
3857 struct perf_event_context *ctx = event->ctx;
3858 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3859 struct pmu *pmu = event->pmu;
3862 * If this is a task context, we need to check whether it is
3863 * the current task context of this cpu. If not it has been
3864 * scheduled out before the smp call arrived. In that case
3865 * event->count would have been updated to a recent sample
3866 * when the event was scheduled out.
3868 if (ctx->task && cpuctx->task_ctx != ctx)
3871 raw_spin_lock(&ctx->lock);
3872 if (ctx->is_active & EVENT_TIME) {
3873 update_context_time(ctx);
3874 update_cgrp_time_from_event(event);
3877 perf_event_update_time(event);
3879 perf_event_update_sibling_time(event);
3881 if (event->state != PERF_EVENT_STATE_ACTIVE)
3890 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3894 for_each_sibling_event(sub, event) {
3895 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3897 * Use sibling's PMU rather than @event's since
3898 * sibling could be on different (eg: software) PMU.
3900 sub->pmu->read(sub);
3904 data->ret = pmu->commit_txn(pmu);
3907 raw_spin_unlock(&ctx->lock);
3910 static inline u64 perf_event_count(struct perf_event *event)
3912 return local64_read(&event->count) + atomic64_read(&event->child_count);
3916 * NMI-safe method to read a local event, that is an event that
3918 * - either for the current task, or for this CPU
3919 * - does not have inherit set, for inherited task events
3920 * will not be local and we cannot read them atomically
3921 * - must not have a pmu::count method
3923 int perf_event_read_local(struct perf_event *event, u64 *value,
3924 u64 *enabled, u64 *running)
3926 unsigned long flags;
3930 * Disabling interrupts avoids all counter scheduling (context
3931 * switches, timer based rotation and IPIs).
3933 local_irq_save(flags);
3936 * It must not be an event with inherit set, we cannot read
3937 * all child counters from atomic context.
3939 if (event->attr.inherit) {
3944 /* If this is a per-task event, it must be for current */
3945 if ((event->attach_state & PERF_ATTACH_TASK) &&
3946 event->hw.target != current) {
3951 /* If this is a per-CPU event, it must be for this CPU */
3952 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3953 event->cpu != smp_processor_id()) {
3958 /* If this is a pinned event it must be running on this CPU */
3959 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3965 * If the event is currently on this CPU, its either a per-task event,
3966 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3969 if (event->oncpu == smp_processor_id())
3970 event->pmu->read(event);
3972 *value = local64_read(&event->count);
3973 if (enabled || running) {
3974 u64 now = event->shadow_ctx_time + perf_clock();
3975 u64 __enabled, __running;
3977 __perf_update_times(event, now, &__enabled, &__running);
3979 *enabled = __enabled;
3981 *running = __running;
3984 local_irq_restore(flags);
3989 static int perf_event_read(struct perf_event *event, bool group)
3991 enum perf_event_state state = READ_ONCE(event->state);
3992 int event_cpu, ret = 0;
3995 * If event is enabled and currently active on a CPU, update the
3996 * value in the event structure:
3999 if (state == PERF_EVENT_STATE_ACTIVE) {
4000 struct perf_read_data data;
4003 * Orders the ->state and ->oncpu loads such that if we see
4004 * ACTIVE we must also see the right ->oncpu.
4006 * Matches the smp_wmb() from event_sched_in().
4010 event_cpu = READ_ONCE(event->oncpu);
4011 if ((unsigned)event_cpu >= nr_cpu_ids)
4014 data = (struct perf_read_data){
4021 event_cpu = __perf_event_read_cpu(event, event_cpu);
4024 * Purposely ignore the smp_call_function_single() return
4027 * If event_cpu isn't a valid CPU it means the event got
4028 * scheduled out and that will have updated the event count.
4030 * Therefore, either way, we'll have an up-to-date event count
4033 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4037 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4038 struct perf_event_context *ctx = event->ctx;
4039 unsigned long flags;
4041 raw_spin_lock_irqsave(&ctx->lock, flags);
4042 state = event->state;
4043 if (state != PERF_EVENT_STATE_INACTIVE) {
4044 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4049 * May read while context is not active (e.g., thread is
4050 * blocked), in that case we cannot update context time
4052 if (ctx->is_active & EVENT_TIME) {
4053 update_context_time(ctx);
4054 update_cgrp_time_from_event(event);
4057 perf_event_update_time(event);
4059 perf_event_update_sibling_time(event);
4060 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4067 * Initialize the perf_event context in a task_struct:
4069 static void __perf_event_init_context(struct perf_event_context *ctx)
4071 raw_spin_lock_init(&ctx->lock);
4072 mutex_init(&ctx->mutex);
4073 INIT_LIST_HEAD(&ctx->active_ctx_list);
4074 perf_event_groups_init(&ctx->pinned_groups);
4075 perf_event_groups_init(&ctx->flexible_groups);
4076 INIT_LIST_HEAD(&ctx->event_list);
4077 INIT_LIST_HEAD(&ctx->pinned_active);
4078 INIT_LIST_HEAD(&ctx->flexible_active);
4079 refcount_set(&ctx->refcount, 1);
4082 static struct perf_event_context *
4083 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4085 struct perf_event_context *ctx;
4087 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4091 __perf_event_init_context(ctx);
4094 get_task_struct(task);
4101 static struct task_struct *
4102 find_lively_task_by_vpid(pid_t vpid)
4104 struct task_struct *task;
4110 task = find_task_by_vpid(vpid);
4112 get_task_struct(task);
4116 return ERR_PTR(-ESRCH);
4122 * Returns a matching context with refcount and pincount.
4124 static struct perf_event_context *
4125 find_get_context(struct pmu *pmu, struct task_struct *task,
4126 struct perf_event *event)
4128 struct perf_event_context *ctx, *clone_ctx = NULL;
4129 struct perf_cpu_context *cpuctx;
4130 void *task_ctx_data = NULL;
4131 unsigned long flags;
4133 int cpu = event->cpu;
4136 /* Must be root to operate on a CPU event: */
4137 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4138 return ERR_PTR(-EACCES);
4140 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4149 ctxn = pmu->task_ctx_nr;
4153 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4154 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4155 if (!task_ctx_data) {
4162 ctx = perf_lock_task_context(task, ctxn, &flags);
4164 clone_ctx = unclone_ctx(ctx);
4167 if (task_ctx_data && !ctx->task_ctx_data) {
4168 ctx->task_ctx_data = task_ctx_data;
4169 task_ctx_data = NULL;
4171 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4176 ctx = alloc_perf_context(pmu, task);
4181 if (task_ctx_data) {
4182 ctx->task_ctx_data = task_ctx_data;
4183 task_ctx_data = NULL;
4187 mutex_lock(&task->perf_event_mutex);
4189 * If it has already passed perf_event_exit_task().
4190 * we must see PF_EXITING, it takes this mutex too.
4192 if (task->flags & PF_EXITING)
4194 else if (task->perf_event_ctxp[ctxn])
4199 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4201 mutex_unlock(&task->perf_event_mutex);
4203 if (unlikely(err)) {
4212 kfree(task_ctx_data);
4216 kfree(task_ctx_data);
4217 return ERR_PTR(err);
4220 static void perf_event_free_filter(struct perf_event *event);
4221 static void perf_event_free_bpf_prog(struct perf_event *event);
4223 static void free_event_rcu(struct rcu_head *head)
4225 struct perf_event *event;
4227 event = container_of(head, struct perf_event, rcu_head);
4229 put_pid_ns(event->ns);
4230 perf_event_free_filter(event);
4234 static void ring_buffer_attach(struct perf_event *event,
4235 struct ring_buffer *rb);
4237 static void detach_sb_event(struct perf_event *event)
4239 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4241 raw_spin_lock(&pel->lock);
4242 list_del_rcu(&event->sb_list);
4243 raw_spin_unlock(&pel->lock);
4246 static bool is_sb_event(struct perf_event *event)
4248 struct perf_event_attr *attr = &event->attr;
4253 if (event->attach_state & PERF_ATTACH_TASK)
4256 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4257 attr->comm || attr->comm_exec ||
4258 attr->task || attr->ksymbol ||
4259 attr->context_switch ||
4265 static void unaccount_pmu_sb_event(struct perf_event *event)
4267 if (is_sb_event(event))
4268 detach_sb_event(event);
4271 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4276 if (is_cgroup_event(event))
4277 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4280 #ifdef CONFIG_NO_HZ_FULL
4281 static DEFINE_SPINLOCK(nr_freq_lock);
4284 static void unaccount_freq_event_nohz(void)
4286 #ifdef CONFIG_NO_HZ_FULL
4287 spin_lock(&nr_freq_lock);
4288 if (atomic_dec_and_test(&nr_freq_events))
4289 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4290 spin_unlock(&nr_freq_lock);
4294 static void unaccount_freq_event(void)
4296 if (tick_nohz_full_enabled())
4297 unaccount_freq_event_nohz();
4299 atomic_dec(&nr_freq_events);
4302 static void unaccount_event(struct perf_event *event)
4309 if (event->attach_state & PERF_ATTACH_TASK)
4311 if (event->attr.mmap || event->attr.mmap_data)
4312 atomic_dec(&nr_mmap_events);
4313 if (event->attr.comm)
4314 atomic_dec(&nr_comm_events);
4315 if (event->attr.namespaces)
4316 atomic_dec(&nr_namespaces_events);
4317 if (event->attr.task)
4318 atomic_dec(&nr_task_events);
4319 if (event->attr.freq)
4320 unaccount_freq_event();
4321 if (event->attr.context_switch) {
4323 atomic_dec(&nr_switch_events);
4325 if (is_cgroup_event(event))
4327 if (has_branch_stack(event))
4329 if (event->attr.ksymbol)
4330 atomic_dec(&nr_ksymbol_events);
4331 if (event->attr.bpf_event)
4332 atomic_dec(&nr_bpf_events);
4335 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4336 schedule_delayed_work(&perf_sched_work, HZ);
4339 unaccount_event_cpu(event, event->cpu);
4341 unaccount_pmu_sb_event(event);
4344 static void perf_sched_delayed(struct work_struct *work)
4346 mutex_lock(&perf_sched_mutex);
4347 if (atomic_dec_and_test(&perf_sched_count))
4348 static_branch_disable(&perf_sched_events);
4349 mutex_unlock(&perf_sched_mutex);
4353 * The following implement mutual exclusion of events on "exclusive" pmus
4354 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4355 * at a time, so we disallow creating events that might conflict, namely:
4357 * 1) cpu-wide events in the presence of per-task events,
4358 * 2) per-task events in the presence of cpu-wide events,
4359 * 3) two matching events on the same context.
4361 * The former two cases are handled in the allocation path (perf_event_alloc(),
4362 * _free_event()), the latter -- before the first perf_install_in_context().
4364 static int exclusive_event_init(struct perf_event *event)
4366 struct pmu *pmu = event->pmu;
4368 if (!is_exclusive_pmu(pmu))
4372 * Prevent co-existence of per-task and cpu-wide events on the
4373 * same exclusive pmu.
4375 * Negative pmu::exclusive_cnt means there are cpu-wide
4376 * events on this "exclusive" pmu, positive means there are
4379 * Since this is called in perf_event_alloc() path, event::ctx
4380 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4381 * to mean "per-task event", because unlike other attach states it
4382 * never gets cleared.
4384 if (event->attach_state & PERF_ATTACH_TASK) {
4385 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4388 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4395 static void exclusive_event_destroy(struct perf_event *event)
4397 struct pmu *pmu = event->pmu;
4399 if (!is_exclusive_pmu(pmu))
4402 /* see comment in exclusive_event_init() */
4403 if (event->attach_state & PERF_ATTACH_TASK)
4404 atomic_dec(&pmu->exclusive_cnt);
4406 atomic_inc(&pmu->exclusive_cnt);
4409 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4411 if ((e1->pmu == e2->pmu) &&
4412 (e1->cpu == e2->cpu ||
4419 static bool exclusive_event_installable(struct perf_event *event,
4420 struct perf_event_context *ctx)
4422 struct perf_event *iter_event;
4423 struct pmu *pmu = event->pmu;
4425 lockdep_assert_held(&ctx->mutex);
4427 if (!is_exclusive_pmu(pmu))
4430 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4431 if (exclusive_event_match(iter_event, event))
4438 static void perf_addr_filters_splice(struct perf_event *event,
4439 struct list_head *head);
4441 static void _free_event(struct perf_event *event)
4443 irq_work_sync(&event->pending);
4445 unaccount_event(event);
4449 * Can happen when we close an event with re-directed output.
4451 * Since we have a 0 refcount, perf_mmap_close() will skip
4452 * over us; possibly making our ring_buffer_put() the last.
4454 mutex_lock(&event->mmap_mutex);
4455 ring_buffer_attach(event, NULL);
4456 mutex_unlock(&event->mmap_mutex);
4459 if (is_cgroup_event(event))
4460 perf_detach_cgroup(event);
4462 if (!event->parent) {
4463 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4464 put_callchain_buffers();
4467 perf_event_free_bpf_prog(event);
4468 perf_addr_filters_splice(event, NULL);
4469 kfree(event->addr_filter_ranges);
4472 event->destroy(event);
4475 * Must be after ->destroy(), due to uprobe_perf_close() using
4478 if (event->hw.target)
4479 put_task_struct(event->hw.target);
4482 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4483 * all task references must be cleaned up.
4486 put_ctx(event->ctx);
4488 exclusive_event_destroy(event);
4489 module_put(event->pmu->module);
4491 call_rcu(&event->rcu_head, free_event_rcu);
4495 * Used to free events which have a known refcount of 1, such as in error paths
4496 * where the event isn't exposed yet and inherited events.
4498 static void free_event(struct perf_event *event)
4500 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4501 "unexpected event refcount: %ld; ptr=%p\n",
4502 atomic_long_read(&event->refcount), event)) {
4503 /* leak to avoid use-after-free */
4511 * Remove user event from the owner task.
4513 static void perf_remove_from_owner(struct perf_event *event)
4515 struct task_struct *owner;
4519 * Matches the smp_store_release() in perf_event_exit_task(). If we
4520 * observe !owner it means the list deletion is complete and we can
4521 * indeed free this event, otherwise we need to serialize on
4522 * owner->perf_event_mutex.
4524 owner = READ_ONCE(event->owner);
4527 * Since delayed_put_task_struct() also drops the last
4528 * task reference we can safely take a new reference
4529 * while holding the rcu_read_lock().
4531 get_task_struct(owner);
4537 * If we're here through perf_event_exit_task() we're already
4538 * holding ctx->mutex which would be an inversion wrt. the
4539 * normal lock order.
4541 * However we can safely take this lock because its the child
4544 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4547 * We have to re-check the event->owner field, if it is cleared
4548 * we raced with perf_event_exit_task(), acquiring the mutex
4549 * ensured they're done, and we can proceed with freeing the
4553 list_del_init(&event->owner_entry);
4554 smp_store_release(&event->owner, NULL);
4556 mutex_unlock(&owner->perf_event_mutex);
4557 put_task_struct(owner);
4561 static void put_event(struct perf_event *event)
4563 if (!atomic_long_dec_and_test(&event->refcount))
4570 * Kill an event dead; while event:refcount will preserve the event
4571 * object, it will not preserve its functionality. Once the last 'user'
4572 * gives up the object, we'll destroy the thing.
4574 int perf_event_release_kernel(struct perf_event *event)
4576 struct perf_event_context *ctx = event->ctx;
4577 struct perf_event *child, *tmp;
4578 LIST_HEAD(free_list);
4581 * If we got here through err_file: fput(event_file); we will not have
4582 * attached to a context yet.
4585 WARN_ON_ONCE(event->attach_state &
4586 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4590 if (!is_kernel_event(event))
4591 perf_remove_from_owner(event);
4593 ctx = perf_event_ctx_lock(event);
4594 WARN_ON_ONCE(ctx->parent_ctx);
4595 perf_remove_from_context(event, DETACH_GROUP);
4597 raw_spin_lock_irq(&ctx->lock);
4599 * Mark this event as STATE_DEAD, there is no external reference to it
4602 * Anybody acquiring event->child_mutex after the below loop _must_
4603 * also see this, most importantly inherit_event() which will avoid
4604 * placing more children on the list.
4606 * Thus this guarantees that we will in fact observe and kill _ALL_
4609 event->state = PERF_EVENT_STATE_DEAD;
4610 raw_spin_unlock_irq(&ctx->lock);
4612 perf_event_ctx_unlock(event, ctx);
4615 mutex_lock(&event->child_mutex);
4616 list_for_each_entry(child, &event->child_list, child_list) {
4619 * Cannot change, child events are not migrated, see the
4620 * comment with perf_event_ctx_lock_nested().
4622 ctx = READ_ONCE(child->ctx);
4624 * Since child_mutex nests inside ctx::mutex, we must jump
4625 * through hoops. We start by grabbing a reference on the ctx.
4627 * Since the event cannot get freed while we hold the
4628 * child_mutex, the context must also exist and have a !0
4634 * Now that we have a ctx ref, we can drop child_mutex, and
4635 * acquire ctx::mutex without fear of it going away. Then we
4636 * can re-acquire child_mutex.
4638 mutex_unlock(&event->child_mutex);
4639 mutex_lock(&ctx->mutex);
4640 mutex_lock(&event->child_mutex);
4643 * Now that we hold ctx::mutex and child_mutex, revalidate our
4644 * state, if child is still the first entry, it didn't get freed
4645 * and we can continue doing so.
4647 tmp = list_first_entry_or_null(&event->child_list,
4648 struct perf_event, child_list);
4650 perf_remove_from_context(child, DETACH_GROUP);
4651 list_move(&child->child_list, &free_list);
4653 * This matches the refcount bump in inherit_event();
4654 * this can't be the last reference.
4659 mutex_unlock(&event->child_mutex);
4660 mutex_unlock(&ctx->mutex);
4664 mutex_unlock(&event->child_mutex);
4666 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4667 void *var = &child->ctx->refcount;
4669 list_del(&child->child_list);
4673 * Wake any perf_event_free_task() waiting for this event to be
4676 smp_mb(); /* pairs with wait_var_event() */
4681 put_event(event); /* Must be the 'last' reference */
4684 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4687 * Called when the last reference to the file is gone.
4689 static int perf_release(struct inode *inode, struct file *file)
4691 perf_event_release_kernel(file->private_data);
4695 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4697 struct perf_event *child;
4703 mutex_lock(&event->child_mutex);
4705 (void)perf_event_read(event, false);
4706 total += perf_event_count(event);
4708 *enabled += event->total_time_enabled +
4709 atomic64_read(&event->child_total_time_enabled);
4710 *running += event->total_time_running +
4711 atomic64_read(&event->child_total_time_running);
4713 list_for_each_entry(child, &event->child_list, child_list) {
4714 (void)perf_event_read(child, false);
4715 total += perf_event_count(child);
4716 *enabled += child->total_time_enabled;
4717 *running += child->total_time_running;
4719 mutex_unlock(&event->child_mutex);
4724 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4726 struct perf_event_context *ctx;
4729 ctx = perf_event_ctx_lock(event);
4730 count = __perf_event_read_value(event, enabled, running);
4731 perf_event_ctx_unlock(event, ctx);
4735 EXPORT_SYMBOL_GPL(perf_event_read_value);
4737 static int __perf_read_group_add(struct perf_event *leader,
4738 u64 read_format, u64 *values)
4740 struct perf_event_context *ctx = leader->ctx;
4741 struct perf_event *sub;
4742 unsigned long flags;
4743 int n = 1; /* skip @nr */
4746 ret = perf_event_read(leader, true);
4750 raw_spin_lock_irqsave(&ctx->lock, flags);
4753 * Since we co-schedule groups, {enabled,running} times of siblings
4754 * will be identical to those of the leader, so we only publish one
4757 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4758 values[n++] += leader->total_time_enabled +
4759 atomic64_read(&leader->child_total_time_enabled);
4762 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4763 values[n++] += leader->total_time_running +
4764 atomic64_read(&leader->child_total_time_running);
4768 * Write {count,id} tuples for every sibling.
4770 values[n++] += perf_event_count(leader);
4771 if (read_format & PERF_FORMAT_ID)
4772 values[n++] = primary_event_id(leader);
4774 for_each_sibling_event(sub, leader) {
4775 values[n++] += perf_event_count(sub);
4776 if (read_format & PERF_FORMAT_ID)
4777 values[n++] = primary_event_id(sub);
4780 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4784 static int perf_read_group(struct perf_event *event,
4785 u64 read_format, char __user *buf)
4787 struct perf_event *leader = event->group_leader, *child;
4788 struct perf_event_context *ctx = leader->ctx;
4792 lockdep_assert_held(&ctx->mutex);
4794 values = kzalloc(event->read_size, GFP_KERNEL);
4798 values[0] = 1 + leader->nr_siblings;
4801 * By locking the child_mutex of the leader we effectively
4802 * lock the child list of all siblings.. XXX explain how.
4804 mutex_lock(&leader->child_mutex);
4806 ret = __perf_read_group_add(leader, read_format, values);
4810 list_for_each_entry(child, &leader->child_list, child_list) {
4811 ret = __perf_read_group_add(child, read_format, values);
4816 mutex_unlock(&leader->child_mutex);
4818 ret = event->read_size;
4819 if (copy_to_user(buf, values, event->read_size))
4824 mutex_unlock(&leader->child_mutex);
4830 static int perf_read_one(struct perf_event *event,
4831 u64 read_format, char __user *buf)
4833 u64 enabled, running;
4837 values[n++] = __perf_event_read_value(event, &enabled, &running);
4838 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4839 values[n++] = enabled;
4840 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4841 values[n++] = running;
4842 if (read_format & PERF_FORMAT_ID)
4843 values[n++] = primary_event_id(event);
4845 if (copy_to_user(buf, values, n * sizeof(u64)))
4848 return n * sizeof(u64);
4851 static bool is_event_hup(struct perf_event *event)
4855 if (event->state > PERF_EVENT_STATE_EXIT)
4858 mutex_lock(&event->child_mutex);
4859 no_children = list_empty(&event->child_list);
4860 mutex_unlock(&event->child_mutex);
4865 * Read the performance event - simple non blocking version for now
4868 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4870 u64 read_format = event->attr.read_format;
4874 * Return end-of-file for a read on an event that is in
4875 * error state (i.e. because it was pinned but it couldn't be
4876 * scheduled on to the CPU at some point).
4878 if (event->state == PERF_EVENT_STATE_ERROR)
4881 if (count < event->read_size)
4884 WARN_ON_ONCE(event->ctx->parent_ctx);
4885 if (read_format & PERF_FORMAT_GROUP)
4886 ret = perf_read_group(event, read_format, buf);
4888 ret = perf_read_one(event, read_format, buf);
4894 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4896 struct perf_event *event = file->private_data;
4897 struct perf_event_context *ctx;
4900 ctx = perf_event_ctx_lock(event);
4901 ret = __perf_read(event, buf, count);
4902 perf_event_ctx_unlock(event, ctx);
4907 static __poll_t perf_poll(struct file *file, poll_table *wait)
4909 struct perf_event *event = file->private_data;
4910 struct ring_buffer *rb;
4911 __poll_t events = EPOLLHUP;
4913 poll_wait(file, &event->waitq, wait);
4915 if (is_event_hup(event))
4919 * Pin the event->rb by taking event->mmap_mutex; otherwise
4920 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4922 mutex_lock(&event->mmap_mutex);
4925 events = atomic_xchg(&rb->poll, 0);
4926 mutex_unlock(&event->mmap_mutex);
4930 static void _perf_event_reset(struct perf_event *event)
4932 (void)perf_event_read(event, false);
4933 local64_set(&event->count, 0);
4934 perf_event_update_userpage(event);
4938 * Holding the top-level event's child_mutex means that any
4939 * descendant process that has inherited this event will block
4940 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4941 * task existence requirements of perf_event_enable/disable.
4943 static void perf_event_for_each_child(struct perf_event *event,
4944 void (*func)(struct perf_event *))
4946 struct perf_event *child;
4948 WARN_ON_ONCE(event->ctx->parent_ctx);
4950 mutex_lock(&event->child_mutex);
4952 list_for_each_entry(child, &event->child_list, child_list)
4954 mutex_unlock(&event->child_mutex);
4957 static void perf_event_for_each(struct perf_event *event,
4958 void (*func)(struct perf_event *))
4960 struct perf_event_context *ctx = event->ctx;
4961 struct perf_event *sibling;
4963 lockdep_assert_held(&ctx->mutex);
4965 event = event->group_leader;
4967 perf_event_for_each_child(event, func);
4968 for_each_sibling_event(sibling, event)
4969 perf_event_for_each_child(sibling, func);
4972 static void __perf_event_period(struct perf_event *event,
4973 struct perf_cpu_context *cpuctx,
4974 struct perf_event_context *ctx,
4977 u64 value = *((u64 *)info);
4980 if (event->attr.freq) {
4981 event->attr.sample_freq = value;
4983 event->attr.sample_period = value;
4984 event->hw.sample_period = value;
4987 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4989 perf_pmu_disable(ctx->pmu);
4991 * We could be throttled; unthrottle now to avoid the tick
4992 * trying to unthrottle while we already re-started the event.
4994 if (event->hw.interrupts == MAX_INTERRUPTS) {
4995 event->hw.interrupts = 0;
4996 perf_log_throttle(event, 1);
4998 event->pmu->stop(event, PERF_EF_UPDATE);
5001 local64_set(&event->hw.period_left, 0);
5004 event->pmu->start(event, PERF_EF_RELOAD);
5005 perf_pmu_enable(ctx->pmu);
5009 static int perf_event_check_period(struct perf_event *event, u64 value)
5011 return event->pmu->check_period(event, value);
5014 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5018 if (!is_sampling_event(event))
5021 if (copy_from_user(&value, arg, sizeof(value)))
5027 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5030 if (perf_event_check_period(event, value))
5033 if (!event->attr.freq && (value & (1ULL << 63)))
5036 event_function_call(event, __perf_event_period, &value);
5041 static const struct file_operations perf_fops;
5043 static inline int perf_fget_light(int fd, struct fd *p)
5045 struct fd f = fdget(fd);
5049 if (f.file->f_op != &perf_fops) {
5057 static int perf_event_set_output(struct perf_event *event,
5058 struct perf_event *output_event);
5059 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5060 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5061 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5062 struct perf_event_attr *attr);
5064 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5066 void (*func)(struct perf_event *);
5070 case PERF_EVENT_IOC_ENABLE:
5071 func = _perf_event_enable;
5073 case PERF_EVENT_IOC_DISABLE:
5074 func = _perf_event_disable;
5076 case PERF_EVENT_IOC_RESET:
5077 func = _perf_event_reset;
5080 case PERF_EVENT_IOC_REFRESH:
5081 return _perf_event_refresh(event, arg);
5083 case PERF_EVENT_IOC_PERIOD:
5084 return perf_event_period(event, (u64 __user *)arg);
5086 case PERF_EVENT_IOC_ID:
5088 u64 id = primary_event_id(event);
5090 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5095 case PERF_EVENT_IOC_SET_OUTPUT:
5099 struct perf_event *output_event;
5101 ret = perf_fget_light(arg, &output);
5104 output_event = output.file->private_data;
5105 ret = perf_event_set_output(event, output_event);
5108 ret = perf_event_set_output(event, NULL);
5113 case PERF_EVENT_IOC_SET_FILTER:
5114 return perf_event_set_filter(event, (void __user *)arg);
5116 case PERF_EVENT_IOC_SET_BPF:
5117 return perf_event_set_bpf_prog(event, arg);
5119 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5120 struct ring_buffer *rb;
5123 rb = rcu_dereference(event->rb);
5124 if (!rb || !rb->nr_pages) {
5128 rb_toggle_paused(rb, !!arg);
5133 case PERF_EVENT_IOC_QUERY_BPF:
5134 return perf_event_query_prog_array(event, (void __user *)arg);
5136 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5137 struct perf_event_attr new_attr;
5138 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5144 return perf_event_modify_attr(event, &new_attr);
5150 if (flags & PERF_IOC_FLAG_GROUP)
5151 perf_event_for_each(event, func);
5153 perf_event_for_each_child(event, func);
5158 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5160 struct perf_event *event = file->private_data;
5161 struct perf_event_context *ctx;
5164 ctx = perf_event_ctx_lock(event);
5165 ret = _perf_ioctl(event, cmd, arg);
5166 perf_event_ctx_unlock(event, ctx);
5171 #ifdef CONFIG_COMPAT
5172 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5175 switch (_IOC_NR(cmd)) {
5176 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5177 case _IOC_NR(PERF_EVENT_IOC_ID):
5178 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5179 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5180 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5181 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5182 cmd &= ~IOCSIZE_MASK;
5183 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5187 return perf_ioctl(file, cmd, arg);
5190 # define perf_compat_ioctl NULL
5193 int perf_event_task_enable(void)
5195 struct perf_event_context *ctx;
5196 struct perf_event *event;
5198 mutex_lock(¤t->perf_event_mutex);
5199 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5200 ctx = perf_event_ctx_lock(event);
5201 perf_event_for_each_child(event, _perf_event_enable);
5202 perf_event_ctx_unlock(event, ctx);
5204 mutex_unlock(¤t->perf_event_mutex);
5209 int perf_event_task_disable(void)
5211 struct perf_event_context *ctx;
5212 struct perf_event *event;
5214 mutex_lock(¤t->perf_event_mutex);
5215 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5216 ctx = perf_event_ctx_lock(event);
5217 perf_event_for_each_child(event, _perf_event_disable);
5218 perf_event_ctx_unlock(event, ctx);
5220 mutex_unlock(¤t->perf_event_mutex);
5225 static int perf_event_index(struct perf_event *event)
5227 if (event->hw.state & PERF_HES_STOPPED)
5230 if (event->state != PERF_EVENT_STATE_ACTIVE)
5233 return event->pmu->event_idx(event);
5236 static void calc_timer_values(struct perf_event *event,
5243 *now = perf_clock();
5244 ctx_time = event->shadow_ctx_time + *now;
5245 __perf_update_times(event, ctx_time, enabled, running);
5248 static void perf_event_init_userpage(struct perf_event *event)
5250 struct perf_event_mmap_page *userpg;
5251 struct ring_buffer *rb;
5254 rb = rcu_dereference(event->rb);
5258 userpg = rb->user_page;
5260 /* Allow new userspace to detect that bit 0 is deprecated */
5261 userpg->cap_bit0_is_deprecated = 1;
5262 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5263 userpg->data_offset = PAGE_SIZE;
5264 userpg->data_size = perf_data_size(rb);
5270 void __weak arch_perf_update_userpage(
5271 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5276 * Callers need to ensure there can be no nesting of this function, otherwise
5277 * the seqlock logic goes bad. We can not serialize this because the arch
5278 * code calls this from NMI context.
5280 void perf_event_update_userpage(struct perf_event *event)
5282 struct perf_event_mmap_page *userpg;
5283 struct ring_buffer *rb;
5284 u64 enabled, running, now;
5287 rb = rcu_dereference(event->rb);
5292 * compute total_time_enabled, total_time_running
5293 * based on snapshot values taken when the event
5294 * was last scheduled in.
5296 * we cannot simply called update_context_time()
5297 * because of locking issue as we can be called in
5300 calc_timer_values(event, &now, &enabled, &running);
5302 userpg = rb->user_page;
5304 * Disable preemption to guarantee consistent time stamps are stored to
5310 userpg->index = perf_event_index(event);
5311 userpg->offset = perf_event_count(event);
5313 userpg->offset -= local64_read(&event->hw.prev_count);
5315 userpg->time_enabled = enabled +
5316 atomic64_read(&event->child_total_time_enabled);
5318 userpg->time_running = running +
5319 atomic64_read(&event->child_total_time_running);
5321 arch_perf_update_userpage(event, userpg, now);
5329 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5331 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5333 struct perf_event *event = vmf->vma->vm_file->private_data;
5334 struct ring_buffer *rb;
5335 vm_fault_t ret = VM_FAULT_SIGBUS;
5337 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5338 if (vmf->pgoff == 0)
5344 rb = rcu_dereference(event->rb);
5348 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5351 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5355 get_page(vmf->page);
5356 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5357 vmf->page->index = vmf->pgoff;
5366 static void ring_buffer_attach(struct perf_event *event,
5367 struct ring_buffer *rb)
5369 struct ring_buffer *old_rb = NULL;
5370 unsigned long flags;
5374 * Should be impossible, we set this when removing
5375 * event->rb_entry and wait/clear when adding event->rb_entry.
5377 WARN_ON_ONCE(event->rcu_pending);
5380 spin_lock_irqsave(&old_rb->event_lock, flags);
5381 list_del_rcu(&event->rb_entry);
5382 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5384 event->rcu_batches = get_state_synchronize_rcu();
5385 event->rcu_pending = 1;
5389 if (event->rcu_pending) {
5390 cond_synchronize_rcu(event->rcu_batches);
5391 event->rcu_pending = 0;
5394 spin_lock_irqsave(&rb->event_lock, flags);
5395 list_add_rcu(&event->rb_entry, &rb->event_list);
5396 spin_unlock_irqrestore(&rb->event_lock, flags);
5400 * Avoid racing with perf_mmap_close(AUX): stop the event
5401 * before swizzling the event::rb pointer; if it's getting
5402 * unmapped, its aux_mmap_count will be 0 and it won't
5403 * restart. See the comment in __perf_pmu_output_stop().
5405 * Data will inevitably be lost when set_output is done in
5406 * mid-air, but then again, whoever does it like this is
5407 * not in for the data anyway.
5410 perf_event_stop(event, 0);
5412 rcu_assign_pointer(event->rb, rb);
5415 ring_buffer_put(old_rb);
5417 * Since we detached before setting the new rb, so that we
5418 * could attach the new rb, we could have missed a wakeup.
5421 wake_up_all(&event->waitq);
5425 static void ring_buffer_wakeup(struct perf_event *event)
5427 struct ring_buffer *rb;
5430 rb = rcu_dereference(event->rb);
5432 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5433 wake_up_all(&event->waitq);
5438 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5440 struct ring_buffer *rb;
5443 rb = rcu_dereference(event->rb);
5445 if (!refcount_inc_not_zero(&rb->refcount))
5453 void ring_buffer_put(struct ring_buffer *rb)
5455 if (!refcount_dec_and_test(&rb->refcount))
5458 WARN_ON_ONCE(!list_empty(&rb->event_list));
5460 call_rcu(&rb->rcu_head, rb_free_rcu);
5463 static void perf_mmap_open(struct vm_area_struct *vma)
5465 struct perf_event *event = vma->vm_file->private_data;
5467 atomic_inc(&event->mmap_count);
5468 atomic_inc(&event->rb->mmap_count);
5471 atomic_inc(&event->rb->aux_mmap_count);
5473 if (event->pmu->event_mapped)
5474 event->pmu->event_mapped(event, vma->vm_mm);
5477 static void perf_pmu_output_stop(struct perf_event *event);
5480 * A buffer can be mmap()ed multiple times; either directly through the same
5481 * event, or through other events by use of perf_event_set_output().
5483 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5484 * the buffer here, where we still have a VM context. This means we need
5485 * to detach all events redirecting to us.
5487 static void perf_mmap_close(struct vm_area_struct *vma)
5489 struct perf_event *event = vma->vm_file->private_data;
5491 struct ring_buffer *rb = ring_buffer_get(event);
5492 struct user_struct *mmap_user = rb->mmap_user;
5493 int mmap_locked = rb->mmap_locked;
5494 unsigned long size = perf_data_size(rb);
5496 if (event->pmu->event_unmapped)
5497 event->pmu->event_unmapped(event, vma->vm_mm);
5500 * rb->aux_mmap_count will always drop before rb->mmap_count and
5501 * event->mmap_count, so it is ok to use event->mmap_mutex to
5502 * serialize with perf_mmap here.
5504 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5505 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5507 * Stop all AUX events that are writing to this buffer,
5508 * so that we can free its AUX pages and corresponding PMU
5509 * data. Note that after rb::aux_mmap_count dropped to zero,
5510 * they won't start any more (see perf_aux_output_begin()).
5512 perf_pmu_output_stop(event);
5514 /* now it's safe to free the pages */
5515 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5516 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5518 /* this has to be the last one */
5520 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5522 mutex_unlock(&event->mmap_mutex);
5525 atomic_dec(&rb->mmap_count);
5527 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5530 ring_buffer_attach(event, NULL);
5531 mutex_unlock(&event->mmap_mutex);
5533 /* If there's still other mmap()s of this buffer, we're done. */
5534 if (atomic_read(&rb->mmap_count))
5538 * No other mmap()s, detach from all other events that might redirect
5539 * into the now unreachable buffer. Somewhat complicated by the
5540 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5544 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5545 if (!atomic_long_inc_not_zero(&event->refcount)) {
5547 * This event is en-route to free_event() which will
5548 * detach it and remove it from the list.
5554 mutex_lock(&event->mmap_mutex);
5556 * Check we didn't race with perf_event_set_output() which can
5557 * swizzle the rb from under us while we were waiting to
5558 * acquire mmap_mutex.
5560 * If we find a different rb; ignore this event, a next
5561 * iteration will no longer find it on the list. We have to
5562 * still restart the iteration to make sure we're not now
5563 * iterating the wrong list.
5565 if (event->rb == rb)
5566 ring_buffer_attach(event, NULL);
5568 mutex_unlock(&event->mmap_mutex);
5572 * Restart the iteration; either we're on the wrong list or
5573 * destroyed its integrity by doing a deletion.
5580 * It could be there's still a few 0-ref events on the list; they'll
5581 * get cleaned up by free_event() -- they'll also still have their
5582 * ref on the rb and will free it whenever they are done with it.
5584 * Aside from that, this buffer is 'fully' detached and unmapped,
5585 * undo the VM accounting.
5588 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5589 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5590 free_uid(mmap_user);
5593 ring_buffer_put(rb); /* could be last */
5596 static const struct vm_operations_struct perf_mmap_vmops = {
5597 .open = perf_mmap_open,
5598 .close = perf_mmap_close, /* non mergeable */
5599 .fault = perf_mmap_fault,
5600 .page_mkwrite = perf_mmap_fault,
5603 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5605 struct perf_event *event = file->private_data;
5606 unsigned long user_locked, user_lock_limit;
5607 struct user_struct *user = current_user();
5608 unsigned long locked, lock_limit;
5609 struct ring_buffer *rb = NULL;
5610 unsigned long vma_size;
5611 unsigned long nr_pages;
5612 long user_extra = 0, extra = 0;
5613 int ret = 0, flags = 0;
5616 * Don't allow mmap() of inherited per-task counters. This would
5617 * create a performance issue due to all children writing to the
5620 if (event->cpu == -1 && event->attr.inherit)
5623 if (!(vma->vm_flags & VM_SHARED))
5626 vma_size = vma->vm_end - vma->vm_start;
5628 if (vma->vm_pgoff == 0) {
5629 nr_pages = (vma_size / PAGE_SIZE) - 1;
5632 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5633 * mapped, all subsequent mappings should have the same size
5634 * and offset. Must be above the normal perf buffer.
5636 u64 aux_offset, aux_size;
5641 nr_pages = vma_size / PAGE_SIZE;
5643 mutex_lock(&event->mmap_mutex);
5650 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5651 aux_size = READ_ONCE(rb->user_page->aux_size);
5653 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5656 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5659 /* already mapped with a different offset */
5660 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5663 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5666 /* already mapped with a different size */
5667 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5670 if (!is_power_of_2(nr_pages))
5673 if (!atomic_inc_not_zero(&rb->mmap_count))
5676 if (rb_has_aux(rb)) {
5677 atomic_inc(&rb->aux_mmap_count);
5682 atomic_set(&rb->aux_mmap_count, 1);
5683 user_extra = nr_pages;
5689 * If we have rb pages ensure they're a power-of-two number, so we
5690 * can do bitmasks instead of modulo.
5692 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5695 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5698 WARN_ON_ONCE(event->ctx->parent_ctx);
5700 mutex_lock(&event->mmap_mutex);
5702 if (event->rb->nr_pages != nr_pages) {
5707 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5709 * Raced against perf_mmap_close() through
5710 * perf_event_set_output(). Try again, hope for better
5713 mutex_unlock(&event->mmap_mutex);
5720 user_extra = nr_pages + 1;
5723 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5726 * Increase the limit linearly with more CPUs:
5728 user_lock_limit *= num_online_cpus();
5730 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5732 if (user_locked > user_lock_limit)
5733 extra = user_locked - user_lock_limit;
5735 lock_limit = rlimit(RLIMIT_MEMLOCK);
5736 lock_limit >>= PAGE_SHIFT;
5737 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5739 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5740 !capable(CAP_IPC_LOCK)) {
5745 WARN_ON(!rb && event->rb);
5747 if (vma->vm_flags & VM_WRITE)
5748 flags |= RING_BUFFER_WRITABLE;
5751 rb = rb_alloc(nr_pages,
5752 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5760 atomic_set(&rb->mmap_count, 1);
5761 rb->mmap_user = get_current_user();
5762 rb->mmap_locked = extra;
5764 ring_buffer_attach(event, rb);
5766 perf_event_init_userpage(event);
5767 perf_event_update_userpage(event);
5769 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5770 event->attr.aux_watermark, flags);
5772 rb->aux_mmap_locked = extra;
5777 atomic_long_add(user_extra, &user->locked_vm);
5778 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5780 atomic_inc(&event->mmap_count);
5782 atomic_dec(&rb->mmap_count);
5785 mutex_unlock(&event->mmap_mutex);
5788 * Since pinned accounting is per vm we cannot allow fork() to copy our
5791 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5792 vma->vm_ops = &perf_mmap_vmops;
5794 if (event->pmu->event_mapped)
5795 event->pmu->event_mapped(event, vma->vm_mm);
5800 static int perf_fasync(int fd, struct file *filp, int on)
5802 struct inode *inode = file_inode(filp);
5803 struct perf_event *event = filp->private_data;
5807 retval = fasync_helper(fd, filp, on, &event->fasync);
5808 inode_unlock(inode);
5816 static const struct file_operations perf_fops = {
5817 .llseek = no_llseek,
5818 .release = perf_release,
5821 .unlocked_ioctl = perf_ioctl,
5822 .compat_ioctl = perf_compat_ioctl,
5824 .fasync = perf_fasync,
5830 * If there's data, ensure we set the poll() state and publish everything
5831 * to user-space before waking everybody up.
5834 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5836 /* only the parent has fasync state */
5838 event = event->parent;
5839 return &event->fasync;
5842 void perf_event_wakeup(struct perf_event *event)
5844 ring_buffer_wakeup(event);
5846 if (event->pending_kill) {
5847 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5848 event->pending_kill = 0;
5852 static void perf_pending_event_disable(struct perf_event *event)
5854 int cpu = READ_ONCE(event->pending_disable);
5859 if (cpu == smp_processor_id()) {
5860 WRITE_ONCE(event->pending_disable, -1);
5861 perf_event_disable_local(event);
5868 * perf_event_disable_inatomic()
5869 * @pending_disable = CPU-A;
5873 * @pending_disable = -1;
5876 * perf_event_disable_inatomic()
5877 * @pending_disable = CPU-B;
5878 * irq_work_queue(); // FAILS
5881 * perf_pending_event()
5883 * But the event runs on CPU-B and wants disabling there.
5885 irq_work_queue_on(&event->pending, cpu);
5888 static void perf_pending_event(struct irq_work *entry)
5890 struct perf_event *event = container_of(entry, struct perf_event, pending);
5893 rctx = perf_swevent_get_recursion_context();
5895 * If we 'fail' here, that's OK, it means recursion is already disabled
5896 * and we won't recurse 'further'.
5899 perf_pending_event_disable(event);
5901 if (event->pending_wakeup) {
5902 event->pending_wakeup = 0;
5903 perf_event_wakeup(event);
5907 perf_swevent_put_recursion_context(rctx);
5911 * We assume there is only KVM supporting the callbacks.
5912 * Later on, we might change it to a list if there is
5913 * another virtualization implementation supporting the callbacks.
5915 struct perf_guest_info_callbacks *perf_guest_cbs;
5917 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5919 perf_guest_cbs = cbs;
5922 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5924 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5926 perf_guest_cbs = NULL;
5929 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5932 perf_output_sample_regs(struct perf_output_handle *handle,
5933 struct pt_regs *regs, u64 mask)
5936 DECLARE_BITMAP(_mask, 64);
5938 bitmap_from_u64(_mask, mask);
5939 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5942 val = perf_reg_value(regs, bit);
5943 perf_output_put(handle, val);
5947 static void perf_sample_regs_user(struct perf_regs *regs_user,
5948 struct pt_regs *regs,
5949 struct pt_regs *regs_user_copy)
5951 if (user_mode(regs)) {
5952 regs_user->abi = perf_reg_abi(current);
5953 regs_user->regs = regs;
5954 } else if (!(current->flags & PF_KTHREAD)) {
5955 perf_get_regs_user(regs_user, regs, regs_user_copy);
5957 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5958 regs_user->regs = NULL;
5962 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5963 struct pt_regs *regs)
5965 regs_intr->regs = regs;
5966 regs_intr->abi = perf_reg_abi(current);
5971 * Get remaining task size from user stack pointer.
5973 * It'd be better to take stack vma map and limit this more
5974 * precisly, but there's no way to get it safely under interrupt,
5975 * so using TASK_SIZE as limit.
5977 static u64 perf_ustack_task_size(struct pt_regs *regs)
5979 unsigned long addr = perf_user_stack_pointer(regs);
5981 if (!addr || addr >= TASK_SIZE)
5984 return TASK_SIZE - addr;
5988 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5989 struct pt_regs *regs)
5993 /* No regs, no stack pointer, no dump. */
5998 * Check if we fit in with the requested stack size into the:
6000 * If we don't, we limit the size to the TASK_SIZE.
6002 * - remaining sample size
6003 * If we don't, we customize the stack size to
6004 * fit in to the remaining sample size.
6007 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6008 stack_size = min(stack_size, (u16) task_size);
6010 /* Current header size plus static size and dynamic size. */
6011 header_size += 2 * sizeof(u64);
6013 /* Do we fit in with the current stack dump size? */
6014 if ((u16) (header_size + stack_size) < header_size) {
6016 * If we overflow the maximum size for the sample,
6017 * we customize the stack dump size to fit in.
6019 stack_size = USHRT_MAX - header_size - sizeof(u64);
6020 stack_size = round_up(stack_size, sizeof(u64));
6027 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6028 struct pt_regs *regs)
6030 /* Case of a kernel thread, nothing to dump */
6033 perf_output_put(handle, size);
6043 * - the size requested by user or the best one we can fit
6044 * in to the sample max size
6046 * - user stack dump data
6048 * - the actual dumped size
6052 perf_output_put(handle, dump_size);
6055 sp = perf_user_stack_pointer(regs);
6058 rem = __output_copy_user(handle, (void *) sp, dump_size);
6060 dyn_size = dump_size - rem;
6062 perf_output_skip(handle, rem);
6065 perf_output_put(handle, dyn_size);
6069 static void __perf_event_header__init_id(struct perf_event_header *header,
6070 struct perf_sample_data *data,
6071 struct perf_event *event)
6073 u64 sample_type = event->attr.sample_type;
6075 data->type = sample_type;
6076 header->size += event->id_header_size;
6078 if (sample_type & PERF_SAMPLE_TID) {
6079 /* namespace issues */
6080 data->tid_entry.pid = perf_event_pid(event, current);
6081 data->tid_entry.tid = perf_event_tid(event, current);
6084 if (sample_type & PERF_SAMPLE_TIME)
6085 data->time = perf_event_clock(event);
6087 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6088 data->id = primary_event_id(event);
6090 if (sample_type & PERF_SAMPLE_STREAM_ID)
6091 data->stream_id = event->id;
6093 if (sample_type & PERF_SAMPLE_CPU) {
6094 data->cpu_entry.cpu = raw_smp_processor_id();
6095 data->cpu_entry.reserved = 0;
6099 void perf_event_header__init_id(struct perf_event_header *header,
6100 struct perf_sample_data *data,
6101 struct perf_event *event)
6103 if (event->attr.sample_id_all)
6104 __perf_event_header__init_id(header, data, event);
6107 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6108 struct perf_sample_data *data)
6110 u64 sample_type = data->type;
6112 if (sample_type & PERF_SAMPLE_TID)
6113 perf_output_put(handle, data->tid_entry);
6115 if (sample_type & PERF_SAMPLE_TIME)
6116 perf_output_put(handle, data->time);
6118 if (sample_type & PERF_SAMPLE_ID)
6119 perf_output_put(handle, data->id);
6121 if (sample_type & PERF_SAMPLE_STREAM_ID)
6122 perf_output_put(handle, data->stream_id);
6124 if (sample_type & PERF_SAMPLE_CPU)
6125 perf_output_put(handle, data->cpu_entry);
6127 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6128 perf_output_put(handle, data->id);
6131 void perf_event__output_id_sample(struct perf_event *event,
6132 struct perf_output_handle *handle,
6133 struct perf_sample_data *sample)
6135 if (event->attr.sample_id_all)
6136 __perf_event__output_id_sample(handle, sample);
6139 static void perf_output_read_one(struct perf_output_handle *handle,
6140 struct perf_event *event,
6141 u64 enabled, u64 running)
6143 u64 read_format = event->attr.read_format;
6147 values[n++] = perf_event_count(event);
6148 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6149 values[n++] = enabled +
6150 atomic64_read(&event->child_total_time_enabled);
6152 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6153 values[n++] = running +
6154 atomic64_read(&event->child_total_time_running);
6156 if (read_format & PERF_FORMAT_ID)
6157 values[n++] = primary_event_id(event);
6159 __output_copy(handle, values, n * sizeof(u64));
6162 static void perf_output_read_group(struct perf_output_handle *handle,
6163 struct perf_event *event,
6164 u64 enabled, u64 running)
6166 struct perf_event *leader = event->group_leader, *sub;
6167 u64 read_format = event->attr.read_format;
6171 values[n++] = 1 + leader->nr_siblings;
6173 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6174 values[n++] = enabled;
6176 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6177 values[n++] = running;
6179 if ((leader != event) &&
6180 (leader->state == PERF_EVENT_STATE_ACTIVE))
6181 leader->pmu->read(leader);
6183 values[n++] = perf_event_count(leader);
6184 if (read_format & PERF_FORMAT_ID)
6185 values[n++] = primary_event_id(leader);
6187 __output_copy(handle, values, n * sizeof(u64));
6189 for_each_sibling_event(sub, leader) {
6192 if ((sub != event) &&
6193 (sub->state == PERF_EVENT_STATE_ACTIVE))
6194 sub->pmu->read(sub);
6196 values[n++] = perf_event_count(sub);
6197 if (read_format & PERF_FORMAT_ID)
6198 values[n++] = primary_event_id(sub);
6200 __output_copy(handle, values, n * sizeof(u64));
6204 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6205 PERF_FORMAT_TOTAL_TIME_RUNNING)
6208 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6210 * The problem is that its both hard and excessively expensive to iterate the
6211 * child list, not to mention that its impossible to IPI the children running
6212 * on another CPU, from interrupt/NMI context.
6214 static void perf_output_read(struct perf_output_handle *handle,
6215 struct perf_event *event)
6217 u64 enabled = 0, running = 0, now;
6218 u64 read_format = event->attr.read_format;
6221 * compute total_time_enabled, total_time_running
6222 * based on snapshot values taken when the event
6223 * was last scheduled in.
6225 * we cannot simply called update_context_time()
6226 * because of locking issue as we are called in
6229 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6230 calc_timer_values(event, &now, &enabled, &running);
6232 if (event->attr.read_format & PERF_FORMAT_GROUP)
6233 perf_output_read_group(handle, event, enabled, running);
6235 perf_output_read_one(handle, event, enabled, running);
6238 void perf_output_sample(struct perf_output_handle *handle,
6239 struct perf_event_header *header,
6240 struct perf_sample_data *data,
6241 struct perf_event *event)
6243 u64 sample_type = data->type;
6245 perf_output_put(handle, *header);
6247 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6248 perf_output_put(handle, data->id);
6250 if (sample_type & PERF_SAMPLE_IP)
6251 perf_output_put(handle, data->ip);
6253 if (sample_type & PERF_SAMPLE_TID)
6254 perf_output_put(handle, data->tid_entry);
6256 if (sample_type & PERF_SAMPLE_TIME)
6257 perf_output_put(handle, data->time);
6259 if (sample_type & PERF_SAMPLE_ADDR)
6260 perf_output_put(handle, data->addr);
6262 if (sample_type & PERF_SAMPLE_ID)
6263 perf_output_put(handle, data->id);
6265 if (sample_type & PERF_SAMPLE_STREAM_ID)
6266 perf_output_put(handle, data->stream_id);
6268 if (sample_type & PERF_SAMPLE_CPU)
6269 perf_output_put(handle, data->cpu_entry);
6271 if (sample_type & PERF_SAMPLE_PERIOD)
6272 perf_output_put(handle, data->period);
6274 if (sample_type & PERF_SAMPLE_READ)
6275 perf_output_read(handle, event);
6277 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6280 size += data->callchain->nr;
6281 size *= sizeof(u64);
6282 __output_copy(handle, data->callchain, size);
6285 if (sample_type & PERF_SAMPLE_RAW) {
6286 struct perf_raw_record *raw = data->raw;
6289 struct perf_raw_frag *frag = &raw->frag;
6291 perf_output_put(handle, raw->size);
6294 __output_custom(handle, frag->copy,
6295 frag->data, frag->size);
6297 __output_copy(handle, frag->data,
6300 if (perf_raw_frag_last(frag))
6305 __output_skip(handle, NULL, frag->pad);
6311 .size = sizeof(u32),
6314 perf_output_put(handle, raw);
6318 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6319 if (data->br_stack) {
6322 size = data->br_stack->nr
6323 * sizeof(struct perf_branch_entry);
6325 perf_output_put(handle, data->br_stack->nr);
6326 perf_output_copy(handle, data->br_stack->entries, size);
6329 * we always store at least the value of nr
6332 perf_output_put(handle, nr);
6336 if (sample_type & PERF_SAMPLE_REGS_USER) {
6337 u64 abi = data->regs_user.abi;
6340 * If there are no regs to dump, notice it through
6341 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6343 perf_output_put(handle, abi);
6346 u64 mask = event->attr.sample_regs_user;
6347 perf_output_sample_regs(handle,
6348 data->regs_user.regs,
6353 if (sample_type & PERF_SAMPLE_STACK_USER) {
6354 perf_output_sample_ustack(handle,
6355 data->stack_user_size,
6356 data->regs_user.regs);
6359 if (sample_type & PERF_SAMPLE_WEIGHT)
6360 perf_output_put(handle, data->weight);
6362 if (sample_type & PERF_SAMPLE_DATA_SRC)
6363 perf_output_put(handle, data->data_src.val);
6365 if (sample_type & PERF_SAMPLE_TRANSACTION)
6366 perf_output_put(handle, data->txn);
6368 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6369 u64 abi = data->regs_intr.abi;
6371 * If there are no regs to dump, notice it through
6372 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6374 perf_output_put(handle, abi);
6377 u64 mask = event->attr.sample_regs_intr;
6379 perf_output_sample_regs(handle,
6380 data->regs_intr.regs,
6385 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6386 perf_output_put(handle, data->phys_addr);
6388 if (!event->attr.watermark) {
6389 int wakeup_events = event->attr.wakeup_events;
6391 if (wakeup_events) {
6392 struct ring_buffer *rb = handle->rb;
6393 int events = local_inc_return(&rb->events);
6395 if (events >= wakeup_events) {
6396 local_sub(wakeup_events, &rb->events);
6397 local_inc(&rb->wakeup);
6403 static u64 perf_virt_to_phys(u64 virt)
6406 struct page *p = NULL;
6411 if (virt >= TASK_SIZE) {
6412 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6413 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6414 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6415 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6418 * Walking the pages tables for user address.
6419 * Interrupts are disabled, so it prevents any tear down
6420 * of the page tables.
6421 * Try IRQ-safe __get_user_pages_fast first.
6422 * If failed, leave phys_addr as 0.
6424 if ((current->mm != NULL) &&
6425 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6426 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6435 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6437 struct perf_callchain_entry *
6438 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6440 bool kernel = !event->attr.exclude_callchain_kernel;
6441 bool user = !event->attr.exclude_callchain_user;
6442 /* Disallow cross-task user callchains. */
6443 bool crosstask = event->ctx->task && event->ctx->task != current;
6444 const u32 max_stack = event->attr.sample_max_stack;
6445 struct perf_callchain_entry *callchain;
6447 if (!kernel && !user)
6448 return &__empty_callchain;
6450 callchain = get_perf_callchain(regs, 0, kernel, user,
6451 max_stack, crosstask, true);
6452 return callchain ?: &__empty_callchain;
6455 void perf_prepare_sample(struct perf_event_header *header,
6456 struct perf_sample_data *data,
6457 struct perf_event *event,
6458 struct pt_regs *regs)
6460 u64 sample_type = event->attr.sample_type;
6462 header->type = PERF_RECORD_SAMPLE;
6463 header->size = sizeof(*header) + event->header_size;
6466 header->misc |= perf_misc_flags(regs);
6468 __perf_event_header__init_id(header, data, event);
6470 if (sample_type & PERF_SAMPLE_IP)
6471 data->ip = perf_instruction_pointer(regs);
6473 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6476 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6477 data->callchain = perf_callchain(event, regs);
6479 size += data->callchain->nr;
6481 header->size += size * sizeof(u64);
6484 if (sample_type & PERF_SAMPLE_RAW) {
6485 struct perf_raw_record *raw = data->raw;
6489 struct perf_raw_frag *frag = &raw->frag;
6494 if (perf_raw_frag_last(frag))
6499 size = round_up(sum + sizeof(u32), sizeof(u64));
6500 raw->size = size - sizeof(u32);
6501 frag->pad = raw->size - sum;
6506 header->size += size;
6509 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6510 int size = sizeof(u64); /* nr */
6511 if (data->br_stack) {
6512 size += data->br_stack->nr
6513 * sizeof(struct perf_branch_entry);
6515 header->size += size;
6518 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6519 perf_sample_regs_user(&data->regs_user, regs,
6520 &data->regs_user_copy);
6522 if (sample_type & PERF_SAMPLE_REGS_USER) {
6523 /* regs dump ABI info */
6524 int size = sizeof(u64);
6526 if (data->regs_user.regs) {
6527 u64 mask = event->attr.sample_regs_user;
6528 size += hweight64(mask) * sizeof(u64);
6531 header->size += size;
6534 if (sample_type & PERF_SAMPLE_STACK_USER) {
6536 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6537 * processed as the last one or have additional check added
6538 * in case new sample type is added, because we could eat
6539 * up the rest of the sample size.
6541 u16 stack_size = event->attr.sample_stack_user;
6542 u16 size = sizeof(u64);
6544 stack_size = perf_sample_ustack_size(stack_size, header->size,
6545 data->regs_user.regs);
6548 * If there is something to dump, add space for the dump
6549 * itself and for the field that tells the dynamic size,
6550 * which is how many have been actually dumped.
6553 size += sizeof(u64) + stack_size;
6555 data->stack_user_size = stack_size;
6556 header->size += size;
6559 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6560 /* regs dump ABI info */
6561 int size = sizeof(u64);
6563 perf_sample_regs_intr(&data->regs_intr, regs);
6565 if (data->regs_intr.regs) {
6566 u64 mask = event->attr.sample_regs_intr;
6568 size += hweight64(mask) * sizeof(u64);
6571 header->size += size;
6574 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6575 data->phys_addr = perf_virt_to_phys(data->addr);
6578 static __always_inline int
6579 __perf_event_output(struct perf_event *event,
6580 struct perf_sample_data *data,
6581 struct pt_regs *regs,
6582 int (*output_begin)(struct perf_output_handle *,
6583 struct perf_event *,
6586 struct perf_output_handle handle;
6587 struct perf_event_header header;
6590 /* protect the callchain buffers */
6593 perf_prepare_sample(&header, data, event, regs);
6595 err = output_begin(&handle, event, header.size);
6599 perf_output_sample(&handle, &header, data, event);
6601 perf_output_end(&handle);
6609 perf_event_output_forward(struct perf_event *event,
6610 struct perf_sample_data *data,
6611 struct pt_regs *regs)
6613 __perf_event_output(event, data, regs, perf_output_begin_forward);
6617 perf_event_output_backward(struct perf_event *event,
6618 struct perf_sample_data *data,
6619 struct pt_regs *regs)
6621 __perf_event_output(event, data, regs, perf_output_begin_backward);
6625 perf_event_output(struct perf_event *event,
6626 struct perf_sample_data *data,
6627 struct pt_regs *regs)
6629 return __perf_event_output(event, data, regs, perf_output_begin);
6636 struct perf_read_event {
6637 struct perf_event_header header;
6644 perf_event_read_event(struct perf_event *event,
6645 struct task_struct *task)
6647 struct perf_output_handle handle;
6648 struct perf_sample_data sample;
6649 struct perf_read_event read_event = {
6651 .type = PERF_RECORD_READ,
6653 .size = sizeof(read_event) + event->read_size,
6655 .pid = perf_event_pid(event, task),
6656 .tid = perf_event_tid(event, task),
6660 perf_event_header__init_id(&read_event.header, &sample, event);
6661 ret = perf_output_begin(&handle, event, read_event.header.size);
6665 perf_output_put(&handle, read_event);
6666 perf_output_read(&handle, event);
6667 perf_event__output_id_sample(event, &handle, &sample);
6669 perf_output_end(&handle);
6672 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6675 perf_iterate_ctx(struct perf_event_context *ctx,
6676 perf_iterate_f output,
6677 void *data, bool all)
6679 struct perf_event *event;
6681 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6683 if (event->state < PERF_EVENT_STATE_INACTIVE)
6685 if (!event_filter_match(event))
6689 output(event, data);
6693 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6695 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6696 struct perf_event *event;
6698 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6700 * Skip events that are not fully formed yet; ensure that
6701 * if we observe event->ctx, both event and ctx will be
6702 * complete enough. See perf_install_in_context().
6704 if (!smp_load_acquire(&event->ctx))
6707 if (event->state < PERF_EVENT_STATE_INACTIVE)
6709 if (!event_filter_match(event))
6711 output(event, data);
6716 * Iterate all events that need to receive side-band events.
6718 * For new callers; ensure that account_pmu_sb_event() includes
6719 * your event, otherwise it might not get delivered.
6722 perf_iterate_sb(perf_iterate_f output, void *data,
6723 struct perf_event_context *task_ctx)
6725 struct perf_event_context *ctx;
6732 * If we have task_ctx != NULL we only notify the task context itself.
6733 * The task_ctx is set only for EXIT events before releasing task
6737 perf_iterate_ctx(task_ctx, output, data, false);
6741 perf_iterate_sb_cpu(output, data);
6743 for_each_task_context_nr(ctxn) {
6744 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6746 perf_iterate_ctx(ctx, output, data, false);
6754 * Clear all file-based filters at exec, they'll have to be
6755 * re-instated when/if these objects are mmapped again.
6757 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6759 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6760 struct perf_addr_filter *filter;
6761 unsigned int restart = 0, count = 0;
6762 unsigned long flags;
6764 if (!has_addr_filter(event))
6767 raw_spin_lock_irqsave(&ifh->lock, flags);
6768 list_for_each_entry(filter, &ifh->list, entry) {
6769 if (filter->path.dentry) {
6770 event->addr_filter_ranges[count].start = 0;
6771 event->addr_filter_ranges[count].size = 0;
6779 event->addr_filters_gen++;
6780 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6783 perf_event_stop(event, 1);
6786 void perf_event_exec(void)
6788 struct perf_event_context *ctx;
6792 for_each_task_context_nr(ctxn) {
6793 ctx = current->perf_event_ctxp[ctxn];
6797 perf_event_enable_on_exec(ctxn);
6799 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6805 struct remote_output {
6806 struct ring_buffer *rb;
6810 static void __perf_event_output_stop(struct perf_event *event, void *data)
6812 struct perf_event *parent = event->parent;
6813 struct remote_output *ro = data;
6814 struct ring_buffer *rb = ro->rb;
6815 struct stop_event_data sd = {
6819 if (!has_aux(event))
6826 * In case of inheritance, it will be the parent that links to the
6827 * ring-buffer, but it will be the child that's actually using it.
6829 * We are using event::rb to determine if the event should be stopped,
6830 * however this may race with ring_buffer_attach() (through set_output),
6831 * which will make us skip the event that actually needs to be stopped.
6832 * So ring_buffer_attach() has to stop an aux event before re-assigning
6835 if (rcu_dereference(parent->rb) == rb)
6836 ro->err = __perf_event_stop(&sd);
6839 static int __perf_pmu_output_stop(void *info)
6841 struct perf_event *event = info;
6842 struct pmu *pmu = event->pmu;
6843 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6844 struct remote_output ro = {
6849 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6850 if (cpuctx->task_ctx)
6851 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6858 static void perf_pmu_output_stop(struct perf_event *event)
6860 struct perf_event *iter;
6865 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6867 * For per-CPU events, we need to make sure that neither they
6868 * nor their children are running; for cpu==-1 events it's
6869 * sufficient to stop the event itself if it's active, since
6870 * it can't have children.
6874 cpu = READ_ONCE(iter->oncpu);
6879 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6880 if (err == -EAGAIN) {
6889 * task tracking -- fork/exit
6891 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6894 struct perf_task_event {
6895 struct task_struct *task;
6896 struct perf_event_context *task_ctx;
6899 struct perf_event_header header;
6909 static int perf_event_task_match(struct perf_event *event)
6911 return event->attr.comm || event->attr.mmap ||
6912 event->attr.mmap2 || event->attr.mmap_data ||
6916 static void perf_event_task_output(struct perf_event *event,
6919 struct perf_task_event *task_event = data;
6920 struct perf_output_handle handle;
6921 struct perf_sample_data sample;
6922 struct task_struct *task = task_event->task;
6923 int ret, size = task_event->event_id.header.size;
6925 if (!perf_event_task_match(event))
6928 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6930 ret = perf_output_begin(&handle, event,
6931 task_event->event_id.header.size);
6935 task_event->event_id.pid = perf_event_pid(event, task);
6936 task_event->event_id.ppid = perf_event_pid(event, current);
6938 task_event->event_id.tid = perf_event_tid(event, task);
6939 task_event->event_id.ptid = perf_event_tid(event, current);
6941 task_event->event_id.time = perf_event_clock(event);
6943 perf_output_put(&handle, task_event->event_id);
6945 perf_event__output_id_sample(event, &handle, &sample);
6947 perf_output_end(&handle);
6949 task_event->event_id.header.size = size;
6952 static void perf_event_task(struct task_struct *task,
6953 struct perf_event_context *task_ctx,
6956 struct perf_task_event task_event;
6958 if (!atomic_read(&nr_comm_events) &&
6959 !atomic_read(&nr_mmap_events) &&
6960 !atomic_read(&nr_task_events))
6963 task_event = (struct perf_task_event){
6965 .task_ctx = task_ctx,
6968 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6970 .size = sizeof(task_event.event_id),
6980 perf_iterate_sb(perf_event_task_output,
6985 void perf_event_fork(struct task_struct *task)
6987 perf_event_task(task, NULL, 1);
6988 perf_event_namespaces(task);
6995 struct perf_comm_event {
6996 struct task_struct *task;
7001 struct perf_event_header header;
7008 static int perf_event_comm_match(struct perf_event *event)
7010 return event->attr.comm;
7013 static void perf_event_comm_output(struct perf_event *event,
7016 struct perf_comm_event *comm_event = data;
7017 struct perf_output_handle handle;
7018 struct perf_sample_data sample;
7019 int size = comm_event->event_id.header.size;
7022 if (!perf_event_comm_match(event))
7025 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7026 ret = perf_output_begin(&handle, event,
7027 comm_event->event_id.header.size);
7032 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7033 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7035 perf_output_put(&handle, comm_event->event_id);
7036 __output_copy(&handle, comm_event->comm,
7037 comm_event->comm_size);
7039 perf_event__output_id_sample(event, &handle, &sample);
7041 perf_output_end(&handle);
7043 comm_event->event_id.header.size = size;
7046 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7048 char comm[TASK_COMM_LEN];
7051 memset(comm, 0, sizeof(comm));
7052 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7053 size = ALIGN(strlen(comm)+1, sizeof(u64));
7055 comm_event->comm = comm;
7056 comm_event->comm_size = size;
7058 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7060 perf_iterate_sb(perf_event_comm_output,
7065 void perf_event_comm(struct task_struct *task, bool exec)
7067 struct perf_comm_event comm_event;
7069 if (!atomic_read(&nr_comm_events))
7072 comm_event = (struct perf_comm_event){
7078 .type = PERF_RECORD_COMM,
7079 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7087 perf_event_comm_event(&comm_event);
7091 * namespaces tracking
7094 struct perf_namespaces_event {
7095 struct task_struct *task;
7098 struct perf_event_header header;
7103 struct perf_ns_link_info link_info[NR_NAMESPACES];
7107 static int perf_event_namespaces_match(struct perf_event *event)
7109 return event->attr.namespaces;
7112 static void perf_event_namespaces_output(struct perf_event *event,
7115 struct perf_namespaces_event *namespaces_event = data;
7116 struct perf_output_handle handle;
7117 struct perf_sample_data sample;
7118 u16 header_size = namespaces_event->event_id.header.size;
7121 if (!perf_event_namespaces_match(event))
7124 perf_event_header__init_id(&namespaces_event->event_id.header,
7126 ret = perf_output_begin(&handle, event,
7127 namespaces_event->event_id.header.size);
7131 namespaces_event->event_id.pid = perf_event_pid(event,
7132 namespaces_event->task);
7133 namespaces_event->event_id.tid = perf_event_tid(event,
7134 namespaces_event->task);
7136 perf_output_put(&handle, namespaces_event->event_id);
7138 perf_event__output_id_sample(event, &handle, &sample);
7140 perf_output_end(&handle);
7142 namespaces_event->event_id.header.size = header_size;
7145 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7146 struct task_struct *task,
7147 const struct proc_ns_operations *ns_ops)
7149 struct path ns_path;
7150 struct inode *ns_inode;
7153 error = ns_get_path(&ns_path, task, ns_ops);
7155 ns_inode = ns_path.dentry->d_inode;
7156 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7157 ns_link_info->ino = ns_inode->i_ino;
7162 void perf_event_namespaces(struct task_struct *task)
7164 struct perf_namespaces_event namespaces_event;
7165 struct perf_ns_link_info *ns_link_info;
7167 if (!atomic_read(&nr_namespaces_events))
7170 namespaces_event = (struct perf_namespaces_event){
7174 .type = PERF_RECORD_NAMESPACES,
7176 .size = sizeof(namespaces_event.event_id),
7180 .nr_namespaces = NR_NAMESPACES,
7181 /* .link_info[NR_NAMESPACES] */
7185 ns_link_info = namespaces_event.event_id.link_info;
7187 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7188 task, &mntns_operations);
7190 #ifdef CONFIG_USER_NS
7191 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7192 task, &userns_operations);
7194 #ifdef CONFIG_NET_NS
7195 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7196 task, &netns_operations);
7198 #ifdef CONFIG_UTS_NS
7199 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7200 task, &utsns_operations);
7202 #ifdef CONFIG_IPC_NS
7203 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7204 task, &ipcns_operations);
7206 #ifdef CONFIG_PID_NS
7207 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7208 task, &pidns_operations);
7210 #ifdef CONFIG_CGROUPS
7211 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7212 task, &cgroupns_operations);
7215 perf_iterate_sb(perf_event_namespaces_output,
7224 struct perf_mmap_event {
7225 struct vm_area_struct *vma;
7227 const char *file_name;
7235 struct perf_event_header header;
7245 static int perf_event_mmap_match(struct perf_event *event,
7248 struct perf_mmap_event *mmap_event = data;
7249 struct vm_area_struct *vma = mmap_event->vma;
7250 int executable = vma->vm_flags & VM_EXEC;
7252 return (!executable && event->attr.mmap_data) ||
7253 (executable && (event->attr.mmap || event->attr.mmap2));
7256 static void perf_event_mmap_output(struct perf_event *event,
7259 struct perf_mmap_event *mmap_event = data;
7260 struct perf_output_handle handle;
7261 struct perf_sample_data sample;
7262 int size = mmap_event->event_id.header.size;
7263 u32 type = mmap_event->event_id.header.type;
7266 if (!perf_event_mmap_match(event, data))
7269 if (event->attr.mmap2) {
7270 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7271 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7272 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7273 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7274 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7275 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7276 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7279 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7280 ret = perf_output_begin(&handle, event,
7281 mmap_event->event_id.header.size);
7285 mmap_event->event_id.pid = perf_event_pid(event, current);
7286 mmap_event->event_id.tid = perf_event_tid(event, current);
7288 perf_output_put(&handle, mmap_event->event_id);
7290 if (event->attr.mmap2) {
7291 perf_output_put(&handle, mmap_event->maj);
7292 perf_output_put(&handle, mmap_event->min);
7293 perf_output_put(&handle, mmap_event->ino);
7294 perf_output_put(&handle, mmap_event->ino_generation);
7295 perf_output_put(&handle, mmap_event->prot);
7296 perf_output_put(&handle, mmap_event->flags);
7299 __output_copy(&handle, mmap_event->file_name,
7300 mmap_event->file_size);
7302 perf_event__output_id_sample(event, &handle, &sample);
7304 perf_output_end(&handle);
7306 mmap_event->event_id.header.size = size;
7307 mmap_event->event_id.header.type = type;
7310 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7312 struct vm_area_struct *vma = mmap_event->vma;
7313 struct file *file = vma->vm_file;
7314 int maj = 0, min = 0;
7315 u64 ino = 0, gen = 0;
7316 u32 prot = 0, flags = 0;
7322 if (vma->vm_flags & VM_READ)
7324 if (vma->vm_flags & VM_WRITE)
7326 if (vma->vm_flags & VM_EXEC)
7329 if (vma->vm_flags & VM_MAYSHARE)
7332 flags = MAP_PRIVATE;
7334 if (vma->vm_flags & VM_DENYWRITE)
7335 flags |= MAP_DENYWRITE;
7336 if (vma->vm_flags & VM_MAYEXEC)
7337 flags |= MAP_EXECUTABLE;
7338 if (vma->vm_flags & VM_LOCKED)
7339 flags |= MAP_LOCKED;
7340 if (vma->vm_flags & VM_HUGETLB)
7341 flags |= MAP_HUGETLB;
7344 struct inode *inode;
7347 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7353 * d_path() works from the end of the rb backwards, so we
7354 * need to add enough zero bytes after the string to handle
7355 * the 64bit alignment we do later.
7357 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7362 inode = file_inode(vma->vm_file);
7363 dev = inode->i_sb->s_dev;
7365 gen = inode->i_generation;
7371 if (vma->vm_ops && vma->vm_ops->name) {
7372 name = (char *) vma->vm_ops->name(vma);
7377 name = (char *)arch_vma_name(vma);
7381 if (vma->vm_start <= vma->vm_mm->start_brk &&
7382 vma->vm_end >= vma->vm_mm->brk) {
7386 if (vma->vm_start <= vma->vm_mm->start_stack &&
7387 vma->vm_end >= vma->vm_mm->start_stack) {
7397 strlcpy(tmp, name, sizeof(tmp));
7401 * Since our buffer works in 8 byte units we need to align our string
7402 * size to a multiple of 8. However, we must guarantee the tail end is
7403 * zero'd out to avoid leaking random bits to userspace.
7405 size = strlen(name)+1;
7406 while (!IS_ALIGNED(size, sizeof(u64)))
7407 name[size++] = '\0';
7409 mmap_event->file_name = name;
7410 mmap_event->file_size = size;
7411 mmap_event->maj = maj;
7412 mmap_event->min = min;
7413 mmap_event->ino = ino;
7414 mmap_event->ino_generation = gen;
7415 mmap_event->prot = prot;
7416 mmap_event->flags = flags;
7418 if (!(vma->vm_flags & VM_EXEC))
7419 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7421 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7423 perf_iterate_sb(perf_event_mmap_output,
7431 * Check whether inode and address range match filter criteria.
7433 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7434 struct file *file, unsigned long offset,
7437 /* d_inode(NULL) won't be equal to any mapped user-space file */
7438 if (!filter->path.dentry)
7441 if (d_inode(filter->path.dentry) != file_inode(file))
7444 if (filter->offset > offset + size)
7447 if (filter->offset + filter->size < offset)
7453 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7454 struct vm_area_struct *vma,
7455 struct perf_addr_filter_range *fr)
7457 unsigned long vma_size = vma->vm_end - vma->vm_start;
7458 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7459 struct file *file = vma->vm_file;
7461 if (!perf_addr_filter_match(filter, file, off, vma_size))
7464 if (filter->offset < off) {
7465 fr->start = vma->vm_start;
7466 fr->size = min(vma_size, filter->size - (off - filter->offset));
7468 fr->start = vma->vm_start + filter->offset - off;
7469 fr->size = min(vma->vm_end - fr->start, filter->size);
7475 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7477 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7478 struct vm_area_struct *vma = data;
7479 struct perf_addr_filter *filter;
7480 unsigned int restart = 0, count = 0;
7481 unsigned long flags;
7483 if (!has_addr_filter(event))
7489 raw_spin_lock_irqsave(&ifh->lock, flags);
7490 list_for_each_entry(filter, &ifh->list, entry) {
7491 if (perf_addr_filter_vma_adjust(filter, vma,
7492 &event->addr_filter_ranges[count]))
7499 event->addr_filters_gen++;
7500 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7503 perf_event_stop(event, 1);
7507 * Adjust all task's events' filters to the new vma
7509 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7511 struct perf_event_context *ctx;
7515 * Data tracing isn't supported yet and as such there is no need
7516 * to keep track of anything that isn't related to executable code:
7518 if (!(vma->vm_flags & VM_EXEC))
7522 for_each_task_context_nr(ctxn) {
7523 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7527 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7532 void perf_event_mmap(struct vm_area_struct *vma)
7534 struct perf_mmap_event mmap_event;
7536 if (!atomic_read(&nr_mmap_events))
7539 mmap_event = (struct perf_mmap_event){
7545 .type = PERF_RECORD_MMAP,
7546 .misc = PERF_RECORD_MISC_USER,
7551 .start = vma->vm_start,
7552 .len = vma->vm_end - vma->vm_start,
7553 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7555 /* .maj (attr_mmap2 only) */
7556 /* .min (attr_mmap2 only) */
7557 /* .ino (attr_mmap2 only) */
7558 /* .ino_generation (attr_mmap2 only) */
7559 /* .prot (attr_mmap2 only) */
7560 /* .flags (attr_mmap2 only) */
7563 perf_addr_filters_adjust(vma);
7564 perf_event_mmap_event(&mmap_event);
7567 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7568 unsigned long size, u64 flags)
7570 struct perf_output_handle handle;
7571 struct perf_sample_data sample;
7572 struct perf_aux_event {
7573 struct perf_event_header header;
7579 .type = PERF_RECORD_AUX,
7581 .size = sizeof(rec),
7589 perf_event_header__init_id(&rec.header, &sample, event);
7590 ret = perf_output_begin(&handle, event, rec.header.size);
7595 perf_output_put(&handle, rec);
7596 perf_event__output_id_sample(event, &handle, &sample);
7598 perf_output_end(&handle);
7602 * Lost/dropped samples logging
7604 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7606 struct perf_output_handle handle;
7607 struct perf_sample_data sample;
7611 struct perf_event_header header;
7613 } lost_samples_event = {
7615 .type = PERF_RECORD_LOST_SAMPLES,
7617 .size = sizeof(lost_samples_event),
7622 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7624 ret = perf_output_begin(&handle, event,
7625 lost_samples_event.header.size);
7629 perf_output_put(&handle, lost_samples_event);
7630 perf_event__output_id_sample(event, &handle, &sample);
7631 perf_output_end(&handle);
7635 * context_switch tracking
7638 struct perf_switch_event {
7639 struct task_struct *task;
7640 struct task_struct *next_prev;
7643 struct perf_event_header header;
7649 static int perf_event_switch_match(struct perf_event *event)
7651 return event->attr.context_switch;
7654 static void perf_event_switch_output(struct perf_event *event, void *data)
7656 struct perf_switch_event *se = data;
7657 struct perf_output_handle handle;
7658 struct perf_sample_data sample;
7661 if (!perf_event_switch_match(event))
7664 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7665 if (event->ctx->task) {
7666 se->event_id.header.type = PERF_RECORD_SWITCH;
7667 se->event_id.header.size = sizeof(se->event_id.header);
7669 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7670 se->event_id.header.size = sizeof(se->event_id);
7671 se->event_id.next_prev_pid =
7672 perf_event_pid(event, se->next_prev);
7673 se->event_id.next_prev_tid =
7674 perf_event_tid(event, se->next_prev);
7677 perf_event_header__init_id(&se->event_id.header, &sample, event);
7679 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7683 if (event->ctx->task)
7684 perf_output_put(&handle, se->event_id.header);
7686 perf_output_put(&handle, se->event_id);
7688 perf_event__output_id_sample(event, &handle, &sample);
7690 perf_output_end(&handle);
7693 static void perf_event_switch(struct task_struct *task,
7694 struct task_struct *next_prev, bool sched_in)
7696 struct perf_switch_event switch_event;
7698 /* N.B. caller checks nr_switch_events != 0 */
7700 switch_event = (struct perf_switch_event){
7702 .next_prev = next_prev,
7706 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7709 /* .next_prev_pid */
7710 /* .next_prev_tid */
7714 if (!sched_in && task->state == TASK_RUNNING)
7715 switch_event.event_id.header.misc |=
7716 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7718 perf_iterate_sb(perf_event_switch_output,
7724 * IRQ throttle logging
7727 static void perf_log_throttle(struct perf_event *event, int enable)
7729 struct perf_output_handle handle;
7730 struct perf_sample_data sample;
7734 struct perf_event_header header;
7738 } throttle_event = {
7740 .type = PERF_RECORD_THROTTLE,
7742 .size = sizeof(throttle_event),
7744 .time = perf_event_clock(event),
7745 .id = primary_event_id(event),
7746 .stream_id = event->id,
7750 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7752 perf_event_header__init_id(&throttle_event.header, &sample, event);
7754 ret = perf_output_begin(&handle, event,
7755 throttle_event.header.size);
7759 perf_output_put(&handle, throttle_event);
7760 perf_event__output_id_sample(event, &handle, &sample);
7761 perf_output_end(&handle);
7765 * ksymbol register/unregister tracking
7768 struct perf_ksymbol_event {
7772 struct perf_event_header header;
7780 static int perf_event_ksymbol_match(struct perf_event *event)
7782 return event->attr.ksymbol;
7785 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7787 struct perf_ksymbol_event *ksymbol_event = data;
7788 struct perf_output_handle handle;
7789 struct perf_sample_data sample;
7792 if (!perf_event_ksymbol_match(event))
7795 perf_event_header__init_id(&ksymbol_event->event_id.header,
7797 ret = perf_output_begin(&handle, event,
7798 ksymbol_event->event_id.header.size);
7802 perf_output_put(&handle, ksymbol_event->event_id);
7803 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7804 perf_event__output_id_sample(event, &handle, &sample);
7806 perf_output_end(&handle);
7809 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7812 struct perf_ksymbol_event ksymbol_event;
7813 char name[KSYM_NAME_LEN];
7817 if (!atomic_read(&nr_ksymbol_events))
7820 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7821 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7824 strlcpy(name, sym, KSYM_NAME_LEN);
7825 name_len = strlen(name) + 1;
7826 while (!IS_ALIGNED(name_len, sizeof(u64)))
7827 name[name_len++] = '\0';
7828 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7831 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7833 ksymbol_event = (struct perf_ksymbol_event){
7835 .name_len = name_len,
7838 .type = PERF_RECORD_KSYMBOL,
7839 .size = sizeof(ksymbol_event.event_id) +
7844 .ksym_type = ksym_type,
7849 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7852 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7856 * bpf program load/unload tracking
7859 struct perf_bpf_event {
7860 struct bpf_prog *prog;
7862 struct perf_event_header header;
7866 u8 tag[BPF_TAG_SIZE];
7870 static int perf_event_bpf_match(struct perf_event *event)
7872 return event->attr.bpf_event;
7875 static void perf_event_bpf_output(struct perf_event *event, void *data)
7877 struct perf_bpf_event *bpf_event = data;
7878 struct perf_output_handle handle;
7879 struct perf_sample_data sample;
7882 if (!perf_event_bpf_match(event))
7885 perf_event_header__init_id(&bpf_event->event_id.header,
7887 ret = perf_output_begin(&handle, event,
7888 bpf_event->event_id.header.size);
7892 perf_output_put(&handle, bpf_event->event_id);
7893 perf_event__output_id_sample(event, &handle, &sample);
7895 perf_output_end(&handle);
7898 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7899 enum perf_bpf_event_type type)
7901 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7902 char sym[KSYM_NAME_LEN];
7905 if (prog->aux->func_cnt == 0) {
7906 bpf_get_prog_name(prog, sym);
7907 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7908 (u64)(unsigned long)prog->bpf_func,
7909 prog->jited_len, unregister, sym);
7911 for (i = 0; i < prog->aux->func_cnt; i++) {
7912 struct bpf_prog *subprog = prog->aux->func[i];
7914 bpf_get_prog_name(subprog, sym);
7916 PERF_RECORD_KSYMBOL_TYPE_BPF,
7917 (u64)(unsigned long)subprog->bpf_func,
7918 subprog->jited_len, unregister, sym);
7923 void perf_event_bpf_event(struct bpf_prog *prog,
7924 enum perf_bpf_event_type type,
7927 struct perf_bpf_event bpf_event;
7929 if (type <= PERF_BPF_EVENT_UNKNOWN ||
7930 type >= PERF_BPF_EVENT_MAX)
7934 case PERF_BPF_EVENT_PROG_LOAD:
7935 case PERF_BPF_EVENT_PROG_UNLOAD:
7936 if (atomic_read(&nr_ksymbol_events))
7937 perf_event_bpf_emit_ksymbols(prog, type);
7943 if (!atomic_read(&nr_bpf_events))
7946 bpf_event = (struct perf_bpf_event){
7950 .type = PERF_RECORD_BPF_EVENT,
7951 .size = sizeof(bpf_event.event_id),
7955 .id = prog->aux->id,
7959 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7961 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7962 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7965 void perf_event_itrace_started(struct perf_event *event)
7967 event->attach_state |= PERF_ATTACH_ITRACE;
7970 static void perf_log_itrace_start(struct perf_event *event)
7972 struct perf_output_handle handle;
7973 struct perf_sample_data sample;
7974 struct perf_aux_event {
7975 struct perf_event_header header;
7982 event = event->parent;
7984 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7985 event->attach_state & PERF_ATTACH_ITRACE)
7988 rec.header.type = PERF_RECORD_ITRACE_START;
7989 rec.header.misc = 0;
7990 rec.header.size = sizeof(rec);
7991 rec.pid = perf_event_pid(event, current);
7992 rec.tid = perf_event_tid(event, current);
7994 perf_event_header__init_id(&rec.header, &sample, event);
7995 ret = perf_output_begin(&handle, event, rec.header.size);
8000 perf_output_put(&handle, rec);
8001 perf_event__output_id_sample(event, &handle, &sample);
8003 perf_output_end(&handle);
8007 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8009 struct hw_perf_event *hwc = &event->hw;
8013 seq = __this_cpu_read(perf_throttled_seq);
8014 if (seq != hwc->interrupts_seq) {
8015 hwc->interrupts_seq = seq;
8016 hwc->interrupts = 1;
8019 if (unlikely(throttle
8020 && hwc->interrupts >= max_samples_per_tick)) {
8021 __this_cpu_inc(perf_throttled_count);
8022 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8023 hwc->interrupts = MAX_INTERRUPTS;
8024 perf_log_throttle(event, 0);
8029 if (event->attr.freq) {
8030 u64 now = perf_clock();
8031 s64 delta = now - hwc->freq_time_stamp;
8033 hwc->freq_time_stamp = now;
8035 if (delta > 0 && delta < 2*TICK_NSEC)
8036 perf_adjust_period(event, delta, hwc->last_period, true);
8042 int perf_event_account_interrupt(struct perf_event *event)
8044 return __perf_event_account_interrupt(event, 1);
8048 * Generic event overflow handling, sampling.
8051 static int __perf_event_overflow(struct perf_event *event,
8052 int throttle, struct perf_sample_data *data,
8053 struct pt_regs *regs)
8055 int events = atomic_read(&event->event_limit);
8059 * Non-sampling counters might still use the PMI to fold short
8060 * hardware counters, ignore those.
8062 if (unlikely(!is_sampling_event(event)))
8065 ret = __perf_event_account_interrupt(event, throttle);
8068 * XXX event_limit might not quite work as expected on inherited
8072 event->pending_kill = POLL_IN;
8073 if (events && atomic_dec_and_test(&event->event_limit)) {
8075 event->pending_kill = POLL_HUP;
8077 perf_event_disable_inatomic(event);
8080 READ_ONCE(event->overflow_handler)(event, data, regs);
8082 if (*perf_event_fasync(event) && event->pending_kill) {
8083 event->pending_wakeup = 1;
8084 irq_work_queue(&event->pending);
8090 int perf_event_overflow(struct perf_event *event,
8091 struct perf_sample_data *data,
8092 struct pt_regs *regs)
8094 return __perf_event_overflow(event, 1, data, regs);
8098 * Generic software event infrastructure
8101 struct swevent_htable {
8102 struct swevent_hlist *swevent_hlist;
8103 struct mutex hlist_mutex;
8106 /* Recursion avoidance in each contexts */
8107 int recursion[PERF_NR_CONTEXTS];
8110 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8113 * We directly increment event->count and keep a second value in
8114 * event->hw.period_left to count intervals. This period event
8115 * is kept in the range [-sample_period, 0] so that we can use the
8119 u64 perf_swevent_set_period(struct perf_event *event)
8121 struct hw_perf_event *hwc = &event->hw;
8122 u64 period = hwc->last_period;
8126 hwc->last_period = hwc->sample_period;
8129 old = val = local64_read(&hwc->period_left);
8133 nr = div64_u64(period + val, period);
8134 offset = nr * period;
8136 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8142 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8143 struct perf_sample_data *data,
8144 struct pt_regs *regs)
8146 struct hw_perf_event *hwc = &event->hw;
8150 overflow = perf_swevent_set_period(event);
8152 if (hwc->interrupts == MAX_INTERRUPTS)
8155 for (; overflow; overflow--) {
8156 if (__perf_event_overflow(event, throttle,
8159 * We inhibit the overflow from happening when
8160 * hwc->interrupts == MAX_INTERRUPTS.
8168 static void perf_swevent_event(struct perf_event *event, u64 nr,
8169 struct perf_sample_data *data,
8170 struct pt_regs *regs)
8172 struct hw_perf_event *hwc = &event->hw;
8174 local64_add(nr, &event->count);
8179 if (!is_sampling_event(event))
8182 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8184 return perf_swevent_overflow(event, 1, data, regs);
8186 data->period = event->hw.last_period;
8188 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8189 return perf_swevent_overflow(event, 1, data, regs);
8191 if (local64_add_negative(nr, &hwc->period_left))
8194 perf_swevent_overflow(event, 0, data, regs);
8197 static int perf_exclude_event(struct perf_event *event,
8198 struct pt_regs *regs)
8200 if (event->hw.state & PERF_HES_STOPPED)
8204 if (event->attr.exclude_user && user_mode(regs))
8207 if (event->attr.exclude_kernel && !user_mode(regs))
8214 static int perf_swevent_match(struct perf_event *event,
8215 enum perf_type_id type,
8217 struct perf_sample_data *data,
8218 struct pt_regs *regs)
8220 if (event->attr.type != type)
8223 if (event->attr.config != event_id)
8226 if (perf_exclude_event(event, regs))
8232 static inline u64 swevent_hash(u64 type, u32 event_id)
8234 u64 val = event_id | (type << 32);
8236 return hash_64(val, SWEVENT_HLIST_BITS);
8239 static inline struct hlist_head *
8240 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8242 u64 hash = swevent_hash(type, event_id);
8244 return &hlist->heads[hash];
8247 /* For the read side: events when they trigger */
8248 static inline struct hlist_head *
8249 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8251 struct swevent_hlist *hlist;
8253 hlist = rcu_dereference(swhash->swevent_hlist);
8257 return __find_swevent_head(hlist, type, event_id);
8260 /* For the event head insertion and removal in the hlist */
8261 static inline struct hlist_head *
8262 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8264 struct swevent_hlist *hlist;
8265 u32 event_id = event->attr.config;
8266 u64 type = event->attr.type;
8269 * Event scheduling is always serialized against hlist allocation
8270 * and release. Which makes the protected version suitable here.
8271 * The context lock guarantees that.
8273 hlist = rcu_dereference_protected(swhash->swevent_hlist,
8274 lockdep_is_held(&event->ctx->lock));
8278 return __find_swevent_head(hlist, type, event_id);
8281 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8283 struct perf_sample_data *data,
8284 struct pt_regs *regs)
8286 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8287 struct perf_event *event;
8288 struct hlist_head *head;
8291 head = find_swevent_head_rcu(swhash, type, event_id);
8295 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8296 if (perf_swevent_match(event, type, event_id, data, regs))
8297 perf_swevent_event(event, nr, data, regs);
8303 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8305 int perf_swevent_get_recursion_context(void)
8307 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8309 return get_recursion_context(swhash->recursion);
8311 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8313 void perf_swevent_put_recursion_context(int rctx)
8315 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8317 put_recursion_context(swhash->recursion, rctx);
8320 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8322 struct perf_sample_data data;
8324 if (WARN_ON_ONCE(!regs))
8327 perf_sample_data_init(&data, addr, 0);
8328 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8331 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8335 preempt_disable_notrace();
8336 rctx = perf_swevent_get_recursion_context();
8337 if (unlikely(rctx < 0))
8340 ___perf_sw_event(event_id, nr, regs, addr);
8342 perf_swevent_put_recursion_context(rctx);
8344 preempt_enable_notrace();
8347 static void perf_swevent_read(struct perf_event *event)
8351 static int perf_swevent_add(struct perf_event *event, int flags)
8353 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8354 struct hw_perf_event *hwc = &event->hw;
8355 struct hlist_head *head;
8357 if (is_sampling_event(event)) {
8358 hwc->last_period = hwc->sample_period;
8359 perf_swevent_set_period(event);
8362 hwc->state = !(flags & PERF_EF_START);
8364 head = find_swevent_head(swhash, event);
8365 if (WARN_ON_ONCE(!head))
8368 hlist_add_head_rcu(&event->hlist_entry, head);
8369 perf_event_update_userpage(event);
8374 static void perf_swevent_del(struct perf_event *event, int flags)
8376 hlist_del_rcu(&event->hlist_entry);
8379 static void perf_swevent_start(struct perf_event *event, int flags)
8381 event->hw.state = 0;
8384 static void perf_swevent_stop(struct perf_event *event, int flags)
8386 event->hw.state = PERF_HES_STOPPED;
8389 /* Deref the hlist from the update side */
8390 static inline struct swevent_hlist *
8391 swevent_hlist_deref(struct swevent_htable *swhash)
8393 return rcu_dereference_protected(swhash->swevent_hlist,
8394 lockdep_is_held(&swhash->hlist_mutex));
8397 static void swevent_hlist_release(struct swevent_htable *swhash)
8399 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8404 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8405 kfree_rcu(hlist, rcu_head);
8408 static void swevent_hlist_put_cpu(int cpu)
8410 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8412 mutex_lock(&swhash->hlist_mutex);
8414 if (!--swhash->hlist_refcount)
8415 swevent_hlist_release(swhash);
8417 mutex_unlock(&swhash->hlist_mutex);
8420 static void swevent_hlist_put(void)
8424 for_each_possible_cpu(cpu)
8425 swevent_hlist_put_cpu(cpu);
8428 static int swevent_hlist_get_cpu(int cpu)
8430 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8433 mutex_lock(&swhash->hlist_mutex);
8434 if (!swevent_hlist_deref(swhash) &&
8435 cpumask_test_cpu(cpu, perf_online_mask)) {
8436 struct swevent_hlist *hlist;
8438 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8443 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8445 swhash->hlist_refcount++;
8447 mutex_unlock(&swhash->hlist_mutex);
8452 static int swevent_hlist_get(void)
8454 int err, cpu, failed_cpu;
8456 mutex_lock(&pmus_lock);
8457 for_each_possible_cpu(cpu) {
8458 err = swevent_hlist_get_cpu(cpu);
8464 mutex_unlock(&pmus_lock);
8467 for_each_possible_cpu(cpu) {
8468 if (cpu == failed_cpu)
8470 swevent_hlist_put_cpu(cpu);
8472 mutex_unlock(&pmus_lock);
8476 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8478 static void sw_perf_event_destroy(struct perf_event *event)
8480 u64 event_id = event->attr.config;
8482 WARN_ON(event->parent);
8484 static_key_slow_dec(&perf_swevent_enabled[event_id]);
8485 swevent_hlist_put();
8488 static int perf_swevent_init(struct perf_event *event)
8490 u64 event_id = event->attr.config;
8492 if (event->attr.type != PERF_TYPE_SOFTWARE)
8496 * no branch sampling for software events
8498 if (has_branch_stack(event))
8502 case PERF_COUNT_SW_CPU_CLOCK:
8503 case PERF_COUNT_SW_TASK_CLOCK:
8510 if (event_id >= PERF_COUNT_SW_MAX)
8513 if (!event->parent) {
8516 err = swevent_hlist_get();
8520 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8521 event->destroy = sw_perf_event_destroy;
8527 static struct pmu perf_swevent = {
8528 .task_ctx_nr = perf_sw_context,
8530 .capabilities = PERF_PMU_CAP_NO_NMI,
8532 .event_init = perf_swevent_init,
8533 .add = perf_swevent_add,
8534 .del = perf_swevent_del,
8535 .start = perf_swevent_start,
8536 .stop = perf_swevent_stop,
8537 .read = perf_swevent_read,
8540 #ifdef CONFIG_EVENT_TRACING
8542 static int perf_tp_filter_match(struct perf_event *event,
8543 struct perf_sample_data *data)
8545 void *record = data->raw->frag.data;
8547 /* only top level events have filters set */
8549 event = event->parent;
8551 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8556 static int perf_tp_event_match(struct perf_event *event,
8557 struct perf_sample_data *data,
8558 struct pt_regs *regs)
8560 if (event->hw.state & PERF_HES_STOPPED)
8563 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8565 if (event->attr.exclude_kernel && !user_mode(regs))
8568 if (!perf_tp_filter_match(event, data))
8574 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8575 struct trace_event_call *call, u64 count,
8576 struct pt_regs *regs, struct hlist_head *head,
8577 struct task_struct *task)
8579 if (bpf_prog_array_valid(call)) {
8580 *(struct pt_regs **)raw_data = regs;
8581 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8582 perf_swevent_put_recursion_context(rctx);
8586 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8589 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8591 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8592 struct pt_regs *regs, struct hlist_head *head, int rctx,
8593 struct task_struct *task)
8595 struct perf_sample_data data;
8596 struct perf_event *event;
8598 struct perf_raw_record raw = {
8605 perf_sample_data_init(&data, 0, 0);
8608 perf_trace_buf_update(record, event_type);
8610 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8611 if (perf_tp_event_match(event, &data, regs))
8612 perf_swevent_event(event, count, &data, regs);
8616 * If we got specified a target task, also iterate its context and
8617 * deliver this event there too.
8619 if (task && task != current) {
8620 struct perf_event_context *ctx;
8621 struct trace_entry *entry = record;
8624 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8628 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8629 if (event->cpu != smp_processor_id())
8631 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8633 if (event->attr.config != entry->type)
8635 if (perf_tp_event_match(event, &data, regs))
8636 perf_swevent_event(event, count, &data, regs);
8642 perf_swevent_put_recursion_context(rctx);
8644 EXPORT_SYMBOL_GPL(perf_tp_event);
8646 static void tp_perf_event_destroy(struct perf_event *event)
8648 perf_trace_destroy(event);
8651 static int perf_tp_event_init(struct perf_event *event)
8655 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8659 * no branch sampling for tracepoint events
8661 if (has_branch_stack(event))
8664 err = perf_trace_init(event);
8668 event->destroy = tp_perf_event_destroy;
8673 static struct pmu perf_tracepoint = {
8674 .task_ctx_nr = perf_sw_context,
8676 .event_init = perf_tp_event_init,
8677 .add = perf_trace_add,
8678 .del = perf_trace_del,
8679 .start = perf_swevent_start,
8680 .stop = perf_swevent_stop,
8681 .read = perf_swevent_read,
8684 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8686 * Flags in config, used by dynamic PMU kprobe and uprobe
8687 * The flags should match following PMU_FORMAT_ATTR().
8689 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8690 * if not set, create kprobe/uprobe
8692 * The following values specify a reference counter (or semaphore in the
8693 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8694 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8696 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8697 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
8699 enum perf_probe_config {
8700 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
8701 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8702 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8705 PMU_FORMAT_ATTR(retprobe, "config:0");
8708 #ifdef CONFIG_KPROBE_EVENTS
8709 static struct attribute *kprobe_attrs[] = {
8710 &format_attr_retprobe.attr,
8714 static struct attribute_group kprobe_format_group = {
8716 .attrs = kprobe_attrs,
8719 static const struct attribute_group *kprobe_attr_groups[] = {
8720 &kprobe_format_group,
8724 static int perf_kprobe_event_init(struct perf_event *event);
8725 static struct pmu perf_kprobe = {
8726 .task_ctx_nr = perf_sw_context,
8727 .event_init = perf_kprobe_event_init,
8728 .add = perf_trace_add,
8729 .del = perf_trace_del,
8730 .start = perf_swevent_start,
8731 .stop = perf_swevent_stop,
8732 .read = perf_swevent_read,
8733 .attr_groups = kprobe_attr_groups,
8736 static int perf_kprobe_event_init(struct perf_event *event)
8741 if (event->attr.type != perf_kprobe.type)
8744 if (!capable(CAP_SYS_ADMIN))
8748 * no branch sampling for probe events
8750 if (has_branch_stack(event))
8753 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8754 err = perf_kprobe_init(event, is_retprobe);
8758 event->destroy = perf_kprobe_destroy;
8762 #endif /* CONFIG_KPROBE_EVENTS */
8764 #ifdef CONFIG_UPROBE_EVENTS
8765 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8767 static struct attribute *uprobe_attrs[] = {
8768 &format_attr_retprobe.attr,
8769 &format_attr_ref_ctr_offset.attr,
8773 static struct attribute_group uprobe_format_group = {
8775 .attrs = uprobe_attrs,
8778 static const struct attribute_group *uprobe_attr_groups[] = {
8779 &uprobe_format_group,
8783 static int perf_uprobe_event_init(struct perf_event *event);
8784 static struct pmu perf_uprobe = {
8785 .task_ctx_nr = perf_sw_context,
8786 .event_init = perf_uprobe_event_init,
8787 .add = perf_trace_add,
8788 .del = perf_trace_del,
8789 .start = perf_swevent_start,
8790 .stop = perf_swevent_stop,
8791 .read = perf_swevent_read,
8792 .attr_groups = uprobe_attr_groups,
8795 static int perf_uprobe_event_init(struct perf_event *event)
8798 unsigned long ref_ctr_offset;
8801 if (event->attr.type != perf_uprobe.type)
8804 if (!capable(CAP_SYS_ADMIN))
8808 * no branch sampling for probe events
8810 if (has_branch_stack(event))
8813 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8814 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8815 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8819 event->destroy = perf_uprobe_destroy;
8823 #endif /* CONFIG_UPROBE_EVENTS */
8825 static inline void perf_tp_register(void)
8827 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8828 #ifdef CONFIG_KPROBE_EVENTS
8829 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8831 #ifdef CONFIG_UPROBE_EVENTS
8832 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8836 static void perf_event_free_filter(struct perf_event *event)
8838 ftrace_profile_free_filter(event);
8841 #ifdef CONFIG_BPF_SYSCALL
8842 static void bpf_overflow_handler(struct perf_event *event,
8843 struct perf_sample_data *data,
8844 struct pt_regs *regs)
8846 struct bpf_perf_event_data_kern ctx = {
8852 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8854 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8857 ret = BPF_PROG_RUN(event->prog, &ctx);
8860 __this_cpu_dec(bpf_prog_active);
8865 event->orig_overflow_handler(event, data, regs);
8868 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8870 struct bpf_prog *prog;
8872 if (event->overflow_handler_context)
8873 /* hw breakpoint or kernel counter */
8879 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8881 return PTR_ERR(prog);
8884 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8885 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8889 static void perf_event_free_bpf_handler(struct perf_event *event)
8891 struct bpf_prog *prog = event->prog;
8896 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8901 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8905 static void perf_event_free_bpf_handler(struct perf_event *event)
8911 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8912 * with perf_event_open()
8914 static inline bool perf_event_is_tracing(struct perf_event *event)
8916 if (event->pmu == &perf_tracepoint)
8918 #ifdef CONFIG_KPROBE_EVENTS
8919 if (event->pmu == &perf_kprobe)
8922 #ifdef CONFIG_UPROBE_EVENTS
8923 if (event->pmu == &perf_uprobe)
8929 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8931 bool is_kprobe, is_tracepoint, is_syscall_tp;
8932 struct bpf_prog *prog;
8935 if (!perf_event_is_tracing(event))
8936 return perf_event_set_bpf_handler(event, prog_fd);
8938 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8939 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8940 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8941 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8942 /* bpf programs can only be attached to u/kprobe or tracepoint */
8945 prog = bpf_prog_get(prog_fd);
8947 return PTR_ERR(prog);
8949 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8950 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8951 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8952 /* valid fd, but invalid bpf program type */
8957 /* Kprobe override only works for kprobes, not uprobes. */
8958 if (prog->kprobe_override &&
8959 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8964 if (is_tracepoint || is_syscall_tp) {
8965 int off = trace_event_get_offsets(event->tp_event);
8967 if (prog->aux->max_ctx_offset > off) {
8973 ret = perf_event_attach_bpf_prog(event, prog);
8979 static void perf_event_free_bpf_prog(struct perf_event *event)
8981 if (!perf_event_is_tracing(event)) {
8982 perf_event_free_bpf_handler(event);
8985 perf_event_detach_bpf_prog(event);
8990 static inline void perf_tp_register(void)
8994 static void perf_event_free_filter(struct perf_event *event)
8998 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9003 static void perf_event_free_bpf_prog(struct perf_event *event)
9006 #endif /* CONFIG_EVENT_TRACING */
9008 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9009 void perf_bp_event(struct perf_event *bp, void *data)
9011 struct perf_sample_data sample;
9012 struct pt_regs *regs = data;
9014 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9016 if (!bp->hw.state && !perf_exclude_event(bp, regs))
9017 perf_swevent_event(bp, 1, &sample, regs);
9022 * Allocate a new address filter
9024 static struct perf_addr_filter *
9025 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9027 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9028 struct perf_addr_filter *filter;
9030 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9034 INIT_LIST_HEAD(&filter->entry);
9035 list_add_tail(&filter->entry, filters);
9040 static void free_filters_list(struct list_head *filters)
9042 struct perf_addr_filter *filter, *iter;
9044 list_for_each_entry_safe(filter, iter, filters, entry) {
9045 path_put(&filter->path);
9046 list_del(&filter->entry);
9052 * Free existing address filters and optionally install new ones
9054 static void perf_addr_filters_splice(struct perf_event *event,
9055 struct list_head *head)
9057 unsigned long flags;
9060 if (!has_addr_filter(event))
9063 /* don't bother with children, they don't have their own filters */
9067 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9069 list_splice_init(&event->addr_filters.list, &list);
9071 list_splice(head, &event->addr_filters.list);
9073 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9075 free_filters_list(&list);
9079 * Scan through mm's vmas and see if one of them matches the
9080 * @filter; if so, adjust filter's address range.
9081 * Called with mm::mmap_sem down for reading.
9083 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9084 struct mm_struct *mm,
9085 struct perf_addr_filter_range *fr)
9087 struct vm_area_struct *vma;
9089 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9093 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9099 * Update event's address range filters based on the
9100 * task's existing mappings, if any.
9102 static void perf_event_addr_filters_apply(struct perf_event *event)
9104 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9105 struct task_struct *task = READ_ONCE(event->ctx->task);
9106 struct perf_addr_filter *filter;
9107 struct mm_struct *mm = NULL;
9108 unsigned int count = 0;
9109 unsigned long flags;
9112 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9113 * will stop on the parent's child_mutex that our caller is also holding
9115 if (task == TASK_TOMBSTONE)
9118 if (ifh->nr_file_filters) {
9119 mm = get_task_mm(event->ctx->task);
9123 down_read(&mm->mmap_sem);
9126 raw_spin_lock_irqsave(&ifh->lock, flags);
9127 list_for_each_entry(filter, &ifh->list, entry) {
9128 if (filter->path.dentry) {
9130 * Adjust base offset if the filter is associated to a
9131 * binary that needs to be mapped:
9133 event->addr_filter_ranges[count].start = 0;
9134 event->addr_filter_ranges[count].size = 0;
9136 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9138 event->addr_filter_ranges[count].start = filter->offset;
9139 event->addr_filter_ranges[count].size = filter->size;
9145 event->addr_filters_gen++;
9146 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9148 if (ifh->nr_file_filters) {
9149 up_read(&mm->mmap_sem);
9155 perf_event_stop(event, 1);
9159 * Address range filtering: limiting the data to certain
9160 * instruction address ranges. Filters are ioctl()ed to us from
9161 * userspace as ascii strings.
9163 * Filter string format:
9166 * where ACTION is one of the
9167 * * "filter": limit the trace to this region
9168 * * "start": start tracing from this address
9169 * * "stop": stop tracing at this address/region;
9171 * * for kernel addresses: <start address>[/<size>]
9172 * * for object files: <start address>[/<size>]@</path/to/object/file>
9174 * if <size> is not specified or is zero, the range is treated as a single
9175 * address; not valid for ACTION=="filter".
9189 IF_STATE_ACTION = 0,
9194 static const match_table_t if_tokens = {
9195 { IF_ACT_FILTER, "filter" },
9196 { IF_ACT_START, "start" },
9197 { IF_ACT_STOP, "stop" },
9198 { IF_SRC_FILE, "%u/%u@%s" },
9199 { IF_SRC_KERNEL, "%u/%u" },
9200 { IF_SRC_FILEADDR, "%u@%s" },
9201 { IF_SRC_KERNELADDR, "%u" },
9202 { IF_ACT_NONE, NULL },
9206 * Address filter string parser
9209 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9210 struct list_head *filters)
9212 struct perf_addr_filter *filter = NULL;
9213 char *start, *orig, *filename = NULL;
9214 substring_t args[MAX_OPT_ARGS];
9215 int state = IF_STATE_ACTION, token;
9216 unsigned int kernel = 0;
9219 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9223 while ((start = strsep(&fstr, " ,\n")) != NULL) {
9224 static const enum perf_addr_filter_action_t actions[] = {
9225 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9226 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9227 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9234 /* filter definition begins */
9235 if (state == IF_STATE_ACTION) {
9236 filter = perf_addr_filter_new(event, filters);
9241 token = match_token(start, if_tokens, args);
9246 if (state != IF_STATE_ACTION)
9249 filter->action = actions[token];
9250 state = IF_STATE_SOURCE;
9253 case IF_SRC_KERNELADDR:
9258 case IF_SRC_FILEADDR:
9260 if (state != IF_STATE_SOURCE)
9264 ret = kstrtoul(args[0].from, 0, &filter->offset);
9268 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9270 ret = kstrtoul(args[1].from, 0, &filter->size);
9275 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9276 int fpos = token == IF_SRC_FILE ? 2 : 1;
9278 filename = match_strdup(&args[fpos]);
9285 state = IF_STATE_END;
9293 * Filter definition is fully parsed, validate and install it.
9294 * Make sure that it doesn't contradict itself or the event's
9297 if (state == IF_STATE_END) {
9299 if (kernel && event->attr.exclude_kernel)
9303 * ACTION "filter" must have a non-zero length region
9306 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9315 * For now, we only support file-based filters
9316 * in per-task events; doing so for CPU-wide
9317 * events requires additional context switching
9318 * trickery, since same object code will be
9319 * mapped at different virtual addresses in
9320 * different processes.
9323 if (!event->ctx->task)
9324 goto fail_free_name;
9326 /* look up the path and grab its inode */
9327 ret = kern_path(filename, LOOKUP_FOLLOW,
9330 goto fail_free_name;
9336 if (!filter->path.dentry ||
9337 !S_ISREG(d_inode(filter->path.dentry)
9341 event->addr_filters.nr_file_filters++;
9344 /* ready to consume more filters */
9345 state = IF_STATE_ACTION;
9350 if (state != IF_STATE_ACTION)
9360 free_filters_list(filters);
9367 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9373 * Since this is called in perf_ioctl() path, we're already holding
9376 lockdep_assert_held(&event->ctx->mutex);
9378 if (WARN_ON_ONCE(event->parent))
9381 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9383 goto fail_clear_files;
9385 ret = event->pmu->addr_filters_validate(&filters);
9387 goto fail_free_filters;
9389 /* remove existing filters, if any */
9390 perf_addr_filters_splice(event, &filters);
9392 /* install new filters */
9393 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9398 free_filters_list(&filters);
9401 event->addr_filters.nr_file_filters = 0;
9406 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9411 filter_str = strndup_user(arg, PAGE_SIZE);
9412 if (IS_ERR(filter_str))
9413 return PTR_ERR(filter_str);
9415 #ifdef CONFIG_EVENT_TRACING
9416 if (perf_event_is_tracing(event)) {
9417 struct perf_event_context *ctx = event->ctx;
9420 * Beware, here be dragons!!
9422 * the tracepoint muck will deadlock against ctx->mutex, but
9423 * the tracepoint stuff does not actually need it. So
9424 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9425 * already have a reference on ctx.
9427 * This can result in event getting moved to a different ctx,
9428 * but that does not affect the tracepoint state.
9430 mutex_unlock(&ctx->mutex);
9431 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9432 mutex_lock(&ctx->mutex);
9435 if (has_addr_filter(event))
9436 ret = perf_event_set_addr_filter(event, filter_str);
9443 * hrtimer based swevent callback
9446 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9448 enum hrtimer_restart ret = HRTIMER_RESTART;
9449 struct perf_sample_data data;
9450 struct pt_regs *regs;
9451 struct perf_event *event;
9454 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9456 if (event->state != PERF_EVENT_STATE_ACTIVE)
9457 return HRTIMER_NORESTART;
9459 event->pmu->read(event);
9461 perf_sample_data_init(&data, 0, event->hw.last_period);
9462 regs = get_irq_regs();
9464 if (regs && !perf_exclude_event(event, regs)) {
9465 if (!(event->attr.exclude_idle && is_idle_task(current)))
9466 if (__perf_event_overflow(event, 1, &data, regs))
9467 ret = HRTIMER_NORESTART;
9470 period = max_t(u64, 10000, event->hw.sample_period);
9471 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9476 static void perf_swevent_start_hrtimer(struct perf_event *event)
9478 struct hw_perf_event *hwc = &event->hw;
9481 if (!is_sampling_event(event))
9484 period = local64_read(&hwc->period_left);
9489 local64_set(&hwc->period_left, 0);
9491 period = max_t(u64, 10000, hwc->sample_period);
9493 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9494 HRTIMER_MODE_REL_PINNED);
9497 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9499 struct hw_perf_event *hwc = &event->hw;
9501 if (is_sampling_event(event)) {
9502 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9503 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9505 hrtimer_cancel(&hwc->hrtimer);
9509 static void perf_swevent_init_hrtimer(struct perf_event *event)
9511 struct hw_perf_event *hwc = &event->hw;
9513 if (!is_sampling_event(event))
9516 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9517 hwc->hrtimer.function = perf_swevent_hrtimer;
9520 * Since hrtimers have a fixed rate, we can do a static freq->period
9521 * mapping and avoid the whole period adjust feedback stuff.
9523 if (event->attr.freq) {
9524 long freq = event->attr.sample_freq;
9526 event->attr.sample_period = NSEC_PER_SEC / freq;
9527 hwc->sample_period = event->attr.sample_period;
9528 local64_set(&hwc->period_left, hwc->sample_period);
9529 hwc->last_period = hwc->sample_period;
9530 event->attr.freq = 0;
9535 * Software event: cpu wall time clock
9538 static void cpu_clock_event_update(struct perf_event *event)
9543 now = local_clock();
9544 prev = local64_xchg(&event->hw.prev_count, now);
9545 local64_add(now - prev, &event->count);
9548 static void cpu_clock_event_start(struct perf_event *event, int flags)
9550 local64_set(&event->hw.prev_count, local_clock());
9551 perf_swevent_start_hrtimer(event);
9554 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9556 perf_swevent_cancel_hrtimer(event);
9557 cpu_clock_event_update(event);
9560 static int cpu_clock_event_add(struct perf_event *event, int flags)
9562 if (flags & PERF_EF_START)
9563 cpu_clock_event_start(event, flags);
9564 perf_event_update_userpage(event);
9569 static void cpu_clock_event_del(struct perf_event *event, int flags)
9571 cpu_clock_event_stop(event, flags);
9574 static void cpu_clock_event_read(struct perf_event *event)
9576 cpu_clock_event_update(event);
9579 static int cpu_clock_event_init(struct perf_event *event)
9581 if (event->attr.type != PERF_TYPE_SOFTWARE)
9584 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9588 * no branch sampling for software events
9590 if (has_branch_stack(event))
9593 perf_swevent_init_hrtimer(event);
9598 static struct pmu perf_cpu_clock = {
9599 .task_ctx_nr = perf_sw_context,
9601 .capabilities = PERF_PMU_CAP_NO_NMI,
9603 .event_init = cpu_clock_event_init,
9604 .add = cpu_clock_event_add,
9605 .del = cpu_clock_event_del,
9606 .start = cpu_clock_event_start,
9607 .stop = cpu_clock_event_stop,
9608 .read = cpu_clock_event_read,
9612 * Software event: task time clock
9615 static void task_clock_event_update(struct perf_event *event, u64 now)
9620 prev = local64_xchg(&event->hw.prev_count, now);
9622 local64_add(delta, &event->count);
9625 static void task_clock_event_start(struct perf_event *event, int flags)
9627 local64_set(&event->hw.prev_count, event->ctx->time);
9628 perf_swevent_start_hrtimer(event);
9631 static void task_clock_event_stop(struct perf_event *event, int flags)
9633 perf_swevent_cancel_hrtimer(event);
9634 task_clock_event_update(event, event->ctx->time);
9637 static int task_clock_event_add(struct perf_event *event, int flags)
9639 if (flags & PERF_EF_START)
9640 task_clock_event_start(event, flags);
9641 perf_event_update_userpage(event);
9646 static void task_clock_event_del(struct perf_event *event, int flags)
9648 task_clock_event_stop(event, PERF_EF_UPDATE);
9651 static void task_clock_event_read(struct perf_event *event)
9653 u64 now = perf_clock();
9654 u64 delta = now - event->ctx->timestamp;
9655 u64 time = event->ctx->time + delta;
9657 task_clock_event_update(event, time);
9660 static int task_clock_event_init(struct perf_event *event)
9662 if (event->attr.type != PERF_TYPE_SOFTWARE)
9665 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9669 * no branch sampling for software events
9671 if (has_branch_stack(event))
9674 perf_swevent_init_hrtimer(event);
9679 static struct pmu perf_task_clock = {
9680 .task_ctx_nr = perf_sw_context,
9682 .capabilities = PERF_PMU_CAP_NO_NMI,
9684 .event_init = task_clock_event_init,
9685 .add = task_clock_event_add,
9686 .del = task_clock_event_del,
9687 .start = task_clock_event_start,
9688 .stop = task_clock_event_stop,
9689 .read = task_clock_event_read,
9692 static void perf_pmu_nop_void(struct pmu *pmu)
9696 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9700 static int perf_pmu_nop_int(struct pmu *pmu)
9705 static int perf_event_nop_int(struct perf_event *event, u64 value)
9710 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9712 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9714 __this_cpu_write(nop_txn_flags, flags);
9716 if (flags & ~PERF_PMU_TXN_ADD)
9719 perf_pmu_disable(pmu);
9722 static int perf_pmu_commit_txn(struct pmu *pmu)
9724 unsigned int flags = __this_cpu_read(nop_txn_flags);
9726 __this_cpu_write(nop_txn_flags, 0);
9728 if (flags & ~PERF_PMU_TXN_ADD)
9731 perf_pmu_enable(pmu);
9735 static void perf_pmu_cancel_txn(struct pmu *pmu)
9737 unsigned int flags = __this_cpu_read(nop_txn_flags);
9739 __this_cpu_write(nop_txn_flags, 0);
9741 if (flags & ~PERF_PMU_TXN_ADD)
9744 perf_pmu_enable(pmu);
9747 static int perf_event_idx_default(struct perf_event *event)
9753 * Ensures all contexts with the same task_ctx_nr have the same
9754 * pmu_cpu_context too.
9756 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9763 list_for_each_entry(pmu, &pmus, entry) {
9764 if (pmu->task_ctx_nr == ctxn)
9765 return pmu->pmu_cpu_context;
9771 static void free_pmu_context(struct pmu *pmu)
9774 * Static contexts such as perf_sw_context have a global lifetime
9775 * and may be shared between different PMUs. Avoid freeing them
9776 * when a single PMU is going away.
9778 if (pmu->task_ctx_nr > perf_invalid_context)
9781 free_percpu(pmu->pmu_cpu_context);
9785 * Let userspace know that this PMU supports address range filtering:
9787 static ssize_t nr_addr_filters_show(struct device *dev,
9788 struct device_attribute *attr,
9791 struct pmu *pmu = dev_get_drvdata(dev);
9793 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9795 DEVICE_ATTR_RO(nr_addr_filters);
9797 static struct idr pmu_idr;
9800 type_show(struct device *dev, struct device_attribute *attr, char *page)
9802 struct pmu *pmu = dev_get_drvdata(dev);
9804 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9806 static DEVICE_ATTR_RO(type);
9809 perf_event_mux_interval_ms_show(struct device *dev,
9810 struct device_attribute *attr,
9813 struct pmu *pmu = dev_get_drvdata(dev);
9815 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9818 static DEFINE_MUTEX(mux_interval_mutex);
9821 perf_event_mux_interval_ms_store(struct device *dev,
9822 struct device_attribute *attr,
9823 const char *buf, size_t count)
9825 struct pmu *pmu = dev_get_drvdata(dev);
9826 int timer, cpu, ret;
9828 ret = kstrtoint(buf, 0, &timer);
9835 /* same value, noting to do */
9836 if (timer == pmu->hrtimer_interval_ms)
9839 mutex_lock(&mux_interval_mutex);
9840 pmu->hrtimer_interval_ms = timer;
9842 /* update all cpuctx for this PMU */
9844 for_each_online_cpu(cpu) {
9845 struct perf_cpu_context *cpuctx;
9846 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9847 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9849 cpu_function_call(cpu,
9850 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9853 mutex_unlock(&mux_interval_mutex);
9857 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9859 static struct attribute *pmu_dev_attrs[] = {
9860 &dev_attr_type.attr,
9861 &dev_attr_perf_event_mux_interval_ms.attr,
9864 ATTRIBUTE_GROUPS(pmu_dev);
9866 static int pmu_bus_running;
9867 static struct bus_type pmu_bus = {
9868 .name = "event_source",
9869 .dev_groups = pmu_dev_groups,
9872 static void pmu_dev_release(struct device *dev)
9877 static int pmu_dev_alloc(struct pmu *pmu)
9881 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9885 pmu->dev->groups = pmu->attr_groups;
9886 device_initialize(pmu->dev);
9887 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9891 dev_set_drvdata(pmu->dev, pmu);
9892 pmu->dev->bus = &pmu_bus;
9893 pmu->dev->release = pmu_dev_release;
9894 ret = device_add(pmu->dev);
9898 /* For PMUs with address filters, throw in an extra attribute: */
9899 if (pmu->nr_addr_filters)
9900 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9905 if (pmu->attr_update)
9906 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9915 device_del(pmu->dev);
9918 put_device(pmu->dev);
9922 static struct lock_class_key cpuctx_mutex;
9923 static struct lock_class_key cpuctx_lock;
9925 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9929 mutex_lock(&pmus_lock);
9931 pmu->pmu_disable_count = alloc_percpu(int);
9932 if (!pmu->pmu_disable_count)
9941 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9949 if (pmu_bus_running) {
9950 ret = pmu_dev_alloc(pmu);
9956 if (pmu->task_ctx_nr == perf_hw_context) {
9957 static int hw_context_taken = 0;
9960 * Other than systems with heterogeneous CPUs, it never makes
9961 * sense for two PMUs to share perf_hw_context. PMUs which are
9962 * uncore must use perf_invalid_context.
9964 if (WARN_ON_ONCE(hw_context_taken &&
9965 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9966 pmu->task_ctx_nr = perf_invalid_context;
9968 hw_context_taken = 1;
9971 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9972 if (pmu->pmu_cpu_context)
9973 goto got_cpu_context;
9976 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9977 if (!pmu->pmu_cpu_context)
9980 for_each_possible_cpu(cpu) {
9981 struct perf_cpu_context *cpuctx;
9983 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9984 __perf_event_init_context(&cpuctx->ctx);
9985 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9986 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9987 cpuctx->ctx.pmu = pmu;
9988 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9990 __perf_mux_hrtimer_init(cpuctx, cpu);
9994 if (!pmu->start_txn) {
9995 if (pmu->pmu_enable) {
9997 * If we have pmu_enable/pmu_disable calls, install
9998 * transaction stubs that use that to try and batch
9999 * hardware accesses.
10001 pmu->start_txn = perf_pmu_start_txn;
10002 pmu->commit_txn = perf_pmu_commit_txn;
10003 pmu->cancel_txn = perf_pmu_cancel_txn;
10005 pmu->start_txn = perf_pmu_nop_txn;
10006 pmu->commit_txn = perf_pmu_nop_int;
10007 pmu->cancel_txn = perf_pmu_nop_void;
10011 if (!pmu->pmu_enable) {
10012 pmu->pmu_enable = perf_pmu_nop_void;
10013 pmu->pmu_disable = perf_pmu_nop_void;
10016 if (!pmu->check_period)
10017 pmu->check_period = perf_event_nop_int;
10019 if (!pmu->event_idx)
10020 pmu->event_idx = perf_event_idx_default;
10022 list_add_rcu(&pmu->entry, &pmus);
10023 atomic_set(&pmu->exclusive_cnt, 0);
10026 mutex_unlock(&pmus_lock);
10031 device_del(pmu->dev);
10032 put_device(pmu->dev);
10035 if (pmu->type >= PERF_TYPE_MAX)
10036 idr_remove(&pmu_idr, pmu->type);
10039 free_percpu(pmu->pmu_disable_count);
10042 EXPORT_SYMBOL_GPL(perf_pmu_register);
10044 void perf_pmu_unregister(struct pmu *pmu)
10046 mutex_lock(&pmus_lock);
10047 list_del_rcu(&pmu->entry);
10050 * We dereference the pmu list under both SRCU and regular RCU, so
10051 * synchronize against both of those.
10053 synchronize_srcu(&pmus_srcu);
10056 free_percpu(pmu->pmu_disable_count);
10057 if (pmu->type >= PERF_TYPE_MAX)
10058 idr_remove(&pmu_idr, pmu->type);
10059 if (pmu_bus_running) {
10060 if (pmu->nr_addr_filters)
10061 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10062 device_del(pmu->dev);
10063 put_device(pmu->dev);
10065 free_pmu_context(pmu);
10066 mutex_unlock(&pmus_lock);
10068 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10070 static inline bool has_extended_regs(struct perf_event *event)
10072 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10073 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10076 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10078 struct perf_event_context *ctx = NULL;
10081 if (!try_module_get(pmu->module))
10085 * A number of pmu->event_init() methods iterate the sibling_list to,
10086 * for example, validate if the group fits on the PMU. Therefore,
10087 * if this is a sibling event, acquire the ctx->mutex to protect
10088 * the sibling_list.
10090 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10092 * This ctx->mutex can nest when we're called through
10093 * inheritance. See the perf_event_ctx_lock_nested() comment.
10095 ctx = perf_event_ctx_lock_nested(event->group_leader,
10096 SINGLE_DEPTH_NESTING);
10101 ret = pmu->event_init(event);
10104 perf_event_ctx_unlock(event->group_leader, ctx);
10107 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10108 has_extended_regs(event))
10111 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10112 event_has_any_exclude_flag(event))
10115 if (ret && event->destroy)
10116 event->destroy(event);
10120 module_put(pmu->module);
10125 static struct pmu *perf_init_event(struct perf_event *event)
10131 idx = srcu_read_lock(&pmus_srcu);
10133 /* Try parent's PMU first: */
10134 if (event->parent && event->parent->pmu) {
10135 pmu = event->parent->pmu;
10136 ret = perf_try_init_event(pmu, event);
10142 pmu = idr_find(&pmu_idr, event->attr.type);
10145 ret = perf_try_init_event(pmu, event);
10147 pmu = ERR_PTR(ret);
10151 list_for_each_entry_rcu(pmu, &pmus, entry) {
10152 ret = perf_try_init_event(pmu, event);
10156 if (ret != -ENOENT) {
10157 pmu = ERR_PTR(ret);
10161 pmu = ERR_PTR(-ENOENT);
10163 srcu_read_unlock(&pmus_srcu, idx);
10168 static void attach_sb_event(struct perf_event *event)
10170 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10172 raw_spin_lock(&pel->lock);
10173 list_add_rcu(&event->sb_list, &pel->list);
10174 raw_spin_unlock(&pel->lock);
10178 * We keep a list of all !task (and therefore per-cpu) events
10179 * that need to receive side-band records.
10181 * This avoids having to scan all the various PMU per-cpu contexts
10182 * looking for them.
10184 static void account_pmu_sb_event(struct perf_event *event)
10186 if (is_sb_event(event))
10187 attach_sb_event(event);
10190 static void account_event_cpu(struct perf_event *event, int cpu)
10195 if (is_cgroup_event(event))
10196 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10199 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10200 static void account_freq_event_nohz(void)
10202 #ifdef CONFIG_NO_HZ_FULL
10203 /* Lock so we don't race with concurrent unaccount */
10204 spin_lock(&nr_freq_lock);
10205 if (atomic_inc_return(&nr_freq_events) == 1)
10206 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10207 spin_unlock(&nr_freq_lock);
10211 static void account_freq_event(void)
10213 if (tick_nohz_full_enabled())
10214 account_freq_event_nohz();
10216 atomic_inc(&nr_freq_events);
10220 static void account_event(struct perf_event *event)
10227 if (event->attach_state & PERF_ATTACH_TASK)
10229 if (event->attr.mmap || event->attr.mmap_data)
10230 atomic_inc(&nr_mmap_events);
10231 if (event->attr.comm)
10232 atomic_inc(&nr_comm_events);
10233 if (event->attr.namespaces)
10234 atomic_inc(&nr_namespaces_events);
10235 if (event->attr.task)
10236 atomic_inc(&nr_task_events);
10237 if (event->attr.freq)
10238 account_freq_event();
10239 if (event->attr.context_switch) {
10240 atomic_inc(&nr_switch_events);
10243 if (has_branch_stack(event))
10245 if (is_cgroup_event(event))
10247 if (event->attr.ksymbol)
10248 atomic_inc(&nr_ksymbol_events);
10249 if (event->attr.bpf_event)
10250 atomic_inc(&nr_bpf_events);
10254 * We need the mutex here because static_branch_enable()
10255 * must complete *before* the perf_sched_count increment
10258 if (atomic_inc_not_zero(&perf_sched_count))
10261 mutex_lock(&perf_sched_mutex);
10262 if (!atomic_read(&perf_sched_count)) {
10263 static_branch_enable(&perf_sched_events);
10265 * Guarantee that all CPUs observe they key change and
10266 * call the perf scheduling hooks before proceeding to
10267 * install events that need them.
10272 * Now that we have waited for the sync_sched(), allow further
10273 * increments to by-pass the mutex.
10275 atomic_inc(&perf_sched_count);
10276 mutex_unlock(&perf_sched_mutex);
10280 account_event_cpu(event, event->cpu);
10282 account_pmu_sb_event(event);
10286 * Allocate and initialize an event structure
10288 static struct perf_event *
10289 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10290 struct task_struct *task,
10291 struct perf_event *group_leader,
10292 struct perf_event *parent_event,
10293 perf_overflow_handler_t overflow_handler,
10294 void *context, int cgroup_fd)
10297 struct perf_event *event;
10298 struct hw_perf_event *hwc;
10299 long err = -EINVAL;
10301 if ((unsigned)cpu >= nr_cpu_ids) {
10302 if (!task || cpu != -1)
10303 return ERR_PTR(-EINVAL);
10306 event = kzalloc(sizeof(*event), GFP_KERNEL);
10308 return ERR_PTR(-ENOMEM);
10311 * Single events are their own group leaders, with an
10312 * empty sibling list:
10315 group_leader = event;
10317 mutex_init(&event->child_mutex);
10318 INIT_LIST_HEAD(&event->child_list);
10320 INIT_LIST_HEAD(&event->event_entry);
10321 INIT_LIST_HEAD(&event->sibling_list);
10322 INIT_LIST_HEAD(&event->active_list);
10323 init_event_group(event);
10324 INIT_LIST_HEAD(&event->rb_entry);
10325 INIT_LIST_HEAD(&event->active_entry);
10326 INIT_LIST_HEAD(&event->addr_filters.list);
10327 INIT_HLIST_NODE(&event->hlist_entry);
10330 init_waitqueue_head(&event->waitq);
10331 event->pending_disable = -1;
10332 init_irq_work(&event->pending, perf_pending_event);
10334 mutex_init(&event->mmap_mutex);
10335 raw_spin_lock_init(&event->addr_filters.lock);
10337 atomic_long_set(&event->refcount, 1);
10339 event->attr = *attr;
10340 event->group_leader = group_leader;
10344 event->parent = parent_event;
10346 event->ns = get_pid_ns(task_active_pid_ns(current));
10347 event->id = atomic64_inc_return(&perf_event_id);
10349 event->state = PERF_EVENT_STATE_INACTIVE;
10352 event->attach_state = PERF_ATTACH_TASK;
10354 * XXX pmu::event_init needs to know what task to account to
10355 * and we cannot use the ctx information because we need the
10356 * pmu before we get a ctx.
10358 get_task_struct(task);
10359 event->hw.target = task;
10362 event->clock = &local_clock;
10364 event->clock = parent_event->clock;
10366 if (!overflow_handler && parent_event) {
10367 overflow_handler = parent_event->overflow_handler;
10368 context = parent_event->overflow_handler_context;
10369 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10370 if (overflow_handler == bpf_overflow_handler) {
10371 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10373 if (IS_ERR(prog)) {
10374 err = PTR_ERR(prog);
10377 event->prog = prog;
10378 event->orig_overflow_handler =
10379 parent_event->orig_overflow_handler;
10384 if (overflow_handler) {
10385 event->overflow_handler = overflow_handler;
10386 event->overflow_handler_context = context;
10387 } else if (is_write_backward(event)){
10388 event->overflow_handler = perf_event_output_backward;
10389 event->overflow_handler_context = NULL;
10391 event->overflow_handler = perf_event_output_forward;
10392 event->overflow_handler_context = NULL;
10395 perf_event__state_init(event);
10400 hwc->sample_period = attr->sample_period;
10401 if (attr->freq && attr->sample_freq)
10402 hwc->sample_period = 1;
10403 hwc->last_period = hwc->sample_period;
10405 local64_set(&hwc->period_left, hwc->sample_period);
10408 * We currently do not support PERF_SAMPLE_READ on inherited events.
10409 * See perf_output_read().
10411 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10414 if (!has_branch_stack(event))
10415 event->attr.branch_sample_type = 0;
10417 if (cgroup_fd != -1) {
10418 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10423 pmu = perf_init_event(event);
10425 err = PTR_ERR(pmu);
10429 err = exclusive_event_init(event);
10433 if (has_addr_filter(event)) {
10434 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10435 sizeof(struct perf_addr_filter_range),
10437 if (!event->addr_filter_ranges) {
10443 * Clone the parent's vma offsets: they are valid until exec()
10444 * even if the mm is not shared with the parent.
10446 if (event->parent) {
10447 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10449 raw_spin_lock_irq(&ifh->lock);
10450 memcpy(event->addr_filter_ranges,
10451 event->parent->addr_filter_ranges,
10452 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10453 raw_spin_unlock_irq(&ifh->lock);
10456 /* force hw sync on the address filters */
10457 event->addr_filters_gen = 1;
10460 if (!event->parent) {
10461 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10462 err = get_callchain_buffers(attr->sample_max_stack);
10464 goto err_addr_filters;
10468 /* symmetric to unaccount_event() in _free_event() */
10469 account_event(event);
10474 kfree(event->addr_filter_ranges);
10477 exclusive_event_destroy(event);
10480 if (event->destroy)
10481 event->destroy(event);
10482 module_put(pmu->module);
10484 if (is_cgroup_event(event))
10485 perf_detach_cgroup(event);
10487 put_pid_ns(event->ns);
10488 if (event->hw.target)
10489 put_task_struct(event->hw.target);
10492 return ERR_PTR(err);
10495 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10496 struct perf_event_attr *attr)
10501 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10505 * zero the full structure, so that a short copy will be nice.
10507 memset(attr, 0, sizeof(*attr));
10509 ret = get_user(size, &uattr->size);
10513 if (size > PAGE_SIZE) /* silly large */
10516 if (!size) /* abi compat */
10517 size = PERF_ATTR_SIZE_VER0;
10519 if (size < PERF_ATTR_SIZE_VER0)
10523 * If we're handed a bigger struct than we know of,
10524 * ensure all the unknown bits are 0 - i.e. new
10525 * user-space does not rely on any kernel feature
10526 * extensions we dont know about yet.
10528 if (size > sizeof(*attr)) {
10529 unsigned char __user *addr;
10530 unsigned char __user *end;
10533 addr = (void __user *)uattr + sizeof(*attr);
10534 end = (void __user *)uattr + size;
10536 for (; addr < end; addr++) {
10537 ret = get_user(val, addr);
10543 size = sizeof(*attr);
10546 ret = copy_from_user(attr, uattr, size);
10552 if (attr->__reserved_1)
10555 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10558 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10561 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10562 u64 mask = attr->branch_sample_type;
10564 /* only using defined bits */
10565 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10568 /* at least one branch bit must be set */
10569 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10572 /* propagate priv level, when not set for branch */
10573 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10575 /* exclude_kernel checked on syscall entry */
10576 if (!attr->exclude_kernel)
10577 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10579 if (!attr->exclude_user)
10580 mask |= PERF_SAMPLE_BRANCH_USER;
10582 if (!attr->exclude_hv)
10583 mask |= PERF_SAMPLE_BRANCH_HV;
10585 * adjust user setting (for HW filter setup)
10587 attr->branch_sample_type = mask;
10589 /* privileged levels capture (kernel, hv): check permissions */
10590 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10591 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10595 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10596 ret = perf_reg_validate(attr->sample_regs_user);
10601 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10602 if (!arch_perf_have_user_stack_dump())
10606 * We have __u32 type for the size, but so far
10607 * we can only use __u16 as maximum due to the
10608 * __u16 sample size limit.
10610 if (attr->sample_stack_user >= USHRT_MAX)
10612 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10616 if (!attr->sample_max_stack)
10617 attr->sample_max_stack = sysctl_perf_event_max_stack;
10619 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10620 ret = perf_reg_validate(attr->sample_regs_intr);
10625 put_user(sizeof(*attr), &uattr->size);
10631 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10633 struct ring_buffer *rb = NULL;
10639 /* don't allow circular references */
10640 if (event == output_event)
10644 * Don't allow cross-cpu buffers
10646 if (output_event->cpu != event->cpu)
10650 * If its not a per-cpu rb, it must be the same task.
10652 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10656 * Mixing clocks in the same buffer is trouble you don't need.
10658 if (output_event->clock != event->clock)
10662 * Either writing ring buffer from beginning or from end.
10663 * Mixing is not allowed.
10665 if (is_write_backward(output_event) != is_write_backward(event))
10669 * If both events generate aux data, they must be on the same PMU
10671 if (has_aux(event) && has_aux(output_event) &&
10672 event->pmu != output_event->pmu)
10676 mutex_lock(&event->mmap_mutex);
10677 /* Can't redirect output if we've got an active mmap() */
10678 if (atomic_read(&event->mmap_count))
10681 if (output_event) {
10682 /* get the rb we want to redirect to */
10683 rb = ring_buffer_get(output_event);
10688 ring_buffer_attach(event, rb);
10692 mutex_unlock(&event->mmap_mutex);
10698 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10704 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10707 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10709 bool nmi_safe = false;
10712 case CLOCK_MONOTONIC:
10713 event->clock = &ktime_get_mono_fast_ns;
10717 case CLOCK_MONOTONIC_RAW:
10718 event->clock = &ktime_get_raw_fast_ns;
10722 case CLOCK_REALTIME:
10723 event->clock = &ktime_get_real_ns;
10726 case CLOCK_BOOTTIME:
10727 event->clock = &ktime_get_boottime_ns;
10731 event->clock = &ktime_get_clocktai_ns;
10738 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10745 * Variation on perf_event_ctx_lock_nested(), except we take two context
10748 static struct perf_event_context *
10749 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10750 struct perf_event_context *ctx)
10752 struct perf_event_context *gctx;
10756 gctx = READ_ONCE(group_leader->ctx);
10757 if (!refcount_inc_not_zero(&gctx->refcount)) {
10763 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10765 if (group_leader->ctx != gctx) {
10766 mutex_unlock(&ctx->mutex);
10767 mutex_unlock(&gctx->mutex);
10776 * sys_perf_event_open - open a performance event, associate it to a task/cpu
10778 * @attr_uptr: event_id type attributes for monitoring/sampling
10781 * @group_fd: group leader event fd
10783 SYSCALL_DEFINE5(perf_event_open,
10784 struct perf_event_attr __user *, attr_uptr,
10785 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10787 struct perf_event *group_leader = NULL, *output_event = NULL;
10788 struct perf_event *event, *sibling;
10789 struct perf_event_attr attr;
10790 struct perf_event_context *ctx, *uninitialized_var(gctx);
10791 struct file *event_file = NULL;
10792 struct fd group = {NULL, 0};
10793 struct task_struct *task = NULL;
10796 int move_group = 0;
10798 int f_flags = O_RDWR;
10799 int cgroup_fd = -1;
10801 /* for future expandability... */
10802 if (flags & ~PERF_FLAG_ALL)
10805 err = perf_copy_attr(attr_uptr, &attr);
10809 if (!attr.exclude_kernel) {
10810 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10814 if (attr.namespaces) {
10815 if (!capable(CAP_SYS_ADMIN))
10820 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10823 if (attr.sample_period & (1ULL << 63))
10827 /* Only privileged users can get physical addresses */
10828 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10829 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10833 * In cgroup mode, the pid argument is used to pass the fd
10834 * opened to the cgroup directory in cgroupfs. The cpu argument
10835 * designates the cpu on which to monitor threads from that
10838 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10841 if (flags & PERF_FLAG_FD_CLOEXEC)
10842 f_flags |= O_CLOEXEC;
10844 event_fd = get_unused_fd_flags(f_flags);
10848 if (group_fd != -1) {
10849 err = perf_fget_light(group_fd, &group);
10852 group_leader = group.file->private_data;
10853 if (flags & PERF_FLAG_FD_OUTPUT)
10854 output_event = group_leader;
10855 if (flags & PERF_FLAG_FD_NO_GROUP)
10856 group_leader = NULL;
10859 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10860 task = find_lively_task_by_vpid(pid);
10861 if (IS_ERR(task)) {
10862 err = PTR_ERR(task);
10867 if (task && group_leader &&
10868 group_leader->attr.inherit != attr.inherit) {
10874 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10879 * Reuse ptrace permission checks for now.
10881 * We must hold cred_guard_mutex across this and any potential
10882 * perf_install_in_context() call for this new event to
10883 * serialize against exec() altering our credentials (and the
10884 * perf_event_exit_task() that could imply).
10887 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10891 if (flags & PERF_FLAG_PID_CGROUP)
10894 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10895 NULL, NULL, cgroup_fd);
10896 if (IS_ERR(event)) {
10897 err = PTR_ERR(event);
10901 if (is_sampling_event(event)) {
10902 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10909 * Special case software events and allow them to be part of
10910 * any hardware group.
10914 if (attr.use_clockid) {
10915 err = perf_event_set_clock(event, attr.clockid);
10920 if (pmu->task_ctx_nr == perf_sw_context)
10921 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10923 if (group_leader) {
10924 if (is_software_event(event) &&
10925 !in_software_context(group_leader)) {
10927 * If the event is a sw event, but the group_leader
10928 * is on hw context.
10930 * Allow the addition of software events to hw
10931 * groups, this is safe because software events
10932 * never fail to schedule.
10934 pmu = group_leader->ctx->pmu;
10935 } else if (!is_software_event(event) &&
10936 is_software_event(group_leader) &&
10937 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10939 * In case the group is a pure software group, and we
10940 * try to add a hardware event, move the whole group to
10941 * the hardware context.
10948 * Get the target context (task or percpu):
10950 ctx = find_get_context(pmu, task, event);
10952 err = PTR_ERR(ctx);
10957 * Look up the group leader (we will attach this event to it):
10959 if (group_leader) {
10963 * Do not allow a recursive hierarchy (this new sibling
10964 * becoming part of another group-sibling):
10966 if (group_leader->group_leader != group_leader)
10969 /* All events in a group should have the same clock */
10970 if (group_leader->clock != event->clock)
10974 * Make sure we're both events for the same CPU;
10975 * grouping events for different CPUs is broken; since
10976 * you can never concurrently schedule them anyhow.
10978 if (group_leader->cpu != event->cpu)
10982 * Make sure we're both on the same task, or both
10985 if (group_leader->ctx->task != ctx->task)
10989 * Do not allow to attach to a group in a different task
10990 * or CPU context. If we're moving SW events, we'll fix
10991 * this up later, so allow that.
10993 if (!move_group && group_leader->ctx != ctx)
10997 * Only a group leader can be exclusive or pinned
10999 if (attr.exclusive || attr.pinned)
11003 if (output_event) {
11004 err = perf_event_set_output(event, output_event);
11009 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11011 if (IS_ERR(event_file)) {
11012 err = PTR_ERR(event_file);
11018 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11020 if (gctx->task == TASK_TOMBSTONE) {
11026 * Check if we raced against another sys_perf_event_open() call
11027 * moving the software group underneath us.
11029 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11031 * If someone moved the group out from under us, check
11032 * if this new event wound up on the same ctx, if so
11033 * its the regular !move_group case, otherwise fail.
11039 perf_event_ctx_unlock(group_leader, gctx);
11045 * Failure to create exclusive events returns -EBUSY.
11048 if (!exclusive_event_installable(group_leader, ctx))
11051 for_each_sibling_event(sibling, group_leader) {
11052 if (!exclusive_event_installable(sibling, ctx))
11056 mutex_lock(&ctx->mutex);
11059 if (ctx->task == TASK_TOMBSTONE) {
11064 if (!perf_event_validate_size(event)) {
11071 * Check if the @cpu we're creating an event for is online.
11073 * We use the perf_cpu_context::ctx::mutex to serialize against
11074 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11076 struct perf_cpu_context *cpuctx =
11077 container_of(ctx, struct perf_cpu_context, ctx);
11079 if (!cpuctx->online) {
11087 * Must be under the same ctx::mutex as perf_install_in_context(),
11088 * because we need to serialize with concurrent event creation.
11090 if (!exclusive_event_installable(event, ctx)) {
11095 WARN_ON_ONCE(ctx->parent_ctx);
11098 * This is the point on no return; we cannot fail hereafter. This is
11099 * where we start modifying current state.
11104 * See perf_event_ctx_lock() for comments on the details
11105 * of swizzling perf_event::ctx.
11107 perf_remove_from_context(group_leader, 0);
11110 for_each_sibling_event(sibling, group_leader) {
11111 perf_remove_from_context(sibling, 0);
11116 * Wait for everybody to stop referencing the events through
11117 * the old lists, before installing it on new lists.
11122 * Install the group siblings before the group leader.
11124 * Because a group leader will try and install the entire group
11125 * (through the sibling list, which is still in-tact), we can
11126 * end up with siblings installed in the wrong context.
11128 * By installing siblings first we NO-OP because they're not
11129 * reachable through the group lists.
11131 for_each_sibling_event(sibling, group_leader) {
11132 perf_event__state_init(sibling);
11133 perf_install_in_context(ctx, sibling, sibling->cpu);
11138 * Removing from the context ends up with disabled
11139 * event. What we want here is event in the initial
11140 * startup state, ready to be add into new context.
11142 perf_event__state_init(group_leader);
11143 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11148 * Precalculate sample_data sizes; do while holding ctx::mutex such
11149 * that we're serialized against further additions and before
11150 * perf_install_in_context() which is the point the event is active and
11151 * can use these values.
11153 perf_event__header_size(event);
11154 perf_event__id_header_size(event);
11156 event->owner = current;
11158 perf_install_in_context(ctx, event, event->cpu);
11159 perf_unpin_context(ctx);
11162 perf_event_ctx_unlock(group_leader, gctx);
11163 mutex_unlock(&ctx->mutex);
11166 mutex_unlock(&task->signal->cred_guard_mutex);
11167 put_task_struct(task);
11170 mutex_lock(¤t->perf_event_mutex);
11171 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
11172 mutex_unlock(¤t->perf_event_mutex);
11175 * Drop the reference on the group_event after placing the
11176 * new event on the sibling_list. This ensures destruction
11177 * of the group leader will find the pointer to itself in
11178 * perf_group_detach().
11181 fd_install(event_fd, event_file);
11186 perf_event_ctx_unlock(group_leader, gctx);
11187 mutex_unlock(&ctx->mutex);
11191 perf_unpin_context(ctx);
11195 * If event_file is set, the fput() above will have called ->release()
11196 * and that will take care of freeing the event.
11202 mutex_unlock(&task->signal->cred_guard_mutex);
11205 put_task_struct(task);
11209 put_unused_fd(event_fd);
11214 * perf_event_create_kernel_counter
11216 * @attr: attributes of the counter to create
11217 * @cpu: cpu in which the counter is bound
11218 * @task: task to profile (NULL for percpu)
11220 struct perf_event *
11221 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11222 struct task_struct *task,
11223 perf_overflow_handler_t overflow_handler,
11226 struct perf_event_context *ctx;
11227 struct perf_event *event;
11231 * Get the target context (task or percpu):
11234 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11235 overflow_handler, context, -1);
11236 if (IS_ERR(event)) {
11237 err = PTR_ERR(event);
11241 /* Mark owner so we could distinguish it from user events. */
11242 event->owner = TASK_TOMBSTONE;
11244 ctx = find_get_context(event->pmu, task, event);
11246 err = PTR_ERR(ctx);
11250 WARN_ON_ONCE(ctx->parent_ctx);
11251 mutex_lock(&ctx->mutex);
11252 if (ctx->task == TASK_TOMBSTONE) {
11259 * Check if the @cpu we're creating an event for is online.
11261 * We use the perf_cpu_context::ctx::mutex to serialize against
11262 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11264 struct perf_cpu_context *cpuctx =
11265 container_of(ctx, struct perf_cpu_context, ctx);
11266 if (!cpuctx->online) {
11272 if (!exclusive_event_installable(event, ctx)) {
11277 perf_install_in_context(ctx, event, cpu);
11278 perf_unpin_context(ctx);
11279 mutex_unlock(&ctx->mutex);
11284 mutex_unlock(&ctx->mutex);
11285 perf_unpin_context(ctx);
11290 return ERR_PTR(err);
11292 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11294 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11296 struct perf_event_context *src_ctx;
11297 struct perf_event_context *dst_ctx;
11298 struct perf_event *event, *tmp;
11301 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11302 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11305 * See perf_event_ctx_lock() for comments on the details
11306 * of swizzling perf_event::ctx.
11308 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11309 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11311 perf_remove_from_context(event, 0);
11312 unaccount_event_cpu(event, src_cpu);
11314 list_add(&event->migrate_entry, &events);
11318 * Wait for the events to quiesce before re-instating them.
11323 * Re-instate events in 2 passes.
11325 * Skip over group leaders and only install siblings on this first
11326 * pass, siblings will not get enabled without a leader, however a
11327 * leader will enable its siblings, even if those are still on the old
11330 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11331 if (event->group_leader == event)
11334 list_del(&event->migrate_entry);
11335 if (event->state >= PERF_EVENT_STATE_OFF)
11336 event->state = PERF_EVENT_STATE_INACTIVE;
11337 account_event_cpu(event, dst_cpu);
11338 perf_install_in_context(dst_ctx, event, dst_cpu);
11343 * Once all the siblings are setup properly, install the group leaders
11346 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11347 list_del(&event->migrate_entry);
11348 if (event->state >= PERF_EVENT_STATE_OFF)
11349 event->state = PERF_EVENT_STATE_INACTIVE;
11350 account_event_cpu(event, dst_cpu);
11351 perf_install_in_context(dst_ctx, event, dst_cpu);
11354 mutex_unlock(&dst_ctx->mutex);
11355 mutex_unlock(&src_ctx->mutex);
11357 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11359 static void sync_child_event(struct perf_event *child_event,
11360 struct task_struct *child)
11362 struct perf_event *parent_event = child_event->parent;
11365 if (child_event->attr.inherit_stat)
11366 perf_event_read_event(child_event, child);
11368 child_val = perf_event_count(child_event);
11371 * Add back the child's count to the parent's count:
11373 atomic64_add(child_val, &parent_event->child_count);
11374 atomic64_add(child_event->total_time_enabled,
11375 &parent_event->child_total_time_enabled);
11376 atomic64_add(child_event->total_time_running,
11377 &parent_event->child_total_time_running);
11381 perf_event_exit_event(struct perf_event *child_event,
11382 struct perf_event_context *child_ctx,
11383 struct task_struct *child)
11385 struct perf_event *parent_event = child_event->parent;
11388 * Do not destroy the 'original' grouping; because of the context
11389 * switch optimization the original events could've ended up in a
11390 * random child task.
11392 * If we were to destroy the original group, all group related
11393 * operations would cease to function properly after this random
11396 * Do destroy all inherited groups, we don't care about those
11397 * and being thorough is better.
11399 raw_spin_lock_irq(&child_ctx->lock);
11400 WARN_ON_ONCE(child_ctx->is_active);
11403 perf_group_detach(child_event);
11404 list_del_event(child_event, child_ctx);
11405 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11406 raw_spin_unlock_irq(&child_ctx->lock);
11409 * Parent events are governed by their filedesc, retain them.
11411 if (!parent_event) {
11412 perf_event_wakeup(child_event);
11416 * Child events can be cleaned up.
11419 sync_child_event(child_event, child);
11422 * Remove this event from the parent's list
11424 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11425 mutex_lock(&parent_event->child_mutex);
11426 list_del_init(&child_event->child_list);
11427 mutex_unlock(&parent_event->child_mutex);
11430 * Kick perf_poll() for is_event_hup().
11432 perf_event_wakeup(parent_event);
11433 free_event(child_event);
11434 put_event(parent_event);
11437 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11439 struct perf_event_context *child_ctx, *clone_ctx = NULL;
11440 struct perf_event *child_event, *next;
11442 WARN_ON_ONCE(child != current);
11444 child_ctx = perf_pin_task_context(child, ctxn);
11449 * In order to reduce the amount of tricky in ctx tear-down, we hold
11450 * ctx::mutex over the entire thing. This serializes against almost
11451 * everything that wants to access the ctx.
11453 * The exception is sys_perf_event_open() /
11454 * perf_event_create_kernel_count() which does find_get_context()
11455 * without ctx::mutex (it cannot because of the move_group double mutex
11456 * lock thing). See the comments in perf_install_in_context().
11458 mutex_lock(&child_ctx->mutex);
11461 * In a single ctx::lock section, de-schedule the events and detach the
11462 * context from the task such that we cannot ever get it scheduled back
11465 raw_spin_lock_irq(&child_ctx->lock);
11466 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11469 * Now that the context is inactive, destroy the task <-> ctx relation
11470 * and mark the context dead.
11472 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11473 put_ctx(child_ctx); /* cannot be last */
11474 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11475 put_task_struct(current); /* cannot be last */
11477 clone_ctx = unclone_ctx(child_ctx);
11478 raw_spin_unlock_irq(&child_ctx->lock);
11481 put_ctx(clone_ctx);
11484 * Report the task dead after unscheduling the events so that we
11485 * won't get any samples after PERF_RECORD_EXIT. We can however still
11486 * get a few PERF_RECORD_READ events.
11488 perf_event_task(child, child_ctx, 0);
11490 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11491 perf_event_exit_event(child_event, child_ctx, child);
11493 mutex_unlock(&child_ctx->mutex);
11495 put_ctx(child_ctx);
11499 * When a child task exits, feed back event values to parent events.
11501 * Can be called with cred_guard_mutex held when called from
11502 * install_exec_creds().
11504 void perf_event_exit_task(struct task_struct *child)
11506 struct perf_event *event, *tmp;
11509 mutex_lock(&child->perf_event_mutex);
11510 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11512 list_del_init(&event->owner_entry);
11515 * Ensure the list deletion is visible before we clear
11516 * the owner, closes a race against perf_release() where
11517 * we need to serialize on the owner->perf_event_mutex.
11519 smp_store_release(&event->owner, NULL);
11521 mutex_unlock(&child->perf_event_mutex);
11523 for_each_task_context_nr(ctxn)
11524 perf_event_exit_task_context(child, ctxn);
11527 * The perf_event_exit_task_context calls perf_event_task
11528 * with child's task_ctx, which generates EXIT events for
11529 * child contexts and sets child->perf_event_ctxp[] to NULL.
11530 * At this point we need to send EXIT events to cpu contexts.
11532 perf_event_task(child, NULL, 0);
11535 static void perf_free_event(struct perf_event *event,
11536 struct perf_event_context *ctx)
11538 struct perf_event *parent = event->parent;
11540 if (WARN_ON_ONCE(!parent))
11543 mutex_lock(&parent->child_mutex);
11544 list_del_init(&event->child_list);
11545 mutex_unlock(&parent->child_mutex);
11549 raw_spin_lock_irq(&ctx->lock);
11550 perf_group_detach(event);
11551 list_del_event(event, ctx);
11552 raw_spin_unlock_irq(&ctx->lock);
11557 * Free a context as created by inheritance by perf_event_init_task() below,
11558 * used by fork() in case of fail.
11560 * Even though the task has never lived, the context and events have been
11561 * exposed through the child_list, so we must take care tearing it all down.
11563 void perf_event_free_task(struct task_struct *task)
11565 struct perf_event_context *ctx;
11566 struct perf_event *event, *tmp;
11569 for_each_task_context_nr(ctxn) {
11570 ctx = task->perf_event_ctxp[ctxn];
11574 mutex_lock(&ctx->mutex);
11575 raw_spin_lock_irq(&ctx->lock);
11577 * Destroy the task <-> ctx relation and mark the context dead.
11579 * This is important because even though the task hasn't been
11580 * exposed yet the context has been (through child_list).
11582 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11583 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11584 put_task_struct(task); /* cannot be last */
11585 raw_spin_unlock_irq(&ctx->lock);
11587 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11588 perf_free_event(event, ctx);
11590 mutex_unlock(&ctx->mutex);
11593 * perf_event_release_kernel() could've stolen some of our
11594 * child events and still have them on its free_list. In that
11595 * case we must wait for these events to have been freed (in
11596 * particular all their references to this task must've been
11599 * Without this copy_process() will unconditionally free this
11600 * task (irrespective of its reference count) and
11601 * _free_event()'s put_task_struct(event->hw.target) will be a
11604 * Wait for all events to drop their context reference.
11606 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11607 put_ctx(ctx); /* must be last */
11611 void perf_event_delayed_put(struct task_struct *task)
11615 for_each_task_context_nr(ctxn)
11616 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11619 struct file *perf_event_get(unsigned int fd)
11621 struct file *file = fget(fd);
11623 return ERR_PTR(-EBADF);
11625 if (file->f_op != &perf_fops) {
11627 return ERR_PTR(-EBADF);
11633 const struct perf_event *perf_get_event(struct file *file)
11635 if (file->f_op != &perf_fops)
11636 return ERR_PTR(-EINVAL);
11638 return file->private_data;
11641 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11644 return ERR_PTR(-EINVAL);
11646 return &event->attr;
11650 * Inherit an event from parent task to child task.
11653 * - valid pointer on success
11654 * - NULL for orphaned events
11655 * - IS_ERR() on error
11657 static struct perf_event *
11658 inherit_event(struct perf_event *parent_event,
11659 struct task_struct *parent,
11660 struct perf_event_context *parent_ctx,
11661 struct task_struct *child,
11662 struct perf_event *group_leader,
11663 struct perf_event_context *child_ctx)
11665 enum perf_event_state parent_state = parent_event->state;
11666 struct perf_event *child_event;
11667 unsigned long flags;
11670 * Instead of creating recursive hierarchies of events,
11671 * we link inherited events back to the original parent,
11672 * which has a filp for sure, which we use as the reference
11675 if (parent_event->parent)
11676 parent_event = parent_event->parent;
11678 child_event = perf_event_alloc(&parent_event->attr,
11681 group_leader, parent_event,
11683 if (IS_ERR(child_event))
11684 return child_event;
11687 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11688 !child_ctx->task_ctx_data) {
11689 struct pmu *pmu = child_event->pmu;
11691 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11693 if (!child_ctx->task_ctx_data) {
11694 free_event(child_event);
11700 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11701 * must be under the same lock in order to serialize against
11702 * perf_event_release_kernel(), such that either we must observe
11703 * is_orphaned_event() or they will observe us on the child_list.
11705 mutex_lock(&parent_event->child_mutex);
11706 if (is_orphaned_event(parent_event) ||
11707 !atomic_long_inc_not_zero(&parent_event->refcount)) {
11708 mutex_unlock(&parent_event->child_mutex);
11709 /* task_ctx_data is freed with child_ctx */
11710 free_event(child_event);
11714 get_ctx(child_ctx);
11717 * Make the child state follow the state of the parent event,
11718 * not its attr.disabled bit. We hold the parent's mutex,
11719 * so we won't race with perf_event_{en, dis}able_family.
11721 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11722 child_event->state = PERF_EVENT_STATE_INACTIVE;
11724 child_event->state = PERF_EVENT_STATE_OFF;
11726 if (parent_event->attr.freq) {
11727 u64 sample_period = parent_event->hw.sample_period;
11728 struct hw_perf_event *hwc = &child_event->hw;
11730 hwc->sample_period = sample_period;
11731 hwc->last_period = sample_period;
11733 local64_set(&hwc->period_left, sample_period);
11736 child_event->ctx = child_ctx;
11737 child_event->overflow_handler = parent_event->overflow_handler;
11738 child_event->overflow_handler_context
11739 = parent_event->overflow_handler_context;
11742 * Precalculate sample_data sizes
11744 perf_event__header_size(child_event);
11745 perf_event__id_header_size(child_event);
11748 * Link it up in the child's context:
11750 raw_spin_lock_irqsave(&child_ctx->lock, flags);
11751 add_event_to_ctx(child_event, child_ctx);
11752 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11755 * Link this into the parent event's child list
11757 list_add_tail(&child_event->child_list, &parent_event->child_list);
11758 mutex_unlock(&parent_event->child_mutex);
11760 return child_event;
11764 * Inherits an event group.
11766 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11767 * This matches with perf_event_release_kernel() removing all child events.
11773 static int inherit_group(struct perf_event *parent_event,
11774 struct task_struct *parent,
11775 struct perf_event_context *parent_ctx,
11776 struct task_struct *child,
11777 struct perf_event_context *child_ctx)
11779 struct perf_event *leader;
11780 struct perf_event *sub;
11781 struct perf_event *child_ctr;
11783 leader = inherit_event(parent_event, parent, parent_ctx,
11784 child, NULL, child_ctx);
11785 if (IS_ERR(leader))
11786 return PTR_ERR(leader);
11788 * @leader can be NULL here because of is_orphaned_event(). In this
11789 * case inherit_event() will create individual events, similar to what
11790 * perf_group_detach() would do anyway.
11792 for_each_sibling_event(sub, parent_event) {
11793 child_ctr = inherit_event(sub, parent, parent_ctx,
11794 child, leader, child_ctx);
11795 if (IS_ERR(child_ctr))
11796 return PTR_ERR(child_ctr);
11802 * Creates the child task context and tries to inherit the event-group.
11804 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11805 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11806 * consistent with perf_event_release_kernel() removing all child events.
11813 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11814 struct perf_event_context *parent_ctx,
11815 struct task_struct *child, int ctxn,
11816 int *inherited_all)
11819 struct perf_event_context *child_ctx;
11821 if (!event->attr.inherit) {
11822 *inherited_all = 0;
11826 child_ctx = child->perf_event_ctxp[ctxn];
11829 * This is executed from the parent task context, so
11830 * inherit events that have been marked for cloning.
11831 * First allocate and initialize a context for the
11834 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11838 child->perf_event_ctxp[ctxn] = child_ctx;
11841 ret = inherit_group(event, parent, parent_ctx,
11845 *inherited_all = 0;
11851 * Initialize the perf_event context in task_struct
11853 static int perf_event_init_context(struct task_struct *child, int ctxn)
11855 struct perf_event_context *child_ctx, *parent_ctx;
11856 struct perf_event_context *cloned_ctx;
11857 struct perf_event *event;
11858 struct task_struct *parent = current;
11859 int inherited_all = 1;
11860 unsigned long flags;
11863 if (likely(!parent->perf_event_ctxp[ctxn]))
11867 * If the parent's context is a clone, pin it so it won't get
11868 * swapped under us.
11870 parent_ctx = perf_pin_task_context(parent, ctxn);
11875 * No need to check if parent_ctx != NULL here; since we saw
11876 * it non-NULL earlier, the only reason for it to become NULL
11877 * is if we exit, and since we're currently in the middle of
11878 * a fork we can't be exiting at the same time.
11882 * Lock the parent list. No need to lock the child - not PID
11883 * hashed yet and not running, so nobody can access it.
11885 mutex_lock(&parent_ctx->mutex);
11888 * We dont have to disable NMIs - we are only looking at
11889 * the list, not manipulating it:
11891 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11892 ret = inherit_task_group(event, parent, parent_ctx,
11893 child, ctxn, &inherited_all);
11899 * We can't hold ctx->lock when iterating the ->flexible_group list due
11900 * to allocations, but we need to prevent rotation because
11901 * rotate_ctx() will change the list from interrupt context.
11903 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11904 parent_ctx->rotate_disable = 1;
11905 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11907 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11908 ret = inherit_task_group(event, parent, parent_ctx,
11909 child, ctxn, &inherited_all);
11914 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11915 parent_ctx->rotate_disable = 0;
11917 child_ctx = child->perf_event_ctxp[ctxn];
11919 if (child_ctx && inherited_all) {
11921 * Mark the child context as a clone of the parent
11922 * context, or of whatever the parent is a clone of.
11924 * Note that if the parent is a clone, the holding of
11925 * parent_ctx->lock avoids it from being uncloned.
11927 cloned_ctx = parent_ctx->parent_ctx;
11929 child_ctx->parent_ctx = cloned_ctx;
11930 child_ctx->parent_gen = parent_ctx->parent_gen;
11932 child_ctx->parent_ctx = parent_ctx;
11933 child_ctx->parent_gen = parent_ctx->generation;
11935 get_ctx(child_ctx->parent_ctx);
11938 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11940 mutex_unlock(&parent_ctx->mutex);
11942 perf_unpin_context(parent_ctx);
11943 put_ctx(parent_ctx);
11949 * Initialize the perf_event context in task_struct
11951 int perf_event_init_task(struct task_struct *child)
11955 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11956 mutex_init(&child->perf_event_mutex);
11957 INIT_LIST_HEAD(&child->perf_event_list);
11959 for_each_task_context_nr(ctxn) {
11960 ret = perf_event_init_context(child, ctxn);
11962 perf_event_free_task(child);
11970 static void __init perf_event_init_all_cpus(void)
11972 struct swevent_htable *swhash;
11975 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11977 for_each_possible_cpu(cpu) {
11978 swhash = &per_cpu(swevent_htable, cpu);
11979 mutex_init(&swhash->hlist_mutex);
11980 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11982 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11983 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11985 #ifdef CONFIG_CGROUP_PERF
11986 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11988 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11992 static void perf_swevent_init_cpu(unsigned int cpu)
11994 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11996 mutex_lock(&swhash->hlist_mutex);
11997 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11998 struct swevent_hlist *hlist;
12000 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12002 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12004 mutex_unlock(&swhash->hlist_mutex);
12007 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12008 static void __perf_event_exit_context(void *__info)
12010 struct perf_event_context *ctx = __info;
12011 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12012 struct perf_event *event;
12014 raw_spin_lock(&ctx->lock);
12015 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12016 list_for_each_entry(event, &ctx->event_list, event_entry)
12017 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12018 raw_spin_unlock(&ctx->lock);
12021 static void perf_event_exit_cpu_context(int cpu)
12023 struct perf_cpu_context *cpuctx;
12024 struct perf_event_context *ctx;
12027 mutex_lock(&pmus_lock);
12028 list_for_each_entry(pmu, &pmus, entry) {
12029 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12030 ctx = &cpuctx->ctx;
12032 mutex_lock(&ctx->mutex);
12033 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12034 cpuctx->online = 0;
12035 mutex_unlock(&ctx->mutex);
12037 cpumask_clear_cpu(cpu, perf_online_mask);
12038 mutex_unlock(&pmus_lock);
12042 static void perf_event_exit_cpu_context(int cpu) { }
12046 int perf_event_init_cpu(unsigned int cpu)
12048 struct perf_cpu_context *cpuctx;
12049 struct perf_event_context *ctx;
12052 perf_swevent_init_cpu(cpu);
12054 mutex_lock(&pmus_lock);
12055 cpumask_set_cpu(cpu, perf_online_mask);
12056 list_for_each_entry(pmu, &pmus, entry) {
12057 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12058 ctx = &cpuctx->ctx;
12060 mutex_lock(&ctx->mutex);
12061 cpuctx->online = 1;
12062 mutex_unlock(&ctx->mutex);
12064 mutex_unlock(&pmus_lock);
12069 int perf_event_exit_cpu(unsigned int cpu)
12071 perf_event_exit_cpu_context(cpu);
12076 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12080 for_each_online_cpu(cpu)
12081 perf_event_exit_cpu(cpu);
12087 * Run the perf reboot notifier at the very last possible moment so that
12088 * the generic watchdog code runs as long as possible.
12090 static struct notifier_block perf_reboot_notifier = {
12091 .notifier_call = perf_reboot,
12092 .priority = INT_MIN,
12095 void __init perf_event_init(void)
12099 idr_init(&pmu_idr);
12101 perf_event_init_all_cpus();
12102 init_srcu_struct(&pmus_srcu);
12103 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12104 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12105 perf_pmu_register(&perf_task_clock, NULL, -1);
12106 perf_tp_register();
12107 perf_event_init_cpu(smp_processor_id());
12108 register_reboot_notifier(&perf_reboot_notifier);
12110 ret = init_hw_breakpoint();
12111 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12114 * Build time assertion that we keep the data_head at the intended
12115 * location. IOW, validation we got the __reserved[] size right.
12117 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12121 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12124 struct perf_pmu_events_attr *pmu_attr =
12125 container_of(attr, struct perf_pmu_events_attr, attr);
12127 if (pmu_attr->event_str)
12128 return sprintf(page, "%s\n", pmu_attr->event_str);
12132 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12134 static int __init perf_event_sysfs_init(void)
12139 mutex_lock(&pmus_lock);
12141 ret = bus_register(&pmu_bus);
12145 list_for_each_entry(pmu, &pmus, entry) {
12146 if (!pmu->name || pmu->type < 0)
12149 ret = pmu_dev_alloc(pmu);
12150 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12152 pmu_bus_running = 1;
12156 mutex_unlock(&pmus_lock);
12160 device_initcall(perf_event_sysfs_init);
12162 #ifdef CONFIG_CGROUP_PERF
12163 static struct cgroup_subsys_state *
12164 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12166 struct perf_cgroup *jc;
12168 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12170 return ERR_PTR(-ENOMEM);
12172 jc->info = alloc_percpu(struct perf_cgroup_info);
12175 return ERR_PTR(-ENOMEM);
12181 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12183 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12185 free_percpu(jc->info);
12189 static int __perf_cgroup_move(void *info)
12191 struct task_struct *task = info;
12193 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12198 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12200 struct task_struct *task;
12201 struct cgroup_subsys_state *css;
12203 cgroup_taskset_for_each(task, css, tset)
12204 task_function_call(task, __perf_cgroup_move, task);
12207 struct cgroup_subsys perf_event_cgrp_subsys = {
12208 .css_alloc = perf_cgroup_css_alloc,
12209 .css_free = perf_cgroup_css_free,
12210 .attach = perf_cgroup_attach,
12212 * Implicitly enable on dfl hierarchy so that perf events can
12213 * always be filtered by cgroup2 path as long as perf_event
12214 * controller is not mounted on a legacy hierarchy.
12216 .implicit_on_dfl = true,
12219 #endif /* CONFIG_CGROUP_PERF */