Merge patch series "riscv: dma-mapping: unify support for cache flushes"
[platform/kernel/linux-starfive.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26                 phys_addr_t phys)
27 {
28         if (force_dma_unencrypted(dev))
29                 return phys_to_dma_unencrypted(dev, phys);
30         return phys_to_dma(dev, phys);
31 }
32
33 static inline struct page *dma_direct_to_page(struct device *dev,
34                 dma_addr_t dma_addr)
35 {
36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42         u64 max_dma = phys_to_dma_direct(dev, phys);
43
44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
48 {
49         u64 dma_limit = min_not_zero(
50                 dev->coherent_dma_mask,
51                 dev->bus_dma_limit);
52
53         /*
54          * Optimistically try the zone that the physical address mask falls
55          * into first.  If that returns memory that isn't actually addressable
56          * we will fallback to the next lower zone and try again.
57          *
58          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
59          * zones.
60          */
61         *phys_limit = dma_to_phys(dev, dma_limit);
62         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
63                 return GFP_DMA;
64         if (*phys_limit <= DMA_BIT_MASK(32))
65                 return GFP_DMA32;
66         return 0;
67 }
68
69 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
70 {
71         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
72
73         if (dma_addr == DMA_MAPPING_ERROR)
74                 return false;
75         return dma_addr + size - 1 <=
76                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
77 }
78
79 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
80 {
81         if (!force_dma_unencrypted(dev))
82                 return 0;
83         return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
84 }
85
86 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
87 {
88         int ret;
89
90         if (!force_dma_unencrypted(dev))
91                 return 0;
92         ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
93         if (ret)
94                 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
95         return ret;
96 }
97
98 static void __dma_direct_free_pages(struct device *dev, struct page *page,
99                                     size_t size)
100 {
101         if (swiotlb_free(dev, page, size))
102                 return;
103         dma_free_contiguous(dev, page, size);
104 }
105
106 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
107 {
108         struct page *page = swiotlb_alloc(dev, size);
109
110         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
111                 swiotlb_free(dev, page, size);
112                 return NULL;
113         }
114
115         return page;
116 }
117
118 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119                 gfp_t gfp, bool allow_highmem)
120 {
121         int node = dev_to_node(dev);
122         struct page *page = NULL;
123         u64 phys_limit;
124
125         WARN_ON_ONCE(!PAGE_ALIGNED(size));
126
127         if (is_swiotlb_for_alloc(dev))
128                 return dma_direct_alloc_swiotlb(dev, size);
129
130         gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
131         page = dma_alloc_contiguous(dev, size, gfp);
132         if (page) {
133                 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134                     (!allow_highmem && PageHighMem(page))) {
135                         dma_free_contiguous(dev, page, size);
136                         page = NULL;
137                 }
138         }
139 again:
140         if (!page)
141                 page = alloc_pages_node(node, gfp, get_order(size));
142         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143                 dma_free_contiguous(dev, page, size);
144                 page = NULL;
145
146                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147                     phys_limit < DMA_BIT_MASK(64) &&
148                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
149                         gfp |= GFP_DMA32;
150                         goto again;
151                 }
152
153                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155                         goto again;
156                 }
157         }
158
159         return page;
160 }
161
162 /*
163  * Check if a potentially blocking operations needs to dip into the atomic
164  * pools for the given device/gfp.
165  */
166 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167 {
168         return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169 }
170
171 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172                 dma_addr_t *dma_handle, gfp_t gfp)
173 {
174         struct page *page;
175         u64 phys_limit;
176         void *ret;
177
178         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179                 return NULL;
180
181         gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
182         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183         if (!page)
184                 return NULL;
185         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186         return ret;
187 }
188
189 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
190                 dma_addr_t *dma_handle, gfp_t gfp)
191 {
192         struct page *page;
193
194         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
195         if (!page)
196                 return NULL;
197
198         /* remove any dirty cache lines on the kernel alias */
199         if (!PageHighMem(page))
200                 arch_dma_prep_coherent(page, size);
201
202         /* return the page pointer as the opaque cookie */
203         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
204         return page;
205 }
206
207 void *dma_direct_alloc(struct device *dev, size_t size,
208                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 {
210         bool remap = false, set_uncached = false;
211         struct page *page;
212         void *ret;
213
214         size = PAGE_ALIGN(size);
215         if (attrs & DMA_ATTR_NO_WARN)
216                 gfp |= __GFP_NOWARN;
217
218         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
219             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
220                 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
221
222         if (!dev_is_dma_coherent(dev)) {
223                 /*
224                  * Fallback to the arch handler if it exists.  This should
225                  * eventually go away.
226                  */
227                 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
228                     !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
229                     !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
230                     !is_swiotlb_for_alloc(dev))
231                         return arch_dma_alloc(dev, size, dma_handle, gfp,
232                                               attrs);
233
234                 /*
235                  * If there is a global pool, always allocate from it for
236                  * non-coherent devices.
237                  */
238                 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
239                         return dma_alloc_from_global_coherent(dev, size,
240                                         dma_handle);
241
242                 /*
243                  * Otherwise remap if the architecture is asking for it.  But
244                  * given that remapping memory is a blocking operation we'll
245                  * instead have to dip into the atomic pools.
246                  */
247                 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
248                 if (remap) {
249                         if (dma_direct_use_pool(dev, gfp))
250                                 return dma_direct_alloc_from_pool(dev, size,
251                                                 dma_handle, gfp);
252                 } else {
253                         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
254                                 return NULL;
255                         set_uncached = true;
256                 }
257         }
258
259         /*
260          * Decrypting memory may block, so allocate the memory from the atomic
261          * pools if we can't block.
262          */
263         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
264                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
265
266         /* we always manually zero the memory once we are done */
267         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
268         if (!page)
269                 return NULL;
270
271         /*
272          * dma_alloc_contiguous can return highmem pages depending on a
273          * combination the cma= arguments and per-arch setup.  These need to be
274          * remapped to return a kernel virtual address.
275          */
276         if (PageHighMem(page)) {
277                 remap = true;
278                 set_uncached = false;
279         }
280
281         if (remap) {
282                 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
283
284                 if (force_dma_unencrypted(dev))
285                         prot = pgprot_decrypted(prot);
286
287                 /* remove any dirty cache lines on the kernel alias */
288                 arch_dma_prep_coherent(page, size);
289
290                 /* create a coherent mapping */
291                 ret = dma_common_contiguous_remap(page, size, prot,
292                                 __builtin_return_address(0));
293                 if (!ret)
294                         goto out_free_pages;
295         } else {
296                 ret = page_address(page);
297                 if (dma_set_decrypted(dev, ret, size))
298                         goto out_free_pages;
299         }
300
301         memset(ret, 0, size);
302
303         if (set_uncached) {
304                 arch_dma_prep_coherent(page, size);
305                 ret = arch_dma_set_uncached(ret, size);
306                 if (IS_ERR(ret))
307                         goto out_encrypt_pages;
308         }
309
310         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
311         return ret;
312
313 out_encrypt_pages:
314         if (dma_set_encrypted(dev, page_address(page), size))
315                 return NULL;
316 out_free_pages:
317         __dma_direct_free_pages(dev, page, size);
318         return NULL;
319 }
320
321 void dma_direct_free(struct device *dev, size_t size,
322                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
323 {
324         unsigned int page_order = get_order(size);
325
326         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
327             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
328                 /* cpu_addr is a struct page cookie, not a kernel address */
329                 dma_free_contiguous(dev, cpu_addr, size);
330                 return;
331         }
332
333         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
334             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
335             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
336             !dev_is_dma_coherent(dev) &&
337             !is_swiotlb_for_alloc(dev)) {
338                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
339                 return;
340         }
341
342         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
343             !dev_is_dma_coherent(dev)) {
344                 if (!dma_release_from_global_coherent(page_order, cpu_addr))
345                         WARN_ON_ONCE(1);
346                 return;
347         }
348
349         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
350         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
351             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
352                 return;
353
354         if (is_vmalloc_addr(cpu_addr)) {
355                 vunmap(cpu_addr);
356         } else {
357                 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
358                         arch_dma_clear_uncached(cpu_addr, size);
359                 if (dma_set_encrypted(dev, cpu_addr, size))
360                         return;
361         }
362
363         __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
364 }
365
366 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
367                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
368 {
369         struct page *page;
370         void *ret;
371
372         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
373                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
374
375         page = __dma_direct_alloc_pages(dev, size, gfp, false);
376         if (!page)
377                 return NULL;
378
379         ret = page_address(page);
380         if (dma_set_decrypted(dev, ret, size))
381                 goto out_free_pages;
382         memset(ret, 0, size);
383         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
384         return page;
385 out_free_pages:
386         __dma_direct_free_pages(dev, page, size);
387         return NULL;
388 }
389
390 void dma_direct_free_pages(struct device *dev, size_t size,
391                 struct page *page, dma_addr_t dma_addr,
392                 enum dma_data_direction dir)
393 {
394         void *vaddr = page_address(page);
395
396         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
397         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
398             dma_free_from_pool(dev, vaddr, size))
399                 return;
400
401         if (dma_set_encrypted(dev, vaddr, size))
402                 return;
403         __dma_direct_free_pages(dev, page, size);
404 }
405
406 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
407     defined(CONFIG_SWIOTLB)
408 void dma_direct_sync_sg_for_device(struct device *dev,
409                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
410 {
411         struct scatterlist *sg;
412         int i;
413
414         for_each_sg(sgl, sg, nents, i) {
415                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
416
417                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
418                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
419                                                        dir);
420
421                 if (!dev_is_dma_coherent(dev))
422                         arch_sync_dma_for_device(paddr, sg->length,
423                                         dir);
424         }
425 }
426 #endif
427
428 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
429     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
430     defined(CONFIG_SWIOTLB)
431 void dma_direct_sync_sg_for_cpu(struct device *dev,
432                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
433 {
434         struct scatterlist *sg;
435         int i;
436
437         for_each_sg(sgl, sg, nents, i) {
438                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
439
440                 if (!dev_is_dma_coherent(dev))
441                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
442
443                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
444                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
445                                                     dir);
446
447                 if (dir == DMA_FROM_DEVICE)
448                         arch_dma_mark_clean(paddr, sg->length);
449         }
450
451         if (!dev_is_dma_coherent(dev))
452                 arch_sync_dma_for_cpu_all();
453 }
454
455 /*
456  * Unmaps segments, except for ones marked as pci_p2pdma which do not
457  * require any further action as they contain a bus address.
458  */
459 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
460                 int nents, enum dma_data_direction dir, unsigned long attrs)
461 {
462         struct scatterlist *sg;
463         int i;
464
465         for_each_sg(sgl,  sg, nents, i) {
466                 if (sg_dma_is_bus_address(sg))
467                         sg_dma_unmark_bus_address(sg);
468                 else
469                         dma_direct_unmap_page(dev, sg->dma_address,
470                                               sg_dma_len(sg), dir, attrs);
471         }
472 }
473 #endif
474
475 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
476                 enum dma_data_direction dir, unsigned long attrs)
477 {
478         struct pci_p2pdma_map_state p2pdma_state = {};
479         enum pci_p2pdma_map_type map;
480         struct scatterlist *sg;
481         int i, ret;
482
483         for_each_sg(sgl, sg, nents, i) {
484                 if (is_pci_p2pdma_page(sg_page(sg))) {
485                         map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
486                         switch (map) {
487                         case PCI_P2PDMA_MAP_BUS_ADDR:
488                                 continue;
489                         case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
490                                 /*
491                                  * Any P2P mapping that traverses the PCI
492                                  * host bridge must be mapped with CPU physical
493                                  * address and not PCI bus addresses. This is
494                                  * done with dma_direct_map_page() below.
495                                  */
496                                 break;
497                         default:
498                                 ret = -EREMOTEIO;
499                                 goto out_unmap;
500                         }
501                 }
502
503                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
504                                 sg->offset, sg->length, dir, attrs);
505                 if (sg->dma_address == DMA_MAPPING_ERROR) {
506                         ret = -EIO;
507                         goto out_unmap;
508                 }
509                 sg_dma_len(sg) = sg->length;
510         }
511
512         return nents;
513
514 out_unmap:
515         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
516         return ret;
517 }
518
519 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
520                 size_t size, enum dma_data_direction dir, unsigned long attrs)
521 {
522         dma_addr_t dma_addr = paddr;
523
524         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
525                 dev_err_once(dev,
526                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
527                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
528                 WARN_ON_ONCE(1);
529                 return DMA_MAPPING_ERROR;
530         }
531
532         return dma_addr;
533 }
534
535 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
536                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
537                 unsigned long attrs)
538 {
539         struct page *page = dma_direct_to_page(dev, dma_addr);
540         int ret;
541
542         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
543         if (!ret)
544                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
545         return ret;
546 }
547
548 bool dma_direct_can_mmap(struct device *dev)
549 {
550         return dev_is_dma_coherent(dev) ||
551                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
552 }
553
554 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
555                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
556                 unsigned long attrs)
557 {
558         unsigned long user_count = vma_pages(vma);
559         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
560         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
561         int ret = -ENXIO;
562
563         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
564         if (force_dma_unencrypted(dev))
565                 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
566
567         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
568                 return ret;
569         if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
570                 return ret;
571
572         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
573                 return -ENXIO;
574         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
575                         user_count << PAGE_SHIFT, vma->vm_page_prot);
576 }
577
578 int dma_direct_supported(struct device *dev, u64 mask)
579 {
580         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
581
582         /*
583          * Because 32-bit DMA masks are so common we expect every architecture
584          * to be able to satisfy them - either by not supporting more physical
585          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
586          * architecture needs to use an IOMMU instead of the direct mapping.
587          */
588         if (mask >= DMA_BIT_MASK(32))
589                 return 1;
590
591         /*
592          * This check needs to be against the actual bit mask value, so use
593          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
594          * part of the check.
595          */
596         if (IS_ENABLED(CONFIG_ZONE_DMA))
597                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
598         return mask >= phys_to_dma_unencrypted(dev, min_mask);
599 }
600
601 size_t dma_direct_max_mapping_size(struct device *dev)
602 {
603         /* If SWIOTLB is active, use its maximum mapping size */
604         if (is_swiotlb_active(dev) &&
605             (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
606                 return swiotlb_max_mapping_size(dev);
607         return SIZE_MAX;
608 }
609
610 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
611 {
612         return !dev_is_dma_coherent(dev) ||
613                is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
614 }
615
616 /**
617  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
618  * @dev:        device pointer; needed to "own" the alloced memory.
619  * @cpu_start:  beginning of memory region covered by this offset.
620  * @dma_start:  beginning of DMA/PCI region covered by this offset.
621  * @size:       size of the region.
622  *
623  * This is for the simple case of a uniform offset which cannot
624  * be discovered by "dma-ranges".
625  *
626  * It returns -ENOMEM if out of memory, -EINVAL if a map
627  * already exists, 0 otherwise.
628  *
629  * Note: any call to this from a driver is a bug.  The mapping needs
630  * to be described by the device tree or other firmware interfaces.
631  */
632 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
633                          dma_addr_t dma_start, u64 size)
634 {
635         struct bus_dma_region *map;
636         u64 offset = (u64)cpu_start - (u64)dma_start;
637
638         if (dev->dma_range_map) {
639                 dev_err(dev, "attempt to add DMA range to existing map\n");
640                 return -EINVAL;
641         }
642
643         if (!offset)
644                 return 0;
645
646         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
647         if (!map)
648                 return -ENOMEM;
649         map[0].cpu_start = cpu_start;
650         map[0].dma_start = dma_start;
651         map[0].offset = offset;
652         map[0].size = size;
653         dev->dma_range_map = map;
654         return 0;
655 }