dma-direct: only limit the mapping size if swiotlb could be used
[platform/kernel/linux-starfive.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20  * some use it for entirely different regions:
21  */
22 #ifndef ARCH_ZONE_DMA_BITS
23 #define ARCH_ZONE_DMA_BITS 24
24 #endif
25
26 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
27 {
28         if (!dev->dma_mask) {
29                 dev_err_once(dev, "DMA map on device without dma_mask\n");
30         } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
31                 dev_err_once(dev,
32                         "overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
33                         &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
34         }
35         WARN_ON_ONCE(1);
36 }
37
38 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
39                 phys_addr_t phys)
40 {
41         if (force_dma_unencrypted(dev))
42                 return __phys_to_dma(dev, phys);
43         return phys_to_dma(dev, phys);
44 }
45
46 u64 dma_direct_get_required_mask(struct device *dev)
47 {
48         u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
49
50         if (dev->bus_dma_mask && dev->bus_dma_mask < max_dma)
51                 max_dma = dev->bus_dma_mask;
52
53         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
54 }
55
56 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
57                 u64 *phys_mask)
58 {
59         if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
60                 dma_mask = dev->bus_dma_mask;
61
62         if (force_dma_unencrypted(dev))
63                 *phys_mask = __dma_to_phys(dev, dma_mask);
64         else
65                 *phys_mask = dma_to_phys(dev, dma_mask);
66
67         /*
68          * Optimistically try the zone that the physical address mask falls
69          * into first.  If that returns memory that isn't actually addressable
70          * we will fallback to the next lower zone and try again.
71          *
72          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
73          * zones.
74          */
75         if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
76                 return GFP_DMA;
77         if (*phys_mask <= DMA_BIT_MASK(32))
78                 return GFP_DMA32;
79         return 0;
80 }
81
82 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
83 {
84         return phys_to_dma_direct(dev, phys) + size - 1 <=
85                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
86 }
87
88 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
89                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
90 {
91         struct page *page = NULL;
92         u64 phys_mask;
93
94         if (attrs & DMA_ATTR_NO_WARN)
95                 gfp |= __GFP_NOWARN;
96
97         /* we always manually zero the memory once we are done: */
98         gfp &= ~__GFP_ZERO;
99         gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
100                         &phys_mask);
101 again:
102         page = dma_alloc_contiguous(dev, size, gfp);
103         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
104                 dma_free_contiguous(dev, page, size);
105                 page = NULL;
106
107                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
108                     phys_mask < DMA_BIT_MASK(64) &&
109                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
110                         gfp |= GFP_DMA32;
111                         goto again;
112                 }
113
114                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
115                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
116                         goto again;
117                 }
118         }
119
120         return page;
121 }
122
123 void *dma_direct_alloc_pages(struct device *dev, size_t size,
124                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
125 {
126         struct page *page;
127         void *ret;
128
129         page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
130         if (!page)
131                 return NULL;
132
133         if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
134                 /* remove any dirty cache lines on the kernel alias */
135                 if (!PageHighMem(page))
136                         arch_dma_prep_coherent(page, size);
137                 /* return the page pointer as the opaque cookie */
138                 return page;
139         }
140
141         if (PageHighMem(page)) {
142                 /*
143                  * Depending on the cma= arguments and per-arch setup
144                  * dma_alloc_contiguous could return highmem pages.
145                  * Without remapping there is no way to return them here,
146                  * so log an error and fail.
147                  */
148                 dev_info(dev, "Rejecting highmem page from CMA.\n");
149                 __dma_direct_free_pages(dev, size, page);
150                 return NULL;
151         }
152
153         ret = page_address(page);
154         if (force_dma_unencrypted(dev)) {
155                 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
156                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
157         } else {
158                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
159         }
160         memset(ret, 0, size);
161
162         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
163             dma_alloc_need_uncached(dev, attrs)) {
164                 arch_dma_prep_coherent(page, size);
165                 ret = uncached_kernel_address(ret);
166         }
167
168         return ret;
169 }
170
171 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
172 {
173         dma_free_contiguous(dev, page, size);
174 }
175
176 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
177                 dma_addr_t dma_addr, unsigned long attrs)
178 {
179         unsigned int page_order = get_order(size);
180
181         if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
182                 /* cpu_addr is a struct page cookie, not a kernel address */
183                 __dma_direct_free_pages(dev, size, cpu_addr);
184                 return;
185         }
186
187         if (force_dma_unencrypted(dev))
188                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
189
190         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
191             dma_alloc_need_uncached(dev, attrs))
192                 cpu_addr = cached_kernel_address(cpu_addr);
193         __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
194 }
195
196 void *dma_direct_alloc(struct device *dev, size_t size,
197                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
198 {
199         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
200             dma_alloc_need_uncached(dev, attrs))
201                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
202         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
203 }
204
205 void dma_direct_free(struct device *dev, size_t size,
206                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
207 {
208         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
209             dma_alloc_need_uncached(dev, attrs))
210                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
211         else
212                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
213 }
214
215 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
216     defined(CONFIG_SWIOTLB)
217 void dma_direct_sync_single_for_device(struct device *dev,
218                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
219 {
220         phys_addr_t paddr = dma_to_phys(dev, addr);
221
222         if (unlikely(is_swiotlb_buffer(paddr)))
223                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
224
225         if (!dev_is_dma_coherent(dev))
226                 arch_sync_dma_for_device(dev, paddr, size, dir);
227 }
228 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
229
230 void dma_direct_sync_sg_for_device(struct device *dev,
231                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
232 {
233         struct scatterlist *sg;
234         int i;
235
236         for_each_sg(sgl, sg, nents, i) {
237                 if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
238                         swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
239                                         dir, SYNC_FOR_DEVICE);
240
241                 if (!dev_is_dma_coherent(dev))
242                         arch_sync_dma_for_device(dev, sg_phys(sg), sg->length,
243                                         dir);
244         }
245 }
246 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
247 #endif
248
249 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
250     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
251     defined(CONFIG_SWIOTLB)
252 void dma_direct_sync_single_for_cpu(struct device *dev,
253                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
254 {
255         phys_addr_t paddr = dma_to_phys(dev, addr);
256
257         if (!dev_is_dma_coherent(dev)) {
258                 arch_sync_dma_for_cpu(dev, paddr, size, dir);
259                 arch_sync_dma_for_cpu_all(dev);
260         }
261
262         if (unlikely(is_swiotlb_buffer(paddr)))
263                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
264 }
265 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
266
267 void dma_direct_sync_sg_for_cpu(struct device *dev,
268                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
269 {
270         struct scatterlist *sg;
271         int i;
272
273         for_each_sg(sgl, sg, nents, i) {
274                 if (!dev_is_dma_coherent(dev))
275                         arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
276         
277                 if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
278                         swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, dir,
279                                         SYNC_FOR_CPU);
280         }
281
282         if (!dev_is_dma_coherent(dev))
283                 arch_sync_dma_for_cpu_all(dev);
284 }
285 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
286
287 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
288                 size_t size, enum dma_data_direction dir, unsigned long attrs)
289 {
290         phys_addr_t phys = dma_to_phys(dev, addr);
291
292         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
293                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
294
295         if (unlikely(is_swiotlb_buffer(phys)))
296                 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
297 }
298 EXPORT_SYMBOL(dma_direct_unmap_page);
299
300 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
301                 int nents, enum dma_data_direction dir, unsigned long attrs)
302 {
303         struct scatterlist *sg;
304         int i;
305
306         for_each_sg(sgl, sg, nents, i)
307                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
308                              attrs);
309 }
310 EXPORT_SYMBOL(dma_direct_unmap_sg);
311 #endif
312
313 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
314                 size_t size)
315 {
316         return swiotlb_force != SWIOTLB_FORCE &&
317                 dma_capable(dev, dma_addr, size);
318 }
319
320 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
321                 unsigned long offset, size_t size, enum dma_data_direction dir,
322                 unsigned long attrs)
323 {
324         phys_addr_t phys = page_to_phys(page) + offset;
325         dma_addr_t dma_addr = phys_to_dma(dev, phys);
326
327         if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
328             !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
329                 report_addr(dev, dma_addr, size);
330                 return DMA_MAPPING_ERROR;
331         }
332
333         if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
334                 arch_sync_dma_for_device(dev, phys, size, dir);
335         return dma_addr;
336 }
337 EXPORT_SYMBOL(dma_direct_map_page);
338
339 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
340                 enum dma_data_direction dir, unsigned long attrs)
341 {
342         int i;
343         struct scatterlist *sg;
344
345         for_each_sg(sgl, sg, nents, i) {
346                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
347                                 sg->offset, sg->length, dir, attrs);
348                 if (sg->dma_address == DMA_MAPPING_ERROR)
349                         goto out_unmap;
350                 sg_dma_len(sg) = sg->length;
351         }
352
353         return nents;
354
355 out_unmap:
356         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
357         return 0;
358 }
359 EXPORT_SYMBOL(dma_direct_map_sg);
360
361 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
362                 size_t size, enum dma_data_direction dir, unsigned long attrs)
363 {
364         dma_addr_t dma_addr = paddr;
365
366         if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
367                 report_addr(dev, dma_addr, size);
368                 return DMA_MAPPING_ERROR;
369         }
370
371         return dma_addr;
372 }
373 EXPORT_SYMBOL(dma_direct_map_resource);
374
375 /*
376  * Because 32-bit DMA masks are so common we expect every architecture to be
377  * able to satisfy them - either by not supporting more physical memory, or by
378  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
379  * use an IOMMU instead of the direct mapping.
380  */
381 int dma_direct_supported(struct device *dev, u64 mask)
382 {
383         u64 min_mask;
384
385         if (IS_ENABLED(CONFIG_ZONE_DMA))
386                 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
387         else
388                 min_mask = DMA_BIT_MASK(32);
389
390         min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
391
392         /*
393          * This check needs to be against the actual bit mask value, so
394          * use __phys_to_dma() here so that the SME encryption mask isn't
395          * part of the check.
396          */
397         return mask >= __phys_to_dma(dev, min_mask);
398 }
399
400 size_t dma_direct_max_mapping_size(struct device *dev)
401 {
402         /* If SWIOTLB is active, use its maximum mapping size */
403         if (is_swiotlb_active() &&
404             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
405                 return swiotlb_max_mapping_size(dev);
406         return SIZE_MAX;
407 }