swiotlb: use depends on for DMA_RESTRICTED_POOL
[platform/kernel/linux-starfive.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26                 phys_addr_t phys)
27 {
28         if (force_dma_unencrypted(dev))
29                 return phys_to_dma_unencrypted(dev, phys);
30         return phys_to_dma(dev, phys);
31 }
32
33 static inline struct page *dma_direct_to_page(struct device *dev,
34                 dma_addr_t dma_addr)
35 {
36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42         u64 max_dma = phys_to_dma_direct(dev, phys);
43
44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48                                   u64 *phys_limit)
49 {
50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52         /*
53          * Optimistically try the zone that the physical address mask falls
54          * into first.  If that returns memory that isn't actually addressable
55          * we will fallback to the next lower zone and try again.
56          *
57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58          * zones.
59          */
60         *phys_limit = dma_to_phys(dev, dma_limit);
61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62                 return GFP_DMA;
63         if (*phys_limit <= DMA_BIT_MASK(32))
64                 return GFP_DMA32;
65         return 0;
66 }
67
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72         if (dma_addr == DMA_MAPPING_ERROR)
73                 return false;
74         return dma_addr + size - 1 <=
75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77
78 static void __dma_direct_free_pages(struct device *dev, struct page *page,
79                                     size_t size)
80 {
81         if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
82             swiotlb_free(dev, page, size))
83                 return;
84         dma_free_contiguous(dev, page, size);
85 }
86
87 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
88                 gfp_t gfp)
89 {
90         int node = dev_to_node(dev);
91         struct page *page = NULL;
92         u64 phys_limit;
93
94         WARN_ON_ONCE(!PAGE_ALIGNED(size));
95
96         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
97                                            &phys_limit);
98         if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
99             is_swiotlb_for_alloc(dev)) {
100                 page = swiotlb_alloc(dev, size);
101                 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102                         __dma_direct_free_pages(dev, page, size);
103                         return NULL;
104                 }
105                 return page;
106         }
107
108         page = dma_alloc_contiguous(dev, size, gfp);
109         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110                 dma_free_contiguous(dev, page, size);
111                 page = NULL;
112         }
113 again:
114         if (!page)
115                 page = alloc_pages_node(node, gfp, get_order(size));
116         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
117                 dma_free_contiguous(dev, page, size);
118                 page = NULL;
119
120                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
121                     phys_limit < DMA_BIT_MASK(64) &&
122                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
123                         gfp |= GFP_DMA32;
124                         goto again;
125                 }
126
127                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
128                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
129                         goto again;
130                 }
131         }
132
133         return page;
134 }
135
136 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
137                 dma_addr_t *dma_handle, gfp_t gfp)
138 {
139         struct page *page;
140         u64 phys_mask;
141         void *ret;
142
143         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
144                                            &phys_mask);
145         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
146         if (!page)
147                 return NULL;
148         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
149         return ret;
150 }
151
152 void *dma_direct_alloc(struct device *dev, size_t size,
153                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
154 {
155         struct page *page;
156         void *ret;
157         int err;
158
159         size = PAGE_ALIGN(size);
160         if (attrs & DMA_ATTR_NO_WARN)
161                 gfp |= __GFP_NOWARN;
162
163         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
164             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
165                 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
166                 if (!page)
167                         return NULL;
168                 /* remove any dirty cache lines on the kernel alias */
169                 if (!PageHighMem(page))
170                         arch_dma_prep_coherent(page, size);
171                 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
172                 /* return the page pointer as the opaque cookie */
173                 return page;
174         }
175
176         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
177             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev) &&
178             !is_swiotlb_for_alloc(dev))
179                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
180
181         /*
182          * Remapping or decrypting memory may block. If either is required and
183          * we can't block, allocate the memory from the atomic pools.
184          * If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
185          * set up another device coherent pool by shared-dma-pool and use
186          * dma_alloc_from_dev_coherent instead.
187          */
188         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
189             !gfpflags_allow_blocking(gfp) &&
190             (force_dma_unencrypted(dev) ||
191              (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
192               !dev_is_dma_coherent(dev))) &&
193             !is_swiotlb_for_alloc(dev))
194                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
195
196         /* we always manually zero the memory once we are done */
197         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
198         if (!page)
199                 return NULL;
200
201         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
202              !dev_is_dma_coherent(dev)) ||
203             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
204                 /* remove any dirty cache lines on the kernel alias */
205                 arch_dma_prep_coherent(page, size);
206
207                 /* create a coherent mapping */
208                 ret = dma_common_contiguous_remap(page, size,
209                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
210                                 __builtin_return_address(0));
211                 if (!ret)
212                         goto out_free_pages;
213                 if (force_dma_unencrypted(dev)) {
214                         err = set_memory_decrypted((unsigned long)ret,
215                                                    1 << get_order(size));
216                         if (err)
217                                 goto out_free_pages;
218                 }
219                 memset(ret, 0, size);
220                 goto done;
221         }
222
223         if (PageHighMem(page)) {
224                 /*
225                  * Depending on the cma= arguments and per-arch setup
226                  * dma_alloc_contiguous could return highmem pages.
227                  * Without remapping there is no way to return them here,
228                  * so log an error and fail.
229                  */
230                 dev_info(dev, "Rejecting highmem page from CMA.\n");
231                 goto out_free_pages;
232         }
233
234         ret = page_address(page);
235         if (force_dma_unencrypted(dev)) {
236                 err = set_memory_decrypted((unsigned long)ret,
237                                            1 << get_order(size));
238                 if (err)
239                         goto out_free_pages;
240         }
241
242         memset(ret, 0, size);
243
244         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
245             !dev_is_dma_coherent(dev)) {
246                 arch_dma_prep_coherent(page, size);
247                 ret = arch_dma_set_uncached(ret, size);
248                 if (IS_ERR(ret))
249                         goto out_encrypt_pages;
250         }
251 done:
252         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
253         return ret;
254
255 out_encrypt_pages:
256         if (force_dma_unencrypted(dev)) {
257                 err = set_memory_encrypted((unsigned long)page_address(page),
258                                            1 << get_order(size));
259                 /* If memory cannot be re-encrypted, it must be leaked */
260                 if (err)
261                         return NULL;
262         }
263 out_free_pages:
264         __dma_direct_free_pages(dev, page, size);
265         return NULL;
266 }
267
268 void dma_direct_free(struct device *dev, size_t size,
269                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
270 {
271         unsigned int page_order = get_order(size);
272
273         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
274             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
275                 /* cpu_addr is a struct page cookie, not a kernel address */
276                 dma_free_contiguous(dev, cpu_addr, size);
277                 return;
278         }
279
280         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
281             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev) &&
282             !is_swiotlb_for_alloc(dev)) {
283                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
284                 return;
285         }
286
287         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
288         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
289             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
290                 return;
291
292         if (force_dma_unencrypted(dev))
293                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
294
295         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
296                 vunmap(cpu_addr);
297         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
298                 arch_dma_clear_uncached(cpu_addr, size);
299
300         __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
301 }
302
303 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
304                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
305 {
306         struct page *page;
307         void *ret;
308
309         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
310             force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
311             !is_swiotlb_for_alloc(dev))
312                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
313
314         page = __dma_direct_alloc_pages(dev, size, gfp);
315         if (!page)
316                 return NULL;
317         if (PageHighMem(page)) {
318                 /*
319                  * Depending on the cma= arguments and per-arch setup
320                  * dma_alloc_contiguous could return highmem pages.
321                  * Without remapping there is no way to return them here,
322                  * so log an error and fail.
323                  */
324                 dev_info(dev, "Rejecting highmem page from CMA.\n");
325                 goto out_free_pages;
326         }
327
328         ret = page_address(page);
329         if (force_dma_unencrypted(dev)) {
330                 if (set_memory_decrypted((unsigned long)ret,
331                                 1 << get_order(size)))
332                         goto out_free_pages;
333         }
334         memset(ret, 0, size);
335         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
336         return page;
337 out_free_pages:
338         __dma_direct_free_pages(dev, page, size);
339         return NULL;
340 }
341
342 void dma_direct_free_pages(struct device *dev, size_t size,
343                 struct page *page, dma_addr_t dma_addr,
344                 enum dma_data_direction dir)
345 {
346         unsigned int page_order = get_order(size);
347         void *vaddr = page_address(page);
348
349         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
350         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
351             dma_free_from_pool(dev, vaddr, size))
352                 return;
353
354         if (force_dma_unencrypted(dev))
355                 set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
356
357         __dma_direct_free_pages(dev, page, size);
358 }
359
360 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
361     defined(CONFIG_SWIOTLB)
362 void dma_direct_sync_sg_for_device(struct device *dev,
363                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
364 {
365         struct scatterlist *sg;
366         int i;
367
368         for_each_sg(sgl, sg, nents, i) {
369                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
370
371                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
372                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
373                                                        dir);
374
375                 if (!dev_is_dma_coherent(dev))
376                         arch_sync_dma_for_device(paddr, sg->length,
377                                         dir);
378         }
379 }
380 #endif
381
382 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
383     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
384     defined(CONFIG_SWIOTLB)
385 void dma_direct_sync_sg_for_cpu(struct device *dev,
386                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
387 {
388         struct scatterlist *sg;
389         int i;
390
391         for_each_sg(sgl, sg, nents, i) {
392                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
393
394                 if (!dev_is_dma_coherent(dev))
395                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
396
397                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
398                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
399                                                     dir);
400
401                 if (dir == DMA_FROM_DEVICE)
402                         arch_dma_mark_clean(paddr, sg->length);
403         }
404
405         if (!dev_is_dma_coherent(dev))
406                 arch_sync_dma_for_cpu_all();
407 }
408
409 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
410                 int nents, enum dma_data_direction dir, unsigned long attrs)
411 {
412         struct scatterlist *sg;
413         int i;
414
415         for_each_sg(sgl, sg, nents, i)
416                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
417                              attrs);
418 }
419 #endif
420
421 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
422                 enum dma_data_direction dir, unsigned long attrs)
423 {
424         int i;
425         struct scatterlist *sg;
426
427         for_each_sg(sgl, sg, nents, i) {
428                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
429                                 sg->offset, sg->length, dir, attrs);
430                 if (sg->dma_address == DMA_MAPPING_ERROR)
431                         goto out_unmap;
432                 sg_dma_len(sg) = sg->length;
433         }
434
435         return nents;
436
437 out_unmap:
438         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
439         return 0;
440 }
441
442 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
443                 size_t size, enum dma_data_direction dir, unsigned long attrs)
444 {
445         dma_addr_t dma_addr = paddr;
446
447         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
448                 dev_err_once(dev,
449                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
450                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
451                 WARN_ON_ONCE(1);
452                 return DMA_MAPPING_ERROR;
453         }
454
455         return dma_addr;
456 }
457
458 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
459                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
460                 unsigned long attrs)
461 {
462         struct page *page = dma_direct_to_page(dev, dma_addr);
463         int ret;
464
465         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
466         if (!ret)
467                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
468         return ret;
469 }
470
471 bool dma_direct_can_mmap(struct device *dev)
472 {
473         return dev_is_dma_coherent(dev) ||
474                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
475 }
476
477 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
478                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
479                 unsigned long attrs)
480 {
481         unsigned long user_count = vma_pages(vma);
482         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
483         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
484         int ret = -ENXIO;
485
486         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
487
488         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
489                 return ret;
490
491         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
492                 return -ENXIO;
493         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
494                         user_count << PAGE_SHIFT, vma->vm_page_prot);
495 }
496
497 int dma_direct_supported(struct device *dev, u64 mask)
498 {
499         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
500
501         /*
502          * Because 32-bit DMA masks are so common we expect every architecture
503          * to be able to satisfy them - either by not supporting more physical
504          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
505          * architecture needs to use an IOMMU instead of the direct mapping.
506          */
507         if (mask >= DMA_BIT_MASK(32))
508                 return 1;
509
510         /*
511          * This check needs to be against the actual bit mask value, so use
512          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
513          * part of the check.
514          */
515         if (IS_ENABLED(CONFIG_ZONE_DMA))
516                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
517         return mask >= phys_to_dma_unencrypted(dev, min_mask);
518 }
519
520 size_t dma_direct_max_mapping_size(struct device *dev)
521 {
522         /* If SWIOTLB is active, use its maximum mapping size */
523         if (is_swiotlb_active(dev) &&
524             (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
525                 return swiotlb_max_mapping_size(dev);
526         return SIZE_MAX;
527 }
528
529 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
530 {
531         return !dev_is_dma_coherent(dev) ||
532                is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
533 }
534
535 /**
536  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
537  * @dev:        device pointer; needed to "own" the alloced memory.
538  * @cpu_start:  beginning of memory region covered by this offset.
539  * @dma_start:  beginning of DMA/PCI region covered by this offset.
540  * @size:       size of the region.
541  *
542  * This is for the simple case of a uniform offset which cannot
543  * be discovered by "dma-ranges".
544  *
545  * It returns -ENOMEM if out of memory, -EINVAL if a map
546  * already exists, 0 otherwise.
547  *
548  * Note: any call to this from a driver is a bug.  The mapping needs
549  * to be described by the device tree or other firmware interfaces.
550  */
551 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
552                          dma_addr_t dma_start, u64 size)
553 {
554         struct bus_dma_region *map;
555         u64 offset = (u64)cpu_start - (u64)dma_start;
556
557         if (dev->dma_range_map) {
558                 dev_err(dev, "attempt to add DMA range to existing map\n");
559                 return -EINVAL;
560         }
561
562         if (!offset)
563                 return 0;
564
565         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
566         if (!map)
567                 return -ENOMEM;
568         map[0].cpu_start = cpu_start;
569         map[0].dma_start = dma_start;
570         map[0].offset = offset;
571         map[0].size = size;
572         dev->dma_range_map = map;
573         return 0;
574 }