Revert "Bluetooth: Store advertising handle so it can be re-enabled"
[platform/kernel/linux-rpi.git] / kernel / crash_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * crash.c - kernel crash support code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6
7 #include <linux/buildid.h>
8 #include <linux/crash_core.h>
9 #include <linux/init.h>
10 #include <linux/utsname.h>
11 #include <linux/vmalloc.h>
12 #include <linux/sizes.h>
13 #include <linux/kexec.h>
14 #include <linux/memory.h>
15 #include <linux/cpuhotplug.h>
16
17 #include <asm/page.h>
18 #include <asm/sections.h>
19
20 #include <crypto/sha1.h>
21
22 #include "kallsyms_internal.h"
23 #include "kexec_internal.h"
24
25 /* Per cpu memory for storing cpu states in case of system crash. */
26 note_buf_t __percpu *crash_notes;
27
28 /* vmcoreinfo stuff */
29 unsigned char *vmcoreinfo_data;
30 size_t vmcoreinfo_size;
31 u32 *vmcoreinfo_note;
32
33 /* trusted vmcoreinfo, e.g. we can make a copy in the crash memory */
34 static unsigned char *vmcoreinfo_data_safecopy;
35
36 /*
37  * parsing the "crashkernel" commandline
38  *
39  * this code is intended to be called from architecture specific code
40  */
41
42
43 /*
44  * This function parses command lines in the format
45  *
46  *   crashkernel=ramsize-range:size[,...][@offset]
47  *
48  * The function returns 0 on success and -EINVAL on failure.
49  */
50 static int __init parse_crashkernel_mem(char *cmdline,
51                                         unsigned long long system_ram,
52                                         unsigned long long *crash_size,
53                                         unsigned long long *crash_base)
54 {
55         char *cur = cmdline, *tmp;
56         unsigned long long total_mem = system_ram;
57
58         /*
59          * Firmware sometimes reserves some memory regions for its own use,
60          * so the system memory size is less than the actual physical memory
61          * size. Work around this by rounding up the total size to 128M,
62          * which is enough for most test cases.
63          */
64         total_mem = roundup(total_mem, SZ_128M);
65
66         /* for each entry of the comma-separated list */
67         do {
68                 unsigned long long start, end = ULLONG_MAX, size;
69
70                 /* get the start of the range */
71                 start = memparse(cur, &tmp);
72                 if (cur == tmp) {
73                         pr_warn("crashkernel: Memory value expected\n");
74                         return -EINVAL;
75                 }
76                 cur = tmp;
77                 if (*cur != '-') {
78                         pr_warn("crashkernel: '-' expected\n");
79                         return -EINVAL;
80                 }
81                 cur++;
82
83                 /* if no ':' is here, than we read the end */
84                 if (*cur != ':') {
85                         end = memparse(cur, &tmp);
86                         if (cur == tmp) {
87                                 pr_warn("crashkernel: Memory value expected\n");
88                                 return -EINVAL;
89                         }
90                         cur = tmp;
91                         if (end <= start) {
92                                 pr_warn("crashkernel: end <= start\n");
93                                 return -EINVAL;
94                         }
95                 }
96
97                 if (*cur != ':') {
98                         pr_warn("crashkernel: ':' expected\n");
99                         return -EINVAL;
100                 }
101                 cur++;
102
103                 size = memparse(cur, &tmp);
104                 if (cur == tmp) {
105                         pr_warn("Memory value expected\n");
106                         return -EINVAL;
107                 }
108                 cur = tmp;
109                 if (size >= total_mem) {
110                         pr_warn("crashkernel: invalid size\n");
111                         return -EINVAL;
112                 }
113
114                 /* match ? */
115                 if (total_mem >= start && total_mem < end) {
116                         *crash_size = size;
117                         break;
118                 }
119         } while (*cur++ == ',');
120
121         if (*crash_size > 0) {
122                 while (*cur && *cur != ' ' && *cur != '@')
123                         cur++;
124                 if (*cur == '@') {
125                         cur++;
126                         *crash_base = memparse(cur, &tmp);
127                         if (cur == tmp) {
128                                 pr_warn("Memory value expected after '@'\n");
129                                 return -EINVAL;
130                         }
131                 }
132         } else
133                 pr_info("crashkernel size resulted in zero bytes\n");
134
135         return 0;
136 }
137
138 /*
139  * That function parses "simple" (old) crashkernel command lines like
140  *
141  *      crashkernel=size[@offset]
142  *
143  * It returns 0 on success and -EINVAL on failure.
144  */
145 static int __init parse_crashkernel_simple(char *cmdline,
146                                            unsigned long long *crash_size,
147                                            unsigned long long *crash_base)
148 {
149         char *cur = cmdline;
150
151         *crash_size = memparse(cmdline, &cur);
152         if (cmdline == cur) {
153                 pr_warn("crashkernel: memory value expected\n");
154                 return -EINVAL;
155         }
156
157         if (*cur == '@')
158                 *crash_base = memparse(cur+1, &cur);
159         else if (*cur != ' ' && *cur != '\0') {
160                 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
161                 return -EINVAL;
162         }
163
164         return 0;
165 }
166
167 #define SUFFIX_HIGH 0
168 #define SUFFIX_LOW  1
169 #define SUFFIX_NULL 2
170 static __initdata char *suffix_tbl[] = {
171         [SUFFIX_HIGH] = ",high",
172         [SUFFIX_LOW]  = ",low",
173         [SUFFIX_NULL] = NULL,
174 };
175
176 /*
177  * That function parses "suffix"  crashkernel command lines like
178  *
179  *      crashkernel=size,[high|low]
180  *
181  * It returns 0 on success and -EINVAL on failure.
182  */
183 static int __init parse_crashkernel_suffix(char *cmdline,
184                                            unsigned long long   *crash_size,
185                                            const char *suffix)
186 {
187         char *cur = cmdline;
188
189         *crash_size = memparse(cmdline, &cur);
190         if (cmdline == cur) {
191                 pr_warn("crashkernel: memory value expected\n");
192                 return -EINVAL;
193         }
194
195         /* check with suffix */
196         if (strncmp(cur, suffix, strlen(suffix))) {
197                 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
198                 return -EINVAL;
199         }
200         cur += strlen(suffix);
201         if (*cur != ' ' && *cur != '\0') {
202                 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
203                 return -EINVAL;
204         }
205
206         return 0;
207 }
208
209 static __init char *get_last_crashkernel(char *cmdline,
210                              const char *name,
211                              const char *suffix)
212 {
213         char *p = cmdline, *ck_cmdline = NULL;
214
215         /* find crashkernel and use the last one if there are more */
216         p = strstr(p, name);
217         while (p) {
218                 char *end_p = strchr(p, ' ');
219                 char *q;
220
221                 if (!end_p)
222                         end_p = p + strlen(p);
223
224                 if (!suffix) {
225                         int i;
226
227                         /* skip the one with any known suffix */
228                         for (i = 0; suffix_tbl[i]; i++) {
229                                 q = end_p - strlen(suffix_tbl[i]);
230                                 if (!strncmp(q, suffix_tbl[i],
231                                              strlen(suffix_tbl[i])))
232                                         goto next;
233                         }
234                         ck_cmdline = p;
235                 } else {
236                         q = end_p - strlen(suffix);
237                         if (!strncmp(q, suffix, strlen(suffix)))
238                                 ck_cmdline = p;
239                 }
240 next:
241                 p = strstr(p+1, name);
242         }
243
244         return ck_cmdline;
245 }
246
247 static int __init __parse_crashkernel(char *cmdline,
248                              unsigned long long system_ram,
249                              unsigned long long *crash_size,
250                              unsigned long long *crash_base,
251                              const char *name,
252                              const char *suffix)
253 {
254         char    *first_colon, *first_space;
255         char    *ck_cmdline;
256
257         BUG_ON(!crash_size || !crash_base);
258         *crash_size = 0;
259         *crash_base = 0;
260
261         ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
262         if (!ck_cmdline)
263                 return -ENOENT;
264
265         ck_cmdline += strlen(name);
266
267         if (suffix)
268                 return parse_crashkernel_suffix(ck_cmdline, crash_size,
269                                 suffix);
270         /*
271          * if the commandline contains a ':', then that's the extended
272          * syntax -- if not, it must be the classic syntax
273          */
274         first_colon = strchr(ck_cmdline, ':');
275         first_space = strchr(ck_cmdline, ' ');
276         if (first_colon && (!first_space || first_colon < first_space))
277                 return parse_crashkernel_mem(ck_cmdline, system_ram,
278                                 crash_size, crash_base);
279
280         return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
281 }
282
283 /*
284  * That function is the entry point for command line parsing and should be
285  * called from the arch-specific code.
286  */
287 int __init parse_crashkernel(char *cmdline,
288                              unsigned long long system_ram,
289                              unsigned long long *crash_size,
290                              unsigned long long *crash_base)
291 {
292         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
293                                         "crashkernel=", NULL);
294 }
295
296 int __init parse_crashkernel_high(char *cmdline,
297                              unsigned long long system_ram,
298                              unsigned long long *crash_size,
299                              unsigned long long *crash_base)
300 {
301         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
302                                 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
303 }
304
305 int __init parse_crashkernel_low(char *cmdline,
306                              unsigned long long system_ram,
307                              unsigned long long *crash_size,
308                              unsigned long long *crash_base)
309 {
310         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
311                                 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
312 }
313
314 /*
315  * Add a dummy early_param handler to mark crashkernel= as a known command line
316  * parameter and suppress incorrect warnings in init/main.c.
317  */
318 static int __init parse_crashkernel_dummy(char *arg)
319 {
320         return 0;
321 }
322 early_param("crashkernel", parse_crashkernel_dummy);
323
324 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
325                           void **addr, unsigned long *sz)
326 {
327         Elf64_Ehdr *ehdr;
328         Elf64_Phdr *phdr;
329         unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
330         unsigned char *buf;
331         unsigned int cpu, i;
332         unsigned long long notes_addr;
333         unsigned long mstart, mend;
334
335         /* extra phdr for vmcoreinfo ELF note */
336         nr_phdr = nr_cpus + 1;
337         nr_phdr += mem->nr_ranges;
338
339         /*
340          * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
341          * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
342          * I think this is required by tools like gdb. So same physical
343          * memory will be mapped in two ELF headers. One will contain kernel
344          * text virtual addresses and other will have __va(physical) addresses.
345          */
346
347         nr_phdr++;
348         elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
349         elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
350
351         buf = vzalloc(elf_sz);
352         if (!buf)
353                 return -ENOMEM;
354
355         ehdr = (Elf64_Ehdr *)buf;
356         phdr = (Elf64_Phdr *)(ehdr + 1);
357         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
358         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
359         ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
360         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
361         ehdr->e_ident[EI_OSABI] = ELF_OSABI;
362         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
363         ehdr->e_type = ET_CORE;
364         ehdr->e_machine = ELF_ARCH;
365         ehdr->e_version = EV_CURRENT;
366         ehdr->e_phoff = sizeof(Elf64_Ehdr);
367         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
368         ehdr->e_phentsize = sizeof(Elf64_Phdr);
369
370         /* Prepare one phdr of type PT_NOTE for each possible CPU */
371         for_each_possible_cpu(cpu) {
372                 phdr->p_type = PT_NOTE;
373                 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
374                 phdr->p_offset = phdr->p_paddr = notes_addr;
375                 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
376                 (ehdr->e_phnum)++;
377                 phdr++;
378         }
379
380         /* Prepare one PT_NOTE header for vmcoreinfo */
381         phdr->p_type = PT_NOTE;
382         phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
383         phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
384         (ehdr->e_phnum)++;
385         phdr++;
386
387         /* Prepare PT_LOAD type program header for kernel text region */
388         if (need_kernel_map) {
389                 phdr->p_type = PT_LOAD;
390                 phdr->p_flags = PF_R|PF_W|PF_X;
391                 phdr->p_vaddr = (unsigned long) _text;
392                 phdr->p_filesz = phdr->p_memsz = _end - _text;
393                 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
394                 ehdr->e_phnum++;
395                 phdr++;
396         }
397
398         /* Go through all the ranges in mem->ranges[] and prepare phdr */
399         for (i = 0; i < mem->nr_ranges; i++) {
400                 mstart = mem->ranges[i].start;
401                 mend = mem->ranges[i].end;
402
403                 phdr->p_type = PT_LOAD;
404                 phdr->p_flags = PF_R|PF_W|PF_X;
405                 phdr->p_offset  = mstart;
406
407                 phdr->p_paddr = mstart;
408                 phdr->p_vaddr = (unsigned long) __va(mstart);
409                 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
410                 phdr->p_align = 0;
411                 ehdr->e_phnum++;
412                 pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
413                         phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
414                         ehdr->e_phnum, phdr->p_offset);
415                 phdr++;
416         }
417
418         *addr = buf;
419         *sz = elf_sz;
420         return 0;
421 }
422
423 int crash_exclude_mem_range(struct crash_mem *mem,
424                             unsigned long long mstart, unsigned long long mend)
425 {
426         int i, j;
427         unsigned long long start, end, p_start, p_end;
428         struct range temp_range = {0, 0};
429
430         for (i = 0; i < mem->nr_ranges; i++) {
431                 start = mem->ranges[i].start;
432                 end = mem->ranges[i].end;
433                 p_start = mstart;
434                 p_end = mend;
435
436                 if (mstart > end || mend < start)
437                         continue;
438
439                 /* Truncate any area outside of range */
440                 if (mstart < start)
441                         p_start = start;
442                 if (mend > end)
443                         p_end = end;
444
445                 /* Found completely overlapping range */
446                 if (p_start == start && p_end == end) {
447                         mem->ranges[i].start = 0;
448                         mem->ranges[i].end = 0;
449                         if (i < mem->nr_ranges - 1) {
450                                 /* Shift rest of the ranges to left */
451                                 for (j = i; j < mem->nr_ranges - 1; j++) {
452                                         mem->ranges[j].start =
453                                                 mem->ranges[j+1].start;
454                                         mem->ranges[j].end =
455                                                         mem->ranges[j+1].end;
456                                 }
457
458                                 /*
459                                  * Continue to check if there are another overlapping ranges
460                                  * from the current position because of shifting the above
461                                  * mem ranges.
462                                  */
463                                 i--;
464                                 mem->nr_ranges--;
465                                 continue;
466                         }
467                         mem->nr_ranges--;
468                         return 0;
469                 }
470
471                 if (p_start > start && p_end < end) {
472                         /* Split original range */
473                         mem->ranges[i].end = p_start - 1;
474                         temp_range.start = p_end + 1;
475                         temp_range.end = end;
476                 } else if (p_start != start)
477                         mem->ranges[i].end = p_start - 1;
478                 else
479                         mem->ranges[i].start = p_end + 1;
480                 break;
481         }
482
483         /* If a split happened, add the split to array */
484         if (!temp_range.end)
485                 return 0;
486
487         /* Split happened */
488         if (i == mem->max_nr_ranges - 1)
489                 return -ENOMEM;
490
491         /* Location where new range should go */
492         j = i + 1;
493         if (j < mem->nr_ranges) {
494                 /* Move over all ranges one slot towards the end */
495                 for (i = mem->nr_ranges - 1; i >= j; i--)
496                         mem->ranges[i + 1] = mem->ranges[i];
497         }
498
499         mem->ranges[j].start = temp_range.start;
500         mem->ranges[j].end = temp_range.end;
501         mem->nr_ranges++;
502         return 0;
503 }
504
505 Elf_Word *append_elf_note(Elf_Word *buf, char *name, unsigned int type,
506                           void *data, size_t data_len)
507 {
508         struct elf_note *note = (struct elf_note *)buf;
509
510         note->n_namesz = strlen(name) + 1;
511         note->n_descsz = data_len;
512         note->n_type   = type;
513         buf += DIV_ROUND_UP(sizeof(*note), sizeof(Elf_Word));
514         memcpy(buf, name, note->n_namesz);
515         buf += DIV_ROUND_UP(note->n_namesz, sizeof(Elf_Word));
516         memcpy(buf, data, data_len);
517         buf += DIV_ROUND_UP(data_len, sizeof(Elf_Word));
518
519         return buf;
520 }
521
522 void final_note(Elf_Word *buf)
523 {
524         memset(buf, 0, sizeof(struct elf_note));
525 }
526
527 static void update_vmcoreinfo_note(void)
528 {
529         u32 *buf = vmcoreinfo_note;
530
531         if (!vmcoreinfo_size)
532                 return;
533         buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
534                               vmcoreinfo_size);
535         final_note(buf);
536 }
537
538 void crash_update_vmcoreinfo_safecopy(void *ptr)
539 {
540         if (ptr)
541                 memcpy(ptr, vmcoreinfo_data, vmcoreinfo_size);
542
543         vmcoreinfo_data_safecopy = ptr;
544 }
545
546 void crash_save_vmcoreinfo(void)
547 {
548         if (!vmcoreinfo_note)
549                 return;
550
551         /* Use the safe copy to generate vmcoreinfo note if have */
552         if (vmcoreinfo_data_safecopy)
553                 vmcoreinfo_data = vmcoreinfo_data_safecopy;
554
555         vmcoreinfo_append_str("CRASHTIME=%lld\n", ktime_get_real_seconds());
556         update_vmcoreinfo_note();
557 }
558
559 void vmcoreinfo_append_str(const char *fmt, ...)
560 {
561         va_list args;
562         char buf[0x50];
563         size_t r;
564
565         va_start(args, fmt);
566         r = vscnprintf(buf, sizeof(buf), fmt, args);
567         va_end(args);
568
569         r = min(r, (size_t)VMCOREINFO_BYTES - vmcoreinfo_size);
570
571         memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
572
573         vmcoreinfo_size += r;
574
575         WARN_ONCE(vmcoreinfo_size == VMCOREINFO_BYTES,
576                   "vmcoreinfo data exceeds allocated size, truncating");
577 }
578
579 /*
580  * provide an empty default implementation here -- architecture
581  * code may override this
582  */
583 void __weak arch_crash_save_vmcoreinfo(void)
584 {}
585
586 phys_addr_t __weak paddr_vmcoreinfo_note(void)
587 {
588         return __pa(vmcoreinfo_note);
589 }
590 EXPORT_SYMBOL(paddr_vmcoreinfo_note);
591
592 static int __init crash_save_vmcoreinfo_init(void)
593 {
594         vmcoreinfo_data = (unsigned char *)get_zeroed_page(GFP_KERNEL);
595         if (!vmcoreinfo_data) {
596                 pr_warn("Memory allocation for vmcoreinfo_data failed\n");
597                 return -ENOMEM;
598         }
599
600         vmcoreinfo_note = alloc_pages_exact(VMCOREINFO_NOTE_SIZE,
601                                                 GFP_KERNEL | __GFP_ZERO);
602         if (!vmcoreinfo_note) {
603                 free_page((unsigned long)vmcoreinfo_data);
604                 vmcoreinfo_data = NULL;
605                 pr_warn("Memory allocation for vmcoreinfo_note failed\n");
606                 return -ENOMEM;
607         }
608
609         VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
610         VMCOREINFO_BUILD_ID();
611         VMCOREINFO_PAGESIZE(PAGE_SIZE);
612
613         VMCOREINFO_SYMBOL(init_uts_ns);
614         VMCOREINFO_OFFSET(uts_namespace, name);
615         VMCOREINFO_SYMBOL(node_online_map);
616 #ifdef CONFIG_MMU
617         VMCOREINFO_SYMBOL_ARRAY(swapper_pg_dir);
618 #endif
619         VMCOREINFO_SYMBOL(_stext);
620         VMCOREINFO_SYMBOL(vmap_area_list);
621
622 #ifndef CONFIG_NUMA
623         VMCOREINFO_SYMBOL(mem_map);
624         VMCOREINFO_SYMBOL(contig_page_data);
625 #endif
626 #ifdef CONFIG_SPARSEMEM
627         VMCOREINFO_SYMBOL_ARRAY(mem_section);
628         VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
629         VMCOREINFO_STRUCT_SIZE(mem_section);
630         VMCOREINFO_OFFSET(mem_section, section_mem_map);
631         VMCOREINFO_NUMBER(SECTION_SIZE_BITS);
632         VMCOREINFO_NUMBER(MAX_PHYSMEM_BITS);
633 #endif
634         VMCOREINFO_STRUCT_SIZE(page);
635         VMCOREINFO_STRUCT_SIZE(pglist_data);
636         VMCOREINFO_STRUCT_SIZE(zone);
637         VMCOREINFO_STRUCT_SIZE(free_area);
638         VMCOREINFO_STRUCT_SIZE(list_head);
639         VMCOREINFO_SIZE(nodemask_t);
640         VMCOREINFO_OFFSET(page, flags);
641         VMCOREINFO_OFFSET(page, _refcount);
642         VMCOREINFO_OFFSET(page, mapping);
643         VMCOREINFO_OFFSET(page, lru);
644         VMCOREINFO_OFFSET(page, _mapcount);
645         VMCOREINFO_OFFSET(page, private);
646         VMCOREINFO_OFFSET(page, compound_head);
647         VMCOREINFO_OFFSET(pglist_data, node_zones);
648         VMCOREINFO_OFFSET(pglist_data, nr_zones);
649 #ifdef CONFIG_FLATMEM
650         VMCOREINFO_OFFSET(pglist_data, node_mem_map);
651 #endif
652         VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
653         VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
654         VMCOREINFO_OFFSET(pglist_data, node_id);
655         VMCOREINFO_OFFSET(zone, free_area);
656         VMCOREINFO_OFFSET(zone, vm_stat);
657         VMCOREINFO_OFFSET(zone, spanned_pages);
658         VMCOREINFO_OFFSET(free_area, free_list);
659         VMCOREINFO_OFFSET(list_head, next);
660         VMCOREINFO_OFFSET(list_head, prev);
661         VMCOREINFO_OFFSET(vmap_area, va_start);
662         VMCOREINFO_OFFSET(vmap_area, list);
663         VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER + 1);
664         log_buf_vmcoreinfo_setup();
665         VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
666         VMCOREINFO_NUMBER(NR_FREE_PAGES);
667         VMCOREINFO_NUMBER(PG_lru);
668         VMCOREINFO_NUMBER(PG_private);
669         VMCOREINFO_NUMBER(PG_swapcache);
670         VMCOREINFO_NUMBER(PG_swapbacked);
671         VMCOREINFO_NUMBER(PG_slab);
672 #ifdef CONFIG_MEMORY_FAILURE
673         VMCOREINFO_NUMBER(PG_hwpoison);
674 #endif
675         VMCOREINFO_NUMBER(PG_head_mask);
676 #define PAGE_BUDDY_MAPCOUNT_VALUE       (~PG_buddy)
677         VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
678 #ifdef CONFIG_HUGETLB_PAGE
679         VMCOREINFO_NUMBER(PG_hugetlb);
680 #define PAGE_OFFLINE_MAPCOUNT_VALUE     (~PG_offline)
681         VMCOREINFO_NUMBER(PAGE_OFFLINE_MAPCOUNT_VALUE);
682 #endif
683
684 #ifdef CONFIG_KALLSYMS
685         VMCOREINFO_SYMBOL(kallsyms_names);
686         VMCOREINFO_SYMBOL(kallsyms_num_syms);
687         VMCOREINFO_SYMBOL(kallsyms_token_table);
688         VMCOREINFO_SYMBOL(kallsyms_token_index);
689 #ifdef CONFIG_KALLSYMS_BASE_RELATIVE
690         VMCOREINFO_SYMBOL(kallsyms_offsets);
691         VMCOREINFO_SYMBOL(kallsyms_relative_base);
692 #else
693         VMCOREINFO_SYMBOL(kallsyms_addresses);
694 #endif /* CONFIG_KALLSYMS_BASE_RELATIVE */
695 #endif /* CONFIG_KALLSYMS */
696
697         arch_crash_save_vmcoreinfo();
698         update_vmcoreinfo_note();
699
700         return 0;
701 }
702
703 subsys_initcall(crash_save_vmcoreinfo_init);
704
705 static int __init crash_notes_memory_init(void)
706 {
707         /* Allocate memory for saving cpu registers. */
708         size_t size, align;
709
710         /*
711          * crash_notes could be allocated across 2 vmalloc pages when percpu
712          * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
713          * pages are also on 2 continuous physical pages. In this case the
714          * 2nd part of crash_notes in 2nd page could be lost since only the
715          * starting address and size of crash_notes are exported through sysfs.
716          * Here round up the size of crash_notes to the nearest power of two
717          * and pass it to __alloc_percpu as align value. This can make sure
718          * crash_notes is allocated inside one physical page.
719          */
720         size = sizeof(note_buf_t);
721         align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
722
723         /*
724          * Break compile if size is bigger than PAGE_SIZE since crash_notes
725          * definitely will be in 2 pages with that.
726          */
727         BUILD_BUG_ON(size > PAGE_SIZE);
728
729         crash_notes = __alloc_percpu(size, align);
730         if (!crash_notes) {
731                 pr_warn("Memory allocation for saving cpu register states failed\n");
732                 return -ENOMEM;
733         }
734         return 0;
735 }
736 subsys_initcall(crash_notes_memory_init);
737
738 #ifdef CONFIG_CRASH_HOTPLUG
739 #undef pr_fmt
740 #define pr_fmt(fmt) "crash hp: " fmt
741
742 /*
743  * Different than kexec/kdump loading/unloading/jumping/shrinking which
744  * usually rarely happen, there will be many crash hotplug events notified
745  * during one short period, e.g one memory board is hot added and memory
746  * regions are online. So mutex lock  __crash_hotplug_lock is used to
747  * serialize the crash hotplug handling specifically.
748  */
749 DEFINE_MUTEX(__crash_hotplug_lock);
750 #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
751 #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
752
753 /*
754  * This routine utilized when the crash_hotplug sysfs node is read.
755  * It reflects the kernel's ability/permission to update the crash
756  * elfcorehdr directly.
757  */
758 int crash_check_update_elfcorehdr(void)
759 {
760         int rc = 0;
761
762         crash_hotplug_lock();
763         /* Obtain lock while reading crash information */
764         if (!kexec_trylock()) {
765                 pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
766                 crash_hotplug_unlock();
767                 return 0;
768         }
769         if (kexec_crash_image) {
770                 if (kexec_crash_image->file_mode)
771                         rc = 1;
772                 else
773                         rc = kexec_crash_image->update_elfcorehdr;
774         }
775         /* Release lock now that update complete */
776         kexec_unlock();
777         crash_hotplug_unlock();
778
779         return rc;
780 }
781
782 /*
783  * To accurately reflect hot un/plug changes of cpu and memory resources
784  * (including onling and offlining of those resources), the elfcorehdr
785  * (which is passed to the crash kernel via the elfcorehdr= parameter)
786  * must be updated with the new list of CPUs and memories.
787  *
788  * In order to make changes to elfcorehdr, two conditions are needed:
789  * First, the segment containing the elfcorehdr must be large enough
790  * to permit a growing number of resources; the elfcorehdr memory size
791  * is based on NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES.
792  * Second, purgatory must explicitly exclude the elfcorehdr from the
793  * list of segments it checks (since the elfcorehdr changes and thus
794  * would require an update to purgatory itself to update the digest).
795  */
796 static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu)
797 {
798         struct kimage *image;
799
800         crash_hotplug_lock();
801         /* Obtain lock while changing crash information */
802         if (!kexec_trylock()) {
803                 pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
804                 crash_hotplug_unlock();
805                 return;
806         }
807
808         /* Check kdump is not loaded */
809         if (!kexec_crash_image)
810                 goto out;
811
812         image = kexec_crash_image;
813
814         /* Check that updating elfcorehdr is permitted */
815         if (!(image->file_mode || image->update_elfcorehdr))
816                 goto out;
817
818         if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
819                 hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
820                 pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
821         else
822                 pr_debug("hp_action %u\n", hp_action);
823
824         /*
825          * The elfcorehdr_index is set to -1 when the struct kimage
826          * is allocated. Find the segment containing the elfcorehdr,
827          * if not already found.
828          */
829         if (image->elfcorehdr_index < 0) {
830                 unsigned long mem;
831                 unsigned char *ptr;
832                 unsigned int n;
833
834                 for (n = 0; n < image->nr_segments; n++) {
835                         mem = image->segment[n].mem;
836                         ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
837                         if (ptr) {
838                                 /* The segment containing elfcorehdr */
839                                 if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
840                                         image->elfcorehdr_index = (int)n;
841                                 kunmap_local(ptr);
842                         }
843                 }
844         }
845
846         if (image->elfcorehdr_index < 0) {
847                 pr_err("unable to locate elfcorehdr segment");
848                 goto out;
849         }
850
851         /* Needed in order for the segments to be updated */
852         arch_kexec_unprotect_crashkres();
853
854         /* Differentiate between normal load and hotplug update */
855         image->hp_action = hp_action;
856
857         /* Now invoke arch-specific update handler */
858         arch_crash_handle_hotplug_event(image);
859
860         /* No longer handling a hotplug event */
861         image->hp_action = KEXEC_CRASH_HP_NONE;
862         image->elfcorehdr_updated = true;
863
864         /* Change back to read-only */
865         arch_kexec_protect_crashkres();
866
867         /* Errors in the callback is not a reason to rollback state */
868 out:
869         /* Release lock now that update complete */
870         kexec_unlock();
871         crash_hotplug_unlock();
872 }
873
874 static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *v)
875 {
876         switch (val) {
877         case MEM_ONLINE:
878                 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
879                         KEXEC_CRASH_HP_INVALID_CPU);
880                 break;
881
882         case MEM_OFFLINE:
883                 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
884                         KEXEC_CRASH_HP_INVALID_CPU);
885                 break;
886         }
887         return NOTIFY_OK;
888 }
889
890 static struct notifier_block crash_memhp_nb = {
891         .notifier_call = crash_memhp_notifier,
892         .priority = 0
893 };
894
895 static int crash_cpuhp_online(unsigned int cpu)
896 {
897         crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu);
898         return 0;
899 }
900
901 static int crash_cpuhp_offline(unsigned int cpu)
902 {
903         crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu);
904         return 0;
905 }
906
907 static int __init crash_hotplug_init(void)
908 {
909         int result = 0;
910
911         if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
912                 register_memory_notifier(&crash_memhp_nb);
913
914         if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
915                 result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
916                         "crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
917         }
918
919         return result;
920 }
921
922 subsys_initcall(crash_hotplug_init);
923 #endif