cpu/hotplug: Provide knobs to control SMT
[platform/kernel/linux-rpi.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36
37 #include "smpboot.h"
38
39 /**
40  * cpuhp_cpu_state - Per cpu hotplug state storage
41  * @state:      The current cpu state
42  * @target:     The target state
43  * @thread:     Pointer to the hotplug thread
44  * @should_run: Thread should execute
45  * @rollback:   Perform a rollback
46  * @single:     Single callback invocation
47  * @bringup:    Single callback bringup or teardown selector
48  * @cb_state:   The state for a single callback (install/uninstall)
49  * @result:     Result of the operation
50  * @done_up:    Signal completion to the issuer of the task for cpu-up
51  * @done_down:  Signal completion to the issuer of the task for cpu-down
52  */
53 struct cpuhp_cpu_state {
54         enum cpuhp_state        state;
55         enum cpuhp_state        target;
56         enum cpuhp_state        fail;
57 #ifdef CONFIG_SMP
58         struct task_struct      *thread;
59         bool                    should_run;
60         bool                    rollback;
61         bool                    single;
62         bool                    bringup;
63         struct hlist_node       *node;
64         struct hlist_node       *last;
65         enum cpuhp_state        cb_state;
66         int                     result;
67         struct completion       done_up;
68         struct completion       done_down;
69 #endif
70 };
71
72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
73         .fail = CPUHP_INVALID,
74 };
75
76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
77 static struct lockdep_map cpuhp_state_up_map =
78         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
79 static struct lockdep_map cpuhp_state_down_map =
80         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
81
82
83 static void inline cpuhp_lock_acquire(bool bringup)
84 {
85         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
86 }
87
88 static void inline cpuhp_lock_release(bool bringup)
89 {
90         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
91 }
92 #else
93
94 static void inline cpuhp_lock_acquire(bool bringup) { }
95 static void inline cpuhp_lock_release(bool bringup) { }
96
97 #endif
98
99 /**
100  * cpuhp_step - Hotplug state machine step
101  * @name:       Name of the step
102  * @startup:    Startup function of the step
103  * @teardown:   Teardown function of the step
104  * @skip_onerr: Do not invoke the functions on error rollback
105  *              Will go away once the notifiers are gone
106  * @cant_stop:  Bringup/teardown can't be stopped at this step
107  */
108 struct cpuhp_step {
109         const char              *name;
110         union {
111                 int             (*single)(unsigned int cpu);
112                 int             (*multi)(unsigned int cpu,
113                                          struct hlist_node *node);
114         } startup;
115         union {
116                 int             (*single)(unsigned int cpu);
117                 int             (*multi)(unsigned int cpu,
118                                          struct hlist_node *node);
119         } teardown;
120         struct hlist_head       list;
121         bool                    skip_onerr;
122         bool                    cant_stop;
123         bool                    multi_instance;
124 };
125
126 static DEFINE_MUTEX(cpuhp_state_mutex);
127 static struct cpuhp_step cpuhp_bp_states[];
128 static struct cpuhp_step cpuhp_ap_states[];
129
130 static bool cpuhp_is_ap_state(enum cpuhp_state state)
131 {
132         /*
133          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
134          * purposes as that state is handled explicitly in cpu_down.
135          */
136         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
137 }
138
139 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
140 {
141         struct cpuhp_step *sp;
142
143         sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
144         return sp + state;
145 }
146
147 /**
148  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
149  * @cpu:        The cpu for which the callback should be invoked
150  * @state:      The state to do callbacks for
151  * @bringup:    True if the bringup callback should be invoked
152  * @node:       For multi-instance, do a single entry callback for install/remove
153  * @lastp:      For multi-instance rollback, remember how far we got
154  *
155  * Called from cpu hotplug and from the state register machinery.
156  */
157 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
158                                  bool bringup, struct hlist_node *node,
159                                  struct hlist_node **lastp)
160 {
161         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
162         struct cpuhp_step *step = cpuhp_get_step(state);
163         int (*cbm)(unsigned int cpu, struct hlist_node *node);
164         int (*cb)(unsigned int cpu);
165         int ret, cnt;
166
167         if (st->fail == state) {
168                 st->fail = CPUHP_INVALID;
169
170                 if (!(bringup ? step->startup.single : step->teardown.single))
171                         return 0;
172
173                 return -EAGAIN;
174         }
175
176         if (!step->multi_instance) {
177                 WARN_ON_ONCE(lastp && *lastp);
178                 cb = bringup ? step->startup.single : step->teardown.single;
179                 if (!cb)
180                         return 0;
181                 trace_cpuhp_enter(cpu, st->target, state, cb);
182                 ret = cb(cpu);
183                 trace_cpuhp_exit(cpu, st->state, state, ret);
184                 return ret;
185         }
186         cbm = bringup ? step->startup.multi : step->teardown.multi;
187         if (!cbm)
188                 return 0;
189
190         /* Single invocation for instance add/remove */
191         if (node) {
192                 WARN_ON_ONCE(lastp && *lastp);
193                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
194                 ret = cbm(cpu, node);
195                 trace_cpuhp_exit(cpu, st->state, state, ret);
196                 return ret;
197         }
198
199         /* State transition. Invoke on all instances */
200         cnt = 0;
201         hlist_for_each(node, &step->list) {
202                 if (lastp && node == *lastp)
203                         break;
204
205                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
206                 ret = cbm(cpu, node);
207                 trace_cpuhp_exit(cpu, st->state, state, ret);
208                 if (ret) {
209                         if (!lastp)
210                                 goto err;
211
212                         *lastp = node;
213                         return ret;
214                 }
215                 cnt++;
216         }
217         if (lastp)
218                 *lastp = NULL;
219         return 0;
220 err:
221         /* Rollback the instances if one failed */
222         cbm = !bringup ? step->startup.multi : step->teardown.multi;
223         if (!cbm)
224                 return ret;
225
226         hlist_for_each(node, &step->list) {
227                 if (!cnt--)
228                         break;
229
230                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
231                 ret = cbm(cpu, node);
232                 trace_cpuhp_exit(cpu, st->state, state, ret);
233                 /*
234                  * Rollback must not fail,
235                  */
236                 WARN_ON_ONCE(ret);
237         }
238         return ret;
239 }
240
241 #ifdef CONFIG_SMP
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244         struct completion *done = bringup ? &st->done_up : &st->done_down;
245         wait_for_completion(done);
246 }
247
248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 {
250         struct completion *done = bringup ? &st->done_up : &st->done_down;
251         complete(done);
252 }
253
254 /*
255  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256  */
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258 {
259         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260 }
261
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266
267 /*
268  * The following two APIs (cpu_maps_update_begin/done) must be used when
269  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270  */
271 void cpu_maps_update_begin(void)
272 {
273         mutex_lock(&cpu_add_remove_lock);
274 }
275
276 void cpu_maps_update_done(void)
277 {
278         mutex_unlock(&cpu_add_remove_lock);
279 }
280
281 /*
282  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283  * Should always be manipulated under cpu_add_remove_lock
284  */
285 static int cpu_hotplug_disabled;
286
287 #ifdef CONFIG_HOTPLUG_CPU
288
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290
291 void cpus_read_lock(void)
292 {
293         percpu_down_read(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
296
297 void cpus_read_unlock(void)
298 {
299         percpu_up_read(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_unlock);
302
303 void cpus_write_lock(void)
304 {
305         percpu_down_write(&cpu_hotplug_lock);
306 }
307
308 void cpus_write_unlock(void)
309 {
310         percpu_up_write(&cpu_hotplug_lock);
311 }
312
313 void lockdep_assert_cpus_held(void)
314 {
315         percpu_rwsem_assert_held(&cpu_hotplug_lock);
316 }
317
318 /*
319  * Wait for currently running CPU hotplug operations to complete (if any) and
320  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
321  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
322  * hotplug path before performing hotplug operations. So acquiring that lock
323  * guarantees mutual exclusion from any currently running hotplug operations.
324  */
325 void cpu_hotplug_disable(void)
326 {
327         cpu_maps_update_begin();
328         cpu_hotplug_disabled++;
329         cpu_maps_update_done();
330 }
331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
332
333 static void __cpu_hotplug_enable(void)
334 {
335         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
336                 return;
337         cpu_hotplug_disabled--;
338 }
339
340 void cpu_hotplug_enable(void)
341 {
342         cpu_maps_update_begin();
343         __cpu_hotplug_enable();
344         cpu_maps_update_done();
345 }
346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
347 #endif  /* CONFIG_HOTPLUG_CPU */
348
349 static inline enum cpuhp_state
350 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
351 {
352         enum cpuhp_state prev_state = st->state;
353
354         st->rollback = false;
355         st->last = NULL;
356
357         st->target = target;
358         st->single = false;
359         st->bringup = st->state < target;
360
361         return prev_state;
362 }
363
364 static inline void
365 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
366 {
367         st->rollback = true;
368
369         /*
370          * If we have st->last we need to undo partial multi_instance of this
371          * state first. Otherwise start undo at the previous state.
372          */
373         if (!st->last) {
374                 if (st->bringup)
375                         st->state--;
376                 else
377                         st->state++;
378         }
379
380         st->target = prev_state;
381         st->bringup = !st->bringup;
382 }
383
384 /* Regular hotplug invocation of the AP hotplug thread */
385 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
386 {
387         if (!st->single && st->state == st->target)
388                 return;
389
390         st->result = 0;
391         /*
392          * Make sure the above stores are visible before should_run becomes
393          * true. Paired with the mb() above in cpuhp_thread_fun()
394          */
395         smp_mb();
396         st->should_run = true;
397         wake_up_process(st->thread);
398         wait_for_ap_thread(st, st->bringup);
399 }
400
401 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
402 {
403         enum cpuhp_state prev_state;
404         int ret;
405
406         prev_state = cpuhp_set_state(st, target);
407         __cpuhp_kick_ap(st);
408         if ((ret = st->result)) {
409                 cpuhp_reset_state(st, prev_state);
410                 __cpuhp_kick_ap(st);
411         }
412
413         return ret;
414 }
415
416 static int bringup_wait_for_ap(unsigned int cpu)
417 {
418         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
419
420         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
421         wait_for_ap_thread(st, true);
422         if (WARN_ON_ONCE((!cpu_online(cpu))))
423                 return -ECANCELED;
424
425         /* Unpark the stopper thread and the hotplug thread of the target cpu */
426         stop_machine_unpark(cpu);
427         kthread_unpark(st->thread);
428
429         if (st->target <= CPUHP_AP_ONLINE_IDLE)
430                 return 0;
431
432         return cpuhp_kick_ap(st, st->target);
433 }
434
435 static int bringup_cpu(unsigned int cpu)
436 {
437         struct task_struct *idle = idle_thread_get(cpu);
438         int ret;
439
440         /*
441          * Some architectures have to walk the irq descriptors to
442          * setup the vector space for the cpu which comes online.
443          * Prevent irq alloc/free across the bringup.
444          */
445         irq_lock_sparse();
446
447         /* Arch-specific enabling code. */
448         ret = __cpu_up(cpu, idle);
449         irq_unlock_sparse();
450         if (ret)
451                 return ret;
452         return bringup_wait_for_ap(cpu);
453 }
454
455 /*
456  * Hotplug state machine related functions
457  */
458
459 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
460 {
461         for (st->state--; st->state > st->target; st->state--) {
462                 struct cpuhp_step *step = cpuhp_get_step(st->state);
463
464                 if (!step->skip_onerr)
465                         cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
466         }
467 }
468
469 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
470                               enum cpuhp_state target)
471 {
472         enum cpuhp_state prev_state = st->state;
473         int ret = 0;
474
475         while (st->state < target) {
476                 st->state++;
477                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
478                 if (ret) {
479                         st->target = prev_state;
480                         undo_cpu_up(cpu, st);
481                         break;
482                 }
483         }
484         return ret;
485 }
486
487 /*
488  * The cpu hotplug threads manage the bringup and teardown of the cpus
489  */
490 static void cpuhp_create(unsigned int cpu)
491 {
492         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
493
494         init_completion(&st->done_up);
495         init_completion(&st->done_down);
496 }
497
498 static int cpuhp_should_run(unsigned int cpu)
499 {
500         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
501
502         return st->should_run;
503 }
504
505 /*
506  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
507  * callbacks when a state gets [un]installed at runtime.
508  *
509  * Each invocation of this function by the smpboot thread does a single AP
510  * state callback.
511  *
512  * It has 3 modes of operation:
513  *  - single: runs st->cb_state
514  *  - up:     runs ++st->state, while st->state < st->target
515  *  - down:   runs st->state--, while st->state > st->target
516  *
517  * When complete or on error, should_run is cleared and the completion is fired.
518  */
519 static void cpuhp_thread_fun(unsigned int cpu)
520 {
521         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
522         bool bringup = st->bringup;
523         enum cpuhp_state state;
524
525         /*
526          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
527          * that if we see ->should_run we also see the rest of the state.
528          */
529         smp_mb();
530
531         if (WARN_ON_ONCE(!st->should_run))
532                 return;
533
534         cpuhp_lock_acquire(bringup);
535
536         if (st->single) {
537                 state = st->cb_state;
538                 st->should_run = false;
539         } else {
540                 if (bringup) {
541                         st->state++;
542                         state = st->state;
543                         st->should_run = (st->state < st->target);
544                         WARN_ON_ONCE(st->state > st->target);
545                 } else {
546                         state = st->state;
547                         st->state--;
548                         st->should_run = (st->state > st->target);
549                         WARN_ON_ONCE(st->state < st->target);
550                 }
551         }
552
553         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
554
555         if (st->rollback) {
556                 struct cpuhp_step *step = cpuhp_get_step(state);
557                 if (step->skip_onerr)
558                         goto next;
559         }
560
561         if (cpuhp_is_atomic_state(state)) {
562                 local_irq_disable();
563                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
564                 local_irq_enable();
565
566                 /*
567                  * STARTING/DYING must not fail!
568                  */
569                 WARN_ON_ONCE(st->result);
570         } else {
571                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
572         }
573
574         if (st->result) {
575                 /*
576                  * If we fail on a rollback, we're up a creek without no
577                  * paddle, no way forward, no way back. We loose, thanks for
578                  * playing.
579                  */
580                 WARN_ON_ONCE(st->rollback);
581                 st->should_run = false;
582         }
583
584 next:
585         cpuhp_lock_release(bringup);
586
587         if (!st->should_run)
588                 complete_ap_thread(st, bringup);
589 }
590
591 /* Invoke a single callback on a remote cpu */
592 static int
593 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
594                          struct hlist_node *node)
595 {
596         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
597         int ret;
598
599         if (!cpu_online(cpu))
600                 return 0;
601
602         cpuhp_lock_acquire(false);
603         cpuhp_lock_release(false);
604
605         cpuhp_lock_acquire(true);
606         cpuhp_lock_release(true);
607
608         /*
609          * If we are up and running, use the hotplug thread. For early calls
610          * we invoke the thread function directly.
611          */
612         if (!st->thread)
613                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
614
615         st->rollback = false;
616         st->last = NULL;
617
618         st->node = node;
619         st->bringup = bringup;
620         st->cb_state = state;
621         st->single = true;
622
623         __cpuhp_kick_ap(st);
624
625         /*
626          * If we failed and did a partial, do a rollback.
627          */
628         if ((ret = st->result) && st->last) {
629                 st->rollback = true;
630                 st->bringup = !bringup;
631
632                 __cpuhp_kick_ap(st);
633         }
634
635         /*
636          * Clean up the leftovers so the next hotplug operation wont use stale
637          * data.
638          */
639         st->node = st->last = NULL;
640         return ret;
641 }
642
643 static int cpuhp_kick_ap_work(unsigned int cpu)
644 {
645         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
646         enum cpuhp_state prev_state = st->state;
647         int ret;
648
649         cpuhp_lock_acquire(false);
650         cpuhp_lock_release(false);
651
652         cpuhp_lock_acquire(true);
653         cpuhp_lock_release(true);
654
655         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
656         ret = cpuhp_kick_ap(st, st->target);
657         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
658
659         return ret;
660 }
661
662 static struct smp_hotplug_thread cpuhp_threads = {
663         .store                  = &cpuhp_state.thread,
664         .create                 = &cpuhp_create,
665         .thread_should_run      = cpuhp_should_run,
666         .thread_fn              = cpuhp_thread_fun,
667         .thread_comm            = "cpuhp/%u",
668         .selfparking            = true,
669 };
670
671 void __init cpuhp_threads_init(void)
672 {
673         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
674         kthread_unpark(this_cpu_read(cpuhp_state.thread));
675 }
676
677 #ifdef CONFIG_HOTPLUG_CPU
678 /**
679  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
680  * @cpu: a CPU id
681  *
682  * This function walks all processes, finds a valid mm struct for each one and
683  * then clears a corresponding bit in mm's cpumask.  While this all sounds
684  * trivial, there are various non-obvious corner cases, which this function
685  * tries to solve in a safe manner.
686  *
687  * Also note that the function uses a somewhat relaxed locking scheme, so it may
688  * be called only for an already offlined CPU.
689  */
690 void clear_tasks_mm_cpumask(int cpu)
691 {
692         struct task_struct *p;
693
694         /*
695          * This function is called after the cpu is taken down and marked
696          * offline, so its not like new tasks will ever get this cpu set in
697          * their mm mask. -- Peter Zijlstra
698          * Thus, we may use rcu_read_lock() here, instead of grabbing
699          * full-fledged tasklist_lock.
700          */
701         WARN_ON(cpu_online(cpu));
702         rcu_read_lock();
703         for_each_process(p) {
704                 struct task_struct *t;
705
706                 /*
707                  * Main thread might exit, but other threads may still have
708                  * a valid mm. Find one.
709                  */
710                 t = find_lock_task_mm(p);
711                 if (!t)
712                         continue;
713                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
714                 task_unlock(t);
715         }
716         rcu_read_unlock();
717 }
718
719 /* Take this CPU down. */
720 static int take_cpu_down(void *_param)
721 {
722         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
723         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
724         int err, cpu = smp_processor_id();
725         int ret;
726
727         /* Ensure this CPU doesn't handle any more interrupts. */
728         err = __cpu_disable();
729         if (err < 0)
730                 return err;
731
732         /*
733          * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
734          * do this step again.
735          */
736         WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
737         st->state--;
738         /* Invoke the former CPU_DYING callbacks */
739         for (; st->state > target; st->state--) {
740                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
741                 /*
742                  * DYING must not fail!
743                  */
744                 WARN_ON_ONCE(ret);
745         }
746
747         /* Give up timekeeping duties */
748         tick_handover_do_timer();
749         /* Park the stopper thread */
750         stop_machine_park(cpu);
751         return 0;
752 }
753
754 static int takedown_cpu(unsigned int cpu)
755 {
756         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
757         int err;
758
759         /* Park the smpboot threads */
760         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
761
762         /*
763          * Prevent irq alloc/free while the dying cpu reorganizes the
764          * interrupt affinities.
765          */
766         irq_lock_sparse();
767
768         /*
769          * So now all preempt/rcu users must observe !cpu_active().
770          */
771         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
772         if (err) {
773                 /* CPU refused to die */
774                 irq_unlock_sparse();
775                 /* Unpark the hotplug thread so we can rollback there */
776                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
777                 return err;
778         }
779         BUG_ON(cpu_online(cpu));
780
781         /*
782          * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
783          * runnable tasks from the cpu, there's only the idle task left now
784          * that the migration thread is done doing the stop_machine thing.
785          *
786          * Wait for the stop thread to go away.
787          */
788         wait_for_ap_thread(st, false);
789         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
790
791         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
792         irq_unlock_sparse();
793
794         hotplug_cpu__broadcast_tick_pull(cpu);
795         /* This actually kills the CPU. */
796         __cpu_die(cpu);
797
798         tick_cleanup_dead_cpu(cpu);
799         rcutree_migrate_callbacks(cpu);
800         return 0;
801 }
802
803 static void cpuhp_complete_idle_dead(void *arg)
804 {
805         struct cpuhp_cpu_state *st = arg;
806
807         complete_ap_thread(st, false);
808 }
809
810 void cpuhp_report_idle_dead(void)
811 {
812         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
813
814         BUG_ON(st->state != CPUHP_AP_OFFLINE);
815         rcu_report_dead(smp_processor_id());
816         st->state = CPUHP_AP_IDLE_DEAD;
817         /*
818          * We cannot call complete after rcu_report_dead() so we delegate it
819          * to an online cpu.
820          */
821         smp_call_function_single(cpumask_first(cpu_online_mask),
822                                  cpuhp_complete_idle_dead, st, 0);
823 }
824
825 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
826 {
827         for (st->state++; st->state < st->target; st->state++) {
828                 struct cpuhp_step *step = cpuhp_get_step(st->state);
829
830                 if (!step->skip_onerr)
831                         cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
832         }
833 }
834
835 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
836                                 enum cpuhp_state target)
837 {
838         enum cpuhp_state prev_state = st->state;
839         int ret = 0;
840
841         for (; st->state > target; st->state--) {
842                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
843                 if (ret) {
844                         st->target = prev_state;
845                         undo_cpu_down(cpu, st);
846                         break;
847                 }
848         }
849         return ret;
850 }
851
852 /* Requires cpu_add_remove_lock to be held */
853 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
854                            enum cpuhp_state target)
855 {
856         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
857         int prev_state, ret = 0;
858
859         if (num_online_cpus() == 1)
860                 return -EBUSY;
861
862         if (!cpu_present(cpu))
863                 return -EINVAL;
864
865         cpus_write_lock();
866
867         cpuhp_tasks_frozen = tasks_frozen;
868
869         prev_state = cpuhp_set_state(st, target);
870         /*
871          * If the current CPU state is in the range of the AP hotplug thread,
872          * then we need to kick the thread.
873          */
874         if (st->state > CPUHP_TEARDOWN_CPU) {
875                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
876                 ret = cpuhp_kick_ap_work(cpu);
877                 /*
878                  * The AP side has done the error rollback already. Just
879                  * return the error code..
880                  */
881                 if (ret)
882                         goto out;
883
884                 /*
885                  * We might have stopped still in the range of the AP hotplug
886                  * thread. Nothing to do anymore.
887                  */
888                 if (st->state > CPUHP_TEARDOWN_CPU)
889                         goto out;
890
891                 st->target = target;
892         }
893         /*
894          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
895          * to do the further cleanups.
896          */
897         ret = cpuhp_down_callbacks(cpu, st, target);
898         if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
899                 cpuhp_reset_state(st, prev_state);
900                 __cpuhp_kick_ap(st);
901         }
902
903 out:
904         cpus_write_unlock();
905         /*
906          * Do post unplug cleanup. This is still protected against
907          * concurrent CPU hotplug via cpu_add_remove_lock.
908          */
909         lockup_detector_cleanup();
910         return ret;
911 }
912
913 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
914 {
915         if (cpu_hotplug_disabled)
916                 return -EBUSY;
917         return _cpu_down(cpu, 0, target);
918 }
919
920 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
921 {
922         int err;
923
924         cpu_maps_update_begin();
925         err = cpu_down_maps_locked(cpu, target);
926         cpu_maps_update_done();
927         return err;
928 }
929
930 int cpu_down(unsigned int cpu)
931 {
932         return do_cpu_down(cpu, CPUHP_OFFLINE);
933 }
934 EXPORT_SYMBOL(cpu_down);
935
936 #else
937 #define takedown_cpu            NULL
938 #endif /*CONFIG_HOTPLUG_CPU*/
939
940 #ifdef CONFIG_HOTPLUG_SMT
941 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
942
943 static int __init smt_cmdline_disable(char *str)
944 {
945         cpu_smt_control = CPU_SMT_DISABLED;
946         if (str && !strcmp(str, "force")) {
947                 pr_info("SMT: Force disabled\n");
948                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
949         }
950         return 0;
951 }
952 early_param("nosmt", smt_cmdline_disable);
953
954 static inline bool cpu_smt_allowed(unsigned int cpu)
955 {
956         return cpu_smt_control == CPU_SMT_ENABLED ||
957                 topology_is_primary_thread(cpu);
958 }
959 #else
960 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
961 #endif
962
963 /**
964  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
965  * @cpu: cpu that just started
966  *
967  * It must be called by the arch code on the new cpu, before the new cpu
968  * enables interrupts and before the "boot" cpu returns from __cpu_up().
969  */
970 void notify_cpu_starting(unsigned int cpu)
971 {
972         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
973         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
974         int ret;
975
976         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
977         while (st->state < target) {
978                 st->state++;
979                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
980                 /*
981                  * STARTING must not fail!
982                  */
983                 WARN_ON_ONCE(ret);
984         }
985 }
986
987 /*
988  * Called from the idle task. Wake up the controlling task which brings the
989  * stopper and the hotplug thread of the upcoming CPU up and then delegates
990  * the rest of the online bringup to the hotplug thread.
991  */
992 void cpuhp_online_idle(enum cpuhp_state state)
993 {
994         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
995
996         /* Happens for the boot cpu */
997         if (state != CPUHP_AP_ONLINE_IDLE)
998                 return;
999
1000         st->state = CPUHP_AP_ONLINE_IDLE;
1001         complete_ap_thread(st, true);
1002 }
1003
1004 /* Requires cpu_add_remove_lock to be held */
1005 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1006 {
1007         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1008         struct task_struct *idle;
1009         int ret = 0;
1010
1011         cpus_write_lock();
1012
1013         if (!cpu_present(cpu)) {
1014                 ret = -EINVAL;
1015                 goto out;
1016         }
1017
1018         /*
1019          * The caller of do_cpu_up might have raced with another
1020          * caller. Ignore it for now.
1021          */
1022         if (st->state >= target)
1023                 goto out;
1024
1025         if (st->state == CPUHP_OFFLINE) {
1026                 /* Let it fail before we try to bring the cpu up */
1027                 idle = idle_thread_get(cpu);
1028                 if (IS_ERR(idle)) {
1029                         ret = PTR_ERR(idle);
1030                         goto out;
1031                 }
1032         }
1033
1034         cpuhp_tasks_frozen = tasks_frozen;
1035
1036         cpuhp_set_state(st, target);
1037         /*
1038          * If the current CPU state is in the range of the AP hotplug thread,
1039          * then we need to kick the thread once more.
1040          */
1041         if (st->state > CPUHP_BRINGUP_CPU) {
1042                 ret = cpuhp_kick_ap_work(cpu);
1043                 /*
1044                  * The AP side has done the error rollback already. Just
1045                  * return the error code..
1046                  */
1047                 if (ret)
1048                         goto out;
1049         }
1050
1051         /*
1052          * Try to reach the target state. We max out on the BP at
1053          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1054          * responsible for bringing it up to the target state.
1055          */
1056         target = min((int)target, CPUHP_BRINGUP_CPU);
1057         ret = cpuhp_up_callbacks(cpu, st, target);
1058 out:
1059         cpus_write_unlock();
1060         return ret;
1061 }
1062
1063 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1064 {
1065         int err = 0;
1066
1067         if (!cpu_possible(cpu)) {
1068                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1069                        cpu);
1070 #if defined(CONFIG_IA64)
1071                 pr_err("please check additional_cpus= boot parameter\n");
1072 #endif
1073                 return -EINVAL;
1074         }
1075
1076         err = try_online_node(cpu_to_node(cpu));
1077         if (err)
1078                 return err;
1079
1080         cpu_maps_update_begin();
1081
1082         if (cpu_hotplug_disabled) {
1083                 err = -EBUSY;
1084                 goto out;
1085         }
1086         if (!cpu_smt_allowed(cpu)) {
1087                 err = -EPERM;
1088                 goto out;
1089         }
1090
1091         err = _cpu_up(cpu, 0, target);
1092 out:
1093         cpu_maps_update_done();
1094         return err;
1095 }
1096
1097 int cpu_up(unsigned int cpu)
1098 {
1099         return do_cpu_up(cpu, CPUHP_ONLINE);
1100 }
1101 EXPORT_SYMBOL_GPL(cpu_up);
1102
1103 #ifdef CONFIG_PM_SLEEP_SMP
1104 static cpumask_var_t frozen_cpus;
1105
1106 int freeze_secondary_cpus(int primary)
1107 {
1108         int cpu, error = 0;
1109
1110         cpu_maps_update_begin();
1111         if (!cpu_online(primary))
1112                 primary = cpumask_first(cpu_online_mask);
1113         /*
1114          * We take down all of the non-boot CPUs in one shot to avoid races
1115          * with the userspace trying to use the CPU hotplug at the same time
1116          */
1117         cpumask_clear(frozen_cpus);
1118
1119         pr_info("Disabling non-boot CPUs ...\n");
1120         for_each_online_cpu(cpu) {
1121                 if (cpu == primary)
1122                         continue;
1123                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1124                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1125                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1126                 if (!error)
1127                         cpumask_set_cpu(cpu, frozen_cpus);
1128                 else {
1129                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1130                         break;
1131                 }
1132         }
1133
1134         if (!error)
1135                 BUG_ON(num_online_cpus() > 1);
1136         else
1137                 pr_err("Non-boot CPUs are not disabled\n");
1138
1139         /*
1140          * Make sure the CPUs won't be enabled by someone else. We need to do
1141          * this even in case of failure as all disable_nonboot_cpus() users are
1142          * supposed to do enable_nonboot_cpus() on the failure path.
1143          */
1144         cpu_hotplug_disabled++;
1145
1146         cpu_maps_update_done();
1147         return error;
1148 }
1149
1150 void __weak arch_enable_nonboot_cpus_begin(void)
1151 {
1152 }
1153
1154 void __weak arch_enable_nonboot_cpus_end(void)
1155 {
1156 }
1157
1158 void enable_nonboot_cpus(void)
1159 {
1160         int cpu, error;
1161
1162         /* Allow everyone to use the CPU hotplug again */
1163         cpu_maps_update_begin();
1164         __cpu_hotplug_enable();
1165         if (cpumask_empty(frozen_cpus))
1166                 goto out;
1167
1168         pr_info("Enabling non-boot CPUs ...\n");
1169
1170         arch_enable_nonboot_cpus_begin();
1171
1172         for_each_cpu(cpu, frozen_cpus) {
1173                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1174                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1175                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1176                 if (!error) {
1177                         pr_info("CPU%d is up\n", cpu);
1178                         continue;
1179                 }
1180                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1181         }
1182
1183         arch_enable_nonboot_cpus_end();
1184
1185         cpumask_clear(frozen_cpus);
1186 out:
1187         cpu_maps_update_done();
1188 }
1189
1190 static int __init alloc_frozen_cpus(void)
1191 {
1192         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1193                 return -ENOMEM;
1194         return 0;
1195 }
1196 core_initcall(alloc_frozen_cpus);
1197
1198 /*
1199  * When callbacks for CPU hotplug notifications are being executed, we must
1200  * ensure that the state of the system with respect to the tasks being frozen
1201  * or not, as reported by the notification, remains unchanged *throughout the
1202  * duration* of the execution of the callbacks.
1203  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1204  *
1205  * This synchronization is implemented by mutually excluding regular CPU
1206  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1207  * Hibernate notifications.
1208  */
1209 static int
1210 cpu_hotplug_pm_callback(struct notifier_block *nb,
1211                         unsigned long action, void *ptr)
1212 {
1213         switch (action) {
1214
1215         case PM_SUSPEND_PREPARE:
1216         case PM_HIBERNATION_PREPARE:
1217                 cpu_hotplug_disable();
1218                 break;
1219
1220         case PM_POST_SUSPEND:
1221         case PM_POST_HIBERNATION:
1222                 cpu_hotplug_enable();
1223                 break;
1224
1225         default:
1226                 return NOTIFY_DONE;
1227         }
1228
1229         return NOTIFY_OK;
1230 }
1231
1232
1233 static int __init cpu_hotplug_pm_sync_init(void)
1234 {
1235         /*
1236          * cpu_hotplug_pm_callback has higher priority than x86
1237          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1238          * to disable cpu hotplug to avoid cpu hotplug race.
1239          */
1240         pm_notifier(cpu_hotplug_pm_callback, 0);
1241         return 0;
1242 }
1243 core_initcall(cpu_hotplug_pm_sync_init);
1244
1245 #endif /* CONFIG_PM_SLEEP_SMP */
1246
1247 int __boot_cpu_id;
1248
1249 #endif /* CONFIG_SMP */
1250
1251 /* Boot processor state steps */
1252 static struct cpuhp_step cpuhp_bp_states[] = {
1253         [CPUHP_OFFLINE] = {
1254                 .name                   = "offline",
1255                 .startup.single         = NULL,
1256                 .teardown.single        = NULL,
1257         },
1258 #ifdef CONFIG_SMP
1259         [CPUHP_CREATE_THREADS]= {
1260                 .name                   = "threads:prepare",
1261                 .startup.single         = smpboot_create_threads,
1262                 .teardown.single        = NULL,
1263                 .cant_stop              = true,
1264         },
1265         [CPUHP_PERF_PREPARE] = {
1266                 .name                   = "perf:prepare",
1267                 .startup.single         = perf_event_init_cpu,
1268                 .teardown.single        = perf_event_exit_cpu,
1269         },
1270         [CPUHP_WORKQUEUE_PREP] = {
1271                 .name                   = "workqueue:prepare",
1272                 .startup.single         = workqueue_prepare_cpu,
1273                 .teardown.single        = NULL,
1274         },
1275         [CPUHP_HRTIMERS_PREPARE] = {
1276                 .name                   = "hrtimers:prepare",
1277                 .startup.single         = hrtimers_prepare_cpu,
1278                 .teardown.single        = hrtimers_dead_cpu,
1279         },
1280         [CPUHP_SMPCFD_PREPARE] = {
1281                 .name                   = "smpcfd:prepare",
1282                 .startup.single         = smpcfd_prepare_cpu,
1283                 .teardown.single        = smpcfd_dead_cpu,
1284         },
1285         [CPUHP_RELAY_PREPARE] = {
1286                 .name                   = "relay:prepare",
1287                 .startup.single         = relay_prepare_cpu,
1288                 .teardown.single        = NULL,
1289         },
1290         [CPUHP_SLAB_PREPARE] = {
1291                 .name                   = "slab:prepare",
1292                 .startup.single         = slab_prepare_cpu,
1293                 .teardown.single        = slab_dead_cpu,
1294         },
1295         [CPUHP_RCUTREE_PREP] = {
1296                 .name                   = "RCU/tree:prepare",
1297                 .startup.single         = rcutree_prepare_cpu,
1298                 .teardown.single        = rcutree_dead_cpu,
1299         },
1300         /*
1301          * On the tear-down path, timers_dead_cpu() must be invoked
1302          * before blk_mq_queue_reinit_notify() from notify_dead(),
1303          * otherwise a RCU stall occurs.
1304          */
1305         [CPUHP_TIMERS_PREPARE] = {
1306                 .name                   = "timers:dead",
1307                 .startup.single         = timers_prepare_cpu,
1308                 .teardown.single        = timers_dead_cpu,
1309         },
1310         /* Kicks the plugged cpu into life */
1311         [CPUHP_BRINGUP_CPU] = {
1312                 .name                   = "cpu:bringup",
1313                 .startup.single         = bringup_cpu,
1314                 .teardown.single        = NULL,
1315                 .cant_stop              = true,
1316         },
1317         /*
1318          * Handled on controll processor until the plugged processor manages
1319          * this itself.
1320          */
1321         [CPUHP_TEARDOWN_CPU] = {
1322                 .name                   = "cpu:teardown",
1323                 .startup.single         = NULL,
1324                 .teardown.single        = takedown_cpu,
1325                 .cant_stop              = true,
1326         },
1327 #else
1328         [CPUHP_BRINGUP_CPU] = { },
1329 #endif
1330 };
1331
1332 /* Application processor state steps */
1333 static struct cpuhp_step cpuhp_ap_states[] = {
1334 #ifdef CONFIG_SMP
1335         /* Final state before CPU kills itself */
1336         [CPUHP_AP_IDLE_DEAD] = {
1337                 .name                   = "idle:dead",
1338         },
1339         /*
1340          * Last state before CPU enters the idle loop to die. Transient state
1341          * for synchronization.
1342          */
1343         [CPUHP_AP_OFFLINE] = {
1344                 .name                   = "ap:offline",
1345                 .cant_stop              = true,
1346         },
1347         /* First state is scheduler control. Interrupts are disabled */
1348         [CPUHP_AP_SCHED_STARTING] = {
1349                 .name                   = "sched:starting",
1350                 .startup.single         = sched_cpu_starting,
1351                 .teardown.single        = sched_cpu_dying,
1352         },
1353         [CPUHP_AP_RCUTREE_DYING] = {
1354                 .name                   = "RCU/tree:dying",
1355                 .startup.single         = NULL,
1356                 .teardown.single        = rcutree_dying_cpu,
1357         },
1358         [CPUHP_AP_SMPCFD_DYING] = {
1359                 .name                   = "smpcfd:dying",
1360                 .startup.single         = NULL,
1361                 .teardown.single        = smpcfd_dying_cpu,
1362         },
1363         /* Entry state on starting. Interrupts enabled from here on. Transient
1364          * state for synchronsization */
1365         [CPUHP_AP_ONLINE] = {
1366                 .name                   = "ap:online",
1367         },
1368         /* Handle smpboot threads park/unpark */
1369         [CPUHP_AP_SMPBOOT_THREADS] = {
1370                 .name                   = "smpboot/threads:online",
1371                 .startup.single         = smpboot_unpark_threads,
1372                 .teardown.single        = smpboot_park_threads,
1373         },
1374         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1375                 .name                   = "irq/affinity:online",
1376                 .startup.single         = irq_affinity_online_cpu,
1377                 .teardown.single        = NULL,
1378         },
1379         [CPUHP_AP_PERF_ONLINE] = {
1380                 .name                   = "perf:online",
1381                 .startup.single         = perf_event_init_cpu,
1382                 .teardown.single        = perf_event_exit_cpu,
1383         },
1384         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1385                 .name                   = "workqueue:online",
1386                 .startup.single         = workqueue_online_cpu,
1387                 .teardown.single        = workqueue_offline_cpu,
1388         },
1389         [CPUHP_AP_RCUTREE_ONLINE] = {
1390                 .name                   = "RCU/tree:online",
1391                 .startup.single         = rcutree_online_cpu,
1392                 .teardown.single        = rcutree_offline_cpu,
1393         },
1394 #endif
1395         /*
1396          * The dynamically registered state space is here
1397          */
1398
1399 #ifdef CONFIG_SMP
1400         /* Last state is scheduler control setting the cpu active */
1401         [CPUHP_AP_ACTIVE] = {
1402                 .name                   = "sched:active",
1403                 .startup.single         = sched_cpu_activate,
1404                 .teardown.single        = sched_cpu_deactivate,
1405         },
1406 #endif
1407
1408         /* CPU is fully up and running. */
1409         [CPUHP_ONLINE] = {
1410                 .name                   = "online",
1411                 .startup.single         = NULL,
1412                 .teardown.single        = NULL,
1413         },
1414 };
1415
1416 /* Sanity check for callbacks */
1417 static int cpuhp_cb_check(enum cpuhp_state state)
1418 {
1419         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1420                 return -EINVAL;
1421         return 0;
1422 }
1423
1424 /*
1425  * Returns a free for dynamic slot assignment of the Online state. The states
1426  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1427  * by having no name assigned.
1428  */
1429 static int cpuhp_reserve_state(enum cpuhp_state state)
1430 {
1431         enum cpuhp_state i, end;
1432         struct cpuhp_step *step;
1433
1434         switch (state) {
1435         case CPUHP_AP_ONLINE_DYN:
1436                 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1437                 end = CPUHP_AP_ONLINE_DYN_END;
1438                 break;
1439         case CPUHP_BP_PREPARE_DYN:
1440                 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1441                 end = CPUHP_BP_PREPARE_DYN_END;
1442                 break;
1443         default:
1444                 return -EINVAL;
1445         }
1446
1447         for (i = state; i <= end; i++, step++) {
1448                 if (!step->name)
1449                         return i;
1450         }
1451         WARN(1, "No more dynamic states available for CPU hotplug\n");
1452         return -ENOSPC;
1453 }
1454
1455 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1456                                  int (*startup)(unsigned int cpu),
1457                                  int (*teardown)(unsigned int cpu),
1458                                  bool multi_instance)
1459 {
1460         /* (Un)Install the callbacks for further cpu hotplug operations */
1461         struct cpuhp_step *sp;
1462         int ret = 0;
1463
1464         /*
1465          * If name is NULL, then the state gets removed.
1466          *
1467          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1468          * the first allocation from these dynamic ranges, so the removal
1469          * would trigger a new allocation and clear the wrong (already
1470          * empty) state, leaving the callbacks of the to be cleared state
1471          * dangling, which causes wreckage on the next hotplug operation.
1472          */
1473         if (name && (state == CPUHP_AP_ONLINE_DYN ||
1474                      state == CPUHP_BP_PREPARE_DYN)) {
1475                 ret = cpuhp_reserve_state(state);
1476                 if (ret < 0)
1477                         return ret;
1478                 state = ret;
1479         }
1480         sp = cpuhp_get_step(state);
1481         if (name && sp->name)
1482                 return -EBUSY;
1483
1484         sp->startup.single = startup;
1485         sp->teardown.single = teardown;
1486         sp->name = name;
1487         sp->multi_instance = multi_instance;
1488         INIT_HLIST_HEAD(&sp->list);
1489         return ret;
1490 }
1491
1492 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1493 {
1494         return cpuhp_get_step(state)->teardown.single;
1495 }
1496
1497 /*
1498  * Call the startup/teardown function for a step either on the AP or
1499  * on the current CPU.
1500  */
1501 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1502                             struct hlist_node *node)
1503 {
1504         struct cpuhp_step *sp = cpuhp_get_step(state);
1505         int ret;
1506
1507         /*
1508          * If there's nothing to do, we done.
1509          * Relies on the union for multi_instance.
1510          */
1511         if ((bringup && !sp->startup.single) ||
1512             (!bringup && !sp->teardown.single))
1513                 return 0;
1514         /*
1515          * The non AP bound callbacks can fail on bringup. On teardown
1516          * e.g. module removal we crash for now.
1517          */
1518 #ifdef CONFIG_SMP
1519         if (cpuhp_is_ap_state(state))
1520                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1521         else
1522                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1523 #else
1524         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1525 #endif
1526         BUG_ON(ret && !bringup);
1527         return ret;
1528 }
1529
1530 /*
1531  * Called from __cpuhp_setup_state on a recoverable failure.
1532  *
1533  * Note: The teardown callbacks for rollback are not allowed to fail!
1534  */
1535 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1536                                    struct hlist_node *node)
1537 {
1538         int cpu;
1539
1540         /* Roll back the already executed steps on the other cpus */
1541         for_each_present_cpu(cpu) {
1542                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1543                 int cpustate = st->state;
1544
1545                 if (cpu >= failedcpu)
1546                         break;
1547
1548                 /* Did we invoke the startup call on that cpu ? */
1549                 if (cpustate >= state)
1550                         cpuhp_issue_call(cpu, state, false, node);
1551         }
1552 }
1553
1554 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1555                                           struct hlist_node *node,
1556                                           bool invoke)
1557 {
1558         struct cpuhp_step *sp;
1559         int cpu;
1560         int ret;
1561
1562         lockdep_assert_cpus_held();
1563
1564         sp = cpuhp_get_step(state);
1565         if (sp->multi_instance == false)
1566                 return -EINVAL;
1567
1568         mutex_lock(&cpuhp_state_mutex);
1569
1570         if (!invoke || !sp->startup.multi)
1571                 goto add_node;
1572
1573         /*
1574          * Try to call the startup callback for each present cpu
1575          * depending on the hotplug state of the cpu.
1576          */
1577         for_each_present_cpu(cpu) {
1578                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1579                 int cpustate = st->state;
1580
1581                 if (cpustate < state)
1582                         continue;
1583
1584                 ret = cpuhp_issue_call(cpu, state, true, node);
1585                 if (ret) {
1586                         if (sp->teardown.multi)
1587                                 cpuhp_rollback_install(cpu, state, node);
1588                         goto unlock;
1589                 }
1590         }
1591 add_node:
1592         ret = 0;
1593         hlist_add_head(node, &sp->list);
1594 unlock:
1595         mutex_unlock(&cpuhp_state_mutex);
1596         return ret;
1597 }
1598
1599 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1600                                bool invoke)
1601 {
1602         int ret;
1603
1604         cpus_read_lock();
1605         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1606         cpus_read_unlock();
1607         return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1610
1611 /**
1612  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1613  * @state:              The state to setup
1614  * @invoke:             If true, the startup function is invoked for cpus where
1615  *                      cpu state >= @state
1616  * @startup:            startup callback function
1617  * @teardown:           teardown callback function
1618  * @multi_instance:     State is set up for multiple instances which get
1619  *                      added afterwards.
1620  *
1621  * The caller needs to hold cpus read locked while calling this function.
1622  * Returns:
1623  *   On success:
1624  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1625  *      0 for all other states
1626  *   On failure: proper (negative) error code
1627  */
1628 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1629                                    const char *name, bool invoke,
1630                                    int (*startup)(unsigned int cpu),
1631                                    int (*teardown)(unsigned int cpu),
1632                                    bool multi_instance)
1633 {
1634         int cpu, ret = 0;
1635         bool dynstate;
1636
1637         lockdep_assert_cpus_held();
1638
1639         if (cpuhp_cb_check(state) || !name)
1640                 return -EINVAL;
1641
1642         mutex_lock(&cpuhp_state_mutex);
1643
1644         ret = cpuhp_store_callbacks(state, name, startup, teardown,
1645                                     multi_instance);
1646
1647         dynstate = state == CPUHP_AP_ONLINE_DYN;
1648         if (ret > 0 && dynstate) {
1649                 state = ret;
1650                 ret = 0;
1651         }
1652
1653         if (ret || !invoke || !startup)
1654                 goto out;
1655
1656         /*
1657          * Try to call the startup callback for each present cpu
1658          * depending on the hotplug state of the cpu.
1659          */
1660         for_each_present_cpu(cpu) {
1661                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1662                 int cpustate = st->state;
1663
1664                 if (cpustate < state)
1665                         continue;
1666
1667                 ret = cpuhp_issue_call(cpu, state, true, NULL);
1668                 if (ret) {
1669                         if (teardown)
1670                                 cpuhp_rollback_install(cpu, state, NULL);
1671                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1672                         goto out;
1673                 }
1674         }
1675 out:
1676         mutex_unlock(&cpuhp_state_mutex);
1677         /*
1678          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1679          * dynamically allocated state in case of success.
1680          */
1681         if (!ret && dynstate)
1682                 return state;
1683         return ret;
1684 }
1685 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1686
1687 int __cpuhp_setup_state(enum cpuhp_state state,
1688                         const char *name, bool invoke,
1689                         int (*startup)(unsigned int cpu),
1690                         int (*teardown)(unsigned int cpu),
1691                         bool multi_instance)
1692 {
1693         int ret;
1694
1695         cpus_read_lock();
1696         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1697                                              teardown, multi_instance);
1698         cpus_read_unlock();
1699         return ret;
1700 }
1701 EXPORT_SYMBOL(__cpuhp_setup_state);
1702
1703 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1704                                   struct hlist_node *node, bool invoke)
1705 {
1706         struct cpuhp_step *sp = cpuhp_get_step(state);
1707         int cpu;
1708
1709         BUG_ON(cpuhp_cb_check(state));
1710
1711         if (!sp->multi_instance)
1712                 return -EINVAL;
1713
1714         cpus_read_lock();
1715         mutex_lock(&cpuhp_state_mutex);
1716
1717         if (!invoke || !cpuhp_get_teardown_cb(state))
1718                 goto remove;
1719         /*
1720          * Call the teardown callback for each present cpu depending
1721          * on the hotplug state of the cpu. This function is not
1722          * allowed to fail currently!
1723          */
1724         for_each_present_cpu(cpu) {
1725                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1726                 int cpustate = st->state;
1727
1728                 if (cpustate >= state)
1729                         cpuhp_issue_call(cpu, state, false, node);
1730         }
1731
1732 remove:
1733         hlist_del(node);
1734         mutex_unlock(&cpuhp_state_mutex);
1735         cpus_read_unlock();
1736
1737         return 0;
1738 }
1739 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1740
1741 /**
1742  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1743  * @state:      The state to remove
1744  * @invoke:     If true, the teardown function is invoked for cpus where
1745  *              cpu state >= @state
1746  *
1747  * The caller needs to hold cpus read locked while calling this function.
1748  * The teardown callback is currently not allowed to fail. Think
1749  * about module removal!
1750  */
1751 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1752 {
1753         struct cpuhp_step *sp = cpuhp_get_step(state);
1754         int cpu;
1755
1756         BUG_ON(cpuhp_cb_check(state));
1757
1758         lockdep_assert_cpus_held();
1759
1760         mutex_lock(&cpuhp_state_mutex);
1761         if (sp->multi_instance) {
1762                 WARN(!hlist_empty(&sp->list),
1763                      "Error: Removing state %d which has instances left.\n",
1764                      state);
1765                 goto remove;
1766         }
1767
1768         if (!invoke || !cpuhp_get_teardown_cb(state))
1769                 goto remove;
1770
1771         /*
1772          * Call the teardown callback for each present cpu depending
1773          * on the hotplug state of the cpu. This function is not
1774          * allowed to fail currently!
1775          */
1776         for_each_present_cpu(cpu) {
1777                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1778                 int cpustate = st->state;
1779
1780                 if (cpustate >= state)
1781                         cpuhp_issue_call(cpu, state, false, NULL);
1782         }
1783 remove:
1784         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1785         mutex_unlock(&cpuhp_state_mutex);
1786 }
1787 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1788
1789 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1790 {
1791         cpus_read_lock();
1792         __cpuhp_remove_state_cpuslocked(state, invoke);
1793         cpus_read_unlock();
1794 }
1795 EXPORT_SYMBOL(__cpuhp_remove_state);
1796
1797 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1798 static ssize_t show_cpuhp_state(struct device *dev,
1799                                 struct device_attribute *attr, char *buf)
1800 {
1801         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1802
1803         return sprintf(buf, "%d\n", st->state);
1804 }
1805 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1806
1807 static ssize_t write_cpuhp_target(struct device *dev,
1808                                   struct device_attribute *attr,
1809                                   const char *buf, size_t count)
1810 {
1811         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1812         struct cpuhp_step *sp;
1813         int target, ret;
1814
1815         ret = kstrtoint(buf, 10, &target);
1816         if (ret)
1817                 return ret;
1818
1819 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1820         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1821                 return -EINVAL;
1822 #else
1823         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1824                 return -EINVAL;
1825 #endif
1826
1827         ret = lock_device_hotplug_sysfs();
1828         if (ret)
1829                 return ret;
1830
1831         mutex_lock(&cpuhp_state_mutex);
1832         sp = cpuhp_get_step(target);
1833         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1834         mutex_unlock(&cpuhp_state_mutex);
1835         if (ret)
1836                 goto out;
1837
1838         if (st->state < target)
1839                 ret = do_cpu_up(dev->id, target);
1840         else
1841                 ret = do_cpu_down(dev->id, target);
1842 out:
1843         unlock_device_hotplug();
1844         return ret ? ret : count;
1845 }
1846
1847 static ssize_t show_cpuhp_target(struct device *dev,
1848                                  struct device_attribute *attr, char *buf)
1849 {
1850         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1851
1852         return sprintf(buf, "%d\n", st->target);
1853 }
1854 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1855
1856
1857 static ssize_t write_cpuhp_fail(struct device *dev,
1858                                 struct device_attribute *attr,
1859                                 const char *buf, size_t count)
1860 {
1861         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1862         struct cpuhp_step *sp;
1863         int fail, ret;
1864
1865         ret = kstrtoint(buf, 10, &fail);
1866         if (ret)
1867                 return ret;
1868
1869         /*
1870          * Cannot fail STARTING/DYING callbacks.
1871          */
1872         if (cpuhp_is_atomic_state(fail))
1873                 return -EINVAL;
1874
1875         /*
1876          * Cannot fail anything that doesn't have callbacks.
1877          */
1878         mutex_lock(&cpuhp_state_mutex);
1879         sp = cpuhp_get_step(fail);
1880         if (!sp->startup.single && !sp->teardown.single)
1881                 ret = -EINVAL;
1882         mutex_unlock(&cpuhp_state_mutex);
1883         if (ret)
1884                 return ret;
1885
1886         st->fail = fail;
1887
1888         return count;
1889 }
1890
1891 static ssize_t show_cpuhp_fail(struct device *dev,
1892                                struct device_attribute *attr, char *buf)
1893 {
1894         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1895
1896         return sprintf(buf, "%d\n", st->fail);
1897 }
1898
1899 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1900
1901 static struct attribute *cpuhp_cpu_attrs[] = {
1902         &dev_attr_state.attr,
1903         &dev_attr_target.attr,
1904         &dev_attr_fail.attr,
1905         NULL
1906 };
1907
1908 static const struct attribute_group cpuhp_cpu_attr_group = {
1909         .attrs = cpuhp_cpu_attrs,
1910         .name = "hotplug",
1911         NULL
1912 };
1913
1914 static ssize_t show_cpuhp_states(struct device *dev,
1915                                  struct device_attribute *attr, char *buf)
1916 {
1917         ssize_t cur, res = 0;
1918         int i;
1919
1920         mutex_lock(&cpuhp_state_mutex);
1921         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1922                 struct cpuhp_step *sp = cpuhp_get_step(i);
1923
1924                 if (sp->name) {
1925                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1926                         buf += cur;
1927                         res += cur;
1928                 }
1929         }
1930         mutex_unlock(&cpuhp_state_mutex);
1931         return res;
1932 }
1933 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1934
1935 static struct attribute *cpuhp_cpu_root_attrs[] = {
1936         &dev_attr_states.attr,
1937         NULL
1938 };
1939
1940 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1941         .attrs = cpuhp_cpu_root_attrs,
1942         .name = "hotplug",
1943         NULL
1944 };
1945
1946 #ifdef CONFIG_HOTPLUG_SMT
1947
1948 static const char *smt_states[] = {
1949         [CPU_SMT_ENABLED]               = "on",
1950         [CPU_SMT_DISABLED]              = "off",
1951         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
1952         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
1953 };
1954
1955 static ssize_t
1956 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
1957 {
1958         return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
1959 }
1960
1961 static void cpuhp_offline_cpu_device(unsigned int cpu)
1962 {
1963         struct device *dev = get_cpu_device(cpu);
1964
1965         dev->offline = true;
1966         /* Tell user space about the state change */
1967         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1968 }
1969
1970 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
1971 {
1972         int cpu, ret = 0;
1973
1974         cpu_maps_update_begin();
1975         for_each_online_cpu(cpu) {
1976                 if (topology_is_primary_thread(cpu))
1977                         continue;
1978                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1979                 if (ret)
1980                         break;
1981                 /*
1982                  * As this needs to hold the cpu maps lock it's impossible
1983                  * to call device_offline() because that ends up calling
1984                  * cpu_down() which takes cpu maps lock. cpu maps lock
1985                  * needs to be held as this might race against in kernel
1986                  * abusers of the hotplug machinery (thermal management).
1987                  *
1988                  * So nothing would update device:offline state. That would
1989                  * leave the sysfs entry stale and prevent onlining after
1990                  * smt control has been changed to 'off' again. This is
1991                  * called under the sysfs hotplug lock, so it is properly
1992                  * serialized against the regular offline usage.
1993                  */
1994                 cpuhp_offline_cpu_device(cpu);
1995         }
1996         if (!ret)
1997                 cpu_smt_control = ctrlval;
1998         cpu_maps_update_done();
1999         return ret;
2000 }
2001
2002 static void cpuhp_smt_enable(void)
2003 {
2004         cpu_maps_update_begin();
2005         cpu_smt_control = CPU_SMT_ENABLED;
2006         cpu_maps_update_done();
2007 }
2008
2009 static ssize_t
2010 store_smt_control(struct device *dev, struct device_attribute *attr,
2011                   const char *buf, size_t count)
2012 {
2013         int ctrlval, ret;
2014
2015         if (sysfs_streq(buf, "on"))
2016                 ctrlval = CPU_SMT_ENABLED;
2017         else if (sysfs_streq(buf, "off"))
2018                 ctrlval = CPU_SMT_DISABLED;
2019         else if (sysfs_streq(buf, "forceoff"))
2020                 ctrlval = CPU_SMT_FORCE_DISABLED;
2021         else
2022                 return -EINVAL;
2023
2024         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2025                 return -EPERM;
2026
2027         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2028                 return -ENODEV;
2029
2030         ret = lock_device_hotplug_sysfs();
2031         if (ret)
2032                 return ret;
2033
2034         if (ctrlval != cpu_smt_control) {
2035                 switch (ctrlval) {
2036                 case CPU_SMT_ENABLED:
2037                         cpuhp_smt_enable();
2038                         break;
2039                 case CPU_SMT_DISABLED:
2040                 case CPU_SMT_FORCE_DISABLED:
2041                         ret = cpuhp_smt_disable(ctrlval);
2042                         break;
2043                 }
2044         }
2045
2046         unlock_device_hotplug();
2047         return ret ? ret : count;
2048 }
2049 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2050
2051 static ssize_t
2052 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2053 {
2054         bool active = topology_max_smt_threads() > 1;
2055
2056         return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2057 }
2058 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2059
2060 static struct attribute *cpuhp_smt_attrs[] = {
2061         &dev_attr_control.attr,
2062         &dev_attr_active.attr,
2063         NULL
2064 };
2065
2066 static const struct attribute_group cpuhp_smt_attr_group = {
2067         .attrs = cpuhp_smt_attrs,
2068         .name = "smt",
2069         NULL
2070 };
2071
2072 static int __init cpu_smt_state_init(void)
2073 {
2074         if (!topology_smt_supported())
2075                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
2076
2077         return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2078                                   &cpuhp_smt_attr_group);
2079 }
2080
2081 #else
2082 static inline int cpu_smt_state_init(void) { return 0; }
2083 #endif
2084
2085 static int __init cpuhp_sysfs_init(void)
2086 {
2087         int cpu, ret;
2088
2089         ret = cpu_smt_state_init();
2090         if (ret)
2091                 return ret;
2092
2093         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2094                                  &cpuhp_cpu_root_attr_group);
2095         if (ret)
2096                 return ret;
2097
2098         for_each_possible_cpu(cpu) {
2099                 struct device *dev = get_cpu_device(cpu);
2100
2101                 if (!dev)
2102                         continue;
2103                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2104                 if (ret)
2105                         return ret;
2106         }
2107         return 0;
2108 }
2109 device_initcall(cpuhp_sysfs_init);
2110 #endif
2111
2112 /*
2113  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2114  * represents all NR_CPUS bits binary values of 1<<nr.
2115  *
2116  * It is used by cpumask_of() to get a constant address to a CPU
2117  * mask value that has a single bit set only.
2118  */
2119
2120 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2121 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2122 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2123 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2124 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2125
2126 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2127
2128         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2129         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2130 #if BITS_PER_LONG > 32
2131         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2132         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2133 #endif
2134 };
2135 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2136
2137 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2138 EXPORT_SYMBOL(cpu_all_bits);
2139
2140 #ifdef CONFIG_INIT_ALL_POSSIBLE
2141 struct cpumask __cpu_possible_mask __read_mostly
2142         = {CPU_BITS_ALL};
2143 #else
2144 struct cpumask __cpu_possible_mask __read_mostly;
2145 #endif
2146 EXPORT_SYMBOL(__cpu_possible_mask);
2147
2148 struct cpumask __cpu_online_mask __read_mostly;
2149 EXPORT_SYMBOL(__cpu_online_mask);
2150
2151 struct cpumask __cpu_present_mask __read_mostly;
2152 EXPORT_SYMBOL(__cpu_present_mask);
2153
2154 struct cpumask __cpu_active_mask __read_mostly;
2155 EXPORT_SYMBOL(__cpu_active_mask);
2156
2157 void init_cpu_present(const struct cpumask *src)
2158 {
2159         cpumask_copy(&__cpu_present_mask, src);
2160 }
2161
2162 void init_cpu_possible(const struct cpumask *src)
2163 {
2164         cpumask_copy(&__cpu_possible_mask, src);
2165 }
2166
2167 void init_cpu_online(const struct cpumask *src)
2168 {
2169         cpumask_copy(&__cpu_online_mask, src);
2170 }
2171
2172 /*
2173  * Activate the first processor.
2174  */
2175 void __init boot_cpu_init(void)
2176 {
2177         int cpu = smp_processor_id();
2178
2179         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2180         set_cpu_online(cpu, true);
2181         set_cpu_active(cpu, true);
2182         set_cpu_present(cpu, true);
2183         set_cpu_possible(cpu, true);
2184
2185 #ifdef CONFIG_SMP
2186         __boot_cpu_id = cpu;
2187 #endif
2188 }
2189
2190 /*
2191  * Must be called _AFTER_ setting up the per_cpu areas
2192  */
2193 void __init boot_cpu_hotplug_init(void)
2194 {
2195         per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2196 }