cpu/SMT: Make SMT control more robust against enumeration failures
[platform/kernel/linux-starfive.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44
45 #include "smpboot.h"
46
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:      The current cpu state
50  * @target:     The target state
51  * @fail:       Current CPU hotplug callback state
52  * @thread:     Pointer to the hotplug thread
53  * @should_run: Thread should execute
54  * @rollback:   Perform a rollback
55  * @single:     Single callback invocation
56  * @bringup:    Single callback bringup or teardown selector
57  * @cpu:        CPU number
58  * @node:       Remote CPU node; for multi-instance, do a
59  *              single entry callback for install/remove
60  * @last:       For multi-instance rollback, remember how far we got
61  * @cb_state:   The state for a single callback (install/uninstall)
62  * @result:     Result of the operation
63  * @ap_sync_state:      State for AP synchronization
64  * @done_up:    Signal completion to the issuer of the task for cpu-up
65  * @done_down:  Signal completion to the issuer of the task for cpu-down
66  */
67 struct cpuhp_cpu_state {
68         enum cpuhp_state        state;
69         enum cpuhp_state        target;
70         enum cpuhp_state        fail;
71 #ifdef CONFIG_SMP
72         struct task_struct      *thread;
73         bool                    should_run;
74         bool                    rollback;
75         bool                    single;
76         bool                    bringup;
77         struct hlist_node       *node;
78         struct hlist_node       *last;
79         enum cpuhp_state        cb_state;
80         int                     result;
81         atomic_t                ap_sync_state;
82         struct completion       done_up;
83         struct completion       done_down;
84 #endif
85 };
86
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88         .fail = CPUHP_INVALID,
89 };
90
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100
101
102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106
107 static inline void cpuhp_lock_release(bool bringup)
108 {
109         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
115
116 #endif
117
118 /**
119  * struct cpuhp_step - Hotplug state machine step
120  * @name:       Name of the step
121  * @startup:    Startup function of the step
122  * @teardown:   Teardown function of the step
123  * @cant_stop:  Bringup/teardown can't be stopped at this step
124  * @multi_instance:     State has multiple instances which get added afterwards
125  */
126 struct cpuhp_step {
127         const char              *name;
128         union {
129                 int             (*single)(unsigned int cpu);
130                 int             (*multi)(unsigned int cpu,
131                                          struct hlist_node *node);
132         } startup;
133         union {
134                 int             (*single)(unsigned int cpu);
135                 int             (*multi)(unsigned int cpu,
136                                          struct hlist_node *node);
137         } teardown;
138         /* private: */
139         struct hlist_head       list;
140         /* public: */
141         bool                    cant_stop;
142         bool                    multi_instance;
143 };
144
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150         return cpuhp_hp_states + state;
151 }
152
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155         return bringup ? !step->startup.single : !step->teardown.single;
156 }
157
158 /**
159  * cpuhp_invoke_callback - Invoke the callbacks for a given state
160  * @cpu:        The cpu for which the callback should be invoked
161  * @state:      The state to do callbacks for
162  * @bringup:    True if the bringup callback should be invoked
163  * @node:       For multi-instance, do a single entry callback for install/remove
164  * @lastp:      For multi-instance rollback, remember how far we got
165  *
166  * Called from cpu hotplug and from the state register machinery.
167  *
168  * Return: %0 on success or a negative errno code
169  */
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171                                  bool bringup, struct hlist_node *node,
172                                  struct hlist_node **lastp)
173 {
174         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175         struct cpuhp_step *step = cpuhp_get_step(state);
176         int (*cbm)(unsigned int cpu, struct hlist_node *node);
177         int (*cb)(unsigned int cpu);
178         int ret, cnt;
179
180         if (st->fail == state) {
181                 st->fail = CPUHP_INVALID;
182                 return -EAGAIN;
183         }
184
185         if (cpuhp_step_empty(bringup, step)) {
186                 WARN_ON_ONCE(1);
187                 return 0;
188         }
189
190         if (!step->multi_instance) {
191                 WARN_ON_ONCE(lastp && *lastp);
192                 cb = bringup ? step->startup.single : step->teardown.single;
193
194                 trace_cpuhp_enter(cpu, st->target, state, cb);
195                 ret = cb(cpu);
196                 trace_cpuhp_exit(cpu, st->state, state, ret);
197                 return ret;
198         }
199         cbm = bringup ? step->startup.multi : step->teardown.multi;
200
201         /* Single invocation for instance add/remove */
202         if (node) {
203                 WARN_ON_ONCE(lastp && *lastp);
204                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205                 ret = cbm(cpu, node);
206                 trace_cpuhp_exit(cpu, st->state, state, ret);
207                 return ret;
208         }
209
210         /* State transition. Invoke on all instances */
211         cnt = 0;
212         hlist_for_each(node, &step->list) {
213                 if (lastp && node == *lastp)
214                         break;
215
216                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217                 ret = cbm(cpu, node);
218                 trace_cpuhp_exit(cpu, st->state, state, ret);
219                 if (ret) {
220                         if (!lastp)
221                                 goto err;
222
223                         *lastp = node;
224                         return ret;
225                 }
226                 cnt++;
227         }
228         if (lastp)
229                 *lastp = NULL;
230         return 0;
231 err:
232         /* Rollback the instances if one failed */
233         cbm = !bringup ? step->startup.multi : step->teardown.multi;
234         if (!cbm)
235                 return ret;
236
237         hlist_for_each(node, &step->list) {
238                 if (!cnt--)
239                         break;
240
241                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242                 ret = cbm(cpu, node);
243                 trace_cpuhp_exit(cpu, st->state, state, ret);
244                 /*
245                  * Rollback must not fail,
246                  */
247                 WARN_ON_ONCE(ret);
248         }
249         return ret;
250 }
251
252 #ifdef CONFIG_SMP
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
254 {
255         /*
256          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257          * purposes as that state is handled explicitly in cpu_down.
258          */
259         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260 }
261
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 {
264         struct completion *done = bringup ? &st->done_up : &st->done_down;
265         wait_for_completion(done);
266 }
267
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 {
270         struct completion *done = bringup ? &st->done_up : &st->done_down;
271         complete(done);
272 }
273
274 /*
275  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276  */
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 {
279         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280 }
281
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284         SYNC_STATE_DEAD,
285         SYNC_STATE_KICKED,
286         SYNC_STATE_SHOULD_DIE,
287         SYNC_STATE_ALIVE,
288         SYNC_STATE_SHOULD_ONLINE,
289         SYNC_STATE_ONLINE,
290 };
291
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295  * @state:      The synchronization state to set
296  *
297  * No synchronization point. Just update of the synchronization state, but implies
298  * a full barrier so that the AP changes are visible before the control CPU proceeds.
299  */
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303
304         (void)atomic_xchg(st, state);
305 }
306
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310                                       enum cpuhp_sync_state next_state)
311 {
312         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313         ktime_t now, end, start = ktime_get();
314         int sync;
315
316         end = start + 10ULL * NSEC_PER_SEC;
317
318         sync = atomic_read(st);
319         while (1) {
320                 if (sync == state) {
321                         if (!atomic_try_cmpxchg(st, &sync, next_state))
322                                 continue;
323                         return true;
324                 }
325
326                 now = ktime_get();
327                 if (now > end) {
328                         /* Timeout. Leave the state unchanged */
329                         return false;
330                 } else if (now - start < NSEC_PER_MSEC) {
331                         /* Poll for one millisecond */
332                         arch_cpuhp_sync_state_poll();
333                 } else {
334                         usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335                 }
336                 sync = atomic_read(st);
337         }
338         return true;
339 }
340 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346  * cpuhp_ap_report_dead - Update synchronization state to DEAD
347  *
348  * No synchronization point. Just update of the synchronization state.
349  */
350 void cpuhp_ap_report_dead(void)
351 {
352         cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356
357 /*
358  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359  * because the AP cannot issue complete() at this stage.
360  */
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364         int sync = atomic_read(st);
365
366         do {
367                 /* CPU can have reported dead already. Don't overwrite that! */
368                 if (sync == SYNC_STATE_DEAD)
369                         break;
370         } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371
372         if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373                 /* CPU reached dead state. Invoke the cleanup function */
374                 arch_cpuhp_cleanup_dead_cpu(cpu);
375                 return;
376         }
377
378         /* No further action possible. Emit message and give up. */
379         pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388  *
389  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390  * for the BP to release it.
391  */
392 void cpuhp_ap_sync_alive(void)
393 {
394         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395
396         cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397
398         /* Wait for the control CPU to release it. */
399         while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400                 cpu_relax();
401 }
402
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406         int sync = atomic_read(st);
407
408 again:
409         switch (sync) {
410         case SYNC_STATE_DEAD:
411                 /* CPU is properly dead */
412                 break;
413         case SYNC_STATE_KICKED:
414                 /* CPU did not come up in previous attempt */
415                 break;
416         case SYNC_STATE_ALIVE:
417                 /* CPU is stuck cpuhp_ap_sync_alive(). */
418                 break;
419         default:
420                 /* CPU failed to report online or dead and is in limbo state. */
421                 return false;
422         }
423
424         /* Prepare for booting */
425         if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426                 goto again;
427
428         return true;
429 }
430
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432
433 /*
434  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435  * because the AP cannot issue complete() so early in the bringup.
436  */
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439         int ret = 0;
440
441         if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442                 return 0;
443
444         if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445                 pr_err("CPU%u failed to report alive state\n", cpu);
446                 ret = -EIO;
447         }
448
449         /* Let the architecture cleanup the kick alive mechanics. */
450         arch_cpuhp_cleanup_kick_cpu(cpu);
451         return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462
463 /*
464  * The following two APIs (cpu_maps_update_begin/done) must be used when
465  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466  */
467 void cpu_maps_update_begin(void)
468 {
469         mutex_lock(&cpu_add_remove_lock);
470 }
471
472 void cpu_maps_update_done(void)
473 {
474         mutex_unlock(&cpu_add_remove_lock);
475 }
476
477 /*
478  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479  * Should always be manipulated under cpu_add_remove_lock
480  */
481 static int cpu_hotplug_disabled;
482
483 #ifdef CONFIG_HOTPLUG_CPU
484
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486
487 void cpus_read_lock(void)
488 {
489         percpu_down_read(&cpu_hotplug_lock);
490 }
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
492
493 int cpus_read_trylock(void)
494 {
495         return percpu_down_read_trylock(&cpu_hotplug_lock);
496 }
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
498
499 void cpus_read_unlock(void)
500 {
501         percpu_up_read(&cpu_hotplug_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
504
505 void cpus_write_lock(void)
506 {
507         percpu_down_write(&cpu_hotplug_lock);
508 }
509
510 void cpus_write_unlock(void)
511 {
512         percpu_up_write(&cpu_hotplug_lock);
513 }
514
515 void lockdep_assert_cpus_held(void)
516 {
517         /*
518          * We can't have hotplug operations before userspace starts running,
519          * and some init codepaths will knowingly not take the hotplug lock.
520          * This is all valid, so mute lockdep until it makes sense to report
521          * unheld locks.
522          */
523         if (system_state < SYSTEM_RUNNING)
524                 return;
525
526         percpu_rwsem_assert_held(&cpu_hotplug_lock);
527 }
528
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
531 {
532         return percpu_rwsem_is_held(&cpu_hotplug_lock);
533 }
534 #endif
535
536 static void lockdep_acquire_cpus_lock(void)
537 {
538         rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539 }
540
541 static void lockdep_release_cpus_lock(void)
542 {
543         rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544 }
545
546 /*
547  * Wait for currently running CPU hotplug operations to complete (if any) and
548  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550  * hotplug path before performing hotplug operations. So acquiring that lock
551  * guarantees mutual exclusion from any currently running hotplug operations.
552  */
553 void cpu_hotplug_disable(void)
554 {
555         cpu_maps_update_begin();
556         cpu_hotplug_disabled++;
557         cpu_maps_update_done();
558 }
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560
561 static void __cpu_hotplug_enable(void)
562 {
563         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564                 return;
565         cpu_hotplug_disabled--;
566 }
567
568 void cpu_hotplug_enable(void)
569 {
570         cpu_maps_update_begin();
571         __cpu_hotplug_enable();
572         cpu_maps_update_done();
573 }
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575
576 #else
577
578 static void lockdep_acquire_cpus_lock(void)
579 {
580 }
581
582 static void lockdep_release_cpus_lock(void)
583 {
584 }
585
586 #endif  /* CONFIG_HOTPLUG_CPU */
587
588 /*
589  * Architectures that need SMT-specific errata handling during SMT hotplug
590  * should override this.
591  */
592 void __weak arch_smt_update(void) { }
593
594 #ifdef CONFIG_HOTPLUG_SMT
595
596 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597 static unsigned int cpu_smt_max_threads __ro_after_init;
598 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
599
600 void __init cpu_smt_disable(bool force)
601 {
602         if (!cpu_smt_possible())
603                 return;
604
605         if (force) {
606                 pr_info("SMT: Force disabled\n");
607                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
608         } else {
609                 pr_info("SMT: disabled\n");
610                 cpu_smt_control = CPU_SMT_DISABLED;
611         }
612         cpu_smt_num_threads = 1;
613 }
614
615 /*
616  * The decision whether SMT is supported can only be done after the full
617  * CPU identification. Called from architecture code.
618  */
619 void __init cpu_smt_set_num_threads(unsigned int num_threads,
620                                     unsigned int max_threads)
621 {
622         WARN_ON(!num_threads || (num_threads > max_threads));
623
624         if (max_threads == 1)
625                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
626
627         cpu_smt_max_threads = max_threads;
628
629         /*
630          * If SMT has been disabled via the kernel command line or SMT is
631          * not supported, set cpu_smt_num_threads to 1 for consistency.
632          * If enabled, take the architecture requested number of threads
633          * to bring up into account.
634          */
635         if (cpu_smt_control != CPU_SMT_ENABLED)
636                 cpu_smt_num_threads = 1;
637         else if (num_threads < cpu_smt_num_threads)
638                 cpu_smt_num_threads = num_threads;
639 }
640
641 static int __init smt_cmdline_disable(char *str)
642 {
643         cpu_smt_disable(str && !strcmp(str, "force"));
644         return 0;
645 }
646 early_param("nosmt", smt_cmdline_disable);
647
648 /*
649  * For Archicture supporting partial SMT states check if the thread is allowed.
650  * Otherwise this has already been checked through cpu_smt_max_threads when
651  * setting the SMT level.
652  */
653 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
654 {
655 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
656         return topology_smt_thread_allowed(cpu);
657 #else
658         return true;
659 #endif
660 }
661
662 static inline bool cpu_bootable(unsigned int cpu)
663 {
664         if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
665                 return true;
666
667         /* All CPUs are bootable if controls are not configured */
668         if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
669                 return true;
670
671         /* All CPUs are bootable if CPU is not SMT capable */
672         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
673                 return true;
674
675         if (topology_is_primary_thread(cpu))
676                 return true;
677
678         /*
679          * On x86 it's required to boot all logical CPUs at least once so
680          * that the init code can get a chance to set CR4.MCE on each
681          * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
682          * core will shutdown the machine.
683          */
684         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
685 }
686
687 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
688 bool cpu_smt_possible(void)
689 {
690         return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
691                 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
692 }
693 EXPORT_SYMBOL_GPL(cpu_smt_possible);
694
695 #else
696 static inline bool cpu_bootable(unsigned int cpu) { return true; }
697 #endif
698
699 static inline enum cpuhp_state
700 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
701 {
702         enum cpuhp_state prev_state = st->state;
703         bool bringup = st->state < target;
704
705         st->rollback = false;
706         st->last = NULL;
707
708         st->target = target;
709         st->single = false;
710         st->bringup = bringup;
711         if (cpu_dying(cpu) != !bringup)
712                 set_cpu_dying(cpu, !bringup);
713
714         return prev_state;
715 }
716
717 static inline void
718 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
719                   enum cpuhp_state prev_state)
720 {
721         bool bringup = !st->bringup;
722
723         st->target = prev_state;
724
725         /*
726          * Already rolling back. No need invert the bringup value or to change
727          * the current state.
728          */
729         if (st->rollback)
730                 return;
731
732         st->rollback = true;
733
734         /*
735          * If we have st->last we need to undo partial multi_instance of this
736          * state first. Otherwise start undo at the previous state.
737          */
738         if (!st->last) {
739                 if (st->bringup)
740                         st->state--;
741                 else
742                         st->state++;
743         }
744
745         st->bringup = bringup;
746         if (cpu_dying(cpu) != !bringup)
747                 set_cpu_dying(cpu, !bringup);
748 }
749
750 /* Regular hotplug invocation of the AP hotplug thread */
751 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
752 {
753         if (!st->single && st->state == st->target)
754                 return;
755
756         st->result = 0;
757         /*
758          * Make sure the above stores are visible before should_run becomes
759          * true. Paired with the mb() above in cpuhp_thread_fun()
760          */
761         smp_mb();
762         st->should_run = true;
763         wake_up_process(st->thread);
764         wait_for_ap_thread(st, st->bringup);
765 }
766
767 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
768                          enum cpuhp_state target)
769 {
770         enum cpuhp_state prev_state;
771         int ret;
772
773         prev_state = cpuhp_set_state(cpu, st, target);
774         __cpuhp_kick_ap(st);
775         if ((ret = st->result)) {
776                 cpuhp_reset_state(cpu, st, prev_state);
777                 __cpuhp_kick_ap(st);
778         }
779
780         return ret;
781 }
782
783 static int bringup_wait_for_ap_online(unsigned int cpu)
784 {
785         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
786
787         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
788         wait_for_ap_thread(st, true);
789         if (WARN_ON_ONCE((!cpu_online(cpu))))
790                 return -ECANCELED;
791
792         /* Unpark the hotplug thread of the target cpu */
793         kthread_unpark(st->thread);
794
795         /*
796          * SMT soft disabling on X86 requires to bring the CPU out of the
797          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
798          * CPU marked itself as booted_once in notify_cpu_starting() so the
799          * cpu_bootable() check will now return false if this is not the
800          * primary sibling.
801          */
802         if (!cpu_bootable(cpu))
803                 return -ECANCELED;
804         return 0;
805 }
806
807 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
808 static int cpuhp_kick_ap_alive(unsigned int cpu)
809 {
810         if (!cpuhp_can_boot_ap(cpu))
811                 return -EAGAIN;
812
813         return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
814 }
815
816 static int cpuhp_bringup_ap(unsigned int cpu)
817 {
818         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
819         int ret;
820
821         /*
822          * Some architectures have to walk the irq descriptors to
823          * setup the vector space for the cpu which comes online.
824          * Prevent irq alloc/free across the bringup.
825          */
826         irq_lock_sparse();
827
828         ret = cpuhp_bp_sync_alive(cpu);
829         if (ret)
830                 goto out_unlock;
831
832         ret = bringup_wait_for_ap_online(cpu);
833         if (ret)
834                 goto out_unlock;
835
836         irq_unlock_sparse();
837
838         if (st->target <= CPUHP_AP_ONLINE_IDLE)
839                 return 0;
840
841         return cpuhp_kick_ap(cpu, st, st->target);
842
843 out_unlock:
844         irq_unlock_sparse();
845         return ret;
846 }
847 #else
848 static int bringup_cpu(unsigned int cpu)
849 {
850         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
851         struct task_struct *idle = idle_thread_get(cpu);
852         int ret;
853
854         if (!cpuhp_can_boot_ap(cpu))
855                 return -EAGAIN;
856
857         /*
858          * Some architectures have to walk the irq descriptors to
859          * setup the vector space for the cpu which comes online.
860          *
861          * Prevent irq alloc/free across the bringup by acquiring the
862          * sparse irq lock. Hold it until the upcoming CPU completes the
863          * startup in cpuhp_online_idle() which allows to avoid
864          * intermediate synchronization points in the architecture code.
865          */
866         irq_lock_sparse();
867
868         ret = __cpu_up(cpu, idle);
869         if (ret)
870                 goto out_unlock;
871
872         ret = cpuhp_bp_sync_alive(cpu);
873         if (ret)
874                 goto out_unlock;
875
876         ret = bringup_wait_for_ap_online(cpu);
877         if (ret)
878                 goto out_unlock;
879
880         irq_unlock_sparse();
881
882         if (st->target <= CPUHP_AP_ONLINE_IDLE)
883                 return 0;
884
885         return cpuhp_kick_ap(cpu, st, st->target);
886
887 out_unlock:
888         irq_unlock_sparse();
889         return ret;
890 }
891 #endif
892
893 static int finish_cpu(unsigned int cpu)
894 {
895         struct task_struct *idle = idle_thread_get(cpu);
896         struct mm_struct *mm = idle->active_mm;
897
898         /*
899          * idle_task_exit() will have switched to &init_mm, now
900          * clean up any remaining active_mm state.
901          */
902         if (mm != &init_mm)
903                 idle->active_mm = &init_mm;
904         mmdrop_lazy_tlb(mm);
905         return 0;
906 }
907
908 /*
909  * Hotplug state machine related functions
910  */
911
912 /*
913  * Get the next state to run. Empty ones will be skipped. Returns true if a
914  * state must be run.
915  *
916  * st->state will be modified ahead of time, to match state_to_run, as if it
917  * has already ran.
918  */
919 static bool cpuhp_next_state(bool bringup,
920                              enum cpuhp_state *state_to_run,
921                              struct cpuhp_cpu_state *st,
922                              enum cpuhp_state target)
923 {
924         do {
925                 if (bringup) {
926                         if (st->state >= target)
927                                 return false;
928
929                         *state_to_run = ++st->state;
930                 } else {
931                         if (st->state <= target)
932                                 return false;
933
934                         *state_to_run = st->state--;
935                 }
936
937                 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
938                         break;
939         } while (true);
940
941         return true;
942 }
943
944 static int __cpuhp_invoke_callback_range(bool bringup,
945                                          unsigned int cpu,
946                                          struct cpuhp_cpu_state *st,
947                                          enum cpuhp_state target,
948                                          bool nofail)
949 {
950         enum cpuhp_state state;
951         int ret = 0;
952
953         while (cpuhp_next_state(bringup, &state, st, target)) {
954                 int err;
955
956                 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
957                 if (!err)
958                         continue;
959
960                 if (nofail) {
961                         pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
962                                 cpu, bringup ? "UP" : "DOWN",
963                                 cpuhp_get_step(st->state)->name,
964                                 st->state, err);
965                         ret = -1;
966                 } else {
967                         ret = err;
968                         break;
969                 }
970         }
971
972         return ret;
973 }
974
975 static inline int cpuhp_invoke_callback_range(bool bringup,
976                                               unsigned int cpu,
977                                               struct cpuhp_cpu_state *st,
978                                               enum cpuhp_state target)
979 {
980         return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
981 }
982
983 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
984                                                       unsigned int cpu,
985                                                       struct cpuhp_cpu_state *st,
986                                                       enum cpuhp_state target)
987 {
988         __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
989 }
990
991 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
992 {
993         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
994                 return true;
995         /*
996          * When CPU hotplug is disabled, then taking the CPU down is not
997          * possible because takedown_cpu() and the architecture and
998          * subsystem specific mechanisms are not available. So the CPU
999          * which would be completely unplugged again needs to stay around
1000          * in the current state.
1001          */
1002         return st->state <= CPUHP_BRINGUP_CPU;
1003 }
1004
1005 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1006                               enum cpuhp_state target)
1007 {
1008         enum cpuhp_state prev_state = st->state;
1009         int ret = 0;
1010
1011         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1012         if (ret) {
1013                 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1014                          ret, cpu, cpuhp_get_step(st->state)->name,
1015                          st->state);
1016
1017                 cpuhp_reset_state(cpu, st, prev_state);
1018                 if (can_rollback_cpu(st))
1019                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1020                                                             prev_state));
1021         }
1022         return ret;
1023 }
1024
1025 /*
1026  * The cpu hotplug threads manage the bringup and teardown of the cpus
1027  */
1028 static int cpuhp_should_run(unsigned int cpu)
1029 {
1030         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1031
1032         return st->should_run;
1033 }
1034
1035 /*
1036  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1037  * callbacks when a state gets [un]installed at runtime.
1038  *
1039  * Each invocation of this function by the smpboot thread does a single AP
1040  * state callback.
1041  *
1042  * It has 3 modes of operation:
1043  *  - single: runs st->cb_state
1044  *  - up:     runs ++st->state, while st->state < st->target
1045  *  - down:   runs st->state--, while st->state > st->target
1046  *
1047  * When complete or on error, should_run is cleared and the completion is fired.
1048  */
1049 static void cpuhp_thread_fun(unsigned int cpu)
1050 {
1051         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1052         bool bringup = st->bringup;
1053         enum cpuhp_state state;
1054
1055         if (WARN_ON_ONCE(!st->should_run))
1056                 return;
1057
1058         /*
1059          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1060          * that if we see ->should_run we also see the rest of the state.
1061          */
1062         smp_mb();
1063
1064         /*
1065          * The BP holds the hotplug lock, but we're now running on the AP,
1066          * ensure that anybody asserting the lock is held, will actually find
1067          * it so.
1068          */
1069         lockdep_acquire_cpus_lock();
1070         cpuhp_lock_acquire(bringup);
1071
1072         if (st->single) {
1073                 state = st->cb_state;
1074                 st->should_run = false;
1075         } else {
1076                 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1077                 if (!st->should_run)
1078                         goto end;
1079         }
1080
1081         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1082
1083         if (cpuhp_is_atomic_state(state)) {
1084                 local_irq_disable();
1085                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1086                 local_irq_enable();
1087
1088                 /*
1089                  * STARTING/DYING must not fail!
1090                  */
1091                 WARN_ON_ONCE(st->result);
1092         } else {
1093                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1094         }
1095
1096         if (st->result) {
1097                 /*
1098                  * If we fail on a rollback, we're up a creek without no
1099                  * paddle, no way forward, no way back. We loose, thanks for
1100                  * playing.
1101                  */
1102                 WARN_ON_ONCE(st->rollback);
1103                 st->should_run = false;
1104         }
1105
1106 end:
1107         cpuhp_lock_release(bringup);
1108         lockdep_release_cpus_lock();
1109
1110         if (!st->should_run)
1111                 complete_ap_thread(st, bringup);
1112 }
1113
1114 /* Invoke a single callback on a remote cpu */
1115 static int
1116 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1117                          struct hlist_node *node)
1118 {
1119         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1120         int ret;
1121
1122         if (!cpu_online(cpu))
1123                 return 0;
1124
1125         cpuhp_lock_acquire(false);
1126         cpuhp_lock_release(false);
1127
1128         cpuhp_lock_acquire(true);
1129         cpuhp_lock_release(true);
1130
1131         /*
1132          * If we are up and running, use the hotplug thread. For early calls
1133          * we invoke the thread function directly.
1134          */
1135         if (!st->thread)
1136                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1137
1138         st->rollback = false;
1139         st->last = NULL;
1140
1141         st->node = node;
1142         st->bringup = bringup;
1143         st->cb_state = state;
1144         st->single = true;
1145
1146         __cpuhp_kick_ap(st);
1147
1148         /*
1149          * If we failed and did a partial, do a rollback.
1150          */
1151         if ((ret = st->result) && st->last) {
1152                 st->rollback = true;
1153                 st->bringup = !bringup;
1154
1155                 __cpuhp_kick_ap(st);
1156         }
1157
1158         /*
1159          * Clean up the leftovers so the next hotplug operation wont use stale
1160          * data.
1161          */
1162         st->node = st->last = NULL;
1163         return ret;
1164 }
1165
1166 static int cpuhp_kick_ap_work(unsigned int cpu)
1167 {
1168         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1169         enum cpuhp_state prev_state = st->state;
1170         int ret;
1171
1172         cpuhp_lock_acquire(false);
1173         cpuhp_lock_release(false);
1174
1175         cpuhp_lock_acquire(true);
1176         cpuhp_lock_release(true);
1177
1178         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1179         ret = cpuhp_kick_ap(cpu, st, st->target);
1180         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1181
1182         return ret;
1183 }
1184
1185 static struct smp_hotplug_thread cpuhp_threads = {
1186         .store                  = &cpuhp_state.thread,
1187         .thread_should_run      = cpuhp_should_run,
1188         .thread_fn              = cpuhp_thread_fun,
1189         .thread_comm            = "cpuhp/%u",
1190         .selfparking            = true,
1191 };
1192
1193 static __init void cpuhp_init_state(void)
1194 {
1195         struct cpuhp_cpu_state *st;
1196         int cpu;
1197
1198         for_each_possible_cpu(cpu) {
1199                 st = per_cpu_ptr(&cpuhp_state, cpu);
1200                 init_completion(&st->done_up);
1201                 init_completion(&st->done_down);
1202         }
1203 }
1204
1205 void __init cpuhp_threads_init(void)
1206 {
1207         cpuhp_init_state();
1208         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1209         kthread_unpark(this_cpu_read(cpuhp_state.thread));
1210 }
1211
1212 /*
1213  *
1214  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1215  * protected region.
1216  *
1217  * The operation is still serialized against concurrent CPU hotplug via
1218  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1219  * serialized against other hotplug related activity like adding or
1220  * removing of state callbacks and state instances, which invoke either the
1221  * startup or the teardown callback of the affected state.
1222  *
1223  * This is required for subsystems which are unfixable vs. CPU hotplug and
1224  * evade lock inversion problems by scheduling work which has to be
1225  * completed _before_ cpu_up()/_cpu_down() returns.
1226  *
1227  * Don't even think about adding anything to this for any new code or even
1228  * drivers. It's only purpose is to keep existing lock order trainwrecks
1229  * working.
1230  *
1231  * For cpu_down() there might be valid reasons to finish cleanups which are
1232  * not required to be done under cpu_hotplug_lock, but that's a different
1233  * story and would be not invoked via this.
1234  */
1235 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1236 {
1237         /*
1238          * cpusets delegate hotplug operations to a worker to "solve" the
1239          * lock order problems. Wait for the worker, but only if tasks are
1240          * _not_ frozen (suspend, hibernate) as that would wait forever.
1241          *
1242          * The wait is required because otherwise the hotplug operation
1243          * returns with inconsistent state, which could even be observed in
1244          * user space when a new CPU is brought up. The CPU plug uevent
1245          * would be delivered and user space reacting on it would fail to
1246          * move tasks to the newly plugged CPU up to the point where the
1247          * work has finished because up to that point the newly plugged CPU
1248          * is not assignable in cpusets/cgroups. On unplug that's not
1249          * necessarily a visible issue, but it is still inconsistent state,
1250          * which is the real problem which needs to be "fixed". This can't
1251          * prevent the transient state between scheduling the work and
1252          * returning from waiting for it.
1253          */
1254         if (!tasks_frozen)
1255                 cpuset_wait_for_hotplug();
1256 }
1257
1258 #ifdef CONFIG_HOTPLUG_CPU
1259 #ifndef arch_clear_mm_cpumask_cpu
1260 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1261 #endif
1262
1263 /**
1264  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1265  * @cpu: a CPU id
1266  *
1267  * This function walks all processes, finds a valid mm struct for each one and
1268  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1269  * trivial, there are various non-obvious corner cases, which this function
1270  * tries to solve in a safe manner.
1271  *
1272  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1273  * be called only for an already offlined CPU.
1274  */
1275 void clear_tasks_mm_cpumask(int cpu)
1276 {
1277         struct task_struct *p;
1278
1279         /*
1280          * This function is called after the cpu is taken down and marked
1281          * offline, so its not like new tasks will ever get this cpu set in
1282          * their mm mask. -- Peter Zijlstra
1283          * Thus, we may use rcu_read_lock() here, instead of grabbing
1284          * full-fledged tasklist_lock.
1285          */
1286         WARN_ON(cpu_online(cpu));
1287         rcu_read_lock();
1288         for_each_process(p) {
1289                 struct task_struct *t;
1290
1291                 /*
1292                  * Main thread might exit, but other threads may still have
1293                  * a valid mm. Find one.
1294                  */
1295                 t = find_lock_task_mm(p);
1296                 if (!t)
1297                         continue;
1298                 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1299                 task_unlock(t);
1300         }
1301         rcu_read_unlock();
1302 }
1303
1304 /* Take this CPU down. */
1305 static int take_cpu_down(void *_param)
1306 {
1307         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1308         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1309         int err, cpu = smp_processor_id();
1310
1311         /* Ensure this CPU doesn't handle any more interrupts. */
1312         err = __cpu_disable();
1313         if (err < 0)
1314                 return err;
1315
1316         /*
1317          * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1318          * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1319          */
1320         WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1321
1322         /*
1323          * Invoke the former CPU_DYING callbacks. DYING must not fail!
1324          */
1325         cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1326
1327         /* Give up timekeeping duties */
1328         tick_handover_do_timer();
1329         /* Remove CPU from timer broadcasting */
1330         tick_offline_cpu(cpu);
1331         /* Park the stopper thread */
1332         stop_machine_park(cpu);
1333         return 0;
1334 }
1335
1336 static int takedown_cpu(unsigned int cpu)
1337 {
1338         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1339         int err;
1340
1341         /* Park the smpboot threads */
1342         kthread_park(st->thread);
1343
1344         /*
1345          * Prevent irq alloc/free while the dying cpu reorganizes the
1346          * interrupt affinities.
1347          */
1348         irq_lock_sparse();
1349
1350         /*
1351          * So now all preempt/rcu users must observe !cpu_active().
1352          */
1353         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1354         if (err) {
1355                 /* CPU refused to die */
1356                 irq_unlock_sparse();
1357                 /* Unpark the hotplug thread so we can rollback there */
1358                 kthread_unpark(st->thread);
1359                 return err;
1360         }
1361         BUG_ON(cpu_online(cpu));
1362
1363         /*
1364          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1365          * all runnable tasks from the CPU, there's only the idle task left now
1366          * that the migration thread is done doing the stop_machine thing.
1367          *
1368          * Wait for the stop thread to go away.
1369          */
1370         wait_for_ap_thread(st, false);
1371         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1372
1373         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1374         irq_unlock_sparse();
1375
1376         hotplug_cpu__broadcast_tick_pull(cpu);
1377         /* This actually kills the CPU. */
1378         __cpu_die(cpu);
1379
1380         cpuhp_bp_sync_dead(cpu);
1381
1382         tick_cleanup_dead_cpu(cpu);
1383         rcutree_migrate_callbacks(cpu);
1384         return 0;
1385 }
1386
1387 static void cpuhp_complete_idle_dead(void *arg)
1388 {
1389         struct cpuhp_cpu_state *st = arg;
1390
1391         complete_ap_thread(st, false);
1392 }
1393
1394 void cpuhp_report_idle_dead(void)
1395 {
1396         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1397
1398         BUG_ON(st->state != CPUHP_AP_OFFLINE);
1399         rcu_report_dead(smp_processor_id());
1400         st->state = CPUHP_AP_IDLE_DEAD;
1401         /*
1402          * We cannot call complete after rcu_report_dead() so we delegate it
1403          * to an online cpu.
1404          */
1405         smp_call_function_single(cpumask_first(cpu_online_mask),
1406                                  cpuhp_complete_idle_dead, st, 0);
1407 }
1408
1409 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1410                                 enum cpuhp_state target)
1411 {
1412         enum cpuhp_state prev_state = st->state;
1413         int ret = 0;
1414
1415         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1416         if (ret) {
1417                 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1418                          ret, cpu, cpuhp_get_step(st->state)->name,
1419                          st->state);
1420
1421                 cpuhp_reset_state(cpu, st, prev_state);
1422
1423                 if (st->state < prev_state)
1424                         WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1425                                                             prev_state));
1426         }
1427
1428         return ret;
1429 }
1430
1431 /* Requires cpu_add_remove_lock to be held */
1432 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1433                            enum cpuhp_state target)
1434 {
1435         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1436         int prev_state, ret = 0;
1437
1438         if (num_online_cpus() == 1)
1439                 return -EBUSY;
1440
1441         if (!cpu_present(cpu))
1442                 return -EINVAL;
1443
1444         cpus_write_lock();
1445
1446         cpuhp_tasks_frozen = tasks_frozen;
1447
1448         prev_state = cpuhp_set_state(cpu, st, target);
1449         /*
1450          * If the current CPU state is in the range of the AP hotplug thread,
1451          * then we need to kick the thread.
1452          */
1453         if (st->state > CPUHP_TEARDOWN_CPU) {
1454                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1455                 ret = cpuhp_kick_ap_work(cpu);
1456                 /*
1457                  * The AP side has done the error rollback already. Just
1458                  * return the error code..
1459                  */
1460                 if (ret)
1461                         goto out;
1462
1463                 /*
1464                  * We might have stopped still in the range of the AP hotplug
1465                  * thread. Nothing to do anymore.
1466                  */
1467                 if (st->state > CPUHP_TEARDOWN_CPU)
1468                         goto out;
1469
1470                 st->target = target;
1471         }
1472         /*
1473          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1474          * to do the further cleanups.
1475          */
1476         ret = cpuhp_down_callbacks(cpu, st, target);
1477         if (ret && st->state < prev_state) {
1478                 if (st->state == CPUHP_TEARDOWN_CPU) {
1479                         cpuhp_reset_state(cpu, st, prev_state);
1480                         __cpuhp_kick_ap(st);
1481                 } else {
1482                         WARN(1, "DEAD callback error for CPU%d", cpu);
1483                 }
1484         }
1485
1486 out:
1487         cpus_write_unlock();
1488         /*
1489          * Do post unplug cleanup. This is still protected against
1490          * concurrent CPU hotplug via cpu_add_remove_lock.
1491          */
1492         lockup_detector_cleanup();
1493         arch_smt_update();
1494         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1495         return ret;
1496 }
1497
1498 struct cpu_down_work {
1499         unsigned int            cpu;
1500         enum cpuhp_state        target;
1501 };
1502
1503 static long __cpu_down_maps_locked(void *arg)
1504 {
1505         struct cpu_down_work *work = arg;
1506
1507         return _cpu_down(work->cpu, 0, work->target);
1508 }
1509
1510 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1511 {
1512         struct cpu_down_work work = { .cpu = cpu, .target = target, };
1513
1514         /*
1515          * If the platform does not support hotplug, report it explicitly to
1516          * differentiate it from a transient offlining failure.
1517          */
1518         if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1519                 return -EOPNOTSUPP;
1520         if (cpu_hotplug_disabled)
1521                 return -EBUSY;
1522
1523         /*
1524          * Ensure that the control task does not run on the to be offlined
1525          * CPU to prevent a deadlock against cfs_b->period_timer.
1526          */
1527         cpu = cpumask_any_but(cpu_online_mask, cpu);
1528         if (cpu >= nr_cpu_ids)
1529                 return -EBUSY;
1530         return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1531 }
1532
1533 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1534 {
1535         int err;
1536
1537         cpu_maps_update_begin();
1538         err = cpu_down_maps_locked(cpu, target);
1539         cpu_maps_update_done();
1540         return err;
1541 }
1542
1543 /**
1544  * cpu_device_down - Bring down a cpu device
1545  * @dev: Pointer to the cpu device to offline
1546  *
1547  * This function is meant to be used by device core cpu subsystem only.
1548  *
1549  * Other subsystems should use remove_cpu() instead.
1550  *
1551  * Return: %0 on success or a negative errno code
1552  */
1553 int cpu_device_down(struct device *dev)
1554 {
1555         return cpu_down(dev->id, CPUHP_OFFLINE);
1556 }
1557
1558 int remove_cpu(unsigned int cpu)
1559 {
1560         int ret;
1561
1562         lock_device_hotplug();
1563         ret = device_offline(get_cpu_device(cpu));
1564         unlock_device_hotplug();
1565
1566         return ret;
1567 }
1568 EXPORT_SYMBOL_GPL(remove_cpu);
1569
1570 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1571 {
1572         unsigned int cpu;
1573         int error;
1574
1575         cpu_maps_update_begin();
1576
1577         /*
1578          * Make certain the cpu I'm about to reboot on is online.
1579          *
1580          * This is inline to what migrate_to_reboot_cpu() already do.
1581          */
1582         if (!cpu_online(primary_cpu))
1583                 primary_cpu = cpumask_first(cpu_online_mask);
1584
1585         for_each_online_cpu(cpu) {
1586                 if (cpu == primary_cpu)
1587                         continue;
1588
1589                 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1590                 if (error) {
1591                         pr_err("Failed to offline CPU%d - error=%d",
1592                                 cpu, error);
1593                         break;
1594                 }
1595         }
1596
1597         /*
1598          * Ensure all but the reboot CPU are offline.
1599          */
1600         BUG_ON(num_online_cpus() > 1);
1601
1602         /*
1603          * Make sure the CPUs won't be enabled by someone else after this
1604          * point. Kexec will reboot to a new kernel shortly resetting
1605          * everything along the way.
1606          */
1607         cpu_hotplug_disabled++;
1608
1609         cpu_maps_update_done();
1610 }
1611
1612 #else
1613 #define takedown_cpu            NULL
1614 #endif /*CONFIG_HOTPLUG_CPU*/
1615
1616 /**
1617  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1618  * @cpu: cpu that just started
1619  *
1620  * It must be called by the arch code on the new cpu, before the new cpu
1621  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1622  */
1623 void notify_cpu_starting(unsigned int cpu)
1624 {
1625         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1626         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1627
1628         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1629         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1630
1631         /*
1632          * STARTING must not fail!
1633          */
1634         cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1635 }
1636
1637 /*
1638  * Called from the idle task. Wake up the controlling task which brings the
1639  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1640  * online bringup to the hotplug thread.
1641  */
1642 void cpuhp_online_idle(enum cpuhp_state state)
1643 {
1644         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1645
1646         /* Happens for the boot cpu */
1647         if (state != CPUHP_AP_ONLINE_IDLE)
1648                 return;
1649
1650         cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1651
1652         /*
1653          * Unpark the stopper thread before we start the idle loop (and start
1654          * scheduling); this ensures the stopper task is always available.
1655          */
1656         stop_machine_unpark(smp_processor_id());
1657
1658         st->state = CPUHP_AP_ONLINE_IDLE;
1659         complete_ap_thread(st, true);
1660 }
1661
1662 /* Requires cpu_add_remove_lock to be held */
1663 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1664 {
1665         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1666         struct task_struct *idle;
1667         int ret = 0;
1668
1669         cpus_write_lock();
1670
1671         if (!cpu_present(cpu)) {
1672                 ret = -EINVAL;
1673                 goto out;
1674         }
1675
1676         /*
1677          * The caller of cpu_up() might have raced with another
1678          * caller. Nothing to do.
1679          */
1680         if (st->state >= target)
1681                 goto out;
1682
1683         if (st->state == CPUHP_OFFLINE) {
1684                 /* Let it fail before we try to bring the cpu up */
1685                 idle = idle_thread_get(cpu);
1686                 if (IS_ERR(idle)) {
1687                         ret = PTR_ERR(idle);
1688                         goto out;
1689                 }
1690
1691                 /*
1692                  * Reset stale stack state from the last time this CPU was online.
1693                  */
1694                 scs_task_reset(idle);
1695                 kasan_unpoison_task_stack(idle);
1696         }
1697
1698         cpuhp_tasks_frozen = tasks_frozen;
1699
1700         cpuhp_set_state(cpu, st, target);
1701         /*
1702          * If the current CPU state is in the range of the AP hotplug thread,
1703          * then we need to kick the thread once more.
1704          */
1705         if (st->state > CPUHP_BRINGUP_CPU) {
1706                 ret = cpuhp_kick_ap_work(cpu);
1707                 /*
1708                  * The AP side has done the error rollback already. Just
1709                  * return the error code..
1710                  */
1711                 if (ret)
1712                         goto out;
1713         }
1714
1715         /*
1716          * Try to reach the target state. We max out on the BP at
1717          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1718          * responsible for bringing it up to the target state.
1719          */
1720         target = min((int)target, CPUHP_BRINGUP_CPU);
1721         ret = cpuhp_up_callbacks(cpu, st, target);
1722 out:
1723         cpus_write_unlock();
1724         arch_smt_update();
1725         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1726         return ret;
1727 }
1728
1729 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1730 {
1731         int err = 0;
1732
1733         if (!cpu_possible(cpu)) {
1734                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1735                        cpu);
1736 #if defined(CONFIG_IA64)
1737                 pr_err("please check additional_cpus= boot parameter\n");
1738 #endif
1739                 return -EINVAL;
1740         }
1741
1742         err = try_online_node(cpu_to_node(cpu));
1743         if (err)
1744                 return err;
1745
1746         cpu_maps_update_begin();
1747
1748         if (cpu_hotplug_disabled) {
1749                 err = -EBUSY;
1750                 goto out;
1751         }
1752         if (!cpu_bootable(cpu)) {
1753                 err = -EPERM;
1754                 goto out;
1755         }
1756
1757         err = _cpu_up(cpu, 0, target);
1758 out:
1759         cpu_maps_update_done();
1760         return err;
1761 }
1762
1763 /**
1764  * cpu_device_up - Bring up a cpu device
1765  * @dev: Pointer to the cpu device to online
1766  *
1767  * This function is meant to be used by device core cpu subsystem only.
1768  *
1769  * Other subsystems should use add_cpu() instead.
1770  *
1771  * Return: %0 on success or a negative errno code
1772  */
1773 int cpu_device_up(struct device *dev)
1774 {
1775         return cpu_up(dev->id, CPUHP_ONLINE);
1776 }
1777
1778 int add_cpu(unsigned int cpu)
1779 {
1780         int ret;
1781
1782         lock_device_hotplug();
1783         ret = device_online(get_cpu_device(cpu));
1784         unlock_device_hotplug();
1785
1786         return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(add_cpu);
1789
1790 /**
1791  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1792  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1793  *
1794  * On some architectures like arm64, we can hibernate on any CPU, but on
1795  * wake up the CPU we hibernated on might be offline as a side effect of
1796  * using maxcpus= for example.
1797  *
1798  * Return: %0 on success or a negative errno code
1799  */
1800 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1801 {
1802         int ret;
1803
1804         if (!cpu_online(sleep_cpu)) {
1805                 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1806                 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1807                 if (ret) {
1808                         pr_err("Failed to bring hibernate-CPU up!\n");
1809                         return ret;
1810                 }
1811         }
1812         return 0;
1813 }
1814
1815 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1816                                       enum cpuhp_state target)
1817 {
1818         unsigned int cpu;
1819
1820         for_each_cpu(cpu, mask) {
1821                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1822
1823                 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1824                         /*
1825                          * If this failed then cpu_up() might have only
1826                          * rolled back to CPUHP_BP_KICK_AP for the final
1827                          * online. Clean it up. NOOP if already rolled back.
1828                          */
1829                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1830                 }
1831
1832                 if (!--ncpus)
1833                         break;
1834         }
1835 }
1836
1837 #ifdef CONFIG_HOTPLUG_PARALLEL
1838 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1839
1840 static int __init parallel_bringup_parse_param(char *arg)
1841 {
1842         return kstrtobool(arg, &__cpuhp_parallel_bringup);
1843 }
1844 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1845
1846 static inline bool cpuhp_smt_aware(void)
1847 {
1848         return cpu_smt_max_threads > 1;
1849 }
1850
1851 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1852 {
1853         return cpu_primary_thread_mask;
1854 }
1855
1856 /*
1857  * On architectures which have enabled parallel bringup this invokes all BP
1858  * prepare states for each of the to be onlined APs first. The last state
1859  * sends the startup IPI to the APs. The APs proceed through the low level
1860  * bringup code in parallel and then wait for the control CPU to release
1861  * them one by one for the final onlining procedure.
1862  *
1863  * This avoids waiting for each AP to respond to the startup IPI in
1864  * CPUHP_BRINGUP_CPU.
1865  */
1866 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1867 {
1868         const struct cpumask *mask = cpu_present_mask;
1869
1870         if (__cpuhp_parallel_bringup)
1871                 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1872         if (!__cpuhp_parallel_bringup)
1873                 return false;
1874
1875         if (cpuhp_smt_aware()) {
1876                 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1877                 static struct cpumask tmp_mask __initdata;
1878
1879                 /*
1880                  * X86 requires to prevent that SMT siblings stopped while
1881                  * the primary thread does a microcode update for various
1882                  * reasons. Bring the primary threads up first.
1883                  */
1884                 cpumask_and(&tmp_mask, mask, pmask);
1885                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1886                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1887                 /* Account for the online CPUs */
1888                 ncpus -= num_online_cpus();
1889                 if (!ncpus)
1890                         return true;
1891                 /* Create the mask for secondary CPUs */
1892                 cpumask_andnot(&tmp_mask, mask, pmask);
1893                 mask = &tmp_mask;
1894         }
1895
1896         /* Bring the not-yet started CPUs up */
1897         cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1898         cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1899         return true;
1900 }
1901 #else
1902 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1903 #endif /* CONFIG_HOTPLUG_PARALLEL */
1904
1905 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1906 {
1907         /* Try parallel bringup optimization if enabled */
1908         if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1909                 return;
1910
1911         /* Full per CPU serialized bringup */
1912         cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1913 }
1914
1915 #ifdef CONFIG_PM_SLEEP_SMP
1916 static cpumask_var_t frozen_cpus;
1917
1918 int freeze_secondary_cpus(int primary)
1919 {
1920         int cpu, error = 0;
1921
1922         cpu_maps_update_begin();
1923         if (primary == -1) {
1924                 primary = cpumask_first(cpu_online_mask);
1925                 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1926                         primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1927         } else {
1928                 if (!cpu_online(primary))
1929                         primary = cpumask_first(cpu_online_mask);
1930         }
1931
1932         /*
1933          * We take down all of the non-boot CPUs in one shot to avoid races
1934          * with the userspace trying to use the CPU hotplug at the same time
1935          */
1936         cpumask_clear(frozen_cpus);
1937
1938         pr_info("Disabling non-boot CPUs ...\n");
1939         for_each_online_cpu(cpu) {
1940                 if (cpu == primary)
1941                         continue;
1942
1943                 if (pm_wakeup_pending()) {
1944                         pr_info("Wakeup pending. Abort CPU freeze\n");
1945                         error = -EBUSY;
1946                         break;
1947                 }
1948
1949                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1950                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1951                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1952                 if (!error)
1953                         cpumask_set_cpu(cpu, frozen_cpus);
1954                 else {
1955                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1956                         break;
1957                 }
1958         }
1959
1960         if (!error)
1961                 BUG_ON(num_online_cpus() > 1);
1962         else
1963                 pr_err("Non-boot CPUs are not disabled\n");
1964
1965         /*
1966          * Make sure the CPUs won't be enabled by someone else. We need to do
1967          * this even in case of failure as all freeze_secondary_cpus() users are
1968          * supposed to do thaw_secondary_cpus() on the failure path.
1969          */
1970         cpu_hotplug_disabled++;
1971
1972         cpu_maps_update_done();
1973         return error;
1974 }
1975
1976 void __weak arch_thaw_secondary_cpus_begin(void)
1977 {
1978 }
1979
1980 void __weak arch_thaw_secondary_cpus_end(void)
1981 {
1982 }
1983
1984 void thaw_secondary_cpus(void)
1985 {
1986         int cpu, error;
1987
1988         /* Allow everyone to use the CPU hotplug again */
1989         cpu_maps_update_begin();
1990         __cpu_hotplug_enable();
1991         if (cpumask_empty(frozen_cpus))
1992                 goto out;
1993
1994         pr_info("Enabling non-boot CPUs ...\n");
1995
1996         arch_thaw_secondary_cpus_begin();
1997
1998         for_each_cpu(cpu, frozen_cpus) {
1999                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
2000                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
2001                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
2002                 if (!error) {
2003                         pr_info("CPU%d is up\n", cpu);
2004                         continue;
2005                 }
2006                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
2007         }
2008
2009         arch_thaw_secondary_cpus_end();
2010
2011         cpumask_clear(frozen_cpus);
2012 out:
2013         cpu_maps_update_done();
2014 }
2015
2016 static int __init alloc_frozen_cpus(void)
2017 {
2018         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2019                 return -ENOMEM;
2020         return 0;
2021 }
2022 core_initcall(alloc_frozen_cpus);
2023
2024 /*
2025  * When callbacks for CPU hotplug notifications are being executed, we must
2026  * ensure that the state of the system with respect to the tasks being frozen
2027  * or not, as reported by the notification, remains unchanged *throughout the
2028  * duration* of the execution of the callbacks.
2029  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2030  *
2031  * This synchronization is implemented by mutually excluding regular CPU
2032  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2033  * Hibernate notifications.
2034  */
2035 static int
2036 cpu_hotplug_pm_callback(struct notifier_block *nb,
2037                         unsigned long action, void *ptr)
2038 {
2039         switch (action) {
2040
2041         case PM_SUSPEND_PREPARE:
2042         case PM_HIBERNATION_PREPARE:
2043                 cpu_hotplug_disable();
2044                 break;
2045
2046         case PM_POST_SUSPEND:
2047         case PM_POST_HIBERNATION:
2048                 cpu_hotplug_enable();
2049                 break;
2050
2051         default:
2052                 return NOTIFY_DONE;
2053         }
2054
2055         return NOTIFY_OK;
2056 }
2057
2058
2059 static int __init cpu_hotplug_pm_sync_init(void)
2060 {
2061         /*
2062          * cpu_hotplug_pm_callback has higher priority than x86
2063          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2064          * to disable cpu hotplug to avoid cpu hotplug race.
2065          */
2066         pm_notifier(cpu_hotplug_pm_callback, 0);
2067         return 0;
2068 }
2069 core_initcall(cpu_hotplug_pm_sync_init);
2070
2071 #endif /* CONFIG_PM_SLEEP_SMP */
2072
2073 int __boot_cpu_id;
2074
2075 #endif /* CONFIG_SMP */
2076
2077 /* Boot processor state steps */
2078 static struct cpuhp_step cpuhp_hp_states[] = {
2079         [CPUHP_OFFLINE] = {
2080                 .name                   = "offline",
2081                 .startup.single         = NULL,
2082                 .teardown.single        = NULL,
2083         },
2084 #ifdef CONFIG_SMP
2085         [CPUHP_CREATE_THREADS]= {
2086                 .name                   = "threads:prepare",
2087                 .startup.single         = smpboot_create_threads,
2088                 .teardown.single        = NULL,
2089                 .cant_stop              = true,
2090         },
2091         [CPUHP_PERF_PREPARE] = {
2092                 .name                   = "perf:prepare",
2093                 .startup.single         = perf_event_init_cpu,
2094                 .teardown.single        = perf_event_exit_cpu,
2095         },
2096         [CPUHP_RANDOM_PREPARE] = {
2097                 .name                   = "random:prepare",
2098                 .startup.single         = random_prepare_cpu,
2099                 .teardown.single        = NULL,
2100         },
2101         [CPUHP_WORKQUEUE_PREP] = {
2102                 .name                   = "workqueue:prepare",
2103                 .startup.single         = workqueue_prepare_cpu,
2104                 .teardown.single        = NULL,
2105         },
2106         [CPUHP_HRTIMERS_PREPARE] = {
2107                 .name                   = "hrtimers:prepare",
2108                 .startup.single         = hrtimers_prepare_cpu,
2109                 .teardown.single        = hrtimers_dead_cpu,
2110         },
2111         [CPUHP_SMPCFD_PREPARE] = {
2112                 .name                   = "smpcfd:prepare",
2113                 .startup.single         = smpcfd_prepare_cpu,
2114                 .teardown.single        = smpcfd_dead_cpu,
2115         },
2116         [CPUHP_RELAY_PREPARE] = {
2117                 .name                   = "relay:prepare",
2118                 .startup.single         = relay_prepare_cpu,
2119                 .teardown.single        = NULL,
2120         },
2121         [CPUHP_SLAB_PREPARE] = {
2122                 .name                   = "slab:prepare",
2123                 .startup.single         = slab_prepare_cpu,
2124                 .teardown.single        = slab_dead_cpu,
2125         },
2126         [CPUHP_RCUTREE_PREP] = {
2127                 .name                   = "RCU/tree:prepare",
2128                 .startup.single         = rcutree_prepare_cpu,
2129                 .teardown.single        = rcutree_dead_cpu,
2130         },
2131         /*
2132          * On the tear-down path, timers_dead_cpu() must be invoked
2133          * before blk_mq_queue_reinit_notify() from notify_dead(),
2134          * otherwise a RCU stall occurs.
2135          */
2136         [CPUHP_TIMERS_PREPARE] = {
2137                 .name                   = "timers:prepare",
2138                 .startup.single         = timers_prepare_cpu,
2139                 .teardown.single        = timers_dead_cpu,
2140         },
2141
2142 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2143         /*
2144          * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2145          * the next step will release it.
2146          */
2147         [CPUHP_BP_KICK_AP] = {
2148                 .name                   = "cpu:kick_ap",
2149                 .startup.single         = cpuhp_kick_ap_alive,
2150         },
2151
2152         /*
2153          * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2154          * releases it for the complete bringup.
2155          */
2156         [CPUHP_BRINGUP_CPU] = {
2157                 .name                   = "cpu:bringup",
2158                 .startup.single         = cpuhp_bringup_ap,
2159                 .teardown.single        = finish_cpu,
2160                 .cant_stop              = true,
2161         },
2162 #else
2163         /*
2164          * All-in-one CPU bringup state which includes the kick alive.
2165          */
2166         [CPUHP_BRINGUP_CPU] = {
2167                 .name                   = "cpu:bringup",
2168                 .startup.single         = bringup_cpu,
2169                 .teardown.single        = finish_cpu,
2170                 .cant_stop              = true,
2171         },
2172 #endif
2173         /* Final state before CPU kills itself */
2174         [CPUHP_AP_IDLE_DEAD] = {
2175                 .name                   = "idle:dead",
2176         },
2177         /*
2178          * Last state before CPU enters the idle loop to die. Transient state
2179          * for synchronization.
2180          */
2181         [CPUHP_AP_OFFLINE] = {
2182                 .name                   = "ap:offline",
2183                 .cant_stop              = true,
2184         },
2185         /* First state is scheduler control. Interrupts are disabled */
2186         [CPUHP_AP_SCHED_STARTING] = {
2187                 .name                   = "sched:starting",
2188                 .startup.single         = sched_cpu_starting,
2189                 .teardown.single        = sched_cpu_dying,
2190         },
2191         [CPUHP_AP_RCUTREE_DYING] = {
2192                 .name                   = "RCU/tree:dying",
2193                 .startup.single         = NULL,
2194                 .teardown.single        = rcutree_dying_cpu,
2195         },
2196         [CPUHP_AP_SMPCFD_DYING] = {
2197                 .name                   = "smpcfd:dying",
2198                 .startup.single         = NULL,
2199                 .teardown.single        = smpcfd_dying_cpu,
2200         },
2201         /* Entry state on starting. Interrupts enabled from here on. Transient
2202          * state for synchronsization */
2203         [CPUHP_AP_ONLINE] = {
2204                 .name                   = "ap:online",
2205         },
2206         /*
2207          * Handled on control processor until the plugged processor manages
2208          * this itself.
2209          */
2210         [CPUHP_TEARDOWN_CPU] = {
2211                 .name                   = "cpu:teardown",
2212                 .startup.single         = NULL,
2213                 .teardown.single        = takedown_cpu,
2214                 .cant_stop              = true,
2215         },
2216
2217         [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2218                 .name                   = "sched:waitempty",
2219                 .startup.single         = NULL,
2220                 .teardown.single        = sched_cpu_wait_empty,
2221         },
2222
2223         /* Handle smpboot threads park/unpark */
2224         [CPUHP_AP_SMPBOOT_THREADS] = {
2225                 .name                   = "smpboot/threads:online",
2226                 .startup.single         = smpboot_unpark_threads,
2227                 .teardown.single        = smpboot_park_threads,
2228         },
2229         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2230                 .name                   = "irq/affinity:online",
2231                 .startup.single         = irq_affinity_online_cpu,
2232                 .teardown.single        = NULL,
2233         },
2234         [CPUHP_AP_PERF_ONLINE] = {
2235                 .name                   = "perf:online",
2236                 .startup.single         = perf_event_init_cpu,
2237                 .teardown.single        = perf_event_exit_cpu,
2238         },
2239         [CPUHP_AP_WATCHDOG_ONLINE] = {
2240                 .name                   = "lockup_detector:online",
2241                 .startup.single         = lockup_detector_online_cpu,
2242                 .teardown.single        = lockup_detector_offline_cpu,
2243         },
2244         [CPUHP_AP_WORKQUEUE_ONLINE] = {
2245                 .name                   = "workqueue:online",
2246                 .startup.single         = workqueue_online_cpu,
2247                 .teardown.single        = workqueue_offline_cpu,
2248         },
2249         [CPUHP_AP_RANDOM_ONLINE] = {
2250                 .name                   = "random:online",
2251                 .startup.single         = random_online_cpu,
2252                 .teardown.single        = NULL,
2253         },
2254         [CPUHP_AP_RCUTREE_ONLINE] = {
2255                 .name                   = "RCU/tree:online",
2256                 .startup.single         = rcutree_online_cpu,
2257                 .teardown.single        = rcutree_offline_cpu,
2258         },
2259 #endif
2260         /*
2261          * The dynamically registered state space is here
2262          */
2263
2264 #ifdef CONFIG_SMP
2265         /* Last state is scheduler control setting the cpu active */
2266         [CPUHP_AP_ACTIVE] = {
2267                 .name                   = "sched:active",
2268                 .startup.single         = sched_cpu_activate,
2269                 .teardown.single        = sched_cpu_deactivate,
2270         },
2271 #endif
2272
2273         /* CPU is fully up and running. */
2274         [CPUHP_ONLINE] = {
2275                 .name                   = "online",
2276                 .startup.single         = NULL,
2277                 .teardown.single        = NULL,
2278         },
2279 };
2280
2281 /* Sanity check for callbacks */
2282 static int cpuhp_cb_check(enum cpuhp_state state)
2283 {
2284         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2285                 return -EINVAL;
2286         return 0;
2287 }
2288
2289 /*
2290  * Returns a free for dynamic slot assignment of the Online state. The states
2291  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2292  * by having no name assigned.
2293  */
2294 static int cpuhp_reserve_state(enum cpuhp_state state)
2295 {
2296         enum cpuhp_state i, end;
2297         struct cpuhp_step *step;
2298
2299         switch (state) {
2300         case CPUHP_AP_ONLINE_DYN:
2301                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2302                 end = CPUHP_AP_ONLINE_DYN_END;
2303                 break;
2304         case CPUHP_BP_PREPARE_DYN:
2305                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2306                 end = CPUHP_BP_PREPARE_DYN_END;
2307                 break;
2308         default:
2309                 return -EINVAL;
2310         }
2311
2312         for (i = state; i <= end; i++, step++) {
2313                 if (!step->name)
2314                         return i;
2315         }
2316         WARN(1, "No more dynamic states available for CPU hotplug\n");
2317         return -ENOSPC;
2318 }
2319
2320 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2321                                  int (*startup)(unsigned int cpu),
2322                                  int (*teardown)(unsigned int cpu),
2323                                  bool multi_instance)
2324 {
2325         /* (Un)Install the callbacks for further cpu hotplug operations */
2326         struct cpuhp_step *sp;
2327         int ret = 0;
2328
2329         /*
2330          * If name is NULL, then the state gets removed.
2331          *
2332          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2333          * the first allocation from these dynamic ranges, so the removal
2334          * would trigger a new allocation and clear the wrong (already
2335          * empty) state, leaving the callbacks of the to be cleared state
2336          * dangling, which causes wreckage on the next hotplug operation.
2337          */
2338         if (name && (state == CPUHP_AP_ONLINE_DYN ||
2339                      state == CPUHP_BP_PREPARE_DYN)) {
2340                 ret = cpuhp_reserve_state(state);
2341                 if (ret < 0)
2342                         return ret;
2343                 state = ret;
2344         }
2345         sp = cpuhp_get_step(state);
2346         if (name && sp->name)
2347                 return -EBUSY;
2348
2349         sp->startup.single = startup;
2350         sp->teardown.single = teardown;
2351         sp->name = name;
2352         sp->multi_instance = multi_instance;
2353         INIT_HLIST_HEAD(&sp->list);
2354         return ret;
2355 }
2356
2357 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2358 {
2359         return cpuhp_get_step(state)->teardown.single;
2360 }
2361
2362 /*
2363  * Call the startup/teardown function for a step either on the AP or
2364  * on the current CPU.
2365  */
2366 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2367                             struct hlist_node *node)
2368 {
2369         struct cpuhp_step *sp = cpuhp_get_step(state);
2370         int ret;
2371
2372         /*
2373          * If there's nothing to do, we done.
2374          * Relies on the union for multi_instance.
2375          */
2376         if (cpuhp_step_empty(bringup, sp))
2377                 return 0;
2378         /*
2379          * The non AP bound callbacks can fail on bringup. On teardown
2380          * e.g. module removal we crash for now.
2381          */
2382 #ifdef CONFIG_SMP
2383         if (cpuhp_is_ap_state(state))
2384                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2385         else
2386                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2387 #else
2388         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2389 #endif
2390         BUG_ON(ret && !bringup);
2391         return ret;
2392 }
2393
2394 /*
2395  * Called from __cpuhp_setup_state on a recoverable failure.
2396  *
2397  * Note: The teardown callbacks for rollback are not allowed to fail!
2398  */
2399 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2400                                    struct hlist_node *node)
2401 {
2402         int cpu;
2403
2404         /* Roll back the already executed steps on the other cpus */
2405         for_each_present_cpu(cpu) {
2406                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2407                 int cpustate = st->state;
2408
2409                 if (cpu >= failedcpu)
2410                         break;
2411
2412                 /* Did we invoke the startup call on that cpu ? */
2413                 if (cpustate >= state)
2414                         cpuhp_issue_call(cpu, state, false, node);
2415         }
2416 }
2417
2418 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2419                                           struct hlist_node *node,
2420                                           bool invoke)
2421 {
2422         struct cpuhp_step *sp;
2423         int cpu;
2424         int ret;
2425
2426         lockdep_assert_cpus_held();
2427
2428         sp = cpuhp_get_step(state);
2429         if (sp->multi_instance == false)
2430                 return -EINVAL;
2431
2432         mutex_lock(&cpuhp_state_mutex);
2433
2434         if (!invoke || !sp->startup.multi)
2435                 goto add_node;
2436
2437         /*
2438          * Try to call the startup callback for each present cpu
2439          * depending on the hotplug state of the cpu.
2440          */
2441         for_each_present_cpu(cpu) {
2442                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2443                 int cpustate = st->state;
2444
2445                 if (cpustate < state)
2446                         continue;
2447
2448                 ret = cpuhp_issue_call(cpu, state, true, node);
2449                 if (ret) {
2450                         if (sp->teardown.multi)
2451                                 cpuhp_rollback_install(cpu, state, node);
2452                         goto unlock;
2453                 }
2454         }
2455 add_node:
2456         ret = 0;
2457         hlist_add_head(node, &sp->list);
2458 unlock:
2459         mutex_unlock(&cpuhp_state_mutex);
2460         return ret;
2461 }
2462
2463 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2464                                bool invoke)
2465 {
2466         int ret;
2467
2468         cpus_read_lock();
2469         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2470         cpus_read_unlock();
2471         return ret;
2472 }
2473 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2474
2475 /**
2476  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2477  * @state:              The state to setup
2478  * @name:               Name of the step
2479  * @invoke:             If true, the startup function is invoked for cpus where
2480  *                      cpu state >= @state
2481  * @startup:            startup callback function
2482  * @teardown:           teardown callback function
2483  * @multi_instance:     State is set up for multiple instances which get
2484  *                      added afterwards.
2485  *
2486  * The caller needs to hold cpus read locked while calling this function.
2487  * Return:
2488  *   On success:
2489  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2490  *      0 for all other states
2491  *   On failure: proper (negative) error code
2492  */
2493 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2494                                    const char *name, bool invoke,
2495                                    int (*startup)(unsigned int cpu),
2496                                    int (*teardown)(unsigned int cpu),
2497                                    bool multi_instance)
2498 {
2499         int cpu, ret = 0;
2500         bool dynstate;
2501
2502         lockdep_assert_cpus_held();
2503
2504         if (cpuhp_cb_check(state) || !name)
2505                 return -EINVAL;
2506
2507         mutex_lock(&cpuhp_state_mutex);
2508
2509         ret = cpuhp_store_callbacks(state, name, startup, teardown,
2510                                     multi_instance);
2511
2512         dynstate = state == CPUHP_AP_ONLINE_DYN;
2513         if (ret > 0 && dynstate) {
2514                 state = ret;
2515                 ret = 0;
2516         }
2517
2518         if (ret || !invoke || !startup)
2519                 goto out;
2520
2521         /*
2522          * Try to call the startup callback for each present cpu
2523          * depending on the hotplug state of the cpu.
2524          */
2525         for_each_present_cpu(cpu) {
2526                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2527                 int cpustate = st->state;
2528
2529                 if (cpustate < state)
2530                         continue;
2531
2532                 ret = cpuhp_issue_call(cpu, state, true, NULL);
2533                 if (ret) {
2534                         if (teardown)
2535                                 cpuhp_rollback_install(cpu, state, NULL);
2536                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2537                         goto out;
2538                 }
2539         }
2540 out:
2541         mutex_unlock(&cpuhp_state_mutex);
2542         /*
2543          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2544          * dynamically allocated state in case of success.
2545          */
2546         if (!ret && dynstate)
2547                 return state;
2548         return ret;
2549 }
2550 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2551
2552 int __cpuhp_setup_state(enum cpuhp_state state,
2553                         const char *name, bool invoke,
2554                         int (*startup)(unsigned int cpu),
2555                         int (*teardown)(unsigned int cpu),
2556                         bool multi_instance)
2557 {
2558         int ret;
2559
2560         cpus_read_lock();
2561         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2562                                              teardown, multi_instance);
2563         cpus_read_unlock();
2564         return ret;
2565 }
2566 EXPORT_SYMBOL(__cpuhp_setup_state);
2567
2568 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2569                                   struct hlist_node *node, bool invoke)
2570 {
2571         struct cpuhp_step *sp = cpuhp_get_step(state);
2572         int cpu;
2573
2574         BUG_ON(cpuhp_cb_check(state));
2575
2576         if (!sp->multi_instance)
2577                 return -EINVAL;
2578
2579         cpus_read_lock();
2580         mutex_lock(&cpuhp_state_mutex);
2581
2582         if (!invoke || !cpuhp_get_teardown_cb(state))
2583                 goto remove;
2584         /*
2585          * Call the teardown callback for each present cpu depending
2586          * on the hotplug state of the cpu. This function is not
2587          * allowed to fail currently!
2588          */
2589         for_each_present_cpu(cpu) {
2590                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2591                 int cpustate = st->state;
2592
2593                 if (cpustate >= state)
2594                         cpuhp_issue_call(cpu, state, false, node);
2595         }
2596
2597 remove:
2598         hlist_del(node);
2599         mutex_unlock(&cpuhp_state_mutex);
2600         cpus_read_unlock();
2601
2602         return 0;
2603 }
2604 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2605
2606 /**
2607  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2608  * @state:      The state to remove
2609  * @invoke:     If true, the teardown function is invoked for cpus where
2610  *              cpu state >= @state
2611  *
2612  * The caller needs to hold cpus read locked while calling this function.
2613  * The teardown callback is currently not allowed to fail. Think
2614  * about module removal!
2615  */
2616 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2617 {
2618         struct cpuhp_step *sp = cpuhp_get_step(state);
2619         int cpu;
2620
2621         BUG_ON(cpuhp_cb_check(state));
2622
2623         lockdep_assert_cpus_held();
2624
2625         mutex_lock(&cpuhp_state_mutex);
2626         if (sp->multi_instance) {
2627                 WARN(!hlist_empty(&sp->list),
2628                      "Error: Removing state %d which has instances left.\n",
2629                      state);
2630                 goto remove;
2631         }
2632
2633         if (!invoke || !cpuhp_get_teardown_cb(state))
2634                 goto remove;
2635
2636         /*
2637          * Call the teardown callback for each present cpu depending
2638          * on the hotplug state of the cpu. This function is not
2639          * allowed to fail currently!
2640          */
2641         for_each_present_cpu(cpu) {
2642                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2643                 int cpustate = st->state;
2644
2645                 if (cpustate >= state)
2646                         cpuhp_issue_call(cpu, state, false, NULL);
2647         }
2648 remove:
2649         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2650         mutex_unlock(&cpuhp_state_mutex);
2651 }
2652 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2653
2654 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2655 {
2656         cpus_read_lock();
2657         __cpuhp_remove_state_cpuslocked(state, invoke);
2658         cpus_read_unlock();
2659 }
2660 EXPORT_SYMBOL(__cpuhp_remove_state);
2661
2662 #ifdef CONFIG_HOTPLUG_SMT
2663 static void cpuhp_offline_cpu_device(unsigned int cpu)
2664 {
2665         struct device *dev = get_cpu_device(cpu);
2666
2667         dev->offline = true;
2668         /* Tell user space about the state change */
2669         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2670 }
2671
2672 static void cpuhp_online_cpu_device(unsigned int cpu)
2673 {
2674         struct device *dev = get_cpu_device(cpu);
2675
2676         dev->offline = false;
2677         /* Tell user space about the state change */
2678         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2679 }
2680
2681 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2682 {
2683         int cpu, ret = 0;
2684
2685         cpu_maps_update_begin();
2686         for_each_online_cpu(cpu) {
2687                 if (topology_is_primary_thread(cpu))
2688                         continue;
2689                 /*
2690                  * Disable can be called with CPU_SMT_ENABLED when changing
2691                  * from a higher to lower number of SMT threads per core.
2692                  */
2693                 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2694                         continue;
2695                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2696                 if (ret)
2697                         break;
2698                 /*
2699                  * As this needs to hold the cpu maps lock it's impossible
2700                  * to call device_offline() because that ends up calling
2701                  * cpu_down() which takes cpu maps lock. cpu maps lock
2702                  * needs to be held as this might race against in kernel
2703                  * abusers of the hotplug machinery (thermal management).
2704                  *
2705                  * So nothing would update device:offline state. That would
2706                  * leave the sysfs entry stale and prevent onlining after
2707                  * smt control has been changed to 'off' again. This is
2708                  * called under the sysfs hotplug lock, so it is properly
2709                  * serialized against the regular offline usage.
2710                  */
2711                 cpuhp_offline_cpu_device(cpu);
2712         }
2713         if (!ret)
2714                 cpu_smt_control = ctrlval;
2715         cpu_maps_update_done();
2716         return ret;
2717 }
2718
2719 int cpuhp_smt_enable(void)
2720 {
2721         int cpu, ret = 0;
2722
2723         cpu_maps_update_begin();
2724         cpu_smt_control = CPU_SMT_ENABLED;
2725         for_each_present_cpu(cpu) {
2726                 /* Skip online CPUs and CPUs on offline nodes */
2727                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2728                         continue;
2729                 if (!cpu_smt_thread_allowed(cpu))
2730                         continue;
2731                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2732                 if (ret)
2733                         break;
2734                 /* See comment in cpuhp_smt_disable() */
2735                 cpuhp_online_cpu_device(cpu);
2736         }
2737         cpu_maps_update_done();
2738         return ret;
2739 }
2740 #endif
2741
2742 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2743 static ssize_t state_show(struct device *dev,
2744                           struct device_attribute *attr, char *buf)
2745 {
2746         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2747
2748         return sprintf(buf, "%d\n", st->state);
2749 }
2750 static DEVICE_ATTR_RO(state);
2751
2752 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2753                             const char *buf, size_t count)
2754 {
2755         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2756         struct cpuhp_step *sp;
2757         int target, ret;
2758
2759         ret = kstrtoint(buf, 10, &target);
2760         if (ret)
2761                 return ret;
2762
2763 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2764         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2765                 return -EINVAL;
2766 #else
2767         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2768                 return -EINVAL;
2769 #endif
2770
2771         ret = lock_device_hotplug_sysfs();
2772         if (ret)
2773                 return ret;
2774
2775         mutex_lock(&cpuhp_state_mutex);
2776         sp = cpuhp_get_step(target);
2777         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2778         mutex_unlock(&cpuhp_state_mutex);
2779         if (ret)
2780                 goto out;
2781
2782         if (st->state < target)
2783                 ret = cpu_up(dev->id, target);
2784         else if (st->state > target)
2785                 ret = cpu_down(dev->id, target);
2786         else if (WARN_ON(st->target != target))
2787                 st->target = target;
2788 out:
2789         unlock_device_hotplug();
2790         return ret ? ret : count;
2791 }
2792
2793 static ssize_t target_show(struct device *dev,
2794                            struct device_attribute *attr, char *buf)
2795 {
2796         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2797
2798         return sprintf(buf, "%d\n", st->target);
2799 }
2800 static DEVICE_ATTR_RW(target);
2801
2802 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2803                           const char *buf, size_t count)
2804 {
2805         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2806         struct cpuhp_step *sp;
2807         int fail, ret;
2808
2809         ret = kstrtoint(buf, 10, &fail);
2810         if (ret)
2811                 return ret;
2812
2813         if (fail == CPUHP_INVALID) {
2814                 st->fail = fail;
2815                 return count;
2816         }
2817
2818         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2819                 return -EINVAL;
2820
2821         /*
2822          * Cannot fail STARTING/DYING callbacks.
2823          */
2824         if (cpuhp_is_atomic_state(fail))
2825                 return -EINVAL;
2826
2827         /*
2828          * DEAD callbacks cannot fail...
2829          * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2830          * triggering STARTING callbacks, a failure in this state would
2831          * hinder rollback.
2832          */
2833         if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2834                 return -EINVAL;
2835
2836         /*
2837          * Cannot fail anything that doesn't have callbacks.
2838          */
2839         mutex_lock(&cpuhp_state_mutex);
2840         sp = cpuhp_get_step(fail);
2841         if (!sp->startup.single && !sp->teardown.single)
2842                 ret = -EINVAL;
2843         mutex_unlock(&cpuhp_state_mutex);
2844         if (ret)
2845                 return ret;
2846
2847         st->fail = fail;
2848
2849         return count;
2850 }
2851
2852 static ssize_t fail_show(struct device *dev,
2853                          struct device_attribute *attr, char *buf)
2854 {
2855         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2856
2857         return sprintf(buf, "%d\n", st->fail);
2858 }
2859
2860 static DEVICE_ATTR_RW(fail);
2861
2862 static struct attribute *cpuhp_cpu_attrs[] = {
2863         &dev_attr_state.attr,
2864         &dev_attr_target.attr,
2865         &dev_attr_fail.attr,
2866         NULL
2867 };
2868
2869 static const struct attribute_group cpuhp_cpu_attr_group = {
2870         .attrs = cpuhp_cpu_attrs,
2871         .name = "hotplug",
2872         NULL
2873 };
2874
2875 static ssize_t states_show(struct device *dev,
2876                                  struct device_attribute *attr, char *buf)
2877 {
2878         ssize_t cur, res = 0;
2879         int i;
2880
2881         mutex_lock(&cpuhp_state_mutex);
2882         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2883                 struct cpuhp_step *sp = cpuhp_get_step(i);
2884
2885                 if (sp->name) {
2886                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2887                         buf += cur;
2888                         res += cur;
2889                 }
2890         }
2891         mutex_unlock(&cpuhp_state_mutex);
2892         return res;
2893 }
2894 static DEVICE_ATTR_RO(states);
2895
2896 static struct attribute *cpuhp_cpu_root_attrs[] = {
2897         &dev_attr_states.attr,
2898         NULL
2899 };
2900
2901 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2902         .attrs = cpuhp_cpu_root_attrs,
2903         .name = "hotplug",
2904         NULL
2905 };
2906
2907 #ifdef CONFIG_HOTPLUG_SMT
2908
2909 static bool cpu_smt_num_threads_valid(unsigned int threads)
2910 {
2911         if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2912                 return threads >= 1 && threads <= cpu_smt_max_threads;
2913         return threads == 1 || threads == cpu_smt_max_threads;
2914 }
2915
2916 static ssize_t
2917 __store_smt_control(struct device *dev, struct device_attribute *attr,
2918                     const char *buf, size_t count)
2919 {
2920         int ctrlval, ret, num_threads, orig_threads;
2921         bool force_off;
2922
2923         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2924                 return -EPERM;
2925
2926         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2927                 return -ENODEV;
2928
2929         if (sysfs_streq(buf, "on")) {
2930                 ctrlval = CPU_SMT_ENABLED;
2931                 num_threads = cpu_smt_max_threads;
2932         } else if (sysfs_streq(buf, "off")) {
2933                 ctrlval = CPU_SMT_DISABLED;
2934                 num_threads = 1;
2935         } else if (sysfs_streq(buf, "forceoff")) {
2936                 ctrlval = CPU_SMT_FORCE_DISABLED;
2937                 num_threads = 1;
2938         } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2939                 if (num_threads == 1)
2940                         ctrlval = CPU_SMT_DISABLED;
2941                 else if (cpu_smt_num_threads_valid(num_threads))
2942                         ctrlval = CPU_SMT_ENABLED;
2943                 else
2944                         return -EINVAL;
2945         } else {
2946                 return -EINVAL;
2947         }
2948
2949         ret = lock_device_hotplug_sysfs();
2950         if (ret)
2951                 return ret;
2952
2953         orig_threads = cpu_smt_num_threads;
2954         cpu_smt_num_threads = num_threads;
2955
2956         force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2957
2958         if (num_threads > orig_threads)
2959                 ret = cpuhp_smt_enable();
2960         else if (num_threads < orig_threads || force_off)
2961                 ret = cpuhp_smt_disable(ctrlval);
2962
2963         unlock_device_hotplug();
2964         return ret ? ret : count;
2965 }
2966
2967 #else /* !CONFIG_HOTPLUG_SMT */
2968 static ssize_t
2969 __store_smt_control(struct device *dev, struct device_attribute *attr,
2970                     const char *buf, size_t count)
2971 {
2972         return -ENODEV;
2973 }
2974 #endif /* CONFIG_HOTPLUG_SMT */
2975
2976 static const char *smt_states[] = {
2977         [CPU_SMT_ENABLED]               = "on",
2978         [CPU_SMT_DISABLED]              = "off",
2979         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2980         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2981         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2982 };
2983
2984 static ssize_t control_show(struct device *dev,
2985                             struct device_attribute *attr, char *buf)
2986 {
2987         const char *state = smt_states[cpu_smt_control];
2988
2989 #ifdef CONFIG_HOTPLUG_SMT
2990         /*
2991          * If SMT is enabled but not all threads are enabled then show the
2992          * number of threads. If all threads are enabled show "on". Otherwise
2993          * show the state name.
2994          */
2995         if (cpu_smt_control == CPU_SMT_ENABLED &&
2996             cpu_smt_num_threads != cpu_smt_max_threads)
2997                 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2998 #endif
2999
3000         return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
3001 }
3002
3003 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
3004                              const char *buf, size_t count)
3005 {
3006         return __store_smt_control(dev, attr, buf, count);
3007 }
3008 static DEVICE_ATTR_RW(control);
3009
3010 static ssize_t active_show(struct device *dev,
3011                            struct device_attribute *attr, char *buf)
3012 {
3013         return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
3014 }
3015 static DEVICE_ATTR_RO(active);
3016
3017 static struct attribute *cpuhp_smt_attrs[] = {
3018         &dev_attr_control.attr,
3019         &dev_attr_active.attr,
3020         NULL
3021 };
3022
3023 static const struct attribute_group cpuhp_smt_attr_group = {
3024         .attrs = cpuhp_smt_attrs,
3025         .name = "smt",
3026         NULL
3027 };
3028
3029 static int __init cpu_smt_sysfs_init(void)
3030 {
3031         struct device *dev_root;
3032         int ret = -ENODEV;
3033
3034         dev_root = bus_get_dev_root(&cpu_subsys);
3035         if (dev_root) {
3036                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3037                 put_device(dev_root);
3038         }
3039         return ret;
3040 }
3041
3042 static int __init cpuhp_sysfs_init(void)
3043 {
3044         struct device *dev_root;
3045         int cpu, ret;
3046
3047         ret = cpu_smt_sysfs_init();
3048         if (ret)
3049                 return ret;
3050
3051         dev_root = bus_get_dev_root(&cpu_subsys);
3052         if (dev_root) {
3053                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3054                 put_device(dev_root);
3055                 if (ret)
3056                         return ret;
3057         }
3058
3059         for_each_possible_cpu(cpu) {
3060                 struct device *dev = get_cpu_device(cpu);
3061
3062                 if (!dev)
3063                         continue;
3064                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3065                 if (ret)
3066                         return ret;
3067         }
3068         return 0;
3069 }
3070 device_initcall(cpuhp_sysfs_init);
3071 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3072
3073 /*
3074  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3075  * represents all NR_CPUS bits binary values of 1<<nr.
3076  *
3077  * It is used by cpumask_of() to get a constant address to a CPU
3078  * mask value that has a single bit set only.
3079  */
3080
3081 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3082 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
3083 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3084 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3085 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3086
3087 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3088
3089         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
3090         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
3091 #if BITS_PER_LONG > 32
3092         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
3093         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
3094 #endif
3095 };
3096 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3097
3098 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3099 EXPORT_SYMBOL(cpu_all_bits);
3100
3101 #ifdef CONFIG_INIT_ALL_POSSIBLE
3102 struct cpumask __cpu_possible_mask __read_mostly
3103         = {CPU_BITS_ALL};
3104 #else
3105 struct cpumask __cpu_possible_mask __read_mostly;
3106 #endif
3107 EXPORT_SYMBOL(__cpu_possible_mask);
3108
3109 struct cpumask __cpu_online_mask __read_mostly;
3110 EXPORT_SYMBOL(__cpu_online_mask);
3111
3112 struct cpumask __cpu_present_mask __read_mostly;
3113 EXPORT_SYMBOL(__cpu_present_mask);
3114
3115 struct cpumask __cpu_active_mask __read_mostly;
3116 EXPORT_SYMBOL(__cpu_active_mask);
3117
3118 struct cpumask __cpu_dying_mask __read_mostly;
3119 EXPORT_SYMBOL(__cpu_dying_mask);
3120
3121 atomic_t __num_online_cpus __read_mostly;
3122 EXPORT_SYMBOL(__num_online_cpus);
3123
3124 void init_cpu_present(const struct cpumask *src)
3125 {
3126         cpumask_copy(&__cpu_present_mask, src);
3127 }
3128
3129 void init_cpu_possible(const struct cpumask *src)
3130 {
3131         cpumask_copy(&__cpu_possible_mask, src);
3132 }
3133
3134 void init_cpu_online(const struct cpumask *src)
3135 {
3136         cpumask_copy(&__cpu_online_mask, src);
3137 }
3138
3139 void set_cpu_online(unsigned int cpu, bool online)
3140 {
3141         /*
3142          * atomic_inc/dec() is required to handle the horrid abuse of this
3143          * function by the reboot and kexec code which invoke it from
3144          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3145          * regular CPU hotplug is properly serialized.
3146          *
3147          * Note, that the fact that __num_online_cpus is of type atomic_t
3148          * does not protect readers which are not serialized against
3149          * concurrent hotplug operations.
3150          */
3151         if (online) {
3152                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3153                         atomic_inc(&__num_online_cpus);
3154         } else {
3155                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3156                         atomic_dec(&__num_online_cpus);
3157         }
3158 }
3159
3160 /*
3161  * Activate the first processor.
3162  */
3163 void __init boot_cpu_init(void)
3164 {
3165         int cpu = smp_processor_id();
3166
3167         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3168         set_cpu_online(cpu, true);
3169         set_cpu_active(cpu, true);
3170         set_cpu_present(cpu, true);
3171         set_cpu_possible(cpu, true);
3172
3173 #ifdef CONFIG_SMP
3174         __boot_cpu_id = cpu;
3175 #endif
3176 }
3177
3178 /*
3179  * Must be called _AFTER_ setting up the per_cpu areas
3180  */
3181 void __init boot_cpu_hotplug_init(void)
3182 {
3183 #ifdef CONFIG_SMP
3184         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3185         atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3186 #endif
3187         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3188         this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3189 }
3190
3191 /*
3192  * These are used for a global "mitigations=" cmdline option for toggling
3193  * optional CPU mitigations.
3194  */
3195 enum cpu_mitigations {
3196         CPU_MITIGATIONS_OFF,
3197         CPU_MITIGATIONS_AUTO,
3198         CPU_MITIGATIONS_AUTO_NOSMT,
3199 };
3200
3201 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3202         CPU_MITIGATIONS_AUTO;
3203
3204 static int __init mitigations_parse_cmdline(char *arg)
3205 {
3206         if (!strcmp(arg, "off"))
3207                 cpu_mitigations = CPU_MITIGATIONS_OFF;
3208         else if (!strcmp(arg, "auto"))
3209                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3210         else if (!strcmp(arg, "auto,nosmt"))
3211                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3212         else
3213                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3214                         arg);
3215
3216         return 0;
3217 }
3218 early_param("mitigations", mitigations_parse_cmdline);
3219
3220 /* mitigations=off */
3221 bool cpu_mitigations_off(void)
3222 {
3223         return cpu_mitigations == CPU_MITIGATIONS_OFF;
3224 }
3225 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3226
3227 /* mitigations=auto,nosmt */
3228 bool cpu_mitigations_auto_nosmt(void)
3229 {
3230         return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3231 }
3232 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);