cpu/hotplug: Make bringup/teardown of smp threads symmetric
[platform/kernel/linux-rpi.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36
37 #include "smpboot.h"
38
39 /**
40  * cpuhp_cpu_state - Per cpu hotplug state storage
41  * @state:      The current cpu state
42  * @target:     The target state
43  * @thread:     Pointer to the hotplug thread
44  * @should_run: Thread should execute
45  * @rollback:   Perform a rollback
46  * @single:     Single callback invocation
47  * @bringup:    Single callback bringup or teardown selector
48  * @cb_state:   The state for a single callback (install/uninstall)
49  * @result:     Result of the operation
50  * @done_up:    Signal completion to the issuer of the task for cpu-up
51  * @done_down:  Signal completion to the issuer of the task for cpu-down
52  */
53 struct cpuhp_cpu_state {
54         enum cpuhp_state        state;
55         enum cpuhp_state        target;
56         enum cpuhp_state        fail;
57 #ifdef CONFIG_SMP
58         struct task_struct      *thread;
59         bool                    should_run;
60         bool                    rollback;
61         bool                    single;
62         bool                    bringup;
63         struct hlist_node       *node;
64         struct hlist_node       *last;
65         enum cpuhp_state        cb_state;
66         int                     result;
67         struct completion       done_up;
68         struct completion       done_down;
69 #endif
70 };
71
72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
73         .fail = CPUHP_INVALID,
74 };
75
76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
77 static struct lockdep_map cpuhp_state_up_map =
78         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
79 static struct lockdep_map cpuhp_state_down_map =
80         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
81
82
83 static void inline cpuhp_lock_acquire(bool bringup)
84 {
85         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
86 }
87
88 static void inline cpuhp_lock_release(bool bringup)
89 {
90         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
91 }
92 #else
93
94 static void inline cpuhp_lock_acquire(bool bringup) { }
95 static void inline cpuhp_lock_release(bool bringup) { }
96
97 #endif
98
99 /**
100  * cpuhp_step - Hotplug state machine step
101  * @name:       Name of the step
102  * @startup:    Startup function of the step
103  * @teardown:   Teardown function of the step
104  * @skip_onerr: Do not invoke the functions on error rollback
105  *              Will go away once the notifiers are gone
106  * @cant_stop:  Bringup/teardown can't be stopped at this step
107  */
108 struct cpuhp_step {
109         const char              *name;
110         union {
111                 int             (*single)(unsigned int cpu);
112                 int             (*multi)(unsigned int cpu,
113                                          struct hlist_node *node);
114         } startup;
115         union {
116                 int             (*single)(unsigned int cpu);
117                 int             (*multi)(unsigned int cpu,
118                                          struct hlist_node *node);
119         } teardown;
120         struct hlist_head       list;
121         bool                    skip_onerr;
122         bool                    cant_stop;
123         bool                    multi_instance;
124 };
125
126 static DEFINE_MUTEX(cpuhp_state_mutex);
127 static struct cpuhp_step cpuhp_bp_states[];
128 static struct cpuhp_step cpuhp_ap_states[];
129
130 static bool cpuhp_is_ap_state(enum cpuhp_state state)
131 {
132         /*
133          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
134          * purposes as that state is handled explicitly in cpu_down.
135          */
136         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
137 }
138
139 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
140 {
141         struct cpuhp_step *sp;
142
143         sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
144         return sp + state;
145 }
146
147 /**
148  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
149  * @cpu:        The cpu for which the callback should be invoked
150  * @state:      The state to do callbacks for
151  * @bringup:    True if the bringup callback should be invoked
152  * @node:       For multi-instance, do a single entry callback for install/remove
153  * @lastp:      For multi-instance rollback, remember how far we got
154  *
155  * Called from cpu hotplug and from the state register machinery.
156  */
157 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
158                                  bool bringup, struct hlist_node *node,
159                                  struct hlist_node **lastp)
160 {
161         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
162         struct cpuhp_step *step = cpuhp_get_step(state);
163         int (*cbm)(unsigned int cpu, struct hlist_node *node);
164         int (*cb)(unsigned int cpu);
165         int ret, cnt;
166
167         if (st->fail == state) {
168                 st->fail = CPUHP_INVALID;
169
170                 if (!(bringup ? step->startup.single : step->teardown.single))
171                         return 0;
172
173                 return -EAGAIN;
174         }
175
176         if (!step->multi_instance) {
177                 WARN_ON_ONCE(lastp && *lastp);
178                 cb = bringup ? step->startup.single : step->teardown.single;
179                 if (!cb)
180                         return 0;
181                 trace_cpuhp_enter(cpu, st->target, state, cb);
182                 ret = cb(cpu);
183                 trace_cpuhp_exit(cpu, st->state, state, ret);
184                 return ret;
185         }
186         cbm = bringup ? step->startup.multi : step->teardown.multi;
187         if (!cbm)
188                 return 0;
189
190         /* Single invocation for instance add/remove */
191         if (node) {
192                 WARN_ON_ONCE(lastp && *lastp);
193                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
194                 ret = cbm(cpu, node);
195                 trace_cpuhp_exit(cpu, st->state, state, ret);
196                 return ret;
197         }
198
199         /* State transition. Invoke on all instances */
200         cnt = 0;
201         hlist_for_each(node, &step->list) {
202                 if (lastp && node == *lastp)
203                         break;
204
205                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
206                 ret = cbm(cpu, node);
207                 trace_cpuhp_exit(cpu, st->state, state, ret);
208                 if (ret) {
209                         if (!lastp)
210                                 goto err;
211
212                         *lastp = node;
213                         return ret;
214                 }
215                 cnt++;
216         }
217         if (lastp)
218                 *lastp = NULL;
219         return 0;
220 err:
221         /* Rollback the instances if one failed */
222         cbm = !bringup ? step->startup.multi : step->teardown.multi;
223         if (!cbm)
224                 return ret;
225
226         hlist_for_each(node, &step->list) {
227                 if (!cnt--)
228                         break;
229
230                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
231                 ret = cbm(cpu, node);
232                 trace_cpuhp_exit(cpu, st->state, state, ret);
233                 /*
234                  * Rollback must not fail,
235                  */
236                 WARN_ON_ONCE(ret);
237         }
238         return ret;
239 }
240
241 #ifdef CONFIG_SMP
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244         struct completion *done = bringup ? &st->done_up : &st->done_down;
245         wait_for_completion(done);
246 }
247
248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 {
250         struct completion *done = bringup ? &st->done_up : &st->done_down;
251         complete(done);
252 }
253
254 /*
255  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256  */
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258 {
259         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260 }
261
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266
267 /*
268  * The following two APIs (cpu_maps_update_begin/done) must be used when
269  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270  */
271 void cpu_maps_update_begin(void)
272 {
273         mutex_lock(&cpu_add_remove_lock);
274 }
275
276 void cpu_maps_update_done(void)
277 {
278         mutex_unlock(&cpu_add_remove_lock);
279 }
280
281 /*
282  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283  * Should always be manipulated under cpu_add_remove_lock
284  */
285 static int cpu_hotplug_disabled;
286
287 #ifdef CONFIG_HOTPLUG_CPU
288
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290
291 void cpus_read_lock(void)
292 {
293         percpu_down_read(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
296
297 void cpus_read_unlock(void)
298 {
299         percpu_up_read(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_unlock);
302
303 void cpus_write_lock(void)
304 {
305         percpu_down_write(&cpu_hotplug_lock);
306 }
307
308 void cpus_write_unlock(void)
309 {
310         percpu_up_write(&cpu_hotplug_lock);
311 }
312
313 void lockdep_assert_cpus_held(void)
314 {
315         percpu_rwsem_assert_held(&cpu_hotplug_lock);
316 }
317
318 /*
319  * Wait for currently running CPU hotplug operations to complete (if any) and
320  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
321  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
322  * hotplug path before performing hotplug operations. So acquiring that lock
323  * guarantees mutual exclusion from any currently running hotplug operations.
324  */
325 void cpu_hotplug_disable(void)
326 {
327         cpu_maps_update_begin();
328         cpu_hotplug_disabled++;
329         cpu_maps_update_done();
330 }
331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
332
333 static void __cpu_hotplug_enable(void)
334 {
335         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
336                 return;
337         cpu_hotplug_disabled--;
338 }
339
340 void cpu_hotplug_enable(void)
341 {
342         cpu_maps_update_begin();
343         __cpu_hotplug_enable();
344         cpu_maps_update_done();
345 }
346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
347 #endif  /* CONFIG_HOTPLUG_CPU */
348
349 static inline enum cpuhp_state
350 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
351 {
352         enum cpuhp_state prev_state = st->state;
353
354         st->rollback = false;
355         st->last = NULL;
356
357         st->target = target;
358         st->single = false;
359         st->bringup = st->state < target;
360
361         return prev_state;
362 }
363
364 static inline void
365 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
366 {
367         st->rollback = true;
368
369         /*
370          * If we have st->last we need to undo partial multi_instance of this
371          * state first. Otherwise start undo at the previous state.
372          */
373         if (!st->last) {
374                 if (st->bringup)
375                         st->state--;
376                 else
377                         st->state++;
378         }
379
380         st->target = prev_state;
381         st->bringup = !st->bringup;
382 }
383
384 /* Regular hotplug invocation of the AP hotplug thread */
385 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
386 {
387         if (!st->single && st->state == st->target)
388                 return;
389
390         st->result = 0;
391         /*
392          * Make sure the above stores are visible before should_run becomes
393          * true. Paired with the mb() above in cpuhp_thread_fun()
394          */
395         smp_mb();
396         st->should_run = true;
397         wake_up_process(st->thread);
398         wait_for_ap_thread(st, st->bringup);
399 }
400
401 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
402 {
403         enum cpuhp_state prev_state;
404         int ret;
405
406         prev_state = cpuhp_set_state(st, target);
407         __cpuhp_kick_ap(st);
408         if ((ret = st->result)) {
409                 cpuhp_reset_state(st, prev_state);
410                 __cpuhp_kick_ap(st);
411         }
412
413         return ret;
414 }
415
416 static int bringup_wait_for_ap(unsigned int cpu)
417 {
418         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
419
420         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
421         wait_for_ap_thread(st, true);
422         if (WARN_ON_ONCE((!cpu_online(cpu))))
423                 return -ECANCELED;
424
425         /* Unpark the stopper thread and the hotplug thread of the target cpu */
426         stop_machine_unpark(cpu);
427         kthread_unpark(st->thread);
428
429         if (st->target <= CPUHP_AP_ONLINE_IDLE)
430                 return 0;
431
432         return cpuhp_kick_ap(st, st->target);
433 }
434
435 static int bringup_cpu(unsigned int cpu)
436 {
437         struct task_struct *idle = idle_thread_get(cpu);
438         int ret;
439
440         /*
441          * Some architectures have to walk the irq descriptors to
442          * setup the vector space for the cpu which comes online.
443          * Prevent irq alloc/free across the bringup.
444          */
445         irq_lock_sparse();
446
447         /* Arch-specific enabling code. */
448         ret = __cpu_up(cpu, idle);
449         irq_unlock_sparse();
450         if (ret)
451                 return ret;
452         return bringup_wait_for_ap(cpu);
453 }
454
455 /*
456  * Hotplug state machine related functions
457  */
458
459 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
460 {
461         for (st->state--; st->state > st->target; st->state--) {
462                 struct cpuhp_step *step = cpuhp_get_step(st->state);
463
464                 if (!step->skip_onerr)
465                         cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
466         }
467 }
468
469 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
470                               enum cpuhp_state target)
471 {
472         enum cpuhp_state prev_state = st->state;
473         int ret = 0;
474
475         while (st->state < target) {
476                 st->state++;
477                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
478                 if (ret) {
479                         st->target = prev_state;
480                         undo_cpu_up(cpu, st);
481                         break;
482                 }
483         }
484         return ret;
485 }
486
487 /*
488  * The cpu hotplug threads manage the bringup and teardown of the cpus
489  */
490 static void cpuhp_create(unsigned int cpu)
491 {
492         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
493
494         init_completion(&st->done_up);
495         init_completion(&st->done_down);
496 }
497
498 static int cpuhp_should_run(unsigned int cpu)
499 {
500         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
501
502         return st->should_run;
503 }
504
505 /*
506  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
507  * callbacks when a state gets [un]installed at runtime.
508  *
509  * Each invocation of this function by the smpboot thread does a single AP
510  * state callback.
511  *
512  * It has 3 modes of operation:
513  *  - single: runs st->cb_state
514  *  - up:     runs ++st->state, while st->state < st->target
515  *  - down:   runs st->state--, while st->state > st->target
516  *
517  * When complete or on error, should_run is cleared and the completion is fired.
518  */
519 static void cpuhp_thread_fun(unsigned int cpu)
520 {
521         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
522         bool bringup = st->bringup;
523         enum cpuhp_state state;
524
525         /*
526          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
527          * that if we see ->should_run we also see the rest of the state.
528          */
529         smp_mb();
530
531         if (WARN_ON_ONCE(!st->should_run))
532                 return;
533
534         cpuhp_lock_acquire(bringup);
535
536         if (st->single) {
537                 state = st->cb_state;
538                 st->should_run = false;
539         } else {
540                 if (bringup) {
541                         st->state++;
542                         state = st->state;
543                         st->should_run = (st->state < st->target);
544                         WARN_ON_ONCE(st->state > st->target);
545                 } else {
546                         state = st->state;
547                         st->state--;
548                         st->should_run = (st->state > st->target);
549                         WARN_ON_ONCE(st->state < st->target);
550                 }
551         }
552
553         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
554
555         if (st->rollback) {
556                 struct cpuhp_step *step = cpuhp_get_step(state);
557                 if (step->skip_onerr)
558                         goto next;
559         }
560
561         if (cpuhp_is_atomic_state(state)) {
562                 local_irq_disable();
563                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
564                 local_irq_enable();
565
566                 /*
567                  * STARTING/DYING must not fail!
568                  */
569                 WARN_ON_ONCE(st->result);
570         } else {
571                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
572         }
573
574         if (st->result) {
575                 /*
576                  * If we fail on a rollback, we're up a creek without no
577                  * paddle, no way forward, no way back. We loose, thanks for
578                  * playing.
579                  */
580                 WARN_ON_ONCE(st->rollback);
581                 st->should_run = false;
582         }
583
584 next:
585         cpuhp_lock_release(bringup);
586
587         if (!st->should_run)
588                 complete_ap_thread(st, bringup);
589 }
590
591 /* Invoke a single callback on a remote cpu */
592 static int
593 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
594                          struct hlist_node *node)
595 {
596         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
597         int ret;
598
599         if (!cpu_online(cpu))
600                 return 0;
601
602         cpuhp_lock_acquire(false);
603         cpuhp_lock_release(false);
604
605         cpuhp_lock_acquire(true);
606         cpuhp_lock_release(true);
607
608         /*
609          * If we are up and running, use the hotplug thread. For early calls
610          * we invoke the thread function directly.
611          */
612         if (!st->thread)
613                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
614
615         st->rollback = false;
616         st->last = NULL;
617
618         st->node = node;
619         st->bringup = bringup;
620         st->cb_state = state;
621         st->single = true;
622
623         __cpuhp_kick_ap(st);
624
625         /*
626          * If we failed and did a partial, do a rollback.
627          */
628         if ((ret = st->result) && st->last) {
629                 st->rollback = true;
630                 st->bringup = !bringup;
631
632                 __cpuhp_kick_ap(st);
633         }
634
635         /*
636          * Clean up the leftovers so the next hotplug operation wont use stale
637          * data.
638          */
639         st->node = st->last = NULL;
640         return ret;
641 }
642
643 static int cpuhp_kick_ap_work(unsigned int cpu)
644 {
645         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
646         enum cpuhp_state prev_state = st->state;
647         int ret;
648
649         cpuhp_lock_acquire(false);
650         cpuhp_lock_release(false);
651
652         cpuhp_lock_acquire(true);
653         cpuhp_lock_release(true);
654
655         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
656         ret = cpuhp_kick_ap(st, st->target);
657         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
658
659         return ret;
660 }
661
662 static struct smp_hotplug_thread cpuhp_threads = {
663         .store                  = &cpuhp_state.thread,
664         .create                 = &cpuhp_create,
665         .thread_should_run      = cpuhp_should_run,
666         .thread_fn              = cpuhp_thread_fun,
667         .thread_comm            = "cpuhp/%u",
668         .selfparking            = true,
669 };
670
671 void __init cpuhp_threads_init(void)
672 {
673         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
674         kthread_unpark(this_cpu_read(cpuhp_state.thread));
675 }
676
677 #ifdef CONFIG_HOTPLUG_CPU
678 /**
679  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
680  * @cpu: a CPU id
681  *
682  * This function walks all processes, finds a valid mm struct for each one and
683  * then clears a corresponding bit in mm's cpumask.  While this all sounds
684  * trivial, there are various non-obvious corner cases, which this function
685  * tries to solve in a safe manner.
686  *
687  * Also note that the function uses a somewhat relaxed locking scheme, so it may
688  * be called only for an already offlined CPU.
689  */
690 void clear_tasks_mm_cpumask(int cpu)
691 {
692         struct task_struct *p;
693
694         /*
695          * This function is called after the cpu is taken down and marked
696          * offline, so its not like new tasks will ever get this cpu set in
697          * their mm mask. -- Peter Zijlstra
698          * Thus, we may use rcu_read_lock() here, instead of grabbing
699          * full-fledged tasklist_lock.
700          */
701         WARN_ON(cpu_online(cpu));
702         rcu_read_lock();
703         for_each_process(p) {
704                 struct task_struct *t;
705
706                 /*
707                  * Main thread might exit, but other threads may still have
708                  * a valid mm. Find one.
709                  */
710                 t = find_lock_task_mm(p);
711                 if (!t)
712                         continue;
713                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
714                 task_unlock(t);
715         }
716         rcu_read_unlock();
717 }
718
719 /* Take this CPU down. */
720 static int take_cpu_down(void *_param)
721 {
722         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
723         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
724         int err, cpu = smp_processor_id();
725         int ret;
726
727         /* Ensure this CPU doesn't handle any more interrupts. */
728         err = __cpu_disable();
729         if (err < 0)
730                 return err;
731
732         /*
733          * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
734          * do this step again.
735          */
736         WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
737         st->state--;
738         /* Invoke the former CPU_DYING callbacks */
739         for (; st->state > target; st->state--) {
740                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
741                 /*
742                  * DYING must not fail!
743                  */
744                 WARN_ON_ONCE(ret);
745         }
746
747         /* Give up timekeeping duties */
748         tick_handover_do_timer();
749         /* Park the stopper thread */
750         stop_machine_park(cpu);
751         return 0;
752 }
753
754 static int takedown_cpu(unsigned int cpu)
755 {
756         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
757         int err;
758
759         /* Park the smpboot threads */
760         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
761
762         /*
763          * Prevent irq alloc/free while the dying cpu reorganizes the
764          * interrupt affinities.
765          */
766         irq_lock_sparse();
767
768         /*
769          * So now all preempt/rcu users must observe !cpu_active().
770          */
771         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
772         if (err) {
773                 /* CPU refused to die */
774                 irq_unlock_sparse();
775                 /* Unpark the hotplug thread so we can rollback there */
776                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
777                 return err;
778         }
779         BUG_ON(cpu_online(cpu));
780
781         /*
782          * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
783          * runnable tasks from the cpu, there's only the idle task left now
784          * that the migration thread is done doing the stop_machine thing.
785          *
786          * Wait for the stop thread to go away.
787          */
788         wait_for_ap_thread(st, false);
789         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
790
791         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
792         irq_unlock_sparse();
793
794         hotplug_cpu__broadcast_tick_pull(cpu);
795         /* This actually kills the CPU. */
796         __cpu_die(cpu);
797
798         tick_cleanup_dead_cpu(cpu);
799         rcutree_migrate_callbacks(cpu);
800         return 0;
801 }
802
803 static void cpuhp_complete_idle_dead(void *arg)
804 {
805         struct cpuhp_cpu_state *st = arg;
806
807         complete_ap_thread(st, false);
808 }
809
810 void cpuhp_report_idle_dead(void)
811 {
812         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
813
814         BUG_ON(st->state != CPUHP_AP_OFFLINE);
815         rcu_report_dead(smp_processor_id());
816         st->state = CPUHP_AP_IDLE_DEAD;
817         /*
818          * We cannot call complete after rcu_report_dead() so we delegate it
819          * to an online cpu.
820          */
821         smp_call_function_single(cpumask_first(cpu_online_mask),
822                                  cpuhp_complete_idle_dead, st, 0);
823 }
824
825 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
826 {
827         for (st->state++; st->state < st->target; st->state++) {
828                 struct cpuhp_step *step = cpuhp_get_step(st->state);
829
830                 if (!step->skip_onerr)
831                         cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
832         }
833 }
834
835 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
836                                 enum cpuhp_state target)
837 {
838         enum cpuhp_state prev_state = st->state;
839         int ret = 0;
840
841         for (; st->state > target; st->state--) {
842                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
843                 if (ret) {
844                         st->target = prev_state;
845                         undo_cpu_down(cpu, st);
846                         break;
847                 }
848         }
849         return ret;
850 }
851
852 /* Requires cpu_add_remove_lock to be held */
853 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
854                            enum cpuhp_state target)
855 {
856         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
857         int prev_state, ret = 0;
858
859         if (num_online_cpus() == 1)
860                 return -EBUSY;
861
862         if (!cpu_present(cpu))
863                 return -EINVAL;
864
865         cpus_write_lock();
866
867         cpuhp_tasks_frozen = tasks_frozen;
868
869         prev_state = cpuhp_set_state(st, target);
870         /*
871          * If the current CPU state is in the range of the AP hotplug thread,
872          * then we need to kick the thread.
873          */
874         if (st->state > CPUHP_TEARDOWN_CPU) {
875                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
876                 ret = cpuhp_kick_ap_work(cpu);
877                 /*
878                  * The AP side has done the error rollback already. Just
879                  * return the error code..
880                  */
881                 if (ret)
882                         goto out;
883
884                 /*
885                  * We might have stopped still in the range of the AP hotplug
886                  * thread. Nothing to do anymore.
887                  */
888                 if (st->state > CPUHP_TEARDOWN_CPU)
889                         goto out;
890
891                 st->target = target;
892         }
893         /*
894          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
895          * to do the further cleanups.
896          */
897         ret = cpuhp_down_callbacks(cpu, st, target);
898         if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
899                 cpuhp_reset_state(st, prev_state);
900                 __cpuhp_kick_ap(st);
901         }
902
903 out:
904         cpus_write_unlock();
905         /*
906          * Do post unplug cleanup. This is still protected against
907          * concurrent CPU hotplug via cpu_add_remove_lock.
908          */
909         lockup_detector_cleanup();
910         return ret;
911 }
912
913 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
914 {
915         int err;
916
917         cpu_maps_update_begin();
918
919         if (cpu_hotplug_disabled) {
920                 err = -EBUSY;
921                 goto out;
922         }
923
924         err = _cpu_down(cpu, 0, target);
925
926 out:
927         cpu_maps_update_done();
928         return err;
929 }
930
931 int cpu_down(unsigned int cpu)
932 {
933         return do_cpu_down(cpu, CPUHP_OFFLINE);
934 }
935 EXPORT_SYMBOL(cpu_down);
936
937 #else
938 #define takedown_cpu            NULL
939 #endif /*CONFIG_HOTPLUG_CPU*/
940
941 /**
942  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
943  * @cpu: cpu that just started
944  *
945  * It must be called by the arch code on the new cpu, before the new cpu
946  * enables interrupts and before the "boot" cpu returns from __cpu_up().
947  */
948 void notify_cpu_starting(unsigned int cpu)
949 {
950         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
951         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
952         int ret;
953
954         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
955         while (st->state < target) {
956                 st->state++;
957                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
958                 /*
959                  * STARTING must not fail!
960                  */
961                 WARN_ON_ONCE(ret);
962         }
963 }
964
965 /*
966  * Called from the idle task. Wake up the controlling task which brings the
967  * stopper and the hotplug thread of the upcoming CPU up and then delegates
968  * the rest of the online bringup to the hotplug thread.
969  */
970 void cpuhp_online_idle(enum cpuhp_state state)
971 {
972         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
973
974         /* Happens for the boot cpu */
975         if (state != CPUHP_AP_ONLINE_IDLE)
976                 return;
977
978         st->state = CPUHP_AP_ONLINE_IDLE;
979         complete_ap_thread(st, true);
980 }
981
982 /* Requires cpu_add_remove_lock to be held */
983 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
984 {
985         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
986         struct task_struct *idle;
987         int ret = 0;
988
989         cpus_write_lock();
990
991         if (!cpu_present(cpu)) {
992                 ret = -EINVAL;
993                 goto out;
994         }
995
996         /*
997          * The caller of do_cpu_up might have raced with another
998          * caller. Ignore it for now.
999          */
1000         if (st->state >= target)
1001                 goto out;
1002
1003         if (st->state == CPUHP_OFFLINE) {
1004                 /* Let it fail before we try to bring the cpu up */
1005                 idle = idle_thread_get(cpu);
1006                 if (IS_ERR(idle)) {
1007                         ret = PTR_ERR(idle);
1008                         goto out;
1009                 }
1010         }
1011
1012         cpuhp_tasks_frozen = tasks_frozen;
1013
1014         cpuhp_set_state(st, target);
1015         /*
1016          * If the current CPU state is in the range of the AP hotplug thread,
1017          * then we need to kick the thread once more.
1018          */
1019         if (st->state > CPUHP_BRINGUP_CPU) {
1020                 ret = cpuhp_kick_ap_work(cpu);
1021                 /*
1022                  * The AP side has done the error rollback already. Just
1023                  * return the error code..
1024                  */
1025                 if (ret)
1026                         goto out;
1027         }
1028
1029         /*
1030          * Try to reach the target state. We max out on the BP at
1031          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1032          * responsible for bringing it up to the target state.
1033          */
1034         target = min((int)target, CPUHP_BRINGUP_CPU);
1035         ret = cpuhp_up_callbacks(cpu, st, target);
1036 out:
1037         cpus_write_unlock();
1038         return ret;
1039 }
1040
1041 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1042 {
1043         int err = 0;
1044
1045         if (!cpu_possible(cpu)) {
1046                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1047                        cpu);
1048 #if defined(CONFIG_IA64)
1049                 pr_err("please check additional_cpus= boot parameter\n");
1050 #endif
1051                 return -EINVAL;
1052         }
1053
1054         err = try_online_node(cpu_to_node(cpu));
1055         if (err)
1056                 return err;
1057
1058         cpu_maps_update_begin();
1059
1060         if (cpu_hotplug_disabled) {
1061                 err = -EBUSY;
1062                 goto out;
1063         }
1064
1065         err = _cpu_up(cpu, 0, target);
1066 out:
1067         cpu_maps_update_done();
1068         return err;
1069 }
1070
1071 int cpu_up(unsigned int cpu)
1072 {
1073         return do_cpu_up(cpu, CPUHP_ONLINE);
1074 }
1075 EXPORT_SYMBOL_GPL(cpu_up);
1076
1077 #ifdef CONFIG_PM_SLEEP_SMP
1078 static cpumask_var_t frozen_cpus;
1079
1080 int freeze_secondary_cpus(int primary)
1081 {
1082         int cpu, error = 0;
1083
1084         cpu_maps_update_begin();
1085         if (!cpu_online(primary))
1086                 primary = cpumask_first(cpu_online_mask);
1087         /*
1088          * We take down all of the non-boot CPUs in one shot to avoid races
1089          * with the userspace trying to use the CPU hotplug at the same time
1090          */
1091         cpumask_clear(frozen_cpus);
1092
1093         pr_info("Disabling non-boot CPUs ...\n");
1094         for_each_online_cpu(cpu) {
1095                 if (cpu == primary)
1096                         continue;
1097                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1098                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1099                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1100                 if (!error)
1101                         cpumask_set_cpu(cpu, frozen_cpus);
1102                 else {
1103                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1104                         break;
1105                 }
1106         }
1107
1108         if (!error)
1109                 BUG_ON(num_online_cpus() > 1);
1110         else
1111                 pr_err("Non-boot CPUs are not disabled\n");
1112
1113         /*
1114          * Make sure the CPUs won't be enabled by someone else. We need to do
1115          * this even in case of failure as all disable_nonboot_cpus() users are
1116          * supposed to do enable_nonboot_cpus() on the failure path.
1117          */
1118         cpu_hotplug_disabled++;
1119
1120         cpu_maps_update_done();
1121         return error;
1122 }
1123
1124 void __weak arch_enable_nonboot_cpus_begin(void)
1125 {
1126 }
1127
1128 void __weak arch_enable_nonboot_cpus_end(void)
1129 {
1130 }
1131
1132 void enable_nonboot_cpus(void)
1133 {
1134         int cpu, error;
1135
1136         /* Allow everyone to use the CPU hotplug again */
1137         cpu_maps_update_begin();
1138         __cpu_hotplug_enable();
1139         if (cpumask_empty(frozen_cpus))
1140                 goto out;
1141
1142         pr_info("Enabling non-boot CPUs ...\n");
1143
1144         arch_enable_nonboot_cpus_begin();
1145
1146         for_each_cpu(cpu, frozen_cpus) {
1147                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1148                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1149                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1150                 if (!error) {
1151                         pr_info("CPU%d is up\n", cpu);
1152                         continue;
1153                 }
1154                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1155         }
1156
1157         arch_enable_nonboot_cpus_end();
1158
1159         cpumask_clear(frozen_cpus);
1160 out:
1161         cpu_maps_update_done();
1162 }
1163
1164 static int __init alloc_frozen_cpus(void)
1165 {
1166         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1167                 return -ENOMEM;
1168         return 0;
1169 }
1170 core_initcall(alloc_frozen_cpus);
1171
1172 /*
1173  * When callbacks for CPU hotplug notifications are being executed, we must
1174  * ensure that the state of the system with respect to the tasks being frozen
1175  * or not, as reported by the notification, remains unchanged *throughout the
1176  * duration* of the execution of the callbacks.
1177  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1178  *
1179  * This synchronization is implemented by mutually excluding regular CPU
1180  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1181  * Hibernate notifications.
1182  */
1183 static int
1184 cpu_hotplug_pm_callback(struct notifier_block *nb,
1185                         unsigned long action, void *ptr)
1186 {
1187         switch (action) {
1188
1189         case PM_SUSPEND_PREPARE:
1190         case PM_HIBERNATION_PREPARE:
1191                 cpu_hotplug_disable();
1192                 break;
1193
1194         case PM_POST_SUSPEND:
1195         case PM_POST_HIBERNATION:
1196                 cpu_hotplug_enable();
1197                 break;
1198
1199         default:
1200                 return NOTIFY_DONE;
1201         }
1202
1203         return NOTIFY_OK;
1204 }
1205
1206
1207 static int __init cpu_hotplug_pm_sync_init(void)
1208 {
1209         /*
1210          * cpu_hotplug_pm_callback has higher priority than x86
1211          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1212          * to disable cpu hotplug to avoid cpu hotplug race.
1213          */
1214         pm_notifier(cpu_hotplug_pm_callback, 0);
1215         return 0;
1216 }
1217 core_initcall(cpu_hotplug_pm_sync_init);
1218
1219 #endif /* CONFIG_PM_SLEEP_SMP */
1220
1221 int __boot_cpu_id;
1222
1223 #endif /* CONFIG_SMP */
1224
1225 /* Boot processor state steps */
1226 static struct cpuhp_step cpuhp_bp_states[] = {
1227         [CPUHP_OFFLINE] = {
1228                 .name                   = "offline",
1229                 .startup.single         = NULL,
1230                 .teardown.single        = NULL,
1231         },
1232 #ifdef CONFIG_SMP
1233         [CPUHP_CREATE_THREADS]= {
1234                 .name                   = "threads:prepare",
1235                 .startup.single         = smpboot_create_threads,
1236                 .teardown.single        = NULL,
1237                 .cant_stop              = true,
1238         },
1239         [CPUHP_PERF_PREPARE] = {
1240                 .name                   = "perf:prepare",
1241                 .startup.single         = perf_event_init_cpu,
1242                 .teardown.single        = perf_event_exit_cpu,
1243         },
1244         [CPUHP_WORKQUEUE_PREP] = {
1245                 .name                   = "workqueue:prepare",
1246                 .startup.single         = workqueue_prepare_cpu,
1247                 .teardown.single        = NULL,
1248         },
1249         [CPUHP_HRTIMERS_PREPARE] = {
1250                 .name                   = "hrtimers:prepare",
1251                 .startup.single         = hrtimers_prepare_cpu,
1252                 .teardown.single        = hrtimers_dead_cpu,
1253         },
1254         [CPUHP_SMPCFD_PREPARE] = {
1255                 .name                   = "smpcfd:prepare",
1256                 .startup.single         = smpcfd_prepare_cpu,
1257                 .teardown.single        = smpcfd_dead_cpu,
1258         },
1259         [CPUHP_RELAY_PREPARE] = {
1260                 .name                   = "relay:prepare",
1261                 .startup.single         = relay_prepare_cpu,
1262                 .teardown.single        = NULL,
1263         },
1264         [CPUHP_SLAB_PREPARE] = {
1265                 .name                   = "slab:prepare",
1266                 .startup.single         = slab_prepare_cpu,
1267                 .teardown.single        = slab_dead_cpu,
1268         },
1269         [CPUHP_RCUTREE_PREP] = {
1270                 .name                   = "RCU/tree:prepare",
1271                 .startup.single         = rcutree_prepare_cpu,
1272                 .teardown.single        = rcutree_dead_cpu,
1273         },
1274         /*
1275          * On the tear-down path, timers_dead_cpu() must be invoked
1276          * before blk_mq_queue_reinit_notify() from notify_dead(),
1277          * otherwise a RCU stall occurs.
1278          */
1279         [CPUHP_TIMERS_PREPARE] = {
1280                 .name                   = "timers:dead",
1281                 .startup.single         = timers_prepare_cpu,
1282                 .teardown.single        = timers_dead_cpu,
1283         },
1284         /* Kicks the plugged cpu into life */
1285         [CPUHP_BRINGUP_CPU] = {
1286                 .name                   = "cpu:bringup",
1287                 .startup.single         = bringup_cpu,
1288                 .teardown.single        = NULL,
1289                 .cant_stop              = true,
1290         },
1291         /*
1292          * Handled on controll processor until the plugged processor manages
1293          * this itself.
1294          */
1295         [CPUHP_TEARDOWN_CPU] = {
1296                 .name                   = "cpu:teardown",
1297                 .startup.single         = NULL,
1298                 .teardown.single        = takedown_cpu,
1299                 .cant_stop              = true,
1300         },
1301 #else
1302         [CPUHP_BRINGUP_CPU] = { },
1303 #endif
1304 };
1305
1306 /* Application processor state steps */
1307 static struct cpuhp_step cpuhp_ap_states[] = {
1308 #ifdef CONFIG_SMP
1309         /* Final state before CPU kills itself */
1310         [CPUHP_AP_IDLE_DEAD] = {
1311                 .name                   = "idle:dead",
1312         },
1313         /*
1314          * Last state before CPU enters the idle loop to die. Transient state
1315          * for synchronization.
1316          */
1317         [CPUHP_AP_OFFLINE] = {
1318                 .name                   = "ap:offline",
1319                 .cant_stop              = true,
1320         },
1321         /* First state is scheduler control. Interrupts are disabled */
1322         [CPUHP_AP_SCHED_STARTING] = {
1323                 .name                   = "sched:starting",
1324                 .startup.single         = sched_cpu_starting,
1325                 .teardown.single        = sched_cpu_dying,
1326         },
1327         [CPUHP_AP_RCUTREE_DYING] = {
1328                 .name                   = "RCU/tree:dying",
1329                 .startup.single         = NULL,
1330                 .teardown.single        = rcutree_dying_cpu,
1331         },
1332         [CPUHP_AP_SMPCFD_DYING] = {
1333                 .name                   = "smpcfd:dying",
1334                 .startup.single         = NULL,
1335                 .teardown.single        = smpcfd_dying_cpu,
1336         },
1337         /* Entry state on starting. Interrupts enabled from here on. Transient
1338          * state for synchronsization */
1339         [CPUHP_AP_ONLINE] = {
1340                 .name                   = "ap:online",
1341         },
1342         /* Handle smpboot threads park/unpark */
1343         [CPUHP_AP_SMPBOOT_THREADS] = {
1344                 .name                   = "smpboot/threads:online",
1345                 .startup.single         = smpboot_unpark_threads,
1346                 .teardown.single        = smpboot_park_threads,
1347         },
1348         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1349                 .name                   = "irq/affinity:online",
1350                 .startup.single         = irq_affinity_online_cpu,
1351                 .teardown.single        = NULL,
1352         },
1353         [CPUHP_AP_PERF_ONLINE] = {
1354                 .name                   = "perf:online",
1355                 .startup.single         = perf_event_init_cpu,
1356                 .teardown.single        = perf_event_exit_cpu,
1357         },
1358         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1359                 .name                   = "workqueue:online",
1360                 .startup.single         = workqueue_online_cpu,
1361                 .teardown.single        = workqueue_offline_cpu,
1362         },
1363         [CPUHP_AP_RCUTREE_ONLINE] = {
1364                 .name                   = "RCU/tree:online",
1365                 .startup.single         = rcutree_online_cpu,
1366                 .teardown.single        = rcutree_offline_cpu,
1367         },
1368 #endif
1369         /*
1370          * The dynamically registered state space is here
1371          */
1372
1373 #ifdef CONFIG_SMP
1374         /* Last state is scheduler control setting the cpu active */
1375         [CPUHP_AP_ACTIVE] = {
1376                 .name                   = "sched:active",
1377                 .startup.single         = sched_cpu_activate,
1378                 .teardown.single        = sched_cpu_deactivate,
1379         },
1380 #endif
1381
1382         /* CPU is fully up and running. */
1383         [CPUHP_ONLINE] = {
1384                 .name                   = "online",
1385                 .startup.single         = NULL,
1386                 .teardown.single        = NULL,
1387         },
1388 };
1389
1390 /* Sanity check for callbacks */
1391 static int cpuhp_cb_check(enum cpuhp_state state)
1392 {
1393         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1394                 return -EINVAL;
1395         return 0;
1396 }
1397
1398 /*
1399  * Returns a free for dynamic slot assignment of the Online state. The states
1400  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1401  * by having no name assigned.
1402  */
1403 static int cpuhp_reserve_state(enum cpuhp_state state)
1404 {
1405         enum cpuhp_state i, end;
1406         struct cpuhp_step *step;
1407
1408         switch (state) {
1409         case CPUHP_AP_ONLINE_DYN:
1410                 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1411                 end = CPUHP_AP_ONLINE_DYN_END;
1412                 break;
1413         case CPUHP_BP_PREPARE_DYN:
1414                 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1415                 end = CPUHP_BP_PREPARE_DYN_END;
1416                 break;
1417         default:
1418                 return -EINVAL;
1419         }
1420
1421         for (i = state; i <= end; i++, step++) {
1422                 if (!step->name)
1423                         return i;
1424         }
1425         WARN(1, "No more dynamic states available for CPU hotplug\n");
1426         return -ENOSPC;
1427 }
1428
1429 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1430                                  int (*startup)(unsigned int cpu),
1431                                  int (*teardown)(unsigned int cpu),
1432                                  bool multi_instance)
1433 {
1434         /* (Un)Install the callbacks for further cpu hotplug operations */
1435         struct cpuhp_step *sp;
1436         int ret = 0;
1437
1438         /*
1439          * If name is NULL, then the state gets removed.
1440          *
1441          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1442          * the first allocation from these dynamic ranges, so the removal
1443          * would trigger a new allocation and clear the wrong (already
1444          * empty) state, leaving the callbacks of the to be cleared state
1445          * dangling, which causes wreckage on the next hotplug operation.
1446          */
1447         if (name && (state == CPUHP_AP_ONLINE_DYN ||
1448                      state == CPUHP_BP_PREPARE_DYN)) {
1449                 ret = cpuhp_reserve_state(state);
1450                 if (ret < 0)
1451                         return ret;
1452                 state = ret;
1453         }
1454         sp = cpuhp_get_step(state);
1455         if (name && sp->name)
1456                 return -EBUSY;
1457
1458         sp->startup.single = startup;
1459         sp->teardown.single = teardown;
1460         sp->name = name;
1461         sp->multi_instance = multi_instance;
1462         INIT_HLIST_HEAD(&sp->list);
1463         return ret;
1464 }
1465
1466 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1467 {
1468         return cpuhp_get_step(state)->teardown.single;
1469 }
1470
1471 /*
1472  * Call the startup/teardown function for a step either on the AP or
1473  * on the current CPU.
1474  */
1475 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1476                             struct hlist_node *node)
1477 {
1478         struct cpuhp_step *sp = cpuhp_get_step(state);
1479         int ret;
1480
1481         /*
1482          * If there's nothing to do, we done.
1483          * Relies on the union for multi_instance.
1484          */
1485         if ((bringup && !sp->startup.single) ||
1486             (!bringup && !sp->teardown.single))
1487                 return 0;
1488         /*
1489          * The non AP bound callbacks can fail on bringup. On teardown
1490          * e.g. module removal we crash for now.
1491          */
1492 #ifdef CONFIG_SMP
1493         if (cpuhp_is_ap_state(state))
1494                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1495         else
1496                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1497 #else
1498         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1499 #endif
1500         BUG_ON(ret && !bringup);
1501         return ret;
1502 }
1503
1504 /*
1505  * Called from __cpuhp_setup_state on a recoverable failure.
1506  *
1507  * Note: The teardown callbacks for rollback are not allowed to fail!
1508  */
1509 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1510                                    struct hlist_node *node)
1511 {
1512         int cpu;
1513
1514         /* Roll back the already executed steps on the other cpus */
1515         for_each_present_cpu(cpu) {
1516                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1517                 int cpustate = st->state;
1518
1519                 if (cpu >= failedcpu)
1520                         break;
1521
1522                 /* Did we invoke the startup call on that cpu ? */
1523                 if (cpustate >= state)
1524                         cpuhp_issue_call(cpu, state, false, node);
1525         }
1526 }
1527
1528 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1529                                           struct hlist_node *node,
1530                                           bool invoke)
1531 {
1532         struct cpuhp_step *sp;
1533         int cpu;
1534         int ret;
1535
1536         lockdep_assert_cpus_held();
1537
1538         sp = cpuhp_get_step(state);
1539         if (sp->multi_instance == false)
1540                 return -EINVAL;
1541
1542         mutex_lock(&cpuhp_state_mutex);
1543
1544         if (!invoke || !sp->startup.multi)
1545                 goto add_node;
1546
1547         /*
1548          * Try to call the startup callback for each present cpu
1549          * depending on the hotplug state of the cpu.
1550          */
1551         for_each_present_cpu(cpu) {
1552                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1553                 int cpustate = st->state;
1554
1555                 if (cpustate < state)
1556                         continue;
1557
1558                 ret = cpuhp_issue_call(cpu, state, true, node);
1559                 if (ret) {
1560                         if (sp->teardown.multi)
1561                                 cpuhp_rollback_install(cpu, state, node);
1562                         goto unlock;
1563                 }
1564         }
1565 add_node:
1566         ret = 0;
1567         hlist_add_head(node, &sp->list);
1568 unlock:
1569         mutex_unlock(&cpuhp_state_mutex);
1570         return ret;
1571 }
1572
1573 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1574                                bool invoke)
1575 {
1576         int ret;
1577
1578         cpus_read_lock();
1579         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1580         cpus_read_unlock();
1581         return ret;
1582 }
1583 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1584
1585 /**
1586  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1587  * @state:              The state to setup
1588  * @invoke:             If true, the startup function is invoked for cpus where
1589  *                      cpu state >= @state
1590  * @startup:            startup callback function
1591  * @teardown:           teardown callback function
1592  * @multi_instance:     State is set up for multiple instances which get
1593  *                      added afterwards.
1594  *
1595  * The caller needs to hold cpus read locked while calling this function.
1596  * Returns:
1597  *   On success:
1598  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1599  *      0 for all other states
1600  *   On failure: proper (negative) error code
1601  */
1602 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1603                                    const char *name, bool invoke,
1604                                    int (*startup)(unsigned int cpu),
1605                                    int (*teardown)(unsigned int cpu),
1606                                    bool multi_instance)
1607 {
1608         int cpu, ret = 0;
1609         bool dynstate;
1610
1611         lockdep_assert_cpus_held();
1612
1613         if (cpuhp_cb_check(state) || !name)
1614                 return -EINVAL;
1615
1616         mutex_lock(&cpuhp_state_mutex);
1617
1618         ret = cpuhp_store_callbacks(state, name, startup, teardown,
1619                                     multi_instance);
1620
1621         dynstate = state == CPUHP_AP_ONLINE_DYN;
1622         if (ret > 0 && dynstate) {
1623                 state = ret;
1624                 ret = 0;
1625         }
1626
1627         if (ret || !invoke || !startup)
1628                 goto out;
1629
1630         /*
1631          * Try to call the startup callback for each present cpu
1632          * depending on the hotplug state of the cpu.
1633          */
1634         for_each_present_cpu(cpu) {
1635                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1636                 int cpustate = st->state;
1637
1638                 if (cpustate < state)
1639                         continue;
1640
1641                 ret = cpuhp_issue_call(cpu, state, true, NULL);
1642                 if (ret) {
1643                         if (teardown)
1644                                 cpuhp_rollback_install(cpu, state, NULL);
1645                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1646                         goto out;
1647                 }
1648         }
1649 out:
1650         mutex_unlock(&cpuhp_state_mutex);
1651         /*
1652          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1653          * dynamically allocated state in case of success.
1654          */
1655         if (!ret && dynstate)
1656                 return state;
1657         return ret;
1658 }
1659 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1660
1661 int __cpuhp_setup_state(enum cpuhp_state state,
1662                         const char *name, bool invoke,
1663                         int (*startup)(unsigned int cpu),
1664                         int (*teardown)(unsigned int cpu),
1665                         bool multi_instance)
1666 {
1667         int ret;
1668
1669         cpus_read_lock();
1670         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1671                                              teardown, multi_instance);
1672         cpus_read_unlock();
1673         return ret;
1674 }
1675 EXPORT_SYMBOL(__cpuhp_setup_state);
1676
1677 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1678                                   struct hlist_node *node, bool invoke)
1679 {
1680         struct cpuhp_step *sp = cpuhp_get_step(state);
1681         int cpu;
1682
1683         BUG_ON(cpuhp_cb_check(state));
1684
1685         if (!sp->multi_instance)
1686                 return -EINVAL;
1687
1688         cpus_read_lock();
1689         mutex_lock(&cpuhp_state_mutex);
1690
1691         if (!invoke || !cpuhp_get_teardown_cb(state))
1692                 goto remove;
1693         /*
1694          * Call the teardown callback for each present cpu depending
1695          * on the hotplug state of the cpu. This function is not
1696          * allowed to fail currently!
1697          */
1698         for_each_present_cpu(cpu) {
1699                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1700                 int cpustate = st->state;
1701
1702                 if (cpustate >= state)
1703                         cpuhp_issue_call(cpu, state, false, node);
1704         }
1705
1706 remove:
1707         hlist_del(node);
1708         mutex_unlock(&cpuhp_state_mutex);
1709         cpus_read_unlock();
1710
1711         return 0;
1712 }
1713 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1714
1715 /**
1716  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1717  * @state:      The state to remove
1718  * @invoke:     If true, the teardown function is invoked for cpus where
1719  *              cpu state >= @state
1720  *
1721  * The caller needs to hold cpus read locked while calling this function.
1722  * The teardown callback is currently not allowed to fail. Think
1723  * about module removal!
1724  */
1725 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1726 {
1727         struct cpuhp_step *sp = cpuhp_get_step(state);
1728         int cpu;
1729
1730         BUG_ON(cpuhp_cb_check(state));
1731
1732         lockdep_assert_cpus_held();
1733
1734         mutex_lock(&cpuhp_state_mutex);
1735         if (sp->multi_instance) {
1736                 WARN(!hlist_empty(&sp->list),
1737                      "Error: Removing state %d which has instances left.\n",
1738                      state);
1739                 goto remove;
1740         }
1741
1742         if (!invoke || !cpuhp_get_teardown_cb(state))
1743                 goto remove;
1744
1745         /*
1746          * Call the teardown callback for each present cpu depending
1747          * on the hotplug state of the cpu. This function is not
1748          * allowed to fail currently!
1749          */
1750         for_each_present_cpu(cpu) {
1751                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1752                 int cpustate = st->state;
1753
1754                 if (cpustate >= state)
1755                         cpuhp_issue_call(cpu, state, false, NULL);
1756         }
1757 remove:
1758         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1759         mutex_unlock(&cpuhp_state_mutex);
1760 }
1761 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1762
1763 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1764 {
1765         cpus_read_lock();
1766         __cpuhp_remove_state_cpuslocked(state, invoke);
1767         cpus_read_unlock();
1768 }
1769 EXPORT_SYMBOL(__cpuhp_remove_state);
1770
1771 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1772 static ssize_t show_cpuhp_state(struct device *dev,
1773                                 struct device_attribute *attr, char *buf)
1774 {
1775         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1776
1777         return sprintf(buf, "%d\n", st->state);
1778 }
1779 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1780
1781 static ssize_t write_cpuhp_target(struct device *dev,
1782                                   struct device_attribute *attr,
1783                                   const char *buf, size_t count)
1784 {
1785         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1786         struct cpuhp_step *sp;
1787         int target, ret;
1788
1789         ret = kstrtoint(buf, 10, &target);
1790         if (ret)
1791                 return ret;
1792
1793 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1794         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1795                 return -EINVAL;
1796 #else
1797         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1798                 return -EINVAL;
1799 #endif
1800
1801         ret = lock_device_hotplug_sysfs();
1802         if (ret)
1803                 return ret;
1804
1805         mutex_lock(&cpuhp_state_mutex);
1806         sp = cpuhp_get_step(target);
1807         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1808         mutex_unlock(&cpuhp_state_mutex);
1809         if (ret)
1810                 goto out;
1811
1812         if (st->state < target)
1813                 ret = do_cpu_up(dev->id, target);
1814         else
1815                 ret = do_cpu_down(dev->id, target);
1816 out:
1817         unlock_device_hotplug();
1818         return ret ? ret : count;
1819 }
1820
1821 static ssize_t show_cpuhp_target(struct device *dev,
1822                                  struct device_attribute *attr, char *buf)
1823 {
1824         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1825
1826         return sprintf(buf, "%d\n", st->target);
1827 }
1828 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1829
1830
1831 static ssize_t write_cpuhp_fail(struct device *dev,
1832                                 struct device_attribute *attr,
1833                                 const char *buf, size_t count)
1834 {
1835         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1836         struct cpuhp_step *sp;
1837         int fail, ret;
1838
1839         ret = kstrtoint(buf, 10, &fail);
1840         if (ret)
1841                 return ret;
1842
1843         /*
1844          * Cannot fail STARTING/DYING callbacks.
1845          */
1846         if (cpuhp_is_atomic_state(fail))
1847                 return -EINVAL;
1848
1849         /*
1850          * Cannot fail anything that doesn't have callbacks.
1851          */
1852         mutex_lock(&cpuhp_state_mutex);
1853         sp = cpuhp_get_step(fail);
1854         if (!sp->startup.single && !sp->teardown.single)
1855                 ret = -EINVAL;
1856         mutex_unlock(&cpuhp_state_mutex);
1857         if (ret)
1858                 return ret;
1859
1860         st->fail = fail;
1861
1862         return count;
1863 }
1864
1865 static ssize_t show_cpuhp_fail(struct device *dev,
1866                                struct device_attribute *attr, char *buf)
1867 {
1868         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1869
1870         return sprintf(buf, "%d\n", st->fail);
1871 }
1872
1873 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1874
1875 static struct attribute *cpuhp_cpu_attrs[] = {
1876         &dev_attr_state.attr,
1877         &dev_attr_target.attr,
1878         &dev_attr_fail.attr,
1879         NULL
1880 };
1881
1882 static const struct attribute_group cpuhp_cpu_attr_group = {
1883         .attrs = cpuhp_cpu_attrs,
1884         .name = "hotplug",
1885         NULL
1886 };
1887
1888 static ssize_t show_cpuhp_states(struct device *dev,
1889                                  struct device_attribute *attr, char *buf)
1890 {
1891         ssize_t cur, res = 0;
1892         int i;
1893
1894         mutex_lock(&cpuhp_state_mutex);
1895         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1896                 struct cpuhp_step *sp = cpuhp_get_step(i);
1897
1898                 if (sp->name) {
1899                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1900                         buf += cur;
1901                         res += cur;
1902                 }
1903         }
1904         mutex_unlock(&cpuhp_state_mutex);
1905         return res;
1906 }
1907 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1908
1909 static struct attribute *cpuhp_cpu_root_attrs[] = {
1910         &dev_attr_states.attr,
1911         NULL
1912 };
1913
1914 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1915         .attrs = cpuhp_cpu_root_attrs,
1916         .name = "hotplug",
1917         NULL
1918 };
1919
1920 static int __init cpuhp_sysfs_init(void)
1921 {
1922         int cpu, ret;
1923
1924         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1925                                  &cpuhp_cpu_root_attr_group);
1926         if (ret)
1927                 return ret;
1928
1929         for_each_possible_cpu(cpu) {
1930                 struct device *dev = get_cpu_device(cpu);
1931
1932                 if (!dev)
1933                         continue;
1934                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1935                 if (ret)
1936                         return ret;
1937         }
1938         return 0;
1939 }
1940 device_initcall(cpuhp_sysfs_init);
1941 #endif
1942
1943 /*
1944  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1945  * represents all NR_CPUS bits binary values of 1<<nr.
1946  *
1947  * It is used by cpumask_of() to get a constant address to a CPU
1948  * mask value that has a single bit set only.
1949  */
1950
1951 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1952 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1953 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1954 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1955 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1956
1957 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1958
1959         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1960         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1961 #if BITS_PER_LONG > 32
1962         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1963         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1964 #endif
1965 };
1966 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1967
1968 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1969 EXPORT_SYMBOL(cpu_all_bits);
1970
1971 #ifdef CONFIG_INIT_ALL_POSSIBLE
1972 struct cpumask __cpu_possible_mask __read_mostly
1973         = {CPU_BITS_ALL};
1974 #else
1975 struct cpumask __cpu_possible_mask __read_mostly;
1976 #endif
1977 EXPORT_SYMBOL(__cpu_possible_mask);
1978
1979 struct cpumask __cpu_online_mask __read_mostly;
1980 EXPORT_SYMBOL(__cpu_online_mask);
1981
1982 struct cpumask __cpu_present_mask __read_mostly;
1983 EXPORT_SYMBOL(__cpu_present_mask);
1984
1985 struct cpumask __cpu_active_mask __read_mostly;
1986 EXPORT_SYMBOL(__cpu_active_mask);
1987
1988 void init_cpu_present(const struct cpumask *src)
1989 {
1990         cpumask_copy(&__cpu_present_mask, src);
1991 }
1992
1993 void init_cpu_possible(const struct cpumask *src)
1994 {
1995         cpumask_copy(&__cpu_possible_mask, src);
1996 }
1997
1998 void init_cpu_online(const struct cpumask *src)
1999 {
2000         cpumask_copy(&__cpu_online_mask, src);
2001 }
2002
2003 /*
2004  * Activate the first processor.
2005  */
2006 void __init boot_cpu_init(void)
2007 {
2008         int cpu = smp_processor_id();
2009
2010         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2011         set_cpu_online(cpu, true);
2012         set_cpu_active(cpu, true);
2013         set_cpu_present(cpu, true);
2014         set_cpu_possible(cpu, true);
2015
2016 #ifdef CONFIG_SMP
2017         __boot_cpu_id = cpu;
2018 #endif
2019 }
2020
2021 /*
2022  * Must be called _AFTER_ setting up the per_cpu areas
2023  */
2024 void __init boot_cpu_hotplug_init(void)
2025 {
2026         per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2027 }