HID: rmi: Support the Lenovo Thinkpad X1 Tablet dock using hid-rmi
[platform/kernel/linux-exynos.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 #include <linux/relay.h>
27 #include <linux/slab.h>
28
29 #include <trace/events/power.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/cpuhp.h>
32
33 #include "smpboot.h"
34
35 /**
36  * cpuhp_cpu_state - Per cpu hotplug state storage
37  * @state:      The current cpu state
38  * @target:     The target state
39  * @thread:     Pointer to the hotplug thread
40  * @should_run: Thread should execute
41  * @rollback:   Perform a rollback
42  * @single:     Single callback invocation
43  * @bringup:    Single callback bringup or teardown selector
44  * @cb_state:   The state for a single callback (install/uninstall)
45  * @result:     Result of the operation
46  * @done:       Signal completion to the issuer of the task
47  */
48 struct cpuhp_cpu_state {
49         enum cpuhp_state        state;
50         enum cpuhp_state        target;
51 #ifdef CONFIG_SMP
52         struct task_struct      *thread;
53         bool                    should_run;
54         bool                    rollback;
55         bool                    single;
56         bool                    bringup;
57         struct hlist_node       *node;
58         enum cpuhp_state        cb_state;
59         int                     result;
60         struct completion       done;
61 #endif
62 };
63
64 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
65
66 /**
67  * cpuhp_step - Hotplug state machine step
68  * @name:       Name of the step
69  * @startup:    Startup function of the step
70  * @teardown:   Teardown function of the step
71  * @skip_onerr: Do not invoke the functions on error rollback
72  *              Will go away once the notifiers are gone
73  * @cant_stop:  Bringup/teardown can't be stopped at this step
74  */
75 struct cpuhp_step {
76         const char              *name;
77         union {
78                 int             (*single)(unsigned int cpu);
79                 int             (*multi)(unsigned int cpu,
80                                          struct hlist_node *node);
81         } startup;
82         union {
83                 int             (*single)(unsigned int cpu);
84                 int             (*multi)(unsigned int cpu,
85                                          struct hlist_node *node);
86         } teardown;
87         struct hlist_head       list;
88         bool                    skip_onerr;
89         bool                    cant_stop;
90         bool                    multi_instance;
91 };
92
93 static DEFINE_MUTEX(cpuhp_state_mutex);
94 static struct cpuhp_step cpuhp_bp_states[];
95 static struct cpuhp_step cpuhp_ap_states[];
96
97 static bool cpuhp_is_ap_state(enum cpuhp_state state)
98 {
99         /*
100          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
101          * purposes as that state is handled explicitly in cpu_down.
102          */
103         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
104 }
105
106 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
107 {
108         struct cpuhp_step *sp;
109
110         sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
111         return sp + state;
112 }
113
114 /**
115  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
116  * @cpu:        The cpu for which the callback should be invoked
117  * @step:       The step in the state machine
118  * @bringup:    True if the bringup callback should be invoked
119  *
120  * Called from cpu hotplug and from the state register machinery.
121  */
122 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
123                                  bool bringup, struct hlist_node *node)
124 {
125         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
126         struct cpuhp_step *step = cpuhp_get_step(state);
127         int (*cbm)(unsigned int cpu, struct hlist_node *node);
128         int (*cb)(unsigned int cpu);
129         int ret, cnt;
130
131         if (!step->multi_instance) {
132                 cb = bringup ? step->startup.single : step->teardown.single;
133                 if (!cb)
134                         return 0;
135                 trace_cpuhp_enter(cpu, st->target, state, cb);
136                 ret = cb(cpu);
137                 trace_cpuhp_exit(cpu, st->state, state, ret);
138                 return ret;
139         }
140         cbm = bringup ? step->startup.multi : step->teardown.multi;
141         if (!cbm)
142                 return 0;
143
144         /* Single invocation for instance add/remove */
145         if (node) {
146                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
147                 ret = cbm(cpu, node);
148                 trace_cpuhp_exit(cpu, st->state, state, ret);
149                 return ret;
150         }
151
152         /* State transition. Invoke on all instances */
153         cnt = 0;
154         hlist_for_each(node, &step->list) {
155                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156                 ret = cbm(cpu, node);
157                 trace_cpuhp_exit(cpu, st->state, state, ret);
158                 if (ret)
159                         goto err;
160                 cnt++;
161         }
162         return 0;
163 err:
164         /* Rollback the instances if one failed */
165         cbm = !bringup ? step->startup.multi : step->teardown.multi;
166         if (!cbm)
167                 return ret;
168
169         hlist_for_each(node, &step->list) {
170                 if (!cnt--)
171                         break;
172                 cbm(cpu, node);
173         }
174         return ret;
175 }
176
177 #ifdef CONFIG_SMP
178 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
179 static DEFINE_MUTEX(cpu_add_remove_lock);
180 bool cpuhp_tasks_frozen;
181 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
182
183 /*
184  * The following two APIs (cpu_maps_update_begin/done) must be used when
185  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
186  */
187 void cpu_maps_update_begin(void)
188 {
189         mutex_lock(&cpu_add_remove_lock);
190 }
191
192 void cpu_maps_update_done(void)
193 {
194         mutex_unlock(&cpu_add_remove_lock);
195 }
196
197 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
198  * Should always be manipulated under cpu_add_remove_lock
199  */
200 static int cpu_hotplug_disabled;
201
202 #ifdef CONFIG_HOTPLUG_CPU
203
204 static struct {
205         struct task_struct *active_writer;
206         /* wait queue to wake up the active_writer */
207         wait_queue_head_t wq;
208         /* verifies that no writer will get active while readers are active */
209         struct mutex lock;
210         /*
211          * Also blocks the new readers during
212          * an ongoing cpu hotplug operation.
213          */
214         atomic_t refcount;
215
216 #ifdef CONFIG_DEBUG_LOCK_ALLOC
217         struct lockdep_map dep_map;
218 #endif
219 } cpu_hotplug = {
220         .active_writer = NULL,
221         .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
222         .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
223 #ifdef CONFIG_DEBUG_LOCK_ALLOC
224         .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
225 #endif
226 };
227
228 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
229 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
230 #define cpuhp_lock_acquire_tryread() \
231                                   lock_map_acquire_tryread(&cpu_hotplug.dep_map)
232 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
233 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
234
235
236 void get_online_cpus(void)
237 {
238         might_sleep();
239         if (cpu_hotplug.active_writer == current)
240                 return;
241         cpuhp_lock_acquire_read();
242         mutex_lock(&cpu_hotplug.lock);
243         atomic_inc(&cpu_hotplug.refcount);
244         mutex_unlock(&cpu_hotplug.lock);
245 }
246 EXPORT_SYMBOL_GPL(get_online_cpus);
247
248 void put_online_cpus(void)
249 {
250         int refcount;
251
252         if (cpu_hotplug.active_writer == current)
253                 return;
254
255         refcount = atomic_dec_return(&cpu_hotplug.refcount);
256         if (WARN_ON(refcount < 0)) /* try to fix things up */
257                 atomic_inc(&cpu_hotplug.refcount);
258
259         if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
260                 wake_up(&cpu_hotplug.wq);
261
262         cpuhp_lock_release();
263
264 }
265 EXPORT_SYMBOL_GPL(put_online_cpus);
266
267 /*
268  * This ensures that the hotplug operation can begin only when the
269  * refcount goes to zero.
270  *
271  * Note that during a cpu-hotplug operation, the new readers, if any,
272  * will be blocked by the cpu_hotplug.lock
273  *
274  * Since cpu_hotplug_begin() is always called after invoking
275  * cpu_maps_update_begin(), we can be sure that only one writer is active.
276  *
277  * Note that theoretically, there is a possibility of a livelock:
278  * - Refcount goes to zero, last reader wakes up the sleeping
279  *   writer.
280  * - Last reader unlocks the cpu_hotplug.lock.
281  * - A new reader arrives at this moment, bumps up the refcount.
282  * - The writer acquires the cpu_hotplug.lock finds the refcount
283  *   non zero and goes to sleep again.
284  *
285  * However, this is very difficult to achieve in practice since
286  * get_online_cpus() not an api which is called all that often.
287  *
288  */
289 void cpu_hotplug_begin(void)
290 {
291         DEFINE_WAIT(wait);
292
293         cpu_hotplug.active_writer = current;
294         cpuhp_lock_acquire();
295
296         for (;;) {
297                 mutex_lock(&cpu_hotplug.lock);
298                 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
299                 if (likely(!atomic_read(&cpu_hotplug.refcount)))
300                                 break;
301                 mutex_unlock(&cpu_hotplug.lock);
302                 schedule();
303         }
304         finish_wait(&cpu_hotplug.wq, &wait);
305 }
306
307 void cpu_hotplug_done(void)
308 {
309         cpu_hotplug.active_writer = NULL;
310         mutex_unlock(&cpu_hotplug.lock);
311         cpuhp_lock_release();
312 }
313
314 /*
315  * Wait for currently running CPU hotplug operations to complete (if any) and
316  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
317  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
318  * hotplug path before performing hotplug operations. So acquiring that lock
319  * guarantees mutual exclusion from any currently running hotplug operations.
320  */
321 void cpu_hotplug_disable(void)
322 {
323         cpu_maps_update_begin();
324         cpu_hotplug_disabled++;
325         cpu_maps_update_done();
326 }
327 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
328
329 static void __cpu_hotplug_enable(void)
330 {
331         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
332                 return;
333         cpu_hotplug_disabled--;
334 }
335
336 void cpu_hotplug_enable(void)
337 {
338         cpu_maps_update_begin();
339         __cpu_hotplug_enable();
340         cpu_maps_update_done();
341 }
342 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
343 #endif  /* CONFIG_HOTPLUG_CPU */
344
345 /* Notifier wrappers for transitioning to state machine */
346
347 static int bringup_wait_for_ap(unsigned int cpu)
348 {
349         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
350
351         wait_for_completion(&st->done);
352         return st->result;
353 }
354
355 static int bringup_cpu(unsigned int cpu)
356 {
357         struct task_struct *idle = idle_thread_get(cpu);
358         int ret;
359
360         /*
361          * Some architectures have to walk the irq descriptors to
362          * setup the vector space for the cpu which comes online.
363          * Prevent irq alloc/free across the bringup.
364          */
365         irq_lock_sparse();
366
367         /* Arch-specific enabling code. */
368         ret = __cpu_up(cpu, idle);
369         irq_unlock_sparse();
370         if (ret)
371                 return ret;
372         ret = bringup_wait_for_ap(cpu);
373         BUG_ON(!cpu_online(cpu));
374         return ret;
375 }
376
377 /*
378  * Hotplug state machine related functions
379  */
380 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
381 {
382         for (st->state++; st->state < st->target; st->state++) {
383                 struct cpuhp_step *step = cpuhp_get_step(st->state);
384
385                 if (!step->skip_onerr)
386                         cpuhp_invoke_callback(cpu, st->state, true, NULL);
387         }
388 }
389
390 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
391                                 enum cpuhp_state target)
392 {
393         enum cpuhp_state prev_state = st->state;
394         int ret = 0;
395
396         for (; st->state > target; st->state--) {
397                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
398                 if (ret) {
399                         st->target = prev_state;
400                         undo_cpu_down(cpu, st);
401                         break;
402                 }
403         }
404         return ret;
405 }
406
407 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
408 {
409         for (st->state--; st->state > st->target; st->state--) {
410                 struct cpuhp_step *step = cpuhp_get_step(st->state);
411
412                 if (!step->skip_onerr)
413                         cpuhp_invoke_callback(cpu, st->state, false, NULL);
414         }
415 }
416
417 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
418                               enum cpuhp_state target)
419 {
420         enum cpuhp_state prev_state = st->state;
421         int ret = 0;
422
423         while (st->state < target) {
424                 st->state++;
425                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
426                 if (ret) {
427                         st->target = prev_state;
428                         undo_cpu_up(cpu, st);
429                         break;
430                 }
431         }
432         return ret;
433 }
434
435 /*
436  * The cpu hotplug threads manage the bringup and teardown of the cpus
437  */
438 static void cpuhp_create(unsigned int cpu)
439 {
440         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
441
442         init_completion(&st->done);
443 }
444
445 static int cpuhp_should_run(unsigned int cpu)
446 {
447         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
448
449         return st->should_run;
450 }
451
452 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
453 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
454 {
455         enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
456
457         return cpuhp_down_callbacks(cpu, st, target);
458 }
459
460 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
461 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
462 {
463         return cpuhp_up_callbacks(cpu, st, st->target);
464 }
465
466 /*
467  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
468  * callbacks when a state gets [un]installed at runtime.
469  */
470 static void cpuhp_thread_fun(unsigned int cpu)
471 {
472         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
473         int ret = 0;
474
475         /*
476          * Paired with the mb() in cpuhp_kick_ap_work and
477          * cpuhp_invoke_ap_callback, so the work set is consistent visible.
478          */
479         smp_mb();
480         if (!st->should_run)
481                 return;
482
483         st->should_run = false;
484
485         /* Single callback invocation for [un]install ? */
486         if (st->single) {
487                 if (st->cb_state < CPUHP_AP_ONLINE) {
488                         local_irq_disable();
489                         ret = cpuhp_invoke_callback(cpu, st->cb_state,
490                                                     st->bringup, st->node);
491                         local_irq_enable();
492                 } else {
493                         ret = cpuhp_invoke_callback(cpu, st->cb_state,
494                                                     st->bringup, st->node);
495                 }
496         } else if (st->rollback) {
497                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
498
499                 undo_cpu_down(cpu, st);
500                 st->rollback = false;
501         } else {
502                 /* Cannot happen .... */
503                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
504
505                 /* Regular hotplug work */
506                 if (st->state < st->target)
507                         ret = cpuhp_ap_online(cpu, st);
508                 else if (st->state > st->target)
509                         ret = cpuhp_ap_offline(cpu, st);
510         }
511         st->result = ret;
512         complete(&st->done);
513 }
514
515 /* Invoke a single callback on a remote cpu */
516 static int
517 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
518                          struct hlist_node *node)
519 {
520         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
521
522         if (!cpu_online(cpu))
523                 return 0;
524
525         /*
526          * If we are up and running, use the hotplug thread. For early calls
527          * we invoke the thread function directly.
528          */
529         if (!st->thread)
530                 return cpuhp_invoke_callback(cpu, state, bringup, node);
531
532         st->cb_state = state;
533         st->single = true;
534         st->bringup = bringup;
535         st->node = node;
536
537         /*
538          * Make sure the above stores are visible before should_run becomes
539          * true. Paired with the mb() above in cpuhp_thread_fun()
540          */
541         smp_mb();
542         st->should_run = true;
543         wake_up_process(st->thread);
544         wait_for_completion(&st->done);
545         return st->result;
546 }
547
548 /* Regular hotplug invocation of the AP hotplug thread */
549 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
550 {
551         st->result = 0;
552         st->single = false;
553         /*
554          * Make sure the above stores are visible before should_run becomes
555          * true. Paired with the mb() above in cpuhp_thread_fun()
556          */
557         smp_mb();
558         st->should_run = true;
559         wake_up_process(st->thread);
560 }
561
562 static int cpuhp_kick_ap_work(unsigned int cpu)
563 {
564         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
565         enum cpuhp_state state = st->state;
566
567         trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
568         __cpuhp_kick_ap_work(st);
569         wait_for_completion(&st->done);
570         trace_cpuhp_exit(cpu, st->state, state, st->result);
571         return st->result;
572 }
573
574 static struct smp_hotplug_thread cpuhp_threads = {
575         .store                  = &cpuhp_state.thread,
576         .create                 = &cpuhp_create,
577         .thread_should_run      = cpuhp_should_run,
578         .thread_fn              = cpuhp_thread_fun,
579         .thread_comm            = "cpuhp/%u",
580         .selfparking            = true,
581 };
582
583 void __init cpuhp_threads_init(void)
584 {
585         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
586         kthread_unpark(this_cpu_read(cpuhp_state.thread));
587 }
588
589 #ifdef CONFIG_HOTPLUG_CPU
590 /**
591  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
592  * @cpu: a CPU id
593  *
594  * This function walks all processes, finds a valid mm struct for each one and
595  * then clears a corresponding bit in mm's cpumask.  While this all sounds
596  * trivial, there are various non-obvious corner cases, which this function
597  * tries to solve in a safe manner.
598  *
599  * Also note that the function uses a somewhat relaxed locking scheme, so it may
600  * be called only for an already offlined CPU.
601  */
602 void clear_tasks_mm_cpumask(int cpu)
603 {
604         struct task_struct *p;
605
606         /*
607          * This function is called after the cpu is taken down and marked
608          * offline, so its not like new tasks will ever get this cpu set in
609          * their mm mask. -- Peter Zijlstra
610          * Thus, we may use rcu_read_lock() here, instead of grabbing
611          * full-fledged tasklist_lock.
612          */
613         WARN_ON(cpu_online(cpu));
614         rcu_read_lock();
615         for_each_process(p) {
616                 struct task_struct *t;
617
618                 /*
619                  * Main thread might exit, but other threads may still have
620                  * a valid mm. Find one.
621                  */
622                 t = find_lock_task_mm(p);
623                 if (!t)
624                         continue;
625                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
626                 task_unlock(t);
627         }
628         rcu_read_unlock();
629 }
630
631 static inline void check_for_tasks(int dead_cpu)
632 {
633         struct task_struct *g, *p;
634
635         read_lock(&tasklist_lock);
636         for_each_process_thread(g, p) {
637                 if (!p->on_rq)
638                         continue;
639                 /*
640                  * We do the check with unlocked task_rq(p)->lock.
641                  * Order the reading to do not warn about a task,
642                  * which was running on this cpu in the past, and
643                  * it's just been woken on another cpu.
644                  */
645                 rmb();
646                 if (task_cpu(p) != dead_cpu)
647                         continue;
648
649                 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
650                         p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
651         }
652         read_unlock(&tasklist_lock);
653 }
654
655 /* Take this CPU down. */
656 static int take_cpu_down(void *_param)
657 {
658         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
659         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
660         int err, cpu = smp_processor_id();
661
662         /* Ensure this CPU doesn't handle any more interrupts. */
663         err = __cpu_disable();
664         if (err < 0)
665                 return err;
666
667         /*
668          * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
669          * do this step again.
670          */
671         WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
672         st->state--;
673         /* Invoke the former CPU_DYING callbacks */
674         for (; st->state > target; st->state--)
675                 cpuhp_invoke_callback(cpu, st->state, false, NULL);
676
677         /* Give up timekeeping duties */
678         tick_handover_do_timer();
679         /* Park the stopper thread */
680         stop_machine_park(cpu);
681         return 0;
682 }
683
684 static int takedown_cpu(unsigned int cpu)
685 {
686         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
687         int err;
688
689         /* Park the smpboot threads */
690         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
691         smpboot_park_threads(cpu);
692
693         /*
694          * Prevent irq alloc/free while the dying cpu reorganizes the
695          * interrupt affinities.
696          */
697         irq_lock_sparse();
698
699         /*
700          * So now all preempt/rcu users must observe !cpu_active().
701          */
702         err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
703         if (err) {
704                 /* CPU refused to die */
705                 irq_unlock_sparse();
706                 /* Unpark the hotplug thread so we can rollback there */
707                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
708                 return err;
709         }
710         BUG_ON(cpu_online(cpu));
711
712         /*
713          * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
714          * runnable tasks from the cpu, there's only the idle task left now
715          * that the migration thread is done doing the stop_machine thing.
716          *
717          * Wait for the stop thread to go away.
718          */
719         wait_for_completion(&st->done);
720         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
721
722         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
723         irq_unlock_sparse();
724
725         hotplug_cpu__broadcast_tick_pull(cpu);
726         /* This actually kills the CPU. */
727         __cpu_die(cpu);
728
729         tick_cleanup_dead_cpu(cpu);
730         return 0;
731 }
732
733 static void cpuhp_complete_idle_dead(void *arg)
734 {
735         struct cpuhp_cpu_state *st = arg;
736
737         complete(&st->done);
738 }
739
740 void cpuhp_report_idle_dead(void)
741 {
742         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
743
744         BUG_ON(st->state != CPUHP_AP_OFFLINE);
745         rcu_report_dead(smp_processor_id());
746         st->state = CPUHP_AP_IDLE_DEAD;
747         /*
748          * We cannot call complete after rcu_report_dead() so we delegate it
749          * to an online cpu.
750          */
751         smp_call_function_single(cpumask_first(cpu_online_mask),
752                                  cpuhp_complete_idle_dead, st, 0);
753 }
754
755 #else
756 #define takedown_cpu            NULL
757 #endif
758
759 #ifdef CONFIG_HOTPLUG_CPU
760
761 /* Requires cpu_add_remove_lock to be held */
762 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
763                            enum cpuhp_state target)
764 {
765         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
766         int prev_state, ret = 0;
767         bool hasdied = false;
768
769         if (num_online_cpus() == 1)
770                 return -EBUSY;
771
772         if (!cpu_present(cpu))
773                 return -EINVAL;
774
775         cpu_hotplug_begin();
776
777         cpuhp_tasks_frozen = tasks_frozen;
778
779         prev_state = st->state;
780         st->target = target;
781         /*
782          * If the current CPU state is in the range of the AP hotplug thread,
783          * then we need to kick the thread.
784          */
785         if (st->state > CPUHP_TEARDOWN_CPU) {
786                 ret = cpuhp_kick_ap_work(cpu);
787                 /*
788                  * The AP side has done the error rollback already. Just
789                  * return the error code..
790                  */
791                 if (ret)
792                         goto out;
793
794                 /*
795                  * We might have stopped still in the range of the AP hotplug
796                  * thread. Nothing to do anymore.
797                  */
798                 if (st->state > CPUHP_TEARDOWN_CPU)
799                         goto out;
800         }
801         /*
802          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
803          * to do the further cleanups.
804          */
805         ret = cpuhp_down_callbacks(cpu, st, target);
806         if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
807                 st->target = prev_state;
808                 st->rollback = true;
809                 cpuhp_kick_ap_work(cpu);
810         }
811
812         hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
813 out:
814         cpu_hotplug_done();
815         return ret;
816 }
817
818 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
819 {
820         int err;
821
822         cpu_maps_update_begin();
823
824         if (cpu_hotplug_disabled) {
825                 err = -EBUSY;
826                 goto out;
827         }
828
829         err = _cpu_down(cpu, 0, target);
830
831 out:
832         cpu_maps_update_done();
833         return err;
834 }
835 int cpu_down(unsigned int cpu)
836 {
837         return do_cpu_down(cpu, CPUHP_OFFLINE);
838 }
839 EXPORT_SYMBOL(cpu_down);
840 #endif /*CONFIG_HOTPLUG_CPU*/
841
842 /**
843  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
844  * @cpu: cpu that just started
845  *
846  * It must be called by the arch code on the new cpu, before the new cpu
847  * enables interrupts and before the "boot" cpu returns from __cpu_up().
848  */
849 void notify_cpu_starting(unsigned int cpu)
850 {
851         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
852         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
853
854         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
855         while (st->state < target) {
856                 st->state++;
857                 cpuhp_invoke_callback(cpu, st->state, true, NULL);
858         }
859 }
860
861 /*
862  * Called from the idle task. We need to set active here, so we can kick off
863  * the stopper thread and unpark the smpboot threads. If the target state is
864  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
865  * cpu further.
866  */
867 void cpuhp_online_idle(enum cpuhp_state state)
868 {
869         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
870         unsigned int cpu = smp_processor_id();
871
872         /* Happens for the boot cpu */
873         if (state != CPUHP_AP_ONLINE_IDLE)
874                 return;
875
876         st->state = CPUHP_AP_ONLINE_IDLE;
877
878         /* Unpark the stopper thread and the hotplug thread of this cpu */
879         stop_machine_unpark(cpu);
880         kthread_unpark(st->thread);
881
882         /* Should we go further up ? */
883         if (st->target > CPUHP_AP_ONLINE_IDLE)
884                 __cpuhp_kick_ap_work(st);
885         else
886                 complete(&st->done);
887 }
888
889 /* Requires cpu_add_remove_lock to be held */
890 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
891 {
892         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
893         struct task_struct *idle;
894         int ret = 0;
895
896         cpu_hotplug_begin();
897
898         if (!cpu_present(cpu)) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         /*
904          * The caller of do_cpu_up might have raced with another
905          * caller. Ignore it for now.
906          */
907         if (st->state >= target)
908                 goto out;
909
910         if (st->state == CPUHP_OFFLINE) {
911                 /* Let it fail before we try to bring the cpu up */
912                 idle = idle_thread_get(cpu);
913                 if (IS_ERR(idle)) {
914                         ret = PTR_ERR(idle);
915                         goto out;
916                 }
917         }
918
919         cpuhp_tasks_frozen = tasks_frozen;
920
921         st->target = target;
922         /*
923          * If the current CPU state is in the range of the AP hotplug thread,
924          * then we need to kick the thread once more.
925          */
926         if (st->state > CPUHP_BRINGUP_CPU) {
927                 ret = cpuhp_kick_ap_work(cpu);
928                 /*
929                  * The AP side has done the error rollback already. Just
930                  * return the error code..
931                  */
932                 if (ret)
933                         goto out;
934         }
935
936         /*
937          * Try to reach the target state. We max out on the BP at
938          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
939          * responsible for bringing it up to the target state.
940          */
941         target = min((int)target, CPUHP_BRINGUP_CPU);
942         ret = cpuhp_up_callbacks(cpu, st, target);
943 out:
944         cpu_hotplug_done();
945         return ret;
946 }
947
948 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
949 {
950         int err = 0;
951
952         if (!cpu_possible(cpu)) {
953                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
954                        cpu);
955 #if defined(CONFIG_IA64)
956                 pr_err("please check additional_cpus= boot parameter\n");
957 #endif
958                 return -EINVAL;
959         }
960
961         err = try_online_node(cpu_to_node(cpu));
962         if (err)
963                 return err;
964
965         cpu_maps_update_begin();
966
967         if (cpu_hotplug_disabled) {
968                 err = -EBUSY;
969                 goto out;
970         }
971
972         err = _cpu_up(cpu, 0, target);
973 out:
974         cpu_maps_update_done();
975         return err;
976 }
977
978 int cpu_up(unsigned int cpu)
979 {
980         return do_cpu_up(cpu, CPUHP_ONLINE);
981 }
982 EXPORT_SYMBOL_GPL(cpu_up);
983
984 #ifdef CONFIG_PM_SLEEP_SMP
985 static cpumask_var_t frozen_cpus;
986
987 int freeze_secondary_cpus(int primary)
988 {
989         int cpu, error = 0;
990
991         cpu_maps_update_begin();
992         if (!cpu_online(primary))
993                 primary = cpumask_first(cpu_online_mask);
994         /*
995          * We take down all of the non-boot CPUs in one shot to avoid races
996          * with the userspace trying to use the CPU hotplug at the same time
997          */
998         cpumask_clear(frozen_cpus);
999
1000         pr_info("Disabling non-boot CPUs ...\n");
1001         for_each_online_cpu(cpu) {
1002                 if (cpu == primary)
1003                         continue;
1004                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1005                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1006                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1007                 if (!error)
1008                         cpumask_set_cpu(cpu, frozen_cpus);
1009                 else {
1010                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1011                         break;
1012                 }
1013         }
1014
1015         if (!error)
1016                 BUG_ON(num_online_cpus() > 1);
1017         else
1018                 pr_err("Non-boot CPUs are not disabled\n");
1019
1020         /*
1021          * Make sure the CPUs won't be enabled by someone else. We need to do
1022          * this even in case of failure as all disable_nonboot_cpus() users are
1023          * supposed to do enable_nonboot_cpus() on the failure path.
1024          */
1025         cpu_hotplug_disabled++;
1026
1027         cpu_maps_update_done();
1028         return error;
1029 }
1030
1031 void __weak arch_enable_nonboot_cpus_begin(void)
1032 {
1033 }
1034
1035 void __weak arch_enable_nonboot_cpus_end(void)
1036 {
1037 }
1038
1039 void enable_nonboot_cpus(void)
1040 {
1041         int cpu, error;
1042
1043         /* Allow everyone to use the CPU hotplug again */
1044         cpu_maps_update_begin();
1045         __cpu_hotplug_enable();
1046         if (cpumask_empty(frozen_cpus))
1047                 goto out;
1048
1049         pr_info("Enabling non-boot CPUs ...\n");
1050
1051         arch_enable_nonboot_cpus_begin();
1052
1053         for_each_cpu(cpu, frozen_cpus) {
1054                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1055                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1056                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1057                 if (!error) {
1058                         pr_info("CPU%d is up\n", cpu);
1059                         continue;
1060                 }
1061                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1062         }
1063
1064         arch_enable_nonboot_cpus_end();
1065
1066         cpumask_clear(frozen_cpus);
1067 out:
1068         cpu_maps_update_done();
1069 }
1070
1071 static int __init alloc_frozen_cpus(void)
1072 {
1073         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1074                 return -ENOMEM;
1075         return 0;
1076 }
1077 core_initcall(alloc_frozen_cpus);
1078
1079 /*
1080  * When callbacks for CPU hotplug notifications are being executed, we must
1081  * ensure that the state of the system with respect to the tasks being frozen
1082  * or not, as reported by the notification, remains unchanged *throughout the
1083  * duration* of the execution of the callbacks.
1084  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1085  *
1086  * This synchronization is implemented by mutually excluding regular CPU
1087  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1088  * Hibernate notifications.
1089  */
1090 static int
1091 cpu_hotplug_pm_callback(struct notifier_block *nb,
1092                         unsigned long action, void *ptr)
1093 {
1094         switch (action) {
1095
1096         case PM_SUSPEND_PREPARE:
1097         case PM_HIBERNATION_PREPARE:
1098                 cpu_hotplug_disable();
1099                 break;
1100
1101         case PM_POST_SUSPEND:
1102         case PM_POST_HIBERNATION:
1103                 cpu_hotplug_enable();
1104                 break;
1105
1106         default:
1107                 return NOTIFY_DONE;
1108         }
1109
1110         return NOTIFY_OK;
1111 }
1112
1113
1114 static int __init cpu_hotplug_pm_sync_init(void)
1115 {
1116         /*
1117          * cpu_hotplug_pm_callback has higher priority than x86
1118          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1119          * to disable cpu hotplug to avoid cpu hotplug race.
1120          */
1121         pm_notifier(cpu_hotplug_pm_callback, 0);
1122         return 0;
1123 }
1124 core_initcall(cpu_hotplug_pm_sync_init);
1125
1126 #endif /* CONFIG_PM_SLEEP_SMP */
1127
1128 #endif /* CONFIG_SMP */
1129
1130 /* Boot processor state steps */
1131 static struct cpuhp_step cpuhp_bp_states[] = {
1132         [CPUHP_OFFLINE] = {
1133                 .name                   = "offline",
1134                 .startup.single         = NULL,
1135                 .teardown.single        = NULL,
1136         },
1137 #ifdef CONFIG_SMP
1138         [CPUHP_CREATE_THREADS]= {
1139                 .name                   = "threads:prepare",
1140                 .startup.single         = smpboot_create_threads,
1141                 .teardown.single        = NULL,
1142                 .cant_stop              = true,
1143         },
1144         [CPUHP_PERF_PREPARE] = {
1145                 .name                   = "perf:prepare",
1146                 .startup.single         = perf_event_init_cpu,
1147                 .teardown.single        = perf_event_exit_cpu,
1148         },
1149         [CPUHP_WORKQUEUE_PREP] = {
1150                 .name                   = "workqueue:prepare",
1151                 .startup.single         = workqueue_prepare_cpu,
1152                 .teardown.single        = NULL,
1153         },
1154         [CPUHP_HRTIMERS_PREPARE] = {
1155                 .name                   = "hrtimers:prepare",
1156                 .startup.single         = hrtimers_prepare_cpu,
1157                 .teardown.single        = hrtimers_dead_cpu,
1158         },
1159         [CPUHP_SMPCFD_PREPARE] = {
1160                 .name                   = "smpcfd:prepare",
1161                 .startup.single         = smpcfd_prepare_cpu,
1162                 .teardown.single        = smpcfd_dead_cpu,
1163         },
1164         [CPUHP_RELAY_PREPARE] = {
1165                 .name                   = "relay:prepare",
1166                 .startup.single         = relay_prepare_cpu,
1167                 .teardown.single        = NULL,
1168         },
1169         [CPUHP_SLAB_PREPARE] = {
1170                 .name                   = "slab:prepare",
1171                 .startup.single         = slab_prepare_cpu,
1172                 .teardown.single        = slab_dead_cpu,
1173         },
1174         [CPUHP_RCUTREE_PREP] = {
1175                 .name                   = "RCU/tree:prepare",
1176                 .startup.single         = rcutree_prepare_cpu,
1177                 .teardown.single        = rcutree_dead_cpu,
1178         },
1179         /*
1180          * On the tear-down path, timers_dead_cpu() must be invoked
1181          * before blk_mq_queue_reinit_notify() from notify_dead(),
1182          * otherwise a RCU stall occurs.
1183          */
1184         [CPUHP_TIMERS_DEAD] = {
1185                 .name                   = "timers:dead",
1186                 .startup.single         = NULL,
1187                 .teardown.single        = timers_dead_cpu,
1188         },
1189         /* Kicks the plugged cpu into life */
1190         [CPUHP_BRINGUP_CPU] = {
1191                 .name                   = "cpu:bringup",
1192                 .startup.single         = bringup_cpu,
1193                 .teardown.single        = NULL,
1194                 .cant_stop              = true,
1195         },
1196         [CPUHP_AP_SMPCFD_DYING] = {
1197                 .name                   = "smpcfd:dying",
1198                 .startup.single         = NULL,
1199                 .teardown.single        = smpcfd_dying_cpu,
1200         },
1201         /*
1202          * Handled on controll processor until the plugged processor manages
1203          * this itself.
1204          */
1205         [CPUHP_TEARDOWN_CPU] = {
1206                 .name                   = "cpu:teardown",
1207                 .startup.single         = NULL,
1208                 .teardown.single        = takedown_cpu,
1209                 .cant_stop              = true,
1210         },
1211 #else
1212         [CPUHP_BRINGUP_CPU] = { },
1213 #endif
1214 };
1215
1216 /* Application processor state steps */
1217 static struct cpuhp_step cpuhp_ap_states[] = {
1218 #ifdef CONFIG_SMP
1219         /* Final state before CPU kills itself */
1220         [CPUHP_AP_IDLE_DEAD] = {
1221                 .name                   = "idle:dead",
1222         },
1223         /*
1224          * Last state before CPU enters the idle loop to die. Transient state
1225          * for synchronization.
1226          */
1227         [CPUHP_AP_OFFLINE] = {
1228                 .name                   = "ap:offline",
1229                 .cant_stop              = true,
1230         },
1231         /* First state is scheduler control. Interrupts are disabled */
1232         [CPUHP_AP_SCHED_STARTING] = {
1233                 .name                   = "sched:starting",
1234                 .startup.single         = sched_cpu_starting,
1235                 .teardown.single        = sched_cpu_dying,
1236         },
1237         [CPUHP_AP_RCUTREE_DYING] = {
1238                 .name                   = "RCU/tree:dying",
1239                 .startup.single         = NULL,
1240                 .teardown.single        = rcutree_dying_cpu,
1241         },
1242         /* Entry state on starting. Interrupts enabled from here on. Transient
1243          * state for synchronsization */
1244         [CPUHP_AP_ONLINE] = {
1245                 .name                   = "ap:online",
1246         },
1247         /* Handle smpboot threads park/unpark */
1248         [CPUHP_AP_SMPBOOT_THREADS] = {
1249                 .name                   = "smpboot/threads:online",
1250                 .startup.single         = smpboot_unpark_threads,
1251                 .teardown.single        = NULL,
1252         },
1253         [CPUHP_AP_PERF_ONLINE] = {
1254                 .name                   = "perf:online",
1255                 .startup.single         = perf_event_init_cpu,
1256                 .teardown.single        = perf_event_exit_cpu,
1257         },
1258         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1259                 .name                   = "workqueue:online",
1260                 .startup.single         = workqueue_online_cpu,
1261                 .teardown.single        = workqueue_offline_cpu,
1262         },
1263         [CPUHP_AP_RCUTREE_ONLINE] = {
1264                 .name                   = "RCU/tree:online",
1265                 .startup.single         = rcutree_online_cpu,
1266                 .teardown.single        = rcutree_offline_cpu,
1267         },
1268 #endif
1269         /*
1270          * The dynamically registered state space is here
1271          */
1272
1273 #ifdef CONFIG_SMP
1274         /* Last state is scheduler control setting the cpu active */
1275         [CPUHP_AP_ACTIVE] = {
1276                 .name                   = "sched:active",
1277                 .startup.single         = sched_cpu_activate,
1278                 .teardown.single        = sched_cpu_deactivate,
1279         },
1280 #endif
1281
1282         /* CPU is fully up and running. */
1283         [CPUHP_ONLINE] = {
1284                 .name                   = "online",
1285                 .startup.single         = NULL,
1286                 .teardown.single        = NULL,
1287         },
1288 };
1289
1290 /* Sanity check for callbacks */
1291 static int cpuhp_cb_check(enum cpuhp_state state)
1292 {
1293         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1294                 return -EINVAL;
1295         return 0;
1296 }
1297
1298 /*
1299  * Returns a free for dynamic slot assignment of the Online state. The states
1300  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1301  * by having no name assigned.
1302  */
1303 static int cpuhp_reserve_state(enum cpuhp_state state)
1304 {
1305         enum cpuhp_state i;
1306
1307         for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1308                 if (!cpuhp_ap_states[i].name)
1309                         return i;
1310         }
1311         WARN(1, "No more dynamic states available for CPU hotplug\n");
1312         return -ENOSPC;
1313 }
1314
1315 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1316                                  int (*startup)(unsigned int cpu),
1317                                  int (*teardown)(unsigned int cpu),
1318                                  bool multi_instance)
1319 {
1320         /* (Un)Install the callbacks for further cpu hotplug operations */
1321         struct cpuhp_step *sp;
1322         int ret = 0;
1323
1324         mutex_lock(&cpuhp_state_mutex);
1325
1326         if (state == CPUHP_AP_ONLINE_DYN) {
1327                 ret = cpuhp_reserve_state(state);
1328                 if (ret < 0)
1329                         goto out;
1330                 state = ret;
1331         }
1332         sp = cpuhp_get_step(state);
1333         if (name && sp->name) {
1334                 ret = -EBUSY;
1335                 goto out;
1336         }
1337         sp->startup.single = startup;
1338         sp->teardown.single = teardown;
1339         sp->name = name;
1340         sp->multi_instance = multi_instance;
1341         INIT_HLIST_HEAD(&sp->list);
1342 out:
1343         mutex_unlock(&cpuhp_state_mutex);
1344         return ret;
1345 }
1346
1347 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1348 {
1349         return cpuhp_get_step(state)->teardown.single;
1350 }
1351
1352 /*
1353  * Call the startup/teardown function for a step either on the AP or
1354  * on the current CPU.
1355  */
1356 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1357                             struct hlist_node *node)
1358 {
1359         struct cpuhp_step *sp = cpuhp_get_step(state);
1360         int ret;
1361
1362         if ((bringup && !sp->startup.single) ||
1363             (!bringup && !sp->teardown.single))
1364                 return 0;
1365         /*
1366          * The non AP bound callbacks can fail on bringup. On teardown
1367          * e.g. module removal we crash for now.
1368          */
1369 #ifdef CONFIG_SMP
1370         if (cpuhp_is_ap_state(state))
1371                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1372         else
1373                 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1374 #else
1375         ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1376 #endif
1377         BUG_ON(ret && !bringup);
1378         return ret;
1379 }
1380
1381 /*
1382  * Called from __cpuhp_setup_state on a recoverable failure.
1383  *
1384  * Note: The teardown callbacks for rollback are not allowed to fail!
1385  */
1386 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1387                                    struct hlist_node *node)
1388 {
1389         int cpu;
1390
1391         /* Roll back the already executed steps on the other cpus */
1392         for_each_present_cpu(cpu) {
1393                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1394                 int cpustate = st->state;
1395
1396                 if (cpu >= failedcpu)
1397                         break;
1398
1399                 /* Did we invoke the startup call on that cpu ? */
1400                 if (cpustate >= state)
1401                         cpuhp_issue_call(cpu, state, false, node);
1402         }
1403 }
1404
1405 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1406                                bool invoke)
1407 {
1408         struct cpuhp_step *sp;
1409         int cpu;
1410         int ret;
1411
1412         sp = cpuhp_get_step(state);
1413         if (sp->multi_instance == false)
1414                 return -EINVAL;
1415
1416         get_online_cpus();
1417
1418         if (!invoke || !sp->startup.multi)
1419                 goto add_node;
1420
1421         /*
1422          * Try to call the startup callback for each present cpu
1423          * depending on the hotplug state of the cpu.
1424          */
1425         for_each_present_cpu(cpu) {
1426                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1427                 int cpustate = st->state;
1428
1429                 if (cpustate < state)
1430                         continue;
1431
1432                 ret = cpuhp_issue_call(cpu, state, true, node);
1433                 if (ret) {
1434                         if (sp->teardown.multi)
1435                                 cpuhp_rollback_install(cpu, state, node);
1436                         goto err;
1437                 }
1438         }
1439 add_node:
1440         ret = 0;
1441         mutex_lock(&cpuhp_state_mutex);
1442         hlist_add_head(node, &sp->list);
1443         mutex_unlock(&cpuhp_state_mutex);
1444
1445 err:
1446         put_online_cpus();
1447         return ret;
1448 }
1449 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1450
1451 /**
1452  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1453  * @state:              The state to setup
1454  * @invoke:             If true, the startup function is invoked for cpus where
1455  *                      cpu state >= @state
1456  * @startup:            startup callback function
1457  * @teardown:           teardown callback function
1458  * @multi_instance:     State is set up for multiple instances which get
1459  *                      added afterwards.
1460  *
1461  * Returns:
1462  *   On success:
1463  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1464  *      0 for all other states
1465  *   On failure: proper (negative) error code
1466  */
1467 int __cpuhp_setup_state(enum cpuhp_state state,
1468                         const char *name, bool invoke,
1469                         int (*startup)(unsigned int cpu),
1470                         int (*teardown)(unsigned int cpu),
1471                         bool multi_instance)
1472 {
1473         int cpu, ret = 0;
1474         bool dynstate;
1475
1476         if (cpuhp_cb_check(state) || !name)
1477                 return -EINVAL;
1478
1479         get_online_cpus();
1480
1481         ret = cpuhp_store_callbacks(state, name, startup, teardown,
1482                                     multi_instance);
1483
1484         dynstate = state == CPUHP_AP_ONLINE_DYN;
1485         if (ret > 0 && dynstate) {
1486                 state = ret;
1487                 ret = 0;
1488         }
1489
1490         if (ret || !invoke || !startup)
1491                 goto out;
1492
1493         /*
1494          * Try to call the startup callback for each present cpu
1495          * depending on the hotplug state of the cpu.
1496          */
1497         for_each_present_cpu(cpu) {
1498                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1499                 int cpustate = st->state;
1500
1501                 if (cpustate < state)
1502                         continue;
1503
1504                 ret = cpuhp_issue_call(cpu, state, true, NULL);
1505                 if (ret) {
1506                         if (teardown)
1507                                 cpuhp_rollback_install(cpu, state, NULL);
1508                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1509                         goto out;
1510                 }
1511         }
1512 out:
1513         put_online_cpus();
1514         /*
1515          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1516          * dynamically allocated state in case of success.
1517          */
1518         if (!ret && dynstate)
1519                 return state;
1520         return ret;
1521 }
1522 EXPORT_SYMBOL(__cpuhp_setup_state);
1523
1524 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1525                                   struct hlist_node *node, bool invoke)
1526 {
1527         struct cpuhp_step *sp = cpuhp_get_step(state);
1528         int cpu;
1529
1530         BUG_ON(cpuhp_cb_check(state));
1531
1532         if (!sp->multi_instance)
1533                 return -EINVAL;
1534
1535         get_online_cpus();
1536         if (!invoke || !cpuhp_get_teardown_cb(state))
1537                 goto remove;
1538         /*
1539          * Call the teardown callback for each present cpu depending
1540          * on the hotplug state of the cpu. This function is not
1541          * allowed to fail currently!
1542          */
1543         for_each_present_cpu(cpu) {
1544                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1545                 int cpustate = st->state;
1546
1547                 if (cpustate >= state)
1548                         cpuhp_issue_call(cpu, state, false, node);
1549         }
1550
1551 remove:
1552         mutex_lock(&cpuhp_state_mutex);
1553         hlist_del(node);
1554         mutex_unlock(&cpuhp_state_mutex);
1555         put_online_cpus();
1556
1557         return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1560 /**
1561  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1562  * @state:      The state to remove
1563  * @invoke:     If true, the teardown function is invoked for cpus where
1564  *              cpu state >= @state
1565  *
1566  * The teardown callback is currently not allowed to fail. Think
1567  * about module removal!
1568  */
1569 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1570 {
1571         struct cpuhp_step *sp = cpuhp_get_step(state);
1572         int cpu;
1573
1574         BUG_ON(cpuhp_cb_check(state));
1575
1576         get_online_cpus();
1577
1578         if (sp->multi_instance) {
1579                 WARN(!hlist_empty(&sp->list),
1580                      "Error: Removing state %d which has instances left.\n",
1581                      state);
1582                 goto remove;
1583         }
1584
1585         if (!invoke || !cpuhp_get_teardown_cb(state))
1586                 goto remove;
1587
1588         /*
1589          * Call the teardown callback for each present cpu depending
1590          * on the hotplug state of the cpu. This function is not
1591          * allowed to fail currently!
1592          */
1593         for_each_present_cpu(cpu) {
1594                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1595                 int cpustate = st->state;
1596
1597                 if (cpustate >= state)
1598                         cpuhp_issue_call(cpu, state, false, NULL);
1599         }
1600 remove:
1601         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1602         put_online_cpus();
1603 }
1604 EXPORT_SYMBOL(__cpuhp_remove_state);
1605
1606 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1607 static ssize_t show_cpuhp_state(struct device *dev,
1608                                 struct device_attribute *attr, char *buf)
1609 {
1610         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1611
1612         return sprintf(buf, "%d\n", st->state);
1613 }
1614 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1615
1616 static ssize_t write_cpuhp_target(struct device *dev,
1617                                   struct device_attribute *attr,
1618                                   const char *buf, size_t count)
1619 {
1620         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1621         struct cpuhp_step *sp;
1622         int target, ret;
1623
1624         ret = kstrtoint(buf, 10, &target);
1625         if (ret)
1626                 return ret;
1627
1628 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1629         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1630                 return -EINVAL;
1631 #else
1632         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1633                 return -EINVAL;
1634 #endif
1635
1636         ret = lock_device_hotplug_sysfs();
1637         if (ret)
1638                 return ret;
1639
1640         mutex_lock(&cpuhp_state_mutex);
1641         sp = cpuhp_get_step(target);
1642         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1643         mutex_unlock(&cpuhp_state_mutex);
1644         if (ret)
1645                 return ret;
1646
1647         if (st->state < target)
1648                 ret = do_cpu_up(dev->id, target);
1649         else
1650                 ret = do_cpu_down(dev->id, target);
1651
1652         unlock_device_hotplug();
1653         return ret ? ret : count;
1654 }
1655
1656 static ssize_t show_cpuhp_target(struct device *dev,
1657                                  struct device_attribute *attr, char *buf)
1658 {
1659         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1660
1661         return sprintf(buf, "%d\n", st->target);
1662 }
1663 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1664
1665 static struct attribute *cpuhp_cpu_attrs[] = {
1666         &dev_attr_state.attr,
1667         &dev_attr_target.attr,
1668         NULL
1669 };
1670
1671 static struct attribute_group cpuhp_cpu_attr_group = {
1672         .attrs = cpuhp_cpu_attrs,
1673         .name = "hotplug",
1674         NULL
1675 };
1676
1677 static ssize_t show_cpuhp_states(struct device *dev,
1678                                  struct device_attribute *attr, char *buf)
1679 {
1680         ssize_t cur, res = 0;
1681         int i;
1682
1683         mutex_lock(&cpuhp_state_mutex);
1684         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1685                 struct cpuhp_step *sp = cpuhp_get_step(i);
1686
1687                 if (sp->name) {
1688                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1689                         buf += cur;
1690                         res += cur;
1691                 }
1692         }
1693         mutex_unlock(&cpuhp_state_mutex);
1694         return res;
1695 }
1696 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1697
1698 static struct attribute *cpuhp_cpu_root_attrs[] = {
1699         &dev_attr_states.attr,
1700         NULL
1701 };
1702
1703 static struct attribute_group cpuhp_cpu_root_attr_group = {
1704         .attrs = cpuhp_cpu_root_attrs,
1705         .name = "hotplug",
1706         NULL
1707 };
1708
1709 static int __init cpuhp_sysfs_init(void)
1710 {
1711         int cpu, ret;
1712
1713         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1714                                  &cpuhp_cpu_root_attr_group);
1715         if (ret)
1716                 return ret;
1717
1718         for_each_possible_cpu(cpu) {
1719                 struct device *dev = get_cpu_device(cpu);
1720
1721                 if (!dev)
1722                         continue;
1723                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1724                 if (ret)
1725                         return ret;
1726         }
1727         return 0;
1728 }
1729 device_initcall(cpuhp_sysfs_init);
1730 #endif
1731
1732 /*
1733  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1734  * represents all NR_CPUS bits binary values of 1<<nr.
1735  *
1736  * It is used by cpumask_of() to get a constant address to a CPU
1737  * mask value that has a single bit set only.
1738  */
1739
1740 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1741 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1742 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1743 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1744 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1745
1746 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1747
1748         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1749         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1750 #if BITS_PER_LONG > 32
1751         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1752         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1753 #endif
1754 };
1755 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1756
1757 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1758 EXPORT_SYMBOL(cpu_all_bits);
1759
1760 #ifdef CONFIG_INIT_ALL_POSSIBLE
1761 struct cpumask __cpu_possible_mask __read_mostly
1762         = {CPU_BITS_ALL};
1763 #else
1764 struct cpumask __cpu_possible_mask __read_mostly;
1765 #endif
1766 EXPORT_SYMBOL(__cpu_possible_mask);
1767
1768 struct cpumask __cpu_online_mask __read_mostly;
1769 EXPORT_SYMBOL(__cpu_online_mask);
1770
1771 struct cpumask __cpu_present_mask __read_mostly;
1772 EXPORT_SYMBOL(__cpu_present_mask);
1773
1774 struct cpumask __cpu_active_mask __read_mostly;
1775 EXPORT_SYMBOL(__cpu_active_mask);
1776
1777 void init_cpu_present(const struct cpumask *src)
1778 {
1779         cpumask_copy(&__cpu_present_mask, src);
1780 }
1781
1782 void init_cpu_possible(const struct cpumask *src)
1783 {
1784         cpumask_copy(&__cpu_possible_mask, src);
1785 }
1786
1787 void init_cpu_online(const struct cpumask *src)
1788 {
1789         cpumask_copy(&__cpu_online_mask, src);
1790 }
1791
1792 /*
1793  * Activate the first processor.
1794  */
1795 void __init boot_cpu_init(void)
1796 {
1797         int cpu = smp_processor_id();
1798
1799         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1800         set_cpu_online(cpu, true);
1801         set_cpu_active(cpu, true);
1802         set_cpu_present(cpu, true);
1803         set_cpu_possible(cpu, true);
1804 }
1805
1806 /*
1807  * Must be called _AFTER_ setting up the per_cpu areas
1808  */
1809 void __init boot_cpu_state_init(void)
1810 {
1811         per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1812 }