Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-exynos.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36
37 #include "smpboot.h"
38
39 /**
40  * cpuhp_cpu_state - Per cpu hotplug state storage
41  * @state:      The current cpu state
42  * @target:     The target state
43  * @thread:     Pointer to the hotplug thread
44  * @should_run: Thread should execute
45  * @rollback:   Perform a rollback
46  * @single:     Single callback invocation
47  * @bringup:    Single callback bringup or teardown selector
48  * @cb_state:   The state for a single callback (install/uninstall)
49  * @result:     Result of the operation
50  * @done_up:    Signal completion to the issuer of the task for cpu-up
51  * @done_down:  Signal completion to the issuer of the task for cpu-down
52  */
53 struct cpuhp_cpu_state {
54         enum cpuhp_state        state;
55         enum cpuhp_state        target;
56         enum cpuhp_state        fail;
57 #ifdef CONFIG_SMP
58         struct task_struct      *thread;
59         bool                    should_run;
60         bool                    rollback;
61         bool                    single;
62         bool                    bringup;
63         struct hlist_node       *node;
64         struct hlist_node       *last;
65         enum cpuhp_state        cb_state;
66         int                     result;
67         struct completion       done_up;
68         struct completion       done_down;
69 #endif
70 };
71
72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
73         .fail = CPUHP_INVALID,
74 };
75
76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
77 static struct lockdep_map cpuhp_state_up_map =
78         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
79 static struct lockdep_map cpuhp_state_down_map =
80         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
81
82
83 static void inline cpuhp_lock_acquire(bool bringup)
84 {
85         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
86 }
87
88 static void inline cpuhp_lock_release(bool bringup)
89 {
90         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
91 }
92 #else
93
94 static void inline cpuhp_lock_acquire(bool bringup) { }
95 static void inline cpuhp_lock_release(bool bringup) { }
96
97 #endif
98
99 /**
100  * cpuhp_step - Hotplug state machine step
101  * @name:       Name of the step
102  * @startup:    Startup function of the step
103  * @teardown:   Teardown function of the step
104  * @skip_onerr: Do not invoke the functions on error rollback
105  *              Will go away once the notifiers are gone
106  * @cant_stop:  Bringup/teardown can't be stopped at this step
107  */
108 struct cpuhp_step {
109         const char              *name;
110         union {
111                 int             (*single)(unsigned int cpu);
112                 int             (*multi)(unsigned int cpu,
113                                          struct hlist_node *node);
114         } startup;
115         union {
116                 int             (*single)(unsigned int cpu);
117                 int             (*multi)(unsigned int cpu,
118                                          struct hlist_node *node);
119         } teardown;
120         struct hlist_head       list;
121         bool                    skip_onerr;
122         bool                    cant_stop;
123         bool                    multi_instance;
124 };
125
126 static DEFINE_MUTEX(cpuhp_state_mutex);
127 static struct cpuhp_step cpuhp_bp_states[];
128 static struct cpuhp_step cpuhp_ap_states[];
129
130 static bool cpuhp_is_ap_state(enum cpuhp_state state)
131 {
132         /*
133          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
134          * purposes as that state is handled explicitly in cpu_down.
135          */
136         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
137 }
138
139 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
140 {
141         struct cpuhp_step *sp;
142
143         sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
144         return sp + state;
145 }
146
147 /**
148  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
149  * @cpu:        The cpu for which the callback should be invoked
150  * @state:      The state to do callbacks for
151  * @bringup:    True if the bringup callback should be invoked
152  * @node:       For multi-instance, do a single entry callback for install/remove
153  * @lastp:      For multi-instance rollback, remember how far we got
154  *
155  * Called from cpu hotplug and from the state register machinery.
156  */
157 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
158                                  bool bringup, struct hlist_node *node,
159                                  struct hlist_node **lastp)
160 {
161         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
162         struct cpuhp_step *step = cpuhp_get_step(state);
163         int (*cbm)(unsigned int cpu, struct hlist_node *node);
164         int (*cb)(unsigned int cpu);
165         int ret, cnt;
166
167         if (st->fail == state) {
168                 st->fail = CPUHP_INVALID;
169
170                 if (!(bringup ? step->startup.single : step->teardown.single))
171                         return 0;
172
173                 return -EAGAIN;
174         }
175
176         if (!step->multi_instance) {
177                 WARN_ON_ONCE(lastp && *lastp);
178                 cb = bringup ? step->startup.single : step->teardown.single;
179                 if (!cb)
180                         return 0;
181                 trace_cpuhp_enter(cpu, st->target, state, cb);
182                 ret = cb(cpu);
183                 trace_cpuhp_exit(cpu, st->state, state, ret);
184                 return ret;
185         }
186         cbm = bringup ? step->startup.multi : step->teardown.multi;
187         if (!cbm)
188                 return 0;
189
190         /* Single invocation for instance add/remove */
191         if (node) {
192                 WARN_ON_ONCE(lastp && *lastp);
193                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
194                 ret = cbm(cpu, node);
195                 trace_cpuhp_exit(cpu, st->state, state, ret);
196                 return ret;
197         }
198
199         /* State transition. Invoke on all instances */
200         cnt = 0;
201         hlist_for_each(node, &step->list) {
202                 if (lastp && node == *lastp)
203                         break;
204
205                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
206                 ret = cbm(cpu, node);
207                 trace_cpuhp_exit(cpu, st->state, state, ret);
208                 if (ret) {
209                         if (!lastp)
210                                 goto err;
211
212                         *lastp = node;
213                         return ret;
214                 }
215                 cnt++;
216         }
217         if (lastp)
218                 *lastp = NULL;
219         return 0;
220 err:
221         /* Rollback the instances if one failed */
222         cbm = !bringup ? step->startup.multi : step->teardown.multi;
223         if (!cbm)
224                 return ret;
225
226         hlist_for_each(node, &step->list) {
227                 if (!cnt--)
228                         break;
229
230                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
231                 ret = cbm(cpu, node);
232                 trace_cpuhp_exit(cpu, st->state, state, ret);
233                 /*
234                  * Rollback must not fail,
235                  */
236                 WARN_ON_ONCE(ret);
237         }
238         return ret;
239 }
240
241 #ifdef CONFIG_SMP
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244         struct completion *done = bringup ? &st->done_up : &st->done_down;
245         wait_for_completion(done);
246 }
247
248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 {
250         struct completion *done = bringup ? &st->done_up : &st->done_down;
251         complete(done);
252 }
253
254 /*
255  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256  */
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258 {
259         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260 }
261
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266
267 /*
268  * The following two APIs (cpu_maps_update_begin/done) must be used when
269  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270  */
271 void cpu_maps_update_begin(void)
272 {
273         mutex_lock(&cpu_add_remove_lock);
274 }
275
276 void cpu_maps_update_done(void)
277 {
278         mutex_unlock(&cpu_add_remove_lock);
279 }
280
281 /*
282  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283  * Should always be manipulated under cpu_add_remove_lock
284  */
285 static int cpu_hotplug_disabled;
286
287 #ifdef CONFIG_HOTPLUG_CPU
288
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290
291 void cpus_read_lock(void)
292 {
293         percpu_down_read(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
296
297 void cpus_read_unlock(void)
298 {
299         percpu_up_read(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_unlock);
302
303 void cpus_write_lock(void)
304 {
305         percpu_down_write(&cpu_hotplug_lock);
306 }
307
308 void cpus_write_unlock(void)
309 {
310         percpu_up_write(&cpu_hotplug_lock);
311 }
312
313 void lockdep_assert_cpus_held(void)
314 {
315         percpu_rwsem_assert_held(&cpu_hotplug_lock);
316 }
317
318 /*
319  * Wait for currently running CPU hotplug operations to complete (if any) and
320  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
321  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
322  * hotplug path before performing hotplug operations. So acquiring that lock
323  * guarantees mutual exclusion from any currently running hotplug operations.
324  */
325 void cpu_hotplug_disable(void)
326 {
327         cpu_maps_update_begin();
328         cpu_hotplug_disabled++;
329         cpu_maps_update_done();
330 }
331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
332
333 static void __cpu_hotplug_enable(void)
334 {
335         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
336                 return;
337         cpu_hotplug_disabled--;
338 }
339
340 void cpu_hotplug_enable(void)
341 {
342         cpu_maps_update_begin();
343         __cpu_hotplug_enable();
344         cpu_maps_update_done();
345 }
346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
347 #endif  /* CONFIG_HOTPLUG_CPU */
348
349 static inline enum cpuhp_state
350 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
351 {
352         enum cpuhp_state prev_state = st->state;
353
354         st->rollback = false;
355         st->last = NULL;
356
357         st->target = target;
358         st->single = false;
359         st->bringup = st->state < target;
360
361         return prev_state;
362 }
363
364 static inline void
365 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
366 {
367         st->rollback = true;
368
369         /*
370          * If we have st->last we need to undo partial multi_instance of this
371          * state first. Otherwise start undo at the previous state.
372          */
373         if (!st->last) {
374                 if (st->bringup)
375                         st->state--;
376                 else
377                         st->state++;
378         }
379
380         st->target = prev_state;
381         st->bringup = !st->bringup;
382 }
383
384 /* Regular hotplug invocation of the AP hotplug thread */
385 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
386 {
387         if (!st->single && st->state == st->target)
388                 return;
389
390         st->result = 0;
391         /*
392          * Make sure the above stores are visible before should_run becomes
393          * true. Paired with the mb() above in cpuhp_thread_fun()
394          */
395         smp_mb();
396         st->should_run = true;
397         wake_up_process(st->thread);
398         wait_for_ap_thread(st, st->bringup);
399 }
400
401 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
402 {
403         enum cpuhp_state prev_state;
404         int ret;
405
406         prev_state = cpuhp_set_state(st, target);
407         __cpuhp_kick_ap(st);
408         if ((ret = st->result)) {
409                 cpuhp_reset_state(st, prev_state);
410                 __cpuhp_kick_ap(st);
411         }
412
413         return ret;
414 }
415
416 static int bringup_wait_for_ap(unsigned int cpu)
417 {
418         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
419
420         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
421         wait_for_ap_thread(st, true);
422         if (WARN_ON_ONCE((!cpu_online(cpu))))
423                 return -ECANCELED;
424
425         /* Unpark the stopper thread and the hotplug thread of the target cpu */
426         stop_machine_unpark(cpu);
427         kthread_unpark(st->thread);
428
429         if (st->target <= CPUHP_AP_ONLINE_IDLE)
430                 return 0;
431
432         return cpuhp_kick_ap(st, st->target);
433 }
434
435 static int bringup_cpu(unsigned int cpu)
436 {
437         struct task_struct *idle = idle_thread_get(cpu);
438         int ret;
439
440         /*
441          * Some architectures have to walk the irq descriptors to
442          * setup the vector space for the cpu which comes online.
443          * Prevent irq alloc/free across the bringup.
444          */
445         irq_lock_sparse();
446
447         /* Arch-specific enabling code. */
448         ret = __cpu_up(cpu, idle);
449         irq_unlock_sparse();
450         if (ret)
451                 return ret;
452         return bringup_wait_for_ap(cpu);
453 }
454
455 /*
456  * Hotplug state machine related functions
457  */
458
459 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
460 {
461         for (st->state--; st->state > st->target; st->state--) {
462                 struct cpuhp_step *step = cpuhp_get_step(st->state);
463
464                 if (!step->skip_onerr)
465                         cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
466         }
467 }
468
469 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
470                               enum cpuhp_state target)
471 {
472         enum cpuhp_state prev_state = st->state;
473         int ret = 0;
474
475         while (st->state < target) {
476                 st->state++;
477                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
478                 if (ret) {
479                         st->target = prev_state;
480                         undo_cpu_up(cpu, st);
481                         break;
482                 }
483         }
484         return ret;
485 }
486
487 /*
488  * The cpu hotplug threads manage the bringup and teardown of the cpus
489  */
490 static void cpuhp_create(unsigned int cpu)
491 {
492         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
493
494         init_completion(&st->done_up);
495         init_completion(&st->done_down);
496 }
497
498 static int cpuhp_should_run(unsigned int cpu)
499 {
500         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
501
502         return st->should_run;
503 }
504
505 /*
506  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
507  * callbacks when a state gets [un]installed at runtime.
508  *
509  * Each invocation of this function by the smpboot thread does a single AP
510  * state callback.
511  *
512  * It has 3 modes of operation:
513  *  - single: runs st->cb_state
514  *  - up:     runs ++st->state, while st->state < st->target
515  *  - down:   runs st->state--, while st->state > st->target
516  *
517  * When complete or on error, should_run is cleared and the completion is fired.
518  */
519 static void cpuhp_thread_fun(unsigned int cpu)
520 {
521         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
522         bool bringup = st->bringup;
523         enum cpuhp_state state;
524
525         /*
526          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
527          * that if we see ->should_run we also see the rest of the state.
528          */
529         smp_mb();
530
531         if (WARN_ON_ONCE(!st->should_run))
532                 return;
533
534         cpuhp_lock_acquire(bringup);
535
536         if (st->single) {
537                 state = st->cb_state;
538                 st->should_run = false;
539         } else {
540                 if (bringup) {
541                         st->state++;
542                         state = st->state;
543                         st->should_run = (st->state < st->target);
544                         WARN_ON_ONCE(st->state > st->target);
545                 } else {
546                         state = st->state;
547                         st->state--;
548                         st->should_run = (st->state > st->target);
549                         WARN_ON_ONCE(st->state < st->target);
550                 }
551         }
552
553         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
554
555         if (st->rollback) {
556                 struct cpuhp_step *step = cpuhp_get_step(state);
557                 if (step->skip_onerr)
558                         goto next;
559         }
560
561         if (cpuhp_is_atomic_state(state)) {
562                 local_irq_disable();
563                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
564                 local_irq_enable();
565
566                 /*
567                  * STARTING/DYING must not fail!
568                  */
569                 WARN_ON_ONCE(st->result);
570         } else {
571                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
572         }
573
574         if (st->result) {
575                 /*
576                  * If we fail on a rollback, we're up a creek without no
577                  * paddle, no way forward, no way back. We loose, thanks for
578                  * playing.
579                  */
580                 WARN_ON_ONCE(st->rollback);
581                 st->should_run = false;
582         }
583
584 next:
585         cpuhp_lock_release(bringup);
586
587         if (!st->should_run)
588                 complete_ap_thread(st, bringup);
589 }
590
591 /* Invoke a single callback on a remote cpu */
592 static int
593 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
594                          struct hlist_node *node)
595 {
596         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
597         int ret;
598
599         if (!cpu_online(cpu))
600                 return 0;
601
602         cpuhp_lock_acquire(false);
603         cpuhp_lock_release(false);
604
605         cpuhp_lock_acquire(true);
606         cpuhp_lock_release(true);
607
608         /*
609          * If we are up and running, use the hotplug thread. For early calls
610          * we invoke the thread function directly.
611          */
612         if (!st->thread)
613                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
614
615         st->rollback = false;
616         st->last = NULL;
617
618         st->node = node;
619         st->bringup = bringup;
620         st->cb_state = state;
621         st->single = true;
622
623         __cpuhp_kick_ap(st);
624
625         /*
626          * If we failed and did a partial, do a rollback.
627          */
628         if ((ret = st->result) && st->last) {
629                 st->rollback = true;
630                 st->bringup = !bringup;
631
632                 __cpuhp_kick_ap(st);
633         }
634
635         return ret;
636 }
637
638 static int cpuhp_kick_ap_work(unsigned int cpu)
639 {
640         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
641         enum cpuhp_state prev_state = st->state;
642         int ret;
643
644         cpuhp_lock_acquire(false);
645         cpuhp_lock_release(false);
646
647         cpuhp_lock_acquire(true);
648         cpuhp_lock_release(true);
649
650         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
651         ret = cpuhp_kick_ap(st, st->target);
652         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
653
654         return ret;
655 }
656
657 static struct smp_hotplug_thread cpuhp_threads = {
658         .store                  = &cpuhp_state.thread,
659         .create                 = &cpuhp_create,
660         .thread_should_run      = cpuhp_should_run,
661         .thread_fn              = cpuhp_thread_fun,
662         .thread_comm            = "cpuhp/%u",
663         .selfparking            = true,
664 };
665
666 void __init cpuhp_threads_init(void)
667 {
668         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
669         kthread_unpark(this_cpu_read(cpuhp_state.thread));
670 }
671
672 #ifdef CONFIG_HOTPLUG_CPU
673 /**
674  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
675  * @cpu: a CPU id
676  *
677  * This function walks all processes, finds a valid mm struct for each one and
678  * then clears a corresponding bit in mm's cpumask.  While this all sounds
679  * trivial, there are various non-obvious corner cases, which this function
680  * tries to solve in a safe manner.
681  *
682  * Also note that the function uses a somewhat relaxed locking scheme, so it may
683  * be called only for an already offlined CPU.
684  */
685 void clear_tasks_mm_cpumask(int cpu)
686 {
687         struct task_struct *p;
688
689         /*
690          * This function is called after the cpu is taken down and marked
691          * offline, so its not like new tasks will ever get this cpu set in
692          * their mm mask. -- Peter Zijlstra
693          * Thus, we may use rcu_read_lock() here, instead of grabbing
694          * full-fledged tasklist_lock.
695          */
696         WARN_ON(cpu_online(cpu));
697         rcu_read_lock();
698         for_each_process(p) {
699                 struct task_struct *t;
700
701                 /*
702                  * Main thread might exit, but other threads may still have
703                  * a valid mm. Find one.
704                  */
705                 t = find_lock_task_mm(p);
706                 if (!t)
707                         continue;
708                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
709                 task_unlock(t);
710         }
711         rcu_read_unlock();
712 }
713
714 /* Take this CPU down. */
715 static int take_cpu_down(void *_param)
716 {
717         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
718         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
719         int err, cpu = smp_processor_id();
720         int ret;
721
722         /* Ensure this CPU doesn't handle any more interrupts. */
723         err = __cpu_disable();
724         if (err < 0)
725                 return err;
726
727         /*
728          * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
729          * do this step again.
730          */
731         WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
732         st->state--;
733         /* Invoke the former CPU_DYING callbacks */
734         for (; st->state > target; st->state--) {
735                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
736                 /*
737                  * DYING must not fail!
738                  */
739                 WARN_ON_ONCE(ret);
740         }
741
742         /* Give up timekeeping duties */
743         tick_handover_do_timer();
744         /* Park the stopper thread */
745         stop_machine_park(cpu);
746         return 0;
747 }
748
749 static int takedown_cpu(unsigned int cpu)
750 {
751         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
752         int err;
753
754         /* Park the smpboot threads */
755         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
756         smpboot_park_threads(cpu);
757
758         /*
759          * Prevent irq alloc/free while the dying cpu reorganizes the
760          * interrupt affinities.
761          */
762         irq_lock_sparse();
763
764         /*
765          * So now all preempt/rcu users must observe !cpu_active().
766          */
767         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
768         if (err) {
769                 /* CPU refused to die */
770                 irq_unlock_sparse();
771                 /* Unpark the hotplug thread so we can rollback there */
772                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
773                 return err;
774         }
775         BUG_ON(cpu_online(cpu));
776
777         /*
778          * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
779          * runnable tasks from the cpu, there's only the idle task left now
780          * that the migration thread is done doing the stop_machine thing.
781          *
782          * Wait for the stop thread to go away.
783          */
784         wait_for_ap_thread(st, false);
785         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
786
787         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
788         irq_unlock_sparse();
789
790         hotplug_cpu__broadcast_tick_pull(cpu);
791         /* This actually kills the CPU. */
792         __cpu_die(cpu);
793
794         tick_cleanup_dead_cpu(cpu);
795         rcutree_migrate_callbacks(cpu);
796         return 0;
797 }
798
799 static void cpuhp_complete_idle_dead(void *arg)
800 {
801         struct cpuhp_cpu_state *st = arg;
802
803         complete_ap_thread(st, false);
804 }
805
806 void cpuhp_report_idle_dead(void)
807 {
808         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
809
810         BUG_ON(st->state != CPUHP_AP_OFFLINE);
811         rcu_report_dead(smp_processor_id());
812         st->state = CPUHP_AP_IDLE_DEAD;
813         /*
814          * We cannot call complete after rcu_report_dead() so we delegate it
815          * to an online cpu.
816          */
817         smp_call_function_single(cpumask_first(cpu_online_mask),
818                                  cpuhp_complete_idle_dead, st, 0);
819 }
820
821 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
822 {
823         for (st->state++; st->state < st->target; st->state++) {
824                 struct cpuhp_step *step = cpuhp_get_step(st->state);
825
826                 if (!step->skip_onerr)
827                         cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
828         }
829 }
830
831 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
832                                 enum cpuhp_state target)
833 {
834         enum cpuhp_state prev_state = st->state;
835         int ret = 0;
836
837         for (; st->state > target; st->state--) {
838                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
839                 if (ret) {
840                         st->target = prev_state;
841                         undo_cpu_down(cpu, st);
842                         break;
843                 }
844         }
845         return ret;
846 }
847
848 /* Requires cpu_add_remove_lock to be held */
849 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
850                            enum cpuhp_state target)
851 {
852         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
853         int prev_state, ret = 0;
854
855         if (num_online_cpus() == 1)
856                 return -EBUSY;
857
858         if (!cpu_present(cpu))
859                 return -EINVAL;
860
861         cpus_write_lock();
862
863         cpuhp_tasks_frozen = tasks_frozen;
864
865         prev_state = cpuhp_set_state(st, target);
866         /*
867          * If the current CPU state is in the range of the AP hotplug thread,
868          * then we need to kick the thread.
869          */
870         if (st->state > CPUHP_TEARDOWN_CPU) {
871                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
872                 ret = cpuhp_kick_ap_work(cpu);
873                 /*
874                  * The AP side has done the error rollback already. Just
875                  * return the error code..
876                  */
877                 if (ret)
878                         goto out;
879
880                 /*
881                  * We might have stopped still in the range of the AP hotplug
882                  * thread. Nothing to do anymore.
883                  */
884                 if (st->state > CPUHP_TEARDOWN_CPU)
885                         goto out;
886
887                 st->target = target;
888         }
889         /*
890          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
891          * to do the further cleanups.
892          */
893         ret = cpuhp_down_callbacks(cpu, st, target);
894         if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
895                 cpuhp_reset_state(st, prev_state);
896                 __cpuhp_kick_ap(st);
897         }
898
899 out:
900         cpus_write_unlock();
901         /*
902          * Do post unplug cleanup. This is still protected against
903          * concurrent CPU hotplug via cpu_add_remove_lock.
904          */
905         lockup_detector_cleanup();
906         return ret;
907 }
908
909 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
910 {
911         int err;
912
913         cpu_maps_update_begin();
914
915         if (cpu_hotplug_disabled) {
916                 err = -EBUSY;
917                 goto out;
918         }
919
920         err = _cpu_down(cpu, 0, target);
921
922 out:
923         cpu_maps_update_done();
924         return err;
925 }
926
927 int cpu_down(unsigned int cpu)
928 {
929         return do_cpu_down(cpu, CPUHP_OFFLINE);
930 }
931 EXPORT_SYMBOL(cpu_down);
932
933 #else
934 #define takedown_cpu            NULL
935 #endif /*CONFIG_HOTPLUG_CPU*/
936
937 /**
938  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
939  * @cpu: cpu that just started
940  *
941  * It must be called by the arch code on the new cpu, before the new cpu
942  * enables interrupts and before the "boot" cpu returns from __cpu_up().
943  */
944 void notify_cpu_starting(unsigned int cpu)
945 {
946         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
947         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
948         int ret;
949
950         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
951         while (st->state < target) {
952                 st->state++;
953                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
954                 /*
955                  * STARTING must not fail!
956                  */
957                 WARN_ON_ONCE(ret);
958         }
959 }
960
961 /*
962  * Called from the idle task. Wake up the controlling task which brings the
963  * stopper and the hotplug thread of the upcoming CPU up and then delegates
964  * the rest of the online bringup to the hotplug thread.
965  */
966 void cpuhp_online_idle(enum cpuhp_state state)
967 {
968         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
969
970         /* Happens for the boot cpu */
971         if (state != CPUHP_AP_ONLINE_IDLE)
972                 return;
973
974         st->state = CPUHP_AP_ONLINE_IDLE;
975         complete_ap_thread(st, true);
976 }
977
978 /* Requires cpu_add_remove_lock to be held */
979 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
980 {
981         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
982         struct task_struct *idle;
983         int ret = 0;
984
985         cpus_write_lock();
986
987         if (!cpu_present(cpu)) {
988                 ret = -EINVAL;
989                 goto out;
990         }
991
992         /*
993          * The caller of do_cpu_up might have raced with another
994          * caller. Ignore it for now.
995          */
996         if (st->state >= target)
997                 goto out;
998
999         if (st->state == CPUHP_OFFLINE) {
1000                 /* Let it fail before we try to bring the cpu up */
1001                 idle = idle_thread_get(cpu);
1002                 if (IS_ERR(idle)) {
1003                         ret = PTR_ERR(idle);
1004                         goto out;
1005                 }
1006         }
1007
1008         cpuhp_tasks_frozen = tasks_frozen;
1009
1010         cpuhp_set_state(st, target);
1011         /*
1012          * If the current CPU state is in the range of the AP hotplug thread,
1013          * then we need to kick the thread once more.
1014          */
1015         if (st->state > CPUHP_BRINGUP_CPU) {
1016                 ret = cpuhp_kick_ap_work(cpu);
1017                 /*
1018                  * The AP side has done the error rollback already. Just
1019                  * return the error code..
1020                  */
1021                 if (ret)
1022                         goto out;
1023         }
1024
1025         /*
1026          * Try to reach the target state. We max out on the BP at
1027          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1028          * responsible for bringing it up to the target state.
1029          */
1030         target = min((int)target, CPUHP_BRINGUP_CPU);
1031         ret = cpuhp_up_callbacks(cpu, st, target);
1032 out:
1033         cpus_write_unlock();
1034         return ret;
1035 }
1036
1037 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1038 {
1039         int err = 0;
1040
1041         if (!cpu_possible(cpu)) {
1042                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1043                        cpu);
1044 #if defined(CONFIG_IA64)
1045                 pr_err("please check additional_cpus= boot parameter\n");
1046 #endif
1047                 return -EINVAL;
1048         }
1049
1050         err = try_online_node(cpu_to_node(cpu));
1051         if (err)
1052                 return err;
1053
1054         cpu_maps_update_begin();
1055
1056         if (cpu_hotplug_disabled) {
1057                 err = -EBUSY;
1058                 goto out;
1059         }
1060
1061         err = _cpu_up(cpu, 0, target);
1062 out:
1063         cpu_maps_update_done();
1064         return err;
1065 }
1066
1067 int cpu_up(unsigned int cpu)
1068 {
1069         return do_cpu_up(cpu, CPUHP_ONLINE);
1070 }
1071 EXPORT_SYMBOL_GPL(cpu_up);
1072
1073 #ifdef CONFIG_PM_SLEEP_SMP
1074 static cpumask_var_t frozen_cpus;
1075
1076 int freeze_secondary_cpus(int primary)
1077 {
1078         int cpu, error = 0;
1079
1080         cpu_maps_update_begin();
1081         if (!cpu_online(primary))
1082                 primary = cpumask_first(cpu_online_mask);
1083         /*
1084          * We take down all of the non-boot CPUs in one shot to avoid races
1085          * with the userspace trying to use the CPU hotplug at the same time
1086          */
1087         cpumask_clear(frozen_cpus);
1088
1089         pr_info("Disabling non-boot CPUs ...\n");
1090         for_each_online_cpu(cpu) {
1091                 if (cpu == primary)
1092                         continue;
1093                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1094                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1095                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1096                 if (!error)
1097                         cpumask_set_cpu(cpu, frozen_cpus);
1098                 else {
1099                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1100                         break;
1101                 }
1102         }
1103
1104         if (!error)
1105                 BUG_ON(num_online_cpus() > 1);
1106         else
1107                 pr_err("Non-boot CPUs are not disabled\n");
1108
1109         /*
1110          * Make sure the CPUs won't be enabled by someone else. We need to do
1111          * this even in case of failure as all disable_nonboot_cpus() users are
1112          * supposed to do enable_nonboot_cpus() on the failure path.
1113          */
1114         cpu_hotplug_disabled++;
1115
1116         cpu_maps_update_done();
1117         return error;
1118 }
1119
1120 void __weak arch_enable_nonboot_cpus_begin(void)
1121 {
1122 }
1123
1124 void __weak arch_enable_nonboot_cpus_end(void)
1125 {
1126 }
1127
1128 void enable_nonboot_cpus(void)
1129 {
1130         int cpu, error;
1131
1132         /* Allow everyone to use the CPU hotplug again */
1133         cpu_maps_update_begin();
1134         __cpu_hotplug_enable();
1135         if (cpumask_empty(frozen_cpus))
1136                 goto out;
1137
1138         pr_info("Enabling non-boot CPUs ...\n");
1139
1140         arch_enable_nonboot_cpus_begin();
1141
1142         for_each_cpu(cpu, frozen_cpus) {
1143                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1144                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1145                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1146                 if (!error) {
1147                         pr_info("CPU%d is up\n", cpu);
1148                         continue;
1149                 }
1150                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1151         }
1152
1153         arch_enable_nonboot_cpus_end();
1154
1155         cpumask_clear(frozen_cpus);
1156 out:
1157         cpu_maps_update_done();
1158 }
1159
1160 static int __init alloc_frozen_cpus(void)
1161 {
1162         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1163                 return -ENOMEM;
1164         return 0;
1165 }
1166 core_initcall(alloc_frozen_cpus);
1167
1168 /*
1169  * When callbacks for CPU hotplug notifications are being executed, we must
1170  * ensure that the state of the system with respect to the tasks being frozen
1171  * or not, as reported by the notification, remains unchanged *throughout the
1172  * duration* of the execution of the callbacks.
1173  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1174  *
1175  * This synchronization is implemented by mutually excluding regular CPU
1176  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1177  * Hibernate notifications.
1178  */
1179 static int
1180 cpu_hotplug_pm_callback(struct notifier_block *nb,
1181                         unsigned long action, void *ptr)
1182 {
1183         switch (action) {
1184
1185         case PM_SUSPEND_PREPARE:
1186         case PM_HIBERNATION_PREPARE:
1187                 cpu_hotplug_disable();
1188                 break;
1189
1190         case PM_POST_SUSPEND:
1191         case PM_POST_HIBERNATION:
1192                 cpu_hotplug_enable();
1193                 break;
1194
1195         default:
1196                 return NOTIFY_DONE;
1197         }
1198
1199         return NOTIFY_OK;
1200 }
1201
1202
1203 static int __init cpu_hotplug_pm_sync_init(void)
1204 {
1205         /*
1206          * cpu_hotplug_pm_callback has higher priority than x86
1207          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1208          * to disable cpu hotplug to avoid cpu hotplug race.
1209          */
1210         pm_notifier(cpu_hotplug_pm_callback, 0);
1211         return 0;
1212 }
1213 core_initcall(cpu_hotplug_pm_sync_init);
1214
1215 #endif /* CONFIG_PM_SLEEP_SMP */
1216
1217 int __boot_cpu_id;
1218
1219 #endif /* CONFIG_SMP */
1220
1221 /* Boot processor state steps */
1222 static struct cpuhp_step cpuhp_bp_states[] = {
1223         [CPUHP_OFFLINE] = {
1224                 .name                   = "offline",
1225                 .startup.single         = NULL,
1226                 .teardown.single        = NULL,
1227         },
1228 #ifdef CONFIG_SMP
1229         [CPUHP_CREATE_THREADS]= {
1230                 .name                   = "threads:prepare",
1231                 .startup.single         = smpboot_create_threads,
1232                 .teardown.single        = NULL,
1233                 .cant_stop              = true,
1234         },
1235         [CPUHP_PERF_PREPARE] = {
1236                 .name                   = "perf:prepare",
1237                 .startup.single         = perf_event_init_cpu,
1238                 .teardown.single        = perf_event_exit_cpu,
1239         },
1240         [CPUHP_WORKQUEUE_PREP] = {
1241                 .name                   = "workqueue:prepare",
1242                 .startup.single         = workqueue_prepare_cpu,
1243                 .teardown.single        = NULL,
1244         },
1245         [CPUHP_HRTIMERS_PREPARE] = {
1246                 .name                   = "hrtimers:prepare",
1247                 .startup.single         = hrtimers_prepare_cpu,
1248                 .teardown.single        = hrtimers_dead_cpu,
1249         },
1250         [CPUHP_SMPCFD_PREPARE] = {
1251                 .name                   = "smpcfd:prepare",
1252                 .startup.single         = smpcfd_prepare_cpu,
1253                 .teardown.single        = smpcfd_dead_cpu,
1254         },
1255         [CPUHP_RELAY_PREPARE] = {
1256                 .name                   = "relay:prepare",
1257                 .startup.single         = relay_prepare_cpu,
1258                 .teardown.single        = NULL,
1259         },
1260         [CPUHP_SLAB_PREPARE] = {
1261                 .name                   = "slab:prepare",
1262                 .startup.single         = slab_prepare_cpu,
1263                 .teardown.single        = slab_dead_cpu,
1264         },
1265         [CPUHP_RCUTREE_PREP] = {
1266                 .name                   = "RCU/tree:prepare",
1267                 .startup.single         = rcutree_prepare_cpu,
1268                 .teardown.single        = rcutree_dead_cpu,
1269         },
1270         /*
1271          * On the tear-down path, timers_dead_cpu() must be invoked
1272          * before blk_mq_queue_reinit_notify() from notify_dead(),
1273          * otherwise a RCU stall occurs.
1274          */
1275         [CPUHP_TIMERS_DEAD] = {
1276                 .name                   = "timers:dead",
1277                 .startup.single         = NULL,
1278                 .teardown.single        = timers_dead_cpu,
1279         },
1280         /* Kicks the plugged cpu into life */
1281         [CPUHP_BRINGUP_CPU] = {
1282                 .name                   = "cpu:bringup",
1283                 .startup.single         = bringup_cpu,
1284                 .teardown.single        = NULL,
1285                 .cant_stop              = true,
1286         },
1287         [CPUHP_AP_SMPCFD_DYING] = {
1288                 .name                   = "smpcfd:dying",
1289                 .startup.single         = NULL,
1290                 .teardown.single        = smpcfd_dying_cpu,
1291         },
1292         /*
1293          * Handled on controll processor until the plugged processor manages
1294          * this itself.
1295          */
1296         [CPUHP_TEARDOWN_CPU] = {
1297                 .name                   = "cpu:teardown",
1298                 .startup.single         = NULL,
1299                 .teardown.single        = takedown_cpu,
1300                 .cant_stop              = true,
1301         },
1302 #else
1303         [CPUHP_BRINGUP_CPU] = { },
1304 #endif
1305 };
1306
1307 /* Application processor state steps */
1308 static struct cpuhp_step cpuhp_ap_states[] = {
1309 #ifdef CONFIG_SMP
1310         /* Final state before CPU kills itself */
1311         [CPUHP_AP_IDLE_DEAD] = {
1312                 .name                   = "idle:dead",
1313         },
1314         /*
1315          * Last state before CPU enters the idle loop to die. Transient state
1316          * for synchronization.
1317          */
1318         [CPUHP_AP_OFFLINE] = {
1319                 .name                   = "ap:offline",
1320                 .cant_stop              = true,
1321         },
1322         /* First state is scheduler control. Interrupts are disabled */
1323         [CPUHP_AP_SCHED_STARTING] = {
1324                 .name                   = "sched:starting",
1325                 .startup.single         = sched_cpu_starting,
1326                 .teardown.single        = sched_cpu_dying,
1327         },
1328         [CPUHP_AP_RCUTREE_DYING] = {
1329                 .name                   = "RCU/tree:dying",
1330                 .startup.single         = NULL,
1331                 .teardown.single        = rcutree_dying_cpu,
1332         },
1333         /* Entry state on starting. Interrupts enabled from here on. Transient
1334          * state for synchronsization */
1335         [CPUHP_AP_ONLINE] = {
1336                 .name                   = "ap:online",
1337         },
1338         /* Handle smpboot threads park/unpark */
1339         [CPUHP_AP_SMPBOOT_THREADS] = {
1340                 .name                   = "smpboot/threads:online",
1341                 .startup.single         = smpboot_unpark_threads,
1342                 .teardown.single        = NULL,
1343         },
1344         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1345                 .name                   = "irq/affinity:online",
1346                 .startup.single         = irq_affinity_online_cpu,
1347                 .teardown.single        = NULL,
1348         },
1349         [CPUHP_AP_PERF_ONLINE] = {
1350                 .name                   = "perf:online",
1351                 .startup.single         = perf_event_init_cpu,
1352                 .teardown.single        = perf_event_exit_cpu,
1353         },
1354         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1355                 .name                   = "workqueue:online",
1356                 .startup.single         = workqueue_online_cpu,
1357                 .teardown.single        = workqueue_offline_cpu,
1358         },
1359         [CPUHP_AP_RCUTREE_ONLINE] = {
1360                 .name                   = "RCU/tree:online",
1361                 .startup.single         = rcutree_online_cpu,
1362                 .teardown.single        = rcutree_offline_cpu,
1363         },
1364 #endif
1365         /*
1366          * The dynamically registered state space is here
1367          */
1368
1369 #ifdef CONFIG_SMP
1370         /* Last state is scheduler control setting the cpu active */
1371         [CPUHP_AP_ACTIVE] = {
1372                 .name                   = "sched:active",
1373                 .startup.single         = sched_cpu_activate,
1374                 .teardown.single        = sched_cpu_deactivate,
1375         },
1376 #endif
1377
1378         /* CPU is fully up and running. */
1379         [CPUHP_ONLINE] = {
1380                 .name                   = "online",
1381                 .startup.single         = NULL,
1382                 .teardown.single        = NULL,
1383         },
1384 };
1385
1386 /* Sanity check for callbacks */
1387 static int cpuhp_cb_check(enum cpuhp_state state)
1388 {
1389         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1390                 return -EINVAL;
1391         return 0;
1392 }
1393
1394 /*
1395  * Returns a free for dynamic slot assignment of the Online state. The states
1396  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1397  * by having no name assigned.
1398  */
1399 static int cpuhp_reserve_state(enum cpuhp_state state)
1400 {
1401         enum cpuhp_state i, end;
1402         struct cpuhp_step *step;
1403
1404         switch (state) {
1405         case CPUHP_AP_ONLINE_DYN:
1406                 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1407                 end = CPUHP_AP_ONLINE_DYN_END;
1408                 break;
1409         case CPUHP_BP_PREPARE_DYN:
1410                 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1411                 end = CPUHP_BP_PREPARE_DYN_END;
1412                 break;
1413         default:
1414                 return -EINVAL;
1415         }
1416
1417         for (i = state; i <= end; i++, step++) {
1418                 if (!step->name)
1419                         return i;
1420         }
1421         WARN(1, "No more dynamic states available for CPU hotplug\n");
1422         return -ENOSPC;
1423 }
1424
1425 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1426                                  int (*startup)(unsigned int cpu),
1427                                  int (*teardown)(unsigned int cpu),
1428                                  bool multi_instance)
1429 {
1430         /* (Un)Install the callbacks for further cpu hotplug operations */
1431         struct cpuhp_step *sp;
1432         int ret = 0;
1433
1434         /*
1435          * If name is NULL, then the state gets removed.
1436          *
1437          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1438          * the first allocation from these dynamic ranges, so the removal
1439          * would trigger a new allocation and clear the wrong (already
1440          * empty) state, leaving the callbacks of the to be cleared state
1441          * dangling, which causes wreckage on the next hotplug operation.
1442          */
1443         if (name && (state == CPUHP_AP_ONLINE_DYN ||
1444                      state == CPUHP_BP_PREPARE_DYN)) {
1445                 ret = cpuhp_reserve_state(state);
1446                 if (ret < 0)
1447                         return ret;
1448                 state = ret;
1449         }
1450         sp = cpuhp_get_step(state);
1451         if (name && sp->name)
1452                 return -EBUSY;
1453
1454         sp->startup.single = startup;
1455         sp->teardown.single = teardown;
1456         sp->name = name;
1457         sp->multi_instance = multi_instance;
1458         INIT_HLIST_HEAD(&sp->list);
1459         return ret;
1460 }
1461
1462 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1463 {
1464         return cpuhp_get_step(state)->teardown.single;
1465 }
1466
1467 /*
1468  * Call the startup/teardown function for a step either on the AP or
1469  * on the current CPU.
1470  */
1471 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1472                             struct hlist_node *node)
1473 {
1474         struct cpuhp_step *sp = cpuhp_get_step(state);
1475         int ret;
1476
1477         /*
1478          * If there's nothing to do, we done.
1479          * Relies on the union for multi_instance.
1480          */
1481         if ((bringup && !sp->startup.single) ||
1482             (!bringup && !sp->teardown.single))
1483                 return 0;
1484         /*
1485          * The non AP bound callbacks can fail on bringup. On teardown
1486          * e.g. module removal we crash for now.
1487          */
1488 #ifdef CONFIG_SMP
1489         if (cpuhp_is_ap_state(state))
1490                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1491         else
1492                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1493 #else
1494         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1495 #endif
1496         BUG_ON(ret && !bringup);
1497         return ret;
1498 }
1499
1500 /*
1501  * Called from __cpuhp_setup_state on a recoverable failure.
1502  *
1503  * Note: The teardown callbacks for rollback are not allowed to fail!
1504  */
1505 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1506                                    struct hlist_node *node)
1507 {
1508         int cpu;
1509
1510         /* Roll back the already executed steps on the other cpus */
1511         for_each_present_cpu(cpu) {
1512                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1513                 int cpustate = st->state;
1514
1515                 if (cpu >= failedcpu)
1516                         break;
1517
1518                 /* Did we invoke the startup call on that cpu ? */
1519                 if (cpustate >= state)
1520                         cpuhp_issue_call(cpu, state, false, node);
1521         }
1522 }
1523
1524 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1525                                           struct hlist_node *node,
1526                                           bool invoke)
1527 {
1528         struct cpuhp_step *sp;
1529         int cpu;
1530         int ret;
1531
1532         lockdep_assert_cpus_held();
1533
1534         sp = cpuhp_get_step(state);
1535         if (sp->multi_instance == false)
1536                 return -EINVAL;
1537
1538         mutex_lock(&cpuhp_state_mutex);
1539
1540         if (!invoke || !sp->startup.multi)
1541                 goto add_node;
1542
1543         /*
1544          * Try to call the startup callback for each present cpu
1545          * depending on the hotplug state of the cpu.
1546          */
1547         for_each_present_cpu(cpu) {
1548                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1549                 int cpustate = st->state;
1550
1551                 if (cpustate < state)
1552                         continue;
1553
1554                 ret = cpuhp_issue_call(cpu, state, true, node);
1555                 if (ret) {
1556                         if (sp->teardown.multi)
1557                                 cpuhp_rollback_install(cpu, state, node);
1558                         goto unlock;
1559                 }
1560         }
1561 add_node:
1562         ret = 0;
1563         hlist_add_head(node, &sp->list);
1564 unlock:
1565         mutex_unlock(&cpuhp_state_mutex);
1566         return ret;
1567 }
1568
1569 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1570                                bool invoke)
1571 {
1572         int ret;
1573
1574         cpus_read_lock();
1575         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1576         cpus_read_unlock();
1577         return ret;
1578 }
1579 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1580
1581 /**
1582  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1583  * @state:              The state to setup
1584  * @invoke:             If true, the startup function is invoked for cpus where
1585  *                      cpu state >= @state
1586  * @startup:            startup callback function
1587  * @teardown:           teardown callback function
1588  * @multi_instance:     State is set up for multiple instances which get
1589  *                      added afterwards.
1590  *
1591  * The caller needs to hold cpus read locked while calling this function.
1592  * Returns:
1593  *   On success:
1594  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1595  *      0 for all other states
1596  *   On failure: proper (negative) error code
1597  */
1598 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1599                                    const char *name, bool invoke,
1600                                    int (*startup)(unsigned int cpu),
1601                                    int (*teardown)(unsigned int cpu),
1602                                    bool multi_instance)
1603 {
1604         int cpu, ret = 0;
1605         bool dynstate;
1606
1607         lockdep_assert_cpus_held();
1608
1609         if (cpuhp_cb_check(state) || !name)
1610                 return -EINVAL;
1611
1612         mutex_lock(&cpuhp_state_mutex);
1613
1614         ret = cpuhp_store_callbacks(state, name, startup, teardown,
1615                                     multi_instance);
1616
1617         dynstate = state == CPUHP_AP_ONLINE_DYN;
1618         if (ret > 0 && dynstate) {
1619                 state = ret;
1620                 ret = 0;
1621         }
1622
1623         if (ret || !invoke || !startup)
1624                 goto out;
1625
1626         /*
1627          * Try to call the startup callback for each present cpu
1628          * depending on the hotplug state of the cpu.
1629          */
1630         for_each_present_cpu(cpu) {
1631                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1632                 int cpustate = st->state;
1633
1634                 if (cpustate < state)
1635                         continue;
1636
1637                 ret = cpuhp_issue_call(cpu, state, true, NULL);
1638                 if (ret) {
1639                         if (teardown)
1640                                 cpuhp_rollback_install(cpu, state, NULL);
1641                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1642                         goto out;
1643                 }
1644         }
1645 out:
1646         mutex_unlock(&cpuhp_state_mutex);
1647         /*
1648          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1649          * dynamically allocated state in case of success.
1650          */
1651         if (!ret && dynstate)
1652                 return state;
1653         return ret;
1654 }
1655 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1656
1657 int __cpuhp_setup_state(enum cpuhp_state state,
1658                         const char *name, bool invoke,
1659                         int (*startup)(unsigned int cpu),
1660                         int (*teardown)(unsigned int cpu),
1661                         bool multi_instance)
1662 {
1663         int ret;
1664
1665         cpus_read_lock();
1666         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1667                                              teardown, multi_instance);
1668         cpus_read_unlock();
1669         return ret;
1670 }
1671 EXPORT_SYMBOL(__cpuhp_setup_state);
1672
1673 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1674                                   struct hlist_node *node, bool invoke)
1675 {
1676         struct cpuhp_step *sp = cpuhp_get_step(state);
1677         int cpu;
1678
1679         BUG_ON(cpuhp_cb_check(state));
1680
1681         if (!sp->multi_instance)
1682                 return -EINVAL;
1683
1684         cpus_read_lock();
1685         mutex_lock(&cpuhp_state_mutex);
1686
1687         if (!invoke || !cpuhp_get_teardown_cb(state))
1688                 goto remove;
1689         /*
1690          * Call the teardown callback for each present cpu depending
1691          * on the hotplug state of the cpu. This function is not
1692          * allowed to fail currently!
1693          */
1694         for_each_present_cpu(cpu) {
1695                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1696                 int cpustate = st->state;
1697
1698                 if (cpustate >= state)
1699                         cpuhp_issue_call(cpu, state, false, node);
1700         }
1701
1702 remove:
1703         hlist_del(node);
1704         mutex_unlock(&cpuhp_state_mutex);
1705         cpus_read_unlock();
1706
1707         return 0;
1708 }
1709 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1710
1711 /**
1712  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1713  * @state:      The state to remove
1714  * @invoke:     If true, the teardown function is invoked for cpus where
1715  *              cpu state >= @state
1716  *
1717  * The caller needs to hold cpus read locked while calling this function.
1718  * The teardown callback is currently not allowed to fail. Think
1719  * about module removal!
1720  */
1721 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1722 {
1723         struct cpuhp_step *sp = cpuhp_get_step(state);
1724         int cpu;
1725
1726         BUG_ON(cpuhp_cb_check(state));
1727
1728         lockdep_assert_cpus_held();
1729
1730         mutex_lock(&cpuhp_state_mutex);
1731         if (sp->multi_instance) {
1732                 WARN(!hlist_empty(&sp->list),
1733                      "Error: Removing state %d which has instances left.\n",
1734                      state);
1735                 goto remove;
1736         }
1737
1738         if (!invoke || !cpuhp_get_teardown_cb(state))
1739                 goto remove;
1740
1741         /*
1742          * Call the teardown callback for each present cpu depending
1743          * on the hotplug state of the cpu. This function is not
1744          * allowed to fail currently!
1745          */
1746         for_each_present_cpu(cpu) {
1747                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1748                 int cpustate = st->state;
1749
1750                 if (cpustate >= state)
1751                         cpuhp_issue_call(cpu, state, false, NULL);
1752         }
1753 remove:
1754         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1755         mutex_unlock(&cpuhp_state_mutex);
1756 }
1757 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1758
1759 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1760 {
1761         cpus_read_lock();
1762         __cpuhp_remove_state_cpuslocked(state, invoke);
1763         cpus_read_unlock();
1764 }
1765 EXPORT_SYMBOL(__cpuhp_remove_state);
1766
1767 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1768 static ssize_t show_cpuhp_state(struct device *dev,
1769                                 struct device_attribute *attr, char *buf)
1770 {
1771         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1772
1773         return sprintf(buf, "%d\n", st->state);
1774 }
1775 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1776
1777 static ssize_t write_cpuhp_target(struct device *dev,
1778                                   struct device_attribute *attr,
1779                                   const char *buf, size_t count)
1780 {
1781         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1782         struct cpuhp_step *sp;
1783         int target, ret;
1784
1785         ret = kstrtoint(buf, 10, &target);
1786         if (ret)
1787                 return ret;
1788
1789 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1790         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1791                 return -EINVAL;
1792 #else
1793         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1794                 return -EINVAL;
1795 #endif
1796
1797         ret = lock_device_hotplug_sysfs();
1798         if (ret)
1799                 return ret;
1800
1801         mutex_lock(&cpuhp_state_mutex);
1802         sp = cpuhp_get_step(target);
1803         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1804         mutex_unlock(&cpuhp_state_mutex);
1805         if (ret)
1806                 goto out;
1807
1808         if (st->state < target)
1809                 ret = do_cpu_up(dev->id, target);
1810         else
1811                 ret = do_cpu_down(dev->id, target);
1812 out:
1813         unlock_device_hotplug();
1814         return ret ? ret : count;
1815 }
1816
1817 static ssize_t show_cpuhp_target(struct device *dev,
1818                                  struct device_attribute *attr, char *buf)
1819 {
1820         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1821
1822         return sprintf(buf, "%d\n", st->target);
1823 }
1824 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1825
1826
1827 static ssize_t write_cpuhp_fail(struct device *dev,
1828                                 struct device_attribute *attr,
1829                                 const char *buf, size_t count)
1830 {
1831         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1832         struct cpuhp_step *sp;
1833         int fail, ret;
1834
1835         ret = kstrtoint(buf, 10, &fail);
1836         if (ret)
1837                 return ret;
1838
1839         /*
1840          * Cannot fail STARTING/DYING callbacks.
1841          */
1842         if (cpuhp_is_atomic_state(fail))
1843                 return -EINVAL;
1844
1845         /*
1846          * Cannot fail anything that doesn't have callbacks.
1847          */
1848         mutex_lock(&cpuhp_state_mutex);
1849         sp = cpuhp_get_step(fail);
1850         if (!sp->startup.single && !sp->teardown.single)
1851                 ret = -EINVAL;
1852         mutex_unlock(&cpuhp_state_mutex);
1853         if (ret)
1854                 return ret;
1855
1856         st->fail = fail;
1857
1858         return count;
1859 }
1860
1861 static ssize_t show_cpuhp_fail(struct device *dev,
1862                                struct device_attribute *attr, char *buf)
1863 {
1864         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1865
1866         return sprintf(buf, "%d\n", st->fail);
1867 }
1868
1869 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1870
1871 static struct attribute *cpuhp_cpu_attrs[] = {
1872         &dev_attr_state.attr,
1873         &dev_attr_target.attr,
1874         &dev_attr_fail.attr,
1875         NULL
1876 };
1877
1878 static const struct attribute_group cpuhp_cpu_attr_group = {
1879         .attrs = cpuhp_cpu_attrs,
1880         .name = "hotplug",
1881         NULL
1882 };
1883
1884 static ssize_t show_cpuhp_states(struct device *dev,
1885                                  struct device_attribute *attr, char *buf)
1886 {
1887         ssize_t cur, res = 0;
1888         int i;
1889
1890         mutex_lock(&cpuhp_state_mutex);
1891         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1892                 struct cpuhp_step *sp = cpuhp_get_step(i);
1893
1894                 if (sp->name) {
1895                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1896                         buf += cur;
1897                         res += cur;
1898                 }
1899         }
1900         mutex_unlock(&cpuhp_state_mutex);
1901         return res;
1902 }
1903 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1904
1905 static struct attribute *cpuhp_cpu_root_attrs[] = {
1906         &dev_attr_states.attr,
1907         NULL
1908 };
1909
1910 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1911         .attrs = cpuhp_cpu_root_attrs,
1912         .name = "hotplug",
1913         NULL
1914 };
1915
1916 static int __init cpuhp_sysfs_init(void)
1917 {
1918         int cpu, ret;
1919
1920         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1921                                  &cpuhp_cpu_root_attr_group);
1922         if (ret)
1923                 return ret;
1924
1925         for_each_possible_cpu(cpu) {
1926                 struct device *dev = get_cpu_device(cpu);
1927
1928                 if (!dev)
1929                         continue;
1930                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1931                 if (ret)
1932                         return ret;
1933         }
1934         return 0;
1935 }
1936 device_initcall(cpuhp_sysfs_init);
1937 #endif
1938
1939 /*
1940  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1941  * represents all NR_CPUS bits binary values of 1<<nr.
1942  *
1943  * It is used by cpumask_of() to get a constant address to a CPU
1944  * mask value that has a single bit set only.
1945  */
1946
1947 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1948 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1949 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1950 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1951 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1952
1953 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1954
1955         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1956         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1957 #if BITS_PER_LONG > 32
1958         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1959         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1960 #endif
1961 };
1962 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1963
1964 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1965 EXPORT_SYMBOL(cpu_all_bits);
1966
1967 #ifdef CONFIG_INIT_ALL_POSSIBLE
1968 struct cpumask __cpu_possible_mask __read_mostly
1969         = {CPU_BITS_ALL};
1970 #else
1971 struct cpumask __cpu_possible_mask __read_mostly;
1972 #endif
1973 EXPORT_SYMBOL(__cpu_possible_mask);
1974
1975 struct cpumask __cpu_online_mask __read_mostly;
1976 EXPORT_SYMBOL(__cpu_online_mask);
1977
1978 struct cpumask __cpu_present_mask __read_mostly;
1979 EXPORT_SYMBOL(__cpu_present_mask);
1980
1981 struct cpumask __cpu_active_mask __read_mostly;
1982 EXPORT_SYMBOL(__cpu_active_mask);
1983
1984 void init_cpu_present(const struct cpumask *src)
1985 {
1986         cpumask_copy(&__cpu_present_mask, src);
1987 }
1988
1989 void init_cpu_possible(const struct cpumask *src)
1990 {
1991         cpumask_copy(&__cpu_possible_mask, src);
1992 }
1993
1994 void init_cpu_online(const struct cpumask *src)
1995 {
1996         cpumask_copy(&__cpu_online_mask, src);
1997 }
1998
1999 /*
2000  * Activate the first processor.
2001  */
2002 void __init boot_cpu_init(void)
2003 {
2004         int cpu = smp_processor_id();
2005
2006         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2007         set_cpu_online(cpu, true);
2008         set_cpu_active(cpu, true);
2009         set_cpu_present(cpu, true);
2010         set_cpu_possible(cpu, true);
2011
2012 #ifdef CONFIG_SMP
2013         __boot_cpu_id = cpu;
2014 #endif
2015 }
2016
2017 /*
2018  * Must be called _AFTER_ setting up the per_cpu areas
2019  */
2020 void __init boot_cpu_state_init(void)
2021 {
2022         per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2023 }