Merge branch 'dmi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvar...
[platform/kernel/linux-starfive.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <linux/cc_platform.h>
39
40 #include <trace/events/power.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/cpuhp.h>
43
44 #include "smpboot.h"
45
46 /**
47  * struct cpuhp_cpu_state - Per cpu hotplug state storage
48  * @state:      The current cpu state
49  * @target:     The target state
50  * @fail:       Current CPU hotplug callback state
51  * @thread:     Pointer to the hotplug thread
52  * @should_run: Thread should execute
53  * @rollback:   Perform a rollback
54  * @single:     Single callback invocation
55  * @bringup:    Single callback bringup or teardown selector
56  * @cpu:        CPU number
57  * @node:       Remote CPU node; for multi-instance, do a
58  *              single entry callback for install/remove
59  * @last:       For multi-instance rollback, remember how far we got
60  * @cb_state:   The state for a single callback (install/uninstall)
61  * @result:     Result of the operation
62  * @done_up:    Signal completion to the issuer of the task for cpu-up
63  * @done_down:  Signal completion to the issuer of the task for cpu-down
64  */
65 struct cpuhp_cpu_state {
66         enum cpuhp_state        state;
67         enum cpuhp_state        target;
68         enum cpuhp_state        fail;
69 #ifdef CONFIG_SMP
70         struct task_struct      *thread;
71         bool                    should_run;
72         bool                    rollback;
73         bool                    single;
74         bool                    bringup;
75         struct hlist_node       *node;
76         struct hlist_node       *last;
77         enum cpuhp_state        cb_state;
78         int                     result;
79         struct completion       done_up;
80         struct completion       done_down;
81 #endif
82 };
83
84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
85         .fail = CPUHP_INVALID,
86 };
87
88 #ifdef CONFIG_SMP
89 cpumask_t cpus_booted_once_mask;
90 #endif
91
92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
93 static struct lockdep_map cpuhp_state_up_map =
94         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
95 static struct lockdep_map cpuhp_state_down_map =
96         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
97
98
99 static inline void cpuhp_lock_acquire(bool bringup)
100 {
101         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103
104 static inline void cpuhp_lock_release(bool bringup)
105 {
106         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 }
108 #else
109
110 static inline void cpuhp_lock_acquire(bool bringup) { }
111 static inline void cpuhp_lock_release(bool bringup) { }
112
113 #endif
114
115 /**
116  * struct cpuhp_step - Hotplug state machine step
117  * @name:       Name of the step
118  * @startup:    Startup function of the step
119  * @teardown:   Teardown function of the step
120  * @cant_stop:  Bringup/teardown can't be stopped at this step
121  * @multi_instance:     State has multiple instances which get added afterwards
122  */
123 struct cpuhp_step {
124         const char              *name;
125         union {
126                 int             (*single)(unsigned int cpu);
127                 int             (*multi)(unsigned int cpu,
128                                          struct hlist_node *node);
129         } startup;
130         union {
131                 int             (*single)(unsigned int cpu);
132                 int             (*multi)(unsigned int cpu,
133                                          struct hlist_node *node);
134         } teardown;
135         /* private: */
136         struct hlist_head       list;
137         /* public: */
138         bool                    cant_stop;
139         bool                    multi_instance;
140 };
141
142 static DEFINE_MUTEX(cpuhp_state_mutex);
143 static struct cpuhp_step cpuhp_hp_states[];
144
145 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
146 {
147         return cpuhp_hp_states + state;
148 }
149
150 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
151 {
152         return bringup ? !step->startup.single : !step->teardown.single;
153 }
154
155 /**
156  * cpuhp_invoke_callback - Invoke the callbacks for a given state
157  * @cpu:        The cpu for which the callback should be invoked
158  * @state:      The state to do callbacks for
159  * @bringup:    True if the bringup callback should be invoked
160  * @node:       For multi-instance, do a single entry callback for install/remove
161  * @lastp:      For multi-instance rollback, remember how far we got
162  *
163  * Called from cpu hotplug and from the state register machinery.
164  *
165  * Return: %0 on success or a negative errno code
166  */
167 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
168                                  bool bringup, struct hlist_node *node,
169                                  struct hlist_node **lastp)
170 {
171         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
172         struct cpuhp_step *step = cpuhp_get_step(state);
173         int (*cbm)(unsigned int cpu, struct hlist_node *node);
174         int (*cb)(unsigned int cpu);
175         int ret, cnt;
176
177         if (st->fail == state) {
178                 st->fail = CPUHP_INVALID;
179                 return -EAGAIN;
180         }
181
182         if (cpuhp_step_empty(bringup, step)) {
183                 WARN_ON_ONCE(1);
184                 return 0;
185         }
186
187         if (!step->multi_instance) {
188                 WARN_ON_ONCE(lastp && *lastp);
189                 cb = bringup ? step->startup.single : step->teardown.single;
190
191                 trace_cpuhp_enter(cpu, st->target, state, cb);
192                 ret = cb(cpu);
193                 trace_cpuhp_exit(cpu, st->state, state, ret);
194                 return ret;
195         }
196         cbm = bringup ? step->startup.multi : step->teardown.multi;
197
198         /* Single invocation for instance add/remove */
199         if (node) {
200                 WARN_ON_ONCE(lastp && *lastp);
201                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202                 ret = cbm(cpu, node);
203                 trace_cpuhp_exit(cpu, st->state, state, ret);
204                 return ret;
205         }
206
207         /* State transition. Invoke on all instances */
208         cnt = 0;
209         hlist_for_each(node, &step->list) {
210                 if (lastp && node == *lastp)
211                         break;
212
213                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
214                 ret = cbm(cpu, node);
215                 trace_cpuhp_exit(cpu, st->state, state, ret);
216                 if (ret) {
217                         if (!lastp)
218                                 goto err;
219
220                         *lastp = node;
221                         return ret;
222                 }
223                 cnt++;
224         }
225         if (lastp)
226                 *lastp = NULL;
227         return 0;
228 err:
229         /* Rollback the instances if one failed */
230         cbm = !bringup ? step->startup.multi : step->teardown.multi;
231         if (!cbm)
232                 return ret;
233
234         hlist_for_each(node, &step->list) {
235                 if (!cnt--)
236                         break;
237
238                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
239                 ret = cbm(cpu, node);
240                 trace_cpuhp_exit(cpu, st->state, state, ret);
241                 /*
242                  * Rollback must not fail,
243                  */
244                 WARN_ON_ONCE(ret);
245         }
246         return ret;
247 }
248
249 #ifdef CONFIG_SMP
250 static bool cpuhp_is_ap_state(enum cpuhp_state state)
251 {
252         /*
253          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
254          * purposes as that state is handled explicitly in cpu_down.
255          */
256         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
257 }
258
259 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
260 {
261         struct completion *done = bringup ? &st->done_up : &st->done_down;
262         wait_for_completion(done);
263 }
264
265 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
266 {
267         struct completion *done = bringup ? &st->done_up : &st->done_down;
268         complete(done);
269 }
270
271 /*
272  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
273  */
274 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
275 {
276         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
277 }
278
279 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
280 static DEFINE_MUTEX(cpu_add_remove_lock);
281 bool cpuhp_tasks_frozen;
282 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
283
284 /*
285  * The following two APIs (cpu_maps_update_begin/done) must be used when
286  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
287  */
288 void cpu_maps_update_begin(void)
289 {
290         mutex_lock(&cpu_add_remove_lock);
291 }
292
293 void cpu_maps_update_done(void)
294 {
295         mutex_unlock(&cpu_add_remove_lock);
296 }
297
298 /*
299  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
300  * Should always be manipulated under cpu_add_remove_lock
301  */
302 static int cpu_hotplug_disabled;
303
304 #ifdef CONFIG_HOTPLUG_CPU
305
306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
307
308 void cpus_read_lock(void)
309 {
310         percpu_down_read(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_lock);
313
314 int cpus_read_trylock(void)
315 {
316         return percpu_down_read_trylock(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_trylock);
319
320 void cpus_read_unlock(void)
321 {
322         percpu_up_read(&cpu_hotplug_lock);
323 }
324 EXPORT_SYMBOL_GPL(cpus_read_unlock);
325
326 void cpus_write_lock(void)
327 {
328         percpu_down_write(&cpu_hotplug_lock);
329 }
330
331 void cpus_write_unlock(void)
332 {
333         percpu_up_write(&cpu_hotplug_lock);
334 }
335
336 void lockdep_assert_cpus_held(void)
337 {
338         /*
339          * We can't have hotplug operations before userspace starts running,
340          * and some init codepaths will knowingly not take the hotplug lock.
341          * This is all valid, so mute lockdep until it makes sense to report
342          * unheld locks.
343          */
344         if (system_state < SYSTEM_RUNNING)
345                 return;
346
347         percpu_rwsem_assert_held(&cpu_hotplug_lock);
348 }
349
350 #ifdef CONFIG_LOCKDEP
351 int lockdep_is_cpus_held(void)
352 {
353         return percpu_rwsem_is_held(&cpu_hotplug_lock);
354 }
355 #endif
356
357 static void lockdep_acquire_cpus_lock(void)
358 {
359         rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
360 }
361
362 static void lockdep_release_cpus_lock(void)
363 {
364         rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
365 }
366
367 /*
368  * Wait for currently running CPU hotplug operations to complete (if any) and
369  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
370  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
371  * hotplug path before performing hotplug operations. So acquiring that lock
372  * guarantees mutual exclusion from any currently running hotplug operations.
373  */
374 void cpu_hotplug_disable(void)
375 {
376         cpu_maps_update_begin();
377         cpu_hotplug_disabled++;
378         cpu_maps_update_done();
379 }
380 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
381
382 static void __cpu_hotplug_enable(void)
383 {
384         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
385                 return;
386         cpu_hotplug_disabled--;
387 }
388
389 void cpu_hotplug_enable(void)
390 {
391         cpu_maps_update_begin();
392         __cpu_hotplug_enable();
393         cpu_maps_update_done();
394 }
395 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
396
397 #else
398
399 static void lockdep_acquire_cpus_lock(void)
400 {
401 }
402
403 static void lockdep_release_cpus_lock(void)
404 {
405 }
406
407 #endif  /* CONFIG_HOTPLUG_CPU */
408
409 /*
410  * Architectures that need SMT-specific errata handling during SMT hotplug
411  * should override this.
412  */
413 void __weak arch_smt_update(void) { }
414
415 #ifdef CONFIG_HOTPLUG_SMT
416 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
417
418 void __init cpu_smt_disable(bool force)
419 {
420         if (!cpu_smt_possible())
421                 return;
422
423         if (force) {
424                 pr_info("SMT: Force disabled\n");
425                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
426         } else {
427                 pr_info("SMT: disabled\n");
428                 cpu_smt_control = CPU_SMT_DISABLED;
429         }
430 }
431
432 /*
433  * The decision whether SMT is supported can only be done after the full
434  * CPU identification. Called from architecture code.
435  */
436 void __init cpu_smt_check_topology(void)
437 {
438         if (!topology_smt_supported())
439                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
440 }
441
442 static int __init smt_cmdline_disable(char *str)
443 {
444         cpu_smt_disable(str && !strcmp(str, "force"));
445         return 0;
446 }
447 early_param("nosmt", smt_cmdline_disable);
448
449 static inline bool cpu_smt_allowed(unsigned int cpu)
450 {
451         if (cpu_smt_control == CPU_SMT_ENABLED)
452                 return true;
453
454         if (topology_is_primary_thread(cpu))
455                 return true;
456
457         /*
458          * On x86 it's required to boot all logical CPUs at least once so
459          * that the init code can get a chance to set CR4.MCE on each
460          * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
461          * core will shutdown the machine.
462          */
463         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
464 }
465
466 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
467 bool cpu_smt_possible(void)
468 {
469         return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
470                 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
471 }
472 EXPORT_SYMBOL_GPL(cpu_smt_possible);
473 #else
474 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
475 #endif
476
477 static inline enum cpuhp_state
478 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
479 {
480         enum cpuhp_state prev_state = st->state;
481         bool bringup = st->state < target;
482
483         st->rollback = false;
484         st->last = NULL;
485
486         st->target = target;
487         st->single = false;
488         st->bringup = bringup;
489         if (cpu_dying(cpu) != !bringup)
490                 set_cpu_dying(cpu, !bringup);
491
492         return prev_state;
493 }
494
495 static inline void
496 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
497                   enum cpuhp_state prev_state)
498 {
499         bool bringup = !st->bringup;
500
501         st->target = prev_state;
502
503         /*
504          * Already rolling back. No need invert the bringup value or to change
505          * the current state.
506          */
507         if (st->rollback)
508                 return;
509
510         st->rollback = true;
511
512         /*
513          * If we have st->last we need to undo partial multi_instance of this
514          * state first. Otherwise start undo at the previous state.
515          */
516         if (!st->last) {
517                 if (st->bringup)
518                         st->state--;
519                 else
520                         st->state++;
521         }
522
523         st->bringup = bringup;
524         if (cpu_dying(cpu) != !bringup)
525                 set_cpu_dying(cpu, !bringup);
526 }
527
528 /* Regular hotplug invocation of the AP hotplug thread */
529 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
530 {
531         if (!st->single && st->state == st->target)
532                 return;
533
534         st->result = 0;
535         /*
536          * Make sure the above stores are visible before should_run becomes
537          * true. Paired with the mb() above in cpuhp_thread_fun()
538          */
539         smp_mb();
540         st->should_run = true;
541         wake_up_process(st->thread);
542         wait_for_ap_thread(st, st->bringup);
543 }
544
545 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
546                          enum cpuhp_state target)
547 {
548         enum cpuhp_state prev_state;
549         int ret;
550
551         prev_state = cpuhp_set_state(cpu, st, target);
552         __cpuhp_kick_ap(st);
553         if ((ret = st->result)) {
554                 cpuhp_reset_state(cpu, st, prev_state);
555                 __cpuhp_kick_ap(st);
556         }
557
558         return ret;
559 }
560
561 static int bringup_wait_for_ap(unsigned int cpu)
562 {
563         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
564
565         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
566         wait_for_ap_thread(st, true);
567         if (WARN_ON_ONCE((!cpu_online(cpu))))
568                 return -ECANCELED;
569
570         /* Unpark the hotplug thread of the target cpu */
571         kthread_unpark(st->thread);
572
573         /*
574          * SMT soft disabling on X86 requires to bring the CPU out of the
575          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
576          * CPU marked itself as booted_once in notify_cpu_starting() so the
577          * cpu_smt_allowed() check will now return false if this is not the
578          * primary sibling.
579          */
580         if (!cpu_smt_allowed(cpu))
581                 return -ECANCELED;
582
583         if (st->target <= CPUHP_AP_ONLINE_IDLE)
584                 return 0;
585
586         return cpuhp_kick_ap(cpu, st, st->target);
587 }
588
589 static int bringup_cpu(unsigned int cpu)
590 {
591         struct task_struct *idle = idle_thread_get(cpu);
592         int ret;
593
594         /*
595          * Reset stale stack state from the last time this CPU was online.
596          */
597         scs_task_reset(idle);
598         kasan_unpoison_task_stack(idle);
599
600         /*
601          * Some architectures have to walk the irq descriptors to
602          * setup the vector space for the cpu which comes online.
603          * Prevent irq alloc/free across the bringup.
604          */
605         irq_lock_sparse();
606
607         /* Arch-specific enabling code. */
608         ret = __cpu_up(cpu, idle);
609         irq_unlock_sparse();
610         if (ret)
611                 return ret;
612         return bringup_wait_for_ap(cpu);
613 }
614
615 static int finish_cpu(unsigned int cpu)
616 {
617         struct task_struct *idle = idle_thread_get(cpu);
618         struct mm_struct *mm = idle->active_mm;
619
620         /*
621          * idle_task_exit() will have switched to &init_mm, now
622          * clean up any remaining active_mm state.
623          */
624         if (mm != &init_mm)
625                 idle->active_mm = &init_mm;
626         mmdrop(mm);
627         return 0;
628 }
629
630 /*
631  * Hotplug state machine related functions
632  */
633
634 /*
635  * Get the next state to run. Empty ones will be skipped. Returns true if a
636  * state must be run.
637  *
638  * st->state will be modified ahead of time, to match state_to_run, as if it
639  * has already ran.
640  */
641 static bool cpuhp_next_state(bool bringup,
642                              enum cpuhp_state *state_to_run,
643                              struct cpuhp_cpu_state *st,
644                              enum cpuhp_state target)
645 {
646         do {
647                 if (bringup) {
648                         if (st->state >= target)
649                                 return false;
650
651                         *state_to_run = ++st->state;
652                 } else {
653                         if (st->state <= target)
654                                 return false;
655
656                         *state_to_run = st->state--;
657                 }
658
659                 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
660                         break;
661         } while (true);
662
663         return true;
664 }
665
666 static int cpuhp_invoke_callback_range(bool bringup,
667                                        unsigned int cpu,
668                                        struct cpuhp_cpu_state *st,
669                                        enum cpuhp_state target)
670 {
671         enum cpuhp_state state;
672         int err = 0;
673
674         while (cpuhp_next_state(bringup, &state, st, target)) {
675                 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
676                 if (err)
677                         break;
678         }
679
680         return err;
681 }
682
683 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
684 {
685         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
686                 return true;
687         /*
688          * When CPU hotplug is disabled, then taking the CPU down is not
689          * possible because takedown_cpu() and the architecture and
690          * subsystem specific mechanisms are not available. So the CPU
691          * which would be completely unplugged again needs to stay around
692          * in the current state.
693          */
694         return st->state <= CPUHP_BRINGUP_CPU;
695 }
696
697 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
698                               enum cpuhp_state target)
699 {
700         enum cpuhp_state prev_state = st->state;
701         int ret = 0;
702
703         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
704         if (ret) {
705                 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
706                          ret, cpu, cpuhp_get_step(st->state)->name,
707                          st->state);
708
709                 cpuhp_reset_state(cpu, st, prev_state);
710                 if (can_rollback_cpu(st))
711                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
712                                                             prev_state));
713         }
714         return ret;
715 }
716
717 /*
718  * The cpu hotplug threads manage the bringup and teardown of the cpus
719  */
720 static int cpuhp_should_run(unsigned int cpu)
721 {
722         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
723
724         return st->should_run;
725 }
726
727 /*
728  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
729  * callbacks when a state gets [un]installed at runtime.
730  *
731  * Each invocation of this function by the smpboot thread does a single AP
732  * state callback.
733  *
734  * It has 3 modes of operation:
735  *  - single: runs st->cb_state
736  *  - up:     runs ++st->state, while st->state < st->target
737  *  - down:   runs st->state--, while st->state > st->target
738  *
739  * When complete or on error, should_run is cleared and the completion is fired.
740  */
741 static void cpuhp_thread_fun(unsigned int cpu)
742 {
743         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
744         bool bringup = st->bringup;
745         enum cpuhp_state state;
746
747         if (WARN_ON_ONCE(!st->should_run))
748                 return;
749
750         /*
751          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
752          * that if we see ->should_run we also see the rest of the state.
753          */
754         smp_mb();
755
756         /*
757          * The BP holds the hotplug lock, but we're now running on the AP,
758          * ensure that anybody asserting the lock is held, will actually find
759          * it so.
760          */
761         lockdep_acquire_cpus_lock();
762         cpuhp_lock_acquire(bringup);
763
764         if (st->single) {
765                 state = st->cb_state;
766                 st->should_run = false;
767         } else {
768                 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
769                 if (!st->should_run)
770                         goto end;
771         }
772
773         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
774
775         if (cpuhp_is_atomic_state(state)) {
776                 local_irq_disable();
777                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
778                 local_irq_enable();
779
780                 /*
781                  * STARTING/DYING must not fail!
782                  */
783                 WARN_ON_ONCE(st->result);
784         } else {
785                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
786         }
787
788         if (st->result) {
789                 /*
790                  * If we fail on a rollback, we're up a creek without no
791                  * paddle, no way forward, no way back. We loose, thanks for
792                  * playing.
793                  */
794                 WARN_ON_ONCE(st->rollback);
795                 st->should_run = false;
796         }
797
798 end:
799         cpuhp_lock_release(bringup);
800         lockdep_release_cpus_lock();
801
802         if (!st->should_run)
803                 complete_ap_thread(st, bringup);
804 }
805
806 /* Invoke a single callback on a remote cpu */
807 static int
808 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
809                          struct hlist_node *node)
810 {
811         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
812         int ret;
813
814         if (!cpu_online(cpu))
815                 return 0;
816
817         cpuhp_lock_acquire(false);
818         cpuhp_lock_release(false);
819
820         cpuhp_lock_acquire(true);
821         cpuhp_lock_release(true);
822
823         /*
824          * If we are up and running, use the hotplug thread. For early calls
825          * we invoke the thread function directly.
826          */
827         if (!st->thread)
828                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
829
830         st->rollback = false;
831         st->last = NULL;
832
833         st->node = node;
834         st->bringup = bringup;
835         st->cb_state = state;
836         st->single = true;
837
838         __cpuhp_kick_ap(st);
839
840         /*
841          * If we failed and did a partial, do a rollback.
842          */
843         if ((ret = st->result) && st->last) {
844                 st->rollback = true;
845                 st->bringup = !bringup;
846
847                 __cpuhp_kick_ap(st);
848         }
849
850         /*
851          * Clean up the leftovers so the next hotplug operation wont use stale
852          * data.
853          */
854         st->node = st->last = NULL;
855         return ret;
856 }
857
858 static int cpuhp_kick_ap_work(unsigned int cpu)
859 {
860         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
861         enum cpuhp_state prev_state = st->state;
862         int ret;
863
864         cpuhp_lock_acquire(false);
865         cpuhp_lock_release(false);
866
867         cpuhp_lock_acquire(true);
868         cpuhp_lock_release(true);
869
870         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
871         ret = cpuhp_kick_ap(cpu, st, st->target);
872         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
873
874         return ret;
875 }
876
877 static struct smp_hotplug_thread cpuhp_threads = {
878         .store                  = &cpuhp_state.thread,
879         .thread_should_run      = cpuhp_should_run,
880         .thread_fn              = cpuhp_thread_fun,
881         .thread_comm            = "cpuhp/%u",
882         .selfparking            = true,
883 };
884
885 static __init void cpuhp_init_state(void)
886 {
887         struct cpuhp_cpu_state *st;
888         int cpu;
889
890         for_each_possible_cpu(cpu) {
891                 st = per_cpu_ptr(&cpuhp_state, cpu);
892                 init_completion(&st->done_up);
893                 init_completion(&st->done_down);
894         }
895 }
896
897 void __init cpuhp_threads_init(void)
898 {
899         cpuhp_init_state();
900         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
901         kthread_unpark(this_cpu_read(cpuhp_state.thread));
902 }
903
904 /*
905  *
906  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
907  * protected region.
908  *
909  * The operation is still serialized against concurrent CPU hotplug via
910  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
911  * serialized against other hotplug related activity like adding or
912  * removing of state callbacks and state instances, which invoke either the
913  * startup or the teardown callback of the affected state.
914  *
915  * This is required for subsystems which are unfixable vs. CPU hotplug and
916  * evade lock inversion problems by scheduling work which has to be
917  * completed _before_ cpu_up()/_cpu_down() returns.
918  *
919  * Don't even think about adding anything to this for any new code or even
920  * drivers. It's only purpose is to keep existing lock order trainwrecks
921  * working.
922  *
923  * For cpu_down() there might be valid reasons to finish cleanups which are
924  * not required to be done under cpu_hotplug_lock, but that's a different
925  * story and would be not invoked via this.
926  */
927 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
928 {
929         /*
930          * cpusets delegate hotplug operations to a worker to "solve" the
931          * lock order problems. Wait for the worker, but only if tasks are
932          * _not_ frozen (suspend, hibernate) as that would wait forever.
933          *
934          * The wait is required because otherwise the hotplug operation
935          * returns with inconsistent state, which could even be observed in
936          * user space when a new CPU is brought up. The CPU plug uevent
937          * would be delivered and user space reacting on it would fail to
938          * move tasks to the newly plugged CPU up to the point where the
939          * work has finished because up to that point the newly plugged CPU
940          * is not assignable in cpusets/cgroups. On unplug that's not
941          * necessarily a visible issue, but it is still inconsistent state,
942          * which is the real problem which needs to be "fixed". This can't
943          * prevent the transient state between scheduling the work and
944          * returning from waiting for it.
945          */
946         if (!tasks_frozen)
947                 cpuset_wait_for_hotplug();
948 }
949
950 #ifdef CONFIG_HOTPLUG_CPU
951 #ifndef arch_clear_mm_cpumask_cpu
952 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
953 #endif
954
955 /**
956  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
957  * @cpu: a CPU id
958  *
959  * This function walks all processes, finds a valid mm struct for each one and
960  * then clears a corresponding bit in mm's cpumask.  While this all sounds
961  * trivial, there are various non-obvious corner cases, which this function
962  * tries to solve in a safe manner.
963  *
964  * Also note that the function uses a somewhat relaxed locking scheme, so it may
965  * be called only for an already offlined CPU.
966  */
967 void clear_tasks_mm_cpumask(int cpu)
968 {
969         struct task_struct *p;
970
971         /*
972          * This function is called after the cpu is taken down and marked
973          * offline, so its not like new tasks will ever get this cpu set in
974          * their mm mask. -- Peter Zijlstra
975          * Thus, we may use rcu_read_lock() here, instead of grabbing
976          * full-fledged tasklist_lock.
977          */
978         WARN_ON(cpu_online(cpu));
979         rcu_read_lock();
980         for_each_process(p) {
981                 struct task_struct *t;
982
983                 /*
984                  * Main thread might exit, but other threads may still have
985                  * a valid mm. Find one.
986                  */
987                 t = find_lock_task_mm(p);
988                 if (!t)
989                         continue;
990                 arch_clear_mm_cpumask_cpu(cpu, t->mm);
991                 task_unlock(t);
992         }
993         rcu_read_unlock();
994 }
995
996 /* Take this CPU down. */
997 static int take_cpu_down(void *_param)
998 {
999         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1000         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1001         int err, cpu = smp_processor_id();
1002         int ret;
1003
1004         /* Ensure this CPU doesn't handle any more interrupts. */
1005         err = __cpu_disable();
1006         if (err < 0)
1007                 return err;
1008
1009         /*
1010          * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1011          * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1012          */
1013         WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1014
1015         /* Invoke the former CPU_DYING callbacks */
1016         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1017
1018         /*
1019          * DYING must not fail!
1020          */
1021         WARN_ON_ONCE(ret);
1022
1023         /* Give up timekeeping duties */
1024         tick_handover_do_timer();
1025         /* Remove CPU from timer broadcasting */
1026         tick_offline_cpu(cpu);
1027         /* Park the stopper thread */
1028         stop_machine_park(cpu);
1029         return 0;
1030 }
1031
1032 static int takedown_cpu(unsigned int cpu)
1033 {
1034         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1035         int err;
1036
1037         /* Park the smpboot threads */
1038         kthread_park(st->thread);
1039
1040         /*
1041          * Prevent irq alloc/free while the dying cpu reorganizes the
1042          * interrupt affinities.
1043          */
1044         irq_lock_sparse();
1045
1046         /*
1047          * So now all preempt/rcu users must observe !cpu_active().
1048          */
1049         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1050         if (err) {
1051                 /* CPU refused to die */
1052                 irq_unlock_sparse();
1053                 /* Unpark the hotplug thread so we can rollback there */
1054                 kthread_unpark(st->thread);
1055                 return err;
1056         }
1057         BUG_ON(cpu_online(cpu));
1058
1059         /*
1060          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1061          * all runnable tasks from the CPU, there's only the idle task left now
1062          * that the migration thread is done doing the stop_machine thing.
1063          *
1064          * Wait for the stop thread to go away.
1065          */
1066         wait_for_ap_thread(st, false);
1067         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1068
1069         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1070         irq_unlock_sparse();
1071
1072         hotplug_cpu__broadcast_tick_pull(cpu);
1073         /* This actually kills the CPU. */
1074         __cpu_die(cpu);
1075
1076         tick_cleanup_dead_cpu(cpu);
1077         rcutree_migrate_callbacks(cpu);
1078         return 0;
1079 }
1080
1081 static void cpuhp_complete_idle_dead(void *arg)
1082 {
1083         struct cpuhp_cpu_state *st = arg;
1084
1085         complete_ap_thread(st, false);
1086 }
1087
1088 void cpuhp_report_idle_dead(void)
1089 {
1090         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1091
1092         BUG_ON(st->state != CPUHP_AP_OFFLINE);
1093         rcu_report_dead(smp_processor_id());
1094         st->state = CPUHP_AP_IDLE_DEAD;
1095         /*
1096          * We cannot call complete after rcu_report_dead() so we delegate it
1097          * to an online cpu.
1098          */
1099         smp_call_function_single(cpumask_first(cpu_online_mask),
1100                                  cpuhp_complete_idle_dead, st, 0);
1101 }
1102
1103 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1104                                 enum cpuhp_state target)
1105 {
1106         enum cpuhp_state prev_state = st->state;
1107         int ret = 0;
1108
1109         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1110         if (ret) {
1111                 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1112                          ret, cpu, cpuhp_get_step(st->state)->name,
1113                          st->state);
1114
1115                 cpuhp_reset_state(cpu, st, prev_state);
1116
1117                 if (st->state < prev_state)
1118                         WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1119                                                             prev_state));
1120         }
1121
1122         return ret;
1123 }
1124
1125 /* Requires cpu_add_remove_lock to be held */
1126 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1127                            enum cpuhp_state target)
1128 {
1129         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1130         int prev_state, ret = 0;
1131
1132         if (num_online_cpus() == 1)
1133                 return -EBUSY;
1134
1135         if (!cpu_present(cpu))
1136                 return -EINVAL;
1137
1138         cpus_write_lock();
1139
1140         cpuhp_tasks_frozen = tasks_frozen;
1141
1142         prev_state = cpuhp_set_state(cpu, st, target);
1143         /*
1144          * If the current CPU state is in the range of the AP hotplug thread,
1145          * then we need to kick the thread.
1146          */
1147         if (st->state > CPUHP_TEARDOWN_CPU) {
1148                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1149                 ret = cpuhp_kick_ap_work(cpu);
1150                 /*
1151                  * The AP side has done the error rollback already. Just
1152                  * return the error code..
1153                  */
1154                 if (ret)
1155                         goto out;
1156
1157                 /*
1158                  * We might have stopped still in the range of the AP hotplug
1159                  * thread. Nothing to do anymore.
1160                  */
1161                 if (st->state > CPUHP_TEARDOWN_CPU)
1162                         goto out;
1163
1164                 st->target = target;
1165         }
1166         /*
1167          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1168          * to do the further cleanups.
1169          */
1170         ret = cpuhp_down_callbacks(cpu, st, target);
1171         if (ret && st->state < prev_state) {
1172                 if (st->state == CPUHP_TEARDOWN_CPU) {
1173                         cpuhp_reset_state(cpu, st, prev_state);
1174                         __cpuhp_kick_ap(st);
1175                 } else {
1176                         WARN(1, "DEAD callback error for CPU%d", cpu);
1177                 }
1178         }
1179
1180 out:
1181         cpus_write_unlock();
1182         /*
1183          * Do post unplug cleanup. This is still protected against
1184          * concurrent CPU hotplug via cpu_add_remove_lock.
1185          */
1186         lockup_detector_cleanup();
1187         arch_smt_update();
1188         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1189         return ret;
1190 }
1191
1192 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1193 {
1194         /*
1195          * If the platform does not support hotplug, report it explicitly to
1196          * differentiate it from a transient offlining failure.
1197          */
1198         if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1199                 return -EOPNOTSUPP;
1200         if (cpu_hotplug_disabled)
1201                 return -EBUSY;
1202         return _cpu_down(cpu, 0, target);
1203 }
1204
1205 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1206 {
1207         int err;
1208
1209         cpu_maps_update_begin();
1210         err = cpu_down_maps_locked(cpu, target);
1211         cpu_maps_update_done();
1212         return err;
1213 }
1214
1215 /**
1216  * cpu_device_down - Bring down a cpu device
1217  * @dev: Pointer to the cpu device to offline
1218  *
1219  * This function is meant to be used by device core cpu subsystem only.
1220  *
1221  * Other subsystems should use remove_cpu() instead.
1222  *
1223  * Return: %0 on success or a negative errno code
1224  */
1225 int cpu_device_down(struct device *dev)
1226 {
1227         return cpu_down(dev->id, CPUHP_OFFLINE);
1228 }
1229
1230 int remove_cpu(unsigned int cpu)
1231 {
1232         int ret;
1233
1234         lock_device_hotplug();
1235         ret = device_offline(get_cpu_device(cpu));
1236         unlock_device_hotplug();
1237
1238         return ret;
1239 }
1240 EXPORT_SYMBOL_GPL(remove_cpu);
1241
1242 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1243 {
1244         unsigned int cpu;
1245         int error;
1246
1247         cpu_maps_update_begin();
1248
1249         /*
1250          * Make certain the cpu I'm about to reboot on is online.
1251          *
1252          * This is inline to what migrate_to_reboot_cpu() already do.
1253          */
1254         if (!cpu_online(primary_cpu))
1255                 primary_cpu = cpumask_first(cpu_online_mask);
1256
1257         for_each_online_cpu(cpu) {
1258                 if (cpu == primary_cpu)
1259                         continue;
1260
1261                 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1262                 if (error) {
1263                         pr_err("Failed to offline CPU%d - error=%d",
1264                                 cpu, error);
1265                         break;
1266                 }
1267         }
1268
1269         /*
1270          * Ensure all but the reboot CPU are offline.
1271          */
1272         BUG_ON(num_online_cpus() > 1);
1273
1274         /*
1275          * Make sure the CPUs won't be enabled by someone else after this
1276          * point. Kexec will reboot to a new kernel shortly resetting
1277          * everything along the way.
1278          */
1279         cpu_hotplug_disabled++;
1280
1281         cpu_maps_update_done();
1282 }
1283
1284 #else
1285 #define takedown_cpu            NULL
1286 #endif /*CONFIG_HOTPLUG_CPU*/
1287
1288 /**
1289  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1290  * @cpu: cpu that just started
1291  *
1292  * It must be called by the arch code on the new cpu, before the new cpu
1293  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1294  */
1295 void notify_cpu_starting(unsigned int cpu)
1296 {
1297         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1298         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1299         int ret;
1300
1301         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1302         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1303         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1304
1305         /*
1306          * STARTING must not fail!
1307          */
1308         WARN_ON_ONCE(ret);
1309 }
1310
1311 /*
1312  * Called from the idle task. Wake up the controlling task which brings the
1313  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1314  * online bringup to the hotplug thread.
1315  */
1316 void cpuhp_online_idle(enum cpuhp_state state)
1317 {
1318         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1319
1320         /* Happens for the boot cpu */
1321         if (state != CPUHP_AP_ONLINE_IDLE)
1322                 return;
1323
1324         /*
1325          * Unpart the stopper thread before we start the idle loop (and start
1326          * scheduling); this ensures the stopper task is always available.
1327          */
1328         stop_machine_unpark(smp_processor_id());
1329
1330         st->state = CPUHP_AP_ONLINE_IDLE;
1331         complete_ap_thread(st, true);
1332 }
1333
1334 /* Requires cpu_add_remove_lock to be held */
1335 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1336 {
1337         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1338         struct task_struct *idle;
1339         int ret = 0;
1340
1341         cpus_write_lock();
1342
1343         if (!cpu_present(cpu)) {
1344                 ret = -EINVAL;
1345                 goto out;
1346         }
1347
1348         /*
1349          * The caller of cpu_up() might have raced with another
1350          * caller. Nothing to do.
1351          */
1352         if (st->state >= target)
1353                 goto out;
1354
1355         if (st->state == CPUHP_OFFLINE) {
1356                 /* Let it fail before we try to bring the cpu up */
1357                 idle = idle_thread_get(cpu);
1358                 if (IS_ERR(idle)) {
1359                         ret = PTR_ERR(idle);
1360                         goto out;
1361                 }
1362         }
1363
1364         cpuhp_tasks_frozen = tasks_frozen;
1365
1366         cpuhp_set_state(cpu, st, target);
1367         /*
1368          * If the current CPU state is in the range of the AP hotplug thread,
1369          * then we need to kick the thread once more.
1370          */
1371         if (st->state > CPUHP_BRINGUP_CPU) {
1372                 ret = cpuhp_kick_ap_work(cpu);
1373                 /*
1374                  * The AP side has done the error rollback already. Just
1375                  * return the error code..
1376                  */
1377                 if (ret)
1378                         goto out;
1379         }
1380
1381         /*
1382          * Try to reach the target state. We max out on the BP at
1383          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1384          * responsible for bringing it up to the target state.
1385          */
1386         target = min((int)target, CPUHP_BRINGUP_CPU);
1387         ret = cpuhp_up_callbacks(cpu, st, target);
1388 out:
1389         cpus_write_unlock();
1390         arch_smt_update();
1391         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1392         return ret;
1393 }
1394
1395 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1396 {
1397         int err = 0;
1398
1399         if (!cpu_possible(cpu)) {
1400                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1401                        cpu);
1402 #if defined(CONFIG_IA64)
1403                 pr_err("please check additional_cpus= boot parameter\n");
1404 #endif
1405                 return -EINVAL;
1406         }
1407
1408         err = try_online_node(cpu_to_node(cpu));
1409         if (err)
1410                 return err;
1411
1412         cpu_maps_update_begin();
1413
1414         if (cpu_hotplug_disabled) {
1415                 err = -EBUSY;
1416                 goto out;
1417         }
1418         if (!cpu_smt_allowed(cpu)) {
1419                 err = -EPERM;
1420                 goto out;
1421         }
1422
1423         err = _cpu_up(cpu, 0, target);
1424 out:
1425         cpu_maps_update_done();
1426         return err;
1427 }
1428
1429 /**
1430  * cpu_device_up - Bring up a cpu device
1431  * @dev: Pointer to the cpu device to online
1432  *
1433  * This function is meant to be used by device core cpu subsystem only.
1434  *
1435  * Other subsystems should use add_cpu() instead.
1436  *
1437  * Return: %0 on success or a negative errno code
1438  */
1439 int cpu_device_up(struct device *dev)
1440 {
1441         return cpu_up(dev->id, CPUHP_ONLINE);
1442 }
1443
1444 int add_cpu(unsigned int cpu)
1445 {
1446         int ret;
1447
1448         lock_device_hotplug();
1449         ret = device_online(get_cpu_device(cpu));
1450         unlock_device_hotplug();
1451
1452         return ret;
1453 }
1454 EXPORT_SYMBOL_GPL(add_cpu);
1455
1456 /**
1457  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1458  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1459  *
1460  * On some architectures like arm64, we can hibernate on any CPU, but on
1461  * wake up the CPU we hibernated on might be offline as a side effect of
1462  * using maxcpus= for example.
1463  *
1464  * Return: %0 on success or a negative errno code
1465  */
1466 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1467 {
1468         int ret;
1469
1470         if (!cpu_online(sleep_cpu)) {
1471                 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1472                 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1473                 if (ret) {
1474                         pr_err("Failed to bring hibernate-CPU up!\n");
1475                         return ret;
1476                 }
1477         }
1478         return 0;
1479 }
1480
1481 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1482 {
1483         unsigned int cpu;
1484
1485         for_each_present_cpu(cpu) {
1486                 if (num_online_cpus() >= setup_max_cpus)
1487                         break;
1488                 if (!cpu_online(cpu))
1489                         cpu_up(cpu, CPUHP_ONLINE);
1490         }
1491 }
1492
1493 #ifdef CONFIG_PM_SLEEP_SMP
1494 static cpumask_var_t frozen_cpus;
1495
1496 int freeze_secondary_cpus(int primary)
1497 {
1498         int cpu, error = 0;
1499
1500         cpu_maps_update_begin();
1501         if (primary == -1) {
1502                 primary = cpumask_first(cpu_online_mask);
1503                 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1504                         primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1505         } else {
1506                 if (!cpu_online(primary))
1507                         primary = cpumask_first(cpu_online_mask);
1508         }
1509
1510         /*
1511          * We take down all of the non-boot CPUs in one shot to avoid races
1512          * with the userspace trying to use the CPU hotplug at the same time
1513          */
1514         cpumask_clear(frozen_cpus);
1515
1516         pr_info("Disabling non-boot CPUs ...\n");
1517         for_each_online_cpu(cpu) {
1518                 if (cpu == primary)
1519                         continue;
1520
1521                 if (pm_wakeup_pending()) {
1522                         pr_info("Wakeup pending. Abort CPU freeze\n");
1523                         error = -EBUSY;
1524                         break;
1525                 }
1526
1527                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1528                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1529                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1530                 if (!error)
1531                         cpumask_set_cpu(cpu, frozen_cpus);
1532                 else {
1533                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1534                         break;
1535                 }
1536         }
1537
1538         if (!error)
1539                 BUG_ON(num_online_cpus() > 1);
1540         else
1541                 pr_err("Non-boot CPUs are not disabled\n");
1542
1543         /*
1544          * Make sure the CPUs won't be enabled by someone else. We need to do
1545          * this even in case of failure as all freeze_secondary_cpus() users are
1546          * supposed to do thaw_secondary_cpus() on the failure path.
1547          */
1548         cpu_hotplug_disabled++;
1549
1550         cpu_maps_update_done();
1551         return error;
1552 }
1553
1554 void __weak arch_thaw_secondary_cpus_begin(void)
1555 {
1556 }
1557
1558 void __weak arch_thaw_secondary_cpus_end(void)
1559 {
1560 }
1561
1562 void thaw_secondary_cpus(void)
1563 {
1564         int cpu, error;
1565
1566         /* Allow everyone to use the CPU hotplug again */
1567         cpu_maps_update_begin();
1568         __cpu_hotplug_enable();
1569         if (cpumask_empty(frozen_cpus))
1570                 goto out;
1571
1572         pr_info("Enabling non-boot CPUs ...\n");
1573
1574         arch_thaw_secondary_cpus_begin();
1575
1576         for_each_cpu(cpu, frozen_cpus) {
1577                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1578                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1579                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1580                 if (!error) {
1581                         pr_info("CPU%d is up\n", cpu);
1582                         continue;
1583                 }
1584                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1585         }
1586
1587         arch_thaw_secondary_cpus_end();
1588
1589         cpumask_clear(frozen_cpus);
1590 out:
1591         cpu_maps_update_done();
1592 }
1593
1594 static int __init alloc_frozen_cpus(void)
1595 {
1596         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1597                 return -ENOMEM;
1598         return 0;
1599 }
1600 core_initcall(alloc_frozen_cpus);
1601
1602 /*
1603  * When callbacks for CPU hotplug notifications are being executed, we must
1604  * ensure that the state of the system with respect to the tasks being frozen
1605  * or not, as reported by the notification, remains unchanged *throughout the
1606  * duration* of the execution of the callbacks.
1607  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1608  *
1609  * This synchronization is implemented by mutually excluding regular CPU
1610  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1611  * Hibernate notifications.
1612  */
1613 static int
1614 cpu_hotplug_pm_callback(struct notifier_block *nb,
1615                         unsigned long action, void *ptr)
1616 {
1617         switch (action) {
1618
1619         case PM_SUSPEND_PREPARE:
1620         case PM_HIBERNATION_PREPARE:
1621                 cpu_hotplug_disable();
1622                 break;
1623
1624         case PM_POST_SUSPEND:
1625         case PM_POST_HIBERNATION:
1626                 cpu_hotplug_enable();
1627                 break;
1628
1629         default:
1630                 return NOTIFY_DONE;
1631         }
1632
1633         return NOTIFY_OK;
1634 }
1635
1636
1637 static int __init cpu_hotplug_pm_sync_init(void)
1638 {
1639         /*
1640          * cpu_hotplug_pm_callback has higher priority than x86
1641          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1642          * to disable cpu hotplug to avoid cpu hotplug race.
1643          */
1644         pm_notifier(cpu_hotplug_pm_callback, 0);
1645         return 0;
1646 }
1647 core_initcall(cpu_hotplug_pm_sync_init);
1648
1649 #endif /* CONFIG_PM_SLEEP_SMP */
1650
1651 int __boot_cpu_id;
1652
1653 #endif /* CONFIG_SMP */
1654
1655 /* Boot processor state steps */
1656 static struct cpuhp_step cpuhp_hp_states[] = {
1657         [CPUHP_OFFLINE] = {
1658                 .name                   = "offline",
1659                 .startup.single         = NULL,
1660                 .teardown.single        = NULL,
1661         },
1662 #ifdef CONFIG_SMP
1663         [CPUHP_CREATE_THREADS]= {
1664                 .name                   = "threads:prepare",
1665                 .startup.single         = smpboot_create_threads,
1666                 .teardown.single        = NULL,
1667                 .cant_stop              = true,
1668         },
1669         [CPUHP_PERF_PREPARE] = {
1670                 .name                   = "perf:prepare",
1671                 .startup.single         = perf_event_init_cpu,
1672                 .teardown.single        = perf_event_exit_cpu,
1673         },
1674         [CPUHP_RANDOM_PREPARE] = {
1675                 .name                   = "random:prepare",
1676                 .startup.single         = random_prepare_cpu,
1677                 .teardown.single        = NULL,
1678         },
1679         [CPUHP_WORKQUEUE_PREP] = {
1680                 .name                   = "workqueue:prepare",
1681                 .startup.single         = workqueue_prepare_cpu,
1682                 .teardown.single        = NULL,
1683         },
1684         [CPUHP_HRTIMERS_PREPARE] = {
1685                 .name                   = "hrtimers:prepare",
1686                 .startup.single         = hrtimers_prepare_cpu,
1687                 .teardown.single        = hrtimers_dead_cpu,
1688         },
1689         [CPUHP_SMPCFD_PREPARE] = {
1690                 .name                   = "smpcfd:prepare",
1691                 .startup.single         = smpcfd_prepare_cpu,
1692                 .teardown.single        = smpcfd_dead_cpu,
1693         },
1694         [CPUHP_RELAY_PREPARE] = {
1695                 .name                   = "relay:prepare",
1696                 .startup.single         = relay_prepare_cpu,
1697                 .teardown.single        = NULL,
1698         },
1699         [CPUHP_SLAB_PREPARE] = {
1700                 .name                   = "slab:prepare",
1701                 .startup.single         = slab_prepare_cpu,
1702                 .teardown.single        = slab_dead_cpu,
1703         },
1704         [CPUHP_RCUTREE_PREP] = {
1705                 .name                   = "RCU/tree:prepare",
1706                 .startup.single         = rcutree_prepare_cpu,
1707                 .teardown.single        = rcutree_dead_cpu,
1708         },
1709         /*
1710          * On the tear-down path, timers_dead_cpu() must be invoked
1711          * before blk_mq_queue_reinit_notify() from notify_dead(),
1712          * otherwise a RCU stall occurs.
1713          */
1714         [CPUHP_TIMERS_PREPARE] = {
1715                 .name                   = "timers:prepare",
1716                 .startup.single         = timers_prepare_cpu,
1717                 .teardown.single        = timers_dead_cpu,
1718         },
1719         /* Kicks the plugged cpu into life */
1720         [CPUHP_BRINGUP_CPU] = {
1721                 .name                   = "cpu:bringup",
1722                 .startup.single         = bringup_cpu,
1723                 .teardown.single        = finish_cpu,
1724                 .cant_stop              = true,
1725         },
1726         /* Final state before CPU kills itself */
1727         [CPUHP_AP_IDLE_DEAD] = {
1728                 .name                   = "idle:dead",
1729         },
1730         /*
1731          * Last state before CPU enters the idle loop to die. Transient state
1732          * for synchronization.
1733          */
1734         [CPUHP_AP_OFFLINE] = {
1735                 .name                   = "ap:offline",
1736                 .cant_stop              = true,
1737         },
1738         /* First state is scheduler control. Interrupts are disabled */
1739         [CPUHP_AP_SCHED_STARTING] = {
1740                 .name                   = "sched:starting",
1741                 .startup.single         = sched_cpu_starting,
1742                 .teardown.single        = sched_cpu_dying,
1743         },
1744         [CPUHP_AP_RCUTREE_DYING] = {
1745                 .name                   = "RCU/tree:dying",
1746                 .startup.single         = NULL,
1747                 .teardown.single        = rcutree_dying_cpu,
1748         },
1749         [CPUHP_AP_SMPCFD_DYING] = {
1750                 .name                   = "smpcfd:dying",
1751                 .startup.single         = NULL,
1752                 .teardown.single        = smpcfd_dying_cpu,
1753         },
1754         /* Entry state on starting. Interrupts enabled from here on. Transient
1755          * state for synchronsization */
1756         [CPUHP_AP_ONLINE] = {
1757                 .name                   = "ap:online",
1758         },
1759         /*
1760          * Handled on control processor until the plugged processor manages
1761          * this itself.
1762          */
1763         [CPUHP_TEARDOWN_CPU] = {
1764                 .name                   = "cpu:teardown",
1765                 .startup.single         = NULL,
1766                 .teardown.single        = takedown_cpu,
1767                 .cant_stop              = true,
1768         },
1769
1770         [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1771                 .name                   = "sched:waitempty",
1772                 .startup.single         = NULL,
1773                 .teardown.single        = sched_cpu_wait_empty,
1774         },
1775
1776         /* Handle smpboot threads park/unpark */
1777         [CPUHP_AP_SMPBOOT_THREADS] = {
1778                 .name                   = "smpboot/threads:online",
1779                 .startup.single         = smpboot_unpark_threads,
1780                 .teardown.single        = smpboot_park_threads,
1781         },
1782         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1783                 .name                   = "irq/affinity:online",
1784                 .startup.single         = irq_affinity_online_cpu,
1785                 .teardown.single        = NULL,
1786         },
1787         [CPUHP_AP_PERF_ONLINE] = {
1788                 .name                   = "perf:online",
1789                 .startup.single         = perf_event_init_cpu,
1790                 .teardown.single        = perf_event_exit_cpu,
1791         },
1792         [CPUHP_AP_WATCHDOG_ONLINE] = {
1793                 .name                   = "lockup_detector:online",
1794                 .startup.single         = lockup_detector_online_cpu,
1795                 .teardown.single        = lockup_detector_offline_cpu,
1796         },
1797         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1798                 .name                   = "workqueue:online",
1799                 .startup.single         = workqueue_online_cpu,
1800                 .teardown.single        = workqueue_offline_cpu,
1801         },
1802         [CPUHP_AP_RANDOM_ONLINE] = {
1803                 .name                   = "random:online",
1804                 .startup.single         = random_online_cpu,
1805                 .teardown.single        = NULL,
1806         },
1807         [CPUHP_AP_RCUTREE_ONLINE] = {
1808                 .name                   = "RCU/tree:online",
1809                 .startup.single         = rcutree_online_cpu,
1810                 .teardown.single        = rcutree_offline_cpu,
1811         },
1812 #endif
1813         /*
1814          * The dynamically registered state space is here
1815          */
1816
1817 #ifdef CONFIG_SMP
1818         /* Last state is scheduler control setting the cpu active */
1819         [CPUHP_AP_ACTIVE] = {
1820                 .name                   = "sched:active",
1821                 .startup.single         = sched_cpu_activate,
1822                 .teardown.single        = sched_cpu_deactivate,
1823         },
1824 #endif
1825
1826         /* CPU is fully up and running. */
1827         [CPUHP_ONLINE] = {
1828                 .name                   = "online",
1829                 .startup.single         = NULL,
1830                 .teardown.single        = NULL,
1831         },
1832 };
1833
1834 /* Sanity check for callbacks */
1835 static int cpuhp_cb_check(enum cpuhp_state state)
1836 {
1837         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1838                 return -EINVAL;
1839         return 0;
1840 }
1841
1842 /*
1843  * Returns a free for dynamic slot assignment of the Online state. The states
1844  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1845  * by having no name assigned.
1846  */
1847 static int cpuhp_reserve_state(enum cpuhp_state state)
1848 {
1849         enum cpuhp_state i, end;
1850         struct cpuhp_step *step;
1851
1852         switch (state) {
1853         case CPUHP_AP_ONLINE_DYN:
1854                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1855                 end = CPUHP_AP_ONLINE_DYN_END;
1856                 break;
1857         case CPUHP_BP_PREPARE_DYN:
1858                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1859                 end = CPUHP_BP_PREPARE_DYN_END;
1860                 break;
1861         default:
1862                 return -EINVAL;
1863         }
1864
1865         for (i = state; i <= end; i++, step++) {
1866                 if (!step->name)
1867                         return i;
1868         }
1869         WARN(1, "No more dynamic states available for CPU hotplug\n");
1870         return -ENOSPC;
1871 }
1872
1873 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1874                                  int (*startup)(unsigned int cpu),
1875                                  int (*teardown)(unsigned int cpu),
1876                                  bool multi_instance)
1877 {
1878         /* (Un)Install the callbacks for further cpu hotplug operations */
1879         struct cpuhp_step *sp;
1880         int ret = 0;
1881
1882         /*
1883          * If name is NULL, then the state gets removed.
1884          *
1885          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1886          * the first allocation from these dynamic ranges, so the removal
1887          * would trigger a new allocation and clear the wrong (already
1888          * empty) state, leaving the callbacks of the to be cleared state
1889          * dangling, which causes wreckage on the next hotplug operation.
1890          */
1891         if (name && (state == CPUHP_AP_ONLINE_DYN ||
1892                      state == CPUHP_BP_PREPARE_DYN)) {
1893                 ret = cpuhp_reserve_state(state);
1894                 if (ret < 0)
1895                         return ret;
1896                 state = ret;
1897         }
1898         sp = cpuhp_get_step(state);
1899         if (name && sp->name)
1900                 return -EBUSY;
1901
1902         sp->startup.single = startup;
1903         sp->teardown.single = teardown;
1904         sp->name = name;
1905         sp->multi_instance = multi_instance;
1906         INIT_HLIST_HEAD(&sp->list);
1907         return ret;
1908 }
1909
1910 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1911 {
1912         return cpuhp_get_step(state)->teardown.single;
1913 }
1914
1915 /*
1916  * Call the startup/teardown function for a step either on the AP or
1917  * on the current CPU.
1918  */
1919 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1920                             struct hlist_node *node)
1921 {
1922         struct cpuhp_step *sp = cpuhp_get_step(state);
1923         int ret;
1924
1925         /*
1926          * If there's nothing to do, we done.
1927          * Relies on the union for multi_instance.
1928          */
1929         if (cpuhp_step_empty(bringup, sp))
1930                 return 0;
1931         /*
1932          * The non AP bound callbacks can fail on bringup. On teardown
1933          * e.g. module removal we crash for now.
1934          */
1935 #ifdef CONFIG_SMP
1936         if (cpuhp_is_ap_state(state))
1937                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1938         else
1939                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1940 #else
1941         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1942 #endif
1943         BUG_ON(ret && !bringup);
1944         return ret;
1945 }
1946
1947 /*
1948  * Called from __cpuhp_setup_state on a recoverable failure.
1949  *
1950  * Note: The teardown callbacks for rollback are not allowed to fail!
1951  */
1952 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1953                                    struct hlist_node *node)
1954 {
1955         int cpu;
1956
1957         /* Roll back the already executed steps on the other cpus */
1958         for_each_present_cpu(cpu) {
1959                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1960                 int cpustate = st->state;
1961
1962                 if (cpu >= failedcpu)
1963                         break;
1964
1965                 /* Did we invoke the startup call on that cpu ? */
1966                 if (cpustate >= state)
1967                         cpuhp_issue_call(cpu, state, false, node);
1968         }
1969 }
1970
1971 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1972                                           struct hlist_node *node,
1973                                           bool invoke)
1974 {
1975         struct cpuhp_step *sp;
1976         int cpu;
1977         int ret;
1978
1979         lockdep_assert_cpus_held();
1980
1981         sp = cpuhp_get_step(state);
1982         if (sp->multi_instance == false)
1983                 return -EINVAL;
1984
1985         mutex_lock(&cpuhp_state_mutex);
1986
1987         if (!invoke || !sp->startup.multi)
1988                 goto add_node;
1989
1990         /*
1991          * Try to call the startup callback for each present cpu
1992          * depending on the hotplug state of the cpu.
1993          */
1994         for_each_present_cpu(cpu) {
1995                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1996                 int cpustate = st->state;
1997
1998                 if (cpustate < state)
1999                         continue;
2000
2001                 ret = cpuhp_issue_call(cpu, state, true, node);
2002                 if (ret) {
2003                         if (sp->teardown.multi)
2004                                 cpuhp_rollback_install(cpu, state, node);
2005                         goto unlock;
2006                 }
2007         }
2008 add_node:
2009         ret = 0;
2010         hlist_add_head(node, &sp->list);
2011 unlock:
2012         mutex_unlock(&cpuhp_state_mutex);
2013         return ret;
2014 }
2015
2016 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2017                                bool invoke)
2018 {
2019         int ret;
2020
2021         cpus_read_lock();
2022         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2023         cpus_read_unlock();
2024         return ret;
2025 }
2026 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2027
2028 /**
2029  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2030  * @state:              The state to setup
2031  * @name:               Name of the step
2032  * @invoke:             If true, the startup function is invoked for cpus where
2033  *                      cpu state >= @state
2034  * @startup:            startup callback function
2035  * @teardown:           teardown callback function
2036  * @multi_instance:     State is set up for multiple instances which get
2037  *                      added afterwards.
2038  *
2039  * The caller needs to hold cpus read locked while calling this function.
2040  * Return:
2041  *   On success:
2042  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2043  *      0 for all other states
2044  *   On failure: proper (negative) error code
2045  */
2046 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2047                                    const char *name, bool invoke,
2048                                    int (*startup)(unsigned int cpu),
2049                                    int (*teardown)(unsigned int cpu),
2050                                    bool multi_instance)
2051 {
2052         int cpu, ret = 0;
2053         bool dynstate;
2054
2055         lockdep_assert_cpus_held();
2056
2057         if (cpuhp_cb_check(state) || !name)
2058                 return -EINVAL;
2059
2060         mutex_lock(&cpuhp_state_mutex);
2061
2062         ret = cpuhp_store_callbacks(state, name, startup, teardown,
2063                                     multi_instance);
2064
2065         dynstate = state == CPUHP_AP_ONLINE_DYN;
2066         if (ret > 0 && dynstate) {
2067                 state = ret;
2068                 ret = 0;
2069         }
2070
2071         if (ret || !invoke || !startup)
2072                 goto out;
2073
2074         /*
2075          * Try to call the startup callback for each present cpu
2076          * depending on the hotplug state of the cpu.
2077          */
2078         for_each_present_cpu(cpu) {
2079                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2080                 int cpustate = st->state;
2081
2082                 if (cpustate < state)
2083                         continue;
2084
2085                 ret = cpuhp_issue_call(cpu, state, true, NULL);
2086                 if (ret) {
2087                         if (teardown)
2088                                 cpuhp_rollback_install(cpu, state, NULL);
2089                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2090                         goto out;
2091                 }
2092         }
2093 out:
2094         mutex_unlock(&cpuhp_state_mutex);
2095         /*
2096          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2097          * dynamically allocated state in case of success.
2098          */
2099         if (!ret && dynstate)
2100                 return state;
2101         return ret;
2102 }
2103 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2104
2105 int __cpuhp_setup_state(enum cpuhp_state state,
2106                         const char *name, bool invoke,
2107                         int (*startup)(unsigned int cpu),
2108                         int (*teardown)(unsigned int cpu),
2109                         bool multi_instance)
2110 {
2111         int ret;
2112
2113         cpus_read_lock();
2114         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2115                                              teardown, multi_instance);
2116         cpus_read_unlock();
2117         return ret;
2118 }
2119 EXPORT_SYMBOL(__cpuhp_setup_state);
2120
2121 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2122                                   struct hlist_node *node, bool invoke)
2123 {
2124         struct cpuhp_step *sp = cpuhp_get_step(state);
2125         int cpu;
2126
2127         BUG_ON(cpuhp_cb_check(state));
2128
2129         if (!sp->multi_instance)
2130                 return -EINVAL;
2131
2132         cpus_read_lock();
2133         mutex_lock(&cpuhp_state_mutex);
2134
2135         if (!invoke || !cpuhp_get_teardown_cb(state))
2136                 goto remove;
2137         /*
2138          * Call the teardown callback for each present cpu depending
2139          * on the hotplug state of the cpu. This function is not
2140          * allowed to fail currently!
2141          */
2142         for_each_present_cpu(cpu) {
2143                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2144                 int cpustate = st->state;
2145
2146                 if (cpustate >= state)
2147                         cpuhp_issue_call(cpu, state, false, node);
2148         }
2149
2150 remove:
2151         hlist_del(node);
2152         mutex_unlock(&cpuhp_state_mutex);
2153         cpus_read_unlock();
2154
2155         return 0;
2156 }
2157 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2158
2159 /**
2160  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2161  * @state:      The state to remove
2162  * @invoke:     If true, the teardown function is invoked for cpus where
2163  *              cpu state >= @state
2164  *
2165  * The caller needs to hold cpus read locked while calling this function.
2166  * The teardown callback is currently not allowed to fail. Think
2167  * about module removal!
2168  */
2169 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2170 {
2171         struct cpuhp_step *sp = cpuhp_get_step(state);
2172         int cpu;
2173
2174         BUG_ON(cpuhp_cb_check(state));
2175
2176         lockdep_assert_cpus_held();
2177
2178         mutex_lock(&cpuhp_state_mutex);
2179         if (sp->multi_instance) {
2180                 WARN(!hlist_empty(&sp->list),
2181                      "Error: Removing state %d which has instances left.\n",
2182                      state);
2183                 goto remove;
2184         }
2185
2186         if (!invoke || !cpuhp_get_teardown_cb(state))
2187                 goto remove;
2188
2189         /*
2190          * Call the teardown callback for each present cpu depending
2191          * on the hotplug state of the cpu. This function is not
2192          * allowed to fail currently!
2193          */
2194         for_each_present_cpu(cpu) {
2195                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2196                 int cpustate = st->state;
2197
2198                 if (cpustate >= state)
2199                         cpuhp_issue_call(cpu, state, false, NULL);
2200         }
2201 remove:
2202         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2203         mutex_unlock(&cpuhp_state_mutex);
2204 }
2205 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2206
2207 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2208 {
2209         cpus_read_lock();
2210         __cpuhp_remove_state_cpuslocked(state, invoke);
2211         cpus_read_unlock();
2212 }
2213 EXPORT_SYMBOL(__cpuhp_remove_state);
2214
2215 #ifdef CONFIG_HOTPLUG_SMT
2216 static void cpuhp_offline_cpu_device(unsigned int cpu)
2217 {
2218         struct device *dev = get_cpu_device(cpu);
2219
2220         dev->offline = true;
2221         /* Tell user space about the state change */
2222         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2223 }
2224
2225 static void cpuhp_online_cpu_device(unsigned int cpu)
2226 {
2227         struct device *dev = get_cpu_device(cpu);
2228
2229         dev->offline = false;
2230         /* Tell user space about the state change */
2231         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2232 }
2233
2234 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2235 {
2236         int cpu, ret = 0;
2237
2238         cpu_maps_update_begin();
2239         for_each_online_cpu(cpu) {
2240                 if (topology_is_primary_thread(cpu))
2241                         continue;
2242                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2243                 if (ret)
2244                         break;
2245                 /*
2246                  * As this needs to hold the cpu maps lock it's impossible
2247                  * to call device_offline() because that ends up calling
2248                  * cpu_down() which takes cpu maps lock. cpu maps lock
2249                  * needs to be held as this might race against in kernel
2250                  * abusers of the hotplug machinery (thermal management).
2251                  *
2252                  * So nothing would update device:offline state. That would
2253                  * leave the sysfs entry stale and prevent onlining after
2254                  * smt control has been changed to 'off' again. This is
2255                  * called under the sysfs hotplug lock, so it is properly
2256                  * serialized against the regular offline usage.
2257                  */
2258                 cpuhp_offline_cpu_device(cpu);
2259         }
2260         if (!ret)
2261                 cpu_smt_control = ctrlval;
2262         cpu_maps_update_done();
2263         return ret;
2264 }
2265
2266 int cpuhp_smt_enable(void)
2267 {
2268         int cpu, ret = 0;
2269
2270         cpu_maps_update_begin();
2271         cpu_smt_control = CPU_SMT_ENABLED;
2272         for_each_present_cpu(cpu) {
2273                 /* Skip online CPUs and CPUs on offline nodes */
2274                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2275                         continue;
2276                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2277                 if (ret)
2278                         break;
2279                 /* See comment in cpuhp_smt_disable() */
2280                 cpuhp_online_cpu_device(cpu);
2281         }
2282         cpu_maps_update_done();
2283         return ret;
2284 }
2285 #endif
2286
2287 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2288 static ssize_t state_show(struct device *dev,
2289                           struct device_attribute *attr, char *buf)
2290 {
2291         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2292
2293         return sprintf(buf, "%d\n", st->state);
2294 }
2295 static DEVICE_ATTR_RO(state);
2296
2297 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2298                             const char *buf, size_t count)
2299 {
2300         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2301         struct cpuhp_step *sp;
2302         int target, ret;
2303
2304         ret = kstrtoint(buf, 10, &target);
2305         if (ret)
2306                 return ret;
2307
2308 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2309         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2310                 return -EINVAL;
2311 #else
2312         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2313                 return -EINVAL;
2314 #endif
2315
2316         ret = lock_device_hotplug_sysfs();
2317         if (ret)
2318                 return ret;
2319
2320         mutex_lock(&cpuhp_state_mutex);
2321         sp = cpuhp_get_step(target);
2322         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2323         mutex_unlock(&cpuhp_state_mutex);
2324         if (ret)
2325                 goto out;
2326
2327         if (st->state < target)
2328                 ret = cpu_up(dev->id, target);
2329         else
2330                 ret = cpu_down(dev->id, target);
2331 out:
2332         unlock_device_hotplug();
2333         return ret ? ret : count;
2334 }
2335
2336 static ssize_t target_show(struct device *dev,
2337                            struct device_attribute *attr, char *buf)
2338 {
2339         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2340
2341         return sprintf(buf, "%d\n", st->target);
2342 }
2343 static DEVICE_ATTR_RW(target);
2344
2345 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2346                           const char *buf, size_t count)
2347 {
2348         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2349         struct cpuhp_step *sp;
2350         int fail, ret;
2351
2352         ret = kstrtoint(buf, 10, &fail);
2353         if (ret)
2354                 return ret;
2355
2356         if (fail == CPUHP_INVALID) {
2357                 st->fail = fail;
2358                 return count;
2359         }
2360
2361         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2362                 return -EINVAL;
2363
2364         /*
2365          * Cannot fail STARTING/DYING callbacks.
2366          */
2367         if (cpuhp_is_atomic_state(fail))
2368                 return -EINVAL;
2369
2370         /*
2371          * DEAD callbacks cannot fail...
2372          * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2373          * triggering STARTING callbacks, a failure in this state would
2374          * hinder rollback.
2375          */
2376         if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2377                 return -EINVAL;
2378
2379         /*
2380          * Cannot fail anything that doesn't have callbacks.
2381          */
2382         mutex_lock(&cpuhp_state_mutex);
2383         sp = cpuhp_get_step(fail);
2384         if (!sp->startup.single && !sp->teardown.single)
2385                 ret = -EINVAL;
2386         mutex_unlock(&cpuhp_state_mutex);
2387         if (ret)
2388                 return ret;
2389
2390         st->fail = fail;
2391
2392         return count;
2393 }
2394
2395 static ssize_t fail_show(struct device *dev,
2396                          struct device_attribute *attr, char *buf)
2397 {
2398         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2399
2400         return sprintf(buf, "%d\n", st->fail);
2401 }
2402
2403 static DEVICE_ATTR_RW(fail);
2404
2405 static struct attribute *cpuhp_cpu_attrs[] = {
2406         &dev_attr_state.attr,
2407         &dev_attr_target.attr,
2408         &dev_attr_fail.attr,
2409         NULL
2410 };
2411
2412 static const struct attribute_group cpuhp_cpu_attr_group = {
2413         .attrs = cpuhp_cpu_attrs,
2414         .name = "hotplug",
2415         NULL
2416 };
2417
2418 static ssize_t states_show(struct device *dev,
2419                                  struct device_attribute *attr, char *buf)
2420 {
2421         ssize_t cur, res = 0;
2422         int i;
2423
2424         mutex_lock(&cpuhp_state_mutex);
2425         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2426                 struct cpuhp_step *sp = cpuhp_get_step(i);
2427
2428                 if (sp->name) {
2429                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2430                         buf += cur;
2431                         res += cur;
2432                 }
2433         }
2434         mutex_unlock(&cpuhp_state_mutex);
2435         return res;
2436 }
2437 static DEVICE_ATTR_RO(states);
2438
2439 static struct attribute *cpuhp_cpu_root_attrs[] = {
2440         &dev_attr_states.attr,
2441         NULL
2442 };
2443
2444 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2445         .attrs = cpuhp_cpu_root_attrs,
2446         .name = "hotplug",
2447         NULL
2448 };
2449
2450 #ifdef CONFIG_HOTPLUG_SMT
2451
2452 static ssize_t
2453 __store_smt_control(struct device *dev, struct device_attribute *attr,
2454                     const char *buf, size_t count)
2455 {
2456         int ctrlval, ret;
2457
2458         if (sysfs_streq(buf, "on"))
2459                 ctrlval = CPU_SMT_ENABLED;
2460         else if (sysfs_streq(buf, "off"))
2461                 ctrlval = CPU_SMT_DISABLED;
2462         else if (sysfs_streq(buf, "forceoff"))
2463                 ctrlval = CPU_SMT_FORCE_DISABLED;
2464         else
2465                 return -EINVAL;
2466
2467         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2468                 return -EPERM;
2469
2470         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2471                 return -ENODEV;
2472
2473         ret = lock_device_hotplug_sysfs();
2474         if (ret)
2475                 return ret;
2476
2477         if (ctrlval != cpu_smt_control) {
2478                 switch (ctrlval) {
2479                 case CPU_SMT_ENABLED:
2480                         ret = cpuhp_smt_enable();
2481                         break;
2482                 case CPU_SMT_DISABLED:
2483                 case CPU_SMT_FORCE_DISABLED:
2484                         ret = cpuhp_smt_disable(ctrlval);
2485                         break;
2486                 }
2487         }
2488
2489         unlock_device_hotplug();
2490         return ret ? ret : count;
2491 }
2492
2493 #else /* !CONFIG_HOTPLUG_SMT */
2494 static ssize_t
2495 __store_smt_control(struct device *dev, struct device_attribute *attr,
2496                     const char *buf, size_t count)
2497 {
2498         return -ENODEV;
2499 }
2500 #endif /* CONFIG_HOTPLUG_SMT */
2501
2502 static const char *smt_states[] = {
2503         [CPU_SMT_ENABLED]               = "on",
2504         [CPU_SMT_DISABLED]              = "off",
2505         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2506         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2507         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2508 };
2509
2510 static ssize_t control_show(struct device *dev,
2511                             struct device_attribute *attr, char *buf)
2512 {
2513         const char *state = smt_states[cpu_smt_control];
2514
2515         return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2516 }
2517
2518 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2519                              const char *buf, size_t count)
2520 {
2521         return __store_smt_control(dev, attr, buf, count);
2522 }
2523 static DEVICE_ATTR_RW(control);
2524
2525 static ssize_t active_show(struct device *dev,
2526                            struct device_attribute *attr, char *buf)
2527 {
2528         return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2529 }
2530 static DEVICE_ATTR_RO(active);
2531
2532 static struct attribute *cpuhp_smt_attrs[] = {
2533         &dev_attr_control.attr,
2534         &dev_attr_active.attr,
2535         NULL
2536 };
2537
2538 static const struct attribute_group cpuhp_smt_attr_group = {
2539         .attrs = cpuhp_smt_attrs,
2540         .name = "smt",
2541         NULL
2542 };
2543
2544 static int __init cpu_smt_sysfs_init(void)
2545 {
2546         return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2547                                   &cpuhp_smt_attr_group);
2548 }
2549
2550 static int __init cpuhp_sysfs_init(void)
2551 {
2552         int cpu, ret;
2553
2554         ret = cpu_smt_sysfs_init();
2555         if (ret)
2556                 return ret;
2557
2558         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2559                                  &cpuhp_cpu_root_attr_group);
2560         if (ret)
2561                 return ret;
2562
2563         for_each_possible_cpu(cpu) {
2564                 struct device *dev = get_cpu_device(cpu);
2565
2566                 if (!dev)
2567                         continue;
2568                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2569                 if (ret)
2570                         return ret;
2571         }
2572         return 0;
2573 }
2574 device_initcall(cpuhp_sysfs_init);
2575 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2576
2577 /*
2578  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2579  * represents all NR_CPUS bits binary values of 1<<nr.
2580  *
2581  * It is used by cpumask_of() to get a constant address to a CPU
2582  * mask value that has a single bit set only.
2583  */
2584
2585 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2586 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2587 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2588 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2589 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2590
2591 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2592
2593         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2594         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2595 #if BITS_PER_LONG > 32
2596         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2597         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2598 #endif
2599 };
2600 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2601
2602 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2603 EXPORT_SYMBOL(cpu_all_bits);
2604
2605 #ifdef CONFIG_INIT_ALL_POSSIBLE
2606 struct cpumask __cpu_possible_mask __read_mostly
2607         = {CPU_BITS_ALL};
2608 #else
2609 struct cpumask __cpu_possible_mask __read_mostly;
2610 #endif
2611 EXPORT_SYMBOL(__cpu_possible_mask);
2612
2613 struct cpumask __cpu_online_mask __read_mostly;
2614 EXPORT_SYMBOL(__cpu_online_mask);
2615
2616 struct cpumask __cpu_present_mask __read_mostly;
2617 EXPORT_SYMBOL(__cpu_present_mask);
2618
2619 struct cpumask __cpu_active_mask __read_mostly;
2620 EXPORT_SYMBOL(__cpu_active_mask);
2621
2622 struct cpumask __cpu_dying_mask __read_mostly;
2623 EXPORT_SYMBOL(__cpu_dying_mask);
2624
2625 atomic_t __num_online_cpus __read_mostly;
2626 EXPORT_SYMBOL(__num_online_cpus);
2627
2628 void init_cpu_present(const struct cpumask *src)
2629 {
2630         cpumask_copy(&__cpu_present_mask, src);
2631 }
2632
2633 void init_cpu_possible(const struct cpumask *src)
2634 {
2635         cpumask_copy(&__cpu_possible_mask, src);
2636 }
2637
2638 void init_cpu_online(const struct cpumask *src)
2639 {
2640         cpumask_copy(&__cpu_online_mask, src);
2641 }
2642
2643 void set_cpu_online(unsigned int cpu, bool online)
2644 {
2645         /*
2646          * atomic_inc/dec() is required to handle the horrid abuse of this
2647          * function by the reboot and kexec code which invoke it from
2648          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2649          * regular CPU hotplug is properly serialized.
2650          *
2651          * Note, that the fact that __num_online_cpus is of type atomic_t
2652          * does not protect readers which are not serialized against
2653          * concurrent hotplug operations.
2654          */
2655         if (online) {
2656                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2657                         atomic_inc(&__num_online_cpus);
2658         } else {
2659                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2660                         atomic_dec(&__num_online_cpus);
2661         }
2662 }
2663
2664 /*
2665  * Activate the first processor.
2666  */
2667 void __init boot_cpu_init(void)
2668 {
2669         int cpu = smp_processor_id();
2670
2671         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2672         set_cpu_online(cpu, true);
2673         set_cpu_active(cpu, true);
2674         set_cpu_present(cpu, true);
2675         set_cpu_possible(cpu, true);
2676
2677 #ifdef CONFIG_SMP
2678         __boot_cpu_id = cpu;
2679 #endif
2680 }
2681
2682 /*
2683  * Must be called _AFTER_ setting up the per_cpu areas
2684  */
2685 void __init boot_cpu_hotplug_init(void)
2686 {
2687 #ifdef CONFIG_SMP
2688         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2689 #endif
2690         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2691 }
2692
2693 /*
2694  * These are used for a global "mitigations=" cmdline option for toggling
2695  * optional CPU mitigations.
2696  */
2697 enum cpu_mitigations {
2698         CPU_MITIGATIONS_OFF,
2699         CPU_MITIGATIONS_AUTO,
2700         CPU_MITIGATIONS_AUTO_NOSMT,
2701 };
2702
2703 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2704         CPU_MITIGATIONS_AUTO;
2705
2706 static int __init mitigations_parse_cmdline(char *arg)
2707 {
2708         if (!strcmp(arg, "off"))
2709                 cpu_mitigations = CPU_MITIGATIONS_OFF;
2710         else if (!strcmp(arg, "auto"))
2711                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2712         else if (!strcmp(arg, "auto,nosmt"))
2713                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2714         else
2715                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2716                         arg);
2717
2718         return 0;
2719 }
2720 early_param("mitigations", mitigations_parse_cmdline);
2721
2722 /* mitigations=off */
2723 bool cpu_mitigations_off(void)
2724 {
2725         return cpu_mitigations == CPU_MITIGATIONS_OFF;
2726 }
2727 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2728
2729 /* mitigations=auto,nosmt */
2730 bool cpu_mitigations_auto_nosmt(void)
2731 {
2732         return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2733 }
2734 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);