can: gs_usb: gs_usb_receive_bulk_callback(): make use of netdev
[platform/kernel/linux-starfive.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44
45 #include "smpboot.h"
46
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:      The current cpu state
50  * @target:     The target state
51  * @fail:       Current CPU hotplug callback state
52  * @thread:     Pointer to the hotplug thread
53  * @should_run: Thread should execute
54  * @rollback:   Perform a rollback
55  * @single:     Single callback invocation
56  * @bringup:    Single callback bringup or teardown selector
57  * @cpu:        CPU number
58  * @node:       Remote CPU node; for multi-instance, do a
59  *              single entry callback for install/remove
60  * @last:       For multi-instance rollback, remember how far we got
61  * @cb_state:   The state for a single callback (install/uninstall)
62  * @result:     Result of the operation
63  * @ap_sync_state:      State for AP synchronization
64  * @done_up:    Signal completion to the issuer of the task for cpu-up
65  * @done_down:  Signal completion to the issuer of the task for cpu-down
66  */
67 struct cpuhp_cpu_state {
68         enum cpuhp_state        state;
69         enum cpuhp_state        target;
70         enum cpuhp_state        fail;
71 #ifdef CONFIG_SMP
72         struct task_struct      *thread;
73         bool                    should_run;
74         bool                    rollback;
75         bool                    single;
76         bool                    bringup;
77         struct hlist_node       *node;
78         struct hlist_node       *last;
79         enum cpuhp_state        cb_state;
80         int                     result;
81         atomic_t                ap_sync_state;
82         struct completion       done_up;
83         struct completion       done_down;
84 #endif
85 };
86
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88         .fail = CPUHP_INVALID,
89 };
90
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100
101
102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106
107 static inline void cpuhp_lock_release(bool bringup)
108 {
109         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
115
116 #endif
117
118 /**
119  * struct cpuhp_step - Hotplug state machine step
120  * @name:       Name of the step
121  * @startup:    Startup function of the step
122  * @teardown:   Teardown function of the step
123  * @cant_stop:  Bringup/teardown can't be stopped at this step
124  * @multi_instance:     State has multiple instances which get added afterwards
125  */
126 struct cpuhp_step {
127         const char              *name;
128         union {
129                 int             (*single)(unsigned int cpu);
130                 int             (*multi)(unsigned int cpu,
131                                          struct hlist_node *node);
132         } startup;
133         union {
134                 int             (*single)(unsigned int cpu);
135                 int             (*multi)(unsigned int cpu,
136                                          struct hlist_node *node);
137         } teardown;
138         /* private: */
139         struct hlist_head       list;
140         /* public: */
141         bool                    cant_stop;
142         bool                    multi_instance;
143 };
144
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150         return cpuhp_hp_states + state;
151 }
152
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155         return bringup ? !step->startup.single : !step->teardown.single;
156 }
157
158 /**
159  * cpuhp_invoke_callback - Invoke the callbacks for a given state
160  * @cpu:        The cpu for which the callback should be invoked
161  * @state:      The state to do callbacks for
162  * @bringup:    True if the bringup callback should be invoked
163  * @node:       For multi-instance, do a single entry callback for install/remove
164  * @lastp:      For multi-instance rollback, remember how far we got
165  *
166  * Called from cpu hotplug and from the state register machinery.
167  *
168  * Return: %0 on success or a negative errno code
169  */
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171                                  bool bringup, struct hlist_node *node,
172                                  struct hlist_node **lastp)
173 {
174         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175         struct cpuhp_step *step = cpuhp_get_step(state);
176         int (*cbm)(unsigned int cpu, struct hlist_node *node);
177         int (*cb)(unsigned int cpu);
178         int ret, cnt;
179
180         if (st->fail == state) {
181                 st->fail = CPUHP_INVALID;
182                 return -EAGAIN;
183         }
184
185         if (cpuhp_step_empty(bringup, step)) {
186                 WARN_ON_ONCE(1);
187                 return 0;
188         }
189
190         if (!step->multi_instance) {
191                 WARN_ON_ONCE(lastp && *lastp);
192                 cb = bringup ? step->startup.single : step->teardown.single;
193
194                 trace_cpuhp_enter(cpu, st->target, state, cb);
195                 ret = cb(cpu);
196                 trace_cpuhp_exit(cpu, st->state, state, ret);
197                 return ret;
198         }
199         cbm = bringup ? step->startup.multi : step->teardown.multi;
200
201         /* Single invocation for instance add/remove */
202         if (node) {
203                 WARN_ON_ONCE(lastp && *lastp);
204                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205                 ret = cbm(cpu, node);
206                 trace_cpuhp_exit(cpu, st->state, state, ret);
207                 return ret;
208         }
209
210         /* State transition. Invoke on all instances */
211         cnt = 0;
212         hlist_for_each(node, &step->list) {
213                 if (lastp && node == *lastp)
214                         break;
215
216                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217                 ret = cbm(cpu, node);
218                 trace_cpuhp_exit(cpu, st->state, state, ret);
219                 if (ret) {
220                         if (!lastp)
221                                 goto err;
222
223                         *lastp = node;
224                         return ret;
225                 }
226                 cnt++;
227         }
228         if (lastp)
229                 *lastp = NULL;
230         return 0;
231 err:
232         /* Rollback the instances if one failed */
233         cbm = !bringup ? step->startup.multi : step->teardown.multi;
234         if (!cbm)
235                 return ret;
236
237         hlist_for_each(node, &step->list) {
238                 if (!cnt--)
239                         break;
240
241                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242                 ret = cbm(cpu, node);
243                 trace_cpuhp_exit(cpu, st->state, state, ret);
244                 /*
245                  * Rollback must not fail,
246                  */
247                 WARN_ON_ONCE(ret);
248         }
249         return ret;
250 }
251
252 #ifdef CONFIG_SMP
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
254 {
255         /*
256          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257          * purposes as that state is handled explicitly in cpu_down.
258          */
259         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260 }
261
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 {
264         struct completion *done = bringup ? &st->done_up : &st->done_down;
265         wait_for_completion(done);
266 }
267
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 {
270         struct completion *done = bringup ? &st->done_up : &st->done_down;
271         complete(done);
272 }
273
274 /*
275  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276  */
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 {
279         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280 }
281
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284         SYNC_STATE_DEAD,
285         SYNC_STATE_KICKED,
286         SYNC_STATE_SHOULD_DIE,
287         SYNC_STATE_ALIVE,
288         SYNC_STATE_SHOULD_ONLINE,
289         SYNC_STATE_ONLINE,
290 };
291
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295  * @state:      The synchronization state to set
296  *
297  * No synchronization point. Just update of the synchronization state, but implies
298  * a full barrier so that the AP changes are visible before the control CPU proceeds.
299  */
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303
304         (void)atomic_xchg(st, state);
305 }
306
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310                                       enum cpuhp_sync_state next_state)
311 {
312         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313         ktime_t now, end, start = ktime_get();
314         int sync;
315
316         end = start + 10ULL * NSEC_PER_SEC;
317
318         sync = atomic_read(st);
319         while (1) {
320                 if (sync == state) {
321                         if (!atomic_try_cmpxchg(st, &sync, next_state))
322                                 continue;
323                         return true;
324                 }
325
326                 now = ktime_get();
327                 if (now > end) {
328                         /* Timeout. Leave the state unchanged */
329                         return false;
330                 } else if (now - start < NSEC_PER_MSEC) {
331                         /* Poll for one millisecond */
332                         arch_cpuhp_sync_state_poll();
333                 } else {
334                         usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335                 }
336                 sync = atomic_read(st);
337         }
338         return true;
339 }
340 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346  * cpuhp_ap_report_dead - Update synchronization state to DEAD
347  *
348  * No synchronization point. Just update of the synchronization state.
349  */
350 void cpuhp_ap_report_dead(void)
351 {
352         cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356
357 /*
358  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359  * because the AP cannot issue complete() at this stage.
360  */
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364         int sync = atomic_read(st);
365
366         do {
367                 /* CPU can have reported dead already. Don't overwrite that! */
368                 if (sync == SYNC_STATE_DEAD)
369                         break;
370         } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371
372         if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373                 /* CPU reached dead state. Invoke the cleanup function */
374                 arch_cpuhp_cleanup_dead_cpu(cpu);
375                 return;
376         }
377
378         /* No further action possible. Emit message and give up. */
379         pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388  *
389  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390  * for the BP to release it.
391  */
392 void cpuhp_ap_sync_alive(void)
393 {
394         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395
396         cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397
398         /* Wait for the control CPU to release it. */
399         while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400                 cpu_relax();
401 }
402
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406         int sync = atomic_read(st);
407
408 again:
409         switch (sync) {
410         case SYNC_STATE_DEAD:
411                 /* CPU is properly dead */
412                 break;
413         case SYNC_STATE_KICKED:
414                 /* CPU did not come up in previous attempt */
415                 break;
416         case SYNC_STATE_ALIVE:
417                 /* CPU is stuck cpuhp_ap_sync_alive(). */
418                 break;
419         default:
420                 /* CPU failed to report online or dead and is in limbo state. */
421                 return false;
422         }
423
424         /* Prepare for booting */
425         if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426                 goto again;
427
428         return true;
429 }
430
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432
433 /*
434  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435  * because the AP cannot issue complete() so early in the bringup.
436  */
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439         int ret = 0;
440
441         if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442                 return 0;
443
444         if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445                 pr_err("CPU%u failed to report alive state\n", cpu);
446                 ret = -EIO;
447         }
448
449         /* Let the architecture cleanup the kick alive mechanics. */
450         arch_cpuhp_cleanup_kick_cpu(cpu);
451         return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462
463 /*
464  * The following two APIs (cpu_maps_update_begin/done) must be used when
465  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466  */
467 void cpu_maps_update_begin(void)
468 {
469         mutex_lock(&cpu_add_remove_lock);
470 }
471
472 void cpu_maps_update_done(void)
473 {
474         mutex_unlock(&cpu_add_remove_lock);
475 }
476
477 /*
478  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479  * Should always be manipulated under cpu_add_remove_lock
480  */
481 static int cpu_hotplug_disabled;
482
483 #ifdef CONFIG_HOTPLUG_CPU
484
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486
487 void cpus_read_lock(void)
488 {
489         percpu_down_read(&cpu_hotplug_lock);
490 }
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
492
493 int cpus_read_trylock(void)
494 {
495         return percpu_down_read_trylock(&cpu_hotplug_lock);
496 }
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
498
499 void cpus_read_unlock(void)
500 {
501         percpu_up_read(&cpu_hotplug_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
504
505 void cpus_write_lock(void)
506 {
507         percpu_down_write(&cpu_hotplug_lock);
508 }
509
510 void cpus_write_unlock(void)
511 {
512         percpu_up_write(&cpu_hotplug_lock);
513 }
514
515 void lockdep_assert_cpus_held(void)
516 {
517         /*
518          * We can't have hotplug operations before userspace starts running,
519          * and some init codepaths will knowingly not take the hotplug lock.
520          * This is all valid, so mute lockdep until it makes sense to report
521          * unheld locks.
522          */
523         if (system_state < SYSTEM_RUNNING)
524                 return;
525
526         percpu_rwsem_assert_held(&cpu_hotplug_lock);
527 }
528
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
531 {
532         return percpu_rwsem_is_held(&cpu_hotplug_lock);
533 }
534 #endif
535
536 static void lockdep_acquire_cpus_lock(void)
537 {
538         rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539 }
540
541 static void lockdep_release_cpus_lock(void)
542 {
543         rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544 }
545
546 /*
547  * Wait for currently running CPU hotplug operations to complete (if any) and
548  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550  * hotplug path before performing hotplug operations. So acquiring that lock
551  * guarantees mutual exclusion from any currently running hotplug operations.
552  */
553 void cpu_hotplug_disable(void)
554 {
555         cpu_maps_update_begin();
556         cpu_hotplug_disabled++;
557         cpu_maps_update_done();
558 }
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560
561 static void __cpu_hotplug_enable(void)
562 {
563         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564                 return;
565         cpu_hotplug_disabled--;
566 }
567
568 void cpu_hotplug_enable(void)
569 {
570         cpu_maps_update_begin();
571         __cpu_hotplug_enable();
572         cpu_maps_update_done();
573 }
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575
576 #else
577
578 static void lockdep_acquire_cpus_lock(void)
579 {
580 }
581
582 static void lockdep_release_cpus_lock(void)
583 {
584 }
585
586 #endif  /* CONFIG_HOTPLUG_CPU */
587
588 /*
589  * Architectures that need SMT-specific errata handling during SMT hotplug
590  * should override this.
591  */
592 void __weak arch_smt_update(void) { }
593
594 #ifdef CONFIG_HOTPLUG_SMT
595 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
596
597 void __init cpu_smt_disable(bool force)
598 {
599         if (!cpu_smt_possible())
600                 return;
601
602         if (force) {
603                 pr_info("SMT: Force disabled\n");
604                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
605         } else {
606                 pr_info("SMT: disabled\n");
607                 cpu_smt_control = CPU_SMT_DISABLED;
608         }
609 }
610
611 /*
612  * The decision whether SMT is supported can only be done after the full
613  * CPU identification. Called from architecture code.
614  */
615 void __init cpu_smt_check_topology(void)
616 {
617         if (!topology_smt_supported())
618                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
619 }
620
621 static int __init smt_cmdline_disable(char *str)
622 {
623         cpu_smt_disable(str && !strcmp(str, "force"));
624         return 0;
625 }
626 early_param("nosmt", smt_cmdline_disable);
627
628 static inline bool cpu_smt_allowed(unsigned int cpu)
629 {
630         if (cpu_smt_control == CPU_SMT_ENABLED)
631                 return true;
632
633         if (topology_is_primary_thread(cpu))
634                 return true;
635
636         /*
637          * On x86 it's required to boot all logical CPUs at least once so
638          * that the init code can get a chance to set CR4.MCE on each
639          * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
640          * core will shutdown the machine.
641          */
642         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
643 }
644
645 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
646 bool cpu_smt_possible(void)
647 {
648         return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
649                 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
650 }
651 EXPORT_SYMBOL_GPL(cpu_smt_possible);
652
653 static inline bool cpuhp_smt_aware(void)
654 {
655         return topology_smt_supported();
656 }
657
658 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
659 {
660         return cpu_primary_thread_mask;
661 }
662 #else
663 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
664 static inline bool cpuhp_smt_aware(void) { return false; }
665 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
666 {
667         return cpu_present_mask;
668 }
669 #endif
670
671 static inline enum cpuhp_state
672 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
673 {
674         enum cpuhp_state prev_state = st->state;
675         bool bringup = st->state < target;
676
677         st->rollback = false;
678         st->last = NULL;
679
680         st->target = target;
681         st->single = false;
682         st->bringup = bringup;
683         if (cpu_dying(cpu) != !bringup)
684                 set_cpu_dying(cpu, !bringup);
685
686         return prev_state;
687 }
688
689 static inline void
690 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
691                   enum cpuhp_state prev_state)
692 {
693         bool bringup = !st->bringup;
694
695         st->target = prev_state;
696
697         /*
698          * Already rolling back. No need invert the bringup value or to change
699          * the current state.
700          */
701         if (st->rollback)
702                 return;
703
704         st->rollback = true;
705
706         /*
707          * If we have st->last we need to undo partial multi_instance of this
708          * state first. Otherwise start undo at the previous state.
709          */
710         if (!st->last) {
711                 if (st->bringup)
712                         st->state--;
713                 else
714                         st->state++;
715         }
716
717         st->bringup = bringup;
718         if (cpu_dying(cpu) != !bringup)
719                 set_cpu_dying(cpu, !bringup);
720 }
721
722 /* Regular hotplug invocation of the AP hotplug thread */
723 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
724 {
725         if (!st->single && st->state == st->target)
726                 return;
727
728         st->result = 0;
729         /*
730          * Make sure the above stores are visible before should_run becomes
731          * true. Paired with the mb() above in cpuhp_thread_fun()
732          */
733         smp_mb();
734         st->should_run = true;
735         wake_up_process(st->thread);
736         wait_for_ap_thread(st, st->bringup);
737 }
738
739 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
740                          enum cpuhp_state target)
741 {
742         enum cpuhp_state prev_state;
743         int ret;
744
745         prev_state = cpuhp_set_state(cpu, st, target);
746         __cpuhp_kick_ap(st);
747         if ((ret = st->result)) {
748                 cpuhp_reset_state(cpu, st, prev_state);
749                 __cpuhp_kick_ap(st);
750         }
751
752         return ret;
753 }
754
755 static int bringup_wait_for_ap_online(unsigned int cpu)
756 {
757         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
758
759         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
760         wait_for_ap_thread(st, true);
761         if (WARN_ON_ONCE((!cpu_online(cpu))))
762                 return -ECANCELED;
763
764         /* Unpark the hotplug thread of the target cpu */
765         kthread_unpark(st->thread);
766
767         /*
768          * SMT soft disabling on X86 requires to bring the CPU out of the
769          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
770          * CPU marked itself as booted_once in notify_cpu_starting() so the
771          * cpu_smt_allowed() check will now return false if this is not the
772          * primary sibling.
773          */
774         if (!cpu_smt_allowed(cpu))
775                 return -ECANCELED;
776         return 0;
777 }
778
779 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
780 static int cpuhp_kick_ap_alive(unsigned int cpu)
781 {
782         if (!cpuhp_can_boot_ap(cpu))
783                 return -EAGAIN;
784
785         return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
786 }
787
788 static int cpuhp_bringup_ap(unsigned int cpu)
789 {
790         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
791         int ret;
792
793         /*
794          * Some architectures have to walk the irq descriptors to
795          * setup the vector space for the cpu which comes online.
796          * Prevent irq alloc/free across the bringup.
797          */
798         irq_lock_sparse();
799
800         ret = cpuhp_bp_sync_alive(cpu);
801         if (ret)
802                 goto out_unlock;
803
804         ret = bringup_wait_for_ap_online(cpu);
805         if (ret)
806                 goto out_unlock;
807
808         irq_unlock_sparse();
809
810         if (st->target <= CPUHP_AP_ONLINE_IDLE)
811                 return 0;
812
813         return cpuhp_kick_ap(cpu, st, st->target);
814
815 out_unlock:
816         irq_unlock_sparse();
817         return ret;
818 }
819 #else
820 static int bringup_cpu(unsigned int cpu)
821 {
822         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
823         struct task_struct *idle = idle_thread_get(cpu);
824         int ret;
825
826         if (!cpuhp_can_boot_ap(cpu))
827                 return -EAGAIN;
828
829         /*
830          * Some architectures have to walk the irq descriptors to
831          * setup the vector space for the cpu which comes online.
832          *
833          * Prevent irq alloc/free across the bringup by acquiring the
834          * sparse irq lock. Hold it until the upcoming CPU completes the
835          * startup in cpuhp_online_idle() which allows to avoid
836          * intermediate synchronization points in the architecture code.
837          */
838         irq_lock_sparse();
839
840         ret = __cpu_up(cpu, idle);
841         if (ret)
842                 goto out_unlock;
843
844         ret = cpuhp_bp_sync_alive(cpu);
845         if (ret)
846                 goto out_unlock;
847
848         ret = bringup_wait_for_ap_online(cpu);
849         if (ret)
850                 goto out_unlock;
851
852         irq_unlock_sparse();
853
854         if (st->target <= CPUHP_AP_ONLINE_IDLE)
855                 return 0;
856
857         return cpuhp_kick_ap(cpu, st, st->target);
858
859 out_unlock:
860         irq_unlock_sparse();
861         return ret;
862 }
863 #endif
864
865 static int finish_cpu(unsigned int cpu)
866 {
867         struct task_struct *idle = idle_thread_get(cpu);
868         struct mm_struct *mm = idle->active_mm;
869
870         /*
871          * idle_task_exit() will have switched to &init_mm, now
872          * clean up any remaining active_mm state.
873          */
874         if (mm != &init_mm)
875                 idle->active_mm = &init_mm;
876         mmdrop_lazy_tlb(mm);
877         return 0;
878 }
879
880 /*
881  * Hotplug state machine related functions
882  */
883
884 /*
885  * Get the next state to run. Empty ones will be skipped. Returns true if a
886  * state must be run.
887  *
888  * st->state will be modified ahead of time, to match state_to_run, as if it
889  * has already ran.
890  */
891 static bool cpuhp_next_state(bool bringup,
892                              enum cpuhp_state *state_to_run,
893                              struct cpuhp_cpu_state *st,
894                              enum cpuhp_state target)
895 {
896         do {
897                 if (bringup) {
898                         if (st->state >= target)
899                                 return false;
900
901                         *state_to_run = ++st->state;
902                 } else {
903                         if (st->state <= target)
904                                 return false;
905
906                         *state_to_run = st->state--;
907                 }
908
909                 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
910                         break;
911         } while (true);
912
913         return true;
914 }
915
916 static int __cpuhp_invoke_callback_range(bool bringup,
917                                          unsigned int cpu,
918                                          struct cpuhp_cpu_state *st,
919                                          enum cpuhp_state target,
920                                          bool nofail)
921 {
922         enum cpuhp_state state;
923         int ret = 0;
924
925         while (cpuhp_next_state(bringup, &state, st, target)) {
926                 int err;
927
928                 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
929                 if (!err)
930                         continue;
931
932                 if (nofail) {
933                         pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
934                                 cpu, bringup ? "UP" : "DOWN",
935                                 cpuhp_get_step(st->state)->name,
936                                 st->state, err);
937                         ret = -1;
938                 } else {
939                         ret = err;
940                         break;
941                 }
942         }
943
944         return ret;
945 }
946
947 static inline int cpuhp_invoke_callback_range(bool bringup,
948                                               unsigned int cpu,
949                                               struct cpuhp_cpu_state *st,
950                                               enum cpuhp_state target)
951 {
952         return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
953 }
954
955 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
956                                                       unsigned int cpu,
957                                                       struct cpuhp_cpu_state *st,
958                                                       enum cpuhp_state target)
959 {
960         __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
961 }
962
963 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
964 {
965         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
966                 return true;
967         /*
968          * When CPU hotplug is disabled, then taking the CPU down is not
969          * possible because takedown_cpu() and the architecture and
970          * subsystem specific mechanisms are not available. So the CPU
971          * which would be completely unplugged again needs to stay around
972          * in the current state.
973          */
974         return st->state <= CPUHP_BRINGUP_CPU;
975 }
976
977 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
978                               enum cpuhp_state target)
979 {
980         enum cpuhp_state prev_state = st->state;
981         int ret = 0;
982
983         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
984         if (ret) {
985                 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
986                          ret, cpu, cpuhp_get_step(st->state)->name,
987                          st->state);
988
989                 cpuhp_reset_state(cpu, st, prev_state);
990                 if (can_rollback_cpu(st))
991                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
992                                                             prev_state));
993         }
994         return ret;
995 }
996
997 /*
998  * The cpu hotplug threads manage the bringup and teardown of the cpus
999  */
1000 static int cpuhp_should_run(unsigned int cpu)
1001 {
1002         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1003
1004         return st->should_run;
1005 }
1006
1007 /*
1008  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1009  * callbacks when a state gets [un]installed at runtime.
1010  *
1011  * Each invocation of this function by the smpboot thread does a single AP
1012  * state callback.
1013  *
1014  * It has 3 modes of operation:
1015  *  - single: runs st->cb_state
1016  *  - up:     runs ++st->state, while st->state < st->target
1017  *  - down:   runs st->state--, while st->state > st->target
1018  *
1019  * When complete or on error, should_run is cleared and the completion is fired.
1020  */
1021 static void cpuhp_thread_fun(unsigned int cpu)
1022 {
1023         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1024         bool bringup = st->bringup;
1025         enum cpuhp_state state;
1026
1027         if (WARN_ON_ONCE(!st->should_run))
1028                 return;
1029
1030         /*
1031          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1032          * that if we see ->should_run we also see the rest of the state.
1033          */
1034         smp_mb();
1035
1036         /*
1037          * The BP holds the hotplug lock, but we're now running on the AP,
1038          * ensure that anybody asserting the lock is held, will actually find
1039          * it so.
1040          */
1041         lockdep_acquire_cpus_lock();
1042         cpuhp_lock_acquire(bringup);
1043
1044         if (st->single) {
1045                 state = st->cb_state;
1046                 st->should_run = false;
1047         } else {
1048                 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1049                 if (!st->should_run)
1050                         goto end;
1051         }
1052
1053         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1054
1055         if (cpuhp_is_atomic_state(state)) {
1056                 local_irq_disable();
1057                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1058                 local_irq_enable();
1059
1060                 /*
1061                  * STARTING/DYING must not fail!
1062                  */
1063                 WARN_ON_ONCE(st->result);
1064         } else {
1065                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1066         }
1067
1068         if (st->result) {
1069                 /*
1070                  * If we fail on a rollback, we're up a creek without no
1071                  * paddle, no way forward, no way back. We loose, thanks for
1072                  * playing.
1073                  */
1074                 WARN_ON_ONCE(st->rollback);
1075                 st->should_run = false;
1076         }
1077
1078 end:
1079         cpuhp_lock_release(bringup);
1080         lockdep_release_cpus_lock();
1081
1082         if (!st->should_run)
1083                 complete_ap_thread(st, bringup);
1084 }
1085
1086 /* Invoke a single callback on a remote cpu */
1087 static int
1088 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1089                          struct hlist_node *node)
1090 {
1091         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1092         int ret;
1093
1094         if (!cpu_online(cpu))
1095                 return 0;
1096
1097         cpuhp_lock_acquire(false);
1098         cpuhp_lock_release(false);
1099
1100         cpuhp_lock_acquire(true);
1101         cpuhp_lock_release(true);
1102
1103         /*
1104          * If we are up and running, use the hotplug thread. For early calls
1105          * we invoke the thread function directly.
1106          */
1107         if (!st->thread)
1108                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1109
1110         st->rollback = false;
1111         st->last = NULL;
1112
1113         st->node = node;
1114         st->bringup = bringup;
1115         st->cb_state = state;
1116         st->single = true;
1117
1118         __cpuhp_kick_ap(st);
1119
1120         /*
1121          * If we failed and did a partial, do a rollback.
1122          */
1123         if ((ret = st->result) && st->last) {
1124                 st->rollback = true;
1125                 st->bringup = !bringup;
1126
1127                 __cpuhp_kick_ap(st);
1128         }
1129
1130         /*
1131          * Clean up the leftovers so the next hotplug operation wont use stale
1132          * data.
1133          */
1134         st->node = st->last = NULL;
1135         return ret;
1136 }
1137
1138 static int cpuhp_kick_ap_work(unsigned int cpu)
1139 {
1140         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1141         enum cpuhp_state prev_state = st->state;
1142         int ret;
1143
1144         cpuhp_lock_acquire(false);
1145         cpuhp_lock_release(false);
1146
1147         cpuhp_lock_acquire(true);
1148         cpuhp_lock_release(true);
1149
1150         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1151         ret = cpuhp_kick_ap(cpu, st, st->target);
1152         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1153
1154         return ret;
1155 }
1156
1157 static struct smp_hotplug_thread cpuhp_threads = {
1158         .store                  = &cpuhp_state.thread,
1159         .thread_should_run      = cpuhp_should_run,
1160         .thread_fn              = cpuhp_thread_fun,
1161         .thread_comm            = "cpuhp/%u",
1162         .selfparking            = true,
1163 };
1164
1165 static __init void cpuhp_init_state(void)
1166 {
1167         struct cpuhp_cpu_state *st;
1168         int cpu;
1169
1170         for_each_possible_cpu(cpu) {
1171                 st = per_cpu_ptr(&cpuhp_state, cpu);
1172                 init_completion(&st->done_up);
1173                 init_completion(&st->done_down);
1174         }
1175 }
1176
1177 void __init cpuhp_threads_init(void)
1178 {
1179         cpuhp_init_state();
1180         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1181         kthread_unpark(this_cpu_read(cpuhp_state.thread));
1182 }
1183
1184 /*
1185  *
1186  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1187  * protected region.
1188  *
1189  * The operation is still serialized against concurrent CPU hotplug via
1190  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1191  * serialized against other hotplug related activity like adding or
1192  * removing of state callbacks and state instances, which invoke either the
1193  * startup or the teardown callback of the affected state.
1194  *
1195  * This is required for subsystems which are unfixable vs. CPU hotplug and
1196  * evade lock inversion problems by scheduling work which has to be
1197  * completed _before_ cpu_up()/_cpu_down() returns.
1198  *
1199  * Don't even think about adding anything to this for any new code or even
1200  * drivers. It's only purpose is to keep existing lock order trainwrecks
1201  * working.
1202  *
1203  * For cpu_down() there might be valid reasons to finish cleanups which are
1204  * not required to be done under cpu_hotplug_lock, but that's a different
1205  * story and would be not invoked via this.
1206  */
1207 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1208 {
1209         /*
1210          * cpusets delegate hotplug operations to a worker to "solve" the
1211          * lock order problems. Wait for the worker, but only if tasks are
1212          * _not_ frozen (suspend, hibernate) as that would wait forever.
1213          *
1214          * The wait is required because otherwise the hotplug operation
1215          * returns with inconsistent state, which could even be observed in
1216          * user space when a new CPU is brought up. The CPU plug uevent
1217          * would be delivered and user space reacting on it would fail to
1218          * move tasks to the newly plugged CPU up to the point where the
1219          * work has finished because up to that point the newly plugged CPU
1220          * is not assignable in cpusets/cgroups. On unplug that's not
1221          * necessarily a visible issue, but it is still inconsistent state,
1222          * which is the real problem which needs to be "fixed". This can't
1223          * prevent the transient state between scheduling the work and
1224          * returning from waiting for it.
1225          */
1226         if (!tasks_frozen)
1227                 cpuset_wait_for_hotplug();
1228 }
1229
1230 #ifdef CONFIG_HOTPLUG_CPU
1231 #ifndef arch_clear_mm_cpumask_cpu
1232 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1233 #endif
1234
1235 /**
1236  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1237  * @cpu: a CPU id
1238  *
1239  * This function walks all processes, finds a valid mm struct for each one and
1240  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1241  * trivial, there are various non-obvious corner cases, which this function
1242  * tries to solve in a safe manner.
1243  *
1244  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1245  * be called only for an already offlined CPU.
1246  */
1247 void clear_tasks_mm_cpumask(int cpu)
1248 {
1249         struct task_struct *p;
1250
1251         /*
1252          * This function is called after the cpu is taken down and marked
1253          * offline, so its not like new tasks will ever get this cpu set in
1254          * their mm mask. -- Peter Zijlstra
1255          * Thus, we may use rcu_read_lock() here, instead of grabbing
1256          * full-fledged tasklist_lock.
1257          */
1258         WARN_ON(cpu_online(cpu));
1259         rcu_read_lock();
1260         for_each_process(p) {
1261                 struct task_struct *t;
1262
1263                 /*
1264                  * Main thread might exit, but other threads may still have
1265                  * a valid mm. Find one.
1266                  */
1267                 t = find_lock_task_mm(p);
1268                 if (!t)
1269                         continue;
1270                 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1271                 task_unlock(t);
1272         }
1273         rcu_read_unlock();
1274 }
1275
1276 /* Take this CPU down. */
1277 static int take_cpu_down(void *_param)
1278 {
1279         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1280         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1281         int err, cpu = smp_processor_id();
1282
1283         /* Ensure this CPU doesn't handle any more interrupts. */
1284         err = __cpu_disable();
1285         if (err < 0)
1286                 return err;
1287
1288         /*
1289          * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1290          * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1291          */
1292         WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1293
1294         /*
1295          * Invoke the former CPU_DYING callbacks. DYING must not fail!
1296          */
1297         cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1298
1299         /* Give up timekeeping duties */
1300         tick_handover_do_timer();
1301         /* Remove CPU from timer broadcasting */
1302         tick_offline_cpu(cpu);
1303         /* Park the stopper thread */
1304         stop_machine_park(cpu);
1305         return 0;
1306 }
1307
1308 static int takedown_cpu(unsigned int cpu)
1309 {
1310         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1311         int err;
1312
1313         /* Park the smpboot threads */
1314         kthread_park(st->thread);
1315
1316         /*
1317          * Prevent irq alloc/free while the dying cpu reorganizes the
1318          * interrupt affinities.
1319          */
1320         irq_lock_sparse();
1321
1322         /*
1323          * So now all preempt/rcu users must observe !cpu_active().
1324          */
1325         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1326         if (err) {
1327                 /* CPU refused to die */
1328                 irq_unlock_sparse();
1329                 /* Unpark the hotplug thread so we can rollback there */
1330                 kthread_unpark(st->thread);
1331                 return err;
1332         }
1333         BUG_ON(cpu_online(cpu));
1334
1335         /*
1336          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1337          * all runnable tasks from the CPU, there's only the idle task left now
1338          * that the migration thread is done doing the stop_machine thing.
1339          *
1340          * Wait for the stop thread to go away.
1341          */
1342         wait_for_ap_thread(st, false);
1343         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1344
1345         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1346         irq_unlock_sparse();
1347
1348         hotplug_cpu__broadcast_tick_pull(cpu);
1349         /* This actually kills the CPU. */
1350         __cpu_die(cpu);
1351
1352         cpuhp_bp_sync_dead(cpu);
1353
1354         tick_cleanup_dead_cpu(cpu);
1355         rcutree_migrate_callbacks(cpu);
1356         return 0;
1357 }
1358
1359 static void cpuhp_complete_idle_dead(void *arg)
1360 {
1361         struct cpuhp_cpu_state *st = arg;
1362
1363         complete_ap_thread(st, false);
1364 }
1365
1366 void cpuhp_report_idle_dead(void)
1367 {
1368         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1369
1370         BUG_ON(st->state != CPUHP_AP_OFFLINE);
1371         rcu_report_dead(smp_processor_id());
1372         st->state = CPUHP_AP_IDLE_DEAD;
1373         /*
1374          * We cannot call complete after rcu_report_dead() so we delegate it
1375          * to an online cpu.
1376          */
1377         smp_call_function_single(cpumask_first(cpu_online_mask),
1378                                  cpuhp_complete_idle_dead, st, 0);
1379 }
1380
1381 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1382                                 enum cpuhp_state target)
1383 {
1384         enum cpuhp_state prev_state = st->state;
1385         int ret = 0;
1386
1387         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1388         if (ret) {
1389                 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1390                          ret, cpu, cpuhp_get_step(st->state)->name,
1391                          st->state);
1392
1393                 cpuhp_reset_state(cpu, st, prev_state);
1394
1395                 if (st->state < prev_state)
1396                         WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1397                                                             prev_state));
1398         }
1399
1400         return ret;
1401 }
1402
1403 /* Requires cpu_add_remove_lock to be held */
1404 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1405                            enum cpuhp_state target)
1406 {
1407         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1408         int prev_state, ret = 0;
1409
1410         if (num_online_cpus() == 1)
1411                 return -EBUSY;
1412
1413         if (!cpu_present(cpu))
1414                 return -EINVAL;
1415
1416         cpus_write_lock();
1417
1418         cpuhp_tasks_frozen = tasks_frozen;
1419
1420         prev_state = cpuhp_set_state(cpu, st, target);
1421         /*
1422          * If the current CPU state is in the range of the AP hotplug thread,
1423          * then we need to kick the thread.
1424          */
1425         if (st->state > CPUHP_TEARDOWN_CPU) {
1426                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1427                 ret = cpuhp_kick_ap_work(cpu);
1428                 /*
1429                  * The AP side has done the error rollback already. Just
1430                  * return the error code..
1431                  */
1432                 if (ret)
1433                         goto out;
1434
1435                 /*
1436                  * We might have stopped still in the range of the AP hotplug
1437                  * thread. Nothing to do anymore.
1438                  */
1439                 if (st->state > CPUHP_TEARDOWN_CPU)
1440                         goto out;
1441
1442                 st->target = target;
1443         }
1444         /*
1445          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1446          * to do the further cleanups.
1447          */
1448         ret = cpuhp_down_callbacks(cpu, st, target);
1449         if (ret && st->state < prev_state) {
1450                 if (st->state == CPUHP_TEARDOWN_CPU) {
1451                         cpuhp_reset_state(cpu, st, prev_state);
1452                         __cpuhp_kick_ap(st);
1453                 } else {
1454                         WARN(1, "DEAD callback error for CPU%d", cpu);
1455                 }
1456         }
1457
1458 out:
1459         cpus_write_unlock();
1460         /*
1461          * Do post unplug cleanup. This is still protected against
1462          * concurrent CPU hotplug via cpu_add_remove_lock.
1463          */
1464         lockup_detector_cleanup();
1465         arch_smt_update();
1466         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1467         return ret;
1468 }
1469
1470 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1471 {
1472         /*
1473          * If the platform does not support hotplug, report it explicitly to
1474          * differentiate it from a transient offlining failure.
1475          */
1476         if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1477                 return -EOPNOTSUPP;
1478         if (cpu_hotplug_disabled)
1479                 return -EBUSY;
1480         return _cpu_down(cpu, 0, target);
1481 }
1482
1483 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1484 {
1485         int err;
1486
1487         cpu_maps_update_begin();
1488         err = cpu_down_maps_locked(cpu, target);
1489         cpu_maps_update_done();
1490         return err;
1491 }
1492
1493 /**
1494  * cpu_device_down - Bring down a cpu device
1495  * @dev: Pointer to the cpu device to offline
1496  *
1497  * This function is meant to be used by device core cpu subsystem only.
1498  *
1499  * Other subsystems should use remove_cpu() instead.
1500  *
1501  * Return: %0 on success or a negative errno code
1502  */
1503 int cpu_device_down(struct device *dev)
1504 {
1505         return cpu_down(dev->id, CPUHP_OFFLINE);
1506 }
1507
1508 int remove_cpu(unsigned int cpu)
1509 {
1510         int ret;
1511
1512         lock_device_hotplug();
1513         ret = device_offline(get_cpu_device(cpu));
1514         unlock_device_hotplug();
1515
1516         return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(remove_cpu);
1519
1520 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1521 {
1522         unsigned int cpu;
1523         int error;
1524
1525         cpu_maps_update_begin();
1526
1527         /*
1528          * Make certain the cpu I'm about to reboot on is online.
1529          *
1530          * This is inline to what migrate_to_reboot_cpu() already do.
1531          */
1532         if (!cpu_online(primary_cpu))
1533                 primary_cpu = cpumask_first(cpu_online_mask);
1534
1535         for_each_online_cpu(cpu) {
1536                 if (cpu == primary_cpu)
1537                         continue;
1538
1539                 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1540                 if (error) {
1541                         pr_err("Failed to offline CPU%d - error=%d",
1542                                 cpu, error);
1543                         break;
1544                 }
1545         }
1546
1547         /*
1548          * Ensure all but the reboot CPU are offline.
1549          */
1550         BUG_ON(num_online_cpus() > 1);
1551
1552         /*
1553          * Make sure the CPUs won't be enabled by someone else after this
1554          * point. Kexec will reboot to a new kernel shortly resetting
1555          * everything along the way.
1556          */
1557         cpu_hotplug_disabled++;
1558
1559         cpu_maps_update_done();
1560 }
1561
1562 #else
1563 #define takedown_cpu            NULL
1564 #endif /*CONFIG_HOTPLUG_CPU*/
1565
1566 /**
1567  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1568  * @cpu: cpu that just started
1569  *
1570  * It must be called by the arch code on the new cpu, before the new cpu
1571  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1572  */
1573 void notify_cpu_starting(unsigned int cpu)
1574 {
1575         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1576         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1577
1578         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1579         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1580
1581         /*
1582          * STARTING must not fail!
1583          */
1584         cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1585 }
1586
1587 /*
1588  * Called from the idle task. Wake up the controlling task which brings the
1589  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1590  * online bringup to the hotplug thread.
1591  */
1592 void cpuhp_online_idle(enum cpuhp_state state)
1593 {
1594         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1595
1596         /* Happens for the boot cpu */
1597         if (state != CPUHP_AP_ONLINE_IDLE)
1598                 return;
1599
1600         cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1601
1602         /*
1603          * Unpark the stopper thread before we start the idle loop (and start
1604          * scheduling); this ensures the stopper task is always available.
1605          */
1606         stop_machine_unpark(smp_processor_id());
1607
1608         st->state = CPUHP_AP_ONLINE_IDLE;
1609         complete_ap_thread(st, true);
1610 }
1611
1612 /* Requires cpu_add_remove_lock to be held */
1613 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1614 {
1615         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1616         struct task_struct *idle;
1617         int ret = 0;
1618
1619         cpus_write_lock();
1620
1621         if (!cpu_present(cpu)) {
1622                 ret = -EINVAL;
1623                 goto out;
1624         }
1625
1626         /*
1627          * The caller of cpu_up() might have raced with another
1628          * caller. Nothing to do.
1629          */
1630         if (st->state >= target)
1631                 goto out;
1632
1633         if (st->state == CPUHP_OFFLINE) {
1634                 /* Let it fail before we try to bring the cpu up */
1635                 idle = idle_thread_get(cpu);
1636                 if (IS_ERR(idle)) {
1637                         ret = PTR_ERR(idle);
1638                         goto out;
1639                 }
1640
1641                 /*
1642                  * Reset stale stack state from the last time this CPU was online.
1643                  */
1644                 scs_task_reset(idle);
1645                 kasan_unpoison_task_stack(idle);
1646         }
1647
1648         cpuhp_tasks_frozen = tasks_frozen;
1649
1650         cpuhp_set_state(cpu, st, target);
1651         /*
1652          * If the current CPU state is in the range of the AP hotplug thread,
1653          * then we need to kick the thread once more.
1654          */
1655         if (st->state > CPUHP_BRINGUP_CPU) {
1656                 ret = cpuhp_kick_ap_work(cpu);
1657                 /*
1658                  * The AP side has done the error rollback already. Just
1659                  * return the error code..
1660                  */
1661                 if (ret)
1662                         goto out;
1663         }
1664
1665         /*
1666          * Try to reach the target state. We max out on the BP at
1667          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1668          * responsible for bringing it up to the target state.
1669          */
1670         target = min((int)target, CPUHP_BRINGUP_CPU);
1671         ret = cpuhp_up_callbacks(cpu, st, target);
1672 out:
1673         cpus_write_unlock();
1674         arch_smt_update();
1675         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1676         return ret;
1677 }
1678
1679 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1680 {
1681         int err = 0;
1682
1683         if (!cpu_possible(cpu)) {
1684                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1685                        cpu);
1686 #if defined(CONFIG_IA64)
1687                 pr_err("please check additional_cpus= boot parameter\n");
1688 #endif
1689                 return -EINVAL;
1690         }
1691
1692         err = try_online_node(cpu_to_node(cpu));
1693         if (err)
1694                 return err;
1695
1696         cpu_maps_update_begin();
1697
1698         if (cpu_hotplug_disabled) {
1699                 err = -EBUSY;
1700                 goto out;
1701         }
1702         if (!cpu_smt_allowed(cpu)) {
1703                 err = -EPERM;
1704                 goto out;
1705         }
1706
1707         err = _cpu_up(cpu, 0, target);
1708 out:
1709         cpu_maps_update_done();
1710         return err;
1711 }
1712
1713 /**
1714  * cpu_device_up - Bring up a cpu device
1715  * @dev: Pointer to the cpu device to online
1716  *
1717  * This function is meant to be used by device core cpu subsystem only.
1718  *
1719  * Other subsystems should use add_cpu() instead.
1720  *
1721  * Return: %0 on success or a negative errno code
1722  */
1723 int cpu_device_up(struct device *dev)
1724 {
1725         return cpu_up(dev->id, CPUHP_ONLINE);
1726 }
1727
1728 int add_cpu(unsigned int cpu)
1729 {
1730         int ret;
1731
1732         lock_device_hotplug();
1733         ret = device_online(get_cpu_device(cpu));
1734         unlock_device_hotplug();
1735
1736         return ret;
1737 }
1738 EXPORT_SYMBOL_GPL(add_cpu);
1739
1740 /**
1741  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1742  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1743  *
1744  * On some architectures like arm64, we can hibernate on any CPU, but on
1745  * wake up the CPU we hibernated on might be offline as a side effect of
1746  * using maxcpus= for example.
1747  *
1748  * Return: %0 on success or a negative errno code
1749  */
1750 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1751 {
1752         int ret;
1753
1754         if (!cpu_online(sleep_cpu)) {
1755                 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1756                 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1757                 if (ret) {
1758                         pr_err("Failed to bring hibernate-CPU up!\n");
1759                         return ret;
1760                 }
1761         }
1762         return 0;
1763 }
1764
1765 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1766                                       enum cpuhp_state target)
1767 {
1768         unsigned int cpu;
1769
1770         for_each_cpu(cpu, mask) {
1771                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1772
1773                 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1774                         /*
1775                          * If this failed then cpu_up() might have only
1776                          * rolled back to CPUHP_BP_KICK_AP for the final
1777                          * online. Clean it up. NOOP if already rolled back.
1778                          */
1779                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1780                 }
1781
1782                 if (!--ncpus)
1783                         break;
1784         }
1785 }
1786
1787 #ifdef CONFIG_HOTPLUG_PARALLEL
1788 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1789
1790 static int __init parallel_bringup_parse_param(char *arg)
1791 {
1792         return kstrtobool(arg, &__cpuhp_parallel_bringup);
1793 }
1794 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1795
1796 /*
1797  * On architectures which have enabled parallel bringup this invokes all BP
1798  * prepare states for each of the to be onlined APs first. The last state
1799  * sends the startup IPI to the APs. The APs proceed through the low level
1800  * bringup code in parallel and then wait for the control CPU to release
1801  * them one by one for the final onlining procedure.
1802  *
1803  * This avoids waiting for each AP to respond to the startup IPI in
1804  * CPUHP_BRINGUP_CPU.
1805  */
1806 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1807 {
1808         const struct cpumask *mask = cpu_present_mask;
1809
1810         if (__cpuhp_parallel_bringup)
1811                 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1812         if (!__cpuhp_parallel_bringup)
1813                 return false;
1814
1815         if (cpuhp_smt_aware()) {
1816                 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1817                 static struct cpumask tmp_mask __initdata;
1818
1819                 /*
1820                  * X86 requires to prevent that SMT siblings stopped while
1821                  * the primary thread does a microcode update for various
1822                  * reasons. Bring the primary threads up first.
1823                  */
1824                 cpumask_and(&tmp_mask, mask, pmask);
1825                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1826                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1827                 /* Account for the online CPUs */
1828                 ncpus -= num_online_cpus();
1829                 if (!ncpus)
1830                         return true;
1831                 /* Create the mask for secondary CPUs */
1832                 cpumask_andnot(&tmp_mask, mask, pmask);
1833                 mask = &tmp_mask;
1834         }
1835
1836         /* Bring the not-yet started CPUs up */
1837         cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1838         cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1839         return true;
1840 }
1841 #else
1842 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1843 #endif /* CONFIG_HOTPLUG_PARALLEL */
1844
1845 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1846 {
1847         /* Try parallel bringup optimization if enabled */
1848         if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1849                 return;
1850
1851         /* Full per CPU serialized bringup */
1852         cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1853 }
1854
1855 #ifdef CONFIG_PM_SLEEP_SMP
1856 static cpumask_var_t frozen_cpus;
1857
1858 int freeze_secondary_cpus(int primary)
1859 {
1860         int cpu, error = 0;
1861
1862         cpu_maps_update_begin();
1863         if (primary == -1) {
1864                 primary = cpumask_first(cpu_online_mask);
1865                 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1866                         primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1867         } else {
1868                 if (!cpu_online(primary))
1869                         primary = cpumask_first(cpu_online_mask);
1870         }
1871
1872         /*
1873          * We take down all of the non-boot CPUs in one shot to avoid races
1874          * with the userspace trying to use the CPU hotplug at the same time
1875          */
1876         cpumask_clear(frozen_cpus);
1877
1878         pr_info("Disabling non-boot CPUs ...\n");
1879         for_each_online_cpu(cpu) {
1880                 if (cpu == primary)
1881                         continue;
1882
1883                 if (pm_wakeup_pending()) {
1884                         pr_info("Wakeup pending. Abort CPU freeze\n");
1885                         error = -EBUSY;
1886                         break;
1887                 }
1888
1889                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1890                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1891                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1892                 if (!error)
1893                         cpumask_set_cpu(cpu, frozen_cpus);
1894                 else {
1895                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1896                         break;
1897                 }
1898         }
1899
1900         if (!error)
1901                 BUG_ON(num_online_cpus() > 1);
1902         else
1903                 pr_err("Non-boot CPUs are not disabled\n");
1904
1905         /*
1906          * Make sure the CPUs won't be enabled by someone else. We need to do
1907          * this even in case of failure as all freeze_secondary_cpus() users are
1908          * supposed to do thaw_secondary_cpus() on the failure path.
1909          */
1910         cpu_hotplug_disabled++;
1911
1912         cpu_maps_update_done();
1913         return error;
1914 }
1915
1916 void __weak arch_thaw_secondary_cpus_begin(void)
1917 {
1918 }
1919
1920 void __weak arch_thaw_secondary_cpus_end(void)
1921 {
1922 }
1923
1924 void thaw_secondary_cpus(void)
1925 {
1926         int cpu, error;
1927
1928         /* Allow everyone to use the CPU hotplug again */
1929         cpu_maps_update_begin();
1930         __cpu_hotplug_enable();
1931         if (cpumask_empty(frozen_cpus))
1932                 goto out;
1933
1934         pr_info("Enabling non-boot CPUs ...\n");
1935
1936         arch_thaw_secondary_cpus_begin();
1937
1938         for_each_cpu(cpu, frozen_cpus) {
1939                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1940                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1941                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1942                 if (!error) {
1943                         pr_info("CPU%d is up\n", cpu);
1944                         continue;
1945                 }
1946                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1947         }
1948
1949         arch_thaw_secondary_cpus_end();
1950
1951         cpumask_clear(frozen_cpus);
1952 out:
1953         cpu_maps_update_done();
1954 }
1955
1956 static int __init alloc_frozen_cpus(void)
1957 {
1958         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1959                 return -ENOMEM;
1960         return 0;
1961 }
1962 core_initcall(alloc_frozen_cpus);
1963
1964 /*
1965  * When callbacks for CPU hotplug notifications are being executed, we must
1966  * ensure that the state of the system with respect to the tasks being frozen
1967  * or not, as reported by the notification, remains unchanged *throughout the
1968  * duration* of the execution of the callbacks.
1969  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1970  *
1971  * This synchronization is implemented by mutually excluding regular CPU
1972  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1973  * Hibernate notifications.
1974  */
1975 static int
1976 cpu_hotplug_pm_callback(struct notifier_block *nb,
1977                         unsigned long action, void *ptr)
1978 {
1979         switch (action) {
1980
1981         case PM_SUSPEND_PREPARE:
1982         case PM_HIBERNATION_PREPARE:
1983                 cpu_hotplug_disable();
1984                 break;
1985
1986         case PM_POST_SUSPEND:
1987         case PM_POST_HIBERNATION:
1988                 cpu_hotplug_enable();
1989                 break;
1990
1991         default:
1992                 return NOTIFY_DONE;
1993         }
1994
1995         return NOTIFY_OK;
1996 }
1997
1998
1999 static int __init cpu_hotplug_pm_sync_init(void)
2000 {
2001         /*
2002          * cpu_hotplug_pm_callback has higher priority than x86
2003          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2004          * to disable cpu hotplug to avoid cpu hotplug race.
2005          */
2006         pm_notifier(cpu_hotplug_pm_callback, 0);
2007         return 0;
2008 }
2009 core_initcall(cpu_hotplug_pm_sync_init);
2010
2011 #endif /* CONFIG_PM_SLEEP_SMP */
2012
2013 int __boot_cpu_id;
2014
2015 #endif /* CONFIG_SMP */
2016
2017 /* Boot processor state steps */
2018 static struct cpuhp_step cpuhp_hp_states[] = {
2019         [CPUHP_OFFLINE] = {
2020                 .name                   = "offline",
2021                 .startup.single         = NULL,
2022                 .teardown.single        = NULL,
2023         },
2024 #ifdef CONFIG_SMP
2025         [CPUHP_CREATE_THREADS]= {
2026                 .name                   = "threads:prepare",
2027                 .startup.single         = smpboot_create_threads,
2028                 .teardown.single        = NULL,
2029                 .cant_stop              = true,
2030         },
2031         [CPUHP_PERF_PREPARE] = {
2032                 .name                   = "perf:prepare",
2033                 .startup.single         = perf_event_init_cpu,
2034                 .teardown.single        = perf_event_exit_cpu,
2035         },
2036         [CPUHP_RANDOM_PREPARE] = {
2037                 .name                   = "random:prepare",
2038                 .startup.single         = random_prepare_cpu,
2039                 .teardown.single        = NULL,
2040         },
2041         [CPUHP_WORKQUEUE_PREP] = {
2042                 .name                   = "workqueue:prepare",
2043                 .startup.single         = workqueue_prepare_cpu,
2044                 .teardown.single        = NULL,
2045         },
2046         [CPUHP_HRTIMERS_PREPARE] = {
2047                 .name                   = "hrtimers:prepare",
2048                 .startup.single         = hrtimers_prepare_cpu,
2049                 .teardown.single        = hrtimers_dead_cpu,
2050         },
2051         [CPUHP_SMPCFD_PREPARE] = {
2052                 .name                   = "smpcfd:prepare",
2053                 .startup.single         = smpcfd_prepare_cpu,
2054                 .teardown.single        = smpcfd_dead_cpu,
2055         },
2056         [CPUHP_RELAY_PREPARE] = {
2057                 .name                   = "relay:prepare",
2058                 .startup.single         = relay_prepare_cpu,
2059                 .teardown.single        = NULL,
2060         },
2061         [CPUHP_SLAB_PREPARE] = {
2062                 .name                   = "slab:prepare",
2063                 .startup.single         = slab_prepare_cpu,
2064                 .teardown.single        = slab_dead_cpu,
2065         },
2066         [CPUHP_RCUTREE_PREP] = {
2067                 .name                   = "RCU/tree:prepare",
2068                 .startup.single         = rcutree_prepare_cpu,
2069                 .teardown.single        = rcutree_dead_cpu,
2070         },
2071         /*
2072          * On the tear-down path, timers_dead_cpu() must be invoked
2073          * before blk_mq_queue_reinit_notify() from notify_dead(),
2074          * otherwise a RCU stall occurs.
2075          */
2076         [CPUHP_TIMERS_PREPARE] = {
2077                 .name                   = "timers:prepare",
2078                 .startup.single         = timers_prepare_cpu,
2079                 .teardown.single        = timers_dead_cpu,
2080         },
2081
2082 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2083         /*
2084          * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2085          * the next step will release it.
2086          */
2087         [CPUHP_BP_KICK_AP] = {
2088                 .name                   = "cpu:kick_ap",
2089                 .startup.single         = cpuhp_kick_ap_alive,
2090         },
2091
2092         /*
2093          * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2094          * releases it for the complete bringup.
2095          */
2096         [CPUHP_BRINGUP_CPU] = {
2097                 .name                   = "cpu:bringup",
2098                 .startup.single         = cpuhp_bringup_ap,
2099                 .teardown.single        = finish_cpu,
2100                 .cant_stop              = true,
2101         },
2102 #else
2103         /*
2104          * All-in-one CPU bringup state which includes the kick alive.
2105          */
2106         [CPUHP_BRINGUP_CPU] = {
2107                 .name                   = "cpu:bringup",
2108                 .startup.single         = bringup_cpu,
2109                 .teardown.single        = finish_cpu,
2110                 .cant_stop              = true,
2111         },
2112 #endif
2113         /* Final state before CPU kills itself */
2114         [CPUHP_AP_IDLE_DEAD] = {
2115                 .name                   = "idle:dead",
2116         },
2117         /*
2118          * Last state before CPU enters the idle loop to die. Transient state
2119          * for synchronization.
2120          */
2121         [CPUHP_AP_OFFLINE] = {
2122                 .name                   = "ap:offline",
2123                 .cant_stop              = true,
2124         },
2125         /* First state is scheduler control. Interrupts are disabled */
2126         [CPUHP_AP_SCHED_STARTING] = {
2127                 .name                   = "sched:starting",
2128                 .startup.single         = sched_cpu_starting,
2129                 .teardown.single        = sched_cpu_dying,
2130         },
2131         [CPUHP_AP_RCUTREE_DYING] = {
2132                 .name                   = "RCU/tree:dying",
2133                 .startup.single         = NULL,
2134                 .teardown.single        = rcutree_dying_cpu,
2135         },
2136         [CPUHP_AP_SMPCFD_DYING] = {
2137                 .name                   = "smpcfd:dying",
2138                 .startup.single         = NULL,
2139                 .teardown.single        = smpcfd_dying_cpu,
2140         },
2141         /* Entry state on starting. Interrupts enabled from here on. Transient
2142          * state for synchronsization */
2143         [CPUHP_AP_ONLINE] = {
2144                 .name                   = "ap:online",
2145         },
2146         /*
2147          * Handled on control processor until the plugged processor manages
2148          * this itself.
2149          */
2150         [CPUHP_TEARDOWN_CPU] = {
2151                 .name                   = "cpu:teardown",
2152                 .startup.single         = NULL,
2153                 .teardown.single        = takedown_cpu,
2154                 .cant_stop              = true,
2155         },
2156
2157         [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2158                 .name                   = "sched:waitempty",
2159                 .startup.single         = NULL,
2160                 .teardown.single        = sched_cpu_wait_empty,
2161         },
2162
2163         /* Handle smpboot threads park/unpark */
2164         [CPUHP_AP_SMPBOOT_THREADS] = {
2165                 .name                   = "smpboot/threads:online",
2166                 .startup.single         = smpboot_unpark_threads,
2167                 .teardown.single        = smpboot_park_threads,
2168         },
2169         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2170                 .name                   = "irq/affinity:online",
2171                 .startup.single         = irq_affinity_online_cpu,
2172                 .teardown.single        = NULL,
2173         },
2174         [CPUHP_AP_PERF_ONLINE] = {
2175                 .name                   = "perf:online",
2176                 .startup.single         = perf_event_init_cpu,
2177                 .teardown.single        = perf_event_exit_cpu,
2178         },
2179         [CPUHP_AP_WATCHDOG_ONLINE] = {
2180                 .name                   = "lockup_detector:online",
2181                 .startup.single         = lockup_detector_online_cpu,
2182                 .teardown.single        = lockup_detector_offline_cpu,
2183         },
2184         [CPUHP_AP_WORKQUEUE_ONLINE] = {
2185                 .name                   = "workqueue:online",
2186                 .startup.single         = workqueue_online_cpu,
2187                 .teardown.single        = workqueue_offline_cpu,
2188         },
2189         [CPUHP_AP_RANDOM_ONLINE] = {
2190                 .name                   = "random:online",
2191                 .startup.single         = random_online_cpu,
2192                 .teardown.single        = NULL,
2193         },
2194         [CPUHP_AP_RCUTREE_ONLINE] = {
2195                 .name                   = "RCU/tree:online",
2196                 .startup.single         = rcutree_online_cpu,
2197                 .teardown.single        = rcutree_offline_cpu,
2198         },
2199 #endif
2200         /*
2201          * The dynamically registered state space is here
2202          */
2203
2204 #ifdef CONFIG_SMP
2205         /* Last state is scheduler control setting the cpu active */
2206         [CPUHP_AP_ACTIVE] = {
2207                 .name                   = "sched:active",
2208                 .startup.single         = sched_cpu_activate,
2209                 .teardown.single        = sched_cpu_deactivate,
2210         },
2211 #endif
2212
2213         /* CPU is fully up and running. */
2214         [CPUHP_ONLINE] = {
2215                 .name                   = "online",
2216                 .startup.single         = NULL,
2217                 .teardown.single        = NULL,
2218         },
2219 };
2220
2221 /* Sanity check for callbacks */
2222 static int cpuhp_cb_check(enum cpuhp_state state)
2223 {
2224         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2225                 return -EINVAL;
2226         return 0;
2227 }
2228
2229 /*
2230  * Returns a free for dynamic slot assignment of the Online state. The states
2231  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2232  * by having no name assigned.
2233  */
2234 static int cpuhp_reserve_state(enum cpuhp_state state)
2235 {
2236         enum cpuhp_state i, end;
2237         struct cpuhp_step *step;
2238
2239         switch (state) {
2240         case CPUHP_AP_ONLINE_DYN:
2241                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2242                 end = CPUHP_AP_ONLINE_DYN_END;
2243                 break;
2244         case CPUHP_BP_PREPARE_DYN:
2245                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2246                 end = CPUHP_BP_PREPARE_DYN_END;
2247                 break;
2248         default:
2249                 return -EINVAL;
2250         }
2251
2252         for (i = state; i <= end; i++, step++) {
2253                 if (!step->name)
2254                         return i;
2255         }
2256         WARN(1, "No more dynamic states available for CPU hotplug\n");
2257         return -ENOSPC;
2258 }
2259
2260 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2261                                  int (*startup)(unsigned int cpu),
2262                                  int (*teardown)(unsigned int cpu),
2263                                  bool multi_instance)
2264 {
2265         /* (Un)Install the callbacks for further cpu hotplug operations */
2266         struct cpuhp_step *sp;
2267         int ret = 0;
2268
2269         /*
2270          * If name is NULL, then the state gets removed.
2271          *
2272          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2273          * the first allocation from these dynamic ranges, so the removal
2274          * would trigger a new allocation and clear the wrong (already
2275          * empty) state, leaving the callbacks of the to be cleared state
2276          * dangling, which causes wreckage on the next hotplug operation.
2277          */
2278         if (name && (state == CPUHP_AP_ONLINE_DYN ||
2279                      state == CPUHP_BP_PREPARE_DYN)) {
2280                 ret = cpuhp_reserve_state(state);
2281                 if (ret < 0)
2282                         return ret;
2283                 state = ret;
2284         }
2285         sp = cpuhp_get_step(state);
2286         if (name && sp->name)
2287                 return -EBUSY;
2288
2289         sp->startup.single = startup;
2290         sp->teardown.single = teardown;
2291         sp->name = name;
2292         sp->multi_instance = multi_instance;
2293         INIT_HLIST_HEAD(&sp->list);
2294         return ret;
2295 }
2296
2297 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2298 {
2299         return cpuhp_get_step(state)->teardown.single;
2300 }
2301
2302 /*
2303  * Call the startup/teardown function for a step either on the AP or
2304  * on the current CPU.
2305  */
2306 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2307                             struct hlist_node *node)
2308 {
2309         struct cpuhp_step *sp = cpuhp_get_step(state);
2310         int ret;
2311
2312         /*
2313          * If there's nothing to do, we done.
2314          * Relies on the union for multi_instance.
2315          */
2316         if (cpuhp_step_empty(bringup, sp))
2317                 return 0;
2318         /*
2319          * The non AP bound callbacks can fail on bringup. On teardown
2320          * e.g. module removal we crash for now.
2321          */
2322 #ifdef CONFIG_SMP
2323         if (cpuhp_is_ap_state(state))
2324                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2325         else
2326                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2327 #else
2328         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2329 #endif
2330         BUG_ON(ret && !bringup);
2331         return ret;
2332 }
2333
2334 /*
2335  * Called from __cpuhp_setup_state on a recoverable failure.
2336  *
2337  * Note: The teardown callbacks for rollback are not allowed to fail!
2338  */
2339 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2340                                    struct hlist_node *node)
2341 {
2342         int cpu;
2343
2344         /* Roll back the already executed steps on the other cpus */
2345         for_each_present_cpu(cpu) {
2346                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2347                 int cpustate = st->state;
2348
2349                 if (cpu >= failedcpu)
2350                         break;
2351
2352                 /* Did we invoke the startup call on that cpu ? */
2353                 if (cpustate >= state)
2354                         cpuhp_issue_call(cpu, state, false, node);
2355         }
2356 }
2357
2358 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2359                                           struct hlist_node *node,
2360                                           bool invoke)
2361 {
2362         struct cpuhp_step *sp;
2363         int cpu;
2364         int ret;
2365
2366         lockdep_assert_cpus_held();
2367
2368         sp = cpuhp_get_step(state);
2369         if (sp->multi_instance == false)
2370                 return -EINVAL;
2371
2372         mutex_lock(&cpuhp_state_mutex);
2373
2374         if (!invoke || !sp->startup.multi)
2375                 goto add_node;
2376
2377         /*
2378          * Try to call the startup callback for each present cpu
2379          * depending on the hotplug state of the cpu.
2380          */
2381         for_each_present_cpu(cpu) {
2382                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2383                 int cpustate = st->state;
2384
2385                 if (cpustate < state)
2386                         continue;
2387
2388                 ret = cpuhp_issue_call(cpu, state, true, node);
2389                 if (ret) {
2390                         if (sp->teardown.multi)
2391                                 cpuhp_rollback_install(cpu, state, node);
2392                         goto unlock;
2393                 }
2394         }
2395 add_node:
2396         ret = 0;
2397         hlist_add_head(node, &sp->list);
2398 unlock:
2399         mutex_unlock(&cpuhp_state_mutex);
2400         return ret;
2401 }
2402
2403 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2404                                bool invoke)
2405 {
2406         int ret;
2407
2408         cpus_read_lock();
2409         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2410         cpus_read_unlock();
2411         return ret;
2412 }
2413 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2414
2415 /**
2416  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2417  * @state:              The state to setup
2418  * @name:               Name of the step
2419  * @invoke:             If true, the startup function is invoked for cpus where
2420  *                      cpu state >= @state
2421  * @startup:            startup callback function
2422  * @teardown:           teardown callback function
2423  * @multi_instance:     State is set up for multiple instances which get
2424  *                      added afterwards.
2425  *
2426  * The caller needs to hold cpus read locked while calling this function.
2427  * Return:
2428  *   On success:
2429  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2430  *      0 for all other states
2431  *   On failure: proper (negative) error code
2432  */
2433 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2434                                    const char *name, bool invoke,
2435                                    int (*startup)(unsigned int cpu),
2436                                    int (*teardown)(unsigned int cpu),
2437                                    bool multi_instance)
2438 {
2439         int cpu, ret = 0;
2440         bool dynstate;
2441
2442         lockdep_assert_cpus_held();
2443
2444         if (cpuhp_cb_check(state) || !name)
2445                 return -EINVAL;
2446
2447         mutex_lock(&cpuhp_state_mutex);
2448
2449         ret = cpuhp_store_callbacks(state, name, startup, teardown,
2450                                     multi_instance);
2451
2452         dynstate = state == CPUHP_AP_ONLINE_DYN;
2453         if (ret > 0 && dynstate) {
2454                 state = ret;
2455                 ret = 0;
2456         }
2457
2458         if (ret || !invoke || !startup)
2459                 goto out;
2460
2461         /*
2462          * Try to call the startup callback for each present cpu
2463          * depending on the hotplug state of the cpu.
2464          */
2465         for_each_present_cpu(cpu) {
2466                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2467                 int cpustate = st->state;
2468
2469                 if (cpustate < state)
2470                         continue;
2471
2472                 ret = cpuhp_issue_call(cpu, state, true, NULL);
2473                 if (ret) {
2474                         if (teardown)
2475                                 cpuhp_rollback_install(cpu, state, NULL);
2476                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2477                         goto out;
2478                 }
2479         }
2480 out:
2481         mutex_unlock(&cpuhp_state_mutex);
2482         /*
2483          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2484          * dynamically allocated state in case of success.
2485          */
2486         if (!ret && dynstate)
2487                 return state;
2488         return ret;
2489 }
2490 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2491
2492 int __cpuhp_setup_state(enum cpuhp_state state,
2493                         const char *name, bool invoke,
2494                         int (*startup)(unsigned int cpu),
2495                         int (*teardown)(unsigned int cpu),
2496                         bool multi_instance)
2497 {
2498         int ret;
2499
2500         cpus_read_lock();
2501         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2502                                              teardown, multi_instance);
2503         cpus_read_unlock();
2504         return ret;
2505 }
2506 EXPORT_SYMBOL(__cpuhp_setup_state);
2507
2508 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2509                                   struct hlist_node *node, bool invoke)
2510 {
2511         struct cpuhp_step *sp = cpuhp_get_step(state);
2512         int cpu;
2513
2514         BUG_ON(cpuhp_cb_check(state));
2515
2516         if (!sp->multi_instance)
2517                 return -EINVAL;
2518
2519         cpus_read_lock();
2520         mutex_lock(&cpuhp_state_mutex);
2521
2522         if (!invoke || !cpuhp_get_teardown_cb(state))
2523                 goto remove;
2524         /*
2525          * Call the teardown callback for each present cpu depending
2526          * on the hotplug state of the cpu. This function is not
2527          * allowed to fail currently!
2528          */
2529         for_each_present_cpu(cpu) {
2530                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2531                 int cpustate = st->state;
2532
2533                 if (cpustate >= state)
2534                         cpuhp_issue_call(cpu, state, false, node);
2535         }
2536
2537 remove:
2538         hlist_del(node);
2539         mutex_unlock(&cpuhp_state_mutex);
2540         cpus_read_unlock();
2541
2542         return 0;
2543 }
2544 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2545
2546 /**
2547  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2548  * @state:      The state to remove
2549  * @invoke:     If true, the teardown function is invoked for cpus where
2550  *              cpu state >= @state
2551  *
2552  * The caller needs to hold cpus read locked while calling this function.
2553  * The teardown callback is currently not allowed to fail. Think
2554  * about module removal!
2555  */
2556 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2557 {
2558         struct cpuhp_step *sp = cpuhp_get_step(state);
2559         int cpu;
2560
2561         BUG_ON(cpuhp_cb_check(state));
2562
2563         lockdep_assert_cpus_held();
2564
2565         mutex_lock(&cpuhp_state_mutex);
2566         if (sp->multi_instance) {
2567                 WARN(!hlist_empty(&sp->list),
2568                      "Error: Removing state %d which has instances left.\n",
2569                      state);
2570                 goto remove;
2571         }
2572
2573         if (!invoke || !cpuhp_get_teardown_cb(state))
2574                 goto remove;
2575
2576         /*
2577          * Call the teardown callback for each present cpu depending
2578          * on the hotplug state of the cpu. This function is not
2579          * allowed to fail currently!
2580          */
2581         for_each_present_cpu(cpu) {
2582                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2583                 int cpustate = st->state;
2584
2585                 if (cpustate >= state)
2586                         cpuhp_issue_call(cpu, state, false, NULL);
2587         }
2588 remove:
2589         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2590         mutex_unlock(&cpuhp_state_mutex);
2591 }
2592 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2593
2594 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2595 {
2596         cpus_read_lock();
2597         __cpuhp_remove_state_cpuslocked(state, invoke);
2598         cpus_read_unlock();
2599 }
2600 EXPORT_SYMBOL(__cpuhp_remove_state);
2601
2602 #ifdef CONFIG_HOTPLUG_SMT
2603 static void cpuhp_offline_cpu_device(unsigned int cpu)
2604 {
2605         struct device *dev = get_cpu_device(cpu);
2606
2607         dev->offline = true;
2608         /* Tell user space about the state change */
2609         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2610 }
2611
2612 static void cpuhp_online_cpu_device(unsigned int cpu)
2613 {
2614         struct device *dev = get_cpu_device(cpu);
2615
2616         dev->offline = false;
2617         /* Tell user space about the state change */
2618         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2619 }
2620
2621 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2622 {
2623         int cpu, ret = 0;
2624
2625         cpu_maps_update_begin();
2626         for_each_online_cpu(cpu) {
2627                 if (topology_is_primary_thread(cpu))
2628                         continue;
2629                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2630                 if (ret)
2631                         break;
2632                 /*
2633                  * As this needs to hold the cpu maps lock it's impossible
2634                  * to call device_offline() because that ends up calling
2635                  * cpu_down() which takes cpu maps lock. cpu maps lock
2636                  * needs to be held as this might race against in kernel
2637                  * abusers of the hotplug machinery (thermal management).
2638                  *
2639                  * So nothing would update device:offline state. That would
2640                  * leave the sysfs entry stale and prevent onlining after
2641                  * smt control has been changed to 'off' again. This is
2642                  * called under the sysfs hotplug lock, so it is properly
2643                  * serialized against the regular offline usage.
2644                  */
2645                 cpuhp_offline_cpu_device(cpu);
2646         }
2647         if (!ret)
2648                 cpu_smt_control = ctrlval;
2649         cpu_maps_update_done();
2650         return ret;
2651 }
2652
2653 int cpuhp_smt_enable(void)
2654 {
2655         int cpu, ret = 0;
2656
2657         cpu_maps_update_begin();
2658         cpu_smt_control = CPU_SMT_ENABLED;
2659         for_each_present_cpu(cpu) {
2660                 /* Skip online CPUs and CPUs on offline nodes */
2661                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2662                         continue;
2663                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2664                 if (ret)
2665                         break;
2666                 /* See comment in cpuhp_smt_disable() */
2667                 cpuhp_online_cpu_device(cpu);
2668         }
2669         cpu_maps_update_done();
2670         return ret;
2671 }
2672 #endif
2673
2674 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2675 static ssize_t state_show(struct device *dev,
2676                           struct device_attribute *attr, char *buf)
2677 {
2678         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2679
2680         return sprintf(buf, "%d\n", st->state);
2681 }
2682 static DEVICE_ATTR_RO(state);
2683
2684 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2685                             const char *buf, size_t count)
2686 {
2687         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2688         struct cpuhp_step *sp;
2689         int target, ret;
2690
2691         ret = kstrtoint(buf, 10, &target);
2692         if (ret)
2693                 return ret;
2694
2695 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2696         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2697                 return -EINVAL;
2698 #else
2699         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2700                 return -EINVAL;
2701 #endif
2702
2703         ret = lock_device_hotplug_sysfs();
2704         if (ret)
2705                 return ret;
2706
2707         mutex_lock(&cpuhp_state_mutex);
2708         sp = cpuhp_get_step(target);
2709         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2710         mutex_unlock(&cpuhp_state_mutex);
2711         if (ret)
2712                 goto out;
2713
2714         if (st->state < target)
2715                 ret = cpu_up(dev->id, target);
2716         else if (st->state > target)
2717                 ret = cpu_down(dev->id, target);
2718         else if (WARN_ON(st->target != target))
2719                 st->target = target;
2720 out:
2721         unlock_device_hotplug();
2722         return ret ? ret : count;
2723 }
2724
2725 static ssize_t target_show(struct device *dev,
2726                            struct device_attribute *attr, char *buf)
2727 {
2728         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2729
2730         return sprintf(buf, "%d\n", st->target);
2731 }
2732 static DEVICE_ATTR_RW(target);
2733
2734 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2735                           const char *buf, size_t count)
2736 {
2737         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2738         struct cpuhp_step *sp;
2739         int fail, ret;
2740
2741         ret = kstrtoint(buf, 10, &fail);
2742         if (ret)
2743                 return ret;
2744
2745         if (fail == CPUHP_INVALID) {
2746                 st->fail = fail;
2747                 return count;
2748         }
2749
2750         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2751                 return -EINVAL;
2752
2753         /*
2754          * Cannot fail STARTING/DYING callbacks.
2755          */
2756         if (cpuhp_is_atomic_state(fail))
2757                 return -EINVAL;
2758
2759         /*
2760          * DEAD callbacks cannot fail...
2761          * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2762          * triggering STARTING callbacks, a failure in this state would
2763          * hinder rollback.
2764          */
2765         if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2766                 return -EINVAL;
2767
2768         /*
2769          * Cannot fail anything that doesn't have callbacks.
2770          */
2771         mutex_lock(&cpuhp_state_mutex);
2772         sp = cpuhp_get_step(fail);
2773         if (!sp->startup.single && !sp->teardown.single)
2774                 ret = -EINVAL;
2775         mutex_unlock(&cpuhp_state_mutex);
2776         if (ret)
2777                 return ret;
2778
2779         st->fail = fail;
2780
2781         return count;
2782 }
2783
2784 static ssize_t fail_show(struct device *dev,
2785                          struct device_attribute *attr, char *buf)
2786 {
2787         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2788
2789         return sprintf(buf, "%d\n", st->fail);
2790 }
2791
2792 static DEVICE_ATTR_RW(fail);
2793
2794 static struct attribute *cpuhp_cpu_attrs[] = {
2795         &dev_attr_state.attr,
2796         &dev_attr_target.attr,
2797         &dev_attr_fail.attr,
2798         NULL
2799 };
2800
2801 static const struct attribute_group cpuhp_cpu_attr_group = {
2802         .attrs = cpuhp_cpu_attrs,
2803         .name = "hotplug",
2804         NULL
2805 };
2806
2807 static ssize_t states_show(struct device *dev,
2808                                  struct device_attribute *attr, char *buf)
2809 {
2810         ssize_t cur, res = 0;
2811         int i;
2812
2813         mutex_lock(&cpuhp_state_mutex);
2814         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2815                 struct cpuhp_step *sp = cpuhp_get_step(i);
2816
2817                 if (sp->name) {
2818                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2819                         buf += cur;
2820                         res += cur;
2821                 }
2822         }
2823         mutex_unlock(&cpuhp_state_mutex);
2824         return res;
2825 }
2826 static DEVICE_ATTR_RO(states);
2827
2828 static struct attribute *cpuhp_cpu_root_attrs[] = {
2829         &dev_attr_states.attr,
2830         NULL
2831 };
2832
2833 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2834         .attrs = cpuhp_cpu_root_attrs,
2835         .name = "hotplug",
2836         NULL
2837 };
2838
2839 #ifdef CONFIG_HOTPLUG_SMT
2840
2841 static ssize_t
2842 __store_smt_control(struct device *dev, struct device_attribute *attr,
2843                     const char *buf, size_t count)
2844 {
2845         int ctrlval, ret;
2846
2847         if (sysfs_streq(buf, "on"))
2848                 ctrlval = CPU_SMT_ENABLED;
2849         else if (sysfs_streq(buf, "off"))
2850                 ctrlval = CPU_SMT_DISABLED;
2851         else if (sysfs_streq(buf, "forceoff"))
2852                 ctrlval = CPU_SMT_FORCE_DISABLED;
2853         else
2854                 return -EINVAL;
2855
2856         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2857                 return -EPERM;
2858
2859         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2860                 return -ENODEV;
2861
2862         ret = lock_device_hotplug_sysfs();
2863         if (ret)
2864                 return ret;
2865
2866         if (ctrlval != cpu_smt_control) {
2867                 switch (ctrlval) {
2868                 case CPU_SMT_ENABLED:
2869                         ret = cpuhp_smt_enable();
2870                         break;
2871                 case CPU_SMT_DISABLED:
2872                 case CPU_SMT_FORCE_DISABLED:
2873                         ret = cpuhp_smt_disable(ctrlval);
2874                         break;
2875                 }
2876         }
2877
2878         unlock_device_hotplug();
2879         return ret ? ret : count;
2880 }
2881
2882 #else /* !CONFIG_HOTPLUG_SMT */
2883 static ssize_t
2884 __store_smt_control(struct device *dev, struct device_attribute *attr,
2885                     const char *buf, size_t count)
2886 {
2887         return -ENODEV;
2888 }
2889 #endif /* CONFIG_HOTPLUG_SMT */
2890
2891 static const char *smt_states[] = {
2892         [CPU_SMT_ENABLED]               = "on",
2893         [CPU_SMT_DISABLED]              = "off",
2894         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2895         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2896         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2897 };
2898
2899 static ssize_t control_show(struct device *dev,
2900                             struct device_attribute *attr, char *buf)
2901 {
2902         const char *state = smt_states[cpu_smt_control];
2903
2904         return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2905 }
2906
2907 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2908                              const char *buf, size_t count)
2909 {
2910         return __store_smt_control(dev, attr, buf, count);
2911 }
2912 static DEVICE_ATTR_RW(control);
2913
2914 static ssize_t active_show(struct device *dev,
2915                            struct device_attribute *attr, char *buf)
2916 {
2917         return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2918 }
2919 static DEVICE_ATTR_RO(active);
2920
2921 static struct attribute *cpuhp_smt_attrs[] = {
2922         &dev_attr_control.attr,
2923         &dev_attr_active.attr,
2924         NULL
2925 };
2926
2927 static const struct attribute_group cpuhp_smt_attr_group = {
2928         .attrs = cpuhp_smt_attrs,
2929         .name = "smt",
2930         NULL
2931 };
2932
2933 static int __init cpu_smt_sysfs_init(void)
2934 {
2935         struct device *dev_root;
2936         int ret = -ENODEV;
2937
2938         dev_root = bus_get_dev_root(&cpu_subsys);
2939         if (dev_root) {
2940                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
2941                 put_device(dev_root);
2942         }
2943         return ret;
2944 }
2945
2946 static int __init cpuhp_sysfs_init(void)
2947 {
2948         struct device *dev_root;
2949         int cpu, ret;
2950
2951         ret = cpu_smt_sysfs_init();
2952         if (ret)
2953                 return ret;
2954
2955         dev_root = bus_get_dev_root(&cpu_subsys);
2956         if (dev_root) {
2957                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
2958                 put_device(dev_root);
2959                 if (ret)
2960                         return ret;
2961         }
2962
2963         for_each_possible_cpu(cpu) {
2964                 struct device *dev = get_cpu_device(cpu);
2965
2966                 if (!dev)
2967                         continue;
2968                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2969                 if (ret)
2970                         return ret;
2971         }
2972         return 0;
2973 }
2974 device_initcall(cpuhp_sysfs_init);
2975 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2976
2977 /*
2978  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2979  * represents all NR_CPUS bits binary values of 1<<nr.
2980  *
2981  * It is used by cpumask_of() to get a constant address to a CPU
2982  * mask value that has a single bit set only.
2983  */
2984
2985 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2986 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2987 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2988 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2989 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2990
2991 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2992
2993         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2994         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2995 #if BITS_PER_LONG > 32
2996         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2997         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2998 #endif
2999 };
3000 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3001
3002 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3003 EXPORT_SYMBOL(cpu_all_bits);
3004
3005 #ifdef CONFIG_INIT_ALL_POSSIBLE
3006 struct cpumask __cpu_possible_mask __read_mostly
3007         = {CPU_BITS_ALL};
3008 #else
3009 struct cpumask __cpu_possible_mask __read_mostly;
3010 #endif
3011 EXPORT_SYMBOL(__cpu_possible_mask);
3012
3013 struct cpumask __cpu_online_mask __read_mostly;
3014 EXPORT_SYMBOL(__cpu_online_mask);
3015
3016 struct cpumask __cpu_present_mask __read_mostly;
3017 EXPORT_SYMBOL(__cpu_present_mask);
3018
3019 struct cpumask __cpu_active_mask __read_mostly;
3020 EXPORT_SYMBOL(__cpu_active_mask);
3021
3022 struct cpumask __cpu_dying_mask __read_mostly;
3023 EXPORT_SYMBOL(__cpu_dying_mask);
3024
3025 atomic_t __num_online_cpus __read_mostly;
3026 EXPORT_SYMBOL(__num_online_cpus);
3027
3028 void init_cpu_present(const struct cpumask *src)
3029 {
3030         cpumask_copy(&__cpu_present_mask, src);
3031 }
3032
3033 void init_cpu_possible(const struct cpumask *src)
3034 {
3035         cpumask_copy(&__cpu_possible_mask, src);
3036 }
3037
3038 void init_cpu_online(const struct cpumask *src)
3039 {
3040         cpumask_copy(&__cpu_online_mask, src);
3041 }
3042
3043 void set_cpu_online(unsigned int cpu, bool online)
3044 {
3045         /*
3046          * atomic_inc/dec() is required to handle the horrid abuse of this
3047          * function by the reboot and kexec code which invoke it from
3048          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3049          * regular CPU hotplug is properly serialized.
3050          *
3051          * Note, that the fact that __num_online_cpus is of type atomic_t
3052          * does not protect readers which are not serialized against
3053          * concurrent hotplug operations.
3054          */
3055         if (online) {
3056                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3057                         atomic_inc(&__num_online_cpus);
3058         } else {
3059                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3060                         atomic_dec(&__num_online_cpus);
3061         }
3062 }
3063
3064 /*
3065  * Activate the first processor.
3066  */
3067 void __init boot_cpu_init(void)
3068 {
3069         int cpu = smp_processor_id();
3070
3071         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3072         set_cpu_online(cpu, true);
3073         set_cpu_active(cpu, true);
3074         set_cpu_present(cpu, true);
3075         set_cpu_possible(cpu, true);
3076
3077 #ifdef CONFIG_SMP
3078         __boot_cpu_id = cpu;
3079 #endif
3080 }
3081
3082 /*
3083  * Must be called _AFTER_ setting up the per_cpu areas
3084  */
3085 void __init boot_cpu_hotplug_init(void)
3086 {
3087 #ifdef CONFIG_SMP
3088         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3089         atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3090 #endif
3091         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3092         this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3093 }
3094
3095 /*
3096  * These are used for a global "mitigations=" cmdline option for toggling
3097  * optional CPU mitigations.
3098  */
3099 enum cpu_mitigations {
3100         CPU_MITIGATIONS_OFF,
3101         CPU_MITIGATIONS_AUTO,
3102         CPU_MITIGATIONS_AUTO_NOSMT,
3103 };
3104
3105 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3106         CPU_MITIGATIONS_AUTO;
3107
3108 static int __init mitigations_parse_cmdline(char *arg)
3109 {
3110         if (!strcmp(arg, "off"))
3111                 cpu_mitigations = CPU_MITIGATIONS_OFF;
3112         else if (!strcmp(arg, "auto"))
3113                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3114         else if (!strcmp(arg, "auto,nosmt"))
3115                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3116         else
3117                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3118                         arg);
3119
3120         return 0;
3121 }
3122 early_param("mitigations", mitigations_parse_cmdline);
3123
3124 /* mitigations=off */
3125 bool cpu_mitigations_off(void)
3126 {
3127         return cpu_mitigations == CPU_MITIGATIONS_OFF;
3128 }
3129 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3130
3131 /* mitigations=auto,nosmt */
3132 bool cpu_mitigations_auto_nosmt(void)
3133 {
3134         return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3135 }
3136 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);