2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
49 * @state: The current cpu state
50 * @target: The target state
51 * @fail: Current CPU hotplug callback state
52 * @thread: Pointer to the hotplug thread
53 * @should_run: Thread should execute
54 * @rollback: Perform a rollback
55 * @single: Single callback invocation
56 * @bringup: Single callback bringup or teardown selector
58 * @node: Remote CPU node; for multi-instance, do a
59 * single entry callback for install/remove
60 * @last: For multi-instance rollback, remember how far we got
61 * @cb_state: The state for a single callback (install/uninstall)
62 * @result: Result of the operation
63 * @ap_sync_state: State for AP synchronization
64 * @done_up: Signal completion to the issuer of the task for cpu-up
65 * @done_down: Signal completion to the issuer of the task for cpu-down
67 struct cpuhp_cpu_state {
68 enum cpuhp_state state;
69 enum cpuhp_state target;
70 enum cpuhp_state fail;
72 struct task_struct *thread;
77 struct hlist_node *node;
78 struct hlist_node *last;
79 enum cpuhp_state cb_state;
81 atomic_t ap_sync_state;
82 struct completion done_up;
83 struct completion done_down;
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88 .fail = CPUHP_INVALID,
92 cpumask_t cpus_booted_once_mask;
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
102 static inline void cpuhp_lock_acquire(bool bringup)
104 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 static inline void cpuhp_lock_release(bool bringup)
109 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
119 * struct cpuhp_step - Hotplug state machine step
120 * @name: Name of the step
121 * @startup: Startup function of the step
122 * @teardown: Teardown function of the step
123 * @cant_stop: Bringup/teardown can't be stopped at this step
124 * @multi_instance: State has multiple instances which get added afterwards
129 int (*single)(unsigned int cpu);
130 int (*multi)(unsigned int cpu,
131 struct hlist_node *node);
134 int (*single)(unsigned int cpu);
135 int (*multi)(unsigned int cpu,
136 struct hlist_node *node);
139 struct hlist_head list;
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
150 return cpuhp_hp_states + state;
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
155 return bringup ? !step->startup.single : !step->teardown.single;
159 * cpuhp_invoke_callback - Invoke the callbacks for a given state
160 * @cpu: The cpu for which the callback should be invoked
161 * @state: The state to do callbacks for
162 * @bringup: True if the bringup callback should be invoked
163 * @node: For multi-instance, do a single entry callback for install/remove
164 * @lastp: For multi-instance rollback, remember how far we got
166 * Called from cpu hotplug and from the state register machinery.
168 * Return: %0 on success or a negative errno code
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171 bool bringup, struct hlist_node *node,
172 struct hlist_node **lastp)
174 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175 struct cpuhp_step *step = cpuhp_get_step(state);
176 int (*cbm)(unsigned int cpu, struct hlist_node *node);
177 int (*cb)(unsigned int cpu);
180 if (st->fail == state) {
181 st->fail = CPUHP_INVALID;
185 if (cpuhp_step_empty(bringup, step)) {
190 if (!step->multi_instance) {
191 WARN_ON_ONCE(lastp && *lastp);
192 cb = bringup ? step->startup.single : step->teardown.single;
194 trace_cpuhp_enter(cpu, st->target, state, cb);
196 trace_cpuhp_exit(cpu, st->state, state, ret);
199 cbm = bringup ? step->startup.multi : step->teardown.multi;
201 /* Single invocation for instance add/remove */
203 WARN_ON_ONCE(lastp && *lastp);
204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 ret = cbm(cpu, node);
206 trace_cpuhp_exit(cpu, st->state, state, ret);
210 /* State transition. Invoke on all instances */
212 hlist_for_each(node, &step->list) {
213 if (lastp && node == *lastp)
216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 ret = cbm(cpu, node);
218 trace_cpuhp_exit(cpu, st->state, state, ret);
232 /* Rollback the instances if one failed */
233 cbm = !bringup ? step->startup.multi : step->teardown.multi;
237 hlist_for_each(node, &step->list) {
241 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242 ret = cbm(cpu, node);
243 trace_cpuhp_exit(cpu, st->state, state, ret);
245 * Rollback must not fail,
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
256 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257 * purposes as that state is handled explicitly in cpu_down.
259 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
264 struct completion *done = bringup ? &st->done_up : &st->done_down;
265 wait_for_completion(done);
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
270 struct completion *done = bringup ? &st->done_up : &st->done_down;
275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
279 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
286 SYNC_STATE_SHOULD_DIE,
288 SYNC_STATE_SHOULD_ONLINE,
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295 * @state: The synchronization state to set
297 * No synchronization point. Just update of the synchronization state, but implies
298 * a full barrier so that the AP changes are visible before the control CPU proceeds.
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
302 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
304 (void)atomic_xchg(st, state);
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310 enum cpuhp_sync_state next_state)
312 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313 ktime_t now, end, start = ktime_get();
316 end = start + 10ULL * NSEC_PER_SEC;
318 sync = atomic_read(st);
321 if (!atomic_try_cmpxchg(st, &sync, next_state))
328 /* Timeout. Leave the state unchanged */
330 } else if (now - start < NSEC_PER_MSEC) {
331 /* Poll for one millisecond */
332 arch_cpuhp_sync_state_poll();
334 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
336 sync = atomic_read(st);
340 #else /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
346 * cpuhp_ap_report_dead - Update synchronization state to DEAD
348 * No synchronization point. Just update of the synchronization state.
350 void cpuhp_ap_report_dead(void)
352 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359 * because the AP cannot issue complete() at this stage.
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
363 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364 int sync = atomic_read(st);
367 /* CPU can have reported dead already. Don't overwrite that! */
368 if (sync == SYNC_STATE_DEAD)
370 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
372 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373 /* CPU reached dead state. Invoke the cleanup function */
374 arch_cpuhp_cleanup_dead_cpu(cpu);
378 /* No further action possible. Emit message and give up. */
379 pr_err("CPU%u failed to report dead state\n", cpu);
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390 * for the BP to release it.
392 void cpuhp_ap_sync_alive(void)
394 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
396 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
398 /* Wait for the control CPU to release it. */
399 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
405 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406 int sync = atomic_read(st);
410 case SYNC_STATE_DEAD:
411 /* CPU is properly dead */
413 case SYNC_STATE_KICKED:
414 /* CPU did not come up in previous attempt */
416 case SYNC_STATE_ALIVE:
417 /* CPU is stuck cpuhp_ap_sync_alive(). */
420 /* CPU failed to report online or dead and is in limbo state. */
424 /* Prepare for booting */
425 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435 * because the AP cannot issue complete() so early in the bringup.
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
441 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
444 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445 pr_err("CPU%u failed to report alive state\n", cpu);
449 /* Let the architecture cleanup the kick alive mechanics. */
450 arch_cpuhp_cleanup_kick_cpu(cpu);
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
464 * The following two APIs (cpu_maps_update_begin/done) must be used when
465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
467 void cpu_maps_update_begin(void)
469 mutex_lock(&cpu_add_remove_lock);
472 void cpu_maps_update_done(void)
474 mutex_unlock(&cpu_add_remove_lock);
478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479 * Should always be manipulated under cpu_add_remove_lock
481 static int cpu_hotplug_disabled;
483 #ifdef CONFIG_HOTPLUG_CPU
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
487 void cpus_read_lock(void)
489 percpu_down_read(&cpu_hotplug_lock);
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
493 int cpus_read_trylock(void)
495 return percpu_down_read_trylock(&cpu_hotplug_lock);
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
499 void cpus_read_unlock(void)
501 percpu_up_read(&cpu_hotplug_lock);
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
505 void cpus_write_lock(void)
507 percpu_down_write(&cpu_hotplug_lock);
510 void cpus_write_unlock(void)
512 percpu_up_write(&cpu_hotplug_lock);
515 void lockdep_assert_cpus_held(void)
518 * We can't have hotplug operations before userspace starts running,
519 * and some init codepaths will knowingly not take the hotplug lock.
520 * This is all valid, so mute lockdep until it makes sense to report
523 if (system_state < SYSTEM_RUNNING)
526 percpu_rwsem_assert_held(&cpu_hotplug_lock);
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
532 return percpu_rwsem_is_held(&cpu_hotplug_lock);
536 static void lockdep_acquire_cpus_lock(void)
538 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
541 static void lockdep_release_cpus_lock(void)
543 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
547 * Wait for currently running CPU hotplug operations to complete (if any) and
548 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550 * hotplug path before performing hotplug operations. So acquiring that lock
551 * guarantees mutual exclusion from any currently running hotplug operations.
553 void cpu_hotplug_disable(void)
555 cpu_maps_update_begin();
556 cpu_hotplug_disabled++;
557 cpu_maps_update_done();
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
561 static void __cpu_hotplug_enable(void)
563 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
565 cpu_hotplug_disabled--;
568 void cpu_hotplug_enable(void)
570 cpu_maps_update_begin();
571 __cpu_hotplug_enable();
572 cpu_maps_update_done();
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
578 static void lockdep_acquire_cpus_lock(void)
582 static void lockdep_release_cpus_lock(void)
586 #endif /* CONFIG_HOTPLUG_CPU */
589 * Architectures that need SMT-specific errata handling during SMT hotplug
590 * should override this.
592 void __weak arch_smt_update(void) { }
594 #ifdef CONFIG_HOTPLUG_SMT
595 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597 void __init cpu_smt_disable(bool force)
599 if (!cpu_smt_possible())
603 pr_info("SMT: Force disabled\n");
604 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
606 pr_info("SMT: disabled\n");
607 cpu_smt_control = CPU_SMT_DISABLED;
612 * The decision whether SMT is supported can only be done after the full
613 * CPU identification. Called from architecture code.
615 void __init cpu_smt_check_topology(void)
617 if (!topology_smt_supported())
618 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
621 static int __init smt_cmdline_disable(char *str)
623 cpu_smt_disable(str && !strcmp(str, "force"));
626 early_param("nosmt", smt_cmdline_disable);
628 static inline bool cpu_smt_allowed(unsigned int cpu)
630 if (cpu_smt_control == CPU_SMT_ENABLED)
633 if (topology_is_primary_thread(cpu))
637 * On x86 it's required to boot all logical CPUs at least once so
638 * that the init code can get a chance to set CR4.MCE on each
639 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
640 * core will shutdown the machine.
642 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
645 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
646 bool cpu_smt_possible(void)
648 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
649 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
651 EXPORT_SYMBOL_GPL(cpu_smt_possible);
653 static inline bool cpuhp_smt_aware(void)
655 return topology_smt_supported();
658 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
660 return cpu_primary_thread_mask;
663 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
664 static inline bool cpuhp_smt_aware(void) { return false; }
665 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
667 return cpu_present_mask;
671 static inline enum cpuhp_state
672 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
674 enum cpuhp_state prev_state = st->state;
675 bool bringup = st->state < target;
677 st->rollback = false;
682 st->bringup = bringup;
683 if (cpu_dying(cpu) != !bringup)
684 set_cpu_dying(cpu, !bringup);
690 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
691 enum cpuhp_state prev_state)
693 bool bringup = !st->bringup;
695 st->target = prev_state;
698 * Already rolling back. No need invert the bringup value or to change
707 * If we have st->last we need to undo partial multi_instance of this
708 * state first. Otherwise start undo at the previous state.
717 st->bringup = bringup;
718 if (cpu_dying(cpu) != !bringup)
719 set_cpu_dying(cpu, !bringup);
722 /* Regular hotplug invocation of the AP hotplug thread */
723 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
725 if (!st->single && st->state == st->target)
730 * Make sure the above stores are visible before should_run becomes
731 * true. Paired with the mb() above in cpuhp_thread_fun()
734 st->should_run = true;
735 wake_up_process(st->thread);
736 wait_for_ap_thread(st, st->bringup);
739 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
740 enum cpuhp_state target)
742 enum cpuhp_state prev_state;
745 prev_state = cpuhp_set_state(cpu, st, target);
747 if ((ret = st->result)) {
748 cpuhp_reset_state(cpu, st, prev_state);
755 static int bringup_wait_for_ap_online(unsigned int cpu)
757 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
759 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
760 wait_for_ap_thread(st, true);
761 if (WARN_ON_ONCE((!cpu_online(cpu))))
764 /* Unpark the hotplug thread of the target cpu */
765 kthread_unpark(st->thread);
768 * SMT soft disabling on X86 requires to bring the CPU out of the
769 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
770 * CPU marked itself as booted_once in notify_cpu_starting() so the
771 * cpu_smt_allowed() check will now return false if this is not the
774 if (!cpu_smt_allowed(cpu))
779 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
780 static int cpuhp_kick_ap_alive(unsigned int cpu)
782 if (!cpuhp_can_boot_ap(cpu))
785 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
788 static int cpuhp_bringup_ap(unsigned int cpu)
790 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
794 * Some architectures have to walk the irq descriptors to
795 * setup the vector space for the cpu which comes online.
796 * Prevent irq alloc/free across the bringup.
800 ret = cpuhp_bp_sync_alive(cpu);
804 ret = bringup_wait_for_ap_online(cpu);
810 if (st->target <= CPUHP_AP_ONLINE_IDLE)
813 return cpuhp_kick_ap(cpu, st, st->target);
820 static int bringup_cpu(unsigned int cpu)
822 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
823 struct task_struct *idle = idle_thread_get(cpu);
826 if (!cpuhp_can_boot_ap(cpu))
830 * Some architectures have to walk the irq descriptors to
831 * setup the vector space for the cpu which comes online.
833 * Prevent irq alloc/free across the bringup by acquiring the
834 * sparse irq lock. Hold it until the upcoming CPU completes the
835 * startup in cpuhp_online_idle() which allows to avoid
836 * intermediate synchronization points in the architecture code.
840 ret = __cpu_up(cpu, idle);
844 ret = cpuhp_bp_sync_alive(cpu);
848 ret = bringup_wait_for_ap_online(cpu);
854 if (st->target <= CPUHP_AP_ONLINE_IDLE)
857 return cpuhp_kick_ap(cpu, st, st->target);
865 static int finish_cpu(unsigned int cpu)
867 struct task_struct *idle = idle_thread_get(cpu);
868 struct mm_struct *mm = idle->active_mm;
871 * idle_task_exit() will have switched to &init_mm, now
872 * clean up any remaining active_mm state.
875 idle->active_mm = &init_mm;
881 * Hotplug state machine related functions
885 * Get the next state to run. Empty ones will be skipped. Returns true if a
888 * st->state will be modified ahead of time, to match state_to_run, as if it
891 static bool cpuhp_next_state(bool bringup,
892 enum cpuhp_state *state_to_run,
893 struct cpuhp_cpu_state *st,
894 enum cpuhp_state target)
898 if (st->state >= target)
901 *state_to_run = ++st->state;
903 if (st->state <= target)
906 *state_to_run = st->state--;
909 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
916 static int __cpuhp_invoke_callback_range(bool bringup,
918 struct cpuhp_cpu_state *st,
919 enum cpuhp_state target,
922 enum cpuhp_state state;
925 while (cpuhp_next_state(bringup, &state, st, target)) {
928 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
933 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
934 cpu, bringup ? "UP" : "DOWN",
935 cpuhp_get_step(st->state)->name,
947 static inline int cpuhp_invoke_callback_range(bool bringup,
949 struct cpuhp_cpu_state *st,
950 enum cpuhp_state target)
952 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
955 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
957 struct cpuhp_cpu_state *st,
958 enum cpuhp_state target)
960 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
963 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
965 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
968 * When CPU hotplug is disabled, then taking the CPU down is not
969 * possible because takedown_cpu() and the architecture and
970 * subsystem specific mechanisms are not available. So the CPU
971 * which would be completely unplugged again needs to stay around
972 * in the current state.
974 return st->state <= CPUHP_BRINGUP_CPU;
977 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
978 enum cpuhp_state target)
980 enum cpuhp_state prev_state = st->state;
983 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
985 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
986 ret, cpu, cpuhp_get_step(st->state)->name,
989 cpuhp_reset_state(cpu, st, prev_state);
990 if (can_rollback_cpu(st))
991 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
998 * The cpu hotplug threads manage the bringup and teardown of the cpus
1000 static int cpuhp_should_run(unsigned int cpu)
1002 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1004 return st->should_run;
1008 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1009 * callbacks when a state gets [un]installed at runtime.
1011 * Each invocation of this function by the smpboot thread does a single AP
1014 * It has 3 modes of operation:
1015 * - single: runs st->cb_state
1016 * - up: runs ++st->state, while st->state < st->target
1017 * - down: runs st->state--, while st->state > st->target
1019 * When complete or on error, should_run is cleared and the completion is fired.
1021 static void cpuhp_thread_fun(unsigned int cpu)
1023 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1024 bool bringup = st->bringup;
1025 enum cpuhp_state state;
1027 if (WARN_ON_ONCE(!st->should_run))
1031 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1032 * that if we see ->should_run we also see the rest of the state.
1037 * The BP holds the hotplug lock, but we're now running on the AP,
1038 * ensure that anybody asserting the lock is held, will actually find
1041 lockdep_acquire_cpus_lock();
1042 cpuhp_lock_acquire(bringup);
1045 state = st->cb_state;
1046 st->should_run = false;
1048 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1049 if (!st->should_run)
1053 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1055 if (cpuhp_is_atomic_state(state)) {
1056 local_irq_disable();
1057 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1061 * STARTING/DYING must not fail!
1063 WARN_ON_ONCE(st->result);
1065 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1070 * If we fail on a rollback, we're up a creek without no
1071 * paddle, no way forward, no way back. We loose, thanks for
1074 WARN_ON_ONCE(st->rollback);
1075 st->should_run = false;
1079 cpuhp_lock_release(bringup);
1080 lockdep_release_cpus_lock();
1082 if (!st->should_run)
1083 complete_ap_thread(st, bringup);
1086 /* Invoke a single callback on a remote cpu */
1088 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1089 struct hlist_node *node)
1091 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1094 if (!cpu_online(cpu))
1097 cpuhp_lock_acquire(false);
1098 cpuhp_lock_release(false);
1100 cpuhp_lock_acquire(true);
1101 cpuhp_lock_release(true);
1104 * If we are up and running, use the hotplug thread. For early calls
1105 * we invoke the thread function directly.
1108 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1110 st->rollback = false;
1114 st->bringup = bringup;
1115 st->cb_state = state;
1118 __cpuhp_kick_ap(st);
1121 * If we failed and did a partial, do a rollback.
1123 if ((ret = st->result) && st->last) {
1124 st->rollback = true;
1125 st->bringup = !bringup;
1127 __cpuhp_kick_ap(st);
1131 * Clean up the leftovers so the next hotplug operation wont use stale
1134 st->node = st->last = NULL;
1138 static int cpuhp_kick_ap_work(unsigned int cpu)
1140 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1141 enum cpuhp_state prev_state = st->state;
1144 cpuhp_lock_acquire(false);
1145 cpuhp_lock_release(false);
1147 cpuhp_lock_acquire(true);
1148 cpuhp_lock_release(true);
1150 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1151 ret = cpuhp_kick_ap(cpu, st, st->target);
1152 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1157 static struct smp_hotplug_thread cpuhp_threads = {
1158 .store = &cpuhp_state.thread,
1159 .thread_should_run = cpuhp_should_run,
1160 .thread_fn = cpuhp_thread_fun,
1161 .thread_comm = "cpuhp/%u",
1162 .selfparking = true,
1165 static __init void cpuhp_init_state(void)
1167 struct cpuhp_cpu_state *st;
1170 for_each_possible_cpu(cpu) {
1171 st = per_cpu_ptr(&cpuhp_state, cpu);
1172 init_completion(&st->done_up);
1173 init_completion(&st->done_down);
1177 void __init cpuhp_threads_init(void)
1180 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1181 kthread_unpark(this_cpu_read(cpuhp_state.thread));
1186 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1189 * The operation is still serialized against concurrent CPU hotplug via
1190 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
1191 * serialized against other hotplug related activity like adding or
1192 * removing of state callbacks and state instances, which invoke either the
1193 * startup or the teardown callback of the affected state.
1195 * This is required for subsystems which are unfixable vs. CPU hotplug and
1196 * evade lock inversion problems by scheduling work which has to be
1197 * completed _before_ cpu_up()/_cpu_down() returns.
1199 * Don't even think about adding anything to this for any new code or even
1200 * drivers. It's only purpose is to keep existing lock order trainwrecks
1203 * For cpu_down() there might be valid reasons to finish cleanups which are
1204 * not required to be done under cpu_hotplug_lock, but that's a different
1205 * story and would be not invoked via this.
1207 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1210 * cpusets delegate hotplug operations to a worker to "solve" the
1211 * lock order problems. Wait for the worker, but only if tasks are
1212 * _not_ frozen (suspend, hibernate) as that would wait forever.
1214 * The wait is required because otherwise the hotplug operation
1215 * returns with inconsistent state, which could even be observed in
1216 * user space when a new CPU is brought up. The CPU plug uevent
1217 * would be delivered and user space reacting on it would fail to
1218 * move tasks to the newly plugged CPU up to the point where the
1219 * work has finished because up to that point the newly plugged CPU
1220 * is not assignable in cpusets/cgroups. On unplug that's not
1221 * necessarily a visible issue, but it is still inconsistent state,
1222 * which is the real problem which needs to be "fixed". This can't
1223 * prevent the transient state between scheduling the work and
1224 * returning from waiting for it.
1227 cpuset_wait_for_hotplug();
1230 #ifdef CONFIG_HOTPLUG_CPU
1231 #ifndef arch_clear_mm_cpumask_cpu
1232 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1236 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1239 * This function walks all processes, finds a valid mm struct for each one and
1240 * then clears a corresponding bit in mm's cpumask. While this all sounds
1241 * trivial, there are various non-obvious corner cases, which this function
1242 * tries to solve in a safe manner.
1244 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1245 * be called only for an already offlined CPU.
1247 void clear_tasks_mm_cpumask(int cpu)
1249 struct task_struct *p;
1252 * This function is called after the cpu is taken down and marked
1253 * offline, so its not like new tasks will ever get this cpu set in
1254 * their mm mask. -- Peter Zijlstra
1255 * Thus, we may use rcu_read_lock() here, instead of grabbing
1256 * full-fledged tasklist_lock.
1258 WARN_ON(cpu_online(cpu));
1260 for_each_process(p) {
1261 struct task_struct *t;
1264 * Main thread might exit, but other threads may still have
1265 * a valid mm. Find one.
1267 t = find_lock_task_mm(p);
1270 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1276 /* Take this CPU down. */
1277 static int take_cpu_down(void *_param)
1279 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1280 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1281 int err, cpu = smp_processor_id();
1283 /* Ensure this CPU doesn't handle any more interrupts. */
1284 err = __cpu_disable();
1289 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1290 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1292 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1295 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1297 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1299 /* Give up timekeeping duties */
1300 tick_handover_do_timer();
1301 /* Remove CPU from timer broadcasting */
1302 tick_offline_cpu(cpu);
1303 /* Park the stopper thread */
1304 stop_machine_park(cpu);
1308 static int takedown_cpu(unsigned int cpu)
1310 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1313 /* Park the smpboot threads */
1314 kthread_park(st->thread);
1317 * Prevent irq alloc/free while the dying cpu reorganizes the
1318 * interrupt affinities.
1323 * So now all preempt/rcu users must observe !cpu_active().
1325 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1327 /* CPU refused to die */
1328 irq_unlock_sparse();
1329 /* Unpark the hotplug thread so we can rollback there */
1330 kthread_unpark(st->thread);
1333 BUG_ON(cpu_online(cpu));
1336 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1337 * all runnable tasks from the CPU, there's only the idle task left now
1338 * that the migration thread is done doing the stop_machine thing.
1340 * Wait for the stop thread to go away.
1342 wait_for_ap_thread(st, false);
1343 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1345 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1346 irq_unlock_sparse();
1348 hotplug_cpu__broadcast_tick_pull(cpu);
1349 /* This actually kills the CPU. */
1352 cpuhp_bp_sync_dead(cpu);
1354 tick_cleanup_dead_cpu(cpu);
1355 rcutree_migrate_callbacks(cpu);
1359 static void cpuhp_complete_idle_dead(void *arg)
1361 struct cpuhp_cpu_state *st = arg;
1363 complete_ap_thread(st, false);
1366 void cpuhp_report_idle_dead(void)
1368 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1370 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1371 rcu_report_dead(smp_processor_id());
1372 st->state = CPUHP_AP_IDLE_DEAD;
1374 * We cannot call complete after rcu_report_dead() so we delegate it
1377 smp_call_function_single(cpumask_first(cpu_online_mask),
1378 cpuhp_complete_idle_dead, st, 0);
1381 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1382 enum cpuhp_state target)
1384 enum cpuhp_state prev_state = st->state;
1387 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1389 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1390 ret, cpu, cpuhp_get_step(st->state)->name,
1393 cpuhp_reset_state(cpu, st, prev_state);
1395 if (st->state < prev_state)
1396 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1403 /* Requires cpu_add_remove_lock to be held */
1404 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1405 enum cpuhp_state target)
1407 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1408 int prev_state, ret = 0;
1410 if (num_online_cpus() == 1)
1413 if (!cpu_present(cpu))
1418 cpuhp_tasks_frozen = tasks_frozen;
1420 prev_state = cpuhp_set_state(cpu, st, target);
1422 * If the current CPU state is in the range of the AP hotplug thread,
1423 * then we need to kick the thread.
1425 if (st->state > CPUHP_TEARDOWN_CPU) {
1426 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1427 ret = cpuhp_kick_ap_work(cpu);
1429 * The AP side has done the error rollback already. Just
1430 * return the error code..
1436 * We might have stopped still in the range of the AP hotplug
1437 * thread. Nothing to do anymore.
1439 if (st->state > CPUHP_TEARDOWN_CPU)
1442 st->target = target;
1445 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1446 * to do the further cleanups.
1448 ret = cpuhp_down_callbacks(cpu, st, target);
1449 if (ret && st->state < prev_state) {
1450 if (st->state == CPUHP_TEARDOWN_CPU) {
1451 cpuhp_reset_state(cpu, st, prev_state);
1452 __cpuhp_kick_ap(st);
1454 WARN(1, "DEAD callback error for CPU%d", cpu);
1459 cpus_write_unlock();
1461 * Do post unplug cleanup. This is still protected against
1462 * concurrent CPU hotplug via cpu_add_remove_lock.
1464 lockup_detector_cleanup();
1466 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1470 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1473 * If the platform does not support hotplug, report it explicitly to
1474 * differentiate it from a transient offlining failure.
1476 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1478 if (cpu_hotplug_disabled)
1480 return _cpu_down(cpu, 0, target);
1483 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1487 cpu_maps_update_begin();
1488 err = cpu_down_maps_locked(cpu, target);
1489 cpu_maps_update_done();
1494 * cpu_device_down - Bring down a cpu device
1495 * @dev: Pointer to the cpu device to offline
1497 * This function is meant to be used by device core cpu subsystem only.
1499 * Other subsystems should use remove_cpu() instead.
1501 * Return: %0 on success or a negative errno code
1503 int cpu_device_down(struct device *dev)
1505 return cpu_down(dev->id, CPUHP_OFFLINE);
1508 int remove_cpu(unsigned int cpu)
1512 lock_device_hotplug();
1513 ret = device_offline(get_cpu_device(cpu));
1514 unlock_device_hotplug();
1518 EXPORT_SYMBOL_GPL(remove_cpu);
1520 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1525 cpu_maps_update_begin();
1528 * Make certain the cpu I'm about to reboot on is online.
1530 * This is inline to what migrate_to_reboot_cpu() already do.
1532 if (!cpu_online(primary_cpu))
1533 primary_cpu = cpumask_first(cpu_online_mask);
1535 for_each_online_cpu(cpu) {
1536 if (cpu == primary_cpu)
1539 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1541 pr_err("Failed to offline CPU%d - error=%d",
1548 * Ensure all but the reboot CPU are offline.
1550 BUG_ON(num_online_cpus() > 1);
1553 * Make sure the CPUs won't be enabled by someone else after this
1554 * point. Kexec will reboot to a new kernel shortly resetting
1555 * everything along the way.
1557 cpu_hotplug_disabled++;
1559 cpu_maps_update_done();
1563 #define takedown_cpu NULL
1564 #endif /*CONFIG_HOTPLUG_CPU*/
1567 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1568 * @cpu: cpu that just started
1570 * It must be called by the arch code on the new cpu, before the new cpu
1571 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1573 void notify_cpu_starting(unsigned int cpu)
1575 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1576 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1578 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1579 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1582 * STARTING must not fail!
1584 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1588 * Called from the idle task. Wake up the controlling task which brings the
1589 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1590 * online bringup to the hotplug thread.
1592 void cpuhp_online_idle(enum cpuhp_state state)
1594 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1596 /* Happens for the boot cpu */
1597 if (state != CPUHP_AP_ONLINE_IDLE)
1600 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1603 * Unpark the stopper thread before we start the idle loop (and start
1604 * scheduling); this ensures the stopper task is always available.
1606 stop_machine_unpark(smp_processor_id());
1608 st->state = CPUHP_AP_ONLINE_IDLE;
1609 complete_ap_thread(st, true);
1612 /* Requires cpu_add_remove_lock to be held */
1613 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1615 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1616 struct task_struct *idle;
1621 if (!cpu_present(cpu)) {
1627 * The caller of cpu_up() might have raced with another
1628 * caller. Nothing to do.
1630 if (st->state >= target)
1633 if (st->state == CPUHP_OFFLINE) {
1634 /* Let it fail before we try to bring the cpu up */
1635 idle = idle_thread_get(cpu);
1637 ret = PTR_ERR(idle);
1642 * Reset stale stack state from the last time this CPU was online.
1644 scs_task_reset(idle);
1645 kasan_unpoison_task_stack(idle);
1648 cpuhp_tasks_frozen = tasks_frozen;
1650 cpuhp_set_state(cpu, st, target);
1652 * If the current CPU state is in the range of the AP hotplug thread,
1653 * then we need to kick the thread once more.
1655 if (st->state > CPUHP_BRINGUP_CPU) {
1656 ret = cpuhp_kick_ap_work(cpu);
1658 * The AP side has done the error rollback already. Just
1659 * return the error code..
1666 * Try to reach the target state. We max out on the BP at
1667 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1668 * responsible for bringing it up to the target state.
1670 target = min((int)target, CPUHP_BRINGUP_CPU);
1671 ret = cpuhp_up_callbacks(cpu, st, target);
1673 cpus_write_unlock();
1675 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1679 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1683 if (!cpu_possible(cpu)) {
1684 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1686 #if defined(CONFIG_IA64)
1687 pr_err("please check additional_cpus= boot parameter\n");
1692 err = try_online_node(cpu_to_node(cpu));
1696 cpu_maps_update_begin();
1698 if (cpu_hotplug_disabled) {
1702 if (!cpu_smt_allowed(cpu)) {
1707 err = _cpu_up(cpu, 0, target);
1709 cpu_maps_update_done();
1714 * cpu_device_up - Bring up a cpu device
1715 * @dev: Pointer to the cpu device to online
1717 * This function is meant to be used by device core cpu subsystem only.
1719 * Other subsystems should use add_cpu() instead.
1721 * Return: %0 on success or a negative errno code
1723 int cpu_device_up(struct device *dev)
1725 return cpu_up(dev->id, CPUHP_ONLINE);
1728 int add_cpu(unsigned int cpu)
1732 lock_device_hotplug();
1733 ret = device_online(get_cpu_device(cpu));
1734 unlock_device_hotplug();
1738 EXPORT_SYMBOL_GPL(add_cpu);
1741 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1742 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1744 * On some architectures like arm64, we can hibernate on any CPU, but on
1745 * wake up the CPU we hibernated on might be offline as a side effect of
1746 * using maxcpus= for example.
1748 * Return: %0 on success or a negative errno code
1750 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1754 if (!cpu_online(sleep_cpu)) {
1755 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1756 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1758 pr_err("Failed to bring hibernate-CPU up!\n");
1765 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1766 enum cpuhp_state target)
1770 for_each_cpu(cpu, mask) {
1771 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1773 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1775 * If this failed then cpu_up() might have only
1776 * rolled back to CPUHP_BP_KICK_AP for the final
1777 * online. Clean it up. NOOP if already rolled back.
1779 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1787 #ifdef CONFIG_HOTPLUG_PARALLEL
1788 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1790 static int __init parallel_bringup_parse_param(char *arg)
1792 return kstrtobool(arg, &__cpuhp_parallel_bringup);
1794 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1797 * On architectures which have enabled parallel bringup this invokes all BP
1798 * prepare states for each of the to be onlined APs first. The last state
1799 * sends the startup IPI to the APs. The APs proceed through the low level
1800 * bringup code in parallel and then wait for the control CPU to release
1801 * them one by one for the final onlining procedure.
1803 * This avoids waiting for each AP to respond to the startup IPI in
1804 * CPUHP_BRINGUP_CPU.
1806 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1808 const struct cpumask *mask = cpu_present_mask;
1810 if (__cpuhp_parallel_bringup)
1811 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1812 if (!__cpuhp_parallel_bringup)
1815 if (cpuhp_smt_aware()) {
1816 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1817 static struct cpumask tmp_mask __initdata;
1820 * X86 requires to prevent that SMT siblings stopped while
1821 * the primary thread does a microcode update for various
1822 * reasons. Bring the primary threads up first.
1824 cpumask_and(&tmp_mask, mask, pmask);
1825 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1826 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1827 /* Account for the online CPUs */
1828 ncpus -= num_online_cpus();
1831 /* Create the mask for secondary CPUs */
1832 cpumask_andnot(&tmp_mask, mask, pmask);
1836 /* Bring the not-yet started CPUs up */
1837 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1838 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1842 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1843 #endif /* CONFIG_HOTPLUG_PARALLEL */
1845 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1847 /* Try parallel bringup optimization if enabled */
1848 if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1851 /* Full per CPU serialized bringup */
1852 cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1855 #ifdef CONFIG_PM_SLEEP_SMP
1856 static cpumask_var_t frozen_cpus;
1858 int freeze_secondary_cpus(int primary)
1862 cpu_maps_update_begin();
1863 if (primary == -1) {
1864 primary = cpumask_first(cpu_online_mask);
1865 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1866 primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1868 if (!cpu_online(primary))
1869 primary = cpumask_first(cpu_online_mask);
1873 * We take down all of the non-boot CPUs in one shot to avoid races
1874 * with the userspace trying to use the CPU hotplug at the same time
1876 cpumask_clear(frozen_cpus);
1878 pr_info("Disabling non-boot CPUs ...\n");
1879 for_each_online_cpu(cpu) {
1883 if (pm_wakeup_pending()) {
1884 pr_info("Wakeup pending. Abort CPU freeze\n");
1889 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1890 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1891 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1893 cpumask_set_cpu(cpu, frozen_cpus);
1895 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1901 BUG_ON(num_online_cpus() > 1);
1903 pr_err("Non-boot CPUs are not disabled\n");
1906 * Make sure the CPUs won't be enabled by someone else. We need to do
1907 * this even in case of failure as all freeze_secondary_cpus() users are
1908 * supposed to do thaw_secondary_cpus() on the failure path.
1910 cpu_hotplug_disabled++;
1912 cpu_maps_update_done();
1916 void __weak arch_thaw_secondary_cpus_begin(void)
1920 void __weak arch_thaw_secondary_cpus_end(void)
1924 void thaw_secondary_cpus(void)
1928 /* Allow everyone to use the CPU hotplug again */
1929 cpu_maps_update_begin();
1930 __cpu_hotplug_enable();
1931 if (cpumask_empty(frozen_cpus))
1934 pr_info("Enabling non-boot CPUs ...\n");
1936 arch_thaw_secondary_cpus_begin();
1938 for_each_cpu(cpu, frozen_cpus) {
1939 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1940 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1941 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1943 pr_info("CPU%d is up\n", cpu);
1946 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1949 arch_thaw_secondary_cpus_end();
1951 cpumask_clear(frozen_cpus);
1953 cpu_maps_update_done();
1956 static int __init alloc_frozen_cpus(void)
1958 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1962 core_initcall(alloc_frozen_cpus);
1965 * When callbacks for CPU hotplug notifications are being executed, we must
1966 * ensure that the state of the system with respect to the tasks being frozen
1967 * or not, as reported by the notification, remains unchanged *throughout the
1968 * duration* of the execution of the callbacks.
1969 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1971 * This synchronization is implemented by mutually excluding regular CPU
1972 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1973 * Hibernate notifications.
1976 cpu_hotplug_pm_callback(struct notifier_block *nb,
1977 unsigned long action, void *ptr)
1981 case PM_SUSPEND_PREPARE:
1982 case PM_HIBERNATION_PREPARE:
1983 cpu_hotplug_disable();
1986 case PM_POST_SUSPEND:
1987 case PM_POST_HIBERNATION:
1988 cpu_hotplug_enable();
1999 static int __init cpu_hotplug_pm_sync_init(void)
2002 * cpu_hotplug_pm_callback has higher priority than x86
2003 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2004 * to disable cpu hotplug to avoid cpu hotplug race.
2006 pm_notifier(cpu_hotplug_pm_callback, 0);
2009 core_initcall(cpu_hotplug_pm_sync_init);
2011 #endif /* CONFIG_PM_SLEEP_SMP */
2015 #endif /* CONFIG_SMP */
2017 /* Boot processor state steps */
2018 static struct cpuhp_step cpuhp_hp_states[] = {
2021 .startup.single = NULL,
2022 .teardown.single = NULL,
2025 [CPUHP_CREATE_THREADS]= {
2026 .name = "threads:prepare",
2027 .startup.single = smpboot_create_threads,
2028 .teardown.single = NULL,
2031 [CPUHP_PERF_PREPARE] = {
2032 .name = "perf:prepare",
2033 .startup.single = perf_event_init_cpu,
2034 .teardown.single = perf_event_exit_cpu,
2036 [CPUHP_RANDOM_PREPARE] = {
2037 .name = "random:prepare",
2038 .startup.single = random_prepare_cpu,
2039 .teardown.single = NULL,
2041 [CPUHP_WORKQUEUE_PREP] = {
2042 .name = "workqueue:prepare",
2043 .startup.single = workqueue_prepare_cpu,
2044 .teardown.single = NULL,
2046 [CPUHP_HRTIMERS_PREPARE] = {
2047 .name = "hrtimers:prepare",
2048 .startup.single = hrtimers_prepare_cpu,
2049 .teardown.single = hrtimers_dead_cpu,
2051 [CPUHP_SMPCFD_PREPARE] = {
2052 .name = "smpcfd:prepare",
2053 .startup.single = smpcfd_prepare_cpu,
2054 .teardown.single = smpcfd_dead_cpu,
2056 [CPUHP_RELAY_PREPARE] = {
2057 .name = "relay:prepare",
2058 .startup.single = relay_prepare_cpu,
2059 .teardown.single = NULL,
2061 [CPUHP_SLAB_PREPARE] = {
2062 .name = "slab:prepare",
2063 .startup.single = slab_prepare_cpu,
2064 .teardown.single = slab_dead_cpu,
2066 [CPUHP_RCUTREE_PREP] = {
2067 .name = "RCU/tree:prepare",
2068 .startup.single = rcutree_prepare_cpu,
2069 .teardown.single = rcutree_dead_cpu,
2072 * On the tear-down path, timers_dead_cpu() must be invoked
2073 * before blk_mq_queue_reinit_notify() from notify_dead(),
2074 * otherwise a RCU stall occurs.
2076 [CPUHP_TIMERS_PREPARE] = {
2077 .name = "timers:prepare",
2078 .startup.single = timers_prepare_cpu,
2079 .teardown.single = timers_dead_cpu,
2082 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2084 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2085 * the next step will release it.
2087 [CPUHP_BP_KICK_AP] = {
2088 .name = "cpu:kick_ap",
2089 .startup.single = cpuhp_kick_ap_alive,
2093 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2094 * releases it for the complete bringup.
2096 [CPUHP_BRINGUP_CPU] = {
2097 .name = "cpu:bringup",
2098 .startup.single = cpuhp_bringup_ap,
2099 .teardown.single = finish_cpu,
2104 * All-in-one CPU bringup state which includes the kick alive.
2106 [CPUHP_BRINGUP_CPU] = {
2107 .name = "cpu:bringup",
2108 .startup.single = bringup_cpu,
2109 .teardown.single = finish_cpu,
2113 /* Final state before CPU kills itself */
2114 [CPUHP_AP_IDLE_DEAD] = {
2115 .name = "idle:dead",
2118 * Last state before CPU enters the idle loop to die. Transient state
2119 * for synchronization.
2121 [CPUHP_AP_OFFLINE] = {
2122 .name = "ap:offline",
2125 /* First state is scheduler control. Interrupts are disabled */
2126 [CPUHP_AP_SCHED_STARTING] = {
2127 .name = "sched:starting",
2128 .startup.single = sched_cpu_starting,
2129 .teardown.single = sched_cpu_dying,
2131 [CPUHP_AP_RCUTREE_DYING] = {
2132 .name = "RCU/tree:dying",
2133 .startup.single = NULL,
2134 .teardown.single = rcutree_dying_cpu,
2136 [CPUHP_AP_SMPCFD_DYING] = {
2137 .name = "smpcfd:dying",
2138 .startup.single = NULL,
2139 .teardown.single = smpcfd_dying_cpu,
2141 /* Entry state on starting. Interrupts enabled from here on. Transient
2142 * state for synchronsization */
2143 [CPUHP_AP_ONLINE] = {
2144 .name = "ap:online",
2147 * Handled on control processor until the plugged processor manages
2150 [CPUHP_TEARDOWN_CPU] = {
2151 .name = "cpu:teardown",
2152 .startup.single = NULL,
2153 .teardown.single = takedown_cpu,
2157 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2158 .name = "sched:waitempty",
2159 .startup.single = NULL,
2160 .teardown.single = sched_cpu_wait_empty,
2163 /* Handle smpboot threads park/unpark */
2164 [CPUHP_AP_SMPBOOT_THREADS] = {
2165 .name = "smpboot/threads:online",
2166 .startup.single = smpboot_unpark_threads,
2167 .teardown.single = smpboot_park_threads,
2169 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2170 .name = "irq/affinity:online",
2171 .startup.single = irq_affinity_online_cpu,
2172 .teardown.single = NULL,
2174 [CPUHP_AP_PERF_ONLINE] = {
2175 .name = "perf:online",
2176 .startup.single = perf_event_init_cpu,
2177 .teardown.single = perf_event_exit_cpu,
2179 [CPUHP_AP_WATCHDOG_ONLINE] = {
2180 .name = "lockup_detector:online",
2181 .startup.single = lockup_detector_online_cpu,
2182 .teardown.single = lockup_detector_offline_cpu,
2184 [CPUHP_AP_WORKQUEUE_ONLINE] = {
2185 .name = "workqueue:online",
2186 .startup.single = workqueue_online_cpu,
2187 .teardown.single = workqueue_offline_cpu,
2189 [CPUHP_AP_RANDOM_ONLINE] = {
2190 .name = "random:online",
2191 .startup.single = random_online_cpu,
2192 .teardown.single = NULL,
2194 [CPUHP_AP_RCUTREE_ONLINE] = {
2195 .name = "RCU/tree:online",
2196 .startup.single = rcutree_online_cpu,
2197 .teardown.single = rcutree_offline_cpu,
2201 * The dynamically registered state space is here
2205 /* Last state is scheduler control setting the cpu active */
2206 [CPUHP_AP_ACTIVE] = {
2207 .name = "sched:active",
2208 .startup.single = sched_cpu_activate,
2209 .teardown.single = sched_cpu_deactivate,
2213 /* CPU is fully up and running. */
2216 .startup.single = NULL,
2217 .teardown.single = NULL,
2221 /* Sanity check for callbacks */
2222 static int cpuhp_cb_check(enum cpuhp_state state)
2224 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2230 * Returns a free for dynamic slot assignment of the Online state. The states
2231 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2232 * by having no name assigned.
2234 static int cpuhp_reserve_state(enum cpuhp_state state)
2236 enum cpuhp_state i, end;
2237 struct cpuhp_step *step;
2240 case CPUHP_AP_ONLINE_DYN:
2241 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2242 end = CPUHP_AP_ONLINE_DYN_END;
2244 case CPUHP_BP_PREPARE_DYN:
2245 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2246 end = CPUHP_BP_PREPARE_DYN_END;
2252 for (i = state; i <= end; i++, step++) {
2256 WARN(1, "No more dynamic states available for CPU hotplug\n");
2260 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2261 int (*startup)(unsigned int cpu),
2262 int (*teardown)(unsigned int cpu),
2263 bool multi_instance)
2265 /* (Un)Install the callbacks for further cpu hotplug operations */
2266 struct cpuhp_step *sp;
2270 * If name is NULL, then the state gets removed.
2272 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2273 * the first allocation from these dynamic ranges, so the removal
2274 * would trigger a new allocation and clear the wrong (already
2275 * empty) state, leaving the callbacks of the to be cleared state
2276 * dangling, which causes wreckage on the next hotplug operation.
2278 if (name && (state == CPUHP_AP_ONLINE_DYN ||
2279 state == CPUHP_BP_PREPARE_DYN)) {
2280 ret = cpuhp_reserve_state(state);
2285 sp = cpuhp_get_step(state);
2286 if (name && sp->name)
2289 sp->startup.single = startup;
2290 sp->teardown.single = teardown;
2292 sp->multi_instance = multi_instance;
2293 INIT_HLIST_HEAD(&sp->list);
2297 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2299 return cpuhp_get_step(state)->teardown.single;
2303 * Call the startup/teardown function for a step either on the AP or
2304 * on the current CPU.
2306 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2307 struct hlist_node *node)
2309 struct cpuhp_step *sp = cpuhp_get_step(state);
2313 * If there's nothing to do, we done.
2314 * Relies on the union for multi_instance.
2316 if (cpuhp_step_empty(bringup, sp))
2319 * The non AP bound callbacks can fail on bringup. On teardown
2320 * e.g. module removal we crash for now.
2323 if (cpuhp_is_ap_state(state))
2324 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2326 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2328 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2330 BUG_ON(ret && !bringup);
2335 * Called from __cpuhp_setup_state on a recoverable failure.
2337 * Note: The teardown callbacks for rollback are not allowed to fail!
2339 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2340 struct hlist_node *node)
2344 /* Roll back the already executed steps on the other cpus */
2345 for_each_present_cpu(cpu) {
2346 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2347 int cpustate = st->state;
2349 if (cpu >= failedcpu)
2352 /* Did we invoke the startup call on that cpu ? */
2353 if (cpustate >= state)
2354 cpuhp_issue_call(cpu, state, false, node);
2358 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2359 struct hlist_node *node,
2362 struct cpuhp_step *sp;
2366 lockdep_assert_cpus_held();
2368 sp = cpuhp_get_step(state);
2369 if (sp->multi_instance == false)
2372 mutex_lock(&cpuhp_state_mutex);
2374 if (!invoke || !sp->startup.multi)
2378 * Try to call the startup callback for each present cpu
2379 * depending on the hotplug state of the cpu.
2381 for_each_present_cpu(cpu) {
2382 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2383 int cpustate = st->state;
2385 if (cpustate < state)
2388 ret = cpuhp_issue_call(cpu, state, true, node);
2390 if (sp->teardown.multi)
2391 cpuhp_rollback_install(cpu, state, node);
2397 hlist_add_head(node, &sp->list);
2399 mutex_unlock(&cpuhp_state_mutex);
2403 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2409 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2413 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2416 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2417 * @state: The state to setup
2418 * @name: Name of the step
2419 * @invoke: If true, the startup function is invoked for cpus where
2420 * cpu state >= @state
2421 * @startup: startup callback function
2422 * @teardown: teardown callback function
2423 * @multi_instance: State is set up for multiple instances which get
2426 * The caller needs to hold cpus read locked while calling this function.
2429 * Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2430 * 0 for all other states
2431 * On failure: proper (negative) error code
2433 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2434 const char *name, bool invoke,
2435 int (*startup)(unsigned int cpu),
2436 int (*teardown)(unsigned int cpu),
2437 bool multi_instance)
2442 lockdep_assert_cpus_held();
2444 if (cpuhp_cb_check(state) || !name)
2447 mutex_lock(&cpuhp_state_mutex);
2449 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2452 dynstate = state == CPUHP_AP_ONLINE_DYN;
2453 if (ret > 0 && dynstate) {
2458 if (ret || !invoke || !startup)
2462 * Try to call the startup callback for each present cpu
2463 * depending on the hotplug state of the cpu.
2465 for_each_present_cpu(cpu) {
2466 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2467 int cpustate = st->state;
2469 if (cpustate < state)
2472 ret = cpuhp_issue_call(cpu, state, true, NULL);
2475 cpuhp_rollback_install(cpu, state, NULL);
2476 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2481 mutex_unlock(&cpuhp_state_mutex);
2483 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2484 * dynamically allocated state in case of success.
2486 if (!ret && dynstate)
2490 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2492 int __cpuhp_setup_state(enum cpuhp_state state,
2493 const char *name, bool invoke,
2494 int (*startup)(unsigned int cpu),
2495 int (*teardown)(unsigned int cpu),
2496 bool multi_instance)
2501 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2502 teardown, multi_instance);
2506 EXPORT_SYMBOL(__cpuhp_setup_state);
2508 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2509 struct hlist_node *node, bool invoke)
2511 struct cpuhp_step *sp = cpuhp_get_step(state);
2514 BUG_ON(cpuhp_cb_check(state));
2516 if (!sp->multi_instance)
2520 mutex_lock(&cpuhp_state_mutex);
2522 if (!invoke || !cpuhp_get_teardown_cb(state))
2525 * Call the teardown callback for each present cpu depending
2526 * on the hotplug state of the cpu. This function is not
2527 * allowed to fail currently!
2529 for_each_present_cpu(cpu) {
2530 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2531 int cpustate = st->state;
2533 if (cpustate >= state)
2534 cpuhp_issue_call(cpu, state, false, node);
2539 mutex_unlock(&cpuhp_state_mutex);
2544 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2547 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2548 * @state: The state to remove
2549 * @invoke: If true, the teardown function is invoked for cpus where
2550 * cpu state >= @state
2552 * The caller needs to hold cpus read locked while calling this function.
2553 * The teardown callback is currently not allowed to fail. Think
2554 * about module removal!
2556 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2558 struct cpuhp_step *sp = cpuhp_get_step(state);
2561 BUG_ON(cpuhp_cb_check(state));
2563 lockdep_assert_cpus_held();
2565 mutex_lock(&cpuhp_state_mutex);
2566 if (sp->multi_instance) {
2567 WARN(!hlist_empty(&sp->list),
2568 "Error: Removing state %d which has instances left.\n",
2573 if (!invoke || !cpuhp_get_teardown_cb(state))
2577 * Call the teardown callback for each present cpu depending
2578 * on the hotplug state of the cpu. This function is not
2579 * allowed to fail currently!
2581 for_each_present_cpu(cpu) {
2582 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2583 int cpustate = st->state;
2585 if (cpustate >= state)
2586 cpuhp_issue_call(cpu, state, false, NULL);
2589 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2590 mutex_unlock(&cpuhp_state_mutex);
2592 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2594 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2597 __cpuhp_remove_state_cpuslocked(state, invoke);
2600 EXPORT_SYMBOL(__cpuhp_remove_state);
2602 #ifdef CONFIG_HOTPLUG_SMT
2603 static void cpuhp_offline_cpu_device(unsigned int cpu)
2605 struct device *dev = get_cpu_device(cpu);
2607 dev->offline = true;
2608 /* Tell user space about the state change */
2609 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2612 static void cpuhp_online_cpu_device(unsigned int cpu)
2614 struct device *dev = get_cpu_device(cpu);
2616 dev->offline = false;
2617 /* Tell user space about the state change */
2618 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2621 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2625 cpu_maps_update_begin();
2626 for_each_online_cpu(cpu) {
2627 if (topology_is_primary_thread(cpu))
2629 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2633 * As this needs to hold the cpu maps lock it's impossible
2634 * to call device_offline() because that ends up calling
2635 * cpu_down() which takes cpu maps lock. cpu maps lock
2636 * needs to be held as this might race against in kernel
2637 * abusers of the hotplug machinery (thermal management).
2639 * So nothing would update device:offline state. That would
2640 * leave the sysfs entry stale and prevent onlining after
2641 * smt control has been changed to 'off' again. This is
2642 * called under the sysfs hotplug lock, so it is properly
2643 * serialized against the regular offline usage.
2645 cpuhp_offline_cpu_device(cpu);
2648 cpu_smt_control = ctrlval;
2649 cpu_maps_update_done();
2653 int cpuhp_smt_enable(void)
2657 cpu_maps_update_begin();
2658 cpu_smt_control = CPU_SMT_ENABLED;
2659 for_each_present_cpu(cpu) {
2660 /* Skip online CPUs and CPUs on offline nodes */
2661 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2663 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2666 /* See comment in cpuhp_smt_disable() */
2667 cpuhp_online_cpu_device(cpu);
2669 cpu_maps_update_done();
2674 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2675 static ssize_t state_show(struct device *dev,
2676 struct device_attribute *attr, char *buf)
2678 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2680 return sprintf(buf, "%d\n", st->state);
2682 static DEVICE_ATTR_RO(state);
2684 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2685 const char *buf, size_t count)
2687 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2688 struct cpuhp_step *sp;
2691 ret = kstrtoint(buf, 10, &target);
2695 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2696 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2699 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2703 ret = lock_device_hotplug_sysfs();
2707 mutex_lock(&cpuhp_state_mutex);
2708 sp = cpuhp_get_step(target);
2709 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2710 mutex_unlock(&cpuhp_state_mutex);
2714 if (st->state < target)
2715 ret = cpu_up(dev->id, target);
2716 else if (st->state > target)
2717 ret = cpu_down(dev->id, target);
2718 else if (WARN_ON(st->target != target))
2719 st->target = target;
2721 unlock_device_hotplug();
2722 return ret ? ret : count;
2725 static ssize_t target_show(struct device *dev,
2726 struct device_attribute *attr, char *buf)
2728 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2730 return sprintf(buf, "%d\n", st->target);
2732 static DEVICE_ATTR_RW(target);
2734 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2735 const char *buf, size_t count)
2737 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2738 struct cpuhp_step *sp;
2741 ret = kstrtoint(buf, 10, &fail);
2745 if (fail == CPUHP_INVALID) {
2750 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2754 * Cannot fail STARTING/DYING callbacks.
2756 if (cpuhp_is_atomic_state(fail))
2760 * DEAD callbacks cannot fail...
2761 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2762 * triggering STARTING callbacks, a failure in this state would
2765 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2769 * Cannot fail anything that doesn't have callbacks.
2771 mutex_lock(&cpuhp_state_mutex);
2772 sp = cpuhp_get_step(fail);
2773 if (!sp->startup.single && !sp->teardown.single)
2775 mutex_unlock(&cpuhp_state_mutex);
2784 static ssize_t fail_show(struct device *dev,
2785 struct device_attribute *attr, char *buf)
2787 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2789 return sprintf(buf, "%d\n", st->fail);
2792 static DEVICE_ATTR_RW(fail);
2794 static struct attribute *cpuhp_cpu_attrs[] = {
2795 &dev_attr_state.attr,
2796 &dev_attr_target.attr,
2797 &dev_attr_fail.attr,
2801 static const struct attribute_group cpuhp_cpu_attr_group = {
2802 .attrs = cpuhp_cpu_attrs,
2807 static ssize_t states_show(struct device *dev,
2808 struct device_attribute *attr, char *buf)
2810 ssize_t cur, res = 0;
2813 mutex_lock(&cpuhp_state_mutex);
2814 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2815 struct cpuhp_step *sp = cpuhp_get_step(i);
2818 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2823 mutex_unlock(&cpuhp_state_mutex);
2826 static DEVICE_ATTR_RO(states);
2828 static struct attribute *cpuhp_cpu_root_attrs[] = {
2829 &dev_attr_states.attr,
2833 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2834 .attrs = cpuhp_cpu_root_attrs,
2839 #ifdef CONFIG_HOTPLUG_SMT
2842 __store_smt_control(struct device *dev, struct device_attribute *attr,
2843 const char *buf, size_t count)
2847 if (sysfs_streq(buf, "on"))
2848 ctrlval = CPU_SMT_ENABLED;
2849 else if (sysfs_streq(buf, "off"))
2850 ctrlval = CPU_SMT_DISABLED;
2851 else if (sysfs_streq(buf, "forceoff"))
2852 ctrlval = CPU_SMT_FORCE_DISABLED;
2856 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2859 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2862 ret = lock_device_hotplug_sysfs();
2866 if (ctrlval != cpu_smt_control) {
2868 case CPU_SMT_ENABLED:
2869 ret = cpuhp_smt_enable();
2871 case CPU_SMT_DISABLED:
2872 case CPU_SMT_FORCE_DISABLED:
2873 ret = cpuhp_smt_disable(ctrlval);
2878 unlock_device_hotplug();
2879 return ret ? ret : count;
2882 #else /* !CONFIG_HOTPLUG_SMT */
2884 __store_smt_control(struct device *dev, struct device_attribute *attr,
2885 const char *buf, size_t count)
2889 #endif /* CONFIG_HOTPLUG_SMT */
2891 static const char *smt_states[] = {
2892 [CPU_SMT_ENABLED] = "on",
2893 [CPU_SMT_DISABLED] = "off",
2894 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2895 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2896 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2899 static ssize_t control_show(struct device *dev,
2900 struct device_attribute *attr, char *buf)
2902 const char *state = smt_states[cpu_smt_control];
2904 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2907 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2908 const char *buf, size_t count)
2910 return __store_smt_control(dev, attr, buf, count);
2912 static DEVICE_ATTR_RW(control);
2914 static ssize_t active_show(struct device *dev,
2915 struct device_attribute *attr, char *buf)
2917 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2919 static DEVICE_ATTR_RO(active);
2921 static struct attribute *cpuhp_smt_attrs[] = {
2922 &dev_attr_control.attr,
2923 &dev_attr_active.attr,
2927 static const struct attribute_group cpuhp_smt_attr_group = {
2928 .attrs = cpuhp_smt_attrs,
2933 static int __init cpu_smt_sysfs_init(void)
2935 struct device *dev_root;
2938 dev_root = bus_get_dev_root(&cpu_subsys);
2940 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
2941 put_device(dev_root);
2946 static int __init cpuhp_sysfs_init(void)
2948 struct device *dev_root;
2951 ret = cpu_smt_sysfs_init();
2955 dev_root = bus_get_dev_root(&cpu_subsys);
2957 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
2958 put_device(dev_root);
2963 for_each_possible_cpu(cpu) {
2964 struct device *dev = get_cpu_device(cpu);
2968 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2974 device_initcall(cpuhp_sysfs_init);
2975 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2978 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2979 * represents all NR_CPUS bits binary values of 1<<nr.
2981 * It is used by cpumask_of() to get a constant address to a CPU
2982 * mask value that has a single bit set only.
2985 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2986 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2987 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2988 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2989 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2991 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2993 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2994 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2995 #if BITS_PER_LONG > 32
2996 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2997 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
3000 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3002 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3003 EXPORT_SYMBOL(cpu_all_bits);
3005 #ifdef CONFIG_INIT_ALL_POSSIBLE
3006 struct cpumask __cpu_possible_mask __read_mostly
3009 struct cpumask __cpu_possible_mask __read_mostly;
3011 EXPORT_SYMBOL(__cpu_possible_mask);
3013 struct cpumask __cpu_online_mask __read_mostly;
3014 EXPORT_SYMBOL(__cpu_online_mask);
3016 struct cpumask __cpu_present_mask __read_mostly;
3017 EXPORT_SYMBOL(__cpu_present_mask);
3019 struct cpumask __cpu_active_mask __read_mostly;
3020 EXPORT_SYMBOL(__cpu_active_mask);
3022 struct cpumask __cpu_dying_mask __read_mostly;
3023 EXPORT_SYMBOL(__cpu_dying_mask);
3025 atomic_t __num_online_cpus __read_mostly;
3026 EXPORT_SYMBOL(__num_online_cpus);
3028 void init_cpu_present(const struct cpumask *src)
3030 cpumask_copy(&__cpu_present_mask, src);
3033 void init_cpu_possible(const struct cpumask *src)
3035 cpumask_copy(&__cpu_possible_mask, src);
3038 void init_cpu_online(const struct cpumask *src)
3040 cpumask_copy(&__cpu_online_mask, src);
3043 void set_cpu_online(unsigned int cpu, bool online)
3046 * atomic_inc/dec() is required to handle the horrid abuse of this
3047 * function by the reboot and kexec code which invoke it from
3048 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3049 * regular CPU hotplug is properly serialized.
3051 * Note, that the fact that __num_online_cpus is of type atomic_t
3052 * does not protect readers which are not serialized against
3053 * concurrent hotplug operations.
3056 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3057 atomic_inc(&__num_online_cpus);
3059 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3060 atomic_dec(&__num_online_cpus);
3065 * Activate the first processor.
3067 void __init boot_cpu_init(void)
3069 int cpu = smp_processor_id();
3071 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3072 set_cpu_online(cpu, true);
3073 set_cpu_active(cpu, true);
3074 set_cpu_present(cpu, true);
3075 set_cpu_possible(cpu, true);
3078 __boot_cpu_id = cpu;
3083 * Must be called _AFTER_ setting up the per_cpu areas
3085 void __init boot_cpu_hotplug_init(void)
3088 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3089 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3091 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3092 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3096 * These are used for a global "mitigations=" cmdline option for toggling
3097 * optional CPU mitigations.
3099 enum cpu_mitigations {
3100 CPU_MITIGATIONS_OFF,
3101 CPU_MITIGATIONS_AUTO,
3102 CPU_MITIGATIONS_AUTO_NOSMT,
3105 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3106 CPU_MITIGATIONS_AUTO;
3108 static int __init mitigations_parse_cmdline(char *arg)
3110 if (!strcmp(arg, "off"))
3111 cpu_mitigations = CPU_MITIGATIONS_OFF;
3112 else if (!strcmp(arg, "auto"))
3113 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3114 else if (!strcmp(arg, "auto,nosmt"))
3115 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3117 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3122 early_param("mitigations", mitigations_parse_cmdline);
3124 /* mitigations=off */
3125 bool cpu_mitigations_off(void)
3127 return cpu_mitigations == CPU_MITIGATIONS_OFF;
3129 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3131 /* mitigations=auto,nosmt */
3132 bool cpu_mitigations_auto_nosmt(void)
3134 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3136 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);