2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35 #include <linux/cpuset.h>
37 #include <trace/events/power.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/cpuhp.h>
44 * cpuhp_cpu_state - Per cpu hotplug state storage
45 * @state: The current cpu state
46 * @target: The target state
47 * @thread: Pointer to the hotplug thread
48 * @should_run: Thread should execute
49 * @rollback: Perform a rollback
50 * @single: Single callback invocation
51 * @bringup: Single callback bringup or teardown selector
52 * @cb_state: The state for a single callback (install/uninstall)
53 * @result: Result of the operation
54 * @done_up: Signal completion to the issuer of the task for cpu-up
55 * @done_down: Signal completion to the issuer of the task for cpu-down
57 struct cpuhp_cpu_state {
58 enum cpuhp_state state;
59 enum cpuhp_state target;
60 enum cpuhp_state fail;
62 struct task_struct *thread;
68 struct hlist_node *node;
69 struct hlist_node *last;
70 enum cpuhp_state cb_state;
72 struct completion done_up;
73 struct completion done_down;
77 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
78 .fail = CPUHP_INVALID,
82 cpumask_t cpus_booted_once_mask;
85 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
86 static struct lockdep_map cpuhp_state_up_map =
87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
88 static struct lockdep_map cpuhp_state_down_map =
89 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
92 static inline void cpuhp_lock_acquire(bool bringup)
94 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
97 static inline void cpuhp_lock_release(bool bringup)
99 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
103 static inline void cpuhp_lock_acquire(bool bringup) { }
104 static inline void cpuhp_lock_release(bool bringup) { }
109 * cpuhp_step - Hotplug state machine step
110 * @name: Name of the step
111 * @startup: Startup function of the step
112 * @teardown: Teardown function of the step
113 * @cant_stop: Bringup/teardown can't be stopped at this step
118 int (*single)(unsigned int cpu);
119 int (*multi)(unsigned int cpu,
120 struct hlist_node *node);
123 int (*single)(unsigned int cpu);
124 int (*multi)(unsigned int cpu,
125 struct hlist_node *node);
127 struct hlist_head list;
132 static DEFINE_MUTEX(cpuhp_state_mutex);
133 static struct cpuhp_step cpuhp_hp_states[];
135 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
137 return cpuhp_hp_states + state;
140 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
142 return bringup ? !step->startup.single : !step->teardown.single;
146 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
147 * @cpu: The cpu for which the callback should be invoked
148 * @state: The state to do callbacks for
149 * @bringup: True if the bringup callback should be invoked
150 * @node: For multi-instance, do a single entry callback for install/remove
151 * @lastp: For multi-instance rollback, remember how far we got
153 * Called from cpu hotplug and from the state register machinery.
155 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
156 bool bringup, struct hlist_node *node,
157 struct hlist_node **lastp)
159 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
160 struct cpuhp_step *step = cpuhp_get_step(state);
161 int (*cbm)(unsigned int cpu, struct hlist_node *node);
162 int (*cb)(unsigned int cpu);
165 if (st->fail == state) {
166 st->fail = CPUHP_INVALID;
170 if (cpuhp_step_empty(bringup, step)) {
175 if (!step->multi_instance) {
176 WARN_ON_ONCE(lastp && *lastp);
177 cb = bringup ? step->startup.single : step->teardown.single;
179 trace_cpuhp_enter(cpu, st->target, state, cb);
181 trace_cpuhp_exit(cpu, st->state, state, ret);
184 cbm = bringup ? step->startup.multi : step->teardown.multi;
186 /* Single invocation for instance add/remove */
188 WARN_ON_ONCE(lastp && *lastp);
189 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
190 ret = cbm(cpu, node);
191 trace_cpuhp_exit(cpu, st->state, state, ret);
195 /* State transition. Invoke on all instances */
197 hlist_for_each(node, &step->list) {
198 if (lastp && node == *lastp)
201 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202 ret = cbm(cpu, node);
203 trace_cpuhp_exit(cpu, st->state, state, ret);
217 /* Rollback the instances if one failed */
218 cbm = !bringup ? step->startup.multi : step->teardown.multi;
222 hlist_for_each(node, &step->list) {
226 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
227 ret = cbm(cpu, node);
228 trace_cpuhp_exit(cpu, st->state, state, ret);
230 * Rollback must not fail,
238 static bool cpuhp_is_ap_state(enum cpuhp_state state)
241 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
242 * purposes as that state is handled explicitly in cpu_down.
244 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
247 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 struct completion *done = bringup ? &st->done_up : &st->done_down;
250 wait_for_completion(done);
253 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
255 struct completion *done = bringup ? &st->done_up : &st->done_down;
260 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
262 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
264 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
267 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
268 static DEFINE_MUTEX(cpu_add_remove_lock);
269 bool cpuhp_tasks_frozen;
270 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
273 * The following two APIs (cpu_maps_update_begin/done) must be used when
274 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
276 void cpu_maps_update_begin(void)
278 mutex_lock(&cpu_add_remove_lock);
281 void cpu_maps_update_done(void)
283 mutex_unlock(&cpu_add_remove_lock);
287 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
288 * Should always be manipulated under cpu_add_remove_lock
290 static int cpu_hotplug_disabled;
292 #ifdef CONFIG_HOTPLUG_CPU
294 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
296 void cpus_read_lock(void)
298 percpu_down_read(&cpu_hotplug_lock);
300 EXPORT_SYMBOL_GPL(cpus_read_lock);
302 int cpus_read_trylock(void)
304 return percpu_down_read_trylock(&cpu_hotplug_lock);
306 EXPORT_SYMBOL_GPL(cpus_read_trylock);
308 void cpus_read_unlock(void)
310 percpu_up_read(&cpu_hotplug_lock);
312 EXPORT_SYMBOL_GPL(cpus_read_unlock);
314 void cpus_write_lock(void)
316 percpu_down_write(&cpu_hotplug_lock);
319 void cpus_write_unlock(void)
321 percpu_up_write(&cpu_hotplug_lock);
324 void lockdep_assert_cpus_held(void)
327 * We can't have hotplug operations before userspace starts running,
328 * and some init codepaths will knowingly not take the hotplug lock.
329 * This is all valid, so mute lockdep until it makes sense to report
332 if (system_state < SYSTEM_RUNNING)
335 percpu_rwsem_assert_held(&cpu_hotplug_lock);
338 #ifdef CONFIG_LOCKDEP
339 int lockdep_is_cpus_held(void)
341 return percpu_rwsem_is_held(&cpu_hotplug_lock);
345 static void lockdep_acquire_cpus_lock(void)
347 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
350 static void lockdep_release_cpus_lock(void)
352 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
356 * Wait for currently running CPU hotplug operations to complete (if any) and
357 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
358 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
359 * hotplug path before performing hotplug operations. So acquiring that lock
360 * guarantees mutual exclusion from any currently running hotplug operations.
362 void cpu_hotplug_disable(void)
364 cpu_maps_update_begin();
365 cpu_hotplug_disabled++;
366 cpu_maps_update_done();
368 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
370 static void __cpu_hotplug_enable(void)
372 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
374 cpu_hotplug_disabled--;
377 void cpu_hotplug_enable(void)
379 cpu_maps_update_begin();
380 __cpu_hotplug_enable();
381 cpu_maps_update_done();
383 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
387 static void lockdep_acquire_cpus_lock(void)
391 static void lockdep_release_cpus_lock(void)
395 #endif /* CONFIG_HOTPLUG_CPU */
398 * Architectures that need SMT-specific errata handling during SMT hotplug
399 * should override this.
401 void __weak arch_smt_update(void) { }
403 #ifdef CONFIG_HOTPLUG_SMT
404 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
406 void __init cpu_smt_disable(bool force)
408 if (!cpu_smt_possible())
412 pr_info("SMT: Force disabled\n");
413 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
415 pr_info("SMT: disabled\n");
416 cpu_smt_control = CPU_SMT_DISABLED;
421 * The decision whether SMT is supported can only be done after the full
422 * CPU identification. Called from architecture code.
424 void __init cpu_smt_check_topology(void)
426 if (!topology_smt_supported())
427 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
430 static int __init smt_cmdline_disable(char *str)
432 cpu_smt_disable(str && !strcmp(str, "force"));
435 early_param("nosmt", smt_cmdline_disable);
437 static inline bool cpu_smt_allowed(unsigned int cpu)
439 if (cpu_smt_control == CPU_SMT_ENABLED)
442 if (topology_is_primary_thread(cpu))
446 * On x86 it's required to boot all logical CPUs at least once so
447 * that the init code can get a chance to set CR4.MCE on each
448 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
449 * core will shutdown the machine.
451 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
454 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
455 bool cpu_smt_possible(void)
457 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
458 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
460 EXPORT_SYMBOL_GPL(cpu_smt_possible);
462 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
465 static inline enum cpuhp_state
466 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
468 enum cpuhp_state prev_state = st->state;
469 bool bringup = st->state < target;
471 st->rollback = false;
476 st->bringup = bringup;
477 if (cpu_dying(st->cpu) != !bringup)
478 set_cpu_dying(st->cpu, !bringup);
484 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
486 bool bringup = !st->bringup;
488 st->target = prev_state;
491 * Already rolling back. No need invert the bringup value or to change
500 * If we have st->last we need to undo partial multi_instance of this
501 * state first. Otherwise start undo at the previous state.
510 st->bringup = bringup;
511 if (cpu_dying(st->cpu) != !bringup)
512 set_cpu_dying(st->cpu, !bringup);
515 /* Regular hotplug invocation of the AP hotplug thread */
516 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
518 if (!st->single && st->state == st->target)
523 * Make sure the above stores are visible before should_run becomes
524 * true. Paired with the mb() above in cpuhp_thread_fun()
527 st->should_run = true;
528 wake_up_process(st->thread);
529 wait_for_ap_thread(st, st->bringup);
532 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
534 enum cpuhp_state prev_state;
537 prev_state = cpuhp_set_state(st, target);
539 if ((ret = st->result)) {
540 cpuhp_reset_state(st, prev_state);
547 static int bringup_wait_for_ap(unsigned int cpu)
549 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
551 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
552 wait_for_ap_thread(st, true);
553 if (WARN_ON_ONCE((!cpu_online(cpu))))
556 /* Unpark the hotplug thread of the target cpu */
557 kthread_unpark(st->thread);
560 * SMT soft disabling on X86 requires to bring the CPU out of the
561 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
562 * CPU marked itself as booted_once in notify_cpu_starting() so the
563 * cpu_smt_allowed() check will now return false if this is not the
566 if (!cpu_smt_allowed(cpu))
569 if (st->target <= CPUHP_AP_ONLINE_IDLE)
572 return cpuhp_kick_ap(st, st->target);
575 static int bringup_cpu(unsigned int cpu)
577 struct task_struct *idle = idle_thread_get(cpu);
581 * Some architectures have to walk the irq descriptors to
582 * setup the vector space for the cpu which comes online.
583 * Prevent irq alloc/free across the bringup.
587 /* Arch-specific enabling code. */
588 ret = __cpu_up(cpu, idle);
592 return bringup_wait_for_ap(cpu);
595 static int finish_cpu(unsigned int cpu)
597 struct task_struct *idle = idle_thread_get(cpu);
598 struct mm_struct *mm = idle->active_mm;
601 * idle_task_exit() will have switched to &init_mm, now
602 * clean up any remaining active_mm state.
605 idle->active_mm = &init_mm;
611 * Hotplug state machine related functions
615 * Get the next state to run. Empty ones will be skipped. Returns true if a
618 * st->state will be modified ahead of time, to match state_to_run, as if it
621 static bool cpuhp_next_state(bool bringup,
622 enum cpuhp_state *state_to_run,
623 struct cpuhp_cpu_state *st,
624 enum cpuhp_state target)
628 if (st->state >= target)
631 *state_to_run = ++st->state;
633 if (st->state <= target)
636 *state_to_run = st->state--;
639 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
646 static int cpuhp_invoke_callback_range(bool bringup,
648 struct cpuhp_cpu_state *st,
649 enum cpuhp_state target)
651 enum cpuhp_state state;
654 while (cpuhp_next_state(bringup, &state, st, target)) {
655 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
663 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
665 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
668 * When CPU hotplug is disabled, then taking the CPU down is not
669 * possible because takedown_cpu() and the architecture and
670 * subsystem specific mechanisms are not available. So the CPU
671 * which would be completely unplugged again needs to stay around
672 * in the current state.
674 return st->state <= CPUHP_BRINGUP_CPU;
677 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
678 enum cpuhp_state target)
680 enum cpuhp_state prev_state = st->state;
683 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
685 cpuhp_reset_state(st, prev_state);
686 if (can_rollback_cpu(st))
687 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
694 * The cpu hotplug threads manage the bringup and teardown of the cpus
696 static void cpuhp_create(unsigned int cpu)
698 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
700 init_completion(&st->done_up);
701 init_completion(&st->done_down);
705 static int cpuhp_should_run(unsigned int cpu)
707 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
709 return st->should_run;
713 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
714 * callbacks when a state gets [un]installed at runtime.
716 * Each invocation of this function by the smpboot thread does a single AP
719 * It has 3 modes of operation:
720 * - single: runs st->cb_state
721 * - up: runs ++st->state, while st->state < st->target
722 * - down: runs st->state--, while st->state > st->target
724 * When complete or on error, should_run is cleared and the completion is fired.
726 static void cpuhp_thread_fun(unsigned int cpu)
728 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
729 bool bringup = st->bringup;
730 enum cpuhp_state state;
732 if (WARN_ON_ONCE(!st->should_run))
736 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
737 * that if we see ->should_run we also see the rest of the state.
742 * The BP holds the hotplug lock, but we're now running on the AP,
743 * ensure that anybody asserting the lock is held, will actually find
746 lockdep_acquire_cpus_lock();
747 cpuhp_lock_acquire(bringup);
750 state = st->cb_state;
751 st->should_run = false;
753 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
758 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
760 if (cpuhp_is_atomic_state(state)) {
762 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
766 * STARTING/DYING must not fail!
768 WARN_ON_ONCE(st->result);
770 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
775 * If we fail on a rollback, we're up a creek without no
776 * paddle, no way forward, no way back. We loose, thanks for
779 WARN_ON_ONCE(st->rollback);
780 st->should_run = false;
784 cpuhp_lock_release(bringup);
785 lockdep_release_cpus_lock();
788 complete_ap_thread(st, bringup);
791 /* Invoke a single callback on a remote cpu */
793 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
794 struct hlist_node *node)
796 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
799 if (!cpu_online(cpu))
802 cpuhp_lock_acquire(false);
803 cpuhp_lock_release(false);
805 cpuhp_lock_acquire(true);
806 cpuhp_lock_release(true);
809 * If we are up and running, use the hotplug thread. For early calls
810 * we invoke the thread function directly.
813 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
815 st->rollback = false;
819 st->bringup = bringup;
820 st->cb_state = state;
826 * If we failed and did a partial, do a rollback.
828 if ((ret = st->result) && st->last) {
830 st->bringup = !bringup;
836 * Clean up the leftovers so the next hotplug operation wont use stale
839 st->node = st->last = NULL;
843 static int cpuhp_kick_ap_work(unsigned int cpu)
845 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
846 enum cpuhp_state prev_state = st->state;
849 cpuhp_lock_acquire(false);
850 cpuhp_lock_release(false);
852 cpuhp_lock_acquire(true);
853 cpuhp_lock_release(true);
855 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
856 ret = cpuhp_kick_ap(st, st->target);
857 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
862 static struct smp_hotplug_thread cpuhp_threads = {
863 .store = &cpuhp_state.thread,
864 .create = &cpuhp_create,
865 .thread_should_run = cpuhp_should_run,
866 .thread_fn = cpuhp_thread_fun,
867 .thread_comm = "cpuhp/%u",
871 void __init cpuhp_threads_init(void)
873 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
874 kthread_unpark(this_cpu_read(cpuhp_state.thread));
879 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
882 * The operation is still serialized against concurrent CPU hotplug via
883 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
884 * serialized against other hotplug related activity like adding or
885 * removing of state callbacks and state instances, which invoke either the
886 * startup or the teardown callback of the affected state.
888 * This is required for subsystems which are unfixable vs. CPU hotplug and
889 * evade lock inversion problems by scheduling work which has to be
890 * completed _before_ cpu_up()/_cpu_down() returns.
892 * Don't even think about adding anything to this for any new code or even
893 * drivers. It's only purpose is to keep existing lock order trainwrecks
896 * For cpu_down() there might be valid reasons to finish cleanups which are
897 * not required to be done under cpu_hotplug_lock, but that's a different
898 * story and would be not invoked via this.
900 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
903 * cpusets delegate hotplug operations to a worker to "solve" the
904 * lock order problems. Wait for the worker, but only if tasks are
905 * _not_ frozen (suspend, hibernate) as that would wait forever.
907 * The wait is required because otherwise the hotplug operation
908 * returns with inconsistent state, which could even be observed in
909 * user space when a new CPU is brought up. The CPU plug uevent
910 * would be delivered and user space reacting on it would fail to
911 * move tasks to the newly plugged CPU up to the point where the
912 * work has finished because up to that point the newly plugged CPU
913 * is not assignable in cpusets/cgroups. On unplug that's not
914 * necessarily a visible issue, but it is still inconsistent state,
915 * which is the real problem which needs to be "fixed". This can't
916 * prevent the transient state between scheduling the work and
917 * returning from waiting for it.
920 cpuset_wait_for_hotplug();
923 #ifdef CONFIG_HOTPLUG_CPU
924 #ifndef arch_clear_mm_cpumask_cpu
925 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
929 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
932 * This function walks all processes, finds a valid mm struct for each one and
933 * then clears a corresponding bit in mm's cpumask. While this all sounds
934 * trivial, there are various non-obvious corner cases, which this function
935 * tries to solve in a safe manner.
937 * Also note that the function uses a somewhat relaxed locking scheme, so it may
938 * be called only for an already offlined CPU.
940 void clear_tasks_mm_cpumask(int cpu)
942 struct task_struct *p;
945 * This function is called after the cpu is taken down and marked
946 * offline, so its not like new tasks will ever get this cpu set in
947 * their mm mask. -- Peter Zijlstra
948 * Thus, we may use rcu_read_lock() here, instead of grabbing
949 * full-fledged tasklist_lock.
951 WARN_ON(cpu_online(cpu));
953 for_each_process(p) {
954 struct task_struct *t;
957 * Main thread might exit, but other threads may still have
958 * a valid mm. Find one.
960 t = find_lock_task_mm(p);
963 arch_clear_mm_cpumask_cpu(cpu, t->mm);
969 /* Take this CPU down. */
970 static int take_cpu_down(void *_param)
972 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
973 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
974 int err, cpu = smp_processor_id();
977 /* Ensure this CPU doesn't handle any more interrupts. */
978 err = __cpu_disable();
983 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
984 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
986 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
988 /* Invoke the former CPU_DYING callbacks */
989 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
992 * DYING must not fail!
996 /* Give up timekeeping duties */
997 tick_handover_do_timer();
998 /* Remove CPU from timer broadcasting */
999 tick_offline_cpu(cpu);
1000 /* Park the stopper thread */
1001 stop_machine_park(cpu);
1005 static int takedown_cpu(unsigned int cpu)
1007 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1010 /* Park the smpboot threads */
1011 kthread_park(st->thread);
1014 * Prevent irq alloc/free while the dying cpu reorganizes the
1015 * interrupt affinities.
1020 * So now all preempt/rcu users must observe !cpu_active().
1022 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1024 /* CPU refused to die */
1025 irq_unlock_sparse();
1026 /* Unpark the hotplug thread so we can rollback there */
1027 kthread_unpark(st->thread);
1030 BUG_ON(cpu_online(cpu));
1033 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1034 * all runnable tasks from the CPU, there's only the idle task left now
1035 * that the migration thread is done doing the stop_machine thing.
1037 * Wait for the stop thread to go away.
1039 wait_for_ap_thread(st, false);
1040 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1042 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1043 irq_unlock_sparse();
1045 hotplug_cpu__broadcast_tick_pull(cpu);
1046 /* This actually kills the CPU. */
1049 tick_cleanup_dead_cpu(cpu);
1050 rcutree_migrate_callbacks(cpu);
1054 static void cpuhp_complete_idle_dead(void *arg)
1056 struct cpuhp_cpu_state *st = arg;
1058 complete_ap_thread(st, false);
1061 void cpuhp_report_idle_dead(void)
1063 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1065 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1066 rcu_report_dead(smp_processor_id());
1067 st->state = CPUHP_AP_IDLE_DEAD;
1069 * We cannot call complete after rcu_report_dead() so we delegate it
1072 smp_call_function_single(cpumask_first(cpu_online_mask),
1073 cpuhp_complete_idle_dead, st, 0);
1076 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1077 enum cpuhp_state target)
1079 enum cpuhp_state prev_state = st->state;
1082 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1085 cpuhp_reset_state(st, prev_state);
1087 if (st->state < prev_state)
1088 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1095 /* Requires cpu_add_remove_lock to be held */
1096 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1097 enum cpuhp_state target)
1099 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1100 int prev_state, ret = 0;
1102 if (num_online_cpus() == 1)
1105 if (!cpu_present(cpu))
1110 cpuhp_tasks_frozen = tasks_frozen;
1112 prev_state = cpuhp_set_state(st, target);
1114 * If the current CPU state is in the range of the AP hotplug thread,
1115 * then we need to kick the thread.
1117 if (st->state > CPUHP_TEARDOWN_CPU) {
1118 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1119 ret = cpuhp_kick_ap_work(cpu);
1121 * The AP side has done the error rollback already. Just
1122 * return the error code..
1128 * We might have stopped still in the range of the AP hotplug
1129 * thread. Nothing to do anymore.
1131 if (st->state > CPUHP_TEARDOWN_CPU)
1134 st->target = target;
1137 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1138 * to do the further cleanups.
1140 ret = cpuhp_down_callbacks(cpu, st, target);
1141 if (ret && st->state < prev_state) {
1142 if (st->state == CPUHP_TEARDOWN_CPU) {
1143 cpuhp_reset_state(st, prev_state);
1144 __cpuhp_kick_ap(st);
1146 WARN(1, "DEAD callback error for CPU%d", cpu);
1151 cpus_write_unlock();
1153 * Do post unplug cleanup. This is still protected against
1154 * concurrent CPU hotplug via cpu_add_remove_lock.
1156 lockup_detector_cleanup();
1158 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1162 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1164 if (cpu_hotplug_disabled)
1166 return _cpu_down(cpu, 0, target);
1169 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1173 cpu_maps_update_begin();
1174 err = cpu_down_maps_locked(cpu, target);
1175 cpu_maps_update_done();
1180 * cpu_device_down - Bring down a cpu device
1181 * @dev: Pointer to the cpu device to offline
1183 * This function is meant to be used by device core cpu subsystem only.
1185 * Other subsystems should use remove_cpu() instead.
1187 int cpu_device_down(struct device *dev)
1189 return cpu_down(dev->id, CPUHP_OFFLINE);
1192 int remove_cpu(unsigned int cpu)
1196 lock_device_hotplug();
1197 ret = device_offline(get_cpu_device(cpu));
1198 unlock_device_hotplug();
1202 EXPORT_SYMBOL_GPL(remove_cpu);
1204 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1209 cpu_maps_update_begin();
1212 * Make certain the cpu I'm about to reboot on is online.
1214 * This is inline to what migrate_to_reboot_cpu() already do.
1216 if (!cpu_online(primary_cpu))
1217 primary_cpu = cpumask_first(cpu_online_mask);
1219 for_each_online_cpu(cpu) {
1220 if (cpu == primary_cpu)
1223 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1225 pr_err("Failed to offline CPU%d - error=%d",
1232 * Ensure all but the reboot CPU are offline.
1234 BUG_ON(num_online_cpus() > 1);
1237 * Make sure the CPUs won't be enabled by someone else after this
1238 * point. Kexec will reboot to a new kernel shortly resetting
1239 * everything along the way.
1241 cpu_hotplug_disabled++;
1243 cpu_maps_update_done();
1247 #define takedown_cpu NULL
1248 #endif /*CONFIG_HOTPLUG_CPU*/
1251 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1252 * @cpu: cpu that just started
1254 * It must be called by the arch code on the new cpu, before the new cpu
1255 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1257 void notify_cpu_starting(unsigned int cpu)
1259 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1260 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1263 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1264 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1265 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1268 * STARTING must not fail!
1274 * Called from the idle task. Wake up the controlling task which brings the
1275 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1276 * online bringup to the hotplug thread.
1278 void cpuhp_online_idle(enum cpuhp_state state)
1280 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1282 /* Happens for the boot cpu */
1283 if (state != CPUHP_AP_ONLINE_IDLE)
1287 * Unpart the stopper thread before we start the idle loop (and start
1288 * scheduling); this ensures the stopper task is always available.
1290 stop_machine_unpark(smp_processor_id());
1292 st->state = CPUHP_AP_ONLINE_IDLE;
1293 complete_ap_thread(st, true);
1296 /* Requires cpu_add_remove_lock to be held */
1297 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1299 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1300 struct task_struct *idle;
1305 if (!cpu_present(cpu)) {
1311 * The caller of cpu_up() might have raced with another
1312 * caller. Nothing to do.
1314 if (st->state >= target)
1317 if (st->state == CPUHP_OFFLINE) {
1318 /* Let it fail before we try to bring the cpu up */
1319 idle = idle_thread_get(cpu);
1321 ret = PTR_ERR(idle);
1326 cpuhp_tasks_frozen = tasks_frozen;
1328 cpuhp_set_state(st, target);
1330 * If the current CPU state is in the range of the AP hotplug thread,
1331 * then we need to kick the thread once more.
1333 if (st->state > CPUHP_BRINGUP_CPU) {
1334 ret = cpuhp_kick_ap_work(cpu);
1336 * The AP side has done the error rollback already. Just
1337 * return the error code..
1344 * Try to reach the target state. We max out on the BP at
1345 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1346 * responsible for bringing it up to the target state.
1348 target = min((int)target, CPUHP_BRINGUP_CPU);
1349 ret = cpuhp_up_callbacks(cpu, st, target);
1351 cpus_write_unlock();
1353 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1357 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1361 if (!cpu_possible(cpu)) {
1362 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1364 #if defined(CONFIG_IA64)
1365 pr_err("please check additional_cpus= boot parameter\n");
1370 err = try_online_node(cpu_to_node(cpu));
1374 cpu_maps_update_begin();
1376 if (cpu_hotplug_disabled) {
1380 if (!cpu_smt_allowed(cpu)) {
1385 err = _cpu_up(cpu, 0, target);
1387 cpu_maps_update_done();
1392 * cpu_device_up - Bring up a cpu device
1393 * @dev: Pointer to the cpu device to online
1395 * This function is meant to be used by device core cpu subsystem only.
1397 * Other subsystems should use add_cpu() instead.
1399 int cpu_device_up(struct device *dev)
1401 return cpu_up(dev->id, CPUHP_ONLINE);
1404 int add_cpu(unsigned int cpu)
1408 lock_device_hotplug();
1409 ret = device_online(get_cpu_device(cpu));
1410 unlock_device_hotplug();
1414 EXPORT_SYMBOL_GPL(add_cpu);
1417 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1418 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1420 * On some architectures like arm64, we can hibernate on any CPU, but on
1421 * wake up the CPU we hibernated on might be offline as a side effect of
1422 * using maxcpus= for example.
1424 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1428 if (!cpu_online(sleep_cpu)) {
1429 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1430 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1432 pr_err("Failed to bring hibernate-CPU up!\n");
1439 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1443 for_each_present_cpu(cpu) {
1444 if (num_online_cpus() >= setup_max_cpus)
1446 if (!cpu_online(cpu))
1447 cpu_up(cpu, CPUHP_ONLINE);
1451 #ifdef CONFIG_PM_SLEEP_SMP
1452 static cpumask_var_t frozen_cpus;
1454 int freeze_secondary_cpus(int primary)
1458 cpu_maps_update_begin();
1459 if (primary == -1) {
1460 primary = cpumask_first(cpu_online_mask);
1461 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1462 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1464 if (!cpu_online(primary))
1465 primary = cpumask_first(cpu_online_mask);
1469 * We take down all of the non-boot CPUs in one shot to avoid races
1470 * with the userspace trying to use the CPU hotplug at the same time
1472 cpumask_clear(frozen_cpus);
1474 pr_info("Disabling non-boot CPUs ...\n");
1475 for_each_online_cpu(cpu) {
1479 if (pm_wakeup_pending()) {
1480 pr_info("Wakeup pending. Abort CPU freeze\n");
1485 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1486 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1487 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1489 cpumask_set_cpu(cpu, frozen_cpus);
1491 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1497 BUG_ON(num_online_cpus() > 1);
1499 pr_err("Non-boot CPUs are not disabled\n");
1502 * Make sure the CPUs won't be enabled by someone else. We need to do
1503 * this even in case of failure as all freeze_secondary_cpus() users are
1504 * supposed to do thaw_secondary_cpus() on the failure path.
1506 cpu_hotplug_disabled++;
1508 cpu_maps_update_done();
1512 void __weak arch_thaw_secondary_cpus_begin(void)
1516 void __weak arch_thaw_secondary_cpus_end(void)
1520 void thaw_secondary_cpus(void)
1524 /* Allow everyone to use the CPU hotplug again */
1525 cpu_maps_update_begin();
1526 __cpu_hotplug_enable();
1527 if (cpumask_empty(frozen_cpus))
1530 pr_info("Enabling non-boot CPUs ...\n");
1532 arch_thaw_secondary_cpus_begin();
1534 for_each_cpu(cpu, frozen_cpus) {
1535 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1536 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1537 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1539 pr_info("CPU%d is up\n", cpu);
1542 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1545 arch_thaw_secondary_cpus_end();
1547 cpumask_clear(frozen_cpus);
1549 cpu_maps_update_done();
1552 static int __init alloc_frozen_cpus(void)
1554 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1558 core_initcall(alloc_frozen_cpus);
1561 * When callbacks for CPU hotplug notifications are being executed, we must
1562 * ensure that the state of the system with respect to the tasks being frozen
1563 * or not, as reported by the notification, remains unchanged *throughout the
1564 * duration* of the execution of the callbacks.
1565 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1567 * This synchronization is implemented by mutually excluding regular CPU
1568 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1569 * Hibernate notifications.
1572 cpu_hotplug_pm_callback(struct notifier_block *nb,
1573 unsigned long action, void *ptr)
1577 case PM_SUSPEND_PREPARE:
1578 case PM_HIBERNATION_PREPARE:
1579 cpu_hotplug_disable();
1582 case PM_POST_SUSPEND:
1583 case PM_POST_HIBERNATION:
1584 cpu_hotplug_enable();
1595 static int __init cpu_hotplug_pm_sync_init(void)
1598 * cpu_hotplug_pm_callback has higher priority than x86
1599 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1600 * to disable cpu hotplug to avoid cpu hotplug race.
1602 pm_notifier(cpu_hotplug_pm_callback, 0);
1605 core_initcall(cpu_hotplug_pm_sync_init);
1607 #endif /* CONFIG_PM_SLEEP_SMP */
1611 #endif /* CONFIG_SMP */
1613 /* Boot processor state steps */
1614 static struct cpuhp_step cpuhp_hp_states[] = {
1617 .startup.single = NULL,
1618 .teardown.single = NULL,
1621 [CPUHP_CREATE_THREADS]= {
1622 .name = "threads:prepare",
1623 .startup.single = smpboot_create_threads,
1624 .teardown.single = NULL,
1627 [CPUHP_PERF_PREPARE] = {
1628 .name = "perf:prepare",
1629 .startup.single = perf_event_init_cpu,
1630 .teardown.single = perf_event_exit_cpu,
1632 [CPUHP_WORKQUEUE_PREP] = {
1633 .name = "workqueue:prepare",
1634 .startup.single = workqueue_prepare_cpu,
1635 .teardown.single = NULL,
1637 [CPUHP_HRTIMERS_PREPARE] = {
1638 .name = "hrtimers:prepare",
1639 .startup.single = hrtimers_prepare_cpu,
1640 .teardown.single = hrtimers_dead_cpu,
1642 [CPUHP_SMPCFD_PREPARE] = {
1643 .name = "smpcfd:prepare",
1644 .startup.single = smpcfd_prepare_cpu,
1645 .teardown.single = smpcfd_dead_cpu,
1647 [CPUHP_RELAY_PREPARE] = {
1648 .name = "relay:prepare",
1649 .startup.single = relay_prepare_cpu,
1650 .teardown.single = NULL,
1652 [CPUHP_SLAB_PREPARE] = {
1653 .name = "slab:prepare",
1654 .startup.single = slab_prepare_cpu,
1655 .teardown.single = slab_dead_cpu,
1657 [CPUHP_RCUTREE_PREP] = {
1658 .name = "RCU/tree:prepare",
1659 .startup.single = rcutree_prepare_cpu,
1660 .teardown.single = rcutree_dead_cpu,
1663 * On the tear-down path, timers_dead_cpu() must be invoked
1664 * before blk_mq_queue_reinit_notify() from notify_dead(),
1665 * otherwise a RCU stall occurs.
1667 [CPUHP_TIMERS_PREPARE] = {
1668 .name = "timers:prepare",
1669 .startup.single = timers_prepare_cpu,
1670 .teardown.single = timers_dead_cpu,
1672 /* Kicks the plugged cpu into life */
1673 [CPUHP_BRINGUP_CPU] = {
1674 .name = "cpu:bringup",
1675 .startup.single = bringup_cpu,
1676 .teardown.single = finish_cpu,
1679 /* Final state before CPU kills itself */
1680 [CPUHP_AP_IDLE_DEAD] = {
1681 .name = "idle:dead",
1684 * Last state before CPU enters the idle loop to die. Transient state
1685 * for synchronization.
1687 [CPUHP_AP_OFFLINE] = {
1688 .name = "ap:offline",
1691 /* First state is scheduler control. Interrupts are disabled */
1692 [CPUHP_AP_SCHED_STARTING] = {
1693 .name = "sched:starting",
1694 .startup.single = sched_cpu_starting,
1695 .teardown.single = sched_cpu_dying,
1697 [CPUHP_AP_RCUTREE_DYING] = {
1698 .name = "RCU/tree:dying",
1699 .startup.single = NULL,
1700 .teardown.single = rcutree_dying_cpu,
1702 [CPUHP_AP_SMPCFD_DYING] = {
1703 .name = "smpcfd:dying",
1704 .startup.single = NULL,
1705 .teardown.single = smpcfd_dying_cpu,
1707 /* Entry state on starting. Interrupts enabled from here on. Transient
1708 * state for synchronsization */
1709 [CPUHP_AP_ONLINE] = {
1710 .name = "ap:online",
1713 * Handled on control processor until the plugged processor manages
1716 [CPUHP_TEARDOWN_CPU] = {
1717 .name = "cpu:teardown",
1718 .startup.single = NULL,
1719 .teardown.single = takedown_cpu,
1723 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1724 .name = "sched:waitempty",
1725 .startup.single = NULL,
1726 .teardown.single = sched_cpu_wait_empty,
1729 /* Handle smpboot threads park/unpark */
1730 [CPUHP_AP_SMPBOOT_THREADS] = {
1731 .name = "smpboot/threads:online",
1732 .startup.single = smpboot_unpark_threads,
1733 .teardown.single = smpboot_park_threads,
1735 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1736 .name = "irq/affinity:online",
1737 .startup.single = irq_affinity_online_cpu,
1738 .teardown.single = NULL,
1740 [CPUHP_AP_PERF_ONLINE] = {
1741 .name = "perf:online",
1742 .startup.single = perf_event_init_cpu,
1743 .teardown.single = perf_event_exit_cpu,
1745 [CPUHP_AP_WATCHDOG_ONLINE] = {
1746 .name = "lockup_detector:online",
1747 .startup.single = lockup_detector_online_cpu,
1748 .teardown.single = lockup_detector_offline_cpu,
1750 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1751 .name = "workqueue:online",
1752 .startup.single = workqueue_online_cpu,
1753 .teardown.single = workqueue_offline_cpu,
1755 [CPUHP_AP_RCUTREE_ONLINE] = {
1756 .name = "RCU/tree:online",
1757 .startup.single = rcutree_online_cpu,
1758 .teardown.single = rcutree_offline_cpu,
1762 * The dynamically registered state space is here
1766 /* Last state is scheduler control setting the cpu active */
1767 [CPUHP_AP_ACTIVE] = {
1768 .name = "sched:active",
1769 .startup.single = sched_cpu_activate,
1770 .teardown.single = sched_cpu_deactivate,
1774 /* CPU is fully up and running. */
1777 .startup.single = NULL,
1778 .teardown.single = NULL,
1782 /* Sanity check for callbacks */
1783 static int cpuhp_cb_check(enum cpuhp_state state)
1785 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1791 * Returns a free for dynamic slot assignment of the Online state. The states
1792 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1793 * by having no name assigned.
1795 static int cpuhp_reserve_state(enum cpuhp_state state)
1797 enum cpuhp_state i, end;
1798 struct cpuhp_step *step;
1801 case CPUHP_AP_ONLINE_DYN:
1802 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1803 end = CPUHP_AP_ONLINE_DYN_END;
1805 case CPUHP_BP_PREPARE_DYN:
1806 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1807 end = CPUHP_BP_PREPARE_DYN_END;
1813 for (i = state; i <= end; i++, step++) {
1817 WARN(1, "No more dynamic states available for CPU hotplug\n");
1821 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1822 int (*startup)(unsigned int cpu),
1823 int (*teardown)(unsigned int cpu),
1824 bool multi_instance)
1826 /* (Un)Install the callbacks for further cpu hotplug operations */
1827 struct cpuhp_step *sp;
1831 * If name is NULL, then the state gets removed.
1833 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1834 * the first allocation from these dynamic ranges, so the removal
1835 * would trigger a new allocation and clear the wrong (already
1836 * empty) state, leaving the callbacks of the to be cleared state
1837 * dangling, which causes wreckage on the next hotplug operation.
1839 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1840 state == CPUHP_BP_PREPARE_DYN)) {
1841 ret = cpuhp_reserve_state(state);
1846 sp = cpuhp_get_step(state);
1847 if (name && sp->name)
1850 sp->startup.single = startup;
1851 sp->teardown.single = teardown;
1853 sp->multi_instance = multi_instance;
1854 INIT_HLIST_HEAD(&sp->list);
1858 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1860 return cpuhp_get_step(state)->teardown.single;
1864 * Call the startup/teardown function for a step either on the AP or
1865 * on the current CPU.
1867 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1868 struct hlist_node *node)
1870 struct cpuhp_step *sp = cpuhp_get_step(state);
1874 * If there's nothing to do, we done.
1875 * Relies on the union for multi_instance.
1877 if (cpuhp_step_empty(bringup, sp))
1880 * The non AP bound callbacks can fail on bringup. On teardown
1881 * e.g. module removal we crash for now.
1884 if (cpuhp_is_ap_state(state))
1885 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1887 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1889 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1891 BUG_ON(ret && !bringup);
1896 * Called from __cpuhp_setup_state on a recoverable failure.
1898 * Note: The teardown callbacks for rollback are not allowed to fail!
1900 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1901 struct hlist_node *node)
1905 /* Roll back the already executed steps on the other cpus */
1906 for_each_present_cpu(cpu) {
1907 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1908 int cpustate = st->state;
1910 if (cpu >= failedcpu)
1913 /* Did we invoke the startup call on that cpu ? */
1914 if (cpustate >= state)
1915 cpuhp_issue_call(cpu, state, false, node);
1919 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1920 struct hlist_node *node,
1923 struct cpuhp_step *sp;
1927 lockdep_assert_cpus_held();
1929 sp = cpuhp_get_step(state);
1930 if (sp->multi_instance == false)
1933 mutex_lock(&cpuhp_state_mutex);
1935 if (!invoke || !sp->startup.multi)
1939 * Try to call the startup callback for each present cpu
1940 * depending on the hotplug state of the cpu.
1942 for_each_present_cpu(cpu) {
1943 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1944 int cpustate = st->state;
1946 if (cpustate < state)
1949 ret = cpuhp_issue_call(cpu, state, true, node);
1951 if (sp->teardown.multi)
1952 cpuhp_rollback_install(cpu, state, node);
1958 hlist_add_head(node, &sp->list);
1960 mutex_unlock(&cpuhp_state_mutex);
1964 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1970 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1974 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1977 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1978 * @state: The state to setup
1979 * @invoke: If true, the startup function is invoked for cpus where
1980 * cpu state >= @state
1981 * @startup: startup callback function
1982 * @teardown: teardown callback function
1983 * @multi_instance: State is set up for multiple instances which get
1986 * The caller needs to hold cpus read locked while calling this function.
1989 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1990 * 0 for all other states
1991 * On failure: proper (negative) error code
1993 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1994 const char *name, bool invoke,
1995 int (*startup)(unsigned int cpu),
1996 int (*teardown)(unsigned int cpu),
1997 bool multi_instance)
2002 lockdep_assert_cpus_held();
2004 if (cpuhp_cb_check(state) || !name)
2007 mutex_lock(&cpuhp_state_mutex);
2009 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2012 dynstate = state == CPUHP_AP_ONLINE_DYN;
2013 if (ret > 0 && dynstate) {
2018 if (ret || !invoke || !startup)
2022 * Try to call the startup callback for each present cpu
2023 * depending on the hotplug state of the cpu.
2025 for_each_present_cpu(cpu) {
2026 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2027 int cpustate = st->state;
2029 if (cpustate < state)
2032 ret = cpuhp_issue_call(cpu, state, true, NULL);
2035 cpuhp_rollback_install(cpu, state, NULL);
2036 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2041 mutex_unlock(&cpuhp_state_mutex);
2043 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2044 * dynamically allocated state in case of success.
2046 if (!ret && dynstate)
2050 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2052 int __cpuhp_setup_state(enum cpuhp_state state,
2053 const char *name, bool invoke,
2054 int (*startup)(unsigned int cpu),
2055 int (*teardown)(unsigned int cpu),
2056 bool multi_instance)
2061 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2062 teardown, multi_instance);
2066 EXPORT_SYMBOL(__cpuhp_setup_state);
2068 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2069 struct hlist_node *node, bool invoke)
2071 struct cpuhp_step *sp = cpuhp_get_step(state);
2074 BUG_ON(cpuhp_cb_check(state));
2076 if (!sp->multi_instance)
2080 mutex_lock(&cpuhp_state_mutex);
2082 if (!invoke || !cpuhp_get_teardown_cb(state))
2085 * Call the teardown callback for each present cpu depending
2086 * on the hotplug state of the cpu. This function is not
2087 * allowed to fail currently!
2089 for_each_present_cpu(cpu) {
2090 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2091 int cpustate = st->state;
2093 if (cpustate >= state)
2094 cpuhp_issue_call(cpu, state, false, node);
2099 mutex_unlock(&cpuhp_state_mutex);
2104 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2107 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2108 * @state: The state to remove
2109 * @invoke: If true, the teardown function is invoked for cpus where
2110 * cpu state >= @state
2112 * The caller needs to hold cpus read locked while calling this function.
2113 * The teardown callback is currently not allowed to fail. Think
2114 * about module removal!
2116 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2118 struct cpuhp_step *sp = cpuhp_get_step(state);
2121 BUG_ON(cpuhp_cb_check(state));
2123 lockdep_assert_cpus_held();
2125 mutex_lock(&cpuhp_state_mutex);
2126 if (sp->multi_instance) {
2127 WARN(!hlist_empty(&sp->list),
2128 "Error: Removing state %d which has instances left.\n",
2133 if (!invoke || !cpuhp_get_teardown_cb(state))
2137 * Call the teardown callback for each present cpu depending
2138 * on the hotplug state of the cpu. This function is not
2139 * allowed to fail currently!
2141 for_each_present_cpu(cpu) {
2142 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2143 int cpustate = st->state;
2145 if (cpustate >= state)
2146 cpuhp_issue_call(cpu, state, false, NULL);
2149 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2150 mutex_unlock(&cpuhp_state_mutex);
2152 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2154 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2157 __cpuhp_remove_state_cpuslocked(state, invoke);
2160 EXPORT_SYMBOL(__cpuhp_remove_state);
2162 #ifdef CONFIG_HOTPLUG_SMT
2163 static void cpuhp_offline_cpu_device(unsigned int cpu)
2165 struct device *dev = get_cpu_device(cpu);
2167 dev->offline = true;
2168 /* Tell user space about the state change */
2169 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2172 static void cpuhp_online_cpu_device(unsigned int cpu)
2174 struct device *dev = get_cpu_device(cpu);
2176 dev->offline = false;
2177 /* Tell user space about the state change */
2178 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2181 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2185 cpu_maps_update_begin();
2186 for_each_online_cpu(cpu) {
2187 if (topology_is_primary_thread(cpu))
2189 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2193 * As this needs to hold the cpu maps lock it's impossible
2194 * to call device_offline() because that ends up calling
2195 * cpu_down() which takes cpu maps lock. cpu maps lock
2196 * needs to be held as this might race against in kernel
2197 * abusers of the hotplug machinery (thermal management).
2199 * So nothing would update device:offline state. That would
2200 * leave the sysfs entry stale and prevent onlining after
2201 * smt control has been changed to 'off' again. This is
2202 * called under the sysfs hotplug lock, so it is properly
2203 * serialized against the regular offline usage.
2205 cpuhp_offline_cpu_device(cpu);
2208 cpu_smt_control = ctrlval;
2209 cpu_maps_update_done();
2213 int cpuhp_smt_enable(void)
2217 cpu_maps_update_begin();
2218 cpu_smt_control = CPU_SMT_ENABLED;
2219 for_each_present_cpu(cpu) {
2220 /* Skip online CPUs and CPUs on offline nodes */
2221 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2223 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2226 /* See comment in cpuhp_smt_disable() */
2227 cpuhp_online_cpu_device(cpu);
2229 cpu_maps_update_done();
2234 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2235 static ssize_t show_cpuhp_state(struct device *dev,
2236 struct device_attribute *attr, char *buf)
2238 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2240 return sprintf(buf, "%d\n", st->state);
2242 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2244 static ssize_t write_cpuhp_target(struct device *dev,
2245 struct device_attribute *attr,
2246 const char *buf, size_t count)
2248 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2249 struct cpuhp_step *sp;
2252 ret = kstrtoint(buf, 10, &target);
2256 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2257 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2260 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2264 ret = lock_device_hotplug_sysfs();
2268 mutex_lock(&cpuhp_state_mutex);
2269 sp = cpuhp_get_step(target);
2270 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2271 mutex_unlock(&cpuhp_state_mutex);
2275 if (st->state < target)
2276 ret = cpu_up(dev->id, target);
2278 ret = cpu_down(dev->id, target);
2280 unlock_device_hotplug();
2281 return ret ? ret : count;
2284 static ssize_t show_cpuhp_target(struct device *dev,
2285 struct device_attribute *attr, char *buf)
2287 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2289 return sprintf(buf, "%d\n", st->target);
2291 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2294 static ssize_t write_cpuhp_fail(struct device *dev,
2295 struct device_attribute *attr,
2296 const char *buf, size_t count)
2298 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2299 struct cpuhp_step *sp;
2302 ret = kstrtoint(buf, 10, &fail);
2306 if (fail == CPUHP_INVALID) {
2311 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2315 * Cannot fail STARTING/DYING callbacks.
2317 if (cpuhp_is_atomic_state(fail))
2321 * DEAD callbacks cannot fail...
2322 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2323 * triggering STARTING callbacks, a failure in this state would
2326 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2330 * Cannot fail anything that doesn't have callbacks.
2332 mutex_lock(&cpuhp_state_mutex);
2333 sp = cpuhp_get_step(fail);
2334 if (!sp->startup.single && !sp->teardown.single)
2336 mutex_unlock(&cpuhp_state_mutex);
2345 static ssize_t show_cpuhp_fail(struct device *dev,
2346 struct device_attribute *attr, char *buf)
2348 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2350 return sprintf(buf, "%d\n", st->fail);
2353 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2355 static struct attribute *cpuhp_cpu_attrs[] = {
2356 &dev_attr_state.attr,
2357 &dev_attr_target.attr,
2358 &dev_attr_fail.attr,
2362 static const struct attribute_group cpuhp_cpu_attr_group = {
2363 .attrs = cpuhp_cpu_attrs,
2368 static ssize_t show_cpuhp_states(struct device *dev,
2369 struct device_attribute *attr, char *buf)
2371 ssize_t cur, res = 0;
2374 mutex_lock(&cpuhp_state_mutex);
2375 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2376 struct cpuhp_step *sp = cpuhp_get_step(i);
2379 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2384 mutex_unlock(&cpuhp_state_mutex);
2387 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2389 static struct attribute *cpuhp_cpu_root_attrs[] = {
2390 &dev_attr_states.attr,
2394 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2395 .attrs = cpuhp_cpu_root_attrs,
2400 #ifdef CONFIG_HOTPLUG_SMT
2403 __store_smt_control(struct device *dev, struct device_attribute *attr,
2404 const char *buf, size_t count)
2408 if (sysfs_streq(buf, "on"))
2409 ctrlval = CPU_SMT_ENABLED;
2410 else if (sysfs_streq(buf, "off"))
2411 ctrlval = CPU_SMT_DISABLED;
2412 else if (sysfs_streq(buf, "forceoff"))
2413 ctrlval = CPU_SMT_FORCE_DISABLED;
2417 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2420 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2423 ret = lock_device_hotplug_sysfs();
2427 if (ctrlval != cpu_smt_control) {
2429 case CPU_SMT_ENABLED:
2430 ret = cpuhp_smt_enable();
2432 case CPU_SMT_DISABLED:
2433 case CPU_SMT_FORCE_DISABLED:
2434 ret = cpuhp_smt_disable(ctrlval);
2439 unlock_device_hotplug();
2440 return ret ? ret : count;
2443 #else /* !CONFIG_HOTPLUG_SMT */
2445 __store_smt_control(struct device *dev, struct device_attribute *attr,
2446 const char *buf, size_t count)
2450 #endif /* CONFIG_HOTPLUG_SMT */
2452 static const char *smt_states[] = {
2453 [CPU_SMT_ENABLED] = "on",
2454 [CPU_SMT_DISABLED] = "off",
2455 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2456 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2457 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2461 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2463 const char *state = smt_states[cpu_smt_control];
2465 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2469 store_smt_control(struct device *dev, struct device_attribute *attr,
2470 const char *buf, size_t count)
2472 return __store_smt_control(dev, attr, buf, count);
2474 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2477 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2479 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2481 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2483 static struct attribute *cpuhp_smt_attrs[] = {
2484 &dev_attr_control.attr,
2485 &dev_attr_active.attr,
2489 static const struct attribute_group cpuhp_smt_attr_group = {
2490 .attrs = cpuhp_smt_attrs,
2495 static int __init cpu_smt_sysfs_init(void)
2497 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2498 &cpuhp_smt_attr_group);
2501 static int __init cpuhp_sysfs_init(void)
2505 ret = cpu_smt_sysfs_init();
2509 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2510 &cpuhp_cpu_root_attr_group);
2514 for_each_possible_cpu(cpu) {
2515 struct device *dev = get_cpu_device(cpu);
2519 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2525 device_initcall(cpuhp_sysfs_init);
2526 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2529 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2530 * represents all NR_CPUS bits binary values of 1<<nr.
2532 * It is used by cpumask_of() to get a constant address to a CPU
2533 * mask value that has a single bit set only.
2536 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2537 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2538 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2539 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2540 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2542 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2544 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2545 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2546 #if BITS_PER_LONG > 32
2547 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2548 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2551 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2553 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2554 EXPORT_SYMBOL(cpu_all_bits);
2556 #ifdef CONFIG_INIT_ALL_POSSIBLE
2557 struct cpumask __cpu_possible_mask __read_mostly
2560 struct cpumask __cpu_possible_mask __read_mostly;
2562 EXPORT_SYMBOL(__cpu_possible_mask);
2564 struct cpumask __cpu_online_mask __read_mostly;
2565 EXPORT_SYMBOL(__cpu_online_mask);
2567 struct cpumask __cpu_present_mask __read_mostly;
2568 EXPORT_SYMBOL(__cpu_present_mask);
2570 struct cpumask __cpu_active_mask __read_mostly;
2571 EXPORT_SYMBOL(__cpu_active_mask);
2573 struct cpumask __cpu_dying_mask __read_mostly;
2574 EXPORT_SYMBOL(__cpu_dying_mask);
2576 atomic_t __num_online_cpus __read_mostly;
2577 EXPORT_SYMBOL(__num_online_cpus);
2579 void init_cpu_present(const struct cpumask *src)
2581 cpumask_copy(&__cpu_present_mask, src);
2584 void init_cpu_possible(const struct cpumask *src)
2586 cpumask_copy(&__cpu_possible_mask, src);
2589 void init_cpu_online(const struct cpumask *src)
2591 cpumask_copy(&__cpu_online_mask, src);
2594 void set_cpu_online(unsigned int cpu, bool online)
2597 * atomic_inc/dec() is required to handle the horrid abuse of this
2598 * function by the reboot and kexec code which invoke it from
2599 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2600 * regular CPU hotplug is properly serialized.
2602 * Note, that the fact that __num_online_cpus is of type atomic_t
2603 * does not protect readers which are not serialized against
2604 * concurrent hotplug operations.
2607 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2608 atomic_inc(&__num_online_cpus);
2610 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2611 atomic_dec(&__num_online_cpus);
2616 * Activate the first processor.
2618 void __init boot_cpu_init(void)
2620 int cpu = smp_processor_id();
2622 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2623 set_cpu_online(cpu, true);
2624 set_cpu_active(cpu, true);
2625 set_cpu_present(cpu, true);
2626 set_cpu_possible(cpu, true);
2629 __boot_cpu_id = cpu;
2634 * Must be called _AFTER_ setting up the per_cpu areas
2636 void __init boot_cpu_hotplug_init(void)
2639 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2641 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2645 * These are used for a global "mitigations=" cmdline option for toggling
2646 * optional CPU mitigations.
2648 enum cpu_mitigations {
2649 CPU_MITIGATIONS_OFF,
2650 CPU_MITIGATIONS_AUTO,
2651 CPU_MITIGATIONS_AUTO_NOSMT,
2654 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2655 CPU_MITIGATIONS_AUTO;
2657 static int __init mitigations_parse_cmdline(char *arg)
2659 if (!strcmp(arg, "off"))
2660 cpu_mitigations = CPU_MITIGATIONS_OFF;
2661 else if (!strcmp(arg, "auto"))
2662 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2663 else if (!strcmp(arg, "auto,nosmt"))
2664 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2666 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2671 early_param("mitigations", mitigations_parse_cmdline);
2673 /* mitigations=off */
2674 bool cpu_mitigations_off(void)
2676 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2678 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2680 /* mitigations=auto,nosmt */
2681 bool cpu_mitigations_auto_nosmt(void)
2683 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2685 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);