drm/amdgpu: Remove second moot switch to set EEPROM I2C address
[platform/kernel/linux-starfive.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <linux/cc_platform.h>
39
40 #include <trace/events/power.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/cpuhp.h>
43
44 #include "smpboot.h"
45
46 /**
47  * struct cpuhp_cpu_state - Per cpu hotplug state storage
48  * @state:      The current cpu state
49  * @target:     The target state
50  * @fail:       Current CPU hotplug callback state
51  * @thread:     Pointer to the hotplug thread
52  * @should_run: Thread should execute
53  * @rollback:   Perform a rollback
54  * @single:     Single callback invocation
55  * @bringup:    Single callback bringup or teardown selector
56  * @cpu:        CPU number
57  * @node:       Remote CPU node; for multi-instance, do a
58  *              single entry callback for install/remove
59  * @last:       For multi-instance rollback, remember how far we got
60  * @cb_state:   The state for a single callback (install/uninstall)
61  * @result:     Result of the operation
62  * @done_up:    Signal completion to the issuer of the task for cpu-up
63  * @done_down:  Signal completion to the issuer of the task for cpu-down
64  */
65 struct cpuhp_cpu_state {
66         enum cpuhp_state        state;
67         enum cpuhp_state        target;
68         enum cpuhp_state        fail;
69 #ifdef CONFIG_SMP
70         struct task_struct      *thread;
71         bool                    should_run;
72         bool                    rollback;
73         bool                    single;
74         bool                    bringup;
75         struct hlist_node       *node;
76         struct hlist_node       *last;
77         enum cpuhp_state        cb_state;
78         int                     result;
79         struct completion       done_up;
80         struct completion       done_down;
81 #endif
82 };
83
84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
85         .fail = CPUHP_INVALID,
86 };
87
88 #ifdef CONFIG_SMP
89 cpumask_t cpus_booted_once_mask;
90 #endif
91
92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
93 static struct lockdep_map cpuhp_state_up_map =
94         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
95 static struct lockdep_map cpuhp_state_down_map =
96         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
97
98
99 static inline void cpuhp_lock_acquire(bool bringup)
100 {
101         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103
104 static inline void cpuhp_lock_release(bool bringup)
105 {
106         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 }
108 #else
109
110 static inline void cpuhp_lock_acquire(bool bringup) { }
111 static inline void cpuhp_lock_release(bool bringup) { }
112
113 #endif
114
115 /**
116  * struct cpuhp_step - Hotplug state machine step
117  * @name:       Name of the step
118  * @startup:    Startup function of the step
119  * @teardown:   Teardown function of the step
120  * @cant_stop:  Bringup/teardown can't be stopped at this step
121  * @multi_instance:     State has multiple instances which get added afterwards
122  */
123 struct cpuhp_step {
124         const char              *name;
125         union {
126                 int             (*single)(unsigned int cpu);
127                 int             (*multi)(unsigned int cpu,
128                                          struct hlist_node *node);
129         } startup;
130         union {
131                 int             (*single)(unsigned int cpu);
132                 int             (*multi)(unsigned int cpu,
133                                          struct hlist_node *node);
134         } teardown;
135         /* private: */
136         struct hlist_head       list;
137         /* public: */
138         bool                    cant_stop;
139         bool                    multi_instance;
140 };
141
142 static DEFINE_MUTEX(cpuhp_state_mutex);
143 static struct cpuhp_step cpuhp_hp_states[];
144
145 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
146 {
147         return cpuhp_hp_states + state;
148 }
149
150 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
151 {
152         return bringup ? !step->startup.single : !step->teardown.single;
153 }
154
155 /**
156  * cpuhp_invoke_callback - Invoke the callbacks for a given state
157  * @cpu:        The cpu for which the callback should be invoked
158  * @state:      The state to do callbacks for
159  * @bringup:    True if the bringup callback should be invoked
160  * @node:       For multi-instance, do a single entry callback for install/remove
161  * @lastp:      For multi-instance rollback, remember how far we got
162  *
163  * Called from cpu hotplug and from the state register machinery.
164  *
165  * Return: %0 on success or a negative errno code
166  */
167 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
168                                  bool bringup, struct hlist_node *node,
169                                  struct hlist_node **lastp)
170 {
171         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
172         struct cpuhp_step *step = cpuhp_get_step(state);
173         int (*cbm)(unsigned int cpu, struct hlist_node *node);
174         int (*cb)(unsigned int cpu);
175         int ret, cnt;
176
177         if (st->fail == state) {
178                 st->fail = CPUHP_INVALID;
179                 return -EAGAIN;
180         }
181
182         if (cpuhp_step_empty(bringup, step)) {
183                 WARN_ON_ONCE(1);
184                 return 0;
185         }
186
187         if (!step->multi_instance) {
188                 WARN_ON_ONCE(lastp && *lastp);
189                 cb = bringup ? step->startup.single : step->teardown.single;
190
191                 trace_cpuhp_enter(cpu, st->target, state, cb);
192                 ret = cb(cpu);
193                 trace_cpuhp_exit(cpu, st->state, state, ret);
194                 return ret;
195         }
196         cbm = bringup ? step->startup.multi : step->teardown.multi;
197
198         /* Single invocation for instance add/remove */
199         if (node) {
200                 WARN_ON_ONCE(lastp && *lastp);
201                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202                 ret = cbm(cpu, node);
203                 trace_cpuhp_exit(cpu, st->state, state, ret);
204                 return ret;
205         }
206
207         /* State transition. Invoke on all instances */
208         cnt = 0;
209         hlist_for_each(node, &step->list) {
210                 if (lastp && node == *lastp)
211                         break;
212
213                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
214                 ret = cbm(cpu, node);
215                 trace_cpuhp_exit(cpu, st->state, state, ret);
216                 if (ret) {
217                         if (!lastp)
218                                 goto err;
219
220                         *lastp = node;
221                         return ret;
222                 }
223                 cnt++;
224         }
225         if (lastp)
226                 *lastp = NULL;
227         return 0;
228 err:
229         /* Rollback the instances if one failed */
230         cbm = !bringup ? step->startup.multi : step->teardown.multi;
231         if (!cbm)
232                 return ret;
233
234         hlist_for_each(node, &step->list) {
235                 if (!cnt--)
236                         break;
237
238                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
239                 ret = cbm(cpu, node);
240                 trace_cpuhp_exit(cpu, st->state, state, ret);
241                 /*
242                  * Rollback must not fail,
243                  */
244                 WARN_ON_ONCE(ret);
245         }
246         return ret;
247 }
248
249 #ifdef CONFIG_SMP
250 static bool cpuhp_is_ap_state(enum cpuhp_state state)
251 {
252         /*
253          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
254          * purposes as that state is handled explicitly in cpu_down.
255          */
256         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
257 }
258
259 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
260 {
261         struct completion *done = bringup ? &st->done_up : &st->done_down;
262         wait_for_completion(done);
263 }
264
265 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
266 {
267         struct completion *done = bringup ? &st->done_up : &st->done_down;
268         complete(done);
269 }
270
271 /*
272  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
273  */
274 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
275 {
276         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
277 }
278
279 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
280 static DEFINE_MUTEX(cpu_add_remove_lock);
281 bool cpuhp_tasks_frozen;
282 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
283
284 /*
285  * The following two APIs (cpu_maps_update_begin/done) must be used when
286  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
287  */
288 void cpu_maps_update_begin(void)
289 {
290         mutex_lock(&cpu_add_remove_lock);
291 }
292
293 void cpu_maps_update_done(void)
294 {
295         mutex_unlock(&cpu_add_remove_lock);
296 }
297
298 /*
299  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
300  * Should always be manipulated under cpu_add_remove_lock
301  */
302 static int cpu_hotplug_disabled;
303
304 #ifdef CONFIG_HOTPLUG_CPU
305
306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
307
308 void cpus_read_lock(void)
309 {
310         percpu_down_read(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_lock);
313
314 int cpus_read_trylock(void)
315 {
316         return percpu_down_read_trylock(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_trylock);
319
320 void cpus_read_unlock(void)
321 {
322         percpu_up_read(&cpu_hotplug_lock);
323 }
324 EXPORT_SYMBOL_GPL(cpus_read_unlock);
325
326 void cpus_write_lock(void)
327 {
328         percpu_down_write(&cpu_hotplug_lock);
329 }
330
331 void cpus_write_unlock(void)
332 {
333         percpu_up_write(&cpu_hotplug_lock);
334 }
335
336 void lockdep_assert_cpus_held(void)
337 {
338         /*
339          * We can't have hotplug operations before userspace starts running,
340          * and some init codepaths will knowingly not take the hotplug lock.
341          * This is all valid, so mute lockdep until it makes sense to report
342          * unheld locks.
343          */
344         if (system_state < SYSTEM_RUNNING)
345                 return;
346
347         percpu_rwsem_assert_held(&cpu_hotplug_lock);
348 }
349
350 #ifdef CONFIG_LOCKDEP
351 int lockdep_is_cpus_held(void)
352 {
353         return percpu_rwsem_is_held(&cpu_hotplug_lock);
354 }
355 #endif
356
357 static void lockdep_acquire_cpus_lock(void)
358 {
359         rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
360 }
361
362 static void lockdep_release_cpus_lock(void)
363 {
364         rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
365 }
366
367 /*
368  * Wait for currently running CPU hotplug operations to complete (if any) and
369  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
370  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
371  * hotplug path before performing hotplug operations. So acquiring that lock
372  * guarantees mutual exclusion from any currently running hotplug operations.
373  */
374 void cpu_hotplug_disable(void)
375 {
376         cpu_maps_update_begin();
377         cpu_hotplug_disabled++;
378         cpu_maps_update_done();
379 }
380 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
381
382 static void __cpu_hotplug_enable(void)
383 {
384         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
385                 return;
386         cpu_hotplug_disabled--;
387 }
388
389 void cpu_hotplug_enable(void)
390 {
391         cpu_maps_update_begin();
392         __cpu_hotplug_enable();
393         cpu_maps_update_done();
394 }
395 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
396
397 #else
398
399 static void lockdep_acquire_cpus_lock(void)
400 {
401 }
402
403 static void lockdep_release_cpus_lock(void)
404 {
405 }
406
407 #endif  /* CONFIG_HOTPLUG_CPU */
408
409 /*
410  * Architectures that need SMT-specific errata handling during SMT hotplug
411  * should override this.
412  */
413 void __weak arch_smt_update(void) { }
414
415 #ifdef CONFIG_HOTPLUG_SMT
416 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
417
418 void __init cpu_smt_disable(bool force)
419 {
420         if (!cpu_smt_possible())
421                 return;
422
423         if (force) {
424                 pr_info("SMT: Force disabled\n");
425                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
426         } else {
427                 pr_info("SMT: disabled\n");
428                 cpu_smt_control = CPU_SMT_DISABLED;
429         }
430 }
431
432 /*
433  * The decision whether SMT is supported can only be done after the full
434  * CPU identification. Called from architecture code.
435  */
436 void __init cpu_smt_check_topology(void)
437 {
438         if (!topology_smt_supported())
439                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
440 }
441
442 static int __init smt_cmdline_disable(char *str)
443 {
444         cpu_smt_disable(str && !strcmp(str, "force"));
445         return 0;
446 }
447 early_param("nosmt", smt_cmdline_disable);
448
449 static inline bool cpu_smt_allowed(unsigned int cpu)
450 {
451         if (cpu_smt_control == CPU_SMT_ENABLED)
452                 return true;
453
454         if (topology_is_primary_thread(cpu))
455                 return true;
456
457         /*
458          * On x86 it's required to boot all logical CPUs at least once so
459          * that the init code can get a chance to set CR4.MCE on each
460          * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
461          * core will shutdown the machine.
462          */
463         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
464 }
465
466 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
467 bool cpu_smt_possible(void)
468 {
469         return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
470                 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
471 }
472 EXPORT_SYMBOL_GPL(cpu_smt_possible);
473 #else
474 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
475 #endif
476
477 static inline enum cpuhp_state
478 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
479 {
480         enum cpuhp_state prev_state = st->state;
481         bool bringup = st->state < target;
482
483         st->rollback = false;
484         st->last = NULL;
485
486         st->target = target;
487         st->single = false;
488         st->bringup = bringup;
489         if (cpu_dying(cpu) != !bringup)
490                 set_cpu_dying(cpu, !bringup);
491
492         return prev_state;
493 }
494
495 static inline void
496 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
497                   enum cpuhp_state prev_state)
498 {
499         bool bringup = !st->bringup;
500
501         st->target = prev_state;
502
503         /*
504          * Already rolling back. No need invert the bringup value or to change
505          * the current state.
506          */
507         if (st->rollback)
508                 return;
509
510         st->rollback = true;
511
512         /*
513          * If we have st->last we need to undo partial multi_instance of this
514          * state first. Otherwise start undo at the previous state.
515          */
516         if (!st->last) {
517                 if (st->bringup)
518                         st->state--;
519                 else
520                         st->state++;
521         }
522
523         st->bringup = bringup;
524         if (cpu_dying(cpu) != !bringup)
525                 set_cpu_dying(cpu, !bringup);
526 }
527
528 /* Regular hotplug invocation of the AP hotplug thread */
529 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
530 {
531         if (!st->single && st->state == st->target)
532                 return;
533
534         st->result = 0;
535         /*
536          * Make sure the above stores are visible before should_run becomes
537          * true. Paired with the mb() above in cpuhp_thread_fun()
538          */
539         smp_mb();
540         st->should_run = true;
541         wake_up_process(st->thread);
542         wait_for_ap_thread(st, st->bringup);
543 }
544
545 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
546                          enum cpuhp_state target)
547 {
548         enum cpuhp_state prev_state;
549         int ret;
550
551         prev_state = cpuhp_set_state(cpu, st, target);
552         __cpuhp_kick_ap(st);
553         if ((ret = st->result)) {
554                 cpuhp_reset_state(cpu, st, prev_state);
555                 __cpuhp_kick_ap(st);
556         }
557
558         return ret;
559 }
560
561 static int bringup_wait_for_ap(unsigned int cpu)
562 {
563         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
564
565         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
566         wait_for_ap_thread(st, true);
567         if (WARN_ON_ONCE((!cpu_online(cpu))))
568                 return -ECANCELED;
569
570         /* Unpark the hotplug thread of the target cpu */
571         kthread_unpark(st->thread);
572
573         /*
574          * SMT soft disabling on X86 requires to bring the CPU out of the
575          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
576          * CPU marked itself as booted_once in notify_cpu_starting() so the
577          * cpu_smt_allowed() check will now return false if this is not the
578          * primary sibling.
579          */
580         if (!cpu_smt_allowed(cpu))
581                 return -ECANCELED;
582
583         if (st->target <= CPUHP_AP_ONLINE_IDLE)
584                 return 0;
585
586         return cpuhp_kick_ap(cpu, st, st->target);
587 }
588
589 static int bringup_cpu(unsigned int cpu)
590 {
591         struct task_struct *idle = idle_thread_get(cpu);
592         int ret;
593
594         /*
595          * Reset stale stack state from the last time this CPU was online.
596          */
597         scs_task_reset(idle);
598         kasan_unpoison_task_stack(idle);
599
600         /*
601          * Some architectures have to walk the irq descriptors to
602          * setup the vector space for the cpu which comes online.
603          * Prevent irq alloc/free across the bringup.
604          */
605         irq_lock_sparse();
606
607         /* Arch-specific enabling code. */
608         ret = __cpu_up(cpu, idle);
609         irq_unlock_sparse();
610         if (ret)
611                 return ret;
612         return bringup_wait_for_ap(cpu);
613 }
614
615 static int finish_cpu(unsigned int cpu)
616 {
617         struct task_struct *idle = idle_thread_get(cpu);
618         struct mm_struct *mm = idle->active_mm;
619
620         /*
621          * idle_task_exit() will have switched to &init_mm, now
622          * clean up any remaining active_mm state.
623          */
624         if (mm != &init_mm)
625                 idle->active_mm = &init_mm;
626         mmdrop(mm);
627         return 0;
628 }
629
630 /*
631  * Hotplug state machine related functions
632  */
633
634 /*
635  * Get the next state to run. Empty ones will be skipped. Returns true if a
636  * state must be run.
637  *
638  * st->state will be modified ahead of time, to match state_to_run, as if it
639  * has already ran.
640  */
641 static bool cpuhp_next_state(bool bringup,
642                              enum cpuhp_state *state_to_run,
643                              struct cpuhp_cpu_state *st,
644                              enum cpuhp_state target)
645 {
646         do {
647                 if (bringup) {
648                         if (st->state >= target)
649                                 return false;
650
651                         *state_to_run = ++st->state;
652                 } else {
653                         if (st->state <= target)
654                                 return false;
655
656                         *state_to_run = st->state--;
657                 }
658
659                 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
660                         break;
661         } while (true);
662
663         return true;
664 }
665
666 static int __cpuhp_invoke_callback_range(bool bringup,
667                                          unsigned int cpu,
668                                          struct cpuhp_cpu_state *st,
669                                          enum cpuhp_state target,
670                                          bool nofail)
671 {
672         enum cpuhp_state state;
673         int ret = 0;
674
675         while (cpuhp_next_state(bringup, &state, st, target)) {
676                 int err;
677
678                 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
679                 if (!err)
680                         continue;
681
682                 if (nofail) {
683                         pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
684                                 cpu, bringup ? "UP" : "DOWN",
685                                 cpuhp_get_step(st->state)->name,
686                                 st->state, err);
687                         ret = -1;
688                 } else {
689                         ret = err;
690                         break;
691                 }
692         }
693
694         return ret;
695 }
696
697 static inline int cpuhp_invoke_callback_range(bool bringup,
698                                               unsigned int cpu,
699                                               struct cpuhp_cpu_state *st,
700                                               enum cpuhp_state target)
701 {
702         return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
703 }
704
705 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
706                                                       unsigned int cpu,
707                                                       struct cpuhp_cpu_state *st,
708                                                       enum cpuhp_state target)
709 {
710         __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
711 }
712
713 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
714 {
715         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
716                 return true;
717         /*
718          * When CPU hotplug is disabled, then taking the CPU down is not
719          * possible because takedown_cpu() and the architecture and
720          * subsystem specific mechanisms are not available. So the CPU
721          * which would be completely unplugged again needs to stay around
722          * in the current state.
723          */
724         return st->state <= CPUHP_BRINGUP_CPU;
725 }
726
727 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
728                               enum cpuhp_state target)
729 {
730         enum cpuhp_state prev_state = st->state;
731         int ret = 0;
732
733         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
734         if (ret) {
735                 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
736                          ret, cpu, cpuhp_get_step(st->state)->name,
737                          st->state);
738
739                 cpuhp_reset_state(cpu, st, prev_state);
740                 if (can_rollback_cpu(st))
741                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
742                                                             prev_state));
743         }
744         return ret;
745 }
746
747 /*
748  * The cpu hotplug threads manage the bringup and teardown of the cpus
749  */
750 static int cpuhp_should_run(unsigned int cpu)
751 {
752         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
753
754         return st->should_run;
755 }
756
757 /*
758  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
759  * callbacks when a state gets [un]installed at runtime.
760  *
761  * Each invocation of this function by the smpboot thread does a single AP
762  * state callback.
763  *
764  * It has 3 modes of operation:
765  *  - single: runs st->cb_state
766  *  - up:     runs ++st->state, while st->state < st->target
767  *  - down:   runs st->state--, while st->state > st->target
768  *
769  * When complete or on error, should_run is cleared and the completion is fired.
770  */
771 static void cpuhp_thread_fun(unsigned int cpu)
772 {
773         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
774         bool bringup = st->bringup;
775         enum cpuhp_state state;
776
777         if (WARN_ON_ONCE(!st->should_run))
778                 return;
779
780         /*
781          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
782          * that if we see ->should_run we also see the rest of the state.
783          */
784         smp_mb();
785
786         /*
787          * The BP holds the hotplug lock, but we're now running on the AP,
788          * ensure that anybody asserting the lock is held, will actually find
789          * it so.
790          */
791         lockdep_acquire_cpus_lock();
792         cpuhp_lock_acquire(bringup);
793
794         if (st->single) {
795                 state = st->cb_state;
796                 st->should_run = false;
797         } else {
798                 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
799                 if (!st->should_run)
800                         goto end;
801         }
802
803         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
804
805         if (cpuhp_is_atomic_state(state)) {
806                 local_irq_disable();
807                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
808                 local_irq_enable();
809
810                 /*
811                  * STARTING/DYING must not fail!
812                  */
813                 WARN_ON_ONCE(st->result);
814         } else {
815                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
816         }
817
818         if (st->result) {
819                 /*
820                  * If we fail on a rollback, we're up a creek without no
821                  * paddle, no way forward, no way back. We loose, thanks for
822                  * playing.
823                  */
824                 WARN_ON_ONCE(st->rollback);
825                 st->should_run = false;
826         }
827
828 end:
829         cpuhp_lock_release(bringup);
830         lockdep_release_cpus_lock();
831
832         if (!st->should_run)
833                 complete_ap_thread(st, bringup);
834 }
835
836 /* Invoke a single callback on a remote cpu */
837 static int
838 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
839                          struct hlist_node *node)
840 {
841         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
842         int ret;
843
844         if (!cpu_online(cpu))
845                 return 0;
846
847         cpuhp_lock_acquire(false);
848         cpuhp_lock_release(false);
849
850         cpuhp_lock_acquire(true);
851         cpuhp_lock_release(true);
852
853         /*
854          * If we are up and running, use the hotplug thread. For early calls
855          * we invoke the thread function directly.
856          */
857         if (!st->thread)
858                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
859
860         st->rollback = false;
861         st->last = NULL;
862
863         st->node = node;
864         st->bringup = bringup;
865         st->cb_state = state;
866         st->single = true;
867
868         __cpuhp_kick_ap(st);
869
870         /*
871          * If we failed and did a partial, do a rollback.
872          */
873         if ((ret = st->result) && st->last) {
874                 st->rollback = true;
875                 st->bringup = !bringup;
876
877                 __cpuhp_kick_ap(st);
878         }
879
880         /*
881          * Clean up the leftovers so the next hotplug operation wont use stale
882          * data.
883          */
884         st->node = st->last = NULL;
885         return ret;
886 }
887
888 static int cpuhp_kick_ap_work(unsigned int cpu)
889 {
890         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
891         enum cpuhp_state prev_state = st->state;
892         int ret;
893
894         cpuhp_lock_acquire(false);
895         cpuhp_lock_release(false);
896
897         cpuhp_lock_acquire(true);
898         cpuhp_lock_release(true);
899
900         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
901         ret = cpuhp_kick_ap(cpu, st, st->target);
902         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
903
904         return ret;
905 }
906
907 static struct smp_hotplug_thread cpuhp_threads = {
908         .store                  = &cpuhp_state.thread,
909         .thread_should_run      = cpuhp_should_run,
910         .thread_fn              = cpuhp_thread_fun,
911         .thread_comm            = "cpuhp/%u",
912         .selfparking            = true,
913 };
914
915 static __init void cpuhp_init_state(void)
916 {
917         struct cpuhp_cpu_state *st;
918         int cpu;
919
920         for_each_possible_cpu(cpu) {
921                 st = per_cpu_ptr(&cpuhp_state, cpu);
922                 init_completion(&st->done_up);
923                 init_completion(&st->done_down);
924         }
925 }
926
927 void __init cpuhp_threads_init(void)
928 {
929         cpuhp_init_state();
930         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
931         kthread_unpark(this_cpu_read(cpuhp_state.thread));
932 }
933
934 /*
935  *
936  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
937  * protected region.
938  *
939  * The operation is still serialized against concurrent CPU hotplug via
940  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
941  * serialized against other hotplug related activity like adding or
942  * removing of state callbacks and state instances, which invoke either the
943  * startup or the teardown callback of the affected state.
944  *
945  * This is required for subsystems which are unfixable vs. CPU hotplug and
946  * evade lock inversion problems by scheduling work which has to be
947  * completed _before_ cpu_up()/_cpu_down() returns.
948  *
949  * Don't even think about adding anything to this for any new code or even
950  * drivers. It's only purpose is to keep existing lock order trainwrecks
951  * working.
952  *
953  * For cpu_down() there might be valid reasons to finish cleanups which are
954  * not required to be done under cpu_hotplug_lock, but that's a different
955  * story and would be not invoked via this.
956  */
957 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
958 {
959         /*
960          * cpusets delegate hotplug operations to a worker to "solve" the
961          * lock order problems. Wait for the worker, but only if tasks are
962          * _not_ frozen (suspend, hibernate) as that would wait forever.
963          *
964          * The wait is required because otherwise the hotplug operation
965          * returns with inconsistent state, which could even be observed in
966          * user space when a new CPU is brought up. The CPU plug uevent
967          * would be delivered and user space reacting on it would fail to
968          * move tasks to the newly plugged CPU up to the point where the
969          * work has finished because up to that point the newly plugged CPU
970          * is not assignable in cpusets/cgroups. On unplug that's not
971          * necessarily a visible issue, but it is still inconsistent state,
972          * which is the real problem which needs to be "fixed". This can't
973          * prevent the transient state between scheduling the work and
974          * returning from waiting for it.
975          */
976         if (!tasks_frozen)
977                 cpuset_wait_for_hotplug();
978 }
979
980 #ifdef CONFIG_HOTPLUG_CPU
981 #ifndef arch_clear_mm_cpumask_cpu
982 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
983 #endif
984
985 /**
986  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
987  * @cpu: a CPU id
988  *
989  * This function walks all processes, finds a valid mm struct for each one and
990  * then clears a corresponding bit in mm's cpumask.  While this all sounds
991  * trivial, there are various non-obvious corner cases, which this function
992  * tries to solve in a safe manner.
993  *
994  * Also note that the function uses a somewhat relaxed locking scheme, so it may
995  * be called only for an already offlined CPU.
996  */
997 void clear_tasks_mm_cpumask(int cpu)
998 {
999         struct task_struct *p;
1000
1001         /*
1002          * This function is called after the cpu is taken down and marked
1003          * offline, so its not like new tasks will ever get this cpu set in
1004          * their mm mask. -- Peter Zijlstra
1005          * Thus, we may use rcu_read_lock() here, instead of grabbing
1006          * full-fledged tasklist_lock.
1007          */
1008         WARN_ON(cpu_online(cpu));
1009         rcu_read_lock();
1010         for_each_process(p) {
1011                 struct task_struct *t;
1012
1013                 /*
1014                  * Main thread might exit, but other threads may still have
1015                  * a valid mm. Find one.
1016                  */
1017                 t = find_lock_task_mm(p);
1018                 if (!t)
1019                         continue;
1020                 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1021                 task_unlock(t);
1022         }
1023         rcu_read_unlock();
1024 }
1025
1026 /* Take this CPU down. */
1027 static int take_cpu_down(void *_param)
1028 {
1029         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1030         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1031         int err, cpu = smp_processor_id();
1032
1033         /* Ensure this CPU doesn't handle any more interrupts. */
1034         err = __cpu_disable();
1035         if (err < 0)
1036                 return err;
1037
1038         /*
1039          * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1040          * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1041          */
1042         WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1043
1044         /*
1045          * Invoke the former CPU_DYING callbacks. DYING must not fail!
1046          */
1047         cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1048
1049         /* Give up timekeeping duties */
1050         tick_handover_do_timer();
1051         /* Remove CPU from timer broadcasting */
1052         tick_offline_cpu(cpu);
1053         /* Park the stopper thread */
1054         stop_machine_park(cpu);
1055         return 0;
1056 }
1057
1058 static int takedown_cpu(unsigned int cpu)
1059 {
1060         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1061         int err;
1062
1063         /* Park the smpboot threads */
1064         kthread_park(st->thread);
1065
1066         /*
1067          * Prevent irq alloc/free while the dying cpu reorganizes the
1068          * interrupt affinities.
1069          */
1070         irq_lock_sparse();
1071
1072         /*
1073          * So now all preempt/rcu users must observe !cpu_active().
1074          */
1075         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1076         if (err) {
1077                 /* CPU refused to die */
1078                 irq_unlock_sparse();
1079                 /* Unpark the hotplug thread so we can rollback there */
1080                 kthread_unpark(st->thread);
1081                 return err;
1082         }
1083         BUG_ON(cpu_online(cpu));
1084
1085         /*
1086          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1087          * all runnable tasks from the CPU, there's only the idle task left now
1088          * that the migration thread is done doing the stop_machine thing.
1089          *
1090          * Wait for the stop thread to go away.
1091          */
1092         wait_for_ap_thread(st, false);
1093         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1094
1095         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1096         irq_unlock_sparse();
1097
1098         hotplug_cpu__broadcast_tick_pull(cpu);
1099         /* This actually kills the CPU. */
1100         __cpu_die(cpu);
1101
1102         tick_cleanup_dead_cpu(cpu);
1103         rcutree_migrate_callbacks(cpu);
1104         return 0;
1105 }
1106
1107 static void cpuhp_complete_idle_dead(void *arg)
1108 {
1109         struct cpuhp_cpu_state *st = arg;
1110
1111         complete_ap_thread(st, false);
1112 }
1113
1114 void cpuhp_report_idle_dead(void)
1115 {
1116         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1117
1118         BUG_ON(st->state != CPUHP_AP_OFFLINE);
1119         rcu_report_dead(smp_processor_id());
1120         st->state = CPUHP_AP_IDLE_DEAD;
1121         /*
1122          * We cannot call complete after rcu_report_dead() so we delegate it
1123          * to an online cpu.
1124          */
1125         smp_call_function_single(cpumask_first(cpu_online_mask),
1126                                  cpuhp_complete_idle_dead, st, 0);
1127 }
1128
1129 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1130                                 enum cpuhp_state target)
1131 {
1132         enum cpuhp_state prev_state = st->state;
1133         int ret = 0;
1134
1135         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1136         if (ret) {
1137                 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1138                          ret, cpu, cpuhp_get_step(st->state)->name,
1139                          st->state);
1140
1141                 cpuhp_reset_state(cpu, st, prev_state);
1142
1143                 if (st->state < prev_state)
1144                         WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1145                                                             prev_state));
1146         }
1147
1148         return ret;
1149 }
1150
1151 /* Requires cpu_add_remove_lock to be held */
1152 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1153                            enum cpuhp_state target)
1154 {
1155         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1156         int prev_state, ret = 0;
1157
1158         if (num_online_cpus() == 1)
1159                 return -EBUSY;
1160
1161         if (!cpu_present(cpu))
1162                 return -EINVAL;
1163
1164         cpus_write_lock();
1165
1166         cpuhp_tasks_frozen = tasks_frozen;
1167
1168         prev_state = cpuhp_set_state(cpu, st, target);
1169         /*
1170          * If the current CPU state is in the range of the AP hotplug thread,
1171          * then we need to kick the thread.
1172          */
1173         if (st->state > CPUHP_TEARDOWN_CPU) {
1174                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1175                 ret = cpuhp_kick_ap_work(cpu);
1176                 /*
1177                  * The AP side has done the error rollback already. Just
1178                  * return the error code..
1179                  */
1180                 if (ret)
1181                         goto out;
1182
1183                 /*
1184                  * We might have stopped still in the range of the AP hotplug
1185                  * thread. Nothing to do anymore.
1186                  */
1187                 if (st->state > CPUHP_TEARDOWN_CPU)
1188                         goto out;
1189
1190                 st->target = target;
1191         }
1192         /*
1193          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1194          * to do the further cleanups.
1195          */
1196         ret = cpuhp_down_callbacks(cpu, st, target);
1197         if (ret && st->state < prev_state) {
1198                 if (st->state == CPUHP_TEARDOWN_CPU) {
1199                         cpuhp_reset_state(cpu, st, prev_state);
1200                         __cpuhp_kick_ap(st);
1201                 } else {
1202                         WARN(1, "DEAD callback error for CPU%d", cpu);
1203                 }
1204         }
1205
1206 out:
1207         cpus_write_unlock();
1208         /*
1209          * Do post unplug cleanup. This is still protected against
1210          * concurrent CPU hotplug via cpu_add_remove_lock.
1211          */
1212         lockup_detector_cleanup();
1213         arch_smt_update();
1214         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1215         return ret;
1216 }
1217
1218 struct cpu_down_work {
1219         unsigned int            cpu;
1220         enum cpuhp_state        target;
1221 };
1222
1223 static long __cpu_down_maps_locked(void *arg)
1224 {
1225         struct cpu_down_work *work = arg;
1226
1227         return _cpu_down(work->cpu, 0, work->target);
1228 }
1229
1230 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1231 {
1232         struct cpu_down_work work = { .cpu = cpu, .target = target, };
1233
1234         /*
1235          * If the platform does not support hotplug, report it explicitly to
1236          * differentiate it from a transient offlining failure.
1237          */
1238         if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1239                 return -EOPNOTSUPP;
1240         if (cpu_hotplug_disabled)
1241                 return -EBUSY;
1242
1243         /*
1244          * Ensure that the control task does not run on the to be offlined
1245          * CPU to prevent a deadlock against cfs_b->period_timer.
1246          * Also keep at least one housekeeping cpu onlined to avoid generating
1247          * an empty sched_domain span.
1248          */
1249         for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1250                 if (cpu != work.cpu)
1251                         return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1252         }
1253         return -EBUSY;
1254 }
1255
1256 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1257 {
1258         int err;
1259
1260         cpu_maps_update_begin();
1261         err = cpu_down_maps_locked(cpu, target);
1262         cpu_maps_update_done();
1263         return err;
1264 }
1265
1266 /**
1267  * cpu_device_down - Bring down a cpu device
1268  * @dev: Pointer to the cpu device to offline
1269  *
1270  * This function is meant to be used by device core cpu subsystem only.
1271  *
1272  * Other subsystems should use remove_cpu() instead.
1273  *
1274  * Return: %0 on success or a negative errno code
1275  */
1276 int cpu_device_down(struct device *dev)
1277 {
1278         return cpu_down(dev->id, CPUHP_OFFLINE);
1279 }
1280
1281 int remove_cpu(unsigned int cpu)
1282 {
1283         int ret;
1284
1285         lock_device_hotplug();
1286         ret = device_offline(get_cpu_device(cpu));
1287         unlock_device_hotplug();
1288
1289         return ret;
1290 }
1291 EXPORT_SYMBOL_GPL(remove_cpu);
1292
1293 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1294 {
1295         unsigned int cpu;
1296         int error;
1297
1298         cpu_maps_update_begin();
1299
1300         /*
1301          * Make certain the cpu I'm about to reboot on is online.
1302          *
1303          * This is inline to what migrate_to_reboot_cpu() already do.
1304          */
1305         if (!cpu_online(primary_cpu))
1306                 primary_cpu = cpumask_first(cpu_online_mask);
1307
1308         for_each_online_cpu(cpu) {
1309                 if (cpu == primary_cpu)
1310                         continue;
1311
1312                 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1313                 if (error) {
1314                         pr_err("Failed to offline CPU%d - error=%d",
1315                                 cpu, error);
1316                         break;
1317                 }
1318         }
1319
1320         /*
1321          * Ensure all but the reboot CPU are offline.
1322          */
1323         BUG_ON(num_online_cpus() > 1);
1324
1325         /*
1326          * Make sure the CPUs won't be enabled by someone else after this
1327          * point. Kexec will reboot to a new kernel shortly resetting
1328          * everything along the way.
1329          */
1330         cpu_hotplug_disabled++;
1331
1332         cpu_maps_update_done();
1333 }
1334
1335 #else
1336 #define takedown_cpu            NULL
1337 #endif /*CONFIG_HOTPLUG_CPU*/
1338
1339 /**
1340  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1341  * @cpu: cpu that just started
1342  *
1343  * It must be called by the arch code on the new cpu, before the new cpu
1344  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1345  */
1346 void notify_cpu_starting(unsigned int cpu)
1347 {
1348         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1349         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1350
1351         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1352         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1353
1354         /*
1355          * STARTING must not fail!
1356          */
1357         cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1358 }
1359
1360 /*
1361  * Called from the idle task. Wake up the controlling task which brings the
1362  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1363  * online bringup to the hotplug thread.
1364  */
1365 void cpuhp_online_idle(enum cpuhp_state state)
1366 {
1367         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1368
1369         /* Happens for the boot cpu */
1370         if (state != CPUHP_AP_ONLINE_IDLE)
1371                 return;
1372
1373         /*
1374          * Unpart the stopper thread before we start the idle loop (and start
1375          * scheduling); this ensures the stopper task is always available.
1376          */
1377         stop_machine_unpark(smp_processor_id());
1378
1379         st->state = CPUHP_AP_ONLINE_IDLE;
1380         complete_ap_thread(st, true);
1381 }
1382
1383 /* Requires cpu_add_remove_lock to be held */
1384 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1385 {
1386         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1387         struct task_struct *idle;
1388         int ret = 0;
1389
1390         cpus_write_lock();
1391
1392         if (!cpu_present(cpu)) {
1393                 ret = -EINVAL;
1394                 goto out;
1395         }
1396
1397         /*
1398          * The caller of cpu_up() might have raced with another
1399          * caller. Nothing to do.
1400          */
1401         if (st->state >= target)
1402                 goto out;
1403
1404         if (st->state == CPUHP_OFFLINE) {
1405                 /* Let it fail before we try to bring the cpu up */
1406                 idle = idle_thread_get(cpu);
1407                 if (IS_ERR(idle)) {
1408                         ret = PTR_ERR(idle);
1409                         goto out;
1410                 }
1411         }
1412
1413         cpuhp_tasks_frozen = tasks_frozen;
1414
1415         cpuhp_set_state(cpu, st, target);
1416         /*
1417          * If the current CPU state is in the range of the AP hotplug thread,
1418          * then we need to kick the thread once more.
1419          */
1420         if (st->state > CPUHP_BRINGUP_CPU) {
1421                 ret = cpuhp_kick_ap_work(cpu);
1422                 /*
1423                  * The AP side has done the error rollback already. Just
1424                  * return the error code..
1425                  */
1426                 if (ret)
1427                         goto out;
1428         }
1429
1430         /*
1431          * Try to reach the target state. We max out on the BP at
1432          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1433          * responsible for bringing it up to the target state.
1434          */
1435         target = min((int)target, CPUHP_BRINGUP_CPU);
1436         ret = cpuhp_up_callbacks(cpu, st, target);
1437 out:
1438         cpus_write_unlock();
1439         arch_smt_update();
1440         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1441         return ret;
1442 }
1443
1444 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1445 {
1446         int err = 0;
1447
1448         if (!cpu_possible(cpu)) {
1449                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1450                        cpu);
1451 #if defined(CONFIG_IA64)
1452                 pr_err("please check additional_cpus= boot parameter\n");
1453 #endif
1454                 return -EINVAL;
1455         }
1456
1457         err = try_online_node(cpu_to_node(cpu));
1458         if (err)
1459                 return err;
1460
1461         cpu_maps_update_begin();
1462
1463         if (cpu_hotplug_disabled) {
1464                 err = -EBUSY;
1465                 goto out;
1466         }
1467         if (!cpu_smt_allowed(cpu)) {
1468                 err = -EPERM;
1469                 goto out;
1470         }
1471
1472         err = _cpu_up(cpu, 0, target);
1473 out:
1474         cpu_maps_update_done();
1475         return err;
1476 }
1477
1478 /**
1479  * cpu_device_up - Bring up a cpu device
1480  * @dev: Pointer to the cpu device to online
1481  *
1482  * This function is meant to be used by device core cpu subsystem only.
1483  *
1484  * Other subsystems should use add_cpu() instead.
1485  *
1486  * Return: %0 on success or a negative errno code
1487  */
1488 int cpu_device_up(struct device *dev)
1489 {
1490         return cpu_up(dev->id, CPUHP_ONLINE);
1491 }
1492
1493 int add_cpu(unsigned int cpu)
1494 {
1495         int ret;
1496
1497         lock_device_hotplug();
1498         ret = device_online(get_cpu_device(cpu));
1499         unlock_device_hotplug();
1500
1501         return ret;
1502 }
1503 EXPORT_SYMBOL_GPL(add_cpu);
1504
1505 /**
1506  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1507  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1508  *
1509  * On some architectures like arm64, we can hibernate on any CPU, but on
1510  * wake up the CPU we hibernated on might be offline as a side effect of
1511  * using maxcpus= for example.
1512  *
1513  * Return: %0 on success or a negative errno code
1514  */
1515 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1516 {
1517         int ret;
1518
1519         if (!cpu_online(sleep_cpu)) {
1520                 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1521                 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1522                 if (ret) {
1523                         pr_err("Failed to bring hibernate-CPU up!\n");
1524                         return ret;
1525                 }
1526         }
1527         return 0;
1528 }
1529
1530 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1531 {
1532         unsigned int cpu;
1533
1534         for_each_present_cpu(cpu) {
1535                 if (num_online_cpus() >= setup_max_cpus)
1536                         break;
1537                 if (!cpu_online(cpu))
1538                         cpu_up(cpu, CPUHP_ONLINE);
1539         }
1540 }
1541
1542 #ifdef CONFIG_PM_SLEEP_SMP
1543 static cpumask_var_t frozen_cpus;
1544
1545 int freeze_secondary_cpus(int primary)
1546 {
1547         int cpu, error = 0;
1548
1549         cpu_maps_update_begin();
1550         if (primary == -1) {
1551                 primary = cpumask_first(cpu_online_mask);
1552                 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1553                         primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1554         } else {
1555                 if (!cpu_online(primary))
1556                         primary = cpumask_first(cpu_online_mask);
1557         }
1558
1559         /*
1560          * We take down all of the non-boot CPUs in one shot to avoid races
1561          * with the userspace trying to use the CPU hotplug at the same time
1562          */
1563         cpumask_clear(frozen_cpus);
1564
1565         pr_info("Disabling non-boot CPUs ...\n");
1566         for_each_online_cpu(cpu) {
1567                 if (cpu == primary)
1568                         continue;
1569
1570                 if (pm_wakeup_pending()) {
1571                         pr_info("Wakeup pending. Abort CPU freeze\n");
1572                         error = -EBUSY;
1573                         break;
1574                 }
1575
1576                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1577                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1578                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1579                 if (!error)
1580                         cpumask_set_cpu(cpu, frozen_cpus);
1581                 else {
1582                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1583                         break;
1584                 }
1585         }
1586
1587         if (!error)
1588                 BUG_ON(num_online_cpus() > 1);
1589         else
1590                 pr_err("Non-boot CPUs are not disabled\n");
1591
1592         /*
1593          * Make sure the CPUs won't be enabled by someone else. We need to do
1594          * this even in case of failure as all freeze_secondary_cpus() users are
1595          * supposed to do thaw_secondary_cpus() on the failure path.
1596          */
1597         cpu_hotplug_disabled++;
1598
1599         cpu_maps_update_done();
1600         return error;
1601 }
1602
1603 void __weak arch_thaw_secondary_cpus_begin(void)
1604 {
1605 }
1606
1607 void __weak arch_thaw_secondary_cpus_end(void)
1608 {
1609 }
1610
1611 void thaw_secondary_cpus(void)
1612 {
1613         int cpu, error;
1614
1615         /* Allow everyone to use the CPU hotplug again */
1616         cpu_maps_update_begin();
1617         __cpu_hotplug_enable();
1618         if (cpumask_empty(frozen_cpus))
1619                 goto out;
1620
1621         pr_info("Enabling non-boot CPUs ...\n");
1622
1623         arch_thaw_secondary_cpus_begin();
1624
1625         for_each_cpu(cpu, frozen_cpus) {
1626                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1627                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1628                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1629                 if (!error) {
1630                         pr_info("CPU%d is up\n", cpu);
1631                         continue;
1632                 }
1633                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1634         }
1635
1636         arch_thaw_secondary_cpus_end();
1637
1638         cpumask_clear(frozen_cpus);
1639 out:
1640         cpu_maps_update_done();
1641 }
1642
1643 static int __init alloc_frozen_cpus(void)
1644 {
1645         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1646                 return -ENOMEM;
1647         return 0;
1648 }
1649 core_initcall(alloc_frozen_cpus);
1650
1651 /*
1652  * When callbacks for CPU hotplug notifications are being executed, we must
1653  * ensure that the state of the system with respect to the tasks being frozen
1654  * or not, as reported by the notification, remains unchanged *throughout the
1655  * duration* of the execution of the callbacks.
1656  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1657  *
1658  * This synchronization is implemented by mutually excluding regular CPU
1659  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1660  * Hibernate notifications.
1661  */
1662 static int
1663 cpu_hotplug_pm_callback(struct notifier_block *nb,
1664                         unsigned long action, void *ptr)
1665 {
1666         switch (action) {
1667
1668         case PM_SUSPEND_PREPARE:
1669         case PM_HIBERNATION_PREPARE:
1670                 cpu_hotplug_disable();
1671                 break;
1672
1673         case PM_POST_SUSPEND:
1674         case PM_POST_HIBERNATION:
1675                 cpu_hotplug_enable();
1676                 break;
1677
1678         default:
1679                 return NOTIFY_DONE;
1680         }
1681
1682         return NOTIFY_OK;
1683 }
1684
1685
1686 static int __init cpu_hotplug_pm_sync_init(void)
1687 {
1688         /*
1689          * cpu_hotplug_pm_callback has higher priority than x86
1690          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1691          * to disable cpu hotplug to avoid cpu hotplug race.
1692          */
1693         pm_notifier(cpu_hotplug_pm_callback, 0);
1694         return 0;
1695 }
1696 core_initcall(cpu_hotplug_pm_sync_init);
1697
1698 #endif /* CONFIG_PM_SLEEP_SMP */
1699
1700 int __boot_cpu_id;
1701
1702 #endif /* CONFIG_SMP */
1703
1704 /* Boot processor state steps */
1705 static struct cpuhp_step cpuhp_hp_states[] = {
1706         [CPUHP_OFFLINE] = {
1707                 .name                   = "offline",
1708                 .startup.single         = NULL,
1709                 .teardown.single        = NULL,
1710         },
1711 #ifdef CONFIG_SMP
1712         [CPUHP_CREATE_THREADS]= {
1713                 .name                   = "threads:prepare",
1714                 .startup.single         = smpboot_create_threads,
1715                 .teardown.single        = NULL,
1716                 .cant_stop              = true,
1717         },
1718         [CPUHP_PERF_PREPARE] = {
1719                 .name                   = "perf:prepare",
1720                 .startup.single         = perf_event_init_cpu,
1721                 .teardown.single        = perf_event_exit_cpu,
1722         },
1723         [CPUHP_RANDOM_PREPARE] = {
1724                 .name                   = "random:prepare",
1725                 .startup.single         = random_prepare_cpu,
1726                 .teardown.single        = NULL,
1727         },
1728         [CPUHP_WORKQUEUE_PREP] = {
1729                 .name                   = "workqueue:prepare",
1730                 .startup.single         = workqueue_prepare_cpu,
1731                 .teardown.single        = NULL,
1732         },
1733         [CPUHP_HRTIMERS_PREPARE] = {
1734                 .name                   = "hrtimers:prepare",
1735                 .startup.single         = hrtimers_prepare_cpu,
1736                 .teardown.single        = NULL,
1737         },
1738         [CPUHP_SMPCFD_PREPARE] = {
1739                 .name                   = "smpcfd:prepare",
1740                 .startup.single         = smpcfd_prepare_cpu,
1741                 .teardown.single        = smpcfd_dead_cpu,
1742         },
1743         [CPUHP_RELAY_PREPARE] = {
1744                 .name                   = "relay:prepare",
1745                 .startup.single         = relay_prepare_cpu,
1746                 .teardown.single        = NULL,
1747         },
1748         [CPUHP_SLAB_PREPARE] = {
1749                 .name                   = "slab:prepare",
1750                 .startup.single         = slab_prepare_cpu,
1751                 .teardown.single        = slab_dead_cpu,
1752         },
1753         [CPUHP_RCUTREE_PREP] = {
1754                 .name                   = "RCU/tree:prepare",
1755                 .startup.single         = rcutree_prepare_cpu,
1756                 .teardown.single        = rcutree_dead_cpu,
1757         },
1758         /*
1759          * On the tear-down path, timers_dead_cpu() must be invoked
1760          * before blk_mq_queue_reinit_notify() from notify_dead(),
1761          * otherwise a RCU stall occurs.
1762          */
1763         [CPUHP_TIMERS_PREPARE] = {
1764                 .name                   = "timers:prepare",
1765                 .startup.single         = timers_prepare_cpu,
1766                 .teardown.single        = timers_dead_cpu,
1767         },
1768         /* Kicks the plugged cpu into life */
1769         [CPUHP_BRINGUP_CPU] = {
1770                 .name                   = "cpu:bringup",
1771                 .startup.single         = bringup_cpu,
1772                 .teardown.single        = finish_cpu,
1773                 .cant_stop              = true,
1774         },
1775         /* Final state before CPU kills itself */
1776         [CPUHP_AP_IDLE_DEAD] = {
1777                 .name                   = "idle:dead",
1778         },
1779         /*
1780          * Last state before CPU enters the idle loop to die. Transient state
1781          * for synchronization.
1782          */
1783         [CPUHP_AP_OFFLINE] = {
1784                 .name                   = "ap:offline",
1785                 .cant_stop              = true,
1786         },
1787         /* First state is scheduler control. Interrupts are disabled */
1788         [CPUHP_AP_SCHED_STARTING] = {
1789                 .name                   = "sched:starting",
1790                 .startup.single         = sched_cpu_starting,
1791                 .teardown.single        = sched_cpu_dying,
1792         },
1793         [CPUHP_AP_RCUTREE_DYING] = {
1794                 .name                   = "RCU/tree:dying",
1795                 .startup.single         = NULL,
1796                 .teardown.single        = rcutree_dying_cpu,
1797         },
1798         [CPUHP_AP_SMPCFD_DYING] = {
1799                 .name                   = "smpcfd:dying",
1800                 .startup.single         = NULL,
1801                 .teardown.single        = smpcfd_dying_cpu,
1802         },
1803         [CPUHP_AP_HRTIMERS_DYING] = {
1804                 .name                   = "hrtimers:dying",
1805                 .startup.single         = NULL,
1806                 .teardown.single        = hrtimers_cpu_dying,
1807         },
1808
1809         /* Entry state on starting. Interrupts enabled from here on. Transient
1810          * state for synchronsization */
1811         [CPUHP_AP_ONLINE] = {
1812                 .name                   = "ap:online",
1813         },
1814         /*
1815          * Handled on control processor until the plugged processor manages
1816          * this itself.
1817          */
1818         [CPUHP_TEARDOWN_CPU] = {
1819                 .name                   = "cpu:teardown",
1820                 .startup.single         = NULL,
1821                 .teardown.single        = takedown_cpu,
1822                 .cant_stop              = true,
1823         },
1824
1825         [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1826                 .name                   = "sched:waitempty",
1827                 .startup.single         = NULL,
1828                 .teardown.single        = sched_cpu_wait_empty,
1829         },
1830
1831         /* Handle smpboot threads park/unpark */
1832         [CPUHP_AP_SMPBOOT_THREADS] = {
1833                 .name                   = "smpboot/threads:online",
1834                 .startup.single         = smpboot_unpark_threads,
1835                 .teardown.single        = smpboot_park_threads,
1836         },
1837         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1838                 .name                   = "irq/affinity:online",
1839                 .startup.single         = irq_affinity_online_cpu,
1840                 .teardown.single        = NULL,
1841         },
1842         [CPUHP_AP_PERF_ONLINE] = {
1843                 .name                   = "perf:online",
1844                 .startup.single         = perf_event_init_cpu,
1845                 .teardown.single        = perf_event_exit_cpu,
1846         },
1847         [CPUHP_AP_WATCHDOG_ONLINE] = {
1848                 .name                   = "lockup_detector:online",
1849                 .startup.single         = lockup_detector_online_cpu,
1850                 .teardown.single        = lockup_detector_offline_cpu,
1851         },
1852         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1853                 .name                   = "workqueue:online",
1854                 .startup.single         = workqueue_online_cpu,
1855                 .teardown.single        = workqueue_offline_cpu,
1856         },
1857         [CPUHP_AP_RANDOM_ONLINE] = {
1858                 .name                   = "random:online",
1859                 .startup.single         = random_online_cpu,
1860                 .teardown.single        = NULL,
1861         },
1862         [CPUHP_AP_RCUTREE_ONLINE] = {
1863                 .name                   = "RCU/tree:online",
1864                 .startup.single         = rcutree_online_cpu,
1865                 .teardown.single        = rcutree_offline_cpu,
1866         },
1867 #endif
1868         /*
1869          * The dynamically registered state space is here
1870          */
1871
1872 #ifdef CONFIG_SMP
1873         /* Last state is scheduler control setting the cpu active */
1874         [CPUHP_AP_ACTIVE] = {
1875                 .name                   = "sched:active",
1876                 .startup.single         = sched_cpu_activate,
1877                 .teardown.single        = sched_cpu_deactivate,
1878         },
1879 #endif
1880
1881         /* CPU is fully up and running. */
1882         [CPUHP_ONLINE] = {
1883                 .name                   = "online",
1884                 .startup.single         = NULL,
1885                 .teardown.single        = NULL,
1886         },
1887 };
1888
1889 /* Sanity check for callbacks */
1890 static int cpuhp_cb_check(enum cpuhp_state state)
1891 {
1892         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1893                 return -EINVAL;
1894         return 0;
1895 }
1896
1897 /*
1898  * Returns a free for dynamic slot assignment of the Online state. The states
1899  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1900  * by having no name assigned.
1901  */
1902 static int cpuhp_reserve_state(enum cpuhp_state state)
1903 {
1904         enum cpuhp_state i, end;
1905         struct cpuhp_step *step;
1906
1907         switch (state) {
1908         case CPUHP_AP_ONLINE_DYN:
1909                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1910                 end = CPUHP_AP_ONLINE_DYN_END;
1911                 break;
1912         case CPUHP_BP_PREPARE_DYN:
1913                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1914                 end = CPUHP_BP_PREPARE_DYN_END;
1915                 break;
1916         default:
1917                 return -EINVAL;
1918         }
1919
1920         for (i = state; i <= end; i++, step++) {
1921                 if (!step->name)
1922                         return i;
1923         }
1924         WARN(1, "No more dynamic states available for CPU hotplug\n");
1925         return -ENOSPC;
1926 }
1927
1928 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1929                                  int (*startup)(unsigned int cpu),
1930                                  int (*teardown)(unsigned int cpu),
1931                                  bool multi_instance)
1932 {
1933         /* (Un)Install the callbacks for further cpu hotplug operations */
1934         struct cpuhp_step *sp;
1935         int ret = 0;
1936
1937         /*
1938          * If name is NULL, then the state gets removed.
1939          *
1940          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1941          * the first allocation from these dynamic ranges, so the removal
1942          * would trigger a new allocation and clear the wrong (already
1943          * empty) state, leaving the callbacks of the to be cleared state
1944          * dangling, which causes wreckage on the next hotplug operation.
1945          */
1946         if (name && (state == CPUHP_AP_ONLINE_DYN ||
1947                      state == CPUHP_BP_PREPARE_DYN)) {
1948                 ret = cpuhp_reserve_state(state);
1949                 if (ret < 0)
1950                         return ret;
1951                 state = ret;
1952         }
1953         sp = cpuhp_get_step(state);
1954         if (name && sp->name)
1955                 return -EBUSY;
1956
1957         sp->startup.single = startup;
1958         sp->teardown.single = teardown;
1959         sp->name = name;
1960         sp->multi_instance = multi_instance;
1961         INIT_HLIST_HEAD(&sp->list);
1962         return ret;
1963 }
1964
1965 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1966 {
1967         return cpuhp_get_step(state)->teardown.single;
1968 }
1969
1970 /*
1971  * Call the startup/teardown function for a step either on the AP or
1972  * on the current CPU.
1973  */
1974 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1975                             struct hlist_node *node)
1976 {
1977         struct cpuhp_step *sp = cpuhp_get_step(state);
1978         int ret;
1979
1980         /*
1981          * If there's nothing to do, we done.
1982          * Relies on the union for multi_instance.
1983          */
1984         if (cpuhp_step_empty(bringup, sp))
1985                 return 0;
1986         /*
1987          * The non AP bound callbacks can fail on bringup. On teardown
1988          * e.g. module removal we crash for now.
1989          */
1990 #ifdef CONFIG_SMP
1991         if (cpuhp_is_ap_state(state))
1992                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1993         else
1994                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1995 #else
1996         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1997 #endif
1998         BUG_ON(ret && !bringup);
1999         return ret;
2000 }
2001
2002 /*
2003  * Called from __cpuhp_setup_state on a recoverable failure.
2004  *
2005  * Note: The teardown callbacks for rollback are not allowed to fail!
2006  */
2007 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2008                                    struct hlist_node *node)
2009 {
2010         int cpu;
2011
2012         /* Roll back the already executed steps on the other cpus */
2013         for_each_present_cpu(cpu) {
2014                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2015                 int cpustate = st->state;
2016
2017                 if (cpu >= failedcpu)
2018                         break;
2019
2020                 /* Did we invoke the startup call on that cpu ? */
2021                 if (cpustate >= state)
2022                         cpuhp_issue_call(cpu, state, false, node);
2023         }
2024 }
2025
2026 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2027                                           struct hlist_node *node,
2028                                           bool invoke)
2029 {
2030         struct cpuhp_step *sp;
2031         int cpu;
2032         int ret;
2033
2034         lockdep_assert_cpus_held();
2035
2036         sp = cpuhp_get_step(state);
2037         if (sp->multi_instance == false)
2038                 return -EINVAL;
2039
2040         mutex_lock(&cpuhp_state_mutex);
2041
2042         if (!invoke || !sp->startup.multi)
2043                 goto add_node;
2044
2045         /*
2046          * Try to call the startup callback for each present cpu
2047          * depending on the hotplug state of the cpu.
2048          */
2049         for_each_present_cpu(cpu) {
2050                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2051                 int cpustate = st->state;
2052
2053                 if (cpustate < state)
2054                         continue;
2055
2056                 ret = cpuhp_issue_call(cpu, state, true, node);
2057                 if (ret) {
2058                         if (sp->teardown.multi)
2059                                 cpuhp_rollback_install(cpu, state, node);
2060                         goto unlock;
2061                 }
2062         }
2063 add_node:
2064         ret = 0;
2065         hlist_add_head(node, &sp->list);
2066 unlock:
2067         mutex_unlock(&cpuhp_state_mutex);
2068         return ret;
2069 }
2070
2071 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2072                                bool invoke)
2073 {
2074         int ret;
2075
2076         cpus_read_lock();
2077         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2078         cpus_read_unlock();
2079         return ret;
2080 }
2081 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2082
2083 /**
2084  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2085  * @state:              The state to setup
2086  * @name:               Name of the step
2087  * @invoke:             If true, the startup function is invoked for cpus where
2088  *                      cpu state >= @state
2089  * @startup:            startup callback function
2090  * @teardown:           teardown callback function
2091  * @multi_instance:     State is set up for multiple instances which get
2092  *                      added afterwards.
2093  *
2094  * The caller needs to hold cpus read locked while calling this function.
2095  * Return:
2096  *   On success:
2097  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2098  *      0 for all other states
2099  *   On failure: proper (negative) error code
2100  */
2101 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2102                                    const char *name, bool invoke,
2103                                    int (*startup)(unsigned int cpu),
2104                                    int (*teardown)(unsigned int cpu),
2105                                    bool multi_instance)
2106 {
2107         int cpu, ret = 0;
2108         bool dynstate;
2109
2110         lockdep_assert_cpus_held();
2111
2112         if (cpuhp_cb_check(state) || !name)
2113                 return -EINVAL;
2114
2115         mutex_lock(&cpuhp_state_mutex);
2116
2117         ret = cpuhp_store_callbacks(state, name, startup, teardown,
2118                                     multi_instance);
2119
2120         dynstate = state == CPUHP_AP_ONLINE_DYN;
2121         if (ret > 0 && dynstate) {
2122                 state = ret;
2123                 ret = 0;
2124         }
2125
2126         if (ret || !invoke || !startup)
2127                 goto out;
2128
2129         /*
2130          * Try to call the startup callback for each present cpu
2131          * depending on the hotplug state of the cpu.
2132          */
2133         for_each_present_cpu(cpu) {
2134                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2135                 int cpustate = st->state;
2136
2137                 if (cpustate < state)
2138                         continue;
2139
2140                 ret = cpuhp_issue_call(cpu, state, true, NULL);
2141                 if (ret) {
2142                         if (teardown)
2143                                 cpuhp_rollback_install(cpu, state, NULL);
2144                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2145                         goto out;
2146                 }
2147         }
2148 out:
2149         mutex_unlock(&cpuhp_state_mutex);
2150         /*
2151          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2152          * dynamically allocated state in case of success.
2153          */
2154         if (!ret && dynstate)
2155                 return state;
2156         return ret;
2157 }
2158 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2159
2160 int __cpuhp_setup_state(enum cpuhp_state state,
2161                         const char *name, bool invoke,
2162                         int (*startup)(unsigned int cpu),
2163                         int (*teardown)(unsigned int cpu),
2164                         bool multi_instance)
2165 {
2166         int ret;
2167
2168         cpus_read_lock();
2169         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2170                                              teardown, multi_instance);
2171         cpus_read_unlock();
2172         return ret;
2173 }
2174 EXPORT_SYMBOL(__cpuhp_setup_state);
2175
2176 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2177                                   struct hlist_node *node, bool invoke)
2178 {
2179         struct cpuhp_step *sp = cpuhp_get_step(state);
2180         int cpu;
2181
2182         BUG_ON(cpuhp_cb_check(state));
2183
2184         if (!sp->multi_instance)
2185                 return -EINVAL;
2186
2187         cpus_read_lock();
2188         mutex_lock(&cpuhp_state_mutex);
2189
2190         if (!invoke || !cpuhp_get_teardown_cb(state))
2191                 goto remove;
2192         /*
2193          * Call the teardown callback for each present cpu depending
2194          * on the hotplug state of the cpu. This function is not
2195          * allowed to fail currently!
2196          */
2197         for_each_present_cpu(cpu) {
2198                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2199                 int cpustate = st->state;
2200
2201                 if (cpustate >= state)
2202                         cpuhp_issue_call(cpu, state, false, node);
2203         }
2204
2205 remove:
2206         hlist_del(node);
2207         mutex_unlock(&cpuhp_state_mutex);
2208         cpus_read_unlock();
2209
2210         return 0;
2211 }
2212 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2213
2214 /**
2215  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2216  * @state:      The state to remove
2217  * @invoke:     If true, the teardown function is invoked for cpus where
2218  *              cpu state >= @state
2219  *
2220  * The caller needs to hold cpus read locked while calling this function.
2221  * The teardown callback is currently not allowed to fail. Think
2222  * about module removal!
2223  */
2224 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2225 {
2226         struct cpuhp_step *sp = cpuhp_get_step(state);
2227         int cpu;
2228
2229         BUG_ON(cpuhp_cb_check(state));
2230
2231         lockdep_assert_cpus_held();
2232
2233         mutex_lock(&cpuhp_state_mutex);
2234         if (sp->multi_instance) {
2235                 WARN(!hlist_empty(&sp->list),
2236                      "Error: Removing state %d which has instances left.\n",
2237                      state);
2238                 goto remove;
2239         }
2240
2241         if (!invoke || !cpuhp_get_teardown_cb(state))
2242                 goto remove;
2243
2244         /*
2245          * Call the teardown callback for each present cpu depending
2246          * on the hotplug state of the cpu. This function is not
2247          * allowed to fail currently!
2248          */
2249         for_each_present_cpu(cpu) {
2250                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2251                 int cpustate = st->state;
2252
2253                 if (cpustate >= state)
2254                         cpuhp_issue_call(cpu, state, false, NULL);
2255         }
2256 remove:
2257         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2258         mutex_unlock(&cpuhp_state_mutex);
2259 }
2260 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2261
2262 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2263 {
2264         cpus_read_lock();
2265         __cpuhp_remove_state_cpuslocked(state, invoke);
2266         cpus_read_unlock();
2267 }
2268 EXPORT_SYMBOL(__cpuhp_remove_state);
2269
2270 #ifdef CONFIG_HOTPLUG_SMT
2271 static void cpuhp_offline_cpu_device(unsigned int cpu)
2272 {
2273         struct device *dev = get_cpu_device(cpu);
2274
2275         dev->offline = true;
2276         /* Tell user space about the state change */
2277         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2278 }
2279
2280 static void cpuhp_online_cpu_device(unsigned int cpu)
2281 {
2282         struct device *dev = get_cpu_device(cpu);
2283
2284         dev->offline = false;
2285         /* Tell user space about the state change */
2286         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2287 }
2288
2289 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2290 {
2291         int cpu, ret = 0;
2292
2293         cpu_maps_update_begin();
2294         for_each_online_cpu(cpu) {
2295                 if (topology_is_primary_thread(cpu))
2296                         continue;
2297                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2298                 if (ret)
2299                         break;
2300                 /*
2301                  * As this needs to hold the cpu maps lock it's impossible
2302                  * to call device_offline() because that ends up calling
2303                  * cpu_down() which takes cpu maps lock. cpu maps lock
2304                  * needs to be held as this might race against in kernel
2305                  * abusers of the hotplug machinery (thermal management).
2306                  *
2307                  * So nothing would update device:offline state. That would
2308                  * leave the sysfs entry stale and prevent onlining after
2309                  * smt control has been changed to 'off' again. This is
2310                  * called under the sysfs hotplug lock, so it is properly
2311                  * serialized against the regular offline usage.
2312                  */
2313                 cpuhp_offline_cpu_device(cpu);
2314         }
2315         if (!ret)
2316                 cpu_smt_control = ctrlval;
2317         cpu_maps_update_done();
2318         return ret;
2319 }
2320
2321 int cpuhp_smt_enable(void)
2322 {
2323         int cpu, ret = 0;
2324
2325         cpu_maps_update_begin();
2326         cpu_smt_control = CPU_SMT_ENABLED;
2327         for_each_present_cpu(cpu) {
2328                 /* Skip online CPUs and CPUs on offline nodes */
2329                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2330                         continue;
2331                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2332                 if (ret)
2333                         break;
2334                 /* See comment in cpuhp_smt_disable() */
2335                 cpuhp_online_cpu_device(cpu);
2336         }
2337         cpu_maps_update_done();
2338         return ret;
2339 }
2340 #endif
2341
2342 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2343 static ssize_t state_show(struct device *dev,
2344                           struct device_attribute *attr, char *buf)
2345 {
2346         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2347
2348         return sprintf(buf, "%d\n", st->state);
2349 }
2350 static DEVICE_ATTR_RO(state);
2351
2352 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2353                             const char *buf, size_t count)
2354 {
2355         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2356         struct cpuhp_step *sp;
2357         int target, ret;
2358
2359         ret = kstrtoint(buf, 10, &target);
2360         if (ret)
2361                 return ret;
2362
2363 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2364         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2365                 return -EINVAL;
2366 #else
2367         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2368                 return -EINVAL;
2369 #endif
2370
2371         ret = lock_device_hotplug_sysfs();
2372         if (ret)
2373                 return ret;
2374
2375         mutex_lock(&cpuhp_state_mutex);
2376         sp = cpuhp_get_step(target);
2377         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2378         mutex_unlock(&cpuhp_state_mutex);
2379         if (ret)
2380                 goto out;
2381
2382         if (st->state < target)
2383                 ret = cpu_up(dev->id, target);
2384         else if (st->state > target)
2385                 ret = cpu_down(dev->id, target);
2386         else if (WARN_ON(st->target != target))
2387                 st->target = target;
2388 out:
2389         unlock_device_hotplug();
2390         return ret ? ret : count;
2391 }
2392
2393 static ssize_t target_show(struct device *dev,
2394                            struct device_attribute *attr, char *buf)
2395 {
2396         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2397
2398         return sprintf(buf, "%d\n", st->target);
2399 }
2400 static DEVICE_ATTR_RW(target);
2401
2402 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2403                           const char *buf, size_t count)
2404 {
2405         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2406         struct cpuhp_step *sp;
2407         int fail, ret;
2408
2409         ret = kstrtoint(buf, 10, &fail);
2410         if (ret)
2411                 return ret;
2412
2413         if (fail == CPUHP_INVALID) {
2414                 st->fail = fail;
2415                 return count;
2416         }
2417
2418         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2419                 return -EINVAL;
2420
2421         /*
2422          * Cannot fail STARTING/DYING callbacks.
2423          */
2424         if (cpuhp_is_atomic_state(fail))
2425                 return -EINVAL;
2426
2427         /*
2428          * DEAD callbacks cannot fail...
2429          * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2430          * triggering STARTING callbacks, a failure in this state would
2431          * hinder rollback.
2432          */
2433         if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2434                 return -EINVAL;
2435
2436         /*
2437          * Cannot fail anything that doesn't have callbacks.
2438          */
2439         mutex_lock(&cpuhp_state_mutex);
2440         sp = cpuhp_get_step(fail);
2441         if (!sp->startup.single && !sp->teardown.single)
2442                 ret = -EINVAL;
2443         mutex_unlock(&cpuhp_state_mutex);
2444         if (ret)
2445                 return ret;
2446
2447         st->fail = fail;
2448
2449         return count;
2450 }
2451
2452 static ssize_t fail_show(struct device *dev,
2453                          struct device_attribute *attr, char *buf)
2454 {
2455         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2456
2457         return sprintf(buf, "%d\n", st->fail);
2458 }
2459
2460 static DEVICE_ATTR_RW(fail);
2461
2462 static struct attribute *cpuhp_cpu_attrs[] = {
2463         &dev_attr_state.attr,
2464         &dev_attr_target.attr,
2465         &dev_attr_fail.attr,
2466         NULL
2467 };
2468
2469 static const struct attribute_group cpuhp_cpu_attr_group = {
2470         .attrs = cpuhp_cpu_attrs,
2471         .name = "hotplug",
2472         NULL
2473 };
2474
2475 static ssize_t states_show(struct device *dev,
2476                                  struct device_attribute *attr, char *buf)
2477 {
2478         ssize_t cur, res = 0;
2479         int i;
2480
2481         mutex_lock(&cpuhp_state_mutex);
2482         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2483                 struct cpuhp_step *sp = cpuhp_get_step(i);
2484
2485                 if (sp->name) {
2486                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2487                         buf += cur;
2488                         res += cur;
2489                 }
2490         }
2491         mutex_unlock(&cpuhp_state_mutex);
2492         return res;
2493 }
2494 static DEVICE_ATTR_RO(states);
2495
2496 static struct attribute *cpuhp_cpu_root_attrs[] = {
2497         &dev_attr_states.attr,
2498         NULL
2499 };
2500
2501 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2502         .attrs = cpuhp_cpu_root_attrs,
2503         .name = "hotplug",
2504         NULL
2505 };
2506
2507 #ifdef CONFIG_HOTPLUG_SMT
2508
2509 static ssize_t
2510 __store_smt_control(struct device *dev, struct device_attribute *attr,
2511                     const char *buf, size_t count)
2512 {
2513         int ctrlval, ret;
2514
2515         if (sysfs_streq(buf, "on"))
2516                 ctrlval = CPU_SMT_ENABLED;
2517         else if (sysfs_streq(buf, "off"))
2518                 ctrlval = CPU_SMT_DISABLED;
2519         else if (sysfs_streq(buf, "forceoff"))
2520                 ctrlval = CPU_SMT_FORCE_DISABLED;
2521         else
2522                 return -EINVAL;
2523
2524         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2525                 return -EPERM;
2526
2527         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2528                 return -ENODEV;
2529
2530         ret = lock_device_hotplug_sysfs();
2531         if (ret)
2532                 return ret;
2533
2534         if (ctrlval != cpu_smt_control) {
2535                 switch (ctrlval) {
2536                 case CPU_SMT_ENABLED:
2537                         ret = cpuhp_smt_enable();
2538                         break;
2539                 case CPU_SMT_DISABLED:
2540                 case CPU_SMT_FORCE_DISABLED:
2541                         ret = cpuhp_smt_disable(ctrlval);
2542                         break;
2543                 }
2544         }
2545
2546         unlock_device_hotplug();
2547         return ret ? ret : count;
2548 }
2549
2550 #else /* !CONFIG_HOTPLUG_SMT */
2551 static ssize_t
2552 __store_smt_control(struct device *dev, struct device_attribute *attr,
2553                     const char *buf, size_t count)
2554 {
2555         return -ENODEV;
2556 }
2557 #endif /* CONFIG_HOTPLUG_SMT */
2558
2559 static const char *smt_states[] = {
2560         [CPU_SMT_ENABLED]               = "on",
2561         [CPU_SMT_DISABLED]              = "off",
2562         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2563         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2564         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2565 };
2566
2567 static ssize_t control_show(struct device *dev,
2568                             struct device_attribute *attr, char *buf)
2569 {
2570         const char *state = smt_states[cpu_smt_control];
2571
2572         return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2573 }
2574
2575 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2576                              const char *buf, size_t count)
2577 {
2578         return __store_smt_control(dev, attr, buf, count);
2579 }
2580 static DEVICE_ATTR_RW(control);
2581
2582 static ssize_t active_show(struct device *dev,
2583                            struct device_attribute *attr, char *buf)
2584 {
2585         return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2586 }
2587 static DEVICE_ATTR_RO(active);
2588
2589 static struct attribute *cpuhp_smt_attrs[] = {
2590         &dev_attr_control.attr,
2591         &dev_attr_active.attr,
2592         NULL
2593 };
2594
2595 static const struct attribute_group cpuhp_smt_attr_group = {
2596         .attrs = cpuhp_smt_attrs,
2597         .name = "smt",
2598         NULL
2599 };
2600
2601 static int __init cpu_smt_sysfs_init(void)
2602 {
2603         return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2604                                   &cpuhp_smt_attr_group);
2605 }
2606
2607 static int __init cpuhp_sysfs_init(void)
2608 {
2609         int cpu, ret;
2610
2611         ret = cpu_smt_sysfs_init();
2612         if (ret)
2613                 return ret;
2614
2615         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2616                                  &cpuhp_cpu_root_attr_group);
2617         if (ret)
2618                 return ret;
2619
2620         for_each_possible_cpu(cpu) {
2621                 struct device *dev = get_cpu_device(cpu);
2622
2623                 if (!dev)
2624                         continue;
2625                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2626                 if (ret)
2627                         return ret;
2628         }
2629         return 0;
2630 }
2631 device_initcall(cpuhp_sysfs_init);
2632 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2633
2634 /*
2635  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2636  * represents all NR_CPUS bits binary values of 1<<nr.
2637  *
2638  * It is used by cpumask_of() to get a constant address to a CPU
2639  * mask value that has a single bit set only.
2640  */
2641
2642 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2643 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2644 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2645 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2646 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2647
2648 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2649
2650         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2651         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2652 #if BITS_PER_LONG > 32
2653         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2654         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2655 #endif
2656 };
2657 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2658
2659 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2660 EXPORT_SYMBOL(cpu_all_bits);
2661
2662 #ifdef CONFIG_INIT_ALL_POSSIBLE
2663 struct cpumask __cpu_possible_mask __read_mostly
2664         = {CPU_BITS_ALL};
2665 #else
2666 struct cpumask __cpu_possible_mask __read_mostly;
2667 #endif
2668 EXPORT_SYMBOL(__cpu_possible_mask);
2669
2670 struct cpumask __cpu_online_mask __read_mostly;
2671 EXPORT_SYMBOL(__cpu_online_mask);
2672
2673 struct cpumask __cpu_present_mask __read_mostly;
2674 EXPORT_SYMBOL(__cpu_present_mask);
2675
2676 struct cpumask __cpu_active_mask __read_mostly;
2677 EXPORT_SYMBOL(__cpu_active_mask);
2678
2679 struct cpumask __cpu_dying_mask __read_mostly;
2680 EXPORT_SYMBOL(__cpu_dying_mask);
2681
2682 atomic_t __num_online_cpus __read_mostly;
2683 EXPORT_SYMBOL(__num_online_cpus);
2684
2685 void init_cpu_present(const struct cpumask *src)
2686 {
2687         cpumask_copy(&__cpu_present_mask, src);
2688 }
2689
2690 void init_cpu_possible(const struct cpumask *src)
2691 {
2692         cpumask_copy(&__cpu_possible_mask, src);
2693 }
2694
2695 void init_cpu_online(const struct cpumask *src)
2696 {
2697         cpumask_copy(&__cpu_online_mask, src);
2698 }
2699
2700 void set_cpu_online(unsigned int cpu, bool online)
2701 {
2702         /*
2703          * atomic_inc/dec() is required to handle the horrid abuse of this
2704          * function by the reboot and kexec code which invoke it from
2705          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2706          * regular CPU hotplug is properly serialized.
2707          *
2708          * Note, that the fact that __num_online_cpus is of type atomic_t
2709          * does not protect readers which are not serialized against
2710          * concurrent hotplug operations.
2711          */
2712         if (online) {
2713                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2714                         atomic_inc(&__num_online_cpus);
2715         } else {
2716                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2717                         atomic_dec(&__num_online_cpus);
2718         }
2719 }
2720
2721 /*
2722  * Activate the first processor.
2723  */
2724 void __init boot_cpu_init(void)
2725 {
2726         int cpu = smp_processor_id();
2727
2728         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2729         set_cpu_online(cpu, true);
2730         set_cpu_active(cpu, true);
2731         set_cpu_present(cpu, true);
2732         set_cpu_possible(cpu, true);
2733
2734 #ifdef CONFIG_SMP
2735         __boot_cpu_id = cpu;
2736 #endif
2737 }
2738
2739 /*
2740  * Must be called _AFTER_ setting up the per_cpu areas
2741  */
2742 void __init boot_cpu_hotplug_init(void)
2743 {
2744 #ifdef CONFIG_SMP
2745         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2746 #endif
2747         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2748 }
2749
2750 /*
2751  * These are used for a global "mitigations=" cmdline option for toggling
2752  * optional CPU mitigations.
2753  */
2754 enum cpu_mitigations {
2755         CPU_MITIGATIONS_OFF,
2756         CPU_MITIGATIONS_AUTO,
2757         CPU_MITIGATIONS_AUTO_NOSMT,
2758 };
2759
2760 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2761         CPU_MITIGATIONS_AUTO;
2762
2763 static int __init mitigations_parse_cmdline(char *arg)
2764 {
2765         if (!strcmp(arg, "off"))
2766                 cpu_mitigations = CPU_MITIGATIONS_OFF;
2767         else if (!strcmp(arg, "auto"))
2768                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2769         else if (!strcmp(arg, "auto,nosmt"))
2770                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2771         else
2772                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2773                         arg);
2774
2775         return 0;
2776 }
2777 early_param("mitigations", mitigations_parse_cmdline);
2778
2779 /* mitigations=off */
2780 bool cpu_mitigations_off(void)
2781 {
2782         return cpu_mitigations == CPU_MITIGATIONS_OFF;
2783 }
2784 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2785
2786 /* mitigations=auto,nosmt */
2787 bool cpu_mitigations_auto_nosmt(void)
2788 {
2789         return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2790 }
2791 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);