2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
49 * @state: The current cpu state
50 * @target: The target state
51 * @fail: Current CPU hotplug callback state
52 * @thread: Pointer to the hotplug thread
53 * @should_run: Thread should execute
54 * @rollback: Perform a rollback
55 * @single: Single callback invocation
56 * @bringup: Single callback bringup or teardown selector
58 * @node: Remote CPU node; for multi-instance, do a
59 * single entry callback for install/remove
60 * @last: For multi-instance rollback, remember how far we got
61 * @cb_state: The state for a single callback (install/uninstall)
62 * @result: Result of the operation
63 * @ap_sync_state: State for AP synchronization
64 * @done_up: Signal completion to the issuer of the task for cpu-up
65 * @done_down: Signal completion to the issuer of the task for cpu-down
67 struct cpuhp_cpu_state {
68 enum cpuhp_state state;
69 enum cpuhp_state target;
70 enum cpuhp_state fail;
72 struct task_struct *thread;
77 struct hlist_node *node;
78 struct hlist_node *last;
79 enum cpuhp_state cb_state;
81 atomic_t ap_sync_state;
82 struct completion done_up;
83 struct completion done_down;
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88 .fail = CPUHP_INVALID,
92 cpumask_t cpus_booted_once_mask;
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
102 static inline void cpuhp_lock_acquire(bool bringup)
104 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 static inline void cpuhp_lock_release(bool bringup)
109 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
119 * struct cpuhp_step - Hotplug state machine step
120 * @name: Name of the step
121 * @startup: Startup function of the step
122 * @teardown: Teardown function of the step
123 * @cant_stop: Bringup/teardown can't be stopped at this step
124 * @multi_instance: State has multiple instances which get added afterwards
129 int (*single)(unsigned int cpu);
130 int (*multi)(unsigned int cpu,
131 struct hlist_node *node);
134 int (*single)(unsigned int cpu);
135 int (*multi)(unsigned int cpu,
136 struct hlist_node *node);
139 struct hlist_head list;
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
150 return cpuhp_hp_states + state;
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
155 return bringup ? !step->startup.single : !step->teardown.single;
159 * cpuhp_invoke_callback - Invoke the callbacks for a given state
160 * @cpu: The cpu for which the callback should be invoked
161 * @state: The state to do callbacks for
162 * @bringup: True if the bringup callback should be invoked
163 * @node: For multi-instance, do a single entry callback for install/remove
164 * @lastp: For multi-instance rollback, remember how far we got
166 * Called from cpu hotplug and from the state register machinery.
168 * Return: %0 on success or a negative errno code
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171 bool bringup, struct hlist_node *node,
172 struct hlist_node **lastp)
174 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175 struct cpuhp_step *step = cpuhp_get_step(state);
176 int (*cbm)(unsigned int cpu, struct hlist_node *node);
177 int (*cb)(unsigned int cpu);
180 if (st->fail == state) {
181 st->fail = CPUHP_INVALID;
185 if (cpuhp_step_empty(bringup, step)) {
190 if (!step->multi_instance) {
191 WARN_ON_ONCE(lastp && *lastp);
192 cb = bringup ? step->startup.single : step->teardown.single;
194 trace_cpuhp_enter(cpu, st->target, state, cb);
196 trace_cpuhp_exit(cpu, st->state, state, ret);
199 cbm = bringup ? step->startup.multi : step->teardown.multi;
201 /* Single invocation for instance add/remove */
203 WARN_ON_ONCE(lastp && *lastp);
204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 ret = cbm(cpu, node);
206 trace_cpuhp_exit(cpu, st->state, state, ret);
210 /* State transition. Invoke on all instances */
212 hlist_for_each(node, &step->list) {
213 if (lastp && node == *lastp)
216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 ret = cbm(cpu, node);
218 trace_cpuhp_exit(cpu, st->state, state, ret);
232 /* Rollback the instances if one failed */
233 cbm = !bringup ? step->startup.multi : step->teardown.multi;
237 hlist_for_each(node, &step->list) {
241 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242 ret = cbm(cpu, node);
243 trace_cpuhp_exit(cpu, st->state, state, ret);
245 * Rollback must not fail,
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
256 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257 * purposes as that state is handled explicitly in cpu_down.
259 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
264 struct completion *done = bringup ? &st->done_up : &st->done_down;
265 wait_for_completion(done);
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
270 struct completion *done = bringup ? &st->done_up : &st->done_down;
275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
279 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
286 SYNC_STATE_SHOULD_DIE,
288 SYNC_STATE_SHOULD_ONLINE,
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295 * @state: The synchronization state to set
297 * No synchronization point. Just update of the synchronization state, but implies
298 * a full barrier so that the AP changes are visible before the control CPU proceeds.
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
302 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
304 (void)atomic_xchg(st, state);
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310 enum cpuhp_sync_state next_state)
312 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313 ktime_t now, end, start = ktime_get();
316 end = start + 10ULL * NSEC_PER_SEC;
318 sync = atomic_read(st);
321 if (!atomic_try_cmpxchg(st, &sync, next_state))
328 /* Timeout. Leave the state unchanged */
330 } else if (now - start < NSEC_PER_MSEC) {
331 /* Poll for one millisecond */
332 arch_cpuhp_sync_state_poll();
334 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
336 sync = atomic_read(st);
340 #else /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
346 * cpuhp_ap_report_dead - Update synchronization state to DEAD
348 * No synchronization point. Just update of the synchronization state.
350 void cpuhp_ap_report_dead(void)
352 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359 * because the AP cannot issue complete() at this stage.
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
363 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364 int sync = atomic_read(st);
367 /* CPU can have reported dead already. Don't overwrite that! */
368 if (sync == SYNC_STATE_DEAD)
370 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
372 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373 /* CPU reached dead state. Invoke the cleanup function */
374 arch_cpuhp_cleanup_dead_cpu(cpu);
378 /* No further action possible. Emit message and give up. */
379 pr_err("CPU%u failed to report dead state\n", cpu);
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390 * for the BP to release it.
392 void cpuhp_ap_sync_alive(void)
394 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
396 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
398 /* Wait for the control CPU to release it. */
399 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
405 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406 int sync = atomic_read(st);
410 case SYNC_STATE_DEAD:
411 /* CPU is properly dead */
413 case SYNC_STATE_KICKED:
414 /* CPU did not come up in previous attempt */
416 case SYNC_STATE_ALIVE:
417 /* CPU is stuck cpuhp_ap_sync_alive(). */
420 /* CPU failed to report online or dead and is in limbo state. */
424 /* Prepare for booting */
425 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435 * because the AP cannot issue complete() so early in the bringup.
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
441 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
444 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445 pr_err("CPU%u failed to report alive state\n", cpu);
449 /* Let the architecture cleanup the kick alive mechanics. */
450 arch_cpuhp_cleanup_kick_cpu(cpu);
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
464 * The following two APIs (cpu_maps_update_begin/done) must be used when
465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
467 void cpu_maps_update_begin(void)
469 mutex_lock(&cpu_add_remove_lock);
472 void cpu_maps_update_done(void)
474 mutex_unlock(&cpu_add_remove_lock);
478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479 * Should always be manipulated under cpu_add_remove_lock
481 static int cpu_hotplug_disabled;
483 #ifdef CONFIG_HOTPLUG_CPU
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
487 void cpus_read_lock(void)
489 percpu_down_read(&cpu_hotplug_lock);
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
493 int cpus_read_trylock(void)
495 return percpu_down_read_trylock(&cpu_hotplug_lock);
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
499 void cpus_read_unlock(void)
501 percpu_up_read(&cpu_hotplug_lock);
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
505 void cpus_write_lock(void)
507 percpu_down_write(&cpu_hotplug_lock);
510 void cpus_write_unlock(void)
512 percpu_up_write(&cpu_hotplug_lock);
515 void lockdep_assert_cpus_held(void)
518 * We can't have hotplug operations before userspace starts running,
519 * and some init codepaths will knowingly not take the hotplug lock.
520 * This is all valid, so mute lockdep until it makes sense to report
523 if (system_state < SYSTEM_RUNNING)
526 percpu_rwsem_assert_held(&cpu_hotplug_lock);
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
532 return percpu_rwsem_is_held(&cpu_hotplug_lock);
536 static void lockdep_acquire_cpus_lock(void)
538 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
541 static void lockdep_release_cpus_lock(void)
543 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
547 * Wait for currently running CPU hotplug operations to complete (if any) and
548 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550 * hotplug path before performing hotplug operations. So acquiring that lock
551 * guarantees mutual exclusion from any currently running hotplug operations.
553 void cpu_hotplug_disable(void)
555 cpu_maps_update_begin();
556 cpu_hotplug_disabled++;
557 cpu_maps_update_done();
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
561 static void __cpu_hotplug_enable(void)
563 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
565 cpu_hotplug_disabled--;
568 void cpu_hotplug_enable(void)
570 cpu_maps_update_begin();
571 __cpu_hotplug_enable();
572 cpu_maps_update_done();
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
578 static void lockdep_acquire_cpus_lock(void)
582 static void lockdep_release_cpus_lock(void)
586 #endif /* CONFIG_HOTPLUG_CPU */
589 * Architectures that need SMT-specific errata handling during SMT hotplug
590 * should override this.
592 void __weak arch_smt_update(void) { }
594 #ifdef CONFIG_HOTPLUG_SMT
596 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597 static unsigned int cpu_smt_max_threads __ro_after_init;
598 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
600 void __init cpu_smt_disable(bool force)
602 if (!cpu_smt_possible())
606 pr_info("SMT: Force disabled\n");
607 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
609 pr_info("SMT: disabled\n");
610 cpu_smt_control = CPU_SMT_DISABLED;
612 cpu_smt_num_threads = 1;
616 * The decision whether SMT is supported can only be done after the full
617 * CPU identification. Called from architecture code.
619 void __init cpu_smt_set_num_threads(unsigned int num_threads,
620 unsigned int max_threads)
622 WARN_ON(!num_threads || (num_threads > max_threads));
624 if (max_threads == 1)
625 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
627 cpu_smt_max_threads = max_threads;
630 * If SMT has been disabled via the kernel command line or SMT is
631 * not supported, set cpu_smt_num_threads to 1 for consistency.
632 * If enabled, take the architecture requested number of threads
633 * to bring up into account.
635 if (cpu_smt_control != CPU_SMT_ENABLED)
636 cpu_smt_num_threads = 1;
637 else if (num_threads < cpu_smt_num_threads)
638 cpu_smt_num_threads = num_threads;
641 static int __init smt_cmdline_disable(char *str)
643 cpu_smt_disable(str && !strcmp(str, "force"));
646 early_param("nosmt", smt_cmdline_disable);
649 * For Archicture supporting partial SMT states check if the thread is allowed.
650 * Otherwise this has already been checked through cpu_smt_max_threads when
651 * setting the SMT level.
653 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
655 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
656 return topology_smt_thread_allowed(cpu);
662 static inline bool cpu_bootable(unsigned int cpu)
664 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
667 /* All CPUs are bootable if controls are not configured */
668 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
671 /* All CPUs are bootable if CPU is not SMT capable */
672 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
675 if (topology_is_primary_thread(cpu))
679 * On x86 it's required to boot all logical CPUs at least once so
680 * that the init code can get a chance to set CR4.MCE on each
681 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
682 * core will shutdown the machine.
684 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
687 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
688 bool cpu_smt_possible(void)
690 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
691 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
693 EXPORT_SYMBOL_GPL(cpu_smt_possible);
696 static inline bool cpu_bootable(unsigned int cpu) { return true; }
699 static inline enum cpuhp_state
700 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
702 enum cpuhp_state prev_state = st->state;
703 bool bringup = st->state < target;
705 st->rollback = false;
710 st->bringup = bringup;
711 if (cpu_dying(cpu) != !bringup)
712 set_cpu_dying(cpu, !bringup);
718 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
719 enum cpuhp_state prev_state)
721 bool bringup = !st->bringup;
723 st->target = prev_state;
726 * Already rolling back. No need invert the bringup value or to change
735 * If we have st->last we need to undo partial multi_instance of this
736 * state first. Otherwise start undo at the previous state.
745 st->bringup = bringup;
746 if (cpu_dying(cpu) != !bringup)
747 set_cpu_dying(cpu, !bringup);
750 /* Regular hotplug invocation of the AP hotplug thread */
751 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
753 if (!st->single && st->state == st->target)
758 * Make sure the above stores are visible before should_run becomes
759 * true. Paired with the mb() above in cpuhp_thread_fun()
762 st->should_run = true;
763 wake_up_process(st->thread);
764 wait_for_ap_thread(st, st->bringup);
767 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
768 enum cpuhp_state target)
770 enum cpuhp_state prev_state;
773 prev_state = cpuhp_set_state(cpu, st, target);
775 if ((ret = st->result)) {
776 cpuhp_reset_state(cpu, st, prev_state);
783 static int bringup_wait_for_ap_online(unsigned int cpu)
785 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
787 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
788 wait_for_ap_thread(st, true);
789 if (WARN_ON_ONCE((!cpu_online(cpu))))
792 /* Unpark the hotplug thread of the target cpu */
793 kthread_unpark(st->thread);
796 * SMT soft disabling on X86 requires to bring the CPU out of the
797 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
798 * CPU marked itself as booted_once in notify_cpu_starting() so the
799 * cpu_bootable() check will now return false if this is not the
802 if (!cpu_bootable(cpu))
807 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
808 static int cpuhp_kick_ap_alive(unsigned int cpu)
810 if (!cpuhp_can_boot_ap(cpu))
813 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
816 static int cpuhp_bringup_ap(unsigned int cpu)
818 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
822 * Some architectures have to walk the irq descriptors to
823 * setup the vector space for the cpu which comes online.
824 * Prevent irq alloc/free across the bringup.
828 ret = cpuhp_bp_sync_alive(cpu);
832 ret = bringup_wait_for_ap_online(cpu);
838 if (st->target <= CPUHP_AP_ONLINE_IDLE)
841 return cpuhp_kick_ap(cpu, st, st->target);
848 static int bringup_cpu(unsigned int cpu)
850 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
851 struct task_struct *idle = idle_thread_get(cpu);
854 if (!cpuhp_can_boot_ap(cpu))
858 * Some architectures have to walk the irq descriptors to
859 * setup the vector space for the cpu which comes online.
861 * Prevent irq alloc/free across the bringup by acquiring the
862 * sparse irq lock. Hold it until the upcoming CPU completes the
863 * startup in cpuhp_online_idle() which allows to avoid
864 * intermediate synchronization points in the architecture code.
868 ret = __cpu_up(cpu, idle);
872 ret = cpuhp_bp_sync_alive(cpu);
876 ret = bringup_wait_for_ap_online(cpu);
882 if (st->target <= CPUHP_AP_ONLINE_IDLE)
885 return cpuhp_kick_ap(cpu, st, st->target);
893 static int finish_cpu(unsigned int cpu)
895 struct task_struct *idle = idle_thread_get(cpu);
896 struct mm_struct *mm = idle->active_mm;
899 * idle_task_exit() will have switched to &init_mm, now
900 * clean up any remaining active_mm state.
903 idle->active_mm = &init_mm;
909 * Hotplug state machine related functions
913 * Get the next state to run. Empty ones will be skipped. Returns true if a
916 * st->state will be modified ahead of time, to match state_to_run, as if it
919 static bool cpuhp_next_state(bool bringup,
920 enum cpuhp_state *state_to_run,
921 struct cpuhp_cpu_state *st,
922 enum cpuhp_state target)
926 if (st->state >= target)
929 *state_to_run = ++st->state;
931 if (st->state <= target)
934 *state_to_run = st->state--;
937 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
944 static int __cpuhp_invoke_callback_range(bool bringup,
946 struct cpuhp_cpu_state *st,
947 enum cpuhp_state target,
950 enum cpuhp_state state;
953 while (cpuhp_next_state(bringup, &state, st, target)) {
956 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
961 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
962 cpu, bringup ? "UP" : "DOWN",
963 cpuhp_get_step(st->state)->name,
975 static inline int cpuhp_invoke_callback_range(bool bringup,
977 struct cpuhp_cpu_state *st,
978 enum cpuhp_state target)
980 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
983 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
985 struct cpuhp_cpu_state *st,
986 enum cpuhp_state target)
988 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
991 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
993 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
996 * When CPU hotplug is disabled, then taking the CPU down is not
997 * possible because takedown_cpu() and the architecture and
998 * subsystem specific mechanisms are not available. So the CPU
999 * which would be completely unplugged again needs to stay around
1000 * in the current state.
1002 return st->state <= CPUHP_BRINGUP_CPU;
1005 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1006 enum cpuhp_state target)
1008 enum cpuhp_state prev_state = st->state;
1011 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1013 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1014 ret, cpu, cpuhp_get_step(st->state)->name,
1017 cpuhp_reset_state(cpu, st, prev_state);
1018 if (can_rollback_cpu(st))
1019 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1026 * The cpu hotplug threads manage the bringup and teardown of the cpus
1028 static int cpuhp_should_run(unsigned int cpu)
1030 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1032 return st->should_run;
1036 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1037 * callbacks when a state gets [un]installed at runtime.
1039 * Each invocation of this function by the smpboot thread does a single AP
1042 * It has 3 modes of operation:
1043 * - single: runs st->cb_state
1044 * - up: runs ++st->state, while st->state < st->target
1045 * - down: runs st->state--, while st->state > st->target
1047 * When complete or on error, should_run is cleared and the completion is fired.
1049 static void cpuhp_thread_fun(unsigned int cpu)
1051 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1052 bool bringup = st->bringup;
1053 enum cpuhp_state state;
1055 if (WARN_ON_ONCE(!st->should_run))
1059 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1060 * that if we see ->should_run we also see the rest of the state.
1065 * The BP holds the hotplug lock, but we're now running on the AP,
1066 * ensure that anybody asserting the lock is held, will actually find
1069 lockdep_acquire_cpus_lock();
1070 cpuhp_lock_acquire(bringup);
1073 state = st->cb_state;
1074 st->should_run = false;
1076 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1077 if (!st->should_run)
1081 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1083 if (cpuhp_is_atomic_state(state)) {
1084 local_irq_disable();
1085 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1089 * STARTING/DYING must not fail!
1091 WARN_ON_ONCE(st->result);
1093 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1098 * If we fail on a rollback, we're up a creek without no
1099 * paddle, no way forward, no way back. We loose, thanks for
1102 WARN_ON_ONCE(st->rollback);
1103 st->should_run = false;
1107 cpuhp_lock_release(bringup);
1108 lockdep_release_cpus_lock();
1110 if (!st->should_run)
1111 complete_ap_thread(st, bringup);
1114 /* Invoke a single callback on a remote cpu */
1116 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1117 struct hlist_node *node)
1119 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1122 if (!cpu_online(cpu))
1125 cpuhp_lock_acquire(false);
1126 cpuhp_lock_release(false);
1128 cpuhp_lock_acquire(true);
1129 cpuhp_lock_release(true);
1132 * If we are up and running, use the hotplug thread. For early calls
1133 * we invoke the thread function directly.
1136 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1138 st->rollback = false;
1142 st->bringup = bringup;
1143 st->cb_state = state;
1146 __cpuhp_kick_ap(st);
1149 * If we failed and did a partial, do a rollback.
1151 if ((ret = st->result) && st->last) {
1152 st->rollback = true;
1153 st->bringup = !bringup;
1155 __cpuhp_kick_ap(st);
1159 * Clean up the leftovers so the next hotplug operation wont use stale
1162 st->node = st->last = NULL;
1166 static int cpuhp_kick_ap_work(unsigned int cpu)
1168 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1169 enum cpuhp_state prev_state = st->state;
1172 cpuhp_lock_acquire(false);
1173 cpuhp_lock_release(false);
1175 cpuhp_lock_acquire(true);
1176 cpuhp_lock_release(true);
1178 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1179 ret = cpuhp_kick_ap(cpu, st, st->target);
1180 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1185 static struct smp_hotplug_thread cpuhp_threads = {
1186 .store = &cpuhp_state.thread,
1187 .thread_should_run = cpuhp_should_run,
1188 .thread_fn = cpuhp_thread_fun,
1189 .thread_comm = "cpuhp/%u",
1190 .selfparking = true,
1193 static __init void cpuhp_init_state(void)
1195 struct cpuhp_cpu_state *st;
1198 for_each_possible_cpu(cpu) {
1199 st = per_cpu_ptr(&cpuhp_state, cpu);
1200 init_completion(&st->done_up);
1201 init_completion(&st->done_down);
1205 void __init cpuhp_threads_init(void)
1208 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1209 kthread_unpark(this_cpu_read(cpuhp_state.thread));
1214 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1217 * The operation is still serialized against concurrent CPU hotplug via
1218 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
1219 * serialized against other hotplug related activity like adding or
1220 * removing of state callbacks and state instances, which invoke either the
1221 * startup or the teardown callback of the affected state.
1223 * This is required for subsystems which are unfixable vs. CPU hotplug and
1224 * evade lock inversion problems by scheduling work which has to be
1225 * completed _before_ cpu_up()/_cpu_down() returns.
1227 * Don't even think about adding anything to this for any new code or even
1228 * drivers. It's only purpose is to keep existing lock order trainwrecks
1231 * For cpu_down() there might be valid reasons to finish cleanups which are
1232 * not required to be done under cpu_hotplug_lock, but that's a different
1233 * story and would be not invoked via this.
1235 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1238 * cpusets delegate hotplug operations to a worker to "solve" the
1239 * lock order problems. Wait for the worker, but only if tasks are
1240 * _not_ frozen (suspend, hibernate) as that would wait forever.
1242 * The wait is required because otherwise the hotplug operation
1243 * returns with inconsistent state, which could even be observed in
1244 * user space when a new CPU is brought up. The CPU plug uevent
1245 * would be delivered and user space reacting on it would fail to
1246 * move tasks to the newly plugged CPU up to the point where the
1247 * work has finished because up to that point the newly plugged CPU
1248 * is not assignable in cpusets/cgroups. On unplug that's not
1249 * necessarily a visible issue, but it is still inconsistent state,
1250 * which is the real problem which needs to be "fixed". This can't
1251 * prevent the transient state between scheduling the work and
1252 * returning from waiting for it.
1255 cpuset_wait_for_hotplug();
1258 #ifdef CONFIG_HOTPLUG_CPU
1259 #ifndef arch_clear_mm_cpumask_cpu
1260 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1264 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1267 * This function walks all processes, finds a valid mm struct for each one and
1268 * then clears a corresponding bit in mm's cpumask. While this all sounds
1269 * trivial, there are various non-obvious corner cases, which this function
1270 * tries to solve in a safe manner.
1272 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1273 * be called only for an already offlined CPU.
1275 void clear_tasks_mm_cpumask(int cpu)
1277 struct task_struct *p;
1280 * This function is called after the cpu is taken down and marked
1281 * offline, so its not like new tasks will ever get this cpu set in
1282 * their mm mask. -- Peter Zijlstra
1283 * Thus, we may use rcu_read_lock() here, instead of grabbing
1284 * full-fledged tasklist_lock.
1286 WARN_ON(cpu_online(cpu));
1288 for_each_process(p) {
1289 struct task_struct *t;
1292 * Main thread might exit, but other threads may still have
1293 * a valid mm. Find one.
1295 t = find_lock_task_mm(p);
1298 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1304 /* Take this CPU down. */
1305 static int take_cpu_down(void *_param)
1307 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1308 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1309 int err, cpu = smp_processor_id();
1311 /* Ensure this CPU doesn't handle any more interrupts. */
1312 err = __cpu_disable();
1317 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1318 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1320 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1323 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1325 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1327 /* Give up timekeeping duties */
1328 tick_handover_do_timer();
1329 /* Remove CPU from timer broadcasting */
1330 tick_offline_cpu(cpu);
1331 /* Park the stopper thread */
1332 stop_machine_park(cpu);
1336 static int takedown_cpu(unsigned int cpu)
1338 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1341 /* Park the smpboot threads */
1342 kthread_park(st->thread);
1345 * Prevent irq alloc/free while the dying cpu reorganizes the
1346 * interrupt affinities.
1351 * So now all preempt/rcu users must observe !cpu_active().
1353 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1355 /* CPU refused to die */
1356 irq_unlock_sparse();
1357 /* Unpark the hotplug thread so we can rollback there */
1358 kthread_unpark(st->thread);
1361 BUG_ON(cpu_online(cpu));
1364 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1365 * all runnable tasks from the CPU, there's only the idle task left now
1366 * that the migration thread is done doing the stop_machine thing.
1368 * Wait for the stop thread to go away.
1370 wait_for_ap_thread(st, false);
1371 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1373 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1374 irq_unlock_sparse();
1376 hotplug_cpu__broadcast_tick_pull(cpu);
1377 /* This actually kills the CPU. */
1380 cpuhp_bp_sync_dead(cpu);
1382 tick_cleanup_dead_cpu(cpu);
1383 rcutree_migrate_callbacks(cpu);
1387 static void cpuhp_complete_idle_dead(void *arg)
1389 struct cpuhp_cpu_state *st = arg;
1391 complete_ap_thread(st, false);
1394 void cpuhp_report_idle_dead(void)
1396 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1398 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1399 rcu_report_dead(smp_processor_id());
1400 st->state = CPUHP_AP_IDLE_DEAD;
1402 * We cannot call complete after rcu_report_dead() so we delegate it
1405 smp_call_function_single(cpumask_first(cpu_online_mask),
1406 cpuhp_complete_idle_dead, st, 0);
1409 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1410 enum cpuhp_state target)
1412 enum cpuhp_state prev_state = st->state;
1415 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1417 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1418 ret, cpu, cpuhp_get_step(st->state)->name,
1421 cpuhp_reset_state(cpu, st, prev_state);
1423 if (st->state < prev_state)
1424 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1431 /* Requires cpu_add_remove_lock to be held */
1432 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1433 enum cpuhp_state target)
1435 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1436 int prev_state, ret = 0;
1438 if (num_online_cpus() == 1)
1441 if (!cpu_present(cpu))
1446 cpuhp_tasks_frozen = tasks_frozen;
1448 prev_state = cpuhp_set_state(cpu, st, target);
1450 * If the current CPU state is in the range of the AP hotplug thread,
1451 * then we need to kick the thread.
1453 if (st->state > CPUHP_TEARDOWN_CPU) {
1454 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1455 ret = cpuhp_kick_ap_work(cpu);
1457 * The AP side has done the error rollback already. Just
1458 * return the error code..
1464 * We might have stopped still in the range of the AP hotplug
1465 * thread. Nothing to do anymore.
1467 if (st->state > CPUHP_TEARDOWN_CPU)
1470 st->target = target;
1473 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1474 * to do the further cleanups.
1476 ret = cpuhp_down_callbacks(cpu, st, target);
1477 if (ret && st->state < prev_state) {
1478 if (st->state == CPUHP_TEARDOWN_CPU) {
1479 cpuhp_reset_state(cpu, st, prev_state);
1480 __cpuhp_kick_ap(st);
1482 WARN(1, "DEAD callback error for CPU%d", cpu);
1487 cpus_write_unlock();
1489 * Do post unplug cleanup. This is still protected against
1490 * concurrent CPU hotplug via cpu_add_remove_lock.
1492 lockup_detector_cleanup();
1494 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1498 struct cpu_down_work {
1500 enum cpuhp_state target;
1503 static long __cpu_down_maps_locked(void *arg)
1505 struct cpu_down_work *work = arg;
1507 return _cpu_down(work->cpu, 0, work->target);
1510 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1512 struct cpu_down_work work = { .cpu = cpu, .target = target, };
1515 * If the platform does not support hotplug, report it explicitly to
1516 * differentiate it from a transient offlining failure.
1518 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1520 if (cpu_hotplug_disabled)
1524 * Ensure that the control task does not run on the to be offlined
1525 * CPU to prevent a deadlock against cfs_b->period_timer.
1527 cpu = cpumask_any_but(cpu_online_mask, cpu);
1528 if (cpu >= nr_cpu_ids)
1530 return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1533 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1537 cpu_maps_update_begin();
1538 err = cpu_down_maps_locked(cpu, target);
1539 cpu_maps_update_done();
1544 * cpu_device_down - Bring down a cpu device
1545 * @dev: Pointer to the cpu device to offline
1547 * This function is meant to be used by device core cpu subsystem only.
1549 * Other subsystems should use remove_cpu() instead.
1551 * Return: %0 on success or a negative errno code
1553 int cpu_device_down(struct device *dev)
1555 return cpu_down(dev->id, CPUHP_OFFLINE);
1558 int remove_cpu(unsigned int cpu)
1562 lock_device_hotplug();
1563 ret = device_offline(get_cpu_device(cpu));
1564 unlock_device_hotplug();
1568 EXPORT_SYMBOL_GPL(remove_cpu);
1570 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1575 cpu_maps_update_begin();
1578 * Make certain the cpu I'm about to reboot on is online.
1580 * This is inline to what migrate_to_reboot_cpu() already do.
1582 if (!cpu_online(primary_cpu))
1583 primary_cpu = cpumask_first(cpu_online_mask);
1585 for_each_online_cpu(cpu) {
1586 if (cpu == primary_cpu)
1589 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1591 pr_err("Failed to offline CPU%d - error=%d",
1598 * Ensure all but the reboot CPU are offline.
1600 BUG_ON(num_online_cpus() > 1);
1603 * Make sure the CPUs won't be enabled by someone else after this
1604 * point. Kexec will reboot to a new kernel shortly resetting
1605 * everything along the way.
1607 cpu_hotplug_disabled++;
1609 cpu_maps_update_done();
1613 #define takedown_cpu NULL
1614 #endif /*CONFIG_HOTPLUG_CPU*/
1617 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1618 * @cpu: cpu that just started
1620 * It must be called by the arch code on the new cpu, before the new cpu
1621 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1623 void notify_cpu_starting(unsigned int cpu)
1625 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1626 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1628 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1629 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1632 * STARTING must not fail!
1634 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1638 * Called from the idle task. Wake up the controlling task which brings the
1639 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1640 * online bringup to the hotplug thread.
1642 void cpuhp_online_idle(enum cpuhp_state state)
1644 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1646 /* Happens for the boot cpu */
1647 if (state != CPUHP_AP_ONLINE_IDLE)
1650 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1653 * Unpark the stopper thread before we start the idle loop (and start
1654 * scheduling); this ensures the stopper task is always available.
1656 stop_machine_unpark(smp_processor_id());
1658 st->state = CPUHP_AP_ONLINE_IDLE;
1659 complete_ap_thread(st, true);
1662 /* Requires cpu_add_remove_lock to be held */
1663 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1665 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1666 struct task_struct *idle;
1671 if (!cpu_present(cpu)) {
1677 * The caller of cpu_up() might have raced with another
1678 * caller. Nothing to do.
1680 if (st->state >= target)
1683 if (st->state == CPUHP_OFFLINE) {
1684 /* Let it fail before we try to bring the cpu up */
1685 idle = idle_thread_get(cpu);
1687 ret = PTR_ERR(idle);
1692 * Reset stale stack state from the last time this CPU was online.
1694 scs_task_reset(idle);
1695 kasan_unpoison_task_stack(idle);
1698 cpuhp_tasks_frozen = tasks_frozen;
1700 cpuhp_set_state(cpu, st, target);
1702 * If the current CPU state is in the range of the AP hotplug thread,
1703 * then we need to kick the thread once more.
1705 if (st->state > CPUHP_BRINGUP_CPU) {
1706 ret = cpuhp_kick_ap_work(cpu);
1708 * The AP side has done the error rollback already. Just
1709 * return the error code..
1716 * Try to reach the target state. We max out on the BP at
1717 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1718 * responsible for bringing it up to the target state.
1720 target = min((int)target, CPUHP_BRINGUP_CPU);
1721 ret = cpuhp_up_callbacks(cpu, st, target);
1723 cpus_write_unlock();
1725 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1729 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1733 if (!cpu_possible(cpu)) {
1734 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1736 #if defined(CONFIG_IA64)
1737 pr_err("please check additional_cpus= boot parameter\n");
1742 err = try_online_node(cpu_to_node(cpu));
1746 cpu_maps_update_begin();
1748 if (cpu_hotplug_disabled) {
1752 if (!cpu_bootable(cpu)) {
1757 err = _cpu_up(cpu, 0, target);
1759 cpu_maps_update_done();
1764 * cpu_device_up - Bring up a cpu device
1765 * @dev: Pointer to the cpu device to online
1767 * This function is meant to be used by device core cpu subsystem only.
1769 * Other subsystems should use add_cpu() instead.
1771 * Return: %0 on success or a negative errno code
1773 int cpu_device_up(struct device *dev)
1775 return cpu_up(dev->id, CPUHP_ONLINE);
1778 int add_cpu(unsigned int cpu)
1782 lock_device_hotplug();
1783 ret = device_online(get_cpu_device(cpu));
1784 unlock_device_hotplug();
1788 EXPORT_SYMBOL_GPL(add_cpu);
1791 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1792 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1794 * On some architectures like arm64, we can hibernate on any CPU, but on
1795 * wake up the CPU we hibernated on might be offline as a side effect of
1796 * using maxcpus= for example.
1798 * Return: %0 on success or a negative errno code
1800 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1804 if (!cpu_online(sleep_cpu)) {
1805 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1806 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1808 pr_err("Failed to bring hibernate-CPU up!\n");
1815 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1816 enum cpuhp_state target)
1820 for_each_cpu(cpu, mask) {
1821 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1823 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1825 * If this failed then cpu_up() might have only
1826 * rolled back to CPUHP_BP_KICK_AP for the final
1827 * online. Clean it up. NOOP if already rolled back.
1829 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1837 #ifdef CONFIG_HOTPLUG_PARALLEL
1838 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1840 static int __init parallel_bringup_parse_param(char *arg)
1842 return kstrtobool(arg, &__cpuhp_parallel_bringup);
1844 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1846 static inline bool cpuhp_smt_aware(void)
1848 return cpu_smt_max_threads > 1;
1851 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1853 return cpu_primary_thread_mask;
1857 * On architectures which have enabled parallel bringup this invokes all BP
1858 * prepare states for each of the to be onlined APs first. The last state
1859 * sends the startup IPI to the APs. The APs proceed through the low level
1860 * bringup code in parallel and then wait for the control CPU to release
1861 * them one by one for the final onlining procedure.
1863 * This avoids waiting for each AP to respond to the startup IPI in
1864 * CPUHP_BRINGUP_CPU.
1866 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1868 const struct cpumask *mask = cpu_present_mask;
1870 if (__cpuhp_parallel_bringup)
1871 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1872 if (!__cpuhp_parallel_bringup)
1875 if (cpuhp_smt_aware()) {
1876 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1877 static struct cpumask tmp_mask __initdata;
1880 * X86 requires to prevent that SMT siblings stopped while
1881 * the primary thread does a microcode update for various
1882 * reasons. Bring the primary threads up first.
1884 cpumask_and(&tmp_mask, mask, pmask);
1885 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1886 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1887 /* Account for the online CPUs */
1888 ncpus -= num_online_cpus();
1891 /* Create the mask for secondary CPUs */
1892 cpumask_andnot(&tmp_mask, mask, pmask);
1896 /* Bring the not-yet started CPUs up */
1897 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1898 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1902 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1903 #endif /* CONFIG_HOTPLUG_PARALLEL */
1905 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1907 /* Try parallel bringup optimization if enabled */
1908 if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1911 /* Full per CPU serialized bringup */
1912 cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1915 #ifdef CONFIG_PM_SLEEP_SMP
1916 static cpumask_var_t frozen_cpus;
1918 int freeze_secondary_cpus(int primary)
1922 cpu_maps_update_begin();
1923 if (primary == -1) {
1924 primary = cpumask_first(cpu_online_mask);
1925 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1926 primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1928 if (!cpu_online(primary))
1929 primary = cpumask_first(cpu_online_mask);
1933 * We take down all of the non-boot CPUs in one shot to avoid races
1934 * with the userspace trying to use the CPU hotplug at the same time
1936 cpumask_clear(frozen_cpus);
1938 pr_info("Disabling non-boot CPUs ...\n");
1939 for_each_online_cpu(cpu) {
1943 if (pm_wakeup_pending()) {
1944 pr_info("Wakeup pending. Abort CPU freeze\n");
1949 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1950 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1951 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1953 cpumask_set_cpu(cpu, frozen_cpus);
1955 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1961 BUG_ON(num_online_cpus() > 1);
1963 pr_err("Non-boot CPUs are not disabled\n");
1966 * Make sure the CPUs won't be enabled by someone else. We need to do
1967 * this even in case of failure as all freeze_secondary_cpus() users are
1968 * supposed to do thaw_secondary_cpus() on the failure path.
1970 cpu_hotplug_disabled++;
1972 cpu_maps_update_done();
1976 void __weak arch_thaw_secondary_cpus_begin(void)
1980 void __weak arch_thaw_secondary_cpus_end(void)
1984 void thaw_secondary_cpus(void)
1988 /* Allow everyone to use the CPU hotplug again */
1989 cpu_maps_update_begin();
1990 __cpu_hotplug_enable();
1991 if (cpumask_empty(frozen_cpus))
1994 pr_info("Enabling non-boot CPUs ...\n");
1996 arch_thaw_secondary_cpus_begin();
1998 for_each_cpu(cpu, frozen_cpus) {
1999 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
2000 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
2001 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
2003 pr_info("CPU%d is up\n", cpu);
2006 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
2009 arch_thaw_secondary_cpus_end();
2011 cpumask_clear(frozen_cpus);
2013 cpu_maps_update_done();
2016 static int __init alloc_frozen_cpus(void)
2018 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2022 core_initcall(alloc_frozen_cpus);
2025 * When callbacks for CPU hotplug notifications are being executed, we must
2026 * ensure that the state of the system with respect to the tasks being frozen
2027 * or not, as reported by the notification, remains unchanged *throughout the
2028 * duration* of the execution of the callbacks.
2029 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2031 * This synchronization is implemented by mutually excluding regular CPU
2032 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2033 * Hibernate notifications.
2036 cpu_hotplug_pm_callback(struct notifier_block *nb,
2037 unsigned long action, void *ptr)
2041 case PM_SUSPEND_PREPARE:
2042 case PM_HIBERNATION_PREPARE:
2043 cpu_hotplug_disable();
2046 case PM_POST_SUSPEND:
2047 case PM_POST_HIBERNATION:
2048 cpu_hotplug_enable();
2059 static int __init cpu_hotplug_pm_sync_init(void)
2062 * cpu_hotplug_pm_callback has higher priority than x86
2063 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2064 * to disable cpu hotplug to avoid cpu hotplug race.
2066 pm_notifier(cpu_hotplug_pm_callback, 0);
2069 core_initcall(cpu_hotplug_pm_sync_init);
2071 #endif /* CONFIG_PM_SLEEP_SMP */
2075 #endif /* CONFIG_SMP */
2077 /* Boot processor state steps */
2078 static struct cpuhp_step cpuhp_hp_states[] = {
2081 .startup.single = NULL,
2082 .teardown.single = NULL,
2085 [CPUHP_CREATE_THREADS]= {
2086 .name = "threads:prepare",
2087 .startup.single = smpboot_create_threads,
2088 .teardown.single = NULL,
2091 [CPUHP_PERF_PREPARE] = {
2092 .name = "perf:prepare",
2093 .startup.single = perf_event_init_cpu,
2094 .teardown.single = perf_event_exit_cpu,
2096 [CPUHP_RANDOM_PREPARE] = {
2097 .name = "random:prepare",
2098 .startup.single = random_prepare_cpu,
2099 .teardown.single = NULL,
2101 [CPUHP_WORKQUEUE_PREP] = {
2102 .name = "workqueue:prepare",
2103 .startup.single = workqueue_prepare_cpu,
2104 .teardown.single = NULL,
2106 [CPUHP_HRTIMERS_PREPARE] = {
2107 .name = "hrtimers:prepare",
2108 .startup.single = hrtimers_prepare_cpu,
2109 .teardown.single = hrtimers_dead_cpu,
2111 [CPUHP_SMPCFD_PREPARE] = {
2112 .name = "smpcfd:prepare",
2113 .startup.single = smpcfd_prepare_cpu,
2114 .teardown.single = smpcfd_dead_cpu,
2116 [CPUHP_RELAY_PREPARE] = {
2117 .name = "relay:prepare",
2118 .startup.single = relay_prepare_cpu,
2119 .teardown.single = NULL,
2121 [CPUHP_SLAB_PREPARE] = {
2122 .name = "slab:prepare",
2123 .startup.single = slab_prepare_cpu,
2124 .teardown.single = slab_dead_cpu,
2126 [CPUHP_RCUTREE_PREP] = {
2127 .name = "RCU/tree:prepare",
2128 .startup.single = rcutree_prepare_cpu,
2129 .teardown.single = rcutree_dead_cpu,
2132 * On the tear-down path, timers_dead_cpu() must be invoked
2133 * before blk_mq_queue_reinit_notify() from notify_dead(),
2134 * otherwise a RCU stall occurs.
2136 [CPUHP_TIMERS_PREPARE] = {
2137 .name = "timers:prepare",
2138 .startup.single = timers_prepare_cpu,
2139 .teardown.single = timers_dead_cpu,
2142 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2144 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2145 * the next step will release it.
2147 [CPUHP_BP_KICK_AP] = {
2148 .name = "cpu:kick_ap",
2149 .startup.single = cpuhp_kick_ap_alive,
2153 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2154 * releases it for the complete bringup.
2156 [CPUHP_BRINGUP_CPU] = {
2157 .name = "cpu:bringup",
2158 .startup.single = cpuhp_bringup_ap,
2159 .teardown.single = finish_cpu,
2164 * All-in-one CPU bringup state which includes the kick alive.
2166 [CPUHP_BRINGUP_CPU] = {
2167 .name = "cpu:bringup",
2168 .startup.single = bringup_cpu,
2169 .teardown.single = finish_cpu,
2173 /* Final state before CPU kills itself */
2174 [CPUHP_AP_IDLE_DEAD] = {
2175 .name = "idle:dead",
2178 * Last state before CPU enters the idle loop to die. Transient state
2179 * for synchronization.
2181 [CPUHP_AP_OFFLINE] = {
2182 .name = "ap:offline",
2185 /* First state is scheduler control. Interrupts are disabled */
2186 [CPUHP_AP_SCHED_STARTING] = {
2187 .name = "sched:starting",
2188 .startup.single = sched_cpu_starting,
2189 .teardown.single = sched_cpu_dying,
2191 [CPUHP_AP_RCUTREE_DYING] = {
2192 .name = "RCU/tree:dying",
2193 .startup.single = NULL,
2194 .teardown.single = rcutree_dying_cpu,
2196 [CPUHP_AP_SMPCFD_DYING] = {
2197 .name = "smpcfd:dying",
2198 .startup.single = NULL,
2199 .teardown.single = smpcfd_dying_cpu,
2201 /* Entry state on starting. Interrupts enabled from here on. Transient
2202 * state for synchronsization */
2203 [CPUHP_AP_ONLINE] = {
2204 .name = "ap:online",
2207 * Handled on control processor until the plugged processor manages
2210 [CPUHP_TEARDOWN_CPU] = {
2211 .name = "cpu:teardown",
2212 .startup.single = NULL,
2213 .teardown.single = takedown_cpu,
2217 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2218 .name = "sched:waitempty",
2219 .startup.single = NULL,
2220 .teardown.single = sched_cpu_wait_empty,
2223 /* Handle smpboot threads park/unpark */
2224 [CPUHP_AP_SMPBOOT_THREADS] = {
2225 .name = "smpboot/threads:online",
2226 .startup.single = smpboot_unpark_threads,
2227 .teardown.single = smpboot_park_threads,
2229 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2230 .name = "irq/affinity:online",
2231 .startup.single = irq_affinity_online_cpu,
2232 .teardown.single = NULL,
2234 [CPUHP_AP_PERF_ONLINE] = {
2235 .name = "perf:online",
2236 .startup.single = perf_event_init_cpu,
2237 .teardown.single = perf_event_exit_cpu,
2239 [CPUHP_AP_WATCHDOG_ONLINE] = {
2240 .name = "lockup_detector:online",
2241 .startup.single = lockup_detector_online_cpu,
2242 .teardown.single = lockup_detector_offline_cpu,
2244 [CPUHP_AP_WORKQUEUE_ONLINE] = {
2245 .name = "workqueue:online",
2246 .startup.single = workqueue_online_cpu,
2247 .teardown.single = workqueue_offline_cpu,
2249 [CPUHP_AP_RANDOM_ONLINE] = {
2250 .name = "random:online",
2251 .startup.single = random_online_cpu,
2252 .teardown.single = NULL,
2254 [CPUHP_AP_RCUTREE_ONLINE] = {
2255 .name = "RCU/tree:online",
2256 .startup.single = rcutree_online_cpu,
2257 .teardown.single = rcutree_offline_cpu,
2261 * The dynamically registered state space is here
2265 /* Last state is scheduler control setting the cpu active */
2266 [CPUHP_AP_ACTIVE] = {
2267 .name = "sched:active",
2268 .startup.single = sched_cpu_activate,
2269 .teardown.single = sched_cpu_deactivate,
2273 /* CPU is fully up and running. */
2276 .startup.single = NULL,
2277 .teardown.single = NULL,
2281 /* Sanity check for callbacks */
2282 static int cpuhp_cb_check(enum cpuhp_state state)
2284 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2290 * Returns a free for dynamic slot assignment of the Online state. The states
2291 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2292 * by having no name assigned.
2294 static int cpuhp_reserve_state(enum cpuhp_state state)
2296 enum cpuhp_state i, end;
2297 struct cpuhp_step *step;
2300 case CPUHP_AP_ONLINE_DYN:
2301 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2302 end = CPUHP_AP_ONLINE_DYN_END;
2304 case CPUHP_BP_PREPARE_DYN:
2305 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2306 end = CPUHP_BP_PREPARE_DYN_END;
2312 for (i = state; i <= end; i++, step++) {
2316 WARN(1, "No more dynamic states available for CPU hotplug\n");
2320 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2321 int (*startup)(unsigned int cpu),
2322 int (*teardown)(unsigned int cpu),
2323 bool multi_instance)
2325 /* (Un)Install the callbacks for further cpu hotplug operations */
2326 struct cpuhp_step *sp;
2330 * If name is NULL, then the state gets removed.
2332 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2333 * the first allocation from these dynamic ranges, so the removal
2334 * would trigger a new allocation and clear the wrong (already
2335 * empty) state, leaving the callbacks of the to be cleared state
2336 * dangling, which causes wreckage on the next hotplug operation.
2338 if (name && (state == CPUHP_AP_ONLINE_DYN ||
2339 state == CPUHP_BP_PREPARE_DYN)) {
2340 ret = cpuhp_reserve_state(state);
2345 sp = cpuhp_get_step(state);
2346 if (name && sp->name)
2349 sp->startup.single = startup;
2350 sp->teardown.single = teardown;
2352 sp->multi_instance = multi_instance;
2353 INIT_HLIST_HEAD(&sp->list);
2357 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2359 return cpuhp_get_step(state)->teardown.single;
2363 * Call the startup/teardown function for a step either on the AP or
2364 * on the current CPU.
2366 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2367 struct hlist_node *node)
2369 struct cpuhp_step *sp = cpuhp_get_step(state);
2373 * If there's nothing to do, we done.
2374 * Relies on the union for multi_instance.
2376 if (cpuhp_step_empty(bringup, sp))
2379 * The non AP bound callbacks can fail on bringup. On teardown
2380 * e.g. module removal we crash for now.
2383 if (cpuhp_is_ap_state(state))
2384 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2386 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2388 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2390 BUG_ON(ret && !bringup);
2395 * Called from __cpuhp_setup_state on a recoverable failure.
2397 * Note: The teardown callbacks for rollback are not allowed to fail!
2399 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2400 struct hlist_node *node)
2404 /* Roll back the already executed steps on the other cpus */
2405 for_each_present_cpu(cpu) {
2406 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2407 int cpustate = st->state;
2409 if (cpu >= failedcpu)
2412 /* Did we invoke the startup call on that cpu ? */
2413 if (cpustate >= state)
2414 cpuhp_issue_call(cpu, state, false, node);
2418 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2419 struct hlist_node *node,
2422 struct cpuhp_step *sp;
2426 lockdep_assert_cpus_held();
2428 sp = cpuhp_get_step(state);
2429 if (sp->multi_instance == false)
2432 mutex_lock(&cpuhp_state_mutex);
2434 if (!invoke || !sp->startup.multi)
2438 * Try to call the startup callback for each present cpu
2439 * depending on the hotplug state of the cpu.
2441 for_each_present_cpu(cpu) {
2442 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2443 int cpustate = st->state;
2445 if (cpustate < state)
2448 ret = cpuhp_issue_call(cpu, state, true, node);
2450 if (sp->teardown.multi)
2451 cpuhp_rollback_install(cpu, state, node);
2457 hlist_add_head(node, &sp->list);
2459 mutex_unlock(&cpuhp_state_mutex);
2463 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2469 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2473 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2476 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2477 * @state: The state to setup
2478 * @name: Name of the step
2479 * @invoke: If true, the startup function is invoked for cpus where
2480 * cpu state >= @state
2481 * @startup: startup callback function
2482 * @teardown: teardown callback function
2483 * @multi_instance: State is set up for multiple instances which get
2486 * The caller needs to hold cpus read locked while calling this function.
2489 * Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2490 * 0 for all other states
2491 * On failure: proper (negative) error code
2493 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2494 const char *name, bool invoke,
2495 int (*startup)(unsigned int cpu),
2496 int (*teardown)(unsigned int cpu),
2497 bool multi_instance)
2502 lockdep_assert_cpus_held();
2504 if (cpuhp_cb_check(state) || !name)
2507 mutex_lock(&cpuhp_state_mutex);
2509 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2512 dynstate = state == CPUHP_AP_ONLINE_DYN;
2513 if (ret > 0 && dynstate) {
2518 if (ret || !invoke || !startup)
2522 * Try to call the startup callback for each present cpu
2523 * depending on the hotplug state of the cpu.
2525 for_each_present_cpu(cpu) {
2526 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2527 int cpustate = st->state;
2529 if (cpustate < state)
2532 ret = cpuhp_issue_call(cpu, state, true, NULL);
2535 cpuhp_rollback_install(cpu, state, NULL);
2536 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2541 mutex_unlock(&cpuhp_state_mutex);
2543 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2544 * dynamically allocated state in case of success.
2546 if (!ret && dynstate)
2550 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2552 int __cpuhp_setup_state(enum cpuhp_state state,
2553 const char *name, bool invoke,
2554 int (*startup)(unsigned int cpu),
2555 int (*teardown)(unsigned int cpu),
2556 bool multi_instance)
2561 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2562 teardown, multi_instance);
2566 EXPORT_SYMBOL(__cpuhp_setup_state);
2568 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2569 struct hlist_node *node, bool invoke)
2571 struct cpuhp_step *sp = cpuhp_get_step(state);
2574 BUG_ON(cpuhp_cb_check(state));
2576 if (!sp->multi_instance)
2580 mutex_lock(&cpuhp_state_mutex);
2582 if (!invoke || !cpuhp_get_teardown_cb(state))
2585 * Call the teardown callback for each present cpu depending
2586 * on the hotplug state of the cpu. This function is not
2587 * allowed to fail currently!
2589 for_each_present_cpu(cpu) {
2590 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2591 int cpustate = st->state;
2593 if (cpustate >= state)
2594 cpuhp_issue_call(cpu, state, false, node);
2599 mutex_unlock(&cpuhp_state_mutex);
2604 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2607 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2608 * @state: The state to remove
2609 * @invoke: If true, the teardown function is invoked for cpus where
2610 * cpu state >= @state
2612 * The caller needs to hold cpus read locked while calling this function.
2613 * The teardown callback is currently not allowed to fail. Think
2614 * about module removal!
2616 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2618 struct cpuhp_step *sp = cpuhp_get_step(state);
2621 BUG_ON(cpuhp_cb_check(state));
2623 lockdep_assert_cpus_held();
2625 mutex_lock(&cpuhp_state_mutex);
2626 if (sp->multi_instance) {
2627 WARN(!hlist_empty(&sp->list),
2628 "Error: Removing state %d which has instances left.\n",
2633 if (!invoke || !cpuhp_get_teardown_cb(state))
2637 * Call the teardown callback for each present cpu depending
2638 * on the hotplug state of the cpu. This function is not
2639 * allowed to fail currently!
2641 for_each_present_cpu(cpu) {
2642 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2643 int cpustate = st->state;
2645 if (cpustate >= state)
2646 cpuhp_issue_call(cpu, state, false, NULL);
2649 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2650 mutex_unlock(&cpuhp_state_mutex);
2652 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2654 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2657 __cpuhp_remove_state_cpuslocked(state, invoke);
2660 EXPORT_SYMBOL(__cpuhp_remove_state);
2662 #ifdef CONFIG_HOTPLUG_SMT
2663 static void cpuhp_offline_cpu_device(unsigned int cpu)
2665 struct device *dev = get_cpu_device(cpu);
2667 dev->offline = true;
2668 /* Tell user space about the state change */
2669 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2672 static void cpuhp_online_cpu_device(unsigned int cpu)
2674 struct device *dev = get_cpu_device(cpu);
2676 dev->offline = false;
2677 /* Tell user space about the state change */
2678 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2681 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2685 cpu_maps_update_begin();
2686 for_each_online_cpu(cpu) {
2687 if (topology_is_primary_thread(cpu))
2690 * Disable can be called with CPU_SMT_ENABLED when changing
2691 * from a higher to lower number of SMT threads per core.
2693 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2695 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2699 * As this needs to hold the cpu maps lock it's impossible
2700 * to call device_offline() because that ends up calling
2701 * cpu_down() which takes cpu maps lock. cpu maps lock
2702 * needs to be held as this might race against in kernel
2703 * abusers of the hotplug machinery (thermal management).
2705 * So nothing would update device:offline state. That would
2706 * leave the sysfs entry stale and prevent onlining after
2707 * smt control has been changed to 'off' again. This is
2708 * called under the sysfs hotplug lock, so it is properly
2709 * serialized against the regular offline usage.
2711 cpuhp_offline_cpu_device(cpu);
2714 cpu_smt_control = ctrlval;
2715 cpu_maps_update_done();
2719 int cpuhp_smt_enable(void)
2723 cpu_maps_update_begin();
2724 cpu_smt_control = CPU_SMT_ENABLED;
2725 for_each_present_cpu(cpu) {
2726 /* Skip online CPUs and CPUs on offline nodes */
2727 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2729 if (!cpu_smt_thread_allowed(cpu))
2731 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2734 /* See comment in cpuhp_smt_disable() */
2735 cpuhp_online_cpu_device(cpu);
2737 cpu_maps_update_done();
2742 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2743 static ssize_t state_show(struct device *dev,
2744 struct device_attribute *attr, char *buf)
2746 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2748 return sprintf(buf, "%d\n", st->state);
2750 static DEVICE_ATTR_RO(state);
2752 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2753 const char *buf, size_t count)
2755 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2756 struct cpuhp_step *sp;
2759 ret = kstrtoint(buf, 10, &target);
2763 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2764 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2767 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2771 ret = lock_device_hotplug_sysfs();
2775 mutex_lock(&cpuhp_state_mutex);
2776 sp = cpuhp_get_step(target);
2777 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2778 mutex_unlock(&cpuhp_state_mutex);
2782 if (st->state < target)
2783 ret = cpu_up(dev->id, target);
2784 else if (st->state > target)
2785 ret = cpu_down(dev->id, target);
2786 else if (WARN_ON(st->target != target))
2787 st->target = target;
2789 unlock_device_hotplug();
2790 return ret ? ret : count;
2793 static ssize_t target_show(struct device *dev,
2794 struct device_attribute *attr, char *buf)
2796 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2798 return sprintf(buf, "%d\n", st->target);
2800 static DEVICE_ATTR_RW(target);
2802 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2803 const char *buf, size_t count)
2805 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2806 struct cpuhp_step *sp;
2809 ret = kstrtoint(buf, 10, &fail);
2813 if (fail == CPUHP_INVALID) {
2818 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2822 * Cannot fail STARTING/DYING callbacks.
2824 if (cpuhp_is_atomic_state(fail))
2828 * DEAD callbacks cannot fail...
2829 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2830 * triggering STARTING callbacks, a failure in this state would
2833 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2837 * Cannot fail anything that doesn't have callbacks.
2839 mutex_lock(&cpuhp_state_mutex);
2840 sp = cpuhp_get_step(fail);
2841 if (!sp->startup.single && !sp->teardown.single)
2843 mutex_unlock(&cpuhp_state_mutex);
2852 static ssize_t fail_show(struct device *dev,
2853 struct device_attribute *attr, char *buf)
2855 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2857 return sprintf(buf, "%d\n", st->fail);
2860 static DEVICE_ATTR_RW(fail);
2862 static struct attribute *cpuhp_cpu_attrs[] = {
2863 &dev_attr_state.attr,
2864 &dev_attr_target.attr,
2865 &dev_attr_fail.attr,
2869 static const struct attribute_group cpuhp_cpu_attr_group = {
2870 .attrs = cpuhp_cpu_attrs,
2875 static ssize_t states_show(struct device *dev,
2876 struct device_attribute *attr, char *buf)
2878 ssize_t cur, res = 0;
2881 mutex_lock(&cpuhp_state_mutex);
2882 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2883 struct cpuhp_step *sp = cpuhp_get_step(i);
2886 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2891 mutex_unlock(&cpuhp_state_mutex);
2894 static DEVICE_ATTR_RO(states);
2896 static struct attribute *cpuhp_cpu_root_attrs[] = {
2897 &dev_attr_states.attr,
2901 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2902 .attrs = cpuhp_cpu_root_attrs,
2907 #ifdef CONFIG_HOTPLUG_SMT
2909 static bool cpu_smt_num_threads_valid(unsigned int threads)
2911 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2912 return threads >= 1 && threads <= cpu_smt_max_threads;
2913 return threads == 1 || threads == cpu_smt_max_threads;
2917 __store_smt_control(struct device *dev, struct device_attribute *attr,
2918 const char *buf, size_t count)
2920 int ctrlval, ret, num_threads, orig_threads;
2923 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2926 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2929 if (sysfs_streq(buf, "on")) {
2930 ctrlval = CPU_SMT_ENABLED;
2931 num_threads = cpu_smt_max_threads;
2932 } else if (sysfs_streq(buf, "off")) {
2933 ctrlval = CPU_SMT_DISABLED;
2935 } else if (sysfs_streq(buf, "forceoff")) {
2936 ctrlval = CPU_SMT_FORCE_DISABLED;
2938 } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2939 if (num_threads == 1)
2940 ctrlval = CPU_SMT_DISABLED;
2941 else if (cpu_smt_num_threads_valid(num_threads))
2942 ctrlval = CPU_SMT_ENABLED;
2949 ret = lock_device_hotplug_sysfs();
2953 orig_threads = cpu_smt_num_threads;
2954 cpu_smt_num_threads = num_threads;
2956 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2958 if (num_threads > orig_threads)
2959 ret = cpuhp_smt_enable();
2960 else if (num_threads < orig_threads || force_off)
2961 ret = cpuhp_smt_disable(ctrlval);
2963 unlock_device_hotplug();
2964 return ret ? ret : count;
2967 #else /* !CONFIG_HOTPLUG_SMT */
2969 __store_smt_control(struct device *dev, struct device_attribute *attr,
2970 const char *buf, size_t count)
2974 #endif /* CONFIG_HOTPLUG_SMT */
2976 static const char *smt_states[] = {
2977 [CPU_SMT_ENABLED] = "on",
2978 [CPU_SMT_DISABLED] = "off",
2979 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2980 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2981 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2984 static ssize_t control_show(struct device *dev,
2985 struct device_attribute *attr, char *buf)
2987 const char *state = smt_states[cpu_smt_control];
2989 #ifdef CONFIG_HOTPLUG_SMT
2991 * If SMT is enabled but not all threads are enabled then show the
2992 * number of threads. If all threads are enabled show "on". Otherwise
2993 * show the state name.
2995 if (cpu_smt_control == CPU_SMT_ENABLED &&
2996 cpu_smt_num_threads != cpu_smt_max_threads)
2997 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
3000 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
3003 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
3004 const char *buf, size_t count)
3006 return __store_smt_control(dev, attr, buf, count);
3008 static DEVICE_ATTR_RW(control);
3010 static ssize_t active_show(struct device *dev,
3011 struct device_attribute *attr, char *buf)
3013 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
3015 static DEVICE_ATTR_RO(active);
3017 static struct attribute *cpuhp_smt_attrs[] = {
3018 &dev_attr_control.attr,
3019 &dev_attr_active.attr,
3023 static const struct attribute_group cpuhp_smt_attr_group = {
3024 .attrs = cpuhp_smt_attrs,
3029 static int __init cpu_smt_sysfs_init(void)
3031 struct device *dev_root;
3034 dev_root = bus_get_dev_root(&cpu_subsys);
3036 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3037 put_device(dev_root);
3042 static int __init cpuhp_sysfs_init(void)
3044 struct device *dev_root;
3047 ret = cpu_smt_sysfs_init();
3051 dev_root = bus_get_dev_root(&cpu_subsys);
3053 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3054 put_device(dev_root);
3059 for_each_possible_cpu(cpu) {
3060 struct device *dev = get_cpu_device(cpu);
3064 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3070 device_initcall(cpuhp_sysfs_init);
3071 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3074 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3075 * represents all NR_CPUS bits binary values of 1<<nr.
3077 * It is used by cpumask_of() to get a constant address to a CPU
3078 * mask value that has a single bit set only.
3081 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3082 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
3083 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3084 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3085 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3087 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3089 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
3090 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
3091 #if BITS_PER_LONG > 32
3092 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
3093 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
3096 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3098 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3099 EXPORT_SYMBOL(cpu_all_bits);
3101 #ifdef CONFIG_INIT_ALL_POSSIBLE
3102 struct cpumask __cpu_possible_mask __read_mostly
3105 struct cpumask __cpu_possible_mask __read_mostly;
3107 EXPORT_SYMBOL(__cpu_possible_mask);
3109 struct cpumask __cpu_online_mask __read_mostly;
3110 EXPORT_SYMBOL(__cpu_online_mask);
3112 struct cpumask __cpu_present_mask __read_mostly;
3113 EXPORT_SYMBOL(__cpu_present_mask);
3115 struct cpumask __cpu_active_mask __read_mostly;
3116 EXPORT_SYMBOL(__cpu_active_mask);
3118 struct cpumask __cpu_dying_mask __read_mostly;
3119 EXPORT_SYMBOL(__cpu_dying_mask);
3121 atomic_t __num_online_cpus __read_mostly;
3122 EXPORT_SYMBOL(__num_online_cpus);
3124 void init_cpu_present(const struct cpumask *src)
3126 cpumask_copy(&__cpu_present_mask, src);
3129 void init_cpu_possible(const struct cpumask *src)
3131 cpumask_copy(&__cpu_possible_mask, src);
3134 void init_cpu_online(const struct cpumask *src)
3136 cpumask_copy(&__cpu_online_mask, src);
3139 void set_cpu_online(unsigned int cpu, bool online)
3142 * atomic_inc/dec() is required to handle the horrid abuse of this
3143 * function by the reboot and kexec code which invoke it from
3144 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3145 * regular CPU hotplug is properly serialized.
3147 * Note, that the fact that __num_online_cpus is of type atomic_t
3148 * does not protect readers which are not serialized against
3149 * concurrent hotplug operations.
3152 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3153 atomic_inc(&__num_online_cpus);
3155 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3156 atomic_dec(&__num_online_cpus);
3161 * Activate the first processor.
3163 void __init boot_cpu_init(void)
3165 int cpu = smp_processor_id();
3167 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3168 set_cpu_online(cpu, true);
3169 set_cpu_active(cpu, true);
3170 set_cpu_present(cpu, true);
3171 set_cpu_possible(cpu, true);
3174 __boot_cpu_id = cpu;
3179 * Must be called _AFTER_ setting up the per_cpu areas
3181 void __init boot_cpu_hotplug_init(void)
3184 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3185 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3187 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3188 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3192 * These are used for a global "mitigations=" cmdline option for toggling
3193 * optional CPU mitigations.
3195 enum cpu_mitigations {
3196 CPU_MITIGATIONS_OFF,
3197 CPU_MITIGATIONS_AUTO,
3198 CPU_MITIGATIONS_AUTO_NOSMT,
3201 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3202 CPU_MITIGATIONS_AUTO;
3204 static int __init mitigations_parse_cmdline(char *arg)
3206 if (!strcmp(arg, "off"))
3207 cpu_mitigations = CPU_MITIGATIONS_OFF;
3208 else if (!strcmp(arg, "auto"))
3209 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3210 else if (!strcmp(arg, "auto,nosmt"))
3211 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3213 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3218 early_param("mitigations", mitigations_parse_cmdline);
3220 /* mitigations=off */
3221 bool cpu_mitigations_off(void)
3223 return cpu_mitigations == CPU_MITIGATIONS_OFF;
3225 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3227 /* mitigations=auto,nosmt */
3228 bool cpu_mitigations_auto_nosmt(void)
3230 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3232 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);