1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 [_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
44 /* bpf_check() is a static code analyzer that walks eBPF program
45 * instruction by instruction and updates register/stack state.
46 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
48 * The first pass is depth-first-search to check that the program is a DAG.
49 * It rejects the following programs:
50 * - larger than BPF_MAXINSNS insns
51 * - if loop is present (detected via back-edge)
52 * - unreachable insns exist (shouldn't be a forest. program = one function)
53 * - out of bounds or malformed jumps
54 * The second pass is all possible path descent from the 1st insn.
55 * Since it's analyzing all paths through the program, the length of the
56 * analysis is limited to 64k insn, which may be hit even if total number of
57 * insn is less then 4K, but there are too many branches that change stack/regs.
58 * Number of 'branches to be analyzed' is limited to 1k
60 * On entry to each instruction, each register has a type, and the instruction
61 * changes the types of the registers depending on instruction semantics.
62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
65 * All registers are 64-bit.
66 * R0 - return register
67 * R1-R5 argument passing registers
68 * R6-R9 callee saved registers
69 * R10 - frame pointer read-only
71 * At the start of BPF program the register R1 contains a pointer to bpf_context
72 * and has type PTR_TO_CTX.
74 * Verifier tracks arithmetic operations on pointers in case:
75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77 * 1st insn copies R10 (which has FRAME_PTR) type into R1
78 * and 2nd arithmetic instruction is pattern matched to recognize
79 * that it wants to construct a pointer to some element within stack.
80 * So after 2nd insn, the register R1 has type PTR_TO_STACK
81 * (and -20 constant is saved for further stack bounds checking).
82 * Meaning that this reg is a pointer to stack plus known immediate constant.
84 * Most of the time the registers have SCALAR_VALUE type, which
85 * means the register has some value, but it's not a valid pointer.
86 * (like pointer plus pointer becomes SCALAR_VALUE type)
88 * When verifier sees load or store instructions the type of base register
89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90 * four pointer types recognized by check_mem_access() function.
92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93 * and the range of [ptr, ptr + map's value_size) is accessible.
95 * registers used to pass values to function calls are checked against
96 * function argument constraints.
98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99 * It means that the register type passed to this function must be
100 * PTR_TO_STACK and it will be used inside the function as
101 * 'pointer to map element key'
103 * For example the argument constraints for bpf_map_lookup_elem():
104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105 * .arg1_type = ARG_CONST_MAP_PTR,
106 * .arg2_type = ARG_PTR_TO_MAP_KEY,
108 * ret_type says that this function returns 'pointer to map elem value or null'
109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110 * 2nd argument should be a pointer to stack, which will be used inside
111 * the helper function as a pointer to map element key.
113 * On the kernel side the helper function looks like:
114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117 * void *key = (void *) (unsigned long) r2;
120 * here kernel can access 'key' and 'map' pointers safely, knowing that
121 * [key, key + map->key_size) bytes are valid and were initialized on
122 * the stack of eBPF program.
125 * Corresponding eBPF program may look like:
126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130 * here verifier looks at prototype of map_lookup_elem() and sees:
131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136 * and were initialized prior to this call.
137 * If it's ok, then verifier allows this BPF_CALL insn and looks at
138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140 * returns either pointer to map value or NULL.
142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143 * insn, the register holding that pointer in the true branch changes state to
144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145 * branch. See check_cond_jmp_op().
147 * After the call R0 is set to return type of the function and registers R1-R5
148 * are set to NOT_INIT to indicate that they are no longer readable.
150 * The following reference types represent a potential reference to a kernel
151 * resource which, after first being allocated, must be checked and freed by
153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
155 * When the verifier sees a helper call return a reference type, it allocates a
156 * pointer id for the reference and stores it in the current function state.
157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159 * passes through a NULL-check conditional. For the branch wherein the state is
160 * changed to CONST_IMM, the verifier releases the reference.
162 * For each helper function that allocates a reference, such as
163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164 * bpf_sk_release(). When a reference type passes into the release function,
165 * the verifier also releases the reference. If any unchecked or unreleased
166 * reference remains at the end of the program, the verifier rejects it.
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 /* verifer state is 'st'
172 * before processing instruction 'insn_idx'
173 * and after processing instruction 'prev_insn_idx'
175 struct bpf_verifier_state st;
178 struct bpf_verifier_stack_elem *next;
179 /* length of verifier log at the time this state was pushed on stack */
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
184 #define BPF_COMPLEXITY_LIMIT_STATES 64
186 #define BPF_MAP_KEY_POISON (1ULL << 63)
187 #define BPF_MAP_KEY_SEEN (1ULL << 62)
189 #define BPF_MAP_PTR_UNPRIV 1UL
190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
191 POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 const struct bpf_map *map, bool unpriv)
217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 unpriv |= bpf_map_ptr_unpriv(aux);
219 aux->map_ptr_state = (unsigned long)map |
220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
225 return aux->map_key_state & BPF_MAP_KEY_POISON;
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
240 bool poisoned = bpf_map_key_poisoned(aux);
242 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
246 static bool bpf_helper_call(const struct bpf_insn *insn)
248 return insn->code == (BPF_JMP | BPF_CALL) &&
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
254 return insn->code == (BPF_JMP | BPF_CALL) &&
255 insn->src_reg == BPF_PSEUDO_CALL;
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
260 return insn->code == (BPF_JMP | BPF_CALL) &&
261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
264 struct bpf_call_arg_meta {
265 struct bpf_map *map_ptr;
282 struct btf_field *kptr_field;
285 struct bpf_kfunc_call_arg_meta {
290 const struct btf_type *func_proto;
291 const char *func_name;
304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 * generally to pass info about user-defined local kptr types to later
308 * Record the local kptr type to be drop'd
309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 * Record the local kptr type to be refcount_incr'd and use
311 * arg_owning_ref to determine whether refcount_acquire should be
319 struct btf_field *field;
322 struct btf_field *field;
325 enum bpf_dynptr_type type;
328 } initialized_dynptr;
336 struct btf *btf_vmlinux;
338 static DEFINE_MUTEX(bpf_verifier_lock);
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
343 const struct bpf_line_info *linfo;
344 const struct bpf_prog *prog;
348 nr_linfo = prog->aux->nr_linfo;
350 if (!nr_linfo || insn_off >= prog->len)
353 linfo = prog->aux->linfo;
354 for (i = 1; i < nr_linfo; i++)
355 if (insn_off < linfo[i].insn_off)
358 return &linfo[i - 1];
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
363 struct bpf_verifier_env *env = private_data;
366 if (!bpf_verifier_log_needed(&env->log))
370 bpf_verifier_vlog(&env->log, fmt, args);
374 static const char *ltrim(const char *s)
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
384 const char *prefix_fmt, ...)
386 const struct bpf_line_info *linfo;
388 if (!bpf_verifier_log_needed(&env->log))
391 linfo = find_linfo(env, insn_off);
392 if (!linfo || linfo == env->prev_linfo)
398 va_start(args, prefix_fmt);
399 bpf_verifier_vlog(&env->log, prefix_fmt, args);
404 ltrim(btf_name_by_offset(env->prog->aux->btf,
407 env->prev_linfo = linfo;
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 struct bpf_reg_state *reg,
412 struct tnum *range, const char *ctx,
413 const char *reg_name)
417 verbose(env, "At %s the register %s ", ctx, reg_name);
418 if (!tnum_is_unknown(reg->var_off)) {
419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 verbose(env, "has value %s", tn_buf);
422 verbose(env, "has unknown scalar value");
424 tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 verbose(env, " should have been in %s\n", tn_buf);
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
430 type = base_type(type);
431 return type == PTR_TO_PACKET ||
432 type == PTR_TO_PACKET_META;
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
437 return type == PTR_TO_SOCKET ||
438 type == PTR_TO_SOCK_COMMON ||
439 type == PTR_TO_TCP_SOCK ||
440 type == PTR_TO_XDP_SOCK;
443 static bool type_may_be_null(u32 type)
445 return type & PTR_MAYBE_NULL;
448 static bool reg_not_null(const struct bpf_reg_state *reg)
450 enum bpf_reg_type type;
453 if (type_may_be_null(type))
456 type = base_type(type);
457 return type == PTR_TO_SOCKET ||
458 type == PTR_TO_TCP_SOCK ||
459 type == PTR_TO_MAP_VALUE ||
460 type == PTR_TO_MAP_KEY ||
461 type == PTR_TO_SOCK_COMMON ||
462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
466 static bool type_is_ptr_alloc_obj(u32 type)
468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
471 static bool type_is_non_owning_ref(u32 type)
473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
478 struct btf_record *rec = NULL;
479 struct btf_struct_meta *meta;
481 if (reg->type == PTR_TO_MAP_VALUE) {
482 rec = reg->map_ptr->record;
483 } else if (type_is_ptr_alloc_obj(reg->type)) {
484 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
503 static bool type_is_rdonly_mem(u32 type)
505 return type & MEM_RDONLY;
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 const struct bpf_map *map)
511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
513 if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 func_id == BPF_FUNC_sk_lookup_udp ||
515 func_id == BPF_FUNC_skc_lookup_tcp ||
516 func_id == BPF_FUNC_ringbuf_reserve ||
517 func_id == BPF_FUNC_kptr_xchg)
520 if (func_id == BPF_FUNC_map_lookup_elem &&
521 (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 map_type == BPF_MAP_TYPE_SOCKHASH))
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
530 return func_id == BPF_FUNC_tcp_sock ||
531 func_id == BPF_FUNC_sk_fullsock ||
532 func_id == BPF_FUNC_skc_to_tcp_sock ||
533 func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 func_id == BPF_FUNC_skc_to_udp6_sock ||
535 func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_request_sock;
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
542 return func_id == BPF_FUNC_dynptr_data;
545 static bool is_callback_calling_kfunc(u32 btf_id);
547 static bool is_callback_calling_function(enum bpf_func_id func_id)
549 return func_id == BPF_FUNC_for_each_map_elem ||
550 func_id == BPF_FUNC_timer_set_callback ||
551 func_id == BPF_FUNC_find_vma ||
552 func_id == BPF_FUNC_loop ||
553 func_id == BPF_FUNC_user_ringbuf_drain;
556 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
558 return func_id == BPF_FUNC_timer_set_callback;
561 static bool is_storage_get_function(enum bpf_func_id func_id)
563 return func_id == BPF_FUNC_sk_storage_get ||
564 func_id == BPF_FUNC_inode_storage_get ||
565 func_id == BPF_FUNC_task_storage_get ||
566 func_id == BPF_FUNC_cgrp_storage_get;
569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
570 const struct bpf_map *map)
572 int ref_obj_uses = 0;
574 if (is_ptr_cast_function(func_id))
576 if (is_acquire_function(func_id, map))
578 if (is_dynptr_ref_function(func_id))
581 return ref_obj_uses > 1;
584 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
586 return BPF_CLASS(insn->code) == BPF_STX &&
587 BPF_MODE(insn->code) == BPF_ATOMIC &&
588 insn->imm == BPF_CMPXCHG;
591 /* string representation of 'enum bpf_reg_type'
593 * Note that reg_type_str() can not appear more than once in a single verbose()
596 static const char *reg_type_str(struct bpf_verifier_env *env,
597 enum bpf_reg_type type)
599 char postfix[16] = {0}, prefix[64] = {0};
600 static const char * const str[] = {
602 [SCALAR_VALUE] = "scalar",
603 [PTR_TO_CTX] = "ctx",
604 [CONST_PTR_TO_MAP] = "map_ptr",
605 [PTR_TO_MAP_VALUE] = "map_value",
606 [PTR_TO_STACK] = "fp",
607 [PTR_TO_PACKET] = "pkt",
608 [PTR_TO_PACKET_META] = "pkt_meta",
609 [PTR_TO_PACKET_END] = "pkt_end",
610 [PTR_TO_FLOW_KEYS] = "flow_keys",
611 [PTR_TO_SOCKET] = "sock",
612 [PTR_TO_SOCK_COMMON] = "sock_common",
613 [PTR_TO_TCP_SOCK] = "tcp_sock",
614 [PTR_TO_TP_BUFFER] = "tp_buffer",
615 [PTR_TO_XDP_SOCK] = "xdp_sock",
616 [PTR_TO_BTF_ID] = "ptr_",
617 [PTR_TO_MEM] = "mem",
618 [PTR_TO_BUF] = "buf",
619 [PTR_TO_FUNC] = "func",
620 [PTR_TO_MAP_KEY] = "map_key",
621 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
624 if (type & PTR_MAYBE_NULL) {
625 if (base_type(type) == PTR_TO_BTF_ID)
626 strncpy(postfix, "or_null_", 16);
628 strncpy(postfix, "_or_null", 16);
631 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
632 type & MEM_RDONLY ? "rdonly_" : "",
633 type & MEM_RINGBUF ? "ringbuf_" : "",
634 type & MEM_USER ? "user_" : "",
635 type & MEM_PERCPU ? "percpu_" : "",
636 type & MEM_RCU ? "rcu_" : "",
637 type & PTR_UNTRUSTED ? "untrusted_" : "",
638 type & PTR_TRUSTED ? "trusted_" : ""
641 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
642 prefix, str[base_type(type)], postfix);
643 return env->tmp_str_buf;
646 static char slot_type_char[] = {
647 [STACK_INVALID] = '?',
651 [STACK_DYNPTR] = 'd',
655 static void print_liveness(struct bpf_verifier_env *env,
656 enum bpf_reg_liveness live)
658 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
660 if (live & REG_LIVE_READ)
662 if (live & REG_LIVE_WRITTEN)
664 if (live & REG_LIVE_DONE)
668 static int __get_spi(s32 off)
670 return (-off - 1) / BPF_REG_SIZE;
673 static struct bpf_func_state *func(struct bpf_verifier_env *env,
674 const struct bpf_reg_state *reg)
676 struct bpf_verifier_state *cur = env->cur_state;
678 return cur->frame[reg->frameno];
681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
683 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
685 /* We need to check that slots between [spi - nr_slots + 1, spi] are
686 * within [0, allocated_stack).
688 * Please note that the spi grows downwards. For example, a dynptr
689 * takes the size of two stack slots; the first slot will be at
690 * spi and the second slot will be at spi - 1.
692 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
696 const char *obj_kind, int nr_slots)
700 if (!tnum_is_const(reg->var_off)) {
701 verbose(env, "%s has to be at a constant offset\n", obj_kind);
705 off = reg->off + reg->var_off.value;
706 if (off % BPF_REG_SIZE) {
707 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
711 spi = __get_spi(off);
712 if (spi + 1 < nr_slots) {
713 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
717 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
724 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
729 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
732 static const char *btf_type_name(const struct btf *btf, u32 id)
734 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
737 static const char *dynptr_type_str(enum bpf_dynptr_type type)
740 case BPF_DYNPTR_TYPE_LOCAL:
742 case BPF_DYNPTR_TYPE_RINGBUF:
744 case BPF_DYNPTR_TYPE_SKB:
746 case BPF_DYNPTR_TYPE_XDP:
748 case BPF_DYNPTR_TYPE_INVALID:
751 WARN_ONCE(1, "unknown dynptr type %d\n", type);
756 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
758 if (!btf || btf_id == 0)
761 /* we already validated that type is valid and has conforming name */
762 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
765 static const char *iter_state_str(enum bpf_iter_state state)
768 case BPF_ITER_STATE_ACTIVE:
770 case BPF_ITER_STATE_DRAINED:
772 case BPF_ITER_STATE_INVALID:
775 WARN_ONCE(1, "unknown iter state %d\n", state);
780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
782 env->scratched_regs |= 1U << regno;
785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
787 env->scratched_stack_slots |= 1ULL << spi;
790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
792 return (env->scratched_regs >> regno) & 1;
795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
797 return (env->scratched_stack_slots >> regno) & 1;
800 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
802 return env->scratched_regs || env->scratched_stack_slots;
805 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
807 env->scratched_regs = 0U;
808 env->scratched_stack_slots = 0ULL;
811 /* Used for printing the entire verifier state. */
812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
814 env->scratched_regs = ~0U;
815 env->scratched_stack_slots = ~0ULL;
818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
820 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
821 case DYNPTR_TYPE_LOCAL:
822 return BPF_DYNPTR_TYPE_LOCAL;
823 case DYNPTR_TYPE_RINGBUF:
824 return BPF_DYNPTR_TYPE_RINGBUF;
825 case DYNPTR_TYPE_SKB:
826 return BPF_DYNPTR_TYPE_SKB;
827 case DYNPTR_TYPE_XDP:
828 return BPF_DYNPTR_TYPE_XDP;
830 return BPF_DYNPTR_TYPE_INVALID;
834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
837 case BPF_DYNPTR_TYPE_LOCAL:
838 return DYNPTR_TYPE_LOCAL;
839 case BPF_DYNPTR_TYPE_RINGBUF:
840 return DYNPTR_TYPE_RINGBUF;
841 case BPF_DYNPTR_TYPE_SKB:
842 return DYNPTR_TYPE_SKB;
843 case BPF_DYNPTR_TYPE_XDP:
844 return DYNPTR_TYPE_XDP;
850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
852 return type == BPF_DYNPTR_TYPE_RINGBUF;
855 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
856 enum bpf_dynptr_type type,
857 bool first_slot, int dynptr_id);
859 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
860 struct bpf_reg_state *reg);
862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
863 struct bpf_reg_state *sreg1,
864 struct bpf_reg_state *sreg2,
865 enum bpf_dynptr_type type)
867 int id = ++env->id_gen;
869 __mark_dynptr_reg(sreg1, type, true, id);
870 __mark_dynptr_reg(sreg2, type, false, id);
873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
874 struct bpf_reg_state *reg,
875 enum bpf_dynptr_type type)
877 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
881 struct bpf_func_state *state, int spi);
883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
884 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
886 struct bpf_func_state *state = func(env, reg);
887 enum bpf_dynptr_type type;
890 spi = dynptr_get_spi(env, reg);
894 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
895 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
896 * to ensure that for the following example:
899 * So marking spi = 2 should lead to destruction of both d1 and d2. In
900 * case they do belong to same dynptr, second call won't see slot_type
901 * as STACK_DYNPTR and will simply skip destruction.
903 err = destroy_if_dynptr_stack_slot(env, state, spi);
906 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
910 for (i = 0; i < BPF_REG_SIZE; i++) {
911 state->stack[spi].slot_type[i] = STACK_DYNPTR;
912 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
915 type = arg_to_dynptr_type(arg_type);
916 if (type == BPF_DYNPTR_TYPE_INVALID)
919 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
920 &state->stack[spi - 1].spilled_ptr, type);
922 if (dynptr_type_refcounted(type)) {
923 /* The id is used to track proper releasing */
926 if (clone_ref_obj_id)
927 id = clone_ref_obj_id;
929 id = acquire_reference_state(env, insn_idx);
934 state->stack[spi].spilled_ptr.ref_obj_id = id;
935 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
938 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
939 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
948 for (i = 0; i < BPF_REG_SIZE; i++) {
949 state->stack[spi].slot_type[i] = STACK_INVALID;
950 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
953 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
954 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
956 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
958 * While we don't allow reading STACK_INVALID, it is still possible to
959 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
960 * helpers or insns can do partial read of that part without failing,
961 * but check_stack_range_initialized, check_stack_read_var_off, and
962 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
963 * the slot conservatively. Hence we need to prevent those liveness
966 * This was not a problem before because STACK_INVALID is only set by
967 * default (where the default reg state has its reg->parent as NULL), or
968 * in clean_live_states after REG_LIVE_DONE (at which point
969 * mark_reg_read won't walk reg->parent chain), but not randomly during
970 * verifier state exploration (like we did above). Hence, for our case
971 * parentage chain will still be live (i.e. reg->parent may be
972 * non-NULL), while earlier reg->parent was NULL, so we need
973 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
974 * done later on reads or by mark_dynptr_read as well to unnecessary
975 * mark registers in verifier state.
977 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
978 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
983 struct bpf_func_state *state = func(env, reg);
984 int spi, ref_obj_id, i;
986 spi = dynptr_get_spi(env, reg);
990 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
991 invalidate_dynptr(env, state, spi);
995 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
997 /* If the dynptr has a ref_obj_id, then we need to invalidate
1000 * 1) Any dynptrs with a matching ref_obj_id (clones)
1001 * 2) Any slices derived from this dynptr.
1004 /* Invalidate any slices associated with this dynptr */
1005 WARN_ON_ONCE(release_reference(env, ref_obj_id));
1007 /* Invalidate any dynptr clones */
1008 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1009 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1012 /* it should always be the case that if the ref obj id
1013 * matches then the stack slot also belongs to a
1016 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1017 verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1020 if (state->stack[i].spilled_ptr.dynptr.first_slot)
1021 invalidate_dynptr(env, state, i);
1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1028 struct bpf_reg_state *reg);
1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1032 if (!env->allow_ptr_leaks)
1033 __mark_reg_not_init(env, reg);
1035 __mark_reg_unknown(env, reg);
1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1039 struct bpf_func_state *state, int spi)
1041 struct bpf_func_state *fstate;
1042 struct bpf_reg_state *dreg;
1045 /* We always ensure that STACK_DYNPTR is never set partially,
1046 * hence just checking for slot_type[0] is enough. This is
1047 * different for STACK_SPILL, where it may be only set for
1048 * 1 byte, so code has to use is_spilled_reg.
1050 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1053 /* Reposition spi to first slot */
1054 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1057 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1058 verbose(env, "cannot overwrite referenced dynptr\n");
1062 mark_stack_slot_scratched(env, spi);
1063 mark_stack_slot_scratched(env, spi - 1);
1065 /* Writing partially to one dynptr stack slot destroys both. */
1066 for (i = 0; i < BPF_REG_SIZE; i++) {
1067 state->stack[spi].slot_type[i] = STACK_INVALID;
1068 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1071 dynptr_id = state->stack[spi].spilled_ptr.id;
1072 /* Invalidate any slices associated with this dynptr */
1073 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1074 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1075 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1077 if (dreg->dynptr_id == dynptr_id)
1078 mark_reg_invalid(env, dreg);
1081 /* Do not release reference state, we are destroying dynptr on stack,
1082 * not using some helper to release it. Just reset register.
1084 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1085 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1087 /* Same reason as unmark_stack_slots_dynptr above */
1088 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1089 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1098 if (reg->type == CONST_PTR_TO_DYNPTR)
1101 spi = dynptr_get_spi(env, reg);
1103 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1104 * error because this just means the stack state hasn't been updated yet.
1105 * We will do check_mem_access to check and update stack bounds later.
1107 if (spi < 0 && spi != -ERANGE)
1110 /* We don't need to check if the stack slots are marked by previous
1111 * dynptr initializations because we allow overwriting existing unreferenced
1112 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1113 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1114 * touching are completely destructed before we reinitialize them for a new
1115 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1116 * instead of delaying it until the end where the user will get "Unreleased
1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1124 struct bpf_func_state *state = func(env, reg);
1127 /* This already represents first slot of initialized bpf_dynptr.
1129 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1130 * check_func_arg_reg_off's logic, so we don't need to check its
1131 * offset and alignment.
1133 if (reg->type == CONST_PTR_TO_DYNPTR)
1136 spi = dynptr_get_spi(env, reg);
1139 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1142 for (i = 0; i < BPF_REG_SIZE; i++) {
1143 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1144 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1152 enum bpf_arg_type arg_type)
1154 struct bpf_func_state *state = func(env, reg);
1155 enum bpf_dynptr_type dynptr_type;
1158 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1159 if (arg_type == ARG_PTR_TO_DYNPTR)
1162 dynptr_type = arg_to_dynptr_type(arg_type);
1163 if (reg->type == CONST_PTR_TO_DYNPTR) {
1164 return reg->dynptr.type == dynptr_type;
1166 spi = dynptr_get_spi(env, reg);
1169 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1176 struct bpf_reg_state *reg, int insn_idx,
1177 struct btf *btf, u32 btf_id, int nr_slots)
1179 struct bpf_func_state *state = func(env, reg);
1182 spi = iter_get_spi(env, reg, nr_slots);
1186 id = acquire_reference_state(env, insn_idx);
1190 for (i = 0; i < nr_slots; i++) {
1191 struct bpf_stack_state *slot = &state->stack[spi - i];
1192 struct bpf_reg_state *st = &slot->spilled_ptr;
1194 __mark_reg_known_zero(st);
1195 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1196 st->live |= REG_LIVE_WRITTEN;
1197 st->ref_obj_id = i == 0 ? id : 0;
1199 st->iter.btf_id = btf_id;
1200 st->iter.state = BPF_ITER_STATE_ACTIVE;
1203 for (j = 0; j < BPF_REG_SIZE; j++)
1204 slot->slot_type[j] = STACK_ITER;
1206 mark_stack_slot_scratched(env, spi - i);
1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1213 struct bpf_reg_state *reg, int nr_slots)
1215 struct bpf_func_state *state = func(env, reg);
1218 spi = iter_get_spi(env, reg, nr_slots);
1222 for (i = 0; i < nr_slots; i++) {
1223 struct bpf_stack_state *slot = &state->stack[spi - i];
1224 struct bpf_reg_state *st = &slot->spilled_ptr;
1227 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1229 __mark_reg_not_init(env, st);
1231 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1232 st->live |= REG_LIVE_WRITTEN;
1234 for (j = 0; j < BPF_REG_SIZE; j++)
1235 slot->slot_type[j] = STACK_INVALID;
1237 mark_stack_slot_scratched(env, spi - i);
1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1244 struct bpf_reg_state *reg, int nr_slots)
1246 struct bpf_func_state *state = func(env, reg);
1249 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1250 * will do check_mem_access to check and update stack bounds later, so
1251 * return true for that case.
1253 spi = iter_get_spi(env, reg, nr_slots);
1259 for (i = 0; i < nr_slots; i++) {
1260 struct bpf_stack_state *slot = &state->stack[spi - i];
1262 for (j = 0; j < BPF_REG_SIZE; j++)
1263 if (slot->slot_type[j] == STACK_ITER)
1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1271 struct btf *btf, u32 btf_id, int nr_slots)
1273 struct bpf_func_state *state = func(env, reg);
1276 spi = iter_get_spi(env, reg, nr_slots);
1280 for (i = 0; i < nr_slots; i++) {
1281 struct bpf_stack_state *slot = &state->stack[spi - i];
1282 struct bpf_reg_state *st = &slot->spilled_ptr;
1284 /* only main (first) slot has ref_obj_id set */
1285 if (i == 0 && !st->ref_obj_id)
1287 if (i != 0 && st->ref_obj_id)
1289 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1292 for (j = 0; j < BPF_REG_SIZE; j++)
1293 if (slot->slot_type[j] != STACK_ITER)
1300 /* Check if given stack slot is "special":
1301 * - spilled register state (STACK_SPILL);
1302 * - dynptr state (STACK_DYNPTR);
1303 * - iter state (STACK_ITER).
1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1307 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1319 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1324 /* The reg state of a pointer or a bounded scalar was saved when
1325 * it was spilled to the stack.
1327 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1329 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1334 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1335 stack->spilled_ptr.type == SCALAR_VALUE;
1338 static void scrub_spilled_slot(u8 *stype)
1340 if (*stype != STACK_INVALID)
1341 *stype = STACK_MISC;
1344 static void print_verifier_state(struct bpf_verifier_env *env,
1345 const struct bpf_func_state *state,
1348 const struct bpf_reg_state *reg;
1349 enum bpf_reg_type t;
1353 verbose(env, " frame%d:", state->frameno);
1354 for (i = 0; i < MAX_BPF_REG; i++) {
1355 reg = &state->regs[i];
1359 if (!print_all && !reg_scratched(env, i))
1361 verbose(env, " R%d", i);
1362 print_liveness(env, reg->live);
1364 if (t == SCALAR_VALUE && reg->precise)
1366 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1367 tnum_is_const(reg->var_off)) {
1368 /* reg->off should be 0 for SCALAR_VALUE */
1369 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1370 verbose(env, "%lld", reg->var_off.value + reg->off);
1372 const char *sep = "";
1374 verbose(env, "%s", reg_type_str(env, t));
1375 if (base_type(t) == PTR_TO_BTF_ID)
1376 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1379 * _a stands for append, was shortened to avoid multiline statements below.
1380 * This macro is used to output a comma separated list of attributes.
1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1385 verbose_a("id=%d", reg->id);
1386 if (reg->ref_obj_id)
1387 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1388 if (type_is_non_owning_ref(reg->type))
1389 verbose_a("%s", "non_own_ref");
1390 if (t != SCALAR_VALUE)
1391 verbose_a("off=%d", reg->off);
1392 if (type_is_pkt_pointer(t))
1393 verbose_a("r=%d", reg->range);
1394 else if (base_type(t) == CONST_PTR_TO_MAP ||
1395 base_type(t) == PTR_TO_MAP_KEY ||
1396 base_type(t) == PTR_TO_MAP_VALUE)
1397 verbose_a("ks=%d,vs=%d",
1398 reg->map_ptr->key_size,
1399 reg->map_ptr->value_size);
1400 if (tnum_is_const(reg->var_off)) {
1401 /* Typically an immediate SCALAR_VALUE, but
1402 * could be a pointer whose offset is too big
1405 verbose_a("imm=%llx", reg->var_off.value);
1407 if (reg->smin_value != reg->umin_value &&
1408 reg->smin_value != S64_MIN)
1409 verbose_a("smin=%lld", (long long)reg->smin_value);
1410 if (reg->smax_value != reg->umax_value &&
1411 reg->smax_value != S64_MAX)
1412 verbose_a("smax=%lld", (long long)reg->smax_value);
1413 if (reg->umin_value != 0)
1414 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1415 if (reg->umax_value != U64_MAX)
1416 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1417 if (!tnum_is_unknown(reg->var_off)) {
1420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1421 verbose_a("var_off=%s", tn_buf);
1423 if (reg->s32_min_value != reg->smin_value &&
1424 reg->s32_min_value != S32_MIN)
1425 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1426 if (reg->s32_max_value != reg->smax_value &&
1427 reg->s32_max_value != S32_MAX)
1428 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1429 if (reg->u32_min_value != reg->umin_value &&
1430 reg->u32_min_value != U32_MIN)
1431 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1432 if (reg->u32_max_value != reg->umax_value &&
1433 reg->u32_max_value != U32_MAX)
1434 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1441 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1442 char types_buf[BPF_REG_SIZE + 1];
1446 for (j = 0; j < BPF_REG_SIZE; j++) {
1447 if (state->stack[i].slot_type[j] != STACK_INVALID)
1449 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1451 types_buf[BPF_REG_SIZE] = 0;
1454 if (!print_all && !stack_slot_scratched(env, i))
1456 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1458 reg = &state->stack[i].spilled_ptr;
1461 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1462 print_liveness(env, reg->live);
1463 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1464 if (t == SCALAR_VALUE && reg->precise)
1466 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1467 verbose(env, "%lld", reg->var_off.value + reg->off);
1470 i += BPF_DYNPTR_NR_SLOTS - 1;
1471 reg = &state->stack[i].spilled_ptr;
1473 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1474 print_liveness(env, reg->live);
1475 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1476 if (reg->ref_obj_id)
1477 verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1480 /* only main slot has ref_obj_id set; skip others */
1481 reg = &state->stack[i].spilled_ptr;
1482 if (!reg->ref_obj_id)
1485 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1486 print_liveness(env, reg->live);
1487 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1488 iter_type_str(reg->iter.btf, reg->iter.btf_id),
1489 reg->ref_obj_id, iter_state_str(reg->iter.state),
1495 reg = &state->stack[i].spilled_ptr;
1497 for (j = 0; j < BPF_REG_SIZE; j++)
1498 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1499 types_buf[BPF_REG_SIZE] = 0;
1501 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1502 print_liveness(env, reg->live);
1503 verbose(env, "=%s", types_buf);
1507 if (state->acquired_refs && state->refs[0].id) {
1508 verbose(env, " refs=%d", state->refs[0].id);
1509 for (i = 1; i < state->acquired_refs; i++)
1510 if (state->refs[i].id)
1511 verbose(env, ",%d", state->refs[i].id);
1513 if (state->in_callback_fn)
1514 verbose(env, " cb");
1515 if (state->in_async_callback_fn)
1516 verbose(env, " async_cb");
1518 mark_verifier_state_clean(env);
1521 static inline u32 vlog_alignment(u32 pos)
1523 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1524 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1527 static void print_insn_state(struct bpf_verifier_env *env,
1528 const struct bpf_func_state *state)
1530 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1531 /* remove new line character */
1532 bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1533 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1535 verbose(env, "%d:", env->insn_idx);
1537 print_verifier_state(env, state, false);
1540 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1541 * small to hold src. This is different from krealloc since we don't want to preserve
1542 * the contents of dst.
1544 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1547 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1553 if (ZERO_OR_NULL_PTR(src))
1556 if (unlikely(check_mul_overflow(n, size, &bytes)))
1559 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1560 dst = krealloc(orig, alloc_bytes, flags);
1566 memcpy(dst, src, bytes);
1568 return dst ? dst : ZERO_SIZE_PTR;
1571 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1572 * small to hold new_n items. new items are zeroed out if the array grows.
1574 * Contrary to krealloc_array, does not free arr if new_n is zero.
1576 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1581 if (!new_n || old_n == new_n)
1584 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1585 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1593 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1596 return arr ? arr : ZERO_SIZE_PTR;
1599 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1601 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1602 sizeof(struct bpf_reference_state), GFP_KERNEL);
1606 dst->acquired_refs = src->acquired_refs;
1610 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 size_t n = src->allocated_stack / BPF_REG_SIZE;
1614 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1619 dst->allocated_stack = src->allocated_stack;
1623 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1625 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1626 sizeof(struct bpf_reference_state));
1630 state->acquired_refs = n;
1634 static int grow_stack_state(struct bpf_func_state *state, int size)
1636 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1641 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1645 state->allocated_stack = size;
1649 /* Acquire a pointer id from the env and update the state->refs to include
1650 * this new pointer reference.
1651 * On success, returns a valid pointer id to associate with the register
1652 * On failure, returns a negative errno.
1654 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1656 struct bpf_func_state *state = cur_func(env);
1657 int new_ofs = state->acquired_refs;
1660 err = resize_reference_state(state, state->acquired_refs + 1);
1664 state->refs[new_ofs].id = id;
1665 state->refs[new_ofs].insn_idx = insn_idx;
1666 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1671 /* release function corresponding to acquire_reference_state(). Idempotent. */
1672 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1676 last_idx = state->acquired_refs - 1;
1677 for (i = 0; i < state->acquired_refs; i++) {
1678 if (state->refs[i].id == ptr_id) {
1679 /* Cannot release caller references in callbacks */
1680 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1682 if (last_idx && i != last_idx)
1683 memcpy(&state->refs[i], &state->refs[last_idx],
1684 sizeof(*state->refs));
1685 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1686 state->acquired_refs--;
1693 static void free_func_state(struct bpf_func_state *state)
1698 kfree(state->stack);
1702 static void clear_jmp_history(struct bpf_verifier_state *state)
1704 kfree(state->jmp_history);
1705 state->jmp_history = NULL;
1706 state->jmp_history_cnt = 0;
1709 static void free_verifier_state(struct bpf_verifier_state *state,
1714 for (i = 0; i <= state->curframe; i++) {
1715 free_func_state(state->frame[i]);
1716 state->frame[i] = NULL;
1718 clear_jmp_history(state);
1723 /* copy verifier state from src to dst growing dst stack space
1724 * when necessary to accommodate larger src stack
1726 static int copy_func_state(struct bpf_func_state *dst,
1727 const struct bpf_func_state *src)
1731 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1732 err = copy_reference_state(dst, src);
1735 return copy_stack_state(dst, src);
1738 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1739 const struct bpf_verifier_state *src)
1741 struct bpf_func_state *dst;
1744 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1745 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1747 if (!dst_state->jmp_history)
1749 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1751 /* if dst has more stack frames then src frame, free them */
1752 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1753 free_func_state(dst_state->frame[i]);
1754 dst_state->frame[i] = NULL;
1756 dst_state->speculative = src->speculative;
1757 dst_state->active_rcu_lock = src->active_rcu_lock;
1758 dst_state->curframe = src->curframe;
1759 dst_state->active_lock.ptr = src->active_lock.ptr;
1760 dst_state->active_lock.id = src->active_lock.id;
1761 dst_state->branches = src->branches;
1762 dst_state->parent = src->parent;
1763 dst_state->first_insn_idx = src->first_insn_idx;
1764 dst_state->last_insn_idx = src->last_insn_idx;
1765 for (i = 0; i <= src->curframe; i++) {
1766 dst = dst_state->frame[i];
1768 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1771 dst_state->frame[i] = dst;
1773 err = copy_func_state(dst, src->frame[i]);
1780 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1783 u32 br = --st->branches;
1785 /* WARN_ON(br > 1) technically makes sense here,
1786 * but see comment in push_stack(), hence:
1788 WARN_ONCE((int)br < 0,
1789 "BUG update_branch_counts:branches_to_explore=%d\n",
1797 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1798 int *insn_idx, bool pop_log)
1800 struct bpf_verifier_state *cur = env->cur_state;
1801 struct bpf_verifier_stack_elem *elem, *head = env->head;
1804 if (env->head == NULL)
1808 err = copy_verifier_state(cur, &head->st);
1813 bpf_vlog_reset(&env->log, head->log_pos);
1815 *insn_idx = head->insn_idx;
1817 *prev_insn_idx = head->prev_insn_idx;
1819 free_verifier_state(&head->st, false);
1826 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1827 int insn_idx, int prev_insn_idx,
1830 struct bpf_verifier_state *cur = env->cur_state;
1831 struct bpf_verifier_stack_elem *elem;
1834 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1838 elem->insn_idx = insn_idx;
1839 elem->prev_insn_idx = prev_insn_idx;
1840 elem->next = env->head;
1841 elem->log_pos = env->log.end_pos;
1844 err = copy_verifier_state(&elem->st, cur);
1847 elem->st.speculative |= speculative;
1848 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1849 verbose(env, "The sequence of %d jumps is too complex.\n",
1853 if (elem->st.parent) {
1854 ++elem->st.parent->branches;
1855 /* WARN_ON(branches > 2) technically makes sense here,
1857 * 1. speculative states will bump 'branches' for non-branch
1859 * 2. is_state_visited() heuristics may decide not to create
1860 * a new state for a sequence of branches and all such current
1861 * and cloned states will be pointing to a single parent state
1862 * which might have large 'branches' count.
1867 free_verifier_state(env->cur_state, true);
1868 env->cur_state = NULL;
1869 /* pop all elements and return */
1870 while (!pop_stack(env, NULL, NULL, false));
1874 #define CALLER_SAVED_REGS 6
1875 static const int caller_saved[CALLER_SAVED_REGS] = {
1876 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1879 /* This helper doesn't clear reg->id */
1880 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1882 reg->var_off = tnum_const(imm);
1883 reg->smin_value = (s64)imm;
1884 reg->smax_value = (s64)imm;
1885 reg->umin_value = imm;
1886 reg->umax_value = imm;
1888 reg->s32_min_value = (s32)imm;
1889 reg->s32_max_value = (s32)imm;
1890 reg->u32_min_value = (u32)imm;
1891 reg->u32_max_value = (u32)imm;
1894 /* Mark the unknown part of a register (variable offset or scalar value) as
1895 * known to have the value @imm.
1897 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1899 /* Clear off and union(map_ptr, range) */
1900 memset(((u8 *)reg) + sizeof(reg->type), 0,
1901 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1903 reg->ref_obj_id = 0;
1904 ___mark_reg_known(reg, imm);
1907 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1909 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1910 reg->s32_min_value = (s32)imm;
1911 reg->s32_max_value = (s32)imm;
1912 reg->u32_min_value = (u32)imm;
1913 reg->u32_max_value = (u32)imm;
1916 /* Mark the 'variable offset' part of a register as zero. This should be
1917 * used only on registers holding a pointer type.
1919 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1921 __mark_reg_known(reg, 0);
1924 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1926 __mark_reg_known(reg, 0);
1927 reg->type = SCALAR_VALUE;
1930 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1931 struct bpf_reg_state *regs, u32 regno)
1933 if (WARN_ON(regno >= MAX_BPF_REG)) {
1934 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1935 /* Something bad happened, let's kill all regs */
1936 for (regno = 0; regno < MAX_BPF_REG; regno++)
1937 __mark_reg_not_init(env, regs + regno);
1940 __mark_reg_known_zero(regs + regno);
1943 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1944 bool first_slot, int dynptr_id)
1946 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1947 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1948 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1950 __mark_reg_known_zero(reg);
1951 reg->type = CONST_PTR_TO_DYNPTR;
1952 /* Give each dynptr a unique id to uniquely associate slices to it. */
1953 reg->id = dynptr_id;
1954 reg->dynptr.type = type;
1955 reg->dynptr.first_slot = first_slot;
1958 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1960 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1961 const struct bpf_map *map = reg->map_ptr;
1963 if (map->inner_map_meta) {
1964 reg->type = CONST_PTR_TO_MAP;
1965 reg->map_ptr = map->inner_map_meta;
1966 /* transfer reg's id which is unique for every map_lookup_elem
1967 * as UID of the inner map.
1969 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1970 reg->map_uid = reg->id;
1971 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1972 reg->type = PTR_TO_XDP_SOCK;
1973 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1974 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1975 reg->type = PTR_TO_SOCKET;
1977 reg->type = PTR_TO_MAP_VALUE;
1982 reg->type &= ~PTR_MAYBE_NULL;
1985 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1986 struct btf_field_graph_root *ds_head)
1988 __mark_reg_known_zero(®s[regno]);
1989 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1990 regs[regno].btf = ds_head->btf;
1991 regs[regno].btf_id = ds_head->value_btf_id;
1992 regs[regno].off = ds_head->node_offset;
1995 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1997 return type_is_pkt_pointer(reg->type);
2000 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2002 return reg_is_pkt_pointer(reg) ||
2003 reg->type == PTR_TO_PACKET_END;
2006 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2008 return base_type(reg->type) == PTR_TO_MEM &&
2009 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2012 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2013 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2014 enum bpf_reg_type which)
2016 /* The register can already have a range from prior markings.
2017 * This is fine as long as it hasn't been advanced from its
2020 return reg->type == which &&
2023 tnum_equals_const(reg->var_off, 0);
2026 /* Reset the min/max bounds of a register */
2027 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2029 reg->smin_value = S64_MIN;
2030 reg->smax_value = S64_MAX;
2031 reg->umin_value = 0;
2032 reg->umax_value = U64_MAX;
2034 reg->s32_min_value = S32_MIN;
2035 reg->s32_max_value = S32_MAX;
2036 reg->u32_min_value = 0;
2037 reg->u32_max_value = U32_MAX;
2040 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2042 reg->smin_value = S64_MIN;
2043 reg->smax_value = S64_MAX;
2044 reg->umin_value = 0;
2045 reg->umax_value = U64_MAX;
2048 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2050 reg->s32_min_value = S32_MIN;
2051 reg->s32_max_value = S32_MAX;
2052 reg->u32_min_value = 0;
2053 reg->u32_max_value = U32_MAX;
2056 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2058 struct tnum var32_off = tnum_subreg(reg->var_off);
2060 /* min signed is max(sign bit) | min(other bits) */
2061 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2062 var32_off.value | (var32_off.mask & S32_MIN));
2063 /* max signed is min(sign bit) | max(other bits) */
2064 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2065 var32_off.value | (var32_off.mask & S32_MAX));
2066 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2067 reg->u32_max_value = min(reg->u32_max_value,
2068 (u32)(var32_off.value | var32_off.mask));
2071 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2073 /* min signed is max(sign bit) | min(other bits) */
2074 reg->smin_value = max_t(s64, reg->smin_value,
2075 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2076 /* max signed is min(sign bit) | max(other bits) */
2077 reg->smax_value = min_t(s64, reg->smax_value,
2078 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2079 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2080 reg->umax_value = min(reg->umax_value,
2081 reg->var_off.value | reg->var_off.mask);
2084 static void __update_reg_bounds(struct bpf_reg_state *reg)
2086 __update_reg32_bounds(reg);
2087 __update_reg64_bounds(reg);
2090 /* Uses signed min/max values to inform unsigned, and vice-versa */
2091 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2093 /* Learn sign from signed bounds.
2094 * If we cannot cross the sign boundary, then signed and unsigned bounds
2095 * are the same, so combine. This works even in the negative case, e.g.
2096 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2098 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2099 reg->s32_min_value = reg->u32_min_value =
2100 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2101 reg->s32_max_value = reg->u32_max_value =
2102 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2105 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2106 * boundary, so we must be careful.
2108 if ((s32)reg->u32_max_value >= 0) {
2109 /* Positive. We can't learn anything from the smin, but smax
2110 * is positive, hence safe.
2112 reg->s32_min_value = reg->u32_min_value;
2113 reg->s32_max_value = reg->u32_max_value =
2114 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2115 } else if ((s32)reg->u32_min_value < 0) {
2116 /* Negative. We can't learn anything from the smax, but smin
2117 * is negative, hence safe.
2119 reg->s32_min_value = reg->u32_min_value =
2120 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2121 reg->s32_max_value = reg->u32_max_value;
2125 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2127 /* Learn sign from signed bounds.
2128 * If we cannot cross the sign boundary, then signed and unsigned bounds
2129 * are the same, so combine. This works even in the negative case, e.g.
2130 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2132 if (reg->smin_value >= 0 || reg->smax_value < 0) {
2133 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2135 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2139 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2140 * boundary, so we must be careful.
2142 if ((s64)reg->umax_value >= 0) {
2143 /* Positive. We can't learn anything from the smin, but smax
2144 * is positive, hence safe.
2146 reg->smin_value = reg->umin_value;
2147 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2149 } else if ((s64)reg->umin_value < 0) {
2150 /* Negative. We can't learn anything from the smax, but smin
2151 * is negative, hence safe.
2153 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2155 reg->smax_value = reg->umax_value;
2159 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2161 __reg32_deduce_bounds(reg);
2162 __reg64_deduce_bounds(reg);
2165 /* Attempts to improve var_off based on unsigned min/max information */
2166 static void __reg_bound_offset(struct bpf_reg_state *reg)
2168 struct tnum var64_off = tnum_intersect(reg->var_off,
2169 tnum_range(reg->umin_value,
2171 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2172 tnum_range(reg->u32_min_value,
2173 reg->u32_max_value));
2175 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2178 static void reg_bounds_sync(struct bpf_reg_state *reg)
2180 /* We might have learned new bounds from the var_off. */
2181 __update_reg_bounds(reg);
2182 /* We might have learned something about the sign bit. */
2183 __reg_deduce_bounds(reg);
2184 /* We might have learned some bits from the bounds. */
2185 __reg_bound_offset(reg);
2186 /* Intersecting with the old var_off might have improved our bounds
2187 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2188 * then new var_off is (0; 0x7f...fc) which improves our umax.
2190 __update_reg_bounds(reg);
2193 static bool __reg32_bound_s64(s32 a)
2195 return a >= 0 && a <= S32_MAX;
2198 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2200 reg->umin_value = reg->u32_min_value;
2201 reg->umax_value = reg->u32_max_value;
2203 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2204 * be positive otherwise set to worse case bounds and refine later
2207 if (__reg32_bound_s64(reg->s32_min_value) &&
2208 __reg32_bound_s64(reg->s32_max_value)) {
2209 reg->smin_value = reg->s32_min_value;
2210 reg->smax_value = reg->s32_max_value;
2212 reg->smin_value = 0;
2213 reg->smax_value = U32_MAX;
2217 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2219 /* special case when 64-bit register has upper 32-bit register
2220 * zeroed. Typically happens after zext or <<32, >>32 sequence
2221 * allowing us to use 32-bit bounds directly,
2223 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2224 __reg_assign_32_into_64(reg);
2226 /* Otherwise the best we can do is push lower 32bit known and
2227 * unknown bits into register (var_off set from jmp logic)
2228 * then learn as much as possible from the 64-bit tnum
2229 * known and unknown bits. The previous smin/smax bounds are
2230 * invalid here because of jmp32 compare so mark them unknown
2231 * so they do not impact tnum bounds calculation.
2233 __mark_reg64_unbounded(reg);
2235 reg_bounds_sync(reg);
2238 static bool __reg64_bound_s32(s64 a)
2240 return a >= S32_MIN && a <= S32_MAX;
2243 static bool __reg64_bound_u32(u64 a)
2245 return a >= U32_MIN && a <= U32_MAX;
2248 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2250 __mark_reg32_unbounded(reg);
2251 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2252 reg->s32_min_value = (s32)reg->smin_value;
2253 reg->s32_max_value = (s32)reg->smax_value;
2255 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2256 reg->u32_min_value = (u32)reg->umin_value;
2257 reg->u32_max_value = (u32)reg->umax_value;
2259 reg_bounds_sync(reg);
2262 /* Mark a register as having a completely unknown (scalar) value. */
2263 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2264 struct bpf_reg_state *reg)
2267 * Clear type, off, and union(map_ptr, range) and
2268 * padding between 'type' and union
2270 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2271 reg->type = SCALAR_VALUE;
2273 reg->ref_obj_id = 0;
2274 reg->var_off = tnum_unknown;
2276 reg->precise = !env->bpf_capable;
2277 __mark_reg_unbounded(reg);
2280 static void mark_reg_unknown(struct bpf_verifier_env *env,
2281 struct bpf_reg_state *regs, u32 regno)
2283 if (WARN_ON(regno >= MAX_BPF_REG)) {
2284 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2285 /* Something bad happened, let's kill all regs except FP */
2286 for (regno = 0; regno < BPF_REG_FP; regno++)
2287 __mark_reg_not_init(env, regs + regno);
2290 __mark_reg_unknown(env, regs + regno);
2293 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2294 struct bpf_reg_state *reg)
2296 __mark_reg_unknown(env, reg);
2297 reg->type = NOT_INIT;
2300 static void mark_reg_not_init(struct bpf_verifier_env *env,
2301 struct bpf_reg_state *regs, u32 regno)
2303 if (WARN_ON(regno >= MAX_BPF_REG)) {
2304 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2305 /* Something bad happened, let's kill all regs except FP */
2306 for (regno = 0; regno < BPF_REG_FP; regno++)
2307 __mark_reg_not_init(env, regs + regno);
2310 __mark_reg_not_init(env, regs + regno);
2313 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2314 struct bpf_reg_state *regs, u32 regno,
2315 enum bpf_reg_type reg_type,
2316 struct btf *btf, u32 btf_id,
2317 enum bpf_type_flag flag)
2319 if (reg_type == SCALAR_VALUE) {
2320 mark_reg_unknown(env, regs, regno);
2323 mark_reg_known_zero(env, regs, regno);
2324 regs[regno].type = PTR_TO_BTF_ID | flag;
2325 regs[regno].btf = btf;
2326 regs[regno].btf_id = btf_id;
2329 #define DEF_NOT_SUBREG (0)
2330 static void init_reg_state(struct bpf_verifier_env *env,
2331 struct bpf_func_state *state)
2333 struct bpf_reg_state *regs = state->regs;
2336 for (i = 0; i < MAX_BPF_REG; i++) {
2337 mark_reg_not_init(env, regs, i);
2338 regs[i].live = REG_LIVE_NONE;
2339 regs[i].parent = NULL;
2340 regs[i].subreg_def = DEF_NOT_SUBREG;
2344 regs[BPF_REG_FP].type = PTR_TO_STACK;
2345 mark_reg_known_zero(env, regs, BPF_REG_FP);
2346 regs[BPF_REG_FP].frameno = state->frameno;
2349 #define BPF_MAIN_FUNC (-1)
2350 static void init_func_state(struct bpf_verifier_env *env,
2351 struct bpf_func_state *state,
2352 int callsite, int frameno, int subprogno)
2354 state->callsite = callsite;
2355 state->frameno = frameno;
2356 state->subprogno = subprogno;
2357 state->callback_ret_range = tnum_range(0, 0);
2358 init_reg_state(env, state);
2359 mark_verifier_state_scratched(env);
2362 /* Similar to push_stack(), but for async callbacks */
2363 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2364 int insn_idx, int prev_insn_idx,
2367 struct bpf_verifier_stack_elem *elem;
2368 struct bpf_func_state *frame;
2370 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2374 elem->insn_idx = insn_idx;
2375 elem->prev_insn_idx = prev_insn_idx;
2376 elem->next = env->head;
2377 elem->log_pos = env->log.end_pos;
2380 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2382 "The sequence of %d jumps is too complex for async cb.\n",
2386 /* Unlike push_stack() do not copy_verifier_state().
2387 * The caller state doesn't matter.
2388 * This is async callback. It starts in a fresh stack.
2389 * Initialize it similar to do_check_common().
2391 elem->st.branches = 1;
2392 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2395 init_func_state(env, frame,
2396 BPF_MAIN_FUNC /* callsite */,
2397 0 /* frameno within this callchain */,
2398 subprog /* subprog number within this prog */);
2399 elem->st.frame[0] = frame;
2402 free_verifier_state(env->cur_state, true);
2403 env->cur_state = NULL;
2404 /* pop all elements and return */
2405 while (!pop_stack(env, NULL, NULL, false));
2411 SRC_OP, /* register is used as source operand */
2412 DST_OP, /* register is used as destination operand */
2413 DST_OP_NO_MARK /* same as above, check only, don't mark */
2416 static int cmp_subprogs(const void *a, const void *b)
2418 return ((struct bpf_subprog_info *)a)->start -
2419 ((struct bpf_subprog_info *)b)->start;
2422 static int find_subprog(struct bpf_verifier_env *env, int off)
2424 struct bpf_subprog_info *p;
2426 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2427 sizeof(env->subprog_info[0]), cmp_subprogs);
2430 return p - env->subprog_info;
2434 static int add_subprog(struct bpf_verifier_env *env, int off)
2436 int insn_cnt = env->prog->len;
2439 if (off >= insn_cnt || off < 0) {
2440 verbose(env, "call to invalid destination\n");
2443 ret = find_subprog(env, off);
2446 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2447 verbose(env, "too many subprograms\n");
2450 /* determine subprog starts. The end is one before the next starts */
2451 env->subprog_info[env->subprog_cnt++].start = off;
2452 sort(env->subprog_info, env->subprog_cnt,
2453 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2454 return env->subprog_cnt - 1;
2457 #define MAX_KFUNC_DESCS 256
2458 #define MAX_KFUNC_BTFS 256
2460 struct bpf_kfunc_desc {
2461 struct btf_func_model func_model;
2468 struct bpf_kfunc_btf {
2470 struct module *module;
2474 struct bpf_kfunc_desc_tab {
2475 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2476 * verification. JITs do lookups by bpf_insn, where func_id may not be
2477 * available, therefore at the end of verification do_misc_fixups()
2478 * sorts this by imm and offset.
2480 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2484 struct bpf_kfunc_btf_tab {
2485 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2489 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2491 const struct bpf_kfunc_desc *d0 = a;
2492 const struct bpf_kfunc_desc *d1 = b;
2494 /* func_id is not greater than BTF_MAX_TYPE */
2495 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2498 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2500 const struct bpf_kfunc_btf *d0 = a;
2501 const struct bpf_kfunc_btf *d1 = b;
2503 return d0->offset - d1->offset;
2506 static const struct bpf_kfunc_desc *
2507 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2509 struct bpf_kfunc_desc desc = {
2513 struct bpf_kfunc_desc_tab *tab;
2515 tab = prog->aux->kfunc_tab;
2516 return bsearch(&desc, tab->descs, tab->nr_descs,
2517 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2520 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2521 u16 btf_fd_idx, u8 **func_addr)
2523 const struct bpf_kfunc_desc *desc;
2525 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2529 *func_addr = (u8 *)desc->addr;
2533 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2536 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2537 struct bpf_kfunc_btf_tab *tab;
2538 struct bpf_kfunc_btf *b;
2543 tab = env->prog->aux->kfunc_btf_tab;
2544 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2545 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2547 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2548 verbose(env, "too many different module BTFs\n");
2549 return ERR_PTR(-E2BIG);
2552 if (bpfptr_is_null(env->fd_array)) {
2553 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2554 return ERR_PTR(-EPROTO);
2557 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2558 offset * sizeof(btf_fd),
2560 return ERR_PTR(-EFAULT);
2562 btf = btf_get_by_fd(btf_fd);
2564 verbose(env, "invalid module BTF fd specified\n");
2568 if (!btf_is_module(btf)) {
2569 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2571 return ERR_PTR(-EINVAL);
2574 mod = btf_try_get_module(btf);
2577 return ERR_PTR(-ENXIO);
2580 b = &tab->descs[tab->nr_descs++];
2585 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2586 kfunc_btf_cmp_by_off, NULL);
2591 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2596 while (tab->nr_descs--) {
2597 module_put(tab->descs[tab->nr_descs].module);
2598 btf_put(tab->descs[tab->nr_descs].btf);
2603 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2607 /* In the future, this can be allowed to increase limit
2608 * of fd index into fd_array, interpreted as u16.
2610 verbose(env, "negative offset disallowed for kernel module function call\n");
2611 return ERR_PTR(-EINVAL);
2614 return __find_kfunc_desc_btf(env, offset);
2616 return btf_vmlinux ?: ERR_PTR(-ENOENT);
2619 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2621 const struct btf_type *func, *func_proto;
2622 struct bpf_kfunc_btf_tab *btf_tab;
2623 struct bpf_kfunc_desc_tab *tab;
2624 struct bpf_prog_aux *prog_aux;
2625 struct bpf_kfunc_desc *desc;
2626 const char *func_name;
2627 struct btf *desc_btf;
2628 unsigned long call_imm;
2632 prog_aux = env->prog->aux;
2633 tab = prog_aux->kfunc_tab;
2634 btf_tab = prog_aux->kfunc_btf_tab;
2637 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2641 if (!env->prog->jit_requested) {
2642 verbose(env, "JIT is required for calling kernel function\n");
2646 if (!bpf_jit_supports_kfunc_call()) {
2647 verbose(env, "JIT does not support calling kernel function\n");
2651 if (!env->prog->gpl_compatible) {
2652 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2656 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2659 prog_aux->kfunc_tab = tab;
2662 /* func_id == 0 is always invalid, but instead of returning an error, be
2663 * conservative and wait until the code elimination pass before returning
2664 * error, so that invalid calls that get pruned out can be in BPF programs
2665 * loaded from userspace. It is also required that offset be untouched
2668 if (!func_id && !offset)
2671 if (!btf_tab && offset) {
2672 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2675 prog_aux->kfunc_btf_tab = btf_tab;
2678 desc_btf = find_kfunc_desc_btf(env, offset);
2679 if (IS_ERR(desc_btf)) {
2680 verbose(env, "failed to find BTF for kernel function\n");
2681 return PTR_ERR(desc_btf);
2684 if (find_kfunc_desc(env->prog, func_id, offset))
2687 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2688 verbose(env, "too many different kernel function calls\n");
2692 func = btf_type_by_id(desc_btf, func_id);
2693 if (!func || !btf_type_is_func(func)) {
2694 verbose(env, "kernel btf_id %u is not a function\n",
2698 func_proto = btf_type_by_id(desc_btf, func->type);
2699 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2700 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2705 func_name = btf_name_by_offset(desc_btf, func->name_off);
2706 addr = kallsyms_lookup_name(func_name);
2708 verbose(env, "cannot find address for kernel function %s\n",
2712 specialize_kfunc(env, func_id, offset, &addr);
2714 if (bpf_jit_supports_far_kfunc_call()) {
2717 call_imm = BPF_CALL_IMM(addr);
2718 /* Check whether the relative offset overflows desc->imm */
2719 if ((unsigned long)(s32)call_imm != call_imm) {
2720 verbose(env, "address of kernel function %s is out of range\n",
2726 if (bpf_dev_bound_kfunc_id(func_id)) {
2727 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2732 desc = &tab->descs[tab->nr_descs++];
2733 desc->func_id = func_id;
2734 desc->imm = call_imm;
2735 desc->offset = offset;
2737 err = btf_distill_func_proto(&env->log, desc_btf,
2738 func_proto, func_name,
2741 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2742 kfunc_desc_cmp_by_id_off, NULL);
2746 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2748 const struct bpf_kfunc_desc *d0 = a;
2749 const struct bpf_kfunc_desc *d1 = b;
2751 if (d0->imm != d1->imm)
2752 return d0->imm < d1->imm ? -1 : 1;
2753 if (d0->offset != d1->offset)
2754 return d0->offset < d1->offset ? -1 : 1;
2758 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2760 struct bpf_kfunc_desc_tab *tab;
2762 tab = prog->aux->kfunc_tab;
2766 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2767 kfunc_desc_cmp_by_imm_off, NULL);
2770 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2772 return !!prog->aux->kfunc_tab;
2775 const struct btf_func_model *
2776 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2777 const struct bpf_insn *insn)
2779 const struct bpf_kfunc_desc desc = {
2781 .offset = insn->off,
2783 const struct bpf_kfunc_desc *res;
2784 struct bpf_kfunc_desc_tab *tab;
2786 tab = prog->aux->kfunc_tab;
2787 res = bsearch(&desc, tab->descs, tab->nr_descs,
2788 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2790 return res ? &res->func_model : NULL;
2793 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2795 struct bpf_subprog_info *subprog = env->subprog_info;
2796 struct bpf_insn *insn = env->prog->insnsi;
2797 int i, ret, insn_cnt = env->prog->len;
2799 /* Add entry function. */
2800 ret = add_subprog(env, 0);
2804 for (i = 0; i < insn_cnt; i++, insn++) {
2805 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2806 !bpf_pseudo_kfunc_call(insn))
2809 if (!env->bpf_capable) {
2810 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2814 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2815 ret = add_subprog(env, i + insn->imm + 1);
2817 ret = add_kfunc_call(env, insn->imm, insn->off);
2823 /* Add a fake 'exit' subprog which could simplify subprog iteration
2824 * logic. 'subprog_cnt' should not be increased.
2826 subprog[env->subprog_cnt].start = insn_cnt;
2828 if (env->log.level & BPF_LOG_LEVEL2)
2829 for (i = 0; i < env->subprog_cnt; i++)
2830 verbose(env, "func#%d @%d\n", i, subprog[i].start);
2835 static int check_subprogs(struct bpf_verifier_env *env)
2837 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2838 struct bpf_subprog_info *subprog = env->subprog_info;
2839 struct bpf_insn *insn = env->prog->insnsi;
2840 int insn_cnt = env->prog->len;
2842 /* now check that all jumps are within the same subprog */
2843 subprog_start = subprog[cur_subprog].start;
2844 subprog_end = subprog[cur_subprog + 1].start;
2845 for (i = 0; i < insn_cnt; i++) {
2846 u8 code = insn[i].code;
2848 if (code == (BPF_JMP | BPF_CALL) &&
2849 insn[i].src_reg == 0 &&
2850 insn[i].imm == BPF_FUNC_tail_call)
2851 subprog[cur_subprog].has_tail_call = true;
2852 if (BPF_CLASS(code) == BPF_LD &&
2853 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2854 subprog[cur_subprog].has_ld_abs = true;
2855 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2857 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2859 if (code == (BPF_JMP32 | BPF_JA))
2860 off = i + insn[i].imm + 1;
2862 off = i + insn[i].off + 1;
2863 if (off < subprog_start || off >= subprog_end) {
2864 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2868 if (i == subprog_end - 1) {
2869 /* to avoid fall-through from one subprog into another
2870 * the last insn of the subprog should be either exit
2871 * or unconditional jump back
2873 if (code != (BPF_JMP | BPF_EXIT) &&
2874 code != (BPF_JMP32 | BPF_JA) &&
2875 code != (BPF_JMP | BPF_JA)) {
2876 verbose(env, "last insn is not an exit or jmp\n");
2879 subprog_start = subprog_end;
2881 if (cur_subprog < env->subprog_cnt)
2882 subprog_end = subprog[cur_subprog + 1].start;
2888 /* Parentage chain of this register (or stack slot) should take care of all
2889 * issues like callee-saved registers, stack slot allocation time, etc.
2891 static int mark_reg_read(struct bpf_verifier_env *env,
2892 const struct bpf_reg_state *state,
2893 struct bpf_reg_state *parent, u8 flag)
2895 bool writes = parent == state->parent; /* Observe write marks */
2899 /* if read wasn't screened by an earlier write ... */
2900 if (writes && state->live & REG_LIVE_WRITTEN)
2902 if (parent->live & REG_LIVE_DONE) {
2903 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2904 reg_type_str(env, parent->type),
2905 parent->var_off.value, parent->off);
2908 /* The first condition is more likely to be true than the
2909 * second, checked it first.
2911 if ((parent->live & REG_LIVE_READ) == flag ||
2912 parent->live & REG_LIVE_READ64)
2913 /* The parentage chain never changes and
2914 * this parent was already marked as LIVE_READ.
2915 * There is no need to keep walking the chain again and
2916 * keep re-marking all parents as LIVE_READ.
2917 * This case happens when the same register is read
2918 * multiple times without writes into it in-between.
2919 * Also, if parent has the stronger REG_LIVE_READ64 set,
2920 * then no need to set the weak REG_LIVE_READ32.
2923 /* ... then we depend on parent's value */
2924 parent->live |= flag;
2925 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2926 if (flag == REG_LIVE_READ64)
2927 parent->live &= ~REG_LIVE_READ32;
2929 parent = state->parent;
2934 if (env->longest_mark_read_walk < cnt)
2935 env->longest_mark_read_walk = cnt;
2939 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2941 struct bpf_func_state *state = func(env, reg);
2944 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
2945 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2948 if (reg->type == CONST_PTR_TO_DYNPTR)
2950 spi = dynptr_get_spi(env, reg);
2953 /* Caller ensures dynptr is valid and initialized, which means spi is in
2954 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2957 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2958 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2961 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2962 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2965 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2966 int spi, int nr_slots)
2968 struct bpf_func_state *state = func(env, reg);
2971 for (i = 0; i < nr_slots; i++) {
2972 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2974 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2978 mark_stack_slot_scratched(env, spi - i);
2984 /* This function is supposed to be used by the following 32-bit optimization
2985 * code only. It returns TRUE if the source or destination register operates
2986 * on 64-bit, otherwise return FALSE.
2988 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2989 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2994 class = BPF_CLASS(code);
2996 if (class == BPF_JMP) {
2997 /* BPF_EXIT for "main" will reach here. Return TRUE
3002 if (op == BPF_CALL) {
3003 /* BPF to BPF call will reach here because of marking
3004 * caller saved clobber with DST_OP_NO_MARK for which we
3005 * don't care the register def because they are anyway
3006 * marked as NOT_INIT already.
3008 if (insn->src_reg == BPF_PSEUDO_CALL)
3010 /* Helper call will reach here because of arg type
3011 * check, conservatively return TRUE.
3020 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3023 if (class == BPF_ALU64 || class == BPF_JMP ||
3024 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3027 if (class == BPF_ALU || class == BPF_JMP32)
3030 if (class == BPF_LDX) {
3032 return BPF_SIZE(code) == BPF_DW;
3033 /* LDX source must be ptr. */
3037 if (class == BPF_STX) {
3038 /* BPF_STX (including atomic variants) has multiple source
3039 * operands, one of which is a ptr. Check whether the caller is
3042 if (t == SRC_OP && reg->type != SCALAR_VALUE)
3044 return BPF_SIZE(code) == BPF_DW;
3047 if (class == BPF_LD) {
3048 u8 mode = BPF_MODE(code);
3051 if (mode == BPF_IMM)
3054 /* Both LD_IND and LD_ABS return 32-bit data. */
3058 /* Implicit ctx ptr. */
3059 if (regno == BPF_REG_6)
3062 /* Explicit source could be any width. */
3066 if (class == BPF_ST)
3067 /* The only source register for BPF_ST is a ptr. */
3070 /* Conservatively return true at default. */
3074 /* Return the regno defined by the insn, or -1. */
3075 static int insn_def_regno(const struct bpf_insn *insn)
3077 switch (BPF_CLASS(insn->code)) {
3083 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3084 (insn->imm & BPF_FETCH)) {
3085 if (insn->imm == BPF_CMPXCHG)
3088 return insn->src_reg;
3093 return insn->dst_reg;
3097 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3098 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3100 int dst_reg = insn_def_regno(insn);
3105 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3108 static void mark_insn_zext(struct bpf_verifier_env *env,
3109 struct bpf_reg_state *reg)
3111 s32 def_idx = reg->subreg_def;
3113 if (def_idx == DEF_NOT_SUBREG)
3116 env->insn_aux_data[def_idx - 1].zext_dst = true;
3117 /* The dst will be zero extended, so won't be sub-register anymore. */
3118 reg->subreg_def = DEF_NOT_SUBREG;
3121 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3122 enum reg_arg_type t)
3124 struct bpf_verifier_state *vstate = env->cur_state;
3125 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3126 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3127 struct bpf_reg_state *reg, *regs = state->regs;
3130 if (regno >= MAX_BPF_REG) {
3131 verbose(env, "R%d is invalid\n", regno);
3135 mark_reg_scratched(env, regno);
3138 rw64 = is_reg64(env, insn, regno, reg, t);
3140 /* check whether register used as source operand can be read */
3141 if (reg->type == NOT_INIT) {
3142 verbose(env, "R%d !read_ok\n", regno);
3145 /* We don't need to worry about FP liveness because it's read-only */
3146 if (regno == BPF_REG_FP)
3150 mark_insn_zext(env, reg);
3152 return mark_reg_read(env, reg, reg->parent,
3153 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3155 /* check whether register used as dest operand can be written to */
3156 if (regno == BPF_REG_FP) {
3157 verbose(env, "frame pointer is read only\n");
3160 reg->live |= REG_LIVE_WRITTEN;
3161 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3163 mark_reg_unknown(env, regs, regno);
3168 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3170 env->insn_aux_data[idx].jmp_point = true;
3173 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3175 return env->insn_aux_data[insn_idx].jmp_point;
3178 /* for any branch, call, exit record the history of jmps in the given state */
3179 static int push_jmp_history(struct bpf_verifier_env *env,
3180 struct bpf_verifier_state *cur)
3182 u32 cnt = cur->jmp_history_cnt;
3183 struct bpf_idx_pair *p;
3186 if (!is_jmp_point(env, env->insn_idx))
3190 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3191 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3194 p[cnt - 1].idx = env->insn_idx;
3195 p[cnt - 1].prev_idx = env->prev_insn_idx;
3196 cur->jmp_history = p;
3197 cur->jmp_history_cnt = cnt;
3201 /* Backtrack one insn at a time. If idx is not at the top of recorded
3202 * history then previous instruction came from straight line execution.
3204 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3209 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3210 i = st->jmp_history[cnt - 1].prev_idx;
3218 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3220 const struct btf_type *func;
3221 struct btf *desc_btf;
3223 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3226 desc_btf = find_kfunc_desc_btf(data, insn->off);
3227 if (IS_ERR(desc_btf))
3230 func = btf_type_by_id(desc_btf, insn->imm);
3231 return btf_name_by_offset(desc_btf, func->name_off);
3234 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3239 static inline void bt_reset(struct backtrack_state *bt)
3241 struct bpf_verifier_env *env = bt->env;
3243 memset(bt, 0, sizeof(*bt));
3247 static inline u32 bt_empty(struct backtrack_state *bt)
3252 for (i = 0; i <= bt->frame; i++)
3253 mask |= bt->reg_masks[i] | bt->stack_masks[i];
3258 static inline int bt_subprog_enter(struct backtrack_state *bt)
3260 if (bt->frame == MAX_CALL_FRAMES - 1) {
3261 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3262 WARN_ONCE(1, "verifier backtracking bug");
3269 static inline int bt_subprog_exit(struct backtrack_state *bt)
3271 if (bt->frame == 0) {
3272 verbose(bt->env, "BUG subprog exit from frame 0\n");
3273 WARN_ONCE(1, "verifier backtracking bug");
3280 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3282 bt->reg_masks[frame] |= 1 << reg;
3285 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3287 bt->reg_masks[frame] &= ~(1 << reg);
3290 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3292 bt_set_frame_reg(bt, bt->frame, reg);
3295 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3297 bt_clear_frame_reg(bt, bt->frame, reg);
3300 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3302 bt->stack_masks[frame] |= 1ull << slot;
3305 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3307 bt->stack_masks[frame] &= ~(1ull << slot);
3310 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3312 bt_set_frame_slot(bt, bt->frame, slot);
3315 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3317 bt_clear_frame_slot(bt, bt->frame, slot);
3320 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3322 return bt->reg_masks[frame];
3325 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3327 return bt->reg_masks[bt->frame];
3330 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3332 return bt->stack_masks[frame];
3335 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3337 return bt->stack_masks[bt->frame];
3340 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3342 return bt->reg_masks[bt->frame] & (1 << reg);
3345 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3347 return bt->stack_masks[bt->frame] & (1ull << slot);
3350 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3351 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3353 DECLARE_BITMAP(mask, 64);
3359 bitmap_from_u64(mask, reg_mask);
3360 for_each_set_bit(i, mask, 32) {
3361 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3369 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3370 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3372 DECLARE_BITMAP(mask, 64);
3378 bitmap_from_u64(mask, stack_mask);
3379 for_each_set_bit(i, mask, 64) {
3380 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3389 /* For given verifier state backtrack_insn() is called from the last insn to
3390 * the first insn. Its purpose is to compute a bitmask of registers and
3391 * stack slots that needs precision in the parent verifier state.
3393 * @idx is an index of the instruction we are currently processing;
3394 * @subseq_idx is an index of the subsequent instruction that:
3395 * - *would be* executed next, if jump history is viewed in forward order;
3396 * - *was* processed previously during backtracking.
3398 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3399 struct backtrack_state *bt)
3401 const struct bpf_insn_cbs cbs = {
3402 .cb_call = disasm_kfunc_name,
3403 .cb_print = verbose,
3404 .private_data = env,
3406 struct bpf_insn *insn = env->prog->insnsi + idx;
3407 u8 class = BPF_CLASS(insn->code);
3408 u8 opcode = BPF_OP(insn->code);
3409 u8 mode = BPF_MODE(insn->code);
3410 u32 dreg = insn->dst_reg;
3411 u32 sreg = insn->src_reg;
3414 if (insn->code == 0)
3416 if (env->log.level & BPF_LOG_LEVEL2) {
3417 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3418 verbose(env, "mark_precise: frame%d: regs=%s ",
3419 bt->frame, env->tmp_str_buf);
3420 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3421 verbose(env, "stack=%s before ", env->tmp_str_buf);
3422 verbose(env, "%d: ", idx);
3423 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3426 if (class == BPF_ALU || class == BPF_ALU64) {
3427 if (!bt_is_reg_set(bt, dreg))
3429 if (opcode == BPF_MOV) {
3430 if (BPF_SRC(insn->code) == BPF_X) {
3431 /* dreg = sreg or dreg = (s8, s16, s32)sreg
3432 * dreg needs precision after this insn
3433 * sreg needs precision before this insn
3435 bt_clear_reg(bt, dreg);
3436 bt_set_reg(bt, sreg);
3439 * dreg needs precision after this insn.
3440 * Corresponding register is already marked
3441 * as precise=true in this verifier state.
3442 * No further markings in parent are necessary
3444 bt_clear_reg(bt, dreg);
3447 if (BPF_SRC(insn->code) == BPF_X) {
3449 * both dreg and sreg need precision
3452 bt_set_reg(bt, sreg);
3454 * dreg still needs precision before this insn
3457 } else if (class == BPF_LDX) {
3458 if (!bt_is_reg_set(bt, dreg))
3460 bt_clear_reg(bt, dreg);
3462 /* scalars can only be spilled into stack w/o losing precision.
3463 * Load from any other memory can be zero extended.
3464 * The desire to keep that precision is already indicated
3465 * by 'precise' mark in corresponding register of this state.
3466 * No further tracking necessary.
3468 if (insn->src_reg != BPF_REG_FP)
3471 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3472 * that [fp - off] slot contains scalar that needs to be
3473 * tracked with precision
3475 spi = (-insn->off - 1) / BPF_REG_SIZE;
3477 verbose(env, "BUG spi %d\n", spi);
3478 WARN_ONCE(1, "verifier backtracking bug");
3481 bt_set_slot(bt, spi);
3482 } else if (class == BPF_STX || class == BPF_ST) {
3483 if (bt_is_reg_set(bt, dreg))
3484 /* stx & st shouldn't be using _scalar_ dst_reg
3485 * to access memory. It means backtracking
3486 * encountered a case of pointer subtraction.
3489 /* scalars can only be spilled into stack */
3490 if (insn->dst_reg != BPF_REG_FP)
3492 spi = (-insn->off - 1) / BPF_REG_SIZE;
3494 verbose(env, "BUG spi %d\n", spi);
3495 WARN_ONCE(1, "verifier backtracking bug");
3498 if (!bt_is_slot_set(bt, spi))
3500 bt_clear_slot(bt, spi);
3501 if (class == BPF_STX)
3502 bt_set_reg(bt, sreg);
3503 } else if (class == BPF_JMP || class == BPF_JMP32) {
3504 if (bpf_pseudo_call(insn)) {
3505 int subprog_insn_idx, subprog;
3507 subprog_insn_idx = idx + insn->imm + 1;
3508 subprog = find_subprog(env, subprog_insn_idx);
3512 if (subprog_is_global(env, subprog)) {
3513 /* check that jump history doesn't have any
3514 * extra instructions from subprog; the next
3515 * instruction after call to global subprog
3516 * should be literally next instruction in
3519 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3520 /* r1-r5 are invalidated after subprog call,
3521 * so for global func call it shouldn't be set
3524 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3525 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3526 WARN_ONCE(1, "verifier backtracking bug");
3529 /* global subprog always sets R0 */
3530 bt_clear_reg(bt, BPF_REG_0);
3533 /* static subprog call instruction, which
3534 * means that we are exiting current subprog,
3535 * so only r1-r5 could be still requested as
3536 * precise, r0 and r6-r10 or any stack slot in
3537 * the current frame should be zero by now
3539 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3540 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3541 WARN_ONCE(1, "verifier backtracking bug");
3544 /* we don't track register spills perfectly,
3545 * so fallback to force-precise instead of failing */
3546 if (bt_stack_mask(bt) != 0)
3548 /* propagate r1-r5 to the caller */
3549 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3550 if (bt_is_reg_set(bt, i)) {
3551 bt_clear_reg(bt, i);
3552 bt_set_frame_reg(bt, bt->frame - 1, i);
3555 if (bt_subprog_exit(bt))
3559 } else if ((bpf_helper_call(insn) &&
3560 is_callback_calling_function(insn->imm) &&
3561 !is_async_callback_calling_function(insn->imm)) ||
3562 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3563 /* callback-calling helper or kfunc call, which means
3564 * we are exiting from subprog, but unlike the subprog
3565 * call handling above, we shouldn't propagate
3566 * precision of r1-r5 (if any requested), as they are
3567 * not actually arguments passed directly to callback
3570 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3571 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3572 WARN_ONCE(1, "verifier backtracking bug");
3575 if (bt_stack_mask(bt) != 0)
3577 /* clear r1-r5 in callback subprog's mask */
3578 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3579 bt_clear_reg(bt, i);
3580 if (bt_subprog_exit(bt))
3583 } else if (opcode == BPF_CALL) {
3584 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3585 * catch this error later. Make backtracking conservative
3588 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3590 /* regular helper call sets R0 */
3591 bt_clear_reg(bt, BPF_REG_0);
3592 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3593 /* if backtracing was looking for registers R1-R5
3594 * they should have been found already.
3596 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3597 WARN_ONCE(1, "verifier backtracking bug");
3600 } else if (opcode == BPF_EXIT) {
3603 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3604 /* if backtracing was looking for registers R1-R5
3605 * they should have been found already.
3607 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3608 WARN_ONCE(1, "verifier backtracking bug");
3612 /* BPF_EXIT in subprog or callback always returns
3613 * right after the call instruction, so by checking
3614 * whether the instruction at subseq_idx-1 is subprog
3615 * call or not we can distinguish actual exit from
3616 * *subprog* from exit from *callback*. In the former
3617 * case, we need to propagate r0 precision, if
3618 * necessary. In the former we never do that.
3620 r0_precise = subseq_idx - 1 >= 0 &&
3621 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3622 bt_is_reg_set(bt, BPF_REG_0);
3624 bt_clear_reg(bt, BPF_REG_0);
3625 if (bt_subprog_enter(bt))
3629 bt_set_reg(bt, BPF_REG_0);
3630 /* r6-r9 and stack slots will stay set in caller frame
3631 * bitmasks until we return back from callee(s)
3634 } else if (BPF_SRC(insn->code) == BPF_X) {
3635 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3638 * Both dreg and sreg need precision before
3639 * this insn. If only sreg was marked precise
3640 * before it would be equally necessary to
3641 * propagate it to dreg.
3643 bt_set_reg(bt, dreg);
3644 bt_set_reg(bt, sreg);
3645 /* else dreg <cond> K
3646 * Only dreg still needs precision before
3647 * this insn, so for the K-based conditional
3648 * there is nothing new to be marked.
3651 } else if (class == BPF_LD) {
3652 if (!bt_is_reg_set(bt, dreg))
3654 bt_clear_reg(bt, dreg);
3655 /* It's ld_imm64 or ld_abs or ld_ind.
3656 * For ld_imm64 no further tracking of precision
3657 * into parent is necessary
3659 if (mode == BPF_IND || mode == BPF_ABS)
3660 /* to be analyzed */
3666 /* the scalar precision tracking algorithm:
3667 * . at the start all registers have precise=false.
3668 * . scalar ranges are tracked as normal through alu and jmp insns.
3669 * . once precise value of the scalar register is used in:
3670 * . ptr + scalar alu
3671 * . if (scalar cond K|scalar)
3672 * . helper_call(.., scalar, ...) where ARG_CONST is expected
3673 * backtrack through the verifier states and mark all registers and
3674 * stack slots with spilled constants that these scalar regisers
3675 * should be precise.
3676 * . during state pruning two registers (or spilled stack slots)
3677 * are equivalent if both are not precise.
3679 * Note the verifier cannot simply walk register parentage chain,
3680 * since many different registers and stack slots could have been
3681 * used to compute single precise scalar.
3683 * The approach of starting with precise=true for all registers and then
3684 * backtrack to mark a register as not precise when the verifier detects
3685 * that program doesn't care about specific value (e.g., when helper
3686 * takes register as ARG_ANYTHING parameter) is not safe.
3688 * It's ok to walk single parentage chain of the verifier states.
3689 * It's possible that this backtracking will go all the way till 1st insn.
3690 * All other branches will be explored for needing precision later.
3692 * The backtracking needs to deal with cases like:
3693 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3696 * if r5 > 0x79f goto pc+7
3697 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3700 * call bpf_perf_event_output#25
3701 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3705 * call foo // uses callee's r6 inside to compute r0
3709 * to track above reg_mask/stack_mask needs to be independent for each frame.
3711 * Also if parent's curframe > frame where backtracking started,
3712 * the verifier need to mark registers in both frames, otherwise callees
3713 * may incorrectly prune callers. This is similar to
3714 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3716 * For now backtracking falls back into conservative marking.
3718 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3719 struct bpf_verifier_state *st)
3721 struct bpf_func_state *func;
3722 struct bpf_reg_state *reg;
3725 if (env->log.level & BPF_LOG_LEVEL2) {
3726 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3730 /* big hammer: mark all scalars precise in this path.
3731 * pop_stack may still get !precise scalars.
3732 * We also skip current state and go straight to first parent state,
3733 * because precision markings in current non-checkpointed state are
3734 * not needed. See why in the comment in __mark_chain_precision below.
3736 for (st = st->parent; st; st = st->parent) {
3737 for (i = 0; i <= st->curframe; i++) {
3738 func = st->frame[i];
3739 for (j = 0; j < BPF_REG_FP; j++) {
3740 reg = &func->regs[j];
3741 if (reg->type != SCALAR_VALUE || reg->precise)
3743 reg->precise = true;
3744 if (env->log.level & BPF_LOG_LEVEL2) {
3745 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3749 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3750 if (!is_spilled_reg(&func->stack[j]))
3752 reg = &func->stack[j].spilled_ptr;
3753 if (reg->type != SCALAR_VALUE || reg->precise)
3755 reg->precise = true;
3756 if (env->log.level & BPF_LOG_LEVEL2) {
3757 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3765 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3767 struct bpf_func_state *func;
3768 struct bpf_reg_state *reg;
3771 for (i = 0; i <= st->curframe; i++) {
3772 func = st->frame[i];
3773 for (j = 0; j < BPF_REG_FP; j++) {
3774 reg = &func->regs[j];
3775 if (reg->type != SCALAR_VALUE)
3777 reg->precise = false;
3779 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3780 if (!is_spilled_reg(&func->stack[j]))
3782 reg = &func->stack[j].spilled_ptr;
3783 if (reg->type != SCALAR_VALUE)
3785 reg->precise = false;
3790 static bool idset_contains(struct bpf_idset *s, u32 id)
3794 for (i = 0; i < s->count; ++i)
3795 if (s->ids[i] == id)
3801 static int idset_push(struct bpf_idset *s, u32 id)
3803 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3805 s->ids[s->count++] = id;
3809 static void idset_reset(struct bpf_idset *s)
3814 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3815 * Mark all registers with these IDs as precise.
3817 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3819 struct bpf_idset *precise_ids = &env->idset_scratch;
3820 struct backtrack_state *bt = &env->bt;
3821 struct bpf_func_state *func;
3822 struct bpf_reg_state *reg;
3823 DECLARE_BITMAP(mask, 64);
3826 idset_reset(precise_ids);
3828 for (fr = bt->frame; fr >= 0; fr--) {
3829 func = st->frame[fr];
3831 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3832 for_each_set_bit(i, mask, 32) {
3833 reg = &func->regs[i];
3834 if (!reg->id || reg->type != SCALAR_VALUE)
3836 if (idset_push(precise_ids, reg->id))
3840 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3841 for_each_set_bit(i, mask, 64) {
3842 if (i >= func->allocated_stack / BPF_REG_SIZE)
3844 if (!is_spilled_scalar_reg(&func->stack[i]))
3846 reg = &func->stack[i].spilled_ptr;
3849 if (idset_push(precise_ids, reg->id))
3854 for (fr = 0; fr <= st->curframe; ++fr) {
3855 func = st->frame[fr];
3857 for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3858 reg = &func->regs[i];
3861 if (!idset_contains(precise_ids, reg->id))
3863 bt_set_frame_reg(bt, fr, i);
3865 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3866 if (!is_spilled_scalar_reg(&func->stack[i]))
3868 reg = &func->stack[i].spilled_ptr;
3871 if (!idset_contains(precise_ids, reg->id))
3873 bt_set_frame_slot(bt, fr, i);
3881 * __mark_chain_precision() backtracks BPF program instruction sequence and
3882 * chain of verifier states making sure that register *regno* (if regno >= 0)
3883 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3884 * SCALARS, as well as any other registers and slots that contribute to
3885 * a tracked state of given registers/stack slots, depending on specific BPF
3886 * assembly instructions (see backtrack_insns() for exact instruction handling
3887 * logic). This backtracking relies on recorded jmp_history and is able to
3888 * traverse entire chain of parent states. This process ends only when all the
3889 * necessary registers/slots and their transitive dependencies are marked as
3892 * One important and subtle aspect is that precise marks *do not matter* in
3893 * the currently verified state (current state). It is important to understand
3894 * why this is the case.
3896 * First, note that current state is the state that is not yet "checkpointed",
3897 * i.e., it is not yet put into env->explored_states, and it has no children
3898 * states as well. It's ephemeral, and can end up either a) being discarded if
3899 * compatible explored state is found at some point or BPF_EXIT instruction is
3900 * reached or b) checkpointed and put into env->explored_states, branching out
3901 * into one or more children states.
3903 * In the former case, precise markings in current state are completely
3904 * ignored by state comparison code (see regsafe() for details). Only
3905 * checkpointed ("old") state precise markings are important, and if old
3906 * state's register/slot is precise, regsafe() assumes current state's
3907 * register/slot as precise and checks value ranges exactly and precisely. If
3908 * states turn out to be compatible, current state's necessary precise
3909 * markings and any required parent states' precise markings are enforced
3910 * after the fact with propagate_precision() logic, after the fact. But it's
3911 * important to realize that in this case, even after marking current state
3912 * registers/slots as precise, we immediately discard current state. So what
3913 * actually matters is any of the precise markings propagated into current
3914 * state's parent states, which are always checkpointed (due to b) case above).
3915 * As such, for scenario a) it doesn't matter if current state has precise
3916 * markings set or not.
3918 * Now, for the scenario b), checkpointing and forking into child(ren)
3919 * state(s). Note that before current state gets to checkpointing step, any
3920 * processed instruction always assumes precise SCALAR register/slot
3921 * knowledge: if precise value or range is useful to prune jump branch, BPF
3922 * verifier takes this opportunity enthusiastically. Similarly, when
3923 * register's value is used to calculate offset or memory address, exact
3924 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3925 * what we mentioned above about state comparison ignoring precise markings
3926 * during state comparison, BPF verifier ignores and also assumes precise
3927 * markings *at will* during instruction verification process. But as verifier
3928 * assumes precision, it also propagates any precision dependencies across
3929 * parent states, which are not yet finalized, so can be further restricted
3930 * based on new knowledge gained from restrictions enforced by their children
3931 * states. This is so that once those parent states are finalized, i.e., when
3932 * they have no more active children state, state comparison logic in
3933 * is_state_visited() would enforce strict and precise SCALAR ranges, if
3934 * required for correctness.
3936 * To build a bit more intuition, note also that once a state is checkpointed,
3937 * the path we took to get to that state is not important. This is crucial
3938 * property for state pruning. When state is checkpointed and finalized at
3939 * some instruction index, it can be correctly and safely used to "short
3940 * circuit" any *compatible* state that reaches exactly the same instruction
3941 * index. I.e., if we jumped to that instruction from a completely different
3942 * code path than original finalized state was derived from, it doesn't
3943 * matter, current state can be discarded because from that instruction
3944 * forward having a compatible state will ensure we will safely reach the
3945 * exit. States describe preconditions for further exploration, but completely
3946 * forget the history of how we got here.
3948 * This also means that even if we needed precise SCALAR range to get to
3949 * finalized state, but from that point forward *that same* SCALAR register is
3950 * never used in a precise context (i.e., it's precise value is not needed for
3951 * correctness), it's correct and safe to mark such register as "imprecise"
3952 * (i.e., precise marking set to false). This is what we rely on when we do
3953 * not set precise marking in current state. If no child state requires
3954 * precision for any given SCALAR register, it's safe to dictate that it can
3955 * be imprecise. If any child state does require this register to be precise,
3956 * we'll mark it precise later retroactively during precise markings
3957 * propagation from child state to parent states.
3959 * Skipping precise marking setting in current state is a mild version of
3960 * relying on the above observation. But we can utilize this property even
3961 * more aggressively by proactively forgetting any precise marking in the
3962 * current state (which we inherited from the parent state), right before we
3963 * checkpoint it and branch off into new child state. This is done by
3964 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3965 * finalized states which help in short circuiting more future states.
3967 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
3969 struct backtrack_state *bt = &env->bt;
3970 struct bpf_verifier_state *st = env->cur_state;
3971 int first_idx = st->first_insn_idx;
3972 int last_idx = env->insn_idx;
3973 int subseq_idx = -1;
3974 struct bpf_func_state *func;
3975 struct bpf_reg_state *reg;
3976 bool skip_first = true;
3979 if (!env->bpf_capable)
3982 /* set frame number from which we are starting to backtrack */
3983 bt_init(bt, env->cur_state->curframe);
3985 /* Do sanity checks against current state of register and/or stack
3986 * slot, but don't set precise flag in current state, as precision
3987 * tracking in the current state is unnecessary.
3989 func = st->frame[bt->frame];
3991 reg = &func->regs[regno];
3992 if (reg->type != SCALAR_VALUE) {
3993 WARN_ONCE(1, "backtracing misuse");
3996 bt_set_reg(bt, regno);
4003 DECLARE_BITMAP(mask, 64);
4004 u32 history = st->jmp_history_cnt;
4006 if (env->log.level & BPF_LOG_LEVEL2) {
4007 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4008 bt->frame, last_idx, first_idx, subseq_idx);
4011 /* If some register with scalar ID is marked as precise,
4012 * make sure that all registers sharing this ID are also precise.
4013 * This is needed to estimate effect of find_equal_scalars().
4014 * Do this at the last instruction of each state,
4015 * bpf_reg_state::id fields are valid for these instructions.
4017 * Allows to track precision in situation like below:
4019 * r2 = unknown value
4023 * r1 = r2 // r1 and r2 now share the same ID
4025 * --- state #1 {r1.id = A, r2.id = A} ---
4027 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4029 * --- state #2 {r1.id = A, r2.id = A} ---
4031 * r3 += r1 // need to mark both r1 and r2
4033 if (mark_precise_scalar_ids(env, st))
4037 /* we are at the entry into subprog, which
4038 * is expected for global funcs, but only if
4039 * requested precise registers are R1-R5
4040 * (which are global func's input arguments)
4042 if (st->curframe == 0 &&
4043 st->frame[0]->subprogno > 0 &&
4044 st->frame[0]->callsite == BPF_MAIN_FUNC &&
4045 bt_stack_mask(bt) == 0 &&
4046 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4047 bitmap_from_u64(mask, bt_reg_mask(bt));
4048 for_each_set_bit(i, mask, 32) {
4049 reg = &st->frame[0]->regs[i];
4050 bt_clear_reg(bt, i);
4051 if (reg->type == SCALAR_VALUE)
4052 reg->precise = true;
4057 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4058 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4059 WARN_ONCE(1, "verifier backtracking bug");
4063 for (i = last_idx;;) {
4068 err = backtrack_insn(env, i, subseq_idx, bt);
4070 if (err == -ENOTSUPP) {
4071 mark_all_scalars_precise(env, env->cur_state);
4078 /* Found assignment(s) into tracked register in this state.
4079 * Since this state is already marked, just return.
4080 * Nothing to be tracked further in the parent state.
4086 i = get_prev_insn_idx(st, i, &history);
4087 if (i >= env->prog->len) {
4088 /* This can happen if backtracking reached insn 0
4089 * and there are still reg_mask or stack_mask
4091 * It means the backtracking missed the spot where
4092 * particular register was initialized with a constant.
4094 verbose(env, "BUG backtracking idx %d\n", i);
4095 WARN_ONCE(1, "verifier backtracking bug");
4103 for (fr = bt->frame; fr >= 0; fr--) {
4104 func = st->frame[fr];
4105 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4106 for_each_set_bit(i, mask, 32) {
4107 reg = &func->regs[i];
4108 if (reg->type != SCALAR_VALUE) {
4109 bt_clear_frame_reg(bt, fr, i);
4113 bt_clear_frame_reg(bt, fr, i);
4115 reg->precise = true;
4118 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4119 for_each_set_bit(i, mask, 64) {
4120 if (i >= func->allocated_stack / BPF_REG_SIZE) {
4121 /* the sequence of instructions:
4123 * 3: (7b) *(u64 *)(r3 -8) = r0
4124 * 4: (79) r4 = *(u64 *)(r10 -8)
4125 * doesn't contain jmps. It's backtracked
4126 * as a single block.
4127 * During backtracking insn 3 is not recognized as
4128 * stack access, so at the end of backtracking
4129 * stack slot fp-8 is still marked in stack_mask.
4130 * However the parent state may not have accessed
4131 * fp-8 and it's "unallocated" stack space.
4132 * In such case fallback to conservative.
4134 mark_all_scalars_precise(env, env->cur_state);
4139 if (!is_spilled_scalar_reg(&func->stack[i])) {
4140 bt_clear_frame_slot(bt, fr, i);
4143 reg = &func->stack[i].spilled_ptr;
4145 bt_clear_frame_slot(bt, fr, i);
4147 reg->precise = true;
4149 if (env->log.level & BPF_LOG_LEVEL2) {
4150 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4151 bt_frame_reg_mask(bt, fr));
4152 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4153 fr, env->tmp_str_buf);
4154 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4155 bt_frame_stack_mask(bt, fr));
4156 verbose(env, "stack=%s: ", env->tmp_str_buf);
4157 print_verifier_state(env, func, true);
4164 subseq_idx = first_idx;
4165 last_idx = st->last_insn_idx;
4166 first_idx = st->first_insn_idx;
4169 /* if we still have requested precise regs or slots, we missed
4170 * something (e.g., stack access through non-r10 register), so
4171 * fallback to marking all precise
4173 if (!bt_empty(bt)) {
4174 mark_all_scalars_precise(env, env->cur_state);
4181 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4183 return __mark_chain_precision(env, regno);
4186 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4187 * desired reg and stack masks across all relevant frames
4189 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4191 return __mark_chain_precision(env, -1);
4194 static bool is_spillable_regtype(enum bpf_reg_type type)
4196 switch (base_type(type)) {
4197 case PTR_TO_MAP_VALUE:
4201 case PTR_TO_PACKET_META:
4202 case PTR_TO_PACKET_END:
4203 case PTR_TO_FLOW_KEYS:
4204 case CONST_PTR_TO_MAP:
4206 case PTR_TO_SOCK_COMMON:
4207 case PTR_TO_TCP_SOCK:
4208 case PTR_TO_XDP_SOCK:
4213 case PTR_TO_MAP_KEY:
4220 /* Does this register contain a constant zero? */
4221 static bool register_is_null(struct bpf_reg_state *reg)
4223 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4226 static bool register_is_const(struct bpf_reg_state *reg)
4228 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4231 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4233 return tnum_is_unknown(reg->var_off) &&
4234 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4235 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4236 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4237 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4240 static bool register_is_bounded(struct bpf_reg_state *reg)
4242 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4245 static bool __is_pointer_value(bool allow_ptr_leaks,
4246 const struct bpf_reg_state *reg)
4248 if (allow_ptr_leaks)
4251 return reg->type != SCALAR_VALUE;
4254 /* Copy src state preserving dst->parent and dst->live fields */
4255 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4257 struct bpf_reg_state *parent = dst->parent;
4258 enum bpf_reg_liveness live = dst->live;
4261 dst->parent = parent;
4265 static void save_register_state(struct bpf_func_state *state,
4266 int spi, struct bpf_reg_state *reg,
4271 copy_register_state(&state->stack[spi].spilled_ptr, reg);
4272 if (size == BPF_REG_SIZE)
4273 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4275 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4276 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4278 /* size < 8 bytes spill */
4280 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4283 static bool is_bpf_st_mem(struct bpf_insn *insn)
4285 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4288 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4289 * stack boundary and alignment are checked in check_mem_access()
4291 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4292 /* stack frame we're writing to */
4293 struct bpf_func_state *state,
4294 int off, int size, int value_regno,
4297 struct bpf_func_state *cur; /* state of the current function */
4298 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4299 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4300 struct bpf_reg_state *reg = NULL;
4301 u32 dst_reg = insn->dst_reg;
4303 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4306 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4307 * so it's aligned access and [off, off + size) are within stack limits
4309 if (!env->allow_ptr_leaks &&
4310 state->stack[spi].slot_type[0] == STACK_SPILL &&
4311 size != BPF_REG_SIZE) {
4312 verbose(env, "attempt to corrupt spilled pointer on stack\n");
4316 cur = env->cur_state->frame[env->cur_state->curframe];
4317 if (value_regno >= 0)
4318 reg = &cur->regs[value_regno];
4319 if (!env->bypass_spec_v4) {
4320 bool sanitize = reg && is_spillable_regtype(reg->type);
4322 for (i = 0; i < size; i++) {
4323 u8 type = state->stack[spi].slot_type[i];
4325 if (type != STACK_MISC && type != STACK_ZERO) {
4332 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4335 err = destroy_if_dynptr_stack_slot(env, state, spi);
4339 mark_stack_slot_scratched(env, spi);
4340 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4341 !register_is_null(reg) && env->bpf_capable) {
4342 if (dst_reg != BPF_REG_FP) {
4343 /* The backtracking logic can only recognize explicit
4344 * stack slot address like [fp - 8]. Other spill of
4345 * scalar via different register has to be conservative.
4346 * Backtrack from here and mark all registers as precise
4347 * that contributed into 'reg' being a constant.
4349 err = mark_chain_precision(env, value_regno);
4353 save_register_state(state, spi, reg, size);
4354 /* Break the relation on a narrowing spill. */
4355 if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4356 state->stack[spi].spilled_ptr.id = 0;
4357 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4358 insn->imm != 0 && env->bpf_capable) {
4359 struct bpf_reg_state fake_reg = {};
4361 __mark_reg_known(&fake_reg, (u32)insn->imm);
4362 fake_reg.type = SCALAR_VALUE;
4363 save_register_state(state, spi, &fake_reg, size);
4364 } else if (reg && is_spillable_regtype(reg->type)) {
4365 /* register containing pointer is being spilled into stack */
4366 if (size != BPF_REG_SIZE) {
4367 verbose_linfo(env, insn_idx, "; ");
4368 verbose(env, "invalid size of register spill\n");
4371 if (state != cur && reg->type == PTR_TO_STACK) {
4372 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4375 save_register_state(state, spi, reg, size);
4377 u8 type = STACK_MISC;
4379 /* regular write of data into stack destroys any spilled ptr */
4380 state->stack[spi].spilled_ptr.type = NOT_INIT;
4381 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4382 if (is_stack_slot_special(&state->stack[spi]))
4383 for (i = 0; i < BPF_REG_SIZE; i++)
4384 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4386 /* only mark the slot as written if all 8 bytes were written
4387 * otherwise read propagation may incorrectly stop too soon
4388 * when stack slots are partially written.
4389 * This heuristic means that read propagation will be
4390 * conservative, since it will add reg_live_read marks
4391 * to stack slots all the way to first state when programs
4392 * writes+reads less than 8 bytes
4394 if (size == BPF_REG_SIZE)
4395 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4397 /* when we zero initialize stack slots mark them as such */
4398 if ((reg && register_is_null(reg)) ||
4399 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4400 /* backtracking doesn't work for STACK_ZERO yet. */
4401 err = mark_chain_precision(env, value_regno);
4407 /* Mark slots affected by this stack write. */
4408 for (i = 0; i < size; i++)
4409 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4415 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4416 * known to contain a variable offset.
4417 * This function checks whether the write is permitted and conservatively
4418 * tracks the effects of the write, considering that each stack slot in the
4419 * dynamic range is potentially written to.
4421 * 'off' includes 'regno->off'.
4422 * 'value_regno' can be -1, meaning that an unknown value is being written to
4425 * Spilled pointers in range are not marked as written because we don't know
4426 * what's going to be actually written. This means that read propagation for
4427 * future reads cannot be terminated by this write.
4429 * For privileged programs, uninitialized stack slots are considered
4430 * initialized by this write (even though we don't know exactly what offsets
4431 * are going to be written to). The idea is that we don't want the verifier to
4432 * reject future reads that access slots written to through variable offsets.
4434 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4435 /* func where register points to */
4436 struct bpf_func_state *state,
4437 int ptr_regno, int off, int size,
4438 int value_regno, int insn_idx)
4440 struct bpf_func_state *cur; /* state of the current function */
4441 int min_off, max_off;
4443 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4444 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4445 bool writing_zero = false;
4446 /* set if the fact that we're writing a zero is used to let any
4447 * stack slots remain STACK_ZERO
4449 bool zero_used = false;
4451 cur = env->cur_state->frame[env->cur_state->curframe];
4452 ptr_reg = &cur->regs[ptr_regno];
4453 min_off = ptr_reg->smin_value + off;
4454 max_off = ptr_reg->smax_value + off + size;
4455 if (value_regno >= 0)
4456 value_reg = &cur->regs[value_regno];
4457 if ((value_reg && register_is_null(value_reg)) ||
4458 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4459 writing_zero = true;
4461 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4465 for (i = min_off; i < max_off; i++) {
4469 err = destroy_if_dynptr_stack_slot(env, state, spi);
4474 /* Variable offset writes destroy any spilled pointers in range. */
4475 for (i = min_off; i < max_off; i++) {
4476 u8 new_type, *stype;
4480 spi = slot / BPF_REG_SIZE;
4481 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4482 mark_stack_slot_scratched(env, spi);
4484 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4485 /* Reject the write if range we may write to has not
4486 * been initialized beforehand. If we didn't reject
4487 * here, the ptr status would be erased below (even
4488 * though not all slots are actually overwritten),
4489 * possibly opening the door to leaks.
4491 * We do however catch STACK_INVALID case below, and
4492 * only allow reading possibly uninitialized memory
4493 * later for CAP_PERFMON, as the write may not happen to
4496 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4501 /* Erase all spilled pointers. */
4502 state->stack[spi].spilled_ptr.type = NOT_INIT;
4504 /* Update the slot type. */
4505 new_type = STACK_MISC;
4506 if (writing_zero && *stype == STACK_ZERO) {
4507 new_type = STACK_ZERO;
4510 /* If the slot is STACK_INVALID, we check whether it's OK to
4511 * pretend that it will be initialized by this write. The slot
4512 * might not actually be written to, and so if we mark it as
4513 * initialized future reads might leak uninitialized memory.
4514 * For privileged programs, we will accept such reads to slots
4515 * that may or may not be written because, if we're reject
4516 * them, the error would be too confusing.
4518 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4519 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4526 /* backtracking doesn't work for STACK_ZERO yet. */
4527 err = mark_chain_precision(env, value_regno);
4534 /* When register 'dst_regno' is assigned some values from stack[min_off,
4535 * max_off), we set the register's type according to the types of the
4536 * respective stack slots. If all the stack values are known to be zeros, then
4537 * so is the destination reg. Otherwise, the register is considered to be
4538 * SCALAR. This function does not deal with register filling; the caller must
4539 * ensure that all spilled registers in the stack range have been marked as
4542 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4543 /* func where src register points to */
4544 struct bpf_func_state *ptr_state,
4545 int min_off, int max_off, int dst_regno)
4547 struct bpf_verifier_state *vstate = env->cur_state;
4548 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4553 for (i = min_off; i < max_off; i++) {
4555 spi = slot / BPF_REG_SIZE;
4556 mark_stack_slot_scratched(env, spi);
4557 stype = ptr_state->stack[spi].slot_type;
4558 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4562 if (zeros == max_off - min_off) {
4563 /* any access_size read into register is zero extended,
4564 * so the whole register == const_zero
4566 __mark_reg_const_zero(&state->regs[dst_regno]);
4567 /* backtracking doesn't support STACK_ZERO yet,
4568 * so mark it precise here, so that later
4569 * backtracking can stop here.
4570 * Backtracking may not need this if this register
4571 * doesn't participate in pointer adjustment.
4572 * Forward propagation of precise flag is not
4573 * necessary either. This mark is only to stop
4574 * backtracking. Any register that contributed
4575 * to const 0 was marked precise before spill.
4577 state->regs[dst_regno].precise = true;
4579 /* have read misc data from the stack */
4580 mark_reg_unknown(env, state->regs, dst_regno);
4582 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4585 /* Read the stack at 'off' and put the results into the register indicated by
4586 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4589 * 'dst_regno' can be -1, meaning that the read value is not going to a
4592 * The access is assumed to be within the current stack bounds.
4594 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4595 /* func where src register points to */
4596 struct bpf_func_state *reg_state,
4597 int off, int size, int dst_regno)
4599 struct bpf_verifier_state *vstate = env->cur_state;
4600 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4601 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4602 struct bpf_reg_state *reg;
4605 stype = reg_state->stack[spi].slot_type;
4606 reg = ®_state->stack[spi].spilled_ptr;
4608 mark_stack_slot_scratched(env, spi);
4610 if (is_spilled_reg(®_state->stack[spi])) {
4613 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4616 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4617 if (reg->type != SCALAR_VALUE) {
4618 verbose_linfo(env, env->insn_idx, "; ");
4619 verbose(env, "invalid size of register fill\n");
4623 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4627 if (!(off % BPF_REG_SIZE) && size == spill_size) {
4628 /* The earlier check_reg_arg() has decided the
4629 * subreg_def for this insn. Save it first.
4631 s32 subreg_def = state->regs[dst_regno].subreg_def;
4633 copy_register_state(&state->regs[dst_regno], reg);
4634 state->regs[dst_regno].subreg_def = subreg_def;
4636 for (i = 0; i < size; i++) {
4637 type = stype[(slot - i) % BPF_REG_SIZE];
4638 if (type == STACK_SPILL)
4640 if (type == STACK_MISC)
4642 if (type == STACK_INVALID && env->allow_uninit_stack)
4644 verbose(env, "invalid read from stack off %d+%d size %d\n",
4648 mark_reg_unknown(env, state->regs, dst_regno);
4650 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4654 if (dst_regno >= 0) {
4655 /* restore register state from stack */
4656 copy_register_state(&state->regs[dst_regno], reg);
4657 /* mark reg as written since spilled pointer state likely
4658 * has its liveness marks cleared by is_state_visited()
4659 * which resets stack/reg liveness for state transitions
4661 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4662 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4663 /* If dst_regno==-1, the caller is asking us whether
4664 * it is acceptable to use this value as a SCALAR_VALUE
4666 * We must not allow unprivileged callers to do that
4667 * with spilled pointers.
4669 verbose(env, "leaking pointer from stack off %d\n",
4673 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4675 for (i = 0; i < size; i++) {
4676 type = stype[(slot - i) % BPF_REG_SIZE];
4677 if (type == STACK_MISC)
4679 if (type == STACK_ZERO)
4681 if (type == STACK_INVALID && env->allow_uninit_stack)
4683 verbose(env, "invalid read from stack off %d+%d size %d\n",
4687 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4689 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4694 enum bpf_access_src {
4695 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
4696 ACCESS_HELPER = 2, /* the access is performed by a helper */
4699 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4700 int regno, int off, int access_size,
4701 bool zero_size_allowed,
4702 enum bpf_access_src type,
4703 struct bpf_call_arg_meta *meta);
4705 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4707 return cur_regs(env) + regno;
4710 /* Read the stack at 'ptr_regno + off' and put the result into the register
4712 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4713 * but not its variable offset.
4714 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4716 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4717 * filling registers (i.e. reads of spilled register cannot be detected when
4718 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4719 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4720 * offset; for a fixed offset check_stack_read_fixed_off should be used
4723 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4724 int ptr_regno, int off, int size, int dst_regno)
4726 /* The state of the source register. */
4727 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4728 struct bpf_func_state *ptr_state = func(env, reg);
4730 int min_off, max_off;
4732 /* Note that we pass a NULL meta, so raw access will not be permitted.
4734 err = check_stack_range_initialized(env, ptr_regno, off, size,
4735 false, ACCESS_DIRECT, NULL);
4739 min_off = reg->smin_value + off;
4740 max_off = reg->smax_value + off;
4741 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4745 /* check_stack_read dispatches to check_stack_read_fixed_off or
4746 * check_stack_read_var_off.
4748 * The caller must ensure that the offset falls within the allocated stack
4751 * 'dst_regno' is a register which will receive the value from the stack. It
4752 * can be -1, meaning that the read value is not going to a register.
4754 static int check_stack_read(struct bpf_verifier_env *env,
4755 int ptr_regno, int off, int size,
4758 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4759 struct bpf_func_state *state = func(env, reg);
4761 /* Some accesses are only permitted with a static offset. */
4762 bool var_off = !tnum_is_const(reg->var_off);
4764 /* The offset is required to be static when reads don't go to a
4765 * register, in order to not leak pointers (see
4766 * check_stack_read_fixed_off).
4768 if (dst_regno < 0 && var_off) {
4771 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4772 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4776 /* Variable offset is prohibited for unprivileged mode for simplicity
4777 * since it requires corresponding support in Spectre masking for stack
4778 * ALU. See also retrieve_ptr_limit(). The check in
4779 * check_stack_access_for_ptr_arithmetic() called by
4780 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4781 * with variable offsets, therefore no check is required here. Further,
4782 * just checking it here would be insufficient as speculative stack
4783 * writes could still lead to unsafe speculative behaviour.
4786 off += reg->var_off.value;
4787 err = check_stack_read_fixed_off(env, state, off, size,
4790 /* Variable offset stack reads need more conservative handling
4791 * than fixed offset ones. Note that dst_regno >= 0 on this
4794 err = check_stack_read_var_off(env, ptr_regno, off, size,
4801 /* check_stack_write dispatches to check_stack_write_fixed_off or
4802 * check_stack_write_var_off.
4804 * 'ptr_regno' is the register used as a pointer into the stack.
4805 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4806 * 'value_regno' is the register whose value we're writing to the stack. It can
4807 * be -1, meaning that we're not writing from a register.
4809 * The caller must ensure that the offset falls within the maximum stack size.
4811 static int check_stack_write(struct bpf_verifier_env *env,
4812 int ptr_regno, int off, int size,
4813 int value_regno, int insn_idx)
4815 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4816 struct bpf_func_state *state = func(env, reg);
4819 if (tnum_is_const(reg->var_off)) {
4820 off += reg->var_off.value;
4821 err = check_stack_write_fixed_off(env, state, off, size,
4822 value_regno, insn_idx);
4824 /* Variable offset stack reads need more conservative handling
4825 * than fixed offset ones.
4827 err = check_stack_write_var_off(env, state,
4828 ptr_regno, off, size,
4829 value_regno, insn_idx);
4834 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4835 int off, int size, enum bpf_access_type type)
4837 struct bpf_reg_state *regs = cur_regs(env);
4838 struct bpf_map *map = regs[regno].map_ptr;
4839 u32 cap = bpf_map_flags_to_cap(map);
4841 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4842 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4843 map->value_size, off, size);
4847 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4848 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4849 map->value_size, off, size);
4856 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4857 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4858 int off, int size, u32 mem_size,
4859 bool zero_size_allowed)
4861 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4862 struct bpf_reg_state *reg;
4864 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4867 reg = &cur_regs(env)[regno];
4868 switch (reg->type) {
4869 case PTR_TO_MAP_KEY:
4870 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4871 mem_size, off, size);
4873 case PTR_TO_MAP_VALUE:
4874 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4875 mem_size, off, size);
4878 case PTR_TO_PACKET_META:
4879 case PTR_TO_PACKET_END:
4880 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4881 off, size, regno, reg->id, off, mem_size);
4885 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4886 mem_size, off, size);
4892 /* check read/write into a memory region with possible variable offset */
4893 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4894 int off, int size, u32 mem_size,
4895 bool zero_size_allowed)
4897 struct bpf_verifier_state *vstate = env->cur_state;
4898 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4899 struct bpf_reg_state *reg = &state->regs[regno];
4902 /* We may have adjusted the register pointing to memory region, so we
4903 * need to try adding each of min_value and max_value to off
4904 * to make sure our theoretical access will be safe.
4906 * The minimum value is only important with signed
4907 * comparisons where we can't assume the floor of a
4908 * value is 0. If we are using signed variables for our
4909 * index'es we need to make sure that whatever we use
4910 * will have a set floor within our range.
4912 if (reg->smin_value < 0 &&
4913 (reg->smin_value == S64_MIN ||
4914 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4915 reg->smin_value + off < 0)) {
4916 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4920 err = __check_mem_access(env, regno, reg->smin_value + off, size,
4921 mem_size, zero_size_allowed);
4923 verbose(env, "R%d min value is outside of the allowed memory range\n",
4928 /* If we haven't set a max value then we need to bail since we can't be
4929 * sure we won't do bad things.
4930 * If reg->umax_value + off could overflow, treat that as unbounded too.
4932 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4933 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4937 err = __check_mem_access(env, regno, reg->umax_value + off, size,
4938 mem_size, zero_size_allowed);
4940 verbose(env, "R%d max value is outside of the allowed memory range\n",
4948 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4949 const struct bpf_reg_state *reg, int regno,
4952 /* Access to this pointer-typed register or passing it to a helper
4953 * is only allowed in its original, unmodified form.
4957 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4958 reg_type_str(env, reg->type), regno, reg->off);
4962 if (!fixed_off_ok && reg->off) {
4963 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4964 reg_type_str(env, reg->type), regno, reg->off);
4968 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4971 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4972 verbose(env, "variable %s access var_off=%s disallowed\n",
4973 reg_type_str(env, reg->type), tn_buf);
4980 int check_ptr_off_reg(struct bpf_verifier_env *env,
4981 const struct bpf_reg_state *reg, int regno)
4983 return __check_ptr_off_reg(env, reg, regno, false);
4986 static int map_kptr_match_type(struct bpf_verifier_env *env,
4987 struct btf_field *kptr_field,
4988 struct bpf_reg_state *reg, u32 regno)
4990 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
4992 const char *reg_name = "";
4994 if (btf_is_kernel(reg->btf)) {
4995 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
4997 /* Only unreferenced case accepts untrusted pointers */
4998 if (kptr_field->type == BPF_KPTR_UNREF)
4999 perm_flags |= PTR_UNTRUSTED;
5001 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5004 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5007 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
5008 reg_name = btf_type_name(reg->btf, reg->btf_id);
5010 /* For ref_ptr case, release function check should ensure we get one
5011 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5012 * normal store of unreferenced kptr, we must ensure var_off is zero.
5013 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5014 * reg->off and reg->ref_obj_id are not needed here.
5016 if (__check_ptr_off_reg(env, reg, regno, true))
5019 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5020 * we also need to take into account the reg->off.
5022 * We want to support cases like:
5030 * v = func(); // PTR_TO_BTF_ID
5031 * val->foo = v; // reg->off is zero, btf and btf_id match type
5032 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5033 * // first member type of struct after comparison fails
5034 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5037 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5038 * is zero. We must also ensure that btf_struct_ids_match does not walk
5039 * the struct to match type against first member of struct, i.e. reject
5040 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5041 * strict mode to true for type match.
5043 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5044 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5045 kptr_field->type == BPF_KPTR_REF))
5049 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5050 reg_type_str(env, reg->type), reg_name);
5051 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5052 if (kptr_field->type == BPF_KPTR_UNREF)
5053 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5060 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5061 * can dereference RCU protected pointers and result is PTR_TRUSTED.
5063 static bool in_rcu_cs(struct bpf_verifier_env *env)
5065 return env->cur_state->active_rcu_lock ||
5066 env->cur_state->active_lock.ptr ||
5067 !env->prog->aux->sleepable;
5070 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5071 BTF_SET_START(rcu_protected_types)
5072 BTF_ID(struct, prog_test_ref_kfunc)
5073 BTF_ID(struct, cgroup)
5074 BTF_ID(struct, bpf_cpumask)
5075 BTF_ID(struct, task_struct)
5076 BTF_SET_END(rcu_protected_types)
5078 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5080 if (!btf_is_kernel(btf))
5082 return btf_id_set_contains(&rcu_protected_types, btf_id);
5085 static bool rcu_safe_kptr(const struct btf_field *field)
5087 const struct btf_field_kptr *kptr = &field->kptr;
5089 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5092 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5093 int value_regno, int insn_idx,
5094 struct btf_field *kptr_field)
5096 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5097 int class = BPF_CLASS(insn->code);
5098 struct bpf_reg_state *val_reg;
5100 /* Things we already checked for in check_map_access and caller:
5101 * - Reject cases where variable offset may touch kptr
5102 * - size of access (must be BPF_DW)
5103 * - tnum_is_const(reg->var_off)
5104 * - kptr_field->offset == off + reg->var_off.value
5106 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5107 if (BPF_MODE(insn->code) != BPF_MEM) {
5108 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5112 /* We only allow loading referenced kptr, since it will be marked as
5113 * untrusted, similar to unreferenced kptr.
5115 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5116 verbose(env, "store to referenced kptr disallowed\n");
5120 if (class == BPF_LDX) {
5121 val_reg = reg_state(env, value_regno);
5122 /* We can simply mark the value_regno receiving the pointer
5123 * value from map as PTR_TO_BTF_ID, with the correct type.
5125 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5126 kptr_field->kptr.btf_id,
5127 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5128 PTR_MAYBE_NULL | MEM_RCU :
5129 PTR_MAYBE_NULL | PTR_UNTRUSTED);
5130 /* For mark_ptr_or_null_reg */
5131 val_reg->id = ++env->id_gen;
5132 } else if (class == BPF_STX) {
5133 val_reg = reg_state(env, value_regno);
5134 if (!register_is_null(val_reg) &&
5135 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5137 } else if (class == BPF_ST) {
5139 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5140 kptr_field->offset);
5144 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5150 /* check read/write into a map element with possible variable offset */
5151 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5152 int off, int size, bool zero_size_allowed,
5153 enum bpf_access_src src)
5155 struct bpf_verifier_state *vstate = env->cur_state;
5156 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5157 struct bpf_reg_state *reg = &state->regs[regno];
5158 struct bpf_map *map = reg->map_ptr;
5159 struct btf_record *rec;
5162 err = check_mem_region_access(env, regno, off, size, map->value_size,
5167 if (IS_ERR_OR_NULL(map->record))
5170 for (i = 0; i < rec->cnt; i++) {
5171 struct btf_field *field = &rec->fields[i];
5172 u32 p = field->offset;
5174 /* If any part of a field can be touched by load/store, reject
5175 * this program. To check that [x1, x2) overlaps with [y1, y2),
5176 * it is sufficient to check x1 < y2 && y1 < x2.
5178 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5179 p < reg->umax_value + off + size) {
5180 switch (field->type) {
5181 case BPF_KPTR_UNREF:
5183 if (src != ACCESS_DIRECT) {
5184 verbose(env, "kptr cannot be accessed indirectly by helper\n");
5187 if (!tnum_is_const(reg->var_off)) {
5188 verbose(env, "kptr access cannot have variable offset\n");
5191 if (p != off + reg->var_off.value) {
5192 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5193 p, off + reg->var_off.value);
5196 if (size != bpf_size_to_bytes(BPF_DW)) {
5197 verbose(env, "kptr access size must be BPF_DW\n");
5202 verbose(env, "%s cannot be accessed directly by load/store\n",
5203 btf_field_type_name(field->type));
5211 #define MAX_PACKET_OFF 0xffff
5213 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5214 const struct bpf_call_arg_meta *meta,
5215 enum bpf_access_type t)
5217 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5219 switch (prog_type) {
5220 /* Program types only with direct read access go here! */
5221 case BPF_PROG_TYPE_LWT_IN:
5222 case BPF_PROG_TYPE_LWT_OUT:
5223 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5224 case BPF_PROG_TYPE_SK_REUSEPORT:
5225 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5226 case BPF_PROG_TYPE_CGROUP_SKB:
5231 /* Program types with direct read + write access go here! */
5232 case BPF_PROG_TYPE_SCHED_CLS:
5233 case BPF_PROG_TYPE_SCHED_ACT:
5234 case BPF_PROG_TYPE_XDP:
5235 case BPF_PROG_TYPE_LWT_XMIT:
5236 case BPF_PROG_TYPE_SK_SKB:
5237 case BPF_PROG_TYPE_SK_MSG:
5239 return meta->pkt_access;
5241 env->seen_direct_write = true;
5244 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5246 env->seen_direct_write = true;
5255 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5256 int size, bool zero_size_allowed)
5258 struct bpf_reg_state *regs = cur_regs(env);
5259 struct bpf_reg_state *reg = ®s[regno];
5262 /* We may have added a variable offset to the packet pointer; but any
5263 * reg->range we have comes after that. We are only checking the fixed
5267 /* We don't allow negative numbers, because we aren't tracking enough
5268 * detail to prove they're safe.
5270 if (reg->smin_value < 0) {
5271 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5276 err = reg->range < 0 ? -EINVAL :
5277 __check_mem_access(env, regno, off, size, reg->range,
5280 verbose(env, "R%d offset is outside of the packet\n", regno);
5284 /* __check_mem_access has made sure "off + size - 1" is within u16.
5285 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5286 * otherwise find_good_pkt_pointers would have refused to set range info
5287 * that __check_mem_access would have rejected this pkt access.
5288 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5290 env->prog->aux->max_pkt_offset =
5291 max_t(u32, env->prog->aux->max_pkt_offset,
5292 off + reg->umax_value + size - 1);
5297 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
5298 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5299 enum bpf_access_type t, enum bpf_reg_type *reg_type,
5300 struct btf **btf, u32 *btf_id)
5302 struct bpf_insn_access_aux info = {
5303 .reg_type = *reg_type,
5307 if (env->ops->is_valid_access &&
5308 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5309 /* A non zero info.ctx_field_size indicates that this field is a
5310 * candidate for later verifier transformation to load the whole
5311 * field and then apply a mask when accessed with a narrower
5312 * access than actual ctx access size. A zero info.ctx_field_size
5313 * will only allow for whole field access and rejects any other
5314 * type of narrower access.
5316 *reg_type = info.reg_type;
5318 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5320 *btf_id = info.btf_id;
5322 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5324 /* remember the offset of last byte accessed in ctx */
5325 if (env->prog->aux->max_ctx_offset < off + size)
5326 env->prog->aux->max_ctx_offset = off + size;
5330 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5334 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5337 if (size < 0 || off < 0 ||
5338 (u64)off + size > sizeof(struct bpf_flow_keys)) {
5339 verbose(env, "invalid access to flow keys off=%d size=%d\n",
5346 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5347 u32 regno, int off, int size,
5348 enum bpf_access_type t)
5350 struct bpf_reg_state *regs = cur_regs(env);
5351 struct bpf_reg_state *reg = ®s[regno];
5352 struct bpf_insn_access_aux info = {};
5355 if (reg->smin_value < 0) {
5356 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5361 switch (reg->type) {
5362 case PTR_TO_SOCK_COMMON:
5363 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5366 valid = bpf_sock_is_valid_access(off, size, t, &info);
5368 case PTR_TO_TCP_SOCK:
5369 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5371 case PTR_TO_XDP_SOCK:
5372 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5380 env->insn_aux_data[insn_idx].ctx_field_size =
5381 info.ctx_field_size;
5385 verbose(env, "R%d invalid %s access off=%d size=%d\n",
5386 regno, reg_type_str(env, reg->type), off, size);
5391 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5393 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5396 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5398 const struct bpf_reg_state *reg = reg_state(env, regno);
5400 return reg->type == PTR_TO_CTX;
5403 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5405 const struct bpf_reg_state *reg = reg_state(env, regno);
5407 return type_is_sk_pointer(reg->type);
5410 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5412 const struct bpf_reg_state *reg = reg_state(env, regno);
5414 return type_is_pkt_pointer(reg->type);
5417 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5419 const struct bpf_reg_state *reg = reg_state(env, regno);
5421 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5422 return reg->type == PTR_TO_FLOW_KEYS;
5425 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5427 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5428 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5429 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5431 [CONST_PTR_TO_MAP] = btf_bpf_map_id,
5434 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5436 /* A referenced register is always trusted. */
5437 if (reg->ref_obj_id)
5440 /* Types listed in the reg2btf_ids are always trusted */
5441 if (reg2btf_ids[base_type(reg->type)])
5444 /* If a register is not referenced, it is trusted if it has the
5445 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5446 * other type modifiers may be safe, but we elect to take an opt-in
5447 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5450 * Eventually, we should make PTR_TRUSTED the single source of truth
5451 * for whether a register is trusted.
5453 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5454 !bpf_type_has_unsafe_modifiers(reg->type);
5457 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5459 return reg->type & MEM_RCU;
5462 static void clear_trusted_flags(enum bpf_type_flag *flag)
5464 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5467 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5468 const struct bpf_reg_state *reg,
5469 int off, int size, bool strict)
5471 struct tnum reg_off;
5474 /* Byte size accesses are always allowed. */
5475 if (!strict || size == 1)
5478 /* For platforms that do not have a Kconfig enabling
5479 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5480 * NET_IP_ALIGN is universally set to '2'. And on platforms
5481 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5482 * to this code only in strict mode where we want to emulate
5483 * the NET_IP_ALIGN==2 checking. Therefore use an
5484 * unconditional IP align value of '2'.
5488 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5489 if (!tnum_is_aligned(reg_off, size)) {
5492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5494 "misaligned packet access off %d+%s+%d+%d size %d\n",
5495 ip_align, tn_buf, reg->off, off, size);
5502 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5503 const struct bpf_reg_state *reg,
5504 const char *pointer_desc,
5505 int off, int size, bool strict)
5507 struct tnum reg_off;
5509 /* Byte size accesses are always allowed. */
5510 if (!strict || size == 1)
5513 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5514 if (!tnum_is_aligned(reg_off, size)) {
5517 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5518 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5519 pointer_desc, tn_buf, reg->off, off, size);
5526 static int check_ptr_alignment(struct bpf_verifier_env *env,
5527 const struct bpf_reg_state *reg, int off,
5528 int size, bool strict_alignment_once)
5530 bool strict = env->strict_alignment || strict_alignment_once;
5531 const char *pointer_desc = "";
5533 switch (reg->type) {
5535 case PTR_TO_PACKET_META:
5536 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5537 * right in front, treat it the very same way.
5539 return check_pkt_ptr_alignment(env, reg, off, size, strict);
5540 case PTR_TO_FLOW_KEYS:
5541 pointer_desc = "flow keys ";
5543 case PTR_TO_MAP_KEY:
5544 pointer_desc = "key ";
5546 case PTR_TO_MAP_VALUE:
5547 pointer_desc = "value ";
5550 pointer_desc = "context ";
5553 pointer_desc = "stack ";
5554 /* The stack spill tracking logic in check_stack_write_fixed_off()
5555 * and check_stack_read_fixed_off() relies on stack accesses being
5561 pointer_desc = "sock ";
5563 case PTR_TO_SOCK_COMMON:
5564 pointer_desc = "sock_common ";
5566 case PTR_TO_TCP_SOCK:
5567 pointer_desc = "tcp_sock ";
5569 case PTR_TO_XDP_SOCK:
5570 pointer_desc = "xdp_sock ";
5575 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5579 static int update_stack_depth(struct bpf_verifier_env *env,
5580 const struct bpf_func_state *func,
5583 u16 stack = env->subprog_info[func->subprogno].stack_depth;
5588 /* update known max for given subprogram */
5589 env->subprog_info[func->subprogno].stack_depth = -off;
5593 /* starting from main bpf function walk all instructions of the function
5594 * and recursively walk all callees that given function can call.
5595 * Ignore jump and exit insns.
5596 * Since recursion is prevented by check_cfg() this algorithm
5597 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5599 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5601 struct bpf_subprog_info *subprog = env->subprog_info;
5602 struct bpf_insn *insn = env->prog->insnsi;
5603 int depth = 0, frame = 0, i, subprog_end;
5604 bool tail_call_reachable = false;
5605 int ret_insn[MAX_CALL_FRAMES];
5606 int ret_prog[MAX_CALL_FRAMES];
5609 i = subprog[idx].start;
5611 /* protect against potential stack overflow that might happen when
5612 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5613 * depth for such case down to 256 so that the worst case scenario
5614 * would result in 8k stack size (32 which is tailcall limit * 256 =
5617 * To get the idea what might happen, see an example:
5618 * func1 -> sub rsp, 128
5619 * subfunc1 -> sub rsp, 256
5620 * tailcall1 -> add rsp, 256
5621 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5622 * subfunc2 -> sub rsp, 64
5623 * subfunc22 -> sub rsp, 128
5624 * tailcall2 -> add rsp, 128
5625 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5627 * tailcall will unwind the current stack frame but it will not get rid
5628 * of caller's stack as shown on the example above.
5630 if (idx && subprog[idx].has_tail_call && depth >= 256) {
5632 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5636 /* round up to 32-bytes, since this is granularity
5637 * of interpreter stack size
5639 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5640 if (depth > MAX_BPF_STACK) {
5641 verbose(env, "combined stack size of %d calls is %d. Too large\n",
5646 subprog_end = subprog[idx + 1].start;
5647 for (; i < subprog_end; i++) {
5648 int next_insn, sidx;
5650 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5652 /* remember insn and function to return to */
5653 ret_insn[frame] = i + 1;
5654 ret_prog[frame] = idx;
5656 /* find the callee */
5657 next_insn = i + insn[i].imm + 1;
5658 sidx = find_subprog(env, next_insn);
5660 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5664 if (subprog[sidx].is_async_cb) {
5665 if (subprog[sidx].has_tail_call) {
5666 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5669 /* async callbacks don't increase bpf prog stack size unless called directly */
5670 if (!bpf_pseudo_call(insn + i))
5676 if (subprog[idx].has_tail_call)
5677 tail_call_reachable = true;
5680 if (frame >= MAX_CALL_FRAMES) {
5681 verbose(env, "the call stack of %d frames is too deep !\n",
5687 /* if tail call got detected across bpf2bpf calls then mark each of the
5688 * currently present subprog frames as tail call reachable subprogs;
5689 * this info will be utilized by JIT so that we will be preserving the
5690 * tail call counter throughout bpf2bpf calls combined with tailcalls
5692 if (tail_call_reachable)
5693 for (j = 0; j < frame; j++)
5694 subprog[ret_prog[j]].tail_call_reachable = true;
5695 if (subprog[0].tail_call_reachable)
5696 env->prog->aux->tail_call_reachable = true;
5698 /* end of for() loop means the last insn of the 'subprog'
5699 * was reached. Doesn't matter whether it was JA or EXIT
5703 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5705 i = ret_insn[frame];
5706 idx = ret_prog[frame];
5710 static int check_max_stack_depth(struct bpf_verifier_env *env)
5712 struct bpf_subprog_info *si = env->subprog_info;
5715 for (int i = 0; i < env->subprog_cnt; i++) {
5716 if (!i || si[i].is_async_cb) {
5717 ret = check_max_stack_depth_subprog(env, i);
5726 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5727 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5728 const struct bpf_insn *insn, int idx)
5730 int start = idx + insn->imm + 1, subprog;
5732 subprog = find_subprog(env, start);
5734 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5738 return env->subprog_info[subprog].stack_depth;
5742 static int __check_buffer_access(struct bpf_verifier_env *env,
5743 const char *buf_info,
5744 const struct bpf_reg_state *reg,
5745 int regno, int off, int size)
5749 "R%d invalid %s buffer access: off=%d, size=%d\n",
5750 regno, buf_info, off, size);
5753 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5756 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5758 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5759 regno, off, tn_buf);
5766 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5767 const struct bpf_reg_state *reg,
5768 int regno, int off, int size)
5772 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5776 if (off + size > env->prog->aux->max_tp_access)
5777 env->prog->aux->max_tp_access = off + size;
5782 static int check_buffer_access(struct bpf_verifier_env *env,
5783 const struct bpf_reg_state *reg,
5784 int regno, int off, int size,
5785 bool zero_size_allowed,
5788 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5791 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5795 if (off + size > *max_access)
5796 *max_access = off + size;
5801 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5802 static void zext_32_to_64(struct bpf_reg_state *reg)
5804 reg->var_off = tnum_subreg(reg->var_off);
5805 __reg_assign_32_into_64(reg);
5808 /* truncate register to smaller size (in bytes)
5809 * must be called with size < BPF_REG_SIZE
5811 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5815 /* clear high bits in bit representation */
5816 reg->var_off = tnum_cast(reg->var_off, size);
5818 /* fix arithmetic bounds */
5819 mask = ((u64)1 << (size * 8)) - 1;
5820 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5821 reg->umin_value &= mask;
5822 reg->umax_value &= mask;
5824 reg->umin_value = 0;
5825 reg->umax_value = mask;
5827 reg->smin_value = reg->umin_value;
5828 reg->smax_value = reg->umax_value;
5830 /* If size is smaller than 32bit register the 32bit register
5831 * values are also truncated so we push 64-bit bounds into
5832 * 32-bit bounds. Above were truncated < 32-bits already.
5836 __reg_combine_64_into_32(reg);
5839 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
5842 reg->smin_value = reg->s32_min_value = S8_MIN;
5843 reg->smax_value = reg->s32_max_value = S8_MAX;
5844 } else if (size == 2) {
5845 reg->smin_value = reg->s32_min_value = S16_MIN;
5846 reg->smax_value = reg->s32_max_value = S16_MAX;
5849 reg->smin_value = reg->s32_min_value = S32_MIN;
5850 reg->smax_value = reg->s32_max_value = S32_MAX;
5852 reg->umin_value = reg->u32_min_value = 0;
5853 reg->umax_value = U64_MAX;
5854 reg->u32_max_value = U32_MAX;
5855 reg->var_off = tnum_unknown;
5858 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
5860 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
5861 u64 top_smax_value, top_smin_value;
5862 u64 num_bits = size * 8;
5864 if (tnum_is_const(reg->var_off)) {
5865 u64_cval = reg->var_off.value;
5867 reg->var_off = tnum_const((s8)u64_cval);
5869 reg->var_off = tnum_const((s16)u64_cval);
5872 reg->var_off = tnum_const((s32)u64_cval);
5874 u64_cval = reg->var_off.value;
5875 reg->smax_value = reg->smin_value = u64_cval;
5876 reg->umax_value = reg->umin_value = u64_cval;
5877 reg->s32_max_value = reg->s32_min_value = u64_cval;
5878 reg->u32_max_value = reg->u32_min_value = u64_cval;
5882 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
5883 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
5885 if (top_smax_value != top_smin_value)
5888 /* find the s64_min and s64_min after sign extension */
5890 init_s64_max = (s8)reg->smax_value;
5891 init_s64_min = (s8)reg->smin_value;
5892 } else if (size == 2) {
5893 init_s64_max = (s16)reg->smax_value;
5894 init_s64_min = (s16)reg->smin_value;
5896 init_s64_max = (s32)reg->smax_value;
5897 init_s64_min = (s32)reg->smin_value;
5900 s64_max = max(init_s64_max, init_s64_min);
5901 s64_min = min(init_s64_max, init_s64_min);
5903 /* both of s64_max/s64_min positive or negative */
5904 if ((s64_max >= 0) == (s64_min >= 0)) {
5905 reg->smin_value = reg->s32_min_value = s64_min;
5906 reg->smax_value = reg->s32_max_value = s64_max;
5907 reg->umin_value = reg->u32_min_value = s64_min;
5908 reg->umax_value = reg->u32_max_value = s64_max;
5909 reg->var_off = tnum_range(s64_min, s64_max);
5914 set_sext64_default_val(reg, size);
5917 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
5920 reg->s32_min_value = S8_MIN;
5921 reg->s32_max_value = S8_MAX;
5924 reg->s32_min_value = S16_MIN;
5925 reg->s32_max_value = S16_MAX;
5927 reg->u32_min_value = 0;
5928 reg->u32_max_value = U32_MAX;
5931 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
5933 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
5934 u32 top_smax_value, top_smin_value;
5935 u32 num_bits = size * 8;
5937 if (tnum_is_const(reg->var_off)) {
5938 u32_val = reg->var_off.value;
5940 reg->var_off = tnum_const((s8)u32_val);
5942 reg->var_off = tnum_const((s16)u32_val);
5944 u32_val = reg->var_off.value;
5945 reg->s32_min_value = reg->s32_max_value = u32_val;
5946 reg->u32_min_value = reg->u32_max_value = u32_val;
5950 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
5951 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
5953 if (top_smax_value != top_smin_value)
5956 /* find the s32_min and s32_min after sign extension */
5958 init_s32_max = (s8)reg->s32_max_value;
5959 init_s32_min = (s8)reg->s32_min_value;
5962 init_s32_max = (s16)reg->s32_max_value;
5963 init_s32_min = (s16)reg->s32_min_value;
5965 s32_max = max(init_s32_max, init_s32_min);
5966 s32_min = min(init_s32_max, init_s32_min);
5968 if ((s32_min >= 0) == (s32_max >= 0)) {
5969 reg->s32_min_value = s32_min;
5970 reg->s32_max_value = s32_max;
5971 reg->u32_min_value = (u32)s32_min;
5972 reg->u32_max_value = (u32)s32_max;
5977 set_sext32_default_val(reg, size);
5980 static bool bpf_map_is_rdonly(const struct bpf_map *map)
5982 /* A map is considered read-only if the following condition are true:
5984 * 1) BPF program side cannot change any of the map content. The
5985 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5986 * and was set at map creation time.
5987 * 2) The map value(s) have been initialized from user space by a
5988 * loader and then "frozen", such that no new map update/delete
5989 * operations from syscall side are possible for the rest of
5990 * the map's lifetime from that point onwards.
5991 * 3) Any parallel/pending map update/delete operations from syscall
5992 * side have been completed. Only after that point, it's safe to
5993 * assume that map value(s) are immutable.
5995 return (map->map_flags & BPF_F_RDONLY_PROG) &&
5996 READ_ONCE(map->frozen) &&
5997 !bpf_map_write_active(map);
6000 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6007 err = map->ops->map_direct_value_addr(map, &addr, off);
6010 ptr = (void *)(long)addr + off;
6014 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6017 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6020 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6031 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
6032 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
6033 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
6036 * Allow list few fields as RCU trusted or full trusted.
6037 * This logic doesn't allow mix tagging and will be removed once GCC supports
6041 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6042 BTF_TYPE_SAFE_RCU(struct task_struct) {
6043 const cpumask_t *cpus_ptr;
6044 struct css_set __rcu *cgroups;
6045 struct task_struct __rcu *real_parent;
6046 struct task_struct *group_leader;
6049 BTF_TYPE_SAFE_RCU(struct cgroup) {
6050 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6051 struct kernfs_node *kn;
6054 BTF_TYPE_SAFE_RCU(struct css_set) {
6055 struct cgroup *dfl_cgrp;
6058 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6059 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6060 struct file __rcu *exe_file;
6063 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6064 * because bpf prog accessible sockets are SOCK_RCU_FREE.
6066 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6070 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6074 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6075 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6076 struct seq_file *seq;
6079 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6080 struct bpf_iter_meta *meta;
6081 struct task_struct *task;
6084 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6088 BTF_TYPE_SAFE_TRUSTED(struct file) {
6089 struct inode *f_inode;
6092 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6093 /* no negative dentry-s in places where bpf can see it */
6094 struct inode *d_inode;
6097 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6101 static bool type_is_rcu(struct bpf_verifier_env *env,
6102 struct bpf_reg_state *reg,
6103 const char *field_name, u32 btf_id)
6105 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6106 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6107 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6109 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6112 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6113 struct bpf_reg_state *reg,
6114 const char *field_name, u32 btf_id)
6116 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6117 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6118 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6120 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6123 static bool type_is_trusted(struct bpf_verifier_env *env,
6124 struct bpf_reg_state *reg,
6125 const char *field_name, u32 btf_id)
6127 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6128 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6129 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6130 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6131 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6132 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6134 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6137 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6138 struct bpf_reg_state *regs,
6139 int regno, int off, int size,
6140 enum bpf_access_type atype,
6143 struct bpf_reg_state *reg = regs + regno;
6144 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6145 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6146 const char *field_name = NULL;
6147 enum bpf_type_flag flag = 0;
6151 if (!env->allow_ptr_leaks) {
6153 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6157 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6159 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6165 "R%d is ptr_%s invalid negative access: off=%d\n",
6169 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6172 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6174 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6175 regno, tname, off, tn_buf);
6179 if (reg->type & MEM_USER) {
6181 "R%d is ptr_%s access user memory: off=%d\n",
6186 if (reg->type & MEM_PERCPU) {
6188 "R%d is ptr_%s access percpu memory: off=%d\n",
6193 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6194 if (!btf_is_kernel(reg->btf)) {
6195 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6198 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6200 /* Writes are permitted with default btf_struct_access for
6201 * program allocated objects (which always have ref_obj_id > 0),
6202 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6204 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6205 verbose(env, "only read is supported\n");
6209 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6211 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6215 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6221 if (ret != PTR_TO_BTF_ID) {
6224 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6225 /* If this is an untrusted pointer, all pointers formed by walking it
6226 * also inherit the untrusted flag.
6228 flag = PTR_UNTRUSTED;
6230 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6231 /* By default any pointer obtained from walking a trusted pointer is no
6232 * longer trusted, unless the field being accessed has explicitly been
6233 * marked as inheriting its parent's state of trust (either full or RCU).
6235 * 'cgroups' pointer is untrusted if task->cgroups dereference
6236 * happened in a sleepable program outside of bpf_rcu_read_lock()
6237 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6238 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6240 * A regular RCU-protected pointer with __rcu tag can also be deemed
6241 * trusted if we are in an RCU CS. Such pointer can be NULL.
6243 if (type_is_trusted(env, reg, field_name, btf_id)) {
6244 flag |= PTR_TRUSTED;
6245 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6246 if (type_is_rcu(env, reg, field_name, btf_id)) {
6247 /* ignore __rcu tag and mark it MEM_RCU */
6249 } else if (flag & MEM_RCU ||
6250 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6251 /* __rcu tagged pointers can be NULL */
6252 flag |= MEM_RCU | PTR_MAYBE_NULL;
6254 /* We always trust them */
6255 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6256 flag & PTR_UNTRUSTED)
6257 flag &= ~PTR_UNTRUSTED;
6258 } else if (flag & (MEM_PERCPU | MEM_USER)) {
6261 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6262 clear_trusted_flags(&flag);
6266 * If not in RCU CS or MEM_RCU pointer can be NULL then
6267 * aggressively mark as untrusted otherwise such
6268 * pointers will be plain PTR_TO_BTF_ID without flags
6269 * and will be allowed to be passed into helpers for
6272 flag = PTR_UNTRUSTED;
6275 /* Old compat. Deprecated */
6276 clear_trusted_flags(&flag);
6279 if (atype == BPF_READ && value_regno >= 0)
6280 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6285 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6286 struct bpf_reg_state *regs,
6287 int regno, int off, int size,
6288 enum bpf_access_type atype,
6291 struct bpf_reg_state *reg = regs + regno;
6292 struct bpf_map *map = reg->map_ptr;
6293 struct bpf_reg_state map_reg;
6294 enum bpf_type_flag flag = 0;
6295 const struct btf_type *t;
6301 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6305 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6306 verbose(env, "map_ptr access not supported for map type %d\n",
6311 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6312 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6314 if (!env->allow_ptr_leaks) {
6316 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6322 verbose(env, "R%d is %s invalid negative access: off=%d\n",
6327 if (atype != BPF_READ) {
6328 verbose(env, "only read from %s is supported\n", tname);
6332 /* Simulate access to a PTR_TO_BTF_ID */
6333 memset(&map_reg, 0, sizeof(map_reg));
6334 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6335 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6339 if (value_regno >= 0)
6340 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6345 /* Check that the stack access at the given offset is within bounds. The
6346 * maximum valid offset is -1.
6348 * The minimum valid offset is -MAX_BPF_STACK for writes, and
6349 * -state->allocated_stack for reads.
6351 static int check_stack_slot_within_bounds(int off,
6352 struct bpf_func_state *state,
6353 enum bpf_access_type t)
6358 min_valid_off = -MAX_BPF_STACK;
6360 min_valid_off = -state->allocated_stack;
6362 if (off < min_valid_off || off > -1)
6367 /* Check that the stack access at 'regno + off' falls within the maximum stack
6370 * 'off' includes `regno->offset`, but not its dynamic part (if any).
6372 static int check_stack_access_within_bounds(
6373 struct bpf_verifier_env *env,
6374 int regno, int off, int access_size,
6375 enum bpf_access_src src, enum bpf_access_type type)
6377 struct bpf_reg_state *regs = cur_regs(env);
6378 struct bpf_reg_state *reg = regs + regno;
6379 struct bpf_func_state *state = func(env, reg);
6380 int min_off, max_off;
6384 if (src == ACCESS_HELPER)
6385 /* We don't know if helpers are reading or writing (or both). */
6386 err_extra = " indirect access to";
6387 else if (type == BPF_READ)
6388 err_extra = " read from";
6390 err_extra = " write to";
6392 if (tnum_is_const(reg->var_off)) {
6393 min_off = reg->var_off.value + off;
6394 if (access_size > 0)
6395 max_off = min_off + access_size - 1;
6399 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6400 reg->smin_value <= -BPF_MAX_VAR_OFF) {
6401 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6405 min_off = reg->smin_value + off;
6406 if (access_size > 0)
6407 max_off = reg->smax_value + off + access_size - 1;
6412 err = check_stack_slot_within_bounds(min_off, state, type);
6414 err = check_stack_slot_within_bounds(max_off, state, type);
6417 if (tnum_is_const(reg->var_off)) {
6418 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6419 err_extra, regno, off, access_size);
6423 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6424 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6425 err_extra, regno, tn_buf, access_size);
6431 /* check whether memory at (regno + off) is accessible for t = (read | write)
6432 * if t==write, value_regno is a register which value is stored into memory
6433 * if t==read, value_regno is a register which will receive the value from memory
6434 * if t==write && value_regno==-1, some unknown value is stored into memory
6435 * if t==read && value_regno==-1, don't care what we read from memory
6437 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6438 int off, int bpf_size, enum bpf_access_type t,
6439 int value_regno, bool strict_alignment_once, bool is_ldsx)
6441 struct bpf_reg_state *regs = cur_regs(env);
6442 struct bpf_reg_state *reg = regs + regno;
6443 struct bpf_func_state *state;
6446 size = bpf_size_to_bytes(bpf_size);
6450 /* alignment checks will add in reg->off themselves */
6451 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6455 /* for access checks, reg->off is just part of off */
6458 if (reg->type == PTR_TO_MAP_KEY) {
6459 if (t == BPF_WRITE) {
6460 verbose(env, "write to change key R%d not allowed\n", regno);
6464 err = check_mem_region_access(env, regno, off, size,
6465 reg->map_ptr->key_size, false);
6468 if (value_regno >= 0)
6469 mark_reg_unknown(env, regs, value_regno);
6470 } else if (reg->type == PTR_TO_MAP_VALUE) {
6471 struct btf_field *kptr_field = NULL;
6473 if (t == BPF_WRITE && value_regno >= 0 &&
6474 is_pointer_value(env, value_regno)) {
6475 verbose(env, "R%d leaks addr into map\n", value_regno);
6478 err = check_map_access_type(env, regno, off, size, t);
6481 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6484 if (tnum_is_const(reg->var_off))
6485 kptr_field = btf_record_find(reg->map_ptr->record,
6486 off + reg->var_off.value, BPF_KPTR);
6488 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6489 } else if (t == BPF_READ && value_regno >= 0) {
6490 struct bpf_map *map = reg->map_ptr;
6492 /* if map is read-only, track its contents as scalars */
6493 if (tnum_is_const(reg->var_off) &&
6494 bpf_map_is_rdonly(map) &&
6495 map->ops->map_direct_value_addr) {
6496 int map_off = off + reg->var_off.value;
6499 err = bpf_map_direct_read(map, map_off, size,
6504 regs[value_regno].type = SCALAR_VALUE;
6505 __mark_reg_known(®s[value_regno], val);
6507 mark_reg_unknown(env, regs, value_regno);
6510 } else if (base_type(reg->type) == PTR_TO_MEM) {
6511 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6513 if (type_may_be_null(reg->type)) {
6514 verbose(env, "R%d invalid mem access '%s'\n", regno,
6515 reg_type_str(env, reg->type));
6519 if (t == BPF_WRITE && rdonly_mem) {
6520 verbose(env, "R%d cannot write into %s\n",
6521 regno, reg_type_str(env, reg->type));
6525 if (t == BPF_WRITE && value_regno >= 0 &&
6526 is_pointer_value(env, value_regno)) {
6527 verbose(env, "R%d leaks addr into mem\n", value_regno);
6531 err = check_mem_region_access(env, regno, off, size,
6532 reg->mem_size, false);
6533 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6534 mark_reg_unknown(env, regs, value_regno);
6535 } else if (reg->type == PTR_TO_CTX) {
6536 enum bpf_reg_type reg_type = SCALAR_VALUE;
6537 struct btf *btf = NULL;
6540 if (t == BPF_WRITE && value_regno >= 0 &&
6541 is_pointer_value(env, value_regno)) {
6542 verbose(env, "R%d leaks addr into ctx\n", value_regno);
6546 err = check_ptr_off_reg(env, reg, regno);
6550 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf,
6553 verbose_linfo(env, insn_idx, "; ");
6554 if (!err && t == BPF_READ && value_regno >= 0) {
6555 /* ctx access returns either a scalar, or a
6556 * PTR_TO_PACKET[_META,_END]. In the latter
6557 * case, we know the offset is zero.
6559 if (reg_type == SCALAR_VALUE) {
6560 mark_reg_unknown(env, regs, value_regno);
6562 mark_reg_known_zero(env, regs,
6564 if (type_may_be_null(reg_type))
6565 regs[value_regno].id = ++env->id_gen;
6566 /* A load of ctx field could have different
6567 * actual load size with the one encoded in the
6568 * insn. When the dst is PTR, it is for sure not
6571 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6572 if (base_type(reg_type) == PTR_TO_BTF_ID) {
6573 regs[value_regno].btf = btf;
6574 regs[value_regno].btf_id = btf_id;
6577 regs[value_regno].type = reg_type;
6580 } else if (reg->type == PTR_TO_STACK) {
6581 /* Basic bounds checks. */
6582 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6586 state = func(env, reg);
6587 err = update_stack_depth(env, state, off);
6592 err = check_stack_read(env, regno, off, size,
6595 err = check_stack_write(env, regno, off, size,
6596 value_regno, insn_idx);
6597 } else if (reg_is_pkt_pointer(reg)) {
6598 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6599 verbose(env, "cannot write into packet\n");
6602 if (t == BPF_WRITE && value_regno >= 0 &&
6603 is_pointer_value(env, value_regno)) {
6604 verbose(env, "R%d leaks addr into packet\n",
6608 err = check_packet_access(env, regno, off, size, false);
6609 if (!err && t == BPF_READ && value_regno >= 0)
6610 mark_reg_unknown(env, regs, value_regno);
6611 } else if (reg->type == PTR_TO_FLOW_KEYS) {
6612 if (t == BPF_WRITE && value_regno >= 0 &&
6613 is_pointer_value(env, value_regno)) {
6614 verbose(env, "R%d leaks addr into flow keys\n",
6619 err = check_flow_keys_access(env, off, size);
6620 if (!err && t == BPF_READ && value_regno >= 0)
6621 mark_reg_unknown(env, regs, value_regno);
6622 } else if (type_is_sk_pointer(reg->type)) {
6623 if (t == BPF_WRITE) {
6624 verbose(env, "R%d cannot write into %s\n",
6625 regno, reg_type_str(env, reg->type));
6628 err = check_sock_access(env, insn_idx, regno, off, size, t);
6629 if (!err && value_regno >= 0)
6630 mark_reg_unknown(env, regs, value_regno);
6631 } else if (reg->type == PTR_TO_TP_BUFFER) {
6632 err = check_tp_buffer_access(env, reg, regno, off, size);
6633 if (!err && t == BPF_READ && value_regno >= 0)
6634 mark_reg_unknown(env, regs, value_regno);
6635 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6636 !type_may_be_null(reg->type)) {
6637 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6639 } else if (reg->type == CONST_PTR_TO_MAP) {
6640 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6642 } else if (base_type(reg->type) == PTR_TO_BUF) {
6643 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6647 if (t == BPF_WRITE) {
6648 verbose(env, "R%d cannot write into %s\n",
6649 regno, reg_type_str(env, reg->type));
6652 max_access = &env->prog->aux->max_rdonly_access;
6654 max_access = &env->prog->aux->max_rdwr_access;
6657 err = check_buffer_access(env, reg, regno, off, size, false,
6660 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6661 mark_reg_unknown(env, regs, value_regno);
6663 verbose(env, "R%d invalid mem access '%s'\n", regno,
6664 reg_type_str(env, reg->type));
6668 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6669 regs[value_regno].type == SCALAR_VALUE) {
6671 /* b/h/w load zero-extends, mark upper bits as known 0 */
6672 coerce_reg_to_size(®s[value_regno], size);
6674 coerce_reg_to_size_sx(®s[value_regno], size);
6679 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6684 switch (insn->imm) {
6686 case BPF_ADD | BPF_FETCH:
6688 case BPF_AND | BPF_FETCH:
6690 case BPF_OR | BPF_FETCH:
6692 case BPF_XOR | BPF_FETCH:
6697 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6701 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6702 verbose(env, "invalid atomic operand size\n");
6706 /* check src1 operand */
6707 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6711 /* check src2 operand */
6712 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6716 if (insn->imm == BPF_CMPXCHG) {
6717 /* Check comparison of R0 with memory location */
6718 const u32 aux_reg = BPF_REG_0;
6720 err = check_reg_arg(env, aux_reg, SRC_OP);
6724 if (is_pointer_value(env, aux_reg)) {
6725 verbose(env, "R%d leaks addr into mem\n", aux_reg);
6730 if (is_pointer_value(env, insn->src_reg)) {
6731 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6735 if (is_ctx_reg(env, insn->dst_reg) ||
6736 is_pkt_reg(env, insn->dst_reg) ||
6737 is_flow_key_reg(env, insn->dst_reg) ||
6738 is_sk_reg(env, insn->dst_reg)) {
6739 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6741 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6745 if (insn->imm & BPF_FETCH) {
6746 if (insn->imm == BPF_CMPXCHG)
6747 load_reg = BPF_REG_0;
6749 load_reg = insn->src_reg;
6751 /* check and record load of old value */
6752 err = check_reg_arg(env, load_reg, DST_OP);
6756 /* This instruction accesses a memory location but doesn't
6757 * actually load it into a register.
6762 /* Check whether we can read the memory, with second call for fetch
6763 * case to simulate the register fill.
6765 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6766 BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6767 if (!err && load_reg >= 0)
6768 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6769 BPF_SIZE(insn->code), BPF_READ, load_reg,
6774 /* Check whether we can write into the same memory. */
6775 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6776 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6783 /* When register 'regno' is used to read the stack (either directly or through
6784 * a helper function) make sure that it's within stack boundary and, depending
6785 * on the access type, that all elements of the stack are initialized.
6787 * 'off' includes 'regno->off', but not its dynamic part (if any).
6789 * All registers that have been spilled on the stack in the slots within the
6790 * read offsets are marked as read.
6792 static int check_stack_range_initialized(
6793 struct bpf_verifier_env *env, int regno, int off,
6794 int access_size, bool zero_size_allowed,
6795 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6797 struct bpf_reg_state *reg = reg_state(env, regno);
6798 struct bpf_func_state *state = func(env, reg);
6799 int err, min_off, max_off, i, j, slot, spi;
6800 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6801 enum bpf_access_type bounds_check_type;
6802 /* Some accesses can write anything into the stack, others are
6805 bool clobber = false;
6807 if (access_size == 0 && !zero_size_allowed) {
6808 verbose(env, "invalid zero-sized read\n");
6812 if (type == ACCESS_HELPER) {
6813 /* The bounds checks for writes are more permissive than for
6814 * reads. However, if raw_mode is not set, we'll do extra
6817 bounds_check_type = BPF_WRITE;
6820 bounds_check_type = BPF_READ;
6822 err = check_stack_access_within_bounds(env, regno, off, access_size,
6823 type, bounds_check_type);
6828 if (tnum_is_const(reg->var_off)) {
6829 min_off = max_off = reg->var_off.value + off;
6831 /* Variable offset is prohibited for unprivileged mode for
6832 * simplicity since it requires corresponding support in
6833 * Spectre masking for stack ALU.
6834 * See also retrieve_ptr_limit().
6836 if (!env->bypass_spec_v1) {
6839 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6840 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6841 regno, err_extra, tn_buf);
6844 /* Only initialized buffer on stack is allowed to be accessed
6845 * with variable offset. With uninitialized buffer it's hard to
6846 * guarantee that whole memory is marked as initialized on
6847 * helper return since specific bounds are unknown what may
6848 * cause uninitialized stack leaking.
6850 if (meta && meta->raw_mode)
6853 min_off = reg->smin_value + off;
6854 max_off = reg->smax_value + off;
6857 if (meta && meta->raw_mode) {
6858 /* Ensure we won't be overwriting dynptrs when simulating byte
6859 * by byte access in check_helper_call using meta.access_size.
6860 * This would be a problem if we have a helper in the future
6863 * helper(uninit_mem, len, dynptr)
6865 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6866 * may end up writing to dynptr itself when touching memory from
6867 * arg 1. This can be relaxed on a case by case basis for known
6868 * safe cases, but reject due to the possibilitiy of aliasing by
6871 for (i = min_off; i < max_off + access_size; i++) {
6872 int stack_off = -i - 1;
6875 /* raw_mode may write past allocated_stack */
6876 if (state->allocated_stack <= stack_off)
6878 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6879 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6883 meta->access_size = access_size;
6884 meta->regno = regno;
6888 for (i = min_off; i < max_off + access_size; i++) {
6892 spi = slot / BPF_REG_SIZE;
6893 if (state->allocated_stack <= slot)
6895 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6896 if (*stype == STACK_MISC)
6898 if ((*stype == STACK_ZERO) ||
6899 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
6901 /* helper can write anything into the stack */
6902 *stype = STACK_MISC;
6907 if (is_spilled_reg(&state->stack[spi]) &&
6908 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6909 env->allow_ptr_leaks)) {
6911 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6912 for (j = 0; j < BPF_REG_SIZE; j++)
6913 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
6919 if (tnum_is_const(reg->var_off)) {
6920 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6921 err_extra, regno, min_off, i - min_off, access_size);
6925 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6926 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6927 err_extra, regno, tn_buf, i - min_off, access_size);
6931 /* reading any byte out of 8-byte 'spill_slot' will cause
6932 * the whole slot to be marked as 'read'
6934 mark_reg_read(env, &state->stack[spi].spilled_ptr,
6935 state->stack[spi].spilled_ptr.parent,
6937 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6938 * be sure that whether stack slot is written to or not. Hence,
6939 * we must still conservatively propagate reads upwards even if
6940 * helper may write to the entire memory range.
6943 return update_stack_depth(env, state, min_off);
6946 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6947 int access_size, bool zero_size_allowed,
6948 struct bpf_call_arg_meta *meta)
6950 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
6953 switch (base_type(reg->type)) {
6955 case PTR_TO_PACKET_META:
6956 return check_packet_access(env, regno, reg->off, access_size,
6958 case PTR_TO_MAP_KEY:
6959 if (meta && meta->raw_mode) {
6960 verbose(env, "R%d cannot write into %s\n", regno,
6961 reg_type_str(env, reg->type));
6964 return check_mem_region_access(env, regno, reg->off, access_size,
6965 reg->map_ptr->key_size, false);
6966 case PTR_TO_MAP_VALUE:
6967 if (check_map_access_type(env, regno, reg->off, access_size,
6968 meta && meta->raw_mode ? BPF_WRITE :
6971 return check_map_access(env, regno, reg->off, access_size,
6972 zero_size_allowed, ACCESS_HELPER);
6974 if (type_is_rdonly_mem(reg->type)) {
6975 if (meta && meta->raw_mode) {
6976 verbose(env, "R%d cannot write into %s\n", regno,
6977 reg_type_str(env, reg->type));
6981 return check_mem_region_access(env, regno, reg->off,
6982 access_size, reg->mem_size,
6985 if (type_is_rdonly_mem(reg->type)) {
6986 if (meta && meta->raw_mode) {
6987 verbose(env, "R%d cannot write into %s\n", regno,
6988 reg_type_str(env, reg->type));
6992 max_access = &env->prog->aux->max_rdonly_access;
6994 max_access = &env->prog->aux->max_rdwr_access;
6996 return check_buffer_access(env, reg, regno, reg->off,
6997 access_size, zero_size_allowed,
7000 return check_stack_range_initialized(
7002 regno, reg->off, access_size,
7003 zero_size_allowed, ACCESS_HELPER, meta);
7005 return check_ptr_to_btf_access(env, regs, regno, reg->off,
7006 access_size, BPF_READ, -1);
7008 /* in case the function doesn't know how to access the context,
7009 * (because we are in a program of type SYSCALL for example), we
7010 * can not statically check its size.
7011 * Dynamically check it now.
7013 if (!env->ops->convert_ctx_access) {
7014 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7015 int offset = access_size - 1;
7017 /* Allow zero-byte read from PTR_TO_CTX */
7018 if (access_size == 0)
7019 return zero_size_allowed ? 0 : -EACCES;
7021 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7022 atype, -1, false, false);
7026 default: /* scalar_value or invalid ptr */
7027 /* Allow zero-byte read from NULL, regardless of pointer type */
7028 if (zero_size_allowed && access_size == 0 &&
7029 register_is_null(reg))
7032 verbose(env, "R%d type=%s ", regno,
7033 reg_type_str(env, reg->type));
7034 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7039 static int check_mem_size_reg(struct bpf_verifier_env *env,
7040 struct bpf_reg_state *reg, u32 regno,
7041 bool zero_size_allowed,
7042 struct bpf_call_arg_meta *meta)
7046 /* This is used to refine r0 return value bounds for helpers
7047 * that enforce this value as an upper bound on return values.
7048 * See do_refine_retval_range() for helpers that can refine
7049 * the return value. C type of helper is u32 so we pull register
7050 * bound from umax_value however, if negative verifier errors
7051 * out. Only upper bounds can be learned because retval is an
7052 * int type and negative retvals are allowed.
7054 meta->msize_max_value = reg->umax_value;
7056 /* The register is SCALAR_VALUE; the access check
7057 * happens using its boundaries.
7059 if (!tnum_is_const(reg->var_off))
7060 /* For unprivileged variable accesses, disable raw
7061 * mode so that the program is required to
7062 * initialize all the memory that the helper could
7063 * just partially fill up.
7067 if (reg->smin_value < 0) {
7068 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7073 if (reg->umin_value == 0) {
7074 err = check_helper_mem_access(env, regno - 1, 0,
7081 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7082 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7086 err = check_helper_mem_access(env, regno - 1,
7088 zero_size_allowed, meta);
7090 err = mark_chain_precision(env, regno);
7094 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7095 u32 regno, u32 mem_size)
7097 bool may_be_null = type_may_be_null(reg->type);
7098 struct bpf_reg_state saved_reg;
7099 struct bpf_call_arg_meta meta;
7102 if (register_is_null(reg))
7105 memset(&meta, 0, sizeof(meta));
7106 /* Assuming that the register contains a value check if the memory
7107 * access is safe. Temporarily save and restore the register's state as
7108 * the conversion shouldn't be visible to a caller.
7112 mark_ptr_not_null_reg(reg);
7115 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7116 /* Check access for BPF_WRITE */
7117 meta.raw_mode = true;
7118 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7126 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7129 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7130 bool may_be_null = type_may_be_null(mem_reg->type);
7131 struct bpf_reg_state saved_reg;
7132 struct bpf_call_arg_meta meta;
7135 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7137 memset(&meta, 0, sizeof(meta));
7140 saved_reg = *mem_reg;
7141 mark_ptr_not_null_reg(mem_reg);
7144 err = check_mem_size_reg(env, reg, regno, true, &meta);
7145 /* Check access for BPF_WRITE */
7146 meta.raw_mode = true;
7147 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7150 *mem_reg = saved_reg;
7154 /* Implementation details:
7155 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7156 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7157 * Two bpf_map_lookups (even with the same key) will have different reg->id.
7158 * Two separate bpf_obj_new will also have different reg->id.
7159 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7160 * clears reg->id after value_or_null->value transition, since the verifier only
7161 * cares about the range of access to valid map value pointer and doesn't care
7162 * about actual address of the map element.
7163 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7164 * reg->id > 0 after value_or_null->value transition. By doing so
7165 * two bpf_map_lookups will be considered two different pointers that
7166 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7167 * returned from bpf_obj_new.
7168 * The verifier allows taking only one bpf_spin_lock at a time to avoid
7170 * Since only one bpf_spin_lock is allowed the checks are simpler than
7171 * reg_is_refcounted() logic. The verifier needs to remember only
7172 * one spin_lock instead of array of acquired_refs.
7173 * cur_state->active_lock remembers which map value element or allocated
7174 * object got locked and clears it after bpf_spin_unlock.
7176 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7179 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7180 struct bpf_verifier_state *cur = env->cur_state;
7181 bool is_const = tnum_is_const(reg->var_off);
7182 u64 val = reg->var_off.value;
7183 struct bpf_map *map = NULL;
7184 struct btf *btf = NULL;
7185 struct btf_record *rec;
7189 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7193 if (reg->type == PTR_TO_MAP_VALUE) {
7197 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
7205 rec = reg_btf_record(reg);
7206 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7207 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7208 map ? map->name : "kptr");
7211 if (rec->spin_lock_off != val + reg->off) {
7212 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7213 val + reg->off, rec->spin_lock_off);
7217 if (cur->active_lock.ptr) {
7219 "Locking two bpf_spin_locks are not allowed\n");
7223 cur->active_lock.ptr = map;
7225 cur->active_lock.ptr = btf;
7226 cur->active_lock.id = reg->id;
7235 if (!cur->active_lock.ptr) {
7236 verbose(env, "bpf_spin_unlock without taking a lock\n");
7239 if (cur->active_lock.ptr != ptr ||
7240 cur->active_lock.id != reg->id) {
7241 verbose(env, "bpf_spin_unlock of different lock\n");
7245 invalidate_non_owning_refs(env);
7247 cur->active_lock.ptr = NULL;
7248 cur->active_lock.id = 0;
7253 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7254 struct bpf_call_arg_meta *meta)
7256 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7257 bool is_const = tnum_is_const(reg->var_off);
7258 struct bpf_map *map = reg->map_ptr;
7259 u64 val = reg->var_off.value;
7263 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7268 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7272 if (!btf_record_has_field(map->record, BPF_TIMER)) {
7273 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7276 if (map->record->timer_off != val + reg->off) {
7277 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7278 val + reg->off, map->record->timer_off);
7281 if (meta->map_ptr) {
7282 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7285 meta->map_uid = reg->map_uid;
7286 meta->map_ptr = map;
7290 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7291 struct bpf_call_arg_meta *meta)
7293 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7294 struct bpf_map *map_ptr = reg->map_ptr;
7295 struct btf_field *kptr_field;
7298 if (!tnum_is_const(reg->var_off)) {
7300 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7304 if (!map_ptr->btf) {
7305 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7309 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7310 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7314 meta->map_ptr = map_ptr;
7315 kptr_off = reg->off + reg->var_off.value;
7316 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7318 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7321 if (kptr_field->type != BPF_KPTR_REF) {
7322 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7325 meta->kptr_field = kptr_field;
7329 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7330 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7332 * In both cases we deal with the first 8 bytes, but need to mark the next 8
7333 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7334 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7336 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7337 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7338 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7339 * mutate the view of the dynptr and also possibly destroy it. In the latter
7340 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7341 * memory that dynptr points to.
7343 * The verifier will keep track both levels of mutation (bpf_dynptr's in
7344 * reg->type and the memory's in reg->dynptr.type), but there is no support for
7345 * readonly dynptr view yet, hence only the first case is tracked and checked.
7347 * This is consistent with how C applies the const modifier to a struct object,
7348 * where the pointer itself inside bpf_dynptr becomes const but not what it
7351 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7352 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7354 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7355 enum bpf_arg_type arg_type, int clone_ref_obj_id)
7357 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7360 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7361 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7363 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7364 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7368 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
7369 * constructing a mutable bpf_dynptr object.
7371 * Currently, this is only possible with PTR_TO_STACK
7372 * pointing to a region of at least 16 bytes which doesn't
7373 * contain an existing bpf_dynptr.
7375 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7376 * mutated or destroyed. However, the memory it points to
7379 * None - Points to a initialized dynptr that can be mutated and
7380 * destroyed, including mutation of the memory it points
7383 if (arg_type & MEM_UNINIT) {
7386 if (!is_dynptr_reg_valid_uninit(env, reg)) {
7387 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7391 /* we write BPF_DW bits (8 bytes) at a time */
7392 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7393 err = check_mem_access(env, insn_idx, regno,
7394 i, BPF_DW, BPF_WRITE, -1, false, false);
7399 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7400 } else /* MEM_RDONLY and None case from above */ {
7401 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7402 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7403 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7407 if (!is_dynptr_reg_valid_init(env, reg)) {
7409 "Expected an initialized dynptr as arg #%d\n",
7414 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7415 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7417 "Expected a dynptr of type %s as arg #%d\n",
7418 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7422 err = mark_dynptr_read(env, reg);
7427 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7429 struct bpf_func_state *state = func(env, reg);
7431 return state->stack[spi].spilled_ptr.ref_obj_id;
7434 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7436 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7439 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7441 return meta->kfunc_flags & KF_ITER_NEW;
7444 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7446 return meta->kfunc_flags & KF_ITER_NEXT;
7449 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7451 return meta->kfunc_flags & KF_ITER_DESTROY;
7454 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7456 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
7457 * kfunc is iter state pointer
7459 return arg == 0 && is_iter_kfunc(meta);
7462 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7463 struct bpf_kfunc_call_arg_meta *meta)
7465 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7466 const struct btf_type *t;
7467 const struct btf_param *arg;
7468 int spi, err, i, nr_slots;
7471 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7472 arg = &btf_params(meta->func_proto)[0];
7473 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */
7474 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */
7475 nr_slots = t->size / BPF_REG_SIZE;
7477 if (is_iter_new_kfunc(meta)) {
7478 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
7479 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7480 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7481 iter_type_str(meta->btf, btf_id), regno);
7485 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7486 err = check_mem_access(env, insn_idx, regno,
7487 i, BPF_DW, BPF_WRITE, -1, false, false);
7492 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7496 /* iter_next() or iter_destroy() expect initialized iter state*/
7497 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7498 verbose(env, "expected an initialized iter_%s as arg #%d\n",
7499 iter_type_str(meta->btf, btf_id), regno);
7503 spi = iter_get_spi(env, reg, nr_slots);
7507 err = mark_iter_read(env, reg, spi, nr_slots);
7511 /* remember meta->iter info for process_iter_next_call() */
7512 meta->iter.spi = spi;
7513 meta->iter.frameno = reg->frameno;
7514 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7516 if (is_iter_destroy_kfunc(meta)) {
7517 err = unmark_stack_slots_iter(env, reg, nr_slots);
7526 /* process_iter_next_call() is called when verifier gets to iterator's next
7527 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7528 * to it as just "iter_next()" in comments below.
7530 * BPF verifier relies on a crucial contract for any iter_next()
7531 * implementation: it should *eventually* return NULL, and once that happens
7532 * it should keep returning NULL. That is, once iterator exhausts elements to
7533 * iterate, it should never reset or spuriously return new elements.
7535 * With the assumption of such contract, process_iter_next_call() simulates
7536 * a fork in the verifier state to validate loop logic correctness and safety
7537 * without having to simulate infinite amount of iterations.
7539 * In current state, we first assume that iter_next() returned NULL and
7540 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7541 * conditions we should not form an infinite loop and should eventually reach
7544 * Besides that, we also fork current state and enqueue it for later
7545 * verification. In a forked state we keep iterator state as ACTIVE
7546 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7547 * also bump iteration depth to prevent erroneous infinite loop detection
7548 * later on (see iter_active_depths_differ() comment for details). In this
7549 * state we assume that we'll eventually loop back to another iter_next()
7550 * calls (it could be in exactly same location or in some other instruction,
7551 * it doesn't matter, we don't make any unnecessary assumptions about this,
7552 * everything revolves around iterator state in a stack slot, not which
7553 * instruction is calling iter_next()). When that happens, we either will come
7554 * to iter_next() with equivalent state and can conclude that next iteration
7555 * will proceed in exactly the same way as we just verified, so it's safe to
7556 * assume that loop converges. If not, we'll go on another iteration
7557 * simulation with a different input state, until all possible starting states
7558 * are validated or we reach maximum number of instructions limit.
7560 * This way, we will either exhaustively discover all possible input states
7561 * that iterator loop can start with and eventually will converge, or we'll
7562 * effectively regress into bounded loop simulation logic and either reach
7563 * maximum number of instructions if loop is not provably convergent, or there
7564 * is some statically known limit on number of iterations (e.g., if there is
7565 * an explicit `if n > 100 then break;` statement somewhere in the loop).
7567 * One very subtle but very important aspect is that we *always* simulate NULL
7568 * condition first (as the current state) before we simulate non-NULL case.
7569 * This has to do with intricacies of scalar precision tracking. By simulating
7570 * "exit condition" of iter_next() returning NULL first, we make sure all the
7571 * relevant precision marks *that will be set **after** we exit iterator loop*
7572 * are propagated backwards to common parent state of NULL and non-NULL
7573 * branches. Thanks to that, state equivalence checks done later in forked
7574 * state, when reaching iter_next() for ACTIVE iterator, can assume that
7575 * precision marks are finalized and won't change. Because simulating another
7576 * ACTIVE iterator iteration won't change them (because given same input
7577 * states we'll end up with exactly same output states which we are currently
7578 * comparing; and verification after the loop already propagated back what
7579 * needs to be **additionally** tracked as precise). It's subtle, grok
7580 * precision tracking for more intuitive understanding.
7582 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7583 struct bpf_kfunc_call_arg_meta *meta)
7585 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7586 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7587 struct bpf_reg_state *cur_iter, *queued_iter;
7588 int iter_frameno = meta->iter.frameno;
7589 int iter_spi = meta->iter.spi;
7591 BTF_TYPE_EMIT(struct bpf_iter);
7593 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7595 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7596 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7597 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7598 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7602 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7603 /* branch out active iter state */
7604 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7608 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7609 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7610 queued_iter->iter.depth++;
7612 queued_fr = queued_st->frame[queued_st->curframe];
7613 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7616 /* switch to DRAINED state, but keep the depth unchanged */
7617 /* mark current iter state as drained and assume returned NULL */
7618 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7619 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7624 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7626 return type == ARG_CONST_SIZE ||
7627 type == ARG_CONST_SIZE_OR_ZERO;
7630 static bool arg_type_is_release(enum bpf_arg_type type)
7632 return type & OBJ_RELEASE;
7635 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7637 return base_type(type) == ARG_PTR_TO_DYNPTR;
7640 static int int_ptr_type_to_size(enum bpf_arg_type type)
7642 if (type == ARG_PTR_TO_INT)
7644 else if (type == ARG_PTR_TO_LONG)
7650 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7651 const struct bpf_call_arg_meta *meta,
7652 enum bpf_arg_type *arg_type)
7654 if (!meta->map_ptr) {
7655 /* kernel subsystem misconfigured verifier */
7656 verbose(env, "invalid map_ptr to access map->type\n");
7660 switch (meta->map_ptr->map_type) {
7661 case BPF_MAP_TYPE_SOCKMAP:
7662 case BPF_MAP_TYPE_SOCKHASH:
7663 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7664 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7666 verbose(env, "invalid arg_type for sockmap/sockhash\n");
7670 case BPF_MAP_TYPE_BLOOM_FILTER:
7671 if (meta->func_id == BPF_FUNC_map_peek_elem)
7672 *arg_type = ARG_PTR_TO_MAP_VALUE;
7680 struct bpf_reg_types {
7681 const enum bpf_reg_type types[10];
7685 static const struct bpf_reg_types sock_types = {
7695 static const struct bpf_reg_types btf_id_sock_common_types = {
7702 PTR_TO_BTF_ID | PTR_TRUSTED,
7704 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7708 static const struct bpf_reg_types mem_types = {
7716 PTR_TO_MEM | MEM_RINGBUF,
7718 PTR_TO_BTF_ID | PTR_TRUSTED,
7722 static const struct bpf_reg_types int_ptr_types = {
7732 static const struct bpf_reg_types spin_lock_types = {
7735 PTR_TO_BTF_ID | MEM_ALLOC,
7739 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7740 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7741 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7742 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7743 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7744 static const struct bpf_reg_types btf_ptr_types = {
7747 PTR_TO_BTF_ID | PTR_TRUSTED,
7748 PTR_TO_BTF_ID | MEM_RCU,
7751 static const struct bpf_reg_types percpu_btf_ptr_types = {
7753 PTR_TO_BTF_ID | MEM_PERCPU,
7754 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7757 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7758 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7759 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7760 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7761 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7762 static const struct bpf_reg_types dynptr_types = {
7765 CONST_PTR_TO_DYNPTR,
7769 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7770 [ARG_PTR_TO_MAP_KEY] = &mem_types,
7771 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
7772 [ARG_CONST_SIZE] = &scalar_types,
7773 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
7774 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
7775 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
7776 [ARG_PTR_TO_CTX] = &context_types,
7777 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
7779 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
7781 [ARG_PTR_TO_SOCKET] = &fullsock_types,
7782 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
7783 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
7784 [ARG_PTR_TO_MEM] = &mem_types,
7785 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
7786 [ARG_PTR_TO_INT] = &int_ptr_types,
7787 [ARG_PTR_TO_LONG] = &int_ptr_types,
7788 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
7789 [ARG_PTR_TO_FUNC] = &func_ptr_types,
7790 [ARG_PTR_TO_STACK] = &stack_ptr_types,
7791 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
7792 [ARG_PTR_TO_TIMER] = &timer_types,
7793 [ARG_PTR_TO_KPTR] = &kptr_types,
7794 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
7797 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7798 enum bpf_arg_type arg_type,
7799 const u32 *arg_btf_id,
7800 struct bpf_call_arg_meta *meta)
7802 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7803 enum bpf_reg_type expected, type = reg->type;
7804 const struct bpf_reg_types *compatible;
7807 compatible = compatible_reg_types[base_type(arg_type)];
7809 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7813 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7814 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7816 * Same for MAYBE_NULL:
7818 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7819 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7821 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
7823 * Therefore we fold these flags depending on the arg_type before comparison.
7825 if (arg_type & MEM_RDONLY)
7826 type &= ~MEM_RDONLY;
7827 if (arg_type & PTR_MAYBE_NULL)
7828 type &= ~PTR_MAYBE_NULL;
7829 if (base_type(arg_type) == ARG_PTR_TO_MEM)
7830 type &= ~DYNPTR_TYPE_FLAG_MASK;
7832 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
7835 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7836 expected = compatible->types[i];
7837 if (expected == NOT_INIT)
7840 if (type == expected)
7844 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7845 for (j = 0; j + 1 < i; j++)
7846 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7847 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7851 if (base_type(reg->type) != PTR_TO_BTF_ID)
7854 if (compatible == &mem_types) {
7855 if (!(arg_type & MEM_RDONLY)) {
7857 "%s() may write into memory pointed by R%d type=%s\n",
7858 func_id_name(meta->func_id),
7859 regno, reg_type_str(env, reg->type));
7865 switch ((int)reg->type) {
7867 case PTR_TO_BTF_ID | PTR_TRUSTED:
7868 case PTR_TO_BTF_ID | MEM_RCU:
7869 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7870 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
7872 /* For bpf_sk_release, it needs to match against first member
7873 * 'struct sock_common', hence make an exception for it. This
7874 * allows bpf_sk_release to work for multiple socket types.
7876 bool strict_type_match = arg_type_is_release(arg_type) &&
7877 meta->func_id != BPF_FUNC_sk_release;
7879 if (type_may_be_null(reg->type) &&
7880 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7881 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7886 if (!compatible->btf_id) {
7887 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7890 arg_btf_id = compatible->btf_id;
7893 if (meta->func_id == BPF_FUNC_kptr_xchg) {
7894 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7897 if (arg_btf_id == BPF_PTR_POISON) {
7898 verbose(env, "verifier internal error:");
7899 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7904 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7905 btf_vmlinux, *arg_btf_id,
7906 strict_type_match)) {
7907 verbose(env, "R%d is of type %s but %s is expected\n",
7908 regno, btf_type_name(reg->btf, reg->btf_id),
7909 btf_type_name(btf_vmlinux, *arg_btf_id));
7915 case PTR_TO_BTF_ID | MEM_ALLOC:
7916 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7917 meta->func_id != BPF_FUNC_kptr_xchg) {
7918 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7921 if (meta->func_id == BPF_FUNC_kptr_xchg) {
7922 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7926 case PTR_TO_BTF_ID | MEM_PERCPU:
7927 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7928 /* Handled by helper specific checks */
7931 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7937 static struct btf_field *
7938 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7940 struct btf_field *field;
7941 struct btf_record *rec;
7943 rec = reg_btf_record(reg);
7947 field = btf_record_find(rec, off, fields);
7954 int check_func_arg_reg_off(struct bpf_verifier_env *env,
7955 const struct bpf_reg_state *reg, int regno,
7956 enum bpf_arg_type arg_type)
7958 u32 type = reg->type;
7960 /* When referenced register is passed to release function, its fixed
7963 * We will check arg_type_is_release reg has ref_obj_id when storing
7964 * meta->release_regno.
7966 if (arg_type_is_release(arg_type)) {
7967 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7968 * may not directly point to the object being released, but to
7969 * dynptr pointing to such object, which might be at some offset
7970 * on the stack. In that case, we simply to fallback to the
7973 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7976 /* Doing check_ptr_off_reg check for the offset will catch this
7977 * because fixed_off_ok is false, but checking here allows us
7978 * to give the user a better error message.
7981 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7985 return __check_ptr_off_reg(env, reg, regno, false);
7989 /* Pointer types where both fixed and variable offset is explicitly allowed: */
7992 case PTR_TO_PACKET_META:
7993 case PTR_TO_MAP_KEY:
7994 case PTR_TO_MAP_VALUE:
7996 case PTR_TO_MEM | MEM_RDONLY:
7997 case PTR_TO_MEM | MEM_RINGBUF:
7999 case PTR_TO_BUF | MEM_RDONLY:
8002 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8006 case PTR_TO_BTF_ID | MEM_ALLOC:
8007 case PTR_TO_BTF_ID | PTR_TRUSTED:
8008 case PTR_TO_BTF_ID | MEM_RCU:
8009 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8010 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8011 /* When referenced PTR_TO_BTF_ID is passed to release function,
8012 * its fixed offset must be 0. In the other cases, fixed offset
8013 * can be non-zero. This was already checked above. So pass
8014 * fixed_off_ok as true to allow fixed offset for all other
8015 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8016 * still need to do checks instead of returning.
8018 return __check_ptr_off_reg(env, reg, regno, true);
8020 return __check_ptr_off_reg(env, reg, regno, false);
8024 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8025 const struct bpf_func_proto *fn,
8026 struct bpf_reg_state *regs)
8028 struct bpf_reg_state *state = NULL;
8031 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8032 if (arg_type_is_dynptr(fn->arg_type[i])) {
8034 verbose(env, "verifier internal error: multiple dynptr args\n");
8037 state = ®s[BPF_REG_1 + i];
8041 verbose(env, "verifier internal error: no dynptr arg found\n");
8046 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8048 struct bpf_func_state *state = func(env, reg);
8051 if (reg->type == CONST_PTR_TO_DYNPTR)
8053 spi = dynptr_get_spi(env, reg);
8056 return state->stack[spi].spilled_ptr.id;
8059 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8061 struct bpf_func_state *state = func(env, reg);
8064 if (reg->type == CONST_PTR_TO_DYNPTR)
8065 return reg->ref_obj_id;
8066 spi = dynptr_get_spi(env, reg);
8069 return state->stack[spi].spilled_ptr.ref_obj_id;
8072 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8073 struct bpf_reg_state *reg)
8075 struct bpf_func_state *state = func(env, reg);
8078 if (reg->type == CONST_PTR_TO_DYNPTR)
8079 return reg->dynptr.type;
8081 spi = __get_spi(reg->off);
8083 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8084 return BPF_DYNPTR_TYPE_INVALID;
8087 return state->stack[spi].spilled_ptr.dynptr.type;
8090 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8091 struct bpf_call_arg_meta *meta,
8092 const struct bpf_func_proto *fn,
8095 u32 regno = BPF_REG_1 + arg;
8096 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8097 enum bpf_arg_type arg_type = fn->arg_type[arg];
8098 enum bpf_reg_type type = reg->type;
8099 u32 *arg_btf_id = NULL;
8102 if (arg_type == ARG_DONTCARE)
8105 err = check_reg_arg(env, regno, SRC_OP);
8109 if (arg_type == ARG_ANYTHING) {
8110 if (is_pointer_value(env, regno)) {
8111 verbose(env, "R%d leaks addr into helper function\n",
8118 if (type_is_pkt_pointer(type) &&
8119 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8120 verbose(env, "helper access to the packet is not allowed\n");
8124 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8125 err = resolve_map_arg_type(env, meta, &arg_type);
8130 if (register_is_null(reg) && type_may_be_null(arg_type))
8131 /* A NULL register has a SCALAR_VALUE type, so skip
8134 goto skip_type_check;
8136 /* arg_btf_id and arg_size are in a union. */
8137 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8138 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8139 arg_btf_id = fn->arg_btf_id[arg];
8141 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8145 err = check_func_arg_reg_off(env, reg, regno, arg_type);
8150 if (arg_type_is_release(arg_type)) {
8151 if (arg_type_is_dynptr(arg_type)) {
8152 struct bpf_func_state *state = func(env, reg);
8155 /* Only dynptr created on stack can be released, thus
8156 * the get_spi and stack state checks for spilled_ptr
8157 * should only be done before process_dynptr_func for
8160 if (reg->type == PTR_TO_STACK) {
8161 spi = dynptr_get_spi(env, reg);
8162 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8163 verbose(env, "arg %d is an unacquired reference\n", regno);
8167 verbose(env, "cannot release unowned const bpf_dynptr\n");
8170 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8171 verbose(env, "R%d must be referenced when passed to release function\n",
8175 if (meta->release_regno) {
8176 verbose(env, "verifier internal error: more than one release argument\n");
8179 meta->release_regno = regno;
8182 if (reg->ref_obj_id) {
8183 if (meta->ref_obj_id) {
8184 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8185 regno, reg->ref_obj_id,
8189 meta->ref_obj_id = reg->ref_obj_id;
8192 switch (base_type(arg_type)) {
8193 case ARG_CONST_MAP_PTR:
8194 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8195 if (meta->map_ptr) {
8196 /* Use map_uid (which is unique id of inner map) to reject:
8197 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8198 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8199 * if (inner_map1 && inner_map2) {
8200 * timer = bpf_map_lookup_elem(inner_map1);
8202 * // mismatch would have been allowed
8203 * bpf_timer_init(timer, inner_map2);
8206 * Comparing map_ptr is enough to distinguish normal and outer maps.
8208 if (meta->map_ptr != reg->map_ptr ||
8209 meta->map_uid != reg->map_uid) {
8211 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8212 meta->map_uid, reg->map_uid);
8216 meta->map_ptr = reg->map_ptr;
8217 meta->map_uid = reg->map_uid;
8219 case ARG_PTR_TO_MAP_KEY:
8220 /* bpf_map_xxx(..., map_ptr, ..., key) call:
8221 * check that [key, key + map->key_size) are within
8222 * stack limits and initialized
8224 if (!meta->map_ptr) {
8225 /* in function declaration map_ptr must come before
8226 * map_key, so that it's verified and known before
8227 * we have to check map_key here. Otherwise it means
8228 * that kernel subsystem misconfigured verifier
8230 verbose(env, "invalid map_ptr to access map->key\n");
8233 err = check_helper_mem_access(env, regno,
8234 meta->map_ptr->key_size, false,
8237 case ARG_PTR_TO_MAP_VALUE:
8238 if (type_may_be_null(arg_type) && register_is_null(reg))
8241 /* bpf_map_xxx(..., map_ptr, ..., value) call:
8242 * check [value, value + map->value_size) validity
8244 if (!meta->map_ptr) {
8245 /* kernel subsystem misconfigured verifier */
8246 verbose(env, "invalid map_ptr to access map->value\n");
8249 meta->raw_mode = arg_type & MEM_UNINIT;
8250 err = check_helper_mem_access(env, regno,
8251 meta->map_ptr->value_size, false,
8254 case ARG_PTR_TO_PERCPU_BTF_ID:
8256 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8259 meta->ret_btf = reg->btf;
8260 meta->ret_btf_id = reg->btf_id;
8262 case ARG_PTR_TO_SPIN_LOCK:
8263 if (in_rbtree_lock_required_cb(env)) {
8264 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8267 if (meta->func_id == BPF_FUNC_spin_lock) {
8268 err = process_spin_lock(env, regno, true);
8271 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
8272 err = process_spin_lock(env, regno, false);
8276 verbose(env, "verifier internal error\n");
8280 case ARG_PTR_TO_TIMER:
8281 err = process_timer_func(env, regno, meta);
8285 case ARG_PTR_TO_FUNC:
8286 meta->subprogno = reg->subprogno;
8288 case ARG_PTR_TO_MEM:
8289 /* The access to this pointer is only checked when we hit the
8290 * next is_mem_size argument below.
8292 meta->raw_mode = arg_type & MEM_UNINIT;
8293 if (arg_type & MEM_FIXED_SIZE) {
8294 err = check_helper_mem_access(env, regno,
8295 fn->arg_size[arg], false,
8299 case ARG_CONST_SIZE:
8300 err = check_mem_size_reg(env, reg, regno, false, meta);
8302 case ARG_CONST_SIZE_OR_ZERO:
8303 err = check_mem_size_reg(env, reg, regno, true, meta);
8305 case ARG_PTR_TO_DYNPTR:
8306 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8310 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8311 if (!tnum_is_const(reg->var_off)) {
8312 verbose(env, "R%d is not a known constant'\n",
8316 meta->mem_size = reg->var_off.value;
8317 err = mark_chain_precision(env, regno);
8321 case ARG_PTR_TO_INT:
8322 case ARG_PTR_TO_LONG:
8324 int size = int_ptr_type_to_size(arg_type);
8326 err = check_helper_mem_access(env, regno, size, false, meta);
8329 err = check_ptr_alignment(env, reg, 0, size, true);
8332 case ARG_PTR_TO_CONST_STR:
8334 struct bpf_map *map = reg->map_ptr;
8339 if (!bpf_map_is_rdonly(map)) {
8340 verbose(env, "R%d does not point to a readonly map'\n", regno);
8344 if (!tnum_is_const(reg->var_off)) {
8345 verbose(env, "R%d is not a constant address'\n", regno);
8349 if (!map->ops->map_direct_value_addr) {
8350 verbose(env, "no direct value access support for this map type\n");
8354 err = check_map_access(env, regno, reg->off,
8355 map->value_size - reg->off, false,
8360 map_off = reg->off + reg->var_off.value;
8361 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8363 verbose(env, "direct value access on string failed\n");
8367 str_ptr = (char *)(long)(map_addr);
8368 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8369 verbose(env, "string is not zero-terminated\n");
8374 case ARG_PTR_TO_KPTR:
8375 err = process_kptr_func(env, regno, meta);
8384 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8386 enum bpf_attach_type eatype = env->prog->expected_attach_type;
8387 enum bpf_prog_type type = resolve_prog_type(env->prog);
8389 if (func_id != BPF_FUNC_map_update_elem)
8392 /* It's not possible to get access to a locked struct sock in these
8393 * contexts, so updating is safe.
8396 case BPF_PROG_TYPE_TRACING:
8397 if (eatype == BPF_TRACE_ITER)
8400 case BPF_PROG_TYPE_SOCKET_FILTER:
8401 case BPF_PROG_TYPE_SCHED_CLS:
8402 case BPF_PROG_TYPE_SCHED_ACT:
8403 case BPF_PROG_TYPE_XDP:
8404 case BPF_PROG_TYPE_SK_REUSEPORT:
8405 case BPF_PROG_TYPE_FLOW_DISSECTOR:
8406 case BPF_PROG_TYPE_SK_LOOKUP:
8412 verbose(env, "cannot update sockmap in this context\n");
8416 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8418 return env->prog->jit_requested &&
8419 bpf_jit_supports_subprog_tailcalls();
8422 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8423 struct bpf_map *map, int func_id)
8428 /* We need a two way check, first is from map perspective ... */
8429 switch (map->map_type) {
8430 case BPF_MAP_TYPE_PROG_ARRAY:
8431 if (func_id != BPF_FUNC_tail_call)
8434 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8435 if (func_id != BPF_FUNC_perf_event_read &&
8436 func_id != BPF_FUNC_perf_event_output &&
8437 func_id != BPF_FUNC_skb_output &&
8438 func_id != BPF_FUNC_perf_event_read_value &&
8439 func_id != BPF_FUNC_xdp_output)
8442 case BPF_MAP_TYPE_RINGBUF:
8443 if (func_id != BPF_FUNC_ringbuf_output &&
8444 func_id != BPF_FUNC_ringbuf_reserve &&
8445 func_id != BPF_FUNC_ringbuf_query &&
8446 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8447 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8448 func_id != BPF_FUNC_ringbuf_discard_dynptr)
8451 case BPF_MAP_TYPE_USER_RINGBUF:
8452 if (func_id != BPF_FUNC_user_ringbuf_drain)
8455 case BPF_MAP_TYPE_STACK_TRACE:
8456 if (func_id != BPF_FUNC_get_stackid)
8459 case BPF_MAP_TYPE_CGROUP_ARRAY:
8460 if (func_id != BPF_FUNC_skb_under_cgroup &&
8461 func_id != BPF_FUNC_current_task_under_cgroup)
8464 case BPF_MAP_TYPE_CGROUP_STORAGE:
8465 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8466 if (func_id != BPF_FUNC_get_local_storage)
8469 case BPF_MAP_TYPE_DEVMAP:
8470 case BPF_MAP_TYPE_DEVMAP_HASH:
8471 if (func_id != BPF_FUNC_redirect_map &&
8472 func_id != BPF_FUNC_map_lookup_elem)
8475 /* Restrict bpf side of cpumap and xskmap, open when use-cases
8478 case BPF_MAP_TYPE_CPUMAP:
8479 if (func_id != BPF_FUNC_redirect_map)
8482 case BPF_MAP_TYPE_XSKMAP:
8483 if (func_id != BPF_FUNC_redirect_map &&
8484 func_id != BPF_FUNC_map_lookup_elem)
8487 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8488 case BPF_MAP_TYPE_HASH_OF_MAPS:
8489 if (func_id != BPF_FUNC_map_lookup_elem)
8492 case BPF_MAP_TYPE_SOCKMAP:
8493 if (func_id != BPF_FUNC_sk_redirect_map &&
8494 func_id != BPF_FUNC_sock_map_update &&
8495 func_id != BPF_FUNC_map_delete_elem &&
8496 func_id != BPF_FUNC_msg_redirect_map &&
8497 func_id != BPF_FUNC_sk_select_reuseport &&
8498 func_id != BPF_FUNC_map_lookup_elem &&
8499 !may_update_sockmap(env, func_id))
8502 case BPF_MAP_TYPE_SOCKHASH:
8503 if (func_id != BPF_FUNC_sk_redirect_hash &&
8504 func_id != BPF_FUNC_sock_hash_update &&
8505 func_id != BPF_FUNC_map_delete_elem &&
8506 func_id != BPF_FUNC_msg_redirect_hash &&
8507 func_id != BPF_FUNC_sk_select_reuseport &&
8508 func_id != BPF_FUNC_map_lookup_elem &&
8509 !may_update_sockmap(env, func_id))
8512 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8513 if (func_id != BPF_FUNC_sk_select_reuseport)
8516 case BPF_MAP_TYPE_QUEUE:
8517 case BPF_MAP_TYPE_STACK:
8518 if (func_id != BPF_FUNC_map_peek_elem &&
8519 func_id != BPF_FUNC_map_pop_elem &&
8520 func_id != BPF_FUNC_map_push_elem)
8523 case BPF_MAP_TYPE_SK_STORAGE:
8524 if (func_id != BPF_FUNC_sk_storage_get &&
8525 func_id != BPF_FUNC_sk_storage_delete &&
8526 func_id != BPF_FUNC_kptr_xchg)
8529 case BPF_MAP_TYPE_INODE_STORAGE:
8530 if (func_id != BPF_FUNC_inode_storage_get &&
8531 func_id != BPF_FUNC_inode_storage_delete &&
8532 func_id != BPF_FUNC_kptr_xchg)
8535 case BPF_MAP_TYPE_TASK_STORAGE:
8536 if (func_id != BPF_FUNC_task_storage_get &&
8537 func_id != BPF_FUNC_task_storage_delete &&
8538 func_id != BPF_FUNC_kptr_xchg)
8541 case BPF_MAP_TYPE_CGRP_STORAGE:
8542 if (func_id != BPF_FUNC_cgrp_storage_get &&
8543 func_id != BPF_FUNC_cgrp_storage_delete &&
8544 func_id != BPF_FUNC_kptr_xchg)
8547 case BPF_MAP_TYPE_BLOOM_FILTER:
8548 if (func_id != BPF_FUNC_map_peek_elem &&
8549 func_id != BPF_FUNC_map_push_elem)
8556 /* ... and second from the function itself. */
8558 case BPF_FUNC_tail_call:
8559 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8561 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8562 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8566 case BPF_FUNC_perf_event_read:
8567 case BPF_FUNC_perf_event_output:
8568 case BPF_FUNC_perf_event_read_value:
8569 case BPF_FUNC_skb_output:
8570 case BPF_FUNC_xdp_output:
8571 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8574 case BPF_FUNC_ringbuf_output:
8575 case BPF_FUNC_ringbuf_reserve:
8576 case BPF_FUNC_ringbuf_query:
8577 case BPF_FUNC_ringbuf_reserve_dynptr:
8578 case BPF_FUNC_ringbuf_submit_dynptr:
8579 case BPF_FUNC_ringbuf_discard_dynptr:
8580 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8583 case BPF_FUNC_user_ringbuf_drain:
8584 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8587 case BPF_FUNC_get_stackid:
8588 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8591 case BPF_FUNC_current_task_under_cgroup:
8592 case BPF_FUNC_skb_under_cgroup:
8593 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8596 case BPF_FUNC_redirect_map:
8597 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8598 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8599 map->map_type != BPF_MAP_TYPE_CPUMAP &&
8600 map->map_type != BPF_MAP_TYPE_XSKMAP)
8603 case BPF_FUNC_sk_redirect_map:
8604 case BPF_FUNC_msg_redirect_map:
8605 case BPF_FUNC_sock_map_update:
8606 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8609 case BPF_FUNC_sk_redirect_hash:
8610 case BPF_FUNC_msg_redirect_hash:
8611 case BPF_FUNC_sock_hash_update:
8612 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8615 case BPF_FUNC_get_local_storage:
8616 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8617 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8620 case BPF_FUNC_sk_select_reuseport:
8621 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8622 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8623 map->map_type != BPF_MAP_TYPE_SOCKHASH)
8626 case BPF_FUNC_map_pop_elem:
8627 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8628 map->map_type != BPF_MAP_TYPE_STACK)
8631 case BPF_FUNC_map_peek_elem:
8632 case BPF_FUNC_map_push_elem:
8633 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8634 map->map_type != BPF_MAP_TYPE_STACK &&
8635 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8638 case BPF_FUNC_map_lookup_percpu_elem:
8639 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8640 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8641 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8644 case BPF_FUNC_sk_storage_get:
8645 case BPF_FUNC_sk_storage_delete:
8646 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8649 case BPF_FUNC_inode_storage_get:
8650 case BPF_FUNC_inode_storage_delete:
8651 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8654 case BPF_FUNC_task_storage_get:
8655 case BPF_FUNC_task_storage_delete:
8656 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8659 case BPF_FUNC_cgrp_storage_get:
8660 case BPF_FUNC_cgrp_storage_delete:
8661 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8670 verbose(env, "cannot pass map_type %d into func %s#%d\n",
8671 map->map_type, func_id_name(func_id), func_id);
8675 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8679 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8681 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8683 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8685 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8687 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8690 /* We only support one arg being in raw mode at the moment,
8691 * which is sufficient for the helper functions we have
8697 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8699 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8700 bool has_size = fn->arg_size[arg] != 0;
8701 bool is_next_size = false;
8703 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8704 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8706 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8707 return is_next_size;
8709 return has_size == is_next_size || is_next_size == is_fixed;
8712 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8714 /* bpf_xxx(..., buf, len) call will access 'len'
8715 * bytes from memory 'buf'. Both arg types need
8716 * to be paired, so make sure there's no buggy
8717 * helper function specification.
8719 if (arg_type_is_mem_size(fn->arg1_type) ||
8720 check_args_pair_invalid(fn, 0) ||
8721 check_args_pair_invalid(fn, 1) ||
8722 check_args_pair_invalid(fn, 2) ||
8723 check_args_pair_invalid(fn, 3) ||
8724 check_args_pair_invalid(fn, 4))
8730 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8734 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8735 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8736 return !!fn->arg_btf_id[i];
8737 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8738 return fn->arg_btf_id[i] == BPF_PTR_POISON;
8739 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8740 /* arg_btf_id and arg_size are in a union. */
8741 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8742 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8749 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8751 return check_raw_mode_ok(fn) &&
8752 check_arg_pair_ok(fn) &&
8753 check_btf_id_ok(fn) ? 0 : -EINVAL;
8756 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8757 * are now invalid, so turn them into unknown SCALAR_VALUE.
8759 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8760 * since these slices point to packet data.
8762 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8764 struct bpf_func_state *state;
8765 struct bpf_reg_state *reg;
8767 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8768 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8769 mark_reg_invalid(env, reg);
8775 BEYOND_PKT_END = -2,
8778 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8780 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8781 struct bpf_reg_state *reg = &state->regs[regn];
8783 if (reg->type != PTR_TO_PACKET)
8784 /* PTR_TO_PACKET_META is not supported yet */
8787 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8788 * How far beyond pkt_end it goes is unknown.
8789 * if (!range_open) it's the case of pkt >= pkt_end
8790 * if (range_open) it's the case of pkt > pkt_end
8791 * hence this pointer is at least 1 byte bigger than pkt_end
8794 reg->range = BEYOND_PKT_END;
8796 reg->range = AT_PKT_END;
8799 /* The pointer with the specified id has released its reference to kernel
8800 * resources. Identify all copies of the same pointer and clear the reference.
8802 static int release_reference(struct bpf_verifier_env *env,
8805 struct bpf_func_state *state;
8806 struct bpf_reg_state *reg;
8809 err = release_reference_state(cur_func(env), ref_obj_id);
8813 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8814 if (reg->ref_obj_id == ref_obj_id)
8815 mark_reg_invalid(env, reg);
8821 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8823 struct bpf_func_state *unused;
8824 struct bpf_reg_state *reg;
8826 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8827 if (type_is_non_owning_ref(reg->type))
8828 mark_reg_invalid(env, reg);
8832 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8833 struct bpf_reg_state *regs)
8837 /* after the call registers r0 - r5 were scratched */
8838 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8839 mark_reg_not_init(env, regs, caller_saved[i]);
8840 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8844 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8845 struct bpf_func_state *caller,
8846 struct bpf_func_state *callee,
8849 static int set_callee_state(struct bpf_verifier_env *env,
8850 struct bpf_func_state *caller,
8851 struct bpf_func_state *callee, int insn_idx);
8853 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8854 int *insn_idx, int subprog,
8855 set_callee_state_fn set_callee_state_cb)
8857 struct bpf_verifier_state *state = env->cur_state;
8858 struct bpf_func_state *caller, *callee;
8861 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8862 verbose(env, "the call stack of %d frames is too deep\n",
8863 state->curframe + 2);
8867 caller = state->frame[state->curframe];
8868 if (state->frame[state->curframe + 1]) {
8869 verbose(env, "verifier bug. Frame %d already allocated\n",
8870 state->curframe + 1);
8874 err = btf_check_subprog_call(env, subprog, caller->regs);
8877 if (subprog_is_global(env, subprog)) {
8879 verbose(env, "Caller passes invalid args into func#%d\n",
8883 if (env->log.level & BPF_LOG_LEVEL)
8885 "Func#%d is global and valid. Skipping.\n",
8887 clear_caller_saved_regs(env, caller->regs);
8889 /* All global functions return a 64-bit SCALAR_VALUE */
8890 mark_reg_unknown(env, caller->regs, BPF_REG_0);
8891 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8893 /* continue with next insn after call */
8898 /* set_callee_state is used for direct subprog calls, but we are
8899 * interested in validating only BPF helpers that can call subprogs as
8902 if (set_callee_state_cb != set_callee_state) {
8903 if (bpf_pseudo_kfunc_call(insn) &&
8904 !is_callback_calling_kfunc(insn->imm)) {
8905 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8906 func_id_name(insn->imm), insn->imm);
8908 } else if (!bpf_pseudo_kfunc_call(insn) &&
8909 !is_callback_calling_function(insn->imm)) { /* helper */
8910 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8911 func_id_name(insn->imm), insn->imm);
8916 if (insn->code == (BPF_JMP | BPF_CALL) &&
8917 insn->src_reg == 0 &&
8918 insn->imm == BPF_FUNC_timer_set_callback) {
8919 struct bpf_verifier_state *async_cb;
8921 /* there is no real recursion here. timer callbacks are async */
8922 env->subprog_info[subprog].is_async_cb = true;
8923 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8924 *insn_idx, subprog);
8927 callee = async_cb->frame[0];
8928 callee->async_entry_cnt = caller->async_entry_cnt + 1;
8930 /* Convert bpf_timer_set_callback() args into timer callback args */
8931 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8935 clear_caller_saved_regs(env, caller->regs);
8936 mark_reg_unknown(env, caller->regs, BPF_REG_0);
8937 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8938 /* continue with next insn after call */
8942 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8945 state->frame[state->curframe + 1] = callee;
8947 /* callee cannot access r0, r6 - r9 for reading and has to write
8948 * into its own stack before reading from it.
8949 * callee can read/write into caller's stack
8951 init_func_state(env, callee,
8952 /* remember the callsite, it will be used by bpf_exit */
8953 *insn_idx /* callsite */,
8954 state->curframe + 1 /* frameno within this callchain */,
8955 subprog /* subprog number within this prog */);
8957 /* Transfer references to the callee */
8958 err = copy_reference_state(callee, caller);
8962 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8966 clear_caller_saved_regs(env, caller->regs);
8968 /* only increment it after check_reg_arg() finished */
8971 /* and go analyze first insn of the callee */
8972 *insn_idx = env->subprog_info[subprog].start - 1;
8974 if (env->log.level & BPF_LOG_LEVEL) {
8975 verbose(env, "caller:\n");
8976 print_verifier_state(env, caller, true);
8977 verbose(env, "callee:\n");
8978 print_verifier_state(env, callee, true);
8983 free_func_state(callee);
8984 state->frame[state->curframe + 1] = NULL;
8988 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8989 struct bpf_func_state *caller,
8990 struct bpf_func_state *callee)
8992 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8993 * void *callback_ctx, u64 flags);
8994 * callback_fn(struct bpf_map *map, void *key, void *value,
8995 * void *callback_ctx);
8997 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8999 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9000 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9001 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9003 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9004 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9005 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9007 /* pointer to stack or null */
9008 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9011 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9015 static int set_callee_state(struct bpf_verifier_env *env,
9016 struct bpf_func_state *caller,
9017 struct bpf_func_state *callee, int insn_idx)
9021 /* copy r1 - r5 args that callee can access. The copy includes parent
9022 * pointers, which connects us up to the liveness chain
9024 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9025 callee->regs[i] = caller->regs[i];
9029 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9032 int subprog, target_insn;
9034 target_insn = *insn_idx + insn->imm + 1;
9035 subprog = find_subprog(env, target_insn);
9037 verbose(env, "verifier bug. No program starts at insn %d\n",
9042 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9045 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9046 struct bpf_func_state *caller,
9047 struct bpf_func_state *callee,
9050 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9051 struct bpf_map *map;
9054 if (bpf_map_ptr_poisoned(insn_aux)) {
9055 verbose(env, "tail_call abusing map_ptr\n");
9059 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9060 if (!map->ops->map_set_for_each_callback_args ||
9061 !map->ops->map_for_each_callback) {
9062 verbose(env, "callback function not allowed for map\n");
9066 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9070 callee->in_callback_fn = true;
9071 callee->callback_ret_range = tnum_range(0, 1);
9075 static int set_loop_callback_state(struct bpf_verifier_env *env,
9076 struct bpf_func_state *caller,
9077 struct bpf_func_state *callee,
9080 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9082 * callback_fn(u32 index, void *callback_ctx);
9084 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9085 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9088 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9089 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9090 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9092 callee->in_callback_fn = true;
9093 callee->callback_ret_range = tnum_range(0, 1);
9097 static int set_timer_callback_state(struct bpf_verifier_env *env,
9098 struct bpf_func_state *caller,
9099 struct bpf_func_state *callee,
9102 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9104 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9105 * callback_fn(struct bpf_map *map, void *key, void *value);
9107 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9108 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9109 callee->regs[BPF_REG_1].map_ptr = map_ptr;
9111 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9112 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9113 callee->regs[BPF_REG_2].map_ptr = map_ptr;
9115 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9116 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9117 callee->regs[BPF_REG_3].map_ptr = map_ptr;
9120 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9121 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9122 callee->in_async_callback_fn = true;
9123 callee->callback_ret_range = tnum_range(0, 1);
9127 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9128 struct bpf_func_state *caller,
9129 struct bpf_func_state *callee,
9132 /* bpf_find_vma(struct task_struct *task, u64 addr,
9133 * void *callback_fn, void *callback_ctx, u64 flags)
9134 * (callback_fn)(struct task_struct *task,
9135 * struct vm_area_struct *vma, void *callback_ctx);
9137 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9139 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9140 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9141 callee->regs[BPF_REG_2].btf = btf_vmlinux;
9142 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9144 /* pointer to stack or null */
9145 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9148 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9149 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9150 callee->in_callback_fn = true;
9151 callee->callback_ret_range = tnum_range(0, 1);
9155 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9156 struct bpf_func_state *caller,
9157 struct bpf_func_state *callee,
9160 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9161 * callback_ctx, u64 flags);
9162 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9164 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9165 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9166 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9169 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9170 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9171 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9173 callee->in_callback_fn = true;
9174 callee->callback_ret_range = tnum_range(0, 1);
9178 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9179 struct bpf_func_state *caller,
9180 struct bpf_func_state *callee,
9183 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9184 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9186 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9187 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9188 * by this point, so look at 'root'
9190 struct btf_field *field;
9192 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9194 if (!field || !field->graph_root.value_btf_id)
9197 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9198 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9199 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9200 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9202 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9203 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9204 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9205 callee->in_callback_fn = true;
9206 callee->callback_ret_range = tnum_range(0, 1);
9210 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9212 /* Are we currently verifying the callback for a rbtree helper that must
9213 * be called with lock held? If so, no need to complain about unreleased
9216 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9218 struct bpf_verifier_state *state = env->cur_state;
9219 struct bpf_insn *insn = env->prog->insnsi;
9220 struct bpf_func_state *callee;
9223 if (!state->curframe)
9226 callee = state->frame[state->curframe];
9228 if (!callee->in_callback_fn)
9231 kfunc_btf_id = insn[callee->callsite].imm;
9232 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9235 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9237 struct bpf_verifier_state *state = env->cur_state;
9238 struct bpf_func_state *caller, *callee;
9239 struct bpf_reg_state *r0;
9242 callee = state->frame[state->curframe];
9243 r0 = &callee->regs[BPF_REG_0];
9244 if (r0->type == PTR_TO_STACK) {
9245 /* technically it's ok to return caller's stack pointer
9246 * (or caller's caller's pointer) back to the caller,
9247 * since these pointers are valid. Only current stack
9248 * pointer will be invalid as soon as function exits,
9249 * but let's be conservative
9251 verbose(env, "cannot return stack pointer to the caller\n");
9255 caller = state->frame[state->curframe - 1];
9256 if (callee->in_callback_fn) {
9257 /* enforce R0 return value range [0, 1]. */
9258 struct tnum range = callee->callback_ret_range;
9260 if (r0->type != SCALAR_VALUE) {
9261 verbose(env, "R0 not a scalar value\n");
9264 if (!tnum_in(range, r0->var_off)) {
9265 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9269 /* return to the caller whatever r0 had in the callee */
9270 caller->regs[BPF_REG_0] = *r0;
9273 /* callback_fn frame should have released its own additions to parent's
9274 * reference state at this point, or check_reference_leak would
9275 * complain, hence it must be the same as the caller. There is no need
9278 if (!callee->in_callback_fn) {
9279 /* Transfer references to the caller */
9280 err = copy_reference_state(caller, callee);
9285 *insn_idx = callee->callsite + 1;
9286 if (env->log.level & BPF_LOG_LEVEL) {
9287 verbose(env, "returning from callee:\n");
9288 print_verifier_state(env, callee, true);
9289 verbose(env, "to caller at %d:\n", *insn_idx);
9290 print_verifier_state(env, caller, true);
9292 /* clear everything in the callee */
9293 free_func_state(callee);
9294 state->frame[state->curframe--] = NULL;
9298 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9300 struct bpf_call_arg_meta *meta)
9302 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
9304 if (ret_type != RET_INTEGER)
9308 case BPF_FUNC_get_stack:
9309 case BPF_FUNC_get_task_stack:
9310 case BPF_FUNC_probe_read_str:
9311 case BPF_FUNC_probe_read_kernel_str:
9312 case BPF_FUNC_probe_read_user_str:
9313 ret_reg->smax_value = meta->msize_max_value;
9314 ret_reg->s32_max_value = meta->msize_max_value;
9315 ret_reg->smin_value = -MAX_ERRNO;
9316 ret_reg->s32_min_value = -MAX_ERRNO;
9317 reg_bounds_sync(ret_reg);
9319 case BPF_FUNC_get_smp_processor_id:
9320 ret_reg->umax_value = nr_cpu_ids - 1;
9321 ret_reg->u32_max_value = nr_cpu_ids - 1;
9322 ret_reg->smax_value = nr_cpu_ids - 1;
9323 ret_reg->s32_max_value = nr_cpu_ids - 1;
9324 ret_reg->umin_value = 0;
9325 ret_reg->u32_min_value = 0;
9326 ret_reg->smin_value = 0;
9327 ret_reg->s32_min_value = 0;
9328 reg_bounds_sync(ret_reg);
9334 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9335 int func_id, int insn_idx)
9337 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9338 struct bpf_map *map = meta->map_ptr;
9340 if (func_id != BPF_FUNC_tail_call &&
9341 func_id != BPF_FUNC_map_lookup_elem &&
9342 func_id != BPF_FUNC_map_update_elem &&
9343 func_id != BPF_FUNC_map_delete_elem &&
9344 func_id != BPF_FUNC_map_push_elem &&
9345 func_id != BPF_FUNC_map_pop_elem &&
9346 func_id != BPF_FUNC_map_peek_elem &&
9347 func_id != BPF_FUNC_for_each_map_elem &&
9348 func_id != BPF_FUNC_redirect_map &&
9349 func_id != BPF_FUNC_map_lookup_percpu_elem)
9353 verbose(env, "kernel subsystem misconfigured verifier\n");
9357 /* In case of read-only, some additional restrictions
9358 * need to be applied in order to prevent altering the
9359 * state of the map from program side.
9361 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9362 (func_id == BPF_FUNC_map_delete_elem ||
9363 func_id == BPF_FUNC_map_update_elem ||
9364 func_id == BPF_FUNC_map_push_elem ||
9365 func_id == BPF_FUNC_map_pop_elem)) {
9366 verbose(env, "write into map forbidden\n");
9370 if (!BPF_MAP_PTR(aux->map_ptr_state))
9371 bpf_map_ptr_store(aux, meta->map_ptr,
9372 !meta->map_ptr->bypass_spec_v1);
9373 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9374 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9375 !meta->map_ptr->bypass_spec_v1);
9380 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9381 int func_id, int insn_idx)
9383 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9384 struct bpf_reg_state *regs = cur_regs(env), *reg;
9385 struct bpf_map *map = meta->map_ptr;
9389 if (func_id != BPF_FUNC_tail_call)
9391 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9392 verbose(env, "kernel subsystem misconfigured verifier\n");
9396 reg = ®s[BPF_REG_3];
9397 val = reg->var_off.value;
9398 max = map->max_entries;
9400 if (!(register_is_const(reg) && val < max)) {
9401 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9405 err = mark_chain_precision(env, BPF_REG_3);
9408 if (bpf_map_key_unseen(aux))
9409 bpf_map_key_store(aux, val);
9410 else if (!bpf_map_key_poisoned(aux) &&
9411 bpf_map_key_immediate(aux) != val)
9412 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9416 static int check_reference_leak(struct bpf_verifier_env *env)
9418 struct bpf_func_state *state = cur_func(env);
9419 bool refs_lingering = false;
9422 if (state->frameno && !state->in_callback_fn)
9425 for (i = 0; i < state->acquired_refs; i++) {
9426 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9428 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9429 state->refs[i].id, state->refs[i].insn_idx);
9430 refs_lingering = true;
9432 return refs_lingering ? -EINVAL : 0;
9435 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9436 struct bpf_reg_state *regs)
9438 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
9439 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
9440 struct bpf_map *fmt_map = fmt_reg->map_ptr;
9441 struct bpf_bprintf_data data = {};
9442 int err, fmt_map_off, num_args;
9446 /* data must be an array of u64 */
9447 if (data_len_reg->var_off.value % 8)
9449 num_args = data_len_reg->var_off.value / 8;
9451 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9452 * and map_direct_value_addr is set.
9454 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9455 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9458 verbose(env, "verifier bug\n");
9461 fmt = (char *)(long)fmt_addr + fmt_map_off;
9463 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9464 * can focus on validating the format specifiers.
9466 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9468 verbose(env, "Invalid format string\n");
9473 static int check_get_func_ip(struct bpf_verifier_env *env)
9475 enum bpf_prog_type type = resolve_prog_type(env->prog);
9476 int func_id = BPF_FUNC_get_func_ip;
9478 if (type == BPF_PROG_TYPE_TRACING) {
9479 if (!bpf_prog_has_trampoline(env->prog)) {
9480 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9481 func_id_name(func_id), func_id);
9485 } else if (type == BPF_PROG_TYPE_KPROBE) {
9489 verbose(env, "func %s#%d not supported for program type %d\n",
9490 func_id_name(func_id), func_id, type);
9494 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9496 return &env->insn_aux_data[env->insn_idx];
9499 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9501 struct bpf_reg_state *regs = cur_regs(env);
9502 struct bpf_reg_state *reg = ®s[BPF_REG_4];
9503 bool reg_is_null = register_is_null(reg);
9506 mark_chain_precision(env, BPF_REG_4);
9511 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9513 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9515 if (!state->initialized) {
9516 state->initialized = 1;
9517 state->fit_for_inline = loop_flag_is_zero(env);
9518 state->callback_subprogno = subprogno;
9522 if (!state->fit_for_inline)
9525 state->fit_for_inline = (loop_flag_is_zero(env) &&
9526 state->callback_subprogno == subprogno);
9529 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9532 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9533 const struct bpf_func_proto *fn = NULL;
9534 enum bpf_return_type ret_type;
9535 enum bpf_type_flag ret_flag;
9536 struct bpf_reg_state *regs;
9537 struct bpf_call_arg_meta meta;
9538 int insn_idx = *insn_idx_p;
9540 int i, err, func_id;
9542 /* find function prototype */
9543 func_id = insn->imm;
9544 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9545 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9550 if (env->ops->get_func_proto)
9551 fn = env->ops->get_func_proto(func_id, env->prog);
9553 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9558 /* eBPF programs must be GPL compatible to use GPL-ed functions */
9559 if (!env->prog->gpl_compatible && fn->gpl_only) {
9560 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9564 if (fn->allowed && !fn->allowed(env->prog)) {
9565 verbose(env, "helper call is not allowed in probe\n");
9569 if (!env->prog->aux->sleepable && fn->might_sleep) {
9570 verbose(env, "helper call might sleep in a non-sleepable prog\n");
9574 /* With LD_ABS/IND some JITs save/restore skb from r1. */
9575 changes_data = bpf_helper_changes_pkt_data(fn->func);
9576 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9577 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9578 func_id_name(func_id), func_id);
9582 memset(&meta, 0, sizeof(meta));
9583 meta.pkt_access = fn->pkt_access;
9585 err = check_func_proto(fn, func_id);
9587 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9588 func_id_name(func_id), func_id);
9592 if (env->cur_state->active_rcu_lock) {
9593 if (fn->might_sleep) {
9594 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9595 func_id_name(func_id), func_id);
9599 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9600 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9603 meta.func_id = func_id;
9605 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9606 err = check_func_arg(env, i, &meta, fn, insn_idx);
9611 err = record_func_map(env, &meta, func_id, insn_idx);
9615 err = record_func_key(env, &meta, func_id, insn_idx);
9619 /* Mark slots with STACK_MISC in case of raw mode, stack offset
9620 * is inferred from register state.
9622 for (i = 0; i < meta.access_size; i++) {
9623 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9624 BPF_WRITE, -1, false, false);
9629 regs = cur_regs(env);
9631 if (meta.release_regno) {
9633 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9634 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9635 * is safe to do directly.
9637 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9638 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9639 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9642 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
9643 } else if (meta.ref_obj_id) {
9644 err = release_reference(env, meta.ref_obj_id);
9645 } else if (register_is_null(®s[meta.release_regno])) {
9646 /* meta.ref_obj_id can only be 0 if register that is meant to be
9647 * released is NULL, which must be > R0.
9652 verbose(env, "func %s#%d reference has not been acquired before\n",
9653 func_id_name(func_id), func_id);
9659 case BPF_FUNC_tail_call:
9660 err = check_reference_leak(env);
9662 verbose(env, "tail_call would lead to reference leak\n");
9666 case BPF_FUNC_get_local_storage:
9667 /* check that flags argument in get_local_storage(map, flags) is 0,
9668 * this is required because get_local_storage() can't return an error.
9670 if (!register_is_null(®s[BPF_REG_2])) {
9671 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9675 case BPF_FUNC_for_each_map_elem:
9676 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9677 set_map_elem_callback_state);
9679 case BPF_FUNC_timer_set_callback:
9680 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9681 set_timer_callback_state);
9683 case BPF_FUNC_find_vma:
9684 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9685 set_find_vma_callback_state);
9687 case BPF_FUNC_snprintf:
9688 err = check_bpf_snprintf_call(env, regs);
9691 update_loop_inline_state(env, meta.subprogno);
9692 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9693 set_loop_callback_state);
9695 case BPF_FUNC_dynptr_from_mem:
9696 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9697 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9698 reg_type_str(env, regs[BPF_REG_1].type));
9702 case BPF_FUNC_set_retval:
9703 if (prog_type == BPF_PROG_TYPE_LSM &&
9704 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9705 if (!env->prog->aux->attach_func_proto->type) {
9706 /* Make sure programs that attach to void
9707 * hooks don't try to modify return value.
9709 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9714 case BPF_FUNC_dynptr_data:
9716 struct bpf_reg_state *reg;
9719 reg = get_dynptr_arg_reg(env, fn, regs);
9724 if (meta.dynptr_id) {
9725 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9728 if (meta.ref_obj_id) {
9729 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9733 id = dynptr_id(env, reg);
9735 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9739 ref_obj_id = dynptr_ref_obj_id(env, reg);
9740 if (ref_obj_id < 0) {
9741 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9745 meta.dynptr_id = id;
9746 meta.ref_obj_id = ref_obj_id;
9750 case BPF_FUNC_dynptr_write:
9752 enum bpf_dynptr_type dynptr_type;
9753 struct bpf_reg_state *reg;
9755 reg = get_dynptr_arg_reg(env, fn, regs);
9759 dynptr_type = dynptr_get_type(env, reg);
9760 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9763 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9764 /* this will trigger clear_all_pkt_pointers(), which will
9765 * invalidate all dynptr slices associated with the skb
9767 changes_data = true;
9771 case BPF_FUNC_user_ringbuf_drain:
9772 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9773 set_user_ringbuf_callback_state);
9780 /* reset caller saved regs */
9781 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9782 mark_reg_not_init(env, regs, caller_saved[i]);
9783 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9786 /* helper call returns 64-bit value. */
9787 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9789 /* update return register (already marked as written above) */
9790 ret_type = fn->ret_type;
9791 ret_flag = type_flag(ret_type);
9793 switch (base_type(ret_type)) {
9795 /* sets type to SCALAR_VALUE */
9796 mark_reg_unknown(env, regs, BPF_REG_0);
9799 regs[BPF_REG_0].type = NOT_INIT;
9801 case RET_PTR_TO_MAP_VALUE:
9802 /* There is no offset yet applied, variable or fixed */
9803 mark_reg_known_zero(env, regs, BPF_REG_0);
9804 /* remember map_ptr, so that check_map_access()
9805 * can check 'value_size' boundary of memory access
9806 * to map element returned from bpf_map_lookup_elem()
9808 if (meta.map_ptr == NULL) {
9810 "kernel subsystem misconfigured verifier\n");
9813 regs[BPF_REG_0].map_ptr = meta.map_ptr;
9814 regs[BPF_REG_0].map_uid = meta.map_uid;
9815 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9816 if (!type_may_be_null(ret_type) &&
9817 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9818 regs[BPF_REG_0].id = ++env->id_gen;
9821 case RET_PTR_TO_SOCKET:
9822 mark_reg_known_zero(env, regs, BPF_REG_0);
9823 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9825 case RET_PTR_TO_SOCK_COMMON:
9826 mark_reg_known_zero(env, regs, BPF_REG_0);
9827 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
9829 case RET_PTR_TO_TCP_SOCK:
9830 mark_reg_known_zero(env, regs, BPF_REG_0);
9831 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
9833 case RET_PTR_TO_MEM:
9834 mark_reg_known_zero(env, regs, BPF_REG_0);
9835 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9836 regs[BPF_REG_0].mem_size = meta.mem_size;
9838 case RET_PTR_TO_MEM_OR_BTF_ID:
9840 const struct btf_type *t;
9842 mark_reg_known_zero(env, regs, BPF_REG_0);
9843 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
9844 if (!btf_type_is_struct(t)) {
9846 const struct btf_type *ret;
9849 /* resolve the type size of ksym. */
9850 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
9852 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
9853 verbose(env, "unable to resolve the size of type '%s': %ld\n",
9854 tname, PTR_ERR(ret));
9857 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9858 regs[BPF_REG_0].mem_size = tsize;
9860 /* MEM_RDONLY may be carried from ret_flag, but it
9861 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9862 * it will confuse the check of PTR_TO_BTF_ID in
9863 * check_mem_access().
9865 ret_flag &= ~MEM_RDONLY;
9867 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9868 regs[BPF_REG_0].btf = meta.ret_btf;
9869 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9873 case RET_PTR_TO_BTF_ID:
9875 struct btf *ret_btf;
9878 mark_reg_known_zero(env, regs, BPF_REG_0);
9879 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9880 if (func_id == BPF_FUNC_kptr_xchg) {
9881 ret_btf = meta.kptr_field->kptr.btf;
9882 ret_btf_id = meta.kptr_field->kptr.btf_id;
9883 if (!btf_is_kernel(ret_btf))
9884 regs[BPF_REG_0].type |= MEM_ALLOC;
9886 if (fn->ret_btf_id == BPF_PTR_POISON) {
9887 verbose(env, "verifier internal error:");
9888 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9889 func_id_name(func_id));
9892 ret_btf = btf_vmlinux;
9893 ret_btf_id = *fn->ret_btf_id;
9895 if (ret_btf_id == 0) {
9896 verbose(env, "invalid return type %u of func %s#%d\n",
9897 base_type(ret_type), func_id_name(func_id),
9901 regs[BPF_REG_0].btf = ret_btf;
9902 regs[BPF_REG_0].btf_id = ret_btf_id;
9906 verbose(env, "unknown return type %u of func %s#%d\n",
9907 base_type(ret_type), func_id_name(func_id), func_id);
9911 if (type_may_be_null(regs[BPF_REG_0].type))
9912 regs[BPF_REG_0].id = ++env->id_gen;
9914 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9915 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9916 func_id_name(func_id), func_id);
9920 if (is_dynptr_ref_function(func_id))
9921 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9923 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
9924 /* For release_reference() */
9925 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9926 } else if (is_acquire_function(func_id, meta.map_ptr)) {
9927 int id = acquire_reference_state(env, insn_idx);
9931 /* For mark_ptr_or_null_reg() */
9932 regs[BPF_REG_0].id = id;
9933 /* For release_reference() */
9934 regs[BPF_REG_0].ref_obj_id = id;
9937 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9939 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
9943 if ((func_id == BPF_FUNC_get_stack ||
9944 func_id == BPF_FUNC_get_task_stack) &&
9945 !env->prog->has_callchain_buf) {
9946 const char *err_str;
9948 #ifdef CONFIG_PERF_EVENTS
9949 err = get_callchain_buffers(sysctl_perf_event_max_stack);
9950 err_str = "cannot get callchain buffer for func %s#%d\n";
9953 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9956 verbose(env, err_str, func_id_name(func_id), func_id);
9960 env->prog->has_callchain_buf = true;
9963 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9964 env->prog->call_get_stack = true;
9966 if (func_id == BPF_FUNC_get_func_ip) {
9967 if (check_get_func_ip(env))
9969 env->prog->call_get_func_ip = true;
9973 clear_all_pkt_pointers(env);
9977 /* mark_btf_func_reg_size() is used when the reg size is determined by
9978 * the BTF func_proto's return value size and argument.
9980 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9983 struct bpf_reg_state *reg = &cur_regs(env)[regno];
9985 if (regno == BPF_REG_0) {
9986 /* Function return value */
9987 reg->live |= REG_LIVE_WRITTEN;
9988 reg->subreg_def = reg_size == sizeof(u64) ?
9989 DEF_NOT_SUBREG : env->insn_idx + 1;
9991 /* Function argument */
9992 if (reg_size == sizeof(u64)) {
9993 mark_insn_zext(env, reg);
9994 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
9996 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10001 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10003 return meta->kfunc_flags & KF_ACQUIRE;
10006 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10008 return meta->kfunc_flags & KF_RELEASE;
10011 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10013 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10016 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10018 return meta->kfunc_flags & KF_SLEEPABLE;
10021 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10023 return meta->kfunc_flags & KF_DESTRUCTIVE;
10026 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10028 return meta->kfunc_flags & KF_RCU;
10031 static bool __kfunc_param_match_suffix(const struct btf *btf,
10032 const struct btf_param *arg,
10033 const char *suffix)
10035 int suffix_len = strlen(suffix), len;
10036 const char *param_name;
10038 /* In the future, this can be ported to use BTF tagging */
10039 param_name = btf_name_by_offset(btf, arg->name_off);
10040 if (str_is_empty(param_name))
10042 len = strlen(param_name);
10043 if (len < suffix_len)
10045 param_name += len - suffix_len;
10046 return !strncmp(param_name, suffix, suffix_len);
10049 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10050 const struct btf_param *arg,
10051 const struct bpf_reg_state *reg)
10053 const struct btf_type *t;
10055 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10056 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10059 return __kfunc_param_match_suffix(btf, arg, "__sz");
10062 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10063 const struct btf_param *arg,
10064 const struct bpf_reg_state *reg)
10066 const struct btf_type *t;
10068 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10069 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10072 return __kfunc_param_match_suffix(btf, arg, "__szk");
10075 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10077 return __kfunc_param_match_suffix(btf, arg, "__opt");
10080 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10082 return __kfunc_param_match_suffix(btf, arg, "__k");
10085 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10087 return __kfunc_param_match_suffix(btf, arg, "__ign");
10090 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10092 return __kfunc_param_match_suffix(btf, arg, "__alloc");
10095 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10097 return __kfunc_param_match_suffix(btf, arg, "__uninit");
10100 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10102 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10105 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10106 const struct btf_param *arg,
10109 int len, target_len = strlen(name);
10110 const char *param_name;
10112 param_name = btf_name_by_offset(btf, arg->name_off);
10113 if (str_is_empty(param_name))
10115 len = strlen(param_name);
10116 if (len != target_len)
10118 if (strcmp(param_name, name))
10126 KF_ARG_LIST_HEAD_ID,
10127 KF_ARG_LIST_NODE_ID,
10132 BTF_ID_LIST(kf_arg_btf_ids)
10133 BTF_ID(struct, bpf_dynptr_kern)
10134 BTF_ID(struct, bpf_list_head)
10135 BTF_ID(struct, bpf_list_node)
10136 BTF_ID(struct, bpf_rb_root)
10137 BTF_ID(struct, bpf_rb_node)
10139 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10140 const struct btf_param *arg, int type)
10142 const struct btf_type *t;
10145 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10148 if (!btf_type_is_ptr(t))
10150 t = btf_type_skip_modifiers(btf, t->type, &res_id);
10153 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10156 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10158 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10161 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10163 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10166 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10168 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10171 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10173 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10176 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10178 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10181 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10182 const struct btf_param *arg)
10184 const struct btf_type *t;
10186 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10193 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10194 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10195 const struct btf *btf,
10196 const struct btf_type *t, int rec)
10198 const struct btf_type *member_type;
10199 const struct btf_member *member;
10202 if (!btf_type_is_struct(t))
10205 for_each_member(i, t, member) {
10206 const struct btf_array *array;
10208 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10209 if (btf_type_is_struct(member_type)) {
10211 verbose(env, "max struct nesting depth exceeded\n");
10214 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10218 if (btf_type_is_array(member_type)) {
10219 array = btf_array(member_type);
10220 if (!array->nelems)
10222 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10223 if (!btf_type_is_scalar(member_type))
10227 if (!btf_type_is_scalar(member_type))
10233 enum kfunc_ptr_arg_type {
10235 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
10236 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10237 KF_ARG_PTR_TO_DYNPTR,
10238 KF_ARG_PTR_TO_ITER,
10239 KF_ARG_PTR_TO_LIST_HEAD,
10240 KF_ARG_PTR_TO_LIST_NODE,
10241 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
10243 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
10244 KF_ARG_PTR_TO_CALLBACK,
10245 KF_ARG_PTR_TO_RB_ROOT,
10246 KF_ARG_PTR_TO_RB_NODE,
10249 enum special_kfunc_type {
10250 KF_bpf_obj_new_impl,
10251 KF_bpf_obj_drop_impl,
10252 KF_bpf_refcount_acquire_impl,
10253 KF_bpf_list_push_front_impl,
10254 KF_bpf_list_push_back_impl,
10255 KF_bpf_list_pop_front,
10256 KF_bpf_list_pop_back,
10257 KF_bpf_cast_to_kern_ctx,
10258 KF_bpf_rdonly_cast,
10259 KF_bpf_rcu_read_lock,
10260 KF_bpf_rcu_read_unlock,
10261 KF_bpf_rbtree_remove,
10262 KF_bpf_rbtree_add_impl,
10263 KF_bpf_rbtree_first,
10264 KF_bpf_dynptr_from_skb,
10265 KF_bpf_dynptr_from_xdp,
10266 KF_bpf_dynptr_slice,
10267 KF_bpf_dynptr_slice_rdwr,
10268 KF_bpf_dynptr_clone,
10271 BTF_SET_START(special_kfunc_set)
10272 BTF_ID(func, bpf_obj_new_impl)
10273 BTF_ID(func, bpf_obj_drop_impl)
10274 BTF_ID(func, bpf_refcount_acquire_impl)
10275 BTF_ID(func, bpf_list_push_front_impl)
10276 BTF_ID(func, bpf_list_push_back_impl)
10277 BTF_ID(func, bpf_list_pop_front)
10278 BTF_ID(func, bpf_list_pop_back)
10279 BTF_ID(func, bpf_cast_to_kern_ctx)
10280 BTF_ID(func, bpf_rdonly_cast)
10281 BTF_ID(func, bpf_rbtree_remove)
10282 BTF_ID(func, bpf_rbtree_add_impl)
10283 BTF_ID(func, bpf_rbtree_first)
10284 BTF_ID(func, bpf_dynptr_from_skb)
10285 BTF_ID(func, bpf_dynptr_from_xdp)
10286 BTF_ID(func, bpf_dynptr_slice)
10287 BTF_ID(func, bpf_dynptr_slice_rdwr)
10288 BTF_ID(func, bpf_dynptr_clone)
10289 BTF_SET_END(special_kfunc_set)
10291 BTF_ID_LIST(special_kfunc_list)
10292 BTF_ID(func, bpf_obj_new_impl)
10293 BTF_ID(func, bpf_obj_drop_impl)
10294 BTF_ID(func, bpf_refcount_acquire_impl)
10295 BTF_ID(func, bpf_list_push_front_impl)
10296 BTF_ID(func, bpf_list_push_back_impl)
10297 BTF_ID(func, bpf_list_pop_front)
10298 BTF_ID(func, bpf_list_pop_back)
10299 BTF_ID(func, bpf_cast_to_kern_ctx)
10300 BTF_ID(func, bpf_rdonly_cast)
10301 BTF_ID(func, bpf_rcu_read_lock)
10302 BTF_ID(func, bpf_rcu_read_unlock)
10303 BTF_ID(func, bpf_rbtree_remove)
10304 BTF_ID(func, bpf_rbtree_add_impl)
10305 BTF_ID(func, bpf_rbtree_first)
10306 BTF_ID(func, bpf_dynptr_from_skb)
10307 BTF_ID(func, bpf_dynptr_from_xdp)
10308 BTF_ID(func, bpf_dynptr_slice)
10309 BTF_ID(func, bpf_dynptr_slice_rdwr)
10310 BTF_ID(func, bpf_dynptr_clone)
10312 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10314 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10315 meta->arg_owning_ref) {
10319 return meta->kfunc_flags & KF_RET_NULL;
10322 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10324 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10327 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10329 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10332 static enum kfunc_ptr_arg_type
10333 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10334 struct bpf_kfunc_call_arg_meta *meta,
10335 const struct btf_type *t, const struct btf_type *ref_t,
10336 const char *ref_tname, const struct btf_param *args,
10337 int argno, int nargs)
10339 u32 regno = argno + 1;
10340 struct bpf_reg_state *regs = cur_regs(env);
10341 struct bpf_reg_state *reg = ®s[regno];
10342 bool arg_mem_size = false;
10344 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10345 return KF_ARG_PTR_TO_CTX;
10347 /* In this function, we verify the kfunc's BTF as per the argument type,
10348 * leaving the rest of the verification with respect to the register
10349 * type to our caller. When a set of conditions hold in the BTF type of
10350 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10352 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10353 return KF_ARG_PTR_TO_CTX;
10355 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10356 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10358 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10359 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10361 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10362 return KF_ARG_PTR_TO_DYNPTR;
10364 if (is_kfunc_arg_iter(meta, argno))
10365 return KF_ARG_PTR_TO_ITER;
10367 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10368 return KF_ARG_PTR_TO_LIST_HEAD;
10370 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10371 return KF_ARG_PTR_TO_LIST_NODE;
10373 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10374 return KF_ARG_PTR_TO_RB_ROOT;
10376 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10377 return KF_ARG_PTR_TO_RB_NODE;
10379 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10380 if (!btf_type_is_struct(ref_t)) {
10381 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10382 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10385 return KF_ARG_PTR_TO_BTF_ID;
10388 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10389 return KF_ARG_PTR_TO_CALLBACK;
10392 if (argno + 1 < nargs &&
10393 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) ||
10394 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])))
10395 arg_mem_size = true;
10397 /* This is the catch all argument type of register types supported by
10398 * check_helper_mem_access. However, we only allow when argument type is
10399 * pointer to scalar, or struct composed (recursively) of scalars. When
10400 * arg_mem_size is true, the pointer can be void *.
10402 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10403 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10404 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10405 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10408 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10411 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10412 struct bpf_reg_state *reg,
10413 const struct btf_type *ref_t,
10414 const char *ref_tname, u32 ref_id,
10415 struct bpf_kfunc_call_arg_meta *meta,
10418 const struct btf_type *reg_ref_t;
10419 bool strict_type_match = false;
10420 const struct btf *reg_btf;
10421 const char *reg_ref_tname;
10424 if (base_type(reg->type) == PTR_TO_BTF_ID) {
10425 reg_btf = reg->btf;
10426 reg_ref_id = reg->btf_id;
10428 reg_btf = btf_vmlinux;
10429 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10432 /* Enforce strict type matching for calls to kfuncs that are acquiring
10433 * or releasing a reference, or are no-cast aliases. We do _not_
10434 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10435 * as we want to enable BPF programs to pass types that are bitwise
10436 * equivalent without forcing them to explicitly cast with something
10437 * like bpf_cast_to_kern_ctx().
10439 * For example, say we had a type like the following:
10441 * struct bpf_cpumask {
10442 * cpumask_t cpumask;
10443 * refcount_t usage;
10446 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10447 * to a struct cpumask, so it would be safe to pass a struct
10448 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10450 * The philosophy here is similar to how we allow scalars of different
10451 * types to be passed to kfuncs as long as the size is the same. The
10452 * only difference here is that we're simply allowing
10453 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10456 if (is_kfunc_acquire(meta) ||
10457 (is_kfunc_release(meta) && reg->ref_obj_id) ||
10458 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10459 strict_type_match = true;
10461 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10463 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id);
10464 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10465 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10466 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10467 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10468 btf_type_str(reg_ref_t), reg_ref_tname);
10474 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10476 struct bpf_verifier_state *state = env->cur_state;
10477 struct btf_record *rec = reg_btf_record(reg);
10479 if (!state->active_lock.ptr) {
10480 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10484 if (type_flag(reg->type) & NON_OWN_REF) {
10485 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10489 reg->type |= NON_OWN_REF;
10490 if (rec->refcount_off >= 0)
10491 reg->type |= MEM_RCU;
10496 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10498 struct bpf_func_state *state, *unused;
10499 struct bpf_reg_state *reg;
10502 state = cur_func(env);
10505 verbose(env, "verifier internal error: ref_obj_id is zero for "
10506 "owning -> non-owning conversion\n");
10510 for (i = 0; i < state->acquired_refs; i++) {
10511 if (state->refs[i].id != ref_obj_id)
10514 /* Clear ref_obj_id here so release_reference doesn't clobber
10517 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10518 if (reg->ref_obj_id == ref_obj_id) {
10519 reg->ref_obj_id = 0;
10520 ref_set_non_owning(env, reg);
10526 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10530 /* Implementation details:
10532 * Each register points to some region of memory, which we define as an
10533 * allocation. Each allocation may embed a bpf_spin_lock which protects any
10534 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10535 * allocation. The lock and the data it protects are colocated in the same
10538 * Hence, everytime a register holds a pointer value pointing to such
10539 * allocation, the verifier preserves a unique reg->id for it.
10541 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10542 * bpf_spin_lock is called.
10544 * To enable this, lock state in the verifier captures two values:
10545 * active_lock.ptr = Register's type specific pointer
10546 * active_lock.id = A unique ID for each register pointer value
10548 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10549 * supported register types.
10551 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10552 * allocated objects is the reg->btf pointer.
10554 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10555 * can establish the provenance of the map value statically for each distinct
10556 * lookup into such maps. They always contain a single map value hence unique
10557 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10559 * So, in case of global variables, they use array maps with max_entries = 1,
10560 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10561 * into the same map value as max_entries is 1, as described above).
10563 * In case of inner map lookups, the inner map pointer has same map_ptr as the
10564 * outer map pointer (in verifier context), but each lookup into an inner map
10565 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10566 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10567 * will get different reg->id assigned to each lookup, hence different
10570 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10571 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10572 * returned from bpf_obj_new. Each allocation receives a new reg->id.
10574 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10579 switch ((int)reg->type) {
10580 case PTR_TO_MAP_VALUE:
10581 ptr = reg->map_ptr;
10583 case PTR_TO_BTF_ID | MEM_ALLOC:
10587 verbose(env, "verifier internal error: unknown reg type for lock check\n");
10592 if (!env->cur_state->active_lock.ptr)
10594 if (env->cur_state->active_lock.ptr != ptr ||
10595 env->cur_state->active_lock.id != id) {
10596 verbose(env, "held lock and object are not in the same allocation\n");
10602 static bool is_bpf_list_api_kfunc(u32 btf_id)
10604 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10605 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10606 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10607 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10610 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10612 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
10613 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10614 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10617 static bool is_bpf_graph_api_kfunc(u32 btf_id)
10619 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10620 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
10623 static bool is_callback_calling_kfunc(u32 btf_id)
10625 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
10628 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10630 return is_bpf_rbtree_api_kfunc(btf_id);
10633 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10634 enum btf_field_type head_field_type,
10639 switch (head_field_type) {
10640 case BPF_LIST_HEAD:
10641 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10644 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10647 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10648 btf_field_type_name(head_field_type));
10653 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10654 btf_field_type_name(head_field_type));
10658 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10659 enum btf_field_type node_field_type,
10664 switch (node_field_type) {
10665 case BPF_LIST_NODE:
10666 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10667 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
10670 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10671 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
10674 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10675 btf_field_type_name(node_field_type));
10680 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10681 btf_field_type_name(node_field_type));
10686 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10687 struct bpf_reg_state *reg, u32 regno,
10688 struct bpf_kfunc_call_arg_meta *meta,
10689 enum btf_field_type head_field_type,
10690 struct btf_field **head_field)
10692 const char *head_type_name;
10693 struct btf_field *field;
10694 struct btf_record *rec;
10697 if (meta->btf != btf_vmlinux) {
10698 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10702 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10705 head_type_name = btf_field_type_name(head_field_type);
10706 if (!tnum_is_const(reg->var_off)) {
10708 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10709 regno, head_type_name);
10713 rec = reg_btf_record(reg);
10714 head_off = reg->off + reg->var_off.value;
10715 field = btf_record_find(rec, head_off, head_field_type);
10717 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10721 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10722 if (check_reg_allocation_locked(env, reg)) {
10723 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10724 rec->spin_lock_off, head_type_name);
10729 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10732 *head_field = field;
10736 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10737 struct bpf_reg_state *reg, u32 regno,
10738 struct bpf_kfunc_call_arg_meta *meta)
10740 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10741 &meta->arg_list_head.field);
10744 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10745 struct bpf_reg_state *reg, u32 regno,
10746 struct bpf_kfunc_call_arg_meta *meta)
10748 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10749 &meta->arg_rbtree_root.field);
10753 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10754 struct bpf_reg_state *reg, u32 regno,
10755 struct bpf_kfunc_call_arg_meta *meta,
10756 enum btf_field_type head_field_type,
10757 enum btf_field_type node_field_type,
10758 struct btf_field **node_field)
10760 const char *node_type_name;
10761 const struct btf_type *et, *t;
10762 struct btf_field *field;
10765 if (meta->btf != btf_vmlinux) {
10766 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10770 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10773 node_type_name = btf_field_type_name(node_field_type);
10774 if (!tnum_is_const(reg->var_off)) {
10776 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10777 regno, node_type_name);
10781 node_off = reg->off + reg->var_off.value;
10782 field = reg_find_field_offset(reg, node_off, node_field_type);
10783 if (!field || field->offset != node_off) {
10784 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10788 field = *node_field;
10790 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10791 t = btf_type_by_id(reg->btf, reg->btf_id);
10792 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10793 field->graph_root.value_btf_id, true)) {
10794 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10795 "in struct %s, but arg is at offset=%d in struct %s\n",
10796 btf_field_type_name(head_field_type),
10797 btf_field_type_name(node_field_type),
10798 field->graph_root.node_offset,
10799 btf_name_by_offset(field->graph_root.btf, et->name_off),
10800 node_off, btf_name_by_offset(reg->btf, t->name_off));
10803 meta->arg_btf = reg->btf;
10804 meta->arg_btf_id = reg->btf_id;
10806 if (node_off != field->graph_root.node_offset) {
10807 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10808 node_off, btf_field_type_name(node_field_type),
10809 field->graph_root.node_offset,
10810 btf_name_by_offset(field->graph_root.btf, et->name_off));
10817 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10818 struct bpf_reg_state *reg, u32 regno,
10819 struct bpf_kfunc_call_arg_meta *meta)
10821 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10822 BPF_LIST_HEAD, BPF_LIST_NODE,
10823 &meta->arg_list_head.field);
10826 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10827 struct bpf_reg_state *reg, u32 regno,
10828 struct bpf_kfunc_call_arg_meta *meta)
10830 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10831 BPF_RB_ROOT, BPF_RB_NODE,
10832 &meta->arg_rbtree_root.field);
10835 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10838 const char *func_name = meta->func_name, *ref_tname;
10839 const struct btf *btf = meta->btf;
10840 const struct btf_param *args;
10841 struct btf_record *rec;
10845 args = (const struct btf_param *)(meta->func_proto + 1);
10846 nargs = btf_type_vlen(meta->func_proto);
10847 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10848 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10849 MAX_BPF_FUNC_REG_ARGS);
10853 /* Check that BTF function arguments match actual types that the
10856 for (i = 0; i < nargs; i++) {
10857 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1];
10858 const struct btf_type *t, *ref_t, *resolve_ret;
10859 enum bpf_arg_type arg_type = ARG_DONTCARE;
10860 u32 regno = i + 1, ref_id, type_size;
10861 bool is_ret_buf_sz = false;
10864 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
10866 if (is_kfunc_arg_ignore(btf, &args[i]))
10869 if (btf_type_is_scalar(t)) {
10870 if (reg->type != SCALAR_VALUE) {
10871 verbose(env, "R%d is not a scalar\n", regno);
10875 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10876 if (meta->arg_constant.found) {
10877 verbose(env, "verifier internal error: only one constant argument permitted\n");
10880 if (!tnum_is_const(reg->var_off)) {
10881 verbose(env, "R%d must be a known constant\n", regno);
10884 ret = mark_chain_precision(env, regno);
10887 meta->arg_constant.found = true;
10888 meta->arg_constant.value = reg->var_off.value;
10889 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
10890 meta->r0_rdonly = true;
10891 is_ret_buf_sz = true;
10892 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10893 is_ret_buf_sz = true;
10896 if (is_ret_buf_sz) {
10897 if (meta->r0_size) {
10898 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10902 if (!tnum_is_const(reg->var_off)) {
10903 verbose(env, "R%d is not a const\n", regno);
10907 meta->r0_size = reg->var_off.value;
10908 ret = mark_chain_precision(env, regno);
10915 if (!btf_type_is_ptr(t)) {
10916 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10920 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
10921 (register_is_null(reg) || type_may_be_null(reg->type))) {
10922 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10926 if (reg->ref_obj_id) {
10927 if (is_kfunc_release(meta) && meta->ref_obj_id) {
10928 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10929 regno, reg->ref_obj_id,
10933 meta->ref_obj_id = reg->ref_obj_id;
10934 if (is_kfunc_release(meta))
10935 meta->release_regno = regno;
10938 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10939 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10941 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10942 if (kf_arg_type < 0)
10943 return kf_arg_type;
10945 switch (kf_arg_type) {
10946 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10947 case KF_ARG_PTR_TO_BTF_ID:
10948 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
10951 if (!is_trusted_reg(reg)) {
10952 if (!is_kfunc_rcu(meta)) {
10953 verbose(env, "R%d must be referenced or trusted\n", regno);
10956 if (!is_rcu_reg(reg)) {
10957 verbose(env, "R%d must be a rcu pointer\n", regno);
10963 case KF_ARG_PTR_TO_CTX:
10964 /* Trusted arguments have the same offset checks as release arguments */
10965 arg_type |= OBJ_RELEASE;
10967 case KF_ARG_PTR_TO_DYNPTR:
10968 case KF_ARG_PTR_TO_ITER:
10969 case KF_ARG_PTR_TO_LIST_HEAD:
10970 case KF_ARG_PTR_TO_LIST_NODE:
10971 case KF_ARG_PTR_TO_RB_ROOT:
10972 case KF_ARG_PTR_TO_RB_NODE:
10973 case KF_ARG_PTR_TO_MEM:
10974 case KF_ARG_PTR_TO_MEM_SIZE:
10975 case KF_ARG_PTR_TO_CALLBACK:
10976 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
10977 /* Trusted by default */
10984 if (is_kfunc_release(meta) && reg->ref_obj_id)
10985 arg_type |= OBJ_RELEASE;
10986 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10990 switch (kf_arg_type) {
10991 case KF_ARG_PTR_TO_CTX:
10992 if (reg->type != PTR_TO_CTX) {
10993 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
10997 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10998 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11001 meta->ret_btf_id = ret;
11004 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11005 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11006 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11009 if (!reg->ref_obj_id) {
11010 verbose(env, "allocated object must be referenced\n");
11013 if (meta->btf == btf_vmlinux &&
11014 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11015 meta->arg_btf = reg->btf;
11016 meta->arg_btf_id = reg->btf_id;
11019 case KF_ARG_PTR_TO_DYNPTR:
11021 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11022 int clone_ref_obj_id = 0;
11024 if (reg->type != PTR_TO_STACK &&
11025 reg->type != CONST_PTR_TO_DYNPTR) {
11026 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11030 if (reg->type == CONST_PTR_TO_DYNPTR)
11031 dynptr_arg_type |= MEM_RDONLY;
11033 if (is_kfunc_arg_uninit(btf, &args[i]))
11034 dynptr_arg_type |= MEM_UNINIT;
11036 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11037 dynptr_arg_type |= DYNPTR_TYPE_SKB;
11038 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11039 dynptr_arg_type |= DYNPTR_TYPE_XDP;
11040 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11041 (dynptr_arg_type & MEM_UNINIT)) {
11042 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11044 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11045 verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11049 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11050 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11051 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11052 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11057 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11061 if (!(dynptr_arg_type & MEM_UNINIT)) {
11062 int id = dynptr_id(env, reg);
11065 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11068 meta->initialized_dynptr.id = id;
11069 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11070 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11075 case KF_ARG_PTR_TO_ITER:
11076 ret = process_iter_arg(env, regno, insn_idx, meta);
11080 case KF_ARG_PTR_TO_LIST_HEAD:
11081 if (reg->type != PTR_TO_MAP_VALUE &&
11082 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11083 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11086 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11087 verbose(env, "allocated object must be referenced\n");
11090 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11094 case KF_ARG_PTR_TO_RB_ROOT:
11095 if (reg->type != PTR_TO_MAP_VALUE &&
11096 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11097 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11100 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11101 verbose(env, "allocated object must be referenced\n");
11104 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11108 case KF_ARG_PTR_TO_LIST_NODE:
11109 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11110 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11113 if (!reg->ref_obj_id) {
11114 verbose(env, "allocated object must be referenced\n");
11117 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11121 case KF_ARG_PTR_TO_RB_NODE:
11122 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11123 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11124 verbose(env, "rbtree_remove node input must be non-owning ref\n");
11127 if (in_rbtree_lock_required_cb(env)) {
11128 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11132 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11133 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11136 if (!reg->ref_obj_id) {
11137 verbose(env, "allocated object must be referenced\n");
11142 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11146 case KF_ARG_PTR_TO_BTF_ID:
11147 /* Only base_type is checked, further checks are done here */
11148 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11149 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11150 !reg2btf_ids[base_type(reg->type)]) {
11151 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11152 verbose(env, "expected %s or socket\n",
11153 reg_type_str(env, base_type(reg->type) |
11154 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11157 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11161 case KF_ARG_PTR_TO_MEM:
11162 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11163 if (IS_ERR(resolve_ret)) {
11164 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11165 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11168 ret = check_mem_reg(env, reg, regno, type_size);
11172 case KF_ARG_PTR_TO_MEM_SIZE:
11174 struct bpf_reg_state *buff_reg = ®s[regno];
11175 const struct btf_param *buff_arg = &args[i];
11176 struct bpf_reg_state *size_reg = ®s[regno + 1];
11177 const struct btf_param *size_arg = &args[i + 1];
11179 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11180 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11182 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11187 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11188 if (meta->arg_constant.found) {
11189 verbose(env, "verifier internal error: only one constant argument permitted\n");
11192 if (!tnum_is_const(size_reg->var_off)) {
11193 verbose(env, "R%d must be a known constant\n", regno + 1);
11196 meta->arg_constant.found = true;
11197 meta->arg_constant.value = size_reg->var_off.value;
11200 /* Skip next '__sz' or '__szk' argument */
11204 case KF_ARG_PTR_TO_CALLBACK:
11205 meta->subprogno = reg->subprogno;
11207 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11208 if (!type_is_ptr_alloc_obj(reg->type)) {
11209 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11212 if (!type_is_non_owning_ref(reg->type))
11213 meta->arg_owning_ref = true;
11215 rec = reg_btf_record(reg);
11217 verbose(env, "verifier internal error: Couldn't find btf_record\n");
11221 if (rec->refcount_off < 0) {
11222 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11226 meta->arg_btf = reg->btf;
11227 meta->arg_btf_id = reg->btf_id;
11232 if (is_kfunc_release(meta) && !meta->release_regno) {
11233 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11241 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11242 struct bpf_insn *insn,
11243 struct bpf_kfunc_call_arg_meta *meta,
11244 const char **kfunc_name)
11246 const struct btf_type *func, *func_proto;
11247 u32 func_id, *kfunc_flags;
11248 const char *func_name;
11249 struct btf *desc_btf;
11252 *kfunc_name = NULL;
11257 desc_btf = find_kfunc_desc_btf(env, insn->off);
11258 if (IS_ERR(desc_btf))
11259 return PTR_ERR(desc_btf);
11261 func_id = insn->imm;
11262 func = btf_type_by_id(desc_btf, func_id);
11263 func_name = btf_name_by_offset(desc_btf, func->name_off);
11265 *kfunc_name = func_name;
11266 func_proto = btf_type_by_id(desc_btf, func->type);
11268 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11269 if (!kfunc_flags) {
11273 memset(meta, 0, sizeof(*meta));
11274 meta->btf = desc_btf;
11275 meta->func_id = func_id;
11276 meta->kfunc_flags = *kfunc_flags;
11277 meta->func_proto = func_proto;
11278 meta->func_name = func_name;
11283 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11286 const struct btf_type *t, *ptr_type;
11287 u32 i, nargs, ptr_type_id, release_ref_obj_id;
11288 struct bpf_reg_state *regs = cur_regs(env);
11289 const char *func_name, *ptr_type_name;
11290 bool sleepable, rcu_lock, rcu_unlock;
11291 struct bpf_kfunc_call_arg_meta meta;
11292 struct bpf_insn_aux_data *insn_aux;
11293 int err, insn_idx = *insn_idx_p;
11294 const struct btf_param *args;
11295 const struct btf_type *ret_t;
11296 struct btf *desc_btf;
11298 /* skip for now, but return error when we find this in fixup_kfunc_call */
11302 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11303 if (err == -EACCES && func_name)
11304 verbose(env, "calling kernel function %s is not allowed\n", func_name);
11307 desc_btf = meta.btf;
11308 insn_aux = &env->insn_aux_data[insn_idx];
11310 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11312 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11313 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11317 sleepable = is_kfunc_sleepable(&meta);
11318 if (sleepable && !env->prog->aux->sleepable) {
11319 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11323 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11324 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11326 if (env->cur_state->active_rcu_lock) {
11327 struct bpf_func_state *state;
11328 struct bpf_reg_state *reg;
11330 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11331 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11336 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11338 } else if (rcu_unlock) {
11339 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11340 if (reg->type & MEM_RCU) {
11341 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11342 reg->type |= PTR_UNTRUSTED;
11345 env->cur_state->active_rcu_lock = false;
11346 } else if (sleepable) {
11347 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11350 } else if (rcu_lock) {
11351 env->cur_state->active_rcu_lock = true;
11352 } else if (rcu_unlock) {
11353 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11357 /* Check the arguments */
11358 err = check_kfunc_args(env, &meta, insn_idx);
11361 /* In case of release function, we get register number of refcounted
11362 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11364 if (meta.release_regno) {
11365 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11367 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11368 func_name, meta.func_id);
11373 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11374 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11375 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11376 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11377 insn_aux->insert_off = regs[BPF_REG_2].off;
11378 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11379 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11381 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11382 func_name, meta.func_id);
11386 err = release_reference(env, release_ref_obj_id);
11388 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11389 func_name, meta.func_id);
11394 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11395 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11396 set_rbtree_add_callback_state);
11398 verbose(env, "kfunc %s#%d failed callback verification\n",
11399 func_name, meta.func_id);
11404 for (i = 0; i < CALLER_SAVED_REGS; i++)
11405 mark_reg_not_init(env, regs, caller_saved[i]);
11407 /* Check return type */
11408 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11410 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11411 /* Only exception is bpf_obj_new_impl */
11412 if (meta.btf != btf_vmlinux ||
11413 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11414 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11415 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11420 if (btf_type_is_scalar(t)) {
11421 mark_reg_unknown(env, regs, BPF_REG_0);
11422 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11423 } else if (btf_type_is_ptr(t)) {
11424 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11426 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11427 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11428 struct btf *ret_btf;
11431 if (unlikely(!bpf_global_ma_set))
11434 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11435 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11439 ret_btf = env->prog->aux->btf;
11440 ret_btf_id = meta.arg_constant.value;
11442 /* This may be NULL due to user not supplying a BTF */
11444 verbose(env, "bpf_obj_new requires prog BTF\n");
11448 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11449 if (!ret_t || !__btf_type_is_struct(ret_t)) {
11450 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11454 mark_reg_known_zero(env, regs, BPF_REG_0);
11455 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11456 regs[BPF_REG_0].btf = ret_btf;
11457 regs[BPF_REG_0].btf_id = ret_btf_id;
11459 insn_aux->obj_new_size = ret_t->size;
11460 insn_aux->kptr_struct_meta =
11461 btf_find_struct_meta(ret_btf, ret_btf_id);
11462 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11463 mark_reg_known_zero(env, regs, BPF_REG_0);
11464 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11465 regs[BPF_REG_0].btf = meta.arg_btf;
11466 regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11468 insn_aux->kptr_struct_meta =
11469 btf_find_struct_meta(meta.arg_btf,
11471 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11472 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11473 struct btf_field *field = meta.arg_list_head.field;
11475 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11476 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11477 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11478 struct btf_field *field = meta.arg_rbtree_root.field;
11480 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11481 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11482 mark_reg_known_zero(env, regs, BPF_REG_0);
11483 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11484 regs[BPF_REG_0].btf = desc_btf;
11485 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11486 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11487 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11488 if (!ret_t || !btf_type_is_struct(ret_t)) {
11490 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11494 mark_reg_known_zero(env, regs, BPF_REG_0);
11495 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11496 regs[BPF_REG_0].btf = desc_btf;
11497 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11498 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11499 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11500 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11502 mark_reg_known_zero(env, regs, BPF_REG_0);
11504 if (!meta.arg_constant.found) {
11505 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11509 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11511 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11512 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11514 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11515 regs[BPF_REG_0].type |= MEM_RDONLY;
11517 /* this will set env->seen_direct_write to true */
11518 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11519 verbose(env, "the prog does not allow writes to packet data\n");
11524 if (!meta.initialized_dynptr.id) {
11525 verbose(env, "verifier internal error: no dynptr id\n");
11528 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11530 /* we don't need to set BPF_REG_0's ref obj id
11531 * because packet slices are not refcounted (see
11532 * dynptr_type_refcounted)
11535 verbose(env, "kernel function %s unhandled dynamic return type\n",
11539 } else if (!__btf_type_is_struct(ptr_type)) {
11540 if (!meta.r0_size) {
11543 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11545 meta.r0_rdonly = true;
11548 if (!meta.r0_size) {
11549 ptr_type_name = btf_name_by_offset(desc_btf,
11550 ptr_type->name_off);
11552 "kernel function %s returns pointer type %s %s is not supported\n",
11554 btf_type_str(ptr_type),
11559 mark_reg_known_zero(env, regs, BPF_REG_0);
11560 regs[BPF_REG_0].type = PTR_TO_MEM;
11561 regs[BPF_REG_0].mem_size = meta.r0_size;
11563 if (meta.r0_rdonly)
11564 regs[BPF_REG_0].type |= MEM_RDONLY;
11566 /* Ensures we don't access the memory after a release_reference() */
11567 if (meta.ref_obj_id)
11568 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11570 mark_reg_known_zero(env, regs, BPF_REG_0);
11571 regs[BPF_REG_0].btf = desc_btf;
11572 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11573 regs[BPF_REG_0].btf_id = ptr_type_id;
11576 if (is_kfunc_ret_null(&meta)) {
11577 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11578 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11579 regs[BPF_REG_0].id = ++env->id_gen;
11581 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
11582 if (is_kfunc_acquire(&meta)) {
11583 int id = acquire_reference_state(env, insn_idx);
11587 if (is_kfunc_ret_null(&meta))
11588 regs[BPF_REG_0].id = id;
11589 regs[BPF_REG_0].ref_obj_id = id;
11590 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11591 ref_set_non_owning(env, ®s[BPF_REG_0]);
11594 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id)
11595 regs[BPF_REG_0].id = ++env->id_gen;
11596 } else if (btf_type_is_void(t)) {
11597 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11598 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11599 insn_aux->kptr_struct_meta =
11600 btf_find_struct_meta(meta.arg_btf,
11606 nargs = btf_type_vlen(meta.func_proto);
11607 args = (const struct btf_param *)(meta.func_proto + 1);
11608 for (i = 0; i < nargs; i++) {
11611 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
11612 if (btf_type_is_ptr(t))
11613 mark_btf_func_reg_size(env, regno, sizeof(void *));
11615 /* scalar. ensured by btf_check_kfunc_arg_match() */
11616 mark_btf_func_reg_size(env, regno, t->size);
11619 if (is_iter_next_kfunc(&meta)) {
11620 err = process_iter_next_call(env, insn_idx, &meta);
11628 static bool signed_add_overflows(s64 a, s64 b)
11630 /* Do the add in u64, where overflow is well-defined */
11631 s64 res = (s64)((u64)a + (u64)b);
11638 static bool signed_add32_overflows(s32 a, s32 b)
11640 /* Do the add in u32, where overflow is well-defined */
11641 s32 res = (s32)((u32)a + (u32)b);
11648 static bool signed_sub_overflows(s64 a, s64 b)
11650 /* Do the sub in u64, where overflow is well-defined */
11651 s64 res = (s64)((u64)a - (u64)b);
11658 static bool signed_sub32_overflows(s32 a, s32 b)
11660 /* Do the sub in u32, where overflow is well-defined */
11661 s32 res = (s32)((u32)a - (u32)b);
11668 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11669 const struct bpf_reg_state *reg,
11670 enum bpf_reg_type type)
11672 bool known = tnum_is_const(reg->var_off);
11673 s64 val = reg->var_off.value;
11674 s64 smin = reg->smin_value;
11676 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11677 verbose(env, "math between %s pointer and %lld is not allowed\n",
11678 reg_type_str(env, type), val);
11682 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11683 verbose(env, "%s pointer offset %d is not allowed\n",
11684 reg_type_str(env, type), reg->off);
11688 if (smin == S64_MIN) {
11689 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11690 reg_type_str(env, type));
11694 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11695 verbose(env, "value %lld makes %s pointer be out of bounds\n",
11696 smin, reg_type_str(env, type));
11704 REASON_BOUNDS = -1,
11711 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11712 u32 *alu_limit, bool mask_to_left)
11714 u32 max = 0, ptr_limit = 0;
11716 switch (ptr_reg->type) {
11718 /* Offset 0 is out-of-bounds, but acceptable start for the
11719 * left direction, see BPF_REG_FP. Also, unknown scalar
11720 * offset where we would need to deal with min/max bounds is
11721 * currently prohibited for unprivileged.
11723 max = MAX_BPF_STACK + mask_to_left;
11724 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11726 case PTR_TO_MAP_VALUE:
11727 max = ptr_reg->map_ptr->value_size;
11728 ptr_limit = (mask_to_left ?
11729 ptr_reg->smin_value :
11730 ptr_reg->umax_value) + ptr_reg->off;
11733 return REASON_TYPE;
11736 if (ptr_limit >= max)
11737 return REASON_LIMIT;
11738 *alu_limit = ptr_limit;
11742 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11743 const struct bpf_insn *insn)
11745 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
11748 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11749 u32 alu_state, u32 alu_limit)
11751 /* If we arrived here from different branches with different
11752 * state or limits to sanitize, then this won't work.
11754 if (aux->alu_state &&
11755 (aux->alu_state != alu_state ||
11756 aux->alu_limit != alu_limit))
11757 return REASON_PATHS;
11759 /* Corresponding fixup done in do_misc_fixups(). */
11760 aux->alu_state = alu_state;
11761 aux->alu_limit = alu_limit;
11765 static int sanitize_val_alu(struct bpf_verifier_env *env,
11766 struct bpf_insn *insn)
11768 struct bpf_insn_aux_data *aux = cur_aux(env);
11770 if (can_skip_alu_sanitation(env, insn))
11773 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11776 static bool sanitize_needed(u8 opcode)
11778 return opcode == BPF_ADD || opcode == BPF_SUB;
11781 struct bpf_sanitize_info {
11782 struct bpf_insn_aux_data aux;
11786 static struct bpf_verifier_state *
11787 sanitize_speculative_path(struct bpf_verifier_env *env,
11788 const struct bpf_insn *insn,
11789 u32 next_idx, u32 curr_idx)
11791 struct bpf_verifier_state *branch;
11792 struct bpf_reg_state *regs;
11794 branch = push_stack(env, next_idx, curr_idx, true);
11795 if (branch && insn) {
11796 regs = branch->frame[branch->curframe]->regs;
11797 if (BPF_SRC(insn->code) == BPF_K) {
11798 mark_reg_unknown(env, regs, insn->dst_reg);
11799 } else if (BPF_SRC(insn->code) == BPF_X) {
11800 mark_reg_unknown(env, regs, insn->dst_reg);
11801 mark_reg_unknown(env, regs, insn->src_reg);
11807 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11808 struct bpf_insn *insn,
11809 const struct bpf_reg_state *ptr_reg,
11810 const struct bpf_reg_state *off_reg,
11811 struct bpf_reg_state *dst_reg,
11812 struct bpf_sanitize_info *info,
11813 const bool commit_window)
11815 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
11816 struct bpf_verifier_state *vstate = env->cur_state;
11817 bool off_is_imm = tnum_is_const(off_reg->var_off);
11818 bool off_is_neg = off_reg->smin_value < 0;
11819 bool ptr_is_dst_reg = ptr_reg == dst_reg;
11820 u8 opcode = BPF_OP(insn->code);
11821 u32 alu_state, alu_limit;
11822 struct bpf_reg_state tmp;
11826 if (can_skip_alu_sanitation(env, insn))
11829 /* We already marked aux for masking from non-speculative
11830 * paths, thus we got here in the first place. We only care
11831 * to explore bad access from here.
11833 if (vstate->speculative)
11836 if (!commit_window) {
11837 if (!tnum_is_const(off_reg->var_off) &&
11838 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11839 return REASON_BOUNDS;
11841 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
11842 (opcode == BPF_SUB && !off_is_neg);
11845 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
11849 if (commit_window) {
11850 /* In commit phase we narrow the masking window based on
11851 * the observed pointer move after the simulated operation.
11853 alu_state = info->aux.alu_state;
11854 alu_limit = abs(info->aux.alu_limit - alu_limit);
11856 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
11857 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
11858 alu_state |= ptr_is_dst_reg ?
11859 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
11861 /* Limit pruning on unknown scalars to enable deep search for
11862 * potential masking differences from other program paths.
11865 env->explore_alu_limits = true;
11868 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11872 /* If we're in commit phase, we're done here given we already
11873 * pushed the truncated dst_reg into the speculative verification
11876 * Also, when register is a known constant, we rewrite register-based
11877 * operation to immediate-based, and thus do not need masking (and as
11878 * a consequence, do not need to simulate the zero-truncation either).
11880 if (commit_window || off_is_imm)
11883 /* Simulate and find potential out-of-bounds access under
11884 * speculative execution from truncation as a result of
11885 * masking when off was not within expected range. If off
11886 * sits in dst, then we temporarily need to move ptr there
11887 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11888 * for cases where we use K-based arithmetic in one direction
11889 * and truncated reg-based in the other in order to explore
11892 if (!ptr_is_dst_reg) {
11894 copy_register_state(dst_reg, ptr_reg);
11896 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11898 if (!ptr_is_dst_reg && ret)
11900 return !ret ? REASON_STACK : 0;
11903 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11905 struct bpf_verifier_state *vstate = env->cur_state;
11907 /* If we simulate paths under speculation, we don't update the
11908 * insn as 'seen' such that when we verify unreachable paths in
11909 * the non-speculative domain, sanitize_dead_code() can still
11910 * rewrite/sanitize them.
11912 if (!vstate->speculative)
11913 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11916 static int sanitize_err(struct bpf_verifier_env *env,
11917 const struct bpf_insn *insn, int reason,
11918 const struct bpf_reg_state *off_reg,
11919 const struct bpf_reg_state *dst_reg)
11921 static const char *err = "pointer arithmetic with it prohibited for !root";
11922 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11923 u32 dst = insn->dst_reg, src = insn->src_reg;
11926 case REASON_BOUNDS:
11927 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11928 off_reg == dst_reg ? dst : src, err);
11931 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11932 off_reg == dst_reg ? src : dst, err);
11935 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11939 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11943 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11947 verbose(env, "verifier internal error: unknown reason (%d)\n",
11955 /* check that stack access falls within stack limits and that 'reg' doesn't
11956 * have a variable offset.
11958 * Variable offset is prohibited for unprivileged mode for simplicity since it
11959 * requires corresponding support in Spectre masking for stack ALU. See also
11960 * retrieve_ptr_limit().
11963 * 'off' includes 'reg->off'.
11965 static int check_stack_access_for_ptr_arithmetic(
11966 struct bpf_verifier_env *env,
11968 const struct bpf_reg_state *reg,
11971 if (!tnum_is_const(reg->var_off)) {
11974 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11975 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11976 regno, tn_buf, off);
11980 if (off >= 0 || off < -MAX_BPF_STACK) {
11981 verbose(env, "R%d stack pointer arithmetic goes out of range, "
11982 "prohibited for !root; off=%d\n", regno, off);
11989 static int sanitize_check_bounds(struct bpf_verifier_env *env,
11990 const struct bpf_insn *insn,
11991 const struct bpf_reg_state *dst_reg)
11993 u32 dst = insn->dst_reg;
11995 /* For unprivileged we require that resulting offset must be in bounds
11996 * in order to be able to sanitize access later on.
11998 if (env->bypass_spec_v1)
12001 switch (dst_reg->type) {
12003 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12004 dst_reg->off + dst_reg->var_off.value))
12007 case PTR_TO_MAP_VALUE:
12008 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12009 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12010 "prohibited for !root\n", dst);
12021 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12022 * Caller should also handle BPF_MOV case separately.
12023 * If we return -EACCES, caller may want to try again treating pointer as a
12024 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
12026 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12027 struct bpf_insn *insn,
12028 const struct bpf_reg_state *ptr_reg,
12029 const struct bpf_reg_state *off_reg)
12031 struct bpf_verifier_state *vstate = env->cur_state;
12032 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12033 struct bpf_reg_state *regs = state->regs, *dst_reg;
12034 bool known = tnum_is_const(off_reg->var_off);
12035 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12036 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12037 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12038 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12039 struct bpf_sanitize_info info = {};
12040 u8 opcode = BPF_OP(insn->code);
12041 u32 dst = insn->dst_reg;
12044 dst_reg = ®s[dst];
12046 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12047 smin_val > smax_val || umin_val > umax_val) {
12048 /* Taint dst register if offset had invalid bounds derived from
12049 * e.g. dead branches.
12051 __mark_reg_unknown(env, dst_reg);
12055 if (BPF_CLASS(insn->code) != BPF_ALU64) {
12056 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
12057 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12058 __mark_reg_unknown(env, dst_reg);
12063 "R%d 32-bit pointer arithmetic prohibited\n",
12068 if (ptr_reg->type & PTR_MAYBE_NULL) {
12069 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12070 dst, reg_type_str(env, ptr_reg->type));
12074 switch (base_type(ptr_reg->type)) {
12075 case CONST_PTR_TO_MAP:
12076 /* smin_val represents the known value */
12077 if (known && smin_val == 0 && opcode == BPF_ADD)
12080 case PTR_TO_PACKET_END:
12081 case PTR_TO_SOCKET:
12082 case PTR_TO_SOCK_COMMON:
12083 case PTR_TO_TCP_SOCK:
12084 case PTR_TO_XDP_SOCK:
12085 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12086 dst, reg_type_str(env, ptr_reg->type));
12092 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12093 * The id may be overwritten later if we create a new variable offset.
12095 dst_reg->type = ptr_reg->type;
12096 dst_reg->id = ptr_reg->id;
12098 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12099 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12102 /* pointer types do not carry 32-bit bounds at the moment. */
12103 __mark_reg32_unbounded(dst_reg);
12105 if (sanitize_needed(opcode)) {
12106 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12109 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12114 /* We can take a fixed offset as long as it doesn't overflow
12115 * the s32 'off' field
12117 if (known && (ptr_reg->off + smin_val ==
12118 (s64)(s32)(ptr_reg->off + smin_val))) {
12119 /* pointer += K. Accumulate it into fixed offset */
12120 dst_reg->smin_value = smin_ptr;
12121 dst_reg->smax_value = smax_ptr;
12122 dst_reg->umin_value = umin_ptr;
12123 dst_reg->umax_value = umax_ptr;
12124 dst_reg->var_off = ptr_reg->var_off;
12125 dst_reg->off = ptr_reg->off + smin_val;
12126 dst_reg->raw = ptr_reg->raw;
12129 /* A new variable offset is created. Note that off_reg->off
12130 * == 0, since it's a scalar.
12131 * dst_reg gets the pointer type and since some positive
12132 * integer value was added to the pointer, give it a new 'id'
12133 * if it's a PTR_TO_PACKET.
12134 * this creates a new 'base' pointer, off_reg (variable) gets
12135 * added into the variable offset, and we copy the fixed offset
12138 if (signed_add_overflows(smin_ptr, smin_val) ||
12139 signed_add_overflows(smax_ptr, smax_val)) {
12140 dst_reg->smin_value = S64_MIN;
12141 dst_reg->smax_value = S64_MAX;
12143 dst_reg->smin_value = smin_ptr + smin_val;
12144 dst_reg->smax_value = smax_ptr + smax_val;
12146 if (umin_ptr + umin_val < umin_ptr ||
12147 umax_ptr + umax_val < umax_ptr) {
12148 dst_reg->umin_value = 0;
12149 dst_reg->umax_value = U64_MAX;
12151 dst_reg->umin_value = umin_ptr + umin_val;
12152 dst_reg->umax_value = umax_ptr + umax_val;
12154 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12155 dst_reg->off = ptr_reg->off;
12156 dst_reg->raw = ptr_reg->raw;
12157 if (reg_is_pkt_pointer(ptr_reg)) {
12158 dst_reg->id = ++env->id_gen;
12159 /* something was added to pkt_ptr, set range to zero */
12160 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12164 if (dst_reg == off_reg) {
12165 /* scalar -= pointer. Creates an unknown scalar */
12166 verbose(env, "R%d tried to subtract pointer from scalar\n",
12170 /* We don't allow subtraction from FP, because (according to
12171 * test_verifier.c test "invalid fp arithmetic", JITs might not
12172 * be able to deal with it.
12174 if (ptr_reg->type == PTR_TO_STACK) {
12175 verbose(env, "R%d subtraction from stack pointer prohibited\n",
12179 if (known && (ptr_reg->off - smin_val ==
12180 (s64)(s32)(ptr_reg->off - smin_val))) {
12181 /* pointer -= K. Subtract it from fixed offset */
12182 dst_reg->smin_value = smin_ptr;
12183 dst_reg->smax_value = smax_ptr;
12184 dst_reg->umin_value = umin_ptr;
12185 dst_reg->umax_value = umax_ptr;
12186 dst_reg->var_off = ptr_reg->var_off;
12187 dst_reg->id = ptr_reg->id;
12188 dst_reg->off = ptr_reg->off - smin_val;
12189 dst_reg->raw = ptr_reg->raw;
12192 /* A new variable offset is created. If the subtrahend is known
12193 * nonnegative, then any reg->range we had before is still good.
12195 if (signed_sub_overflows(smin_ptr, smax_val) ||
12196 signed_sub_overflows(smax_ptr, smin_val)) {
12197 /* Overflow possible, we know nothing */
12198 dst_reg->smin_value = S64_MIN;
12199 dst_reg->smax_value = S64_MAX;
12201 dst_reg->smin_value = smin_ptr - smax_val;
12202 dst_reg->smax_value = smax_ptr - smin_val;
12204 if (umin_ptr < umax_val) {
12205 /* Overflow possible, we know nothing */
12206 dst_reg->umin_value = 0;
12207 dst_reg->umax_value = U64_MAX;
12209 /* Cannot overflow (as long as bounds are consistent) */
12210 dst_reg->umin_value = umin_ptr - umax_val;
12211 dst_reg->umax_value = umax_ptr - umin_val;
12213 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12214 dst_reg->off = ptr_reg->off;
12215 dst_reg->raw = ptr_reg->raw;
12216 if (reg_is_pkt_pointer(ptr_reg)) {
12217 dst_reg->id = ++env->id_gen;
12218 /* something was added to pkt_ptr, set range to zero */
12220 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12226 /* bitwise ops on pointers are troublesome, prohibit. */
12227 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12228 dst, bpf_alu_string[opcode >> 4]);
12231 /* other operators (e.g. MUL,LSH) produce non-pointer results */
12232 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12233 dst, bpf_alu_string[opcode >> 4]);
12237 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12239 reg_bounds_sync(dst_reg);
12240 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12242 if (sanitize_needed(opcode)) {
12243 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12246 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12252 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12253 struct bpf_reg_state *src_reg)
12255 s32 smin_val = src_reg->s32_min_value;
12256 s32 smax_val = src_reg->s32_max_value;
12257 u32 umin_val = src_reg->u32_min_value;
12258 u32 umax_val = src_reg->u32_max_value;
12260 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12261 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12262 dst_reg->s32_min_value = S32_MIN;
12263 dst_reg->s32_max_value = S32_MAX;
12265 dst_reg->s32_min_value += smin_val;
12266 dst_reg->s32_max_value += smax_val;
12268 if (dst_reg->u32_min_value + umin_val < umin_val ||
12269 dst_reg->u32_max_value + umax_val < umax_val) {
12270 dst_reg->u32_min_value = 0;
12271 dst_reg->u32_max_value = U32_MAX;
12273 dst_reg->u32_min_value += umin_val;
12274 dst_reg->u32_max_value += umax_val;
12278 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12279 struct bpf_reg_state *src_reg)
12281 s64 smin_val = src_reg->smin_value;
12282 s64 smax_val = src_reg->smax_value;
12283 u64 umin_val = src_reg->umin_value;
12284 u64 umax_val = src_reg->umax_value;
12286 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12287 signed_add_overflows(dst_reg->smax_value, smax_val)) {
12288 dst_reg->smin_value = S64_MIN;
12289 dst_reg->smax_value = S64_MAX;
12291 dst_reg->smin_value += smin_val;
12292 dst_reg->smax_value += smax_val;
12294 if (dst_reg->umin_value + umin_val < umin_val ||
12295 dst_reg->umax_value + umax_val < umax_val) {
12296 dst_reg->umin_value = 0;
12297 dst_reg->umax_value = U64_MAX;
12299 dst_reg->umin_value += umin_val;
12300 dst_reg->umax_value += umax_val;
12304 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12305 struct bpf_reg_state *src_reg)
12307 s32 smin_val = src_reg->s32_min_value;
12308 s32 smax_val = src_reg->s32_max_value;
12309 u32 umin_val = src_reg->u32_min_value;
12310 u32 umax_val = src_reg->u32_max_value;
12312 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12313 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12314 /* Overflow possible, we know nothing */
12315 dst_reg->s32_min_value = S32_MIN;
12316 dst_reg->s32_max_value = S32_MAX;
12318 dst_reg->s32_min_value -= smax_val;
12319 dst_reg->s32_max_value -= smin_val;
12321 if (dst_reg->u32_min_value < umax_val) {
12322 /* Overflow possible, we know nothing */
12323 dst_reg->u32_min_value = 0;
12324 dst_reg->u32_max_value = U32_MAX;
12326 /* Cannot overflow (as long as bounds are consistent) */
12327 dst_reg->u32_min_value -= umax_val;
12328 dst_reg->u32_max_value -= umin_val;
12332 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12333 struct bpf_reg_state *src_reg)
12335 s64 smin_val = src_reg->smin_value;
12336 s64 smax_val = src_reg->smax_value;
12337 u64 umin_val = src_reg->umin_value;
12338 u64 umax_val = src_reg->umax_value;
12340 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12341 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12342 /* Overflow possible, we know nothing */
12343 dst_reg->smin_value = S64_MIN;
12344 dst_reg->smax_value = S64_MAX;
12346 dst_reg->smin_value -= smax_val;
12347 dst_reg->smax_value -= smin_val;
12349 if (dst_reg->umin_value < umax_val) {
12350 /* Overflow possible, we know nothing */
12351 dst_reg->umin_value = 0;
12352 dst_reg->umax_value = U64_MAX;
12354 /* Cannot overflow (as long as bounds are consistent) */
12355 dst_reg->umin_value -= umax_val;
12356 dst_reg->umax_value -= umin_val;
12360 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12361 struct bpf_reg_state *src_reg)
12363 s32 smin_val = src_reg->s32_min_value;
12364 u32 umin_val = src_reg->u32_min_value;
12365 u32 umax_val = src_reg->u32_max_value;
12367 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12368 /* Ain't nobody got time to multiply that sign */
12369 __mark_reg32_unbounded(dst_reg);
12372 /* Both values are positive, so we can work with unsigned and
12373 * copy the result to signed (unless it exceeds S32_MAX).
12375 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12376 /* Potential overflow, we know nothing */
12377 __mark_reg32_unbounded(dst_reg);
12380 dst_reg->u32_min_value *= umin_val;
12381 dst_reg->u32_max_value *= umax_val;
12382 if (dst_reg->u32_max_value > S32_MAX) {
12383 /* Overflow possible, we know nothing */
12384 dst_reg->s32_min_value = S32_MIN;
12385 dst_reg->s32_max_value = S32_MAX;
12387 dst_reg->s32_min_value = dst_reg->u32_min_value;
12388 dst_reg->s32_max_value = dst_reg->u32_max_value;
12392 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12393 struct bpf_reg_state *src_reg)
12395 s64 smin_val = src_reg->smin_value;
12396 u64 umin_val = src_reg->umin_value;
12397 u64 umax_val = src_reg->umax_value;
12399 if (smin_val < 0 || dst_reg->smin_value < 0) {
12400 /* Ain't nobody got time to multiply that sign */
12401 __mark_reg64_unbounded(dst_reg);
12404 /* Both values are positive, so we can work with unsigned and
12405 * copy the result to signed (unless it exceeds S64_MAX).
12407 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12408 /* Potential overflow, we know nothing */
12409 __mark_reg64_unbounded(dst_reg);
12412 dst_reg->umin_value *= umin_val;
12413 dst_reg->umax_value *= umax_val;
12414 if (dst_reg->umax_value > S64_MAX) {
12415 /* Overflow possible, we know nothing */
12416 dst_reg->smin_value = S64_MIN;
12417 dst_reg->smax_value = S64_MAX;
12419 dst_reg->smin_value = dst_reg->umin_value;
12420 dst_reg->smax_value = dst_reg->umax_value;
12424 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12425 struct bpf_reg_state *src_reg)
12427 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12428 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12429 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12430 s32 smin_val = src_reg->s32_min_value;
12431 u32 umax_val = src_reg->u32_max_value;
12433 if (src_known && dst_known) {
12434 __mark_reg32_known(dst_reg, var32_off.value);
12438 /* We get our minimum from the var_off, since that's inherently
12439 * bitwise. Our maximum is the minimum of the operands' maxima.
12441 dst_reg->u32_min_value = var32_off.value;
12442 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12443 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12444 /* Lose signed bounds when ANDing negative numbers,
12445 * ain't nobody got time for that.
12447 dst_reg->s32_min_value = S32_MIN;
12448 dst_reg->s32_max_value = S32_MAX;
12450 /* ANDing two positives gives a positive, so safe to
12451 * cast result into s64.
12453 dst_reg->s32_min_value = dst_reg->u32_min_value;
12454 dst_reg->s32_max_value = dst_reg->u32_max_value;
12458 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12459 struct bpf_reg_state *src_reg)
12461 bool src_known = tnum_is_const(src_reg->var_off);
12462 bool dst_known = tnum_is_const(dst_reg->var_off);
12463 s64 smin_val = src_reg->smin_value;
12464 u64 umax_val = src_reg->umax_value;
12466 if (src_known && dst_known) {
12467 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12471 /* We get our minimum from the var_off, since that's inherently
12472 * bitwise. Our maximum is the minimum of the operands' maxima.
12474 dst_reg->umin_value = dst_reg->var_off.value;
12475 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12476 if (dst_reg->smin_value < 0 || smin_val < 0) {
12477 /* Lose signed bounds when ANDing negative numbers,
12478 * ain't nobody got time for that.
12480 dst_reg->smin_value = S64_MIN;
12481 dst_reg->smax_value = S64_MAX;
12483 /* ANDing two positives gives a positive, so safe to
12484 * cast result into s64.
12486 dst_reg->smin_value = dst_reg->umin_value;
12487 dst_reg->smax_value = dst_reg->umax_value;
12489 /* We may learn something more from the var_off */
12490 __update_reg_bounds(dst_reg);
12493 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12494 struct bpf_reg_state *src_reg)
12496 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12497 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12498 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12499 s32 smin_val = src_reg->s32_min_value;
12500 u32 umin_val = src_reg->u32_min_value;
12502 if (src_known && dst_known) {
12503 __mark_reg32_known(dst_reg, var32_off.value);
12507 /* We get our maximum from the var_off, and our minimum is the
12508 * maximum of the operands' minima
12510 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12511 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12512 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12513 /* Lose signed bounds when ORing negative numbers,
12514 * ain't nobody got time for that.
12516 dst_reg->s32_min_value = S32_MIN;
12517 dst_reg->s32_max_value = S32_MAX;
12519 /* ORing two positives gives a positive, so safe to
12520 * cast result into s64.
12522 dst_reg->s32_min_value = dst_reg->u32_min_value;
12523 dst_reg->s32_max_value = dst_reg->u32_max_value;
12527 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12528 struct bpf_reg_state *src_reg)
12530 bool src_known = tnum_is_const(src_reg->var_off);
12531 bool dst_known = tnum_is_const(dst_reg->var_off);
12532 s64 smin_val = src_reg->smin_value;
12533 u64 umin_val = src_reg->umin_value;
12535 if (src_known && dst_known) {
12536 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12540 /* We get our maximum from the var_off, and our minimum is the
12541 * maximum of the operands' minima
12543 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12544 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12545 if (dst_reg->smin_value < 0 || smin_val < 0) {
12546 /* Lose signed bounds when ORing negative numbers,
12547 * ain't nobody got time for that.
12549 dst_reg->smin_value = S64_MIN;
12550 dst_reg->smax_value = S64_MAX;
12552 /* ORing two positives gives a positive, so safe to
12553 * cast result into s64.
12555 dst_reg->smin_value = dst_reg->umin_value;
12556 dst_reg->smax_value = dst_reg->umax_value;
12558 /* We may learn something more from the var_off */
12559 __update_reg_bounds(dst_reg);
12562 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12563 struct bpf_reg_state *src_reg)
12565 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12566 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12567 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12568 s32 smin_val = src_reg->s32_min_value;
12570 if (src_known && dst_known) {
12571 __mark_reg32_known(dst_reg, var32_off.value);
12575 /* We get both minimum and maximum from the var32_off. */
12576 dst_reg->u32_min_value = var32_off.value;
12577 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12579 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12580 /* XORing two positive sign numbers gives a positive,
12581 * so safe to cast u32 result into s32.
12583 dst_reg->s32_min_value = dst_reg->u32_min_value;
12584 dst_reg->s32_max_value = dst_reg->u32_max_value;
12586 dst_reg->s32_min_value = S32_MIN;
12587 dst_reg->s32_max_value = S32_MAX;
12591 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12592 struct bpf_reg_state *src_reg)
12594 bool src_known = tnum_is_const(src_reg->var_off);
12595 bool dst_known = tnum_is_const(dst_reg->var_off);
12596 s64 smin_val = src_reg->smin_value;
12598 if (src_known && dst_known) {
12599 /* dst_reg->var_off.value has been updated earlier */
12600 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12604 /* We get both minimum and maximum from the var_off. */
12605 dst_reg->umin_value = dst_reg->var_off.value;
12606 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12608 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12609 /* XORing two positive sign numbers gives a positive,
12610 * so safe to cast u64 result into s64.
12612 dst_reg->smin_value = dst_reg->umin_value;
12613 dst_reg->smax_value = dst_reg->umax_value;
12615 dst_reg->smin_value = S64_MIN;
12616 dst_reg->smax_value = S64_MAX;
12619 __update_reg_bounds(dst_reg);
12622 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12623 u64 umin_val, u64 umax_val)
12625 /* We lose all sign bit information (except what we can pick
12628 dst_reg->s32_min_value = S32_MIN;
12629 dst_reg->s32_max_value = S32_MAX;
12630 /* If we might shift our top bit out, then we know nothing */
12631 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12632 dst_reg->u32_min_value = 0;
12633 dst_reg->u32_max_value = U32_MAX;
12635 dst_reg->u32_min_value <<= umin_val;
12636 dst_reg->u32_max_value <<= umax_val;
12640 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12641 struct bpf_reg_state *src_reg)
12643 u32 umax_val = src_reg->u32_max_value;
12644 u32 umin_val = src_reg->u32_min_value;
12645 /* u32 alu operation will zext upper bits */
12646 struct tnum subreg = tnum_subreg(dst_reg->var_off);
12648 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12649 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12650 /* Not required but being careful mark reg64 bounds as unknown so
12651 * that we are forced to pick them up from tnum and zext later and
12652 * if some path skips this step we are still safe.
12654 __mark_reg64_unbounded(dst_reg);
12655 __update_reg32_bounds(dst_reg);
12658 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12659 u64 umin_val, u64 umax_val)
12661 /* Special case <<32 because it is a common compiler pattern to sign
12662 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12663 * positive we know this shift will also be positive so we can track
12664 * bounds correctly. Otherwise we lose all sign bit information except
12665 * what we can pick up from var_off. Perhaps we can generalize this
12666 * later to shifts of any length.
12668 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12669 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12671 dst_reg->smax_value = S64_MAX;
12673 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12674 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12676 dst_reg->smin_value = S64_MIN;
12678 /* If we might shift our top bit out, then we know nothing */
12679 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12680 dst_reg->umin_value = 0;
12681 dst_reg->umax_value = U64_MAX;
12683 dst_reg->umin_value <<= umin_val;
12684 dst_reg->umax_value <<= umax_val;
12688 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12689 struct bpf_reg_state *src_reg)
12691 u64 umax_val = src_reg->umax_value;
12692 u64 umin_val = src_reg->umin_value;
12694 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
12695 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12696 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12698 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12699 /* We may learn something more from the var_off */
12700 __update_reg_bounds(dst_reg);
12703 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12704 struct bpf_reg_state *src_reg)
12706 struct tnum subreg = tnum_subreg(dst_reg->var_off);
12707 u32 umax_val = src_reg->u32_max_value;
12708 u32 umin_val = src_reg->u32_min_value;
12710 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
12711 * be negative, then either:
12712 * 1) src_reg might be zero, so the sign bit of the result is
12713 * unknown, so we lose our signed bounds
12714 * 2) it's known negative, thus the unsigned bounds capture the
12716 * 3) the signed bounds cross zero, so they tell us nothing
12718 * If the value in dst_reg is known nonnegative, then again the
12719 * unsigned bounds capture the signed bounds.
12720 * Thus, in all cases it suffices to blow away our signed bounds
12721 * and rely on inferring new ones from the unsigned bounds and
12722 * var_off of the result.
12724 dst_reg->s32_min_value = S32_MIN;
12725 dst_reg->s32_max_value = S32_MAX;
12727 dst_reg->var_off = tnum_rshift(subreg, umin_val);
12728 dst_reg->u32_min_value >>= umax_val;
12729 dst_reg->u32_max_value >>= umin_val;
12731 __mark_reg64_unbounded(dst_reg);
12732 __update_reg32_bounds(dst_reg);
12735 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12736 struct bpf_reg_state *src_reg)
12738 u64 umax_val = src_reg->umax_value;
12739 u64 umin_val = src_reg->umin_value;
12741 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
12742 * be negative, then either:
12743 * 1) src_reg might be zero, so the sign bit of the result is
12744 * unknown, so we lose our signed bounds
12745 * 2) it's known negative, thus the unsigned bounds capture the
12747 * 3) the signed bounds cross zero, so they tell us nothing
12749 * If the value in dst_reg is known nonnegative, then again the
12750 * unsigned bounds capture the signed bounds.
12751 * Thus, in all cases it suffices to blow away our signed bounds
12752 * and rely on inferring new ones from the unsigned bounds and
12753 * var_off of the result.
12755 dst_reg->smin_value = S64_MIN;
12756 dst_reg->smax_value = S64_MAX;
12757 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12758 dst_reg->umin_value >>= umax_val;
12759 dst_reg->umax_value >>= umin_val;
12761 /* Its not easy to operate on alu32 bounds here because it depends
12762 * on bits being shifted in. Take easy way out and mark unbounded
12763 * so we can recalculate later from tnum.
12765 __mark_reg32_unbounded(dst_reg);
12766 __update_reg_bounds(dst_reg);
12769 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12770 struct bpf_reg_state *src_reg)
12772 u64 umin_val = src_reg->u32_min_value;
12774 /* Upon reaching here, src_known is true and
12775 * umax_val is equal to umin_val.
12777 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12778 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
12780 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12782 /* blow away the dst_reg umin_value/umax_value and rely on
12783 * dst_reg var_off to refine the result.
12785 dst_reg->u32_min_value = 0;
12786 dst_reg->u32_max_value = U32_MAX;
12788 __mark_reg64_unbounded(dst_reg);
12789 __update_reg32_bounds(dst_reg);
12792 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12793 struct bpf_reg_state *src_reg)
12795 u64 umin_val = src_reg->umin_value;
12797 /* Upon reaching here, src_known is true and umax_val is equal
12800 dst_reg->smin_value >>= umin_val;
12801 dst_reg->smax_value >>= umin_val;
12803 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
12805 /* blow away the dst_reg umin_value/umax_value and rely on
12806 * dst_reg var_off to refine the result.
12808 dst_reg->umin_value = 0;
12809 dst_reg->umax_value = U64_MAX;
12811 /* Its not easy to operate on alu32 bounds here because it depends
12812 * on bits being shifted in from upper 32-bits. Take easy way out
12813 * and mark unbounded so we can recalculate later from tnum.
12815 __mark_reg32_unbounded(dst_reg);
12816 __update_reg_bounds(dst_reg);
12819 /* WARNING: This function does calculations on 64-bit values, but the actual
12820 * execution may occur on 32-bit values. Therefore, things like bitshifts
12821 * need extra checks in the 32-bit case.
12823 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12824 struct bpf_insn *insn,
12825 struct bpf_reg_state *dst_reg,
12826 struct bpf_reg_state src_reg)
12828 struct bpf_reg_state *regs = cur_regs(env);
12829 u8 opcode = BPF_OP(insn->code);
12831 s64 smin_val, smax_val;
12832 u64 umin_val, umax_val;
12833 s32 s32_min_val, s32_max_val;
12834 u32 u32_min_val, u32_max_val;
12835 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
12836 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
12839 smin_val = src_reg.smin_value;
12840 smax_val = src_reg.smax_value;
12841 umin_val = src_reg.umin_value;
12842 umax_val = src_reg.umax_value;
12844 s32_min_val = src_reg.s32_min_value;
12845 s32_max_val = src_reg.s32_max_value;
12846 u32_min_val = src_reg.u32_min_value;
12847 u32_max_val = src_reg.u32_max_value;
12850 src_known = tnum_subreg_is_const(src_reg.var_off);
12852 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12853 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12854 /* Taint dst register if offset had invalid bounds
12855 * derived from e.g. dead branches.
12857 __mark_reg_unknown(env, dst_reg);
12861 src_known = tnum_is_const(src_reg.var_off);
12863 (smin_val != smax_val || umin_val != umax_val)) ||
12864 smin_val > smax_val || umin_val > umax_val) {
12865 /* Taint dst register if offset had invalid bounds
12866 * derived from e.g. dead branches.
12868 __mark_reg_unknown(env, dst_reg);
12874 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
12875 __mark_reg_unknown(env, dst_reg);
12879 if (sanitize_needed(opcode)) {
12880 ret = sanitize_val_alu(env, insn);
12882 return sanitize_err(env, insn, ret, NULL, NULL);
12885 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12886 * There are two classes of instructions: The first class we track both
12887 * alu32 and alu64 sign/unsigned bounds independently this provides the
12888 * greatest amount of precision when alu operations are mixed with jmp32
12889 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12890 * and BPF_OR. This is possible because these ops have fairly easy to
12891 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12892 * See alu32 verifier tests for examples. The second class of
12893 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12894 * with regards to tracking sign/unsigned bounds because the bits may
12895 * cross subreg boundaries in the alu64 case. When this happens we mark
12896 * the reg unbounded in the subreg bound space and use the resulting
12897 * tnum to calculate an approximation of the sign/unsigned bounds.
12901 scalar32_min_max_add(dst_reg, &src_reg);
12902 scalar_min_max_add(dst_reg, &src_reg);
12903 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
12906 scalar32_min_max_sub(dst_reg, &src_reg);
12907 scalar_min_max_sub(dst_reg, &src_reg);
12908 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
12911 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12912 scalar32_min_max_mul(dst_reg, &src_reg);
12913 scalar_min_max_mul(dst_reg, &src_reg);
12916 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12917 scalar32_min_max_and(dst_reg, &src_reg);
12918 scalar_min_max_and(dst_reg, &src_reg);
12921 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12922 scalar32_min_max_or(dst_reg, &src_reg);
12923 scalar_min_max_or(dst_reg, &src_reg);
12926 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12927 scalar32_min_max_xor(dst_reg, &src_reg);
12928 scalar_min_max_xor(dst_reg, &src_reg);
12931 if (umax_val >= insn_bitness) {
12932 /* Shifts greater than 31 or 63 are undefined.
12933 * This includes shifts by a negative number.
12935 mark_reg_unknown(env, regs, insn->dst_reg);
12939 scalar32_min_max_lsh(dst_reg, &src_reg);
12941 scalar_min_max_lsh(dst_reg, &src_reg);
12944 if (umax_val >= insn_bitness) {
12945 /* Shifts greater than 31 or 63 are undefined.
12946 * This includes shifts by a negative number.
12948 mark_reg_unknown(env, regs, insn->dst_reg);
12952 scalar32_min_max_rsh(dst_reg, &src_reg);
12954 scalar_min_max_rsh(dst_reg, &src_reg);
12957 if (umax_val >= insn_bitness) {
12958 /* Shifts greater than 31 or 63 are undefined.
12959 * This includes shifts by a negative number.
12961 mark_reg_unknown(env, regs, insn->dst_reg);
12965 scalar32_min_max_arsh(dst_reg, &src_reg);
12967 scalar_min_max_arsh(dst_reg, &src_reg);
12970 mark_reg_unknown(env, regs, insn->dst_reg);
12974 /* ALU32 ops are zero extended into 64bit register */
12976 zext_32_to_64(dst_reg);
12977 reg_bounds_sync(dst_reg);
12981 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12984 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
12985 struct bpf_insn *insn)
12987 struct bpf_verifier_state *vstate = env->cur_state;
12988 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12989 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
12990 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
12991 u8 opcode = BPF_OP(insn->code);
12994 dst_reg = ®s[insn->dst_reg];
12996 if (dst_reg->type != SCALAR_VALUE)
12999 /* Make sure ID is cleared otherwise dst_reg min/max could be
13000 * incorrectly propagated into other registers by find_equal_scalars()
13003 if (BPF_SRC(insn->code) == BPF_X) {
13004 src_reg = ®s[insn->src_reg];
13005 if (src_reg->type != SCALAR_VALUE) {
13006 if (dst_reg->type != SCALAR_VALUE) {
13007 /* Combining two pointers by any ALU op yields
13008 * an arbitrary scalar. Disallow all math except
13009 * pointer subtraction
13011 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13012 mark_reg_unknown(env, regs, insn->dst_reg);
13015 verbose(env, "R%d pointer %s pointer prohibited\n",
13017 bpf_alu_string[opcode >> 4]);
13020 /* scalar += pointer
13021 * This is legal, but we have to reverse our
13022 * src/dest handling in computing the range
13024 err = mark_chain_precision(env, insn->dst_reg);
13027 return adjust_ptr_min_max_vals(env, insn,
13030 } else if (ptr_reg) {
13031 /* pointer += scalar */
13032 err = mark_chain_precision(env, insn->src_reg);
13035 return adjust_ptr_min_max_vals(env, insn,
13037 } else if (dst_reg->precise) {
13038 /* if dst_reg is precise, src_reg should be precise as well */
13039 err = mark_chain_precision(env, insn->src_reg);
13044 /* Pretend the src is a reg with a known value, since we only
13045 * need to be able to read from this state.
13047 off_reg.type = SCALAR_VALUE;
13048 __mark_reg_known(&off_reg, insn->imm);
13049 src_reg = &off_reg;
13050 if (ptr_reg) /* pointer += K */
13051 return adjust_ptr_min_max_vals(env, insn,
13055 /* Got here implies adding two SCALAR_VALUEs */
13056 if (WARN_ON_ONCE(ptr_reg)) {
13057 print_verifier_state(env, state, true);
13058 verbose(env, "verifier internal error: unexpected ptr_reg\n");
13061 if (WARN_ON(!src_reg)) {
13062 print_verifier_state(env, state, true);
13063 verbose(env, "verifier internal error: no src_reg\n");
13066 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13069 /* check validity of 32-bit and 64-bit arithmetic operations */
13070 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13072 struct bpf_reg_state *regs = cur_regs(env);
13073 u8 opcode = BPF_OP(insn->code);
13076 if (opcode == BPF_END || opcode == BPF_NEG) {
13077 if (opcode == BPF_NEG) {
13078 if (BPF_SRC(insn->code) != BPF_K ||
13079 insn->src_reg != BPF_REG_0 ||
13080 insn->off != 0 || insn->imm != 0) {
13081 verbose(env, "BPF_NEG uses reserved fields\n");
13085 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13086 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13087 (BPF_CLASS(insn->code) == BPF_ALU64 &&
13088 BPF_SRC(insn->code) != BPF_TO_LE)) {
13089 verbose(env, "BPF_END uses reserved fields\n");
13094 /* check src operand */
13095 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13099 if (is_pointer_value(env, insn->dst_reg)) {
13100 verbose(env, "R%d pointer arithmetic prohibited\n",
13105 /* check dest operand */
13106 err = check_reg_arg(env, insn->dst_reg, DST_OP);
13110 } else if (opcode == BPF_MOV) {
13112 if (BPF_SRC(insn->code) == BPF_X) {
13113 if (insn->imm != 0) {
13114 verbose(env, "BPF_MOV uses reserved fields\n");
13118 if (BPF_CLASS(insn->code) == BPF_ALU) {
13119 if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13120 verbose(env, "BPF_MOV uses reserved fields\n");
13124 if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13126 verbose(env, "BPF_MOV uses reserved fields\n");
13131 /* check src operand */
13132 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13136 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13137 verbose(env, "BPF_MOV uses reserved fields\n");
13142 /* check dest operand, mark as required later */
13143 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13147 if (BPF_SRC(insn->code) == BPF_X) {
13148 struct bpf_reg_state *src_reg = regs + insn->src_reg;
13149 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13150 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13151 !tnum_is_const(src_reg->var_off);
13153 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13154 if (insn->off == 0) {
13156 * copy register state to dest reg
13159 /* Assign src and dst registers the same ID
13160 * that will be used by find_equal_scalars()
13161 * to propagate min/max range.
13163 src_reg->id = ++env->id_gen;
13164 copy_register_state(dst_reg, src_reg);
13165 dst_reg->live |= REG_LIVE_WRITTEN;
13166 dst_reg->subreg_def = DEF_NOT_SUBREG;
13168 /* case: R1 = (s8, s16 s32)R2 */
13169 if (is_pointer_value(env, insn->src_reg)) {
13171 "R%d sign-extension part of pointer\n",
13174 } else if (src_reg->type == SCALAR_VALUE) {
13177 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13178 if (no_sext && need_id)
13179 src_reg->id = ++env->id_gen;
13180 copy_register_state(dst_reg, src_reg);
13183 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13184 dst_reg->live |= REG_LIVE_WRITTEN;
13185 dst_reg->subreg_def = DEF_NOT_SUBREG;
13187 mark_reg_unknown(env, regs, insn->dst_reg);
13191 /* R1 = (u32) R2 */
13192 if (is_pointer_value(env, insn->src_reg)) {
13194 "R%d partial copy of pointer\n",
13197 } else if (src_reg->type == SCALAR_VALUE) {
13198 if (insn->off == 0) {
13199 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13201 if (is_src_reg_u32 && need_id)
13202 src_reg->id = ++env->id_gen;
13203 copy_register_state(dst_reg, src_reg);
13204 /* Make sure ID is cleared if src_reg is not in u32
13205 * range otherwise dst_reg min/max could be incorrectly
13206 * propagated into src_reg by find_equal_scalars()
13208 if (!is_src_reg_u32)
13210 dst_reg->live |= REG_LIVE_WRITTEN;
13211 dst_reg->subreg_def = env->insn_idx + 1;
13213 /* case: W1 = (s8, s16)W2 */
13214 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13216 if (no_sext && need_id)
13217 src_reg->id = ++env->id_gen;
13218 copy_register_state(dst_reg, src_reg);
13221 dst_reg->live |= REG_LIVE_WRITTEN;
13222 dst_reg->subreg_def = env->insn_idx + 1;
13223 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13226 mark_reg_unknown(env, regs,
13229 zext_32_to_64(dst_reg);
13230 reg_bounds_sync(dst_reg);
13234 * remember the value we stored into this reg
13236 /* clear any state __mark_reg_known doesn't set */
13237 mark_reg_unknown(env, regs, insn->dst_reg);
13238 regs[insn->dst_reg].type = SCALAR_VALUE;
13239 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13240 __mark_reg_known(regs + insn->dst_reg,
13243 __mark_reg_known(regs + insn->dst_reg,
13248 } else if (opcode > BPF_END) {
13249 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13252 } else { /* all other ALU ops: and, sub, xor, add, ... */
13254 if (BPF_SRC(insn->code) == BPF_X) {
13255 if (insn->imm != 0 || insn->off > 1 ||
13256 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13257 verbose(env, "BPF_ALU uses reserved fields\n");
13260 /* check src1 operand */
13261 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13265 if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13266 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13267 verbose(env, "BPF_ALU uses reserved fields\n");
13272 /* check src2 operand */
13273 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13277 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13278 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13279 verbose(env, "div by zero\n");
13283 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13284 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13285 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13287 if (insn->imm < 0 || insn->imm >= size) {
13288 verbose(env, "invalid shift %d\n", insn->imm);
13293 /* check dest operand */
13294 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13298 return adjust_reg_min_max_vals(env, insn);
13304 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13305 struct bpf_reg_state *dst_reg,
13306 enum bpf_reg_type type,
13307 bool range_right_open)
13309 struct bpf_func_state *state;
13310 struct bpf_reg_state *reg;
13313 if (dst_reg->off < 0 ||
13314 (dst_reg->off == 0 && range_right_open))
13315 /* This doesn't give us any range */
13318 if (dst_reg->umax_value > MAX_PACKET_OFF ||
13319 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13320 /* Risk of overflow. For instance, ptr + (1<<63) may be less
13321 * than pkt_end, but that's because it's also less than pkt.
13325 new_range = dst_reg->off;
13326 if (range_right_open)
13329 /* Examples for register markings:
13331 * pkt_data in dst register:
13335 * if (r2 > pkt_end) goto <handle exception>
13340 * if (r2 < pkt_end) goto <access okay>
13341 * <handle exception>
13344 * r2 == dst_reg, pkt_end == src_reg
13345 * r2=pkt(id=n,off=8,r=0)
13346 * r3=pkt(id=n,off=0,r=0)
13348 * pkt_data in src register:
13352 * if (pkt_end >= r2) goto <access okay>
13353 * <handle exception>
13357 * if (pkt_end <= r2) goto <handle exception>
13361 * pkt_end == dst_reg, r2 == src_reg
13362 * r2=pkt(id=n,off=8,r=0)
13363 * r3=pkt(id=n,off=0,r=0)
13365 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13366 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13367 * and [r3, r3 + 8-1) respectively is safe to access depending on
13371 /* If our ids match, then we must have the same max_value. And we
13372 * don't care about the other reg's fixed offset, since if it's too big
13373 * the range won't allow anything.
13374 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13376 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13377 if (reg->type == type && reg->id == dst_reg->id)
13378 /* keep the maximum range already checked */
13379 reg->range = max(reg->range, new_range);
13383 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13385 struct tnum subreg = tnum_subreg(reg->var_off);
13386 s32 sval = (s32)val;
13390 if (tnum_is_const(subreg))
13391 return !!tnum_equals_const(subreg, val);
13392 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13396 if (tnum_is_const(subreg))
13397 return !tnum_equals_const(subreg, val);
13398 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13402 if ((~subreg.mask & subreg.value) & val)
13404 if (!((subreg.mask | subreg.value) & val))
13408 if (reg->u32_min_value > val)
13410 else if (reg->u32_max_value <= val)
13414 if (reg->s32_min_value > sval)
13416 else if (reg->s32_max_value <= sval)
13420 if (reg->u32_max_value < val)
13422 else if (reg->u32_min_value >= val)
13426 if (reg->s32_max_value < sval)
13428 else if (reg->s32_min_value >= sval)
13432 if (reg->u32_min_value >= val)
13434 else if (reg->u32_max_value < val)
13438 if (reg->s32_min_value >= sval)
13440 else if (reg->s32_max_value < sval)
13444 if (reg->u32_max_value <= val)
13446 else if (reg->u32_min_value > val)
13450 if (reg->s32_max_value <= sval)
13452 else if (reg->s32_min_value > sval)
13461 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13463 s64 sval = (s64)val;
13467 if (tnum_is_const(reg->var_off))
13468 return !!tnum_equals_const(reg->var_off, val);
13469 else if (val < reg->umin_value || val > reg->umax_value)
13473 if (tnum_is_const(reg->var_off))
13474 return !tnum_equals_const(reg->var_off, val);
13475 else if (val < reg->umin_value || val > reg->umax_value)
13479 if ((~reg->var_off.mask & reg->var_off.value) & val)
13481 if (!((reg->var_off.mask | reg->var_off.value) & val))
13485 if (reg->umin_value > val)
13487 else if (reg->umax_value <= val)
13491 if (reg->smin_value > sval)
13493 else if (reg->smax_value <= sval)
13497 if (reg->umax_value < val)
13499 else if (reg->umin_value >= val)
13503 if (reg->smax_value < sval)
13505 else if (reg->smin_value >= sval)
13509 if (reg->umin_value >= val)
13511 else if (reg->umax_value < val)
13515 if (reg->smin_value >= sval)
13517 else if (reg->smax_value < sval)
13521 if (reg->umax_value <= val)
13523 else if (reg->umin_value > val)
13527 if (reg->smax_value <= sval)
13529 else if (reg->smin_value > sval)
13537 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13539 * 1 - branch will be taken and "goto target" will be executed
13540 * 0 - branch will not be taken and fall-through to next insn
13541 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13544 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13547 if (__is_pointer_value(false, reg)) {
13548 if (!reg_not_null(reg))
13551 /* If pointer is valid tests against zero will fail so we can
13552 * use this to direct branch taken.
13568 return is_branch32_taken(reg, val, opcode);
13569 return is_branch64_taken(reg, val, opcode);
13572 static int flip_opcode(u32 opcode)
13574 /* How can we transform "a <op> b" into "b <op> a"? */
13575 static const u8 opcode_flip[16] = {
13576 /* these stay the same */
13577 [BPF_JEQ >> 4] = BPF_JEQ,
13578 [BPF_JNE >> 4] = BPF_JNE,
13579 [BPF_JSET >> 4] = BPF_JSET,
13580 /* these swap "lesser" and "greater" (L and G in the opcodes) */
13581 [BPF_JGE >> 4] = BPF_JLE,
13582 [BPF_JGT >> 4] = BPF_JLT,
13583 [BPF_JLE >> 4] = BPF_JGE,
13584 [BPF_JLT >> 4] = BPF_JGT,
13585 [BPF_JSGE >> 4] = BPF_JSLE,
13586 [BPF_JSGT >> 4] = BPF_JSLT,
13587 [BPF_JSLE >> 4] = BPF_JSGE,
13588 [BPF_JSLT >> 4] = BPF_JSGT
13590 return opcode_flip[opcode >> 4];
13593 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13594 struct bpf_reg_state *src_reg,
13597 struct bpf_reg_state *pkt;
13599 if (src_reg->type == PTR_TO_PACKET_END) {
13601 } else if (dst_reg->type == PTR_TO_PACKET_END) {
13603 opcode = flip_opcode(opcode);
13608 if (pkt->range >= 0)
13613 /* pkt <= pkt_end */
13616 /* pkt > pkt_end */
13617 if (pkt->range == BEYOND_PKT_END)
13618 /* pkt has at last one extra byte beyond pkt_end */
13619 return opcode == BPF_JGT;
13622 /* pkt < pkt_end */
13625 /* pkt >= pkt_end */
13626 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13627 return opcode == BPF_JGE;
13633 /* Adjusts the register min/max values in the case that the dst_reg is the
13634 * variable register that we are working on, and src_reg is a constant or we're
13635 * simply doing a BPF_K check.
13636 * In JEQ/JNE cases we also adjust the var_off values.
13638 static void reg_set_min_max(struct bpf_reg_state *true_reg,
13639 struct bpf_reg_state *false_reg,
13640 u64 val, u32 val32,
13641 u8 opcode, bool is_jmp32)
13643 struct tnum false_32off = tnum_subreg(false_reg->var_off);
13644 struct tnum false_64off = false_reg->var_off;
13645 struct tnum true_32off = tnum_subreg(true_reg->var_off);
13646 struct tnum true_64off = true_reg->var_off;
13647 s64 sval = (s64)val;
13648 s32 sval32 = (s32)val32;
13650 /* If the dst_reg is a pointer, we can't learn anything about its
13651 * variable offset from the compare (unless src_reg were a pointer into
13652 * the same object, but we don't bother with that.
13653 * Since false_reg and true_reg have the same type by construction, we
13654 * only need to check one of them for pointerness.
13656 if (__is_pointer_value(false, false_reg))
13660 /* JEQ/JNE comparison doesn't change the register equivalence.
13663 * if (r1 == 42) goto label;
13665 * label: // here both r1 and r2 are known to be 42.
13667 * Hence when marking register as known preserve it's ID.
13671 __mark_reg32_known(true_reg, val32);
13672 true_32off = tnum_subreg(true_reg->var_off);
13674 ___mark_reg_known(true_reg, val);
13675 true_64off = true_reg->var_off;
13680 __mark_reg32_known(false_reg, val32);
13681 false_32off = tnum_subreg(false_reg->var_off);
13683 ___mark_reg_known(false_reg, val);
13684 false_64off = false_reg->var_off;
13689 false_32off = tnum_and(false_32off, tnum_const(~val32));
13690 if (is_power_of_2(val32))
13691 true_32off = tnum_or(true_32off,
13692 tnum_const(val32));
13694 false_64off = tnum_and(false_64off, tnum_const(~val));
13695 if (is_power_of_2(val))
13696 true_64off = tnum_or(true_64off,
13704 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
13705 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13707 false_reg->u32_max_value = min(false_reg->u32_max_value,
13709 true_reg->u32_min_value = max(true_reg->u32_min_value,
13712 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
13713 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13715 false_reg->umax_value = min(false_reg->umax_value, false_umax);
13716 true_reg->umin_value = max(true_reg->umin_value, true_umin);
13724 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
13725 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
13727 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13728 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13730 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
13731 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13733 false_reg->smax_value = min(false_reg->smax_value, false_smax);
13734 true_reg->smin_value = max(true_reg->smin_value, true_smin);
13742 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
13743 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13745 false_reg->u32_min_value = max(false_reg->u32_min_value,
13747 true_reg->u32_max_value = min(true_reg->u32_max_value,
13750 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
13751 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13753 false_reg->umin_value = max(false_reg->umin_value, false_umin);
13754 true_reg->umax_value = min(true_reg->umax_value, true_umax);
13762 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
13763 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
13765 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13766 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13768 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
13769 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13771 false_reg->smin_value = max(false_reg->smin_value, false_smin);
13772 true_reg->smax_value = min(true_reg->smax_value, true_smax);
13781 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13782 tnum_subreg(false_32off));
13783 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13784 tnum_subreg(true_32off));
13785 __reg_combine_32_into_64(false_reg);
13786 __reg_combine_32_into_64(true_reg);
13788 false_reg->var_off = false_64off;
13789 true_reg->var_off = true_64off;
13790 __reg_combine_64_into_32(false_reg);
13791 __reg_combine_64_into_32(true_reg);
13795 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
13796 * the variable reg.
13798 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
13799 struct bpf_reg_state *false_reg,
13800 u64 val, u32 val32,
13801 u8 opcode, bool is_jmp32)
13803 opcode = flip_opcode(opcode);
13804 /* This uses zero as "not present in table"; luckily the zero opcode,
13805 * BPF_JA, can't get here.
13808 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
13811 /* Regs are known to be equal, so intersect their min/max/var_off */
13812 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13813 struct bpf_reg_state *dst_reg)
13815 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13816 dst_reg->umin_value);
13817 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13818 dst_reg->umax_value);
13819 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13820 dst_reg->smin_value);
13821 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13822 dst_reg->smax_value);
13823 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13825 reg_bounds_sync(src_reg);
13826 reg_bounds_sync(dst_reg);
13829 static void reg_combine_min_max(struct bpf_reg_state *true_src,
13830 struct bpf_reg_state *true_dst,
13831 struct bpf_reg_state *false_src,
13832 struct bpf_reg_state *false_dst,
13837 __reg_combine_min_max(true_src, true_dst);
13840 __reg_combine_min_max(false_src, false_dst);
13845 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13846 struct bpf_reg_state *reg, u32 id,
13849 if (type_may_be_null(reg->type) && reg->id == id &&
13850 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
13851 /* Old offset (both fixed and variable parts) should have been
13852 * known-zero, because we don't allow pointer arithmetic on
13853 * pointers that might be NULL. If we see this happening, don't
13854 * convert the register.
13856 * But in some cases, some helpers that return local kptrs
13857 * advance offset for the returned pointer. In those cases, it
13858 * is fine to expect to see reg->off.
13860 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13862 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13863 WARN_ON_ONCE(reg->off))
13867 reg->type = SCALAR_VALUE;
13868 /* We don't need id and ref_obj_id from this point
13869 * onwards anymore, thus we should better reset it,
13870 * so that state pruning has chances to take effect.
13873 reg->ref_obj_id = 0;
13878 mark_ptr_not_null_reg(reg);
13880 if (!reg_may_point_to_spin_lock(reg)) {
13881 /* For not-NULL ptr, reg->ref_obj_id will be reset
13882 * in release_reference().
13884 * reg->id is still used by spin_lock ptr. Other
13885 * than spin_lock ptr type, reg->id can be reset.
13892 /* The logic is similar to find_good_pkt_pointers(), both could eventually
13893 * be folded together at some point.
13895 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13898 struct bpf_func_state *state = vstate->frame[vstate->curframe];
13899 struct bpf_reg_state *regs = state->regs, *reg;
13900 u32 ref_obj_id = regs[regno].ref_obj_id;
13901 u32 id = regs[regno].id;
13903 if (ref_obj_id && ref_obj_id == id && is_null)
13904 /* regs[regno] is in the " == NULL" branch.
13905 * No one could have freed the reference state before
13906 * doing the NULL check.
13908 WARN_ON_ONCE(release_reference_state(state, id));
13910 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13911 mark_ptr_or_null_reg(state, reg, id, is_null);
13915 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13916 struct bpf_reg_state *dst_reg,
13917 struct bpf_reg_state *src_reg,
13918 struct bpf_verifier_state *this_branch,
13919 struct bpf_verifier_state *other_branch)
13921 if (BPF_SRC(insn->code) != BPF_X)
13924 /* Pointers are always 64-bit. */
13925 if (BPF_CLASS(insn->code) == BPF_JMP32)
13928 switch (BPF_OP(insn->code)) {
13930 if ((dst_reg->type == PTR_TO_PACKET &&
13931 src_reg->type == PTR_TO_PACKET_END) ||
13932 (dst_reg->type == PTR_TO_PACKET_META &&
13933 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13934 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13935 find_good_pkt_pointers(this_branch, dst_reg,
13936 dst_reg->type, false);
13937 mark_pkt_end(other_branch, insn->dst_reg, true);
13938 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13939 src_reg->type == PTR_TO_PACKET) ||
13940 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13941 src_reg->type == PTR_TO_PACKET_META)) {
13942 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
13943 find_good_pkt_pointers(other_branch, src_reg,
13944 src_reg->type, true);
13945 mark_pkt_end(this_branch, insn->src_reg, false);
13951 if ((dst_reg->type == PTR_TO_PACKET &&
13952 src_reg->type == PTR_TO_PACKET_END) ||
13953 (dst_reg->type == PTR_TO_PACKET_META &&
13954 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13955 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13956 find_good_pkt_pointers(other_branch, dst_reg,
13957 dst_reg->type, true);
13958 mark_pkt_end(this_branch, insn->dst_reg, false);
13959 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13960 src_reg->type == PTR_TO_PACKET) ||
13961 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13962 src_reg->type == PTR_TO_PACKET_META)) {
13963 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
13964 find_good_pkt_pointers(this_branch, src_reg,
13965 src_reg->type, false);
13966 mark_pkt_end(other_branch, insn->src_reg, true);
13972 if ((dst_reg->type == PTR_TO_PACKET &&
13973 src_reg->type == PTR_TO_PACKET_END) ||
13974 (dst_reg->type == PTR_TO_PACKET_META &&
13975 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13976 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13977 find_good_pkt_pointers(this_branch, dst_reg,
13978 dst_reg->type, true);
13979 mark_pkt_end(other_branch, insn->dst_reg, false);
13980 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13981 src_reg->type == PTR_TO_PACKET) ||
13982 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13983 src_reg->type == PTR_TO_PACKET_META)) {
13984 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
13985 find_good_pkt_pointers(other_branch, src_reg,
13986 src_reg->type, false);
13987 mark_pkt_end(this_branch, insn->src_reg, true);
13993 if ((dst_reg->type == PTR_TO_PACKET &&
13994 src_reg->type == PTR_TO_PACKET_END) ||
13995 (dst_reg->type == PTR_TO_PACKET_META &&
13996 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13997 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
13998 find_good_pkt_pointers(other_branch, dst_reg,
13999 dst_reg->type, false);
14000 mark_pkt_end(this_branch, insn->dst_reg, true);
14001 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14002 src_reg->type == PTR_TO_PACKET) ||
14003 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14004 src_reg->type == PTR_TO_PACKET_META)) {
14005 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14006 find_good_pkt_pointers(this_branch, src_reg,
14007 src_reg->type, true);
14008 mark_pkt_end(other_branch, insn->src_reg, false);
14020 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14021 struct bpf_reg_state *known_reg)
14023 struct bpf_func_state *state;
14024 struct bpf_reg_state *reg;
14026 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14027 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14028 copy_register_state(reg, known_reg);
14032 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14033 struct bpf_insn *insn, int *insn_idx)
14035 struct bpf_verifier_state *this_branch = env->cur_state;
14036 struct bpf_verifier_state *other_branch;
14037 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14038 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14039 struct bpf_reg_state *eq_branch_regs;
14040 u8 opcode = BPF_OP(insn->code);
14045 /* Only conditional jumps are expected to reach here. */
14046 if (opcode == BPF_JA || opcode > BPF_JSLE) {
14047 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14051 /* check src2 operand */
14052 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14056 dst_reg = ®s[insn->dst_reg];
14057 if (BPF_SRC(insn->code) == BPF_X) {
14058 if (insn->imm != 0) {
14059 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14063 /* check src1 operand */
14064 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14068 src_reg = ®s[insn->src_reg];
14069 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14070 is_pointer_value(env, insn->src_reg)) {
14071 verbose(env, "R%d pointer comparison prohibited\n",
14076 if (insn->src_reg != BPF_REG_0) {
14077 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14082 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14084 if (BPF_SRC(insn->code) == BPF_K) {
14085 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14086 } else if (src_reg->type == SCALAR_VALUE &&
14087 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14088 pred = is_branch_taken(dst_reg,
14089 tnum_subreg(src_reg->var_off).value,
14092 } else if (src_reg->type == SCALAR_VALUE &&
14093 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14094 pred = is_branch_taken(dst_reg,
14095 src_reg->var_off.value,
14098 } else if (dst_reg->type == SCALAR_VALUE &&
14099 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14100 pred = is_branch_taken(src_reg,
14101 tnum_subreg(dst_reg->var_off).value,
14102 flip_opcode(opcode),
14104 } else if (dst_reg->type == SCALAR_VALUE &&
14105 !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14106 pred = is_branch_taken(src_reg,
14107 dst_reg->var_off.value,
14108 flip_opcode(opcode),
14110 } else if (reg_is_pkt_pointer_any(dst_reg) &&
14111 reg_is_pkt_pointer_any(src_reg) &&
14113 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14117 /* If we get here with a dst_reg pointer type it is because
14118 * above is_branch_taken() special cased the 0 comparison.
14120 if (!__is_pointer_value(false, dst_reg))
14121 err = mark_chain_precision(env, insn->dst_reg);
14122 if (BPF_SRC(insn->code) == BPF_X && !err &&
14123 !__is_pointer_value(false, src_reg))
14124 err = mark_chain_precision(env, insn->src_reg);
14130 /* Only follow the goto, ignore fall-through. If needed, push
14131 * the fall-through branch for simulation under speculative
14134 if (!env->bypass_spec_v1 &&
14135 !sanitize_speculative_path(env, insn, *insn_idx + 1,
14138 *insn_idx += insn->off;
14140 } else if (pred == 0) {
14141 /* Only follow the fall-through branch, since that's where the
14142 * program will go. If needed, push the goto branch for
14143 * simulation under speculative execution.
14145 if (!env->bypass_spec_v1 &&
14146 !sanitize_speculative_path(env, insn,
14147 *insn_idx + insn->off + 1,
14153 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14157 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14159 /* detect if we are comparing against a constant value so we can adjust
14160 * our min/max values for our dst register.
14161 * this is only legit if both are scalars (or pointers to the same
14162 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14163 * because otherwise the different base pointers mean the offsets aren't
14166 if (BPF_SRC(insn->code) == BPF_X) {
14167 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
14169 if (dst_reg->type == SCALAR_VALUE &&
14170 src_reg->type == SCALAR_VALUE) {
14171 if (tnum_is_const(src_reg->var_off) ||
14173 tnum_is_const(tnum_subreg(src_reg->var_off))))
14174 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14176 src_reg->var_off.value,
14177 tnum_subreg(src_reg->var_off).value,
14179 else if (tnum_is_const(dst_reg->var_off) ||
14181 tnum_is_const(tnum_subreg(dst_reg->var_off))))
14182 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14184 dst_reg->var_off.value,
14185 tnum_subreg(dst_reg->var_off).value,
14187 else if (!is_jmp32 &&
14188 (opcode == BPF_JEQ || opcode == BPF_JNE))
14189 /* Comparing for equality, we can combine knowledge */
14190 reg_combine_min_max(&other_branch_regs[insn->src_reg],
14191 &other_branch_regs[insn->dst_reg],
14192 src_reg, dst_reg, opcode);
14194 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14195 find_equal_scalars(this_branch, src_reg);
14196 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14200 } else if (dst_reg->type == SCALAR_VALUE) {
14201 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14202 dst_reg, insn->imm, (u32)insn->imm,
14206 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14207 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14208 find_equal_scalars(this_branch, dst_reg);
14209 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14212 /* if one pointer register is compared to another pointer
14213 * register check if PTR_MAYBE_NULL could be lifted.
14214 * E.g. register A - maybe null
14215 * register B - not null
14216 * for JNE A, B, ... - A is not null in the false branch;
14217 * for JEQ A, B, ... - A is not null in the true branch.
14219 * Since PTR_TO_BTF_ID points to a kernel struct that does
14220 * not need to be null checked by the BPF program, i.e.,
14221 * could be null even without PTR_MAYBE_NULL marking, so
14222 * only propagate nullness when neither reg is that type.
14224 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14225 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14226 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14227 base_type(src_reg->type) != PTR_TO_BTF_ID &&
14228 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14229 eq_branch_regs = NULL;
14232 eq_branch_regs = other_branch_regs;
14235 eq_branch_regs = regs;
14241 if (eq_branch_regs) {
14242 if (type_may_be_null(src_reg->type))
14243 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14245 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14249 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14250 * NOTE: these optimizations below are related with pointer comparison
14251 * which will never be JMP32.
14253 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14254 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14255 type_may_be_null(dst_reg->type)) {
14256 /* Mark all identical registers in each branch as either
14257 * safe or unknown depending R == 0 or R != 0 conditional.
14259 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14260 opcode == BPF_JNE);
14261 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14262 opcode == BPF_JEQ);
14263 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
14264 this_branch, other_branch) &&
14265 is_pointer_value(env, insn->dst_reg)) {
14266 verbose(env, "R%d pointer comparison prohibited\n",
14270 if (env->log.level & BPF_LOG_LEVEL)
14271 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14275 /* verify BPF_LD_IMM64 instruction */
14276 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14278 struct bpf_insn_aux_data *aux = cur_aux(env);
14279 struct bpf_reg_state *regs = cur_regs(env);
14280 struct bpf_reg_state *dst_reg;
14281 struct bpf_map *map;
14284 if (BPF_SIZE(insn->code) != BPF_DW) {
14285 verbose(env, "invalid BPF_LD_IMM insn\n");
14288 if (insn->off != 0) {
14289 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14293 err = check_reg_arg(env, insn->dst_reg, DST_OP);
14297 dst_reg = ®s[insn->dst_reg];
14298 if (insn->src_reg == 0) {
14299 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14301 dst_reg->type = SCALAR_VALUE;
14302 __mark_reg_known(®s[insn->dst_reg], imm);
14306 /* All special src_reg cases are listed below. From this point onwards
14307 * we either succeed and assign a corresponding dst_reg->type after
14308 * zeroing the offset, or fail and reject the program.
14310 mark_reg_known_zero(env, regs, insn->dst_reg);
14312 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14313 dst_reg->type = aux->btf_var.reg_type;
14314 switch (base_type(dst_reg->type)) {
14316 dst_reg->mem_size = aux->btf_var.mem_size;
14318 case PTR_TO_BTF_ID:
14319 dst_reg->btf = aux->btf_var.btf;
14320 dst_reg->btf_id = aux->btf_var.btf_id;
14323 verbose(env, "bpf verifier is misconfigured\n");
14329 if (insn->src_reg == BPF_PSEUDO_FUNC) {
14330 struct bpf_prog_aux *aux = env->prog->aux;
14331 u32 subprogno = find_subprog(env,
14332 env->insn_idx + insn->imm + 1);
14334 if (!aux->func_info) {
14335 verbose(env, "missing btf func_info\n");
14338 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14339 verbose(env, "callback function not static\n");
14343 dst_reg->type = PTR_TO_FUNC;
14344 dst_reg->subprogno = subprogno;
14348 map = env->used_maps[aux->map_index];
14349 dst_reg->map_ptr = map;
14351 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14352 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14353 dst_reg->type = PTR_TO_MAP_VALUE;
14354 dst_reg->off = aux->map_off;
14355 WARN_ON_ONCE(map->max_entries != 1);
14356 /* We want reg->id to be same (0) as map_value is not distinct */
14357 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14358 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14359 dst_reg->type = CONST_PTR_TO_MAP;
14361 verbose(env, "bpf verifier is misconfigured\n");
14368 static bool may_access_skb(enum bpf_prog_type type)
14371 case BPF_PROG_TYPE_SOCKET_FILTER:
14372 case BPF_PROG_TYPE_SCHED_CLS:
14373 case BPF_PROG_TYPE_SCHED_ACT:
14380 /* verify safety of LD_ABS|LD_IND instructions:
14381 * - they can only appear in the programs where ctx == skb
14382 * - since they are wrappers of function calls, they scratch R1-R5 registers,
14383 * preserve R6-R9, and store return value into R0
14386 * ctx == skb == R6 == CTX
14389 * SRC == any register
14390 * IMM == 32-bit immediate
14393 * R0 - 8/16/32-bit skb data converted to cpu endianness
14395 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14397 struct bpf_reg_state *regs = cur_regs(env);
14398 static const int ctx_reg = BPF_REG_6;
14399 u8 mode = BPF_MODE(insn->code);
14402 if (!may_access_skb(resolve_prog_type(env->prog))) {
14403 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14407 if (!env->ops->gen_ld_abs) {
14408 verbose(env, "bpf verifier is misconfigured\n");
14412 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14413 BPF_SIZE(insn->code) == BPF_DW ||
14414 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14415 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14419 /* check whether implicit source operand (register R6) is readable */
14420 err = check_reg_arg(env, ctx_reg, SRC_OP);
14424 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14425 * gen_ld_abs() may terminate the program at runtime, leading to
14428 err = check_reference_leak(env);
14430 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14434 if (env->cur_state->active_lock.ptr) {
14435 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14439 if (env->cur_state->active_rcu_lock) {
14440 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14444 if (regs[ctx_reg].type != PTR_TO_CTX) {
14446 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14450 if (mode == BPF_IND) {
14451 /* check explicit source operand */
14452 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14457 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
14461 /* reset caller saved regs to unreadable */
14462 for (i = 0; i < CALLER_SAVED_REGS; i++) {
14463 mark_reg_not_init(env, regs, caller_saved[i]);
14464 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14467 /* mark destination R0 register as readable, since it contains
14468 * the value fetched from the packet.
14469 * Already marked as written above.
14471 mark_reg_unknown(env, regs, BPF_REG_0);
14472 /* ld_abs load up to 32-bit skb data. */
14473 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14477 static int check_return_code(struct bpf_verifier_env *env)
14479 struct tnum enforce_attach_type_range = tnum_unknown;
14480 const struct bpf_prog *prog = env->prog;
14481 struct bpf_reg_state *reg;
14482 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14483 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14485 struct bpf_func_state *frame = env->cur_state->frame[0];
14486 const bool is_subprog = frame->subprogno;
14488 /* LSM and struct_ops func-ptr's return type could be "void" */
14490 switch (prog_type) {
14491 case BPF_PROG_TYPE_LSM:
14492 if (prog->expected_attach_type == BPF_LSM_CGROUP)
14493 /* See below, can be 0 or 0-1 depending on hook. */
14496 case BPF_PROG_TYPE_STRUCT_OPS:
14497 if (!prog->aux->attach_func_proto->type)
14505 /* eBPF calling convention is such that R0 is used
14506 * to return the value from eBPF program.
14507 * Make sure that it's readable at this time
14508 * of bpf_exit, which means that program wrote
14509 * something into it earlier
14511 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14515 if (is_pointer_value(env, BPF_REG_0)) {
14516 verbose(env, "R0 leaks addr as return value\n");
14520 reg = cur_regs(env) + BPF_REG_0;
14522 if (frame->in_async_callback_fn) {
14523 /* enforce return zero from async callbacks like timer */
14524 if (reg->type != SCALAR_VALUE) {
14525 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14526 reg_type_str(env, reg->type));
14530 if (!tnum_in(const_0, reg->var_off)) {
14531 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
14538 if (reg->type != SCALAR_VALUE) {
14539 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14540 reg_type_str(env, reg->type));
14546 switch (prog_type) {
14547 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14548 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14549 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14550 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14551 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14552 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14553 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
14554 range = tnum_range(1, 1);
14555 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14556 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14557 range = tnum_range(0, 3);
14559 case BPF_PROG_TYPE_CGROUP_SKB:
14560 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14561 range = tnum_range(0, 3);
14562 enforce_attach_type_range = tnum_range(2, 3);
14565 case BPF_PROG_TYPE_CGROUP_SOCK:
14566 case BPF_PROG_TYPE_SOCK_OPS:
14567 case BPF_PROG_TYPE_CGROUP_DEVICE:
14568 case BPF_PROG_TYPE_CGROUP_SYSCTL:
14569 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14571 case BPF_PROG_TYPE_RAW_TRACEPOINT:
14572 if (!env->prog->aux->attach_btf_id)
14574 range = tnum_const(0);
14576 case BPF_PROG_TYPE_TRACING:
14577 switch (env->prog->expected_attach_type) {
14578 case BPF_TRACE_FENTRY:
14579 case BPF_TRACE_FEXIT:
14580 range = tnum_const(0);
14582 case BPF_TRACE_RAW_TP:
14583 case BPF_MODIFY_RETURN:
14585 case BPF_TRACE_ITER:
14591 case BPF_PROG_TYPE_SK_LOOKUP:
14592 range = tnum_range(SK_DROP, SK_PASS);
14595 case BPF_PROG_TYPE_LSM:
14596 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14597 /* Regular BPF_PROG_TYPE_LSM programs can return
14602 if (!env->prog->aux->attach_func_proto->type) {
14603 /* Make sure programs that attach to void
14604 * hooks don't try to modify return value.
14606 range = tnum_range(1, 1);
14610 case BPF_PROG_TYPE_NETFILTER:
14611 range = tnum_range(NF_DROP, NF_ACCEPT);
14613 case BPF_PROG_TYPE_EXT:
14614 /* freplace program can return anything as its return value
14615 * depends on the to-be-replaced kernel func or bpf program.
14621 if (reg->type != SCALAR_VALUE) {
14622 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
14623 reg_type_str(env, reg->type));
14627 if (!tnum_in(range, reg->var_off)) {
14628 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
14629 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
14630 prog_type == BPF_PROG_TYPE_LSM &&
14631 !prog->aux->attach_func_proto->type)
14632 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
14636 if (!tnum_is_unknown(enforce_attach_type_range) &&
14637 tnum_in(enforce_attach_type_range, reg->var_off))
14638 env->prog->enforce_expected_attach_type = 1;
14642 /* non-recursive DFS pseudo code
14643 * 1 procedure DFS-iterative(G,v):
14644 * 2 label v as discovered
14645 * 3 let S be a stack
14647 * 5 while S is not empty
14649 * 7 if t is what we're looking for:
14651 * 9 for all edges e in G.adjacentEdges(t) do
14652 * 10 if edge e is already labelled
14653 * 11 continue with the next edge
14654 * 12 w <- G.adjacentVertex(t,e)
14655 * 13 if vertex w is not discovered and not explored
14656 * 14 label e as tree-edge
14657 * 15 label w as discovered
14660 * 18 else if vertex w is discovered
14661 * 19 label e as back-edge
14663 * 21 // vertex w is explored
14664 * 22 label e as forward- or cross-edge
14665 * 23 label t as explored
14669 * 0x10 - discovered
14670 * 0x11 - discovered and fall-through edge labelled
14671 * 0x12 - discovered and fall-through and branch edges labelled
14682 static u32 state_htab_size(struct bpf_verifier_env *env)
14684 return env->prog->len;
14687 static struct bpf_verifier_state_list **explored_state(
14688 struct bpf_verifier_env *env,
14691 struct bpf_verifier_state *cur = env->cur_state;
14692 struct bpf_func_state *state = cur->frame[cur->curframe];
14694 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
14697 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
14699 env->insn_aux_data[idx].prune_point = true;
14702 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14704 return env->insn_aux_data[insn_idx].prune_point;
14707 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14709 env->insn_aux_data[idx].force_checkpoint = true;
14712 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14714 return env->insn_aux_data[insn_idx].force_checkpoint;
14719 DONE_EXPLORING = 0,
14720 KEEP_EXPLORING = 1,
14723 /* t, w, e - match pseudo-code above:
14724 * t - index of current instruction
14725 * w - next instruction
14728 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
14731 int *insn_stack = env->cfg.insn_stack;
14732 int *insn_state = env->cfg.insn_state;
14734 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
14735 return DONE_EXPLORING;
14737 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
14738 return DONE_EXPLORING;
14740 if (w < 0 || w >= env->prog->len) {
14741 verbose_linfo(env, t, "%d: ", t);
14742 verbose(env, "jump out of range from insn %d to %d\n", t, w);
14747 /* mark branch target for state pruning */
14748 mark_prune_point(env, w);
14749 mark_jmp_point(env, w);
14752 if (insn_state[w] == 0) {
14754 insn_state[t] = DISCOVERED | e;
14755 insn_state[w] = DISCOVERED;
14756 if (env->cfg.cur_stack >= env->prog->len)
14758 insn_stack[env->cfg.cur_stack++] = w;
14759 return KEEP_EXPLORING;
14760 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
14761 if (loop_ok && env->bpf_capable)
14762 return DONE_EXPLORING;
14763 verbose_linfo(env, t, "%d: ", t);
14764 verbose_linfo(env, w, "%d: ", w);
14765 verbose(env, "back-edge from insn %d to %d\n", t, w);
14767 } else if (insn_state[w] == EXPLORED) {
14768 /* forward- or cross-edge */
14769 insn_state[t] = DISCOVERED | e;
14771 verbose(env, "insn state internal bug\n");
14774 return DONE_EXPLORING;
14777 static int visit_func_call_insn(int t, struct bpf_insn *insns,
14778 struct bpf_verifier_env *env,
14783 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
14787 mark_prune_point(env, t + 1);
14788 /* when we exit from subprog, we need to record non-linear history */
14789 mark_jmp_point(env, t + 1);
14791 if (visit_callee) {
14792 mark_prune_point(env, t);
14793 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
14794 /* It's ok to allow recursion from CFG point of
14795 * view. __check_func_call() will do the actual
14798 bpf_pseudo_func(insns + t));
14803 /* Visits the instruction at index t and returns one of the following:
14804 * < 0 - an error occurred
14805 * DONE_EXPLORING - the instruction was fully explored
14806 * KEEP_EXPLORING - there is still work to be done before it is fully explored
14808 static int visit_insn(int t, struct bpf_verifier_env *env)
14810 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
14813 if (bpf_pseudo_func(insn))
14814 return visit_func_call_insn(t, insns, env, true);
14816 /* All non-branch instructions have a single fall-through edge. */
14817 if (BPF_CLASS(insn->code) != BPF_JMP &&
14818 BPF_CLASS(insn->code) != BPF_JMP32)
14819 return push_insn(t, t + 1, FALLTHROUGH, env, false);
14821 switch (BPF_OP(insn->code)) {
14823 return DONE_EXPLORING;
14826 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
14827 /* Mark this call insn as a prune point to trigger
14828 * is_state_visited() check before call itself is
14829 * processed by __check_func_call(). Otherwise new
14830 * async state will be pushed for further exploration.
14832 mark_prune_point(env, t);
14833 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14834 struct bpf_kfunc_call_arg_meta meta;
14836 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
14837 if (ret == 0 && is_iter_next_kfunc(&meta)) {
14838 mark_prune_point(env, t);
14839 /* Checking and saving state checkpoints at iter_next() call
14840 * is crucial for fast convergence of open-coded iterator loop
14841 * logic, so we need to force it. If we don't do that,
14842 * is_state_visited() might skip saving a checkpoint, causing
14843 * unnecessarily long sequence of not checkpointed
14844 * instructions and jumps, leading to exhaustion of jump
14845 * history buffer, and potentially other undesired outcomes.
14846 * It is expected that with correct open-coded iterators
14847 * convergence will happen quickly, so we don't run a risk of
14848 * exhausting memory.
14850 mark_force_checkpoint(env, t);
14853 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
14856 if (BPF_SRC(insn->code) != BPF_K)
14859 if (BPF_CLASS(insn->code) == BPF_JMP)
14864 /* unconditional jump with single edge */
14865 ret = push_insn(t, t + off + 1, FALLTHROUGH, env,
14870 mark_prune_point(env, t + off + 1);
14871 mark_jmp_point(env, t + off + 1);
14876 /* conditional jump with two edges */
14877 mark_prune_point(env, t);
14879 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
14883 return push_insn(t, t + insn->off + 1, BRANCH, env, true);
14887 /* non-recursive depth-first-search to detect loops in BPF program
14888 * loop == back-edge in directed graph
14890 static int check_cfg(struct bpf_verifier_env *env)
14892 int insn_cnt = env->prog->len;
14893 int *insn_stack, *insn_state;
14897 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14901 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14903 kvfree(insn_state);
14907 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14908 insn_stack[0] = 0; /* 0 is the first instruction */
14909 env->cfg.cur_stack = 1;
14911 while (env->cfg.cur_stack > 0) {
14912 int t = insn_stack[env->cfg.cur_stack - 1];
14914 ret = visit_insn(t, env);
14916 case DONE_EXPLORING:
14917 insn_state[t] = EXPLORED;
14918 env->cfg.cur_stack--;
14920 case KEEP_EXPLORING:
14924 verbose(env, "visit_insn internal bug\n");
14931 if (env->cfg.cur_stack < 0) {
14932 verbose(env, "pop stack internal bug\n");
14937 for (i = 0; i < insn_cnt; i++) {
14938 if (insn_state[i] != EXPLORED) {
14939 verbose(env, "unreachable insn %d\n", i);
14944 ret = 0; /* cfg looks good */
14947 kvfree(insn_state);
14948 kvfree(insn_stack);
14949 env->cfg.insn_state = env->cfg.insn_stack = NULL;
14953 static int check_abnormal_return(struct bpf_verifier_env *env)
14957 for (i = 1; i < env->subprog_cnt; i++) {
14958 if (env->subprog_info[i].has_ld_abs) {
14959 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14962 if (env->subprog_info[i].has_tail_call) {
14963 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14970 /* The minimum supported BTF func info size */
14971 #define MIN_BPF_FUNCINFO_SIZE 8
14972 #define MAX_FUNCINFO_REC_SIZE 252
14974 static int check_btf_func(struct bpf_verifier_env *env,
14975 const union bpf_attr *attr,
14978 const struct btf_type *type, *func_proto, *ret_type;
14979 u32 i, nfuncs, urec_size, min_size;
14980 u32 krec_size = sizeof(struct bpf_func_info);
14981 struct bpf_func_info *krecord;
14982 struct bpf_func_info_aux *info_aux = NULL;
14983 struct bpf_prog *prog;
14984 const struct btf *btf;
14986 u32 prev_offset = 0;
14987 bool scalar_return;
14990 nfuncs = attr->func_info_cnt;
14992 if (check_abnormal_return(env))
14997 if (nfuncs != env->subprog_cnt) {
14998 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15002 urec_size = attr->func_info_rec_size;
15003 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15004 urec_size > MAX_FUNCINFO_REC_SIZE ||
15005 urec_size % sizeof(u32)) {
15006 verbose(env, "invalid func info rec size %u\n", urec_size);
15011 btf = prog->aux->btf;
15013 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15014 min_size = min_t(u32, krec_size, urec_size);
15016 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15019 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15023 for (i = 0; i < nfuncs; i++) {
15024 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15026 if (ret == -E2BIG) {
15027 verbose(env, "nonzero tailing record in func info");
15028 /* set the size kernel expects so loader can zero
15029 * out the rest of the record.
15031 if (copy_to_bpfptr_offset(uattr,
15032 offsetof(union bpf_attr, func_info_rec_size),
15033 &min_size, sizeof(min_size)))
15039 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15044 /* check insn_off */
15047 if (krecord[i].insn_off) {
15049 "nonzero insn_off %u for the first func info record",
15050 krecord[i].insn_off);
15053 } else if (krecord[i].insn_off <= prev_offset) {
15055 "same or smaller insn offset (%u) than previous func info record (%u)",
15056 krecord[i].insn_off, prev_offset);
15060 if (env->subprog_info[i].start != krecord[i].insn_off) {
15061 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15065 /* check type_id */
15066 type = btf_type_by_id(btf, krecord[i].type_id);
15067 if (!type || !btf_type_is_func(type)) {
15068 verbose(env, "invalid type id %d in func info",
15069 krecord[i].type_id);
15072 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15074 func_proto = btf_type_by_id(btf, type->type);
15075 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15076 /* btf_func_check() already verified it during BTF load */
15078 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15080 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15081 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15082 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15085 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15086 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15090 prev_offset = krecord[i].insn_off;
15091 bpfptr_add(&urecord, urec_size);
15094 prog->aux->func_info = krecord;
15095 prog->aux->func_info_cnt = nfuncs;
15096 prog->aux->func_info_aux = info_aux;
15105 static void adjust_btf_func(struct bpf_verifier_env *env)
15107 struct bpf_prog_aux *aux = env->prog->aux;
15110 if (!aux->func_info)
15113 for (i = 0; i < env->subprog_cnt; i++)
15114 aux->func_info[i].insn_off = env->subprog_info[i].start;
15117 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
15118 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
15120 static int check_btf_line(struct bpf_verifier_env *env,
15121 const union bpf_attr *attr,
15124 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15125 struct bpf_subprog_info *sub;
15126 struct bpf_line_info *linfo;
15127 struct bpf_prog *prog;
15128 const struct btf *btf;
15132 nr_linfo = attr->line_info_cnt;
15135 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15138 rec_size = attr->line_info_rec_size;
15139 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15140 rec_size > MAX_LINEINFO_REC_SIZE ||
15141 rec_size & (sizeof(u32) - 1))
15144 /* Need to zero it in case the userspace may
15145 * pass in a smaller bpf_line_info object.
15147 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15148 GFP_KERNEL | __GFP_NOWARN);
15153 btf = prog->aux->btf;
15156 sub = env->subprog_info;
15157 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15158 expected_size = sizeof(struct bpf_line_info);
15159 ncopy = min_t(u32, expected_size, rec_size);
15160 for (i = 0; i < nr_linfo; i++) {
15161 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15163 if (err == -E2BIG) {
15164 verbose(env, "nonzero tailing record in line_info");
15165 if (copy_to_bpfptr_offset(uattr,
15166 offsetof(union bpf_attr, line_info_rec_size),
15167 &expected_size, sizeof(expected_size)))
15173 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15179 * Check insn_off to ensure
15180 * 1) strictly increasing AND
15181 * 2) bounded by prog->len
15183 * The linfo[0].insn_off == 0 check logically falls into
15184 * the later "missing bpf_line_info for func..." case
15185 * because the first linfo[0].insn_off must be the
15186 * first sub also and the first sub must have
15187 * subprog_info[0].start == 0.
15189 if ((i && linfo[i].insn_off <= prev_offset) ||
15190 linfo[i].insn_off >= prog->len) {
15191 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15192 i, linfo[i].insn_off, prev_offset,
15198 if (!prog->insnsi[linfo[i].insn_off].code) {
15200 "Invalid insn code at line_info[%u].insn_off\n",
15206 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15207 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15208 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15213 if (s != env->subprog_cnt) {
15214 if (linfo[i].insn_off == sub[s].start) {
15215 sub[s].linfo_idx = i;
15217 } else if (sub[s].start < linfo[i].insn_off) {
15218 verbose(env, "missing bpf_line_info for func#%u\n", s);
15224 prev_offset = linfo[i].insn_off;
15225 bpfptr_add(&ulinfo, rec_size);
15228 if (s != env->subprog_cnt) {
15229 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15230 env->subprog_cnt - s, s);
15235 prog->aux->linfo = linfo;
15236 prog->aux->nr_linfo = nr_linfo;
15245 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
15246 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
15248 static int check_core_relo(struct bpf_verifier_env *env,
15249 const union bpf_attr *attr,
15252 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15253 struct bpf_core_relo core_relo = {};
15254 struct bpf_prog *prog = env->prog;
15255 const struct btf *btf = prog->aux->btf;
15256 struct bpf_core_ctx ctx = {
15260 bpfptr_t u_core_relo;
15263 nr_core_relo = attr->core_relo_cnt;
15266 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15269 rec_size = attr->core_relo_rec_size;
15270 if (rec_size < MIN_CORE_RELO_SIZE ||
15271 rec_size > MAX_CORE_RELO_SIZE ||
15272 rec_size % sizeof(u32))
15275 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15276 expected_size = sizeof(struct bpf_core_relo);
15277 ncopy = min_t(u32, expected_size, rec_size);
15279 /* Unlike func_info and line_info, copy and apply each CO-RE
15280 * relocation record one at a time.
15282 for (i = 0; i < nr_core_relo; i++) {
15283 /* future proofing when sizeof(bpf_core_relo) changes */
15284 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15286 if (err == -E2BIG) {
15287 verbose(env, "nonzero tailing record in core_relo");
15288 if (copy_to_bpfptr_offset(uattr,
15289 offsetof(union bpf_attr, core_relo_rec_size),
15290 &expected_size, sizeof(expected_size)))
15296 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15301 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15302 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15303 i, core_relo.insn_off, prog->len);
15308 err = bpf_core_apply(&ctx, &core_relo, i,
15309 &prog->insnsi[core_relo.insn_off / 8]);
15312 bpfptr_add(&u_core_relo, rec_size);
15317 static int check_btf_info(struct bpf_verifier_env *env,
15318 const union bpf_attr *attr,
15324 if (!attr->func_info_cnt && !attr->line_info_cnt) {
15325 if (check_abnormal_return(env))
15330 btf = btf_get_by_fd(attr->prog_btf_fd);
15332 return PTR_ERR(btf);
15333 if (btf_is_kernel(btf)) {
15337 env->prog->aux->btf = btf;
15339 err = check_btf_func(env, attr, uattr);
15343 err = check_btf_line(env, attr, uattr);
15347 err = check_core_relo(env, attr, uattr);
15354 /* check %cur's range satisfies %old's */
15355 static bool range_within(struct bpf_reg_state *old,
15356 struct bpf_reg_state *cur)
15358 return old->umin_value <= cur->umin_value &&
15359 old->umax_value >= cur->umax_value &&
15360 old->smin_value <= cur->smin_value &&
15361 old->smax_value >= cur->smax_value &&
15362 old->u32_min_value <= cur->u32_min_value &&
15363 old->u32_max_value >= cur->u32_max_value &&
15364 old->s32_min_value <= cur->s32_min_value &&
15365 old->s32_max_value >= cur->s32_max_value;
15368 /* If in the old state two registers had the same id, then they need to have
15369 * the same id in the new state as well. But that id could be different from
15370 * the old state, so we need to track the mapping from old to new ids.
15371 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15372 * regs with old id 5 must also have new id 9 for the new state to be safe. But
15373 * regs with a different old id could still have new id 9, we don't care about
15375 * So we look through our idmap to see if this old id has been seen before. If
15376 * so, we require the new id to match; otherwise, we add the id pair to the map.
15378 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15380 struct bpf_id_pair *map = idmap->map;
15383 /* either both IDs should be set or both should be zero */
15384 if (!!old_id != !!cur_id)
15387 if (old_id == 0) /* cur_id == 0 as well */
15390 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15392 /* Reached an empty slot; haven't seen this id before */
15393 map[i].old = old_id;
15394 map[i].cur = cur_id;
15397 if (map[i].old == old_id)
15398 return map[i].cur == cur_id;
15399 if (map[i].cur == cur_id)
15402 /* We ran out of idmap slots, which should be impossible */
15407 /* Similar to check_ids(), but allocate a unique temporary ID
15408 * for 'old_id' or 'cur_id' of zero.
15409 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15411 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15413 old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15414 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15416 return check_ids(old_id, cur_id, idmap);
15419 static void clean_func_state(struct bpf_verifier_env *env,
15420 struct bpf_func_state *st)
15422 enum bpf_reg_liveness live;
15425 for (i = 0; i < BPF_REG_FP; i++) {
15426 live = st->regs[i].live;
15427 /* liveness must not touch this register anymore */
15428 st->regs[i].live |= REG_LIVE_DONE;
15429 if (!(live & REG_LIVE_READ))
15430 /* since the register is unused, clear its state
15431 * to make further comparison simpler
15433 __mark_reg_not_init(env, &st->regs[i]);
15436 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15437 live = st->stack[i].spilled_ptr.live;
15438 /* liveness must not touch this stack slot anymore */
15439 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15440 if (!(live & REG_LIVE_READ)) {
15441 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15442 for (j = 0; j < BPF_REG_SIZE; j++)
15443 st->stack[i].slot_type[j] = STACK_INVALID;
15448 static void clean_verifier_state(struct bpf_verifier_env *env,
15449 struct bpf_verifier_state *st)
15453 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15454 /* all regs in this state in all frames were already marked */
15457 for (i = 0; i <= st->curframe; i++)
15458 clean_func_state(env, st->frame[i]);
15461 /* the parentage chains form a tree.
15462 * the verifier states are added to state lists at given insn and
15463 * pushed into state stack for future exploration.
15464 * when the verifier reaches bpf_exit insn some of the verifer states
15465 * stored in the state lists have their final liveness state already,
15466 * but a lot of states will get revised from liveness point of view when
15467 * the verifier explores other branches.
15470 * 2: if r1 == 100 goto pc+1
15473 * when the verifier reaches exit insn the register r0 in the state list of
15474 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15475 * of insn 2 and goes exploring further. At the insn 4 it will walk the
15476 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15478 * Since the verifier pushes the branch states as it sees them while exploring
15479 * the program the condition of walking the branch instruction for the second
15480 * time means that all states below this branch were already explored and
15481 * their final liveness marks are already propagated.
15482 * Hence when the verifier completes the search of state list in is_state_visited()
15483 * we can call this clean_live_states() function to mark all liveness states
15484 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15485 * will not be used.
15486 * This function also clears the registers and stack for states that !READ
15487 * to simplify state merging.
15489 * Important note here that walking the same branch instruction in the callee
15490 * doesn't meant that the states are DONE. The verifier has to compare
15493 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15494 struct bpf_verifier_state *cur)
15496 struct bpf_verifier_state_list *sl;
15499 sl = *explored_state(env, insn);
15501 if (sl->state.branches)
15503 if (sl->state.insn_idx != insn ||
15504 sl->state.curframe != cur->curframe)
15506 for (i = 0; i <= cur->curframe; i++)
15507 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15509 clean_verifier_state(env, &sl->state);
15515 static bool regs_exact(const struct bpf_reg_state *rold,
15516 const struct bpf_reg_state *rcur,
15517 struct bpf_idmap *idmap)
15519 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15520 check_ids(rold->id, rcur->id, idmap) &&
15521 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15524 /* Returns true if (rold safe implies rcur safe) */
15525 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15526 struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
15528 if (!(rold->live & REG_LIVE_READ))
15529 /* explored state didn't use this */
15531 if (rold->type == NOT_INIT)
15532 /* explored state can't have used this */
15534 if (rcur->type == NOT_INIT)
15537 /* Enforce that register types have to match exactly, including their
15538 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15541 * One can make a point that using a pointer register as unbounded
15542 * SCALAR would be technically acceptable, but this could lead to
15543 * pointer leaks because scalars are allowed to leak while pointers
15544 * are not. We could make this safe in special cases if root is
15545 * calling us, but it's probably not worth the hassle.
15547 * Also, register types that are *not* MAYBE_NULL could technically be
15548 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15549 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15550 * to the same map).
15551 * However, if the old MAYBE_NULL register then got NULL checked,
15552 * doing so could have affected others with the same id, and we can't
15553 * check for that because we lost the id when we converted to
15554 * a non-MAYBE_NULL variant.
15555 * So, as a general rule we don't allow mixing MAYBE_NULL and
15556 * non-MAYBE_NULL registers as well.
15558 if (rold->type != rcur->type)
15561 switch (base_type(rold->type)) {
15563 if (env->explore_alu_limits) {
15564 /* explore_alu_limits disables tnum_in() and range_within()
15565 * logic and requires everything to be strict
15567 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15568 check_scalar_ids(rold->id, rcur->id, idmap);
15570 if (!rold->precise)
15572 /* Why check_ids() for scalar registers?
15574 * Consider the following BPF code:
15575 * 1: r6 = ... unbound scalar, ID=a ...
15576 * 2: r7 = ... unbound scalar, ID=b ...
15577 * 3: if (r6 > r7) goto +1
15579 * 5: if (r6 > X) goto ...
15580 * 6: ... memory operation using r7 ...
15582 * First verification path is [1-6]:
15583 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
15584 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
15585 * r7 <= X, because r6 and r7 share same id.
15586 * Next verification path is [1-4, 6].
15588 * Instruction (6) would be reached in two states:
15589 * I. r6{.id=b}, r7{.id=b} via path 1-6;
15590 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
15592 * Use check_ids() to distinguish these states.
15594 * Also verify that new value satisfies old value range knowledge.
15596 return range_within(rold, rcur) &&
15597 tnum_in(rold->var_off, rcur->var_off) &&
15598 check_scalar_ids(rold->id, rcur->id, idmap);
15599 case PTR_TO_MAP_KEY:
15600 case PTR_TO_MAP_VALUE:
15603 case PTR_TO_TP_BUFFER:
15604 /* If the new min/max/var_off satisfy the old ones and
15605 * everything else matches, we are OK.
15607 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
15608 range_within(rold, rcur) &&
15609 tnum_in(rold->var_off, rcur->var_off) &&
15610 check_ids(rold->id, rcur->id, idmap) &&
15611 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15612 case PTR_TO_PACKET_META:
15613 case PTR_TO_PACKET:
15614 /* We must have at least as much range as the old ptr
15615 * did, so that any accesses which were safe before are
15616 * still safe. This is true even if old range < old off,
15617 * since someone could have accessed through (ptr - k), or
15618 * even done ptr -= k in a register, to get a safe access.
15620 if (rold->range > rcur->range)
15622 /* If the offsets don't match, we can't trust our alignment;
15623 * nor can we be sure that we won't fall out of range.
15625 if (rold->off != rcur->off)
15627 /* id relations must be preserved */
15628 if (!check_ids(rold->id, rcur->id, idmap))
15630 /* new val must satisfy old val knowledge */
15631 return range_within(rold, rcur) &&
15632 tnum_in(rold->var_off, rcur->var_off);
15634 /* two stack pointers are equal only if they're pointing to
15635 * the same stack frame, since fp-8 in foo != fp-8 in bar
15637 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
15639 return regs_exact(rold, rcur, idmap);
15643 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
15644 struct bpf_func_state *cur, struct bpf_idmap *idmap)
15648 /* walk slots of the explored stack and ignore any additional
15649 * slots in the current stack, since explored(safe) state
15652 for (i = 0; i < old->allocated_stack; i++) {
15653 struct bpf_reg_state *old_reg, *cur_reg;
15655 spi = i / BPF_REG_SIZE;
15657 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
15658 i += BPF_REG_SIZE - 1;
15659 /* explored state didn't use this */
15663 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
15666 if (env->allow_uninit_stack &&
15667 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
15670 /* explored stack has more populated slots than current stack
15671 * and these slots were used
15673 if (i >= cur->allocated_stack)
15676 /* if old state was safe with misc data in the stack
15677 * it will be safe with zero-initialized stack.
15678 * The opposite is not true
15680 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
15681 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
15683 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
15684 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
15685 /* Ex: old explored (safe) state has STACK_SPILL in
15686 * this stack slot, but current has STACK_MISC ->
15687 * this verifier states are not equivalent,
15688 * return false to continue verification of this path
15691 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
15693 /* Both old and cur are having same slot_type */
15694 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
15696 /* when explored and current stack slot are both storing
15697 * spilled registers, check that stored pointers types
15698 * are the same as well.
15699 * Ex: explored safe path could have stored
15700 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
15701 * but current path has stored:
15702 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
15703 * such verifier states are not equivalent.
15704 * return false to continue verification of this path
15706 if (!regsafe(env, &old->stack[spi].spilled_ptr,
15707 &cur->stack[spi].spilled_ptr, idmap))
15711 old_reg = &old->stack[spi].spilled_ptr;
15712 cur_reg = &cur->stack[spi].spilled_ptr;
15713 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
15714 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
15715 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15719 old_reg = &old->stack[spi].spilled_ptr;
15720 cur_reg = &cur->stack[spi].spilled_ptr;
15721 /* iter.depth is not compared between states as it
15722 * doesn't matter for correctness and would otherwise
15723 * prevent convergence; we maintain it only to prevent
15724 * infinite loop check triggering, see
15725 * iter_active_depths_differ()
15727 if (old_reg->iter.btf != cur_reg->iter.btf ||
15728 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
15729 old_reg->iter.state != cur_reg->iter.state ||
15730 /* ignore {old_reg,cur_reg}->iter.depth, see above */
15731 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15736 case STACK_INVALID:
15738 /* Ensure that new unhandled slot types return false by default */
15746 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
15747 struct bpf_idmap *idmap)
15751 if (old->acquired_refs != cur->acquired_refs)
15754 for (i = 0; i < old->acquired_refs; i++) {
15755 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
15762 /* compare two verifier states
15764 * all states stored in state_list are known to be valid, since
15765 * verifier reached 'bpf_exit' instruction through them
15767 * this function is called when verifier exploring different branches of
15768 * execution popped from the state stack. If it sees an old state that has
15769 * more strict register state and more strict stack state then this execution
15770 * branch doesn't need to be explored further, since verifier already
15771 * concluded that more strict state leads to valid finish.
15773 * Therefore two states are equivalent if register state is more conservative
15774 * and explored stack state is more conservative than the current one.
15777 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
15778 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
15780 * In other words if current stack state (one being explored) has more
15781 * valid slots than old one that already passed validation, it means
15782 * the verifier can stop exploring and conclude that current state is valid too
15784 * Similarly with registers. If explored state has register type as invalid
15785 * whereas register type in current state is meaningful, it means that
15786 * the current state will reach 'bpf_exit' instruction safely
15788 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
15789 struct bpf_func_state *cur)
15793 for (i = 0; i < MAX_BPF_REG; i++)
15794 if (!regsafe(env, &old->regs[i], &cur->regs[i],
15795 &env->idmap_scratch))
15798 if (!stacksafe(env, old, cur, &env->idmap_scratch))
15801 if (!refsafe(old, cur, &env->idmap_scratch))
15807 static bool states_equal(struct bpf_verifier_env *env,
15808 struct bpf_verifier_state *old,
15809 struct bpf_verifier_state *cur)
15813 if (old->curframe != cur->curframe)
15816 env->idmap_scratch.tmp_id_gen = env->id_gen;
15817 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
15819 /* Verification state from speculative execution simulation
15820 * must never prune a non-speculative execution one.
15822 if (old->speculative && !cur->speculative)
15825 if (old->active_lock.ptr != cur->active_lock.ptr)
15828 /* Old and cur active_lock's have to be either both present
15831 if (!!old->active_lock.id != !!cur->active_lock.id)
15834 if (old->active_lock.id &&
15835 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
15838 if (old->active_rcu_lock != cur->active_rcu_lock)
15841 /* for states to be equal callsites have to be the same
15842 * and all frame states need to be equivalent
15844 for (i = 0; i <= old->curframe; i++) {
15845 if (old->frame[i]->callsite != cur->frame[i]->callsite)
15847 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
15853 /* Return 0 if no propagation happened. Return negative error code if error
15854 * happened. Otherwise, return the propagated bit.
15856 static int propagate_liveness_reg(struct bpf_verifier_env *env,
15857 struct bpf_reg_state *reg,
15858 struct bpf_reg_state *parent_reg)
15860 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15861 u8 flag = reg->live & REG_LIVE_READ;
15864 /* When comes here, read flags of PARENT_REG or REG could be any of
15865 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15866 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15868 if (parent_flag == REG_LIVE_READ64 ||
15869 /* Or if there is no read flag from REG. */
15871 /* Or if the read flag from REG is the same as PARENT_REG. */
15872 parent_flag == flag)
15875 err = mark_reg_read(env, reg, parent_reg, flag);
15882 /* A write screens off any subsequent reads; but write marks come from the
15883 * straight-line code between a state and its parent. When we arrive at an
15884 * equivalent state (jump target or such) we didn't arrive by the straight-line
15885 * code, so read marks in the state must propagate to the parent regardless
15886 * of the state's write marks. That's what 'parent == state->parent' comparison
15887 * in mark_reg_read() is for.
15889 static int propagate_liveness(struct bpf_verifier_env *env,
15890 const struct bpf_verifier_state *vstate,
15891 struct bpf_verifier_state *vparent)
15893 struct bpf_reg_state *state_reg, *parent_reg;
15894 struct bpf_func_state *state, *parent;
15895 int i, frame, err = 0;
15897 if (vparent->curframe != vstate->curframe) {
15898 WARN(1, "propagate_live: parent frame %d current frame %d\n",
15899 vparent->curframe, vstate->curframe);
15902 /* Propagate read liveness of registers... */
15903 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
15904 for (frame = 0; frame <= vstate->curframe; frame++) {
15905 parent = vparent->frame[frame];
15906 state = vstate->frame[frame];
15907 parent_reg = parent->regs;
15908 state_reg = state->regs;
15909 /* We don't need to worry about FP liveness, it's read-only */
15910 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
15911 err = propagate_liveness_reg(env, &state_reg[i],
15915 if (err == REG_LIVE_READ64)
15916 mark_insn_zext(env, &parent_reg[i]);
15919 /* Propagate stack slots. */
15920 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15921 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
15922 parent_reg = &parent->stack[i].spilled_ptr;
15923 state_reg = &state->stack[i].spilled_ptr;
15924 err = propagate_liveness_reg(env, state_reg,
15933 /* find precise scalars in the previous equivalent state and
15934 * propagate them into the current state
15936 static int propagate_precision(struct bpf_verifier_env *env,
15937 const struct bpf_verifier_state *old)
15939 struct bpf_reg_state *state_reg;
15940 struct bpf_func_state *state;
15941 int i, err = 0, fr;
15944 for (fr = old->curframe; fr >= 0; fr--) {
15945 state = old->frame[fr];
15946 state_reg = state->regs;
15948 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15949 if (state_reg->type != SCALAR_VALUE ||
15950 !state_reg->precise ||
15951 !(state_reg->live & REG_LIVE_READ))
15953 if (env->log.level & BPF_LOG_LEVEL2) {
15955 verbose(env, "frame %d: propagating r%d", fr, i);
15957 verbose(env, ",r%d", i);
15959 bt_set_frame_reg(&env->bt, fr, i);
15963 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15964 if (!is_spilled_reg(&state->stack[i]))
15966 state_reg = &state->stack[i].spilled_ptr;
15967 if (state_reg->type != SCALAR_VALUE ||
15968 !state_reg->precise ||
15969 !(state_reg->live & REG_LIVE_READ))
15971 if (env->log.level & BPF_LOG_LEVEL2) {
15973 verbose(env, "frame %d: propagating fp%d",
15974 fr, (-i - 1) * BPF_REG_SIZE);
15976 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
15978 bt_set_frame_slot(&env->bt, fr, i);
15982 verbose(env, "\n");
15985 err = mark_chain_precision_batch(env);
15992 static bool states_maybe_looping(struct bpf_verifier_state *old,
15993 struct bpf_verifier_state *cur)
15995 struct bpf_func_state *fold, *fcur;
15996 int i, fr = cur->curframe;
15998 if (old->curframe != fr)
16001 fold = old->frame[fr];
16002 fcur = cur->frame[fr];
16003 for (i = 0; i < MAX_BPF_REG; i++)
16004 if (memcmp(&fold->regs[i], &fcur->regs[i],
16005 offsetof(struct bpf_reg_state, parent)))
16010 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16012 return env->insn_aux_data[insn_idx].is_iter_next;
16015 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16016 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16017 * states to match, which otherwise would look like an infinite loop. So while
16018 * iter_next() calls are taken care of, we still need to be careful and
16019 * prevent erroneous and too eager declaration of "ininite loop", when
16020 * iterators are involved.
16022 * Here's a situation in pseudo-BPF assembly form:
16024 * 0: again: ; set up iter_next() call args
16025 * 1: r1 = &it ; <CHECKPOINT HERE>
16026 * 2: call bpf_iter_num_next ; this is iter_next() call
16027 * 3: if r0 == 0 goto done
16028 * 4: ... something useful here ...
16029 * 5: goto again ; another iteration
16032 * 8: call bpf_iter_num_destroy ; clean up iter state
16035 * This is a typical loop. Let's assume that we have a prune point at 1:,
16036 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16037 * again`, assuming other heuristics don't get in a way).
16039 * When we first time come to 1:, let's say we have some state X. We proceed
16040 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16041 * Now we come back to validate that forked ACTIVE state. We proceed through
16042 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16043 * are converging. But the problem is that we don't know that yet, as this
16044 * convergence has to happen at iter_next() call site only. So if nothing is
16045 * done, at 1: verifier will use bounded loop logic and declare infinite
16046 * looping (and would be *technically* correct, if not for iterator's
16047 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16048 * don't want that. So what we do in process_iter_next_call() when we go on
16049 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16050 * a different iteration. So when we suspect an infinite loop, we additionally
16051 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16052 * pretend we are not looping and wait for next iter_next() call.
16054 * This only applies to ACTIVE state. In DRAINED state we don't expect to
16055 * loop, because that would actually mean infinite loop, as DRAINED state is
16056 * "sticky", and so we'll keep returning into the same instruction with the
16057 * same state (at least in one of possible code paths).
16059 * This approach allows to keep infinite loop heuristic even in the face of
16060 * active iterator. E.g., C snippet below is and will be detected as
16061 * inifintely looping:
16063 * struct bpf_iter_num it;
16066 * bpf_iter_num_new(&it, 0, 10);
16067 * while ((p = bpf_iter_num_next(&t))) {
16069 * while (x--) {} // <<-- infinite loop here
16073 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16075 struct bpf_reg_state *slot, *cur_slot;
16076 struct bpf_func_state *state;
16079 for (fr = old->curframe; fr >= 0; fr--) {
16080 state = old->frame[fr];
16081 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16082 if (state->stack[i].slot_type[0] != STACK_ITER)
16085 slot = &state->stack[i].spilled_ptr;
16086 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16089 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16090 if (cur_slot->iter.depth != slot->iter.depth)
16097 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16099 struct bpf_verifier_state_list *new_sl;
16100 struct bpf_verifier_state_list *sl, **pprev;
16101 struct bpf_verifier_state *cur = env->cur_state, *new;
16102 int i, j, err, states_cnt = 0;
16103 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16104 bool add_new_state = force_new_state;
16106 /* bpf progs typically have pruning point every 4 instructions
16107 * http://vger.kernel.org/bpfconf2019.html#session-1
16108 * Do not add new state for future pruning if the verifier hasn't seen
16109 * at least 2 jumps and at least 8 instructions.
16110 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16111 * In tests that amounts to up to 50% reduction into total verifier
16112 * memory consumption and 20% verifier time speedup.
16114 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16115 env->insn_processed - env->prev_insn_processed >= 8)
16116 add_new_state = true;
16118 pprev = explored_state(env, insn_idx);
16121 clean_live_states(env, insn_idx, cur);
16125 if (sl->state.insn_idx != insn_idx)
16128 if (sl->state.branches) {
16129 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16131 if (frame->in_async_callback_fn &&
16132 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16133 /* Different async_entry_cnt means that the verifier is
16134 * processing another entry into async callback.
16135 * Seeing the same state is not an indication of infinite
16136 * loop or infinite recursion.
16137 * But finding the same state doesn't mean that it's safe
16138 * to stop processing the current state. The previous state
16139 * hasn't yet reached bpf_exit, since state.branches > 0.
16140 * Checking in_async_callback_fn alone is not enough either.
16141 * Since the verifier still needs to catch infinite loops
16142 * inside async callbacks.
16144 goto skip_inf_loop_check;
16146 /* BPF open-coded iterators loop detection is special.
16147 * states_maybe_looping() logic is too simplistic in detecting
16148 * states that *might* be equivalent, because it doesn't know
16149 * about ID remapping, so don't even perform it.
16150 * See process_iter_next_call() and iter_active_depths_differ()
16151 * for overview of the logic. When current and one of parent
16152 * states are detected as equivalent, it's a good thing: we prove
16153 * convergence and can stop simulating further iterations.
16154 * It's safe to assume that iterator loop will finish, taking into
16155 * account iter_next() contract of eventually returning
16156 * sticky NULL result.
16158 if (is_iter_next_insn(env, insn_idx)) {
16159 if (states_equal(env, &sl->state, cur)) {
16160 struct bpf_func_state *cur_frame;
16161 struct bpf_reg_state *iter_state, *iter_reg;
16164 cur_frame = cur->frame[cur->curframe];
16165 /* btf_check_iter_kfuncs() enforces that
16166 * iter state pointer is always the first arg
16168 iter_reg = &cur_frame->regs[BPF_REG_1];
16169 /* current state is valid due to states_equal(),
16170 * so we can assume valid iter and reg state,
16171 * no need for extra (re-)validations
16173 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16174 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16175 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
16178 goto skip_inf_loop_check;
16180 /* attempt to detect infinite loop to avoid unnecessary doomed work */
16181 if (states_maybe_looping(&sl->state, cur) &&
16182 states_equal(env, &sl->state, cur) &&
16183 !iter_active_depths_differ(&sl->state, cur)) {
16184 verbose_linfo(env, insn_idx, "; ");
16185 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16188 /* if the verifier is processing a loop, avoid adding new state
16189 * too often, since different loop iterations have distinct
16190 * states and may not help future pruning.
16191 * This threshold shouldn't be too low to make sure that
16192 * a loop with large bound will be rejected quickly.
16193 * The most abusive loop will be:
16195 * if r1 < 1000000 goto pc-2
16196 * 1M insn_procssed limit / 100 == 10k peak states.
16197 * This threshold shouldn't be too high either, since states
16198 * at the end of the loop are likely to be useful in pruning.
16200 skip_inf_loop_check:
16201 if (!force_new_state &&
16202 env->jmps_processed - env->prev_jmps_processed < 20 &&
16203 env->insn_processed - env->prev_insn_processed < 100)
16204 add_new_state = false;
16207 if (states_equal(env, &sl->state, cur)) {
16210 /* reached equivalent register/stack state,
16211 * prune the search.
16212 * Registers read by the continuation are read by us.
16213 * If we have any write marks in env->cur_state, they
16214 * will prevent corresponding reads in the continuation
16215 * from reaching our parent (an explored_state). Our
16216 * own state will get the read marks recorded, but
16217 * they'll be immediately forgotten as we're pruning
16218 * this state and will pop a new one.
16220 err = propagate_liveness(env, &sl->state, cur);
16222 /* if previous state reached the exit with precision and
16223 * current state is equivalent to it (except precsion marks)
16224 * the precision needs to be propagated back in
16225 * the current state.
16227 err = err ? : push_jmp_history(env, cur);
16228 err = err ? : propagate_precision(env, &sl->state);
16234 /* when new state is not going to be added do not increase miss count.
16235 * Otherwise several loop iterations will remove the state
16236 * recorded earlier. The goal of these heuristics is to have
16237 * states from some iterations of the loop (some in the beginning
16238 * and some at the end) to help pruning.
16242 /* heuristic to determine whether this state is beneficial
16243 * to keep checking from state equivalence point of view.
16244 * Higher numbers increase max_states_per_insn and verification time,
16245 * but do not meaningfully decrease insn_processed.
16247 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
16248 /* the state is unlikely to be useful. Remove it to
16249 * speed up verification
16252 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
16253 u32 br = sl->state.branches;
16256 "BUG live_done but branches_to_explore %d\n",
16258 free_verifier_state(&sl->state, false);
16260 env->peak_states--;
16262 /* cannot free this state, since parentage chain may
16263 * walk it later. Add it for free_list instead to
16264 * be freed at the end of verification
16266 sl->next = env->free_list;
16267 env->free_list = sl;
16277 if (env->max_states_per_insn < states_cnt)
16278 env->max_states_per_insn = states_cnt;
16280 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16283 if (!add_new_state)
16286 /* There were no equivalent states, remember the current one.
16287 * Technically the current state is not proven to be safe yet,
16288 * but it will either reach outer most bpf_exit (which means it's safe)
16289 * or it will be rejected. When there are no loops the verifier won't be
16290 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16291 * again on the way to bpf_exit.
16292 * When looping the sl->state.branches will be > 0 and this state
16293 * will not be considered for equivalence until branches == 0.
16295 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16298 env->total_states++;
16299 env->peak_states++;
16300 env->prev_jmps_processed = env->jmps_processed;
16301 env->prev_insn_processed = env->insn_processed;
16303 /* forget precise markings we inherited, see __mark_chain_precision */
16304 if (env->bpf_capable)
16305 mark_all_scalars_imprecise(env, cur);
16307 /* add new state to the head of linked list */
16308 new = &new_sl->state;
16309 err = copy_verifier_state(new, cur);
16311 free_verifier_state(new, false);
16315 new->insn_idx = insn_idx;
16316 WARN_ONCE(new->branches != 1,
16317 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16320 cur->first_insn_idx = insn_idx;
16321 clear_jmp_history(cur);
16322 new_sl->next = *explored_state(env, insn_idx);
16323 *explored_state(env, insn_idx) = new_sl;
16324 /* connect new state to parentage chain. Current frame needs all
16325 * registers connected. Only r6 - r9 of the callers are alive (pushed
16326 * to the stack implicitly by JITs) so in callers' frames connect just
16327 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16328 * the state of the call instruction (with WRITTEN set), and r0 comes
16329 * from callee with its full parentage chain, anyway.
16331 /* clear write marks in current state: the writes we did are not writes
16332 * our child did, so they don't screen off its reads from us.
16333 * (There are no read marks in current state, because reads always mark
16334 * their parent and current state never has children yet. Only
16335 * explored_states can get read marks.)
16337 for (j = 0; j <= cur->curframe; j++) {
16338 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16339 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16340 for (i = 0; i < BPF_REG_FP; i++)
16341 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16344 /* all stack frames are accessible from callee, clear them all */
16345 for (j = 0; j <= cur->curframe; j++) {
16346 struct bpf_func_state *frame = cur->frame[j];
16347 struct bpf_func_state *newframe = new->frame[j];
16349 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16350 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16351 frame->stack[i].spilled_ptr.parent =
16352 &newframe->stack[i].spilled_ptr;
16358 /* Return true if it's OK to have the same insn return a different type. */
16359 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16361 switch (base_type(type)) {
16363 case PTR_TO_SOCKET:
16364 case PTR_TO_SOCK_COMMON:
16365 case PTR_TO_TCP_SOCK:
16366 case PTR_TO_XDP_SOCK:
16367 case PTR_TO_BTF_ID:
16374 /* If an instruction was previously used with particular pointer types, then we
16375 * need to be careful to avoid cases such as the below, where it may be ok
16376 * for one branch accessing the pointer, but not ok for the other branch:
16381 * R1 = some_other_valid_ptr;
16384 * R2 = *(u32 *)(R1 + 0);
16386 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16388 return src != prev && (!reg_type_mismatch_ok(src) ||
16389 !reg_type_mismatch_ok(prev));
16392 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16393 bool allow_trust_missmatch)
16395 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16397 if (*prev_type == NOT_INIT) {
16398 /* Saw a valid insn
16399 * dst_reg = *(u32 *)(src_reg + off)
16400 * save type to validate intersecting paths
16403 } else if (reg_type_mismatch(type, *prev_type)) {
16404 /* Abuser program is trying to use the same insn
16405 * dst_reg = *(u32*) (src_reg + off)
16406 * with different pointer types:
16407 * src_reg == ctx in one branch and
16408 * src_reg == stack|map in some other branch.
16411 if (allow_trust_missmatch &&
16412 base_type(type) == PTR_TO_BTF_ID &&
16413 base_type(*prev_type) == PTR_TO_BTF_ID) {
16415 * Have to support a use case when one path through
16416 * the program yields TRUSTED pointer while another
16417 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16418 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16420 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16422 verbose(env, "same insn cannot be used with different pointers\n");
16430 static int do_check(struct bpf_verifier_env *env)
16432 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16433 struct bpf_verifier_state *state = env->cur_state;
16434 struct bpf_insn *insns = env->prog->insnsi;
16435 struct bpf_reg_state *regs;
16436 int insn_cnt = env->prog->len;
16437 bool do_print_state = false;
16438 int prev_insn_idx = -1;
16441 struct bpf_insn *insn;
16445 env->prev_insn_idx = prev_insn_idx;
16446 if (env->insn_idx >= insn_cnt) {
16447 verbose(env, "invalid insn idx %d insn_cnt %d\n",
16448 env->insn_idx, insn_cnt);
16452 insn = &insns[env->insn_idx];
16453 class = BPF_CLASS(insn->code);
16455 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16457 "BPF program is too large. Processed %d insn\n",
16458 env->insn_processed);
16462 state->last_insn_idx = env->prev_insn_idx;
16464 if (is_prune_point(env, env->insn_idx)) {
16465 err = is_state_visited(env, env->insn_idx);
16469 /* found equivalent state, can prune the search */
16470 if (env->log.level & BPF_LOG_LEVEL) {
16471 if (do_print_state)
16472 verbose(env, "\nfrom %d to %d%s: safe\n",
16473 env->prev_insn_idx, env->insn_idx,
16474 env->cur_state->speculative ?
16475 " (speculative execution)" : "");
16477 verbose(env, "%d: safe\n", env->insn_idx);
16479 goto process_bpf_exit;
16483 if (is_jmp_point(env, env->insn_idx)) {
16484 err = push_jmp_history(env, state);
16489 if (signal_pending(current))
16492 if (need_resched())
16495 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16496 verbose(env, "\nfrom %d to %d%s:",
16497 env->prev_insn_idx, env->insn_idx,
16498 env->cur_state->speculative ?
16499 " (speculative execution)" : "");
16500 print_verifier_state(env, state->frame[state->curframe], true);
16501 do_print_state = false;
16504 if (env->log.level & BPF_LOG_LEVEL) {
16505 const struct bpf_insn_cbs cbs = {
16506 .cb_call = disasm_kfunc_name,
16507 .cb_print = verbose,
16508 .private_data = env,
16511 if (verifier_state_scratched(env))
16512 print_insn_state(env, state->frame[state->curframe]);
16514 verbose_linfo(env, env->insn_idx, "; ");
16515 env->prev_log_pos = env->log.end_pos;
16516 verbose(env, "%d: ", env->insn_idx);
16517 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
16518 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16519 env->prev_log_pos = env->log.end_pos;
16522 if (bpf_prog_is_offloaded(env->prog->aux)) {
16523 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16524 env->prev_insn_idx);
16529 regs = cur_regs(env);
16530 sanitize_mark_insn_seen(env);
16531 prev_insn_idx = env->insn_idx;
16533 if (class == BPF_ALU || class == BPF_ALU64) {
16534 err = check_alu_op(env, insn);
16538 } else if (class == BPF_LDX) {
16539 enum bpf_reg_type src_reg_type;
16541 /* check for reserved fields is already done */
16543 /* check src operand */
16544 err = check_reg_arg(env, insn->src_reg, SRC_OP);
16548 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16552 src_reg_type = regs[insn->src_reg].type;
16554 /* check that memory (src_reg + off) is readable,
16555 * the state of dst_reg will be updated by this func
16557 err = check_mem_access(env, env->insn_idx, insn->src_reg,
16558 insn->off, BPF_SIZE(insn->code),
16559 BPF_READ, insn->dst_reg, false,
16560 BPF_MODE(insn->code) == BPF_MEMSX);
16564 err = save_aux_ptr_type(env, src_reg_type, true);
16567 } else if (class == BPF_STX) {
16568 enum bpf_reg_type dst_reg_type;
16570 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16571 err = check_atomic(env, env->insn_idx, insn);
16578 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16579 verbose(env, "BPF_STX uses reserved fields\n");
16583 /* check src1 operand */
16584 err = check_reg_arg(env, insn->src_reg, SRC_OP);
16587 /* check src2 operand */
16588 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16592 dst_reg_type = regs[insn->dst_reg].type;
16594 /* check that memory (dst_reg + off) is writeable */
16595 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16596 insn->off, BPF_SIZE(insn->code),
16597 BPF_WRITE, insn->src_reg, false, false);
16601 err = save_aux_ptr_type(env, dst_reg_type, false);
16604 } else if (class == BPF_ST) {
16605 enum bpf_reg_type dst_reg_type;
16607 if (BPF_MODE(insn->code) != BPF_MEM ||
16608 insn->src_reg != BPF_REG_0) {
16609 verbose(env, "BPF_ST uses reserved fields\n");
16612 /* check src operand */
16613 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16617 dst_reg_type = regs[insn->dst_reg].type;
16619 /* check that memory (dst_reg + off) is writeable */
16620 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16621 insn->off, BPF_SIZE(insn->code),
16622 BPF_WRITE, -1, false, false);
16626 err = save_aux_ptr_type(env, dst_reg_type, false);
16629 } else if (class == BPF_JMP || class == BPF_JMP32) {
16630 u8 opcode = BPF_OP(insn->code);
16632 env->jmps_processed++;
16633 if (opcode == BPF_CALL) {
16634 if (BPF_SRC(insn->code) != BPF_K ||
16635 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16636 && insn->off != 0) ||
16637 (insn->src_reg != BPF_REG_0 &&
16638 insn->src_reg != BPF_PSEUDO_CALL &&
16639 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
16640 insn->dst_reg != BPF_REG_0 ||
16641 class == BPF_JMP32) {
16642 verbose(env, "BPF_CALL uses reserved fields\n");
16646 if (env->cur_state->active_lock.ptr) {
16647 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
16648 (insn->src_reg == BPF_PSEUDO_CALL) ||
16649 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
16650 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
16651 verbose(env, "function calls are not allowed while holding a lock\n");
16655 if (insn->src_reg == BPF_PSEUDO_CALL)
16656 err = check_func_call(env, insn, &env->insn_idx);
16657 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
16658 err = check_kfunc_call(env, insn, &env->insn_idx);
16660 err = check_helper_call(env, insn, &env->insn_idx);
16664 mark_reg_scratched(env, BPF_REG_0);
16665 } else if (opcode == BPF_JA) {
16666 if (BPF_SRC(insn->code) != BPF_K ||
16667 insn->src_reg != BPF_REG_0 ||
16668 insn->dst_reg != BPF_REG_0 ||
16669 (class == BPF_JMP && insn->imm != 0) ||
16670 (class == BPF_JMP32 && insn->off != 0)) {
16671 verbose(env, "BPF_JA uses reserved fields\n");
16675 if (class == BPF_JMP)
16676 env->insn_idx += insn->off + 1;
16678 env->insn_idx += insn->imm + 1;
16681 } else if (opcode == BPF_EXIT) {
16682 if (BPF_SRC(insn->code) != BPF_K ||
16684 insn->src_reg != BPF_REG_0 ||
16685 insn->dst_reg != BPF_REG_0 ||
16686 class == BPF_JMP32) {
16687 verbose(env, "BPF_EXIT uses reserved fields\n");
16691 if (env->cur_state->active_lock.ptr &&
16692 !in_rbtree_lock_required_cb(env)) {
16693 verbose(env, "bpf_spin_unlock is missing\n");
16697 if (env->cur_state->active_rcu_lock &&
16698 !in_rbtree_lock_required_cb(env)) {
16699 verbose(env, "bpf_rcu_read_unlock is missing\n");
16703 /* We must do check_reference_leak here before
16704 * prepare_func_exit to handle the case when
16705 * state->curframe > 0, it may be a callback
16706 * function, for which reference_state must
16707 * match caller reference state when it exits.
16709 err = check_reference_leak(env);
16713 if (state->curframe) {
16714 /* exit from nested function */
16715 err = prepare_func_exit(env, &env->insn_idx);
16718 do_print_state = true;
16722 err = check_return_code(env);
16726 mark_verifier_state_scratched(env);
16727 update_branch_counts(env, env->cur_state);
16728 err = pop_stack(env, &prev_insn_idx,
16729 &env->insn_idx, pop_log);
16731 if (err != -ENOENT)
16735 do_print_state = true;
16739 err = check_cond_jmp_op(env, insn, &env->insn_idx);
16743 } else if (class == BPF_LD) {
16744 u8 mode = BPF_MODE(insn->code);
16746 if (mode == BPF_ABS || mode == BPF_IND) {
16747 err = check_ld_abs(env, insn);
16751 } else if (mode == BPF_IMM) {
16752 err = check_ld_imm(env, insn);
16757 sanitize_mark_insn_seen(env);
16759 verbose(env, "invalid BPF_LD mode\n");
16763 verbose(env, "unknown insn class %d\n", class);
16773 static int find_btf_percpu_datasec(struct btf *btf)
16775 const struct btf_type *t;
16780 * Both vmlinux and module each have their own ".data..percpu"
16781 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
16782 * types to look at only module's own BTF types.
16784 n = btf_nr_types(btf);
16785 if (btf_is_module(btf))
16786 i = btf_nr_types(btf_vmlinux);
16790 for(; i < n; i++) {
16791 t = btf_type_by_id(btf, i);
16792 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
16795 tname = btf_name_by_offset(btf, t->name_off);
16796 if (!strcmp(tname, ".data..percpu"))
16803 /* replace pseudo btf_id with kernel symbol address */
16804 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
16805 struct bpf_insn *insn,
16806 struct bpf_insn_aux_data *aux)
16808 const struct btf_var_secinfo *vsi;
16809 const struct btf_type *datasec;
16810 struct btf_mod_pair *btf_mod;
16811 const struct btf_type *t;
16812 const char *sym_name;
16813 bool percpu = false;
16814 u32 type, id = insn->imm;
16818 int i, btf_fd, err;
16820 btf_fd = insn[1].imm;
16822 btf = btf_get_by_fd(btf_fd);
16824 verbose(env, "invalid module BTF object FD specified.\n");
16828 if (!btf_vmlinux) {
16829 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16836 t = btf_type_by_id(btf, id);
16838 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
16843 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16844 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
16849 sym_name = btf_name_by_offset(btf, t->name_off);
16850 addr = kallsyms_lookup_name(sym_name);
16852 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16857 insn[0].imm = (u32)addr;
16858 insn[1].imm = addr >> 32;
16860 if (btf_type_is_func(t)) {
16861 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16862 aux->btf_var.mem_size = 0;
16866 datasec_id = find_btf_percpu_datasec(btf);
16867 if (datasec_id > 0) {
16868 datasec = btf_type_by_id(btf, datasec_id);
16869 for_each_vsi(i, datasec, vsi) {
16870 if (vsi->type == id) {
16878 t = btf_type_skip_modifiers(btf, type, NULL);
16880 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
16881 aux->btf_var.btf = btf;
16882 aux->btf_var.btf_id = type;
16883 } else if (!btf_type_is_struct(t)) {
16884 const struct btf_type *ret;
16888 /* resolve the type size of ksym. */
16889 ret = btf_resolve_size(btf, t, &tsize);
16891 tname = btf_name_by_offset(btf, t->name_off);
16892 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16893 tname, PTR_ERR(ret));
16897 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16898 aux->btf_var.mem_size = tsize;
16900 aux->btf_var.reg_type = PTR_TO_BTF_ID;
16901 aux->btf_var.btf = btf;
16902 aux->btf_var.btf_id = type;
16905 /* check whether we recorded this BTF (and maybe module) already */
16906 for (i = 0; i < env->used_btf_cnt; i++) {
16907 if (env->used_btfs[i].btf == btf) {
16913 if (env->used_btf_cnt >= MAX_USED_BTFS) {
16918 btf_mod = &env->used_btfs[env->used_btf_cnt];
16919 btf_mod->btf = btf;
16920 btf_mod->module = NULL;
16922 /* if we reference variables from kernel module, bump its refcount */
16923 if (btf_is_module(btf)) {
16924 btf_mod->module = btf_try_get_module(btf);
16925 if (!btf_mod->module) {
16931 env->used_btf_cnt++;
16939 static bool is_tracing_prog_type(enum bpf_prog_type type)
16942 case BPF_PROG_TYPE_KPROBE:
16943 case BPF_PROG_TYPE_TRACEPOINT:
16944 case BPF_PROG_TYPE_PERF_EVENT:
16945 case BPF_PROG_TYPE_RAW_TRACEPOINT:
16946 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
16953 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16954 struct bpf_map *map,
16955 struct bpf_prog *prog)
16958 enum bpf_prog_type prog_type = resolve_prog_type(prog);
16960 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16961 btf_record_has_field(map->record, BPF_RB_ROOT)) {
16962 if (is_tracing_prog_type(prog_type)) {
16963 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
16968 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
16969 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16970 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16974 if (is_tracing_prog_type(prog_type)) {
16975 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
16980 if (btf_record_has_field(map->record, BPF_TIMER)) {
16981 if (is_tracing_prog_type(prog_type)) {
16982 verbose(env, "tracing progs cannot use bpf_timer yet\n");
16987 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
16988 !bpf_offload_prog_map_match(prog, map)) {
16989 verbose(env, "offload device mismatch between prog and map\n");
16993 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
16994 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
16998 if (prog->aux->sleepable)
16999 switch (map->map_type) {
17000 case BPF_MAP_TYPE_HASH:
17001 case BPF_MAP_TYPE_LRU_HASH:
17002 case BPF_MAP_TYPE_ARRAY:
17003 case BPF_MAP_TYPE_PERCPU_HASH:
17004 case BPF_MAP_TYPE_PERCPU_ARRAY:
17005 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17006 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17007 case BPF_MAP_TYPE_HASH_OF_MAPS:
17008 case BPF_MAP_TYPE_RINGBUF:
17009 case BPF_MAP_TYPE_USER_RINGBUF:
17010 case BPF_MAP_TYPE_INODE_STORAGE:
17011 case BPF_MAP_TYPE_SK_STORAGE:
17012 case BPF_MAP_TYPE_TASK_STORAGE:
17013 case BPF_MAP_TYPE_CGRP_STORAGE:
17017 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17024 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17026 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17027 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17030 /* find and rewrite pseudo imm in ld_imm64 instructions:
17032 * 1. if it accesses map FD, replace it with actual map pointer.
17033 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17035 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17037 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17039 struct bpf_insn *insn = env->prog->insnsi;
17040 int insn_cnt = env->prog->len;
17043 err = bpf_prog_calc_tag(env->prog);
17047 for (i = 0; i < insn_cnt; i++, insn++) {
17048 if (BPF_CLASS(insn->code) == BPF_LDX &&
17049 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17051 verbose(env, "BPF_LDX uses reserved fields\n");
17055 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17056 struct bpf_insn_aux_data *aux;
17057 struct bpf_map *map;
17062 if (i == insn_cnt - 1 || insn[1].code != 0 ||
17063 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17064 insn[1].off != 0) {
17065 verbose(env, "invalid bpf_ld_imm64 insn\n");
17069 if (insn[0].src_reg == 0)
17070 /* valid generic load 64-bit imm */
17073 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17074 aux = &env->insn_aux_data[i];
17075 err = check_pseudo_btf_id(env, insn, aux);
17081 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17082 aux = &env->insn_aux_data[i];
17083 aux->ptr_type = PTR_TO_FUNC;
17087 /* In final convert_pseudo_ld_imm64() step, this is
17088 * converted into regular 64-bit imm load insn.
17090 switch (insn[0].src_reg) {
17091 case BPF_PSEUDO_MAP_VALUE:
17092 case BPF_PSEUDO_MAP_IDX_VALUE:
17094 case BPF_PSEUDO_MAP_FD:
17095 case BPF_PSEUDO_MAP_IDX:
17096 if (insn[1].imm == 0)
17100 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17104 switch (insn[0].src_reg) {
17105 case BPF_PSEUDO_MAP_IDX_VALUE:
17106 case BPF_PSEUDO_MAP_IDX:
17107 if (bpfptr_is_null(env->fd_array)) {
17108 verbose(env, "fd_idx without fd_array is invalid\n");
17111 if (copy_from_bpfptr_offset(&fd, env->fd_array,
17112 insn[0].imm * sizeof(fd),
17122 map = __bpf_map_get(f);
17124 verbose(env, "fd %d is not pointing to valid bpf_map\n",
17126 return PTR_ERR(map);
17129 err = check_map_prog_compatibility(env, map, env->prog);
17135 aux = &env->insn_aux_data[i];
17136 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17137 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17138 addr = (unsigned long)map;
17140 u32 off = insn[1].imm;
17142 if (off >= BPF_MAX_VAR_OFF) {
17143 verbose(env, "direct value offset of %u is not allowed\n", off);
17148 if (!map->ops->map_direct_value_addr) {
17149 verbose(env, "no direct value access support for this map type\n");
17154 err = map->ops->map_direct_value_addr(map, &addr, off);
17156 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17157 map->value_size, off);
17162 aux->map_off = off;
17166 insn[0].imm = (u32)addr;
17167 insn[1].imm = addr >> 32;
17169 /* check whether we recorded this map already */
17170 for (j = 0; j < env->used_map_cnt; j++) {
17171 if (env->used_maps[j] == map) {
17172 aux->map_index = j;
17178 if (env->used_map_cnt >= MAX_USED_MAPS) {
17183 /* hold the map. If the program is rejected by verifier,
17184 * the map will be released by release_maps() or it
17185 * will be used by the valid program until it's unloaded
17186 * and all maps are released in free_used_maps()
17190 aux->map_index = env->used_map_cnt;
17191 env->used_maps[env->used_map_cnt++] = map;
17193 if (bpf_map_is_cgroup_storage(map) &&
17194 bpf_cgroup_storage_assign(env->prog->aux, map)) {
17195 verbose(env, "only one cgroup storage of each type is allowed\n");
17207 /* Basic sanity check before we invest more work here. */
17208 if (!bpf_opcode_in_insntable(insn->code)) {
17209 verbose(env, "unknown opcode %02x\n", insn->code);
17214 /* now all pseudo BPF_LD_IMM64 instructions load valid
17215 * 'struct bpf_map *' into a register instead of user map_fd.
17216 * These pointers will be used later by verifier to validate map access.
17221 /* drop refcnt of maps used by the rejected program */
17222 static void release_maps(struct bpf_verifier_env *env)
17224 __bpf_free_used_maps(env->prog->aux, env->used_maps,
17225 env->used_map_cnt);
17228 /* drop refcnt of maps used by the rejected program */
17229 static void release_btfs(struct bpf_verifier_env *env)
17231 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17232 env->used_btf_cnt);
17235 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17236 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17238 struct bpf_insn *insn = env->prog->insnsi;
17239 int insn_cnt = env->prog->len;
17242 for (i = 0; i < insn_cnt; i++, insn++) {
17243 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17245 if (insn->src_reg == BPF_PSEUDO_FUNC)
17251 /* single env->prog->insni[off] instruction was replaced with the range
17252 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
17253 * [0, off) and [off, end) to new locations, so the patched range stays zero
17255 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17256 struct bpf_insn_aux_data *new_data,
17257 struct bpf_prog *new_prog, u32 off, u32 cnt)
17259 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17260 struct bpf_insn *insn = new_prog->insnsi;
17261 u32 old_seen = old_data[off].seen;
17265 /* aux info at OFF always needs adjustment, no matter fast path
17266 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17267 * original insn at old prog.
17269 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17273 prog_len = new_prog->len;
17275 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17276 memcpy(new_data + off + cnt - 1, old_data + off,
17277 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17278 for (i = off; i < off + cnt - 1; i++) {
17279 /* Expand insni[off]'s seen count to the patched range. */
17280 new_data[i].seen = old_seen;
17281 new_data[i].zext_dst = insn_has_def32(env, insn + i);
17283 env->insn_aux_data = new_data;
17287 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17293 /* NOTE: fake 'exit' subprog should be updated as well. */
17294 for (i = 0; i <= env->subprog_cnt; i++) {
17295 if (env->subprog_info[i].start <= off)
17297 env->subprog_info[i].start += len - 1;
17301 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17303 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17304 int i, sz = prog->aux->size_poke_tab;
17305 struct bpf_jit_poke_descriptor *desc;
17307 for (i = 0; i < sz; i++) {
17309 if (desc->insn_idx <= off)
17311 desc->insn_idx += len - 1;
17315 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17316 const struct bpf_insn *patch, u32 len)
17318 struct bpf_prog *new_prog;
17319 struct bpf_insn_aux_data *new_data = NULL;
17322 new_data = vzalloc(array_size(env->prog->len + len - 1,
17323 sizeof(struct bpf_insn_aux_data)));
17328 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17329 if (IS_ERR(new_prog)) {
17330 if (PTR_ERR(new_prog) == -ERANGE)
17332 "insn %d cannot be patched due to 16-bit range\n",
17333 env->insn_aux_data[off].orig_idx);
17337 adjust_insn_aux_data(env, new_data, new_prog, off, len);
17338 adjust_subprog_starts(env, off, len);
17339 adjust_poke_descs(new_prog, off, len);
17343 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17348 /* find first prog starting at or after off (first to remove) */
17349 for (i = 0; i < env->subprog_cnt; i++)
17350 if (env->subprog_info[i].start >= off)
17352 /* find first prog starting at or after off + cnt (first to stay) */
17353 for (j = i; j < env->subprog_cnt; j++)
17354 if (env->subprog_info[j].start >= off + cnt)
17356 /* if j doesn't start exactly at off + cnt, we are just removing
17357 * the front of previous prog
17359 if (env->subprog_info[j].start != off + cnt)
17363 struct bpf_prog_aux *aux = env->prog->aux;
17366 /* move fake 'exit' subprog as well */
17367 move = env->subprog_cnt + 1 - j;
17369 memmove(env->subprog_info + i,
17370 env->subprog_info + j,
17371 sizeof(*env->subprog_info) * move);
17372 env->subprog_cnt -= j - i;
17374 /* remove func_info */
17375 if (aux->func_info) {
17376 move = aux->func_info_cnt - j;
17378 memmove(aux->func_info + i,
17379 aux->func_info + j,
17380 sizeof(*aux->func_info) * move);
17381 aux->func_info_cnt -= j - i;
17382 /* func_info->insn_off is set after all code rewrites,
17383 * in adjust_btf_func() - no need to adjust
17387 /* convert i from "first prog to remove" to "first to adjust" */
17388 if (env->subprog_info[i].start == off)
17392 /* update fake 'exit' subprog as well */
17393 for (; i <= env->subprog_cnt; i++)
17394 env->subprog_info[i].start -= cnt;
17399 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17402 struct bpf_prog *prog = env->prog;
17403 u32 i, l_off, l_cnt, nr_linfo;
17404 struct bpf_line_info *linfo;
17406 nr_linfo = prog->aux->nr_linfo;
17410 linfo = prog->aux->linfo;
17412 /* find first line info to remove, count lines to be removed */
17413 for (i = 0; i < nr_linfo; i++)
17414 if (linfo[i].insn_off >= off)
17419 for (; i < nr_linfo; i++)
17420 if (linfo[i].insn_off < off + cnt)
17425 /* First live insn doesn't match first live linfo, it needs to "inherit"
17426 * last removed linfo. prog is already modified, so prog->len == off
17427 * means no live instructions after (tail of the program was removed).
17429 if (prog->len != off && l_cnt &&
17430 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17432 linfo[--i].insn_off = off + cnt;
17435 /* remove the line info which refer to the removed instructions */
17437 memmove(linfo + l_off, linfo + i,
17438 sizeof(*linfo) * (nr_linfo - i));
17440 prog->aux->nr_linfo -= l_cnt;
17441 nr_linfo = prog->aux->nr_linfo;
17444 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
17445 for (i = l_off; i < nr_linfo; i++)
17446 linfo[i].insn_off -= cnt;
17448 /* fix up all subprogs (incl. 'exit') which start >= off */
17449 for (i = 0; i <= env->subprog_cnt; i++)
17450 if (env->subprog_info[i].linfo_idx > l_off) {
17451 /* program may have started in the removed region but
17452 * may not be fully removed
17454 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17455 env->subprog_info[i].linfo_idx -= l_cnt;
17457 env->subprog_info[i].linfo_idx = l_off;
17463 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17465 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17466 unsigned int orig_prog_len = env->prog->len;
17469 if (bpf_prog_is_offloaded(env->prog->aux))
17470 bpf_prog_offload_remove_insns(env, off, cnt);
17472 err = bpf_remove_insns(env->prog, off, cnt);
17476 err = adjust_subprog_starts_after_remove(env, off, cnt);
17480 err = bpf_adj_linfo_after_remove(env, off, cnt);
17484 memmove(aux_data + off, aux_data + off + cnt,
17485 sizeof(*aux_data) * (orig_prog_len - off - cnt));
17490 /* The verifier does more data flow analysis than llvm and will not
17491 * explore branches that are dead at run time. Malicious programs can
17492 * have dead code too. Therefore replace all dead at-run-time code
17495 * Just nops are not optimal, e.g. if they would sit at the end of the
17496 * program and through another bug we would manage to jump there, then
17497 * we'd execute beyond program memory otherwise. Returning exception
17498 * code also wouldn't work since we can have subprogs where the dead
17499 * code could be located.
17501 static void sanitize_dead_code(struct bpf_verifier_env *env)
17503 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17504 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
17505 struct bpf_insn *insn = env->prog->insnsi;
17506 const int insn_cnt = env->prog->len;
17509 for (i = 0; i < insn_cnt; i++) {
17510 if (aux_data[i].seen)
17512 memcpy(insn + i, &trap, sizeof(trap));
17513 aux_data[i].zext_dst = false;
17517 static bool insn_is_cond_jump(u8 code)
17522 if (BPF_CLASS(code) == BPF_JMP32)
17523 return op != BPF_JA;
17525 if (BPF_CLASS(code) != BPF_JMP)
17528 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17531 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17533 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17534 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17535 struct bpf_insn *insn = env->prog->insnsi;
17536 const int insn_cnt = env->prog->len;
17539 for (i = 0; i < insn_cnt; i++, insn++) {
17540 if (!insn_is_cond_jump(insn->code))
17543 if (!aux_data[i + 1].seen)
17544 ja.off = insn->off;
17545 else if (!aux_data[i + 1 + insn->off].seen)
17550 if (bpf_prog_is_offloaded(env->prog->aux))
17551 bpf_prog_offload_replace_insn(env, i, &ja);
17553 memcpy(insn, &ja, sizeof(ja));
17557 static int opt_remove_dead_code(struct bpf_verifier_env *env)
17559 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17560 int insn_cnt = env->prog->len;
17563 for (i = 0; i < insn_cnt; i++) {
17567 while (i + j < insn_cnt && !aux_data[i + j].seen)
17572 err = verifier_remove_insns(env, i, j);
17575 insn_cnt = env->prog->len;
17581 static int opt_remove_nops(struct bpf_verifier_env *env)
17583 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17584 struct bpf_insn *insn = env->prog->insnsi;
17585 int insn_cnt = env->prog->len;
17588 for (i = 0; i < insn_cnt; i++) {
17589 if (memcmp(&insn[i], &ja, sizeof(ja)))
17592 err = verifier_remove_insns(env, i, 1);
17602 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17603 const union bpf_attr *attr)
17605 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
17606 struct bpf_insn_aux_data *aux = env->insn_aux_data;
17607 int i, patch_len, delta = 0, len = env->prog->len;
17608 struct bpf_insn *insns = env->prog->insnsi;
17609 struct bpf_prog *new_prog;
17612 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
17613 zext_patch[1] = BPF_ZEXT_REG(0);
17614 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17615 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17616 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
17617 for (i = 0; i < len; i++) {
17618 int adj_idx = i + delta;
17619 struct bpf_insn insn;
17622 insn = insns[adj_idx];
17623 load_reg = insn_def_regno(&insn);
17624 if (!aux[adj_idx].zext_dst) {
17632 class = BPF_CLASS(code);
17633 if (load_reg == -1)
17636 /* NOTE: arg "reg" (the fourth one) is only used for
17637 * BPF_STX + SRC_OP, so it is safe to pass NULL
17640 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
17641 if (class == BPF_LD &&
17642 BPF_MODE(code) == BPF_IMM)
17647 /* ctx load could be transformed into wider load. */
17648 if (class == BPF_LDX &&
17649 aux[adj_idx].ptr_type == PTR_TO_CTX)
17652 imm_rnd = get_random_u32();
17653 rnd_hi32_patch[0] = insn;
17654 rnd_hi32_patch[1].imm = imm_rnd;
17655 rnd_hi32_patch[3].dst_reg = load_reg;
17656 patch = rnd_hi32_patch;
17658 goto apply_patch_buffer;
17661 /* Add in an zero-extend instruction if a) the JIT has requested
17662 * it or b) it's a CMPXCHG.
17664 * The latter is because: BPF_CMPXCHG always loads a value into
17665 * R0, therefore always zero-extends. However some archs'
17666 * equivalent instruction only does this load when the
17667 * comparison is successful. This detail of CMPXCHG is
17668 * orthogonal to the general zero-extension behaviour of the
17669 * CPU, so it's treated independently of bpf_jit_needs_zext.
17671 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
17674 /* Zero-extension is done by the caller. */
17675 if (bpf_pseudo_kfunc_call(&insn))
17678 if (WARN_ON(load_reg == -1)) {
17679 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
17683 zext_patch[0] = insn;
17684 zext_patch[1].dst_reg = load_reg;
17685 zext_patch[1].src_reg = load_reg;
17686 patch = zext_patch;
17688 apply_patch_buffer:
17689 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
17692 env->prog = new_prog;
17693 insns = new_prog->insnsi;
17694 aux = env->insn_aux_data;
17695 delta += patch_len - 1;
17701 /* convert load instructions that access fields of a context type into a
17702 * sequence of instructions that access fields of the underlying structure:
17703 * struct __sk_buff -> struct sk_buff
17704 * struct bpf_sock_ops -> struct sock
17706 static int convert_ctx_accesses(struct bpf_verifier_env *env)
17708 const struct bpf_verifier_ops *ops = env->ops;
17709 int i, cnt, size, ctx_field_size, delta = 0;
17710 const int insn_cnt = env->prog->len;
17711 struct bpf_insn insn_buf[16], *insn;
17712 u32 target_size, size_default, off;
17713 struct bpf_prog *new_prog;
17714 enum bpf_access_type type;
17715 bool is_narrower_load;
17717 if (ops->gen_prologue || env->seen_direct_write) {
17718 if (!ops->gen_prologue) {
17719 verbose(env, "bpf verifier is misconfigured\n");
17722 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
17724 if (cnt >= ARRAY_SIZE(insn_buf)) {
17725 verbose(env, "bpf verifier is misconfigured\n");
17728 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
17732 env->prog = new_prog;
17737 if (bpf_prog_is_offloaded(env->prog->aux))
17740 insn = env->prog->insnsi + delta;
17742 for (i = 0; i < insn_cnt; i++, insn++) {
17743 bpf_convert_ctx_access_t convert_ctx_access;
17746 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
17747 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
17748 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
17749 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
17750 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
17751 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
17752 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
17754 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
17755 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
17756 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
17757 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
17758 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
17759 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
17760 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
17761 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
17767 if (type == BPF_WRITE &&
17768 env->insn_aux_data[i + delta].sanitize_stack_spill) {
17769 struct bpf_insn patch[] = {
17774 cnt = ARRAY_SIZE(patch);
17775 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
17780 env->prog = new_prog;
17781 insn = new_prog->insnsi + i + delta;
17785 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
17787 if (!ops->convert_ctx_access)
17789 convert_ctx_access = ops->convert_ctx_access;
17791 case PTR_TO_SOCKET:
17792 case PTR_TO_SOCK_COMMON:
17793 convert_ctx_access = bpf_sock_convert_ctx_access;
17795 case PTR_TO_TCP_SOCK:
17796 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
17798 case PTR_TO_XDP_SOCK:
17799 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
17801 case PTR_TO_BTF_ID:
17802 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
17803 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
17804 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
17805 * be said once it is marked PTR_UNTRUSTED, hence we must handle
17806 * any faults for loads into such types. BPF_WRITE is disallowed
17809 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
17810 if (type == BPF_READ) {
17811 if (BPF_MODE(insn->code) == BPF_MEM)
17812 insn->code = BPF_LDX | BPF_PROBE_MEM |
17813 BPF_SIZE((insn)->code);
17815 insn->code = BPF_LDX | BPF_PROBE_MEMSX |
17816 BPF_SIZE((insn)->code);
17817 env->prog->aux->num_exentries++;
17824 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
17825 size = BPF_LDST_BYTES(insn);
17826 mode = BPF_MODE(insn->code);
17828 /* If the read access is a narrower load of the field,
17829 * convert to a 4/8-byte load, to minimum program type specific
17830 * convert_ctx_access changes. If conversion is successful,
17831 * we will apply proper mask to the result.
17833 is_narrower_load = size < ctx_field_size;
17834 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17836 if (is_narrower_load) {
17839 if (type == BPF_WRITE) {
17840 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
17845 if (ctx_field_size == 4)
17847 else if (ctx_field_size == 8)
17848 size_code = BPF_DW;
17850 insn->off = off & ~(size_default - 1);
17851 insn->code = BPF_LDX | BPF_MEM | size_code;
17855 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17857 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17858 (ctx_field_size && !target_size)) {
17859 verbose(env, "bpf verifier is misconfigured\n");
17863 if (is_narrower_load && size < target_size) {
17864 u8 shift = bpf_ctx_narrow_access_offset(
17865 off, size, size_default) * 8;
17866 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17867 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17870 if (ctx_field_size <= 4) {
17872 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17875 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17876 (1 << size * 8) - 1);
17879 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17882 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17883 (1ULL << size * 8) - 1);
17886 if (mode == BPF_MEMSX)
17887 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
17888 insn->dst_reg, insn->dst_reg,
17891 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17897 /* keep walking new program and skip insns we just inserted */
17898 env->prog = new_prog;
17899 insn = new_prog->insnsi + i + delta;
17905 static int jit_subprogs(struct bpf_verifier_env *env)
17907 struct bpf_prog *prog = env->prog, **func, *tmp;
17908 int i, j, subprog_start, subprog_end = 0, len, subprog;
17909 struct bpf_map *map_ptr;
17910 struct bpf_insn *insn;
17911 void *old_bpf_func;
17912 int err, num_exentries;
17914 if (env->subprog_cnt <= 1)
17917 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17918 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
17921 /* Upon error here we cannot fall back to interpreter but
17922 * need a hard reject of the program. Thus -EFAULT is
17923 * propagated in any case.
17925 subprog = find_subprog(env, i + insn->imm + 1);
17927 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17928 i + insn->imm + 1);
17931 /* temporarily remember subprog id inside insn instead of
17932 * aux_data, since next loop will split up all insns into funcs
17934 insn->off = subprog;
17935 /* remember original imm in case JIT fails and fallback
17936 * to interpreter will be needed
17938 env->insn_aux_data[i].call_imm = insn->imm;
17939 /* point imm to __bpf_call_base+1 from JITs point of view */
17941 if (bpf_pseudo_func(insn))
17942 /* jit (e.g. x86_64) may emit fewer instructions
17943 * if it learns a u32 imm is the same as a u64 imm.
17944 * Force a non zero here.
17949 err = bpf_prog_alloc_jited_linfo(prog);
17951 goto out_undo_insn;
17954 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
17956 goto out_undo_insn;
17958 for (i = 0; i < env->subprog_cnt; i++) {
17959 subprog_start = subprog_end;
17960 subprog_end = env->subprog_info[i + 1].start;
17962 len = subprog_end - subprog_start;
17963 /* bpf_prog_run() doesn't call subprogs directly,
17964 * hence main prog stats include the runtime of subprogs.
17965 * subprogs don't have IDs and not reachable via prog_get_next_id
17966 * func[i]->stats will never be accessed and stays NULL
17968 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
17971 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17972 len * sizeof(struct bpf_insn));
17973 func[i]->type = prog->type;
17974 func[i]->len = len;
17975 if (bpf_prog_calc_tag(func[i]))
17977 func[i]->is_func = 1;
17978 func[i]->aux->func_idx = i;
17979 /* Below members will be freed only at prog->aux */
17980 func[i]->aux->btf = prog->aux->btf;
17981 func[i]->aux->func_info = prog->aux->func_info;
17982 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
17983 func[i]->aux->poke_tab = prog->aux->poke_tab;
17984 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
17986 for (j = 0; j < prog->aux->size_poke_tab; j++) {
17987 struct bpf_jit_poke_descriptor *poke;
17989 poke = &prog->aux->poke_tab[j];
17990 if (poke->insn_idx < subprog_end &&
17991 poke->insn_idx >= subprog_start)
17992 poke->aux = func[i]->aux;
17995 func[i]->aux->name[0] = 'F';
17996 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
17997 func[i]->jit_requested = 1;
17998 func[i]->blinding_requested = prog->blinding_requested;
17999 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18000 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18001 func[i]->aux->linfo = prog->aux->linfo;
18002 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18003 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18004 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18006 insn = func[i]->insnsi;
18007 for (j = 0; j < func[i]->len; j++, insn++) {
18008 if (BPF_CLASS(insn->code) == BPF_LDX &&
18009 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18010 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18013 func[i]->aux->num_exentries = num_exentries;
18014 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18015 func[i] = bpf_int_jit_compile(func[i]);
18016 if (!func[i]->jited) {
18023 /* at this point all bpf functions were successfully JITed
18024 * now populate all bpf_calls with correct addresses and
18025 * run last pass of JIT
18027 for (i = 0; i < env->subprog_cnt; i++) {
18028 insn = func[i]->insnsi;
18029 for (j = 0; j < func[i]->len; j++, insn++) {
18030 if (bpf_pseudo_func(insn)) {
18031 subprog = insn->off;
18032 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18033 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18036 if (!bpf_pseudo_call(insn))
18038 subprog = insn->off;
18039 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18042 /* we use the aux data to keep a list of the start addresses
18043 * of the JITed images for each function in the program
18045 * for some architectures, such as powerpc64, the imm field
18046 * might not be large enough to hold the offset of the start
18047 * address of the callee's JITed image from __bpf_call_base
18049 * in such cases, we can lookup the start address of a callee
18050 * by using its subprog id, available from the off field of
18051 * the call instruction, as an index for this list
18053 func[i]->aux->func = func;
18054 func[i]->aux->func_cnt = env->subprog_cnt;
18056 for (i = 0; i < env->subprog_cnt; i++) {
18057 old_bpf_func = func[i]->bpf_func;
18058 tmp = bpf_int_jit_compile(func[i]);
18059 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18060 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18067 /* finally lock prog and jit images for all functions and
18068 * populate kallsysm. Begin at the first subprogram, since
18069 * bpf_prog_load will add the kallsyms for the main program.
18071 for (i = 1; i < env->subprog_cnt; i++) {
18072 bpf_prog_lock_ro(func[i]);
18073 bpf_prog_kallsyms_add(func[i]);
18076 /* Last step: make now unused interpreter insns from main
18077 * prog consistent for later dump requests, so they can
18078 * later look the same as if they were interpreted only.
18080 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18081 if (bpf_pseudo_func(insn)) {
18082 insn[0].imm = env->insn_aux_data[i].call_imm;
18083 insn[1].imm = insn->off;
18087 if (!bpf_pseudo_call(insn))
18089 insn->off = env->insn_aux_data[i].call_imm;
18090 subprog = find_subprog(env, i + insn->off + 1);
18091 insn->imm = subprog;
18095 prog->bpf_func = func[0]->bpf_func;
18096 prog->jited_len = func[0]->jited_len;
18097 prog->aux->extable = func[0]->aux->extable;
18098 prog->aux->num_exentries = func[0]->aux->num_exentries;
18099 prog->aux->func = func;
18100 prog->aux->func_cnt = env->subprog_cnt;
18101 bpf_prog_jit_attempt_done(prog);
18104 /* We failed JIT'ing, so at this point we need to unregister poke
18105 * descriptors from subprogs, so that kernel is not attempting to
18106 * patch it anymore as we're freeing the subprog JIT memory.
18108 for (i = 0; i < prog->aux->size_poke_tab; i++) {
18109 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18110 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18112 /* At this point we're guaranteed that poke descriptors are not
18113 * live anymore. We can just unlink its descriptor table as it's
18114 * released with the main prog.
18116 for (i = 0; i < env->subprog_cnt; i++) {
18119 func[i]->aux->poke_tab = NULL;
18120 bpf_jit_free(func[i]);
18124 /* cleanup main prog to be interpreted */
18125 prog->jit_requested = 0;
18126 prog->blinding_requested = 0;
18127 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18128 if (!bpf_pseudo_call(insn))
18131 insn->imm = env->insn_aux_data[i].call_imm;
18133 bpf_prog_jit_attempt_done(prog);
18137 static int fixup_call_args(struct bpf_verifier_env *env)
18139 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18140 struct bpf_prog *prog = env->prog;
18141 struct bpf_insn *insn = prog->insnsi;
18142 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18147 if (env->prog->jit_requested &&
18148 !bpf_prog_is_offloaded(env->prog->aux)) {
18149 err = jit_subprogs(env);
18152 if (err == -EFAULT)
18155 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18156 if (has_kfunc_call) {
18157 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18160 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18161 /* When JIT fails the progs with bpf2bpf calls and tail_calls
18162 * have to be rejected, since interpreter doesn't support them yet.
18164 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18167 for (i = 0; i < prog->len; i++, insn++) {
18168 if (bpf_pseudo_func(insn)) {
18169 /* When JIT fails the progs with callback calls
18170 * have to be rejected, since interpreter doesn't support them yet.
18172 verbose(env, "callbacks are not allowed in non-JITed programs\n");
18176 if (!bpf_pseudo_call(insn))
18178 depth = get_callee_stack_depth(env, insn, i);
18181 bpf_patch_call_args(insn, depth);
18188 /* replace a generic kfunc with a specialized version if necessary */
18189 static void specialize_kfunc(struct bpf_verifier_env *env,
18190 u32 func_id, u16 offset, unsigned long *addr)
18192 struct bpf_prog *prog = env->prog;
18193 bool seen_direct_write;
18197 if (bpf_dev_bound_kfunc_id(func_id)) {
18198 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18200 *addr = (unsigned long)xdp_kfunc;
18203 /* fallback to default kfunc when not supported by netdev */
18209 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18210 seen_direct_write = env->seen_direct_write;
18211 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18214 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18216 /* restore env->seen_direct_write to its original value, since
18217 * may_access_direct_pkt_data mutates it
18219 env->seen_direct_write = seen_direct_write;
18223 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18224 u16 struct_meta_reg,
18225 u16 node_offset_reg,
18226 struct bpf_insn *insn,
18227 struct bpf_insn *insn_buf,
18230 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18231 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18233 insn_buf[0] = addr[0];
18234 insn_buf[1] = addr[1];
18235 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18236 insn_buf[3] = *insn;
18240 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18241 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18243 const struct bpf_kfunc_desc *desc;
18246 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18252 /* insn->imm has the btf func_id. Replace it with an offset relative to
18253 * __bpf_call_base, unless the JIT needs to call functions that are
18254 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18256 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18258 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18263 if (!bpf_jit_supports_far_kfunc_call())
18264 insn->imm = BPF_CALL_IMM(desc->addr);
18267 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18268 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18269 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18270 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18272 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18273 insn_buf[1] = addr[0];
18274 insn_buf[2] = addr[1];
18275 insn_buf[3] = *insn;
18277 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18278 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18279 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18280 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18282 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18283 !kptr_struct_meta) {
18284 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18289 insn_buf[0] = addr[0];
18290 insn_buf[1] = addr[1];
18291 insn_buf[2] = *insn;
18293 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18294 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18295 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18296 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18297 int struct_meta_reg = BPF_REG_3;
18298 int node_offset_reg = BPF_REG_4;
18300 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18301 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18302 struct_meta_reg = BPF_REG_4;
18303 node_offset_reg = BPF_REG_5;
18306 if (!kptr_struct_meta) {
18307 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18312 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18313 node_offset_reg, insn, insn_buf, cnt);
18314 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18315 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18316 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18322 /* Do various post-verification rewrites in a single program pass.
18323 * These rewrites simplify JIT and interpreter implementations.
18325 static int do_misc_fixups(struct bpf_verifier_env *env)
18327 struct bpf_prog *prog = env->prog;
18328 enum bpf_attach_type eatype = prog->expected_attach_type;
18329 enum bpf_prog_type prog_type = resolve_prog_type(prog);
18330 struct bpf_insn *insn = prog->insnsi;
18331 const struct bpf_func_proto *fn;
18332 const int insn_cnt = prog->len;
18333 const struct bpf_map_ops *ops;
18334 struct bpf_insn_aux_data *aux;
18335 struct bpf_insn insn_buf[16];
18336 struct bpf_prog *new_prog;
18337 struct bpf_map *map_ptr;
18338 int i, ret, cnt, delta = 0;
18340 for (i = 0; i < insn_cnt; i++, insn++) {
18341 /* Make divide-by-zero exceptions impossible. */
18342 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18343 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18344 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18345 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18346 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18347 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18348 struct bpf_insn *patchlet;
18349 struct bpf_insn chk_and_div[] = {
18350 /* [R,W]x div 0 -> 0 */
18351 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18352 BPF_JNE | BPF_K, insn->src_reg,
18354 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18355 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18358 struct bpf_insn chk_and_mod[] = {
18359 /* [R,W]x mod 0 -> [R,W]x */
18360 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18361 BPF_JEQ | BPF_K, insn->src_reg,
18362 0, 1 + (is64 ? 0 : 1), 0),
18364 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18365 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18368 patchlet = isdiv ? chk_and_div : chk_and_mod;
18369 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18370 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18372 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18377 env->prog = prog = new_prog;
18378 insn = new_prog->insnsi + i + delta;
18382 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18383 if (BPF_CLASS(insn->code) == BPF_LD &&
18384 (BPF_MODE(insn->code) == BPF_ABS ||
18385 BPF_MODE(insn->code) == BPF_IND)) {
18386 cnt = env->ops->gen_ld_abs(insn, insn_buf);
18387 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18388 verbose(env, "bpf verifier is misconfigured\n");
18392 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18397 env->prog = prog = new_prog;
18398 insn = new_prog->insnsi + i + delta;
18402 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
18403 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18404 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18405 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18406 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18407 struct bpf_insn *patch = &insn_buf[0];
18408 bool issrc, isneg, isimm;
18411 aux = &env->insn_aux_data[i + delta];
18412 if (!aux->alu_state ||
18413 aux->alu_state == BPF_ALU_NON_POINTER)
18416 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18417 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18418 BPF_ALU_SANITIZE_SRC;
18419 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18421 off_reg = issrc ? insn->src_reg : insn->dst_reg;
18423 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18426 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18427 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18428 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18429 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18430 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18431 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18432 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18435 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18436 insn->src_reg = BPF_REG_AX;
18438 insn->code = insn->code == code_add ?
18439 code_sub : code_add;
18441 if (issrc && isneg && !isimm)
18442 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18443 cnt = patch - insn_buf;
18445 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18450 env->prog = prog = new_prog;
18451 insn = new_prog->insnsi + i + delta;
18455 if (insn->code != (BPF_JMP | BPF_CALL))
18457 if (insn->src_reg == BPF_PSEUDO_CALL)
18459 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18460 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
18466 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18471 env->prog = prog = new_prog;
18472 insn = new_prog->insnsi + i + delta;
18476 if (insn->imm == BPF_FUNC_get_route_realm)
18477 prog->dst_needed = 1;
18478 if (insn->imm == BPF_FUNC_get_prandom_u32)
18479 bpf_user_rnd_init_once();
18480 if (insn->imm == BPF_FUNC_override_return)
18481 prog->kprobe_override = 1;
18482 if (insn->imm == BPF_FUNC_tail_call) {
18483 /* If we tail call into other programs, we
18484 * cannot make any assumptions since they can
18485 * be replaced dynamically during runtime in
18486 * the program array.
18488 prog->cb_access = 1;
18489 if (!allow_tail_call_in_subprogs(env))
18490 prog->aux->stack_depth = MAX_BPF_STACK;
18491 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
18493 /* mark bpf_tail_call as different opcode to avoid
18494 * conditional branch in the interpreter for every normal
18495 * call and to prevent accidental JITing by JIT compiler
18496 * that doesn't support bpf_tail_call yet
18499 insn->code = BPF_JMP | BPF_TAIL_CALL;
18501 aux = &env->insn_aux_data[i + delta];
18502 if (env->bpf_capable && !prog->blinding_requested &&
18503 prog->jit_requested &&
18504 !bpf_map_key_poisoned(aux) &&
18505 !bpf_map_ptr_poisoned(aux) &&
18506 !bpf_map_ptr_unpriv(aux)) {
18507 struct bpf_jit_poke_descriptor desc = {
18508 .reason = BPF_POKE_REASON_TAIL_CALL,
18509 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18510 .tail_call.key = bpf_map_key_immediate(aux),
18511 .insn_idx = i + delta,
18514 ret = bpf_jit_add_poke_descriptor(prog, &desc);
18516 verbose(env, "adding tail call poke descriptor failed\n");
18520 insn->imm = ret + 1;
18524 if (!bpf_map_ptr_unpriv(aux))
18527 /* instead of changing every JIT dealing with tail_call
18528 * emit two extra insns:
18529 * if (index >= max_entries) goto out;
18530 * index &= array->index_mask;
18531 * to avoid out-of-bounds cpu speculation
18533 if (bpf_map_ptr_poisoned(aux)) {
18534 verbose(env, "tail_call abusing map_ptr\n");
18538 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18539 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18540 map_ptr->max_entries, 2);
18541 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18542 container_of(map_ptr,
18545 insn_buf[2] = *insn;
18547 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18552 env->prog = prog = new_prog;
18553 insn = new_prog->insnsi + i + delta;
18557 if (insn->imm == BPF_FUNC_timer_set_callback) {
18558 /* The verifier will process callback_fn as many times as necessary
18559 * with different maps and the register states prepared by
18560 * set_timer_callback_state will be accurate.
18562 * The following use case is valid:
18563 * map1 is shared by prog1, prog2, prog3.
18564 * prog1 calls bpf_timer_init for some map1 elements
18565 * prog2 calls bpf_timer_set_callback for some map1 elements.
18566 * Those that were not bpf_timer_init-ed will return -EINVAL.
18567 * prog3 calls bpf_timer_start for some map1 elements.
18568 * Those that were not both bpf_timer_init-ed and
18569 * bpf_timer_set_callback-ed will return -EINVAL.
18571 struct bpf_insn ld_addrs[2] = {
18572 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
18575 insn_buf[0] = ld_addrs[0];
18576 insn_buf[1] = ld_addrs[1];
18577 insn_buf[2] = *insn;
18580 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18585 env->prog = prog = new_prog;
18586 insn = new_prog->insnsi + i + delta;
18587 goto patch_call_imm;
18590 if (is_storage_get_function(insn->imm)) {
18591 if (!env->prog->aux->sleepable ||
18592 env->insn_aux_data[i + delta].storage_get_func_atomic)
18593 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
18595 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
18596 insn_buf[1] = *insn;
18599 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18604 env->prog = prog = new_prog;
18605 insn = new_prog->insnsi + i + delta;
18606 goto patch_call_imm;
18609 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
18610 * and other inlining handlers are currently limited to 64 bit
18613 if (prog->jit_requested && BITS_PER_LONG == 64 &&
18614 (insn->imm == BPF_FUNC_map_lookup_elem ||
18615 insn->imm == BPF_FUNC_map_update_elem ||
18616 insn->imm == BPF_FUNC_map_delete_elem ||
18617 insn->imm == BPF_FUNC_map_push_elem ||
18618 insn->imm == BPF_FUNC_map_pop_elem ||
18619 insn->imm == BPF_FUNC_map_peek_elem ||
18620 insn->imm == BPF_FUNC_redirect_map ||
18621 insn->imm == BPF_FUNC_for_each_map_elem ||
18622 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
18623 aux = &env->insn_aux_data[i + delta];
18624 if (bpf_map_ptr_poisoned(aux))
18625 goto patch_call_imm;
18627 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18628 ops = map_ptr->ops;
18629 if (insn->imm == BPF_FUNC_map_lookup_elem &&
18630 ops->map_gen_lookup) {
18631 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
18632 if (cnt == -EOPNOTSUPP)
18633 goto patch_map_ops_generic;
18634 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18635 verbose(env, "bpf verifier is misconfigured\n");
18639 new_prog = bpf_patch_insn_data(env, i + delta,
18645 env->prog = prog = new_prog;
18646 insn = new_prog->insnsi + i + delta;
18650 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
18651 (void *(*)(struct bpf_map *map, void *key))NULL));
18652 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
18653 (long (*)(struct bpf_map *map, void *key))NULL));
18654 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
18655 (long (*)(struct bpf_map *map, void *key, void *value,
18657 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
18658 (long (*)(struct bpf_map *map, void *value,
18660 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
18661 (long (*)(struct bpf_map *map, void *value))NULL));
18662 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
18663 (long (*)(struct bpf_map *map, void *value))NULL));
18664 BUILD_BUG_ON(!__same_type(ops->map_redirect,
18665 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
18666 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
18667 (long (*)(struct bpf_map *map,
18668 bpf_callback_t callback_fn,
18669 void *callback_ctx,
18671 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
18672 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
18674 patch_map_ops_generic:
18675 switch (insn->imm) {
18676 case BPF_FUNC_map_lookup_elem:
18677 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
18679 case BPF_FUNC_map_update_elem:
18680 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
18682 case BPF_FUNC_map_delete_elem:
18683 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
18685 case BPF_FUNC_map_push_elem:
18686 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
18688 case BPF_FUNC_map_pop_elem:
18689 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
18691 case BPF_FUNC_map_peek_elem:
18692 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
18694 case BPF_FUNC_redirect_map:
18695 insn->imm = BPF_CALL_IMM(ops->map_redirect);
18697 case BPF_FUNC_for_each_map_elem:
18698 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
18700 case BPF_FUNC_map_lookup_percpu_elem:
18701 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
18705 goto patch_call_imm;
18708 /* Implement bpf_jiffies64 inline. */
18709 if (prog->jit_requested && BITS_PER_LONG == 64 &&
18710 insn->imm == BPF_FUNC_jiffies64) {
18711 struct bpf_insn ld_jiffies_addr[2] = {
18712 BPF_LD_IMM64(BPF_REG_0,
18713 (unsigned long)&jiffies),
18716 insn_buf[0] = ld_jiffies_addr[0];
18717 insn_buf[1] = ld_jiffies_addr[1];
18718 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
18722 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
18728 env->prog = prog = new_prog;
18729 insn = new_prog->insnsi + i + delta;
18733 /* Implement bpf_get_func_arg inline. */
18734 if (prog_type == BPF_PROG_TYPE_TRACING &&
18735 insn->imm == BPF_FUNC_get_func_arg) {
18736 /* Load nr_args from ctx - 8 */
18737 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18738 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
18739 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
18740 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
18741 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
18742 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18743 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
18744 insn_buf[7] = BPF_JMP_A(1);
18745 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
18748 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18753 env->prog = prog = new_prog;
18754 insn = new_prog->insnsi + i + delta;
18758 /* Implement bpf_get_func_ret inline. */
18759 if (prog_type == BPF_PROG_TYPE_TRACING &&
18760 insn->imm == BPF_FUNC_get_func_ret) {
18761 if (eatype == BPF_TRACE_FEXIT ||
18762 eatype == BPF_MODIFY_RETURN) {
18763 /* Load nr_args from ctx - 8 */
18764 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18765 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
18766 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
18767 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18768 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
18769 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
18772 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
18776 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18781 env->prog = prog = new_prog;
18782 insn = new_prog->insnsi + i + delta;
18786 /* Implement get_func_arg_cnt inline. */
18787 if (prog_type == BPF_PROG_TYPE_TRACING &&
18788 insn->imm == BPF_FUNC_get_func_arg_cnt) {
18789 /* Load nr_args from ctx - 8 */
18790 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18792 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18796 env->prog = prog = new_prog;
18797 insn = new_prog->insnsi + i + delta;
18801 /* Implement bpf_get_func_ip inline. */
18802 if (prog_type == BPF_PROG_TYPE_TRACING &&
18803 insn->imm == BPF_FUNC_get_func_ip) {
18804 /* Load IP address from ctx - 16 */
18805 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
18807 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18811 env->prog = prog = new_prog;
18812 insn = new_prog->insnsi + i + delta;
18817 fn = env->ops->get_func_proto(insn->imm, env->prog);
18818 /* all functions that have prototype and verifier allowed
18819 * programs to call them, must be real in-kernel functions
18823 "kernel subsystem misconfigured func %s#%d\n",
18824 func_id_name(insn->imm), insn->imm);
18827 insn->imm = fn->func - __bpf_call_base;
18830 /* Since poke tab is now finalized, publish aux to tracker. */
18831 for (i = 0; i < prog->aux->size_poke_tab; i++) {
18832 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18833 if (!map_ptr->ops->map_poke_track ||
18834 !map_ptr->ops->map_poke_untrack ||
18835 !map_ptr->ops->map_poke_run) {
18836 verbose(env, "bpf verifier is misconfigured\n");
18840 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
18842 verbose(env, "tracking tail call prog failed\n");
18847 sort_kfunc_descs_by_imm_off(env->prog);
18852 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
18855 u32 callback_subprogno,
18858 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
18859 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
18860 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
18861 int reg_loop_max = BPF_REG_6;
18862 int reg_loop_cnt = BPF_REG_7;
18863 int reg_loop_ctx = BPF_REG_8;
18865 struct bpf_prog *new_prog;
18866 u32 callback_start;
18867 u32 call_insn_offset;
18868 s32 callback_offset;
18870 /* This represents an inlined version of bpf_iter.c:bpf_loop,
18871 * be careful to modify this code in sync.
18873 struct bpf_insn insn_buf[] = {
18874 /* Return error and jump to the end of the patch if
18875 * expected number of iterations is too big.
18877 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
18878 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
18879 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
18880 /* spill R6, R7, R8 to use these as loop vars */
18881 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
18882 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
18883 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
18884 /* initialize loop vars */
18885 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
18886 BPF_MOV32_IMM(reg_loop_cnt, 0),
18887 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
18889 * if reg_loop_cnt >= reg_loop_max skip the loop body
18891 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
18893 * correct callback offset would be set after patching
18895 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
18896 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
18898 /* increment loop counter */
18899 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
18900 /* jump to loop header if callback returned 0 */
18901 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
18902 /* return value of bpf_loop,
18903 * set R0 to the number of iterations
18905 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18906 /* restore original values of R6, R7, R8 */
18907 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18908 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18909 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18912 *cnt = ARRAY_SIZE(insn_buf);
18913 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18917 /* callback start is known only after patching */
18918 callback_start = env->subprog_info[callback_subprogno].start;
18919 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18920 call_insn_offset = position + 12;
18921 callback_offset = callback_start - call_insn_offset - 1;
18922 new_prog->insnsi[call_insn_offset].imm = callback_offset;
18927 static bool is_bpf_loop_call(struct bpf_insn *insn)
18929 return insn->code == (BPF_JMP | BPF_CALL) &&
18930 insn->src_reg == 0 &&
18931 insn->imm == BPF_FUNC_loop;
18934 /* For all sub-programs in the program (including main) check
18935 * insn_aux_data to see if there are bpf_loop calls that require
18936 * inlining. If such calls are found the calls are replaced with a
18937 * sequence of instructions produced by `inline_bpf_loop` function and
18938 * subprog stack_depth is increased by the size of 3 registers.
18939 * This stack space is used to spill values of the R6, R7, R8. These
18940 * registers are used to store the loop bound, counter and context
18943 static int optimize_bpf_loop(struct bpf_verifier_env *env)
18945 struct bpf_subprog_info *subprogs = env->subprog_info;
18946 int i, cur_subprog = 0, cnt, delta = 0;
18947 struct bpf_insn *insn = env->prog->insnsi;
18948 int insn_cnt = env->prog->len;
18949 u16 stack_depth = subprogs[cur_subprog].stack_depth;
18950 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18951 u16 stack_depth_extra = 0;
18953 for (i = 0; i < insn_cnt; i++, insn++) {
18954 struct bpf_loop_inline_state *inline_state =
18955 &env->insn_aux_data[i + delta].loop_inline_state;
18957 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18958 struct bpf_prog *new_prog;
18960 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18961 new_prog = inline_bpf_loop(env,
18963 -(stack_depth + stack_depth_extra),
18964 inline_state->callback_subprogno,
18970 env->prog = new_prog;
18971 insn = new_prog->insnsi + i + delta;
18974 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
18975 subprogs[cur_subprog].stack_depth += stack_depth_extra;
18977 stack_depth = subprogs[cur_subprog].stack_depth;
18978 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18979 stack_depth_extra = 0;
18983 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18988 static void free_states(struct bpf_verifier_env *env)
18990 struct bpf_verifier_state_list *sl, *sln;
18993 sl = env->free_list;
18996 free_verifier_state(&sl->state, false);
19000 env->free_list = NULL;
19002 if (!env->explored_states)
19005 for (i = 0; i < state_htab_size(env); i++) {
19006 sl = env->explored_states[i];
19010 free_verifier_state(&sl->state, false);
19014 env->explored_states[i] = NULL;
19018 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19020 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19021 struct bpf_verifier_state *state;
19022 struct bpf_reg_state *regs;
19025 env->prev_linfo = NULL;
19028 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19031 state->curframe = 0;
19032 state->speculative = false;
19033 state->branches = 1;
19034 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19035 if (!state->frame[0]) {
19039 env->cur_state = state;
19040 init_func_state(env, state->frame[0],
19041 BPF_MAIN_FUNC /* callsite */,
19044 state->first_insn_idx = env->subprog_info[subprog].start;
19045 state->last_insn_idx = -1;
19047 regs = state->frame[state->curframe]->regs;
19048 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19049 ret = btf_prepare_func_args(env, subprog, regs);
19052 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19053 if (regs[i].type == PTR_TO_CTX)
19054 mark_reg_known_zero(env, regs, i);
19055 else if (regs[i].type == SCALAR_VALUE)
19056 mark_reg_unknown(env, regs, i);
19057 else if (base_type(regs[i].type) == PTR_TO_MEM) {
19058 const u32 mem_size = regs[i].mem_size;
19060 mark_reg_known_zero(env, regs, i);
19061 regs[i].mem_size = mem_size;
19062 regs[i].id = ++env->id_gen;
19066 /* 1st arg to a function */
19067 regs[BPF_REG_1].type = PTR_TO_CTX;
19068 mark_reg_known_zero(env, regs, BPF_REG_1);
19069 ret = btf_check_subprog_arg_match(env, subprog, regs);
19070 if (ret == -EFAULT)
19071 /* unlikely verifier bug. abort.
19072 * ret == 0 and ret < 0 are sadly acceptable for
19073 * main() function due to backward compatibility.
19074 * Like socket filter program may be written as:
19075 * int bpf_prog(struct pt_regs *ctx)
19076 * and never dereference that ctx in the program.
19077 * 'struct pt_regs' is a type mismatch for socket
19078 * filter that should be using 'struct __sk_buff'.
19083 ret = do_check(env);
19085 /* check for NULL is necessary, since cur_state can be freed inside
19086 * do_check() under memory pressure.
19088 if (env->cur_state) {
19089 free_verifier_state(env->cur_state, true);
19090 env->cur_state = NULL;
19092 while (!pop_stack(env, NULL, NULL, false));
19093 if (!ret && pop_log)
19094 bpf_vlog_reset(&env->log, 0);
19099 /* Verify all global functions in a BPF program one by one based on their BTF.
19100 * All global functions must pass verification. Otherwise the whole program is rejected.
19111 * foo() will be verified first for R1=any_scalar_value. During verification it
19112 * will be assumed that bar() already verified successfully and call to bar()
19113 * from foo() will be checked for type match only. Later bar() will be verified
19114 * independently to check that it's safe for R1=any_scalar_value.
19116 static int do_check_subprogs(struct bpf_verifier_env *env)
19118 struct bpf_prog_aux *aux = env->prog->aux;
19121 if (!aux->func_info)
19124 for (i = 1; i < env->subprog_cnt; i++) {
19125 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19127 env->insn_idx = env->subprog_info[i].start;
19128 WARN_ON_ONCE(env->insn_idx == 0);
19129 ret = do_check_common(env, i);
19132 } else if (env->log.level & BPF_LOG_LEVEL) {
19134 "Func#%d is safe for any args that match its prototype\n",
19141 static int do_check_main(struct bpf_verifier_env *env)
19146 ret = do_check_common(env, 0);
19148 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19153 static void print_verification_stats(struct bpf_verifier_env *env)
19157 if (env->log.level & BPF_LOG_STATS) {
19158 verbose(env, "verification time %lld usec\n",
19159 div_u64(env->verification_time, 1000));
19160 verbose(env, "stack depth ");
19161 for (i = 0; i < env->subprog_cnt; i++) {
19162 u32 depth = env->subprog_info[i].stack_depth;
19164 verbose(env, "%d", depth);
19165 if (i + 1 < env->subprog_cnt)
19168 verbose(env, "\n");
19170 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19171 "total_states %d peak_states %d mark_read %d\n",
19172 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19173 env->max_states_per_insn, env->total_states,
19174 env->peak_states, env->longest_mark_read_walk);
19177 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19179 const struct btf_type *t, *func_proto;
19180 const struct bpf_struct_ops *st_ops;
19181 const struct btf_member *member;
19182 struct bpf_prog *prog = env->prog;
19183 u32 btf_id, member_idx;
19186 if (!prog->gpl_compatible) {
19187 verbose(env, "struct ops programs must have a GPL compatible license\n");
19191 btf_id = prog->aux->attach_btf_id;
19192 st_ops = bpf_struct_ops_find(btf_id);
19194 verbose(env, "attach_btf_id %u is not a supported struct\n",
19200 member_idx = prog->expected_attach_type;
19201 if (member_idx >= btf_type_vlen(t)) {
19202 verbose(env, "attach to invalid member idx %u of struct %s\n",
19203 member_idx, st_ops->name);
19207 member = &btf_type_member(t)[member_idx];
19208 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19209 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19212 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19213 mname, member_idx, st_ops->name);
19217 if (st_ops->check_member) {
19218 int err = st_ops->check_member(t, member, prog);
19221 verbose(env, "attach to unsupported member %s of struct %s\n",
19222 mname, st_ops->name);
19227 prog->aux->attach_func_proto = func_proto;
19228 prog->aux->attach_func_name = mname;
19229 env->ops = st_ops->verifier_ops;
19233 #define SECURITY_PREFIX "security_"
19235 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19237 if (within_error_injection_list(addr) ||
19238 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19244 /* list of non-sleepable functions that are otherwise on
19245 * ALLOW_ERROR_INJECTION list
19247 BTF_SET_START(btf_non_sleepable_error_inject)
19248 /* Three functions below can be called from sleepable and non-sleepable context.
19249 * Assume non-sleepable from bpf safety point of view.
19251 BTF_ID(func, __filemap_add_folio)
19252 BTF_ID(func, should_fail_alloc_page)
19253 BTF_ID(func, should_failslab)
19254 BTF_SET_END(btf_non_sleepable_error_inject)
19256 static int check_non_sleepable_error_inject(u32 btf_id)
19258 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19261 int bpf_check_attach_target(struct bpf_verifier_log *log,
19262 const struct bpf_prog *prog,
19263 const struct bpf_prog *tgt_prog,
19265 struct bpf_attach_target_info *tgt_info)
19267 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19268 const char prefix[] = "btf_trace_";
19269 int ret = 0, subprog = -1, i;
19270 const struct btf_type *t;
19271 bool conservative = true;
19275 struct module *mod = NULL;
19278 bpf_log(log, "Tracing programs must provide btf_id\n");
19281 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19284 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19287 t = btf_type_by_id(btf, btf_id);
19289 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19292 tname = btf_name_by_offset(btf, t->name_off);
19294 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19298 struct bpf_prog_aux *aux = tgt_prog->aux;
19300 if (bpf_prog_is_dev_bound(prog->aux) &&
19301 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19302 bpf_log(log, "Target program bound device mismatch");
19306 for (i = 0; i < aux->func_info_cnt; i++)
19307 if (aux->func_info[i].type_id == btf_id) {
19311 if (subprog == -1) {
19312 bpf_log(log, "Subprog %s doesn't exist\n", tname);
19315 conservative = aux->func_info_aux[subprog].unreliable;
19316 if (prog_extension) {
19317 if (conservative) {
19319 "Cannot replace static functions\n");
19322 if (!prog->jit_requested) {
19324 "Extension programs should be JITed\n");
19328 if (!tgt_prog->jited) {
19329 bpf_log(log, "Can attach to only JITed progs\n");
19332 if (tgt_prog->type == prog->type) {
19333 /* Cannot fentry/fexit another fentry/fexit program.
19334 * Cannot attach program extension to another extension.
19335 * It's ok to attach fentry/fexit to extension program.
19337 bpf_log(log, "Cannot recursively attach\n");
19340 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19342 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19343 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19344 /* Program extensions can extend all program types
19345 * except fentry/fexit. The reason is the following.
19346 * The fentry/fexit programs are used for performance
19347 * analysis, stats and can be attached to any program
19348 * type except themselves. When extension program is
19349 * replacing XDP function it is necessary to allow
19350 * performance analysis of all functions. Both original
19351 * XDP program and its program extension. Hence
19352 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19353 * allowed. If extending of fentry/fexit was allowed it
19354 * would be possible to create long call chain
19355 * fentry->extension->fentry->extension beyond
19356 * reasonable stack size. Hence extending fentry is not
19359 bpf_log(log, "Cannot extend fentry/fexit\n");
19363 if (prog_extension) {
19364 bpf_log(log, "Cannot replace kernel functions\n");
19369 switch (prog->expected_attach_type) {
19370 case BPF_TRACE_RAW_TP:
19373 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19376 if (!btf_type_is_typedef(t)) {
19377 bpf_log(log, "attach_btf_id %u is not a typedef\n",
19381 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19382 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19386 tname += sizeof(prefix) - 1;
19387 t = btf_type_by_id(btf, t->type);
19388 if (!btf_type_is_ptr(t))
19389 /* should never happen in valid vmlinux build */
19391 t = btf_type_by_id(btf, t->type);
19392 if (!btf_type_is_func_proto(t))
19393 /* should never happen in valid vmlinux build */
19397 case BPF_TRACE_ITER:
19398 if (!btf_type_is_func(t)) {
19399 bpf_log(log, "attach_btf_id %u is not a function\n",
19403 t = btf_type_by_id(btf, t->type);
19404 if (!btf_type_is_func_proto(t))
19406 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19411 if (!prog_extension)
19414 case BPF_MODIFY_RETURN:
19416 case BPF_LSM_CGROUP:
19417 case BPF_TRACE_FENTRY:
19418 case BPF_TRACE_FEXIT:
19419 if (!btf_type_is_func(t)) {
19420 bpf_log(log, "attach_btf_id %u is not a function\n",
19424 if (prog_extension &&
19425 btf_check_type_match(log, prog, btf, t))
19427 t = btf_type_by_id(btf, t->type);
19428 if (!btf_type_is_func_proto(t))
19431 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19432 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19433 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19436 if (tgt_prog && conservative)
19439 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19445 addr = (long) tgt_prog->bpf_func;
19447 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
19449 if (btf_is_module(btf)) {
19450 mod = btf_try_get_module(btf);
19452 addr = find_kallsyms_symbol_value(mod, tname);
19456 addr = kallsyms_lookup_name(tname);
19461 "The address of function %s cannot be found\n",
19467 if (prog->aux->sleepable) {
19469 switch (prog->type) {
19470 case BPF_PROG_TYPE_TRACING:
19472 /* fentry/fexit/fmod_ret progs can be sleepable if they are
19473 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
19475 if (!check_non_sleepable_error_inject(btf_id) &&
19476 within_error_injection_list(addr))
19478 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
19479 * in the fmodret id set with the KF_SLEEPABLE flag.
19482 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
19485 if (flags && (*flags & KF_SLEEPABLE))
19489 case BPF_PROG_TYPE_LSM:
19490 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
19491 * Only some of them are sleepable.
19493 if (bpf_lsm_is_sleepable_hook(btf_id))
19501 bpf_log(log, "%s is not sleepable\n", tname);
19504 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
19507 bpf_log(log, "can't modify return codes of BPF programs\n");
19511 if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
19512 !check_attach_modify_return(addr, tname))
19516 bpf_log(log, "%s() is not modifiable\n", tname);
19523 tgt_info->tgt_addr = addr;
19524 tgt_info->tgt_name = tname;
19525 tgt_info->tgt_type = t;
19526 tgt_info->tgt_mod = mod;
19530 BTF_SET_START(btf_id_deny)
19533 BTF_ID(func, migrate_disable)
19534 BTF_ID(func, migrate_enable)
19536 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
19537 BTF_ID(func, rcu_read_unlock_strict)
19539 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
19540 BTF_ID(func, preempt_count_add)
19541 BTF_ID(func, preempt_count_sub)
19543 #ifdef CONFIG_PREEMPT_RCU
19544 BTF_ID(func, __rcu_read_lock)
19545 BTF_ID(func, __rcu_read_unlock)
19547 BTF_SET_END(btf_id_deny)
19549 static bool can_be_sleepable(struct bpf_prog *prog)
19551 if (prog->type == BPF_PROG_TYPE_TRACING) {
19552 switch (prog->expected_attach_type) {
19553 case BPF_TRACE_FENTRY:
19554 case BPF_TRACE_FEXIT:
19555 case BPF_MODIFY_RETURN:
19556 case BPF_TRACE_ITER:
19562 return prog->type == BPF_PROG_TYPE_LSM ||
19563 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
19564 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
19567 static int check_attach_btf_id(struct bpf_verifier_env *env)
19569 struct bpf_prog *prog = env->prog;
19570 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
19571 struct bpf_attach_target_info tgt_info = {};
19572 u32 btf_id = prog->aux->attach_btf_id;
19573 struct bpf_trampoline *tr;
19577 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
19578 if (prog->aux->sleepable)
19579 /* attach_btf_id checked to be zero already */
19581 verbose(env, "Syscall programs can only be sleepable\n");
19585 if (prog->aux->sleepable && !can_be_sleepable(prog)) {
19586 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
19590 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
19591 return check_struct_ops_btf_id(env);
19593 if (prog->type != BPF_PROG_TYPE_TRACING &&
19594 prog->type != BPF_PROG_TYPE_LSM &&
19595 prog->type != BPF_PROG_TYPE_EXT)
19598 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
19602 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
19603 /* to make freplace equivalent to their targets, they need to
19604 * inherit env->ops and expected_attach_type for the rest of the
19607 env->ops = bpf_verifier_ops[tgt_prog->type];
19608 prog->expected_attach_type = tgt_prog->expected_attach_type;
19611 /* store info about the attachment target that will be used later */
19612 prog->aux->attach_func_proto = tgt_info.tgt_type;
19613 prog->aux->attach_func_name = tgt_info.tgt_name;
19614 prog->aux->mod = tgt_info.tgt_mod;
19617 prog->aux->saved_dst_prog_type = tgt_prog->type;
19618 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
19621 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
19622 prog->aux->attach_btf_trace = true;
19624 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
19625 if (!bpf_iter_prog_supported(prog))
19630 if (prog->type == BPF_PROG_TYPE_LSM) {
19631 ret = bpf_lsm_verify_prog(&env->log, prog);
19634 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
19635 btf_id_set_contains(&btf_id_deny, btf_id)) {
19639 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
19640 tr = bpf_trampoline_get(key, &tgt_info);
19644 prog->aux->dst_trampoline = tr;
19648 struct btf *bpf_get_btf_vmlinux(void)
19650 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
19651 mutex_lock(&bpf_verifier_lock);
19653 btf_vmlinux = btf_parse_vmlinux();
19654 mutex_unlock(&bpf_verifier_lock);
19656 return btf_vmlinux;
19659 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
19661 u64 start_time = ktime_get_ns();
19662 struct bpf_verifier_env *env;
19663 int i, len, ret = -EINVAL, err;
19667 /* no program is valid */
19668 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
19671 /* 'struct bpf_verifier_env' can be global, but since it's not small,
19672 * allocate/free it every time bpf_check() is called
19674 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
19680 len = (*prog)->len;
19681 env->insn_aux_data =
19682 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
19684 if (!env->insn_aux_data)
19686 for (i = 0; i < len; i++)
19687 env->insn_aux_data[i].orig_idx = i;
19689 env->ops = bpf_verifier_ops[env->prog->type];
19690 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
19691 is_priv = bpf_capable();
19693 bpf_get_btf_vmlinux();
19695 /* grab the mutex to protect few globals used by verifier */
19697 mutex_lock(&bpf_verifier_lock);
19699 /* user could have requested verbose verifier output
19700 * and supplied buffer to store the verification trace
19702 ret = bpf_vlog_init(&env->log, attr->log_level,
19703 (char __user *) (unsigned long) attr->log_buf,
19708 mark_verifier_state_clean(env);
19710 if (IS_ERR(btf_vmlinux)) {
19711 /* Either gcc or pahole or kernel are broken. */
19712 verbose(env, "in-kernel BTF is malformed\n");
19713 ret = PTR_ERR(btf_vmlinux);
19714 goto skip_full_check;
19717 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
19718 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
19719 env->strict_alignment = true;
19720 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
19721 env->strict_alignment = false;
19723 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
19724 env->allow_uninit_stack = bpf_allow_uninit_stack();
19725 env->bypass_spec_v1 = bpf_bypass_spec_v1();
19726 env->bypass_spec_v4 = bpf_bypass_spec_v4();
19727 env->bpf_capable = bpf_capable();
19730 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
19732 env->explored_states = kvcalloc(state_htab_size(env),
19733 sizeof(struct bpf_verifier_state_list *),
19736 if (!env->explored_states)
19737 goto skip_full_check;
19739 ret = add_subprog_and_kfunc(env);
19741 goto skip_full_check;
19743 ret = check_subprogs(env);
19745 goto skip_full_check;
19747 ret = check_btf_info(env, attr, uattr);
19749 goto skip_full_check;
19751 ret = check_attach_btf_id(env);
19753 goto skip_full_check;
19755 ret = resolve_pseudo_ldimm64(env);
19757 goto skip_full_check;
19759 if (bpf_prog_is_offloaded(env->prog->aux)) {
19760 ret = bpf_prog_offload_verifier_prep(env->prog);
19762 goto skip_full_check;
19765 ret = check_cfg(env);
19767 goto skip_full_check;
19769 ret = do_check_subprogs(env);
19770 ret = ret ?: do_check_main(env);
19772 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
19773 ret = bpf_prog_offload_finalize(env);
19776 kvfree(env->explored_states);
19779 ret = check_max_stack_depth(env);
19781 /* instruction rewrites happen after this point */
19783 ret = optimize_bpf_loop(env);
19787 opt_hard_wire_dead_code_branches(env);
19789 ret = opt_remove_dead_code(env);
19791 ret = opt_remove_nops(env);
19794 sanitize_dead_code(env);
19798 /* program is valid, convert *(u32*)(ctx + off) accesses */
19799 ret = convert_ctx_accesses(env);
19802 ret = do_misc_fixups(env);
19804 /* do 32-bit optimization after insn patching has done so those patched
19805 * insns could be handled correctly.
19807 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
19808 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
19809 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
19814 ret = fixup_call_args(env);
19816 env->verification_time = ktime_get_ns() - start_time;
19817 print_verification_stats(env);
19818 env->prog->aux->verified_insns = env->insn_processed;
19820 /* preserve original error even if log finalization is successful */
19821 err = bpf_vlog_finalize(&env->log, &log_true_size);
19825 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
19826 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
19827 &log_true_size, sizeof(log_true_size))) {
19829 goto err_release_maps;
19833 goto err_release_maps;
19835 if (env->used_map_cnt) {
19836 /* if program passed verifier, update used_maps in bpf_prog_info */
19837 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
19838 sizeof(env->used_maps[0]),
19841 if (!env->prog->aux->used_maps) {
19843 goto err_release_maps;
19846 memcpy(env->prog->aux->used_maps, env->used_maps,
19847 sizeof(env->used_maps[0]) * env->used_map_cnt);
19848 env->prog->aux->used_map_cnt = env->used_map_cnt;
19850 if (env->used_btf_cnt) {
19851 /* if program passed verifier, update used_btfs in bpf_prog_aux */
19852 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
19853 sizeof(env->used_btfs[0]),
19855 if (!env->prog->aux->used_btfs) {
19857 goto err_release_maps;
19860 memcpy(env->prog->aux->used_btfs, env->used_btfs,
19861 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
19862 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
19864 if (env->used_map_cnt || env->used_btf_cnt) {
19865 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
19866 * bpf_ld_imm64 instructions
19868 convert_pseudo_ld_imm64(env);
19871 adjust_btf_func(env);
19874 if (!env->prog->aux->used_maps)
19875 /* if we didn't copy map pointers into bpf_prog_info, release
19876 * them now. Otherwise free_used_maps() will release them.
19879 if (!env->prog->aux->used_btfs)
19882 /* extension progs temporarily inherit the attach_type of their targets
19883 for verification purposes, so set it back to zero before returning
19885 if (env->prog->type == BPF_PROG_TYPE_EXT)
19886 env->prog->expected_attach_type = 0;
19891 mutex_unlock(&bpf_verifier_lock);
19892 vfree(env->insn_aux_data);