1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 [_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
44 /* bpf_check() is a static code analyzer that walks eBPF program
45 * instruction by instruction and updates register/stack state.
46 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
48 * The first pass is depth-first-search to check that the program is a DAG.
49 * It rejects the following programs:
50 * - larger than BPF_MAXINSNS insns
51 * - if loop is present (detected via back-edge)
52 * - unreachable insns exist (shouldn't be a forest. program = one function)
53 * - out of bounds or malformed jumps
54 * The second pass is all possible path descent from the 1st insn.
55 * Since it's analyzing all paths through the program, the length of the
56 * analysis is limited to 64k insn, which may be hit even if total number of
57 * insn is less then 4K, but there are too many branches that change stack/regs.
58 * Number of 'branches to be analyzed' is limited to 1k
60 * On entry to each instruction, each register has a type, and the instruction
61 * changes the types of the registers depending on instruction semantics.
62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
65 * All registers are 64-bit.
66 * R0 - return register
67 * R1-R5 argument passing registers
68 * R6-R9 callee saved registers
69 * R10 - frame pointer read-only
71 * At the start of BPF program the register R1 contains a pointer to bpf_context
72 * and has type PTR_TO_CTX.
74 * Verifier tracks arithmetic operations on pointers in case:
75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77 * 1st insn copies R10 (which has FRAME_PTR) type into R1
78 * and 2nd arithmetic instruction is pattern matched to recognize
79 * that it wants to construct a pointer to some element within stack.
80 * So after 2nd insn, the register R1 has type PTR_TO_STACK
81 * (and -20 constant is saved for further stack bounds checking).
82 * Meaning that this reg is a pointer to stack plus known immediate constant.
84 * Most of the time the registers have SCALAR_VALUE type, which
85 * means the register has some value, but it's not a valid pointer.
86 * (like pointer plus pointer becomes SCALAR_VALUE type)
88 * When verifier sees load or store instructions the type of base register
89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90 * four pointer types recognized by check_mem_access() function.
92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93 * and the range of [ptr, ptr + map's value_size) is accessible.
95 * registers used to pass values to function calls are checked against
96 * function argument constraints.
98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99 * It means that the register type passed to this function must be
100 * PTR_TO_STACK and it will be used inside the function as
101 * 'pointer to map element key'
103 * For example the argument constraints for bpf_map_lookup_elem():
104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105 * .arg1_type = ARG_CONST_MAP_PTR,
106 * .arg2_type = ARG_PTR_TO_MAP_KEY,
108 * ret_type says that this function returns 'pointer to map elem value or null'
109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110 * 2nd argument should be a pointer to stack, which will be used inside
111 * the helper function as a pointer to map element key.
113 * On the kernel side the helper function looks like:
114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117 * void *key = (void *) (unsigned long) r2;
120 * here kernel can access 'key' and 'map' pointers safely, knowing that
121 * [key, key + map->key_size) bytes are valid and were initialized on
122 * the stack of eBPF program.
125 * Corresponding eBPF program may look like:
126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130 * here verifier looks at prototype of map_lookup_elem() and sees:
131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136 * and were initialized prior to this call.
137 * If it's ok, then verifier allows this BPF_CALL insn and looks at
138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140 * returns either pointer to map value or NULL.
142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143 * insn, the register holding that pointer in the true branch changes state to
144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145 * branch. See check_cond_jmp_op().
147 * After the call R0 is set to return type of the function and registers R1-R5
148 * are set to NOT_INIT to indicate that they are no longer readable.
150 * The following reference types represent a potential reference to a kernel
151 * resource which, after first being allocated, must be checked and freed by
153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
155 * When the verifier sees a helper call return a reference type, it allocates a
156 * pointer id for the reference and stores it in the current function state.
157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159 * passes through a NULL-check conditional. For the branch wherein the state is
160 * changed to CONST_IMM, the verifier releases the reference.
162 * For each helper function that allocates a reference, such as
163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164 * bpf_sk_release(). When a reference type passes into the release function,
165 * the verifier also releases the reference. If any unchecked or unreleased
166 * reference remains at the end of the program, the verifier rejects it.
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 /* verifer state is 'st'
172 * before processing instruction 'insn_idx'
173 * and after processing instruction 'prev_insn_idx'
175 struct bpf_verifier_state st;
178 struct bpf_verifier_stack_elem *next;
179 /* length of verifier log at the time this state was pushed on stack */
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
184 #define BPF_COMPLEXITY_LIMIT_STATES 64
186 #define BPF_MAP_KEY_POISON (1ULL << 63)
187 #define BPF_MAP_KEY_SEEN (1ULL << 62)
189 #define BPF_MAP_PTR_UNPRIV 1UL
190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
191 POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 const struct bpf_map *map, bool unpriv)
217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 unpriv |= bpf_map_ptr_unpriv(aux);
219 aux->map_ptr_state = (unsigned long)map |
220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
225 return aux->map_key_state & BPF_MAP_KEY_POISON;
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
240 bool poisoned = bpf_map_key_poisoned(aux);
242 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
246 static bool bpf_helper_call(const struct bpf_insn *insn)
248 return insn->code == (BPF_JMP | BPF_CALL) &&
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
254 return insn->code == (BPF_JMP | BPF_CALL) &&
255 insn->src_reg == BPF_PSEUDO_CALL;
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
260 return insn->code == (BPF_JMP | BPF_CALL) &&
261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
264 struct bpf_call_arg_meta {
265 struct bpf_map *map_ptr;
282 struct btf_field *kptr_field;
285 struct bpf_kfunc_call_arg_meta {
290 const struct btf_type *func_proto;
291 const char *func_name;
304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 * generally to pass info about user-defined local kptr types to later
308 * Record the local kptr type to be drop'd
309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 * Record the local kptr type to be refcount_incr'd and use
311 * arg_owning_ref to determine whether refcount_acquire should be
319 struct btf_field *field;
322 struct btf_field *field;
325 enum bpf_dynptr_type type;
328 } initialized_dynptr;
336 struct btf *btf_vmlinux;
338 static DEFINE_MUTEX(bpf_verifier_lock);
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
343 const struct bpf_line_info *linfo;
344 const struct bpf_prog *prog;
348 nr_linfo = prog->aux->nr_linfo;
350 if (!nr_linfo || insn_off >= prog->len)
353 linfo = prog->aux->linfo;
354 for (i = 1; i < nr_linfo; i++)
355 if (insn_off < linfo[i].insn_off)
358 return &linfo[i - 1];
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
363 struct bpf_verifier_env *env = private_data;
366 if (!bpf_verifier_log_needed(&env->log))
370 bpf_verifier_vlog(&env->log, fmt, args);
374 static const char *ltrim(const char *s)
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
384 const char *prefix_fmt, ...)
386 const struct bpf_line_info *linfo;
388 if (!bpf_verifier_log_needed(&env->log))
391 linfo = find_linfo(env, insn_off);
392 if (!linfo || linfo == env->prev_linfo)
398 va_start(args, prefix_fmt);
399 bpf_verifier_vlog(&env->log, prefix_fmt, args);
404 ltrim(btf_name_by_offset(env->prog->aux->btf,
407 env->prev_linfo = linfo;
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 struct bpf_reg_state *reg,
412 struct tnum *range, const char *ctx,
413 const char *reg_name)
417 verbose(env, "At %s the register %s ", ctx, reg_name);
418 if (!tnum_is_unknown(reg->var_off)) {
419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 verbose(env, "has value %s", tn_buf);
422 verbose(env, "has unknown scalar value");
424 tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 verbose(env, " should have been in %s\n", tn_buf);
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
430 type = base_type(type);
431 return type == PTR_TO_PACKET ||
432 type == PTR_TO_PACKET_META;
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
437 return type == PTR_TO_SOCKET ||
438 type == PTR_TO_SOCK_COMMON ||
439 type == PTR_TO_TCP_SOCK ||
440 type == PTR_TO_XDP_SOCK;
443 static bool type_may_be_null(u32 type)
445 return type & PTR_MAYBE_NULL;
448 static bool reg_not_null(const struct bpf_reg_state *reg)
450 enum bpf_reg_type type;
453 if (type_may_be_null(type))
456 type = base_type(type);
457 return type == PTR_TO_SOCKET ||
458 type == PTR_TO_TCP_SOCK ||
459 type == PTR_TO_MAP_VALUE ||
460 type == PTR_TO_MAP_KEY ||
461 type == PTR_TO_SOCK_COMMON ||
462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
466 static bool type_is_ptr_alloc_obj(u32 type)
468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
471 static bool type_is_non_owning_ref(u32 type)
473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
478 struct btf_record *rec = NULL;
479 struct btf_struct_meta *meta;
481 if (reg->type == PTR_TO_MAP_VALUE) {
482 rec = reg->map_ptr->record;
483 } else if (type_is_ptr_alloc_obj(reg->type)) {
484 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
503 static bool type_is_rdonly_mem(u32 type)
505 return type & MEM_RDONLY;
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 const struct bpf_map *map)
511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
513 if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 func_id == BPF_FUNC_sk_lookup_udp ||
515 func_id == BPF_FUNC_skc_lookup_tcp ||
516 func_id == BPF_FUNC_ringbuf_reserve ||
517 func_id == BPF_FUNC_kptr_xchg)
520 if (func_id == BPF_FUNC_map_lookup_elem &&
521 (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 map_type == BPF_MAP_TYPE_SOCKHASH))
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
530 return func_id == BPF_FUNC_tcp_sock ||
531 func_id == BPF_FUNC_sk_fullsock ||
532 func_id == BPF_FUNC_skc_to_tcp_sock ||
533 func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 func_id == BPF_FUNC_skc_to_udp6_sock ||
535 func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_request_sock;
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
542 return func_id == BPF_FUNC_dynptr_data;
545 static bool is_callback_calling_kfunc(u32 btf_id);
547 static bool is_callback_calling_function(enum bpf_func_id func_id)
549 return func_id == BPF_FUNC_for_each_map_elem ||
550 func_id == BPF_FUNC_timer_set_callback ||
551 func_id == BPF_FUNC_find_vma ||
552 func_id == BPF_FUNC_loop ||
553 func_id == BPF_FUNC_user_ringbuf_drain;
556 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
558 return func_id == BPF_FUNC_timer_set_callback;
561 static bool is_storage_get_function(enum bpf_func_id func_id)
563 return func_id == BPF_FUNC_sk_storage_get ||
564 func_id == BPF_FUNC_inode_storage_get ||
565 func_id == BPF_FUNC_task_storage_get ||
566 func_id == BPF_FUNC_cgrp_storage_get;
569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
570 const struct bpf_map *map)
572 int ref_obj_uses = 0;
574 if (is_ptr_cast_function(func_id))
576 if (is_acquire_function(func_id, map))
578 if (is_dynptr_ref_function(func_id))
581 return ref_obj_uses > 1;
584 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
586 return BPF_CLASS(insn->code) == BPF_STX &&
587 BPF_MODE(insn->code) == BPF_ATOMIC &&
588 insn->imm == BPF_CMPXCHG;
591 /* string representation of 'enum bpf_reg_type'
593 * Note that reg_type_str() can not appear more than once in a single verbose()
596 static const char *reg_type_str(struct bpf_verifier_env *env,
597 enum bpf_reg_type type)
599 char postfix[16] = {0}, prefix[64] = {0};
600 static const char * const str[] = {
602 [SCALAR_VALUE] = "scalar",
603 [PTR_TO_CTX] = "ctx",
604 [CONST_PTR_TO_MAP] = "map_ptr",
605 [PTR_TO_MAP_VALUE] = "map_value",
606 [PTR_TO_STACK] = "fp",
607 [PTR_TO_PACKET] = "pkt",
608 [PTR_TO_PACKET_META] = "pkt_meta",
609 [PTR_TO_PACKET_END] = "pkt_end",
610 [PTR_TO_FLOW_KEYS] = "flow_keys",
611 [PTR_TO_SOCKET] = "sock",
612 [PTR_TO_SOCK_COMMON] = "sock_common",
613 [PTR_TO_TCP_SOCK] = "tcp_sock",
614 [PTR_TO_TP_BUFFER] = "tp_buffer",
615 [PTR_TO_XDP_SOCK] = "xdp_sock",
616 [PTR_TO_BTF_ID] = "ptr_",
617 [PTR_TO_MEM] = "mem",
618 [PTR_TO_BUF] = "buf",
619 [PTR_TO_FUNC] = "func",
620 [PTR_TO_MAP_KEY] = "map_key",
621 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
624 if (type & PTR_MAYBE_NULL) {
625 if (base_type(type) == PTR_TO_BTF_ID)
626 strncpy(postfix, "or_null_", 16);
628 strncpy(postfix, "_or_null", 16);
631 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
632 type & MEM_RDONLY ? "rdonly_" : "",
633 type & MEM_RINGBUF ? "ringbuf_" : "",
634 type & MEM_USER ? "user_" : "",
635 type & MEM_PERCPU ? "percpu_" : "",
636 type & MEM_RCU ? "rcu_" : "",
637 type & PTR_UNTRUSTED ? "untrusted_" : "",
638 type & PTR_TRUSTED ? "trusted_" : ""
641 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
642 prefix, str[base_type(type)], postfix);
643 return env->tmp_str_buf;
646 static char slot_type_char[] = {
647 [STACK_INVALID] = '?',
651 [STACK_DYNPTR] = 'd',
655 static void print_liveness(struct bpf_verifier_env *env,
656 enum bpf_reg_liveness live)
658 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
660 if (live & REG_LIVE_READ)
662 if (live & REG_LIVE_WRITTEN)
664 if (live & REG_LIVE_DONE)
668 static int __get_spi(s32 off)
670 return (-off - 1) / BPF_REG_SIZE;
673 static struct bpf_func_state *func(struct bpf_verifier_env *env,
674 const struct bpf_reg_state *reg)
676 struct bpf_verifier_state *cur = env->cur_state;
678 return cur->frame[reg->frameno];
681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
683 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
685 /* We need to check that slots between [spi - nr_slots + 1, spi] are
686 * within [0, allocated_stack).
688 * Please note that the spi grows downwards. For example, a dynptr
689 * takes the size of two stack slots; the first slot will be at
690 * spi and the second slot will be at spi - 1.
692 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
696 const char *obj_kind, int nr_slots)
700 if (!tnum_is_const(reg->var_off)) {
701 verbose(env, "%s has to be at a constant offset\n", obj_kind);
705 off = reg->off + reg->var_off.value;
706 if (off % BPF_REG_SIZE) {
707 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
711 spi = __get_spi(off);
712 if (spi + 1 < nr_slots) {
713 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
717 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
724 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
729 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
732 static const char *btf_type_name(const struct btf *btf, u32 id)
734 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
737 static const char *dynptr_type_str(enum bpf_dynptr_type type)
740 case BPF_DYNPTR_TYPE_LOCAL:
742 case BPF_DYNPTR_TYPE_RINGBUF:
744 case BPF_DYNPTR_TYPE_SKB:
746 case BPF_DYNPTR_TYPE_XDP:
748 case BPF_DYNPTR_TYPE_INVALID:
751 WARN_ONCE(1, "unknown dynptr type %d\n", type);
756 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
758 if (!btf || btf_id == 0)
761 /* we already validated that type is valid and has conforming name */
762 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
765 static const char *iter_state_str(enum bpf_iter_state state)
768 case BPF_ITER_STATE_ACTIVE:
770 case BPF_ITER_STATE_DRAINED:
772 case BPF_ITER_STATE_INVALID:
775 WARN_ONCE(1, "unknown iter state %d\n", state);
780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
782 env->scratched_regs |= 1U << regno;
785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
787 env->scratched_stack_slots |= 1ULL << spi;
790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
792 return (env->scratched_regs >> regno) & 1;
795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
797 return (env->scratched_stack_slots >> regno) & 1;
800 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
802 return env->scratched_regs || env->scratched_stack_slots;
805 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
807 env->scratched_regs = 0U;
808 env->scratched_stack_slots = 0ULL;
811 /* Used for printing the entire verifier state. */
812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
814 env->scratched_regs = ~0U;
815 env->scratched_stack_slots = ~0ULL;
818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
820 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
821 case DYNPTR_TYPE_LOCAL:
822 return BPF_DYNPTR_TYPE_LOCAL;
823 case DYNPTR_TYPE_RINGBUF:
824 return BPF_DYNPTR_TYPE_RINGBUF;
825 case DYNPTR_TYPE_SKB:
826 return BPF_DYNPTR_TYPE_SKB;
827 case DYNPTR_TYPE_XDP:
828 return BPF_DYNPTR_TYPE_XDP;
830 return BPF_DYNPTR_TYPE_INVALID;
834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
837 case BPF_DYNPTR_TYPE_LOCAL:
838 return DYNPTR_TYPE_LOCAL;
839 case BPF_DYNPTR_TYPE_RINGBUF:
840 return DYNPTR_TYPE_RINGBUF;
841 case BPF_DYNPTR_TYPE_SKB:
842 return DYNPTR_TYPE_SKB;
843 case BPF_DYNPTR_TYPE_XDP:
844 return DYNPTR_TYPE_XDP;
850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
852 return type == BPF_DYNPTR_TYPE_RINGBUF;
855 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
856 enum bpf_dynptr_type type,
857 bool first_slot, int dynptr_id);
859 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
860 struct bpf_reg_state *reg);
862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
863 struct bpf_reg_state *sreg1,
864 struct bpf_reg_state *sreg2,
865 enum bpf_dynptr_type type)
867 int id = ++env->id_gen;
869 __mark_dynptr_reg(sreg1, type, true, id);
870 __mark_dynptr_reg(sreg2, type, false, id);
873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
874 struct bpf_reg_state *reg,
875 enum bpf_dynptr_type type)
877 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
881 struct bpf_func_state *state, int spi);
883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
884 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
886 struct bpf_func_state *state = func(env, reg);
887 enum bpf_dynptr_type type;
890 spi = dynptr_get_spi(env, reg);
894 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
895 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
896 * to ensure that for the following example:
899 * So marking spi = 2 should lead to destruction of both d1 and d2. In
900 * case they do belong to same dynptr, second call won't see slot_type
901 * as STACK_DYNPTR and will simply skip destruction.
903 err = destroy_if_dynptr_stack_slot(env, state, spi);
906 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
910 for (i = 0; i < BPF_REG_SIZE; i++) {
911 state->stack[spi].slot_type[i] = STACK_DYNPTR;
912 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
915 type = arg_to_dynptr_type(arg_type);
916 if (type == BPF_DYNPTR_TYPE_INVALID)
919 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
920 &state->stack[spi - 1].spilled_ptr, type);
922 if (dynptr_type_refcounted(type)) {
923 /* The id is used to track proper releasing */
926 if (clone_ref_obj_id)
927 id = clone_ref_obj_id;
929 id = acquire_reference_state(env, insn_idx);
934 state->stack[spi].spilled_ptr.ref_obj_id = id;
935 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
938 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
939 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
948 for (i = 0; i < BPF_REG_SIZE; i++) {
949 state->stack[spi].slot_type[i] = STACK_INVALID;
950 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
953 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
954 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
956 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
958 * While we don't allow reading STACK_INVALID, it is still possible to
959 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
960 * helpers or insns can do partial read of that part without failing,
961 * but check_stack_range_initialized, check_stack_read_var_off, and
962 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
963 * the slot conservatively. Hence we need to prevent those liveness
966 * This was not a problem before because STACK_INVALID is only set by
967 * default (where the default reg state has its reg->parent as NULL), or
968 * in clean_live_states after REG_LIVE_DONE (at which point
969 * mark_reg_read won't walk reg->parent chain), but not randomly during
970 * verifier state exploration (like we did above). Hence, for our case
971 * parentage chain will still be live (i.e. reg->parent may be
972 * non-NULL), while earlier reg->parent was NULL, so we need
973 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
974 * done later on reads or by mark_dynptr_read as well to unnecessary
975 * mark registers in verifier state.
977 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
978 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
983 struct bpf_func_state *state = func(env, reg);
984 int spi, ref_obj_id, i;
986 spi = dynptr_get_spi(env, reg);
990 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
991 invalidate_dynptr(env, state, spi);
995 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
997 /* If the dynptr has a ref_obj_id, then we need to invalidate
1000 * 1) Any dynptrs with a matching ref_obj_id (clones)
1001 * 2) Any slices derived from this dynptr.
1004 /* Invalidate any slices associated with this dynptr */
1005 WARN_ON_ONCE(release_reference(env, ref_obj_id));
1007 /* Invalidate any dynptr clones */
1008 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1009 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1012 /* it should always be the case that if the ref obj id
1013 * matches then the stack slot also belongs to a
1016 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1017 verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1020 if (state->stack[i].spilled_ptr.dynptr.first_slot)
1021 invalidate_dynptr(env, state, i);
1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1028 struct bpf_reg_state *reg);
1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1032 if (!env->allow_ptr_leaks)
1033 __mark_reg_not_init(env, reg);
1035 __mark_reg_unknown(env, reg);
1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1039 struct bpf_func_state *state, int spi)
1041 struct bpf_func_state *fstate;
1042 struct bpf_reg_state *dreg;
1045 /* We always ensure that STACK_DYNPTR is never set partially,
1046 * hence just checking for slot_type[0] is enough. This is
1047 * different for STACK_SPILL, where it may be only set for
1048 * 1 byte, so code has to use is_spilled_reg.
1050 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1053 /* Reposition spi to first slot */
1054 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1057 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1058 verbose(env, "cannot overwrite referenced dynptr\n");
1062 mark_stack_slot_scratched(env, spi);
1063 mark_stack_slot_scratched(env, spi - 1);
1065 /* Writing partially to one dynptr stack slot destroys both. */
1066 for (i = 0; i < BPF_REG_SIZE; i++) {
1067 state->stack[spi].slot_type[i] = STACK_INVALID;
1068 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1071 dynptr_id = state->stack[spi].spilled_ptr.id;
1072 /* Invalidate any slices associated with this dynptr */
1073 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1074 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1075 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1077 if (dreg->dynptr_id == dynptr_id)
1078 mark_reg_invalid(env, dreg);
1081 /* Do not release reference state, we are destroying dynptr on stack,
1082 * not using some helper to release it. Just reset register.
1084 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1085 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1087 /* Same reason as unmark_stack_slots_dynptr above */
1088 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1089 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1098 if (reg->type == CONST_PTR_TO_DYNPTR)
1101 spi = dynptr_get_spi(env, reg);
1103 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1104 * error because this just means the stack state hasn't been updated yet.
1105 * We will do check_mem_access to check and update stack bounds later.
1107 if (spi < 0 && spi != -ERANGE)
1110 /* We don't need to check if the stack slots are marked by previous
1111 * dynptr initializations because we allow overwriting existing unreferenced
1112 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1113 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1114 * touching are completely destructed before we reinitialize them for a new
1115 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1116 * instead of delaying it until the end where the user will get "Unreleased
1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1124 struct bpf_func_state *state = func(env, reg);
1127 /* This already represents first slot of initialized bpf_dynptr.
1129 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1130 * check_func_arg_reg_off's logic, so we don't need to check its
1131 * offset and alignment.
1133 if (reg->type == CONST_PTR_TO_DYNPTR)
1136 spi = dynptr_get_spi(env, reg);
1139 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1142 for (i = 0; i < BPF_REG_SIZE; i++) {
1143 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1144 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1152 enum bpf_arg_type arg_type)
1154 struct bpf_func_state *state = func(env, reg);
1155 enum bpf_dynptr_type dynptr_type;
1158 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1159 if (arg_type == ARG_PTR_TO_DYNPTR)
1162 dynptr_type = arg_to_dynptr_type(arg_type);
1163 if (reg->type == CONST_PTR_TO_DYNPTR) {
1164 return reg->dynptr.type == dynptr_type;
1166 spi = dynptr_get_spi(env, reg);
1169 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1176 struct bpf_reg_state *reg, int insn_idx,
1177 struct btf *btf, u32 btf_id, int nr_slots)
1179 struct bpf_func_state *state = func(env, reg);
1182 spi = iter_get_spi(env, reg, nr_slots);
1186 id = acquire_reference_state(env, insn_idx);
1190 for (i = 0; i < nr_slots; i++) {
1191 struct bpf_stack_state *slot = &state->stack[spi - i];
1192 struct bpf_reg_state *st = &slot->spilled_ptr;
1194 __mark_reg_known_zero(st);
1195 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1196 st->live |= REG_LIVE_WRITTEN;
1197 st->ref_obj_id = i == 0 ? id : 0;
1199 st->iter.btf_id = btf_id;
1200 st->iter.state = BPF_ITER_STATE_ACTIVE;
1203 for (j = 0; j < BPF_REG_SIZE; j++)
1204 slot->slot_type[j] = STACK_ITER;
1206 mark_stack_slot_scratched(env, spi - i);
1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1213 struct bpf_reg_state *reg, int nr_slots)
1215 struct bpf_func_state *state = func(env, reg);
1218 spi = iter_get_spi(env, reg, nr_slots);
1222 for (i = 0; i < nr_slots; i++) {
1223 struct bpf_stack_state *slot = &state->stack[spi - i];
1224 struct bpf_reg_state *st = &slot->spilled_ptr;
1227 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1229 __mark_reg_not_init(env, st);
1231 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1232 st->live |= REG_LIVE_WRITTEN;
1234 for (j = 0; j < BPF_REG_SIZE; j++)
1235 slot->slot_type[j] = STACK_INVALID;
1237 mark_stack_slot_scratched(env, spi - i);
1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1244 struct bpf_reg_state *reg, int nr_slots)
1246 struct bpf_func_state *state = func(env, reg);
1249 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1250 * will do check_mem_access to check and update stack bounds later, so
1251 * return true for that case.
1253 spi = iter_get_spi(env, reg, nr_slots);
1259 for (i = 0; i < nr_slots; i++) {
1260 struct bpf_stack_state *slot = &state->stack[spi - i];
1262 for (j = 0; j < BPF_REG_SIZE; j++)
1263 if (slot->slot_type[j] == STACK_ITER)
1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1271 struct btf *btf, u32 btf_id, int nr_slots)
1273 struct bpf_func_state *state = func(env, reg);
1276 spi = iter_get_spi(env, reg, nr_slots);
1280 for (i = 0; i < nr_slots; i++) {
1281 struct bpf_stack_state *slot = &state->stack[spi - i];
1282 struct bpf_reg_state *st = &slot->spilled_ptr;
1284 /* only main (first) slot has ref_obj_id set */
1285 if (i == 0 && !st->ref_obj_id)
1287 if (i != 0 && st->ref_obj_id)
1289 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1292 for (j = 0; j < BPF_REG_SIZE; j++)
1293 if (slot->slot_type[j] != STACK_ITER)
1300 /* Check if given stack slot is "special":
1301 * - spilled register state (STACK_SPILL);
1302 * - dynptr state (STACK_DYNPTR);
1303 * - iter state (STACK_ITER).
1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1307 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1319 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1324 /* The reg state of a pointer or a bounded scalar was saved when
1325 * it was spilled to the stack.
1327 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1329 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1334 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1335 stack->spilled_ptr.type == SCALAR_VALUE;
1338 static void scrub_spilled_slot(u8 *stype)
1340 if (*stype != STACK_INVALID)
1341 *stype = STACK_MISC;
1344 static void print_verifier_state(struct bpf_verifier_env *env,
1345 const struct bpf_func_state *state,
1348 const struct bpf_reg_state *reg;
1349 enum bpf_reg_type t;
1353 verbose(env, " frame%d:", state->frameno);
1354 for (i = 0; i < MAX_BPF_REG; i++) {
1355 reg = &state->regs[i];
1359 if (!print_all && !reg_scratched(env, i))
1361 verbose(env, " R%d", i);
1362 print_liveness(env, reg->live);
1364 if (t == SCALAR_VALUE && reg->precise)
1366 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1367 tnum_is_const(reg->var_off)) {
1368 /* reg->off should be 0 for SCALAR_VALUE */
1369 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1370 verbose(env, "%lld", reg->var_off.value + reg->off);
1372 const char *sep = "";
1374 verbose(env, "%s", reg_type_str(env, t));
1375 if (base_type(t) == PTR_TO_BTF_ID)
1376 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1379 * _a stands for append, was shortened to avoid multiline statements below.
1380 * This macro is used to output a comma separated list of attributes.
1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1385 verbose_a("id=%d", reg->id);
1386 if (reg->ref_obj_id)
1387 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1388 if (type_is_non_owning_ref(reg->type))
1389 verbose_a("%s", "non_own_ref");
1390 if (t != SCALAR_VALUE)
1391 verbose_a("off=%d", reg->off);
1392 if (type_is_pkt_pointer(t))
1393 verbose_a("r=%d", reg->range);
1394 else if (base_type(t) == CONST_PTR_TO_MAP ||
1395 base_type(t) == PTR_TO_MAP_KEY ||
1396 base_type(t) == PTR_TO_MAP_VALUE)
1397 verbose_a("ks=%d,vs=%d",
1398 reg->map_ptr->key_size,
1399 reg->map_ptr->value_size);
1400 if (tnum_is_const(reg->var_off)) {
1401 /* Typically an immediate SCALAR_VALUE, but
1402 * could be a pointer whose offset is too big
1405 verbose_a("imm=%llx", reg->var_off.value);
1407 if (reg->smin_value != reg->umin_value &&
1408 reg->smin_value != S64_MIN)
1409 verbose_a("smin=%lld", (long long)reg->smin_value);
1410 if (reg->smax_value != reg->umax_value &&
1411 reg->smax_value != S64_MAX)
1412 verbose_a("smax=%lld", (long long)reg->smax_value);
1413 if (reg->umin_value != 0)
1414 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1415 if (reg->umax_value != U64_MAX)
1416 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1417 if (!tnum_is_unknown(reg->var_off)) {
1420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1421 verbose_a("var_off=%s", tn_buf);
1423 if (reg->s32_min_value != reg->smin_value &&
1424 reg->s32_min_value != S32_MIN)
1425 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1426 if (reg->s32_max_value != reg->smax_value &&
1427 reg->s32_max_value != S32_MAX)
1428 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1429 if (reg->u32_min_value != reg->umin_value &&
1430 reg->u32_min_value != U32_MIN)
1431 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1432 if (reg->u32_max_value != reg->umax_value &&
1433 reg->u32_max_value != U32_MAX)
1434 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1441 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1442 char types_buf[BPF_REG_SIZE + 1];
1446 for (j = 0; j < BPF_REG_SIZE; j++) {
1447 if (state->stack[i].slot_type[j] != STACK_INVALID)
1449 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1451 types_buf[BPF_REG_SIZE] = 0;
1454 if (!print_all && !stack_slot_scratched(env, i))
1456 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1458 reg = &state->stack[i].spilled_ptr;
1461 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1462 print_liveness(env, reg->live);
1463 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1464 if (t == SCALAR_VALUE && reg->precise)
1466 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1467 verbose(env, "%lld", reg->var_off.value + reg->off);
1470 i += BPF_DYNPTR_NR_SLOTS - 1;
1471 reg = &state->stack[i].spilled_ptr;
1473 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1474 print_liveness(env, reg->live);
1475 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1476 if (reg->ref_obj_id)
1477 verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1480 /* only main slot has ref_obj_id set; skip others */
1481 reg = &state->stack[i].spilled_ptr;
1482 if (!reg->ref_obj_id)
1485 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1486 print_liveness(env, reg->live);
1487 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1488 iter_type_str(reg->iter.btf, reg->iter.btf_id),
1489 reg->ref_obj_id, iter_state_str(reg->iter.state),
1495 reg = &state->stack[i].spilled_ptr;
1497 for (j = 0; j < BPF_REG_SIZE; j++)
1498 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1499 types_buf[BPF_REG_SIZE] = 0;
1501 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1502 print_liveness(env, reg->live);
1503 verbose(env, "=%s", types_buf);
1507 if (state->acquired_refs && state->refs[0].id) {
1508 verbose(env, " refs=%d", state->refs[0].id);
1509 for (i = 1; i < state->acquired_refs; i++)
1510 if (state->refs[i].id)
1511 verbose(env, ",%d", state->refs[i].id);
1513 if (state->in_callback_fn)
1514 verbose(env, " cb");
1515 if (state->in_async_callback_fn)
1516 verbose(env, " async_cb");
1519 mark_verifier_state_clean(env);
1522 static inline u32 vlog_alignment(u32 pos)
1524 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1525 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1528 static void print_insn_state(struct bpf_verifier_env *env,
1529 const struct bpf_func_state *state)
1531 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1532 /* remove new line character */
1533 bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1534 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1536 verbose(env, "%d:", env->insn_idx);
1538 print_verifier_state(env, state, false);
1541 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1542 * small to hold src. This is different from krealloc since we don't want to preserve
1543 * the contents of dst.
1545 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1548 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1554 if (ZERO_OR_NULL_PTR(src))
1557 if (unlikely(check_mul_overflow(n, size, &bytes)))
1560 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1561 dst = krealloc(orig, alloc_bytes, flags);
1567 memcpy(dst, src, bytes);
1569 return dst ? dst : ZERO_SIZE_PTR;
1572 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1573 * small to hold new_n items. new items are zeroed out if the array grows.
1575 * Contrary to krealloc_array, does not free arr if new_n is zero.
1577 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1582 if (!new_n || old_n == new_n)
1585 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1586 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1594 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1597 return arr ? arr : ZERO_SIZE_PTR;
1600 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1602 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1603 sizeof(struct bpf_reference_state), GFP_KERNEL);
1607 dst->acquired_refs = src->acquired_refs;
1611 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1613 size_t n = src->allocated_stack / BPF_REG_SIZE;
1615 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1620 dst->allocated_stack = src->allocated_stack;
1624 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1626 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1627 sizeof(struct bpf_reference_state));
1631 state->acquired_refs = n;
1635 /* Possibly update state->allocated_stack to be at least size bytes. Also
1636 * possibly update the function's high-water mark in its bpf_subprog_info.
1638 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1640 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1645 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1649 state->allocated_stack = size;
1651 /* update known max for given subprogram */
1652 if (env->subprog_info[state->subprogno].stack_depth < size)
1653 env->subprog_info[state->subprogno].stack_depth = size;
1658 /* Acquire a pointer id from the env and update the state->refs to include
1659 * this new pointer reference.
1660 * On success, returns a valid pointer id to associate with the register
1661 * On failure, returns a negative errno.
1663 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1665 struct bpf_func_state *state = cur_func(env);
1666 int new_ofs = state->acquired_refs;
1669 err = resize_reference_state(state, state->acquired_refs + 1);
1673 state->refs[new_ofs].id = id;
1674 state->refs[new_ofs].insn_idx = insn_idx;
1675 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1680 /* release function corresponding to acquire_reference_state(). Idempotent. */
1681 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1685 last_idx = state->acquired_refs - 1;
1686 for (i = 0; i < state->acquired_refs; i++) {
1687 if (state->refs[i].id == ptr_id) {
1688 /* Cannot release caller references in callbacks */
1689 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1691 if (last_idx && i != last_idx)
1692 memcpy(&state->refs[i], &state->refs[last_idx],
1693 sizeof(*state->refs));
1694 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1695 state->acquired_refs--;
1702 static void free_func_state(struct bpf_func_state *state)
1707 kfree(state->stack);
1711 static void clear_jmp_history(struct bpf_verifier_state *state)
1713 kfree(state->jmp_history);
1714 state->jmp_history = NULL;
1715 state->jmp_history_cnt = 0;
1718 static void free_verifier_state(struct bpf_verifier_state *state,
1723 for (i = 0; i <= state->curframe; i++) {
1724 free_func_state(state->frame[i]);
1725 state->frame[i] = NULL;
1727 clear_jmp_history(state);
1732 /* copy verifier state from src to dst growing dst stack space
1733 * when necessary to accommodate larger src stack
1735 static int copy_func_state(struct bpf_func_state *dst,
1736 const struct bpf_func_state *src)
1740 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1741 err = copy_reference_state(dst, src);
1744 return copy_stack_state(dst, src);
1747 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1748 const struct bpf_verifier_state *src)
1750 struct bpf_func_state *dst;
1753 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1754 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1756 if (!dst_state->jmp_history)
1758 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1760 /* if dst has more stack frames then src frame, free them */
1761 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1762 free_func_state(dst_state->frame[i]);
1763 dst_state->frame[i] = NULL;
1765 dst_state->speculative = src->speculative;
1766 dst_state->active_rcu_lock = src->active_rcu_lock;
1767 dst_state->curframe = src->curframe;
1768 dst_state->active_lock.ptr = src->active_lock.ptr;
1769 dst_state->active_lock.id = src->active_lock.id;
1770 dst_state->branches = src->branches;
1771 dst_state->parent = src->parent;
1772 dst_state->first_insn_idx = src->first_insn_idx;
1773 dst_state->last_insn_idx = src->last_insn_idx;
1774 for (i = 0; i <= src->curframe; i++) {
1775 dst = dst_state->frame[i];
1777 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1780 dst_state->frame[i] = dst;
1782 err = copy_func_state(dst, src->frame[i]);
1789 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1792 u32 br = --st->branches;
1794 /* WARN_ON(br > 1) technically makes sense here,
1795 * but see comment in push_stack(), hence:
1797 WARN_ONCE((int)br < 0,
1798 "BUG update_branch_counts:branches_to_explore=%d\n",
1806 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1807 int *insn_idx, bool pop_log)
1809 struct bpf_verifier_state *cur = env->cur_state;
1810 struct bpf_verifier_stack_elem *elem, *head = env->head;
1813 if (env->head == NULL)
1817 err = copy_verifier_state(cur, &head->st);
1822 bpf_vlog_reset(&env->log, head->log_pos);
1824 *insn_idx = head->insn_idx;
1826 *prev_insn_idx = head->prev_insn_idx;
1828 free_verifier_state(&head->st, false);
1835 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1836 int insn_idx, int prev_insn_idx,
1839 struct bpf_verifier_state *cur = env->cur_state;
1840 struct bpf_verifier_stack_elem *elem;
1843 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1847 elem->insn_idx = insn_idx;
1848 elem->prev_insn_idx = prev_insn_idx;
1849 elem->next = env->head;
1850 elem->log_pos = env->log.end_pos;
1853 err = copy_verifier_state(&elem->st, cur);
1856 elem->st.speculative |= speculative;
1857 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1858 verbose(env, "The sequence of %d jumps is too complex.\n",
1862 if (elem->st.parent) {
1863 ++elem->st.parent->branches;
1864 /* WARN_ON(branches > 2) technically makes sense here,
1866 * 1. speculative states will bump 'branches' for non-branch
1868 * 2. is_state_visited() heuristics may decide not to create
1869 * a new state for a sequence of branches and all such current
1870 * and cloned states will be pointing to a single parent state
1871 * which might have large 'branches' count.
1876 free_verifier_state(env->cur_state, true);
1877 env->cur_state = NULL;
1878 /* pop all elements and return */
1879 while (!pop_stack(env, NULL, NULL, false));
1883 #define CALLER_SAVED_REGS 6
1884 static const int caller_saved[CALLER_SAVED_REGS] = {
1885 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1888 /* This helper doesn't clear reg->id */
1889 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1891 reg->var_off = tnum_const(imm);
1892 reg->smin_value = (s64)imm;
1893 reg->smax_value = (s64)imm;
1894 reg->umin_value = imm;
1895 reg->umax_value = imm;
1897 reg->s32_min_value = (s32)imm;
1898 reg->s32_max_value = (s32)imm;
1899 reg->u32_min_value = (u32)imm;
1900 reg->u32_max_value = (u32)imm;
1903 /* Mark the unknown part of a register (variable offset or scalar value) as
1904 * known to have the value @imm.
1906 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1908 /* Clear off and union(map_ptr, range) */
1909 memset(((u8 *)reg) + sizeof(reg->type), 0,
1910 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1912 reg->ref_obj_id = 0;
1913 ___mark_reg_known(reg, imm);
1916 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1918 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1919 reg->s32_min_value = (s32)imm;
1920 reg->s32_max_value = (s32)imm;
1921 reg->u32_min_value = (u32)imm;
1922 reg->u32_max_value = (u32)imm;
1925 /* Mark the 'variable offset' part of a register as zero. This should be
1926 * used only on registers holding a pointer type.
1928 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1930 __mark_reg_known(reg, 0);
1933 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1935 __mark_reg_known(reg, 0);
1936 reg->type = SCALAR_VALUE;
1939 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1940 struct bpf_reg_state *regs, u32 regno)
1942 if (WARN_ON(regno >= MAX_BPF_REG)) {
1943 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1944 /* Something bad happened, let's kill all regs */
1945 for (regno = 0; regno < MAX_BPF_REG; regno++)
1946 __mark_reg_not_init(env, regs + regno);
1949 __mark_reg_known_zero(regs + regno);
1952 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1953 bool first_slot, int dynptr_id)
1955 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1956 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1957 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1959 __mark_reg_known_zero(reg);
1960 reg->type = CONST_PTR_TO_DYNPTR;
1961 /* Give each dynptr a unique id to uniquely associate slices to it. */
1962 reg->id = dynptr_id;
1963 reg->dynptr.type = type;
1964 reg->dynptr.first_slot = first_slot;
1967 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1969 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1970 const struct bpf_map *map = reg->map_ptr;
1972 if (map->inner_map_meta) {
1973 reg->type = CONST_PTR_TO_MAP;
1974 reg->map_ptr = map->inner_map_meta;
1975 /* transfer reg's id which is unique for every map_lookup_elem
1976 * as UID of the inner map.
1978 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1979 reg->map_uid = reg->id;
1980 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1981 reg->type = PTR_TO_XDP_SOCK;
1982 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1983 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1984 reg->type = PTR_TO_SOCKET;
1986 reg->type = PTR_TO_MAP_VALUE;
1991 reg->type &= ~PTR_MAYBE_NULL;
1994 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1995 struct btf_field_graph_root *ds_head)
1997 __mark_reg_known_zero(®s[regno]);
1998 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1999 regs[regno].btf = ds_head->btf;
2000 regs[regno].btf_id = ds_head->value_btf_id;
2001 regs[regno].off = ds_head->node_offset;
2004 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2006 return type_is_pkt_pointer(reg->type);
2009 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2011 return reg_is_pkt_pointer(reg) ||
2012 reg->type == PTR_TO_PACKET_END;
2015 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2017 return base_type(reg->type) == PTR_TO_MEM &&
2018 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2021 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2022 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2023 enum bpf_reg_type which)
2025 /* The register can already have a range from prior markings.
2026 * This is fine as long as it hasn't been advanced from its
2029 return reg->type == which &&
2032 tnum_equals_const(reg->var_off, 0);
2035 /* Reset the min/max bounds of a register */
2036 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2038 reg->smin_value = S64_MIN;
2039 reg->smax_value = S64_MAX;
2040 reg->umin_value = 0;
2041 reg->umax_value = U64_MAX;
2043 reg->s32_min_value = S32_MIN;
2044 reg->s32_max_value = S32_MAX;
2045 reg->u32_min_value = 0;
2046 reg->u32_max_value = U32_MAX;
2049 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2051 reg->smin_value = S64_MIN;
2052 reg->smax_value = S64_MAX;
2053 reg->umin_value = 0;
2054 reg->umax_value = U64_MAX;
2057 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2059 reg->s32_min_value = S32_MIN;
2060 reg->s32_max_value = S32_MAX;
2061 reg->u32_min_value = 0;
2062 reg->u32_max_value = U32_MAX;
2065 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2067 struct tnum var32_off = tnum_subreg(reg->var_off);
2069 /* min signed is max(sign bit) | min(other bits) */
2070 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2071 var32_off.value | (var32_off.mask & S32_MIN));
2072 /* max signed is min(sign bit) | max(other bits) */
2073 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2074 var32_off.value | (var32_off.mask & S32_MAX));
2075 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2076 reg->u32_max_value = min(reg->u32_max_value,
2077 (u32)(var32_off.value | var32_off.mask));
2080 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2082 /* min signed is max(sign bit) | min(other bits) */
2083 reg->smin_value = max_t(s64, reg->smin_value,
2084 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2085 /* max signed is min(sign bit) | max(other bits) */
2086 reg->smax_value = min_t(s64, reg->smax_value,
2087 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2088 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2089 reg->umax_value = min(reg->umax_value,
2090 reg->var_off.value | reg->var_off.mask);
2093 static void __update_reg_bounds(struct bpf_reg_state *reg)
2095 __update_reg32_bounds(reg);
2096 __update_reg64_bounds(reg);
2099 /* Uses signed min/max values to inform unsigned, and vice-versa */
2100 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2102 /* Learn sign from signed bounds.
2103 * If we cannot cross the sign boundary, then signed and unsigned bounds
2104 * are the same, so combine. This works even in the negative case, e.g.
2105 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2107 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2108 reg->s32_min_value = reg->u32_min_value =
2109 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2110 reg->s32_max_value = reg->u32_max_value =
2111 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2114 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2115 * boundary, so we must be careful.
2117 if ((s32)reg->u32_max_value >= 0) {
2118 /* Positive. We can't learn anything from the smin, but smax
2119 * is positive, hence safe.
2121 reg->s32_min_value = reg->u32_min_value;
2122 reg->s32_max_value = reg->u32_max_value =
2123 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2124 } else if ((s32)reg->u32_min_value < 0) {
2125 /* Negative. We can't learn anything from the smax, but smin
2126 * is negative, hence safe.
2128 reg->s32_min_value = reg->u32_min_value =
2129 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2130 reg->s32_max_value = reg->u32_max_value;
2134 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2136 /* Learn sign from signed bounds.
2137 * If we cannot cross the sign boundary, then signed and unsigned bounds
2138 * are the same, so combine. This works even in the negative case, e.g.
2139 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2141 if (reg->smin_value >= 0 || reg->smax_value < 0) {
2142 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2144 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2148 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2149 * boundary, so we must be careful.
2151 if ((s64)reg->umax_value >= 0) {
2152 /* Positive. We can't learn anything from the smin, but smax
2153 * is positive, hence safe.
2155 reg->smin_value = reg->umin_value;
2156 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2158 } else if ((s64)reg->umin_value < 0) {
2159 /* Negative. We can't learn anything from the smax, but smin
2160 * is negative, hence safe.
2162 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2164 reg->smax_value = reg->umax_value;
2168 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2170 __reg32_deduce_bounds(reg);
2171 __reg64_deduce_bounds(reg);
2174 /* Attempts to improve var_off based on unsigned min/max information */
2175 static void __reg_bound_offset(struct bpf_reg_state *reg)
2177 struct tnum var64_off = tnum_intersect(reg->var_off,
2178 tnum_range(reg->umin_value,
2180 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2181 tnum_range(reg->u32_min_value,
2182 reg->u32_max_value));
2184 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2187 static void reg_bounds_sync(struct bpf_reg_state *reg)
2189 /* We might have learned new bounds from the var_off. */
2190 __update_reg_bounds(reg);
2191 /* We might have learned something about the sign bit. */
2192 __reg_deduce_bounds(reg);
2193 /* We might have learned some bits from the bounds. */
2194 __reg_bound_offset(reg);
2195 /* Intersecting with the old var_off might have improved our bounds
2196 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2197 * then new var_off is (0; 0x7f...fc) which improves our umax.
2199 __update_reg_bounds(reg);
2202 static bool __reg32_bound_s64(s32 a)
2204 return a >= 0 && a <= S32_MAX;
2207 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2209 reg->umin_value = reg->u32_min_value;
2210 reg->umax_value = reg->u32_max_value;
2212 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2213 * be positive otherwise set to worse case bounds and refine later
2216 if (__reg32_bound_s64(reg->s32_min_value) &&
2217 __reg32_bound_s64(reg->s32_max_value)) {
2218 reg->smin_value = reg->s32_min_value;
2219 reg->smax_value = reg->s32_max_value;
2221 reg->smin_value = 0;
2222 reg->smax_value = U32_MAX;
2226 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2228 /* special case when 64-bit register has upper 32-bit register
2229 * zeroed. Typically happens after zext or <<32, >>32 sequence
2230 * allowing us to use 32-bit bounds directly,
2232 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2233 __reg_assign_32_into_64(reg);
2235 /* Otherwise the best we can do is push lower 32bit known and
2236 * unknown bits into register (var_off set from jmp logic)
2237 * then learn as much as possible from the 64-bit tnum
2238 * known and unknown bits. The previous smin/smax bounds are
2239 * invalid here because of jmp32 compare so mark them unknown
2240 * so they do not impact tnum bounds calculation.
2242 __mark_reg64_unbounded(reg);
2244 reg_bounds_sync(reg);
2247 static bool __reg64_bound_s32(s64 a)
2249 return a >= S32_MIN && a <= S32_MAX;
2252 static bool __reg64_bound_u32(u64 a)
2254 return a >= U32_MIN && a <= U32_MAX;
2257 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2259 __mark_reg32_unbounded(reg);
2260 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2261 reg->s32_min_value = (s32)reg->smin_value;
2262 reg->s32_max_value = (s32)reg->smax_value;
2264 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2265 reg->u32_min_value = (u32)reg->umin_value;
2266 reg->u32_max_value = (u32)reg->umax_value;
2268 reg_bounds_sync(reg);
2271 /* Mark a register as having a completely unknown (scalar) value. */
2272 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2273 struct bpf_reg_state *reg)
2276 * Clear type, off, and union(map_ptr, range) and
2277 * padding between 'type' and union
2279 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2280 reg->type = SCALAR_VALUE;
2282 reg->ref_obj_id = 0;
2283 reg->var_off = tnum_unknown;
2285 reg->precise = !env->bpf_capable;
2286 __mark_reg_unbounded(reg);
2289 static void mark_reg_unknown(struct bpf_verifier_env *env,
2290 struct bpf_reg_state *regs, u32 regno)
2292 if (WARN_ON(regno >= MAX_BPF_REG)) {
2293 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2294 /* Something bad happened, let's kill all regs except FP */
2295 for (regno = 0; regno < BPF_REG_FP; regno++)
2296 __mark_reg_not_init(env, regs + regno);
2299 __mark_reg_unknown(env, regs + regno);
2302 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2303 struct bpf_reg_state *reg)
2305 __mark_reg_unknown(env, reg);
2306 reg->type = NOT_INIT;
2309 static void mark_reg_not_init(struct bpf_verifier_env *env,
2310 struct bpf_reg_state *regs, u32 regno)
2312 if (WARN_ON(regno >= MAX_BPF_REG)) {
2313 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2314 /* Something bad happened, let's kill all regs except FP */
2315 for (regno = 0; regno < BPF_REG_FP; regno++)
2316 __mark_reg_not_init(env, regs + regno);
2319 __mark_reg_not_init(env, regs + regno);
2322 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2323 struct bpf_reg_state *regs, u32 regno,
2324 enum bpf_reg_type reg_type,
2325 struct btf *btf, u32 btf_id,
2326 enum bpf_type_flag flag)
2328 if (reg_type == SCALAR_VALUE) {
2329 mark_reg_unknown(env, regs, regno);
2332 mark_reg_known_zero(env, regs, regno);
2333 regs[regno].type = PTR_TO_BTF_ID | flag;
2334 regs[regno].btf = btf;
2335 regs[regno].btf_id = btf_id;
2338 #define DEF_NOT_SUBREG (0)
2339 static void init_reg_state(struct bpf_verifier_env *env,
2340 struct bpf_func_state *state)
2342 struct bpf_reg_state *regs = state->regs;
2345 for (i = 0; i < MAX_BPF_REG; i++) {
2346 mark_reg_not_init(env, regs, i);
2347 regs[i].live = REG_LIVE_NONE;
2348 regs[i].parent = NULL;
2349 regs[i].subreg_def = DEF_NOT_SUBREG;
2353 regs[BPF_REG_FP].type = PTR_TO_STACK;
2354 mark_reg_known_zero(env, regs, BPF_REG_FP);
2355 regs[BPF_REG_FP].frameno = state->frameno;
2358 #define BPF_MAIN_FUNC (-1)
2359 static void init_func_state(struct bpf_verifier_env *env,
2360 struct bpf_func_state *state,
2361 int callsite, int frameno, int subprogno)
2363 state->callsite = callsite;
2364 state->frameno = frameno;
2365 state->subprogno = subprogno;
2366 state->callback_ret_range = tnum_range(0, 0);
2367 init_reg_state(env, state);
2368 mark_verifier_state_scratched(env);
2371 /* Similar to push_stack(), but for async callbacks */
2372 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2373 int insn_idx, int prev_insn_idx,
2376 struct bpf_verifier_stack_elem *elem;
2377 struct bpf_func_state *frame;
2379 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2383 elem->insn_idx = insn_idx;
2384 elem->prev_insn_idx = prev_insn_idx;
2385 elem->next = env->head;
2386 elem->log_pos = env->log.end_pos;
2389 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2391 "The sequence of %d jumps is too complex for async cb.\n",
2395 /* Unlike push_stack() do not copy_verifier_state().
2396 * The caller state doesn't matter.
2397 * This is async callback. It starts in a fresh stack.
2398 * Initialize it similar to do_check_common().
2400 elem->st.branches = 1;
2401 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2404 init_func_state(env, frame,
2405 BPF_MAIN_FUNC /* callsite */,
2406 0 /* frameno within this callchain */,
2407 subprog /* subprog number within this prog */);
2408 elem->st.frame[0] = frame;
2411 free_verifier_state(env->cur_state, true);
2412 env->cur_state = NULL;
2413 /* pop all elements and return */
2414 while (!pop_stack(env, NULL, NULL, false));
2420 SRC_OP, /* register is used as source operand */
2421 DST_OP, /* register is used as destination operand */
2422 DST_OP_NO_MARK /* same as above, check only, don't mark */
2425 static int cmp_subprogs(const void *a, const void *b)
2427 return ((struct bpf_subprog_info *)a)->start -
2428 ((struct bpf_subprog_info *)b)->start;
2431 static int find_subprog(struct bpf_verifier_env *env, int off)
2433 struct bpf_subprog_info *p;
2435 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2436 sizeof(env->subprog_info[0]), cmp_subprogs);
2439 return p - env->subprog_info;
2443 static int add_subprog(struct bpf_verifier_env *env, int off)
2445 int insn_cnt = env->prog->len;
2448 if (off >= insn_cnt || off < 0) {
2449 verbose(env, "call to invalid destination\n");
2452 ret = find_subprog(env, off);
2455 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2456 verbose(env, "too many subprograms\n");
2459 /* determine subprog starts. The end is one before the next starts */
2460 env->subprog_info[env->subprog_cnt++].start = off;
2461 sort(env->subprog_info, env->subprog_cnt,
2462 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2463 return env->subprog_cnt - 1;
2466 #define MAX_KFUNC_DESCS 256
2467 #define MAX_KFUNC_BTFS 256
2469 struct bpf_kfunc_desc {
2470 struct btf_func_model func_model;
2477 struct bpf_kfunc_btf {
2479 struct module *module;
2483 struct bpf_kfunc_desc_tab {
2484 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2485 * verification. JITs do lookups by bpf_insn, where func_id may not be
2486 * available, therefore at the end of verification do_misc_fixups()
2487 * sorts this by imm and offset.
2489 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2493 struct bpf_kfunc_btf_tab {
2494 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2498 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2500 const struct bpf_kfunc_desc *d0 = a;
2501 const struct bpf_kfunc_desc *d1 = b;
2503 /* func_id is not greater than BTF_MAX_TYPE */
2504 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2507 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2509 const struct bpf_kfunc_btf *d0 = a;
2510 const struct bpf_kfunc_btf *d1 = b;
2512 return d0->offset - d1->offset;
2515 static const struct bpf_kfunc_desc *
2516 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2518 struct bpf_kfunc_desc desc = {
2522 struct bpf_kfunc_desc_tab *tab;
2524 tab = prog->aux->kfunc_tab;
2525 return bsearch(&desc, tab->descs, tab->nr_descs,
2526 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2529 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2530 u16 btf_fd_idx, u8 **func_addr)
2532 const struct bpf_kfunc_desc *desc;
2534 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2538 *func_addr = (u8 *)desc->addr;
2542 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2545 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2546 struct bpf_kfunc_btf_tab *tab;
2547 struct bpf_kfunc_btf *b;
2552 tab = env->prog->aux->kfunc_btf_tab;
2553 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2554 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2556 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2557 verbose(env, "too many different module BTFs\n");
2558 return ERR_PTR(-E2BIG);
2561 if (bpfptr_is_null(env->fd_array)) {
2562 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2563 return ERR_PTR(-EPROTO);
2566 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2567 offset * sizeof(btf_fd),
2569 return ERR_PTR(-EFAULT);
2571 btf = btf_get_by_fd(btf_fd);
2573 verbose(env, "invalid module BTF fd specified\n");
2577 if (!btf_is_module(btf)) {
2578 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2580 return ERR_PTR(-EINVAL);
2583 mod = btf_try_get_module(btf);
2586 return ERR_PTR(-ENXIO);
2589 b = &tab->descs[tab->nr_descs++];
2594 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2595 kfunc_btf_cmp_by_off, NULL);
2600 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2605 while (tab->nr_descs--) {
2606 module_put(tab->descs[tab->nr_descs].module);
2607 btf_put(tab->descs[tab->nr_descs].btf);
2612 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2616 /* In the future, this can be allowed to increase limit
2617 * of fd index into fd_array, interpreted as u16.
2619 verbose(env, "negative offset disallowed for kernel module function call\n");
2620 return ERR_PTR(-EINVAL);
2623 return __find_kfunc_desc_btf(env, offset);
2625 return btf_vmlinux ?: ERR_PTR(-ENOENT);
2628 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2630 const struct btf_type *func, *func_proto;
2631 struct bpf_kfunc_btf_tab *btf_tab;
2632 struct bpf_kfunc_desc_tab *tab;
2633 struct bpf_prog_aux *prog_aux;
2634 struct bpf_kfunc_desc *desc;
2635 const char *func_name;
2636 struct btf *desc_btf;
2637 unsigned long call_imm;
2641 prog_aux = env->prog->aux;
2642 tab = prog_aux->kfunc_tab;
2643 btf_tab = prog_aux->kfunc_btf_tab;
2646 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2650 if (!env->prog->jit_requested) {
2651 verbose(env, "JIT is required for calling kernel function\n");
2655 if (!bpf_jit_supports_kfunc_call()) {
2656 verbose(env, "JIT does not support calling kernel function\n");
2660 if (!env->prog->gpl_compatible) {
2661 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2665 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2668 prog_aux->kfunc_tab = tab;
2671 /* func_id == 0 is always invalid, but instead of returning an error, be
2672 * conservative and wait until the code elimination pass before returning
2673 * error, so that invalid calls that get pruned out can be in BPF programs
2674 * loaded from userspace. It is also required that offset be untouched
2677 if (!func_id && !offset)
2680 if (!btf_tab && offset) {
2681 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2684 prog_aux->kfunc_btf_tab = btf_tab;
2687 desc_btf = find_kfunc_desc_btf(env, offset);
2688 if (IS_ERR(desc_btf)) {
2689 verbose(env, "failed to find BTF for kernel function\n");
2690 return PTR_ERR(desc_btf);
2693 if (find_kfunc_desc(env->prog, func_id, offset))
2696 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2697 verbose(env, "too many different kernel function calls\n");
2701 func = btf_type_by_id(desc_btf, func_id);
2702 if (!func || !btf_type_is_func(func)) {
2703 verbose(env, "kernel btf_id %u is not a function\n",
2707 func_proto = btf_type_by_id(desc_btf, func->type);
2708 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2709 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2714 func_name = btf_name_by_offset(desc_btf, func->name_off);
2715 addr = kallsyms_lookup_name(func_name);
2717 verbose(env, "cannot find address for kernel function %s\n",
2721 specialize_kfunc(env, func_id, offset, &addr);
2723 if (bpf_jit_supports_far_kfunc_call()) {
2726 call_imm = BPF_CALL_IMM(addr);
2727 /* Check whether the relative offset overflows desc->imm */
2728 if ((unsigned long)(s32)call_imm != call_imm) {
2729 verbose(env, "address of kernel function %s is out of range\n",
2735 if (bpf_dev_bound_kfunc_id(func_id)) {
2736 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2741 desc = &tab->descs[tab->nr_descs++];
2742 desc->func_id = func_id;
2743 desc->imm = call_imm;
2744 desc->offset = offset;
2746 err = btf_distill_func_proto(&env->log, desc_btf,
2747 func_proto, func_name,
2750 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2751 kfunc_desc_cmp_by_id_off, NULL);
2755 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2757 const struct bpf_kfunc_desc *d0 = a;
2758 const struct bpf_kfunc_desc *d1 = b;
2760 if (d0->imm != d1->imm)
2761 return d0->imm < d1->imm ? -1 : 1;
2762 if (d0->offset != d1->offset)
2763 return d0->offset < d1->offset ? -1 : 1;
2767 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2769 struct bpf_kfunc_desc_tab *tab;
2771 tab = prog->aux->kfunc_tab;
2775 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2776 kfunc_desc_cmp_by_imm_off, NULL);
2779 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2781 return !!prog->aux->kfunc_tab;
2784 const struct btf_func_model *
2785 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2786 const struct bpf_insn *insn)
2788 const struct bpf_kfunc_desc desc = {
2790 .offset = insn->off,
2792 const struct bpf_kfunc_desc *res;
2793 struct bpf_kfunc_desc_tab *tab;
2795 tab = prog->aux->kfunc_tab;
2796 res = bsearch(&desc, tab->descs, tab->nr_descs,
2797 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2799 return res ? &res->func_model : NULL;
2802 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2804 struct bpf_subprog_info *subprog = env->subprog_info;
2805 struct bpf_insn *insn = env->prog->insnsi;
2806 int i, ret, insn_cnt = env->prog->len;
2808 /* Add entry function. */
2809 ret = add_subprog(env, 0);
2813 for (i = 0; i < insn_cnt; i++, insn++) {
2814 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2815 !bpf_pseudo_kfunc_call(insn))
2818 if (!env->bpf_capable) {
2819 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2823 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2824 ret = add_subprog(env, i + insn->imm + 1);
2826 ret = add_kfunc_call(env, insn->imm, insn->off);
2832 /* Add a fake 'exit' subprog which could simplify subprog iteration
2833 * logic. 'subprog_cnt' should not be increased.
2835 subprog[env->subprog_cnt].start = insn_cnt;
2837 if (env->log.level & BPF_LOG_LEVEL2)
2838 for (i = 0; i < env->subprog_cnt; i++)
2839 verbose(env, "func#%d @%d\n", i, subprog[i].start);
2844 static int check_subprogs(struct bpf_verifier_env *env)
2846 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2847 struct bpf_subprog_info *subprog = env->subprog_info;
2848 struct bpf_insn *insn = env->prog->insnsi;
2849 int insn_cnt = env->prog->len;
2851 /* now check that all jumps are within the same subprog */
2852 subprog_start = subprog[cur_subprog].start;
2853 subprog_end = subprog[cur_subprog + 1].start;
2854 for (i = 0; i < insn_cnt; i++) {
2855 u8 code = insn[i].code;
2857 if (code == (BPF_JMP | BPF_CALL) &&
2858 insn[i].src_reg == 0 &&
2859 insn[i].imm == BPF_FUNC_tail_call)
2860 subprog[cur_subprog].has_tail_call = true;
2861 if (BPF_CLASS(code) == BPF_LD &&
2862 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2863 subprog[cur_subprog].has_ld_abs = true;
2864 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2866 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2868 if (code == (BPF_JMP32 | BPF_JA))
2869 off = i + insn[i].imm + 1;
2871 off = i + insn[i].off + 1;
2872 if (off < subprog_start || off >= subprog_end) {
2873 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2877 if (i == subprog_end - 1) {
2878 /* to avoid fall-through from one subprog into another
2879 * the last insn of the subprog should be either exit
2880 * or unconditional jump back
2882 if (code != (BPF_JMP | BPF_EXIT) &&
2883 code != (BPF_JMP32 | BPF_JA) &&
2884 code != (BPF_JMP | BPF_JA)) {
2885 verbose(env, "last insn is not an exit or jmp\n");
2888 subprog_start = subprog_end;
2890 if (cur_subprog < env->subprog_cnt)
2891 subprog_end = subprog[cur_subprog + 1].start;
2897 /* Parentage chain of this register (or stack slot) should take care of all
2898 * issues like callee-saved registers, stack slot allocation time, etc.
2900 static int mark_reg_read(struct bpf_verifier_env *env,
2901 const struct bpf_reg_state *state,
2902 struct bpf_reg_state *parent, u8 flag)
2904 bool writes = parent == state->parent; /* Observe write marks */
2908 /* if read wasn't screened by an earlier write ... */
2909 if (writes && state->live & REG_LIVE_WRITTEN)
2911 if (parent->live & REG_LIVE_DONE) {
2912 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2913 reg_type_str(env, parent->type),
2914 parent->var_off.value, parent->off);
2917 /* The first condition is more likely to be true than the
2918 * second, checked it first.
2920 if ((parent->live & REG_LIVE_READ) == flag ||
2921 parent->live & REG_LIVE_READ64)
2922 /* The parentage chain never changes and
2923 * this parent was already marked as LIVE_READ.
2924 * There is no need to keep walking the chain again and
2925 * keep re-marking all parents as LIVE_READ.
2926 * This case happens when the same register is read
2927 * multiple times without writes into it in-between.
2928 * Also, if parent has the stronger REG_LIVE_READ64 set,
2929 * then no need to set the weak REG_LIVE_READ32.
2932 /* ... then we depend on parent's value */
2933 parent->live |= flag;
2934 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2935 if (flag == REG_LIVE_READ64)
2936 parent->live &= ~REG_LIVE_READ32;
2938 parent = state->parent;
2943 if (env->longest_mark_read_walk < cnt)
2944 env->longest_mark_read_walk = cnt;
2948 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2950 struct bpf_func_state *state = func(env, reg);
2953 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
2954 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2957 if (reg->type == CONST_PTR_TO_DYNPTR)
2959 spi = dynptr_get_spi(env, reg);
2962 /* Caller ensures dynptr is valid and initialized, which means spi is in
2963 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2966 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2967 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2970 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2971 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2974 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2975 int spi, int nr_slots)
2977 struct bpf_func_state *state = func(env, reg);
2980 for (i = 0; i < nr_slots; i++) {
2981 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2983 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2987 mark_stack_slot_scratched(env, spi - i);
2993 /* This function is supposed to be used by the following 32-bit optimization
2994 * code only. It returns TRUE if the source or destination register operates
2995 * on 64-bit, otherwise return FALSE.
2997 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2998 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3003 class = BPF_CLASS(code);
3005 if (class == BPF_JMP) {
3006 /* BPF_EXIT for "main" will reach here. Return TRUE
3011 if (op == BPF_CALL) {
3012 /* BPF to BPF call will reach here because of marking
3013 * caller saved clobber with DST_OP_NO_MARK for which we
3014 * don't care the register def because they are anyway
3015 * marked as NOT_INIT already.
3017 if (insn->src_reg == BPF_PSEUDO_CALL)
3019 /* Helper call will reach here because of arg type
3020 * check, conservatively return TRUE.
3029 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3032 if (class == BPF_ALU64 || class == BPF_JMP ||
3033 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3036 if (class == BPF_ALU || class == BPF_JMP32)
3039 if (class == BPF_LDX) {
3041 return BPF_SIZE(code) == BPF_DW;
3042 /* LDX source must be ptr. */
3046 if (class == BPF_STX) {
3047 /* BPF_STX (including atomic variants) has multiple source
3048 * operands, one of which is a ptr. Check whether the caller is
3051 if (t == SRC_OP && reg->type != SCALAR_VALUE)
3053 return BPF_SIZE(code) == BPF_DW;
3056 if (class == BPF_LD) {
3057 u8 mode = BPF_MODE(code);
3060 if (mode == BPF_IMM)
3063 /* Both LD_IND and LD_ABS return 32-bit data. */
3067 /* Implicit ctx ptr. */
3068 if (regno == BPF_REG_6)
3071 /* Explicit source could be any width. */
3075 if (class == BPF_ST)
3076 /* The only source register for BPF_ST is a ptr. */
3079 /* Conservatively return true at default. */
3083 /* Return the regno defined by the insn, or -1. */
3084 static int insn_def_regno(const struct bpf_insn *insn)
3086 switch (BPF_CLASS(insn->code)) {
3092 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3093 (insn->imm & BPF_FETCH)) {
3094 if (insn->imm == BPF_CMPXCHG)
3097 return insn->src_reg;
3102 return insn->dst_reg;
3106 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3107 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3109 int dst_reg = insn_def_regno(insn);
3114 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3117 static void mark_insn_zext(struct bpf_verifier_env *env,
3118 struct bpf_reg_state *reg)
3120 s32 def_idx = reg->subreg_def;
3122 if (def_idx == DEF_NOT_SUBREG)
3125 env->insn_aux_data[def_idx - 1].zext_dst = true;
3126 /* The dst will be zero extended, so won't be sub-register anymore. */
3127 reg->subreg_def = DEF_NOT_SUBREG;
3130 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3131 enum reg_arg_type t)
3133 struct bpf_verifier_state *vstate = env->cur_state;
3134 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3135 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3136 struct bpf_reg_state *reg, *regs = state->regs;
3139 if (regno >= MAX_BPF_REG) {
3140 verbose(env, "R%d is invalid\n", regno);
3144 mark_reg_scratched(env, regno);
3147 rw64 = is_reg64(env, insn, regno, reg, t);
3149 /* check whether register used as source operand can be read */
3150 if (reg->type == NOT_INIT) {
3151 verbose(env, "R%d !read_ok\n", regno);
3154 /* We don't need to worry about FP liveness because it's read-only */
3155 if (regno == BPF_REG_FP)
3159 mark_insn_zext(env, reg);
3161 return mark_reg_read(env, reg, reg->parent,
3162 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3164 /* check whether register used as dest operand can be written to */
3165 if (regno == BPF_REG_FP) {
3166 verbose(env, "frame pointer is read only\n");
3169 reg->live |= REG_LIVE_WRITTEN;
3170 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3172 mark_reg_unknown(env, regs, regno);
3177 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3179 env->insn_aux_data[idx].jmp_point = true;
3182 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3184 return env->insn_aux_data[insn_idx].jmp_point;
3187 /* for any branch, call, exit record the history of jmps in the given state */
3188 static int push_jmp_history(struct bpf_verifier_env *env,
3189 struct bpf_verifier_state *cur)
3191 u32 cnt = cur->jmp_history_cnt;
3192 struct bpf_idx_pair *p;
3195 if (!is_jmp_point(env, env->insn_idx))
3199 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3200 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3203 p[cnt - 1].idx = env->insn_idx;
3204 p[cnt - 1].prev_idx = env->prev_insn_idx;
3205 cur->jmp_history = p;
3206 cur->jmp_history_cnt = cnt;
3210 /* Backtrack one insn at a time. If idx is not at the top of recorded
3211 * history then previous instruction came from straight line execution.
3212 * Return -ENOENT if we exhausted all instructions within given state.
3214 * It's legal to have a bit of a looping with the same starting and ending
3215 * insn index within the same state, e.g.: 3->4->5->3, so just because current
3216 * instruction index is the same as state's first_idx doesn't mean we are
3217 * done. If there is still some jump history left, we should keep going. We
3218 * need to take into account that we might have a jump history between given
3219 * state's parent and itself, due to checkpointing. In this case, we'll have
3220 * history entry recording a jump from last instruction of parent state and
3221 * first instruction of given state.
3223 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3228 if (i == st->first_insn_idx) {
3231 if (cnt == 1 && st->jmp_history[0].idx == i)
3235 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3236 i = st->jmp_history[cnt - 1].prev_idx;
3244 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3246 const struct btf_type *func;
3247 struct btf *desc_btf;
3249 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3252 desc_btf = find_kfunc_desc_btf(data, insn->off);
3253 if (IS_ERR(desc_btf))
3256 func = btf_type_by_id(desc_btf, insn->imm);
3257 return btf_name_by_offset(desc_btf, func->name_off);
3260 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3265 static inline void bt_reset(struct backtrack_state *bt)
3267 struct bpf_verifier_env *env = bt->env;
3269 memset(bt, 0, sizeof(*bt));
3273 static inline u32 bt_empty(struct backtrack_state *bt)
3278 for (i = 0; i <= bt->frame; i++)
3279 mask |= bt->reg_masks[i] | bt->stack_masks[i];
3284 static inline int bt_subprog_enter(struct backtrack_state *bt)
3286 if (bt->frame == MAX_CALL_FRAMES - 1) {
3287 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3288 WARN_ONCE(1, "verifier backtracking bug");
3295 static inline int bt_subprog_exit(struct backtrack_state *bt)
3297 if (bt->frame == 0) {
3298 verbose(bt->env, "BUG subprog exit from frame 0\n");
3299 WARN_ONCE(1, "verifier backtracking bug");
3306 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3308 bt->reg_masks[frame] |= 1 << reg;
3311 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3313 bt->reg_masks[frame] &= ~(1 << reg);
3316 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3318 bt_set_frame_reg(bt, bt->frame, reg);
3321 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3323 bt_clear_frame_reg(bt, bt->frame, reg);
3326 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3328 bt->stack_masks[frame] |= 1ull << slot;
3331 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3333 bt->stack_masks[frame] &= ~(1ull << slot);
3336 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3338 bt_set_frame_slot(bt, bt->frame, slot);
3341 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3343 bt_clear_frame_slot(bt, bt->frame, slot);
3346 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3348 return bt->reg_masks[frame];
3351 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3353 return bt->reg_masks[bt->frame];
3356 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3358 return bt->stack_masks[frame];
3361 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3363 return bt->stack_masks[bt->frame];
3366 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3368 return bt->reg_masks[bt->frame] & (1 << reg);
3371 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3373 return bt->stack_masks[bt->frame] & (1ull << slot);
3376 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3377 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3379 DECLARE_BITMAP(mask, 64);
3385 bitmap_from_u64(mask, reg_mask);
3386 for_each_set_bit(i, mask, 32) {
3387 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3395 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3396 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3398 DECLARE_BITMAP(mask, 64);
3404 bitmap_from_u64(mask, stack_mask);
3405 for_each_set_bit(i, mask, 64) {
3406 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3415 /* For given verifier state backtrack_insn() is called from the last insn to
3416 * the first insn. Its purpose is to compute a bitmask of registers and
3417 * stack slots that needs precision in the parent verifier state.
3419 * @idx is an index of the instruction we are currently processing;
3420 * @subseq_idx is an index of the subsequent instruction that:
3421 * - *would be* executed next, if jump history is viewed in forward order;
3422 * - *was* processed previously during backtracking.
3424 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3425 struct backtrack_state *bt)
3427 const struct bpf_insn_cbs cbs = {
3428 .cb_call = disasm_kfunc_name,
3429 .cb_print = verbose,
3430 .private_data = env,
3432 struct bpf_insn *insn = env->prog->insnsi + idx;
3433 u8 class = BPF_CLASS(insn->code);
3434 u8 opcode = BPF_OP(insn->code);
3435 u8 mode = BPF_MODE(insn->code);
3436 u32 dreg = insn->dst_reg;
3437 u32 sreg = insn->src_reg;
3440 if (insn->code == 0)
3442 if (env->log.level & BPF_LOG_LEVEL2) {
3443 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3444 verbose(env, "mark_precise: frame%d: regs=%s ",
3445 bt->frame, env->tmp_str_buf);
3446 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3447 verbose(env, "stack=%s before ", env->tmp_str_buf);
3448 verbose(env, "%d: ", idx);
3449 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3452 if (class == BPF_ALU || class == BPF_ALU64) {
3453 if (!bt_is_reg_set(bt, dreg))
3455 if (opcode == BPF_END || opcode == BPF_NEG) {
3456 /* sreg is reserved and unused
3457 * dreg still need precision before this insn
3460 } else if (opcode == BPF_MOV) {
3461 if (BPF_SRC(insn->code) == BPF_X) {
3462 /* dreg = sreg or dreg = (s8, s16, s32)sreg
3463 * dreg needs precision after this insn
3464 * sreg needs precision before this insn
3466 bt_clear_reg(bt, dreg);
3467 bt_set_reg(bt, sreg);
3470 * dreg needs precision after this insn.
3471 * Corresponding register is already marked
3472 * as precise=true in this verifier state.
3473 * No further markings in parent are necessary
3475 bt_clear_reg(bt, dreg);
3478 if (BPF_SRC(insn->code) == BPF_X) {
3480 * both dreg and sreg need precision
3483 bt_set_reg(bt, sreg);
3485 * dreg still needs precision before this insn
3488 } else if (class == BPF_LDX) {
3489 if (!bt_is_reg_set(bt, dreg))
3491 bt_clear_reg(bt, dreg);
3493 /* scalars can only be spilled into stack w/o losing precision.
3494 * Load from any other memory can be zero extended.
3495 * The desire to keep that precision is already indicated
3496 * by 'precise' mark in corresponding register of this state.
3497 * No further tracking necessary.
3499 if (insn->src_reg != BPF_REG_FP)
3502 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3503 * that [fp - off] slot contains scalar that needs to be
3504 * tracked with precision
3506 spi = (-insn->off - 1) / BPF_REG_SIZE;
3508 verbose(env, "BUG spi %d\n", spi);
3509 WARN_ONCE(1, "verifier backtracking bug");
3512 bt_set_slot(bt, spi);
3513 } else if (class == BPF_STX || class == BPF_ST) {
3514 if (bt_is_reg_set(bt, dreg))
3515 /* stx & st shouldn't be using _scalar_ dst_reg
3516 * to access memory. It means backtracking
3517 * encountered a case of pointer subtraction.
3520 /* scalars can only be spilled into stack */
3521 if (insn->dst_reg != BPF_REG_FP)
3523 spi = (-insn->off - 1) / BPF_REG_SIZE;
3525 verbose(env, "BUG spi %d\n", spi);
3526 WARN_ONCE(1, "verifier backtracking bug");
3529 if (!bt_is_slot_set(bt, spi))
3531 bt_clear_slot(bt, spi);
3532 if (class == BPF_STX)
3533 bt_set_reg(bt, sreg);
3534 } else if (class == BPF_JMP || class == BPF_JMP32) {
3535 if (bpf_pseudo_call(insn)) {
3536 int subprog_insn_idx, subprog;
3538 subprog_insn_idx = idx + insn->imm + 1;
3539 subprog = find_subprog(env, subprog_insn_idx);
3543 if (subprog_is_global(env, subprog)) {
3544 /* check that jump history doesn't have any
3545 * extra instructions from subprog; the next
3546 * instruction after call to global subprog
3547 * should be literally next instruction in
3550 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3551 /* r1-r5 are invalidated after subprog call,
3552 * so for global func call it shouldn't be set
3555 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3556 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3557 WARN_ONCE(1, "verifier backtracking bug");
3560 /* global subprog always sets R0 */
3561 bt_clear_reg(bt, BPF_REG_0);
3564 /* static subprog call instruction, which
3565 * means that we are exiting current subprog,
3566 * so only r1-r5 could be still requested as
3567 * precise, r0 and r6-r10 or any stack slot in
3568 * the current frame should be zero by now
3570 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3571 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3572 WARN_ONCE(1, "verifier backtracking bug");
3575 /* we don't track register spills perfectly,
3576 * so fallback to force-precise instead of failing */
3577 if (bt_stack_mask(bt) != 0)
3579 /* propagate r1-r5 to the caller */
3580 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3581 if (bt_is_reg_set(bt, i)) {
3582 bt_clear_reg(bt, i);
3583 bt_set_frame_reg(bt, bt->frame - 1, i);
3586 if (bt_subprog_exit(bt))
3590 } else if ((bpf_helper_call(insn) &&
3591 is_callback_calling_function(insn->imm) &&
3592 !is_async_callback_calling_function(insn->imm)) ||
3593 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3594 /* callback-calling helper or kfunc call, which means
3595 * we are exiting from subprog, but unlike the subprog
3596 * call handling above, we shouldn't propagate
3597 * precision of r1-r5 (if any requested), as they are
3598 * not actually arguments passed directly to callback
3601 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3602 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3603 WARN_ONCE(1, "verifier backtracking bug");
3606 if (bt_stack_mask(bt) != 0)
3608 /* clear r1-r5 in callback subprog's mask */
3609 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3610 bt_clear_reg(bt, i);
3611 if (bt_subprog_exit(bt))
3614 } else if (opcode == BPF_CALL) {
3615 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3616 * catch this error later. Make backtracking conservative
3619 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3621 /* regular helper call sets R0 */
3622 bt_clear_reg(bt, BPF_REG_0);
3623 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3624 /* if backtracing was looking for registers R1-R5
3625 * they should have been found already.
3627 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3628 WARN_ONCE(1, "verifier backtracking bug");
3631 } else if (opcode == BPF_EXIT) {
3634 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3635 /* if backtracing was looking for registers R1-R5
3636 * they should have been found already.
3638 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3639 WARN_ONCE(1, "verifier backtracking bug");
3643 /* BPF_EXIT in subprog or callback always returns
3644 * right after the call instruction, so by checking
3645 * whether the instruction at subseq_idx-1 is subprog
3646 * call or not we can distinguish actual exit from
3647 * *subprog* from exit from *callback*. In the former
3648 * case, we need to propagate r0 precision, if
3649 * necessary. In the former we never do that.
3651 r0_precise = subseq_idx - 1 >= 0 &&
3652 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3653 bt_is_reg_set(bt, BPF_REG_0);
3655 bt_clear_reg(bt, BPF_REG_0);
3656 if (bt_subprog_enter(bt))
3660 bt_set_reg(bt, BPF_REG_0);
3661 /* r6-r9 and stack slots will stay set in caller frame
3662 * bitmasks until we return back from callee(s)
3665 } else if (BPF_SRC(insn->code) == BPF_X) {
3666 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3669 * Both dreg and sreg need precision before
3670 * this insn. If only sreg was marked precise
3671 * before it would be equally necessary to
3672 * propagate it to dreg.
3674 bt_set_reg(bt, dreg);
3675 bt_set_reg(bt, sreg);
3676 /* else dreg <cond> K
3677 * Only dreg still needs precision before
3678 * this insn, so for the K-based conditional
3679 * there is nothing new to be marked.
3682 } else if (class == BPF_LD) {
3683 if (!bt_is_reg_set(bt, dreg))
3685 bt_clear_reg(bt, dreg);
3686 /* It's ld_imm64 or ld_abs or ld_ind.
3687 * For ld_imm64 no further tracking of precision
3688 * into parent is necessary
3690 if (mode == BPF_IND || mode == BPF_ABS)
3691 /* to be analyzed */
3697 /* the scalar precision tracking algorithm:
3698 * . at the start all registers have precise=false.
3699 * . scalar ranges are tracked as normal through alu and jmp insns.
3700 * . once precise value of the scalar register is used in:
3701 * . ptr + scalar alu
3702 * . if (scalar cond K|scalar)
3703 * . helper_call(.., scalar, ...) where ARG_CONST is expected
3704 * backtrack through the verifier states and mark all registers and
3705 * stack slots with spilled constants that these scalar regisers
3706 * should be precise.
3707 * . during state pruning two registers (or spilled stack slots)
3708 * are equivalent if both are not precise.
3710 * Note the verifier cannot simply walk register parentage chain,
3711 * since many different registers and stack slots could have been
3712 * used to compute single precise scalar.
3714 * The approach of starting with precise=true for all registers and then
3715 * backtrack to mark a register as not precise when the verifier detects
3716 * that program doesn't care about specific value (e.g., when helper
3717 * takes register as ARG_ANYTHING parameter) is not safe.
3719 * It's ok to walk single parentage chain of the verifier states.
3720 * It's possible that this backtracking will go all the way till 1st insn.
3721 * All other branches will be explored for needing precision later.
3723 * The backtracking needs to deal with cases like:
3724 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3727 * if r5 > 0x79f goto pc+7
3728 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3731 * call bpf_perf_event_output#25
3732 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3736 * call foo // uses callee's r6 inside to compute r0
3740 * to track above reg_mask/stack_mask needs to be independent for each frame.
3742 * Also if parent's curframe > frame where backtracking started,
3743 * the verifier need to mark registers in both frames, otherwise callees
3744 * may incorrectly prune callers. This is similar to
3745 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3747 * For now backtracking falls back into conservative marking.
3749 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3750 struct bpf_verifier_state *st)
3752 struct bpf_func_state *func;
3753 struct bpf_reg_state *reg;
3756 if (env->log.level & BPF_LOG_LEVEL2) {
3757 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3761 /* big hammer: mark all scalars precise in this path.
3762 * pop_stack may still get !precise scalars.
3763 * We also skip current state and go straight to first parent state,
3764 * because precision markings in current non-checkpointed state are
3765 * not needed. See why in the comment in __mark_chain_precision below.
3767 for (st = st->parent; st; st = st->parent) {
3768 for (i = 0; i <= st->curframe; i++) {
3769 func = st->frame[i];
3770 for (j = 0; j < BPF_REG_FP; j++) {
3771 reg = &func->regs[j];
3772 if (reg->type != SCALAR_VALUE || reg->precise)
3774 reg->precise = true;
3775 if (env->log.level & BPF_LOG_LEVEL2) {
3776 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3780 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3781 if (!is_spilled_reg(&func->stack[j]))
3783 reg = &func->stack[j].spilled_ptr;
3784 if (reg->type != SCALAR_VALUE || reg->precise)
3786 reg->precise = true;
3787 if (env->log.level & BPF_LOG_LEVEL2) {
3788 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3796 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3798 struct bpf_func_state *func;
3799 struct bpf_reg_state *reg;
3802 for (i = 0; i <= st->curframe; i++) {
3803 func = st->frame[i];
3804 for (j = 0; j < BPF_REG_FP; j++) {
3805 reg = &func->regs[j];
3806 if (reg->type != SCALAR_VALUE)
3808 reg->precise = false;
3810 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3811 if (!is_spilled_reg(&func->stack[j]))
3813 reg = &func->stack[j].spilled_ptr;
3814 if (reg->type != SCALAR_VALUE)
3816 reg->precise = false;
3821 static bool idset_contains(struct bpf_idset *s, u32 id)
3825 for (i = 0; i < s->count; ++i)
3826 if (s->ids[i] == id)
3832 static int idset_push(struct bpf_idset *s, u32 id)
3834 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3836 s->ids[s->count++] = id;
3840 static void idset_reset(struct bpf_idset *s)
3845 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3846 * Mark all registers with these IDs as precise.
3848 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3850 struct bpf_idset *precise_ids = &env->idset_scratch;
3851 struct backtrack_state *bt = &env->bt;
3852 struct bpf_func_state *func;
3853 struct bpf_reg_state *reg;
3854 DECLARE_BITMAP(mask, 64);
3857 idset_reset(precise_ids);
3859 for (fr = bt->frame; fr >= 0; fr--) {
3860 func = st->frame[fr];
3862 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3863 for_each_set_bit(i, mask, 32) {
3864 reg = &func->regs[i];
3865 if (!reg->id || reg->type != SCALAR_VALUE)
3867 if (idset_push(precise_ids, reg->id))
3871 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3872 for_each_set_bit(i, mask, 64) {
3873 if (i >= func->allocated_stack / BPF_REG_SIZE)
3875 if (!is_spilled_scalar_reg(&func->stack[i]))
3877 reg = &func->stack[i].spilled_ptr;
3880 if (idset_push(precise_ids, reg->id))
3885 for (fr = 0; fr <= st->curframe; ++fr) {
3886 func = st->frame[fr];
3888 for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3889 reg = &func->regs[i];
3892 if (!idset_contains(precise_ids, reg->id))
3894 bt_set_frame_reg(bt, fr, i);
3896 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3897 if (!is_spilled_scalar_reg(&func->stack[i]))
3899 reg = &func->stack[i].spilled_ptr;
3902 if (!idset_contains(precise_ids, reg->id))
3904 bt_set_frame_slot(bt, fr, i);
3912 * __mark_chain_precision() backtracks BPF program instruction sequence and
3913 * chain of verifier states making sure that register *regno* (if regno >= 0)
3914 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3915 * SCALARS, as well as any other registers and slots that contribute to
3916 * a tracked state of given registers/stack slots, depending on specific BPF
3917 * assembly instructions (see backtrack_insns() for exact instruction handling
3918 * logic). This backtracking relies on recorded jmp_history and is able to
3919 * traverse entire chain of parent states. This process ends only when all the
3920 * necessary registers/slots and their transitive dependencies are marked as
3923 * One important and subtle aspect is that precise marks *do not matter* in
3924 * the currently verified state (current state). It is important to understand
3925 * why this is the case.
3927 * First, note that current state is the state that is not yet "checkpointed",
3928 * i.e., it is not yet put into env->explored_states, and it has no children
3929 * states as well. It's ephemeral, and can end up either a) being discarded if
3930 * compatible explored state is found at some point or BPF_EXIT instruction is
3931 * reached or b) checkpointed and put into env->explored_states, branching out
3932 * into one or more children states.
3934 * In the former case, precise markings in current state are completely
3935 * ignored by state comparison code (see regsafe() for details). Only
3936 * checkpointed ("old") state precise markings are important, and if old
3937 * state's register/slot is precise, regsafe() assumes current state's
3938 * register/slot as precise and checks value ranges exactly and precisely. If
3939 * states turn out to be compatible, current state's necessary precise
3940 * markings and any required parent states' precise markings are enforced
3941 * after the fact with propagate_precision() logic, after the fact. But it's
3942 * important to realize that in this case, even after marking current state
3943 * registers/slots as precise, we immediately discard current state. So what
3944 * actually matters is any of the precise markings propagated into current
3945 * state's parent states, which are always checkpointed (due to b) case above).
3946 * As such, for scenario a) it doesn't matter if current state has precise
3947 * markings set or not.
3949 * Now, for the scenario b), checkpointing and forking into child(ren)
3950 * state(s). Note that before current state gets to checkpointing step, any
3951 * processed instruction always assumes precise SCALAR register/slot
3952 * knowledge: if precise value or range is useful to prune jump branch, BPF
3953 * verifier takes this opportunity enthusiastically. Similarly, when
3954 * register's value is used to calculate offset or memory address, exact
3955 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3956 * what we mentioned above about state comparison ignoring precise markings
3957 * during state comparison, BPF verifier ignores and also assumes precise
3958 * markings *at will* during instruction verification process. But as verifier
3959 * assumes precision, it also propagates any precision dependencies across
3960 * parent states, which are not yet finalized, so can be further restricted
3961 * based on new knowledge gained from restrictions enforced by their children
3962 * states. This is so that once those parent states are finalized, i.e., when
3963 * they have no more active children state, state comparison logic in
3964 * is_state_visited() would enforce strict and precise SCALAR ranges, if
3965 * required for correctness.
3967 * To build a bit more intuition, note also that once a state is checkpointed,
3968 * the path we took to get to that state is not important. This is crucial
3969 * property for state pruning. When state is checkpointed and finalized at
3970 * some instruction index, it can be correctly and safely used to "short
3971 * circuit" any *compatible* state that reaches exactly the same instruction
3972 * index. I.e., if we jumped to that instruction from a completely different
3973 * code path than original finalized state was derived from, it doesn't
3974 * matter, current state can be discarded because from that instruction
3975 * forward having a compatible state will ensure we will safely reach the
3976 * exit. States describe preconditions for further exploration, but completely
3977 * forget the history of how we got here.
3979 * This also means that even if we needed precise SCALAR range to get to
3980 * finalized state, but from that point forward *that same* SCALAR register is
3981 * never used in a precise context (i.e., it's precise value is not needed for
3982 * correctness), it's correct and safe to mark such register as "imprecise"
3983 * (i.e., precise marking set to false). This is what we rely on when we do
3984 * not set precise marking in current state. If no child state requires
3985 * precision for any given SCALAR register, it's safe to dictate that it can
3986 * be imprecise. If any child state does require this register to be precise,
3987 * we'll mark it precise later retroactively during precise markings
3988 * propagation from child state to parent states.
3990 * Skipping precise marking setting in current state is a mild version of
3991 * relying on the above observation. But we can utilize this property even
3992 * more aggressively by proactively forgetting any precise marking in the
3993 * current state (which we inherited from the parent state), right before we
3994 * checkpoint it and branch off into new child state. This is done by
3995 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3996 * finalized states which help in short circuiting more future states.
3998 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4000 struct backtrack_state *bt = &env->bt;
4001 struct bpf_verifier_state *st = env->cur_state;
4002 int first_idx = st->first_insn_idx;
4003 int last_idx = env->insn_idx;
4004 int subseq_idx = -1;
4005 struct bpf_func_state *func;
4006 struct bpf_reg_state *reg;
4007 bool skip_first = true;
4010 if (!env->bpf_capable)
4013 /* set frame number from which we are starting to backtrack */
4014 bt_init(bt, env->cur_state->curframe);
4016 /* Do sanity checks against current state of register and/or stack
4017 * slot, but don't set precise flag in current state, as precision
4018 * tracking in the current state is unnecessary.
4020 func = st->frame[bt->frame];
4022 reg = &func->regs[regno];
4023 if (reg->type != SCALAR_VALUE) {
4024 WARN_ONCE(1, "backtracing misuse");
4027 bt_set_reg(bt, regno);
4034 DECLARE_BITMAP(mask, 64);
4035 u32 history = st->jmp_history_cnt;
4037 if (env->log.level & BPF_LOG_LEVEL2) {
4038 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4039 bt->frame, last_idx, first_idx, subseq_idx);
4042 /* If some register with scalar ID is marked as precise,
4043 * make sure that all registers sharing this ID are also precise.
4044 * This is needed to estimate effect of find_equal_scalars().
4045 * Do this at the last instruction of each state,
4046 * bpf_reg_state::id fields are valid for these instructions.
4048 * Allows to track precision in situation like below:
4050 * r2 = unknown value
4054 * r1 = r2 // r1 and r2 now share the same ID
4056 * --- state #1 {r1.id = A, r2.id = A} ---
4058 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4060 * --- state #2 {r1.id = A, r2.id = A} ---
4062 * r3 += r1 // need to mark both r1 and r2
4064 if (mark_precise_scalar_ids(env, st))
4068 /* we are at the entry into subprog, which
4069 * is expected for global funcs, but only if
4070 * requested precise registers are R1-R5
4071 * (which are global func's input arguments)
4073 if (st->curframe == 0 &&
4074 st->frame[0]->subprogno > 0 &&
4075 st->frame[0]->callsite == BPF_MAIN_FUNC &&
4076 bt_stack_mask(bt) == 0 &&
4077 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4078 bitmap_from_u64(mask, bt_reg_mask(bt));
4079 for_each_set_bit(i, mask, 32) {
4080 reg = &st->frame[0]->regs[i];
4081 bt_clear_reg(bt, i);
4082 if (reg->type == SCALAR_VALUE)
4083 reg->precise = true;
4088 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4089 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4090 WARN_ONCE(1, "verifier backtracking bug");
4094 for (i = last_idx;;) {
4099 err = backtrack_insn(env, i, subseq_idx, bt);
4101 if (err == -ENOTSUPP) {
4102 mark_all_scalars_precise(env, env->cur_state);
4109 /* Found assignment(s) into tracked register in this state.
4110 * Since this state is already marked, just return.
4111 * Nothing to be tracked further in the parent state.
4115 i = get_prev_insn_idx(st, i, &history);
4118 if (i >= env->prog->len) {
4119 /* This can happen if backtracking reached insn 0
4120 * and there are still reg_mask or stack_mask
4122 * It means the backtracking missed the spot where
4123 * particular register was initialized with a constant.
4125 verbose(env, "BUG backtracking idx %d\n", i);
4126 WARN_ONCE(1, "verifier backtracking bug");
4134 for (fr = bt->frame; fr >= 0; fr--) {
4135 func = st->frame[fr];
4136 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4137 for_each_set_bit(i, mask, 32) {
4138 reg = &func->regs[i];
4139 if (reg->type != SCALAR_VALUE) {
4140 bt_clear_frame_reg(bt, fr, i);
4144 bt_clear_frame_reg(bt, fr, i);
4146 reg->precise = true;
4149 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4150 for_each_set_bit(i, mask, 64) {
4151 if (i >= func->allocated_stack / BPF_REG_SIZE) {
4152 /* the sequence of instructions:
4154 * 3: (7b) *(u64 *)(r3 -8) = r0
4155 * 4: (79) r4 = *(u64 *)(r10 -8)
4156 * doesn't contain jmps. It's backtracked
4157 * as a single block.
4158 * During backtracking insn 3 is not recognized as
4159 * stack access, so at the end of backtracking
4160 * stack slot fp-8 is still marked in stack_mask.
4161 * However the parent state may not have accessed
4162 * fp-8 and it's "unallocated" stack space.
4163 * In such case fallback to conservative.
4165 mark_all_scalars_precise(env, env->cur_state);
4170 if (!is_spilled_scalar_reg(&func->stack[i])) {
4171 bt_clear_frame_slot(bt, fr, i);
4174 reg = &func->stack[i].spilled_ptr;
4176 bt_clear_frame_slot(bt, fr, i);
4178 reg->precise = true;
4180 if (env->log.level & BPF_LOG_LEVEL2) {
4181 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4182 bt_frame_reg_mask(bt, fr));
4183 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4184 fr, env->tmp_str_buf);
4185 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4186 bt_frame_stack_mask(bt, fr));
4187 verbose(env, "stack=%s: ", env->tmp_str_buf);
4188 print_verifier_state(env, func, true);
4195 subseq_idx = first_idx;
4196 last_idx = st->last_insn_idx;
4197 first_idx = st->first_insn_idx;
4200 /* if we still have requested precise regs or slots, we missed
4201 * something (e.g., stack access through non-r10 register), so
4202 * fallback to marking all precise
4204 if (!bt_empty(bt)) {
4205 mark_all_scalars_precise(env, env->cur_state);
4212 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4214 return __mark_chain_precision(env, regno);
4217 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4218 * desired reg and stack masks across all relevant frames
4220 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4222 return __mark_chain_precision(env, -1);
4225 static bool is_spillable_regtype(enum bpf_reg_type type)
4227 switch (base_type(type)) {
4228 case PTR_TO_MAP_VALUE:
4232 case PTR_TO_PACKET_META:
4233 case PTR_TO_PACKET_END:
4234 case PTR_TO_FLOW_KEYS:
4235 case CONST_PTR_TO_MAP:
4237 case PTR_TO_SOCK_COMMON:
4238 case PTR_TO_TCP_SOCK:
4239 case PTR_TO_XDP_SOCK:
4244 case PTR_TO_MAP_KEY:
4251 /* Does this register contain a constant zero? */
4252 static bool register_is_null(struct bpf_reg_state *reg)
4254 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4257 static bool register_is_const(struct bpf_reg_state *reg)
4259 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4262 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4264 return tnum_is_unknown(reg->var_off) &&
4265 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4266 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4267 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4268 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4271 static bool register_is_bounded(struct bpf_reg_state *reg)
4273 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4276 static bool __is_pointer_value(bool allow_ptr_leaks,
4277 const struct bpf_reg_state *reg)
4279 if (allow_ptr_leaks)
4282 return reg->type != SCALAR_VALUE;
4285 /* Copy src state preserving dst->parent and dst->live fields */
4286 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4288 struct bpf_reg_state *parent = dst->parent;
4289 enum bpf_reg_liveness live = dst->live;
4292 dst->parent = parent;
4296 static void save_register_state(struct bpf_func_state *state,
4297 int spi, struct bpf_reg_state *reg,
4302 copy_register_state(&state->stack[spi].spilled_ptr, reg);
4303 if (size == BPF_REG_SIZE)
4304 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4306 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4307 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4309 /* size < 8 bytes spill */
4311 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4314 static bool is_bpf_st_mem(struct bpf_insn *insn)
4316 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4319 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4320 * stack boundary and alignment are checked in check_mem_access()
4322 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4323 /* stack frame we're writing to */
4324 struct bpf_func_state *state,
4325 int off, int size, int value_regno,
4328 struct bpf_func_state *cur; /* state of the current function */
4329 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4330 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4331 struct bpf_reg_state *reg = NULL;
4332 u32 dst_reg = insn->dst_reg;
4334 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4335 * so it's aligned access and [off, off + size) are within stack limits
4337 if (!env->allow_ptr_leaks &&
4338 is_spilled_reg(&state->stack[spi]) &&
4339 size != BPF_REG_SIZE) {
4340 verbose(env, "attempt to corrupt spilled pointer on stack\n");
4344 cur = env->cur_state->frame[env->cur_state->curframe];
4345 if (value_regno >= 0)
4346 reg = &cur->regs[value_regno];
4347 if (!env->bypass_spec_v4) {
4348 bool sanitize = reg && is_spillable_regtype(reg->type);
4350 for (i = 0; i < size; i++) {
4351 u8 type = state->stack[spi].slot_type[i];
4353 if (type != STACK_MISC && type != STACK_ZERO) {
4360 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4363 err = destroy_if_dynptr_stack_slot(env, state, spi);
4367 mark_stack_slot_scratched(env, spi);
4368 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4369 !register_is_null(reg) && env->bpf_capable) {
4370 if (dst_reg != BPF_REG_FP) {
4371 /* The backtracking logic can only recognize explicit
4372 * stack slot address like [fp - 8]. Other spill of
4373 * scalar via different register has to be conservative.
4374 * Backtrack from here and mark all registers as precise
4375 * that contributed into 'reg' being a constant.
4377 err = mark_chain_precision(env, value_regno);
4381 save_register_state(state, spi, reg, size);
4382 /* Break the relation on a narrowing spill. */
4383 if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4384 state->stack[spi].spilled_ptr.id = 0;
4385 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4386 insn->imm != 0 && env->bpf_capable) {
4387 struct bpf_reg_state fake_reg = {};
4389 __mark_reg_known(&fake_reg, insn->imm);
4390 fake_reg.type = SCALAR_VALUE;
4391 save_register_state(state, spi, &fake_reg, size);
4392 } else if (reg && is_spillable_regtype(reg->type)) {
4393 /* register containing pointer is being spilled into stack */
4394 if (size != BPF_REG_SIZE) {
4395 verbose_linfo(env, insn_idx, "; ");
4396 verbose(env, "invalid size of register spill\n");
4399 if (state != cur && reg->type == PTR_TO_STACK) {
4400 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4403 save_register_state(state, spi, reg, size);
4405 u8 type = STACK_MISC;
4407 /* regular write of data into stack destroys any spilled ptr */
4408 state->stack[spi].spilled_ptr.type = NOT_INIT;
4409 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4410 if (is_stack_slot_special(&state->stack[spi]))
4411 for (i = 0; i < BPF_REG_SIZE; i++)
4412 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4414 /* only mark the slot as written if all 8 bytes were written
4415 * otherwise read propagation may incorrectly stop too soon
4416 * when stack slots are partially written.
4417 * This heuristic means that read propagation will be
4418 * conservative, since it will add reg_live_read marks
4419 * to stack slots all the way to first state when programs
4420 * writes+reads less than 8 bytes
4422 if (size == BPF_REG_SIZE)
4423 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4425 /* when we zero initialize stack slots mark them as such */
4426 if ((reg && register_is_null(reg)) ||
4427 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4428 /* backtracking doesn't work for STACK_ZERO yet. */
4429 err = mark_chain_precision(env, value_regno);
4435 /* Mark slots affected by this stack write. */
4436 for (i = 0; i < size; i++)
4437 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4443 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4444 * known to contain a variable offset.
4445 * This function checks whether the write is permitted and conservatively
4446 * tracks the effects of the write, considering that each stack slot in the
4447 * dynamic range is potentially written to.
4449 * 'off' includes 'regno->off'.
4450 * 'value_regno' can be -1, meaning that an unknown value is being written to
4453 * Spilled pointers in range are not marked as written because we don't know
4454 * what's going to be actually written. This means that read propagation for
4455 * future reads cannot be terminated by this write.
4457 * For privileged programs, uninitialized stack slots are considered
4458 * initialized by this write (even though we don't know exactly what offsets
4459 * are going to be written to). The idea is that we don't want the verifier to
4460 * reject future reads that access slots written to through variable offsets.
4462 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4463 /* func where register points to */
4464 struct bpf_func_state *state,
4465 int ptr_regno, int off, int size,
4466 int value_regno, int insn_idx)
4468 struct bpf_func_state *cur; /* state of the current function */
4469 int min_off, max_off;
4471 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4472 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4473 bool writing_zero = false;
4474 /* set if the fact that we're writing a zero is used to let any
4475 * stack slots remain STACK_ZERO
4477 bool zero_used = false;
4479 cur = env->cur_state->frame[env->cur_state->curframe];
4480 ptr_reg = &cur->regs[ptr_regno];
4481 min_off = ptr_reg->smin_value + off;
4482 max_off = ptr_reg->smax_value + off + size;
4483 if (value_regno >= 0)
4484 value_reg = &cur->regs[value_regno];
4485 if ((value_reg && register_is_null(value_reg)) ||
4486 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4487 writing_zero = true;
4489 for (i = min_off; i < max_off; i++) {
4493 err = destroy_if_dynptr_stack_slot(env, state, spi);
4498 /* Variable offset writes destroy any spilled pointers in range. */
4499 for (i = min_off; i < max_off; i++) {
4500 u8 new_type, *stype;
4504 spi = slot / BPF_REG_SIZE;
4505 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4506 mark_stack_slot_scratched(env, spi);
4508 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4509 /* Reject the write if range we may write to has not
4510 * been initialized beforehand. If we didn't reject
4511 * here, the ptr status would be erased below (even
4512 * though not all slots are actually overwritten),
4513 * possibly opening the door to leaks.
4515 * We do however catch STACK_INVALID case below, and
4516 * only allow reading possibly uninitialized memory
4517 * later for CAP_PERFMON, as the write may not happen to
4520 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4525 /* Erase all spilled pointers. */
4526 state->stack[spi].spilled_ptr.type = NOT_INIT;
4528 /* Update the slot type. */
4529 new_type = STACK_MISC;
4530 if (writing_zero && *stype == STACK_ZERO) {
4531 new_type = STACK_ZERO;
4534 /* If the slot is STACK_INVALID, we check whether it's OK to
4535 * pretend that it will be initialized by this write. The slot
4536 * might not actually be written to, and so if we mark it as
4537 * initialized future reads might leak uninitialized memory.
4538 * For privileged programs, we will accept such reads to slots
4539 * that may or may not be written because, if we're reject
4540 * them, the error would be too confusing.
4542 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4543 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4550 /* backtracking doesn't work for STACK_ZERO yet. */
4551 err = mark_chain_precision(env, value_regno);
4558 /* When register 'dst_regno' is assigned some values from stack[min_off,
4559 * max_off), we set the register's type according to the types of the
4560 * respective stack slots. If all the stack values are known to be zeros, then
4561 * so is the destination reg. Otherwise, the register is considered to be
4562 * SCALAR. This function does not deal with register filling; the caller must
4563 * ensure that all spilled registers in the stack range have been marked as
4566 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4567 /* func where src register points to */
4568 struct bpf_func_state *ptr_state,
4569 int min_off, int max_off, int dst_regno)
4571 struct bpf_verifier_state *vstate = env->cur_state;
4572 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4577 for (i = min_off; i < max_off; i++) {
4579 spi = slot / BPF_REG_SIZE;
4580 mark_stack_slot_scratched(env, spi);
4581 stype = ptr_state->stack[spi].slot_type;
4582 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4586 if (zeros == max_off - min_off) {
4587 /* any access_size read into register is zero extended,
4588 * so the whole register == const_zero
4590 __mark_reg_const_zero(&state->regs[dst_regno]);
4591 /* backtracking doesn't support STACK_ZERO yet,
4592 * so mark it precise here, so that later
4593 * backtracking can stop here.
4594 * Backtracking may not need this if this register
4595 * doesn't participate in pointer adjustment.
4596 * Forward propagation of precise flag is not
4597 * necessary either. This mark is only to stop
4598 * backtracking. Any register that contributed
4599 * to const 0 was marked precise before spill.
4601 state->regs[dst_regno].precise = true;
4603 /* have read misc data from the stack */
4604 mark_reg_unknown(env, state->regs, dst_regno);
4606 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4609 /* Read the stack at 'off' and put the results into the register indicated by
4610 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4613 * 'dst_regno' can be -1, meaning that the read value is not going to a
4616 * The access is assumed to be within the current stack bounds.
4618 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4619 /* func where src register points to */
4620 struct bpf_func_state *reg_state,
4621 int off, int size, int dst_regno)
4623 struct bpf_verifier_state *vstate = env->cur_state;
4624 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4625 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4626 struct bpf_reg_state *reg;
4629 stype = reg_state->stack[spi].slot_type;
4630 reg = ®_state->stack[spi].spilled_ptr;
4632 mark_stack_slot_scratched(env, spi);
4634 if (is_spilled_reg(®_state->stack[spi])) {
4637 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4640 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4641 if (reg->type != SCALAR_VALUE) {
4642 verbose_linfo(env, env->insn_idx, "; ");
4643 verbose(env, "invalid size of register fill\n");
4647 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4651 if (!(off % BPF_REG_SIZE) && size == spill_size) {
4652 /* The earlier check_reg_arg() has decided the
4653 * subreg_def for this insn. Save it first.
4655 s32 subreg_def = state->regs[dst_regno].subreg_def;
4657 copy_register_state(&state->regs[dst_regno], reg);
4658 state->regs[dst_regno].subreg_def = subreg_def;
4660 for (i = 0; i < size; i++) {
4661 type = stype[(slot - i) % BPF_REG_SIZE];
4662 if (type == STACK_SPILL)
4664 if (type == STACK_MISC)
4666 if (type == STACK_INVALID && env->allow_uninit_stack)
4668 verbose(env, "invalid read from stack off %d+%d size %d\n",
4672 mark_reg_unknown(env, state->regs, dst_regno);
4674 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4678 if (dst_regno >= 0) {
4679 /* restore register state from stack */
4680 copy_register_state(&state->regs[dst_regno], reg);
4681 /* mark reg as written since spilled pointer state likely
4682 * has its liveness marks cleared by is_state_visited()
4683 * which resets stack/reg liveness for state transitions
4685 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4686 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4687 /* If dst_regno==-1, the caller is asking us whether
4688 * it is acceptable to use this value as a SCALAR_VALUE
4690 * We must not allow unprivileged callers to do that
4691 * with spilled pointers.
4693 verbose(env, "leaking pointer from stack off %d\n",
4697 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4699 for (i = 0; i < size; i++) {
4700 type = stype[(slot - i) % BPF_REG_SIZE];
4701 if (type == STACK_MISC)
4703 if (type == STACK_ZERO)
4705 if (type == STACK_INVALID && env->allow_uninit_stack)
4707 verbose(env, "invalid read from stack off %d+%d size %d\n",
4711 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4713 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4718 enum bpf_access_src {
4719 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
4720 ACCESS_HELPER = 2, /* the access is performed by a helper */
4723 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4724 int regno, int off, int access_size,
4725 bool zero_size_allowed,
4726 enum bpf_access_src type,
4727 struct bpf_call_arg_meta *meta);
4729 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4731 return cur_regs(env) + regno;
4734 /* Read the stack at 'ptr_regno + off' and put the result into the register
4736 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4737 * but not its variable offset.
4738 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4740 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4741 * filling registers (i.e. reads of spilled register cannot be detected when
4742 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4743 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4744 * offset; for a fixed offset check_stack_read_fixed_off should be used
4747 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4748 int ptr_regno, int off, int size, int dst_regno)
4750 /* The state of the source register. */
4751 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4752 struct bpf_func_state *ptr_state = func(env, reg);
4754 int min_off, max_off;
4756 /* Note that we pass a NULL meta, so raw access will not be permitted.
4758 err = check_stack_range_initialized(env, ptr_regno, off, size,
4759 false, ACCESS_DIRECT, NULL);
4763 min_off = reg->smin_value + off;
4764 max_off = reg->smax_value + off;
4765 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4769 /* check_stack_read dispatches to check_stack_read_fixed_off or
4770 * check_stack_read_var_off.
4772 * The caller must ensure that the offset falls within the allocated stack
4775 * 'dst_regno' is a register which will receive the value from the stack. It
4776 * can be -1, meaning that the read value is not going to a register.
4778 static int check_stack_read(struct bpf_verifier_env *env,
4779 int ptr_regno, int off, int size,
4782 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4783 struct bpf_func_state *state = func(env, reg);
4785 /* Some accesses are only permitted with a static offset. */
4786 bool var_off = !tnum_is_const(reg->var_off);
4788 /* The offset is required to be static when reads don't go to a
4789 * register, in order to not leak pointers (see
4790 * check_stack_read_fixed_off).
4792 if (dst_regno < 0 && var_off) {
4795 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4796 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4800 /* Variable offset is prohibited for unprivileged mode for simplicity
4801 * since it requires corresponding support in Spectre masking for stack
4802 * ALU. See also retrieve_ptr_limit(). The check in
4803 * check_stack_access_for_ptr_arithmetic() called by
4804 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4805 * with variable offsets, therefore no check is required here. Further,
4806 * just checking it here would be insufficient as speculative stack
4807 * writes could still lead to unsafe speculative behaviour.
4810 off += reg->var_off.value;
4811 err = check_stack_read_fixed_off(env, state, off, size,
4814 /* Variable offset stack reads need more conservative handling
4815 * than fixed offset ones. Note that dst_regno >= 0 on this
4818 err = check_stack_read_var_off(env, ptr_regno, off, size,
4825 /* check_stack_write dispatches to check_stack_write_fixed_off or
4826 * check_stack_write_var_off.
4828 * 'ptr_regno' is the register used as a pointer into the stack.
4829 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4830 * 'value_regno' is the register whose value we're writing to the stack. It can
4831 * be -1, meaning that we're not writing from a register.
4833 * The caller must ensure that the offset falls within the maximum stack size.
4835 static int check_stack_write(struct bpf_verifier_env *env,
4836 int ptr_regno, int off, int size,
4837 int value_regno, int insn_idx)
4839 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4840 struct bpf_func_state *state = func(env, reg);
4843 if (tnum_is_const(reg->var_off)) {
4844 off += reg->var_off.value;
4845 err = check_stack_write_fixed_off(env, state, off, size,
4846 value_regno, insn_idx);
4848 /* Variable offset stack reads need more conservative handling
4849 * than fixed offset ones.
4851 err = check_stack_write_var_off(env, state,
4852 ptr_regno, off, size,
4853 value_regno, insn_idx);
4858 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4859 int off, int size, enum bpf_access_type type)
4861 struct bpf_reg_state *regs = cur_regs(env);
4862 struct bpf_map *map = regs[regno].map_ptr;
4863 u32 cap = bpf_map_flags_to_cap(map);
4865 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4866 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4867 map->value_size, off, size);
4871 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4872 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4873 map->value_size, off, size);
4880 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4881 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4882 int off, int size, u32 mem_size,
4883 bool zero_size_allowed)
4885 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4886 struct bpf_reg_state *reg;
4888 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4891 reg = &cur_regs(env)[regno];
4892 switch (reg->type) {
4893 case PTR_TO_MAP_KEY:
4894 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4895 mem_size, off, size);
4897 case PTR_TO_MAP_VALUE:
4898 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4899 mem_size, off, size);
4902 case PTR_TO_PACKET_META:
4903 case PTR_TO_PACKET_END:
4904 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4905 off, size, regno, reg->id, off, mem_size);
4909 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4910 mem_size, off, size);
4916 /* check read/write into a memory region with possible variable offset */
4917 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4918 int off, int size, u32 mem_size,
4919 bool zero_size_allowed)
4921 struct bpf_verifier_state *vstate = env->cur_state;
4922 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4923 struct bpf_reg_state *reg = &state->regs[regno];
4926 /* We may have adjusted the register pointing to memory region, so we
4927 * need to try adding each of min_value and max_value to off
4928 * to make sure our theoretical access will be safe.
4930 * The minimum value is only important with signed
4931 * comparisons where we can't assume the floor of a
4932 * value is 0. If we are using signed variables for our
4933 * index'es we need to make sure that whatever we use
4934 * will have a set floor within our range.
4936 if (reg->smin_value < 0 &&
4937 (reg->smin_value == S64_MIN ||
4938 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4939 reg->smin_value + off < 0)) {
4940 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4944 err = __check_mem_access(env, regno, reg->smin_value + off, size,
4945 mem_size, zero_size_allowed);
4947 verbose(env, "R%d min value is outside of the allowed memory range\n",
4952 /* If we haven't set a max value then we need to bail since we can't be
4953 * sure we won't do bad things.
4954 * If reg->umax_value + off could overflow, treat that as unbounded too.
4956 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4957 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4961 err = __check_mem_access(env, regno, reg->umax_value + off, size,
4962 mem_size, zero_size_allowed);
4964 verbose(env, "R%d max value is outside of the allowed memory range\n",
4972 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4973 const struct bpf_reg_state *reg, int regno,
4976 /* Access to this pointer-typed register or passing it to a helper
4977 * is only allowed in its original, unmodified form.
4981 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4982 reg_type_str(env, reg->type), regno, reg->off);
4986 if (!fixed_off_ok && reg->off) {
4987 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4988 reg_type_str(env, reg->type), regno, reg->off);
4992 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4995 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4996 verbose(env, "variable %s access var_off=%s disallowed\n",
4997 reg_type_str(env, reg->type), tn_buf);
5004 int check_ptr_off_reg(struct bpf_verifier_env *env,
5005 const struct bpf_reg_state *reg, int regno)
5007 return __check_ptr_off_reg(env, reg, regno, false);
5010 static int map_kptr_match_type(struct bpf_verifier_env *env,
5011 struct btf_field *kptr_field,
5012 struct bpf_reg_state *reg, u32 regno)
5014 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5016 const char *reg_name = "";
5018 if (btf_is_kernel(reg->btf)) {
5019 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5021 /* Only unreferenced case accepts untrusted pointers */
5022 if (kptr_field->type == BPF_KPTR_UNREF)
5023 perm_flags |= PTR_UNTRUSTED;
5025 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5028 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5031 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
5032 reg_name = btf_type_name(reg->btf, reg->btf_id);
5034 /* For ref_ptr case, release function check should ensure we get one
5035 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5036 * normal store of unreferenced kptr, we must ensure var_off is zero.
5037 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5038 * reg->off and reg->ref_obj_id are not needed here.
5040 if (__check_ptr_off_reg(env, reg, regno, true))
5043 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5044 * we also need to take into account the reg->off.
5046 * We want to support cases like:
5054 * v = func(); // PTR_TO_BTF_ID
5055 * val->foo = v; // reg->off is zero, btf and btf_id match type
5056 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5057 * // first member type of struct after comparison fails
5058 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5061 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5062 * is zero. We must also ensure that btf_struct_ids_match does not walk
5063 * the struct to match type against first member of struct, i.e. reject
5064 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5065 * strict mode to true for type match.
5067 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5068 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5069 kptr_field->type == BPF_KPTR_REF))
5073 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5074 reg_type_str(env, reg->type), reg_name);
5075 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5076 if (kptr_field->type == BPF_KPTR_UNREF)
5077 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5084 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5085 * can dereference RCU protected pointers and result is PTR_TRUSTED.
5087 static bool in_rcu_cs(struct bpf_verifier_env *env)
5089 return env->cur_state->active_rcu_lock ||
5090 env->cur_state->active_lock.ptr ||
5091 !env->prog->aux->sleepable;
5094 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5095 BTF_SET_START(rcu_protected_types)
5096 BTF_ID(struct, prog_test_ref_kfunc)
5097 BTF_ID(struct, cgroup)
5098 BTF_ID(struct, bpf_cpumask)
5099 BTF_ID(struct, task_struct)
5100 BTF_SET_END(rcu_protected_types)
5102 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5104 if (!btf_is_kernel(btf))
5106 return btf_id_set_contains(&rcu_protected_types, btf_id);
5109 static bool rcu_safe_kptr(const struct btf_field *field)
5111 const struct btf_field_kptr *kptr = &field->kptr;
5113 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5116 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5117 int value_regno, int insn_idx,
5118 struct btf_field *kptr_field)
5120 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5121 int class = BPF_CLASS(insn->code);
5122 struct bpf_reg_state *val_reg;
5124 /* Things we already checked for in check_map_access and caller:
5125 * - Reject cases where variable offset may touch kptr
5126 * - size of access (must be BPF_DW)
5127 * - tnum_is_const(reg->var_off)
5128 * - kptr_field->offset == off + reg->var_off.value
5130 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5131 if (BPF_MODE(insn->code) != BPF_MEM) {
5132 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5136 /* We only allow loading referenced kptr, since it will be marked as
5137 * untrusted, similar to unreferenced kptr.
5139 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5140 verbose(env, "store to referenced kptr disallowed\n");
5144 if (class == BPF_LDX) {
5145 val_reg = reg_state(env, value_regno);
5146 /* We can simply mark the value_regno receiving the pointer
5147 * value from map as PTR_TO_BTF_ID, with the correct type.
5149 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5150 kptr_field->kptr.btf_id,
5151 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5152 PTR_MAYBE_NULL | MEM_RCU :
5153 PTR_MAYBE_NULL | PTR_UNTRUSTED);
5154 /* For mark_ptr_or_null_reg */
5155 val_reg->id = ++env->id_gen;
5156 } else if (class == BPF_STX) {
5157 val_reg = reg_state(env, value_regno);
5158 if (!register_is_null(val_reg) &&
5159 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5161 } else if (class == BPF_ST) {
5163 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5164 kptr_field->offset);
5168 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5174 /* check read/write into a map element with possible variable offset */
5175 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5176 int off, int size, bool zero_size_allowed,
5177 enum bpf_access_src src)
5179 struct bpf_verifier_state *vstate = env->cur_state;
5180 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5181 struct bpf_reg_state *reg = &state->regs[regno];
5182 struct bpf_map *map = reg->map_ptr;
5183 struct btf_record *rec;
5186 err = check_mem_region_access(env, regno, off, size, map->value_size,
5191 if (IS_ERR_OR_NULL(map->record))
5194 for (i = 0; i < rec->cnt; i++) {
5195 struct btf_field *field = &rec->fields[i];
5196 u32 p = field->offset;
5198 /* If any part of a field can be touched by load/store, reject
5199 * this program. To check that [x1, x2) overlaps with [y1, y2),
5200 * it is sufficient to check x1 < y2 && y1 < x2.
5202 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5203 p < reg->umax_value + off + size) {
5204 switch (field->type) {
5205 case BPF_KPTR_UNREF:
5207 if (src != ACCESS_DIRECT) {
5208 verbose(env, "kptr cannot be accessed indirectly by helper\n");
5211 if (!tnum_is_const(reg->var_off)) {
5212 verbose(env, "kptr access cannot have variable offset\n");
5215 if (p != off + reg->var_off.value) {
5216 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5217 p, off + reg->var_off.value);
5220 if (size != bpf_size_to_bytes(BPF_DW)) {
5221 verbose(env, "kptr access size must be BPF_DW\n");
5226 verbose(env, "%s cannot be accessed directly by load/store\n",
5227 btf_field_type_name(field->type));
5235 #define MAX_PACKET_OFF 0xffff
5237 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5238 const struct bpf_call_arg_meta *meta,
5239 enum bpf_access_type t)
5241 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5243 switch (prog_type) {
5244 /* Program types only with direct read access go here! */
5245 case BPF_PROG_TYPE_LWT_IN:
5246 case BPF_PROG_TYPE_LWT_OUT:
5247 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5248 case BPF_PROG_TYPE_SK_REUSEPORT:
5249 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5250 case BPF_PROG_TYPE_CGROUP_SKB:
5255 /* Program types with direct read + write access go here! */
5256 case BPF_PROG_TYPE_SCHED_CLS:
5257 case BPF_PROG_TYPE_SCHED_ACT:
5258 case BPF_PROG_TYPE_XDP:
5259 case BPF_PROG_TYPE_LWT_XMIT:
5260 case BPF_PROG_TYPE_SK_SKB:
5261 case BPF_PROG_TYPE_SK_MSG:
5263 return meta->pkt_access;
5265 env->seen_direct_write = true;
5268 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5270 env->seen_direct_write = true;
5279 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5280 int size, bool zero_size_allowed)
5282 struct bpf_reg_state *regs = cur_regs(env);
5283 struct bpf_reg_state *reg = ®s[regno];
5286 /* We may have added a variable offset to the packet pointer; but any
5287 * reg->range we have comes after that. We are only checking the fixed
5291 /* We don't allow negative numbers, because we aren't tracking enough
5292 * detail to prove they're safe.
5294 if (reg->smin_value < 0) {
5295 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5300 err = reg->range < 0 ? -EINVAL :
5301 __check_mem_access(env, regno, off, size, reg->range,
5304 verbose(env, "R%d offset is outside of the packet\n", regno);
5308 /* __check_mem_access has made sure "off + size - 1" is within u16.
5309 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5310 * otherwise find_good_pkt_pointers would have refused to set range info
5311 * that __check_mem_access would have rejected this pkt access.
5312 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5314 env->prog->aux->max_pkt_offset =
5315 max_t(u32, env->prog->aux->max_pkt_offset,
5316 off + reg->umax_value + size - 1);
5321 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
5322 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5323 enum bpf_access_type t, enum bpf_reg_type *reg_type,
5324 struct btf **btf, u32 *btf_id)
5326 struct bpf_insn_access_aux info = {
5327 .reg_type = *reg_type,
5331 if (env->ops->is_valid_access &&
5332 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5333 /* A non zero info.ctx_field_size indicates that this field is a
5334 * candidate for later verifier transformation to load the whole
5335 * field and then apply a mask when accessed with a narrower
5336 * access than actual ctx access size. A zero info.ctx_field_size
5337 * will only allow for whole field access and rejects any other
5338 * type of narrower access.
5340 *reg_type = info.reg_type;
5342 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5344 *btf_id = info.btf_id;
5346 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5348 /* remember the offset of last byte accessed in ctx */
5349 if (env->prog->aux->max_ctx_offset < off + size)
5350 env->prog->aux->max_ctx_offset = off + size;
5354 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5358 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5361 if (size < 0 || off < 0 ||
5362 (u64)off + size > sizeof(struct bpf_flow_keys)) {
5363 verbose(env, "invalid access to flow keys off=%d size=%d\n",
5370 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5371 u32 regno, int off, int size,
5372 enum bpf_access_type t)
5374 struct bpf_reg_state *regs = cur_regs(env);
5375 struct bpf_reg_state *reg = ®s[regno];
5376 struct bpf_insn_access_aux info = {};
5379 if (reg->smin_value < 0) {
5380 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5385 switch (reg->type) {
5386 case PTR_TO_SOCK_COMMON:
5387 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5390 valid = bpf_sock_is_valid_access(off, size, t, &info);
5392 case PTR_TO_TCP_SOCK:
5393 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5395 case PTR_TO_XDP_SOCK:
5396 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5404 env->insn_aux_data[insn_idx].ctx_field_size =
5405 info.ctx_field_size;
5409 verbose(env, "R%d invalid %s access off=%d size=%d\n",
5410 regno, reg_type_str(env, reg->type), off, size);
5415 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5417 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5420 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5422 const struct bpf_reg_state *reg = reg_state(env, regno);
5424 return reg->type == PTR_TO_CTX;
5427 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5429 const struct bpf_reg_state *reg = reg_state(env, regno);
5431 return type_is_sk_pointer(reg->type);
5434 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5436 const struct bpf_reg_state *reg = reg_state(env, regno);
5438 return type_is_pkt_pointer(reg->type);
5441 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5443 const struct bpf_reg_state *reg = reg_state(env, regno);
5445 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5446 return reg->type == PTR_TO_FLOW_KEYS;
5449 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5451 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5452 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5453 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5455 [CONST_PTR_TO_MAP] = btf_bpf_map_id,
5458 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5460 /* A referenced register is always trusted. */
5461 if (reg->ref_obj_id)
5464 /* Types listed in the reg2btf_ids are always trusted */
5465 if (reg2btf_ids[base_type(reg->type)])
5468 /* If a register is not referenced, it is trusted if it has the
5469 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5470 * other type modifiers may be safe, but we elect to take an opt-in
5471 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5474 * Eventually, we should make PTR_TRUSTED the single source of truth
5475 * for whether a register is trusted.
5477 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5478 !bpf_type_has_unsafe_modifiers(reg->type);
5481 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5483 return reg->type & MEM_RCU;
5486 static void clear_trusted_flags(enum bpf_type_flag *flag)
5488 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5491 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5492 const struct bpf_reg_state *reg,
5493 int off, int size, bool strict)
5495 struct tnum reg_off;
5498 /* Byte size accesses are always allowed. */
5499 if (!strict || size == 1)
5502 /* For platforms that do not have a Kconfig enabling
5503 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5504 * NET_IP_ALIGN is universally set to '2'. And on platforms
5505 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5506 * to this code only in strict mode where we want to emulate
5507 * the NET_IP_ALIGN==2 checking. Therefore use an
5508 * unconditional IP align value of '2'.
5512 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5513 if (!tnum_is_aligned(reg_off, size)) {
5516 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5518 "misaligned packet access off %d+%s+%d+%d size %d\n",
5519 ip_align, tn_buf, reg->off, off, size);
5526 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5527 const struct bpf_reg_state *reg,
5528 const char *pointer_desc,
5529 int off, int size, bool strict)
5531 struct tnum reg_off;
5533 /* Byte size accesses are always allowed. */
5534 if (!strict || size == 1)
5537 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5538 if (!tnum_is_aligned(reg_off, size)) {
5541 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5542 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5543 pointer_desc, tn_buf, reg->off, off, size);
5550 static int check_ptr_alignment(struct bpf_verifier_env *env,
5551 const struct bpf_reg_state *reg, int off,
5552 int size, bool strict_alignment_once)
5554 bool strict = env->strict_alignment || strict_alignment_once;
5555 const char *pointer_desc = "";
5557 switch (reg->type) {
5559 case PTR_TO_PACKET_META:
5560 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5561 * right in front, treat it the very same way.
5563 return check_pkt_ptr_alignment(env, reg, off, size, strict);
5564 case PTR_TO_FLOW_KEYS:
5565 pointer_desc = "flow keys ";
5567 case PTR_TO_MAP_KEY:
5568 pointer_desc = "key ";
5570 case PTR_TO_MAP_VALUE:
5571 pointer_desc = "value ";
5574 pointer_desc = "context ";
5577 pointer_desc = "stack ";
5578 /* The stack spill tracking logic in check_stack_write_fixed_off()
5579 * and check_stack_read_fixed_off() relies on stack accesses being
5585 pointer_desc = "sock ";
5587 case PTR_TO_SOCK_COMMON:
5588 pointer_desc = "sock_common ";
5590 case PTR_TO_TCP_SOCK:
5591 pointer_desc = "tcp_sock ";
5593 case PTR_TO_XDP_SOCK:
5594 pointer_desc = "xdp_sock ";
5599 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5603 /* starting from main bpf function walk all instructions of the function
5604 * and recursively walk all callees that given function can call.
5605 * Ignore jump and exit insns.
5606 * Since recursion is prevented by check_cfg() this algorithm
5607 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5609 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5611 struct bpf_subprog_info *subprog = env->subprog_info;
5612 struct bpf_insn *insn = env->prog->insnsi;
5613 int depth = 0, frame = 0, i, subprog_end;
5614 bool tail_call_reachable = false;
5615 int ret_insn[MAX_CALL_FRAMES];
5616 int ret_prog[MAX_CALL_FRAMES];
5619 i = subprog[idx].start;
5621 /* protect against potential stack overflow that might happen when
5622 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5623 * depth for such case down to 256 so that the worst case scenario
5624 * would result in 8k stack size (32 which is tailcall limit * 256 =
5627 * To get the idea what might happen, see an example:
5628 * func1 -> sub rsp, 128
5629 * subfunc1 -> sub rsp, 256
5630 * tailcall1 -> add rsp, 256
5631 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5632 * subfunc2 -> sub rsp, 64
5633 * subfunc22 -> sub rsp, 128
5634 * tailcall2 -> add rsp, 128
5635 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5637 * tailcall will unwind the current stack frame but it will not get rid
5638 * of caller's stack as shown on the example above.
5640 if (idx && subprog[idx].has_tail_call && depth >= 256) {
5642 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5646 /* round up to 32-bytes, since this is granularity
5647 * of interpreter stack size
5649 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5650 if (depth > MAX_BPF_STACK) {
5651 verbose(env, "combined stack size of %d calls is %d. Too large\n",
5656 subprog_end = subprog[idx + 1].start;
5657 for (; i < subprog_end; i++) {
5658 int next_insn, sidx;
5660 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5662 /* remember insn and function to return to */
5663 ret_insn[frame] = i + 1;
5664 ret_prog[frame] = idx;
5666 /* find the callee */
5667 next_insn = i + insn[i].imm + 1;
5668 sidx = find_subprog(env, next_insn);
5670 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5674 if (subprog[sidx].is_async_cb) {
5675 if (subprog[sidx].has_tail_call) {
5676 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5679 /* async callbacks don't increase bpf prog stack size unless called directly */
5680 if (!bpf_pseudo_call(insn + i))
5686 if (subprog[idx].has_tail_call)
5687 tail_call_reachable = true;
5690 if (frame >= MAX_CALL_FRAMES) {
5691 verbose(env, "the call stack of %d frames is too deep !\n",
5697 /* if tail call got detected across bpf2bpf calls then mark each of the
5698 * currently present subprog frames as tail call reachable subprogs;
5699 * this info will be utilized by JIT so that we will be preserving the
5700 * tail call counter throughout bpf2bpf calls combined with tailcalls
5702 if (tail_call_reachable)
5703 for (j = 0; j < frame; j++)
5704 subprog[ret_prog[j]].tail_call_reachable = true;
5705 if (subprog[0].tail_call_reachable)
5706 env->prog->aux->tail_call_reachable = true;
5708 /* end of for() loop means the last insn of the 'subprog'
5709 * was reached. Doesn't matter whether it was JA or EXIT
5713 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5715 i = ret_insn[frame];
5716 idx = ret_prog[frame];
5720 static int check_max_stack_depth(struct bpf_verifier_env *env)
5722 struct bpf_subprog_info *si = env->subprog_info;
5725 for (int i = 0; i < env->subprog_cnt; i++) {
5726 if (!i || si[i].is_async_cb) {
5727 ret = check_max_stack_depth_subprog(env, i);
5736 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5737 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5738 const struct bpf_insn *insn, int idx)
5740 int start = idx + insn->imm + 1, subprog;
5742 subprog = find_subprog(env, start);
5744 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5748 return env->subprog_info[subprog].stack_depth;
5752 static int __check_buffer_access(struct bpf_verifier_env *env,
5753 const char *buf_info,
5754 const struct bpf_reg_state *reg,
5755 int regno, int off, int size)
5759 "R%d invalid %s buffer access: off=%d, size=%d\n",
5760 regno, buf_info, off, size);
5763 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5766 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5768 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5769 regno, off, tn_buf);
5776 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5777 const struct bpf_reg_state *reg,
5778 int regno, int off, int size)
5782 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5786 if (off + size > env->prog->aux->max_tp_access)
5787 env->prog->aux->max_tp_access = off + size;
5792 static int check_buffer_access(struct bpf_verifier_env *env,
5793 const struct bpf_reg_state *reg,
5794 int regno, int off, int size,
5795 bool zero_size_allowed,
5798 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5801 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5805 if (off + size > *max_access)
5806 *max_access = off + size;
5811 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5812 static void zext_32_to_64(struct bpf_reg_state *reg)
5814 reg->var_off = tnum_subreg(reg->var_off);
5815 __reg_assign_32_into_64(reg);
5818 /* truncate register to smaller size (in bytes)
5819 * must be called with size < BPF_REG_SIZE
5821 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5825 /* clear high bits in bit representation */
5826 reg->var_off = tnum_cast(reg->var_off, size);
5828 /* fix arithmetic bounds */
5829 mask = ((u64)1 << (size * 8)) - 1;
5830 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5831 reg->umin_value &= mask;
5832 reg->umax_value &= mask;
5834 reg->umin_value = 0;
5835 reg->umax_value = mask;
5837 reg->smin_value = reg->umin_value;
5838 reg->smax_value = reg->umax_value;
5840 /* If size is smaller than 32bit register the 32bit register
5841 * values are also truncated so we push 64-bit bounds into
5842 * 32-bit bounds. Above were truncated < 32-bits already.
5846 __reg_combine_64_into_32(reg);
5849 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
5852 reg->smin_value = reg->s32_min_value = S8_MIN;
5853 reg->smax_value = reg->s32_max_value = S8_MAX;
5854 } else if (size == 2) {
5855 reg->smin_value = reg->s32_min_value = S16_MIN;
5856 reg->smax_value = reg->s32_max_value = S16_MAX;
5859 reg->smin_value = reg->s32_min_value = S32_MIN;
5860 reg->smax_value = reg->s32_max_value = S32_MAX;
5862 reg->umin_value = reg->u32_min_value = 0;
5863 reg->umax_value = U64_MAX;
5864 reg->u32_max_value = U32_MAX;
5865 reg->var_off = tnum_unknown;
5868 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
5870 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
5871 u64 top_smax_value, top_smin_value;
5872 u64 num_bits = size * 8;
5874 if (tnum_is_const(reg->var_off)) {
5875 u64_cval = reg->var_off.value;
5877 reg->var_off = tnum_const((s8)u64_cval);
5879 reg->var_off = tnum_const((s16)u64_cval);
5882 reg->var_off = tnum_const((s32)u64_cval);
5884 u64_cval = reg->var_off.value;
5885 reg->smax_value = reg->smin_value = u64_cval;
5886 reg->umax_value = reg->umin_value = u64_cval;
5887 reg->s32_max_value = reg->s32_min_value = u64_cval;
5888 reg->u32_max_value = reg->u32_min_value = u64_cval;
5892 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
5893 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
5895 if (top_smax_value != top_smin_value)
5898 /* find the s64_min and s64_min after sign extension */
5900 init_s64_max = (s8)reg->smax_value;
5901 init_s64_min = (s8)reg->smin_value;
5902 } else if (size == 2) {
5903 init_s64_max = (s16)reg->smax_value;
5904 init_s64_min = (s16)reg->smin_value;
5906 init_s64_max = (s32)reg->smax_value;
5907 init_s64_min = (s32)reg->smin_value;
5910 s64_max = max(init_s64_max, init_s64_min);
5911 s64_min = min(init_s64_max, init_s64_min);
5913 /* both of s64_max/s64_min positive or negative */
5914 if ((s64_max >= 0) == (s64_min >= 0)) {
5915 reg->smin_value = reg->s32_min_value = s64_min;
5916 reg->smax_value = reg->s32_max_value = s64_max;
5917 reg->umin_value = reg->u32_min_value = s64_min;
5918 reg->umax_value = reg->u32_max_value = s64_max;
5919 reg->var_off = tnum_range(s64_min, s64_max);
5924 set_sext64_default_val(reg, size);
5927 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
5930 reg->s32_min_value = S8_MIN;
5931 reg->s32_max_value = S8_MAX;
5934 reg->s32_min_value = S16_MIN;
5935 reg->s32_max_value = S16_MAX;
5937 reg->u32_min_value = 0;
5938 reg->u32_max_value = U32_MAX;
5941 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
5943 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
5944 u32 top_smax_value, top_smin_value;
5945 u32 num_bits = size * 8;
5947 if (tnum_is_const(reg->var_off)) {
5948 u32_val = reg->var_off.value;
5950 reg->var_off = tnum_const((s8)u32_val);
5952 reg->var_off = tnum_const((s16)u32_val);
5954 u32_val = reg->var_off.value;
5955 reg->s32_min_value = reg->s32_max_value = u32_val;
5956 reg->u32_min_value = reg->u32_max_value = u32_val;
5960 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
5961 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
5963 if (top_smax_value != top_smin_value)
5966 /* find the s32_min and s32_min after sign extension */
5968 init_s32_max = (s8)reg->s32_max_value;
5969 init_s32_min = (s8)reg->s32_min_value;
5972 init_s32_max = (s16)reg->s32_max_value;
5973 init_s32_min = (s16)reg->s32_min_value;
5975 s32_max = max(init_s32_max, init_s32_min);
5976 s32_min = min(init_s32_max, init_s32_min);
5978 if ((s32_min >= 0) == (s32_max >= 0)) {
5979 reg->s32_min_value = s32_min;
5980 reg->s32_max_value = s32_max;
5981 reg->u32_min_value = (u32)s32_min;
5982 reg->u32_max_value = (u32)s32_max;
5987 set_sext32_default_val(reg, size);
5990 static bool bpf_map_is_rdonly(const struct bpf_map *map)
5992 /* A map is considered read-only if the following condition are true:
5994 * 1) BPF program side cannot change any of the map content. The
5995 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5996 * and was set at map creation time.
5997 * 2) The map value(s) have been initialized from user space by a
5998 * loader and then "frozen", such that no new map update/delete
5999 * operations from syscall side are possible for the rest of
6000 * the map's lifetime from that point onwards.
6001 * 3) Any parallel/pending map update/delete operations from syscall
6002 * side have been completed. Only after that point, it's safe to
6003 * assume that map value(s) are immutable.
6005 return (map->map_flags & BPF_F_RDONLY_PROG) &&
6006 READ_ONCE(map->frozen) &&
6007 !bpf_map_write_active(map);
6010 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6017 err = map->ops->map_direct_value_addr(map, &addr, off);
6020 ptr = (void *)(long)addr + off;
6024 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6027 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6030 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6041 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
6042 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
6043 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
6046 * Allow list few fields as RCU trusted or full trusted.
6047 * This logic doesn't allow mix tagging and will be removed once GCC supports
6051 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6052 BTF_TYPE_SAFE_RCU(struct task_struct) {
6053 const cpumask_t *cpus_ptr;
6054 struct css_set __rcu *cgroups;
6055 struct task_struct __rcu *real_parent;
6056 struct task_struct *group_leader;
6059 BTF_TYPE_SAFE_RCU(struct cgroup) {
6060 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6061 struct kernfs_node *kn;
6064 BTF_TYPE_SAFE_RCU(struct css_set) {
6065 struct cgroup *dfl_cgrp;
6068 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6069 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6070 struct file __rcu *exe_file;
6073 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6074 * because bpf prog accessible sockets are SOCK_RCU_FREE.
6076 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6080 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6084 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6085 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6086 struct seq_file *seq;
6089 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6090 struct bpf_iter_meta *meta;
6091 struct task_struct *task;
6094 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6098 BTF_TYPE_SAFE_TRUSTED(struct file) {
6099 struct inode *f_inode;
6102 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6103 /* no negative dentry-s in places where bpf can see it */
6104 struct inode *d_inode;
6107 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6111 static bool type_is_rcu(struct bpf_verifier_env *env,
6112 struct bpf_reg_state *reg,
6113 const char *field_name, u32 btf_id)
6115 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6116 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6117 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6119 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6122 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6123 struct bpf_reg_state *reg,
6124 const char *field_name, u32 btf_id)
6126 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6127 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6128 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6130 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6133 static bool type_is_trusted(struct bpf_verifier_env *env,
6134 struct bpf_reg_state *reg,
6135 const char *field_name, u32 btf_id)
6137 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6138 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6139 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6140 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6141 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6142 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6144 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6147 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6148 struct bpf_reg_state *regs,
6149 int regno, int off, int size,
6150 enum bpf_access_type atype,
6153 struct bpf_reg_state *reg = regs + regno;
6154 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6155 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6156 const char *field_name = NULL;
6157 enum bpf_type_flag flag = 0;
6161 if (!env->allow_ptr_leaks) {
6163 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6167 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6169 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6175 "R%d is ptr_%s invalid negative access: off=%d\n",
6179 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6182 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6184 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6185 regno, tname, off, tn_buf);
6189 if (reg->type & MEM_USER) {
6191 "R%d is ptr_%s access user memory: off=%d\n",
6196 if (reg->type & MEM_PERCPU) {
6198 "R%d is ptr_%s access percpu memory: off=%d\n",
6203 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6204 if (!btf_is_kernel(reg->btf)) {
6205 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6208 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6210 /* Writes are permitted with default btf_struct_access for
6211 * program allocated objects (which always have ref_obj_id > 0),
6212 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6214 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6215 verbose(env, "only read is supported\n");
6219 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6221 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6225 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6231 if (ret != PTR_TO_BTF_ID) {
6234 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6235 /* If this is an untrusted pointer, all pointers formed by walking it
6236 * also inherit the untrusted flag.
6238 flag = PTR_UNTRUSTED;
6240 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6241 /* By default any pointer obtained from walking a trusted pointer is no
6242 * longer trusted, unless the field being accessed has explicitly been
6243 * marked as inheriting its parent's state of trust (either full or RCU).
6245 * 'cgroups' pointer is untrusted if task->cgroups dereference
6246 * happened in a sleepable program outside of bpf_rcu_read_lock()
6247 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6248 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6250 * A regular RCU-protected pointer with __rcu tag can also be deemed
6251 * trusted if we are in an RCU CS. Such pointer can be NULL.
6253 if (type_is_trusted(env, reg, field_name, btf_id)) {
6254 flag |= PTR_TRUSTED;
6255 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6256 if (type_is_rcu(env, reg, field_name, btf_id)) {
6257 /* ignore __rcu tag and mark it MEM_RCU */
6259 } else if (flag & MEM_RCU ||
6260 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6261 /* __rcu tagged pointers can be NULL */
6262 flag |= MEM_RCU | PTR_MAYBE_NULL;
6264 /* We always trust them */
6265 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6266 flag & PTR_UNTRUSTED)
6267 flag &= ~PTR_UNTRUSTED;
6268 } else if (flag & (MEM_PERCPU | MEM_USER)) {
6271 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6272 clear_trusted_flags(&flag);
6276 * If not in RCU CS or MEM_RCU pointer can be NULL then
6277 * aggressively mark as untrusted otherwise such
6278 * pointers will be plain PTR_TO_BTF_ID without flags
6279 * and will be allowed to be passed into helpers for
6282 flag = PTR_UNTRUSTED;
6285 /* Old compat. Deprecated */
6286 clear_trusted_flags(&flag);
6289 if (atype == BPF_READ && value_regno >= 0)
6290 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6295 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6296 struct bpf_reg_state *regs,
6297 int regno, int off, int size,
6298 enum bpf_access_type atype,
6301 struct bpf_reg_state *reg = regs + regno;
6302 struct bpf_map *map = reg->map_ptr;
6303 struct bpf_reg_state map_reg;
6304 enum bpf_type_flag flag = 0;
6305 const struct btf_type *t;
6311 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6315 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6316 verbose(env, "map_ptr access not supported for map type %d\n",
6321 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6322 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6324 if (!env->allow_ptr_leaks) {
6326 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6332 verbose(env, "R%d is %s invalid negative access: off=%d\n",
6337 if (atype != BPF_READ) {
6338 verbose(env, "only read from %s is supported\n", tname);
6342 /* Simulate access to a PTR_TO_BTF_ID */
6343 memset(&map_reg, 0, sizeof(map_reg));
6344 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6345 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6349 if (value_regno >= 0)
6350 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6355 /* Check that the stack access at the given offset is within bounds. The
6356 * maximum valid offset is -1.
6358 * The minimum valid offset is -MAX_BPF_STACK for writes, and
6359 * -state->allocated_stack for reads.
6361 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6363 struct bpf_func_state *state,
6364 enum bpf_access_type t)
6368 if (t == BPF_WRITE || env->allow_uninit_stack)
6369 min_valid_off = -MAX_BPF_STACK;
6371 min_valid_off = -state->allocated_stack;
6373 if (off < min_valid_off || off > -1)
6378 /* Check that the stack access at 'regno + off' falls within the maximum stack
6381 * 'off' includes `regno->offset`, but not its dynamic part (if any).
6383 static int check_stack_access_within_bounds(
6384 struct bpf_verifier_env *env,
6385 int regno, int off, int access_size,
6386 enum bpf_access_src src, enum bpf_access_type type)
6388 struct bpf_reg_state *regs = cur_regs(env);
6389 struct bpf_reg_state *reg = regs + regno;
6390 struct bpf_func_state *state = func(env, reg);
6391 s64 min_off, max_off;
6395 if (src == ACCESS_HELPER)
6396 /* We don't know if helpers are reading or writing (or both). */
6397 err_extra = " indirect access to";
6398 else if (type == BPF_READ)
6399 err_extra = " read from";
6401 err_extra = " write to";
6403 if (tnum_is_const(reg->var_off)) {
6404 min_off = (s64)reg->var_off.value + off;
6405 max_off = min_off + access_size;
6407 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6408 reg->smin_value <= -BPF_MAX_VAR_OFF) {
6409 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6413 min_off = reg->smin_value + off;
6414 max_off = reg->smax_value + off + access_size;
6417 err = check_stack_slot_within_bounds(env, min_off, state, type);
6418 if (!err && max_off > 0)
6419 err = -EINVAL; /* out of stack access into non-negative offsets */
6422 if (tnum_is_const(reg->var_off)) {
6423 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6424 err_extra, regno, off, access_size);
6428 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6429 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6430 err_extra, regno, tn_buf, access_size);
6435 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE));
6438 /* check whether memory at (regno + off) is accessible for t = (read | write)
6439 * if t==write, value_regno is a register which value is stored into memory
6440 * if t==read, value_regno is a register which will receive the value from memory
6441 * if t==write && value_regno==-1, some unknown value is stored into memory
6442 * if t==read && value_regno==-1, don't care what we read from memory
6444 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6445 int off, int bpf_size, enum bpf_access_type t,
6446 int value_regno, bool strict_alignment_once, bool is_ldsx)
6448 struct bpf_reg_state *regs = cur_regs(env);
6449 struct bpf_reg_state *reg = regs + regno;
6452 size = bpf_size_to_bytes(bpf_size);
6456 /* alignment checks will add in reg->off themselves */
6457 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6461 /* for access checks, reg->off is just part of off */
6464 if (reg->type == PTR_TO_MAP_KEY) {
6465 if (t == BPF_WRITE) {
6466 verbose(env, "write to change key R%d not allowed\n", regno);
6470 err = check_mem_region_access(env, regno, off, size,
6471 reg->map_ptr->key_size, false);
6474 if (value_regno >= 0)
6475 mark_reg_unknown(env, regs, value_regno);
6476 } else if (reg->type == PTR_TO_MAP_VALUE) {
6477 struct btf_field *kptr_field = NULL;
6479 if (t == BPF_WRITE && value_regno >= 0 &&
6480 is_pointer_value(env, value_regno)) {
6481 verbose(env, "R%d leaks addr into map\n", value_regno);
6484 err = check_map_access_type(env, regno, off, size, t);
6487 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6490 if (tnum_is_const(reg->var_off))
6491 kptr_field = btf_record_find(reg->map_ptr->record,
6492 off + reg->var_off.value, BPF_KPTR);
6494 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6495 } else if (t == BPF_READ && value_regno >= 0) {
6496 struct bpf_map *map = reg->map_ptr;
6498 /* if map is read-only, track its contents as scalars */
6499 if (tnum_is_const(reg->var_off) &&
6500 bpf_map_is_rdonly(map) &&
6501 map->ops->map_direct_value_addr) {
6502 int map_off = off + reg->var_off.value;
6505 err = bpf_map_direct_read(map, map_off, size,
6510 regs[value_regno].type = SCALAR_VALUE;
6511 __mark_reg_known(®s[value_regno], val);
6513 mark_reg_unknown(env, regs, value_regno);
6516 } else if (base_type(reg->type) == PTR_TO_MEM) {
6517 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6519 if (type_may_be_null(reg->type)) {
6520 verbose(env, "R%d invalid mem access '%s'\n", regno,
6521 reg_type_str(env, reg->type));
6525 if (t == BPF_WRITE && rdonly_mem) {
6526 verbose(env, "R%d cannot write into %s\n",
6527 regno, reg_type_str(env, reg->type));
6531 if (t == BPF_WRITE && value_regno >= 0 &&
6532 is_pointer_value(env, value_regno)) {
6533 verbose(env, "R%d leaks addr into mem\n", value_regno);
6537 err = check_mem_region_access(env, regno, off, size,
6538 reg->mem_size, false);
6539 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6540 mark_reg_unknown(env, regs, value_regno);
6541 } else if (reg->type == PTR_TO_CTX) {
6542 enum bpf_reg_type reg_type = SCALAR_VALUE;
6543 struct btf *btf = NULL;
6546 if (t == BPF_WRITE && value_regno >= 0 &&
6547 is_pointer_value(env, value_regno)) {
6548 verbose(env, "R%d leaks addr into ctx\n", value_regno);
6552 err = check_ptr_off_reg(env, reg, regno);
6556 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf,
6559 verbose_linfo(env, insn_idx, "; ");
6560 if (!err && t == BPF_READ && value_regno >= 0) {
6561 /* ctx access returns either a scalar, or a
6562 * PTR_TO_PACKET[_META,_END]. In the latter
6563 * case, we know the offset is zero.
6565 if (reg_type == SCALAR_VALUE) {
6566 mark_reg_unknown(env, regs, value_regno);
6568 mark_reg_known_zero(env, regs,
6570 if (type_may_be_null(reg_type))
6571 regs[value_regno].id = ++env->id_gen;
6572 /* A load of ctx field could have different
6573 * actual load size with the one encoded in the
6574 * insn. When the dst is PTR, it is for sure not
6577 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6578 if (base_type(reg_type) == PTR_TO_BTF_ID) {
6579 regs[value_regno].btf = btf;
6580 regs[value_regno].btf_id = btf_id;
6583 regs[value_regno].type = reg_type;
6586 } else if (reg->type == PTR_TO_STACK) {
6587 /* Basic bounds checks. */
6588 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6593 err = check_stack_read(env, regno, off, size,
6596 err = check_stack_write(env, regno, off, size,
6597 value_regno, insn_idx);
6598 } else if (reg_is_pkt_pointer(reg)) {
6599 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6600 verbose(env, "cannot write into packet\n");
6603 if (t == BPF_WRITE && value_regno >= 0 &&
6604 is_pointer_value(env, value_regno)) {
6605 verbose(env, "R%d leaks addr into packet\n",
6609 err = check_packet_access(env, regno, off, size, false);
6610 if (!err && t == BPF_READ && value_regno >= 0)
6611 mark_reg_unknown(env, regs, value_regno);
6612 } else if (reg->type == PTR_TO_FLOW_KEYS) {
6613 if (t == BPF_WRITE && value_regno >= 0 &&
6614 is_pointer_value(env, value_regno)) {
6615 verbose(env, "R%d leaks addr into flow keys\n",
6620 err = check_flow_keys_access(env, off, size);
6621 if (!err && t == BPF_READ && value_regno >= 0)
6622 mark_reg_unknown(env, regs, value_regno);
6623 } else if (type_is_sk_pointer(reg->type)) {
6624 if (t == BPF_WRITE) {
6625 verbose(env, "R%d cannot write into %s\n",
6626 regno, reg_type_str(env, reg->type));
6629 err = check_sock_access(env, insn_idx, regno, off, size, t);
6630 if (!err && value_regno >= 0)
6631 mark_reg_unknown(env, regs, value_regno);
6632 } else if (reg->type == PTR_TO_TP_BUFFER) {
6633 err = check_tp_buffer_access(env, reg, regno, off, size);
6634 if (!err && t == BPF_READ && value_regno >= 0)
6635 mark_reg_unknown(env, regs, value_regno);
6636 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6637 !type_may_be_null(reg->type)) {
6638 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6640 } else if (reg->type == CONST_PTR_TO_MAP) {
6641 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6643 } else if (base_type(reg->type) == PTR_TO_BUF) {
6644 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6648 if (t == BPF_WRITE) {
6649 verbose(env, "R%d cannot write into %s\n",
6650 regno, reg_type_str(env, reg->type));
6653 max_access = &env->prog->aux->max_rdonly_access;
6655 max_access = &env->prog->aux->max_rdwr_access;
6658 err = check_buffer_access(env, reg, regno, off, size, false,
6661 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6662 mark_reg_unknown(env, regs, value_regno);
6664 verbose(env, "R%d invalid mem access '%s'\n", regno,
6665 reg_type_str(env, reg->type));
6669 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6670 regs[value_regno].type == SCALAR_VALUE) {
6672 /* b/h/w load zero-extends, mark upper bits as known 0 */
6673 coerce_reg_to_size(®s[value_regno], size);
6675 coerce_reg_to_size_sx(®s[value_regno], size);
6680 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6685 switch (insn->imm) {
6687 case BPF_ADD | BPF_FETCH:
6689 case BPF_AND | BPF_FETCH:
6691 case BPF_OR | BPF_FETCH:
6693 case BPF_XOR | BPF_FETCH:
6698 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6702 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6703 verbose(env, "invalid atomic operand size\n");
6707 /* check src1 operand */
6708 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6712 /* check src2 operand */
6713 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6717 if (insn->imm == BPF_CMPXCHG) {
6718 /* Check comparison of R0 with memory location */
6719 const u32 aux_reg = BPF_REG_0;
6721 err = check_reg_arg(env, aux_reg, SRC_OP);
6725 if (is_pointer_value(env, aux_reg)) {
6726 verbose(env, "R%d leaks addr into mem\n", aux_reg);
6731 if (is_pointer_value(env, insn->src_reg)) {
6732 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6736 if (is_ctx_reg(env, insn->dst_reg) ||
6737 is_pkt_reg(env, insn->dst_reg) ||
6738 is_flow_key_reg(env, insn->dst_reg) ||
6739 is_sk_reg(env, insn->dst_reg)) {
6740 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6742 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6746 if (insn->imm & BPF_FETCH) {
6747 if (insn->imm == BPF_CMPXCHG)
6748 load_reg = BPF_REG_0;
6750 load_reg = insn->src_reg;
6752 /* check and record load of old value */
6753 err = check_reg_arg(env, load_reg, DST_OP);
6757 /* This instruction accesses a memory location but doesn't
6758 * actually load it into a register.
6763 /* Check whether we can read the memory, with second call for fetch
6764 * case to simulate the register fill.
6766 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6767 BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6768 if (!err && load_reg >= 0)
6769 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6770 BPF_SIZE(insn->code), BPF_READ, load_reg,
6775 /* Check whether we can write into the same memory. */
6776 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6777 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6784 /* When register 'regno' is used to read the stack (either directly or through
6785 * a helper function) make sure that it's within stack boundary and, depending
6786 * on the access type and privileges, that all elements of the stack are
6789 * 'off' includes 'regno->off', but not its dynamic part (if any).
6791 * All registers that have been spilled on the stack in the slots within the
6792 * read offsets are marked as read.
6794 static int check_stack_range_initialized(
6795 struct bpf_verifier_env *env, int regno, int off,
6796 int access_size, bool zero_size_allowed,
6797 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6799 struct bpf_reg_state *reg = reg_state(env, regno);
6800 struct bpf_func_state *state = func(env, reg);
6801 int err, min_off, max_off, i, j, slot, spi;
6802 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6803 enum bpf_access_type bounds_check_type;
6804 /* Some accesses can write anything into the stack, others are
6807 bool clobber = false;
6809 if (access_size == 0 && !zero_size_allowed) {
6810 verbose(env, "invalid zero-sized read\n");
6814 if (type == ACCESS_HELPER) {
6815 /* The bounds checks for writes are more permissive than for
6816 * reads. However, if raw_mode is not set, we'll do extra
6819 bounds_check_type = BPF_WRITE;
6822 bounds_check_type = BPF_READ;
6824 err = check_stack_access_within_bounds(env, regno, off, access_size,
6825 type, bounds_check_type);
6830 if (tnum_is_const(reg->var_off)) {
6831 min_off = max_off = reg->var_off.value + off;
6833 /* Variable offset is prohibited for unprivileged mode for
6834 * simplicity since it requires corresponding support in
6835 * Spectre masking for stack ALU.
6836 * See also retrieve_ptr_limit().
6838 if (!env->bypass_spec_v1) {
6841 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6842 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6843 regno, err_extra, tn_buf);
6846 /* Only initialized buffer on stack is allowed to be accessed
6847 * with variable offset. With uninitialized buffer it's hard to
6848 * guarantee that whole memory is marked as initialized on
6849 * helper return since specific bounds are unknown what may
6850 * cause uninitialized stack leaking.
6852 if (meta && meta->raw_mode)
6855 min_off = reg->smin_value + off;
6856 max_off = reg->smax_value + off;
6859 if (meta && meta->raw_mode) {
6860 /* Ensure we won't be overwriting dynptrs when simulating byte
6861 * by byte access in check_helper_call using meta.access_size.
6862 * This would be a problem if we have a helper in the future
6865 * helper(uninit_mem, len, dynptr)
6867 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6868 * may end up writing to dynptr itself when touching memory from
6869 * arg 1. This can be relaxed on a case by case basis for known
6870 * safe cases, but reject due to the possibilitiy of aliasing by
6873 for (i = min_off; i < max_off + access_size; i++) {
6874 int stack_off = -i - 1;
6877 /* raw_mode may write past allocated_stack */
6878 if (state->allocated_stack <= stack_off)
6880 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6881 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6885 meta->access_size = access_size;
6886 meta->regno = regno;
6890 for (i = min_off; i < max_off + access_size; i++) {
6894 spi = slot / BPF_REG_SIZE;
6895 if (state->allocated_stack <= slot) {
6896 verbose(env, "verifier bug: allocated_stack too small");
6900 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6901 if (*stype == STACK_MISC)
6903 if ((*stype == STACK_ZERO) ||
6904 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
6906 /* helper can write anything into the stack */
6907 *stype = STACK_MISC;
6912 if (is_spilled_reg(&state->stack[spi]) &&
6913 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6914 env->allow_ptr_leaks)) {
6916 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6917 for (j = 0; j < BPF_REG_SIZE; j++)
6918 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
6923 if (tnum_is_const(reg->var_off)) {
6924 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6925 err_extra, regno, min_off, i - min_off, access_size);
6929 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6930 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6931 err_extra, regno, tn_buf, i - min_off, access_size);
6935 /* reading any byte out of 8-byte 'spill_slot' will cause
6936 * the whole slot to be marked as 'read'
6938 mark_reg_read(env, &state->stack[spi].spilled_ptr,
6939 state->stack[spi].spilled_ptr.parent,
6941 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6942 * be sure that whether stack slot is written to or not. Hence,
6943 * we must still conservatively propagate reads upwards even if
6944 * helper may write to the entire memory range.
6950 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6951 int access_size, bool zero_size_allowed,
6952 struct bpf_call_arg_meta *meta)
6954 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
6957 switch (base_type(reg->type)) {
6959 case PTR_TO_PACKET_META:
6960 return check_packet_access(env, regno, reg->off, access_size,
6962 case PTR_TO_MAP_KEY:
6963 if (meta && meta->raw_mode) {
6964 verbose(env, "R%d cannot write into %s\n", regno,
6965 reg_type_str(env, reg->type));
6968 return check_mem_region_access(env, regno, reg->off, access_size,
6969 reg->map_ptr->key_size, false);
6970 case PTR_TO_MAP_VALUE:
6971 if (check_map_access_type(env, regno, reg->off, access_size,
6972 meta && meta->raw_mode ? BPF_WRITE :
6975 return check_map_access(env, regno, reg->off, access_size,
6976 zero_size_allowed, ACCESS_HELPER);
6978 if (type_is_rdonly_mem(reg->type)) {
6979 if (meta && meta->raw_mode) {
6980 verbose(env, "R%d cannot write into %s\n", regno,
6981 reg_type_str(env, reg->type));
6985 return check_mem_region_access(env, regno, reg->off,
6986 access_size, reg->mem_size,
6989 if (type_is_rdonly_mem(reg->type)) {
6990 if (meta && meta->raw_mode) {
6991 verbose(env, "R%d cannot write into %s\n", regno,
6992 reg_type_str(env, reg->type));
6996 max_access = &env->prog->aux->max_rdonly_access;
6998 max_access = &env->prog->aux->max_rdwr_access;
7000 return check_buffer_access(env, reg, regno, reg->off,
7001 access_size, zero_size_allowed,
7004 return check_stack_range_initialized(
7006 regno, reg->off, access_size,
7007 zero_size_allowed, ACCESS_HELPER, meta);
7009 return check_ptr_to_btf_access(env, regs, regno, reg->off,
7010 access_size, BPF_READ, -1);
7012 /* in case the function doesn't know how to access the context,
7013 * (because we are in a program of type SYSCALL for example), we
7014 * can not statically check its size.
7015 * Dynamically check it now.
7017 if (!env->ops->convert_ctx_access) {
7018 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7019 int offset = access_size - 1;
7021 /* Allow zero-byte read from PTR_TO_CTX */
7022 if (access_size == 0)
7023 return zero_size_allowed ? 0 : -EACCES;
7025 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7026 atype, -1, false, false);
7030 default: /* scalar_value or invalid ptr */
7031 /* Allow zero-byte read from NULL, regardless of pointer type */
7032 if (zero_size_allowed && access_size == 0 &&
7033 register_is_null(reg))
7036 verbose(env, "R%d type=%s ", regno,
7037 reg_type_str(env, reg->type));
7038 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7043 static int check_mem_size_reg(struct bpf_verifier_env *env,
7044 struct bpf_reg_state *reg, u32 regno,
7045 bool zero_size_allowed,
7046 struct bpf_call_arg_meta *meta)
7050 /* This is used to refine r0 return value bounds for helpers
7051 * that enforce this value as an upper bound on return values.
7052 * See do_refine_retval_range() for helpers that can refine
7053 * the return value. C type of helper is u32 so we pull register
7054 * bound from umax_value however, if negative verifier errors
7055 * out. Only upper bounds can be learned because retval is an
7056 * int type and negative retvals are allowed.
7058 meta->msize_max_value = reg->umax_value;
7060 /* The register is SCALAR_VALUE; the access check
7061 * happens using its boundaries.
7063 if (!tnum_is_const(reg->var_off))
7064 /* For unprivileged variable accesses, disable raw
7065 * mode so that the program is required to
7066 * initialize all the memory that the helper could
7067 * just partially fill up.
7071 if (reg->smin_value < 0) {
7072 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7077 if (reg->umin_value == 0) {
7078 err = check_helper_mem_access(env, regno - 1, 0,
7085 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7086 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7090 err = check_helper_mem_access(env, regno - 1,
7092 zero_size_allowed, meta);
7094 err = mark_chain_precision(env, regno);
7098 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7099 u32 regno, u32 mem_size)
7101 bool may_be_null = type_may_be_null(reg->type);
7102 struct bpf_reg_state saved_reg;
7103 struct bpf_call_arg_meta meta;
7106 if (register_is_null(reg))
7109 memset(&meta, 0, sizeof(meta));
7110 /* Assuming that the register contains a value check if the memory
7111 * access is safe. Temporarily save and restore the register's state as
7112 * the conversion shouldn't be visible to a caller.
7116 mark_ptr_not_null_reg(reg);
7119 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7120 /* Check access for BPF_WRITE */
7121 meta.raw_mode = true;
7122 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7130 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7133 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7134 bool may_be_null = type_may_be_null(mem_reg->type);
7135 struct bpf_reg_state saved_reg;
7136 struct bpf_call_arg_meta meta;
7139 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7141 memset(&meta, 0, sizeof(meta));
7144 saved_reg = *mem_reg;
7145 mark_ptr_not_null_reg(mem_reg);
7148 err = check_mem_size_reg(env, reg, regno, true, &meta);
7149 /* Check access for BPF_WRITE */
7150 meta.raw_mode = true;
7151 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7154 *mem_reg = saved_reg;
7158 /* Implementation details:
7159 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7160 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7161 * Two bpf_map_lookups (even with the same key) will have different reg->id.
7162 * Two separate bpf_obj_new will also have different reg->id.
7163 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7164 * clears reg->id after value_or_null->value transition, since the verifier only
7165 * cares about the range of access to valid map value pointer and doesn't care
7166 * about actual address of the map element.
7167 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7168 * reg->id > 0 after value_or_null->value transition. By doing so
7169 * two bpf_map_lookups will be considered two different pointers that
7170 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7171 * returned from bpf_obj_new.
7172 * The verifier allows taking only one bpf_spin_lock at a time to avoid
7174 * Since only one bpf_spin_lock is allowed the checks are simpler than
7175 * reg_is_refcounted() logic. The verifier needs to remember only
7176 * one spin_lock instead of array of acquired_refs.
7177 * cur_state->active_lock remembers which map value element or allocated
7178 * object got locked and clears it after bpf_spin_unlock.
7180 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7183 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7184 struct bpf_verifier_state *cur = env->cur_state;
7185 bool is_const = tnum_is_const(reg->var_off);
7186 u64 val = reg->var_off.value;
7187 struct bpf_map *map = NULL;
7188 struct btf *btf = NULL;
7189 struct btf_record *rec;
7193 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7197 if (reg->type == PTR_TO_MAP_VALUE) {
7201 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
7209 rec = reg_btf_record(reg);
7210 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7211 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7212 map ? map->name : "kptr");
7215 if (rec->spin_lock_off != val + reg->off) {
7216 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7217 val + reg->off, rec->spin_lock_off);
7221 if (cur->active_lock.ptr) {
7223 "Locking two bpf_spin_locks are not allowed\n");
7227 cur->active_lock.ptr = map;
7229 cur->active_lock.ptr = btf;
7230 cur->active_lock.id = reg->id;
7239 if (!cur->active_lock.ptr) {
7240 verbose(env, "bpf_spin_unlock without taking a lock\n");
7243 if (cur->active_lock.ptr != ptr ||
7244 cur->active_lock.id != reg->id) {
7245 verbose(env, "bpf_spin_unlock of different lock\n");
7249 invalidate_non_owning_refs(env);
7251 cur->active_lock.ptr = NULL;
7252 cur->active_lock.id = 0;
7257 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7258 struct bpf_call_arg_meta *meta)
7260 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7261 bool is_const = tnum_is_const(reg->var_off);
7262 struct bpf_map *map = reg->map_ptr;
7263 u64 val = reg->var_off.value;
7267 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7272 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7276 if (!btf_record_has_field(map->record, BPF_TIMER)) {
7277 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7280 if (map->record->timer_off != val + reg->off) {
7281 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7282 val + reg->off, map->record->timer_off);
7285 if (meta->map_ptr) {
7286 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7289 meta->map_uid = reg->map_uid;
7290 meta->map_ptr = map;
7294 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7295 struct bpf_call_arg_meta *meta)
7297 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7298 struct bpf_map *map_ptr = reg->map_ptr;
7299 struct btf_field *kptr_field;
7302 if (!tnum_is_const(reg->var_off)) {
7304 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7308 if (!map_ptr->btf) {
7309 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7313 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7314 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7318 meta->map_ptr = map_ptr;
7319 kptr_off = reg->off + reg->var_off.value;
7320 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7322 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7325 if (kptr_field->type != BPF_KPTR_REF) {
7326 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7329 meta->kptr_field = kptr_field;
7333 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7334 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7336 * In both cases we deal with the first 8 bytes, but need to mark the next 8
7337 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7338 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7340 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7341 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7342 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7343 * mutate the view of the dynptr and also possibly destroy it. In the latter
7344 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7345 * memory that dynptr points to.
7347 * The verifier will keep track both levels of mutation (bpf_dynptr's in
7348 * reg->type and the memory's in reg->dynptr.type), but there is no support for
7349 * readonly dynptr view yet, hence only the first case is tracked and checked.
7351 * This is consistent with how C applies the const modifier to a struct object,
7352 * where the pointer itself inside bpf_dynptr becomes const but not what it
7355 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7356 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7358 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7359 enum bpf_arg_type arg_type, int clone_ref_obj_id)
7361 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7364 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7365 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7367 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7368 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7372 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
7373 * constructing a mutable bpf_dynptr object.
7375 * Currently, this is only possible with PTR_TO_STACK
7376 * pointing to a region of at least 16 bytes which doesn't
7377 * contain an existing bpf_dynptr.
7379 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7380 * mutated or destroyed. However, the memory it points to
7383 * None - Points to a initialized dynptr that can be mutated and
7384 * destroyed, including mutation of the memory it points
7387 if (arg_type & MEM_UNINIT) {
7390 if (!is_dynptr_reg_valid_uninit(env, reg)) {
7391 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7395 /* we write BPF_DW bits (8 bytes) at a time */
7396 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7397 err = check_mem_access(env, insn_idx, regno,
7398 i, BPF_DW, BPF_WRITE, -1, false, false);
7403 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7404 } else /* MEM_RDONLY and None case from above */ {
7405 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7406 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7407 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7411 if (!is_dynptr_reg_valid_init(env, reg)) {
7413 "Expected an initialized dynptr as arg #%d\n",
7418 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7419 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7421 "Expected a dynptr of type %s as arg #%d\n",
7422 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7426 err = mark_dynptr_read(env, reg);
7431 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7433 struct bpf_func_state *state = func(env, reg);
7435 return state->stack[spi].spilled_ptr.ref_obj_id;
7438 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7440 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7443 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7445 return meta->kfunc_flags & KF_ITER_NEW;
7448 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7450 return meta->kfunc_flags & KF_ITER_NEXT;
7453 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7455 return meta->kfunc_flags & KF_ITER_DESTROY;
7458 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7460 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
7461 * kfunc is iter state pointer
7463 return arg == 0 && is_iter_kfunc(meta);
7466 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7467 struct bpf_kfunc_call_arg_meta *meta)
7469 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7470 const struct btf_type *t;
7471 const struct btf_param *arg;
7472 int spi, err, i, nr_slots;
7475 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7476 arg = &btf_params(meta->func_proto)[0];
7477 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */
7478 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */
7479 nr_slots = t->size / BPF_REG_SIZE;
7481 if (is_iter_new_kfunc(meta)) {
7482 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
7483 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7484 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7485 iter_type_str(meta->btf, btf_id), regno);
7489 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7490 err = check_mem_access(env, insn_idx, regno,
7491 i, BPF_DW, BPF_WRITE, -1, false, false);
7496 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7500 /* iter_next() or iter_destroy() expect initialized iter state*/
7501 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7502 verbose(env, "expected an initialized iter_%s as arg #%d\n",
7503 iter_type_str(meta->btf, btf_id), regno);
7507 spi = iter_get_spi(env, reg, nr_slots);
7511 err = mark_iter_read(env, reg, spi, nr_slots);
7515 /* remember meta->iter info for process_iter_next_call() */
7516 meta->iter.spi = spi;
7517 meta->iter.frameno = reg->frameno;
7518 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7520 if (is_iter_destroy_kfunc(meta)) {
7521 err = unmark_stack_slots_iter(env, reg, nr_slots);
7530 /* process_iter_next_call() is called when verifier gets to iterator's next
7531 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7532 * to it as just "iter_next()" in comments below.
7534 * BPF verifier relies on a crucial contract for any iter_next()
7535 * implementation: it should *eventually* return NULL, and once that happens
7536 * it should keep returning NULL. That is, once iterator exhausts elements to
7537 * iterate, it should never reset or spuriously return new elements.
7539 * With the assumption of such contract, process_iter_next_call() simulates
7540 * a fork in the verifier state to validate loop logic correctness and safety
7541 * without having to simulate infinite amount of iterations.
7543 * In current state, we first assume that iter_next() returned NULL and
7544 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7545 * conditions we should not form an infinite loop and should eventually reach
7548 * Besides that, we also fork current state and enqueue it for later
7549 * verification. In a forked state we keep iterator state as ACTIVE
7550 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7551 * also bump iteration depth to prevent erroneous infinite loop detection
7552 * later on (see iter_active_depths_differ() comment for details). In this
7553 * state we assume that we'll eventually loop back to another iter_next()
7554 * calls (it could be in exactly same location or in some other instruction,
7555 * it doesn't matter, we don't make any unnecessary assumptions about this,
7556 * everything revolves around iterator state in a stack slot, not which
7557 * instruction is calling iter_next()). When that happens, we either will come
7558 * to iter_next() with equivalent state and can conclude that next iteration
7559 * will proceed in exactly the same way as we just verified, so it's safe to
7560 * assume that loop converges. If not, we'll go on another iteration
7561 * simulation with a different input state, until all possible starting states
7562 * are validated or we reach maximum number of instructions limit.
7564 * This way, we will either exhaustively discover all possible input states
7565 * that iterator loop can start with and eventually will converge, or we'll
7566 * effectively regress into bounded loop simulation logic and either reach
7567 * maximum number of instructions if loop is not provably convergent, or there
7568 * is some statically known limit on number of iterations (e.g., if there is
7569 * an explicit `if n > 100 then break;` statement somewhere in the loop).
7571 * One very subtle but very important aspect is that we *always* simulate NULL
7572 * condition first (as the current state) before we simulate non-NULL case.
7573 * This has to do with intricacies of scalar precision tracking. By simulating
7574 * "exit condition" of iter_next() returning NULL first, we make sure all the
7575 * relevant precision marks *that will be set **after** we exit iterator loop*
7576 * are propagated backwards to common parent state of NULL and non-NULL
7577 * branches. Thanks to that, state equivalence checks done later in forked
7578 * state, when reaching iter_next() for ACTIVE iterator, can assume that
7579 * precision marks are finalized and won't change. Because simulating another
7580 * ACTIVE iterator iteration won't change them (because given same input
7581 * states we'll end up with exactly same output states which we are currently
7582 * comparing; and verification after the loop already propagated back what
7583 * needs to be **additionally** tracked as precise). It's subtle, grok
7584 * precision tracking for more intuitive understanding.
7586 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7587 struct bpf_kfunc_call_arg_meta *meta)
7589 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7590 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7591 struct bpf_reg_state *cur_iter, *queued_iter;
7592 int iter_frameno = meta->iter.frameno;
7593 int iter_spi = meta->iter.spi;
7595 BTF_TYPE_EMIT(struct bpf_iter);
7597 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7599 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7600 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7601 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7602 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7606 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7607 /* branch out active iter state */
7608 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7612 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7613 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7614 queued_iter->iter.depth++;
7616 queued_fr = queued_st->frame[queued_st->curframe];
7617 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7620 /* switch to DRAINED state, but keep the depth unchanged */
7621 /* mark current iter state as drained and assume returned NULL */
7622 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7623 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7628 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7630 return type == ARG_CONST_SIZE ||
7631 type == ARG_CONST_SIZE_OR_ZERO;
7634 static bool arg_type_is_release(enum bpf_arg_type type)
7636 return type & OBJ_RELEASE;
7639 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7641 return base_type(type) == ARG_PTR_TO_DYNPTR;
7644 static int int_ptr_type_to_size(enum bpf_arg_type type)
7646 if (type == ARG_PTR_TO_INT)
7648 else if (type == ARG_PTR_TO_LONG)
7654 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7655 const struct bpf_call_arg_meta *meta,
7656 enum bpf_arg_type *arg_type)
7658 if (!meta->map_ptr) {
7659 /* kernel subsystem misconfigured verifier */
7660 verbose(env, "invalid map_ptr to access map->type\n");
7664 switch (meta->map_ptr->map_type) {
7665 case BPF_MAP_TYPE_SOCKMAP:
7666 case BPF_MAP_TYPE_SOCKHASH:
7667 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7668 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7670 verbose(env, "invalid arg_type for sockmap/sockhash\n");
7674 case BPF_MAP_TYPE_BLOOM_FILTER:
7675 if (meta->func_id == BPF_FUNC_map_peek_elem)
7676 *arg_type = ARG_PTR_TO_MAP_VALUE;
7684 struct bpf_reg_types {
7685 const enum bpf_reg_type types[10];
7689 static const struct bpf_reg_types sock_types = {
7699 static const struct bpf_reg_types btf_id_sock_common_types = {
7706 PTR_TO_BTF_ID | PTR_TRUSTED,
7708 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7712 static const struct bpf_reg_types mem_types = {
7720 PTR_TO_MEM | MEM_RINGBUF,
7722 PTR_TO_BTF_ID | PTR_TRUSTED,
7726 static const struct bpf_reg_types int_ptr_types = {
7736 static const struct bpf_reg_types spin_lock_types = {
7739 PTR_TO_BTF_ID | MEM_ALLOC,
7743 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7744 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7745 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7746 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7747 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7748 static const struct bpf_reg_types btf_ptr_types = {
7751 PTR_TO_BTF_ID | PTR_TRUSTED,
7752 PTR_TO_BTF_ID | MEM_RCU,
7755 static const struct bpf_reg_types percpu_btf_ptr_types = {
7757 PTR_TO_BTF_ID | MEM_PERCPU,
7758 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7761 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7762 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7763 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7764 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7765 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7766 static const struct bpf_reg_types dynptr_types = {
7769 CONST_PTR_TO_DYNPTR,
7773 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7774 [ARG_PTR_TO_MAP_KEY] = &mem_types,
7775 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
7776 [ARG_CONST_SIZE] = &scalar_types,
7777 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
7778 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
7779 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
7780 [ARG_PTR_TO_CTX] = &context_types,
7781 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
7783 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
7785 [ARG_PTR_TO_SOCKET] = &fullsock_types,
7786 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
7787 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
7788 [ARG_PTR_TO_MEM] = &mem_types,
7789 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
7790 [ARG_PTR_TO_INT] = &int_ptr_types,
7791 [ARG_PTR_TO_LONG] = &int_ptr_types,
7792 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
7793 [ARG_PTR_TO_FUNC] = &func_ptr_types,
7794 [ARG_PTR_TO_STACK] = &stack_ptr_types,
7795 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
7796 [ARG_PTR_TO_TIMER] = &timer_types,
7797 [ARG_PTR_TO_KPTR] = &kptr_types,
7798 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
7801 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7802 enum bpf_arg_type arg_type,
7803 const u32 *arg_btf_id,
7804 struct bpf_call_arg_meta *meta)
7806 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7807 enum bpf_reg_type expected, type = reg->type;
7808 const struct bpf_reg_types *compatible;
7811 compatible = compatible_reg_types[base_type(arg_type)];
7813 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7817 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7818 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7820 * Same for MAYBE_NULL:
7822 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7823 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7825 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
7827 * Therefore we fold these flags depending on the arg_type before comparison.
7829 if (arg_type & MEM_RDONLY)
7830 type &= ~MEM_RDONLY;
7831 if (arg_type & PTR_MAYBE_NULL)
7832 type &= ~PTR_MAYBE_NULL;
7833 if (base_type(arg_type) == ARG_PTR_TO_MEM)
7834 type &= ~DYNPTR_TYPE_FLAG_MASK;
7836 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
7839 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7840 expected = compatible->types[i];
7841 if (expected == NOT_INIT)
7844 if (type == expected)
7848 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7849 for (j = 0; j + 1 < i; j++)
7850 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7851 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7855 if (base_type(reg->type) != PTR_TO_BTF_ID)
7858 if (compatible == &mem_types) {
7859 if (!(arg_type & MEM_RDONLY)) {
7861 "%s() may write into memory pointed by R%d type=%s\n",
7862 func_id_name(meta->func_id),
7863 regno, reg_type_str(env, reg->type));
7869 switch ((int)reg->type) {
7871 case PTR_TO_BTF_ID | PTR_TRUSTED:
7872 case PTR_TO_BTF_ID | MEM_RCU:
7873 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7874 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
7876 /* For bpf_sk_release, it needs to match against first member
7877 * 'struct sock_common', hence make an exception for it. This
7878 * allows bpf_sk_release to work for multiple socket types.
7880 bool strict_type_match = arg_type_is_release(arg_type) &&
7881 meta->func_id != BPF_FUNC_sk_release;
7883 if (type_may_be_null(reg->type) &&
7884 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7885 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7890 if (!compatible->btf_id) {
7891 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7894 arg_btf_id = compatible->btf_id;
7897 if (meta->func_id == BPF_FUNC_kptr_xchg) {
7898 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7901 if (arg_btf_id == BPF_PTR_POISON) {
7902 verbose(env, "verifier internal error:");
7903 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7908 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7909 btf_vmlinux, *arg_btf_id,
7910 strict_type_match)) {
7911 verbose(env, "R%d is of type %s but %s is expected\n",
7912 regno, btf_type_name(reg->btf, reg->btf_id),
7913 btf_type_name(btf_vmlinux, *arg_btf_id));
7919 case PTR_TO_BTF_ID | MEM_ALLOC:
7920 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7921 meta->func_id != BPF_FUNC_kptr_xchg) {
7922 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7925 if (meta->func_id == BPF_FUNC_kptr_xchg) {
7926 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7930 case PTR_TO_BTF_ID | MEM_PERCPU:
7931 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7932 /* Handled by helper specific checks */
7935 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7941 static struct btf_field *
7942 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7944 struct btf_field *field;
7945 struct btf_record *rec;
7947 rec = reg_btf_record(reg);
7951 field = btf_record_find(rec, off, fields);
7958 int check_func_arg_reg_off(struct bpf_verifier_env *env,
7959 const struct bpf_reg_state *reg, int regno,
7960 enum bpf_arg_type arg_type)
7962 u32 type = reg->type;
7964 /* When referenced register is passed to release function, its fixed
7967 * We will check arg_type_is_release reg has ref_obj_id when storing
7968 * meta->release_regno.
7970 if (arg_type_is_release(arg_type)) {
7971 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7972 * may not directly point to the object being released, but to
7973 * dynptr pointing to such object, which might be at some offset
7974 * on the stack. In that case, we simply to fallback to the
7977 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7980 /* Doing check_ptr_off_reg check for the offset will catch this
7981 * because fixed_off_ok is false, but checking here allows us
7982 * to give the user a better error message.
7985 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7989 return __check_ptr_off_reg(env, reg, regno, false);
7993 /* Pointer types where both fixed and variable offset is explicitly allowed: */
7996 case PTR_TO_PACKET_META:
7997 case PTR_TO_MAP_KEY:
7998 case PTR_TO_MAP_VALUE:
8000 case PTR_TO_MEM | MEM_RDONLY:
8001 case PTR_TO_MEM | MEM_RINGBUF:
8003 case PTR_TO_BUF | MEM_RDONLY:
8006 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8010 case PTR_TO_BTF_ID | MEM_ALLOC:
8011 case PTR_TO_BTF_ID | PTR_TRUSTED:
8012 case PTR_TO_BTF_ID | MEM_RCU:
8013 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8014 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8015 /* When referenced PTR_TO_BTF_ID is passed to release function,
8016 * its fixed offset must be 0. In the other cases, fixed offset
8017 * can be non-zero. This was already checked above. So pass
8018 * fixed_off_ok as true to allow fixed offset for all other
8019 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8020 * still need to do checks instead of returning.
8022 return __check_ptr_off_reg(env, reg, regno, true);
8024 return __check_ptr_off_reg(env, reg, regno, false);
8028 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8029 const struct bpf_func_proto *fn,
8030 struct bpf_reg_state *regs)
8032 struct bpf_reg_state *state = NULL;
8035 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8036 if (arg_type_is_dynptr(fn->arg_type[i])) {
8038 verbose(env, "verifier internal error: multiple dynptr args\n");
8041 state = ®s[BPF_REG_1 + i];
8045 verbose(env, "verifier internal error: no dynptr arg found\n");
8050 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8052 struct bpf_func_state *state = func(env, reg);
8055 if (reg->type == CONST_PTR_TO_DYNPTR)
8057 spi = dynptr_get_spi(env, reg);
8060 return state->stack[spi].spilled_ptr.id;
8063 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8065 struct bpf_func_state *state = func(env, reg);
8068 if (reg->type == CONST_PTR_TO_DYNPTR)
8069 return reg->ref_obj_id;
8070 spi = dynptr_get_spi(env, reg);
8073 return state->stack[spi].spilled_ptr.ref_obj_id;
8076 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8077 struct bpf_reg_state *reg)
8079 struct bpf_func_state *state = func(env, reg);
8082 if (reg->type == CONST_PTR_TO_DYNPTR)
8083 return reg->dynptr.type;
8085 spi = __get_spi(reg->off);
8087 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8088 return BPF_DYNPTR_TYPE_INVALID;
8091 return state->stack[spi].spilled_ptr.dynptr.type;
8094 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8095 struct bpf_call_arg_meta *meta,
8096 const struct bpf_func_proto *fn,
8099 u32 regno = BPF_REG_1 + arg;
8100 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8101 enum bpf_arg_type arg_type = fn->arg_type[arg];
8102 enum bpf_reg_type type = reg->type;
8103 u32 *arg_btf_id = NULL;
8106 if (arg_type == ARG_DONTCARE)
8109 err = check_reg_arg(env, regno, SRC_OP);
8113 if (arg_type == ARG_ANYTHING) {
8114 if (is_pointer_value(env, regno)) {
8115 verbose(env, "R%d leaks addr into helper function\n",
8122 if (type_is_pkt_pointer(type) &&
8123 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8124 verbose(env, "helper access to the packet is not allowed\n");
8128 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8129 err = resolve_map_arg_type(env, meta, &arg_type);
8134 if (register_is_null(reg) && type_may_be_null(arg_type))
8135 /* A NULL register has a SCALAR_VALUE type, so skip
8138 goto skip_type_check;
8140 /* arg_btf_id and arg_size are in a union. */
8141 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8142 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8143 arg_btf_id = fn->arg_btf_id[arg];
8145 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8149 err = check_func_arg_reg_off(env, reg, regno, arg_type);
8154 if (arg_type_is_release(arg_type)) {
8155 if (arg_type_is_dynptr(arg_type)) {
8156 struct bpf_func_state *state = func(env, reg);
8159 /* Only dynptr created on stack can be released, thus
8160 * the get_spi and stack state checks for spilled_ptr
8161 * should only be done before process_dynptr_func for
8164 if (reg->type == PTR_TO_STACK) {
8165 spi = dynptr_get_spi(env, reg);
8166 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8167 verbose(env, "arg %d is an unacquired reference\n", regno);
8171 verbose(env, "cannot release unowned const bpf_dynptr\n");
8174 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8175 verbose(env, "R%d must be referenced when passed to release function\n",
8179 if (meta->release_regno) {
8180 verbose(env, "verifier internal error: more than one release argument\n");
8183 meta->release_regno = regno;
8186 if (reg->ref_obj_id) {
8187 if (meta->ref_obj_id) {
8188 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8189 regno, reg->ref_obj_id,
8193 meta->ref_obj_id = reg->ref_obj_id;
8196 switch (base_type(arg_type)) {
8197 case ARG_CONST_MAP_PTR:
8198 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8199 if (meta->map_ptr) {
8200 /* Use map_uid (which is unique id of inner map) to reject:
8201 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8202 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8203 * if (inner_map1 && inner_map2) {
8204 * timer = bpf_map_lookup_elem(inner_map1);
8206 * // mismatch would have been allowed
8207 * bpf_timer_init(timer, inner_map2);
8210 * Comparing map_ptr is enough to distinguish normal and outer maps.
8212 if (meta->map_ptr != reg->map_ptr ||
8213 meta->map_uid != reg->map_uid) {
8215 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8216 meta->map_uid, reg->map_uid);
8220 meta->map_ptr = reg->map_ptr;
8221 meta->map_uid = reg->map_uid;
8223 case ARG_PTR_TO_MAP_KEY:
8224 /* bpf_map_xxx(..., map_ptr, ..., key) call:
8225 * check that [key, key + map->key_size) are within
8226 * stack limits and initialized
8228 if (!meta->map_ptr) {
8229 /* in function declaration map_ptr must come before
8230 * map_key, so that it's verified and known before
8231 * we have to check map_key here. Otherwise it means
8232 * that kernel subsystem misconfigured verifier
8234 verbose(env, "invalid map_ptr to access map->key\n");
8237 err = check_helper_mem_access(env, regno,
8238 meta->map_ptr->key_size, false,
8241 case ARG_PTR_TO_MAP_VALUE:
8242 if (type_may_be_null(arg_type) && register_is_null(reg))
8245 /* bpf_map_xxx(..., map_ptr, ..., value) call:
8246 * check [value, value + map->value_size) validity
8248 if (!meta->map_ptr) {
8249 /* kernel subsystem misconfigured verifier */
8250 verbose(env, "invalid map_ptr to access map->value\n");
8253 meta->raw_mode = arg_type & MEM_UNINIT;
8254 err = check_helper_mem_access(env, regno,
8255 meta->map_ptr->value_size, false,
8258 case ARG_PTR_TO_PERCPU_BTF_ID:
8260 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8263 meta->ret_btf = reg->btf;
8264 meta->ret_btf_id = reg->btf_id;
8266 case ARG_PTR_TO_SPIN_LOCK:
8267 if (in_rbtree_lock_required_cb(env)) {
8268 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8271 if (meta->func_id == BPF_FUNC_spin_lock) {
8272 err = process_spin_lock(env, regno, true);
8275 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
8276 err = process_spin_lock(env, regno, false);
8280 verbose(env, "verifier internal error\n");
8284 case ARG_PTR_TO_TIMER:
8285 err = process_timer_func(env, regno, meta);
8289 case ARG_PTR_TO_FUNC:
8290 meta->subprogno = reg->subprogno;
8292 case ARG_PTR_TO_MEM:
8293 /* The access to this pointer is only checked when we hit the
8294 * next is_mem_size argument below.
8296 meta->raw_mode = arg_type & MEM_UNINIT;
8297 if (arg_type & MEM_FIXED_SIZE) {
8298 err = check_helper_mem_access(env, regno,
8299 fn->arg_size[arg], false,
8303 case ARG_CONST_SIZE:
8304 err = check_mem_size_reg(env, reg, regno, false, meta);
8306 case ARG_CONST_SIZE_OR_ZERO:
8307 err = check_mem_size_reg(env, reg, regno, true, meta);
8309 case ARG_PTR_TO_DYNPTR:
8310 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8314 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8315 if (!tnum_is_const(reg->var_off)) {
8316 verbose(env, "R%d is not a known constant'\n",
8320 meta->mem_size = reg->var_off.value;
8321 err = mark_chain_precision(env, regno);
8325 case ARG_PTR_TO_INT:
8326 case ARG_PTR_TO_LONG:
8328 int size = int_ptr_type_to_size(arg_type);
8330 err = check_helper_mem_access(env, regno, size, false, meta);
8333 err = check_ptr_alignment(env, reg, 0, size, true);
8336 case ARG_PTR_TO_CONST_STR:
8338 struct bpf_map *map = reg->map_ptr;
8343 if (!bpf_map_is_rdonly(map)) {
8344 verbose(env, "R%d does not point to a readonly map'\n", regno);
8348 if (!tnum_is_const(reg->var_off)) {
8349 verbose(env, "R%d is not a constant address'\n", regno);
8353 if (!map->ops->map_direct_value_addr) {
8354 verbose(env, "no direct value access support for this map type\n");
8358 err = check_map_access(env, regno, reg->off,
8359 map->value_size - reg->off, false,
8364 map_off = reg->off + reg->var_off.value;
8365 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8367 verbose(env, "direct value access on string failed\n");
8371 str_ptr = (char *)(long)(map_addr);
8372 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8373 verbose(env, "string is not zero-terminated\n");
8378 case ARG_PTR_TO_KPTR:
8379 err = process_kptr_func(env, regno, meta);
8388 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8390 enum bpf_attach_type eatype = env->prog->expected_attach_type;
8391 enum bpf_prog_type type = resolve_prog_type(env->prog);
8393 if (func_id != BPF_FUNC_map_update_elem)
8396 /* It's not possible to get access to a locked struct sock in these
8397 * contexts, so updating is safe.
8400 case BPF_PROG_TYPE_TRACING:
8401 if (eatype == BPF_TRACE_ITER)
8404 case BPF_PROG_TYPE_SOCKET_FILTER:
8405 case BPF_PROG_TYPE_SCHED_CLS:
8406 case BPF_PROG_TYPE_SCHED_ACT:
8407 case BPF_PROG_TYPE_XDP:
8408 case BPF_PROG_TYPE_SK_REUSEPORT:
8409 case BPF_PROG_TYPE_FLOW_DISSECTOR:
8410 case BPF_PROG_TYPE_SK_LOOKUP:
8416 verbose(env, "cannot update sockmap in this context\n");
8420 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8422 return env->prog->jit_requested &&
8423 bpf_jit_supports_subprog_tailcalls();
8426 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8427 struct bpf_map *map, int func_id)
8432 /* We need a two way check, first is from map perspective ... */
8433 switch (map->map_type) {
8434 case BPF_MAP_TYPE_PROG_ARRAY:
8435 if (func_id != BPF_FUNC_tail_call)
8438 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8439 if (func_id != BPF_FUNC_perf_event_read &&
8440 func_id != BPF_FUNC_perf_event_output &&
8441 func_id != BPF_FUNC_skb_output &&
8442 func_id != BPF_FUNC_perf_event_read_value &&
8443 func_id != BPF_FUNC_xdp_output)
8446 case BPF_MAP_TYPE_RINGBUF:
8447 if (func_id != BPF_FUNC_ringbuf_output &&
8448 func_id != BPF_FUNC_ringbuf_reserve &&
8449 func_id != BPF_FUNC_ringbuf_query &&
8450 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8451 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8452 func_id != BPF_FUNC_ringbuf_discard_dynptr)
8455 case BPF_MAP_TYPE_USER_RINGBUF:
8456 if (func_id != BPF_FUNC_user_ringbuf_drain)
8459 case BPF_MAP_TYPE_STACK_TRACE:
8460 if (func_id != BPF_FUNC_get_stackid)
8463 case BPF_MAP_TYPE_CGROUP_ARRAY:
8464 if (func_id != BPF_FUNC_skb_under_cgroup &&
8465 func_id != BPF_FUNC_current_task_under_cgroup)
8468 case BPF_MAP_TYPE_CGROUP_STORAGE:
8469 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8470 if (func_id != BPF_FUNC_get_local_storage)
8473 case BPF_MAP_TYPE_DEVMAP:
8474 case BPF_MAP_TYPE_DEVMAP_HASH:
8475 if (func_id != BPF_FUNC_redirect_map &&
8476 func_id != BPF_FUNC_map_lookup_elem)
8479 /* Restrict bpf side of cpumap and xskmap, open when use-cases
8482 case BPF_MAP_TYPE_CPUMAP:
8483 if (func_id != BPF_FUNC_redirect_map)
8486 case BPF_MAP_TYPE_XSKMAP:
8487 if (func_id != BPF_FUNC_redirect_map &&
8488 func_id != BPF_FUNC_map_lookup_elem)
8491 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8492 case BPF_MAP_TYPE_HASH_OF_MAPS:
8493 if (func_id != BPF_FUNC_map_lookup_elem)
8496 case BPF_MAP_TYPE_SOCKMAP:
8497 if (func_id != BPF_FUNC_sk_redirect_map &&
8498 func_id != BPF_FUNC_sock_map_update &&
8499 func_id != BPF_FUNC_map_delete_elem &&
8500 func_id != BPF_FUNC_msg_redirect_map &&
8501 func_id != BPF_FUNC_sk_select_reuseport &&
8502 func_id != BPF_FUNC_map_lookup_elem &&
8503 !may_update_sockmap(env, func_id))
8506 case BPF_MAP_TYPE_SOCKHASH:
8507 if (func_id != BPF_FUNC_sk_redirect_hash &&
8508 func_id != BPF_FUNC_sock_hash_update &&
8509 func_id != BPF_FUNC_map_delete_elem &&
8510 func_id != BPF_FUNC_msg_redirect_hash &&
8511 func_id != BPF_FUNC_sk_select_reuseport &&
8512 func_id != BPF_FUNC_map_lookup_elem &&
8513 !may_update_sockmap(env, func_id))
8516 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8517 if (func_id != BPF_FUNC_sk_select_reuseport)
8520 case BPF_MAP_TYPE_QUEUE:
8521 case BPF_MAP_TYPE_STACK:
8522 if (func_id != BPF_FUNC_map_peek_elem &&
8523 func_id != BPF_FUNC_map_pop_elem &&
8524 func_id != BPF_FUNC_map_push_elem)
8527 case BPF_MAP_TYPE_SK_STORAGE:
8528 if (func_id != BPF_FUNC_sk_storage_get &&
8529 func_id != BPF_FUNC_sk_storage_delete &&
8530 func_id != BPF_FUNC_kptr_xchg)
8533 case BPF_MAP_TYPE_INODE_STORAGE:
8534 if (func_id != BPF_FUNC_inode_storage_get &&
8535 func_id != BPF_FUNC_inode_storage_delete &&
8536 func_id != BPF_FUNC_kptr_xchg)
8539 case BPF_MAP_TYPE_TASK_STORAGE:
8540 if (func_id != BPF_FUNC_task_storage_get &&
8541 func_id != BPF_FUNC_task_storage_delete &&
8542 func_id != BPF_FUNC_kptr_xchg)
8545 case BPF_MAP_TYPE_CGRP_STORAGE:
8546 if (func_id != BPF_FUNC_cgrp_storage_get &&
8547 func_id != BPF_FUNC_cgrp_storage_delete &&
8548 func_id != BPF_FUNC_kptr_xchg)
8551 case BPF_MAP_TYPE_BLOOM_FILTER:
8552 if (func_id != BPF_FUNC_map_peek_elem &&
8553 func_id != BPF_FUNC_map_push_elem)
8560 /* ... and second from the function itself. */
8562 case BPF_FUNC_tail_call:
8563 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8565 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8566 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8570 case BPF_FUNC_perf_event_read:
8571 case BPF_FUNC_perf_event_output:
8572 case BPF_FUNC_perf_event_read_value:
8573 case BPF_FUNC_skb_output:
8574 case BPF_FUNC_xdp_output:
8575 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8578 case BPF_FUNC_ringbuf_output:
8579 case BPF_FUNC_ringbuf_reserve:
8580 case BPF_FUNC_ringbuf_query:
8581 case BPF_FUNC_ringbuf_reserve_dynptr:
8582 case BPF_FUNC_ringbuf_submit_dynptr:
8583 case BPF_FUNC_ringbuf_discard_dynptr:
8584 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8587 case BPF_FUNC_user_ringbuf_drain:
8588 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8591 case BPF_FUNC_get_stackid:
8592 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8595 case BPF_FUNC_current_task_under_cgroup:
8596 case BPF_FUNC_skb_under_cgroup:
8597 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8600 case BPF_FUNC_redirect_map:
8601 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8602 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8603 map->map_type != BPF_MAP_TYPE_CPUMAP &&
8604 map->map_type != BPF_MAP_TYPE_XSKMAP)
8607 case BPF_FUNC_sk_redirect_map:
8608 case BPF_FUNC_msg_redirect_map:
8609 case BPF_FUNC_sock_map_update:
8610 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8613 case BPF_FUNC_sk_redirect_hash:
8614 case BPF_FUNC_msg_redirect_hash:
8615 case BPF_FUNC_sock_hash_update:
8616 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8619 case BPF_FUNC_get_local_storage:
8620 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8621 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8624 case BPF_FUNC_sk_select_reuseport:
8625 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8626 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8627 map->map_type != BPF_MAP_TYPE_SOCKHASH)
8630 case BPF_FUNC_map_pop_elem:
8631 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8632 map->map_type != BPF_MAP_TYPE_STACK)
8635 case BPF_FUNC_map_peek_elem:
8636 case BPF_FUNC_map_push_elem:
8637 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8638 map->map_type != BPF_MAP_TYPE_STACK &&
8639 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8642 case BPF_FUNC_map_lookup_percpu_elem:
8643 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8644 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8645 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8648 case BPF_FUNC_sk_storage_get:
8649 case BPF_FUNC_sk_storage_delete:
8650 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8653 case BPF_FUNC_inode_storage_get:
8654 case BPF_FUNC_inode_storage_delete:
8655 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8658 case BPF_FUNC_task_storage_get:
8659 case BPF_FUNC_task_storage_delete:
8660 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8663 case BPF_FUNC_cgrp_storage_get:
8664 case BPF_FUNC_cgrp_storage_delete:
8665 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8674 verbose(env, "cannot pass map_type %d into func %s#%d\n",
8675 map->map_type, func_id_name(func_id), func_id);
8679 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8683 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8685 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8687 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8689 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8691 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8694 /* We only support one arg being in raw mode at the moment,
8695 * which is sufficient for the helper functions we have
8701 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8703 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8704 bool has_size = fn->arg_size[arg] != 0;
8705 bool is_next_size = false;
8707 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8708 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8710 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8711 return is_next_size;
8713 return has_size == is_next_size || is_next_size == is_fixed;
8716 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8718 /* bpf_xxx(..., buf, len) call will access 'len'
8719 * bytes from memory 'buf'. Both arg types need
8720 * to be paired, so make sure there's no buggy
8721 * helper function specification.
8723 if (arg_type_is_mem_size(fn->arg1_type) ||
8724 check_args_pair_invalid(fn, 0) ||
8725 check_args_pair_invalid(fn, 1) ||
8726 check_args_pair_invalid(fn, 2) ||
8727 check_args_pair_invalid(fn, 3) ||
8728 check_args_pair_invalid(fn, 4))
8734 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8738 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8739 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8740 return !!fn->arg_btf_id[i];
8741 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8742 return fn->arg_btf_id[i] == BPF_PTR_POISON;
8743 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8744 /* arg_btf_id and arg_size are in a union. */
8745 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8746 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8753 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8755 return check_raw_mode_ok(fn) &&
8756 check_arg_pair_ok(fn) &&
8757 check_btf_id_ok(fn) ? 0 : -EINVAL;
8760 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8761 * are now invalid, so turn them into unknown SCALAR_VALUE.
8763 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8764 * since these slices point to packet data.
8766 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8768 struct bpf_func_state *state;
8769 struct bpf_reg_state *reg;
8771 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8772 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8773 mark_reg_invalid(env, reg);
8779 BEYOND_PKT_END = -2,
8782 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8784 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8785 struct bpf_reg_state *reg = &state->regs[regn];
8787 if (reg->type != PTR_TO_PACKET)
8788 /* PTR_TO_PACKET_META is not supported yet */
8791 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8792 * How far beyond pkt_end it goes is unknown.
8793 * if (!range_open) it's the case of pkt >= pkt_end
8794 * if (range_open) it's the case of pkt > pkt_end
8795 * hence this pointer is at least 1 byte bigger than pkt_end
8798 reg->range = BEYOND_PKT_END;
8800 reg->range = AT_PKT_END;
8803 /* The pointer with the specified id has released its reference to kernel
8804 * resources. Identify all copies of the same pointer and clear the reference.
8806 static int release_reference(struct bpf_verifier_env *env,
8809 struct bpf_func_state *state;
8810 struct bpf_reg_state *reg;
8813 err = release_reference_state(cur_func(env), ref_obj_id);
8817 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8818 if (reg->ref_obj_id == ref_obj_id)
8819 mark_reg_invalid(env, reg);
8825 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8827 struct bpf_func_state *unused;
8828 struct bpf_reg_state *reg;
8830 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8831 if (type_is_non_owning_ref(reg->type))
8832 mark_reg_invalid(env, reg);
8836 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8837 struct bpf_reg_state *regs)
8841 /* after the call registers r0 - r5 were scratched */
8842 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8843 mark_reg_not_init(env, regs, caller_saved[i]);
8844 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8848 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8849 struct bpf_func_state *caller,
8850 struct bpf_func_state *callee,
8853 static int set_callee_state(struct bpf_verifier_env *env,
8854 struct bpf_func_state *caller,
8855 struct bpf_func_state *callee, int insn_idx);
8857 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8858 int *insn_idx, int subprog,
8859 set_callee_state_fn set_callee_state_cb)
8861 struct bpf_verifier_state *state = env->cur_state;
8862 struct bpf_func_state *caller, *callee;
8865 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8866 verbose(env, "the call stack of %d frames is too deep\n",
8867 state->curframe + 2);
8871 caller = state->frame[state->curframe];
8872 if (state->frame[state->curframe + 1]) {
8873 verbose(env, "verifier bug. Frame %d already allocated\n",
8874 state->curframe + 1);
8878 err = btf_check_subprog_call(env, subprog, caller->regs);
8881 if (subprog_is_global(env, subprog)) {
8883 verbose(env, "Caller passes invalid args into func#%d\n",
8887 if (env->log.level & BPF_LOG_LEVEL)
8889 "Func#%d is global and valid. Skipping.\n",
8891 clear_caller_saved_regs(env, caller->regs);
8893 /* All global functions return a 64-bit SCALAR_VALUE */
8894 mark_reg_unknown(env, caller->regs, BPF_REG_0);
8895 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8897 /* continue with next insn after call */
8902 /* set_callee_state is used for direct subprog calls, but we are
8903 * interested in validating only BPF helpers that can call subprogs as
8906 if (set_callee_state_cb != set_callee_state) {
8907 if (bpf_pseudo_kfunc_call(insn) &&
8908 !is_callback_calling_kfunc(insn->imm)) {
8909 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8910 func_id_name(insn->imm), insn->imm);
8912 } else if (!bpf_pseudo_kfunc_call(insn) &&
8913 !is_callback_calling_function(insn->imm)) { /* helper */
8914 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8915 func_id_name(insn->imm), insn->imm);
8920 if (insn->code == (BPF_JMP | BPF_CALL) &&
8921 insn->src_reg == 0 &&
8922 insn->imm == BPF_FUNC_timer_set_callback) {
8923 struct bpf_verifier_state *async_cb;
8925 /* there is no real recursion here. timer callbacks are async */
8926 env->subprog_info[subprog].is_async_cb = true;
8927 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8928 *insn_idx, subprog);
8931 callee = async_cb->frame[0];
8932 callee->async_entry_cnt = caller->async_entry_cnt + 1;
8934 /* Convert bpf_timer_set_callback() args into timer callback args */
8935 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8939 clear_caller_saved_regs(env, caller->regs);
8940 mark_reg_unknown(env, caller->regs, BPF_REG_0);
8941 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8942 /* continue with next insn after call */
8946 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8949 state->frame[state->curframe + 1] = callee;
8951 /* callee cannot access r0, r6 - r9 for reading and has to write
8952 * into its own stack before reading from it.
8953 * callee can read/write into caller's stack
8955 init_func_state(env, callee,
8956 /* remember the callsite, it will be used by bpf_exit */
8957 *insn_idx /* callsite */,
8958 state->curframe + 1 /* frameno within this callchain */,
8959 subprog /* subprog number within this prog */);
8961 /* Transfer references to the callee */
8962 err = copy_reference_state(callee, caller);
8966 err = set_callee_state_cb(env, caller, callee, *insn_idx);
8970 clear_caller_saved_regs(env, caller->regs);
8972 /* only increment it after check_reg_arg() finished */
8975 /* and go analyze first insn of the callee */
8976 *insn_idx = env->subprog_info[subprog].start - 1;
8978 if (env->log.level & BPF_LOG_LEVEL) {
8979 verbose(env, "caller:\n");
8980 print_verifier_state(env, caller, true);
8981 verbose(env, "callee:\n");
8982 print_verifier_state(env, callee, true);
8987 free_func_state(callee);
8988 state->frame[state->curframe + 1] = NULL;
8992 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8993 struct bpf_func_state *caller,
8994 struct bpf_func_state *callee)
8996 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8997 * void *callback_ctx, u64 flags);
8998 * callback_fn(struct bpf_map *map, void *key, void *value,
8999 * void *callback_ctx);
9001 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9003 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9004 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9005 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9007 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9008 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9009 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9011 /* pointer to stack or null */
9012 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9015 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9019 static int set_callee_state(struct bpf_verifier_env *env,
9020 struct bpf_func_state *caller,
9021 struct bpf_func_state *callee, int insn_idx)
9025 /* copy r1 - r5 args that callee can access. The copy includes parent
9026 * pointers, which connects us up to the liveness chain
9028 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9029 callee->regs[i] = caller->regs[i];
9033 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9036 int subprog, target_insn;
9038 target_insn = *insn_idx + insn->imm + 1;
9039 subprog = find_subprog(env, target_insn);
9041 verbose(env, "verifier bug. No program starts at insn %d\n",
9046 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9049 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9050 struct bpf_func_state *caller,
9051 struct bpf_func_state *callee,
9054 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9055 struct bpf_map *map;
9058 if (bpf_map_ptr_poisoned(insn_aux)) {
9059 verbose(env, "tail_call abusing map_ptr\n");
9063 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9064 if (!map->ops->map_set_for_each_callback_args ||
9065 !map->ops->map_for_each_callback) {
9066 verbose(env, "callback function not allowed for map\n");
9070 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9074 callee->in_callback_fn = true;
9075 callee->callback_ret_range = tnum_range(0, 1);
9079 static int set_loop_callback_state(struct bpf_verifier_env *env,
9080 struct bpf_func_state *caller,
9081 struct bpf_func_state *callee,
9084 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9086 * callback_fn(u32 index, void *callback_ctx);
9088 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9089 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9092 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9093 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9094 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9096 callee->in_callback_fn = true;
9097 callee->callback_ret_range = tnum_range(0, 1);
9101 static int set_timer_callback_state(struct bpf_verifier_env *env,
9102 struct bpf_func_state *caller,
9103 struct bpf_func_state *callee,
9106 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9108 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9109 * callback_fn(struct bpf_map *map, void *key, void *value);
9111 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9112 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9113 callee->regs[BPF_REG_1].map_ptr = map_ptr;
9115 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9116 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9117 callee->regs[BPF_REG_2].map_ptr = map_ptr;
9119 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9120 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9121 callee->regs[BPF_REG_3].map_ptr = map_ptr;
9124 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9125 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9126 callee->in_async_callback_fn = true;
9127 callee->callback_ret_range = tnum_range(0, 1);
9131 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9132 struct bpf_func_state *caller,
9133 struct bpf_func_state *callee,
9136 /* bpf_find_vma(struct task_struct *task, u64 addr,
9137 * void *callback_fn, void *callback_ctx, u64 flags)
9138 * (callback_fn)(struct task_struct *task,
9139 * struct vm_area_struct *vma, void *callback_ctx);
9141 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9143 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9144 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9145 callee->regs[BPF_REG_2].btf = btf_vmlinux;
9146 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9148 /* pointer to stack or null */
9149 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9152 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9153 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9154 callee->in_callback_fn = true;
9155 callee->callback_ret_range = tnum_range(0, 1);
9159 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9160 struct bpf_func_state *caller,
9161 struct bpf_func_state *callee,
9164 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9165 * callback_ctx, u64 flags);
9166 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9168 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9169 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9170 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9173 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9174 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9175 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9177 callee->in_callback_fn = true;
9178 callee->callback_ret_range = tnum_range(0, 1);
9182 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9183 struct bpf_func_state *caller,
9184 struct bpf_func_state *callee,
9187 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9188 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9190 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9191 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9192 * by this point, so look at 'root'
9194 struct btf_field *field;
9196 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9198 if (!field || !field->graph_root.value_btf_id)
9201 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9202 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9203 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9204 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9206 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9207 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9208 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9209 callee->in_callback_fn = true;
9210 callee->callback_ret_range = tnum_range(0, 1);
9214 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9216 /* Are we currently verifying the callback for a rbtree helper that must
9217 * be called with lock held? If so, no need to complain about unreleased
9220 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9222 struct bpf_verifier_state *state = env->cur_state;
9223 struct bpf_insn *insn = env->prog->insnsi;
9224 struct bpf_func_state *callee;
9227 if (!state->curframe)
9230 callee = state->frame[state->curframe];
9232 if (!callee->in_callback_fn)
9235 kfunc_btf_id = insn[callee->callsite].imm;
9236 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9239 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9241 struct bpf_verifier_state *state = env->cur_state;
9242 struct bpf_func_state *caller, *callee;
9243 struct bpf_reg_state *r0;
9246 callee = state->frame[state->curframe];
9247 r0 = &callee->regs[BPF_REG_0];
9248 if (r0->type == PTR_TO_STACK) {
9249 /* technically it's ok to return caller's stack pointer
9250 * (or caller's caller's pointer) back to the caller,
9251 * since these pointers are valid. Only current stack
9252 * pointer will be invalid as soon as function exits,
9253 * but let's be conservative
9255 verbose(env, "cannot return stack pointer to the caller\n");
9259 caller = state->frame[state->curframe - 1];
9260 if (callee->in_callback_fn) {
9261 /* enforce R0 return value range [0, 1]. */
9262 struct tnum range = callee->callback_ret_range;
9264 if (r0->type != SCALAR_VALUE) {
9265 verbose(env, "R0 not a scalar value\n");
9269 /* we are going to rely on register's precise value */
9270 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9271 err = err ?: mark_chain_precision(env, BPF_REG_0);
9275 if (!tnum_in(range, r0->var_off)) {
9276 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9280 /* return to the caller whatever r0 had in the callee */
9281 caller->regs[BPF_REG_0] = *r0;
9284 /* callback_fn frame should have released its own additions to parent's
9285 * reference state at this point, or check_reference_leak would
9286 * complain, hence it must be the same as the caller. There is no need
9289 if (!callee->in_callback_fn) {
9290 /* Transfer references to the caller */
9291 err = copy_reference_state(caller, callee);
9296 *insn_idx = callee->callsite + 1;
9297 if (env->log.level & BPF_LOG_LEVEL) {
9298 verbose(env, "returning from callee:\n");
9299 print_verifier_state(env, callee, true);
9300 verbose(env, "to caller at %d:\n", *insn_idx);
9301 print_verifier_state(env, caller, true);
9303 /* clear everything in the callee */
9304 free_func_state(callee);
9305 state->frame[state->curframe--] = NULL;
9309 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9311 struct bpf_call_arg_meta *meta)
9313 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
9315 if (ret_type != RET_INTEGER)
9319 case BPF_FUNC_get_stack:
9320 case BPF_FUNC_get_task_stack:
9321 case BPF_FUNC_probe_read_str:
9322 case BPF_FUNC_probe_read_kernel_str:
9323 case BPF_FUNC_probe_read_user_str:
9324 ret_reg->smax_value = meta->msize_max_value;
9325 ret_reg->s32_max_value = meta->msize_max_value;
9326 ret_reg->smin_value = -MAX_ERRNO;
9327 ret_reg->s32_min_value = -MAX_ERRNO;
9328 reg_bounds_sync(ret_reg);
9330 case BPF_FUNC_get_smp_processor_id:
9331 ret_reg->umax_value = nr_cpu_ids - 1;
9332 ret_reg->u32_max_value = nr_cpu_ids - 1;
9333 ret_reg->smax_value = nr_cpu_ids - 1;
9334 ret_reg->s32_max_value = nr_cpu_ids - 1;
9335 ret_reg->umin_value = 0;
9336 ret_reg->u32_min_value = 0;
9337 ret_reg->smin_value = 0;
9338 ret_reg->s32_min_value = 0;
9339 reg_bounds_sync(ret_reg);
9345 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9346 int func_id, int insn_idx)
9348 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9349 struct bpf_map *map = meta->map_ptr;
9351 if (func_id != BPF_FUNC_tail_call &&
9352 func_id != BPF_FUNC_map_lookup_elem &&
9353 func_id != BPF_FUNC_map_update_elem &&
9354 func_id != BPF_FUNC_map_delete_elem &&
9355 func_id != BPF_FUNC_map_push_elem &&
9356 func_id != BPF_FUNC_map_pop_elem &&
9357 func_id != BPF_FUNC_map_peek_elem &&
9358 func_id != BPF_FUNC_for_each_map_elem &&
9359 func_id != BPF_FUNC_redirect_map &&
9360 func_id != BPF_FUNC_map_lookup_percpu_elem)
9364 verbose(env, "kernel subsystem misconfigured verifier\n");
9368 /* In case of read-only, some additional restrictions
9369 * need to be applied in order to prevent altering the
9370 * state of the map from program side.
9372 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9373 (func_id == BPF_FUNC_map_delete_elem ||
9374 func_id == BPF_FUNC_map_update_elem ||
9375 func_id == BPF_FUNC_map_push_elem ||
9376 func_id == BPF_FUNC_map_pop_elem)) {
9377 verbose(env, "write into map forbidden\n");
9381 if (!BPF_MAP_PTR(aux->map_ptr_state))
9382 bpf_map_ptr_store(aux, meta->map_ptr,
9383 !meta->map_ptr->bypass_spec_v1);
9384 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9385 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9386 !meta->map_ptr->bypass_spec_v1);
9391 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9392 int func_id, int insn_idx)
9394 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9395 struct bpf_reg_state *regs = cur_regs(env), *reg;
9396 struct bpf_map *map = meta->map_ptr;
9400 if (func_id != BPF_FUNC_tail_call)
9402 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9403 verbose(env, "kernel subsystem misconfigured verifier\n");
9407 reg = ®s[BPF_REG_3];
9408 val = reg->var_off.value;
9409 max = map->max_entries;
9411 if (!(register_is_const(reg) && val < max)) {
9412 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9416 err = mark_chain_precision(env, BPF_REG_3);
9419 if (bpf_map_key_unseen(aux))
9420 bpf_map_key_store(aux, val);
9421 else if (!bpf_map_key_poisoned(aux) &&
9422 bpf_map_key_immediate(aux) != val)
9423 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9427 static int check_reference_leak(struct bpf_verifier_env *env)
9429 struct bpf_func_state *state = cur_func(env);
9430 bool refs_lingering = false;
9433 if (state->frameno && !state->in_callback_fn)
9436 for (i = 0; i < state->acquired_refs; i++) {
9437 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9439 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9440 state->refs[i].id, state->refs[i].insn_idx);
9441 refs_lingering = true;
9443 return refs_lingering ? -EINVAL : 0;
9446 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9447 struct bpf_reg_state *regs)
9449 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
9450 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
9451 struct bpf_map *fmt_map = fmt_reg->map_ptr;
9452 struct bpf_bprintf_data data = {};
9453 int err, fmt_map_off, num_args;
9457 /* data must be an array of u64 */
9458 if (data_len_reg->var_off.value % 8)
9460 num_args = data_len_reg->var_off.value / 8;
9462 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9463 * and map_direct_value_addr is set.
9465 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9466 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9469 verbose(env, "verifier bug\n");
9472 fmt = (char *)(long)fmt_addr + fmt_map_off;
9474 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9475 * can focus on validating the format specifiers.
9477 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9479 verbose(env, "Invalid format string\n");
9484 static int check_get_func_ip(struct bpf_verifier_env *env)
9486 enum bpf_prog_type type = resolve_prog_type(env->prog);
9487 int func_id = BPF_FUNC_get_func_ip;
9489 if (type == BPF_PROG_TYPE_TRACING) {
9490 if (!bpf_prog_has_trampoline(env->prog)) {
9491 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9492 func_id_name(func_id), func_id);
9496 } else if (type == BPF_PROG_TYPE_KPROBE) {
9500 verbose(env, "func %s#%d not supported for program type %d\n",
9501 func_id_name(func_id), func_id, type);
9505 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9507 return &env->insn_aux_data[env->insn_idx];
9510 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9512 struct bpf_reg_state *regs = cur_regs(env);
9513 struct bpf_reg_state *reg = ®s[BPF_REG_4];
9514 bool reg_is_null = register_is_null(reg);
9517 mark_chain_precision(env, BPF_REG_4);
9522 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9524 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9526 if (!state->initialized) {
9527 state->initialized = 1;
9528 state->fit_for_inline = loop_flag_is_zero(env);
9529 state->callback_subprogno = subprogno;
9533 if (!state->fit_for_inline)
9536 state->fit_for_inline = (loop_flag_is_zero(env) &&
9537 state->callback_subprogno == subprogno);
9540 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9543 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9544 const struct bpf_func_proto *fn = NULL;
9545 enum bpf_return_type ret_type;
9546 enum bpf_type_flag ret_flag;
9547 struct bpf_reg_state *regs;
9548 struct bpf_call_arg_meta meta;
9549 int insn_idx = *insn_idx_p;
9551 int i, err, func_id;
9553 /* find function prototype */
9554 func_id = insn->imm;
9555 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9556 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9561 if (env->ops->get_func_proto)
9562 fn = env->ops->get_func_proto(func_id, env->prog);
9564 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9569 /* eBPF programs must be GPL compatible to use GPL-ed functions */
9570 if (!env->prog->gpl_compatible && fn->gpl_only) {
9571 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9575 if (fn->allowed && !fn->allowed(env->prog)) {
9576 verbose(env, "helper call is not allowed in probe\n");
9580 if (!env->prog->aux->sleepable && fn->might_sleep) {
9581 verbose(env, "helper call might sleep in a non-sleepable prog\n");
9585 /* With LD_ABS/IND some JITs save/restore skb from r1. */
9586 changes_data = bpf_helper_changes_pkt_data(fn->func);
9587 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9588 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9589 func_id_name(func_id), func_id);
9593 memset(&meta, 0, sizeof(meta));
9594 meta.pkt_access = fn->pkt_access;
9596 err = check_func_proto(fn, func_id);
9598 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9599 func_id_name(func_id), func_id);
9603 if (env->cur_state->active_rcu_lock) {
9604 if (fn->might_sleep) {
9605 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9606 func_id_name(func_id), func_id);
9610 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9611 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9614 meta.func_id = func_id;
9616 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9617 err = check_func_arg(env, i, &meta, fn, insn_idx);
9622 err = record_func_map(env, &meta, func_id, insn_idx);
9626 err = record_func_key(env, &meta, func_id, insn_idx);
9630 /* Mark slots with STACK_MISC in case of raw mode, stack offset
9631 * is inferred from register state.
9633 for (i = 0; i < meta.access_size; i++) {
9634 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9635 BPF_WRITE, -1, false, false);
9640 regs = cur_regs(env);
9642 if (meta.release_regno) {
9644 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9645 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9646 * is safe to do directly.
9648 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9649 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9650 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9653 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
9654 } else if (meta.ref_obj_id) {
9655 err = release_reference(env, meta.ref_obj_id);
9656 } else if (register_is_null(®s[meta.release_regno])) {
9657 /* meta.ref_obj_id can only be 0 if register that is meant to be
9658 * released is NULL, which must be > R0.
9663 verbose(env, "func %s#%d reference has not been acquired before\n",
9664 func_id_name(func_id), func_id);
9670 case BPF_FUNC_tail_call:
9671 err = check_reference_leak(env);
9673 verbose(env, "tail_call would lead to reference leak\n");
9677 case BPF_FUNC_get_local_storage:
9678 /* check that flags argument in get_local_storage(map, flags) is 0,
9679 * this is required because get_local_storage() can't return an error.
9681 if (!register_is_null(®s[BPF_REG_2])) {
9682 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9686 case BPF_FUNC_for_each_map_elem:
9687 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9688 set_map_elem_callback_state);
9690 case BPF_FUNC_timer_set_callback:
9691 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9692 set_timer_callback_state);
9694 case BPF_FUNC_find_vma:
9695 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9696 set_find_vma_callback_state);
9698 case BPF_FUNC_snprintf:
9699 err = check_bpf_snprintf_call(env, regs);
9702 update_loop_inline_state(env, meta.subprogno);
9703 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9704 set_loop_callback_state);
9706 case BPF_FUNC_dynptr_from_mem:
9707 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9708 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9709 reg_type_str(env, regs[BPF_REG_1].type));
9713 case BPF_FUNC_set_retval:
9714 if (prog_type == BPF_PROG_TYPE_LSM &&
9715 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9716 if (!env->prog->aux->attach_func_proto->type) {
9717 /* Make sure programs that attach to void
9718 * hooks don't try to modify return value.
9720 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9725 case BPF_FUNC_dynptr_data:
9727 struct bpf_reg_state *reg;
9730 reg = get_dynptr_arg_reg(env, fn, regs);
9735 if (meta.dynptr_id) {
9736 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9739 if (meta.ref_obj_id) {
9740 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9744 id = dynptr_id(env, reg);
9746 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9750 ref_obj_id = dynptr_ref_obj_id(env, reg);
9751 if (ref_obj_id < 0) {
9752 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9756 meta.dynptr_id = id;
9757 meta.ref_obj_id = ref_obj_id;
9761 case BPF_FUNC_dynptr_write:
9763 enum bpf_dynptr_type dynptr_type;
9764 struct bpf_reg_state *reg;
9766 reg = get_dynptr_arg_reg(env, fn, regs);
9770 dynptr_type = dynptr_get_type(env, reg);
9771 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9774 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9775 /* this will trigger clear_all_pkt_pointers(), which will
9776 * invalidate all dynptr slices associated with the skb
9778 changes_data = true;
9782 case BPF_FUNC_user_ringbuf_drain:
9783 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9784 set_user_ringbuf_callback_state);
9791 /* reset caller saved regs */
9792 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9793 mark_reg_not_init(env, regs, caller_saved[i]);
9794 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9797 /* helper call returns 64-bit value. */
9798 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9800 /* update return register (already marked as written above) */
9801 ret_type = fn->ret_type;
9802 ret_flag = type_flag(ret_type);
9804 switch (base_type(ret_type)) {
9806 /* sets type to SCALAR_VALUE */
9807 mark_reg_unknown(env, regs, BPF_REG_0);
9810 regs[BPF_REG_0].type = NOT_INIT;
9812 case RET_PTR_TO_MAP_VALUE:
9813 /* There is no offset yet applied, variable or fixed */
9814 mark_reg_known_zero(env, regs, BPF_REG_0);
9815 /* remember map_ptr, so that check_map_access()
9816 * can check 'value_size' boundary of memory access
9817 * to map element returned from bpf_map_lookup_elem()
9819 if (meta.map_ptr == NULL) {
9821 "kernel subsystem misconfigured verifier\n");
9824 regs[BPF_REG_0].map_ptr = meta.map_ptr;
9825 regs[BPF_REG_0].map_uid = meta.map_uid;
9826 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9827 if (!type_may_be_null(ret_type) &&
9828 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9829 regs[BPF_REG_0].id = ++env->id_gen;
9832 case RET_PTR_TO_SOCKET:
9833 mark_reg_known_zero(env, regs, BPF_REG_0);
9834 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9836 case RET_PTR_TO_SOCK_COMMON:
9837 mark_reg_known_zero(env, regs, BPF_REG_0);
9838 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
9840 case RET_PTR_TO_TCP_SOCK:
9841 mark_reg_known_zero(env, regs, BPF_REG_0);
9842 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
9844 case RET_PTR_TO_MEM:
9845 mark_reg_known_zero(env, regs, BPF_REG_0);
9846 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9847 regs[BPF_REG_0].mem_size = meta.mem_size;
9849 case RET_PTR_TO_MEM_OR_BTF_ID:
9851 const struct btf_type *t;
9853 mark_reg_known_zero(env, regs, BPF_REG_0);
9854 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
9855 if (!btf_type_is_struct(t)) {
9857 const struct btf_type *ret;
9860 /* resolve the type size of ksym. */
9861 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
9863 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
9864 verbose(env, "unable to resolve the size of type '%s': %ld\n",
9865 tname, PTR_ERR(ret));
9868 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9869 regs[BPF_REG_0].mem_size = tsize;
9871 /* MEM_RDONLY may be carried from ret_flag, but it
9872 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9873 * it will confuse the check of PTR_TO_BTF_ID in
9874 * check_mem_access().
9876 ret_flag &= ~MEM_RDONLY;
9878 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9879 regs[BPF_REG_0].btf = meta.ret_btf;
9880 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9884 case RET_PTR_TO_BTF_ID:
9886 struct btf *ret_btf;
9889 mark_reg_known_zero(env, regs, BPF_REG_0);
9890 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9891 if (func_id == BPF_FUNC_kptr_xchg) {
9892 ret_btf = meta.kptr_field->kptr.btf;
9893 ret_btf_id = meta.kptr_field->kptr.btf_id;
9894 if (!btf_is_kernel(ret_btf))
9895 regs[BPF_REG_0].type |= MEM_ALLOC;
9897 if (fn->ret_btf_id == BPF_PTR_POISON) {
9898 verbose(env, "verifier internal error:");
9899 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9900 func_id_name(func_id));
9903 ret_btf = btf_vmlinux;
9904 ret_btf_id = *fn->ret_btf_id;
9906 if (ret_btf_id == 0) {
9907 verbose(env, "invalid return type %u of func %s#%d\n",
9908 base_type(ret_type), func_id_name(func_id),
9912 regs[BPF_REG_0].btf = ret_btf;
9913 regs[BPF_REG_0].btf_id = ret_btf_id;
9917 verbose(env, "unknown return type %u of func %s#%d\n",
9918 base_type(ret_type), func_id_name(func_id), func_id);
9922 if (type_may_be_null(regs[BPF_REG_0].type))
9923 regs[BPF_REG_0].id = ++env->id_gen;
9925 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9926 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9927 func_id_name(func_id), func_id);
9931 if (is_dynptr_ref_function(func_id))
9932 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9934 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
9935 /* For release_reference() */
9936 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9937 } else if (is_acquire_function(func_id, meta.map_ptr)) {
9938 int id = acquire_reference_state(env, insn_idx);
9942 /* For mark_ptr_or_null_reg() */
9943 regs[BPF_REG_0].id = id;
9944 /* For release_reference() */
9945 regs[BPF_REG_0].ref_obj_id = id;
9948 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9950 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
9954 if ((func_id == BPF_FUNC_get_stack ||
9955 func_id == BPF_FUNC_get_task_stack) &&
9956 !env->prog->has_callchain_buf) {
9957 const char *err_str;
9959 #ifdef CONFIG_PERF_EVENTS
9960 err = get_callchain_buffers(sysctl_perf_event_max_stack);
9961 err_str = "cannot get callchain buffer for func %s#%d\n";
9964 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9967 verbose(env, err_str, func_id_name(func_id), func_id);
9971 env->prog->has_callchain_buf = true;
9974 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9975 env->prog->call_get_stack = true;
9977 if (func_id == BPF_FUNC_get_func_ip) {
9978 if (check_get_func_ip(env))
9980 env->prog->call_get_func_ip = true;
9984 clear_all_pkt_pointers(env);
9988 /* mark_btf_func_reg_size() is used when the reg size is determined by
9989 * the BTF func_proto's return value size and argument.
9991 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9994 struct bpf_reg_state *reg = &cur_regs(env)[regno];
9996 if (regno == BPF_REG_0) {
9997 /* Function return value */
9998 reg->live |= REG_LIVE_WRITTEN;
9999 reg->subreg_def = reg_size == sizeof(u64) ?
10000 DEF_NOT_SUBREG : env->insn_idx + 1;
10002 /* Function argument */
10003 if (reg_size == sizeof(u64)) {
10004 mark_insn_zext(env, reg);
10005 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10007 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10012 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10014 return meta->kfunc_flags & KF_ACQUIRE;
10017 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10019 return meta->kfunc_flags & KF_RELEASE;
10022 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10024 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10027 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10029 return meta->kfunc_flags & KF_SLEEPABLE;
10032 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10034 return meta->kfunc_flags & KF_DESTRUCTIVE;
10037 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10039 return meta->kfunc_flags & KF_RCU;
10042 static bool __kfunc_param_match_suffix(const struct btf *btf,
10043 const struct btf_param *arg,
10044 const char *suffix)
10046 int suffix_len = strlen(suffix), len;
10047 const char *param_name;
10049 /* In the future, this can be ported to use BTF tagging */
10050 param_name = btf_name_by_offset(btf, arg->name_off);
10051 if (str_is_empty(param_name))
10053 len = strlen(param_name);
10054 if (len < suffix_len)
10056 param_name += len - suffix_len;
10057 return !strncmp(param_name, suffix, suffix_len);
10060 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10061 const struct btf_param *arg,
10062 const struct bpf_reg_state *reg)
10064 const struct btf_type *t;
10066 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10067 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10070 return __kfunc_param_match_suffix(btf, arg, "__sz");
10073 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10074 const struct btf_param *arg,
10075 const struct bpf_reg_state *reg)
10077 const struct btf_type *t;
10079 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10080 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10083 return __kfunc_param_match_suffix(btf, arg, "__szk");
10086 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10088 return __kfunc_param_match_suffix(btf, arg, "__opt");
10091 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10093 return __kfunc_param_match_suffix(btf, arg, "__k");
10096 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10098 return __kfunc_param_match_suffix(btf, arg, "__ign");
10101 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10103 return __kfunc_param_match_suffix(btf, arg, "__alloc");
10106 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10108 return __kfunc_param_match_suffix(btf, arg, "__uninit");
10111 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10113 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10116 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10117 const struct btf_param *arg,
10120 int len, target_len = strlen(name);
10121 const char *param_name;
10123 param_name = btf_name_by_offset(btf, arg->name_off);
10124 if (str_is_empty(param_name))
10126 len = strlen(param_name);
10127 if (len != target_len)
10129 if (strcmp(param_name, name))
10137 KF_ARG_LIST_HEAD_ID,
10138 KF_ARG_LIST_NODE_ID,
10143 BTF_ID_LIST(kf_arg_btf_ids)
10144 BTF_ID(struct, bpf_dynptr_kern)
10145 BTF_ID(struct, bpf_list_head)
10146 BTF_ID(struct, bpf_list_node)
10147 BTF_ID(struct, bpf_rb_root)
10148 BTF_ID(struct, bpf_rb_node)
10150 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10151 const struct btf_param *arg, int type)
10153 const struct btf_type *t;
10156 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10159 if (!btf_type_is_ptr(t))
10161 t = btf_type_skip_modifiers(btf, t->type, &res_id);
10164 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10167 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10169 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10172 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10174 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10177 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10179 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10182 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10184 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10187 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10189 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10192 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10193 const struct btf_param *arg)
10195 const struct btf_type *t;
10197 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10204 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10205 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10206 const struct btf *btf,
10207 const struct btf_type *t, int rec)
10209 const struct btf_type *member_type;
10210 const struct btf_member *member;
10213 if (!btf_type_is_struct(t))
10216 for_each_member(i, t, member) {
10217 const struct btf_array *array;
10219 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10220 if (btf_type_is_struct(member_type)) {
10222 verbose(env, "max struct nesting depth exceeded\n");
10225 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10229 if (btf_type_is_array(member_type)) {
10230 array = btf_array(member_type);
10231 if (!array->nelems)
10233 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10234 if (!btf_type_is_scalar(member_type))
10238 if (!btf_type_is_scalar(member_type))
10244 enum kfunc_ptr_arg_type {
10246 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
10247 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10248 KF_ARG_PTR_TO_DYNPTR,
10249 KF_ARG_PTR_TO_ITER,
10250 KF_ARG_PTR_TO_LIST_HEAD,
10251 KF_ARG_PTR_TO_LIST_NODE,
10252 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
10254 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
10255 KF_ARG_PTR_TO_CALLBACK,
10256 KF_ARG_PTR_TO_RB_ROOT,
10257 KF_ARG_PTR_TO_RB_NODE,
10260 enum special_kfunc_type {
10261 KF_bpf_obj_new_impl,
10262 KF_bpf_obj_drop_impl,
10263 KF_bpf_refcount_acquire_impl,
10264 KF_bpf_list_push_front_impl,
10265 KF_bpf_list_push_back_impl,
10266 KF_bpf_list_pop_front,
10267 KF_bpf_list_pop_back,
10268 KF_bpf_cast_to_kern_ctx,
10269 KF_bpf_rdonly_cast,
10270 KF_bpf_rcu_read_lock,
10271 KF_bpf_rcu_read_unlock,
10272 KF_bpf_rbtree_remove,
10273 KF_bpf_rbtree_add_impl,
10274 KF_bpf_rbtree_first,
10275 KF_bpf_dynptr_from_skb,
10276 KF_bpf_dynptr_from_xdp,
10277 KF_bpf_dynptr_slice,
10278 KF_bpf_dynptr_slice_rdwr,
10279 KF_bpf_dynptr_clone,
10282 BTF_SET_START(special_kfunc_set)
10283 BTF_ID(func, bpf_obj_new_impl)
10284 BTF_ID(func, bpf_obj_drop_impl)
10285 BTF_ID(func, bpf_refcount_acquire_impl)
10286 BTF_ID(func, bpf_list_push_front_impl)
10287 BTF_ID(func, bpf_list_push_back_impl)
10288 BTF_ID(func, bpf_list_pop_front)
10289 BTF_ID(func, bpf_list_pop_back)
10290 BTF_ID(func, bpf_cast_to_kern_ctx)
10291 BTF_ID(func, bpf_rdonly_cast)
10292 BTF_ID(func, bpf_rbtree_remove)
10293 BTF_ID(func, bpf_rbtree_add_impl)
10294 BTF_ID(func, bpf_rbtree_first)
10295 BTF_ID(func, bpf_dynptr_from_skb)
10296 BTF_ID(func, bpf_dynptr_from_xdp)
10297 BTF_ID(func, bpf_dynptr_slice)
10298 BTF_ID(func, bpf_dynptr_slice_rdwr)
10299 BTF_ID(func, bpf_dynptr_clone)
10300 BTF_SET_END(special_kfunc_set)
10302 BTF_ID_LIST(special_kfunc_list)
10303 BTF_ID(func, bpf_obj_new_impl)
10304 BTF_ID(func, bpf_obj_drop_impl)
10305 BTF_ID(func, bpf_refcount_acquire_impl)
10306 BTF_ID(func, bpf_list_push_front_impl)
10307 BTF_ID(func, bpf_list_push_back_impl)
10308 BTF_ID(func, bpf_list_pop_front)
10309 BTF_ID(func, bpf_list_pop_back)
10310 BTF_ID(func, bpf_cast_to_kern_ctx)
10311 BTF_ID(func, bpf_rdonly_cast)
10312 BTF_ID(func, bpf_rcu_read_lock)
10313 BTF_ID(func, bpf_rcu_read_unlock)
10314 BTF_ID(func, bpf_rbtree_remove)
10315 BTF_ID(func, bpf_rbtree_add_impl)
10316 BTF_ID(func, bpf_rbtree_first)
10317 BTF_ID(func, bpf_dynptr_from_skb)
10318 BTF_ID(func, bpf_dynptr_from_xdp)
10319 BTF_ID(func, bpf_dynptr_slice)
10320 BTF_ID(func, bpf_dynptr_slice_rdwr)
10321 BTF_ID(func, bpf_dynptr_clone)
10323 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10325 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10326 meta->arg_owning_ref) {
10330 return meta->kfunc_flags & KF_RET_NULL;
10333 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10335 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10338 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10340 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10343 static enum kfunc_ptr_arg_type
10344 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10345 struct bpf_kfunc_call_arg_meta *meta,
10346 const struct btf_type *t, const struct btf_type *ref_t,
10347 const char *ref_tname, const struct btf_param *args,
10348 int argno, int nargs)
10350 u32 regno = argno + 1;
10351 struct bpf_reg_state *regs = cur_regs(env);
10352 struct bpf_reg_state *reg = ®s[regno];
10353 bool arg_mem_size = false;
10355 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10356 return KF_ARG_PTR_TO_CTX;
10358 /* In this function, we verify the kfunc's BTF as per the argument type,
10359 * leaving the rest of the verification with respect to the register
10360 * type to our caller. When a set of conditions hold in the BTF type of
10361 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10363 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10364 return KF_ARG_PTR_TO_CTX;
10366 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10367 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10369 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10370 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10372 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10373 return KF_ARG_PTR_TO_DYNPTR;
10375 if (is_kfunc_arg_iter(meta, argno))
10376 return KF_ARG_PTR_TO_ITER;
10378 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10379 return KF_ARG_PTR_TO_LIST_HEAD;
10381 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10382 return KF_ARG_PTR_TO_LIST_NODE;
10384 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10385 return KF_ARG_PTR_TO_RB_ROOT;
10387 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10388 return KF_ARG_PTR_TO_RB_NODE;
10390 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10391 if (!btf_type_is_struct(ref_t)) {
10392 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10393 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10396 return KF_ARG_PTR_TO_BTF_ID;
10399 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10400 return KF_ARG_PTR_TO_CALLBACK;
10403 if (argno + 1 < nargs &&
10404 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) ||
10405 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])))
10406 arg_mem_size = true;
10408 /* This is the catch all argument type of register types supported by
10409 * check_helper_mem_access. However, we only allow when argument type is
10410 * pointer to scalar, or struct composed (recursively) of scalars. When
10411 * arg_mem_size is true, the pointer can be void *.
10413 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10414 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10415 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10416 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10419 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10422 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10423 struct bpf_reg_state *reg,
10424 const struct btf_type *ref_t,
10425 const char *ref_tname, u32 ref_id,
10426 struct bpf_kfunc_call_arg_meta *meta,
10429 const struct btf_type *reg_ref_t;
10430 bool strict_type_match = false;
10431 const struct btf *reg_btf;
10432 const char *reg_ref_tname;
10435 if (base_type(reg->type) == PTR_TO_BTF_ID) {
10436 reg_btf = reg->btf;
10437 reg_ref_id = reg->btf_id;
10439 reg_btf = btf_vmlinux;
10440 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10443 /* Enforce strict type matching for calls to kfuncs that are acquiring
10444 * or releasing a reference, or are no-cast aliases. We do _not_
10445 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10446 * as we want to enable BPF programs to pass types that are bitwise
10447 * equivalent without forcing them to explicitly cast with something
10448 * like bpf_cast_to_kern_ctx().
10450 * For example, say we had a type like the following:
10452 * struct bpf_cpumask {
10453 * cpumask_t cpumask;
10454 * refcount_t usage;
10457 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10458 * to a struct cpumask, so it would be safe to pass a struct
10459 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10461 * The philosophy here is similar to how we allow scalars of different
10462 * types to be passed to kfuncs as long as the size is the same. The
10463 * only difference here is that we're simply allowing
10464 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10467 if (is_kfunc_acquire(meta) ||
10468 (is_kfunc_release(meta) && reg->ref_obj_id) ||
10469 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10470 strict_type_match = true;
10472 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10474 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id);
10475 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10476 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10477 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10478 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10479 btf_type_str(reg_ref_t), reg_ref_tname);
10485 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10487 struct bpf_verifier_state *state = env->cur_state;
10488 struct btf_record *rec = reg_btf_record(reg);
10490 if (!state->active_lock.ptr) {
10491 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10495 if (type_flag(reg->type) & NON_OWN_REF) {
10496 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10500 reg->type |= NON_OWN_REF;
10501 if (rec->refcount_off >= 0)
10502 reg->type |= MEM_RCU;
10507 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10509 struct bpf_func_state *state, *unused;
10510 struct bpf_reg_state *reg;
10513 state = cur_func(env);
10516 verbose(env, "verifier internal error: ref_obj_id is zero for "
10517 "owning -> non-owning conversion\n");
10521 for (i = 0; i < state->acquired_refs; i++) {
10522 if (state->refs[i].id != ref_obj_id)
10525 /* Clear ref_obj_id here so release_reference doesn't clobber
10528 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10529 if (reg->ref_obj_id == ref_obj_id) {
10530 reg->ref_obj_id = 0;
10531 ref_set_non_owning(env, reg);
10537 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10541 /* Implementation details:
10543 * Each register points to some region of memory, which we define as an
10544 * allocation. Each allocation may embed a bpf_spin_lock which protects any
10545 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10546 * allocation. The lock and the data it protects are colocated in the same
10549 * Hence, everytime a register holds a pointer value pointing to such
10550 * allocation, the verifier preserves a unique reg->id for it.
10552 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10553 * bpf_spin_lock is called.
10555 * To enable this, lock state in the verifier captures two values:
10556 * active_lock.ptr = Register's type specific pointer
10557 * active_lock.id = A unique ID for each register pointer value
10559 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10560 * supported register types.
10562 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10563 * allocated objects is the reg->btf pointer.
10565 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10566 * can establish the provenance of the map value statically for each distinct
10567 * lookup into such maps. They always contain a single map value hence unique
10568 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10570 * So, in case of global variables, they use array maps with max_entries = 1,
10571 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10572 * into the same map value as max_entries is 1, as described above).
10574 * In case of inner map lookups, the inner map pointer has same map_ptr as the
10575 * outer map pointer (in verifier context), but each lookup into an inner map
10576 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10577 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10578 * will get different reg->id assigned to each lookup, hence different
10581 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10582 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10583 * returned from bpf_obj_new. Each allocation receives a new reg->id.
10585 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10590 switch ((int)reg->type) {
10591 case PTR_TO_MAP_VALUE:
10592 ptr = reg->map_ptr;
10594 case PTR_TO_BTF_ID | MEM_ALLOC:
10598 verbose(env, "verifier internal error: unknown reg type for lock check\n");
10603 if (!env->cur_state->active_lock.ptr)
10605 if (env->cur_state->active_lock.ptr != ptr ||
10606 env->cur_state->active_lock.id != id) {
10607 verbose(env, "held lock and object are not in the same allocation\n");
10613 static bool is_bpf_list_api_kfunc(u32 btf_id)
10615 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10616 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10617 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10618 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10621 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10623 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
10624 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10625 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10628 static bool is_bpf_graph_api_kfunc(u32 btf_id)
10630 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10631 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
10634 static bool is_callback_calling_kfunc(u32 btf_id)
10636 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
10639 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10641 return is_bpf_rbtree_api_kfunc(btf_id);
10644 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10645 enum btf_field_type head_field_type,
10650 switch (head_field_type) {
10651 case BPF_LIST_HEAD:
10652 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10655 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10658 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10659 btf_field_type_name(head_field_type));
10664 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10665 btf_field_type_name(head_field_type));
10669 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10670 enum btf_field_type node_field_type,
10675 switch (node_field_type) {
10676 case BPF_LIST_NODE:
10677 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10678 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
10681 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10682 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
10685 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10686 btf_field_type_name(node_field_type));
10691 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10692 btf_field_type_name(node_field_type));
10697 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10698 struct bpf_reg_state *reg, u32 regno,
10699 struct bpf_kfunc_call_arg_meta *meta,
10700 enum btf_field_type head_field_type,
10701 struct btf_field **head_field)
10703 const char *head_type_name;
10704 struct btf_field *field;
10705 struct btf_record *rec;
10708 if (meta->btf != btf_vmlinux) {
10709 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10713 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10716 head_type_name = btf_field_type_name(head_field_type);
10717 if (!tnum_is_const(reg->var_off)) {
10719 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10720 regno, head_type_name);
10724 rec = reg_btf_record(reg);
10725 head_off = reg->off + reg->var_off.value;
10726 field = btf_record_find(rec, head_off, head_field_type);
10728 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10732 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10733 if (check_reg_allocation_locked(env, reg)) {
10734 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10735 rec->spin_lock_off, head_type_name);
10740 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10743 *head_field = field;
10747 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10748 struct bpf_reg_state *reg, u32 regno,
10749 struct bpf_kfunc_call_arg_meta *meta)
10751 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10752 &meta->arg_list_head.field);
10755 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10756 struct bpf_reg_state *reg, u32 regno,
10757 struct bpf_kfunc_call_arg_meta *meta)
10759 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10760 &meta->arg_rbtree_root.field);
10764 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10765 struct bpf_reg_state *reg, u32 regno,
10766 struct bpf_kfunc_call_arg_meta *meta,
10767 enum btf_field_type head_field_type,
10768 enum btf_field_type node_field_type,
10769 struct btf_field **node_field)
10771 const char *node_type_name;
10772 const struct btf_type *et, *t;
10773 struct btf_field *field;
10776 if (meta->btf != btf_vmlinux) {
10777 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10781 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10784 node_type_name = btf_field_type_name(node_field_type);
10785 if (!tnum_is_const(reg->var_off)) {
10787 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
10788 regno, node_type_name);
10792 node_off = reg->off + reg->var_off.value;
10793 field = reg_find_field_offset(reg, node_off, node_field_type);
10794 if (!field || field->offset != node_off) {
10795 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10799 field = *node_field;
10801 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10802 t = btf_type_by_id(reg->btf, reg->btf_id);
10803 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10804 field->graph_root.value_btf_id, true)) {
10805 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10806 "in struct %s, but arg is at offset=%d in struct %s\n",
10807 btf_field_type_name(head_field_type),
10808 btf_field_type_name(node_field_type),
10809 field->graph_root.node_offset,
10810 btf_name_by_offset(field->graph_root.btf, et->name_off),
10811 node_off, btf_name_by_offset(reg->btf, t->name_off));
10814 meta->arg_btf = reg->btf;
10815 meta->arg_btf_id = reg->btf_id;
10817 if (node_off != field->graph_root.node_offset) {
10818 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10819 node_off, btf_field_type_name(node_field_type),
10820 field->graph_root.node_offset,
10821 btf_name_by_offset(field->graph_root.btf, et->name_off));
10828 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10829 struct bpf_reg_state *reg, u32 regno,
10830 struct bpf_kfunc_call_arg_meta *meta)
10832 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10833 BPF_LIST_HEAD, BPF_LIST_NODE,
10834 &meta->arg_list_head.field);
10837 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10838 struct bpf_reg_state *reg, u32 regno,
10839 struct bpf_kfunc_call_arg_meta *meta)
10841 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10842 BPF_RB_ROOT, BPF_RB_NODE,
10843 &meta->arg_rbtree_root.field);
10846 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10849 const char *func_name = meta->func_name, *ref_tname;
10850 const struct btf *btf = meta->btf;
10851 const struct btf_param *args;
10852 struct btf_record *rec;
10856 args = (const struct btf_param *)(meta->func_proto + 1);
10857 nargs = btf_type_vlen(meta->func_proto);
10858 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10859 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10860 MAX_BPF_FUNC_REG_ARGS);
10864 /* Check that BTF function arguments match actual types that the
10867 for (i = 0; i < nargs; i++) {
10868 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1];
10869 const struct btf_type *t, *ref_t, *resolve_ret;
10870 enum bpf_arg_type arg_type = ARG_DONTCARE;
10871 u32 regno = i + 1, ref_id, type_size;
10872 bool is_ret_buf_sz = false;
10875 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
10877 if (is_kfunc_arg_ignore(btf, &args[i]))
10880 if (btf_type_is_scalar(t)) {
10881 if (reg->type != SCALAR_VALUE) {
10882 verbose(env, "R%d is not a scalar\n", regno);
10886 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10887 if (meta->arg_constant.found) {
10888 verbose(env, "verifier internal error: only one constant argument permitted\n");
10891 if (!tnum_is_const(reg->var_off)) {
10892 verbose(env, "R%d must be a known constant\n", regno);
10895 ret = mark_chain_precision(env, regno);
10898 meta->arg_constant.found = true;
10899 meta->arg_constant.value = reg->var_off.value;
10900 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
10901 meta->r0_rdonly = true;
10902 is_ret_buf_sz = true;
10903 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10904 is_ret_buf_sz = true;
10907 if (is_ret_buf_sz) {
10908 if (meta->r0_size) {
10909 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10913 if (!tnum_is_const(reg->var_off)) {
10914 verbose(env, "R%d is not a const\n", regno);
10918 meta->r0_size = reg->var_off.value;
10919 ret = mark_chain_precision(env, regno);
10926 if (!btf_type_is_ptr(t)) {
10927 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10931 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
10932 (register_is_null(reg) || type_may_be_null(reg->type))) {
10933 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10937 if (reg->ref_obj_id) {
10938 if (is_kfunc_release(meta) && meta->ref_obj_id) {
10939 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10940 regno, reg->ref_obj_id,
10944 meta->ref_obj_id = reg->ref_obj_id;
10945 if (is_kfunc_release(meta))
10946 meta->release_regno = regno;
10949 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10950 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10952 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10953 if (kf_arg_type < 0)
10954 return kf_arg_type;
10956 switch (kf_arg_type) {
10957 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10958 case KF_ARG_PTR_TO_BTF_ID:
10959 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
10962 if (!is_trusted_reg(reg)) {
10963 if (!is_kfunc_rcu(meta)) {
10964 verbose(env, "R%d must be referenced or trusted\n", regno);
10967 if (!is_rcu_reg(reg)) {
10968 verbose(env, "R%d must be a rcu pointer\n", regno);
10974 case KF_ARG_PTR_TO_CTX:
10975 /* Trusted arguments have the same offset checks as release arguments */
10976 arg_type |= OBJ_RELEASE;
10978 case KF_ARG_PTR_TO_DYNPTR:
10979 case KF_ARG_PTR_TO_ITER:
10980 case KF_ARG_PTR_TO_LIST_HEAD:
10981 case KF_ARG_PTR_TO_LIST_NODE:
10982 case KF_ARG_PTR_TO_RB_ROOT:
10983 case KF_ARG_PTR_TO_RB_NODE:
10984 case KF_ARG_PTR_TO_MEM:
10985 case KF_ARG_PTR_TO_MEM_SIZE:
10986 case KF_ARG_PTR_TO_CALLBACK:
10987 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
10988 /* Trusted by default */
10995 if (is_kfunc_release(meta) && reg->ref_obj_id)
10996 arg_type |= OBJ_RELEASE;
10997 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11001 switch (kf_arg_type) {
11002 case KF_ARG_PTR_TO_CTX:
11003 if (reg->type != PTR_TO_CTX) {
11004 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11008 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11009 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11012 meta->ret_btf_id = ret;
11015 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11016 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11017 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11020 if (!reg->ref_obj_id) {
11021 verbose(env, "allocated object must be referenced\n");
11024 if (meta->btf == btf_vmlinux &&
11025 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11026 meta->arg_btf = reg->btf;
11027 meta->arg_btf_id = reg->btf_id;
11030 case KF_ARG_PTR_TO_DYNPTR:
11032 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11033 int clone_ref_obj_id = 0;
11035 if (reg->type != PTR_TO_STACK &&
11036 reg->type != CONST_PTR_TO_DYNPTR) {
11037 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11041 if (reg->type == CONST_PTR_TO_DYNPTR)
11042 dynptr_arg_type |= MEM_RDONLY;
11044 if (is_kfunc_arg_uninit(btf, &args[i]))
11045 dynptr_arg_type |= MEM_UNINIT;
11047 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11048 dynptr_arg_type |= DYNPTR_TYPE_SKB;
11049 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11050 dynptr_arg_type |= DYNPTR_TYPE_XDP;
11051 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11052 (dynptr_arg_type & MEM_UNINIT)) {
11053 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11055 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11056 verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11060 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11061 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11062 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11063 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11068 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11072 if (!(dynptr_arg_type & MEM_UNINIT)) {
11073 int id = dynptr_id(env, reg);
11076 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11079 meta->initialized_dynptr.id = id;
11080 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11081 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11086 case KF_ARG_PTR_TO_ITER:
11087 ret = process_iter_arg(env, regno, insn_idx, meta);
11091 case KF_ARG_PTR_TO_LIST_HEAD:
11092 if (reg->type != PTR_TO_MAP_VALUE &&
11093 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11094 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11097 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11098 verbose(env, "allocated object must be referenced\n");
11101 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11105 case KF_ARG_PTR_TO_RB_ROOT:
11106 if (reg->type != PTR_TO_MAP_VALUE &&
11107 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11108 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11111 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11112 verbose(env, "allocated object must be referenced\n");
11115 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11119 case KF_ARG_PTR_TO_LIST_NODE:
11120 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11121 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11124 if (!reg->ref_obj_id) {
11125 verbose(env, "allocated object must be referenced\n");
11128 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11132 case KF_ARG_PTR_TO_RB_NODE:
11133 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11134 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11135 verbose(env, "rbtree_remove node input must be non-owning ref\n");
11138 if (in_rbtree_lock_required_cb(env)) {
11139 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11143 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11144 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11147 if (!reg->ref_obj_id) {
11148 verbose(env, "allocated object must be referenced\n");
11153 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11157 case KF_ARG_PTR_TO_BTF_ID:
11158 /* Only base_type is checked, further checks are done here */
11159 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11160 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11161 !reg2btf_ids[base_type(reg->type)]) {
11162 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11163 verbose(env, "expected %s or socket\n",
11164 reg_type_str(env, base_type(reg->type) |
11165 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11168 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11172 case KF_ARG_PTR_TO_MEM:
11173 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11174 if (IS_ERR(resolve_ret)) {
11175 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11176 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11179 ret = check_mem_reg(env, reg, regno, type_size);
11183 case KF_ARG_PTR_TO_MEM_SIZE:
11185 struct bpf_reg_state *buff_reg = ®s[regno];
11186 const struct btf_param *buff_arg = &args[i];
11187 struct bpf_reg_state *size_reg = ®s[regno + 1];
11188 const struct btf_param *size_arg = &args[i + 1];
11190 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11191 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11193 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11198 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11199 if (meta->arg_constant.found) {
11200 verbose(env, "verifier internal error: only one constant argument permitted\n");
11203 if (!tnum_is_const(size_reg->var_off)) {
11204 verbose(env, "R%d must be a known constant\n", regno + 1);
11207 meta->arg_constant.found = true;
11208 meta->arg_constant.value = size_reg->var_off.value;
11211 /* Skip next '__sz' or '__szk' argument */
11215 case KF_ARG_PTR_TO_CALLBACK:
11216 if (reg->type != PTR_TO_FUNC) {
11217 verbose(env, "arg%d expected pointer to func\n", i);
11220 meta->subprogno = reg->subprogno;
11222 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11223 if (!type_is_ptr_alloc_obj(reg->type)) {
11224 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11227 if (!type_is_non_owning_ref(reg->type))
11228 meta->arg_owning_ref = true;
11230 rec = reg_btf_record(reg);
11232 verbose(env, "verifier internal error: Couldn't find btf_record\n");
11236 if (rec->refcount_off < 0) {
11237 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11241 meta->arg_btf = reg->btf;
11242 meta->arg_btf_id = reg->btf_id;
11247 if (is_kfunc_release(meta) && !meta->release_regno) {
11248 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11256 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11257 struct bpf_insn *insn,
11258 struct bpf_kfunc_call_arg_meta *meta,
11259 const char **kfunc_name)
11261 const struct btf_type *func, *func_proto;
11262 u32 func_id, *kfunc_flags;
11263 const char *func_name;
11264 struct btf *desc_btf;
11267 *kfunc_name = NULL;
11272 desc_btf = find_kfunc_desc_btf(env, insn->off);
11273 if (IS_ERR(desc_btf))
11274 return PTR_ERR(desc_btf);
11276 func_id = insn->imm;
11277 func = btf_type_by_id(desc_btf, func_id);
11278 func_name = btf_name_by_offset(desc_btf, func->name_off);
11280 *kfunc_name = func_name;
11281 func_proto = btf_type_by_id(desc_btf, func->type);
11283 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11284 if (!kfunc_flags) {
11288 memset(meta, 0, sizeof(*meta));
11289 meta->btf = desc_btf;
11290 meta->func_id = func_id;
11291 meta->kfunc_flags = *kfunc_flags;
11292 meta->func_proto = func_proto;
11293 meta->func_name = func_name;
11298 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11301 const struct btf_type *t, *ptr_type;
11302 u32 i, nargs, ptr_type_id, release_ref_obj_id;
11303 struct bpf_reg_state *regs = cur_regs(env);
11304 const char *func_name, *ptr_type_name;
11305 bool sleepable, rcu_lock, rcu_unlock;
11306 struct bpf_kfunc_call_arg_meta meta;
11307 struct bpf_insn_aux_data *insn_aux;
11308 int err, insn_idx = *insn_idx_p;
11309 const struct btf_param *args;
11310 const struct btf_type *ret_t;
11311 struct btf *desc_btf;
11313 /* skip for now, but return error when we find this in fixup_kfunc_call */
11317 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11318 if (err == -EACCES && func_name)
11319 verbose(env, "calling kernel function %s is not allowed\n", func_name);
11322 desc_btf = meta.btf;
11323 insn_aux = &env->insn_aux_data[insn_idx];
11325 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11327 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11328 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11332 sleepable = is_kfunc_sleepable(&meta);
11333 if (sleepable && !env->prog->aux->sleepable) {
11334 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11338 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11339 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11341 if (env->cur_state->active_rcu_lock) {
11342 struct bpf_func_state *state;
11343 struct bpf_reg_state *reg;
11345 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11346 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11351 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11353 } else if (rcu_unlock) {
11354 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11355 if (reg->type & MEM_RCU) {
11356 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11357 reg->type |= PTR_UNTRUSTED;
11360 env->cur_state->active_rcu_lock = false;
11361 } else if (sleepable) {
11362 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11365 } else if (rcu_lock) {
11366 env->cur_state->active_rcu_lock = true;
11367 } else if (rcu_unlock) {
11368 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11372 /* Check the arguments */
11373 err = check_kfunc_args(env, &meta, insn_idx);
11376 /* In case of release function, we get register number of refcounted
11377 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11379 if (meta.release_regno) {
11380 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11382 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11383 func_name, meta.func_id);
11388 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11389 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11390 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11391 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11392 insn_aux->insert_off = regs[BPF_REG_2].off;
11393 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11394 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11396 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11397 func_name, meta.func_id);
11401 err = release_reference(env, release_ref_obj_id);
11403 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11404 func_name, meta.func_id);
11409 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11410 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11411 set_rbtree_add_callback_state);
11413 verbose(env, "kfunc %s#%d failed callback verification\n",
11414 func_name, meta.func_id);
11419 for (i = 0; i < CALLER_SAVED_REGS; i++)
11420 mark_reg_not_init(env, regs, caller_saved[i]);
11422 /* Check return type */
11423 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11425 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11426 /* Only exception is bpf_obj_new_impl */
11427 if (meta.btf != btf_vmlinux ||
11428 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11429 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11430 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11435 if (btf_type_is_scalar(t)) {
11436 mark_reg_unknown(env, regs, BPF_REG_0);
11437 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11438 } else if (btf_type_is_ptr(t)) {
11439 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11441 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11442 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11443 struct btf *ret_btf;
11446 if (unlikely(!bpf_global_ma_set))
11449 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11450 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11454 ret_btf = env->prog->aux->btf;
11455 ret_btf_id = meta.arg_constant.value;
11457 /* This may be NULL due to user not supplying a BTF */
11459 verbose(env, "bpf_obj_new requires prog BTF\n");
11463 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11464 if (!ret_t || !__btf_type_is_struct(ret_t)) {
11465 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11469 mark_reg_known_zero(env, regs, BPF_REG_0);
11470 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11471 regs[BPF_REG_0].btf = ret_btf;
11472 regs[BPF_REG_0].btf_id = ret_btf_id;
11474 insn_aux->obj_new_size = ret_t->size;
11475 insn_aux->kptr_struct_meta =
11476 btf_find_struct_meta(ret_btf, ret_btf_id);
11477 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11478 mark_reg_known_zero(env, regs, BPF_REG_0);
11479 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11480 regs[BPF_REG_0].btf = meta.arg_btf;
11481 regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11483 insn_aux->kptr_struct_meta =
11484 btf_find_struct_meta(meta.arg_btf,
11486 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11487 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11488 struct btf_field *field = meta.arg_list_head.field;
11490 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11491 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11492 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11493 struct btf_field *field = meta.arg_rbtree_root.field;
11495 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11496 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11497 mark_reg_known_zero(env, regs, BPF_REG_0);
11498 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11499 regs[BPF_REG_0].btf = desc_btf;
11500 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11501 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11502 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11503 if (!ret_t || !btf_type_is_struct(ret_t)) {
11505 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11509 mark_reg_known_zero(env, regs, BPF_REG_0);
11510 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11511 regs[BPF_REG_0].btf = desc_btf;
11512 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11513 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11514 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11515 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11517 mark_reg_known_zero(env, regs, BPF_REG_0);
11519 if (!meta.arg_constant.found) {
11520 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11524 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11526 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11527 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11529 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11530 regs[BPF_REG_0].type |= MEM_RDONLY;
11532 /* this will set env->seen_direct_write to true */
11533 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11534 verbose(env, "the prog does not allow writes to packet data\n");
11539 if (!meta.initialized_dynptr.id) {
11540 verbose(env, "verifier internal error: no dynptr id\n");
11543 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11545 /* we don't need to set BPF_REG_0's ref obj id
11546 * because packet slices are not refcounted (see
11547 * dynptr_type_refcounted)
11550 verbose(env, "kernel function %s unhandled dynamic return type\n",
11554 } else if (!__btf_type_is_struct(ptr_type)) {
11555 if (!meta.r0_size) {
11558 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11560 meta.r0_rdonly = true;
11563 if (!meta.r0_size) {
11564 ptr_type_name = btf_name_by_offset(desc_btf,
11565 ptr_type->name_off);
11567 "kernel function %s returns pointer type %s %s is not supported\n",
11569 btf_type_str(ptr_type),
11574 mark_reg_known_zero(env, regs, BPF_REG_0);
11575 regs[BPF_REG_0].type = PTR_TO_MEM;
11576 regs[BPF_REG_0].mem_size = meta.r0_size;
11578 if (meta.r0_rdonly)
11579 regs[BPF_REG_0].type |= MEM_RDONLY;
11581 /* Ensures we don't access the memory after a release_reference() */
11582 if (meta.ref_obj_id)
11583 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11585 mark_reg_known_zero(env, regs, BPF_REG_0);
11586 regs[BPF_REG_0].btf = desc_btf;
11587 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11588 regs[BPF_REG_0].btf_id = ptr_type_id;
11591 if (is_kfunc_ret_null(&meta)) {
11592 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11593 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11594 regs[BPF_REG_0].id = ++env->id_gen;
11596 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
11597 if (is_kfunc_acquire(&meta)) {
11598 int id = acquire_reference_state(env, insn_idx);
11602 if (is_kfunc_ret_null(&meta))
11603 regs[BPF_REG_0].id = id;
11604 regs[BPF_REG_0].ref_obj_id = id;
11605 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11606 ref_set_non_owning(env, ®s[BPF_REG_0]);
11609 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id)
11610 regs[BPF_REG_0].id = ++env->id_gen;
11611 } else if (btf_type_is_void(t)) {
11612 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11613 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11614 insn_aux->kptr_struct_meta =
11615 btf_find_struct_meta(meta.arg_btf,
11621 nargs = btf_type_vlen(meta.func_proto);
11622 args = (const struct btf_param *)(meta.func_proto + 1);
11623 for (i = 0; i < nargs; i++) {
11626 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
11627 if (btf_type_is_ptr(t))
11628 mark_btf_func_reg_size(env, regno, sizeof(void *));
11630 /* scalar. ensured by btf_check_kfunc_arg_match() */
11631 mark_btf_func_reg_size(env, regno, t->size);
11634 if (is_iter_next_kfunc(&meta)) {
11635 err = process_iter_next_call(env, insn_idx, &meta);
11643 static bool signed_add_overflows(s64 a, s64 b)
11645 /* Do the add in u64, where overflow is well-defined */
11646 s64 res = (s64)((u64)a + (u64)b);
11653 static bool signed_add32_overflows(s32 a, s32 b)
11655 /* Do the add in u32, where overflow is well-defined */
11656 s32 res = (s32)((u32)a + (u32)b);
11663 static bool signed_sub_overflows(s64 a, s64 b)
11665 /* Do the sub in u64, where overflow is well-defined */
11666 s64 res = (s64)((u64)a - (u64)b);
11673 static bool signed_sub32_overflows(s32 a, s32 b)
11675 /* Do the sub in u32, where overflow is well-defined */
11676 s32 res = (s32)((u32)a - (u32)b);
11683 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11684 const struct bpf_reg_state *reg,
11685 enum bpf_reg_type type)
11687 bool known = tnum_is_const(reg->var_off);
11688 s64 val = reg->var_off.value;
11689 s64 smin = reg->smin_value;
11691 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11692 verbose(env, "math between %s pointer and %lld is not allowed\n",
11693 reg_type_str(env, type), val);
11697 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11698 verbose(env, "%s pointer offset %d is not allowed\n",
11699 reg_type_str(env, type), reg->off);
11703 if (smin == S64_MIN) {
11704 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11705 reg_type_str(env, type));
11709 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11710 verbose(env, "value %lld makes %s pointer be out of bounds\n",
11711 smin, reg_type_str(env, type));
11719 REASON_BOUNDS = -1,
11726 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11727 u32 *alu_limit, bool mask_to_left)
11729 u32 max = 0, ptr_limit = 0;
11731 switch (ptr_reg->type) {
11733 /* Offset 0 is out-of-bounds, but acceptable start for the
11734 * left direction, see BPF_REG_FP. Also, unknown scalar
11735 * offset where we would need to deal with min/max bounds is
11736 * currently prohibited for unprivileged.
11738 max = MAX_BPF_STACK + mask_to_left;
11739 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11741 case PTR_TO_MAP_VALUE:
11742 max = ptr_reg->map_ptr->value_size;
11743 ptr_limit = (mask_to_left ?
11744 ptr_reg->smin_value :
11745 ptr_reg->umax_value) + ptr_reg->off;
11748 return REASON_TYPE;
11751 if (ptr_limit >= max)
11752 return REASON_LIMIT;
11753 *alu_limit = ptr_limit;
11757 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11758 const struct bpf_insn *insn)
11760 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
11763 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11764 u32 alu_state, u32 alu_limit)
11766 /* If we arrived here from different branches with different
11767 * state or limits to sanitize, then this won't work.
11769 if (aux->alu_state &&
11770 (aux->alu_state != alu_state ||
11771 aux->alu_limit != alu_limit))
11772 return REASON_PATHS;
11774 /* Corresponding fixup done in do_misc_fixups(). */
11775 aux->alu_state = alu_state;
11776 aux->alu_limit = alu_limit;
11780 static int sanitize_val_alu(struct bpf_verifier_env *env,
11781 struct bpf_insn *insn)
11783 struct bpf_insn_aux_data *aux = cur_aux(env);
11785 if (can_skip_alu_sanitation(env, insn))
11788 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11791 static bool sanitize_needed(u8 opcode)
11793 return opcode == BPF_ADD || opcode == BPF_SUB;
11796 struct bpf_sanitize_info {
11797 struct bpf_insn_aux_data aux;
11801 static struct bpf_verifier_state *
11802 sanitize_speculative_path(struct bpf_verifier_env *env,
11803 const struct bpf_insn *insn,
11804 u32 next_idx, u32 curr_idx)
11806 struct bpf_verifier_state *branch;
11807 struct bpf_reg_state *regs;
11809 branch = push_stack(env, next_idx, curr_idx, true);
11810 if (branch && insn) {
11811 regs = branch->frame[branch->curframe]->regs;
11812 if (BPF_SRC(insn->code) == BPF_K) {
11813 mark_reg_unknown(env, regs, insn->dst_reg);
11814 } else if (BPF_SRC(insn->code) == BPF_X) {
11815 mark_reg_unknown(env, regs, insn->dst_reg);
11816 mark_reg_unknown(env, regs, insn->src_reg);
11822 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11823 struct bpf_insn *insn,
11824 const struct bpf_reg_state *ptr_reg,
11825 const struct bpf_reg_state *off_reg,
11826 struct bpf_reg_state *dst_reg,
11827 struct bpf_sanitize_info *info,
11828 const bool commit_window)
11830 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
11831 struct bpf_verifier_state *vstate = env->cur_state;
11832 bool off_is_imm = tnum_is_const(off_reg->var_off);
11833 bool off_is_neg = off_reg->smin_value < 0;
11834 bool ptr_is_dst_reg = ptr_reg == dst_reg;
11835 u8 opcode = BPF_OP(insn->code);
11836 u32 alu_state, alu_limit;
11837 struct bpf_reg_state tmp;
11841 if (can_skip_alu_sanitation(env, insn))
11844 /* We already marked aux for masking from non-speculative
11845 * paths, thus we got here in the first place. We only care
11846 * to explore bad access from here.
11848 if (vstate->speculative)
11851 if (!commit_window) {
11852 if (!tnum_is_const(off_reg->var_off) &&
11853 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11854 return REASON_BOUNDS;
11856 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
11857 (opcode == BPF_SUB && !off_is_neg);
11860 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
11864 if (commit_window) {
11865 /* In commit phase we narrow the masking window based on
11866 * the observed pointer move after the simulated operation.
11868 alu_state = info->aux.alu_state;
11869 alu_limit = abs(info->aux.alu_limit - alu_limit);
11871 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
11872 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
11873 alu_state |= ptr_is_dst_reg ?
11874 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
11876 /* Limit pruning on unknown scalars to enable deep search for
11877 * potential masking differences from other program paths.
11880 env->explore_alu_limits = true;
11883 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11887 /* If we're in commit phase, we're done here given we already
11888 * pushed the truncated dst_reg into the speculative verification
11891 * Also, when register is a known constant, we rewrite register-based
11892 * operation to immediate-based, and thus do not need masking (and as
11893 * a consequence, do not need to simulate the zero-truncation either).
11895 if (commit_window || off_is_imm)
11898 /* Simulate and find potential out-of-bounds access under
11899 * speculative execution from truncation as a result of
11900 * masking when off was not within expected range. If off
11901 * sits in dst, then we temporarily need to move ptr there
11902 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11903 * for cases where we use K-based arithmetic in one direction
11904 * and truncated reg-based in the other in order to explore
11907 if (!ptr_is_dst_reg) {
11909 copy_register_state(dst_reg, ptr_reg);
11911 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11913 if (!ptr_is_dst_reg && ret)
11915 return !ret ? REASON_STACK : 0;
11918 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11920 struct bpf_verifier_state *vstate = env->cur_state;
11922 /* If we simulate paths under speculation, we don't update the
11923 * insn as 'seen' such that when we verify unreachable paths in
11924 * the non-speculative domain, sanitize_dead_code() can still
11925 * rewrite/sanitize them.
11927 if (!vstate->speculative)
11928 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11931 static int sanitize_err(struct bpf_verifier_env *env,
11932 const struct bpf_insn *insn, int reason,
11933 const struct bpf_reg_state *off_reg,
11934 const struct bpf_reg_state *dst_reg)
11936 static const char *err = "pointer arithmetic with it prohibited for !root";
11937 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11938 u32 dst = insn->dst_reg, src = insn->src_reg;
11941 case REASON_BOUNDS:
11942 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11943 off_reg == dst_reg ? dst : src, err);
11946 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11947 off_reg == dst_reg ? src : dst, err);
11950 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11954 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11958 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11962 verbose(env, "verifier internal error: unknown reason (%d)\n",
11970 /* check that stack access falls within stack limits and that 'reg' doesn't
11971 * have a variable offset.
11973 * Variable offset is prohibited for unprivileged mode for simplicity since it
11974 * requires corresponding support in Spectre masking for stack ALU. See also
11975 * retrieve_ptr_limit().
11978 * 'off' includes 'reg->off'.
11980 static int check_stack_access_for_ptr_arithmetic(
11981 struct bpf_verifier_env *env,
11983 const struct bpf_reg_state *reg,
11986 if (!tnum_is_const(reg->var_off)) {
11989 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11990 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11991 regno, tn_buf, off);
11995 if (off >= 0 || off < -MAX_BPF_STACK) {
11996 verbose(env, "R%d stack pointer arithmetic goes out of range, "
11997 "prohibited for !root; off=%d\n", regno, off);
12004 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12005 const struct bpf_insn *insn,
12006 const struct bpf_reg_state *dst_reg)
12008 u32 dst = insn->dst_reg;
12010 /* For unprivileged we require that resulting offset must be in bounds
12011 * in order to be able to sanitize access later on.
12013 if (env->bypass_spec_v1)
12016 switch (dst_reg->type) {
12018 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12019 dst_reg->off + dst_reg->var_off.value))
12022 case PTR_TO_MAP_VALUE:
12023 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12024 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12025 "prohibited for !root\n", dst);
12036 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12037 * Caller should also handle BPF_MOV case separately.
12038 * If we return -EACCES, caller may want to try again treating pointer as a
12039 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
12041 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12042 struct bpf_insn *insn,
12043 const struct bpf_reg_state *ptr_reg,
12044 const struct bpf_reg_state *off_reg)
12046 struct bpf_verifier_state *vstate = env->cur_state;
12047 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12048 struct bpf_reg_state *regs = state->regs, *dst_reg;
12049 bool known = tnum_is_const(off_reg->var_off);
12050 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12051 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12052 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12053 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12054 struct bpf_sanitize_info info = {};
12055 u8 opcode = BPF_OP(insn->code);
12056 u32 dst = insn->dst_reg;
12059 dst_reg = ®s[dst];
12061 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12062 smin_val > smax_val || umin_val > umax_val) {
12063 /* Taint dst register if offset had invalid bounds derived from
12064 * e.g. dead branches.
12066 __mark_reg_unknown(env, dst_reg);
12070 if (BPF_CLASS(insn->code) != BPF_ALU64) {
12071 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
12072 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12073 __mark_reg_unknown(env, dst_reg);
12078 "R%d 32-bit pointer arithmetic prohibited\n",
12083 if (ptr_reg->type & PTR_MAYBE_NULL) {
12084 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12085 dst, reg_type_str(env, ptr_reg->type));
12089 switch (base_type(ptr_reg->type)) {
12090 case CONST_PTR_TO_MAP:
12091 /* smin_val represents the known value */
12092 if (known && smin_val == 0 && opcode == BPF_ADD)
12095 case PTR_TO_PACKET_END:
12096 case PTR_TO_SOCKET:
12097 case PTR_TO_SOCK_COMMON:
12098 case PTR_TO_TCP_SOCK:
12099 case PTR_TO_XDP_SOCK:
12100 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12101 dst, reg_type_str(env, ptr_reg->type));
12107 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12108 * The id may be overwritten later if we create a new variable offset.
12110 dst_reg->type = ptr_reg->type;
12111 dst_reg->id = ptr_reg->id;
12113 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12114 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12117 /* pointer types do not carry 32-bit bounds at the moment. */
12118 __mark_reg32_unbounded(dst_reg);
12120 if (sanitize_needed(opcode)) {
12121 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12124 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12129 /* We can take a fixed offset as long as it doesn't overflow
12130 * the s32 'off' field
12132 if (known && (ptr_reg->off + smin_val ==
12133 (s64)(s32)(ptr_reg->off + smin_val))) {
12134 /* pointer += K. Accumulate it into fixed offset */
12135 dst_reg->smin_value = smin_ptr;
12136 dst_reg->smax_value = smax_ptr;
12137 dst_reg->umin_value = umin_ptr;
12138 dst_reg->umax_value = umax_ptr;
12139 dst_reg->var_off = ptr_reg->var_off;
12140 dst_reg->off = ptr_reg->off + smin_val;
12141 dst_reg->raw = ptr_reg->raw;
12144 /* A new variable offset is created. Note that off_reg->off
12145 * == 0, since it's a scalar.
12146 * dst_reg gets the pointer type and since some positive
12147 * integer value was added to the pointer, give it a new 'id'
12148 * if it's a PTR_TO_PACKET.
12149 * this creates a new 'base' pointer, off_reg (variable) gets
12150 * added into the variable offset, and we copy the fixed offset
12153 if (signed_add_overflows(smin_ptr, smin_val) ||
12154 signed_add_overflows(smax_ptr, smax_val)) {
12155 dst_reg->smin_value = S64_MIN;
12156 dst_reg->smax_value = S64_MAX;
12158 dst_reg->smin_value = smin_ptr + smin_val;
12159 dst_reg->smax_value = smax_ptr + smax_val;
12161 if (umin_ptr + umin_val < umin_ptr ||
12162 umax_ptr + umax_val < umax_ptr) {
12163 dst_reg->umin_value = 0;
12164 dst_reg->umax_value = U64_MAX;
12166 dst_reg->umin_value = umin_ptr + umin_val;
12167 dst_reg->umax_value = umax_ptr + umax_val;
12169 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12170 dst_reg->off = ptr_reg->off;
12171 dst_reg->raw = ptr_reg->raw;
12172 if (reg_is_pkt_pointer(ptr_reg)) {
12173 dst_reg->id = ++env->id_gen;
12174 /* something was added to pkt_ptr, set range to zero */
12175 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12179 if (dst_reg == off_reg) {
12180 /* scalar -= pointer. Creates an unknown scalar */
12181 verbose(env, "R%d tried to subtract pointer from scalar\n",
12185 /* We don't allow subtraction from FP, because (according to
12186 * test_verifier.c test "invalid fp arithmetic", JITs might not
12187 * be able to deal with it.
12189 if (ptr_reg->type == PTR_TO_STACK) {
12190 verbose(env, "R%d subtraction from stack pointer prohibited\n",
12194 if (known && (ptr_reg->off - smin_val ==
12195 (s64)(s32)(ptr_reg->off - smin_val))) {
12196 /* pointer -= K. Subtract it from fixed offset */
12197 dst_reg->smin_value = smin_ptr;
12198 dst_reg->smax_value = smax_ptr;
12199 dst_reg->umin_value = umin_ptr;
12200 dst_reg->umax_value = umax_ptr;
12201 dst_reg->var_off = ptr_reg->var_off;
12202 dst_reg->id = ptr_reg->id;
12203 dst_reg->off = ptr_reg->off - smin_val;
12204 dst_reg->raw = ptr_reg->raw;
12207 /* A new variable offset is created. If the subtrahend is known
12208 * nonnegative, then any reg->range we had before is still good.
12210 if (signed_sub_overflows(smin_ptr, smax_val) ||
12211 signed_sub_overflows(smax_ptr, smin_val)) {
12212 /* Overflow possible, we know nothing */
12213 dst_reg->smin_value = S64_MIN;
12214 dst_reg->smax_value = S64_MAX;
12216 dst_reg->smin_value = smin_ptr - smax_val;
12217 dst_reg->smax_value = smax_ptr - smin_val;
12219 if (umin_ptr < umax_val) {
12220 /* Overflow possible, we know nothing */
12221 dst_reg->umin_value = 0;
12222 dst_reg->umax_value = U64_MAX;
12224 /* Cannot overflow (as long as bounds are consistent) */
12225 dst_reg->umin_value = umin_ptr - umax_val;
12226 dst_reg->umax_value = umax_ptr - umin_val;
12228 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12229 dst_reg->off = ptr_reg->off;
12230 dst_reg->raw = ptr_reg->raw;
12231 if (reg_is_pkt_pointer(ptr_reg)) {
12232 dst_reg->id = ++env->id_gen;
12233 /* something was added to pkt_ptr, set range to zero */
12235 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12241 /* bitwise ops on pointers are troublesome, prohibit. */
12242 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12243 dst, bpf_alu_string[opcode >> 4]);
12246 /* other operators (e.g. MUL,LSH) produce non-pointer results */
12247 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12248 dst, bpf_alu_string[opcode >> 4]);
12252 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12254 reg_bounds_sync(dst_reg);
12255 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12257 if (sanitize_needed(opcode)) {
12258 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12261 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12267 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12268 struct bpf_reg_state *src_reg)
12270 s32 smin_val = src_reg->s32_min_value;
12271 s32 smax_val = src_reg->s32_max_value;
12272 u32 umin_val = src_reg->u32_min_value;
12273 u32 umax_val = src_reg->u32_max_value;
12275 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12276 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12277 dst_reg->s32_min_value = S32_MIN;
12278 dst_reg->s32_max_value = S32_MAX;
12280 dst_reg->s32_min_value += smin_val;
12281 dst_reg->s32_max_value += smax_val;
12283 if (dst_reg->u32_min_value + umin_val < umin_val ||
12284 dst_reg->u32_max_value + umax_val < umax_val) {
12285 dst_reg->u32_min_value = 0;
12286 dst_reg->u32_max_value = U32_MAX;
12288 dst_reg->u32_min_value += umin_val;
12289 dst_reg->u32_max_value += umax_val;
12293 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12294 struct bpf_reg_state *src_reg)
12296 s64 smin_val = src_reg->smin_value;
12297 s64 smax_val = src_reg->smax_value;
12298 u64 umin_val = src_reg->umin_value;
12299 u64 umax_val = src_reg->umax_value;
12301 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12302 signed_add_overflows(dst_reg->smax_value, smax_val)) {
12303 dst_reg->smin_value = S64_MIN;
12304 dst_reg->smax_value = S64_MAX;
12306 dst_reg->smin_value += smin_val;
12307 dst_reg->smax_value += smax_val;
12309 if (dst_reg->umin_value + umin_val < umin_val ||
12310 dst_reg->umax_value + umax_val < umax_val) {
12311 dst_reg->umin_value = 0;
12312 dst_reg->umax_value = U64_MAX;
12314 dst_reg->umin_value += umin_val;
12315 dst_reg->umax_value += umax_val;
12319 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12320 struct bpf_reg_state *src_reg)
12322 s32 smin_val = src_reg->s32_min_value;
12323 s32 smax_val = src_reg->s32_max_value;
12324 u32 umin_val = src_reg->u32_min_value;
12325 u32 umax_val = src_reg->u32_max_value;
12327 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12328 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12329 /* Overflow possible, we know nothing */
12330 dst_reg->s32_min_value = S32_MIN;
12331 dst_reg->s32_max_value = S32_MAX;
12333 dst_reg->s32_min_value -= smax_val;
12334 dst_reg->s32_max_value -= smin_val;
12336 if (dst_reg->u32_min_value < umax_val) {
12337 /* Overflow possible, we know nothing */
12338 dst_reg->u32_min_value = 0;
12339 dst_reg->u32_max_value = U32_MAX;
12341 /* Cannot overflow (as long as bounds are consistent) */
12342 dst_reg->u32_min_value -= umax_val;
12343 dst_reg->u32_max_value -= umin_val;
12347 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12348 struct bpf_reg_state *src_reg)
12350 s64 smin_val = src_reg->smin_value;
12351 s64 smax_val = src_reg->smax_value;
12352 u64 umin_val = src_reg->umin_value;
12353 u64 umax_val = src_reg->umax_value;
12355 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12356 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12357 /* Overflow possible, we know nothing */
12358 dst_reg->smin_value = S64_MIN;
12359 dst_reg->smax_value = S64_MAX;
12361 dst_reg->smin_value -= smax_val;
12362 dst_reg->smax_value -= smin_val;
12364 if (dst_reg->umin_value < umax_val) {
12365 /* Overflow possible, we know nothing */
12366 dst_reg->umin_value = 0;
12367 dst_reg->umax_value = U64_MAX;
12369 /* Cannot overflow (as long as bounds are consistent) */
12370 dst_reg->umin_value -= umax_val;
12371 dst_reg->umax_value -= umin_val;
12375 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12376 struct bpf_reg_state *src_reg)
12378 s32 smin_val = src_reg->s32_min_value;
12379 u32 umin_val = src_reg->u32_min_value;
12380 u32 umax_val = src_reg->u32_max_value;
12382 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12383 /* Ain't nobody got time to multiply that sign */
12384 __mark_reg32_unbounded(dst_reg);
12387 /* Both values are positive, so we can work with unsigned and
12388 * copy the result to signed (unless it exceeds S32_MAX).
12390 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12391 /* Potential overflow, we know nothing */
12392 __mark_reg32_unbounded(dst_reg);
12395 dst_reg->u32_min_value *= umin_val;
12396 dst_reg->u32_max_value *= umax_val;
12397 if (dst_reg->u32_max_value > S32_MAX) {
12398 /* Overflow possible, we know nothing */
12399 dst_reg->s32_min_value = S32_MIN;
12400 dst_reg->s32_max_value = S32_MAX;
12402 dst_reg->s32_min_value = dst_reg->u32_min_value;
12403 dst_reg->s32_max_value = dst_reg->u32_max_value;
12407 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12408 struct bpf_reg_state *src_reg)
12410 s64 smin_val = src_reg->smin_value;
12411 u64 umin_val = src_reg->umin_value;
12412 u64 umax_val = src_reg->umax_value;
12414 if (smin_val < 0 || dst_reg->smin_value < 0) {
12415 /* Ain't nobody got time to multiply that sign */
12416 __mark_reg64_unbounded(dst_reg);
12419 /* Both values are positive, so we can work with unsigned and
12420 * copy the result to signed (unless it exceeds S64_MAX).
12422 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12423 /* Potential overflow, we know nothing */
12424 __mark_reg64_unbounded(dst_reg);
12427 dst_reg->umin_value *= umin_val;
12428 dst_reg->umax_value *= umax_val;
12429 if (dst_reg->umax_value > S64_MAX) {
12430 /* Overflow possible, we know nothing */
12431 dst_reg->smin_value = S64_MIN;
12432 dst_reg->smax_value = S64_MAX;
12434 dst_reg->smin_value = dst_reg->umin_value;
12435 dst_reg->smax_value = dst_reg->umax_value;
12439 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12440 struct bpf_reg_state *src_reg)
12442 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12443 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12444 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12445 s32 smin_val = src_reg->s32_min_value;
12446 u32 umax_val = src_reg->u32_max_value;
12448 if (src_known && dst_known) {
12449 __mark_reg32_known(dst_reg, var32_off.value);
12453 /* We get our minimum from the var_off, since that's inherently
12454 * bitwise. Our maximum is the minimum of the operands' maxima.
12456 dst_reg->u32_min_value = var32_off.value;
12457 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12458 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12459 /* Lose signed bounds when ANDing negative numbers,
12460 * ain't nobody got time for that.
12462 dst_reg->s32_min_value = S32_MIN;
12463 dst_reg->s32_max_value = S32_MAX;
12465 /* ANDing two positives gives a positive, so safe to
12466 * cast result into s64.
12468 dst_reg->s32_min_value = dst_reg->u32_min_value;
12469 dst_reg->s32_max_value = dst_reg->u32_max_value;
12473 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12474 struct bpf_reg_state *src_reg)
12476 bool src_known = tnum_is_const(src_reg->var_off);
12477 bool dst_known = tnum_is_const(dst_reg->var_off);
12478 s64 smin_val = src_reg->smin_value;
12479 u64 umax_val = src_reg->umax_value;
12481 if (src_known && dst_known) {
12482 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12486 /* We get our minimum from the var_off, since that's inherently
12487 * bitwise. Our maximum is the minimum of the operands' maxima.
12489 dst_reg->umin_value = dst_reg->var_off.value;
12490 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12491 if (dst_reg->smin_value < 0 || smin_val < 0) {
12492 /* Lose signed bounds when ANDing negative numbers,
12493 * ain't nobody got time for that.
12495 dst_reg->smin_value = S64_MIN;
12496 dst_reg->smax_value = S64_MAX;
12498 /* ANDing two positives gives a positive, so safe to
12499 * cast result into s64.
12501 dst_reg->smin_value = dst_reg->umin_value;
12502 dst_reg->smax_value = dst_reg->umax_value;
12504 /* We may learn something more from the var_off */
12505 __update_reg_bounds(dst_reg);
12508 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12509 struct bpf_reg_state *src_reg)
12511 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12512 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12513 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12514 s32 smin_val = src_reg->s32_min_value;
12515 u32 umin_val = src_reg->u32_min_value;
12517 if (src_known && dst_known) {
12518 __mark_reg32_known(dst_reg, var32_off.value);
12522 /* We get our maximum from the var_off, and our minimum is the
12523 * maximum of the operands' minima
12525 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12526 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12527 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12528 /* Lose signed bounds when ORing negative numbers,
12529 * ain't nobody got time for that.
12531 dst_reg->s32_min_value = S32_MIN;
12532 dst_reg->s32_max_value = S32_MAX;
12534 /* ORing two positives gives a positive, so safe to
12535 * cast result into s64.
12537 dst_reg->s32_min_value = dst_reg->u32_min_value;
12538 dst_reg->s32_max_value = dst_reg->u32_max_value;
12542 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12543 struct bpf_reg_state *src_reg)
12545 bool src_known = tnum_is_const(src_reg->var_off);
12546 bool dst_known = tnum_is_const(dst_reg->var_off);
12547 s64 smin_val = src_reg->smin_value;
12548 u64 umin_val = src_reg->umin_value;
12550 if (src_known && dst_known) {
12551 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12555 /* We get our maximum from the var_off, and our minimum is the
12556 * maximum of the operands' minima
12558 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12559 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12560 if (dst_reg->smin_value < 0 || smin_val < 0) {
12561 /* Lose signed bounds when ORing negative numbers,
12562 * ain't nobody got time for that.
12564 dst_reg->smin_value = S64_MIN;
12565 dst_reg->smax_value = S64_MAX;
12567 /* ORing two positives gives a positive, so safe to
12568 * cast result into s64.
12570 dst_reg->smin_value = dst_reg->umin_value;
12571 dst_reg->smax_value = dst_reg->umax_value;
12573 /* We may learn something more from the var_off */
12574 __update_reg_bounds(dst_reg);
12577 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12578 struct bpf_reg_state *src_reg)
12580 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12581 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12582 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12583 s32 smin_val = src_reg->s32_min_value;
12585 if (src_known && dst_known) {
12586 __mark_reg32_known(dst_reg, var32_off.value);
12590 /* We get both minimum and maximum from the var32_off. */
12591 dst_reg->u32_min_value = var32_off.value;
12592 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12594 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12595 /* XORing two positive sign numbers gives a positive,
12596 * so safe to cast u32 result into s32.
12598 dst_reg->s32_min_value = dst_reg->u32_min_value;
12599 dst_reg->s32_max_value = dst_reg->u32_max_value;
12601 dst_reg->s32_min_value = S32_MIN;
12602 dst_reg->s32_max_value = S32_MAX;
12606 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12607 struct bpf_reg_state *src_reg)
12609 bool src_known = tnum_is_const(src_reg->var_off);
12610 bool dst_known = tnum_is_const(dst_reg->var_off);
12611 s64 smin_val = src_reg->smin_value;
12613 if (src_known && dst_known) {
12614 /* dst_reg->var_off.value has been updated earlier */
12615 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12619 /* We get both minimum and maximum from the var_off. */
12620 dst_reg->umin_value = dst_reg->var_off.value;
12621 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12623 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12624 /* XORing two positive sign numbers gives a positive,
12625 * so safe to cast u64 result into s64.
12627 dst_reg->smin_value = dst_reg->umin_value;
12628 dst_reg->smax_value = dst_reg->umax_value;
12630 dst_reg->smin_value = S64_MIN;
12631 dst_reg->smax_value = S64_MAX;
12634 __update_reg_bounds(dst_reg);
12637 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12638 u64 umin_val, u64 umax_val)
12640 /* We lose all sign bit information (except what we can pick
12643 dst_reg->s32_min_value = S32_MIN;
12644 dst_reg->s32_max_value = S32_MAX;
12645 /* If we might shift our top bit out, then we know nothing */
12646 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12647 dst_reg->u32_min_value = 0;
12648 dst_reg->u32_max_value = U32_MAX;
12650 dst_reg->u32_min_value <<= umin_val;
12651 dst_reg->u32_max_value <<= umax_val;
12655 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12656 struct bpf_reg_state *src_reg)
12658 u32 umax_val = src_reg->u32_max_value;
12659 u32 umin_val = src_reg->u32_min_value;
12660 /* u32 alu operation will zext upper bits */
12661 struct tnum subreg = tnum_subreg(dst_reg->var_off);
12663 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12664 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12665 /* Not required but being careful mark reg64 bounds as unknown so
12666 * that we are forced to pick them up from tnum and zext later and
12667 * if some path skips this step we are still safe.
12669 __mark_reg64_unbounded(dst_reg);
12670 __update_reg32_bounds(dst_reg);
12673 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12674 u64 umin_val, u64 umax_val)
12676 /* Special case <<32 because it is a common compiler pattern to sign
12677 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12678 * positive we know this shift will also be positive so we can track
12679 * bounds correctly. Otherwise we lose all sign bit information except
12680 * what we can pick up from var_off. Perhaps we can generalize this
12681 * later to shifts of any length.
12683 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12684 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12686 dst_reg->smax_value = S64_MAX;
12688 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12689 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12691 dst_reg->smin_value = S64_MIN;
12693 /* If we might shift our top bit out, then we know nothing */
12694 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12695 dst_reg->umin_value = 0;
12696 dst_reg->umax_value = U64_MAX;
12698 dst_reg->umin_value <<= umin_val;
12699 dst_reg->umax_value <<= umax_val;
12703 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12704 struct bpf_reg_state *src_reg)
12706 u64 umax_val = src_reg->umax_value;
12707 u64 umin_val = src_reg->umin_value;
12709 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
12710 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12711 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12713 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12714 /* We may learn something more from the var_off */
12715 __update_reg_bounds(dst_reg);
12718 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12719 struct bpf_reg_state *src_reg)
12721 struct tnum subreg = tnum_subreg(dst_reg->var_off);
12722 u32 umax_val = src_reg->u32_max_value;
12723 u32 umin_val = src_reg->u32_min_value;
12725 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
12726 * be negative, then either:
12727 * 1) src_reg might be zero, so the sign bit of the result is
12728 * unknown, so we lose our signed bounds
12729 * 2) it's known negative, thus the unsigned bounds capture the
12731 * 3) the signed bounds cross zero, so they tell us nothing
12733 * If the value in dst_reg is known nonnegative, then again the
12734 * unsigned bounds capture the signed bounds.
12735 * Thus, in all cases it suffices to blow away our signed bounds
12736 * and rely on inferring new ones from the unsigned bounds and
12737 * var_off of the result.
12739 dst_reg->s32_min_value = S32_MIN;
12740 dst_reg->s32_max_value = S32_MAX;
12742 dst_reg->var_off = tnum_rshift(subreg, umin_val);
12743 dst_reg->u32_min_value >>= umax_val;
12744 dst_reg->u32_max_value >>= umin_val;
12746 __mark_reg64_unbounded(dst_reg);
12747 __update_reg32_bounds(dst_reg);
12750 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12751 struct bpf_reg_state *src_reg)
12753 u64 umax_val = src_reg->umax_value;
12754 u64 umin_val = src_reg->umin_value;
12756 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
12757 * be negative, then either:
12758 * 1) src_reg might be zero, so the sign bit of the result is
12759 * unknown, so we lose our signed bounds
12760 * 2) it's known negative, thus the unsigned bounds capture the
12762 * 3) the signed bounds cross zero, so they tell us nothing
12764 * If the value in dst_reg is known nonnegative, then again the
12765 * unsigned bounds capture the signed bounds.
12766 * Thus, in all cases it suffices to blow away our signed bounds
12767 * and rely on inferring new ones from the unsigned bounds and
12768 * var_off of the result.
12770 dst_reg->smin_value = S64_MIN;
12771 dst_reg->smax_value = S64_MAX;
12772 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12773 dst_reg->umin_value >>= umax_val;
12774 dst_reg->umax_value >>= umin_val;
12776 /* Its not easy to operate on alu32 bounds here because it depends
12777 * on bits being shifted in. Take easy way out and mark unbounded
12778 * so we can recalculate later from tnum.
12780 __mark_reg32_unbounded(dst_reg);
12781 __update_reg_bounds(dst_reg);
12784 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12785 struct bpf_reg_state *src_reg)
12787 u64 umin_val = src_reg->u32_min_value;
12789 /* Upon reaching here, src_known is true and
12790 * umax_val is equal to umin_val.
12792 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12793 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
12795 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12797 /* blow away the dst_reg umin_value/umax_value and rely on
12798 * dst_reg var_off to refine the result.
12800 dst_reg->u32_min_value = 0;
12801 dst_reg->u32_max_value = U32_MAX;
12803 __mark_reg64_unbounded(dst_reg);
12804 __update_reg32_bounds(dst_reg);
12807 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12808 struct bpf_reg_state *src_reg)
12810 u64 umin_val = src_reg->umin_value;
12812 /* Upon reaching here, src_known is true and umax_val is equal
12815 dst_reg->smin_value >>= umin_val;
12816 dst_reg->smax_value >>= umin_val;
12818 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
12820 /* blow away the dst_reg umin_value/umax_value and rely on
12821 * dst_reg var_off to refine the result.
12823 dst_reg->umin_value = 0;
12824 dst_reg->umax_value = U64_MAX;
12826 /* Its not easy to operate on alu32 bounds here because it depends
12827 * on bits being shifted in from upper 32-bits. Take easy way out
12828 * and mark unbounded so we can recalculate later from tnum.
12830 __mark_reg32_unbounded(dst_reg);
12831 __update_reg_bounds(dst_reg);
12834 /* WARNING: This function does calculations on 64-bit values, but the actual
12835 * execution may occur on 32-bit values. Therefore, things like bitshifts
12836 * need extra checks in the 32-bit case.
12838 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12839 struct bpf_insn *insn,
12840 struct bpf_reg_state *dst_reg,
12841 struct bpf_reg_state src_reg)
12843 struct bpf_reg_state *regs = cur_regs(env);
12844 u8 opcode = BPF_OP(insn->code);
12846 s64 smin_val, smax_val;
12847 u64 umin_val, umax_val;
12848 s32 s32_min_val, s32_max_val;
12849 u32 u32_min_val, u32_max_val;
12850 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
12851 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
12854 smin_val = src_reg.smin_value;
12855 smax_val = src_reg.smax_value;
12856 umin_val = src_reg.umin_value;
12857 umax_val = src_reg.umax_value;
12859 s32_min_val = src_reg.s32_min_value;
12860 s32_max_val = src_reg.s32_max_value;
12861 u32_min_val = src_reg.u32_min_value;
12862 u32_max_val = src_reg.u32_max_value;
12865 src_known = tnum_subreg_is_const(src_reg.var_off);
12867 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12868 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12869 /* Taint dst register if offset had invalid bounds
12870 * derived from e.g. dead branches.
12872 __mark_reg_unknown(env, dst_reg);
12876 src_known = tnum_is_const(src_reg.var_off);
12878 (smin_val != smax_val || umin_val != umax_val)) ||
12879 smin_val > smax_val || umin_val > umax_val) {
12880 /* Taint dst register if offset had invalid bounds
12881 * derived from e.g. dead branches.
12883 __mark_reg_unknown(env, dst_reg);
12889 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
12890 __mark_reg_unknown(env, dst_reg);
12894 if (sanitize_needed(opcode)) {
12895 ret = sanitize_val_alu(env, insn);
12897 return sanitize_err(env, insn, ret, NULL, NULL);
12900 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12901 * There are two classes of instructions: The first class we track both
12902 * alu32 and alu64 sign/unsigned bounds independently this provides the
12903 * greatest amount of precision when alu operations are mixed with jmp32
12904 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12905 * and BPF_OR. This is possible because these ops have fairly easy to
12906 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12907 * See alu32 verifier tests for examples. The second class of
12908 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12909 * with regards to tracking sign/unsigned bounds because the bits may
12910 * cross subreg boundaries in the alu64 case. When this happens we mark
12911 * the reg unbounded in the subreg bound space and use the resulting
12912 * tnum to calculate an approximation of the sign/unsigned bounds.
12916 scalar32_min_max_add(dst_reg, &src_reg);
12917 scalar_min_max_add(dst_reg, &src_reg);
12918 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
12921 scalar32_min_max_sub(dst_reg, &src_reg);
12922 scalar_min_max_sub(dst_reg, &src_reg);
12923 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
12926 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12927 scalar32_min_max_mul(dst_reg, &src_reg);
12928 scalar_min_max_mul(dst_reg, &src_reg);
12931 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12932 scalar32_min_max_and(dst_reg, &src_reg);
12933 scalar_min_max_and(dst_reg, &src_reg);
12936 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12937 scalar32_min_max_or(dst_reg, &src_reg);
12938 scalar_min_max_or(dst_reg, &src_reg);
12941 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12942 scalar32_min_max_xor(dst_reg, &src_reg);
12943 scalar_min_max_xor(dst_reg, &src_reg);
12946 if (umax_val >= insn_bitness) {
12947 /* Shifts greater than 31 or 63 are undefined.
12948 * This includes shifts by a negative number.
12950 mark_reg_unknown(env, regs, insn->dst_reg);
12954 scalar32_min_max_lsh(dst_reg, &src_reg);
12956 scalar_min_max_lsh(dst_reg, &src_reg);
12959 if (umax_val >= insn_bitness) {
12960 /* Shifts greater than 31 or 63 are undefined.
12961 * This includes shifts by a negative number.
12963 mark_reg_unknown(env, regs, insn->dst_reg);
12967 scalar32_min_max_rsh(dst_reg, &src_reg);
12969 scalar_min_max_rsh(dst_reg, &src_reg);
12972 if (umax_val >= insn_bitness) {
12973 /* Shifts greater than 31 or 63 are undefined.
12974 * This includes shifts by a negative number.
12976 mark_reg_unknown(env, regs, insn->dst_reg);
12980 scalar32_min_max_arsh(dst_reg, &src_reg);
12982 scalar_min_max_arsh(dst_reg, &src_reg);
12985 mark_reg_unknown(env, regs, insn->dst_reg);
12989 /* ALU32 ops are zero extended into 64bit register */
12991 zext_32_to_64(dst_reg);
12992 reg_bounds_sync(dst_reg);
12996 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12999 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13000 struct bpf_insn *insn)
13002 struct bpf_verifier_state *vstate = env->cur_state;
13003 struct bpf_func_state *state = vstate->frame[vstate->curframe];
13004 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13005 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13006 u8 opcode = BPF_OP(insn->code);
13009 dst_reg = ®s[insn->dst_reg];
13011 if (dst_reg->type != SCALAR_VALUE)
13014 /* Make sure ID is cleared otherwise dst_reg min/max could be
13015 * incorrectly propagated into other registers by find_equal_scalars()
13018 if (BPF_SRC(insn->code) == BPF_X) {
13019 src_reg = ®s[insn->src_reg];
13020 if (src_reg->type != SCALAR_VALUE) {
13021 if (dst_reg->type != SCALAR_VALUE) {
13022 /* Combining two pointers by any ALU op yields
13023 * an arbitrary scalar. Disallow all math except
13024 * pointer subtraction
13026 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13027 mark_reg_unknown(env, regs, insn->dst_reg);
13030 verbose(env, "R%d pointer %s pointer prohibited\n",
13032 bpf_alu_string[opcode >> 4]);
13035 /* scalar += pointer
13036 * This is legal, but we have to reverse our
13037 * src/dest handling in computing the range
13039 err = mark_chain_precision(env, insn->dst_reg);
13042 return adjust_ptr_min_max_vals(env, insn,
13045 } else if (ptr_reg) {
13046 /* pointer += scalar */
13047 err = mark_chain_precision(env, insn->src_reg);
13050 return adjust_ptr_min_max_vals(env, insn,
13052 } else if (dst_reg->precise) {
13053 /* if dst_reg is precise, src_reg should be precise as well */
13054 err = mark_chain_precision(env, insn->src_reg);
13059 /* Pretend the src is a reg with a known value, since we only
13060 * need to be able to read from this state.
13062 off_reg.type = SCALAR_VALUE;
13063 __mark_reg_known(&off_reg, insn->imm);
13064 src_reg = &off_reg;
13065 if (ptr_reg) /* pointer += K */
13066 return adjust_ptr_min_max_vals(env, insn,
13070 /* Got here implies adding two SCALAR_VALUEs */
13071 if (WARN_ON_ONCE(ptr_reg)) {
13072 print_verifier_state(env, state, true);
13073 verbose(env, "verifier internal error: unexpected ptr_reg\n");
13076 if (WARN_ON(!src_reg)) {
13077 print_verifier_state(env, state, true);
13078 verbose(env, "verifier internal error: no src_reg\n");
13081 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13084 /* check validity of 32-bit and 64-bit arithmetic operations */
13085 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13087 struct bpf_reg_state *regs = cur_regs(env);
13088 u8 opcode = BPF_OP(insn->code);
13091 if (opcode == BPF_END || opcode == BPF_NEG) {
13092 if (opcode == BPF_NEG) {
13093 if (BPF_SRC(insn->code) != BPF_K ||
13094 insn->src_reg != BPF_REG_0 ||
13095 insn->off != 0 || insn->imm != 0) {
13096 verbose(env, "BPF_NEG uses reserved fields\n");
13100 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13101 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13102 (BPF_CLASS(insn->code) == BPF_ALU64 &&
13103 BPF_SRC(insn->code) != BPF_TO_LE)) {
13104 verbose(env, "BPF_END uses reserved fields\n");
13109 /* check src operand */
13110 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13114 if (is_pointer_value(env, insn->dst_reg)) {
13115 verbose(env, "R%d pointer arithmetic prohibited\n",
13120 /* check dest operand */
13121 err = check_reg_arg(env, insn->dst_reg, DST_OP);
13125 } else if (opcode == BPF_MOV) {
13127 if (BPF_SRC(insn->code) == BPF_X) {
13128 if (insn->imm != 0) {
13129 verbose(env, "BPF_MOV uses reserved fields\n");
13133 if (BPF_CLASS(insn->code) == BPF_ALU) {
13134 if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13135 verbose(env, "BPF_MOV uses reserved fields\n");
13139 if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13141 verbose(env, "BPF_MOV uses reserved fields\n");
13146 /* check src operand */
13147 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13151 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13152 verbose(env, "BPF_MOV uses reserved fields\n");
13157 /* check dest operand, mark as required later */
13158 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13162 if (BPF_SRC(insn->code) == BPF_X) {
13163 struct bpf_reg_state *src_reg = regs + insn->src_reg;
13164 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13165 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13166 !tnum_is_const(src_reg->var_off);
13168 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13169 if (insn->off == 0) {
13171 * copy register state to dest reg
13174 /* Assign src and dst registers the same ID
13175 * that will be used by find_equal_scalars()
13176 * to propagate min/max range.
13178 src_reg->id = ++env->id_gen;
13179 copy_register_state(dst_reg, src_reg);
13180 dst_reg->live |= REG_LIVE_WRITTEN;
13181 dst_reg->subreg_def = DEF_NOT_SUBREG;
13183 /* case: R1 = (s8, s16 s32)R2 */
13184 if (is_pointer_value(env, insn->src_reg)) {
13186 "R%d sign-extension part of pointer\n",
13189 } else if (src_reg->type == SCALAR_VALUE) {
13192 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13193 if (no_sext && need_id)
13194 src_reg->id = ++env->id_gen;
13195 copy_register_state(dst_reg, src_reg);
13198 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13199 dst_reg->live |= REG_LIVE_WRITTEN;
13200 dst_reg->subreg_def = DEF_NOT_SUBREG;
13202 mark_reg_unknown(env, regs, insn->dst_reg);
13206 /* R1 = (u32) R2 */
13207 if (is_pointer_value(env, insn->src_reg)) {
13209 "R%d partial copy of pointer\n",
13212 } else if (src_reg->type == SCALAR_VALUE) {
13213 if (insn->off == 0) {
13214 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13216 if (is_src_reg_u32 && need_id)
13217 src_reg->id = ++env->id_gen;
13218 copy_register_state(dst_reg, src_reg);
13219 /* Make sure ID is cleared if src_reg is not in u32
13220 * range otherwise dst_reg min/max could be incorrectly
13221 * propagated into src_reg by find_equal_scalars()
13223 if (!is_src_reg_u32)
13225 dst_reg->live |= REG_LIVE_WRITTEN;
13226 dst_reg->subreg_def = env->insn_idx + 1;
13228 /* case: W1 = (s8, s16)W2 */
13229 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13231 if (no_sext && need_id)
13232 src_reg->id = ++env->id_gen;
13233 copy_register_state(dst_reg, src_reg);
13236 dst_reg->live |= REG_LIVE_WRITTEN;
13237 dst_reg->subreg_def = env->insn_idx + 1;
13238 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13241 mark_reg_unknown(env, regs,
13244 zext_32_to_64(dst_reg);
13245 reg_bounds_sync(dst_reg);
13249 * remember the value we stored into this reg
13251 /* clear any state __mark_reg_known doesn't set */
13252 mark_reg_unknown(env, regs, insn->dst_reg);
13253 regs[insn->dst_reg].type = SCALAR_VALUE;
13254 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13255 __mark_reg_known(regs + insn->dst_reg,
13258 __mark_reg_known(regs + insn->dst_reg,
13263 } else if (opcode > BPF_END) {
13264 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13267 } else { /* all other ALU ops: and, sub, xor, add, ... */
13269 if (BPF_SRC(insn->code) == BPF_X) {
13270 if (insn->imm != 0 || insn->off > 1 ||
13271 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13272 verbose(env, "BPF_ALU uses reserved fields\n");
13275 /* check src1 operand */
13276 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13280 if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13281 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13282 verbose(env, "BPF_ALU uses reserved fields\n");
13287 /* check src2 operand */
13288 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13292 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13293 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13294 verbose(env, "div by zero\n");
13298 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13299 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13300 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13302 if (insn->imm < 0 || insn->imm >= size) {
13303 verbose(env, "invalid shift %d\n", insn->imm);
13308 /* check dest operand */
13309 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13313 return adjust_reg_min_max_vals(env, insn);
13319 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13320 struct bpf_reg_state *dst_reg,
13321 enum bpf_reg_type type,
13322 bool range_right_open)
13324 struct bpf_func_state *state;
13325 struct bpf_reg_state *reg;
13328 if (dst_reg->off < 0 ||
13329 (dst_reg->off == 0 && range_right_open))
13330 /* This doesn't give us any range */
13333 if (dst_reg->umax_value > MAX_PACKET_OFF ||
13334 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13335 /* Risk of overflow. For instance, ptr + (1<<63) may be less
13336 * than pkt_end, but that's because it's also less than pkt.
13340 new_range = dst_reg->off;
13341 if (range_right_open)
13344 /* Examples for register markings:
13346 * pkt_data in dst register:
13350 * if (r2 > pkt_end) goto <handle exception>
13355 * if (r2 < pkt_end) goto <access okay>
13356 * <handle exception>
13359 * r2 == dst_reg, pkt_end == src_reg
13360 * r2=pkt(id=n,off=8,r=0)
13361 * r3=pkt(id=n,off=0,r=0)
13363 * pkt_data in src register:
13367 * if (pkt_end >= r2) goto <access okay>
13368 * <handle exception>
13372 * if (pkt_end <= r2) goto <handle exception>
13376 * pkt_end == dst_reg, r2 == src_reg
13377 * r2=pkt(id=n,off=8,r=0)
13378 * r3=pkt(id=n,off=0,r=0)
13380 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13381 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13382 * and [r3, r3 + 8-1) respectively is safe to access depending on
13386 /* If our ids match, then we must have the same max_value. And we
13387 * don't care about the other reg's fixed offset, since if it's too big
13388 * the range won't allow anything.
13389 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13391 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13392 if (reg->type == type && reg->id == dst_reg->id)
13393 /* keep the maximum range already checked */
13394 reg->range = max(reg->range, new_range);
13398 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13400 struct tnum subreg = tnum_subreg(reg->var_off);
13401 s32 sval = (s32)val;
13405 if (tnum_is_const(subreg))
13406 return !!tnum_equals_const(subreg, val);
13407 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13411 if (tnum_is_const(subreg))
13412 return !tnum_equals_const(subreg, val);
13413 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13417 if ((~subreg.mask & subreg.value) & val)
13419 if (!((subreg.mask | subreg.value) & val))
13423 if (reg->u32_min_value > val)
13425 else if (reg->u32_max_value <= val)
13429 if (reg->s32_min_value > sval)
13431 else if (reg->s32_max_value <= sval)
13435 if (reg->u32_max_value < val)
13437 else if (reg->u32_min_value >= val)
13441 if (reg->s32_max_value < sval)
13443 else if (reg->s32_min_value >= sval)
13447 if (reg->u32_min_value >= val)
13449 else if (reg->u32_max_value < val)
13453 if (reg->s32_min_value >= sval)
13455 else if (reg->s32_max_value < sval)
13459 if (reg->u32_max_value <= val)
13461 else if (reg->u32_min_value > val)
13465 if (reg->s32_max_value <= sval)
13467 else if (reg->s32_min_value > sval)
13476 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13478 s64 sval = (s64)val;
13482 if (tnum_is_const(reg->var_off))
13483 return !!tnum_equals_const(reg->var_off, val);
13484 else if (val < reg->umin_value || val > reg->umax_value)
13488 if (tnum_is_const(reg->var_off))
13489 return !tnum_equals_const(reg->var_off, val);
13490 else if (val < reg->umin_value || val > reg->umax_value)
13494 if ((~reg->var_off.mask & reg->var_off.value) & val)
13496 if (!((reg->var_off.mask | reg->var_off.value) & val))
13500 if (reg->umin_value > val)
13502 else if (reg->umax_value <= val)
13506 if (reg->smin_value > sval)
13508 else if (reg->smax_value <= sval)
13512 if (reg->umax_value < val)
13514 else if (reg->umin_value >= val)
13518 if (reg->smax_value < sval)
13520 else if (reg->smin_value >= sval)
13524 if (reg->umin_value >= val)
13526 else if (reg->umax_value < val)
13530 if (reg->smin_value >= sval)
13532 else if (reg->smax_value < sval)
13536 if (reg->umax_value <= val)
13538 else if (reg->umin_value > val)
13542 if (reg->smax_value <= sval)
13544 else if (reg->smin_value > sval)
13552 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13554 * 1 - branch will be taken and "goto target" will be executed
13555 * 0 - branch will not be taken and fall-through to next insn
13556 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13559 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13562 if (__is_pointer_value(false, reg)) {
13563 if (!reg_not_null(reg))
13566 /* If pointer is valid tests against zero will fail so we can
13567 * use this to direct branch taken.
13583 return is_branch32_taken(reg, val, opcode);
13584 return is_branch64_taken(reg, val, opcode);
13587 static int flip_opcode(u32 opcode)
13589 /* How can we transform "a <op> b" into "b <op> a"? */
13590 static const u8 opcode_flip[16] = {
13591 /* these stay the same */
13592 [BPF_JEQ >> 4] = BPF_JEQ,
13593 [BPF_JNE >> 4] = BPF_JNE,
13594 [BPF_JSET >> 4] = BPF_JSET,
13595 /* these swap "lesser" and "greater" (L and G in the opcodes) */
13596 [BPF_JGE >> 4] = BPF_JLE,
13597 [BPF_JGT >> 4] = BPF_JLT,
13598 [BPF_JLE >> 4] = BPF_JGE,
13599 [BPF_JLT >> 4] = BPF_JGT,
13600 [BPF_JSGE >> 4] = BPF_JSLE,
13601 [BPF_JSGT >> 4] = BPF_JSLT,
13602 [BPF_JSLE >> 4] = BPF_JSGE,
13603 [BPF_JSLT >> 4] = BPF_JSGT
13605 return opcode_flip[opcode >> 4];
13608 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13609 struct bpf_reg_state *src_reg,
13612 struct bpf_reg_state *pkt;
13614 if (src_reg->type == PTR_TO_PACKET_END) {
13616 } else if (dst_reg->type == PTR_TO_PACKET_END) {
13618 opcode = flip_opcode(opcode);
13623 if (pkt->range >= 0)
13628 /* pkt <= pkt_end */
13631 /* pkt > pkt_end */
13632 if (pkt->range == BEYOND_PKT_END)
13633 /* pkt has at last one extra byte beyond pkt_end */
13634 return opcode == BPF_JGT;
13637 /* pkt < pkt_end */
13640 /* pkt >= pkt_end */
13641 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13642 return opcode == BPF_JGE;
13648 /* Adjusts the register min/max values in the case that the dst_reg is the
13649 * variable register that we are working on, and src_reg is a constant or we're
13650 * simply doing a BPF_K check.
13651 * In JEQ/JNE cases we also adjust the var_off values.
13653 static void reg_set_min_max(struct bpf_reg_state *true_reg,
13654 struct bpf_reg_state *false_reg,
13655 u64 val, u32 val32,
13656 u8 opcode, bool is_jmp32)
13658 struct tnum false_32off = tnum_subreg(false_reg->var_off);
13659 struct tnum false_64off = false_reg->var_off;
13660 struct tnum true_32off = tnum_subreg(true_reg->var_off);
13661 struct tnum true_64off = true_reg->var_off;
13662 s64 sval = (s64)val;
13663 s32 sval32 = (s32)val32;
13665 /* If the dst_reg is a pointer, we can't learn anything about its
13666 * variable offset from the compare (unless src_reg were a pointer into
13667 * the same object, but we don't bother with that.
13668 * Since false_reg and true_reg have the same type by construction, we
13669 * only need to check one of them for pointerness.
13671 if (__is_pointer_value(false, false_reg))
13675 /* JEQ/JNE comparison doesn't change the register equivalence.
13678 * if (r1 == 42) goto label;
13680 * label: // here both r1 and r2 are known to be 42.
13682 * Hence when marking register as known preserve it's ID.
13686 __mark_reg32_known(true_reg, val32);
13687 true_32off = tnum_subreg(true_reg->var_off);
13689 ___mark_reg_known(true_reg, val);
13690 true_64off = true_reg->var_off;
13695 __mark_reg32_known(false_reg, val32);
13696 false_32off = tnum_subreg(false_reg->var_off);
13698 ___mark_reg_known(false_reg, val);
13699 false_64off = false_reg->var_off;
13704 false_32off = tnum_and(false_32off, tnum_const(~val32));
13705 if (is_power_of_2(val32))
13706 true_32off = tnum_or(true_32off,
13707 tnum_const(val32));
13709 false_64off = tnum_and(false_64off, tnum_const(~val));
13710 if (is_power_of_2(val))
13711 true_64off = tnum_or(true_64off,
13719 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
13720 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13722 false_reg->u32_max_value = min(false_reg->u32_max_value,
13724 true_reg->u32_min_value = max(true_reg->u32_min_value,
13727 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
13728 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13730 false_reg->umax_value = min(false_reg->umax_value, false_umax);
13731 true_reg->umin_value = max(true_reg->umin_value, true_umin);
13739 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
13740 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
13742 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13743 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13745 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
13746 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13748 false_reg->smax_value = min(false_reg->smax_value, false_smax);
13749 true_reg->smin_value = max(true_reg->smin_value, true_smin);
13757 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
13758 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13760 false_reg->u32_min_value = max(false_reg->u32_min_value,
13762 true_reg->u32_max_value = min(true_reg->u32_max_value,
13765 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
13766 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13768 false_reg->umin_value = max(false_reg->umin_value, false_umin);
13769 true_reg->umax_value = min(true_reg->umax_value, true_umax);
13777 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
13778 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
13780 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13781 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13783 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
13784 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13786 false_reg->smin_value = max(false_reg->smin_value, false_smin);
13787 true_reg->smax_value = min(true_reg->smax_value, true_smax);
13796 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13797 tnum_subreg(false_32off));
13798 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13799 tnum_subreg(true_32off));
13800 __reg_combine_32_into_64(false_reg);
13801 __reg_combine_32_into_64(true_reg);
13803 false_reg->var_off = false_64off;
13804 true_reg->var_off = true_64off;
13805 __reg_combine_64_into_32(false_reg);
13806 __reg_combine_64_into_32(true_reg);
13810 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
13811 * the variable reg.
13813 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
13814 struct bpf_reg_state *false_reg,
13815 u64 val, u32 val32,
13816 u8 opcode, bool is_jmp32)
13818 opcode = flip_opcode(opcode);
13819 /* This uses zero as "not present in table"; luckily the zero opcode,
13820 * BPF_JA, can't get here.
13823 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
13826 /* Regs are known to be equal, so intersect their min/max/var_off */
13827 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13828 struct bpf_reg_state *dst_reg)
13830 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13831 dst_reg->umin_value);
13832 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13833 dst_reg->umax_value);
13834 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13835 dst_reg->smin_value);
13836 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13837 dst_reg->smax_value);
13838 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13840 reg_bounds_sync(src_reg);
13841 reg_bounds_sync(dst_reg);
13844 static void reg_combine_min_max(struct bpf_reg_state *true_src,
13845 struct bpf_reg_state *true_dst,
13846 struct bpf_reg_state *false_src,
13847 struct bpf_reg_state *false_dst,
13852 __reg_combine_min_max(true_src, true_dst);
13855 __reg_combine_min_max(false_src, false_dst);
13860 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13861 struct bpf_reg_state *reg, u32 id,
13864 if (type_may_be_null(reg->type) && reg->id == id &&
13865 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
13866 /* Old offset (both fixed and variable parts) should have been
13867 * known-zero, because we don't allow pointer arithmetic on
13868 * pointers that might be NULL. If we see this happening, don't
13869 * convert the register.
13871 * But in some cases, some helpers that return local kptrs
13872 * advance offset for the returned pointer. In those cases, it
13873 * is fine to expect to see reg->off.
13875 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13877 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13878 WARN_ON_ONCE(reg->off))
13882 reg->type = SCALAR_VALUE;
13883 /* We don't need id and ref_obj_id from this point
13884 * onwards anymore, thus we should better reset it,
13885 * so that state pruning has chances to take effect.
13888 reg->ref_obj_id = 0;
13893 mark_ptr_not_null_reg(reg);
13895 if (!reg_may_point_to_spin_lock(reg)) {
13896 /* For not-NULL ptr, reg->ref_obj_id will be reset
13897 * in release_reference().
13899 * reg->id is still used by spin_lock ptr. Other
13900 * than spin_lock ptr type, reg->id can be reset.
13907 /* The logic is similar to find_good_pkt_pointers(), both could eventually
13908 * be folded together at some point.
13910 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13913 struct bpf_func_state *state = vstate->frame[vstate->curframe];
13914 struct bpf_reg_state *regs = state->regs, *reg;
13915 u32 ref_obj_id = regs[regno].ref_obj_id;
13916 u32 id = regs[regno].id;
13918 if (ref_obj_id && ref_obj_id == id && is_null)
13919 /* regs[regno] is in the " == NULL" branch.
13920 * No one could have freed the reference state before
13921 * doing the NULL check.
13923 WARN_ON_ONCE(release_reference_state(state, id));
13925 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13926 mark_ptr_or_null_reg(state, reg, id, is_null);
13930 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13931 struct bpf_reg_state *dst_reg,
13932 struct bpf_reg_state *src_reg,
13933 struct bpf_verifier_state *this_branch,
13934 struct bpf_verifier_state *other_branch)
13936 if (BPF_SRC(insn->code) != BPF_X)
13939 /* Pointers are always 64-bit. */
13940 if (BPF_CLASS(insn->code) == BPF_JMP32)
13943 switch (BPF_OP(insn->code)) {
13945 if ((dst_reg->type == PTR_TO_PACKET &&
13946 src_reg->type == PTR_TO_PACKET_END) ||
13947 (dst_reg->type == PTR_TO_PACKET_META &&
13948 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13949 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13950 find_good_pkt_pointers(this_branch, dst_reg,
13951 dst_reg->type, false);
13952 mark_pkt_end(other_branch, insn->dst_reg, true);
13953 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13954 src_reg->type == PTR_TO_PACKET) ||
13955 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13956 src_reg->type == PTR_TO_PACKET_META)) {
13957 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
13958 find_good_pkt_pointers(other_branch, src_reg,
13959 src_reg->type, true);
13960 mark_pkt_end(this_branch, insn->src_reg, false);
13966 if ((dst_reg->type == PTR_TO_PACKET &&
13967 src_reg->type == PTR_TO_PACKET_END) ||
13968 (dst_reg->type == PTR_TO_PACKET_META &&
13969 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13970 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13971 find_good_pkt_pointers(other_branch, dst_reg,
13972 dst_reg->type, true);
13973 mark_pkt_end(this_branch, insn->dst_reg, false);
13974 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13975 src_reg->type == PTR_TO_PACKET) ||
13976 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13977 src_reg->type == PTR_TO_PACKET_META)) {
13978 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
13979 find_good_pkt_pointers(this_branch, src_reg,
13980 src_reg->type, false);
13981 mark_pkt_end(other_branch, insn->src_reg, true);
13987 if ((dst_reg->type == PTR_TO_PACKET &&
13988 src_reg->type == PTR_TO_PACKET_END) ||
13989 (dst_reg->type == PTR_TO_PACKET_META &&
13990 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13991 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13992 find_good_pkt_pointers(this_branch, dst_reg,
13993 dst_reg->type, true);
13994 mark_pkt_end(other_branch, insn->dst_reg, false);
13995 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
13996 src_reg->type == PTR_TO_PACKET) ||
13997 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13998 src_reg->type == PTR_TO_PACKET_META)) {
13999 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14000 find_good_pkt_pointers(other_branch, src_reg,
14001 src_reg->type, false);
14002 mark_pkt_end(this_branch, insn->src_reg, true);
14008 if ((dst_reg->type == PTR_TO_PACKET &&
14009 src_reg->type == PTR_TO_PACKET_END) ||
14010 (dst_reg->type == PTR_TO_PACKET_META &&
14011 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14012 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14013 find_good_pkt_pointers(other_branch, dst_reg,
14014 dst_reg->type, false);
14015 mark_pkt_end(this_branch, insn->dst_reg, true);
14016 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14017 src_reg->type == PTR_TO_PACKET) ||
14018 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14019 src_reg->type == PTR_TO_PACKET_META)) {
14020 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14021 find_good_pkt_pointers(this_branch, src_reg,
14022 src_reg->type, true);
14023 mark_pkt_end(other_branch, insn->src_reg, false);
14035 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14036 struct bpf_reg_state *known_reg)
14038 struct bpf_func_state *state;
14039 struct bpf_reg_state *reg;
14041 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14042 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14043 copy_register_state(reg, known_reg);
14047 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14048 struct bpf_insn *insn, int *insn_idx)
14050 struct bpf_verifier_state *this_branch = env->cur_state;
14051 struct bpf_verifier_state *other_branch;
14052 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14053 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14054 struct bpf_reg_state *eq_branch_regs;
14055 u8 opcode = BPF_OP(insn->code);
14060 /* Only conditional jumps are expected to reach here. */
14061 if (opcode == BPF_JA || opcode > BPF_JSLE) {
14062 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14066 /* check src2 operand */
14067 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14071 dst_reg = ®s[insn->dst_reg];
14072 if (BPF_SRC(insn->code) == BPF_X) {
14073 if (insn->imm != 0) {
14074 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14078 /* check src1 operand */
14079 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14083 src_reg = ®s[insn->src_reg];
14084 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14085 is_pointer_value(env, insn->src_reg)) {
14086 verbose(env, "R%d pointer comparison prohibited\n",
14091 if (insn->src_reg != BPF_REG_0) {
14092 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14097 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14099 if (BPF_SRC(insn->code) == BPF_K) {
14100 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14101 } else if (src_reg->type == SCALAR_VALUE &&
14102 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14103 pred = is_branch_taken(dst_reg,
14104 tnum_subreg(src_reg->var_off).value,
14107 } else if (src_reg->type == SCALAR_VALUE &&
14108 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14109 pred = is_branch_taken(dst_reg,
14110 src_reg->var_off.value,
14113 } else if (dst_reg->type == SCALAR_VALUE &&
14114 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14115 pred = is_branch_taken(src_reg,
14116 tnum_subreg(dst_reg->var_off).value,
14117 flip_opcode(opcode),
14119 } else if (dst_reg->type == SCALAR_VALUE &&
14120 !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14121 pred = is_branch_taken(src_reg,
14122 dst_reg->var_off.value,
14123 flip_opcode(opcode),
14125 } else if (reg_is_pkt_pointer_any(dst_reg) &&
14126 reg_is_pkt_pointer_any(src_reg) &&
14128 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14132 /* If we get here with a dst_reg pointer type it is because
14133 * above is_branch_taken() special cased the 0 comparison.
14135 if (!__is_pointer_value(false, dst_reg))
14136 err = mark_chain_precision(env, insn->dst_reg);
14137 if (BPF_SRC(insn->code) == BPF_X && !err &&
14138 !__is_pointer_value(false, src_reg))
14139 err = mark_chain_precision(env, insn->src_reg);
14145 /* Only follow the goto, ignore fall-through. If needed, push
14146 * the fall-through branch for simulation under speculative
14149 if (!env->bypass_spec_v1 &&
14150 !sanitize_speculative_path(env, insn, *insn_idx + 1,
14153 if (env->log.level & BPF_LOG_LEVEL)
14154 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14155 *insn_idx += insn->off;
14157 } else if (pred == 0) {
14158 /* Only follow the fall-through branch, since that's where the
14159 * program will go. If needed, push the goto branch for
14160 * simulation under speculative execution.
14162 if (!env->bypass_spec_v1 &&
14163 !sanitize_speculative_path(env, insn,
14164 *insn_idx + insn->off + 1,
14167 if (env->log.level & BPF_LOG_LEVEL)
14168 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14172 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14176 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14178 /* detect if we are comparing against a constant value so we can adjust
14179 * our min/max values for our dst register.
14180 * this is only legit if both are scalars (or pointers to the same
14181 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14182 * because otherwise the different base pointers mean the offsets aren't
14185 if (BPF_SRC(insn->code) == BPF_X) {
14186 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
14188 if (dst_reg->type == SCALAR_VALUE &&
14189 src_reg->type == SCALAR_VALUE) {
14190 if (tnum_is_const(src_reg->var_off) ||
14192 tnum_is_const(tnum_subreg(src_reg->var_off))))
14193 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14195 src_reg->var_off.value,
14196 tnum_subreg(src_reg->var_off).value,
14198 else if (tnum_is_const(dst_reg->var_off) ||
14200 tnum_is_const(tnum_subreg(dst_reg->var_off))))
14201 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14203 dst_reg->var_off.value,
14204 tnum_subreg(dst_reg->var_off).value,
14206 else if (!is_jmp32 &&
14207 (opcode == BPF_JEQ || opcode == BPF_JNE))
14208 /* Comparing for equality, we can combine knowledge */
14209 reg_combine_min_max(&other_branch_regs[insn->src_reg],
14210 &other_branch_regs[insn->dst_reg],
14211 src_reg, dst_reg, opcode);
14213 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14214 find_equal_scalars(this_branch, src_reg);
14215 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14219 } else if (dst_reg->type == SCALAR_VALUE) {
14220 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14221 dst_reg, insn->imm, (u32)insn->imm,
14225 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14226 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14227 find_equal_scalars(this_branch, dst_reg);
14228 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14231 /* if one pointer register is compared to another pointer
14232 * register check if PTR_MAYBE_NULL could be lifted.
14233 * E.g. register A - maybe null
14234 * register B - not null
14235 * for JNE A, B, ... - A is not null in the false branch;
14236 * for JEQ A, B, ... - A is not null in the true branch.
14238 * Since PTR_TO_BTF_ID points to a kernel struct that does
14239 * not need to be null checked by the BPF program, i.e.,
14240 * could be null even without PTR_MAYBE_NULL marking, so
14241 * only propagate nullness when neither reg is that type.
14243 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14244 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14245 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14246 base_type(src_reg->type) != PTR_TO_BTF_ID &&
14247 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14248 eq_branch_regs = NULL;
14251 eq_branch_regs = other_branch_regs;
14254 eq_branch_regs = regs;
14260 if (eq_branch_regs) {
14261 if (type_may_be_null(src_reg->type))
14262 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14264 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14268 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14269 * NOTE: these optimizations below are related with pointer comparison
14270 * which will never be JMP32.
14272 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14273 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14274 type_may_be_null(dst_reg->type)) {
14275 /* Mark all identical registers in each branch as either
14276 * safe or unknown depending R == 0 or R != 0 conditional.
14278 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14279 opcode == BPF_JNE);
14280 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14281 opcode == BPF_JEQ);
14282 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
14283 this_branch, other_branch) &&
14284 is_pointer_value(env, insn->dst_reg)) {
14285 verbose(env, "R%d pointer comparison prohibited\n",
14289 if (env->log.level & BPF_LOG_LEVEL)
14290 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14294 /* verify BPF_LD_IMM64 instruction */
14295 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14297 struct bpf_insn_aux_data *aux = cur_aux(env);
14298 struct bpf_reg_state *regs = cur_regs(env);
14299 struct bpf_reg_state *dst_reg;
14300 struct bpf_map *map;
14303 if (BPF_SIZE(insn->code) != BPF_DW) {
14304 verbose(env, "invalid BPF_LD_IMM insn\n");
14307 if (insn->off != 0) {
14308 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14312 err = check_reg_arg(env, insn->dst_reg, DST_OP);
14316 dst_reg = ®s[insn->dst_reg];
14317 if (insn->src_reg == 0) {
14318 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14320 dst_reg->type = SCALAR_VALUE;
14321 __mark_reg_known(®s[insn->dst_reg], imm);
14325 /* All special src_reg cases are listed below. From this point onwards
14326 * we either succeed and assign a corresponding dst_reg->type after
14327 * zeroing the offset, or fail and reject the program.
14329 mark_reg_known_zero(env, regs, insn->dst_reg);
14331 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14332 dst_reg->type = aux->btf_var.reg_type;
14333 switch (base_type(dst_reg->type)) {
14335 dst_reg->mem_size = aux->btf_var.mem_size;
14337 case PTR_TO_BTF_ID:
14338 dst_reg->btf = aux->btf_var.btf;
14339 dst_reg->btf_id = aux->btf_var.btf_id;
14342 verbose(env, "bpf verifier is misconfigured\n");
14348 if (insn->src_reg == BPF_PSEUDO_FUNC) {
14349 struct bpf_prog_aux *aux = env->prog->aux;
14350 u32 subprogno = find_subprog(env,
14351 env->insn_idx + insn->imm + 1);
14353 if (!aux->func_info) {
14354 verbose(env, "missing btf func_info\n");
14357 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14358 verbose(env, "callback function not static\n");
14362 dst_reg->type = PTR_TO_FUNC;
14363 dst_reg->subprogno = subprogno;
14367 map = env->used_maps[aux->map_index];
14368 dst_reg->map_ptr = map;
14370 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14371 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14372 dst_reg->type = PTR_TO_MAP_VALUE;
14373 dst_reg->off = aux->map_off;
14374 WARN_ON_ONCE(map->max_entries != 1);
14375 /* We want reg->id to be same (0) as map_value is not distinct */
14376 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14377 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14378 dst_reg->type = CONST_PTR_TO_MAP;
14380 verbose(env, "bpf verifier is misconfigured\n");
14387 static bool may_access_skb(enum bpf_prog_type type)
14390 case BPF_PROG_TYPE_SOCKET_FILTER:
14391 case BPF_PROG_TYPE_SCHED_CLS:
14392 case BPF_PROG_TYPE_SCHED_ACT:
14399 /* verify safety of LD_ABS|LD_IND instructions:
14400 * - they can only appear in the programs where ctx == skb
14401 * - since they are wrappers of function calls, they scratch R1-R5 registers,
14402 * preserve R6-R9, and store return value into R0
14405 * ctx == skb == R6 == CTX
14408 * SRC == any register
14409 * IMM == 32-bit immediate
14412 * R0 - 8/16/32-bit skb data converted to cpu endianness
14414 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14416 struct bpf_reg_state *regs = cur_regs(env);
14417 static const int ctx_reg = BPF_REG_6;
14418 u8 mode = BPF_MODE(insn->code);
14421 if (!may_access_skb(resolve_prog_type(env->prog))) {
14422 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14426 if (!env->ops->gen_ld_abs) {
14427 verbose(env, "bpf verifier is misconfigured\n");
14431 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14432 BPF_SIZE(insn->code) == BPF_DW ||
14433 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14434 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14438 /* check whether implicit source operand (register R6) is readable */
14439 err = check_reg_arg(env, ctx_reg, SRC_OP);
14443 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14444 * gen_ld_abs() may terminate the program at runtime, leading to
14447 err = check_reference_leak(env);
14449 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14453 if (env->cur_state->active_lock.ptr) {
14454 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14458 if (env->cur_state->active_rcu_lock) {
14459 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14463 if (regs[ctx_reg].type != PTR_TO_CTX) {
14465 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14469 if (mode == BPF_IND) {
14470 /* check explicit source operand */
14471 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14476 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
14480 /* reset caller saved regs to unreadable */
14481 for (i = 0; i < CALLER_SAVED_REGS; i++) {
14482 mark_reg_not_init(env, regs, caller_saved[i]);
14483 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14486 /* mark destination R0 register as readable, since it contains
14487 * the value fetched from the packet.
14488 * Already marked as written above.
14490 mark_reg_unknown(env, regs, BPF_REG_0);
14491 /* ld_abs load up to 32-bit skb data. */
14492 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14496 static int check_return_code(struct bpf_verifier_env *env)
14498 struct tnum enforce_attach_type_range = tnum_unknown;
14499 const struct bpf_prog *prog = env->prog;
14500 struct bpf_reg_state *reg;
14501 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14502 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14504 struct bpf_func_state *frame = env->cur_state->frame[0];
14505 const bool is_subprog = frame->subprogno;
14507 /* LSM and struct_ops func-ptr's return type could be "void" */
14509 switch (prog_type) {
14510 case BPF_PROG_TYPE_LSM:
14511 if (prog->expected_attach_type == BPF_LSM_CGROUP)
14512 /* See below, can be 0 or 0-1 depending on hook. */
14515 case BPF_PROG_TYPE_STRUCT_OPS:
14516 if (!prog->aux->attach_func_proto->type)
14524 /* eBPF calling convention is such that R0 is used
14525 * to return the value from eBPF program.
14526 * Make sure that it's readable at this time
14527 * of bpf_exit, which means that program wrote
14528 * something into it earlier
14530 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14534 if (is_pointer_value(env, BPF_REG_0)) {
14535 verbose(env, "R0 leaks addr as return value\n");
14539 reg = cur_regs(env) + BPF_REG_0;
14541 if (frame->in_async_callback_fn) {
14542 /* enforce return zero from async callbacks like timer */
14543 if (reg->type != SCALAR_VALUE) {
14544 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14545 reg_type_str(env, reg->type));
14549 if (!tnum_in(const_0, reg->var_off)) {
14550 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
14557 if (reg->type != SCALAR_VALUE) {
14558 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14559 reg_type_str(env, reg->type));
14565 switch (prog_type) {
14566 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14567 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14568 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14569 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14570 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14571 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14572 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
14573 range = tnum_range(1, 1);
14574 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14575 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14576 range = tnum_range(0, 3);
14578 case BPF_PROG_TYPE_CGROUP_SKB:
14579 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14580 range = tnum_range(0, 3);
14581 enforce_attach_type_range = tnum_range(2, 3);
14584 case BPF_PROG_TYPE_CGROUP_SOCK:
14585 case BPF_PROG_TYPE_SOCK_OPS:
14586 case BPF_PROG_TYPE_CGROUP_DEVICE:
14587 case BPF_PROG_TYPE_CGROUP_SYSCTL:
14588 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14590 case BPF_PROG_TYPE_RAW_TRACEPOINT:
14591 if (!env->prog->aux->attach_btf_id)
14593 range = tnum_const(0);
14595 case BPF_PROG_TYPE_TRACING:
14596 switch (env->prog->expected_attach_type) {
14597 case BPF_TRACE_FENTRY:
14598 case BPF_TRACE_FEXIT:
14599 range = tnum_const(0);
14601 case BPF_TRACE_RAW_TP:
14602 case BPF_MODIFY_RETURN:
14604 case BPF_TRACE_ITER:
14610 case BPF_PROG_TYPE_SK_LOOKUP:
14611 range = tnum_range(SK_DROP, SK_PASS);
14614 case BPF_PROG_TYPE_LSM:
14615 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14616 /* Regular BPF_PROG_TYPE_LSM programs can return
14621 if (!env->prog->aux->attach_func_proto->type) {
14622 /* Make sure programs that attach to void
14623 * hooks don't try to modify return value.
14625 range = tnum_range(1, 1);
14629 case BPF_PROG_TYPE_NETFILTER:
14630 range = tnum_range(NF_DROP, NF_ACCEPT);
14632 case BPF_PROG_TYPE_EXT:
14633 /* freplace program can return anything as its return value
14634 * depends on the to-be-replaced kernel func or bpf program.
14640 if (reg->type != SCALAR_VALUE) {
14641 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
14642 reg_type_str(env, reg->type));
14646 if (!tnum_in(range, reg->var_off)) {
14647 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
14648 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
14649 prog_type == BPF_PROG_TYPE_LSM &&
14650 !prog->aux->attach_func_proto->type)
14651 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
14655 if (!tnum_is_unknown(enforce_attach_type_range) &&
14656 tnum_in(enforce_attach_type_range, reg->var_off))
14657 env->prog->enforce_expected_attach_type = 1;
14661 /* non-recursive DFS pseudo code
14662 * 1 procedure DFS-iterative(G,v):
14663 * 2 label v as discovered
14664 * 3 let S be a stack
14666 * 5 while S is not empty
14668 * 7 if t is what we're looking for:
14670 * 9 for all edges e in G.adjacentEdges(t) do
14671 * 10 if edge e is already labelled
14672 * 11 continue with the next edge
14673 * 12 w <- G.adjacentVertex(t,e)
14674 * 13 if vertex w is not discovered and not explored
14675 * 14 label e as tree-edge
14676 * 15 label w as discovered
14679 * 18 else if vertex w is discovered
14680 * 19 label e as back-edge
14682 * 21 // vertex w is explored
14683 * 22 label e as forward- or cross-edge
14684 * 23 label t as explored
14688 * 0x10 - discovered
14689 * 0x11 - discovered and fall-through edge labelled
14690 * 0x12 - discovered and fall-through and branch edges labelled
14701 static u32 state_htab_size(struct bpf_verifier_env *env)
14703 return env->prog->len;
14706 static struct bpf_verifier_state_list **explored_state(
14707 struct bpf_verifier_env *env,
14710 struct bpf_verifier_state *cur = env->cur_state;
14711 struct bpf_func_state *state = cur->frame[cur->curframe];
14713 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
14716 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
14718 env->insn_aux_data[idx].prune_point = true;
14721 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14723 return env->insn_aux_data[insn_idx].prune_point;
14726 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14728 env->insn_aux_data[idx].force_checkpoint = true;
14731 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14733 return env->insn_aux_data[insn_idx].force_checkpoint;
14738 DONE_EXPLORING = 0,
14739 KEEP_EXPLORING = 1,
14742 /* t, w, e - match pseudo-code above:
14743 * t - index of current instruction
14744 * w - next instruction
14747 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
14749 int *insn_stack = env->cfg.insn_stack;
14750 int *insn_state = env->cfg.insn_state;
14752 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
14753 return DONE_EXPLORING;
14755 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
14756 return DONE_EXPLORING;
14758 if (w < 0 || w >= env->prog->len) {
14759 verbose_linfo(env, t, "%d: ", t);
14760 verbose(env, "jump out of range from insn %d to %d\n", t, w);
14765 /* mark branch target for state pruning */
14766 mark_prune_point(env, w);
14767 mark_jmp_point(env, w);
14770 if (insn_state[w] == 0) {
14772 insn_state[t] = DISCOVERED | e;
14773 insn_state[w] = DISCOVERED;
14774 if (env->cfg.cur_stack >= env->prog->len)
14776 insn_stack[env->cfg.cur_stack++] = w;
14777 return KEEP_EXPLORING;
14778 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
14779 if (env->bpf_capable)
14780 return DONE_EXPLORING;
14781 verbose_linfo(env, t, "%d: ", t);
14782 verbose_linfo(env, w, "%d: ", w);
14783 verbose(env, "back-edge from insn %d to %d\n", t, w);
14785 } else if (insn_state[w] == EXPLORED) {
14786 /* forward- or cross-edge */
14787 insn_state[t] = DISCOVERED | e;
14789 verbose(env, "insn state internal bug\n");
14792 return DONE_EXPLORING;
14795 static int visit_func_call_insn(int t, struct bpf_insn *insns,
14796 struct bpf_verifier_env *env,
14801 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
14802 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
14806 mark_prune_point(env, t + insn_sz);
14807 /* when we exit from subprog, we need to record non-linear history */
14808 mark_jmp_point(env, t + insn_sz);
14810 if (visit_callee) {
14811 mark_prune_point(env, t);
14812 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
14817 /* Visits the instruction at index t and returns one of the following:
14818 * < 0 - an error occurred
14819 * DONE_EXPLORING - the instruction was fully explored
14820 * KEEP_EXPLORING - there is still work to be done before it is fully explored
14822 static int visit_insn(int t, struct bpf_verifier_env *env)
14824 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
14825 int ret, off, insn_sz;
14827 if (bpf_pseudo_func(insn))
14828 return visit_func_call_insn(t, insns, env, true);
14830 /* All non-branch instructions have a single fall-through edge. */
14831 if (BPF_CLASS(insn->code) != BPF_JMP &&
14832 BPF_CLASS(insn->code) != BPF_JMP32) {
14833 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
14834 return push_insn(t, t + insn_sz, FALLTHROUGH, env);
14837 switch (BPF_OP(insn->code)) {
14839 return DONE_EXPLORING;
14842 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
14843 /* Mark this call insn as a prune point to trigger
14844 * is_state_visited() check before call itself is
14845 * processed by __check_func_call(). Otherwise new
14846 * async state will be pushed for further exploration.
14848 mark_prune_point(env, t);
14849 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14850 struct bpf_kfunc_call_arg_meta meta;
14852 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
14853 if (ret == 0 && is_iter_next_kfunc(&meta)) {
14854 mark_prune_point(env, t);
14855 /* Checking and saving state checkpoints at iter_next() call
14856 * is crucial for fast convergence of open-coded iterator loop
14857 * logic, so we need to force it. If we don't do that,
14858 * is_state_visited() might skip saving a checkpoint, causing
14859 * unnecessarily long sequence of not checkpointed
14860 * instructions and jumps, leading to exhaustion of jump
14861 * history buffer, and potentially other undesired outcomes.
14862 * It is expected that with correct open-coded iterators
14863 * convergence will happen quickly, so we don't run a risk of
14864 * exhausting memory.
14866 mark_force_checkpoint(env, t);
14869 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
14872 if (BPF_SRC(insn->code) != BPF_K)
14875 if (BPF_CLASS(insn->code) == BPF_JMP)
14880 /* unconditional jump with single edge */
14881 ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
14885 mark_prune_point(env, t + off + 1);
14886 mark_jmp_point(env, t + off + 1);
14891 /* conditional jump with two edges */
14892 mark_prune_point(env, t);
14894 ret = push_insn(t, t + 1, FALLTHROUGH, env);
14898 return push_insn(t, t + insn->off + 1, BRANCH, env);
14902 /* non-recursive depth-first-search to detect loops in BPF program
14903 * loop == back-edge in directed graph
14905 static int check_cfg(struct bpf_verifier_env *env)
14907 int insn_cnt = env->prog->len;
14908 int *insn_stack, *insn_state;
14912 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14916 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14918 kvfree(insn_state);
14922 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14923 insn_stack[0] = 0; /* 0 is the first instruction */
14924 env->cfg.cur_stack = 1;
14926 while (env->cfg.cur_stack > 0) {
14927 int t = insn_stack[env->cfg.cur_stack - 1];
14929 ret = visit_insn(t, env);
14931 case DONE_EXPLORING:
14932 insn_state[t] = EXPLORED;
14933 env->cfg.cur_stack--;
14935 case KEEP_EXPLORING:
14939 verbose(env, "visit_insn internal bug\n");
14946 if (env->cfg.cur_stack < 0) {
14947 verbose(env, "pop stack internal bug\n");
14952 for (i = 0; i < insn_cnt; i++) {
14953 struct bpf_insn *insn = &env->prog->insnsi[i];
14955 if (insn_state[i] != EXPLORED) {
14956 verbose(env, "unreachable insn %d\n", i);
14960 if (bpf_is_ldimm64(insn)) {
14961 if (insn_state[i + 1] != 0) {
14962 verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
14966 i++; /* skip second half of ldimm64 */
14969 ret = 0; /* cfg looks good */
14972 kvfree(insn_state);
14973 kvfree(insn_stack);
14974 env->cfg.insn_state = env->cfg.insn_stack = NULL;
14978 static int check_abnormal_return(struct bpf_verifier_env *env)
14982 for (i = 1; i < env->subprog_cnt; i++) {
14983 if (env->subprog_info[i].has_ld_abs) {
14984 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14987 if (env->subprog_info[i].has_tail_call) {
14988 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14995 /* The minimum supported BTF func info size */
14996 #define MIN_BPF_FUNCINFO_SIZE 8
14997 #define MAX_FUNCINFO_REC_SIZE 252
14999 static int check_btf_func(struct bpf_verifier_env *env,
15000 const union bpf_attr *attr,
15003 const struct btf_type *type, *func_proto, *ret_type;
15004 u32 i, nfuncs, urec_size, min_size;
15005 u32 krec_size = sizeof(struct bpf_func_info);
15006 struct bpf_func_info *krecord;
15007 struct bpf_func_info_aux *info_aux = NULL;
15008 struct bpf_prog *prog;
15009 const struct btf *btf;
15011 u32 prev_offset = 0;
15012 bool scalar_return;
15015 nfuncs = attr->func_info_cnt;
15017 if (check_abnormal_return(env))
15022 if (nfuncs != env->subprog_cnt) {
15023 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15027 urec_size = attr->func_info_rec_size;
15028 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15029 urec_size > MAX_FUNCINFO_REC_SIZE ||
15030 urec_size % sizeof(u32)) {
15031 verbose(env, "invalid func info rec size %u\n", urec_size);
15036 btf = prog->aux->btf;
15038 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15039 min_size = min_t(u32, krec_size, urec_size);
15041 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15044 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15048 for (i = 0; i < nfuncs; i++) {
15049 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15051 if (ret == -E2BIG) {
15052 verbose(env, "nonzero tailing record in func info");
15053 /* set the size kernel expects so loader can zero
15054 * out the rest of the record.
15056 if (copy_to_bpfptr_offset(uattr,
15057 offsetof(union bpf_attr, func_info_rec_size),
15058 &min_size, sizeof(min_size)))
15064 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15069 /* check insn_off */
15072 if (krecord[i].insn_off) {
15074 "nonzero insn_off %u for the first func info record",
15075 krecord[i].insn_off);
15078 } else if (krecord[i].insn_off <= prev_offset) {
15080 "same or smaller insn offset (%u) than previous func info record (%u)",
15081 krecord[i].insn_off, prev_offset);
15085 if (env->subprog_info[i].start != krecord[i].insn_off) {
15086 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15090 /* check type_id */
15091 type = btf_type_by_id(btf, krecord[i].type_id);
15092 if (!type || !btf_type_is_func(type)) {
15093 verbose(env, "invalid type id %d in func info",
15094 krecord[i].type_id);
15097 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15099 func_proto = btf_type_by_id(btf, type->type);
15100 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15101 /* btf_func_check() already verified it during BTF load */
15103 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15105 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15106 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15107 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15110 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15111 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15115 prev_offset = krecord[i].insn_off;
15116 bpfptr_add(&urecord, urec_size);
15119 prog->aux->func_info = krecord;
15120 prog->aux->func_info_cnt = nfuncs;
15121 prog->aux->func_info_aux = info_aux;
15130 static void adjust_btf_func(struct bpf_verifier_env *env)
15132 struct bpf_prog_aux *aux = env->prog->aux;
15135 if (!aux->func_info)
15138 for (i = 0; i < env->subprog_cnt; i++)
15139 aux->func_info[i].insn_off = env->subprog_info[i].start;
15142 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
15143 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
15145 static int check_btf_line(struct bpf_verifier_env *env,
15146 const union bpf_attr *attr,
15149 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15150 struct bpf_subprog_info *sub;
15151 struct bpf_line_info *linfo;
15152 struct bpf_prog *prog;
15153 const struct btf *btf;
15157 nr_linfo = attr->line_info_cnt;
15160 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15163 rec_size = attr->line_info_rec_size;
15164 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15165 rec_size > MAX_LINEINFO_REC_SIZE ||
15166 rec_size & (sizeof(u32) - 1))
15169 /* Need to zero it in case the userspace may
15170 * pass in a smaller bpf_line_info object.
15172 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15173 GFP_KERNEL | __GFP_NOWARN);
15178 btf = prog->aux->btf;
15181 sub = env->subprog_info;
15182 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15183 expected_size = sizeof(struct bpf_line_info);
15184 ncopy = min_t(u32, expected_size, rec_size);
15185 for (i = 0; i < nr_linfo; i++) {
15186 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15188 if (err == -E2BIG) {
15189 verbose(env, "nonzero tailing record in line_info");
15190 if (copy_to_bpfptr_offset(uattr,
15191 offsetof(union bpf_attr, line_info_rec_size),
15192 &expected_size, sizeof(expected_size)))
15198 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15204 * Check insn_off to ensure
15205 * 1) strictly increasing AND
15206 * 2) bounded by prog->len
15208 * The linfo[0].insn_off == 0 check logically falls into
15209 * the later "missing bpf_line_info for func..." case
15210 * because the first linfo[0].insn_off must be the
15211 * first sub also and the first sub must have
15212 * subprog_info[0].start == 0.
15214 if ((i && linfo[i].insn_off <= prev_offset) ||
15215 linfo[i].insn_off >= prog->len) {
15216 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15217 i, linfo[i].insn_off, prev_offset,
15223 if (!prog->insnsi[linfo[i].insn_off].code) {
15225 "Invalid insn code at line_info[%u].insn_off\n",
15231 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15232 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15233 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15238 if (s != env->subprog_cnt) {
15239 if (linfo[i].insn_off == sub[s].start) {
15240 sub[s].linfo_idx = i;
15242 } else if (sub[s].start < linfo[i].insn_off) {
15243 verbose(env, "missing bpf_line_info for func#%u\n", s);
15249 prev_offset = linfo[i].insn_off;
15250 bpfptr_add(&ulinfo, rec_size);
15253 if (s != env->subprog_cnt) {
15254 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15255 env->subprog_cnt - s, s);
15260 prog->aux->linfo = linfo;
15261 prog->aux->nr_linfo = nr_linfo;
15270 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
15271 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
15273 static int check_core_relo(struct bpf_verifier_env *env,
15274 const union bpf_attr *attr,
15277 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15278 struct bpf_core_relo core_relo = {};
15279 struct bpf_prog *prog = env->prog;
15280 const struct btf *btf = prog->aux->btf;
15281 struct bpf_core_ctx ctx = {
15285 bpfptr_t u_core_relo;
15288 nr_core_relo = attr->core_relo_cnt;
15291 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15294 rec_size = attr->core_relo_rec_size;
15295 if (rec_size < MIN_CORE_RELO_SIZE ||
15296 rec_size > MAX_CORE_RELO_SIZE ||
15297 rec_size % sizeof(u32))
15300 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15301 expected_size = sizeof(struct bpf_core_relo);
15302 ncopy = min_t(u32, expected_size, rec_size);
15304 /* Unlike func_info and line_info, copy and apply each CO-RE
15305 * relocation record one at a time.
15307 for (i = 0; i < nr_core_relo; i++) {
15308 /* future proofing when sizeof(bpf_core_relo) changes */
15309 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15311 if (err == -E2BIG) {
15312 verbose(env, "nonzero tailing record in core_relo");
15313 if (copy_to_bpfptr_offset(uattr,
15314 offsetof(union bpf_attr, core_relo_rec_size),
15315 &expected_size, sizeof(expected_size)))
15321 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15326 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15327 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15328 i, core_relo.insn_off, prog->len);
15333 err = bpf_core_apply(&ctx, &core_relo, i,
15334 &prog->insnsi[core_relo.insn_off / 8]);
15337 bpfptr_add(&u_core_relo, rec_size);
15342 static int check_btf_info(struct bpf_verifier_env *env,
15343 const union bpf_attr *attr,
15349 if (!attr->func_info_cnt && !attr->line_info_cnt) {
15350 if (check_abnormal_return(env))
15355 btf = btf_get_by_fd(attr->prog_btf_fd);
15357 return PTR_ERR(btf);
15358 if (btf_is_kernel(btf)) {
15362 env->prog->aux->btf = btf;
15364 err = check_btf_func(env, attr, uattr);
15368 err = check_btf_line(env, attr, uattr);
15372 err = check_core_relo(env, attr, uattr);
15379 /* check %cur's range satisfies %old's */
15380 static bool range_within(struct bpf_reg_state *old,
15381 struct bpf_reg_state *cur)
15383 return old->umin_value <= cur->umin_value &&
15384 old->umax_value >= cur->umax_value &&
15385 old->smin_value <= cur->smin_value &&
15386 old->smax_value >= cur->smax_value &&
15387 old->u32_min_value <= cur->u32_min_value &&
15388 old->u32_max_value >= cur->u32_max_value &&
15389 old->s32_min_value <= cur->s32_min_value &&
15390 old->s32_max_value >= cur->s32_max_value;
15393 /* If in the old state two registers had the same id, then they need to have
15394 * the same id in the new state as well. But that id could be different from
15395 * the old state, so we need to track the mapping from old to new ids.
15396 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15397 * regs with old id 5 must also have new id 9 for the new state to be safe. But
15398 * regs with a different old id could still have new id 9, we don't care about
15400 * So we look through our idmap to see if this old id has been seen before. If
15401 * so, we require the new id to match; otherwise, we add the id pair to the map.
15403 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15405 struct bpf_id_pair *map = idmap->map;
15408 /* either both IDs should be set or both should be zero */
15409 if (!!old_id != !!cur_id)
15412 if (old_id == 0) /* cur_id == 0 as well */
15415 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15417 /* Reached an empty slot; haven't seen this id before */
15418 map[i].old = old_id;
15419 map[i].cur = cur_id;
15422 if (map[i].old == old_id)
15423 return map[i].cur == cur_id;
15424 if (map[i].cur == cur_id)
15427 /* We ran out of idmap slots, which should be impossible */
15432 /* Similar to check_ids(), but allocate a unique temporary ID
15433 * for 'old_id' or 'cur_id' of zero.
15434 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15436 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15438 old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15439 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15441 return check_ids(old_id, cur_id, idmap);
15444 static void clean_func_state(struct bpf_verifier_env *env,
15445 struct bpf_func_state *st)
15447 enum bpf_reg_liveness live;
15450 for (i = 0; i < BPF_REG_FP; i++) {
15451 live = st->regs[i].live;
15452 /* liveness must not touch this register anymore */
15453 st->regs[i].live |= REG_LIVE_DONE;
15454 if (!(live & REG_LIVE_READ))
15455 /* since the register is unused, clear its state
15456 * to make further comparison simpler
15458 __mark_reg_not_init(env, &st->regs[i]);
15461 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15462 live = st->stack[i].spilled_ptr.live;
15463 /* liveness must not touch this stack slot anymore */
15464 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15465 if (!(live & REG_LIVE_READ)) {
15466 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15467 for (j = 0; j < BPF_REG_SIZE; j++)
15468 st->stack[i].slot_type[j] = STACK_INVALID;
15473 static void clean_verifier_state(struct bpf_verifier_env *env,
15474 struct bpf_verifier_state *st)
15478 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15479 /* all regs in this state in all frames were already marked */
15482 for (i = 0; i <= st->curframe; i++)
15483 clean_func_state(env, st->frame[i]);
15486 /* the parentage chains form a tree.
15487 * the verifier states are added to state lists at given insn and
15488 * pushed into state stack for future exploration.
15489 * when the verifier reaches bpf_exit insn some of the verifer states
15490 * stored in the state lists have their final liveness state already,
15491 * but a lot of states will get revised from liveness point of view when
15492 * the verifier explores other branches.
15495 * 2: if r1 == 100 goto pc+1
15498 * when the verifier reaches exit insn the register r0 in the state list of
15499 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15500 * of insn 2 and goes exploring further. At the insn 4 it will walk the
15501 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15503 * Since the verifier pushes the branch states as it sees them while exploring
15504 * the program the condition of walking the branch instruction for the second
15505 * time means that all states below this branch were already explored and
15506 * their final liveness marks are already propagated.
15507 * Hence when the verifier completes the search of state list in is_state_visited()
15508 * we can call this clean_live_states() function to mark all liveness states
15509 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15510 * will not be used.
15511 * This function also clears the registers and stack for states that !READ
15512 * to simplify state merging.
15514 * Important note here that walking the same branch instruction in the callee
15515 * doesn't meant that the states are DONE. The verifier has to compare
15518 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15519 struct bpf_verifier_state *cur)
15521 struct bpf_verifier_state_list *sl;
15524 sl = *explored_state(env, insn);
15526 if (sl->state.branches)
15528 if (sl->state.insn_idx != insn ||
15529 sl->state.curframe != cur->curframe)
15531 for (i = 0; i <= cur->curframe; i++)
15532 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15534 clean_verifier_state(env, &sl->state);
15540 static bool regs_exact(const struct bpf_reg_state *rold,
15541 const struct bpf_reg_state *rcur,
15542 struct bpf_idmap *idmap)
15544 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15545 check_ids(rold->id, rcur->id, idmap) &&
15546 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15549 /* Returns true if (rold safe implies rcur safe) */
15550 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15551 struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
15553 if (!(rold->live & REG_LIVE_READ))
15554 /* explored state didn't use this */
15556 if (rold->type == NOT_INIT)
15557 /* explored state can't have used this */
15559 if (rcur->type == NOT_INIT)
15562 /* Enforce that register types have to match exactly, including their
15563 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15566 * One can make a point that using a pointer register as unbounded
15567 * SCALAR would be technically acceptable, but this could lead to
15568 * pointer leaks because scalars are allowed to leak while pointers
15569 * are not. We could make this safe in special cases if root is
15570 * calling us, but it's probably not worth the hassle.
15572 * Also, register types that are *not* MAYBE_NULL could technically be
15573 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15574 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15575 * to the same map).
15576 * However, if the old MAYBE_NULL register then got NULL checked,
15577 * doing so could have affected others with the same id, and we can't
15578 * check for that because we lost the id when we converted to
15579 * a non-MAYBE_NULL variant.
15580 * So, as a general rule we don't allow mixing MAYBE_NULL and
15581 * non-MAYBE_NULL registers as well.
15583 if (rold->type != rcur->type)
15586 switch (base_type(rold->type)) {
15588 if (env->explore_alu_limits) {
15589 /* explore_alu_limits disables tnum_in() and range_within()
15590 * logic and requires everything to be strict
15592 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15593 check_scalar_ids(rold->id, rcur->id, idmap);
15595 if (!rold->precise)
15597 /* Why check_ids() for scalar registers?
15599 * Consider the following BPF code:
15600 * 1: r6 = ... unbound scalar, ID=a ...
15601 * 2: r7 = ... unbound scalar, ID=b ...
15602 * 3: if (r6 > r7) goto +1
15604 * 5: if (r6 > X) goto ...
15605 * 6: ... memory operation using r7 ...
15607 * First verification path is [1-6]:
15608 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
15609 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
15610 * r7 <= X, because r6 and r7 share same id.
15611 * Next verification path is [1-4, 6].
15613 * Instruction (6) would be reached in two states:
15614 * I. r6{.id=b}, r7{.id=b} via path 1-6;
15615 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
15617 * Use check_ids() to distinguish these states.
15619 * Also verify that new value satisfies old value range knowledge.
15621 return range_within(rold, rcur) &&
15622 tnum_in(rold->var_off, rcur->var_off) &&
15623 check_scalar_ids(rold->id, rcur->id, idmap);
15624 case PTR_TO_MAP_KEY:
15625 case PTR_TO_MAP_VALUE:
15628 case PTR_TO_TP_BUFFER:
15629 /* If the new min/max/var_off satisfy the old ones and
15630 * everything else matches, we are OK.
15632 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
15633 range_within(rold, rcur) &&
15634 tnum_in(rold->var_off, rcur->var_off) &&
15635 check_ids(rold->id, rcur->id, idmap) &&
15636 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15637 case PTR_TO_PACKET_META:
15638 case PTR_TO_PACKET:
15639 /* We must have at least as much range as the old ptr
15640 * did, so that any accesses which were safe before are
15641 * still safe. This is true even if old range < old off,
15642 * since someone could have accessed through (ptr - k), or
15643 * even done ptr -= k in a register, to get a safe access.
15645 if (rold->range > rcur->range)
15647 /* If the offsets don't match, we can't trust our alignment;
15648 * nor can we be sure that we won't fall out of range.
15650 if (rold->off != rcur->off)
15652 /* id relations must be preserved */
15653 if (!check_ids(rold->id, rcur->id, idmap))
15655 /* new val must satisfy old val knowledge */
15656 return range_within(rold, rcur) &&
15657 tnum_in(rold->var_off, rcur->var_off);
15659 /* two stack pointers are equal only if they're pointing to
15660 * the same stack frame, since fp-8 in foo != fp-8 in bar
15662 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
15664 return regs_exact(rold, rcur, idmap);
15668 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
15669 struct bpf_func_state *cur, struct bpf_idmap *idmap)
15673 /* walk slots of the explored stack and ignore any additional
15674 * slots in the current stack, since explored(safe) state
15677 for (i = 0; i < old->allocated_stack; i++) {
15678 struct bpf_reg_state *old_reg, *cur_reg;
15680 spi = i / BPF_REG_SIZE;
15682 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
15683 i += BPF_REG_SIZE - 1;
15684 /* explored state didn't use this */
15688 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
15691 if (env->allow_uninit_stack &&
15692 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
15695 /* explored stack has more populated slots than current stack
15696 * and these slots were used
15698 if (i >= cur->allocated_stack)
15701 /* if old state was safe with misc data in the stack
15702 * it will be safe with zero-initialized stack.
15703 * The opposite is not true
15705 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
15706 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
15708 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
15709 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
15710 /* Ex: old explored (safe) state has STACK_SPILL in
15711 * this stack slot, but current has STACK_MISC ->
15712 * this verifier states are not equivalent,
15713 * return false to continue verification of this path
15716 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
15718 /* Both old and cur are having same slot_type */
15719 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
15721 /* when explored and current stack slot are both storing
15722 * spilled registers, check that stored pointers types
15723 * are the same as well.
15724 * Ex: explored safe path could have stored
15725 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
15726 * but current path has stored:
15727 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
15728 * such verifier states are not equivalent.
15729 * return false to continue verification of this path
15731 if (!regsafe(env, &old->stack[spi].spilled_ptr,
15732 &cur->stack[spi].spilled_ptr, idmap))
15736 old_reg = &old->stack[spi].spilled_ptr;
15737 cur_reg = &cur->stack[spi].spilled_ptr;
15738 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
15739 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
15740 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15744 old_reg = &old->stack[spi].spilled_ptr;
15745 cur_reg = &cur->stack[spi].spilled_ptr;
15746 /* iter.depth is not compared between states as it
15747 * doesn't matter for correctness and would otherwise
15748 * prevent convergence; we maintain it only to prevent
15749 * infinite loop check triggering, see
15750 * iter_active_depths_differ()
15752 if (old_reg->iter.btf != cur_reg->iter.btf ||
15753 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
15754 old_reg->iter.state != cur_reg->iter.state ||
15755 /* ignore {old_reg,cur_reg}->iter.depth, see above */
15756 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15761 case STACK_INVALID:
15763 /* Ensure that new unhandled slot types return false by default */
15771 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
15772 struct bpf_idmap *idmap)
15776 if (old->acquired_refs != cur->acquired_refs)
15779 for (i = 0; i < old->acquired_refs; i++) {
15780 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
15787 /* compare two verifier states
15789 * all states stored in state_list are known to be valid, since
15790 * verifier reached 'bpf_exit' instruction through them
15792 * this function is called when verifier exploring different branches of
15793 * execution popped from the state stack. If it sees an old state that has
15794 * more strict register state and more strict stack state then this execution
15795 * branch doesn't need to be explored further, since verifier already
15796 * concluded that more strict state leads to valid finish.
15798 * Therefore two states are equivalent if register state is more conservative
15799 * and explored stack state is more conservative than the current one.
15802 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
15803 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
15805 * In other words if current stack state (one being explored) has more
15806 * valid slots than old one that already passed validation, it means
15807 * the verifier can stop exploring and conclude that current state is valid too
15809 * Similarly with registers. If explored state has register type as invalid
15810 * whereas register type in current state is meaningful, it means that
15811 * the current state will reach 'bpf_exit' instruction safely
15813 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
15814 struct bpf_func_state *cur)
15818 for (i = 0; i < MAX_BPF_REG; i++)
15819 if (!regsafe(env, &old->regs[i], &cur->regs[i],
15820 &env->idmap_scratch))
15823 if (!stacksafe(env, old, cur, &env->idmap_scratch))
15826 if (!refsafe(old, cur, &env->idmap_scratch))
15832 static bool states_equal(struct bpf_verifier_env *env,
15833 struct bpf_verifier_state *old,
15834 struct bpf_verifier_state *cur)
15838 if (old->curframe != cur->curframe)
15841 env->idmap_scratch.tmp_id_gen = env->id_gen;
15842 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
15844 /* Verification state from speculative execution simulation
15845 * must never prune a non-speculative execution one.
15847 if (old->speculative && !cur->speculative)
15850 if (old->active_lock.ptr != cur->active_lock.ptr)
15853 /* Old and cur active_lock's have to be either both present
15856 if (!!old->active_lock.id != !!cur->active_lock.id)
15859 if (old->active_lock.id &&
15860 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
15863 if (old->active_rcu_lock != cur->active_rcu_lock)
15866 /* for states to be equal callsites have to be the same
15867 * and all frame states need to be equivalent
15869 for (i = 0; i <= old->curframe; i++) {
15870 if (old->frame[i]->callsite != cur->frame[i]->callsite)
15872 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
15878 /* Return 0 if no propagation happened. Return negative error code if error
15879 * happened. Otherwise, return the propagated bit.
15881 static int propagate_liveness_reg(struct bpf_verifier_env *env,
15882 struct bpf_reg_state *reg,
15883 struct bpf_reg_state *parent_reg)
15885 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15886 u8 flag = reg->live & REG_LIVE_READ;
15889 /* When comes here, read flags of PARENT_REG or REG could be any of
15890 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15891 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15893 if (parent_flag == REG_LIVE_READ64 ||
15894 /* Or if there is no read flag from REG. */
15896 /* Or if the read flag from REG is the same as PARENT_REG. */
15897 parent_flag == flag)
15900 err = mark_reg_read(env, reg, parent_reg, flag);
15907 /* A write screens off any subsequent reads; but write marks come from the
15908 * straight-line code between a state and its parent. When we arrive at an
15909 * equivalent state (jump target or such) we didn't arrive by the straight-line
15910 * code, so read marks in the state must propagate to the parent regardless
15911 * of the state's write marks. That's what 'parent == state->parent' comparison
15912 * in mark_reg_read() is for.
15914 static int propagate_liveness(struct bpf_verifier_env *env,
15915 const struct bpf_verifier_state *vstate,
15916 struct bpf_verifier_state *vparent)
15918 struct bpf_reg_state *state_reg, *parent_reg;
15919 struct bpf_func_state *state, *parent;
15920 int i, frame, err = 0;
15922 if (vparent->curframe != vstate->curframe) {
15923 WARN(1, "propagate_live: parent frame %d current frame %d\n",
15924 vparent->curframe, vstate->curframe);
15927 /* Propagate read liveness of registers... */
15928 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
15929 for (frame = 0; frame <= vstate->curframe; frame++) {
15930 parent = vparent->frame[frame];
15931 state = vstate->frame[frame];
15932 parent_reg = parent->regs;
15933 state_reg = state->regs;
15934 /* We don't need to worry about FP liveness, it's read-only */
15935 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
15936 err = propagate_liveness_reg(env, &state_reg[i],
15940 if (err == REG_LIVE_READ64)
15941 mark_insn_zext(env, &parent_reg[i]);
15944 /* Propagate stack slots. */
15945 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15946 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
15947 parent_reg = &parent->stack[i].spilled_ptr;
15948 state_reg = &state->stack[i].spilled_ptr;
15949 err = propagate_liveness_reg(env, state_reg,
15958 /* find precise scalars in the previous equivalent state and
15959 * propagate them into the current state
15961 static int propagate_precision(struct bpf_verifier_env *env,
15962 const struct bpf_verifier_state *old)
15964 struct bpf_reg_state *state_reg;
15965 struct bpf_func_state *state;
15966 int i, err = 0, fr;
15969 for (fr = old->curframe; fr >= 0; fr--) {
15970 state = old->frame[fr];
15971 state_reg = state->regs;
15973 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15974 if (state_reg->type != SCALAR_VALUE ||
15975 !state_reg->precise ||
15976 !(state_reg->live & REG_LIVE_READ))
15978 if (env->log.level & BPF_LOG_LEVEL2) {
15980 verbose(env, "frame %d: propagating r%d", fr, i);
15982 verbose(env, ",r%d", i);
15984 bt_set_frame_reg(&env->bt, fr, i);
15988 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15989 if (!is_spilled_reg(&state->stack[i]))
15991 state_reg = &state->stack[i].spilled_ptr;
15992 if (state_reg->type != SCALAR_VALUE ||
15993 !state_reg->precise ||
15994 !(state_reg->live & REG_LIVE_READ))
15996 if (env->log.level & BPF_LOG_LEVEL2) {
15998 verbose(env, "frame %d: propagating fp%d",
15999 fr, (-i - 1) * BPF_REG_SIZE);
16001 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16003 bt_set_frame_slot(&env->bt, fr, i);
16007 verbose(env, "\n");
16010 err = mark_chain_precision_batch(env);
16017 static bool states_maybe_looping(struct bpf_verifier_state *old,
16018 struct bpf_verifier_state *cur)
16020 struct bpf_func_state *fold, *fcur;
16021 int i, fr = cur->curframe;
16023 if (old->curframe != fr)
16026 fold = old->frame[fr];
16027 fcur = cur->frame[fr];
16028 for (i = 0; i < MAX_BPF_REG; i++)
16029 if (memcmp(&fold->regs[i], &fcur->regs[i],
16030 offsetof(struct bpf_reg_state, parent)))
16035 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16037 return env->insn_aux_data[insn_idx].is_iter_next;
16040 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16041 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16042 * states to match, which otherwise would look like an infinite loop. So while
16043 * iter_next() calls are taken care of, we still need to be careful and
16044 * prevent erroneous and too eager declaration of "ininite loop", when
16045 * iterators are involved.
16047 * Here's a situation in pseudo-BPF assembly form:
16049 * 0: again: ; set up iter_next() call args
16050 * 1: r1 = &it ; <CHECKPOINT HERE>
16051 * 2: call bpf_iter_num_next ; this is iter_next() call
16052 * 3: if r0 == 0 goto done
16053 * 4: ... something useful here ...
16054 * 5: goto again ; another iteration
16057 * 8: call bpf_iter_num_destroy ; clean up iter state
16060 * This is a typical loop. Let's assume that we have a prune point at 1:,
16061 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16062 * again`, assuming other heuristics don't get in a way).
16064 * When we first time come to 1:, let's say we have some state X. We proceed
16065 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16066 * Now we come back to validate that forked ACTIVE state. We proceed through
16067 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16068 * are converging. But the problem is that we don't know that yet, as this
16069 * convergence has to happen at iter_next() call site only. So if nothing is
16070 * done, at 1: verifier will use bounded loop logic and declare infinite
16071 * looping (and would be *technically* correct, if not for iterator's
16072 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16073 * don't want that. So what we do in process_iter_next_call() when we go on
16074 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16075 * a different iteration. So when we suspect an infinite loop, we additionally
16076 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16077 * pretend we are not looping and wait for next iter_next() call.
16079 * This only applies to ACTIVE state. In DRAINED state we don't expect to
16080 * loop, because that would actually mean infinite loop, as DRAINED state is
16081 * "sticky", and so we'll keep returning into the same instruction with the
16082 * same state (at least in one of possible code paths).
16084 * This approach allows to keep infinite loop heuristic even in the face of
16085 * active iterator. E.g., C snippet below is and will be detected as
16086 * inifintely looping:
16088 * struct bpf_iter_num it;
16091 * bpf_iter_num_new(&it, 0, 10);
16092 * while ((p = bpf_iter_num_next(&t))) {
16094 * while (x--) {} // <<-- infinite loop here
16098 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16100 struct bpf_reg_state *slot, *cur_slot;
16101 struct bpf_func_state *state;
16104 for (fr = old->curframe; fr >= 0; fr--) {
16105 state = old->frame[fr];
16106 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16107 if (state->stack[i].slot_type[0] != STACK_ITER)
16110 slot = &state->stack[i].spilled_ptr;
16111 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16114 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16115 if (cur_slot->iter.depth != slot->iter.depth)
16122 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16124 struct bpf_verifier_state_list *new_sl;
16125 struct bpf_verifier_state_list *sl, **pprev;
16126 struct bpf_verifier_state *cur = env->cur_state, *new;
16127 int i, j, err, states_cnt = 0;
16128 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16129 bool add_new_state = force_new_state;
16131 /* bpf progs typically have pruning point every 4 instructions
16132 * http://vger.kernel.org/bpfconf2019.html#session-1
16133 * Do not add new state for future pruning if the verifier hasn't seen
16134 * at least 2 jumps and at least 8 instructions.
16135 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16136 * In tests that amounts to up to 50% reduction into total verifier
16137 * memory consumption and 20% verifier time speedup.
16139 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16140 env->insn_processed - env->prev_insn_processed >= 8)
16141 add_new_state = true;
16143 pprev = explored_state(env, insn_idx);
16146 clean_live_states(env, insn_idx, cur);
16150 if (sl->state.insn_idx != insn_idx)
16153 if (sl->state.branches) {
16154 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16156 if (frame->in_async_callback_fn &&
16157 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16158 /* Different async_entry_cnt means that the verifier is
16159 * processing another entry into async callback.
16160 * Seeing the same state is not an indication of infinite
16161 * loop or infinite recursion.
16162 * But finding the same state doesn't mean that it's safe
16163 * to stop processing the current state. The previous state
16164 * hasn't yet reached bpf_exit, since state.branches > 0.
16165 * Checking in_async_callback_fn alone is not enough either.
16166 * Since the verifier still needs to catch infinite loops
16167 * inside async callbacks.
16169 goto skip_inf_loop_check;
16171 /* BPF open-coded iterators loop detection is special.
16172 * states_maybe_looping() logic is too simplistic in detecting
16173 * states that *might* be equivalent, because it doesn't know
16174 * about ID remapping, so don't even perform it.
16175 * See process_iter_next_call() and iter_active_depths_differ()
16176 * for overview of the logic. When current and one of parent
16177 * states are detected as equivalent, it's a good thing: we prove
16178 * convergence and can stop simulating further iterations.
16179 * It's safe to assume that iterator loop will finish, taking into
16180 * account iter_next() contract of eventually returning
16181 * sticky NULL result.
16183 if (is_iter_next_insn(env, insn_idx)) {
16184 if (states_equal(env, &sl->state, cur)) {
16185 struct bpf_func_state *cur_frame;
16186 struct bpf_reg_state *iter_state, *iter_reg;
16189 cur_frame = cur->frame[cur->curframe];
16190 /* btf_check_iter_kfuncs() enforces that
16191 * iter state pointer is always the first arg
16193 iter_reg = &cur_frame->regs[BPF_REG_1];
16194 /* current state is valid due to states_equal(),
16195 * so we can assume valid iter and reg state,
16196 * no need for extra (re-)validations
16198 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16199 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16200 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
16203 goto skip_inf_loop_check;
16205 /* attempt to detect infinite loop to avoid unnecessary doomed work */
16206 if (states_maybe_looping(&sl->state, cur) &&
16207 states_equal(env, &sl->state, cur) &&
16208 !iter_active_depths_differ(&sl->state, cur)) {
16209 verbose_linfo(env, insn_idx, "; ");
16210 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16213 /* if the verifier is processing a loop, avoid adding new state
16214 * too often, since different loop iterations have distinct
16215 * states and may not help future pruning.
16216 * This threshold shouldn't be too low to make sure that
16217 * a loop with large bound will be rejected quickly.
16218 * The most abusive loop will be:
16220 * if r1 < 1000000 goto pc-2
16221 * 1M insn_procssed limit / 100 == 10k peak states.
16222 * This threshold shouldn't be too high either, since states
16223 * at the end of the loop are likely to be useful in pruning.
16225 skip_inf_loop_check:
16226 if (!force_new_state &&
16227 env->jmps_processed - env->prev_jmps_processed < 20 &&
16228 env->insn_processed - env->prev_insn_processed < 100)
16229 add_new_state = false;
16232 if (states_equal(env, &sl->state, cur)) {
16235 /* reached equivalent register/stack state,
16236 * prune the search.
16237 * Registers read by the continuation are read by us.
16238 * If we have any write marks in env->cur_state, they
16239 * will prevent corresponding reads in the continuation
16240 * from reaching our parent (an explored_state). Our
16241 * own state will get the read marks recorded, but
16242 * they'll be immediately forgotten as we're pruning
16243 * this state and will pop a new one.
16245 err = propagate_liveness(env, &sl->state, cur);
16247 /* if previous state reached the exit with precision and
16248 * current state is equivalent to it (except precsion marks)
16249 * the precision needs to be propagated back in
16250 * the current state.
16252 err = err ? : push_jmp_history(env, cur);
16253 err = err ? : propagate_precision(env, &sl->state);
16259 /* when new state is not going to be added do not increase miss count.
16260 * Otherwise several loop iterations will remove the state
16261 * recorded earlier. The goal of these heuristics is to have
16262 * states from some iterations of the loop (some in the beginning
16263 * and some at the end) to help pruning.
16267 /* heuristic to determine whether this state is beneficial
16268 * to keep checking from state equivalence point of view.
16269 * Higher numbers increase max_states_per_insn and verification time,
16270 * but do not meaningfully decrease insn_processed.
16272 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
16273 /* the state is unlikely to be useful. Remove it to
16274 * speed up verification
16277 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
16278 u32 br = sl->state.branches;
16281 "BUG live_done but branches_to_explore %d\n",
16283 free_verifier_state(&sl->state, false);
16285 env->peak_states--;
16287 /* cannot free this state, since parentage chain may
16288 * walk it later. Add it for free_list instead to
16289 * be freed at the end of verification
16291 sl->next = env->free_list;
16292 env->free_list = sl;
16302 if (env->max_states_per_insn < states_cnt)
16303 env->max_states_per_insn = states_cnt;
16305 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16308 if (!add_new_state)
16311 /* There were no equivalent states, remember the current one.
16312 * Technically the current state is not proven to be safe yet,
16313 * but it will either reach outer most bpf_exit (which means it's safe)
16314 * or it will be rejected. When there are no loops the verifier won't be
16315 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16316 * again on the way to bpf_exit.
16317 * When looping the sl->state.branches will be > 0 and this state
16318 * will not be considered for equivalence until branches == 0.
16320 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16323 env->total_states++;
16324 env->peak_states++;
16325 env->prev_jmps_processed = env->jmps_processed;
16326 env->prev_insn_processed = env->insn_processed;
16328 /* forget precise markings we inherited, see __mark_chain_precision */
16329 if (env->bpf_capable)
16330 mark_all_scalars_imprecise(env, cur);
16332 /* add new state to the head of linked list */
16333 new = &new_sl->state;
16334 err = copy_verifier_state(new, cur);
16336 free_verifier_state(new, false);
16340 new->insn_idx = insn_idx;
16341 WARN_ONCE(new->branches != 1,
16342 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16345 cur->first_insn_idx = insn_idx;
16346 clear_jmp_history(cur);
16347 new_sl->next = *explored_state(env, insn_idx);
16348 *explored_state(env, insn_idx) = new_sl;
16349 /* connect new state to parentage chain. Current frame needs all
16350 * registers connected. Only r6 - r9 of the callers are alive (pushed
16351 * to the stack implicitly by JITs) so in callers' frames connect just
16352 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16353 * the state of the call instruction (with WRITTEN set), and r0 comes
16354 * from callee with its full parentage chain, anyway.
16356 /* clear write marks in current state: the writes we did are not writes
16357 * our child did, so they don't screen off its reads from us.
16358 * (There are no read marks in current state, because reads always mark
16359 * their parent and current state never has children yet. Only
16360 * explored_states can get read marks.)
16362 for (j = 0; j <= cur->curframe; j++) {
16363 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16364 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16365 for (i = 0; i < BPF_REG_FP; i++)
16366 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16369 /* all stack frames are accessible from callee, clear them all */
16370 for (j = 0; j <= cur->curframe; j++) {
16371 struct bpf_func_state *frame = cur->frame[j];
16372 struct bpf_func_state *newframe = new->frame[j];
16374 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16375 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16376 frame->stack[i].spilled_ptr.parent =
16377 &newframe->stack[i].spilled_ptr;
16383 /* Return true if it's OK to have the same insn return a different type. */
16384 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16386 switch (base_type(type)) {
16388 case PTR_TO_SOCKET:
16389 case PTR_TO_SOCK_COMMON:
16390 case PTR_TO_TCP_SOCK:
16391 case PTR_TO_XDP_SOCK:
16392 case PTR_TO_BTF_ID:
16399 /* If an instruction was previously used with particular pointer types, then we
16400 * need to be careful to avoid cases such as the below, where it may be ok
16401 * for one branch accessing the pointer, but not ok for the other branch:
16406 * R1 = some_other_valid_ptr;
16409 * R2 = *(u32 *)(R1 + 0);
16411 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16413 return src != prev && (!reg_type_mismatch_ok(src) ||
16414 !reg_type_mismatch_ok(prev));
16417 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16418 bool allow_trust_missmatch)
16420 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16422 if (*prev_type == NOT_INIT) {
16423 /* Saw a valid insn
16424 * dst_reg = *(u32 *)(src_reg + off)
16425 * save type to validate intersecting paths
16428 } else if (reg_type_mismatch(type, *prev_type)) {
16429 /* Abuser program is trying to use the same insn
16430 * dst_reg = *(u32*) (src_reg + off)
16431 * with different pointer types:
16432 * src_reg == ctx in one branch and
16433 * src_reg == stack|map in some other branch.
16436 if (allow_trust_missmatch &&
16437 base_type(type) == PTR_TO_BTF_ID &&
16438 base_type(*prev_type) == PTR_TO_BTF_ID) {
16440 * Have to support a use case when one path through
16441 * the program yields TRUSTED pointer while another
16442 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16443 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16445 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16447 verbose(env, "same insn cannot be used with different pointers\n");
16455 static int do_check(struct bpf_verifier_env *env)
16457 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16458 struct bpf_verifier_state *state = env->cur_state;
16459 struct bpf_insn *insns = env->prog->insnsi;
16460 struct bpf_reg_state *regs;
16461 int insn_cnt = env->prog->len;
16462 bool do_print_state = false;
16463 int prev_insn_idx = -1;
16466 struct bpf_insn *insn;
16470 env->prev_insn_idx = prev_insn_idx;
16471 if (env->insn_idx >= insn_cnt) {
16472 verbose(env, "invalid insn idx %d insn_cnt %d\n",
16473 env->insn_idx, insn_cnt);
16477 insn = &insns[env->insn_idx];
16478 class = BPF_CLASS(insn->code);
16480 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16482 "BPF program is too large. Processed %d insn\n",
16483 env->insn_processed);
16487 state->last_insn_idx = env->prev_insn_idx;
16489 if (is_prune_point(env, env->insn_idx)) {
16490 err = is_state_visited(env, env->insn_idx);
16494 /* found equivalent state, can prune the search */
16495 if (env->log.level & BPF_LOG_LEVEL) {
16496 if (do_print_state)
16497 verbose(env, "\nfrom %d to %d%s: safe\n",
16498 env->prev_insn_idx, env->insn_idx,
16499 env->cur_state->speculative ?
16500 " (speculative execution)" : "");
16502 verbose(env, "%d: safe\n", env->insn_idx);
16504 goto process_bpf_exit;
16508 if (is_jmp_point(env, env->insn_idx)) {
16509 err = push_jmp_history(env, state);
16514 if (signal_pending(current))
16517 if (need_resched())
16520 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16521 verbose(env, "\nfrom %d to %d%s:",
16522 env->prev_insn_idx, env->insn_idx,
16523 env->cur_state->speculative ?
16524 " (speculative execution)" : "");
16525 print_verifier_state(env, state->frame[state->curframe], true);
16526 do_print_state = false;
16529 if (env->log.level & BPF_LOG_LEVEL) {
16530 const struct bpf_insn_cbs cbs = {
16531 .cb_call = disasm_kfunc_name,
16532 .cb_print = verbose,
16533 .private_data = env,
16536 if (verifier_state_scratched(env))
16537 print_insn_state(env, state->frame[state->curframe]);
16539 verbose_linfo(env, env->insn_idx, "; ");
16540 env->prev_log_pos = env->log.end_pos;
16541 verbose(env, "%d: ", env->insn_idx);
16542 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
16543 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16544 env->prev_log_pos = env->log.end_pos;
16547 if (bpf_prog_is_offloaded(env->prog->aux)) {
16548 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16549 env->prev_insn_idx);
16554 regs = cur_regs(env);
16555 sanitize_mark_insn_seen(env);
16556 prev_insn_idx = env->insn_idx;
16558 if (class == BPF_ALU || class == BPF_ALU64) {
16559 err = check_alu_op(env, insn);
16563 } else if (class == BPF_LDX) {
16564 enum bpf_reg_type src_reg_type;
16566 /* check for reserved fields is already done */
16568 /* check src operand */
16569 err = check_reg_arg(env, insn->src_reg, SRC_OP);
16573 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16577 src_reg_type = regs[insn->src_reg].type;
16579 /* check that memory (src_reg + off) is readable,
16580 * the state of dst_reg will be updated by this func
16582 err = check_mem_access(env, env->insn_idx, insn->src_reg,
16583 insn->off, BPF_SIZE(insn->code),
16584 BPF_READ, insn->dst_reg, false,
16585 BPF_MODE(insn->code) == BPF_MEMSX);
16589 err = save_aux_ptr_type(env, src_reg_type, true);
16592 } else if (class == BPF_STX) {
16593 enum bpf_reg_type dst_reg_type;
16595 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16596 err = check_atomic(env, env->insn_idx, insn);
16603 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16604 verbose(env, "BPF_STX uses reserved fields\n");
16608 /* check src1 operand */
16609 err = check_reg_arg(env, insn->src_reg, SRC_OP);
16612 /* check src2 operand */
16613 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16617 dst_reg_type = regs[insn->dst_reg].type;
16619 /* check that memory (dst_reg + off) is writeable */
16620 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16621 insn->off, BPF_SIZE(insn->code),
16622 BPF_WRITE, insn->src_reg, false, false);
16626 err = save_aux_ptr_type(env, dst_reg_type, false);
16629 } else if (class == BPF_ST) {
16630 enum bpf_reg_type dst_reg_type;
16632 if (BPF_MODE(insn->code) != BPF_MEM ||
16633 insn->src_reg != BPF_REG_0) {
16634 verbose(env, "BPF_ST uses reserved fields\n");
16637 /* check src operand */
16638 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16642 dst_reg_type = regs[insn->dst_reg].type;
16644 /* check that memory (dst_reg + off) is writeable */
16645 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16646 insn->off, BPF_SIZE(insn->code),
16647 BPF_WRITE, -1, false, false);
16651 err = save_aux_ptr_type(env, dst_reg_type, false);
16654 } else if (class == BPF_JMP || class == BPF_JMP32) {
16655 u8 opcode = BPF_OP(insn->code);
16657 env->jmps_processed++;
16658 if (opcode == BPF_CALL) {
16659 if (BPF_SRC(insn->code) != BPF_K ||
16660 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16661 && insn->off != 0) ||
16662 (insn->src_reg != BPF_REG_0 &&
16663 insn->src_reg != BPF_PSEUDO_CALL &&
16664 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
16665 insn->dst_reg != BPF_REG_0 ||
16666 class == BPF_JMP32) {
16667 verbose(env, "BPF_CALL uses reserved fields\n");
16671 if (env->cur_state->active_lock.ptr) {
16672 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
16673 (insn->src_reg == BPF_PSEUDO_CALL) ||
16674 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
16675 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
16676 verbose(env, "function calls are not allowed while holding a lock\n");
16680 if (insn->src_reg == BPF_PSEUDO_CALL)
16681 err = check_func_call(env, insn, &env->insn_idx);
16682 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
16683 err = check_kfunc_call(env, insn, &env->insn_idx);
16685 err = check_helper_call(env, insn, &env->insn_idx);
16689 mark_reg_scratched(env, BPF_REG_0);
16690 } else if (opcode == BPF_JA) {
16691 if (BPF_SRC(insn->code) != BPF_K ||
16692 insn->src_reg != BPF_REG_0 ||
16693 insn->dst_reg != BPF_REG_0 ||
16694 (class == BPF_JMP && insn->imm != 0) ||
16695 (class == BPF_JMP32 && insn->off != 0)) {
16696 verbose(env, "BPF_JA uses reserved fields\n");
16700 if (class == BPF_JMP)
16701 env->insn_idx += insn->off + 1;
16703 env->insn_idx += insn->imm + 1;
16706 } else if (opcode == BPF_EXIT) {
16707 if (BPF_SRC(insn->code) != BPF_K ||
16709 insn->src_reg != BPF_REG_0 ||
16710 insn->dst_reg != BPF_REG_0 ||
16711 class == BPF_JMP32) {
16712 verbose(env, "BPF_EXIT uses reserved fields\n");
16716 if (env->cur_state->active_lock.ptr &&
16717 !in_rbtree_lock_required_cb(env)) {
16718 verbose(env, "bpf_spin_unlock is missing\n");
16722 if (env->cur_state->active_rcu_lock &&
16723 !in_rbtree_lock_required_cb(env)) {
16724 verbose(env, "bpf_rcu_read_unlock is missing\n");
16728 /* We must do check_reference_leak here before
16729 * prepare_func_exit to handle the case when
16730 * state->curframe > 0, it may be a callback
16731 * function, for which reference_state must
16732 * match caller reference state when it exits.
16734 err = check_reference_leak(env);
16738 if (state->curframe) {
16739 /* exit from nested function */
16740 err = prepare_func_exit(env, &env->insn_idx);
16743 do_print_state = true;
16747 err = check_return_code(env);
16751 mark_verifier_state_scratched(env);
16752 update_branch_counts(env, env->cur_state);
16753 err = pop_stack(env, &prev_insn_idx,
16754 &env->insn_idx, pop_log);
16756 if (err != -ENOENT)
16760 do_print_state = true;
16764 err = check_cond_jmp_op(env, insn, &env->insn_idx);
16768 } else if (class == BPF_LD) {
16769 u8 mode = BPF_MODE(insn->code);
16771 if (mode == BPF_ABS || mode == BPF_IND) {
16772 err = check_ld_abs(env, insn);
16776 } else if (mode == BPF_IMM) {
16777 err = check_ld_imm(env, insn);
16782 sanitize_mark_insn_seen(env);
16784 verbose(env, "invalid BPF_LD mode\n");
16788 verbose(env, "unknown insn class %d\n", class);
16798 static int find_btf_percpu_datasec(struct btf *btf)
16800 const struct btf_type *t;
16805 * Both vmlinux and module each have their own ".data..percpu"
16806 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
16807 * types to look at only module's own BTF types.
16809 n = btf_nr_types(btf);
16810 if (btf_is_module(btf))
16811 i = btf_nr_types(btf_vmlinux);
16815 for(; i < n; i++) {
16816 t = btf_type_by_id(btf, i);
16817 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
16820 tname = btf_name_by_offset(btf, t->name_off);
16821 if (!strcmp(tname, ".data..percpu"))
16828 /* replace pseudo btf_id with kernel symbol address */
16829 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
16830 struct bpf_insn *insn,
16831 struct bpf_insn_aux_data *aux)
16833 const struct btf_var_secinfo *vsi;
16834 const struct btf_type *datasec;
16835 struct btf_mod_pair *btf_mod;
16836 const struct btf_type *t;
16837 const char *sym_name;
16838 bool percpu = false;
16839 u32 type, id = insn->imm;
16843 int i, btf_fd, err;
16845 btf_fd = insn[1].imm;
16847 btf = btf_get_by_fd(btf_fd);
16849 verbose(env, "invalid module BTF object FD specified.\n");
16853 if (!btf_vmlinux) {
16854 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16861 t = btf_type_by_id(btf, id);
16863 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
16868 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16869 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
16874 sym_name = btf_name_by_offset(btf, t->name_off);
16875 addr = kallsyms_lookup_name(sym_name);
16877 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16882 insn[0].imm = (u32)addr;
16883 insn[1].imm = addr >> 32;
16885 if (btf_type_is_func(t)) {
16886 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16887 aux->btf_var.mem_size = 0;
16891 datasec_id = find_btf_percpu_datasec(btf);
16892 if (datasec_id > 0) {
16893 datasec = btf_type_by_id(btf, datasec_id);
16894 for_each_vsi(i, datasec, vsi) {
16895 if (vsi->type == id) {
16903 t = btf_type_skip_modifiers(btf, type, NULL);
16905 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
16906 aux->btf_var.btf = btf;
16907 aux->btf_var.btf_id = type;
16908 } else if (!btf_type_is_struct(t)) {
16909 const struct btf_type *ret;
16913 /* resolve the type size of ksym. */
16914 ret = btf_resolve_size(btf, t, &tsize);
16916 tname = btf_name_by_offset(btf, t->name_off);
16917 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16918 tname, PTR_ERR(ret));
16922 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16923 aux->btf_var.mem_size = tsize;
16925 aux->btf_var.reg_type = PTR_TO_BTF_ID;
16926 aux->btf_var.btf = btf;
16927 aux->btf_var.btf_id = type;
16930 /* check whether we recorded this BTF (and maybe module) already */
16931 for (i = 0; i < env->used_btf_cnt; i++) {
16932 if (env->used_btfs[i].btf == btf) {
16938 if (env->used_btf_cnt >= MAX_USED_BTFS) {
16943 btf_mod = &env->used_btfs[env->used_btf_cnt];
16944 btf_mod->btf = btf;
16945 btf_mod->module = NULL;
16947 /* if we reference variables from kernel module, bump its refcount */
16948 if (btf_is_module(btf)) {
16949 btf_mod->module = btf_try_get_module(btf);
16950 if (!btf_mod->module) {
16956 env->used_btf_cnt++;
16964 static bool is_tracing_prog_type(enum bpf_prog_type type)
16967 case BPF_PROG_TYPE_KPROBE:
16968 case BPF_PROG_TYPE_TRACEPOINT:
16969 case BPF_PROG_TYPE_PERF_EVENT:
16970 case BPF_PROG_TYPE_RAW_TRACEPOINT:
16971 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
16978 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16979 struct bpf_map *map,
16980 struct bpf_prog *prog)
16983 enum bpf_prog_type prog_type = resolve_prog_type(prog);
16985 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16986 btf_record_has_field(map->record, BPF_RB_ROOT)) {
16987 if (is_tracing_prog_type(prog_type)) {
16988 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
16993 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
16994 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16995 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16999 if (is_tracing_prog_type(prog_type)) {
17000 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17005 if (btf_record_has_field(map->record, BPF_TIMER)) {
17006 if (is_tracing_prog_type(prog_type)) {
17007 verbose(env, "tracing progs cannot use bpf_timer yet\n");
17012 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17013 !bpf_offload_prog_map_match(prog, map)) {
17014 verbose(env, "offload device mismatch between prog and map\n");
17018 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17019 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17023 if (prog->aux->sleepable)
17024 switch (map->map_type) {
17025 case BPF_MAP_TYPE_HASH:
17026 case BPF_MAP_TYPE_LRU_HASH:
17027 case BPF_MAP_TYPE_ARRAY:
17028 case BPF_MAP_TYPE_PERCPU_HASH:
17029 case BPF_MAP_TYPE_PERCPU_ARRAY:
17030 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17031 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17032 case BPF_MAP_TYPE_HASH_OF_MAPS:
17033 case BPF_MAP_TYPE_RINGBUF:
17034 case BPF_MAP_TYPE_USER_RINGBUF:
17035 case BPF_MAP_TYPE_INODE_STORAGE:
17036 case BPF_MAP_TYPE_SK_STORAGE:
17037 case BPF_MAP_TYPE_TASK_STORAGE:
17038 case BPF_MAP_TYPE_CGRP_STORAGE:
17042 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17049 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17051 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17052 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17055 /* find and rewrite pseudo imm in ld_imm64 instructions:
17057 * 1. if it accesses map FD, replace it with actual map pointer.
17058 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17060 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17062 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17064 struct bpf_insn *insn = env->prog->insnsi;
17065 int insn_cnt = env->prog->len;
17068 err = bpf_prog_calc_tag(env->prog);
17072 for (i = 0; i < insn_cnt; i++, insn++) {
17073 if (BPF_CLASS(insn->code) == BPF_LDX &&
17074 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17076 verbose(env, "BPF_LDX uses reserved fields\n");
17080 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17081 struct bpf_insn_aux_data *aux;
17082 struct bpf_map *map;
17087 if (i == insn_cnt - 1 || insn[1].code != 0 ||
17088 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17089 insn[1].off != 0) {
17090 verbose(env, "invalid bpf_ld_imm64 insn\n");
17094 if (insn[0].src_reg == 0)
17095 /* valid generic load 64-bit imm */
17098 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17099 aux = &env->insn_aux_data[i];
17100 err = check_pseudo_btf_id(env, insn, aux);
17106 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17107 aux = &env->insn_aux_data[i];
17108 aux->ptr_type = PTR_TO_FUNC;
17112 /* In final convert_pseudo_ld_imm64() step, this is
17113 * converted into regular 64-bit imm load insn.
17115 switch (insn[0].src_reg) {
17116 case BPF_PSEUDO_MAP_VALUE:
17117 case BPF_PSEUDO_MAP_IDX_VALUE:
17119 case BPF_PSEUDO_MAP_FD:
17120 case BPF_PSEUDO_MAP_IDX:
17121 if (insn[1].imm == 0)
17125 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17129 switch (insn[0].src_reg) {
17130 case BPF_PSEUDO_MAP_IDX_VALUE:
17131 case BPF_PSEUDO_MAP_IDX:
17132 if (bpfptr_is_null(env->fd_array)) {
17133 verbose(env, "fd_idx without fd_array is invalid\n");
17136 if (copy_from_bpfptr_offset(&fd, env->fd_array,
17137 insn[0].imm * sizeof(fd),
17147 map = __bpf_map_get(f);
17149 verbose(env, "fd %d is not pointing to valid bpf_map\n",
17151 return PTR_ERR(map);
17154 err = check_map_prog_compatibility(env, map, env->prog);
17160 aux = &env->insn_aux_data[i];
17161 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17162 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17163 addr = (unsigned long)map;
17165 u32 off = insn[1].imm;
17167 if (off >= BPF_MAX_VAR_OFF) {
17168 verbose(env, "direct value offset of %u is not allowed\n", off);
17173 if (!map->ops->map_direct_value_addr) {
17174 verbose(env, "no direct value access support for this map type\n");
17179 err = map->ops->map_direct_value_addr(map, &addr, off);
17181 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17182 map->value_size, off);
17187 aux->map_off = off;
17191 insn[0].imm = (u32)addr;
17192 insn[1].imm = addr >> 32;
17194 /* check whether we recorded this map already */
17195 for (j = 0; j < env->used_map_cnt; j++) {
17196 if (env->used_maps[j] == map) {
17197 aux->map_index = j;
17203 if (env->used_map_cnt >= MAX_USED_MAPS) {
17208 /* hold the map. If the program is rejected by verifier,
17209 * the map will be released by release_maps() or it
17210 * will be used by the valid program until it's unloaded
17211 * and all maps are released in free_used_maps()
17215 aux->map_index = env->used_map_cnt;
17216 env->used_maps[env->used_map_cnt++] = map;
17218 if (bpf_map_is_cgroup_storage(map) &&
17219 bpf_cgroup_storage_assign(env->prog->aux, map)) {
17220 verbose(env, "only one cgroup storage of each type is allowed\n");
17232 /* Basic sanity check before we invest more work here. */
17233 if (!bpf_opcode_in_insntable(insn->code)) {
17234 verbose(env, "unknown opcode %02x\n", insn->code);
17239 /* now all pseudo BPF_LD_IMM64 instructions load valid
17240 * 'struct bpf_map *' into a register instead of user map_fd.
17241 * These pointers will be used later by verifier to validate map access.
17246 /* drop refcnt of maps used by the rejected program */
17247 static void release_maps(struct bpf_verifier_env *env)
17249 __bpf_free_used_maps(env->prog->aux, env->used_maps,
17250 env->used_map_cnt);
17253 /* drop refcnt of maps used by the rejected program */
17254 static void release_btfs(struct bpf_verifier_env *env)
17256 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17257 env->used_btf_cnt);
17260 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17261 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17263 struct bpf_insn *insn = env->prog->insnsi;
17264 int insn_cnt = env->prog->len;
17267 for (i = 0; i < insn_cnt; i++, insn++) {
17268 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17270 if (insn->src_reg == BPF_PSEUDO_FUNC)
17276 /* single env->prog->insni[off] instruction was replaced with the range
17277 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
17278 * [0, off) and [off, end) to new locations, so the patched range stays zero
17280 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17281 struct bpf_insn_aux_data *new_data,
17282 struct bpf_prog *new_prog, u32 off, u32 cnt)
17284 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17285 struct bpf_insn *insn = new_prog->insnsi;
17286 u32 old_seen = old_data[off].seen;
17290 /* aux info at OFF always needs adjustment, no matter fast path
17291 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17292 * original insn at old prog.
17294 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17298 prog_len = new_prog->len;
17300 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17301 memcpy(new_data + off + cnt - 1, old_data + off,
17302 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17303 for (i = off; i < off + cnt - 1; i++) {
17304 /* Expand insni[off]'s seen count to the patched range. */
17305 new_data[i].seen = old_seen;
17306 new_data[i].zext_dst = insn_has_def32(env, insn + i);
17308 env->insn_aux_data = new_data;
17312 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17318 /* NOTE: fake 'exit' subprog should be updated as well. */
17319 for (i = 0; i <= env->subprog_cnt; i++) {
17320 if (env->subprog_info[i].start <= off)
17322 env->subprog_info[i].start += len - 1;
17326 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17328 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17329 int i, sz = prog->aux->size_poke_tab;
17330 struct bpf_jit_poke_descriptor *desc;
17332 for (i = 0; i < sz; i++) {
17334 if (desc->insn_idx <= off)
17336 desc->insn_idx += len - 1;
17340 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17341 const struct bpf_insn *patch, u32 len)
17343 struct bpf_prog *new_prog;
17344 struct bpf_insn_aux_data *new_data = NULL;
17347 new_data = vzalloc(array_size(env->prog->len + len - 1,
17348 sizeof(struct bpf_insn_aux_data)));
17353 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17354 if (IS_ERR(new_prog)) {
17355 if (PTR_ERR(new_prog) == -ERANGE)
17357 "insn %d cannot be patched due to 16-bit range\n",
17358 env->insn_aux_data[off].orig_idx);
17362 adjust_insn_aux_data(env, new_data, new_prog, off, len);
17363 adjust_subprog_starts(env, off, len);
17364 adjust_poke_descs(new_prog, off, len);
17368 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17373 /* find first prog starting at or after off (first to remove) */
17374 for (i = 0; i < env->subprog_cnt; i++)
17375 if (env->subprog_info[i].start >= off)
17377 /* find first prog starting at or after off + cnt (first to stay) */
17378 for (j = i; j < env->subprog_cnt; j++)
17379 if (env->subprog_info[j].start >= off + cnt)
17381 /* if j doesn't start exactly at off + cnt, we are just removing
17382 * the front of previous prog
17384 if (env->subprog_info[j].start != off + cnt)
17388 struct bpf_prog_aux *aux = env->prog->aux;
17391 /* move fake 'exit' subprog as well */
17392 move = env->subprog_cnt + 1 - j;
17394 memmove(env->subprog_info + i,
17395 env->subprog_info + j,
17396 sizeof(*env->subprog_info) * move);
17397 env->subprog_cnt -= j - i;
17399 /* remove func_info */
17400 if (aux->func_info) {
17401 move = aux->func_info_cnt - j;
17403 memmove(aux->func_info + i,
17404 aux->func_info + j,
17405 sizeof(*aux->func_info) * move);
17406 aux->func_info_cnt -= j - i;
17407 /* func_info->insn_off is set after all code rewrites,
17408 * in adjust_btf_func() - no need to adjust
17412 /* convert i from "first prog to remove" to "first to adjust" */
17413 if (env->subprog_info[i].start == off)
17417 /* update fake 'exit' subprog as well */
17418 for (; i <= env->subprog_cnt; i++)
17419 env->subprog_info[i].start -= cnt;
17424 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17427 struct bpf_prog *prog = env->prog;
17428 u32 i, l_off, l_cnt, nr_linfo;
17429 struct bpf_line_info *linfo;
17431 nr_linfo = prog->aux->nr_linfo;
17435 linfo = prog->aux->linfo;
17437 /* find first line info to remove, count lines to be removed */
17438 for (i = 0; i < nr_linfo; i++)
17439 if (linfo[i].insn_off >= off)
17444 for (; i < nr_linfo; i++)
17445 if (linfo[i].insn_off < off + cnt)
17450 /* First live insn doesn't match first live linfo, it needs to "inherit"
17451 * last removed linfo. prog is already modified, so prog->len == off
17452 * means no live instructions after (tail of the program was removed).
17454 if (prog->len != off && l_cnt &&
17455 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17457 linfo[--i].insn_off = off + cnt;
17460 /* remove the line info which refer to the removed instructions */
17462 memmove(linfo + l_off, linfo + i,
17463 sizeof(*linfo) * (nr_linfo - i));
17465 prog->aux->nr_linfo -= l_cnt;
17466 nr_linfo = prog->aux->nr_linfo;
17469 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
17470 for (i = l_off; i < nr_linfo; i++)
17471 linfo[i].insn_off -= cnt;
17473 /* fix up all subprogs (incl. 'exit') which start >= off */
17474 for (i = 0; i <= env->subprog_cnt; i++)
17475 if (env->subprog_info[i].linfo_idx > l_off) {
17476 /* program may have started in the removed region but
17477 * may not be fully removed
17479 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17480 env->subprog_info[i].linfo_idx -= l_cnt;
17482 env->subprog_info[i].linfo_idx = l_off;
17488 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17490 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17491 unsigned int orig_prog_len = env->prog->len;
17494 if (bpf_prog_is_offloaded(env->prog->aux))
17495 bpf_prog_offload_remove_insns(env, off, cnt);
17497 err = bpf_remove_insns(env->prog, off, cnt);
17501 err = adjust_subprog_starts_after_remove(env, off, cnt);
17505 err = bpf_adj_linfo_after_remove(env, off, cnt);
17509 memmove(aux_data + off, aux_data + off + cnt,
17510 sizeof(*aux_data) * (orig_prog_len - off - cnt));
17515 /* The verifier does more data flow analysis than llvm and will not
17516 * explore branches that are dead at run time. Malicious programs can
17517 * have dead code too. Therefore replace all dead at-run-time code
17520 * Just nops are not optimal, e.g. if they would sit at the end of the
17521 * program and through another bug we would manage to jump there, then
17522 * we'd execute beyond program memory otherwise. Returning exception
17523 * code also wouldn't work since we can have subprogs where the dead
17524 * code could be located.
17526 static void sanitize_dead_code(struct bpf_verifier_env *env)
17528 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17529 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
17530 struct bpf_insn *insn = env->prog->insnsi;
17531 const int insn_cnt = env->prog->len;
17534 for (i = 0; i < insn_cnt; i++) {
17535 if (aux_data[i].seen)
17537 memcpy(insn + i, &trap, sizeof(trap));
17538 aux_data[i].zext_dst = false;
17542 static bool insn_is_cond_jump(u8 code)
17547 if (BPF_CLASS(code) == BPF_JMP32)
17548 return op != BPF_JA;
17550 if (BPF_CLASS(code) != BPF_JMP)
17553 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17556 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17558 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17559 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17560 struct bpf_insn *insn = env->prog->insnsi;
17561 const int insn_cnt = env->prog->len;
17564 for (i = 0; i < insn_cnt; i++, insn++) {
17565 if (!insn_is_cond_jump(insn->code))
17568 if (!aux_data[i + 1].seen)
17569 ja.off = insn->off;
17570 else if (!aux_data[i + 1 + insn->off].seen)
17575 if (bpf_prog_is_offloaded(env->prog->aux))
17576 bpf_prog_offload_replace_insn(env, i, &ja);
17578 memcpy(insn, &ja, sizeof(ja));
17582 static int opt_remove_dead_code(struct bpf_verifier_env *env)
17584 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17585 int insn_cnt = env->prog->len;
17588 for (i = 0; i < insn_cnt; i++) {
17592 while (i + j < insn_cnt && !aux_data[i + j].seen)
17597 err = verifier_remove_insns(env, i, j);
17600 insn_cnt = env->prog->len;
17606 static int opt_remove_nops(struct bpf_verifier_env *env)
17608 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17609 struct bpf_insn *insn = env->prog->insnsi;
17610 int insn_cnt = env->prog->len;
17613 for (i = 0; i < insn_cnt; i++) {
17614 if (memcmp(&insn[i], &ja, sizeof(ja)))
17617 err = verifier_remove_insns(env, i, 1);
17627 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17628 const union bpf_attr *attr)
17630 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
17631 struct bpf_insn_aux_data *aux = env->insn_aux_data;
17632 int i, patch_len, delta = 0, len = env->prog->len;
17633 struct bpf_insn *insns = env->prog->insnsi;
17634 struct bpf_prog *new_prog;
17637 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
17638 zext_patch[1] = BPF_ZEXT_REG(0);
17639 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17640 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17641 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
17642 for (i = 0; i < len; i++) {
17643 int adj_idx = i + delta;
17644 struct bpf_insn insn;
17647 insn = insns[adj_idx];
17648 load_reg = insn_def_regno(&insn);
17649 if (!aux[adj_idx].zext_dst) {
17657 class = BPF_CLASS(code);
17658 if (load_reg == -1)
17661 /* NOTE: arg "reg" (the fourth one) is only used for
17662 * BPF_STX + SRC_OP, so it is safe to pass NULL
17665 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
17666 if (class == BPF_LD &&
17667 BPF_MODE(code) == BPF_IMM)
17672 /* ctx load could be transformed into wider load. */
17673 if (class == BPF_LDX &&
17674 aux[adj_idx].ptr_type == PTR_TO_CTX)
17677 imm_rnd = get_random_u32();
17678 rnd_hi32_patch[0] = insn;
17679 rnd_hi32_patch[1].imm = imm_rnd;
17680 rnd_hi32_patch[3].dst_reg = load_reg;
17681 patch = rnd_hi32_patch;
17683 goto apply_patch_buffer;
17686 /* Add in an zero-extend instruction if a) the JIT has requested
17687 * it or b) it's a CMPXCHG.
17689 * The latter is because: BPF_CMPXCHG always loads a value into
17690 * R0, therefore always zero-extends. However some archs'
17691 * equivalent instruction only does this load when the
17692 * comparison is successful. This detail of CMPXCHG is
17693 * orthogonal to the general zero-extension behaviour of the
17694 * CPU, so it's treated independently of bpf_jit_needs_zext.
17696 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
17699 /* Zero-extension is done by the caller. */
17700 if (bpf_pseudo_kfunc_call(&insn))
17703 if (WARN_ON(load_reg == -1)) {
17704 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
17708 zext_patch[0] = insn;
17709 zext_patch[1].dst_reg = load_reg;
17710 zext_patch[1].src_reg = load_reg;
17711 patch = zext_patch;
17713 apply_patch_buffer:
17714 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
17717 env->prog = new_prog;
17718 insns = new_prog->insnsi;
17719 aux = env->insn_aux_data;
17720 delta += patch_len - 1;
17726 /* convert load instructions that access fields of a context type into a
17727 * sequence of instructions that access fields of the underlying structure:
17728 * struct __sk_buff -> struct sk_buff
17729 * struct bpf_sock_ops -> struct sock
17731 static int convert_ctx_accesses(struct bpf_verifier_env *env)
17733 const struct bpf_verifier_ops *ops = env->ops;
17734 int i, cnt, size, ctx_field_size, delta = 0;
17735 const int insn_cnt = env->prog->len;
17736 struct bpf_insn insn_buf[16], *insn;
17737 u32 target_size, size_default, off;
17738 struct bpf_prog *new_prog;
17739 enum bpf_access_type type;
17740 bool is_narrower_load;
17742 if (ops->gen_prologue || env->seen_direct_write) {
17743 if (!ops->gen_prologue) {
17744 verbose(env, "bpf verifier is misconfigured\n");
17747 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
17749 if (cnt >= ARRAY_SIZE(insn_buf)) {
17750 verbose(env, "bpf verifier is misconfigured\n");
17753 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
17757 env->prog = new_prog;
17762 if (bpf_prog_is_offloaded(env->prog->aux))
17765 insn = env->prog->insnsi + delta;
17767 for (i = 0; i < insn_cnt; i++, insn++) {
17768 bpf_convert_ctx_access_t convert_ctx_access;
17771 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
17772 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
17773 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
17774 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
17775 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
17776 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
17777 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
17779 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
17780 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
17781 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
17782 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
17783 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
17784 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
17785 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
17786 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
17792 if (type == BPF_WRITE &&
17793 env->insn_aux_data[i + delta].sanitize_stack_spill) {
17794 struct bpf_insn patch[] = {
17799 cnt = ARRAY_SIZE(patch);
17800 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
17805 env->prog = new_prog;
17806 insn = new_prog->insnsi + i + delta;
17810 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
17812 if (!ops->convert_ctx_access)
17814 convert_ctx_access = ops->convert_ctx_access;
17816 case PTR_TO_SOCKET:
17817 case PTR_TO_SOCK_COMMON:
17818 convert_ctx_access = bpf_sock_convert_ctx_access;
17820 case PTR_TO_TCP_SOCK:
17821 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
17823 case PTR_TO_XDP_SOCK:
17824 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
17826 case PTR_TO_BTF_ID:
17827 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
17828 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
17829 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
17830 * be said once it is marked PTR_UNTRUSTED, hence we must handle
17831 * any faults for loads into such types. BPF_WRITE is disallowed
17834 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
17835 if (type == BPF_READ) {
17836 if (BPF_MODE(insn->code) == BPF_MEM)
17837 insn->code = BPF_LDX | BPF_PROBE_MEM |
17838 BPF_SIZE((insn)->code);
17840 insn->code = BPF_LDX | BPF_PROBE_MEMSX |
17841 BPF_SIZE((insn)->code);
17842 env->prog->aux->num_exentries++;
17849 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
17850 size = BPF_LDST_BYTES(insn);
17851 mode = BPF_MODE(insn->code);
17853 /* If the read access is a narrower load of the field,
17854 * convert to a 4/8-byte load, to minimum program type specific
17855 * convert_ctx_access changes. If conversion is successful,
17856 * we will apply proper mask to the result.
17858 is_narrower_load = size < ctx_field_size;
17859 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17861 if (is_narrower_load) {
17864 if (type == BPF_WRITE) {
17865 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
17870 if (ctx_field_size == 4)
17872 else if (ctx_field_size == 8)
17873 size_code = BPF_DW;
17875 insn->off = off & ~(size_default - 1);
17876 insn->code = BPF_LDX | BPF_MEM | size_code;
17880 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17882 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17883 (ctx_field_size && !target_size)) {
17884 verbose(env, "bpf verifier is misconfigured\n");
17888 if (is_narrower_load && size < target_size) {
17889 u8 shift = bpf_ctx_narrow_access_offset(
17890 off, size, size_default) * 8;
17891 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17892 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17895 if (ctx_field_size <= 4) {
17897 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17900 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17901 (1 << size * 8) - 1);
17904 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17907 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17908 (1ULL << size * 8) - 1);
17911 if (mode == BPF_MEMSX)
17912 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
17913 insn->dst_reg, insn->dst_reg,
17916 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17922 /* keep walking new program and skip insns we just inserted */
17923 env->prog = new_prog;
17924 insn = new_prog->insnsi + i + delta;
17930 static int jit_subprogs(struct bpf_verifier_env *env)
17932 struct bpf_prog *prog = env->prog, **func, *tmp;
17933 int i, j, subprog_start, subprog_end = 0, len, subprog;
17934 struct bpf_map *map_ptr;
17935 struct bpf_insn *insn;
17936 void *old_bpf_func;
17937 int err, num_exentries;
17939 if (env->subprog_cnt <= 1)
17942 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17943 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
17946 /* Upon error here we cannot fall back to interpreter but
17947 * need a hard reject of the program. Thus -EFAULT is
17948 * propagated in any case.
17950 subprog = find_subprog(env, i + insn->imm + 1);
17952 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17953 i + insn->imm + 1);
17956 /* temporarily remember subprog id inside insn instead of
17957 * aux_data, since next loop will split up all insns into funcs
17959 insn->off = subprog;
17960 /* remember original imm in case JIT fails and fallback
17961 * to interpreter will be needed
17963 env->insn_aux_data[i].call_imm = insn->imm;
17964 /* point imm to __bpf_call_base+1 from JITs point of view */
17966 if (bpf_pseudo_func(insn))
17967 /* jit (e.g. x86_64) may emit fewer instructions
17968 * if it learns a u32 imm is the same as a u64 imm.
17969 * Force a non zero here.
17974 err = bpf_prog_alloc_jited_linfo(prog);
17976 goto out_undo_insn;
17979 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
17981 goto out_undo_insn;
17983 for (i = 0; i < env->subprog_cnt; i++) {
17984 subprog_start = subprog_end;
17985 subprog_end = env->subprog_info[i + 1].start;
17987 len = subprog_end - subprog_start;
17988 /* bpf_prog_run() doesn't call subprogs directly,
17989 * hence main prog stats include the runtime of subprogs.
17990 * subprogs don't have IDs and not reachable via prog_get_next_id
17991 * func[i]->stats will never be accessed and stays NULL
17993 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
17996 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17997 len * sizeof(struct bpf_insn));
17998 func[i]->type = prog->type;
17999 func[i]->len = len;
18000 if (bpf_prog_calc_tag(func[i]))
18002 func[i]->is_func = 1;
18003 func[i]->aux->func_idx = i;
18004 /* Below members will be freed only at prog->aux */
18005 func[i]->aux->btf = prog->aux->btf;
18006 func[i]->aux->func_info = prog->aux->func_info;
18007 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18008 func[i]->aux->poke_tab = prog->aux->poke_tab;
18009 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18011 for (j = 0; j < prog->aux->size_poke_tab; j++) {
18012 struct bpf_jit_poke_descriptor *poke;
18014 poke = &prog->aux->poke_tab[j];
18015 if (poke->insn_idx < subprog_end &&
18016 poke->insn_idx >= subprog_start)
18017 poke->aux = func[i]->aux;
18020 func[i]->aux->name[0] = 'F';
18021 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18022 func[i]->jit_requested = 1;
18023 func[i]->blinding_requested = prog->blinding_requested;
18024 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18025 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18026 func[i]->aux->linfo = prog->aux->linfo;
18027 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18028 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18029 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18031 insn = func[i]->insnsi;
18032 for (j = 0; j < func[i]->len; j++, insn++) {
18033 if (BPF_CLASS(insn->code) == BPF_LDX &&
18034 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18035 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18038 func[i]->aux->num_exentries = num_exentries;
18039 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18040 func[i] = bpf_int_jit_compile(func[i]);
18041 if (!func[i]->jited) {
18048 /* at this point all bpf functions were successfully JITed
18049 * now populate all bpf_calls with correct addresses and
18050 * run last pass of JIT
18052 for (i = 0; i < env->subprog_cnt; i++) {
18053 insn = func[i]->insnsi;
18054 for (j = 0; j < func[i]->len; j++, insn++) {
18055 if (bpf_pseudo_func(insn)) {
18056 subprog = insn->off;
18057 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18058 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18061 if (!bpf_pseudo_call(insn))
18063 subprog = insn->off;
18064 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18067 /* we use the aux data to keep a list of the start addresses
18068 * of the JITed images for each function in the program
18070 * for some architectures, such as powerpc64, the imm field
18071 * might not be large enough to hold the offset of the start
18072 * address of the callee's JITed image from __bpf_call_base
18074 * in such cases, we can lookup the start address of a callee
18075 * by using its subprog id, available from the off field of
18076 * the call instruction, as an index for this list
18078 func[i]->aux->func = func;
18079 func[i]->aux->func_cnt = env->subprog_cnt;
18081 for (i = 0; i < env->subprog_cnt; i++) {
18082 old_bpf_func = func[i]->bpf_func;
18083 tmp = bpf_int_jit_compile(func[i]);
18084 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18085 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18092 /* finally lock prog and jit images for all functions and
18093 * populate kallsysm. Begin at the first subprogram, since
18094 * bpf_prog_load will add the kallsyms for the main program.
18096 for (i = 1; i < env->subprog_cnt; i++) {
18097 bpf_prog_lock_ro(func[i]);
18098 bpf_prog_kallsyms_add(func[i]);
18101 /* Last step: make now unused interpreter insns from main
18102 * prog consistent for later dump requests, so they can
18103 * later look the same as if they were interpreted only.
18105 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18106 if (bpf_pseudo_func(insn)) {
18107 insn[0].imm = env->insn_aux_data[i].call_imm;
18108 insn[1].imm = insn->off;
18112 if (!bpf_pseudo_call(insn))
18114 insn->off = env->insn_aux_data[i].call_imm;
18115 subprog = find_subprog(env, i + insn->off + 1);
18116 insn->imm = subprog;
18120 prog->bpf_func = func[0]->bpf_func;
18121 prog->jited_len = func[0]->jited_len;
18122 prog->aux->extable = func[0]->aux->extable;
18123 prog->aux->num_exentries = func[0]->aux->num_exentries;
18124 prog->aux->func = func;
18125 prog->aux->func_cnt = env->subprog_cnt;
18126 bpf_prog_jit_attempt_done(prog);
18129 /* We failed JIT'ing, so at this point we need to unregister poke
18130 * descriptors from subprogs, so that kernel is not attempting to
18131 * patch it anymore as we're freeing the subprog JIT memory.
18133 for (i = 0; i < prog->aux->size_poke_tab; i++) {
18134 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18135 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18137 /* At this point we're guaranteed that poke descriptors are not
18138 * live anymore. We can just unlink its descriptor table as it's
18139 * released with the main prog.
18141 for (i = 0; i < env->subprog_cnt; i++) {
18144 func[i]->aux->poke_tab = NULL;
18145 bpf_jit_free(func[i]);
18149 /* cleanup main prog to be interpreted */
18150 prog->jit_requested = 0;
18151 prog->blinding_requested = 0;
18152 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18153 if (!bpf_pseudo_call(insn))
18156 insn->imm = env->insn_aux_data[i].call_imm;
18158 bpf_prog_jit_attempt_done(prog);
18162 static int fixup_call_args(struct bpf_verifier_env *env)
18164 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18165 struct bpf_prog *prog = env->prog;
18166 struct bpf_insn *insn = prog->insnsi;
18167 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18172 if (env->prog->jit_requested &&
18173 !bpf_prog_is_offloaded(env->prog->aux)) {
18174 err = jit_subprogs(env);
18177 if (err == -EFAULT)
18180 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18181 if (has_kfunc_call) {
18182 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18185 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18186 /* When JIT fails the progs with bpf2bpf calls and tail_calls
18187 * have to be rejected, since interpreter doesn't support them yet.
18189 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18192 for (i = 0; i < prog->len; i++, insn++) {
18193 if (bpf_pseudo_func(insn)) {
18194 /* When JIT fails the progs with callback calls
18195 * have to be rejected, since interpreter doesn't support them yet.
18197 verbose(env, "callbacks are not allowed in non-JITed programs\n");
18201 if (!bpf_pseudo_call(insn))
18203 depth = get_callee_stack_depth(env, insn, i);
18206 bpf_patch_call_args(insn, depth);
18213 /* replace a generic kfunc with a specialized version if necessary */
18214 static void specialize_kfunc(struct bpf_verifier_env *env,
18215 u32 func_id, u16 offset, unsigned long *addr)
18217 struct bpf_prog *prog = env->prog;
18218 bool seen_direct_write;
18222 if (bpf_dev_bound_kfunc_id(func_id)) {
18223 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18225 *addr = (unsigned long)xdp_kfunc;
18228 /* fallback to default kfunc when not supported by netdev */
18234 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18235 seen_direct_write = env->seen_direct_write;
18236 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18239 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18241 /* restore env->seen_direct_write to its original value, since
18242 * may_access_direct_pkt_data mutates it
18244 env->seen_direct_write = seen_direct_write;
18248 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18249 u16 struct_meta_reg,
18250 u16 node_offset_reg,
18251 struct bpf_insn *insn,
18252 struct bpf_insn *insn_buf,
18255 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18256 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18258 insn_buf[0] = addr[0];
18259 insn_buf[1] = addr[1];
18260 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18261 insn_buf[3] = *insn;
18265 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18266 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18268 const struct bpf_kfunc_desc *desc;
18271 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18277 /* insn->imm has the btf func_id. Replace it with an offset relative to
18278 * __bpf_call_base, unless the JIT needs to call functions that are
18279 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18281 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18283 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18288 if (!bpf_jit_supports_far_kfunc_call())
18289 insn->imm = BPF_CALL_IMM(desc->addr);
18292 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18293 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18294 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18295 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18297 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18298 insn_buf[1] = addr[0];
18299 insn_buf[2] = addr[1];
18300 insn_buf[3] = *insn;
18302 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18303 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18304 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18305 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18307 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18308 !kptr_struct_meta) {
18309 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18314 insn_buf[0] = addr[0];
18315 insn_buf[1] = addr[1];
18316 insn_buf[2] = *insn;
18318 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18319 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18320 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18321 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18322 int struct_meta_reg = BPF_REG_3;
18323 int node_offset_reg = BPF_REG_4;
18325 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18326 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18327 struct_meta_reg = BPF_REG_4;
18328 node_offset_reg = BPF_REG_5;
18331 if (!kptr_struct_meta) {
18332 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18337 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18338 node_offset_reg, insn, insn_buf, cnt);
18339 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18340 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18341 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18347 /* Do various post-verification rewrites in a single program pass.
18348 * These rewrites simplify JIT and interpreter implementations.
18350 static int do_misc_fixups(struct bpf_verifier_env *env)
18352 struct bpf_prog *prog = env->prog;
18353 enum bpf_attach_type eatype = prog->expected_attach_type;
18354 enum bpf_prog_type prog_type = resolve_prog_type(prog);
18355 struct bpf_insn *insn = prog->insnsi;
18356 const struct bpf_func_proto *fn;
18357 const int insn_cnt = prog->len;
18358 const struct bpf_map_ops *ops;
18359 struct bpf_insn_aux_data *aux;
18360 struct bpf_insn insn_buf[16];
18361 struct bpf_prog *new_prog;
18362 struct bpf_map *map_ptr;
18363 int i, ret, cnt, delta = 0;
18365 for (i = 0; i < insn_cnt; i++, insn++) {
18366 /* Make divide-by-zero exceptions impossible. */
18367 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18368 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18369 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18370 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18371 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18372 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18373 struct bpf_insn *patchlet;
18374 struct bpf_insn chk_and_div[] = {
18375 /* [R,W]x div 0 -> 0 */
18376 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18377 BPF_JNE | BPF_K, insn->src_reg,
18379 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18380 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18383 struct bpf_insn chk_and_mod[] = {
18384 /* [R,W]x mod 0 -> [R,W]x */
18385 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18386 BPF_JEQ | BPF_K, insn->src_reg,
18387 0, 1 + (is64 ? 0 : 1), 0),
18389 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18390 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18393 patchlet = isdiv ? chk_and_div : chk_and_mod;
18394 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18395 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18397 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18402 env->prog = prog = new_prog;
18403 insn = new_prog->insnsi + i + delta;
18407 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18408 if (BPF_CLASS(insn->code) == BPF_LD &&
18409 (BPF_MODE(insn->code) == BPF_ABS ||
18410 BPF_MODE(insn->code) == BPF_IND)) {
18411 cnt = env->ops->gen_ld_abs(insn, insn_buf);
18412 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18413 verbose(env, "bpf verifier is misconfigured\n");
18417 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18422 env->prog = prog = new_prog;
18423 insn = new_prog->insnsi + i + delta;
18427 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
18428 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18429 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18430 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18431 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18432 struct bpf_insn *patch = &insn_buf[0];
18433 bool issrc, isneg, isimm;
18436 aux = &env->insn_aux_data[i + delta];
18437 if (!aux->alu_state ||
18438 aux->alu_state == BPF_ALU_NON_POINTER)
18441 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18442 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18443 BPF_ALU_SANITIZE_SRC;
18444 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18446 off_reg = issrc ? insn->src_reg : insn->dst_reg;
18448 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18451 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18452 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18453 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18454 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18455 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18456 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18457 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18460 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18461 insn->src_reg = BPF_REG_AX;
18463 insn->code = insn->code == code_add ?
18464 code_sub : code_add;
18466 if (issrc && isneg && !isimm)
18467 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18468 cnt = patch - insn_buf;
18470 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18475 env->prog = prog = new_prog;
18476 insn = new_prog->insnsi + i + delta;
18480 if (insn->code != (BPF_JMP | BPF_CALL))
18482 if (insn->src_reg == BPF_PSEUDO_CALL)
18484 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18485 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
18491 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18496 env->prog = prog = new_prog;
18497 insn = new_prog->insnsi + i + delta;
18501 if (insn->imm == BPF_FUNC_get_route_realm)
18502 prog->dst_needed = 1;
18503 if (insn->imm == BPF_FUNC_get_prandom_u32)
18504 bpf_user_rnd_init_once();
18505 if (insn->imm == BPF_FUNC_override_return)
18506 prog->kprobe_override = 1;
18507 if (insn->imm == BPF_FUNC_tail_call) {
18508 /* If we tail call into other programs, we
18509 * cannot make any assumptions since they can
18510 * be replaced dynamically during runtime in
18511 * the program array.
18513 prog->cb_access = 1;
18514 if (!allow_tail_call_in_subprogs(env))
18515 prog->aux->stack_depth = MAX_BPF_STACK;
18516 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
18518 /* mark bpf_tail_call as different opcode to avoid
18519 * conditional branch in the interpreter for every normal
18520 * call and to prevent accidental JITing by JIT compiler
18521 * that doesn't support bpf_tail_call yet
18524 insn->code = BPF_JMP | BPF_TAIL_CALL;
18526 aux = &env->insn_aux_data[i + delta];
18527 if (env->bpf_capable && !prog->blinding_requested &&
18528 prog->jit_requested &&
18529 !bpf_map_key_poisoned(aux) &&
18530 !bpf_map_ptr_poisoned(aux) &&
18531 !bpf_map_ptr_unpriv(aux)) {
18532 struct bpf_jit_poke_descriptor desc = {
18533 .reason = BPF_POKE_REASON_TAIL_CALL,
18534 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18535 .tail_call.key = bpf_map_key_immediate(aux),
18536 .insn_idx = i + delta,
18539 ret = bpf_jit_add_poke_descriptor(prog, &desc);
18541 verbose(env, "adding tail call poke descriptor failed\n");
18545 insn->imm = ret + 1;
18549 if (!bpf_map_ptr_unpriv(aux))
18552 /* instead of changing every JIT dealing with tail_call
18553 * emit two extra insns:
18554 * if (index >= max_entries) goto out;
18555 * index &= array->index_mask;
18556 * to avoid out-of-bounds cpu speculation
18558 if (bpf_map_ptr_poisoned(aux)) {
18559 verbose(env, "tail_call abusing map_ptr\n");
18563 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18564 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18565 map_ptr->max_entries, 2);
18566 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18567 container_of(map_ptr,
18570 insn_buf[2] = *insn;
18572 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18577 env->prog = prog = new_prog;
18578 insn = new_prog->insnsi + i + delta;
18582 if (insn->imm == BPF_FUNC_timer_set_callback) {
18583 /* The verifier will process callback_fn as many times as necessary
18584 * with different maps and the register states prepared by
18585 * set_timer_callback_state will be accurate.
18587 * The following use case is valid:
18588 * map1 is shared by prog1, prog2, prog3.
18589 * prog1 calls bpf_timer_init for some map1 elements
18590 * prog2 calls bpf_timer_set_callback for some map1 elements.
18591 * Those that were not bpf_timer_init-ed will return -EINVAL.
18592 * prog3 calls bpf_timer_start for some map1 elements.
18593 * Those that were not both bpf_timer_init-ed and
18594 * bpf_timer_set_callback-ed will return -EINVAL.
18596 struct bpf_insn ld_addrs[2] = {
18597 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
18600 insn_buf[0] = ld_addrs[0];
18601 insn_buf[1] = ld_addrs[1];
18602 insn_buf[2] = *insn;
18605 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18610 env->prog = prog = new_prog;
18611 insn = new_prog->insnsi + i + delta;
18612 goto patch_call_imm;
18615 if (is_storage_get_function(insn->imm)) {
18616 if (!env->prog->aux->sleepable ||
18617 env->insn_aux_data[i + delta].storage_get_func_atomic)
18618 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
18620 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
18621 insn_buf[1] = *insn;
18624 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18629 env->prog = prog = new_prog;
18630 insn = new_prog->insnsi + i + delta;
18631 goto patch_call_imm;
18634 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
18635 * and other inlining handlers are currently limited to 64 bit
18638 if (prog->jit_requested && BITS_PER_LONG == 64 &&
18639 (insn->imm == BPF_FUNC_map_lookup_elem ||
18640 insn->imm == BPF_FUNC_map_update_elem ||
18641 insn->imm == BPF_FUNC_map_delete_elem ||
18642 insn->imm == BPF_FUNC_map_push_elem ||
18643 insn->imm == BPF_FUNC_map_pop_elem ||
18644 insn->imm == BPF_FUNC_map_peek_elem ||
18645 insn->imm == BPF_FUNC_redirect_map ||
18646 insn->imm == BPF_FUNC_for_each_map_elem ||
18647 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
18648 aux = &env->insn_aux_data[i + delta];
18649 if (bpf_map_ptr_poisoned(aux))
18650 goto patch_call_imm;
18652 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18653 ops = map_ptr->ops;
18654 if (insn->imm == BPF_FUNC_map_lookup_elem &&
18655 ops->map_gen_lookup) {
18656 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
18657 if (cnt == -EOPNOTSUPP)
18658 goto patch_map_ops_generic;
18659 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18660 verbose(env, "bpf verifier is misconfigured\n");
18664 new_prog = bpf_patch_insn_data(env, i + delta,
18670 env->prog = prog = new_prog;
18671 insn = new_prog->insnsi + i + delta;
18675 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
18676 (void *(*)(struct bpf_map *map, void *key))NULL));
18677 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
18678 (long (*)(struct bpf_map *map, void *key))NULL));
18679 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
18680 (long (*)(struct bpf_map *map, void *key, void *value,
18682 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
18683 (long (*)(struct bpf_map *map, void *value,
18685 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
18686 (long (*)(struct bpf_map *map, void *value))NULL));
18687 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
18688 (long (*)(struct bpf_map *map, void *value))NULL));
18689 BUILD_BUG_ON(!__same_type(ops->map_redirect,
18690 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
18691 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
18692 (long (*)(struct bpf_map *map,
18693 bpf_callback_t callback_fn,
18694 void *callback_ctx,
18696 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
18697 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
18699 patch_map_ops_generic:
18700 switch (insn->imm) {
18701 case BPF_FUNC_map_lookup_elem:
18702 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
18704 case BPF_FUNC_map_update_elem:
18705 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
18707 case BPF_FUNC_map_delete_elem:
18708 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
18710 case BPF_FUNC_map_push_elem:
18711 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
18713 case BPF_FUNC_map_pop_elem:
18714 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
18716 case BPF_FUNC_map_peek_elem:
18717 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
18719 case BPF_FUNC_redirect_map:
18720 insn->imm = BPF_CALL_IMM(ops->map_redirect);
18722 case BPF_FUNC_for_each_map_elem:
18723 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
18725 case BPF_FUNC_map_lookup_percpu_elem:
18726 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
18730 goto patch_call_imm;
18733 /* Implement bpf_jiffies64 inline. */
18734 if (prog->jit_requested && BITS_PER_LONG == 64 &&
18735 insn->imm == BPF_FUNC_jiffies64) {
18736 struct bpf_insn ld_jiffies_addr[2] = {
18737 BPF_LD_IMM64(BPF_REG_0,
18738 (unsigned long)&jiffies),
18741 insn_buf[0] = ld_jiffies_addr[0];
18742 insn_buf[1] = ld_jiffies_addr[1];
18743 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
18747 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
18753 env->prog = prog = new_prog;
18754 insn = new_prog->insnsi + i + delta;
18758 /* Implement bpf_get_func_arg inline. */
18759 if (prog_type == BPF_PROG_TYPE_TRACING &&
18760 insn->imm == BPF_FUNC_get_func_arg) {
18761 /* Load nr_args from ctx - 8 */
18762 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18763 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
18764 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
18765 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
18766 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
18767 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18768 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
18769 insn_buf[7] = BPF_JMP_A(1);
18770 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
18773 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18778 env->prog = prog = new_prog;
18779 insn = new_prog->insnsi + i + delta;
18783 /* Implement bpf_get_func_ret inline. */
18784 if (prog_type == BPF_PROG_TYPE_TRACING &&
18785 insn->imm == BPF_FUNC_get_func_ret) {
18786 if (eatype == BPF_TRACE_FEXIT ||
18787 eatype == BPF_MODIFY_RETURN) {
18788 /* Load nr_args from ctx - 8 */
18789 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18790 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
18791 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
18792 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18793 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
18794 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
18797 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
18801 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18806 env->prog = prog = new_prog;
18807 insn = new_prog->insnsi + i + delta;
18811 /* Implement get_func_arg_cnt inline. */
18812 if (prog_type == BPF_PROG_TYPE_TRACING &&
18813 insn->imm == BPF_FUNC_get_func_arg_cnt) {
18814 /* Load nr_args from ctx - 8 */
18815 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18817 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18821 env->prog = prog = new_prog;
18822 insn = new_prog->insnsi + i + delta;
18826 /* Implement bpf_get_func_ip inline. */
18827 if (prog_type == BPF_PROG_TYPE_TRACING &&
18828 insn->imm == BPF_FUNC_get_func_ip) {
18829 /* Load IP address from ctx - 16 */
18830 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
18832 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18836 env->prog = prog = new_prog;
18837 insn = new_prog->insnsi + i + delta;
18842 fn = env->ops->get_func_proto(insn->imm, env->prog);
18843 /* all functions that have prototype and verifier allowed
18844 * programs to call them, must be real in-kernel functions
18848 "kernel subsystem misconfigured func %s#%d\n",
18849 func_id_name(insn->imm), insn->imm);
18852 insn->imm = fn->func - __bpf_call_base;
18855 /* Since poke tab is now finalized, publish aux to tracker. */
18856 for (i = 0; i < prog->aux->size_poke_tab; i++) {
18857 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18858 if (!map_ptr->ops->map_poke_track ||
18859 !map_ptr->ops->map_poke_untrack ||
18860 !map_ptr->ops->map_poke_run) {
18861 verbose(env, "bpf verifier is misconfigured\n");
18865 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
18867 verbose(env, "tracking tail call prog failed\n");
18872 sort_kfunc_descs_by_imm_off(env->prog);
18877 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
18880 u32 callback_subprogno,
18883 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
18884 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
18885 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
18886 int reg_loop_max = BPF_REG_6;
18887 int reg_loop_cnt = BPF_REG_7;
18888 int reg_loop_ctx = BPF_REG_8;
18890 struct bpf_prog *new_prog;
18891 u32 callback_start;
18892 u32 call_insn_offset;
18893 s32 callback_offset;
18895 /* This represents an inlined version of bpf_iter.c:bpf_loop,
18896 * be careful to modify this code in sync.
18898 struct bpf_insn insn_buf[] = {
18899 /* Return error and jump to the end of the patch if
18900 * expected number of iterations is too big.
18902 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
18903 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
18904 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
18905 /* spill R6, R7, R8 to use these as loop vars */
18906 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
18907 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
18908 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
18909 /* initialize loop vars */
18910 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
18911 BPF_MOV32_IMM(reg_loop_cnt, 0),
18912 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
18914 * if reg_loop_cnt >= reg_loop_max skip the loop body
18916 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
18918 * correct callback offset would be set after patching
18920 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
18921 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
18923 /* increment loop counter */
18924 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
18925 /* jump to loop header if callback returned 0 */
18926 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
18927 /* return value of bpf_loop,
18928 * set R0 to the number of iterations
18930 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18931 /* restore original values of R6, R7, R8 */
18932 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18933 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18934 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18937 *cnt = ARRAY_SIZE(insn_buf);
18938 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18942 /* callback start is known only after patching */
18943 callback_start = env->subprog_info[callback_subprogno].start;
18944 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18945 call_insn_offset = position + 12;
18946 callback_offset = callback_start - call_insn_offset - 1;
18947 new_prog->insnsi[call_insn_offset].imm = callback_offset;
18952 static bool is_bpf_loop_call(struct bpf_insn *insn)
18954 return insn->code == (BPF_JMP | BPF_CALL) &&
18955 insn->src_reg == 0 &&
18956 insn->imm == BPF_FUNC_loop;
18959 /* For all sub-programs in the program (including main) check
18960 * insn_aux_data to see if there are bpf_loop calls that require
18961 * inlining. If such calls are found the calls are replaced with a
18962 * sequence of instructions produced by `inline_bpf_loop` function and
18963 * subprog stack_depth is increased by the size of 3 registers.
18964 * This stack space is used to spill values of the R6, R7, R8. These
18965 * registers are used to store the loop bound, counter and context
18968 static int optimize_bpf_loop(struct bpf_verifier_env *env)
18970 struct bpf_subprog_info *subprogs = env->subprog_info;
18971 int i, cur_subprog = 0, cnt, delta = 0;
18972 struct bpf_insn *insn = env->prog->insnsi;
18973 int insn_cnt = env->prog->len;
18974 u16 stack_depth = subprogs[cur_subprog].stack_depth;
18975 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18976 u16 stack_depth_extra = 0;
18978 for (i = 0; i < insn_cnt; i++, insn++) {
18979 struct bpf_loop_inline_state *inline_state =
18980 &env->insn_aux_data[i + delta].loop_inline_state;
18982 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18983 struct bpf_prog *new_prog;
18985 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18986 new_prog = inline_bpf_loop(env,
18988 -(stack_depth + stack_depth_extra),
18989 inline_state->callback_subprogno,
18995 env->prog = new_prog;
18996 insn = new_prog->insnsi + i + delta;
18999 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19000 subprogs[cur_subprog].stack_depth += stack_depth_extra;
19002 stack_depth = subprogs[cur_subprog].stack_depth;
19003 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19004 stack_depth_extra = 0;
19008 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19013 static void free_states(struct bpf_verifier_env *env)
19015 struct bpf_verifier_state_list *sl, *sln;
19018 sl = env->free_list;
19021 free_verifier_state(&sl->state, false);
19025 env->free_list = NULL;
19027 if (!env->explored_states)
19030 for (i = 0; i < state_htab_size(env); i++) {
19031 sl = env->explored_states[i];
19035 free_verifier_state(&sl->state, false);
19039 env->explored_states[i] = NULL;
19043 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19045 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19046 struct bpf_verifier_state *state;
19047 struct bpf_reg_state *regs;
19050 env->prev_linfo = NULL;
19053 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19056 state->curframe = 0;
19057 state->speculative = false;
19058 state->branches = 1;
19059 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19060 if (!state->frame[0]) {
19064 env->cur_state = state;
19065 init_func_state(env, state->frame[0],
19066 BPF_MAIN_FUNC /* callsite */,
19069 state->first_insn_idx = env->subprog_info[subprog].start;
19070 state->last_insn_idx = -1;
19072 regs = state->frame[state->curframe]->regs;
19073 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19074 ret = btf_prepare_func_args(env, subprog, regs);
19077 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19078 if (regs[i].type == PTR_TO_CTX)
19079 mark_reg_known_zero(env, regs, i);
19080 else if (regs[i].type == SCALAR_VALUE)
19081 mark_reg_unknown(env, regs, i);
19082 else if (base_type(regs[i].type) == PTR_TO_MEM) {
19083 const u32 mem_size = regs[i].mem_size;
19085 mark_reg_known_zero(env, regs, i);
19086 regs[i].mem_size = mem_size;
19087 regs[i].id = ++env->id_gen;
19091 /* 1st arg to a function */
19092 regs[BPF_REG_1].type = PTR_TO_CTX;
19093 mark_reg_known_zero(env, regs, BPF_REG_1);
19094 ret = btf_check_subprog_arg_match(env, subprog, regs);
19095 if (ret == -EFAULT)
19096 /* unlikely verifier bug. abort.
19097 * ret == 0 and ret < 0 are sadly acceptable for
19098 * main() function due to backward compatibility.
19099 * Like socket filter program may be written as:
19100 * int bpf_prog(struct pt_regs *ctx)
19101 * and never dereference that ctx in the program.
19102 * 'struct pt_regs' is a type mismatch for socket
19103 * filter that should be using 'struct __sk_buff'.
19108 ret = do_check(env);
19110 /* check for NULL is necessary, since cur_state can be freed inside
19111 * do_check() under memory pressure.
19113 if (env->cur_state) {
19114 free_verifier_state(env->cur_state, true);
19115 env->cur_state = NULL;
19117 while (!pop_stack(env, NULL, NULL, false));
19118 if (!ret && pop_log)
19119 bpf_vlog_reset(&env->log, 0);
19124 /* Verify all global functions in a BPF program one by one based on their BTF.
19125 * All global functions must pass verification. Otherwise the whole program is rejected.
19136 * foo() will be verified first for R1=any_scalar_value. During verification it
19137 * will be assumed that bar() already verified successfully and call to bar()
19138 * from foo() will be checked for type match only. Later bar() will be verified
19139 * independently to check that it's safe for R1=any_scalar_value.
19141 static int do_check_subprogs(struct bpf_verifier_env *env)
19143 struct bpf_prog_aux *aux = env->prog->aux;
19146 if (!aux->func_info)
19149 for (i = 1; i < env->subprog_cnt; i++) {
19150 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19152 env->insn_idx = env->subprog_info[i].start;
19153 WARN_ON_ONCE(env->insn_idx == 0);
19154 ret = do_check_common(env, i);
19157 } else if (env->log.level & BPF_LOG_LEVEL) {
19159 "Func#%d is safe for any args that match its prototype\n",
19166 static int do_check_main(struct bpf_verifier_env *env)
19171 ret = do_check_common(env, 0);
19173 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19178 static void print_verification_stats(struct bpf_verifier_env *env)
19182 if (env->log.level & BPF_LOG_STATS) {
19183 verbose(env, "verification time %lld usec\n",
19184 div_u64(env->verification_time, 1000));
19185 verbose(env, "stack depth ");
19186 for (i = 0; i < env->subprog_cnt; i++) {
19187 u32 depth = env->subprog_info[i].stack_depth;
19189 verbose(env, "%d", depth);
19190 if (i + 1 < env->subprog_cnt)
19193 verbose(env, "\n");
19195 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19196 "total_states %d peak_states %d mark_read %d\n",
19197 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19198 env->max_states_per_insn, env->total_states,
19199 env->peak_states, env->longest_mark_read_walk);
19202 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19204 const struct btf_type *t, *func_proto;
19205 const struct bpf_struct_ops *st_ops;
19206 const struct btf_member *member;
19207 struct bpf_prog *prog = env->prog;
19208 u32 btf_id, member_idx;
19211 if (!prog->gpl_compatible) {
19212 verbose(env, "struct ops programs must have a GPL compatible license\n");
19216 btf_id = prog->aux->attach_btf_id;
19217 st_ops = bpf_struct_ops_find(btf_id);
19219 verbose(env, "attach_btf_id %u is not a supported struct\n",
19225 member_idx = prog->expected_attach_type;
19226 if (member_idx >= btf_type_vlen(t)) {
19227 verbose(env, "attach to invalid member idx %u of struct %s\n",
19228 member_idx, st_ops->name);
19232 member = &btf_type_member(t)[member_idx];
19233 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19234 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19237 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19238 mname, member_idx, st_ops->name);
19242 if (st_ops->check_member) {
19243 int err = st_ops->check_member(t, member, prog);
19246 verbose(env, "attach to unsupported member %s of struct %s\n",
19247 mname, st_ops->name);
19252 prog->aux->attach_func_proto = func_proto;
19253 prog->aux->attach_func_name = mname;
19254 env->ops = st_ops->verifier_ops;
19258 #define SECURITY_PREFIX "security_"
19260 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19262 if (within_error_injection_list(addr) ||
19263 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19269 /* list of non-sleepable functions that are otherwise on
19270 * ALLOW_ERROR_INJECTION list
19272 BTF_SET_START(btf_non_sleepable_error_inject)
19273 /* Three functions below can be called from sleepable and non-sleepable context.
19274 * Assume non-sleepable from bpf safety point of view.
19276 BTF_ID(func, __filemap_add_folio)
19277 BTF_ID(func, should_fail_alloc_page)
19278 BTF_ID(func, should_failslab)
19279 BTF_SET_END(btf_non_sleepable_error_inject)
19281 static int check_non_sleepable_error_inject(u32 btf_id)
19283 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19286 int bpf_check_attach_target(struct bpf_verifier_log *log,
19287 const struct bpf_prog *prog,
19288 const struct bpf_prog *tgt_prog,
19290 struct bpf_attach_target_info *tgt_info)
19292 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19293 const char prefix[] = "btf_trace_";
19294 int ret = 0, subprog = -1, i;
19295 const struct btf_type *t;
19296 bool conservative = true;
19300 struct module *mod = NULL;
19303 bpf_log(log, "Tracing programs must provide btf_id\n");
19306 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19309 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19312 t = btf_type_by_id(btf, btf_id);
19314 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19317 tname = btf_name_by_offset(btf, t->name_off);
19319 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19323 struct bpf_prog_aux *aux = tgt_prog->aux;
19325 if (bpf_prog_is_dev_bound(prog->aux) &&
19326 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19327 bpf_log(log, "Target program bound device mismatch");
19331 for (i = 0; i < aux->func_info_cnt; i++)
19332 if (aux->func_info[i].type_id == btf_id) {
19336 if (subprog == -1) {
19337 bpf_log(log, "Subprog %s doesn't exist\n", tname);
19340 conservative = aux->func_info_aux[subprog].unreliable;
19341 if (prog_extension) {
19342 if (conservative) {
19344 "Cannot replace static functions\n");
19347 if (!prog->jit_requested) {
19349 "Extension programs should be JITed\n");
19353 if (!tgt_prog->jited) {
19354 bpf_log(log, "Can attach to only JITed progs\n");
19357 if (tgt_prog->type == prog->type) {
19358 /* Cannot fentry/fexit another fentry/fexit program.
19359 * Cannot attach program extension to another extension.
19360 * It's ok to attach fentry/fexit to extension program.
19362 bpf_log(log, "Cannot recursively attach\n");
19365 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19367 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19368 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19369 /* Program extensions can extend all program types
19370 * except fentry/fexit. The reason is the following.
19371 * The fentry/fexit programs are used for performance
19372 * analysis, stats and can be attached to any program
19373 * type except themselves. When extension program is
19374 * replacing XDP function it is necessary to allow
19375 * performance analysis of all functions. Both original
19376 * XDP program and its program extension. Hence
19377 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19378 * allowed. If extending of fentry/fexit was allowed it
19379 * would be possible to create long call chain
19380 * fentry->extension->fentry->extension beyond
19381 * reasonable stack size. Hence extending fentry is not
19384 bpf_log(log, "Cannot extend fentry/fexit\n");
19388 if (prog_extension) {
19389 bpf_log(log, "Cannot replace kernel functions\n");
19394 switch (prog->expected_attach_type) {
19395 case BPF_TRACE_RAW_TP:
19398 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19401 if (!btf_type_is_typedef(t)) {
19402 bpf_log(log, "attach_btf_id %u is not a typedef\n",
19406 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19407 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19411 tname += sizeof(prefix) - 1;
19412 t = btf_type_by_id(btf, t->type);
19413 if (!btf_type_is_ptr(t))
19414 /* should never happen in valid vmlinux build */
19416 t = btf_type_by_id(btf, t->type);
19417 if (!btf_type_is_func_proto(t))
19418 /* should never happen in valid vmlinux build */
19422 case BPF_TRACE_ITER:
19423 if (!btf_type_is_func(t)) {
19424 bpf_log(log, "attach_btf_id %u is not a function\n",
19428 t = btf_type_by_id(btf, t->type);
19429 if (!btf_type_is_func_proto(t))
19431 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19436 if (!prog_extension)
19439 case BPF_MODIFY_RETURN:
19441 case BPF_LSM_CGROUP:
19442 case BPF_TRACE_FENTRY:
19443 case BPF_TRACE_FEXIT:
19444 if (!btf_type_is_func(t)) {
19445 bpf_log(log, "attach_btf_id %u is not a function\n",
19449 if (prog_extension &&
19450 btf_check_type_match(log, prog, btf, t))
19452 t = btf_type_by_id(btf, t->type);
19453 if (!btf_type_is_func_proto(t))
19456 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19457 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19458 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19461 if (tgt_prog && conservative)
19464 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19470 addr = (long) tgt_prog->bpf_func;
19472 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
19474 if (btf_is_module(btf)) {
19475 mod = btf_try_get_module(btf);
19477 addr = find_kallsyms_symbol_value(mod, tname);
19481 addr = kallsyms_lookup_name(tname);
19486 "The address of function %s cannot be found\n",
19492 if (prog->aux->sleepable) {
19494 switch (prog->type) {
19495 case BPF_PROG_TYPE_TRACING:
19497 /* fentry/fexit/fmod_ret progs can be sleepable if they are
19498 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
19500 if (!check_non_sleepable_error_inject(btf_id) &&
19501 within_error_injection_list(addr))
19503 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
19504 * in the fmodret id set with the KF_SLEEPABLE flag.
19507 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
19510 if (flags && (*flags & KF_SLEEPABLE))
19514 case BPF_PROG_TYPE_LSM:
19515 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
19516 * Only some of them are sleepable.
19518 if (bpf_lsm_is_sleepable_hook(btf_id))
19526 bpf_log(log, "%s is not sleepable\n", tname);
19529 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
19532 bpf_log(log, "can't modify return codes of BPF programs\n");
19536 if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
19537 !check_attach_modify_return(addr, tname))
19541 bpf_log(log, "%s() is not modifiable\n", tname);
19548 tgt_info->tgt_addr = addr;
19549 tgt_info->tgt_name = tname;
19550 tgt_info->tgt_type = t;
19551 tgt_info->tgt_mod = mod;
19555 BTF_SET_START(btf_id_deny)
19558 BTF_ID(func, migrate_disable)
19559 BTF_ID(func, migrate_enable)
19561 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
19562 BTF_ID(func, rcu_read_unlock_strict)
19564 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
19565 BTF_ID(func, preempt_count_add)
19566 BTF_ID(func, preempt_count_sub)
19568 #ifdef CONFIG_PREEMPT_RCU
19569 BTF_ID(func, __rcu_read_lock)
19570 BTF_ID(func, __rcu_read_unlock)
19572 BTF_SET_END(btf_id_deny)
19574 static bool can_be_sleepable(struct bpf_prog *prog)
19576 if (prog->type == BPF_PROG_TYPE_TRACING) {
19577 switch (prog->expected_attach_type) {
19578 case BPF_TRACE_FENTRY:
19579 case BPF_TRACE_FEXIT:
19580 case BPF_MODIFY_RETURN:
19581 case BPF_TRACE_ITER:
19587 return prog->type == BPF_PROG_TYPE_LSM ||
19588 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
19589 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
19592 static int check_attach_btf_id(struct bpf_verifier_env *env)
19594 struct bpf_prog *prog = env->prog;
19595 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
19596 struct bpf_attach_target_info tgt_info = {};
19597 u32 btf_id = prog->aux->attach_btf_id;
19598 struct bpf_trampoline *tr;
19602 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
19603 if (prog->aux->sleepable)
19604 /* attach_btf_id checked to be zero already */
19606 verbose(env, "Syscall programs can only be sleepable\n");
19610 if (prog->aux->sleepable && !can_be_sleepable(prog)) {
19611 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
19615 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
19616 return check_struct_ops_btf_id(env);
19618 if (prog->type != BPF_PROG_TYPE_TRACING &&
19619 prog->type != BPF_PROG_TYPE_LSM &&
19620 prog->type != BPF_PROG_TYPE_EXT)
19623 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
19627 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
19628 /* to make freplace equivalent to their targets, they need to
19629 * inherit env->ops and expected_attach_type for the rest of the
19632 env->ops = bpf_verifier_ops[tgt_prog->type];
19633 prog->expected_attach_type = tgt_prog->expected_attach_type;
19636 /* store info about the attachment target that will be used later */
19637 prog->aux->attach_func_proto = tgt_info.tgt_type;
19638 prog->aux->attach_func_name = tgt_info.tgt_name;
19639 prog->aux->mod = tgt_info.tgt_mod;
19642 prog->aux->saved_dst_prog_type = tgt_prog->type;
19643 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
19646 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
19647 prog->aux->attach_btf_trace = true;
19649 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
19650 if (!bpf_iter_prog_supported(prog))
19655 if (prog->type == BPF_PROG_TYPE_LSM) {
19656 ret = bpf_lsm_verify_prog(&env->log, prog);
19659 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
19660 btf_id_set_contains(&btf_id_deny, btf_id)) {
19664 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
19665 tr = bpf_trampoline_get(key, &tgt_info);
19669 if (tgt_prog && tgt_prog->aux->tail_call_reachable)
19670 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
19672 prog->aux->dst_trampoline = tr;
19676 struct btf *bpf_get_btf_vmlinux(void)
19678 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
19679 mutex_lock(&bpf_verifier_lock);
19681 btf_vmlinux = btf_parse_vmlinux();
19682 mutex_unlock(&bpf_verifier_lock);
19684 return btf_vmlinux;
19687 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
19689 u64 start_time = ktime_get_ns();
19690 struct bpf_verifier_env *env;
19691 int i, len, ret = -EINVAL, err;
19695 /* no program is valid */
19696 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
19699 /* 'struct bpf_verifier_env' can be global, but since it's not small,
19700 * allocate/free it every time bpf_check() is called
19702 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
19708 len = (*prog)->len;
19709 env->insn_aux_data =
19710 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
19712 if (!env->insn_aux_data)
19714 for (i = 0; i < len; i++)
19715 env->insn_aux_data[i].orig_idx = i;
19717 env->ops = bpf_verifier_ops[env->prog->type];
19718 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
19719 is_priv = bpf_capable();
19721 bpf_get_btf_vmlinux();
19723 /* grab the mutex to protect few globals used by verifier */
19725 mutex_lock(&bpf_verifier_lock);
19727 /* user could have requested verbose verifier output
19728 * and supplied buffer to store the verification trace
19730 ret = bpf_vlog_init(&env->log, attr->log_level,
19731 (char __user *) (unsigned long) attr->log_buf,
19736 mark_verifier_state_clean(env);
19738 if (IS_ERR(btf_vmlinux)) {
19739 /* Either gcc or pahole or kernel are broken. */
19740 verbose(env, "in-kernel BTF is malformed\n");
19741 ret = PTR_ERR(btf_vmlinux);
19742 goto skip_full_check;
19745 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
19746 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
19747 env->strict_alignment = true;
19748 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
19749 env->strict_alignment = false;
19751 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
19752 env->allow_uninit_stack = bpf_allow_uninit_stack();
19753 env->bypass_spec_v1 = bpf_bypass_spec_v1();
19754 env->bypass_spec_v4 = bpf_bypass_spec_v4();
19755 env->bpf_capable = bpf_capable();
19758 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
19760 env->explored_states = kvcalloc(state_htab_size(env),
19761 sizeof(struct bpf_verifier_state_list *),
19764 if (!env->explored_states)
19765 goto skip_full_check;
19767 ret = add_subprog_and_kfunc(env);
19769 goto skip_full_check;
19771 ret = check_subprogs(env);
19773 goto skip_full_check;
19775 ret = check_btf_info(env, attr, uattr);
19777 goto skip_full_check;
19779 ret = check_attach_btf_id(env);
19781 goto skip_full_check;
19783 ret = resolve_pseudo_ldimm64(env);
19785 goto skip_full_check;
19787 if (bpf_prog_is_offloaded(env->prog->aux)) {
19788 ret = bpf_prog_offload_verifier_prep(env->prog);
19790 goto skip_full_check;
19793 ret = check_cfg(env);
19795 goto skip_full_check;
19797 ret = do_check_subprogs(env);
19798 ret = ret ?: do_check_main(env);
19800 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
19801 ret = bpf_prog_offload_finalize(env);
19804 kvfree(env->explored_states);
19807 ret = check_max_stack_depth(env);
19809 /* instruction rewrites happen after this point */
19811 ret = optimize_bpf_loop(env);
19815 opt_hard_wire_dead_code_branches(env);
19817 ret = opt_remove_dead_code(env);
19819 ret = opt_remove_nops(env);
19822 sanitize_dead_code(env);
19826 /* program is valid, convert *(u32*)(ctx + off) accesses */
19827 ret = convert_ctx_accesses(env);
19830 ret = do_misc_fixups(env);
19832 /* do 32-bit optimization after insn patching has done so those patched
19833 * insns could be handled correctly.
19835 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
19836 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
19837 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
19842 ret = fixup_call_args(env);
19844 env->verification_time = ktime_get_ns() - start_time;
19845 print_verification_stats(env);
19846 env->prog->aux->verified_insns = env->insn_processed;
19848 /* preserve original error even if log finalization is successful */
19849 err = bpf_vlog_finalize(&env->log, &log_true_size);
19853 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
19854 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
19855 &log_true_size, sizeof(log_true_size))) {
19857 goto err_release_maps;
19861 goto err_release_maps;
19863 if (env->used_map_cnt) {
19864 /* if program passed verifier, update used_maps in bpf_prog_info */
19865 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
19866 sizeof(env->used_maps[0]),
19869 if (!env->prog->aux->used_maps) {
19871 goto err_release_maps;
19874 memcpy(env->prog->aux->used_maps, env->used_maps,
19875 sizeof(env->used_maps[0]) * env->used_map_cnt);
19876 env->prog->aux->used_map_cnt = env->used_map_cnt;
19878 if (env->used_btf_cnt) {
19879 /* if program passed verifier, update used_btfs in bpf_prog_aux */
19880 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
19881 sizeof(env->used_btfs[0]),
19883 if (!env->prog->aux->used_btfs) {
19885 goto err_release_maps;
19888 memcpy(env->prog->aux->used_btfs, env->used_btfs,
19889 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
19890 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
19892 if (env->used_map_cnt || env->used_btf_cnt) {
19893 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
19894 * bpf_ld_imm64 instructions
19896 convert_pseudo_ld_imm64(env);
19899 adjust_btf_func(env);
19902 if (!env->prog->aux->used_maps)
19903 /* if we didn't copy map pointers into bpf_prog_info, release
19904 * them now. Otherwise free_used_maps() will release them.
19907 if (!env->prog->aux->used_btfs)
19910 /* extension progs temporarily inherit the attach_type of their targets
19911 for verification purposes, so set it back to zero before returning
19913 if (env->prog->type == BPF_PROG_TYPE_EXT)
19914 env->prog->expected_attach_type = 0;
19919 mutex_unlock(&bpf_verifier_lock);
19920 vfree(env->insn_aux_data);