1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 [_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
42 /* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
53 * Since it's analyzing all pathes through the program, the length of the
54 * analysis is limited to 64k insn, which may be hit even if total number of
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
82 * Most of the time the registers have SCALAR_VALUE type, which
83 * means the register has some value, but it's not a valid pointer.
84 * (like pointer plus pointer becomes SCALAR_VALUE type)
86 * When verifier sees load or store instructions the type of base register
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138 * returns ether pointer to map value or NULL.
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
173 struct bpf_verifier_state st;
176 struct bpf_verifier_stack_elem *next;
179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
180 #define BPF_COMPLEXITY_LIMIT_STATES 64
182 #define BPF_MAP_PTR_UNPRIV 1UL
183 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
184 POISON_POINTER_DELTA))
185 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194 return aux->map_state & BPF_MAP_PTR_UNPRIV;
197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
198 const struct bpf_map *map, bool unpriv)
200 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
201 unpriv |= bpf_map_ptr_unpriv(aux);
202 aux->map_state = (unsigned long)map |
203 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 struct bpf_call_arg_meta {
207 struct bpf_map *map_ptr;
212 s64 msize_smax_value;
213 u64 msize_umax_value;
218 static DEFINE_MUTEX(bpf_verifier_lock);
220 static const struct bpf_line_info *
221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
223 const struct bpf_line_info *linfo;
224 const struct bpf_prog *prog;
228 nr_linfo = prog->aux->nr_linfo;
230 if (!nr_linfo || insn_off >= prog->len)
233 linfo = prog->aux->linfo;
234 for (i = 1; i < nr_linfo; i++)
235 if (insn_off < linfo[i].insn_off)
238 return &linfo[i - 1];
241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 "verifier log line truncated - local buffer too short\n");
251 n = min(log->len_total - log->len_used - 1, n);
254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
260 /* log_level controls verbosity level of eBPF verifier.
261 * bpf_verifier_log_write() is used to dump the verification trace to the log,
262 * so the user can figure out what's wrong with the program
264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 const char *fmt, ...)
269 if (!bpf_verifier_log_needed(&env->log))
273 bpf_verifier_vlog(&env->log, fmt, args);
276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
280 struct bpf_verifier_env *env = private_data;
283 if (!bpf_verifier_log_needed(&env->log))
287 bpf_verifier_vlog(&env->log, fmt, args);
291 static const char *ltrim(const char *s)
299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
301 const char *prefix_fmt, ...)
303 const struct bpf_line_info *linfo;
305 if (!bpf_verifier_log_needed(&env->log))
308 linfo = find_linfo(env, insn_off);
309 if (!linfo || linfo == env->prev_linfo)
315 va_start(args, prefix_fmt);
316 bpf_verifier_vlog(&env->log, prefix_fmt, args);
321 ltrim(btf_name_by_offset(env->prog->aux->btf,
324 env->prev_linfo = linfo;
327 static bool type_is_pkt_pointer(enum bpf_reg_type type)
329 return type == PTR_TO_PACKET ||
330 type == PTR_TO_PACKET_META;
333 static bool type_is_sk_pointer(enum bpf_reg_type type)
335 return type == PTR_TO_SOCKET ||
336 type == PTR_TO_SOCK_COMMON ||
337 type == PTR_TO_TCP_SOCK;
340 static bool reg_type_may_be_null(enum bpf_reg_type type)
342 return type == PTR_TO_MAP_VALUE_OR_NULL ||
343 type == PTR_TO_SOCKET_OR_NULL ||
344 type == PTR_TO_SOCK_COMMON_OR_NULL ||
345 type == PTR_TO_TCP_SOCK_OR_NULL;
348 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
350 return reg->type == PTR_TO_MAP_VALUE &&
351 map_value_has_spin_lock(reg->map_ptr);
354 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
356 return type == PTR_TO_SOCKET ||
357 type == PTR_TO_SOCKET_OR_NULL ||
358 type == PTR_TO_TCP_SOCK ||
359 type == PTR_TO_TCP_SOCK_OR_NULL;
362 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
364 return type == ARG_PTR_TO_SOCK_COMMON;
367 /* Determine whether the function releases some resources allocated by another
368 * function call. The first reference type argument will be assumed to be
369 * released by release_reference().
371 static bool is_release_function(enum bpf_func_id func_id)
373 return func_id == BPF_FUNC_sk_release;
376 static bool is_acquire_function(enum bpf_func_id func_id)
378 return func_id == BPF_FUNC_sk_lookup_tcp ||
379 func_id == BPF_FUNC_sk_lookup_udp ||
380 func_id == BPF_FUNC_skc_lookup_tcp;
383 static bool is_ptr_cast_function(enum bpf_func_id func_id)
385 return func_id == BPF_FUNC_tcp_sock ||
386 func_id == BPF_FUNC_sk_fullsock;
389 /* string representation of 'enum bpf_reg_type' */
390 static const char * const reg_type_str[] = {
392 [SCALAR_VALUE] = "inv",
393 [PTR_TO_CTX] = "ctx",
394 [CONST_PTR_TO_MAP] = "map_ptr",
395 [PTR_TO_MAP_VALUE] = "map_value",
396 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
397 [PTR_TO_STACK] = "fp",
398 [PTR_TO_PACKET] = "pkt",
399 [PTR_TO_PACKET_META] = "pkt_meta",
400 [PTR_TO_PACKET_END] = "pkt_end",
401 [PTR_TO_FLOW_KEYS] = "flow_keys",
402 [PTR_TO_SOCKET] = "sock",
403 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
404 [PTR_TO_SOCK_COMMON] = "sock_common",
405 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
406 [PTR_TO_TCP_SOCK] = "tcp_sock",
407 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
408 [PTR_TO_TP_BUFFER] = "tp_buffer",
411 static char slot_type_char[] = {
412 [STACK_INVALID] = '?',
418 static void print_liveness(struct bpf_verifier_env *env,
419 enum bpf_reg_liveness live)
421 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
423 if (live & REG_LIVE_READ)
425 if (live & REG_LIVE_WRITTEN)
427 if (live & REG_LIVE_DONE)
431 static struct bpf_func_state *func(struct bpf_verifier_env *env,
432 const struct bpf_reg_state *reg)
434 struct bpf_verifier_state *cur = env->cur_state;
436 return cur->frame[reg->frameno];
439 static void print_verifier_state(struct bpf_verifier_env *env,
440 const struct bpf_func_state *state)
442 const struct bpf_reg_state *reg;
447 verbose(env, " frame%d:", state->frameno);
448 for (i = 0; i < MAX_BPF_REG; i++) {
449 reg = &state->regs[i];
453 verbose(env, " R%d", i);
454 print_liveness(env, reg->live);
455 verbose(env, "=%s", reg_type_str[t]);
456 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
457 tnum_is_const(reg->var_off)) {
458 /* reg->off should be 0 for SCALAR_VALUE */
459 verbose(env, "%lld", reg->var_off.value + reg->off);
460 if (t == PTR_TO_STACK)
461 verbose(env, ",call_%d", func(env, reg)->callsite);
463 verbose(env, "(id=%d", reg->id);
464 if (reg_type_may_be_refcounted_or_null(t))
465 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
466 if (t != SCALAR_VALUE)
467 verbose(env, ",off=%d", reg->off);
468 if (type_is_pkt_pointer(t))
469 verbose(env, ",r=%d", reg->range);
470 else if (t == CONST_PTR_TO_MAP ||
471 t == PTR_TO_MAP_VALUE ||
472 t == PTR_TO_MAP_VALUE_OR_NULL)
473 verbose(env, ",ks=%d,vs=%d",
474 reg->map_ptr->key_size,
475 reg->map_ptr->value_size);
476 if (tnum_is_const(reg->var_off)) {
477 /* Typically an immediate SCALAR_VALUE, but
478 * could be a pointer whose offset is too big
481 verbose(env, ",imm=%llx", reg->var_off.value);
483 if (reg->smin_value != reg->umin_value &&
484 reg->smin_value != S64_MIN)
485 verbose(env, ",smin_value=%lld",
486 (long long)reg->smin_value);
487 if (reg->smax_value != reg->umax_value &&
488 reg->smax_value != S64_MAX)
489 verbose(env, ",smax_value=%lld",
490 (long long)reg->smax_value);
491 if (reg->umin_value != 0)
492 verbose(env, ",umin_value=%llu",
493 (unsigned long long)reg->umin_value);
494 if (reg->umax_value != U64_MAX)
495 verbose(env, ",umax_value=%llu",
496 (unsigned long long)reg->umax_value);
497 if (!tnum_is_unknown(reg->var_off)) {
500 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
501 verbose(env, ",var_off=%s", tn_buf);
507 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
508 char types_buf[BPF_REG_SIZE + 1];
512 for (j = 0; j < BPF_REG_SIZE; j++) {
513 if (state->stack[i].slot_type[j] != STACK_INVALID)
515 types_buf[j] = slot_type_char[
516 state->stack[i].slot_type[j]];
518 types_buf[BPF_REG_SIZE] = 0;
521 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
522 print_liveness(env, state->stack[i].spilled_ptr.live);
523 if (state->stack[i].slot_type[0] == STACK_SPILL)
525 reg_type_str[state->stack[i].spilled_ptr.type]);
527 verbose(env, "=%s", types_buf);
529 if (state->acquired_refs && state->refs[0].id) {
530 verbose(env, " refs=%d", state->refs[0].id);
531 for (i = 1; i < state->acquired_refs; i++)
532 if (state->refs[i].id)
533 verbose(env, ",%d", state->refs[i].id);
538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
539 static int copy_##NAME##_state(struct bpf_func_state *dst, \
540 const struct bpf_func_state *src) \
544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
545 /* internal bug, make state invalid to reject the program */ \
546 memset(dst, 0, sizeof(*dst)); \
549 memcpy(dst->FIELD, src->FIELD, \
550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
553 /* copy_reference_state() */
554 COPY_STATE_FN(reference, acquired_refs, refs, 1)
555 /* copy_stack_state() */
556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
563 u32 old_size = state->COUNT; \
564 struct bpf_##NAME##_state *new_##FIELD; \
565 int slot = size / SIZE; \
567 if (size <= old_size || !size) { \
570 state->COUNT = slot * SIZE; \
571 if (!size && old_size) { \
572 kfree(state->FIELD); \
573 state->FIELD = NULL; \
577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
583 memcpy(new_##FIELD, state->FIELD, \
584 sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 memset(new_##FIELD + old_size / SIZE, 0, \
586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
588 state->COUNT = slot * SIZE; \
589 kfree(state->FIELD); \
590 state->FIELD = new_##FIELD; \
593 /* realloc_reference_state() */
594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
595 /* realloc_stack_state() */
596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597 #undef REALLOC_STATE_FN
599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600 * make it consume minimal amount of memory. check_stack_write() access from
601 * the program calls into realloc_func_state() to grow the stack size.
602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603 * which realloc_stack_state() copies over. It points to previous
604 * bpf_verifier_state which is never reallocated.
606 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 int refs_size, bool copy_old)
609 int err = realloc_reference_state(state, refs_size, copy_old);
612 return realloc_stack_state(state, stack_size, copy_old);
615 /* Acquire a pointer id from the env and update the state->refs to include
616 * this new pointer reference.
617 * On success, returns a valid pointer id to associate with the register
618 * On failure, returns a negative errno.
620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
622 struct bpf_func_state *state = cur_func(env);
623 int new_ofs = state->acquired_refs;
626 err = realloc_reference_state(state, state->acquired_refs + 1, true);
630 state->refs[new_ofs].id = id;
631 state->refs[new_ofs].insn_idx = insn_idx;
636 /* release function corresponding to acquire_reference_state(). Idempotent. */
637 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
641 last_idx = state->acquired_refs - 1;
642 for (i = 0; i < state->acquired_refs; i++) {
643 if (state->refs[i].id == ptr_id) {
644 if (last_idx && i != last_idx)
645 memcpy(&state->refs[i], &state->refs[last_idx],
646 sizeof(*state->refs));
647 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 state->acquired_refs--;
655 static int transfer_reference_state(struct bpf_func_state *dst,
656 struct bpf_func_state *src)
658 int err = realloc_reference_state(dst, src->acquired_refs, false);
661 err = copy_reference_state(dst, src);
667 static void free_func_state(struct bpf_func_state *state)
676 static void free_verifier_state(struct bpf_verifier_state *state,
681 for (i = 0; i <= state->curframe; i++) {
682 free_func_state(state->frame[i]);
683 state->frame[i] = NULL;
689 /* copy verifier state from src to dst growing dst stack space
690 * when necessary to accommodate larger src stack
692 static int copy_func_state(struct bpf_func_state *dst,
693 const struct bpf_func_state *src)
697 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
701 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
702 err = copy_reference_state(dst, src);
705 return copy_stack_state(dst, src);
708 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
709 const struct bpf_verifier_state *src)
711 struct bpf_func_state *dst;
714 /* if dst has more stack frames then src frame, free them */
715 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
716 free_func_state(dst_state->frame[i]);
717 dst_state->frame[i] = NULL;
719 dst_state->speculative = src->speculative;
720 dst_state->curframe = src->curframe;
721 dst_state->active_spin_lock = src->active_spin_lock;
722 for (i = 0; i <= src->curframe; i++) {
723 dst = dst_state->frame[i];
725 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
728 dst_state->frame[i] = dst;
730 err = copy_func_state(dst, src->frame[i]);
737 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
740 struct bpf_verifier_state *cur = env->cur_state;
741 struct bpf_verifier_stack_elem *elem, *head = env->head;
744 if (env->head == NULL)
748 err = copy_verifier_state(cur, &head->st);
753 *insn_idx = head->insn_idx;
755 *prev_insn_idx = head->prev_insn_idx;
757 free_verifier_state(&head->st, false);
764 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
765 int insn_idx, int prev_insn_idx,
768 struct bpf_verifier_state *cur = env->cur_state;
769 struct bpf_verifier_stack_elem *elem;
772 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
776 elem->insn_idx = insn_idx;
777 elem->prev_insn_idx = prev_insn_idx;
778 elem->next = env->head;
781 err = copy_verifier_state(&elem->st, cur);
784 elem->st.speculative |= speculative;
785 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
786 verbose(env, "The sequence of %d jumps is too complex.\n",
792 free_verifier_state(env->cur_state, true);
793 env->cur_state = NULL;
794 /* pop all elements and return */
795 while (!pop_stack(env, NULL, NULL));
799 #define CALLER_SAVED_REGS 6
800 static const int caller_saved[CALLER_SAVED_REGS] = {
801 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
804 static void __mark_reg_not_init(struct bpf_reg_state *reg);
806 /* Mark the unknown part of a register (variable offset or scalar value) as
807 * known to have the value @imm.
809 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
811 /* Clear id, off, and union(map_ptr, range) */
812 memset(((u8 *)reg) + sizeof(reg->type), 0,
813 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
814 reg->var_off = tnum_const(imm);
815 reg->smin_value = (s64)imm;
816 reg->smax_value = (s64)imm;
817 reg->umin_value = imm;
818 reg->umax_value = imm;
821 /* Mark the 'variable offset' part of a register as zero. This should be
822 * used only on registers holding a pointer type.
824 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
826 __mark_reg_known(reg, 0);
829 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
831 __mark_reg_known(reg, 0);
832 reg->type = SCALAR_VALUE;
835 static void mark_reg_known_zero(struct bpf_verifier_env *env,
836 struct bpf_reg_state *regs, u32 regno)
838 if (WARN_ON(regno >= MAX_BPF_REG)) {
839 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
840 /* Something bad happened, let's kill all regs */
841 for (regno = 0; regno < MAX_BPF_REG; regno++)
842 __mark_reg_not_init(regs + regno);
845 __mark_reg_known_zero(regs + regno);
848 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
850 return type_is_pkt_pointer(reg->type);
853 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
855 return reg_is_pkt_pointer(reg) ||
856 reg->type == PTR_TO_PACKET_END;
859 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
860 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
861 enum bpf_reg_type which)
863 /* The register can already have a range from prior markings.
864 * This is fine as long as it hasn't been advanced from its
867 return reg->type == which &&
870 tnum_equals_const(reg->var_off, 0);
873 /* Attempts to improve min/max values based on var_off information */
874 static void __update_reg_bounds(struct bpf_reg_state *reg)
876 /* min signed is max(sign bit) | min(other bits) */
877 reg->smin_value = max_t(s64, reg->smin_value,
878 reg->var_off.value | (reg->var_off.mask & S64_MIN));
879 /* max signed is min(sign bit) | max(other bits) */
880 reg->smax_value = min_t(s64, reg->smax_value,
881 reg->var_off.value | (reg->var_off.mask & S64_MAX));
882 reg->umin_value = max(reg->umin_value, reg->var_off.value);
883 reg->umax_value = min(reg->umax_value,
884 reg->var_off.value | reg->var_off.mask);
887 /* Uses signed min/max values to inform unsigned, and vice-versa */
888 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
890 /* Learn sign from signed bounds.
891 * If we cannot cross the sign boundary, then signed and unsigned bounds
892 * are the same, so combine. This works even in the negative case, e.g.
893 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
895 if (reg->smin_value >= 0 || reg->smax_value < 0) {
896 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
898 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
902 /* Learn sign from unsigned bounds. Signed bounds cross the sign
903 * boundary, so we must be careful.
905 if ((s64)reg->umax_value >= 0) {
906 /* Positive. We can't learn anything from the smin, but smax
907 * is positive, hence safe.
909 reg->smin_value = reg->umin_value;
910 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
912 } else if ((s64)reg->umin_value < 0) {
913 /* Negative. We can't learn anything from the smax, but smin
914 * is negative, hence safe.
916 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
918 reg->smax_value = reg->umax_value;
922 /* Attempts to improve var_off based on unsigned min/max information */
923 static void __reg_bound_offset(struct bpf_reg_state *reg)
925 reg->var_off = tnum_intersect(reg->var_off,
926 tnum_range(reg->umin_value,
930 /* Reset the min/max bounds of a register */
931 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
933 reg->smin_value = S64_MIN;
934 reg->smax_value = S64_MAX;
936 reg->umax_value = U64_MAX;
939 /* Mark a register as having a completely unknown (scalar) value. */
940 static void __mark_reg_unknown(struct bpf_reg_state *reg)
943 * Clear type, id, off, and union(map_ptr, range) and
944 * padding between 'type' and union
946 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
947 reg->type = SCALAR_VALUE;
948 reg->var_off = tnum_unknown;
950 __mark_reg_unbounded(reg);
953 static void mark_reg_unknown(struct bpf_verifier_env *env,
954 struct bpf_reg_state *regs, u32 regno)
956 if (WARN_ON(regno >= MAX_BPF_REG)) {
957 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
958 /* Something bad happened, let's kill all regs except FP */
959 for (regno = 0; regno < BPF_REG_FP; regno++)
960 __mark_reg_not_init(regs + regno);
963 __mark_reg_unknown(regs + regno);
966 static void __mark_reg_not_init(struct bpf_reg_state *reg)
968 __mark_reg_unknown(reg);
969 reg->type = NOT_INIT;
972 static void mark_reg_not_init(struct bpf_verifier_env *env,
973 struct bpf_reg_state *regs, u32 regno)
975 if (WARN_ON(regno >= MAX_BPF_REG)) {
976 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
977 /* Something bad happened, let's kill all regs except FP */
978 for (regno = 0; regno < BPF_REG_FP; regno++)
979 __mark_reg_not_init(regs + regno);
982 __mark_reg_not_init(regs + regno);
985 #define DEF_NOT_SUBREG (0)
986 static void init_reg_state(struct bpf_verifier_env *env,
987 struct bpf_func_state *state)
989 struct bpf_reg_state *regs = state->regs;
992 for (i = 0; i < MAX_BPF_REG; i++) {
993 mark_reg_not_init(env, regs, i);
994 regs[i].live = REG_LIVE_NONE;
995 regs[i].parent = NULL;
996 regs[i].subreg_def = DEF_NOT_SUBREG;
1000 regs[BPF_REG_FP].type = PTR_TO_STACK;
1001 mark_reg_known_zero(env, regs, BPF_REG_FP);
1002 regs[BPF_REG_FP].frameno = state->frameno;
1004 /* 1st arg to a function */
1005 regs[BPF_REG_1].type = PTR_TO_CTX;
1006 mark_reg_known_zero(env, regs, BPF_REG_1);
1009 #define BPF_MAIN_FUNC (-1)
1010 static void init_func_state(struct bpf_verifier_env *env,
1011 struct bpf_func_state *state,
1012 int callsite, int frameno, int subprogno)
1014 state->callsite = callsite;
1015 state->frameno = frameno;
1016 state->subprogno = subprogno;
1017 init_reg_state(env, state);
1021 SRC_OP, /* register is used as source operand */
1022 DST_OP, /* register is used as destination operand */
1023 DST_OP_NO_MARK /* same as above, check only, don't mark */
1026 static int cmp_subprogs(const void *a, const void *b)
1028 return ((struct bpf_subprog_info *)a)->start -
1029 ((struct bpf_subprog_info *)b)->start;
1032 static int find_subprog(struct bpf_verifier_env *env, int off)
1034 struct bpf_subprog_info *p;
1036 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1037 sizeof(env->subprog_info[0]), cmp_subprogs);
1040 return p - env->subprog_info;
1044 static int add_subprog(struct bpf_verifier_env *env, int off)
1046 int insn_cnt = env->prog->len;
1049 if (off >= insn_cnt || off < 0) {
1050 verbose(env, "call to invalid destination\n");
1053 ret = find_subprog(env, off);
1056 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1057 verbose(env, "too many subprograms\n");
1060 env->subprog_info[env->subprog_cnt++].start = off;
1061 sort(env->subprog_info, env->subprog_cnt,
1062 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1066 static int check_subprogs(struct bpf_verifier_env *env)
1068 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1069 struct bpf_subprog_info *subprog = env->subprog_info;
1070 struct bpf_insn *insn = env->prog->insnsi;
1071 int insn_cnt = env->prog->len;
1073 /* Add entry function. */
1074 ret = add_subprog(env, 0);
1078 /* determine subprog starts. The end is one before the next starts */
1079 for (i = 0; i < insn_cnt; i++) {
1080 if (insn[i].code != (BPF_JMP | BPF_CALL))
1082 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1084 if (!env->allow_ptr_leaks) {
1085 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1088 ret = add_subprog(env, i + insn[i].imm + 1);
1093 /* Add a fake 'exit' subprog which could simplify subprog iteration
1094 * logic. 'subprog_cnt' should not be increased.
1096 subprog[env->subprog_cnt].start = insn_cnt;
1098 if (env->log.level & BPF_LOG_LEVEL2)
1099 for (i = 0; i < env->subprog_cnt; i++)
1100 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1102 /* now check that all jumps are within the same subprog */
1103 subprog_start = subprog[cur_subprog].start;
1104 subprog_end = subprog[cur_subprog + 1].start;
1105 for (i = 0; i < insn_cnt; i++) {
1106 u8 code = insn[i].code;
1108 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1110 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1112 off = i + insn[i].off + 1;
1113 if (off < subprog_start || off >= subprog_end) {
1114 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1118 if (i == subprog_end - 1) {
1119 /* to avoid fall-through from one subprog into another
1120 * the last insn of the subprog should be either exit
1121 * or unconditional jump back
1123 if (code != (BPF_JMP | BPF_EXIT) &&
1124 code != (BPF_JMP | BPF_JA)) {
1125 verbose(env, "last insn is not an exit or jmp\n");
1128 subprog_start = subprog_end;
1130 if (cur_subprog < env->subprog_cnt)
1131 subprog_end = subprog[cur_subprog + 1].start;
1137 /* Parentage chain of this register (or stack slot) should take care of all
1138 * issues like callee-saved registers, stack slot allocation time, etc.
1140 static int mark_reg_read(struct bpf_verifier_env *env,
1141 const struct bpf_reg_state *state,
1142 struct bpf_reg_state *parent, u8 flag)
1144 bool writes = parent == state->parent; /* Observe write marks */
1148 /* if read wasn't screened by an earlier write ... */
1149 if (writes && state->live & REG_LIVE_WRITTEN)
1151 if (parent->live & REG_LIVE_DONE) {
1152 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1153 reg_type_str[parent->type],
1154 parent->var_off.value, parent->off);
1157 /* The first condition is more likely to be true than the
1158 * second, checked it first.
1160 if ((parent->live & REG_LIVE_READ) == flag ||
1161 parent->live & REG_LIVE_READ64)
1162 /* The parentage chain never changes and
1163 * this parent was already marked as LIVE_READ.
1164 * There is no need to keep walking the chain again and
1165 * keep re-marking all parents as LIVE_READ.
1166 * This case happens when the same register is read
1167 * multiple times without writes into it in-between.
1168 * Also, if parent has the stronger REG_LIVE_READ64 set,
1169 * then no need to set the weak REG_LIVE_READ32.
1172 /* ... then we depend on parent's value */
1173 parent->live |= flag;
1174 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1175 if (flag == REG_LIVE_READ64)
1176 parent->live &= ~REG_LIVE_READ32;
1178 parent = state->parent;
1183 if (env->longest_mark_read_walk < cnt)
1184 env->longest_mark_read_walk = cnt;
1188 /* This function is supposed to be used by the following 32-bit optimization
1189 * code only. It returns TRUE if the source or destination register operates
1190 * on 64-bit, otherwise return FALSE.
1192 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1193 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1198 class = BPF_CLASS(code);
1200 if (class == BPF_JMP) {
1201 /* BPF_EXIT for "main" will reach here. Return TRUE
1206 if (op == BPF_CALL) {
1207 /* BPF to BPF call will reach here because of marking
1208 * caller saved clobber with DST_OP_NO_MARK for which we
1209 * don't care the register def because they are anyway
1210 * marked as NOT_INIT already.
1212 if (insn->src_reg == BPF_PSEUDO_CALL)
1214 /* Helper call will reach here because of arg type
1215 * check, conservatively return TRUE.
1224 if (class == BPF_ALU64 || class == BPF_JMP ||
1225 /* BPF_END always use BPF_ALU class. */
1226 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1229 if (class == BPF_ALU || class == BPF_JMP32)
1232 if (class == BPF_LDX) {
1234 return BPF_SIZE(code) == BPF_DW;
1235 /* LDX source must be ptr. */
1239 if (class == BPF_STX) {
1240 if (reg->type != SCALAR_VALUE)
1242 return BPF_SIZE(code) == BPF_DW;
1245 if (class == BPF_LD) {
1246 u8 mode = BPF_MODE(code);
1249 if (mode == BPF_IMM)
1252 /* Both LD_IND and LD_ABS return 32-bit data. */
1256 /* Implicit ctx ptr. */
1257 if (regno == BPF_REG_6)
1260 /* Explicit source could be any width. */
1264 if (class == BPF_ST)
1265 /* The only source register for BPF_ST is a ptr. */
1268 /* Conservatively return true at default. */
1272 /* Return TRUE if INSN doesn't have explicit value define. */
1273 static bool insn_no_def(struct bpf_insn *insn)
1275 u8 class = BPF_CLASS(insn->code);
1277 return (class == BPF_JMP || class == BPF_JMP32 ||
1278 class == BPF_STX || class == BPF_ST);
1281 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1282 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1284 if (insn_no_def(insn))
1287 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1290 static void mark_insn_zext(struct bpf_verifier_env *env,
1291 struct bpf_reg_state *reg)
1293 s32 def_idx = reg->subreg_def;
1295 if (def_idx == DEF_NOT_SUBREG)
1298 env->insn_aux_data[def_idx - 1].zext_dst = true;
1299 /* The dst will be zero extended, so won't be sub-register anymore. */
1300 reg->subreg_def = DEF_NOT_SUBREG;
1303 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1304 enum reg_arg_type t)
1306 struct bpf_verifier_state *vstate = env->cur_state;
1307 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1308 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1309 struct bpf_reg_state *reg, *regs = state->regs;
1312 if (regno >= MAX_BPF_REG) {
1313 verbose(env, "R%d is invalid\n", regno);
1318 rw64 = is_reg64(env, insn, regno, reg, t);
1320 /* check whether register used as source operand can be read */
1321 if (reg->type == NOT_INIT) {
1322 verbose(env, "R%d !read_ok\n", regno);
1325 /* We don't need to worry about FP liveness because it's read-only */
1326 if (regno == BPF_REG_FP)
1330 mark_insn_zext(env, reg);
1332 return mark_reg_read(env, reg, reg->parent,
1333 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1335 /* check whether register used as dest operand can be written to */
1336 if (regno == BPF_REG_FP) {
1337 verbose(env, "frame pointer is read only\n");
1340 reg->live |= REG_LIVE_WRITTEN;
1341 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1343 mark_reg_unknown(env, regs, regno);
1348 static bool is_spillable_regtype(enum bpf_reg_type type)
1351 case PTR_TO_MAP_VALUE:
1352 case PTR_TO_MAP_VALUE_OR_NULL:
1356 case PTR_TO_PACKET_META:
1357 case PTR_TO_PACKET_END:
1358 case PTR_TO_FLOW_KEYS:
1359 case CONST_PTR_TO_MAP:
1361 case PTR_TO_SOCKET_OR_NULL:
1362 case PTR_TO_SOCK_COMMON:
1363 case PTR_TO_SOCK_COMMON_OR_NULL:
1364 case PTR_TO_TCP_SOCK:
1365 case PTR_TO_TCP_SOCK_OR_NULL:
1372 /* Does this register contain a constant zero? */
1373 static bool register_is_null(struct bpf_reg_state *reg)
1375 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1378 /* check_stack_read/write functions track spill/fill of registers,
1379 * stack boundary and alignment are checked in check_mem_access()
1381 static int check_stack_write(struct bpf_verifier_env *env,
1382 struct bpf_func_state *state, /* func where register points to */
1383 int off, int size, int value_regno, int insn_idx)
1385 struct bpf_func_state *cur; /* state of the current function */
1386 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1387 enum bpf_reg_type type;
1389 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1390 state->acquired_refs, true);
1393 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1394 * so it's aligned access and [off, off + size) are within stack limits
1396 if (!env->allow_ptr_leaks &&
1397 state->stack[spi].slot_type[0] == STACK_SPILL &&
1398 size != BPF_REG_SIZE) {
1399 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1403 cur = env->cur_state->frame[env->cur_state->curframe];
1404 if (value_regno >= 0 &&
1405 is_spillable_regtype((type = cur->regs[value_regno].type))) {
1407 /* register containing pointer is being spilled into stack */
1408 if (size != BPF_REG_SIZE) {
1409 verbose(env, "invalid size of register spill\n");
1413 if (state != cur && type == PTR_TO_STACK) {
1414 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1418 /* save register state */
1419 state->stack[spi].spilled_ptr = cur->regs[value_regno];
1420 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1422 for (i = 0; i < BPF_REG_SIZE; i++) {
1423 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1424 !env->allow_ptr_leaks) {
1425 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1426 int soff = (-spi - 1) * BPF_REG_SIZE;
1428 /* detected reuse of integer stack slot with a pointer
1429 * which means either llvm is reusing stack slot or
1430 * an attacker is trying to exploit CVE-2018-3639
1431 * (speculative store bypass)
1432 * Have to sanitize that slot with preemptive
1435 if (*poff && *poff != soff) {
1436 /* disallow programs where single insn stores
1437 * into two different stack slots, since verifier
1438 * cannot sanitize them
1441 "insn %d cannot access two stack slots fp%d and fp%d",
1442 insn_idx, *poff, soff);
1447 state->stack[spi].slot_type[i] = STACK_SPILL;
1450 u8 type = STACK_MISC;
1452 /* regular write of data into stack destroys any spilled ptr */
1453 state->stack[spi].spilled_ptr.type = NOT_INIT;
1454 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1455 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1456 for (i = 0; i < BPF_REG_SIZE; i++)
1457 state->stack[spi].slot_type[i] = STACK_MISC;
1459 /* only mark the slot as written if all 8 bytes were written
1460 * otherwise read propagation may incorrectly stop too soon
1461 * when stack slots are partially written.
1462 * This heuristic means that read propagation will be
1463 * conservative, since it will add reg_live_read marks
1464 * to stack slots all the way to first state when programs
1465 * writes+reads less than 8 bytes
1467 if (size == BPF_REG_SIZE)
1468 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1470 /* when we zero initialize stack slots mark them as such */
1471 if (value_regno >= 0 &&
1472 register_is_null(&cur->regs[value_regno]))
1475 /* Mark slots affected by this stack write. */
1476 for (i = 0; i < size; i++)
1477 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1483 static int check_stack_read(struct bpf_verifier_env *env,
1484 struct bpf_func_state *reg_state /* func where register points to */,
1485 int off, int size, int value_regno)
1487 struct bpf_verifier_state *vstate = env->cur_state;
1488 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1489 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1492 if (reg_state->allocated_stack <= slot) {
1493 verbose(env, "invalid read from stack off %d+0 size %d\n",
1497 stype = reg_state->stack[spi].slot_type;
1499 if (stype[0] == STACK_SPILL) {
1500 if (size != BPF_REG_SIZE) {
1501 verbose(env, "invalid size of register spill\n");
1504 for (i = 1; i < BPF_REG_SIZE; i++) {
1505 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1506 verbose(env, "corrupted spill memory\n");
1511 if (value_regno >= 0) {
1512 /* restore register state from stack */
1513 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1514 /* mark reg as written since spilled pointer state likely
1515 * has its liveness marks cleared by is_state_visited()
1516 * which resets stack/reg liveness for state transitions
1518 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1520 mark_reg_read(env, ®_state->stack[spi].spilled_ptr,
1521 reg_state->stack[spi].spilled_ptr.parent,
1527 for (i = 0; i < size; i++) {
1528 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1530 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1534 verbose(env, "invalid read from stack off %d+%d size %d\n",
1538 mark_reg_read(env, ®_state->stack[spi].spilled_ptr,
1539 reg_state->stack[spi].spilled_ptr.parent,
1541 if (value_regno >= 0) {
1542 if (zeros == size) {
1543 /* any size read into register is zero extended,
1544 * so the whole register == const_zero
1546 __mark_reg_const_zero(&state->regs[value_regno]);
1548 /* have read misc data from the stack */
1549 mark_reg_unknown(env, state->regs, value_regno);
1551 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1557 static int check_stack_access(struct bpf_verifier_env *env,
1558 const struct bpf_reg_state *reg,
1561 /* Stack accesses must be at a fixed offset, so that we
1562 * can determine what type of data were returned. See
1563 * check_stack_read().
1565 if (!tnum_is_const(reg->var_off)) {
1568 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1569 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
1574 if (off >= 0 || off < -MAX_BPF_STACK) {
1575 verbose(env, "invalid stack off=%d size=%d\n", off, size);
1582 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
1583 int off, int size, enum bpf_access_type type)
1585 struct bpf_reg_state *regs = cur_regs(env);
1586 struct bpf_map *map = regs[regno].map_ptr;
1587 u32 cap = bpf_map_flags_to_cap(map);
1589 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
1590 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
1591 map->value_size, off, size);
1595 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
1596 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
1597 map->value_size, off, size);
1604 /* check read/write into map element returned by bpf_map_lookup_elem() */
1605 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1606 int size, bool zero_size_allowed)
1608 struct bpf_reg_state *regs = cur_regs(env);
1609 struct bpf_map *map = regs[regno].map_ptr;
1611 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1612 off + size > map->value_size) {
1613 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1614 map->value_size, off, size);
1620 /* check read/write into a map element with possible variable offset */
1621 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1622 int off, int size, bool zero_size_allowed)
1624 struct bpf_verifier_state *vstate = env->cur_state;
1625 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1626 struct bpf_reg_state *reg = &state->regs[regno];
1629 /* We may have adjusted the register to this map value, so we
1630 * need to try adding each of min_value and max_value to off
1631 * to make sure our theoretical access will be safe.
1633 if (env->log.level & BPF_LOG_LEVEL)
1634 print_verifier_state(env, state);
1636 /* The minimum value is only important with signed
1637 * comparisons where we can't assume the floor of a
1638 * value is 0. If we are using signed variables for our
1639 * index'es we need to make sure that whatever we use
1640 * will have a set floor within our range.
1642 if (reg->smin_value < 0 &&
1643 (reg->smin_value == S64_MIN ||
1644 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1645 reg->smin_value + off < 0)) {
1646 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1650 err = __check_map_access(env, regno, reg->smin_value + off, size,
1653 verbose(env, "R%d min value is outside of the array range\n",
1658 /* If we haven't set a max value then we need to bail since we can't be
1659 * sure we won't do bad things.
1660 * If reg->umax_value + off could overflow, treat that as unbounded too.
1662 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1663 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1667 err = __check_map_access(env, regno, reg->umax_value + off, size,
1670 verbose(env, "R%d max value is outside of the array range\n",
1673 if (map_value_has_spin_lock(reg->map_ptr)) {
1674 u32 lock = reg->map_ptr->spin_lock_off;
1676 /* if any part of struct bpf_spin_lock can be touched by
1677 * load/store reject this program.
1678 * To check that [x1, x2) overlaps with [y1, y2)
1679 * it is sufficient to check x1 < y2 && y1 < x2.
1681 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1682 lock < reg->umax_value + off + size) {
1683 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1690 #define MAX_PACKET_OFF 0xffff
1692 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1693 const struct bpf_call_arg_meta *meta,
1694 enum bpf_access_type t)
1696 switch (env->prog->type) {
1697 /* Program types only with direct read access go here! */
1698 case BPF_PROG_TYPE_LWT_IN:
1699 case BPF_PROG_TYPE_LWT_OUT:
1700 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1701 case BPF_PROG_TYPE_SK_REUSEPORT:
1702 case BPF_PROG_TYPE_FLOW_DISSECTOR:
1703 case BPF_PROG_TYPE_CGROUP_SKB:
1708 /* Program types with direct read + write access go here! */
1709 case BPF_PROG_TYPE_SCHED_CLS:
1710 case BPF_PROG_TYPE_SCHED_ACT:
1711 case BPF_PROG_TYPE_XDP:
1712 case BPF_PROG_TYPE_LWT_XMIT:
1713 case BPF_PROG_TYPE_SK_SKB:
1714 case BPF_PROG_TYPE_SK_MSG:
1716 return meta->pkt_access;
1718 env->seen_direct_write = true;
1725 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1726 int off, int size, bool zero_size_allowed)
1728 struct bpf_reg_state *regs = cur_regs(env);
1729 struct bpf_reg_state *reg = ®s[regno];
1731 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1732 (u64)off + size > reg->range) {
1733 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1734 off, size, regno, reg->id, reg->off, reg->range);
1740 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1741 int size, bool zero_size_allowed)
1743 struct bpf_reg_state *regs = cur_regs(env);
1744 struct bpf_reg_state *reg = ®s[regno];
1747 /* We may have added a variable offset to the packet pointer; but any
1748 * reg->range we have comes after that. We are only checking the fixed
1752 /* We don't allow negative numbers, because we aren't tracking enough
1753 * detail to prove they're safe.
1755 if (reg->smin_value < 0) {
1756 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1760 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1762 verbose(env, "R%d offset is outside of the packet\n", regno);
1766 /* __check_packet_access has made sure "off + size - 1" is within u16.
1767 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1768 * otherwise find_good_pkt_pointers would have refused to set range info
1769 * that __check_packet_access would have rejected this pkt access.
1770 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1772 env->prog->aux->max_pkt_offset =
1773 max_t(u32, env->prog->aux->max_pkt_offset,
1774 off + reg->umax_value + size - 1);
1779 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1780 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1781 enum bpf_access_type t, enum bpf_reg_type *reg_type)
1783 struct bpf_insn_access_aux info = {
1784 .reg_type = *reg_type,
1787 if (env->ops->is_valid_access &&
1788 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1789 /* A non zero info.ctx_field_size indicates that this field is a
1790 * candidate for later verifier transformation to load the whole
1791 * field and then apply a mask when accessed with a narrower
1792 * access than actual ctx access size. A zero info.ctx_field_size
1793 * will only allow for whole field access and rejects any other
1794 * type of narrower access.
1796 *reg_type = info.reg_type;
1798 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1799 /* remember the offset of last byte accessed in ctx */
1800 if (env->prog->aux->max_ctx_offset < off + size)
1801 env->prog->aux->max_ctx_offset = off + size;
1805 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1809 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1812 if (size < 0 || off < 0 ||
1813 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1814 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1821 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1822 u32 regno, int off, int size,
1823 enum bpf_access_type t)
1825 struct bpf_reg_state *regs = cur_regs(env);
1826 struct bpf_reg_state *reg = ®s[regno];
1827 struct bpf_insn_access_aux info = {};
1830 if (reg->smin_value < 0) {
1831 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1836 switch (reg->type) {
1837 case PTR_TO_SOCK_COMMON:
1838 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1841 valid = bpf_sock_is_valid_access(off, size, t, &info);
1843 case PTR_TO_TCP_SOCK:
1844 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1852 env->insn_aux_data[insn_idx].ctx_field_size =
1853 info.ctx_field_size;
1857 verbose(env, "R%d invalid %s access off=%d size=%d\n",
1858 regno, reg_type_str[reg->type], off, size);
1863 static bool __is_pointer_value(bool allow_ptr_leaks,
1864 const struct bpf_reg_state *reg)
1866 if (allow_ptr_leaks)
1869 return reg->type != SCALAR_VALUE;
1872 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1874 return cur_regs(env) + regno;
1877 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1879 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1882 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1884 const struct bpf_reg_state *reg = reg_state(env, regno);
1886 return reg->type == PTR_TO_CTX;
1889 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1891 const struct bpf_reg_state *reg = reg_state(env, regno);
1893 return type_is_sk_pointer(reg->type);
1896 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1898 const struct bpf_reg_state *reg = reg_state(env, regno);
1900 return type_is_pkt_pointer(reg->type);
1903 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1905 const struct bpf_reg_state *reg = reg_state(env, regno);
1907 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1908 return reg->type == PTR_TO_FLOW_KEYS;
1911 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1912 const struct bpf_reg_state *reg,
1913 int off, int size, bool strict)
1915 struct tnum reg_off;
1918 /* Byte size accesses are always allowed. */
1919 if (!strict || size == 1)
1922 /* For platforms that do not have a Kconfig enabling
1923 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1924 * NET_IP_ALIGN is universally set to '2'. And on platforms
1925 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1926 * to this code only in strict mode where we want to emulate
1927 * the NET_IP_ALIGN==2 checking. Therefore use an
1928 * unconditional IP align value of '2'.
1932 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1933 if (!tnum_is_aligned(reg_off, size)) {
1936 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1938 "misaligned packet access off %d+%s+%d+%d size %d\n",
1939 ip_align, tn_buf, reg->off, off, size);
1946 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1947 const struct bpf_reg_state *reg,
1948 const char *pointer_desc,
1949 int off, int size, bool strict)
1951 struct tnum reg_off;
1953 /* Byte size accesses are always allowed. */
1954 if (!strict || size == 1)
1957 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1958 if (!tnum_is_aligned(reg_off, size)) {
1961 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1962 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1963 pointer_desc, tn_buf, reg->off, off, size);
1970 static int check_ptr_alignment(struct bpf_verifier_env *env,
1971 const struct bpf_reg_state *reg, int off,
1972 int size, bool strict_alignment_once)
1974 bool strict = env->strict_alignment || strict_alignment_once;
1975 const char *pointer_desc = "";
1977 switch (reg->type) {
1979 case PTR_TO_PACKET_META:
1980 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1981 * right in front, treat it the very same way.
1983 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1984 case PTR_TO_FLOW_KEYS:
1985 pointer_desc = "flow keys ";
1987 case PTR_TO_MAP_VALUE:
1988 pointer_desc = "value ";
1991 pointer_desc = "context ";
1994 pointer_desc = "stack ";
1995 /* The stack spill tracking logic in check_stack_write()
1996 * and check_stack_read() relies on stack accesses being
2002 pointer_desc = "sock ";
2004 case PTR_TO_SOCK_COMMON:
2005 pointer_desc = "sock_common ";
2007 case PTR_TO_TCP_SOCK:
2008 pointer_desc = "tcp_sock ";
2013 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2017 static int update_stack_depth(struct bpf_verifier_env *env,
2018 const struct bpf_func_state *func,
2021 u16 stack = env->subprog_info[func->subprogno].stack_depth;
2026 /* update known max for given subprogram */
2027 env->subprog_info[func->subprogno].stack_depth = -off;
2031 /* starting from main bpf function walk all instructions of the function
2032 * and recursively walk all callees that given function can call.
2033 * Ignore jump and exit insns.
2034 * Since recursion is prevented by check_cfg() this algorithm
2035 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2037 static int check_max_stack_depth(struct bpf_verifier_env *env)
2039 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2040 struct bpf_subprog_info *subprog = env->subprog_info;
2041 struct bpf_insn *insn = env->prog->insnsi;
2042 int ret_insn[MAX_CALL_FRAMES];
2043 int ret_prog[MAX_CALL_FRAMES];
2046 /* round up to 32-bytes, since this is granularity
2047 * of interpreter stack size
2049 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2050 if (depth > MAX_BPF_STACK) {
2051 verbose(env, "combined stack size of %d calls is %d. Too large\n",
2056 subprog_end = subprog[idx + 1].start;
2057 for (; i < subprog_end; i++) {
2058 if (insn[i].code != (BPF_JMP | BPF_CALL))
2060 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2062 /* remember insn and function to return to */
2063 ret_insn[frame] = i + 1;
2064 ret_prog[frame] = idx;
2066 /* find the callee */
2067 i = i + insn[i].imm + 1;
2068 idx = find_subprog(env, i);
2070 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2075 if (frame >= MAX_CALL_FRAMES) {
2076 verbose(env, "the call stack of %d frames is too deep !\n",
2082 /* end of for() loop means the last insn of the 'subprog'
2083 * was reached. Doesn't matter whether it was JA or EXIT
2087 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2089 i = ret_insn[frame];
2090 idx = ret_prog[frame];
2094 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2095 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2096 const struct bpf_insn *insn, int idx)
2098 int start = idx + insn->imm + 1, subprog;
2100 subprog = find_subprog(env, start);
2102 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2106 return env->subprog_info[subprog].stack_depth;
2110 static int check_ctx_reg(struct bpf_verifier_env *env,
2111 const struct bpf_reg_state *reg, int regno)
2113 /* Access to ctx or passing it to a helper is only allowed in
2114 * its original, unmodified form.
2118 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2123 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2126 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2127 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2134 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2135 const struct bpf_reg_state *reg,
2136 int regno, int off, int size)
2140 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2144 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2147 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2149 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2150 regno, off, tn_buf);
2153 if (off + size > env->prog->aux->max_tp_access)
2154 env->prog->aux->max_tp_access = off + size;
2160 /* truncate register to smaller size (in bytes)
2161 * must be called with size < BPF_REG_SIZE
2163 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2167 /* clear high bits in bit representation */
2168 reg->var_off = tnum_cast(reg->var_off, size);
2170 /* fix arithmetic bounds */
2171 mask = ((u64)1 << (size * 8)) - 1;
2172 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2173 reg->umin_value &= mask;
2174 reg->umax_value &= mask;
2176 reg->umin_value = 0;
2177 reg->umax_value = mask;
2179 reg->smin_value = reg->umin_value;
2180 reg->smax_value = reg->umax_value;
2183 /* check whether memory at (regno + off) is accessible for t = (read | write)
2184 * if t==write, value_regno is a register which value is stored into memory
2185 * if t==read, value_regno is a register which will receive the value from memory
2186 * if t==write && value_regno==-1, some unknown value is stored into memory
2187 * if t==read && value_regno==-1, don't care what we read from memory
2189 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2190 int off, int bpf_size, enum bpf_access_type t,
2191 int value_regno, bool strict_alignment_once)
2193 struct bpf_reg_state *regs = cur_regs(env);
2194 struct bpf_reg_state *reg = regs + regno;
2195 struct bpf_func_state *state;
2198 size = bpf_size_to_bytes(bpf_size);
2202 /* alignment checks will add in reg->off themselves */
2203 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2207 /* for access checks, reg->off is just part of off */
2210 if (reg->type == PTR_TO_MAP_VALUE) {
2211 if (t == BPF_WRITE && value_regno >= 0 &&
2212 is_pointer_value(env, value_regno)) {
2213 verbose(env, "R%d leaks addr into map\n", value_regno);
2216 err = check_map_access_type(env, regno, off, size, t);
2219 err = check_map_access(env, regno, off, size, false);
2220 if (!err && t == BPF_READ && value_regno >= 0)
2221 mark_reg_unknown(env, regs, value_regno);
2223 } else if (reg->type == PTR_TO_CTX) {
2224 enum bpf_reg_type reg_type = SCALAR_VALUE;
2226 if (t == BPF_WRITE && value_regno >= 0 &&
2227 is_pointer_value(env, value_regno)) {
2228 verbose(env, "R%d leaks addr into ctx\n", value_regno);
2232 err = check_ctx_reg(env, reg, regno);
2236 err = check_ctx_access(env, insn_idx, off, size, t, ®_type);
2237 if (!err && t == BPF_READ && value_regno >= 0) {
2238 /* ctx access returns either a scalar, or a
2239 * PTR_TO_PACKET[_META,_END]. In the latter
2240 * case, we know the offset is zero.
2242 if (reg_type == SCALAR_VALUE) {
2243 mark_reg_unknown(env, regs, value_regno);
2245 mark_reg_known_zero(env, regs,
2247 if (reg_type_may_be_null(reg_type))
2248 regs[value_regno].id = ++env->id_gen;
2249 /* A load of ctx field could have different
2250 * actual load size with the one encoded in the
2251 * insn. When the dst is PTR, it is for sure not
2254 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2256 regs[value_regno].type = reg_type;
2259 } else if (reg->type == PTR_TO_STACK) {
2260 off += reg->var_off.value;
2261 err = check_stack_access(env, reg, off, size);
2265 state = func(env, reg);
2266 err = update_stack_depth(env, state, off);
2271 err = check_stack_write(env, state, off, size,
2272 value_regno, insn_idx);
2274 err = check_stack_read(env, state, off, size,
2276 } else if (reg_is_pkt_pointer(reg)) {
2277 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2278 verbose(env, "cannot write into packet\n");
2281 if (t == BPF_WRITE && value_regno >= 0 &&
2282 is_pointer_value(env, value_regno)) {
2283 verbose(env, "R%d leaks addr into packet\n",
2287 err = check_packet_access(env, regno, off, size, false);
2288 if (!err && t == BPF_READ && value_regno >= 0)
2289 mark_reg_unknown(env, regs, value_regno);
2290 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2291 if (t == BPF_WRITE && value_regno >= 0 &&
2292 is_pointer_value(env, value_regno)) {
2293 verbose(env, "R%d leaks addr into flow keys\n",
2298 err = check_flow_keys_access(env, off, size);
2299 if (!err && t == BPF_READ && value_regno >= 0)
2300 mark_reg_unknown(env, regs, value_regno);
2301 } else if (type_is_sk_pointer(reg->type)) {
2302 if (t == BPF_WRITE) {
2303 verbose(env, "R%d cannot write into %s\n",
2304 regno, reg_type_str[reg->type]);
2307 err = check_sock_access(env, insn_idx, regno, off, size, t);
2308 if (!err && value_regno >= 0)
2309 mark_reg_unknown(env, regs, value_regno);
2310 } else if (reg->type == PTR_TO_TP_BUFFER) {
2311 err = check_tp_buffer_access(env, reg, regno, off, size);
2312 if (!err && t == BPF_READ && value_regno >= 0)
2313 mark_reg_unknown(env, regs, value_regno);
2315 verbose(env, "R%d invalid mem access '%s'\n", regno,
2316 reg_type_str[reg->type]);
2320 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2321 regs[value_regno].type == SCALAR_VALUE) {
2322 /* b/h/w load zero-extends, mark upper bits as known 0 */
2323 coerce_reg_to_size(®s[value_regno], size);
2328 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2332 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2334 verbose(env, "BPF_XADD uses reserved fields\n");
2338 /* check src1 operand */
2339 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2343 /* check src2 operand */
2344 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2348 if (is_pointer_value(env, insn->src_reg)) {
2349 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2353 if (is_ctx_reg(env, insn->dst_reg) ||
2354 is_pkt_reg(env, insn->dst_reg) ||
2355 is_flow_key_reg(env, insn->dst_reg) ||
2356 is_sk_reg(env, insn->dst_reg)) {
2357 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2359 reg_type_str[reg_state(env, insn->dst_reg)->type]);
2363 /* check whether atomic_add can read the memory */
2364 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2365 BPF_SIZE(insn->code), BPF_READ, -1, true);
2369 /* check whether atomic_add can write into the same memory */
2370 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2371 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2374 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2375 int off, int access_size,
2376 bool zero_size_allowed)
2378 struct bpf_reg_state *reg = reg_state(env, regno);
2380 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2381 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2382 if (tnum_is_const(reg->var_off)) {
2383 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2384 regno, off, access_size);
2388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2389 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2390 regno, tn_buf, access_size);
2397 /* when register 'regno' is passed into function that will read 'access_size'
2398 * bytes from that pointer, make sure that it's within stack boundary
2399 * and all elements of stack are initialized.
2400 * Unlike most pointer bounds-checking functions, this one doesn't take an
2401 * 'off' argument, so it has to add in reg->off itself.
2403 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2404 int access_size, bool zero_size_allowed,
2405 struct bpf_call_arg_meta *meta)
2407 struct bpf_reg_state *reg = reg_state(env, regno);
2408 struct bpf_func_state *state = func(env, reg);
2409 int err, min_off, max_off, i, slot, spi;
2411 if (reg->type != PTR_TO_STACK) {
2412 /* Allow zero-byte read from NULL, regardless of pointer type */
2413 if (zero_size_allowed && access_size == 0 &&
2414 register_is_null(reg))
2417 verbose(env, "R%d type=%s expected=%s\n", regno,
2418 reg_type_str[reg->type],
2419 reg_type_str[PTR_TO_STACK]);
2423 if (tnum_is_const(reg->var_off)) {
2424 min_off = max_off = reg->var_off.value + reg->off;
2425 err = __check_stack_boundary(env, regno, min_off, access_size,
2430 /* Variable offset is prohibited for unprivileged mode for
2431 * simplicity since it requires corresponding support in
2432 * Spectre masking for stack ALU.
2433 * See also retrieve_ptr_limit().
2435 if (!env->allow_ptr_leaks) {
2438 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2439 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2443 /* Only initialized buffer on stack is allowed to be accessed
2444 * with variable offset. With uninitialized buffer it's hard to
2445 * guarantee that whole memory is marked as initialized on
2446 * helper return since specific bounds are unknown what may
2447 * cause uninitialized stack leaking.
2449 if (meta && meta->raw_mode)
2452 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2453 reg->smax_value <= -BPF_MAX_VAR_OFF) {
2454 verbose(env, "R%d unbounded indirect variable offset stack access\n",
2458 min_off = reg->smin_value + reg->off;
2459 max_off = reg->smax_value + reg->off;
2460 err = __check_stack_boundary(env, regno, min_off, access_size,
2463 verbose(env, "R%d min value is outside of stack bound\n",
2467 err = __check_stack_boundary(env, regno, max_off, access_size,
2470 verbose(env, "R%d max value is outside of stack bound\n",
2476 if (meta && meta->raw_mode) {
2477 meta->access_size = access_size;
2478 meta->regno = regno;
2482 for (i = min_off; i < max_off + access_size; i++) {
2486 spi = slot / BPF_REG_SIZE;
2487 if (state->allocated_stack <= slot)
2489 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2490 if (*stype == STACK_MISC)
2492 if (*stype == STACK_ZERO) {
2493 /* helper can write anything into the stack */
2494 *stype = STACK_MISC;
2498 if (tnum_is_const(reg->var_off)) {
2499 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2500 min_off, i - min_off, access_size);
2504 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2505 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2506 tn_buf, i - min_off, access_size);
2510 /* reading any byte out of 8-byte 'spill_slot' will cause
2511 * the whole slot to be marked as 'read'
2513 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2514 state->stack[spi].spilled_ptr.parent,
2517 return update_stack_depth(env, state, min_off);
2520 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2521 int access_size, bool zero_size_allowed,
2522 struct bpf_call_arg_meta *meta)
2524 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
2526 switch (reg->type) {
2528 case PTR_TO_PACKET_META:
2529 return check_packet_access(env, regno, reg->off, access_size,
2531 case PTR_TO_MAP_VALUE:
2532 if (check_map_access_type(env, regno, reg->off, access_size,
2533 meta && meta->raw_mode ? BPF_WRITE :
2536 return check_map_access(env, regno, reg->off, access_size,
2538 default: /* scalar_value|ptr_to_stack or invalid ptr */
2539 return check_stack_boundary(env, regno, access_size,
2540 zero_size_allowed, meta);
2544 /* Implementation details:
2545 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2546 * Two bpf_map_lookups (even with the same key) will have different reg->id.
2547 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2548 * value_or_null->value transition, since the verifier only cares about
2549 * the range of access to valid map value pointer and doesn't care about actual
2550 * address of the map element.
2551 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2552 * reg->id > 0 after value_or_null->value transition. By doing so
2553 * two bpf_map_lookups will be considered two different pointers that
2554 * point to different bpf_spin_locks.
2555 * The verifier allows taking only one bpf_spin_lock at a time to avoid
2557 * Since only one bpf_spin_lock is allowed the checks are simpler than
2558 * reg_is_refcounted() logic. The verifier needs to remember only
2559 * one spin_lock instead of array of acquired_refs.
2560 * cur_state->active_spin_lock remembers which map value element got locked
2561 * and clears it after bpf_spin_unlock.
2563 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2566 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
2567 struct bpf_verifier_state *cur = env->cur_state;
2568 bool is_const = tnum_is_const(reg->var_off);
2569 struct bpf_map *map = reg->map_ptr;
2570 u64 val = reg->var_off.value;
2572 if (reg->type != PTR_TO_MAP_VALUE) {
2573 verbose(env, "R%d is not a pointer to map_value\n", regno);
2578 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2584 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
2588 if (!map_value_has_spin_lock(map)) {
2589 if (map->spin_lock_off == -E2BIG)
2591 "map '%s' has more than one 'struct bpf_spin_lock'\n",
2593 else if (map->spin_lock_off == -ENOENT)
2595 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
2599 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2603 if (map->spin_lock_off != val + reg->off) {
2604 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2609 if (cur->active_spin_lock) {
2611 "Locking two bpf_spin_locks are not allowed\n");
2614 cur->active_spin_lock = reg->id;
2616 if (!cur->active_spin_lock) {
2617 verbose(env, "bpf_spin_unlock without taking a lock\n");
2620 if (cur->active_spin_lock != reg->id) {
2621 verbose(env, "bpf_spin_unlock of different lock\n");
2624 cur->active_spin_lock = 0;
2629 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2631 return type == ARG_PTR_TO_MEM ||
2632 type == ARG_PTR_TO_MEM_OR_NULL ||
2633 type == ARG_PTR_TO_UNINIT_MEM;
2636 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2638 return type == ARG_CONST_SIZE ||
2639 type == ARG_CONST_SIZE_OR_ZERO;
2642 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
2644 return type == ARG_PTR_TO_INT ||
2645 type == ARG_PTR_TO_LONG;
2648 static int int_ptr_type_to_size(enum bpf_arg_type type)
2650 if (type == ARG_PTR_TO_INT)
2652 else if (type == ARG_PTR_TO_LONG)
2658 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2659 enum bpf_arg_type arg_type,
2660 struct bpf_call_arg_meta *meta)
2662 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
2663 enum bpf_reg_type expected_type, type = reg->type;
2666 if (arg_type == ARG_DONTCARE)
2669 err = check_reg_arg(env, regno, SRC_OP);
2673 if (arg_type == ARG_ANYTHING) {
2674 if (is_pointer_value(env, regno)) {
2675 verbose(env, "R%d leaks addr into helper function\n",
2682 if (type_is_pkt_pointer(type) &&
2683 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2684 verbose(env, "helper access to the packet is not allowed\n");
2688 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2689 arg_type == ARG_PTR_TO_MAP_VALUE ||
2690 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
2691 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
2692 expected_type = PTR_TO_STACK;
2693 if (register_is_null(reg) &&
2694 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
2695 /* final test in check_stack_boundary() */;
2696 else if (!type_is_pkt_pointer(type) &&
2697 type != PTR_TO_MAP_VALUE &&
2698 type != expected_type)
2700 } else if (arg_type == ARG_CONST_SIZE ||
2701 arg_type == ARG_CONST_SIZE_OR_ZERO) {
2702 expected_type = SCALAR_VALUE;
2703 if (type != expected_type)
2705 } else if (arg_type == ARG_CONST_MAP_PTR) {
2706 expected_type = CONST_PTR_TO_MAP;
2707 if (type != expected_type)
2709 } else if (arg_type == ARG_PTR_TO_CTX) {
2710 expected_type = PTR_TO_CTX;
2711 if (type != expected_type)
2713 err = check_ctx_reg(env, reg, regno);
2716 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2717 expected_type = PTR_TO_SOCK_COMMON;
2718 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2719 if (!type_is_sk_pointer(type))
2721 if (reg->ref_obj_id) {
2722 if (meta->ref_obj_id) {
2723 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2724 regno, reg->ref_obj_id,
2728 meta->ref_obj_id = reg->ref_obj_id;
2730 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2731 expected_type = PTR_TO_SOCKET;
2732 if (type != expected_type)
2734 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2735 if (meta->func_id == BPF_FUNC_spin_lock) {
2736 if (process_spin_lock(env, regno, true))
2738 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
2739 if (process_spin_lock(env, regno, false))
2742 verbose(env, "verifier internal error\n");
2745 } else if (arg_type_is_mem_ptr(arg_type)) {
2746 expected_type = PTR_TO_STACK;
2747 /* One exception here. In case function allows for NULL to be
2748 * passed in as argument, it's a SCALAR_VALUE type. Final test
2749 * happens during stack boundary checking.
2751 if (register_is_null(reg) &&
2752 arg_type == ARG_PTR_TO_MEM_OR_NULL)
2753 /* final test in check_stack_boundary() */;
2754 else if (!type_is_pkt_pointer(type) &&
2755 type != PTR_TO_MAP_VALUE &&
2756 type != expected_type)
2758 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2759 } else if (arg_type_is_int_ptr(arg_type)) {
2760 expected_type = PTR_TO_STACK;
2761 if (!type_is_pkt_pointer(type) &&
2762 type != PTR_TO_MAP_VALUE &&
2763 type != expected_type)
2766 verbose(env, "unsupported arg_type %d\n", arg_type);
2770 if (arg_type == ARG_CONST_MAP_PTR) {
2771 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2772 meta->map_ptr = reg->map_ptr;
2773 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2774 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2775 * check that [key, key + map->key_size) are within
2776 * stack limits and initialized
2778 if (!meta->map_ptr) {
2779 /* in function declaration map_ptr must come before
2780 * map_key, so that it's verified and known before
2781 * we have to check map_key here. Otherwise it means
2782 * that kernel subsystem misconfigured verifier
2784 verbose(env, "invalid map_ptr to access map->key\n");
2787 err = check_helper_mem_access(env, regno,
2788 meta->map_ptr->key_size, false,
2790 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2791 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
2792 !register_is_null(reg)) ||
2793 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2794 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2795 * check [value, value + map->value_size) validity
2797 if (!meta->map_ptr) {
2798 /* kernel subsystem misconfigured verifier */
2799 verbose(env, "invalid map_ptr to access map->value\n");
2802 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2803 err = check_helper_mem_access(env, regno,
2804 meta->map_ptr->value_size, false,
2806 } else if (arg_type_is_mem_size(arg_type)) {
2807 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2809 /* remember the mem_size which may be used later
2810 * to refine return values.
2812 meta->msize_smax_value = reg->smax_value;
2813 meta->msize_umax_value = reg->umax_value;
2815 /* The register is SCALAR_VALUE; the access check
2816 * happens using its boundaries.
2818 if (!tnum_is_const(reg->var_off))
2819 /* For unprivileged variable accesses, disable raw
2820 * mode so that the program is required to
2821 * initialize all the memory that the helper could
2822 * just partially fill up.
2826 if (reg->smin_value < 0) {
2827 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2832 if (reg->umin_value == 0) {
2833 err = check_helper_mem_access(env, regno - 1, 0,
2840 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2841 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2845 err = check_helper_mem_access(env, regno - 1,
2847 zero_size_allowed, meta);
2848 } else if (arg_type_is_int_ptr(arg_type)) {
2849 int size = int_ptr_type_to_size(arg_type);
2851 err = check_helper_mem_access(env, regno, size, false, meta);
2854 err = check_ptr_alignment(env, reg, 0, size, true);
2859 verbose(env, "R%d type=%s expected=%s\n", regno,
2860 reg_type_str[type], reg_type_str[expected_type]);
2864 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2865 struct bpf_map *map, int func_id)
2870 /* We need a two way check, first is from map perspective ... */
2871 switch (map->map_type) {
2872 case BPF_MAP_TYPE_PROG_ARRAY:
2873 if (func_id != BPF_FUNC_tail_call)
2876 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2877 if (func_id != BPF_FUNC_perf_event_read &&
2878 func_id != BPF_FUNC_perf_event_output &&
2879 func_id != BPF_FUNC_perf_event_read_value)
2882 case BPF_MAP_TYPE_STACK_TRACE:
2883 if (func_id != BPF_FUNC_get_stackid)
2886 case BPF_MAP_TYPE_CGROUP_ARRAY:
2887 if (func_id != BPF_FUNC_skb_under_cgroup &&
2888 func_id != BPF_FUNC_current_task_under_cgroup)
2891 case BPF_MAP_TYPE_CGROUP_STORAGE:
2892 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2893 if (func_id != BPF_FUNC_get_local_storage)
2896 /* devmap returns a pointer to a live net_device ifindex that we cannot
2897 * allow to be modified from bpf side. So do not allow lookup elements
2900 case BPF_MAP_TYPE_DEVMAP:
2901 if (func_id != BPF_FUNC_redirect_map)
2904 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2907 case BPF_MAP_TYPE_CPUMAP:
2908 case BPF_MAP_TYPE_XSKMAP:
2909 if (func_id != BPF_FUNC_redirect_map)
2912 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2913 case BPF_MAP_TYPE_HASH_OF_MAPS:
2914 if (func_id != BPF_FUNC_map_lookup_elem)
2917 case BPF_MAP_TYPE_SOCKMAP:
2918 if (func_id != BPF_FUNC_sk_redirect_map &&
2919 func_id != BPF_FUNC_sock_map_update &&
2920 func_id != BPF_FUNC_map_delete_elem &&
2921 func_id != BPF_FUNC_msg_redirect_map)
2924 case BPF_MAP_TYPE_SOCKHASH:
2925 if (func_id != BPF_FUNC_sk_redirect_hash &&
2926 func_id != BPF_FUNC_sock_hash_update &&
2927 func_id != BPF_FUNC_map_delete_elem &&
2928 func_id != BPF_FUNC_msg_redirect_hash)
2931 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2932 if (func_id != BPF_FUNC_sk_select_reuseport)
2935 case BPF_MAP_TYPE_QUEUE:
2936 case BPF_MAP_TYPE_STACK:
2937 if (func_id != BPF_FUNC_map_peek_elem &&
2938 func_id != BPF_FUNC_map_pop_elem &&
2939 func_id != BPF_FUNC_map_push_elem)
2942 case BPF_MAP_TYPE_SK_STORAGE:
2943 if (func_id != BPF_FUNC_sk_storage_get &&
2944 func_id != BPF_FUNC_sk_storage_delete)
2951 /* ... and second from the function itself. */
2953 case BPF_FUNC_tail_call:
2954 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2956 if (env->subprog_cnt > 1) {
2957 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2961 case BPF_FUNC_perf_event_read:
2962 case BPF_FUNC_perf_event_output:
2963 case BPF_FUNC_perf_event_read_value:
2964 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2967 case BPF_FUNC_get_stackid:
2968 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2971 case BPF_FUNC_current_task_under_cgroup:
2972 case BPF_FUNC_skb_under_cgroup:
2973 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2976 case BPF_FUNC_redirect_map:
2977 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2978 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2979 map->map_type != BPF_MAP_TYPE_XSKMAP)
2982 case BPF_FUNC_sk_redirect_map:
2983 case BPF_FUNC_msg_redirect_map:
2984 case BPF_FUNC_sock_map_update:
2985 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2988 case BPF_FUNC_sk_redirect_hash:
2989 case BPF_FUNC_msg_redirect_hash:
2990 case BPF_FUNC_sock_hash_update:
2991 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2994 case BPF_FUNC_get_local_storage:
2995 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2996 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2999 case BPF_FUNC_sk_select_reuseport:
3000 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3003 case BPF_FUNC_map_peek_elem:
3004 case BPF_FUNC_map_pop_elem:
3005 case BPF_FUNC_map_push_elem:
3006 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3007 map->map_type != BPF_MAP_TYPE_STACK)
3010 case BPF_FUNC_sk_storage_get:
3011 case BPF_FUNC_sk_storage_delete:
3012 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3021 verbose(env, "cannot pass map_type %d into func %s#%d\n",
3022 map->map_type, func_id_name(func_id), func_id);
3026 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3030 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3032 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3034 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3036 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3038 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3041 /* We only support one arg being in raw mode at the moment,
3042 * which is sufficient for the helper functions we have
3048 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3049 enum bpf_arg_type arg_next)
3051 return (arg_type_is_mem_ptr(arg_curr) &&
3052 !arg_type_is_mem_size(arg_next)) ||
3053 (!arg_type_is_mem_ptr(arg_curr) &&
3054 arg_type_is_mem_size(arg_next));
3057 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3059 /* bpf_xxx(..., buf, len) call will access 'len'
3060 * bytes from memory 'buf'. Both arg types need
3061 * to be paired, so make sure there's no buggy
3062 * helper function specification.
3064 if (arg_type_is_mem_size(fn->arg1_type) ||
3065 arg_type_is_mem_ptr(fn->arg5_type) ||
3066 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3067 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3068 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3069 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3075 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3079 if (arg_type_may_be_refcounted(fn->arg1_type))
3081 if (arg_type_may_be_refcounted(fn->arg2_type))
3083 if (arg_type_may_be_refcounted(fn->arg3_type))
3085 if (arg_type_may_be_refcounted(fn->arg4_type))
3087 if (arg_type_may_be_refcounted(fn->arg5_type))
3090 /* A reference acquiring function cannot acquire
3091 * another refcounted ptr.
3093 if (is_acquire_function(func_id) && count)
3096 /* We only support one arg being unreferenced at the moment,
3097 * which is sufficient for the helper functions we have right now.
3102 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
3104 return check_raw_mode_ok(fn) &&
3105 check_arg_pair_ok(fn) &&
3106 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
3109 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3110 * are now invalid, so turn them into unknown SCALAR_VALUE.
3112 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3113 struct bpf_func_state *state)
3115 struct bpf_reg_state *regs = state->regs, *reg;
3118 for (i = 0; i < MAX_BPF_REG; i++)
3119 if (reg_is_pkt_pointer_any(®s[i]))
3120 mark_reg_unknown(env, regs, i);
3122 bpf_for_each_spilled_reg(i, state, reg) {
3125 if (reg_is_pkt_pointer_any(reg))
3126 __mark_reg_unknown(reg);
3130 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3132 struct bpf_verifier_state *vstate = env->cur_state;
3135 for (i = 0; i <= vstate->curframe; i++)
3136 __clear_all_pkt_pointers(env, vstate->frame[i]);
3139 static void release_reg_references(struct bpf_verifier_env *env,
3140 struct bpf_func_state *state,
3143 struct bpf_reg_state *regs = state->regs, *reg;
3146 for (i = 0; i < MAX_BPF_REG; i++)
3147 if (regs[i].ref_obj_id == ref_obj_id)
3148 mark_reg_unknown(env, regs, i);
3150 bpf_for_each_spilled_reg(i, state, reg) {
3153 if (reg->ref_obj_id == ref_obj_id)
3154 __mark_reg_unknown(reg);
3158 /* The pointer with the specified id has released its reference to kernel
3159 * resources. Identify all copies of the same pointer and clear the reference.
3161 static int release_reference(struct bpf_verifier_env *env,
3164 struct bpf_verifier_state *vstate = env->cur_state;
3168 err = release_reference_state(cur_func(env), ref_obj_id);
3172 for (i = 0; i <= vstate->curframe; i++)
3173 release_reg_references(env, vstate->frame[i], ref_obj_id);
3178 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3181 struct bpf_verifier_state *state = env->cur_state;
3182 struct bpf_func_state *caller, *callee;
3183 int i, err, subprog, target_insn;
3185 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3186 verbose(env, "the call stack of %d frames is too deep\n",
3187 state->curframe + 2);
3191 target_insn = *insn_idx + insn->imm;
3192 subprog = find_subprog(env, target_insn + 1);
3194 verbose(env, "verifier bug. No program starts at insn %d\n",
3199 caller = state->frame[state->curframe];
3200 if (state->frame[state->curframe + 1]) {
3201 verbose(env, "verifier bug. Frame %d already allocated\n",
3202 state->curframe + 1);
3206 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3209 state->frame[state->curframe + 1] = callee;
3211 /* callee cannot access r0, r6 - r9 for reading and has to write
3212 * into its own stack before reading from it.
3213 * callee can read/write into caller's stack
3215 init_func_state(env, callee,
3216 /* remember the callsite, it will be used by bpf_exit */
3217 *insn_idx /* callsite */,
3218 state->curframe + 1 /* frameno within this callchain */,
3219 subprog /* subprog number within this prog */);
3221 /* Transfer references to the callee */
3222 err = transfer_reference_state(callee, caller);
3226 /* copy r1 - r5 args that callee can access. The copy includes parent
3227 * pointers, which connects us up to the liveness chain
3229 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3230 callee->regs[i] = caller->regs[i];
3232 /* after the call registers r0 - r5 were scratched */
3233 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3234 mark_reg_not_init(env, caller->regs, caller_saved[i]);
3235 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3238 /* only increment it after check_reg_arg() finished */
3241 /* and go analyze first insn of the callee */
3242 *insn_idx = target_insn;
3244 if (env->log.level & BPF_LOG_LEVEL) {
3245 verbose(env, "caller:\n");
3246 print_verifier_state(env, caller);
3247 verbose(env, "callee:\n");
3248 print_verifier_state(env, callee);
3253 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3255 struct bpf_verifier_state *state = env->cur_state;
3256 struct bpf_func_state *caller, *callee;
3257 struct bpf_reg_state *r0;
3260 callee = state->frame[state->curframe];
3261 r0 = &callee->regs[BPF_REG_0];
3262 if (r0->type == PTR_TO_STACK) {
3263 /* technically it's ok to return caller's stack pointer
3264 * (or caller's caller's pointer) back to the caller,
3265 * since these pointers are valid. Only current stack
3266 * pointer will be invalid as soon as function exits,
3267 * but let's be conservative
3269 verbose(env, "cannot return stack pointer to the caller\n");
3274 caller = state->frame[state->curframe];
3275 /* return to the caller whatever r0 had in the callee */
3276 caller->regs[BPF_REG_0] = *r0;
3278 /* Transfer references to the caller */
3279 err = transfer_reference_state(caller, callee);
3283 *insn_idx = callee->callsite + 1;
3284 if (env->log.level & BPF_LOG_LEVEL) {
3285 verbose(env, "returning from callee:\n");
3286 print_verifier_state(env, callee);
3287 verbose(env, "to caller at %d:\n", *insn_idx);
3288 print_verifier_state(env, caller);
3290 /* clear everything in the callee */
3291 free_func_state(callee);
3292 state->frame[state->curframe + 1] = NULL;
3296 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3298 struct bpf_call_arg_meta *meta)
3300 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
3302 if (ret_type != RET_INTEGER ||
3303 (func_id != BPF_FUNC_get_stack &&
3304 func_id != BPF_FUNC_probe_read_str))
3307 ret_reg->smax_value = meta->msize_smax_value;
3308 ret_reg->umax_value = meta->msize_umax_value;
3309 __reg_deduce_bounds(ret_reg);
3310 __reg_bound_offset(ret_reg);
3314 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3315 int func_id, int insn_idx)
3317 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3318 struct bpf_map *map = meta->map_ptr;
3320 if (func_id != BPF_FUNC_tail_call &&
3321 func_id != BPF_FUNC_map_lookup_elem &&
3322 func_id != BPF_FUNC_map_update_elem &&
3323 func_id != BPF_FUNC_map_delete_elem &&
3324 func_id != BPF_FUNC_map_push_elem &&
3325 func_id != BPF_FUNC_map_pop_elem &&
3326 func_id != BPF_FUNC_map_peek_elem)
3330 verbose(env, "kernel subsystem misconfigured verifier\n");
3334 /* In case of read-only, some additional restrictions
3335 * need to be applied in order to prevent altering the
3336 * state of the map from program side.
3338 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3339 (func_id == BPF_FUNC_map_delete_elem ||
3340 func_id == BPF_FUNC_map_update_elem ||
3341 func_id == BPF_FUNC_map_push_elem ||
3342 func_id == BPF_FUNC_map_pop_elem)) {
3343 verbose(env, "write into map forbidden\n");
3347 if (!BPF_MAP_PTR(aux->map_state))
3348 bpf_map_ptr_store(aux, meta->map_ptr,
3349 meta->map_ptr->unpriv_array);
3350 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3351 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3352 meta->map_ptr->unpriv_array);
3356 static int check_reference_leak(struct bpf_verifier_env *env)
3358 struct bpf_func_state *state = cur_func(env);
3361 for (i = 0; i < state->acquired_refs; i++) {
3362 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3363 state->refs[i].id, state->refs[i].insn_idx);
3365 return state->acquired_refs ? -EINVAL : 0;
3368 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3370 const struct bpf_func_proto *fn = NULL;
3371 struct bpf_reg_state *regs;
3372 struct bpf_call_arg_meta meta;
3376 /* find function prototype */
3377 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3378 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3383 if (env->ops->get_func_proto)
3384 fn = env->ops->get_func_proto(func_id, env->prog);
3386 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3391 /* eBPF programs must be GPL compatible to use GPL-ed functions */
3392 if (!env->prog->gpl_compatible && fn->gpl_only) {
3393 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3397 /* With LD_ABS/IND some JITs save/restore skb from r1. */
3398 changes_data = bpf_helper_changes_pkt_data(fn->func);
3399 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3400 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3401 func_id_name(func_id), func_id);
3405 memset(&meta, 0, sizeof(meta));
3406 meta.pkt_access = fn->pkt_access;
3408 err = check_func_proto(fn, func_id);
3410 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3411 func_id_name(func_id), func_id);
3415 meta.func_id = func_id;
3417 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3420 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3423 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3426 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3429 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3433 err = record_func_map(env, &meta, func_id, insn_idx);
3437 /* Mark slots with STACK_MISC in case of raw mode, stack offset
3438 * is inferred from register state.
3440 for (i = 0; i < meta.access_size; i++) {
3441 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3442 BPF_WRITE, -1, false);
3447 if (func_id == BPF_FUNC_tail_call) {
3448 err = check_reference_leak(env);
3450 verbose(env, "tail_call would lead to reference leak\n");
3453 } else if (is_release_function(func_id)) {
3454 err = release_reference(env, meta.ref_obj_id);
3456 verbose(env, "func %s#%d reference has not been acquired before\n",
3457 func_id_name(func_id), func_id);
3462 regs = cur_regs(env);
3464 /* check that flags argument in get_local_storage(map, flags) is 0,
3465 * this is required because get_local_storage() can't return an error.
3467 if (func_id == BPF_FUNC_get_local_storage &&
3468 !register_is_null(®s[BPF_REG_2])) {
3469 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3473 /* reset caller saved regs */
3474 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3475 mark_reg_not_init(env, regs, caller_saved[i]);
3476 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3479 /* helper call returns 64-bit value. */
3480 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
3482 /* update return register (already marked as written above) */
3483 if (fn->ret_type == RET_INTEGER) {
3484 /* sets type to SCALAR_VALUE */
3485 mark_reg_unknown(env, regs, BPF_REG_0);
3486 } else if (fn->ret_type == RET_VOID) {
3487 regs[BPF_REG_0].type = NOT_INIT;
3488 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3489 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3490 /* There is no offset yet applied, variable or fixed */
3491 mark_reg_known_zero(env, regs, BPF_REG_0);
3492 /* remember map_ptr, so that check_map_access()
3493 * can check 'value_size' boundary of memory access
3494 * to map element returned from bpf_map_lookup_elem()
3496 if (meta.map_ptr == NULL) {
3498 "kernel subsystem misconfigured verifier\n");
3501 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3502 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3503 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3504 if (map_value_has_spin_lock(meta.map_ptr))
3505 regs[BPF_REG_0].id = ++env->id_gen;
3507 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3508 regs[BPF_REG_0].id = ++env->id_gen;
3510 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3511 mark_reg_known_zero(env, regs, BPF_REG_0);
3512 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3513 regs[BPF_REG_0].id = ++env->id_gen;
3514 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3515 mark_reg_known_zero(env, regs, BPF_REG_0);
3516 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3517 regs[BPF_REG_0].id = ++env->id_gen;
3518 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3519 mark_reg_known_zero(env, regs, BPF_REG_0);
3520 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3521 regs[BPF_REG_0].id = ++env->id_gen;
3523 verbose(env, "unknown return type %d of func %s#%d\n",
3524 fn->ret_type, func_id_name(func_id), func_id);
3528 if (is_ptr_cast_function(func_id)) {
3529 /* For release_reference() */
3530 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3531 } else if (is_acquire_function(func_id)) {
3532 int id = acquire_reference_state(env, insn_idx);
3536 /* For mark_ptr_or_null_reg() */
3537 regs[BPF_REG_0].id = id;
3538 /* For release_reference() */
3539 regs[BPF_REG_0].ref_obj_id = id;
3542 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3544 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3548 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3549 const char *err_str;
3551 #ifdef CONFIG_PERF_EVENTS
3552 err = get_callchain_buffers(sysctl_perf_event_max_stack);
3553 err_str = "cannot get callchain buffer for func %s#%d\n";
3556 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3559 verbose(env, err_str, func_id_name(func_id), func_id);
3563 env->prog->has_callchain_buf = true;
3567 clear_all_pkt_pointers(env);
3571 static bool signed_add_overflows(s64 a, s64 b)
3573 /* Do the add in u64, where overflow is well-defined */
3574 s64 res = (s64)((u64)a + (u64)b);
3581 static bool signed_sub_overflows(s64 a, s64 b)
3583 /* Do the sub in u64, where overflow is well-defined */
3584 s64 res = (s64)((u64)a - (u64)b);
3591 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3592 const struct bpf_reg_state *reg,
3593 enum bpf_reg_type type)
3595 bool known = tnum_is_const(reg->var_off);
3596 s64 val = reg->var_off.value;
3597 s64 smin = reg->smin_value;
3599 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3600 verbose(env, "math between %s pointer and %lld is not allowed\n",
3601 reg_type_str[type], val);
3605 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3606 verbose(env, "%s pointer offset %d is not allowed\n",
3607 reg_type_str[type], reg->off);
3611 if (smin == S64_MIN) {
3612 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3613 reg_type_str[type]);
3617 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3618 verbose(env, "value %lld makes %s pointer be out of bounds\n",
3619 smin, reg_type_str[type]);
3626 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3628 return &env->insn_aux_data[env->insn_idx];
3631 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3632 u32 *ptr_limit, u8 opcode, bool off_is_neg)
3634 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
3635 (opcode == BPF_SUB && !off_is_neg);
3638 switch (ptr_reg->type) {
3640 /* Indirect variable offset stack access is prohibited in
3641 * unprivileged mode so it's not handled here.
3643 off = ptr_reg->off + ptr_reg->var_off.value;
3645 *ptr_limit = MAX_BPF_STACK + off;
3649 case PTR_TO_MAP_VALUE:
3651 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3653 off = ptr_reg->smin_value + ptr_reg->off;
3654 *ptr_limit = ptr_reg->map_ptr->value_size - off;
3662 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3663 const struct bpf_insn *insn)
3665 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3668 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3669 u32 alu_state, u32 alu_limit)
3671 /* If we arrived here from different branches with different
3672 * state or limits to sanitize, then this won't work.
3674 if (aux->alu_state &&
3675 (aux->alu_state != alu_state ||
3676 aux->alu_limit != alu_limit))
3679 /* Corresponding fixup done in fixup_bpf_calls(). */
3680 aux->alu_state = alu_state;
3681 aux->alu_limit = alu_limit;
3685 static int sanitize_val_alu(struct bpf_verifier_env *env,
3686 struct bpf_insn *insn)
3688 struct bpf_insn_aux_data *aux = cur_aux(env);
3690 if (can_skip_alu_sanitation(env, insn))
3693 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3696 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3697 struct bpf_insn *insn,
3698 const struct bpf_reg_state *ptr_reg,
3699 struct bpf_reg_state *dst_reg,
3702 struct bpf_verifier_state *vstate = env->cur_state;
3703 struct bpf_insn_aux_data *aux = cur_aux(env);
3704 bool ptr_is_dst_reg = ptr_reg == dst_reg;
3705 u8 opcode = BPF_OP(insn->code);
3706 u32 alu_state, alu_limit;
3707 struct bpf_reg_state tmp;
3710 if (can_skip_alu_sanitation(env, insn))
3713 /* We already marked aux for masking from non-speculative
3714 * paths, thus we got here in the first place. We only care
3715 * to explore bad access from here.
3717 if (vstate->speculative)
3720 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3721 alu_state |= ptr_is_dst_reg ?
3722 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3724 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3726 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3729 /* Simulate and find potential out-of-bounds access under
3730 * speculative execution from truncation as a result of
3731 * masking when off was not within expected range. If off
3732 * sits in dst, then we temporarily need to move ptr there
3733 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3734 * for cases where we use K-based arithmetic in one direction
3735 * and truncated reg-based in the other in order to explore
3738 if (!ptr_is_dst_reg) {
3740 *dst_reg = *ptr_reg;
3742 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3743 if (!ptr_is_dst_reg && ret)
3745 return !ret ? -EFAULT : 0;
3748 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3749 * Caller should also handle BPF_MOV case separately.
3750 * If we return -EACCES, caller may want to try again treating pointer as a
3751 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3753 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3754 struct bpf_insn *insn,
3755 const struct bpf_reg_state *ptr_reg,
3756 const struct bpf_reg_state *off_reg)
3758 struct bpf_verifier_state *vstate = env->cur_state;
3759 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3760 struct bpf_reg_state *regs = state->regs, *dst_reg;
3761 bool known = tnum_is_const(off_reg->var_off);
3762 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3763 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3764 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3765 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3766 u32 dst = insn->dst_reg, src = insn->src_reg;
3767 u8 opcode = BPF_OP(insn->code);
3770 dst_reg = ®s[dst];
3772 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3773 smin_val > smax_val || umin_val > umax_val) {
3774 /* Taint dst register if offset had invalid bounds derived from
3775 * e.g. dead branches.
3777 __mark_reg_unknown(dst_reg);
3781 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3782 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
3784 "R%d 32-bit pointer arithmetic prohibited\n",
3789 switch (ptr_reg->type) {
3790 case PTR_TO_MAP_VALUE_OR_NULL:
3791 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3792 dst, reg_type_str[ptr_reg->type]);
3794 case CONST_PTR_TO_MAP:
3795 case PTR_TO_PACKET_END:
3797 case PTR_TO_SOCKET_OR_NULL:
3798 case PTR_TO_SOCK_COMMON:
3799 case PTR_TO_SOCK_COMMON_OR_NULL:
3800 case PTR_TO_TCP_SOCK:
3801 case PTR_TO_TCP_SOCK_OR_NULL:
3802 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3803 dst, reg_type_str[ptr_reg->type]);
3805 case PTR_TO_MAP_VALUE:
3806 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3807 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3808 off_reg == dst_reg ? dst : src);
3816 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3817 * The id may be overwritten later if we create a new variable offset.
3819 dst_reg->type = ptr_reg->type;
3820 dst_reg->id = ptr_reg->id;
3822 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3823 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3828 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3830 verbose(env, "R%d tried to add from different maps or paths\n", dst);
3833 /* We can take a fixed offset as long as it doesn't overflow
3834 * the s32 'off' field
3836 if (known && (ptr_reg->off + smin_val ==
3837 (s64)(s32)(ptr_reg->off + smin_val))) {
3838 /* pointer += K. Accumulate it into fixed offset */
3839 dst_reg->smin_value = smin_ptr;
3840 dst_reg->smax_value = smax_ptr;
3841 dst_reg->umin_value = umin_ptr;
3842 dst_reg->umax_value = umax_ptr;
3843 dst_reg->var_off = ptr_reg->var_off;
3844 dst_reg->off = ptr_reg->off + smin_val;
3845 dst_reg->raw = ptr_reg->raw;
3848 /* A new variable offset is created. Note that off_reg->off
3849 * == 0, since it's a scalar.
3850 * dst_reg gets the pointer type and since some positive
3851 * integer value was added to the pointer, give it a new 'id'
3852 * if it's a PTR_TO_PACKET.
3853 * this creates a new 'base' pointer, off_reg (variable) gets
3854 * added into the variable offset, and we copy the fixed offset
3857 if (signed_add_overflows(smin_ptr, smin_val) ||
3858 signed_add_overflows(smax_ptr, smax_val)) {
3859 dst_reg->smin_value = S64_MIN;
3860 dst_reg->smax_value = S64_MAX;
3862 dst_reg->smin_value = smin_ptr + smin_val;
3863 dst_reg->smax_value = smax_ptr + smax_val;
3865 if (umin_ptr + umin_val < umin_ptr ||
3866 umax_ptr + umax_val < umax_ptr) {
3867 dst_reg->umin_value = 0;
3868 dst_reg->umax_value = U64_MAX;
3870 dst_reg->umin_value = umin_ptr + umin_val;
3871 dst_reg->umax_value = umax_ptr + umax_val;
3873 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3874 dst_reg->off = ptr_reg->off;
3875 dst_reg->raw = ptr_reg->raw;
3876 if (reg_is_pkt_pointer(ptr_reg)) {
3877 dst_reg->id = ++env->id_gen;
3878 /* something was added to pkt_ptr, set range to zero */
3883 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3885 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3888 if (dst_reg == off_reg) {
3889 /* scalar -= pointer. Creates an unknown scalar */
3890 verbose(env, "R%d tried to subtract pointer from scalar\n",
3894 /* We don't allow subtraction from FP, because (according to
3895 * test_verifier.c test "invalid fp arithmetic", JITs might not
3896 * be able to deal with it.
3898 if (ptr_reg->type == PTR_TO_STACK) {
3899 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3903 if (known && (ptr_reg->off - smin_val ==
3904 (s64)(s32)(ptr_reg->off - smin_val))) {
3905 /* pointer -= K. Subtract it from fixed offset */
3906 dst_reg->smin_value = smin_ptr;
3907 dst_reg->smax_value = smax_ptr;
3908 dst_reg->umin_value = umin_ptr;
3909 dst_reg->umax_value = umax_ptr;
3910 dst_reg->var_off = ptr_reg->var_off;
3911 dst_reg->id = ptr_reg->id;
3912 dst_reg->off = ptr_reg->off - smin_val;
3913 dst_reg->raw = ptr_reg->raw;
3916 /* A new variable offset is created. If the subtrahend is known
3917 * nonnegative, then any reg->range we had before is still good.
3919 if (signed_sub_overflows(smin_ptr, smax_val) ||
3920 signed_sub_overflows(smax_ptr, smin_val)) {
3921 /* Overflow possible, we know nothing */
3922 dst_reg->smin_value = S64_MIN;
3923 dst_reg->smax_value = S64_MAX;
3925 dst_reg->smin_value = smin_ptr - smax_val;
3926 dst_reg->smax_value = smax_ptr - smin_val;
3928 if (umin_ptr < umax_val) {
3929 /* Overflow possible, we know nothing */
3930 dst_reg->umin_value = 0;
3931 dst_reg->umax_value = U64_MAX;
3933 /* Cannot overflow (as long as bounds are consistent) */
3934 dst_reg->umin_value = umin_ptr - umax_val;
3935 dst_reg->umax_value = umax_ptr - umin_val;
3937 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3938 dst_reg->off = ptr_reg->off;
3939 dst_reg->raw = ptr_reg->raw;
3940 if (reg_is_pkt_pointer(ptr_reg)) {
3941 dst_reg->id = ++env->id_gen;
3942 /* something was added to pkt_ptr, set range to zero */
3950 /* bitwise ops on pointers are troublesome, prohibit. */
3951 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3952 dst, bpf_alu_string[opcode >> 4]);
3955 /* other operators (e.g. MUL,LSH) produce non-pointer results */
3956 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3957 dst, bpf_alu_string[opcode >> 4]);
3961 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3964 __update_reg_bounds(dst_reg);
3965 __reg_deduce_bounds(dst_reg);
3966 __reg_bound_offset(dst_reg);
3968 /* For unprivileged we require that resulting offset must be in bounds
3969 * in order to be able to sanitize access later on.
3971 if (!env->allow_ptr_leaks) {
3972 if (dst_reg->type == PTR_TO_MAP_VALUE &&
3973 check_map_access(env, dst, dst_reg->off, 1, false)) {
3974 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3975 "prohibited for !root\n", dst);
3977 } else if (dst_reg->type == PTR_TO_STACK &&
3978 check_stack_access(env, dst_reg, dst_reg->off +
3979 dst_reg->var_off.value, 1)) {
3980 verbose(env, "R%d stack pointer arithmetic goes out of range, "
3981 "prohibited for !root\n", dst);
3989 /* WARNING: This function does calculations on 64-bit values, but the actual
3990 * execution may occur on 32-bit values. Therefore, things like bitshifts
3991 * need extra checks in the 32-bit case.
3993 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3994 struct bpf_insn *insn,
3995 struct bpf_reg_state *dst_reg,
3996 struct bpf_reg_state src_reg)
3998 struct bpf_reg_state *regs = cur_regs(env);
3999 u8 opcode = BPF_OP(insn->code);
4000 bool src_known, dst_known;
4001 s64 smin_val, smax_val;
4002 u64 umin_val, umax_val;
4003 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
4004 u32 dst = insn->dst_reg;
4007 if (insn_bitness == 32) {
4008 /* Relevant for 32-bit RSH: Information can propagate towards
4009 * LSB, so it isn't sufficient to only truncate the output to
4012 coerce_reg_to_size(dst_reg, 4);
4013 coerce_reg_to_size(&src_reg, 4);
4016 smin_val = src_reg.smin_value;
4017 smax_val = src_reg.smax_value;
4018 umin_val = src_reg.umin_value;
4019 umax_val = src_reg.umax_value;
4020 src_known = tnum_is_const(src_reg.var_off);
4021 dst_known = tnum_is_const(dst_reg->var_off);
4023 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4024 smin_val > smax_val || umin_val > umax_val) {
4025 /* Taint dst register if offset had invalid bounds derived from
4026 * e.g. dead branches.
4028 __mark_reg_unknown(dst_reg);
4033 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4034 __mark_reg_unknown(dst_reg);
4040 ret = sanitize_val_alu(env, insn);
4042 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4045 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4046 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4047 dst_reg->smin_value = S64_MIN;
4048 dst_reg->smax_value = S64_MAX;
4050 dst_reg->smin_value += smin_val;
4051 dst_reg->smax_value += smax_val;
4053 if (dst_reg->umin_value + umin_val < umin_val ||
4054 dst_reg->umax_value + umax_val < umax_val) {
4055 dst_reg->umin_value = 0;
4056 dst_reg->umax_value = U64_MAX;
4058 dst_reg->umin_value += umin_val;
4059 dst_reg->umax_value += umax_val;
4061 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4064 ret = sanitize_val_alu(env, insn);
4066 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4069 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4070 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4071 /* Overflow possible, we know nothing */
4072 dst_reg->smin_value = S64_MIN;
4073 dst_reg->smax_value = S64_MAX;
4075 dst_reg->smin_value -= smax_val;
4076 dst_reg->smax_value -= smin_val;
4078 if (dst_reg->umin_value < umax_val) {
4079 /* Overflow possible, we know nothing */
4080 dst_reg->umin_value = 0;
4081 dst_reg->umax_value = U64_MAX;
4083 /* Cannot overflow (as long as bounds are consistent) */
4084 dst_reg->umin_value -= umax_val;
4085 dst_reg->umax_value -= umin_val;
4087 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4090 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4091 if (smin_val < 0 || dst_reg->smin_value < 0) {
4092 /* Ain't nobody got time to multiply that sign */
4093 __mark_reg_unbounded(dst_reg);
4094 __update_reg_bounds(dst_reg);
4097 /* Both values are positive, so we can work with unsigned and
4098 * copy the result to signed (unless it exceeds S64_MAX).
4100 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4101 /* Potential overflow, we know nothing */
4102 __mark_reg_unbounded(dst_reg);
4103 /* (except what we can learn from the var_off) */
4104 __update_reg_bounds(dst_reg);
4107 dst_reg->umin_value *= umin_val;
4108 dst_reg->umax_value *= umax_val;
4109 if (dst_reg->umax_value > S64_MAX) {
4110 /* Overflow possible, we know nothing */
4111 dst_reg->smin_value = S64_MIN;
4112 dst_reg->smax_value = S64_MAX;
4114 dst_reg->smin_value = dst_reg->umin_value;
4115 dst_reg->smax_value = dst_reg->umax_value;
4119 if (src_known && dst_known) {
4120 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4121 src_reg.var_off.value);
4124 /* We get our minimum from the var_off, since that's inherently
4125 * bitwise. Our maximum is the minimum of the operands' maxima.
4127 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4128 dst_reg->umin_value = dst_reg->var_off.value;
4129 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4130 if (dst_reg->smin_value < 0 || smin_val < 0) {
4131 /* Lose signed bounds when ANDing negative numbers,
4132 * ain't nobody got time for that.
4134 dst_reg->smin_value = S64_MIN;
4135 dst_reg->smax_value = S64_MAX;
4137 /* ANDing two positives gives a positive, so safe to
4138 * cast result into s64.
4140 dst_reg->smin_value = dst_reg->umin_value;
4141 dst_reg->smax_value = dst_reg->umax_value;
4143 /* We may learn something more from the var_off */
4144 __update_reg_bounds(dst_reg);
4147 if (src_known && dst_known) {
4148 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4149 src_reg.var_off.value);
4152 /* We get our maximum from the var_off, and our minimum is the
4153 * maximum of the operands' minima
4155 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4156 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4157 dst_reg->umax_value = dst_reg->var_off.value |
4158 dst_reg->var_off.mask;
4159 if (dst_reg->smin_value < 0 || smin_val < 0) {
4160 /* Lose signed bounds when ORing negative numbers,
4161 * ain't nobody got time for that.
4163 dst_reg->smin_value = S64_MIN;
4164 dst_reg->smax_value = S64_MAX;
4166 /* ORing two positives gives a positive, so safe to
4167 * cast result into s64.
4169 dst_reg->smin_value = dst_reg->umin_value;
4170 dst_reg->smax_value = dst_reg->umax_value;
4172 /* We may learn something more from the var_off */
4173 __update_reg_bounds(dst_reg);
4176 if (umax_val >= insn_bitness) {
4177 /* Shifts greater than 31 or 63 are undefined.
4178 * This includes shifts by a negative number.
4180 mark_reg_unknown(env, regs, insn->dst_reg);
4183 /* We lose all sign bit information (except what we can pick
4186 dst_reg->smin_value = S64_MIN;
4187 dst_reg->smax_value = S64_MAX;
4188 /* If we might shift our top bit out, then we know nothing */
4189 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4190 dst_reg->umin_value = 0;
4191 dst_reg->umax_value = U64_MAX;
4193 dst_reg->umin_value <<= umin_val;
4194 dst_reg->umax_value <<= umax_val;
4196 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4197 /* We may learn something more from the var_off */
4198 __update_reg_bounds(dst_reg);
4201 if (umax_val >= insn_bitness) {
4202 /* Shifts greater than 31 or 63 are undefined.
4203 * This includes shifts by a negative number.
4205 mark_reg_unknown(env, regs, insn->dst_reg);
4208 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4209 * be negative, then either:
4210 * 1) src_reg might be zero, so the sign bit of the result is
4211 * unknown, so we lose our signed bounds
4212 * 2) it's known negative, thus the unsigned bounds capture the
4214 * 3) the signed bounds cross zero, so they tell us nothing
4216 * If the value in dst_reg is known nonnegative, then again the
4217 * unsigned bounts capture the signed bounds.
4218 * Thus, in all cases it suffices to blow away our signed bounds
4219 * and rely on inferring new ones from the unsigned bounds and
4220 * var_off of the result.
4222 dst_reg->smin_value = S64_MIN;
4223 dst_reg->smax_value = S64_MAX;
4224 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4225 dst_reg->umin_value >>= umax_val;
4226 dst_reg->umax_value >>= umin_val;
4227 /* We may learn something more from the var_off */
4228 __update_reg_bounds(dst_reg);
4231 if (umax_val >= insn_bitness) {
4232 /* Shifts greater than 31 or 63 are undefined.
4233 * This includes shifts by a negative number.
4235 mark_reg_unknown(env, regs, insn->dst_reg);
4239 /* Upon reaching here, src_known is true and
4240 * umax_val is equal to umin_val.
4242 dst_reg->smin_value >>= umin_val;
4243 dst_reg->smax_value >>= umin_val;
4244 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4246 /* blow away the dst_reg umin_value/umax_value and rely on
4247 * dst_reg var_off to refine the result.
4249 dst_reg->umin_value = 0;
4250 dst_reg->umax_value = U64_MAX;
4251 __update_reg_bounds(dst_reg);
4254 mark_reg_unknown(env, regs, insn->dst_reg);
4258 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4259 /* 32-bit ALU ops are (32,32)->32 */
4260 coerce_reg_to_size(dst_reg, 4);
4263 __reg_deduce_bounds(dst_reg);
4264 __reg_bound_offset(dst_reg);
4268 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4271 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4272 struct bpf_insn *insn)
4274 struct bpf_verifier_state *vstate = env->cur_state;
4275 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4276 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4277 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4278 u8 opcode = BPF_OP(insn->code);
4280 dst_reg = ®s[insn->dst_reg];
4282 if (dst_reg->type != SCALAR_VALUE)
4284 if (BPF_SRC(insn->code) == BPF_X) {
4285 src_reg = ®s[insn->src_reg];
4286 if (src_reg->type != SCALAR_VALUE) {
4287 if (dst_reg->type != SCALAR_VALUE) {
4288 /* Combining two pointers by any ALU op yields
4289 * an arbitrary scalar. Disallow all math except
4290 * pointer subtraction
4292 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4293 mark_reg_unknown(env, regs, insn->dst_reg);
4296 verbose(env, "R%d pointer %s pointer prohibited\n",
4298 bpf_alu_string[opcode >> 4]);
4301 /* scalar += pointer
4302 * This is legal, but we have to reverse our
4303 * src/dest handling in computing the range
4305 return adjust_ptr_min_max_vals(env, insn,
4308 } else if (ptr_reg) {
4309 /* pointer += scalar */
4310 return adjust_ptr_min_max_vals(env, insn,
4314 /* Pretend the src is a reg with a known value, since we only
4315 * need to be able to read from this state.
4317 off_reg.type = SCALAR_VALUE;
4318 __mark_reg_known(&off_reg, insn->imm);
4320 if (ptr_reg) /* pointer += K */
4321 return adjust_ptr_min_max_vals(env, insn,
4325 /* Got here implies adding two SCALAR_VALUEs */
4326 if (WARN_ON_ONCE(ptr_reg)) {
4327 print_verifier_state(env, state);
4328 verbose(env, "verifier internal error: unexpected ptr_reg\n");
4331 if (WARN_ON(!src_reg)) {
4332 print_verifier_state(env, state);
4333 verbose(env, "verifier internal error: no src_reg\n");
4336 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4339 /* check validity of 32-bit and 64-bit arithmetic operations */
4340 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4342 struct bpf_reg_state *regs = cur_regs(env);
4343 u8 opcode = BPF_OP(insn->code);
4346 if (opcode == BPF_END || opcode == BPF_NEG) {
4347 if (opcode == BPF_NEG) {
4348 if (BPF_SRC(insn->code) != 0 ||
4349 insn->src_reg != BPF_REG_0 ||
4350 insn->off != 0 || insn->imm != 0) {
4351 verbose(env, "BPF_NEG uses reserved fields\n");
4355 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4356 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4357 BPF_CLASS(insn->code) == BPF_ALU64) {
4358 verbose(env, "BPF_END uses reserved fields\n");
4363 /* check src operand */
4364 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4368 if (is_pointer_value(env, insn->dst_reg)) {
4369 verbose(env, "R%d pointer arithmetic prohibited\n",
4374 /* check dest operand */
4375 err = check_reg_arg(env, insn->dst_reg, DST_OP);
4379 } else if (opcode == BPF_MOV) {
4381 if (BPF_SRC(insn->code) == BPF_X) {
4382 if (insn->imm != 0 || insn->off != 0) {
4383 verbose(env, "BPF_MOV uses reserved fields\n");
4387 /* check src operand */
4388 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4392 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4393 verbose(env, "BPF_MOV uses reserved fields\n");
4398 /* check dest operand, mark as required later */
4399 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4403 if (BPF_SRC(insn->code) == BPF_X) {
4404 struct bpf_reg_state *src_reg = regs + insn->src_reg;
4405 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4407 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4409 * copy register state to dest reg
4411 *dst_reg = *src_reg;
4412 dst_reg->live |= REG_LIVE_WRITTEN;
4413 dst_reg->subreg_def = DEF_NOT_SUBREG;
4416 if (is_pointer_value(env, insn->src_reg)) {
4418 "R%d partial copy of pointer\n",
4421 } else if (src_reg->type == SCALAR_VALUE) {
4422 *dst_reg = *src_reg;
4423 dst_reg->live |= REG_LIVE_WRITTEN;
4424 dst_reg->subreg_def = env->insn_idx + 1;
4426 mark_reg_unknown(env, regs,
4429 coerce_reg_to_size(dst_reg, 4);
4433 * remember the value we stored into this reg
4435 /* clear any state __mark_reg_known doesn't set */
4436 mark_reg_unknown(env, regs, insn->dst_reg);
4437 regs[insn->dst_reg].type = SCALAR_VALUE;
4438 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4439 __mark_reg_known(regs + insn->dst_reg,
4442 __mark_reg_known(regs + insn->dst_reg,
4447 } else if (opcode > BPF_END) {
4448 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4451 } else { /* all other ALU ops: and, sub, xor, add, ... */
4453 if (BPF_SRC(insn->code) == BPF_X) {
4454 if (insn->imm != 0 || insn->off != 0) {
4455 verbose(env, "BPF_ALU uses reserved fields\n");
4458 /* check src1 operand */
4459 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4463 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4464 verbose(env, "BPF_ALU uses reserved fields\n");
4469 /* check src2 operand */
4470 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4474 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4475 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4476 verbose(env, "div by zero\n");
4480 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4481 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4482 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4484 if (insn->imm < 0 || insn->imm >= size) {
4485 verbose(env, "invalid shift %d\n", insn->imm);
4490 /* check dest operand */
4491 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4495 return adjust_reg_min_max_vals(env, insn);
4501 static void __find_good_pkt_pointers(struct bpf_func_state *state,
4502 struct bpf_reg_state *dst_reg,
4503 enum bpf_reg_type type, u16 new_range)
4505 struct bpf_reg_state *reg;
4508 for (i = 0; i < MAX_BPF_REG; i++) {
4509 reg = &state->regs[i];
4510 if (reg->type == type && reg->id == dst_reg->id)
4511 /* keep the maximum range already checked */
4512 reg->range = max(reg->range, new_range);
4515 bpf_for_each_spilled_reg(i, state, reg) {
4518 if (reg->type == type && reg->id == dst_reg->id)
4519 reg->range = max(reg->range, new_range);
4523 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4524 struct bpf_reg_state *dst_reg,
4525 enum bpf_reg_type type,
4526 bool range_right_open)
4531 if (dst_reg->off < 0 ||
4532 (dst_reg->off == 0 && range_right_open))
4533 /* This doesn't give us any range */
4536 if (dst_reg->umax_value > MAX_PACKET_OFF ||
4537 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4538 /* Risk of overflow. For instance, ptr + (1<<63) may be less
4539 * than pkt_end, but that's because it's also less than pkt.
4543 new_range = dst_reg->off;
4544 if (range_right_open)
4547 /* Examples for register markings:
4549 * pkt_data in dst register:
4553 * if (r2 > pkt_end) goto <handle exception>
4558 * if (r2 < pkt_end) goto <access okay>
4559 * <handle exception>
4562 * r2 == dst_reg, pkt_end == src_reg
4563 * r2=pkt(id=n,off=8,r=0)
4564 * r3=pkt(id=n,off=0,r=0)
4566 * pkt_data in src register:
4570 * if (pkt_end >= r2) goto <access okay>
4571 * <handle exception>
4575 * if (pkt_end <= r2) goto <handle exception>
4579 * pkt_end == dst_reg, r2 == src_reg
4580 * r2=pkt(id=n,off=8,r=0)
4581 * r3=pkt(id=n,off=0,r=0)
4583 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4584 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4585 * and [r3, r3 + 8-1) respectively is safe to access depending on
4589 /* If our ids match, then we must have the same max_value. And we
4590 * don't care about the other reg's fixed offset, since if it's too big
4591 * the range won't allow anything.
4592 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4594 for (i = 0; i <= vstate->curframe; i++)
4595 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
4599 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4601 * 1 - branch will be taken and "goto target" will be executed
4602 * 0 - branch will not be taken and fall-through to next insn
4603 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4605 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4608 struct bpf_reg_state reg_lo;
4611 if (__is_pointer_value(false, reg))
4617 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4618 * could truncate high bits and update umin/umax according to
4619 * information of low bits.
4621 coerce_reg_to_size(reg, 4);
4622 /* smin/smax need special handling. For example, after coerce,
4623 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4624 * used as operand to JMP32. It is a negative number from s32's
4625 * point of view, while it is a positive number when seen as
4626 * s64. The smin/smax are kept as s64, therefore, when used with
4627 * JMP32, they need to be transformed into s32, then sign
4628 * extended back to s64.
4630 * Also, smin/smax were copied from umin/umax. If umin/umax has
4631 * different sign bit, then min/max relationship doesn't
4632 * maintain after casting into s32, for this case, set smin/smax
4635 if ((reg->umax_value ^ reg->umin_value) &
4637 reg->smin_value = S32_MIN;
4638 reg->smax_value = S32_MAX;
4640 reg->smin_value = (s64)(s32)reg->smin_value;
4641 reg->smax_value = (s64)(s32)reg->smax_value;
4644 sval = (s64)(s32)val;
4651 if (tnum_is_const(reg->var_off))
4652 return !!tnum_equals_const(reg->var_off, val);
4655 if (tnum_is_const(reg->var_off))
4656 return !tnum_equals_const(reg->var_off, val);
4659 if ((~reg->var_off.mask & reg->var_off.value) & val)
4661 if (!((reg->var_off.mask | reg->var_off.value) & val))
4665 if (reg->umin_value > val)
4667 else if (reg->umax_value <= val)
4671 if (reg->smin_value > sval)
4673 else if (reg->smax_value < sval)
4677 if (reg->umax_value < val)
4679 else if (reg->umin_value >= val)
4683 if (reg->smax_value < sval)
4685 else if (reg->smin_value >= sval)
4689 if (reg->umin_value >= val)
4691 else if (reg->umax_value < val)
4695 if (reg->smin_value >= sval)
4697 else if (reg->smax_value < sval)
4701 if (reg->umax_value <= val)
4703 else if (reg->umin_value > val)
4707 if (reg->smax_value <= sval)
4709 else if (reg->smin_value > sval)
4717 /* Generate min value of the high 32-bit from TNUM info. */
4718 static u64 gen_hi_min(struct tnum var)
4720 return var.value & ~0xffffffffULL;
4723 /* Generate max value of the high 32-bit from TNUM info. */
4724 static u64 gen_hi_max(struct tnum var)
4726 return (var.value | var.mask) & ~0xffffffffULL;
4729 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4730 * are with the same signedness.
4732 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4734 return ((s32)sval >= 0 &&
4735 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4737 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4740 /* Adjusts the register min/max values in the case that the dst_reg is the
4741 * variable register that we are working on, and src_reg is a constant or we're
4742 * simply doing a BPF_K check.
4743 * In JEQ/JNE cases we also adjust the var_off values.
4745 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4746 struct bpf_reg_state *false_reg, u64 val,
4747 u8 opcode, bool is_jmp32)
4751 /* If the dst_reg is a pointer, we can't learn anything about its
4752 * variable offset from the compare (unless src_reg were a pointer into
4753 * the same object, but we don't bother with that.
4754 * Since false_reg and true_reg have the same type by construction, we
4755 * only need to check one of them for pointerness.
4757 if (__is_pointer_value(false, false_reg))
4760 val = is_jmp32 ? (u32)val : val;
4761 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4767 struct bpf_reg_state *reg =
4768 opcode == BPF_JEQ ? true_reg : false_reg;
4770 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4771 * if it is true we know the value for sure. Likewise for
4775 u64 old_v = reg->var_off.value;
4776 u64 hi_mask = ~0xffffffffULL;
4778 reg->var_off.value = (old_v & hi_mask) | val;
4779 reg->var_off.mask &= hi_mask;
4781 __mark_reg_known(reg, val);
4786 false_reg->var_off = tnum_and(false_reg->var_off,
4788 if (is_power_of_2(val))
4789 true_reg->var_off = tnum_or(true_reg->var_off,
4795 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
4796 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4799 false_umax += gen_hi_max(false_reg->var_off);
4800 true_umin += gen_hi_min(true_reg->var_off);
4802 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4803 true_reg->umin_value = max(true_reg->umin_value, true_umin);
4809 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
4810 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4812 /* If the full s64 was not sign-extended from s32 then don't
4813 * deduct further info.
4815 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4817 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4818 true_reg->smin_value = max(true_reg->smin_value, true_smin);
4824 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
4825 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4828 false_umin += gen_hi_min(false_reg->var_off);
4829 true_umax += gen_hi_max(true_reg->var_off);
4831 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4832 true_reg->umax_value = min(true_reg->umax_value, true_umax);
4838 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
4839 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4841 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4843 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4844 true_reg->smax_value = min(true_reg->smax_value, true_smax);
4851 __reg_deduce_bounds(false_reg);
4852 __reg_deduce_bounds(true_reg);
4853 /* We might have learned some bits from the bounds. */
4854 __reg_bound_offset(false_reg);
4855 __reg_bound_offset(true_reg);
4856 /* Intersecting with the old var_off might have improved our bounds
4857 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4858 * then new var_off is (0; 0x7f...fc) which improves our umax.
4860 __update_reg_bounds(false_reg);
4861 __update_reg_bounds(true_reg);
4864 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4867 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4868 struct bpf_reg_state *false_reg, u64 val,
4869 u8 opcode, bool is_jmp32)
4873 if (__is_pointer_value(false, false_reg))
4876 val = is_jmp32 ? (u32)val : val;
4877 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4883 struct bpf_reg_state *reg =
4884 opcode == BPF_JEQ ? true_reg : false_reg;
4887 u64 old_v = reg->var_off.value;
4888 u64 hi_mask = ~0xffffffffULL;
4890 reg->var_off.value = (old_v & hi_mask) | val;
4891 reg->var_off.mask &= hi_mask;
4893 __mark_reg_known(reg, val);
4898 false_reg->var_off = tnum_and(false_reg->var_off,
4900 if (is_power_of_2(val))
4901 true_reg->var_off = tnum_or(true_reg->var_off,
4907 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
4908 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4911 false_umin += gen_hi_min(false_reg->var_off);
4912 true_umax += gen_hi_max(true_reg->var_off);
4914 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4915 true_reg->umax_value = min(true_reg->umax_value, true_umax);
4921 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
4922 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4924 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4926 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4927 true_reg->smax_value = min(true_reg->smax_value, true_smax);
4933 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
4934 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4937 false_umax += gen_hi_max(false_reg->var_off);
4938 true_umin += gen_hi_min(true_reg->var_off);
4940 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4941 true_reg->umin_value = max(true_reg->umin_value, true_umin);
4947 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
4948 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4950 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4952 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4953 true_reg->smin_value = max(true_reg->smin_value, true_smin);
4960 __reg_deduce_bounds(false_reg);
4961 __reg_deduce_bounds(true_reg);
4962 /* We might have learned some bits from the bounds. */
4963 __reg_bound_offset(false_reg);
4964 __reg_bound_offset(true_reg);
4965 /* Intersecting with the old var_off might have improved our bounds
4966 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4967 * then new var_off is (0; 0x7f...fc) which improves our umax.
4969 __update_reg_bounds(false_reg);
4970 __update_reg_bounds(true_reg);
4973 /* Regs are known to be equal, so intersect their min/max/var_off */
4974 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4975 struct bpf_reg_state *dst_reg)
4977 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4978 dst_reg->umin_value);
4979 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4980 dst_reg->umax_value);
4981 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4982 dst_reg->smin_value);
4983 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4984 dst_reg->smax_value);
4985 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4987 /* We might have learned new bounds from the var_off. */
4988 __update_reg_bounds(src_reg);
4989 __update_reg_bounds(dst_reg);
4990 /* We might have learned something about the sign bit. */
4991 __reg_deduce_bounds(src_reg);
4992 __reg_deduce_bounds(dst_reg);
4993 /* We might have learned some bits from the bounds. */
4994 __reg_bound_offset(src_reg);
4995 __reg_bound_offset(dst_reg);
4996 /* Intersecting with the old var_off might have improved our bounds
4997 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4998 * then new var_off is (0; 0x7f...fc) which improves our umax.
5000 __update_reg_bounds(src_reg);
5001 __update_reg_bounds(dst_reg);
5004 static void reg_combine_min_max(struct bpf_reg_state *true_src,
5005 struct bpf_reg_state *true_dst,
5006 struct bpf_reg_state *false_src,
5007 struct bpf_reg_state *false_dst,
5012 __reg_combine_min_max(true_src, true_dst);
5015 __reg_combine_min_max(false_src, false_dst);
5020 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5021 struct bpf_reg_state *reg, u32 id,
5024 if (reg_type_may_be_null(reg->type) && reg->id == id) {
5025 /* Old offset (both fixed and variable parts) should
5026 * have been known-zero, because we don't allow pointer
5027 * arithmetic on pointers that might be NULL.
5029 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5030 !tnum_equals_const(reg->var_off, 0) ||
5032 __mark_reg_known_zero(reg);
5036 reg->type = SCALAR_VALUE;
5037 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5038 if (reg->map_ptr->inner_map_meta) {
5039 reg->type = CONST_PTR_TO_MAP;
5040 reg->map_ptr = reg->map_ptr->inner_map_meta;
5042 reg->type = PTR_TO_MAP_VALUE;
5044 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5045 reg->type = PTR_TO_SOCKET;
5046 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5047 reg->type = PTR_TO_SOCK_COMMON;
5048 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5049 reg->type = PTR_TO_TCP_SOCK;
5052 /* We don't need id and ref_obj_id from this point
5053 * onwards anymore, thus we should better reset it,
5054 * so that state pruning has chances to take effect.
5057 reg->ref_obj_id = 0;
5058 } else if (!reg_may_point_to_spin_lock(reg)) {
5059 /* For not-NULL ptr, reg->ref_obj_id will be reset
5060 * in release_reg_references().
5062 * reg->id is still used by spin_lock ptr. Other
5063 * than spin_lock ptr type, reg->id can be reset.
5070 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5073 struct bpf_reg_state *reg;
5076 for (i = 0; i < MAX_BPF_REG; i++)
5077 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5079 bpf_for_each_spilled_reg(i, state, reg) {
5082 mark_ptr_or_null_reg(state, reg, id, is_null);
5086 /* The logic is similar to find_good_pkt_pointers(), both could eventually
5087 * be folded together at some point.
5089 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5092 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5093 struct bpf_reg_state *regs = state->regs;
5094 u32 ref_obj_id = regs[regno].ref_obj_id;
5095 u32 id = regs[regno].id;
5098 if (ref_obj_id && ref_obj_id == id && is_null)
5099 /* regs[regno] is in the " == NULL" branch.
5100 * No one could have freed the reference state before
5101 * doing the NULL check.
5103 WARN_ON_ONCE(release_reference_state(state, id));
5105 for (i = 0; i <= vstate->curframe; i++)
5106 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
5109 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5110 struct bpf_reg_state *dst_reg,
5111 struct bpf_reg_state *src_reg,
5112 struct bpf_verifier_state *this_branch,
5113 struct bpf_verifier_state *other_branch)
5115 if (BPF_SRC(insn->code) != BPF_X)
5118 /* Pointers are always 64-bit. */
5119 if (BPF_CLASS(insn->code) == BPF_JMP32)
5122 switch (BPF_OP(insn->code)) {
5124 if ((dst_reg->type == PTR_TO_PACKET &&
5125 src_reg->type == PTR_TO_PACKET_END) ||
5126 (dst_reg->type == PTR_TO_PACKET_META &&
5127 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5128 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5129 find_good_pkt_pointers(this_branch, dst_reg,
5130 dst_reg->type, false);
5131 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5132 src_reg->type == PTR_TO_PACKET) ||
5133 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5134 src_reg->type == PTR_TO_PACKET_META)) {
5135 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
5136 find_good_pkt_pointers(other_branch, src_reg,
5137 src_reg->type, true);
5143 if ((dst_reg->type == PTR_TO_PACKET &&
5144 src_reg->type == PTR_TO_PACKET_END) ||
5145 (dst_reg->type == PTR_TO_PACKET_META &&
5146 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5147 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5148 find_good_pkt_pointers(other_branch, dst_reg,
5149 dst_reg->type, true);
5150 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5151 src_reg->type == PTR_TO_PACKET) ||
5152 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5153 src_reg->type == PTR_TO_PACKET_META)) {
5154 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5155 find_good_pkt_pointers(this_branch, src_reg,
5156 src_reg->type, false);
5162 if ((dst_reg->type == PTR_TO_PACKET &&
5163 src_reg->type == PTR_TO_PACKET_END) ||
5164 (dst_reg->type == PTR_TO_PACKET_META &&
5165 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5166 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5167 find_good_pkt_pointers(this_branch, dst_reg,
5168 dst_reg->type, true);
5169 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5170 src_reg->type == PTR_TO_PACKET) ||
5171 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5172 src_reg->type == PTR_TO_PACKET_META)) {
5173 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5174 find_good_pkt_pointers(other_branch, src_reg,
5175 src_reg->type, false);
5181 if ((dst_reg->type == PTR_TO_PACKET &&
5182 src_reg->type == PTR_TO_PACKET_END) ||
5183 (dst_reg->type == PTR_TO_PACKET_META &&
5184 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5185 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5186 find_good_pkt_pointers(other_branch, dst_reg,
5187 dst_reg->type, false);
5188 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5189 src_reg->type == PTR_TO_PACKET) ||
5190 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5191 src_reg->type == PTR_TO_PACKET_META)) {
5192 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5193 find_good_pkt_pointers(this_branch, src_reg,
5194 src_reg->type, true);
5206 static int check_cond_jmp_op(struct bpf_verifier_env *env,
5207 struct bpf_insn *insn, int *insn_idx)
5209 struct bpf_verifier_state *this_branch = env->cur_state;
5210 struct bpf_verifier_state *other_branch;
5211 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5212 struct bpf_reg_state *dst_reg, *other_branch_regs;
5213 u8 opcode = BPF_OP(insn->code);
5217 /* Only conditional jumps are expected to reach here. */
5218 if (opcode == BPF_JA || opcode > BPF_JSLE) {
5219 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5223 if (BPF_SRC(insn->code) == BPF_X) {
5224 if (insn->imm != 0) {
5225 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5229 /* check src1 operand */
5230 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5234 if (is_pointer_value(env, insn->src_reg)) {
5235 verbose(env, "R%d pointer comparison prohibited\n",
5240 if (insn->src_reg != BPF_REG_0) {
5241 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5246 /* check src2 operand */
5247 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5251 dst_reg = ®s[insn->dst_reg];
5252 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5254 if (BPF_SRC(insn->code) == BPF_K) {
5255 int pred = is_branch_taken(dst_reg, insn->imm, opcode,
5259 /* only follow the goto, ignore fall-through */
5260 *insn_idx += insn->off;
5262 } else if (pred == 0) {
5263 /* only follow fall-through branch, since
5264 * that's where the program will go
5270 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5274 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5276 /* detect if we are comparing against a constant value so we can adjust
5277 * our min/max values for our dst register.
5278 * this is only legit if both are scalars (or pointers to the same
5279 * object, I suppose, but we don't support that right now), because
5280 * otherwise the different base pointers mean the offsets aren't
5283 if (BPF_SRC(insn->code) == BPF_X) {
5284 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
5285 struct bpf_reg_state lo_reg0 = *dst_reg;
5286 struct bpf_reg_state lo_reg1 = *src_reg;
5287 struct bpf_reg_state *src_lo, *dst_lo;
5291 coerce_reg_to_size(dst_lo, 4);
5292 coerce_reg_to_size(src_lo, 4);
5294 if (dst_reg->type == SCALAR_VALUE &&
5295 src_reg->type == SCALAR_VALUE) {
5296 if (tnum_is_const(src_reg->var_off) ||
5297 (is_jmp32 && tnum_is_const(src_lo->var_off)))
5298 reg_set_min_max(&other_branch_regs[insn->dst_reg],
5301 ? src_lo->var_off.value
5302 : src_reg->var_off.value,
5304 else if (tnum_is_const(dst_reg->var_off) ||
5305 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5306 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5309 ? dst_lo->var_off.value
5310 : dst_reg->var_off.value,
5312 else if (!is_jmp32 &&
5313 (opcode == BPF_JEQ || opcode == BPF_JNE))
5314 /* Comparing for equality, we can combine knowledge */
5315 reg_combine_min_max(&other_branch_regs[insn->src_reg],
5316 &other_branch_regs[insn->dst_reg],
5317 src_reg, dst_reg, opcode);
5319 } else if (dst_reg->type == SCALAR_VALUE) {
5320 reg_set_min_max(&other_branch_regs[insn->dst_reg],
5321 dst_reg, insn->imm, opcode, is_jmp32);
5324 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5325 * NOTE: these optimizations below are related with pointer comparison
5326 * which will never be JMP32.
5328 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5329 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5330 reg_type_may_be_null(dst_reg->type)) {
5331 /* Mark all identical registers in each branch as either
5332 * safe or unknown depending R == 0 or R != 0 conditional.
5334 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5336 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5338 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
5339 this_branch, other_branch) &&
5340 is_pointer_value(env, insn->dst_reg)) {
5341 verbose(env, "R%d pointer comparison prohibited\n",
5345 if (env->log.level & BPF_LOG_LEVEL)
5346 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5350 /* verify BPF_LD_IMM64 instruction */
5351 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5353 struct bpf_insn_aux_data *aux = cur_aux(env);
5354 struct bpf_reg_state *regs = cur_regs(env);
5355 struct bpf_map *map;
5358 if (BPF_SIZE(insn->code) != BPF_DW) {
5359 verbose(env, "invalid BPF_LD_IMM insn\n");
5362 if (insn->off != 0) {
5363 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5367 err = check_reg_arg(env, insn->dst_reg, DST_OP);
5371 if (insn->src_reg == 0) {
5372 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5374 regs[insn->dst_reg].type = SCALAR_VALUE;
5375 __mark_reg_known(®s[insn->dst_reg], imm);
5379 map = env->used_maps[aux->map_index];
5380 mark_reg_known_zero(env, regs, insn->dst_reg);
5381 regs[insn->dst_reg].map_ptr = map;
5383 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5384 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5385 regs[insn->dst_reg].off = aux->map_off;
5386 if (map_value_has_spin_lock(map))
5387 regs[insn->dst_reg].id = ++env->id_gen;
5388 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5389 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5391 verbose(env, "bpf verifier is misconfigured\n");
5398 static bool may_access_skb(enum bpf_prog_type type)
5401 case BPF_PROG_TYPE_SOCKET_FILTER:
5402 case BPF_PROG_TYPE_SCHED_CLS:
5403 case BPF_PROG_TYPE_SCHED_ACT:
5410 /* verify safety of LD_ABS|LD_IND instructions:
5411 * - they can only appear in the programs where ctx == skb
5412 * - since they are wrappers of function calls, they scratch R1-R5 registers,
5413 * preserve R6-R9, and store return value into R0
5416 * ctx == skb == R6 == CTX
5419 * SRC == any register
5420 * IMM == 32-bit immediate
5423 * R0 - 8/16/32-bit skb data converted to cpu endianness
5425 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5427 struct bpf_reg_state *regs = cur_regs(env);
5428 u8 mode = BPF_MODE(insn->code);
5431 if (!may_access_skb(env->prog->type)) {
5432 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5436 if (!env->ops->gen_ld_abs) {
5437 verbose(env, "bpf verifier is misconfigured\n");
5441 if (env->subprog_cnt > 1) {
5442 /* when program has LD_ABS insn JITs and interpreter assume
5443 * that r1 == ctx == skb which is not the case for callees
5444 * that can have arbitrary arguments. It's problematic
5445 * for main prog as well since JITs would need to analyze
5446 * all functions in order to make proper register save/restore
5447 * decisions in the main prog. Hence disallow LD_ABS with calls
5449 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5453 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5454 BPF_SIZE(insn->code) == BPF_DW ||
5455 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5456 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5460 /* check whether implicit source operand (register R6) is readable */
5461 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5465 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5466 * gen_ld_abs() may terminate the program at runtime, leading to
5469 err = check_reference_leak(env);
5471 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5475 if (env->cur_state->active_spin_lock) {
5476 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5480 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5482 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5486 if (mode == BPF_IND) {
5487 /* check explicit source operand */
5488 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5493 /* reset caller saved regs to unreadable */
5494 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5495 mark_reg_not_init(env, regs, caller_saved[i]);
5496 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5499 /* mark destination R0 register as readable, since it contains
5500 * the value fetched from the packet.
5501 * Already marked as written above.
5503 mark_reg_unknown(env, regs, BPF_REG_0);
5504 /* ld_abs load up to 32-bit skb data. */
5505 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
5509 static int check_return_code(struct bpf_verifier_env *env)
5511 struct bpf_reg_state *reg;
5512 struct tnum range = tnum_range(0, 1);
5514 switch (env->prog->type) {
5515 case BPF_PROG_TYPE_CGROUP_SKB:
5516 case BPF_PROG_TYPE_CGROUP_SOCK:
5517 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5518 case BPF_PROG_TYPE_SOCK_OPS:
5519 case BPF_PROG_TYPE_CGROUP_DEVICE:
5520 case BPF_PROG_TYPE_CGROUP_SYSCTL:
5526 reg = cur_regs(env) + BPF_REG_0;
5527 if (reg->type != SCALAR_VALUE) {
5528 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5529 reg_type_str[reg->type]);
5533 if (!tnum_in(range, reg->var_off)) {
5534 verbose(env, "At program exit the register R0 ");
5535 if (!tnum_is_unknown(reg->var_off)) {
5538 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5539 verbose(env, "has value %s", tn_buf);
5541 verbose(env, "has unknown scalar value");
5543 verbose(env, " should have been 0 or 1\n");
5549 /* non-recursive DFS pseudo code
5550 * 1 procedure DFS-iterative(G,v):
5551 * 2 label v as discovered
5552 * 3 let S be a stack
5554 * 5 while S is not empty
5556 * 7 if t is what we're looking for:
5558 * 9 for all edges e in G.adjacentEdges(t) do
5559 * 10 if edge e is already labelled
5560 * 11 continue with the next edge
5561 * 12 w <- G.adjacentVertex(t,e)
5562 * 13 if vertex w is not discovered and not explored
5563 * 14 label e as tree-edge
5564 * 15 label w as discovered
5567 * 18 else if vertex w is discovered
5568 * 19 label e as back-edge
5570 * 21 // vertex w is explored
5571 * 22 label e as forward- or cross-edge
5572 * 23 label t as explored
5577 * 0x11 - discovered and fall-through edge labelled
5578 * 0x12 - discovered and fall-through and branch edges labelled
5589 static u32 state_htab_size(struct bpf_verifier_env *env)
5591 return env->prog->len;
5594 static struct bpf_verifier_state_list **explored_state(
5595 struct bpf_verifier_env *env,
5598 struct bpf_verifier_state *cur = env->cur_state;
5599 struct bpf_func_state *state = cur->frame[cur->curframe];
5601 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5604 static void init_explored_state(struct bpf_verifier_env *env, int idx)
5606 env->insn_aux_data[idx].prune_point = true;
5609 /* t, w, e - match pseudo-code above:
5610 * t - index of current instruction
5611 * w - next instruction
5614 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5616 int *insn_stack = env->cfg.insn_stack;
5617 int *insn_state = env->cfg.insn_state;
5619 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5622 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5625 if (w < 0 || w >= env->prog->len) {
5626 verbose_linfo(env, t, "%d: ", t);
5627 verbose(env, "jump out of range from insn %d to %d\n", t, w);
5632 /* mark branch target for state pruning */
5633 init_explored_state(env, w);
5635 if (insn_state[w] == 0) {
5637 insn_state[t] = DISCOVERED | e;
5638 insn_state[w] = DISCOVERED;
5639 if (env->cfg.cur_stack >= env->prog->len)
5641 insn_stack[env->cfg.cur_stack++] = w;
5643 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5644 verbose_linfo(env, t, "%d: ", t);
5645 verbose_linfo(env, w, "%d: ", w);
5646 verbose(env, "back-edge from insn %d to %d\n", t, w);
5648 } else if (insn_state[w] == EXPLORED) {
5649 /* forward- or cross-edge */
5650 insn_state[t] = DISCOVERED | e;
5652 verbose(env, "insn state internal bug\n");
5658 /* non-recursive depth-first-search to detect loops in BPF program
5659 * loop == back-edge in directed graph
5661 static int check_cfg(struct bpf_verifier_env *env)
5663 struct bpf_insn *insns = env->prog->insnsi;
5664 int insn_cnt = env->prog->len;
5665 int *insn_stack, *insn_state;
5669 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5673 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5679 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5680 insn_stack[0] = 0; /* 0 is the first instruction */
5681 env->cfg.cur_stack = 1;
5684 if (env->cfg.cur_stack == 0)
5686 t = insn_stack[env->cfg.cur_stack - 1];
5688 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5689 BPF_CLASS(insns[t].code) == BPF_JMP32) {
5690 u8 opcode = BPF_OP(insns[t].code);
5692 if (opcode == BPF_EXIT) {
5694 } else if (opcode == BPF_CALL) {
5695 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5700 if (t + 1 < insn_cnt)
5701 init_explored_state(env, t + 1);
5702 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5703 init_explored_state(env, t);
5704 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5710 } else if (opcode == BPF_JA) {
5711 if (BPF_SRC(insns[t].code) != BPF_K) {
5715 /* unconditional jump with single edge */
5716 ret = push_insn(t, t + insns[t].off + 1,
5722 /* tell verifier to check for equivalent states
5723 * after every call and jump
5725 if (t + 1 < insn_cnt)
5726 init_explored_state(env, t + 1);
5728 /* conditional jump with two edges */
5729 init_explored_state(env, t);
5730 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5736 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5743 /* all other non-branch instructions with single
5746 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5754 insn_state[t] = EXPLORED;
5755 if (env->cfg.cur_stack-- <= 0) {
5756 verbose(env, "pop stack internal bug\n");
5763 for (i = 0; i < insn_cnt; i++) {
5764 if (insn_state[i] != EXPLORED) {
5765 verbose(env, "unreachable insn %d\n", i);
5770 ret = 0; /* cfg looks good */
5775 env->cfg.insn_state = env->cfg.insn_stack = NULL;
5779 /* The minimum supported BTF func info size */
5780 #define MIN_BPF_FUNCINFO_SIZE 8
5781 #define MAX_FUNCINFO_REC_SIZE 252
5783 static int check_btf_func(struct bpf_verifier_env *env,
5784 const union bpf_attr *attr,
5785 union bpf_attr __user *uattr)
5787 u32 i, nfuncs, urec_size, min_size;
5788 u32 krec_size = sizeof(struct bpf_func_info);
5789 struct bpf_func_info *krecord;
5790 const struct btf_type *type;
5791 struct bpf_prog *prog;
5792 const struct btf *btf;
5793 void __user *urecord;
5794 u32 prev_offset = 0;
5797 nfuncs = attr->func_info_cnt;
5801 if (nfuncs != env->subprog_cnt) {
5802 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5806 urec_size = attr->func_info_rec_size;
5807 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5808 urec_size > MAX_FUNCINFO_REC_SIZE ||
5809 urec_size % sizeof(u32)) {
5810 verbose(env, "invalid func info rec size %u\n", urec_size);
5815 btf = prog->aux->btf;
5817 urecord = u64_to_user_ptr(attr->func_info);
5818 min_size = min_t(u32, krec_size, urec_size);
5820 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5824 for (i = 0; i < nfuncs; i++) {
5825 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5827 if (ret == -E2BIG) {
5828 verbose(env, "nonzero tailing record in func info");
5829 /* set the size kernel expects so loader can zero
5830 * out the rest of the record.
5832 if (put_user(min_size, &uattr->func_info_rec_size))
5838 if (copy_from_user(&krecord[i], urecord, min_size)) {
5843 /* check insn_off */
5845 if (krecord[i].insn_off) {
5847 "nonzero insn_off %u for the first func info record",
5848 krecord[i].insn_off);
5852 } else if (krecord[i].insn_off <= prev_offset) {
5854 "same or smaller insn offset (%u) than previous func info record (%u)",
5855 krecord[i].insn_off, prev_offset);
5860 if (env->subprog_info[i].start != krecord[i].insn_off) {
5861 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5867 type = btf_type_by_id(btf, krecord[i].type_id);
5868 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5869 verbose(env, "invalid type id %d in func info",
5870 krecord[i].type_id);
5875 prev_offset = krecord[i].insn_off;
5876 urecord += urec_size;
5879 prog->aux->func_info = krecord;
5880 prog->aux->func_info_cnt = nfuncs;
5888 static void adjust_btf_func(struct bpf_verifier_env *env)
5892 if (!env->prog->aux->func_info)
5895 for (i = 0; i < env->subprog_cnt; i++)
5896 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5899 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
5900 sizeof(((struct bpf_line_info *)(0))->line_col))
5901 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
5903 static int check_btf_line(struct bpf_verifier_env *env,
5904 const union bpf_attr *attr,
5905 union bpf_attr __user *uattr)
5907 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5908 struct bpf_subprog_info *sub;
5909 struct bpf_line_info *linfo;
5910 struct bpf_prog *prog;
5911 const struct btf *btf;
5912 void __user *ulinfo;
5915 nr_linfo = attr->line_info_cnt;
5919 rec_size = attr->line_info_rec_size;
5920 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5921 rec_size > MAX_LINEINFO_REC_SIZE ||
5922 rec_size & (sizeof(u32) - 1))
5925 /* Need to zero it in case the userspace may
5926 * pass in a smaller bpf_line_info object.
5928 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5929 GFP_KERNEL | __GFP_NOWARN);
5934 btf = prog->aux->btf;
5937 sub = env->subprog_info;
5938 ulinfo = u64_to_user_ptr(attr->line_info);
5939 expected_size = sizeof(struct bpf_line_info);
5940 ncopy = min_t(u32, expected_size, rec_size);
5941 for (i = 0; i < nr_linfo; i++) {
5942 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5944 if (err == -E2BIG) {
5945 verbose(env, "nonzero tailing record in line_info");
5946 if (put_user(expected_size,
5947 &uattr->line_info_rec_size))
5953 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5959 * Check insn_off to ensure
5960 * 1) strictly increasing AND
5961 * 2) bounded by prog->len
5963 * The linfo[0].insn_off == 0 check logically falls into
5964 * the later "missing bpf_line_info for func..." case
5965 * because the first linfo[0].insn_off must be the
5966 * first sub also and the first sub must have
5967 * subprog_info[0].start == 0.
5969 if ((i && linfo[i].insn_off <= prev_offset) ||
5970 linfo[i].insn_off >= prog->len) {
5971 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5972 i, linfo[i].insn_off, prev_offset,
5978 if (!prog->insnsi[linfo[i].insn_off].code) {
5980 "Invalid insn code at line_info[%u].insn_off\n",
5986 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5987 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5988 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5993 if (s != env->subprog_cnt) {
5994 if (linfo[i].insn_off == sub[s].start) {
5995 sub[s].linfo_idx = i;
5997 } else if (sub[s].start < linfo[i].insn_off) {
5998 verbose(env, "missing bpf_line_info for func#%u\n", s);
6004 prev_offset = linfo[i].insn_off;
6008 if (s != env->subprog_cnt) {
6009 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6010 env->subprog_cnt - s, s);
6015 prog->aux->linfo = linfo;
6016 prog->aux->nr_linfo = nr_linfo;
6025 static int check_btf_info(struct bpf_verifier_env *env,
6026 const union bpf_attr *attr,
6027 union bpf_attr __user *uattr)
6032 if (!attr->func_info_cnt && !attr->line_info_cnt)
6035 btf = btf_get_by_fd(attr->prog_btf_fd);
6037 return PTR_ERR(btf);
6038 env->prog->aux->btf = btf;
6040 err = check_btf_func(env, attr, uattr);
6044 err = check_btf_line(env, attr, uattr);
6051 /* check %cur's range satisfies %old's */
6052 static bool range_within(struct bpf_reg_state *old,
6053 struct bpf_reg_state *cur)
6055 return old->umin_value <= cur->umin_value &&
6056 old->umax_value >= cur->umax_value &&
6057 old->smin_value <= cur->smin_value &&
6058 old->smax_value >= cur->smax_value;
6061 /* Maximum number of register states that can exist at once */
6062 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6068 /* If in the old state two registers had the same id, then they need to have
6069 * the same id in the new state as well. But that id could be different from
6070 * the old state, so we need to track the mapping from old to new ids.
6071 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6072 * regs with old id 5 must also have new id 9 for the new state to be safe. But
6073 * regs with a different old id could still have new id 9, we don't care about
6075 * So we look through our idmap to see if this old id has been seen before. If
6076 * so, we require the new id to match; otherwise, we add the id pair to the map.
6078 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
6082 for (i = 0; i < ID_MAP_SIZE; i++) {
6083 if (!idmap[i].old) {
6084 /* Reached an empty slot; haven't seen this id before */
6085 idmap[i].old = old_id;
6086 idmap[i].cur = cur_id;
6089 if (idmap[i].old == old_id)
6090 return idmap[i].cur == cur_id;
6092 /* We ran out of idmap slots, which should be impossible */
6097 static void clean_func_state(struct bpf_verifier_env *env,
6098 struct bpf_func_state *st)
6100 enum bpf_reg_liveness live;
6103 for (i = 0; i < BPF_REG_FP; i++) {
6104 live = st->regs[i].live;
6105 /* liveness must not touch this register anymore */
6106 st->regs[i].live |= REG_LIVE_DONE;
6107 if (!(live & REG_LIVE_READ))
6108 /* since the register is unused, clear its state
6109 * to make further comparison simpler
6111 __mark_reg_not_init(&st->regs[i]);
6114 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6115 live = st->stack[i].spilled_ptr.live;
6116 /* liveness must not touch this stack slot anymore */
6117 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6118 if (!(live & REG_LIVE_READ)) {
6119 __mark_reg_not_init(&st->stack[i].spilled_ptr);
6120 for (j = 0; j < BPF_REG_SIZE; j++)
6121 st->stack[i].slot_type[j] = STACK_INVALID;
6126 static void clean_verifier_state(struct bpf_verifier_env *env,
6127 struct bpf_verifier_state *st)
6131 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6132 /* all regs in this state in all frames were already marked */
6135 for (i = 0; i <= st->curframe; i++)
6136 clean_func_state(env, st->frame[i]);
6139 /* the parentage chains form a tree.
6140 * the verifier states are added to state lists at given insn and
6141 * pushed into state stack for future exploration.
6142 * when the verifier reaches bpf_exit insn some of the verifer states
6143 * stored in the state lists have their final liveness state already,
6144 * but a lot of states will get revised from liveness point of view when
6145 * the verifier explores other branches.
6148 * 2: if r1 == 100 goto pc+1
6151 * when the verifier reaches exit insn the register r0 in the state list of
6152 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6153 * of insn 2 and goes exploring further. At the insn 4 it will walk the
6154 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6156 * Since the verifier pushes the branch states as it sees them while exploring
6157 * the program the condition of walking the branch instruction for the second
6158 * time means that all states below this branch were already explored and
6159 * their final liveness markes are already propagated.
6160 * Hence when the verifier completes the search of state list in is_state_visited()
6161 * we can call this clean_live_states() function to mark all liveness states
6162 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6164 * This function also clears the registers and stack for states that !READ
6165 * to simplify state merging.
6167 * Important note here that walking the same branch instruction in the callee
6168 * doesn't meant that the states are DONE. The verifier has to compare
6171 static void clean_live_states(struct bpf_verifier_env *env, int insn,
6172 struct bpf_verifier_state *cur)
6174 struct bpf_verifier_state_list *sl;
6177 sl = *explored_state(env, insn);
6179 if (sl->state.insn_idx != insn ||
6180 sl->state.curframe != cur->curframe)
6182 for (i = 0; i <= cur->curframe; i++)
6183 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6185 clean_verifier_state(env, &sl->state);
6191 /* Returns true if (rold safe implies rcur safe) */
6192 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6193 struct idpair *idmap)
6197 if (!(rold->live & REG_LIVE_READ))
6198 /* explored state didn't use this */
6201 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6203 if (rold->type == PTR_TO_STACK)
6204 /* two stack pointers are equal only if they're pointing to
6205 * the same stack frame, since fp-8 in foo != fp-8 in bar
6207 return equal && rold->frameno == rcur->frameno;
6212 if (rold->type == NOT_INIT)
6213 /* explored state can't have used this */
6215 if (rcur->type == NOT_INIT)
6217 switch (rold->type) {
6219 if (rcur->type == SCALAR_VALUE) {
6220 /* new val must satisfy old val knowledge */
6221 return range_within(rold, rcur) &&
6222 tnum_in(rold->var_off, rcur->var_off);
6224 /* We're trying to use a pointer in place of a scalar.
6225 * Even if the scalar was unbounded, this could lead to
6226 * pointer leaks because scalars are allowed to leak
6227 * while pointers are not. We could make this safe in
6228 * special cases if root is calling us, but it's
6229 * probably not worth the hassle.
6233 case PTR_TO_MAP_VALUE:
6234 /* If the new min/max/var_off satisfy the old ones and
6235 * everything else matches, we are OK.
6236 * 'id' is not compared, since it's only used for maps with
6237 * bpf_spin_lock inside map element and in such cases if
6238 * the rest of the prog is valid for one map element then
6239 * it's valid for all map elements regardless of the key
6240 * used in bpf_map_lookup()
6242 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6243 range_within(rold, rcur) &&
6244 tnum_in(rold->var_off, rcur->var_off);
6245 case PTR_TO_MAP_VALUE_OR_NULL:
6246 /* a PTR_TO_MAP_VALUE could be safe to use as a
6247 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6248 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6249 * checked, doing so could have affected others with the same
6250 * id, and we can't check for that because we lost the id when
6251 * we converted to a PTR_TO_MAP_VALUE.
6253 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6255 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6257 /* Check our ids match any regs they're supposed to */
6258 return check_ids(rold->id, rcur->id, idmap);
6259 case PTR_TO_PACKET_META:
6261 if (rcur->type != rold->type)
6263 /* We must have at least as much range as the old ptr
6264 * did, so that any accesses which were safe before are
6265 * still safe. This is true even if old range < old off,
6266 * since someone could have accessed through (ptr - k), or
6267 * even done ptr -= k in a register, to get a safe access.
6269 if (rold->range > rcur->range)
6271 /* If the offsets don't match, we can't trust our alignment;
6272 * nor can we be sure that we won't fall out of range.
6274 if (rold->off != rcur->off)
6276 /* id relations must be preserved */
6277 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6279 /* new val must satisfy old val knowledge */
6280 return range_within(rold, rcur) &&
6281 tnum_in(rold->var_off, rcur->var_off);
6283 case CONST_PTR_TO_MAP:
6284 case PTR_TO_PACKET_END:
6285 case PTR_TO_FLOW_KEYS:
6287 case PTR_TO_SOCKET_OR_NULL:
6288 case PTR_TO_SOCK_COMMON:
6289 case PTR_TO_SOCK_COMMON_OR_NULL:
6290 case PTR_TO_TCP_SOCK:
6291 case PTR_TO_TCP_SOCK_OR_NULL:
6292 /* Only valid matches are exact, which memcmp() above
6293 * would have accepted
6296 /* Don't know what's going on, just say it's not safe */
6300 /* Shouldn't get here; if we do, say it's not safe */
6305 static bool stacksafe(struct bpf_func_state *old,
6306 struct bpf_func_state *cur,
6307 struct idpair *idmap)
6311 /* walk slots of the explored stack and ignore any additional
6312 * slots in the current stack, since explored(safe) state
6315 for (i = 0; i < old->allocated_stack; i++) {
6316 spi = i / BPF_REG_SIZE;
6318 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6319 i += BPF_REG_SIZE - 1;
6320 /* explored state didn't use this */
6324 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6327 /* explored stack has more populated slots than current stack
6328 * and these slots were used
6330 if (i >= cur->allocated_stack)
6333 /* if old state was safe with misc data in the stack
6334 * it will be safe with zero-initialized stack.
6335 * The opposite is not true
6337 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6338 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6340 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6341 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6342 /* Ex: old explored (safe) state has STACK_SPILL in
6343 * this stack slot, but current has has STACK_MISC ->
6344 * this verifier states are not equivalent,
6345 * return false to continue verification of this path
6348 if (i % BPF_REG_SIZE)
6350 if (old->stack[spi].slot_type[0] != STACK_SPILL)
6352 if (!regsafe(&old->stack[spi].spilled_ptr,
6353 &cur->stack[spi].spilled_ptr,
6355 /* when explored and current stack slot are both storing
6356 * spilled registers, check that stored pointers types
6357 * are the same as well.
6358 * Ex: explored safe path could have stored
6359 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6360 * but current path has stored:
6361 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6362 * such verifier states are not equivalent.
6363 * return false to continue verification of this path
6370 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6372 if (old->acquired_refs != cur->acquired_refs)
6374 return !memcmp(old->refs, cur->refs,
6375 sizeof(*old->refs) * old->acquired_refs);
6378 /* compare two verifier states
6380 * all states stored in state_list are known to be valid, since
6381 * verifier reached 'bpf_exit' instruction through them
6383 * this function is called when verifier exploring different branches of
6384 * execution popped from the state stack. If it sees an old state that has
6385 * more strict register state and more strict stack state then this execution
6386 * branch doesn't need to be explored further, since verifier already
6387 * concluded that more strict state leads to valid finish.
6389 * Therefore two states are equivalent if register state is more conservative
6390 * and explored stack state is more conservative than the current one.
6393 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6394 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6396 * In other words if current stack state (one being explored) has more
6397 * valid slots than old one that already passed validation, it means
6398 * the verifier can stop exploring and conclude that current state is valid too
6400 * Similarly with registers. If explored state has register type as invalid
6401 * whereas register type in current state is meaningful, it means that
6402 * the current state will reach 'bpf_exit' instruction safely
6404 static bool func_states_equal(struct bpf_func_state *old,
6405 struct bpf_func_state *cur)
6407 struct idpair *idmap;
6411 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6412 /* If we failed to allocate the idmap, just say it's not safe */
6416 for (i = 0; i < MAX_BPF_REG; i++) {
6417 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6421 if (!stacksafe(old, cur, idmap))
6424 if (!refsafe(old, cur))
6432 static bool states_equal(struct bpf_verifier_env *env,
6433 struct bpf_verifier_state *old,
6434 struct bpf_verifier_state *cur)
6438 if (old->curframe != cur->curframe)
6441 /* Verification state from speculative execution simulation
6442 * must never prune a non-speculative execution one.
6444 if (old->speculative && !cur->speculative)
6447 if (old->active_spin_lock != cur->active_spin_lock)
6450 /* for states to be equal callsites have to be the same
6451 * and all frame states need to be equivalent
6453 for (i = 0; i <= old->curframe; i++) {
6454 if (old->frame[i]->callsite != cur->frame[i]->callsite)
6456 if (!func_states_equal(old->frame[i], cur->frame[i]))
6462 /* Return 0 if no propagation happened. Return negative error code if error
6463 * happened. Otherwise, return the propagated bit.
6465 static int propagate_liveness_reg(struct bpf_verifier_env *env,
6466 struct bpf_reg_state *reg,
6467 struct bpf_reg_state *parent_reg)
6469 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
6470 u8 flag = reg->live & REG_LIVE_READ;
6473 /* When comes here, read flags of PARENT_REG or REG could be any of
6474 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
6475 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
6477 if (parent_flag == REG_LIVE_READ64 ||
6478 /* Or if there is no read flag from REG. */
6480 /* Or if the read flag from REG is the same as PARENT_REG. */
6481 parent_flag == flag)
6484 err = mark_reg_read(env, reg, parent_reg, flag);
6491 /* A write screens off any subsequent reads; but write marks come from the
6492 * straight-line code between a state and its parent. When we arrive at an
6493 * equivalent state (jump target or such) we didn't arrive by the straight-line
6494 * code, so read marks in the state must propagate to the parent regardless
6495 * of the state's write marks. That's what 'parent == state->parent' comparison
6496 * in mark_reg_read() is for.
6498 static int propagate_liveness(struct bpf_verifier_env *env,
6499 const struct bpf_verifier_state *vstate,
6500 struct bpf_verifier_state *vparent)
6502 struct bpf_reg_state *state_reg, *parent_reg;
6503 struct bpf_func_state *state, *parent;
6504 int i, frame, err = 0;
6506 if (vparent->curframe != vstate->curframe) {
6507 WARN(1, "propagate_live: parent frame %d current frame %d\n",
6508 vparent->curframe, vstate->curframe);
6511 /* Propagate read liveness of registers... */
6512 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6513 for (frame = 0; frame <= vstate->curframe; frame++) {
6514 parent = vparent->frame[frame];
6515 state = vstate->frame[frame];
6516 parent_reg = parent->regs;
6517 state_reg = state->regs;
6518 /* We don't need to worry about FP liveness, it's read-only */
6519 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6520 err = propagate_liveness_reg(env, &state_reg[i],
6524 if (err == REG_LIVE_READ64)
6525 mark_insn_zext(env, &parent_reg[i]);
6528 /* Propagate stack slots. */
6529 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6530 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6531 parent_reg = &parent->stack[i].spilled_ptr;
6532 state_reg = &state->stack[i].spilled_ptr;
6533 err = propagate_liveness_reg(env, state_reg,
6542 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6544 struct bpf_verifier_state_list *new_sl;
6545 struct bpf_verifier_state_list *sl, **pprev;
6546 struct bpf_verifier_state *cur = env->cur_state, *new;
6547 int i, j, err, states_cnt = 0;
6549 if (!env->insn_aux_data[insn_idx].prune_point)
6550 /* this 'insn_idx' instruction wasn't marked, so we will not
6551 * be doing state search here
6555 pprev = explored_state(env, insn_idx);
6558 clean_live_states(env, insn_idx, cur);
6562 if (sl->state.insn_idx != insn_idx)
6564 if (states_equal(env, &sl->state, cur)) {
6566 /* reached equivalent register/stack state,
6568 * Registers read by the continuation are read by us.
6569 * If we have any write marks in env->cur_state, they
6570 * will prevent corresponding reads in the continuation
6571 * from reaching our parent (an explored_state). Our
6572 * own state will get the read marks recorded, but
6573 * they'll be immediately forgotten as we're pruning
6574 * this state and will pop a new one.
6576 err = propagate_liveness(env, &sl->state, cur);
6582 /* heuristic to determine whether this state is beneficial
6583 * to keep checking from state equivalence point of view.
6584 * Higher numbers increase max_states_per_insn and verification time,
6585 * but do not meaningfully decrease insn_processed.
6587 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6588 /* the state is unlikely to be useful. Remove it to
6589 * speed up verification
6592 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6593 free_verifier_state(&sl->state, false);
6597 /* cannot free this state, since parentage chain may
6598 * walk it later. Add it for free_list instead to
6599 * be freed at the end of verification
6601 sl->next = env->free_list;
6602 env->free_list = sl;
6612 if (env->max_states_per_insn < states_cnt)
6613 env->max_states_per_insn = states_cnt;
6615 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6618 /* there were no equivalent states, remember current one.
6619 * technically the current state is not proven to be safe yet,
6620 * but it will either reach outer most bpf_exit (which means it's safe)
6621 * or it will be rejected. Since there are no loops, we won't be
6622 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6623 * again on the way to bpf_exit
6625 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6628 env->total_states++;
6631 /* add new state to the head of linked list */
6632 new = &new_sl->state;
6633 err = copy_verifier_state(new, cur);
6635 free_verifier_state(new, false);
6639 new->insn_idx = insn_idx;
6640 new_sl->next = *explored_state(env, insn_idx);
6641 *explored_state(env, insn_idx) = new_sl;
6642 /* connect new state to parentage chain. Current frame needs all
6643 * registers connected. Only r6 - r9 of the callers are alive (pushed
6644 * to the stack implicitly by JITs) so in callers' frames connect just
6645 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6646 * the state of the call instruction (with WRITTEN set), and r0 comes
6647 * from callee with its full parentage chain, anyway.
6649 for (j = 0; j <= cur->curframe; j++)
6650 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6651 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6652 /* clear write marks in current state: the writes we did are not writes
6653 * our child did, so they don't screen off its reads from us.
6654 * (There are no read marks in current state, because reads always mark
6655 * their parent and current state never has children yet. Only
6656 * explored_states can get read marks.)
6658 for (i = 0; i < BPF_REG_FP; i++)
6659 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6661 /* all stack frames are accessible from callee, clear them all */
6662 for (j = 0; j <= cur->curframe; j++) {
6663 struct bpf_func_state *frame = cur->frame[j];
6664 struct bpf_func_state *newframe = new->frame[j];
6666 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6667 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6668 frame->stack[i].spilled_ptr.parent =
6669 &newframe->stack[i].spilled_ptr;
6675 /* Return true if it's OK to have the same insn return a different type. */
6676 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6681 case PTR_TO_SOCKET_OR_NULL:
6682 case PTR_TO_SOCK_COMMON:
6683 case PTR_TO_SOCK_COMMON_OR_NULL:
6684 case PTR_TO_TCP_SOCK:
6685 case PTR_TO_TCP_SOCK_OR_NULL:
6692 /* If an instruction was previously used with particular pointer types, then we
6693 * need to be careful to avoid cases such as the below, where it may be ok
6694 * for one branch accessing the pointer, but not ok for the other branch:
6699 * R1 = some_other_valid_ptr;
6702 * R2 = *(u32 *)(R1 + 0);
6704 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6706 return src != prev && (!reg_type_mismatch_ok(src) ||
6707 !reg_type_mismatch_ok(prev));
6710 static int do_check(struct bpf_verifier_env *env)
6712 struct bpf_verifier_state *state;
6713 struct bpf_insn *insns = env->prog->insnsi;
6714 struct bpf_reg_state *regs;
6715 int insn_cnt = env->prog->len;
6716 bool do_print_state = false;
6718 env->prev_linfo = NULL;
6720 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6723 state->curframe = 0;
6724 state->speculative = false;
6725 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6726 if (!state->frame[0]) {
6730 env->cur_state = state;
6731 init_func_state(env, state->frame[0],
6732 BPF_MAIN_FUNC /* callsite */,
6734 0 /* subprogno, zero == main subprog */);
6737 struct bpf_insn *insn;
6741 if (env->insn_idx >= insn_cnt) {
6742 verbose(env, "invalid insn idx %d insn_cnt %d\n",
6743 env->insn_idx, insn_cnt);
6747 insn = &insns[env->insn_idx];
6748 class = BPF_CLASS(insn->code);
6750 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6752 "BPF program is too large. Processed %d insn\n",
6753 env->insn_processed);
6757 err = is_state_visited(env, env->insn_idx);
6761 /* found equivalent state, can prune the search */
6762 if (env->log.level & BPF_LOG_LEVEL) {
6764 verbose(env, "\nfrom %d to %d%s: safe\n",
6765 env->prev_insn_idx, env->insn_idx,
6766 env->cur_state->speculative ?
6767 " (speculative execution)" : "");
6769 verbose(env, "%d: safe\n", env->insn_idx);
6771 goto process_bpf_exit;
6774 if (signal_pending(current))
6780 if (env->log.level & BPF_LOG_LEVEL2 ||
6781 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6782 if (env->log.level & BPF_LOG_LEVEL2)
6783 verbose(env, "%d:", env->insn_idx);
6785 verbose(env, "\nfrom %d to %d%s:",
6786 env->prev_insn_idx, env->insn_idx,
6787 env->cur_state->speculative ?
6788 " (speculative execution)" : "");
6789 print_verifier_state(env, state->frame[state->curframe]);
6790 do_print_state = false;
6793 if (env->log.level & BPF_LOG_LEVEL) {
6794 const struct bpf_insn_cbs cbs = {
6795 .cb_print = verbose,
6796 .private_data = env,
6799 verbose_linfo(env, env->insn_idx, "; ");
6800 verbose(env, "%d: ", env->insn_idx);
6801 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6804 if (bpf_prog_is_dev_bound(env->prog->aux)) {
6805 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6806 env->prev_insn_idx);
6811 regs = cur_regs(env);
6812 env->insn_aux_data[env->insn_idx].seen = true;
6814 if (class == BPF_ALU || class == BPF_ALU64) {
6815 err = check_alu_op(env, insn);
6819 } else if (class == BPF_LDX) {
6820 enum bpf_reg_type *prev_src_type, src_reg_type;
6822 /* check for reserved fields is already done */
6824 /* check src operand */
6825 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6829 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6833 src_reg_type = regs[insn->src_reg].type;
6835 /* check that memory (src_reg + off) is readable,
6836 * the state of dst_reg will be updated by this func
6838 err = check_mem_access(env, env->insn_idx, insn->src_reg,
6839 insn->off, BPF_SIZE(insn->code),
6840 BPF_READ, insn->dst_reg, false);
6844 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6846 if (*prev_src_type == NOT_INIT) {
6848 * dst_reg = *(u32 *)(src_reg + off)
6849 * save type to validate intersecting paths
6851 *prev_src_type = src_reg_type;
6853 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6854 /* ABuser program is trying to use the same insn
6855 * dst_reg = *(u32*) (src_reg + off)
6856 * with different pointer types:
6857 * src_reg == ctx in one branch and
6858 * src_reg == stack|map in some other branch.
6861 verbose(env, "same insn cannot be used with different pointers\n");
6865 } else if (class == BPF_STX) {
6866 enum bpf_reg_type *prev_dst_type, dst_reg_type;
6868 if (BPF_MODE(insn->code) == BPF_XADD) {
6869 err = check_xadd(env, env->insn_idx, insn);
6876 /* check src1 operand */
6877 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6880 /* check src2 operand */
6881 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6885 dst_reg_type = regs[insn->dst_reg].type;
6887 /* check that memory (dst_reg + off) is writeable */
6888 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6889 insn->off, BPF_SIZE(insn->code),
6890 BPF_WRITE, insn->src_reg, false);
6894 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6896 if (*prev_dst_type == NOT_INIT) {
6897 *prev_dst_type = dst_reg_type;
6898 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6899 verbose(env, "same insn cannot be used with different pointers\n");
6903 } else if (class == BPF_ST) {
6904 if (BPF_MODE(insn->code) != BPF_MEM ||
6905 insn->src_reg != BPF_REG_0) {
6906 verbose(env, "BPF_ST uses reserved fields\n");
6909 /* check src operand */
6910 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6914 if (is_ctx_reg(env, insn->dst_reg)) {
6915 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6917 reg_type_str[reg_state(env, insn->dst_reg)->type]);
6921 /* check that memory (dst_reg + off) is writeable */
6922 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6923 insn->off, BPF_SIZE(insn->code),
6924 BPF_WRITE, -1, false);
6928 } else if (class == BPF_JMP || class == BPF_JMP32) {
6929 u8 opcode = BPF_OP(insn->code);
6931 if (opcode == BPF_CALL) {
6932 if (BPF_SRC(insn->code) != BPF_K ||
6934 (insn->src_reg != BPF_REG_0 &&
6935 insn->src_reg != BPF_PSEUDO_CALL) ||
6936 insn->dst_reg != BPF_REG_0 ||
6937 class == BPF_JMP32) {
6938 verbose(env, "BPF_CALL uses reserved fields\n");
6942 if (env->cur_state->active_spin_lock &&
6943 (insn->src_reg == BPF_PSEUDO_CALL ||
6944 insn->imm != BPF_FUNC_spin_unlock)) {
6945 verbose(env, "function calls are not allowed while holding a lock\n");
6948 if (insn->src_reg == BPF_PSEUDO_CALL)
6949 err = check_func_call(env, insn, &env->insn_idx);
6951 err = check_helper_call(env, insn->imm, env->insn_idx);
6955 } else if (opcode == BPF_JA) {
6956 if (BPF_SRC(insn->code) != BPF_K ||
6958 insn->src_reg != BPF_REG_0 ||
6959 insn->dst_reg != BPF_REG_0 ||
6960 class == BPF_JMP32) {
6961 verbose(env, "BPF_JA uses reserved fields\n");
6965 env->insn_idx += insn->off + 1;
6968 } else if (opcode == BPF_EXIT) {
6969 if (BPF_SRC(insn->code) != BPF_K ||
6971 insn->src_reg != BPF_REG_0 ||
6972 insn->dst_reg != BPF_REG_0 ||
6973 class == BPF_JMP32) {
6974 verbose(env, "BPF_EXIT uses reserved fields\n");
6978 if (env->cur_state->active_spin_lock) {
6979 verbose(env, "bpf_spin_unlock is missing\n");
6983 if (state->curframe) {
6984 /* exit from nested function */
6985 env->prev_insn_idx = env->insn_idx;
6986 err = prepare_func_exit(env, &env->insn_idx);
6989 do_print_state = true;
6993 err = check_reference_leak(env);
6997 /* eBPF calling convetion is such that R0 is used
6998 * to return the value from eBPF program.
6999 * Make sure that it's readable at this time
7000 * of bpf_exit, which means that program wrote
7001 * something into it earlier
7003 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7007 if (is_pointer_value(env, BPF_REG_0)) {
7008 verbose(env, "R0 leaks addr as return value\n");
7012 err = check_return_code(env);
7016 err = pop_stack(env, &env->prev_insn_idx,
7023 do_print_state = true;
7027 err = check_cond_jmp_op(env, insn, &env->insn_idx);
7031 } else if (class == BPF_LD) {
7032 u8 mode = BPF_MODE(insn->code);
7034 if (mode == BPF_ABS || mode == BPF_IND) {
7035 err = check_ld_abs(env, insn);
7039 } else if (mode == BPF_IMM) {
7040 err = check_ld_imm(env, insn);
7045 env->insn_aux_data[env->insn_idx].seen = true;
7047 verbose(env, "invalid BPF_LD mode\n");
7051 verbose(env, "unknown insn class %d\n", class);
7058 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
7062 static int check_map_prealloc(struct bpf_map *map)
7064 return (map->map_type != BPF_MAP_TYPE_HASH &&
7065 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7066 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
7067 !(map->map_flags & BPF_F_NO_PREALLOC);
7070 static bool is_tracing_prog_type(enum bpf_prog_type type)
7073 case BPF_PROG_TYPE_KPROBE:
7074 case BPF_PROG_TYPE_TRACEPOINT:
7075 case BPF_PROG_TYPE_PERF_EVENT:
7076 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7083 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7084 struct bpf_map *map,
7085 struct bpf_prog *prog)
7088 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7089 * preallocated hash maps, since doing memory allocation
7090 * in overflow_handler can crash depending on where nmi got
7093 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7094 if (!check_map_prealloc(map)) {
7095 verbose(env, "perf_event programs can only use preallocated hash map\n");
7098 if (map->inner_map_meta &&
7099 !check_map_prealloc(map->inner_map_meta)) {
7100 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
7105 if ((is_tracing_prog_type(prog->type) ||
7106 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7107 map_value_has_spin_lock(map)) {
7108 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7112 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
7113 !bpf_offload_prog_map_match(prog, map)) {
7114 verbose(env, "offload device mismatch between prog and map\n");
7121 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7123 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7124 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7127 /* look for pseudo eBPF instructions that access map FDs and
7128 * replace them with actual map pointers
7130 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
7132 struct bpf_insn *insn = env->prog->insnsi;
7133 int insn_cnt = env->prog->len;
7136 err = bpf_prog_calc_tag(env->prog);
7140 for (i = 0; i < insn_cnt; i++, insn++) {
7141 if (BPF_CLASS(insn->code) == BPF_LDX &&
7142 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
7143 verbose(env, "BPF_LDX uses reserved fields\n");
7147 if (BPF_CLASS(insn->code) == BPF_STX &&
7148 ((BPF_MODE(insn->code) != BPF_MEM &&
7149 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
7150 verbose(env, "BPF_STX uses reserved fields\n");
7154 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
7155 struct bpf_insn_aux_data *aux;
7156 struct bpf_map *map;
7160 if (i == insn_cnt - 1 || insn[1].code != 0 ||
7161 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7163 verbose(env, "invalid bpf_ld_imm64 insn\n");
7167 if (insn[0].src_reg == 0)
7168 /* valid generic load 64-bit imm */
7171 /* In final convert_pseudo_ld_imm64() step, this is
7172 * converted into regular 64-bit imm load insn.
7174 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7175 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7176 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7177 insn[1].imm != 0)) {
7179 "unrecognized bpf_ld_imm64 insn\n");
7183 f = fdget(insn[0].imm);
7184 map = __bpf_map_get(f);
7186 verbose(env, "fd %d is not pointing to valid bpf_map\n",
7188 return PTR_ERR(map);
7191 err = check_map_prog_compatibility(env, map, env->prog);
7197 aux = &env->insn_aux_data[i];
7198 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7199 addr = (unsigned long)map;
7201 u32 off = insn[1].imm;
7203 if (off >= BPF_MAX_VAR_OFF) {
7204 verbose(env, "direct value offset of %u is not allowed\n", off);
7209 if (!map->ops->map_direct_value_addr) {
7210 verbose(env, "no direct value access support for this map type\n");
7215 err = map->ops->map_direct_value_addr(map, &addr, off);
7217 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7218 map->value_size, off);
7227 insn[0].imm = (u32)addr;
7228 insn[1].imm = addr >> 32;
7230 /* check whether we recorded this map already */
7231 for (j = 0; j < env->used_map_cnt; j++) {
7232 if (env->used_maps[j] == map) {
7239 if (env->used_map_cnt >= MAX_USED_MAPS) {
7244 /* hold the map. If the program is rejected by verifier,
7245 * the map will be released by release_maps() or it
7246 * will be used by the valid program until it's unloaded
7247 * and all maps are released in free_used_maps()
7249 map = bpf_map_inc(map, false);
7252 return PTR_ERR(map);
7255 aux->map_index = env->used_map_cnt;
7256 env->used_maps[env->used_map_cnt++] = map;
7258 if (bpf_map_is_cgroup_storage(map) &&
7259 bpf_cgroup_storage_assign(env->prog, map)) {
7260 verbose(env, "only one cgroup storage of each type is allowed\n");
7272 /* Basic sanity check before we invest more work here. */
7273 if (!bpf_opcode_in_insntable(insn->code)) {
7274 verbose(env, "unknown opcode %02x\n", insn->code);
7279 /* now all pseudo BPF_LD_IMM64 instructions load valid
7280 * 'struct bpf_map *' into a register instead of user map_fd.
7281 * These pointers will be used later by verifier to validate map access.
7286 /* drop refcnt of maps used by the rejected program */
7287 static void release_maps(struct bpf_verifier_env *env)
7289 enum bpf_cgroup_storage_type stype;
7292 for_each_cgroup_storage_type(stype) {
7293 if (!env->prog->aux->cgroup_storage[stype])
7295 bpf_cgroup_storage_release(env->prog,
7296 env->prog->aux->cgroup_storage[stype]);
7299 for (i = 0; i < env->used_map_cnt; i++)
7300 bpf_map_put(env->used_maps[i]);
7303 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
7304 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
7306 struct bpf_insn *insn = env->prog->insnsi;
7307 int insn_cnt = env->prog->len;
7310 for (i = 0; i < insn_cnt; i++, insn++)
7311 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7315 /* single env->prog->insni[off] instruction was replaced with the range
7316 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
7317 * [0, off) and [off, end) to new locations, so the patched range stays zero
7319 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
7320 struct bpf_prog *new_prog, u32 off, u32 cnt)
7322 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
7323 struct bpf_insn *insn = new_prog->insnsi;
7327 /* aux info at OFF always needs adjustment, no matter fast path
7328 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
7329 * original insn at old prog.
7331 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
7335 prog_len = new_prog->len;
7336 new_data = vzalloc(array_size(prog_len,
7337 sizeof(struct bpf_insn_aux_data)));
7340 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
7341 memcpy(new_data + off + cnt - 1, old_data + off,
7342 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
7343 for (i = off; i < off + cnt - 1; i++) {
7344 new_data[i].seen = true;
7345 new_data[i].zext_dst = insn_has_def32(env, insn + i);
7347 env->insn_aux_data = new_data;
7352 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
7358 /* NOTE: fake 'exit' subprog should be updated as well. */
7359 for (i = 0; i <= env->subprog_cnt; i++) {
7360 if (env->subprog_info[i].start <= off)
7362 env->subprog_info[i].start += len - 1;
7366 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7367 const struct bpf_insn *patch, u32 len)
7369 struct bpf_prog *new_prog;
7371 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
7372 if (IS_ERR(new_prog)) {
7373 if (PTR_ERR(new_prog) == -ERANGE)
7375 "insn %d cannot be patched due to 16-bit range\n",
7376 env->insn_aux_data[off].orig_idx);
7379 if (adjust_insn_aux_data(env, new_prog, off, len))
7381 adjust_subprog_starts(env, off, len);
7385 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7390 /* find first prog starting at or after off (first to remove) */
7391 for (i = 0; i < env->subprog_cnt; i++)
7392 if (env->subprog_info[i].start >= off)
7394 /* find first prog starting at or after off + cnt (first to stay) */
7395 for (j = i; j < env->subprog_cnt; j++)
7396 if (env->subprog_info[j].start >= off + cnt)
7398 /* if j doesn't start exactly at off + cnt, we are just removing
7399 * the front of previous prog
7401 if (env->subprog_info[j].start != off + cnt)
7405 struct bpf_prog_aux *aux = env->prog->aux;
7408 /* move fake 'exit' subprog as well */
7409 move = env->subprog_cnt + 1 - j;
7411 memmove(env->subprog_info + i,
7412 env->subprog_info + j,
7413 sizeof(*env->subprog_info) * move);
7414 env->subprog_cnt -= j - i;
7416 /* remove func_info */
7417 if (aux->func_info) {
7418 move = aux->func_info_cnt - j;
7420 memmove(aux->func_info + i,
7422 sizeof(*aux->func_info) * move);
7423 aux->func_info_cnt -= j - i;
7424 /* func_info->insn_off is set after all code rewrites,
7425 * in adjust_btf_func() - no need to adjust
7429 /* convert i from "first prog to remove" to "first to adjust" */
7430 if (env->subprog_info[i].start == off)
7434 /* update fake 'exit' subprog as well */
7435 for (; i <= env->subprog_cnt; i++)
7436 env->subprog_info[i].start -= cnt;
7441 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7444 struct bpf_prog *prog = env->prog;
7445 u32 i, l_off, l_cnt, nr_linfo;
7446 struct bpf_line_info *linfo;
7448 nr_linfo = prog->aux->nr_linfo;
7452 linfo = prog->aux->linfo;
7454 /* find first line info to remove, count lines to be removed */
7455 for (i = 0; i < nr_linfo; i++)
7456 if (linfo[i].insn_off >= off)
7461 for (; i < nr_linfo; i++)
7462 if (linfo[i].insn_off < off + cnt)
7467 /* First live insn doesn't match first live linfo, it needs to "inherit"
7468 * last removed linfo. prog is already modified, so prog->len == off
7469 * means no live instructions after (tail of the program was removed).
7471 if (prog->len != off && l_cnt &&
7472 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7474 linfo[--i].insn_off = off + cnt;
7477 /* remove the line info which refer to the removed instructions */
7479 memmove(linfo + l_off, linfo + i,
7480 sizeof(*linfo) * (nr_linfo - i));
7482 prog->aux->nr_linfo -= l_cnt;
7483 nr_linfo = prog->aux->nr_linfo;
7486 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
7487 for (i = l_off; i < nr_linfo; i++)
7488 linfo[i].insn_off -= cnt;
7490 /* fix up all subprogs (incl. 'exit') which start >= off */
7491 for (i = 0; i <= env->subprog_cnt; i++)
7492 if (env->subprog_info[i].linfo_idx > l_off) {
7493 /* program may have started in the removed region but
7494 * may not be fully removed
7496 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7497 env->subprog_info[i].linfo_idx -= l_cnt;
7499 env->subprog_info[i].linfo_idx = l_off;
7505 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7507 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7508 unsigned int orig_prog_len = env->prog->len;
7511 if (bpf_prog_is_dev_bound(env->prog->aux))
7512 bpf_prog_offload_remove_insns(env, off, cnt);
7514 err = bpf_remove_insns(env->prog, off, cnt);
7518 err = adjust_subprog_starts_after_remove(env, off, cnt);
7522 err = bpf_adj_linfo_after_remove(env, off, cnt);
7526 memmove(aux_data + off, aux_data + off + cnt,
7527 sizeof(*aux_data) * (orig_prog_len - off - cnt));
7532 /* The verifier does more data flow analysis than llvm and will not
7533 * explore branches that are dead at run time. Malicious programs can
7534 * have dead code too. Therefore replace all dead at-run-time code
7537 * Just nops are not optimal, e.g. if they would sit at the end of the
7538 * program and through another bug we would manage to jump there, then
7539 * we'd execute beyond program memory otherwise. Returning exception
7540 * code also wouldn't work since we can have subprogs where the dead
7541 * code could be located.
7543 static void sanitize_dead_code(struct bpf_verifier_env *env)
7545 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7546 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7547 struct bpf_insn *insn = env->prog->insnsi;
7548 const int insn_cnt = env->prog->len;
7551 for (i = 0; i < insn_cnt; i++) {
7552 if (aux_data[i].seen)
7554 memcpy(insn + i, &trap, sizeof(trap));
7558 static bool insn_is_cond_jump(u8 code)
7562 if (BPF_CLASS(code) == BPF_JMP32)
7565 if (BPF_CLASS(code) != BPF_JMP)
7569 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7572 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7574 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7575 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7576 struct bpf_insn *insn = env->prog->insnsi;
7577 const int insn_cnt = env->prog->len;
7580 for (i = 0; i < insn_cnt; i++, insn++) {
7581 if (!insn_is_cond_jump(insn->code))
7584 if (!aux_data[i + 1].seen)
7586 else if (!aux_data[i + 1 + insn->off].seen)
7591 if (bpf_prog_is_dev_bound(env->prog->aux))
7592 bpf_prog_offload_replace_insn(env, i, &ja);
7594 memcpy(insn, &ja, sizeof(ja));
7598 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7600 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7601 int insn_cnt = env->prog->len;
7604 for (i = 0; i < insn_cnt; i++) {
7608 while (i + j < insn_cnt && !aux_data[i + j].seen)
7613 err = verifier_remove_insns(env, i, j);
7616 insn_cnt = env->prog->len;
7622 static int opt_remove_nops(struct bpf_verifier_env *env)
7624 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7625 struct bpf_insn *insn = env->prog->insnsi;
7626 int insn_cnt = env->prog->len;
7629 for (i = 0; i < insn_cnt; i++) {
7630 if (memcmp(&insn[i], &ja, sizeof(ja)))
7633 err = verifier_remove_insns(env, i, 1);
7643 static int opt_subreg_zext_lo32(struct bpf_verifier_env *env)
7645 struct bpf_insn_aux_data *aux = env->insn_aux_data;
7646 struct bpf_insn *insns = env->prog->insnsi;
7647 int i, delta = 0, len = env->prog->len;
7648 struct bpf_insn zext_patch[2];
7649 struct bpf_prog *new_prog;
7651 zext_patch[1] = BPF_ZEXT_REG(0);
7652 for (i = 0; i < len; i++) {
7653 int adj_idx = i + delta;
7654 struct bpf_insn insn;
7656 if (!aux[adj_idx].zext_dst)
7659 insn = insns[adj_idx];
7660 zext_patch[0] = insn;
7661 zext_patch[1].dst_reg = insn.dst_reg;
7662 zext_patch[1].src_reg = insn.dst_reg;
7663 new_prog = bpf_patch_insn_data(env, adj_idx, zext_patch, 2);
7666 env->prog = new_prog;
7667 insns = new_prog->insnsi;
7668 aux = env->insn_aux_data;
7675 /* convert load instructions that access fields of a context type into a
7676 * sequence of instructions that access fields of the underlying structure:
7677 * struct __sk_buff -> struct sk_buff
7678 * struct bpf_sock_ops -> struct sock
7680 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7682 const struct bpf_verifier_ops *ops = env->ops;
7683 int i, cnt, size, ctx_field_size, delta = 0;
7684 const int insn_cnt = env->prog->len;
7685 struct bpf_insn insn_buf[16], *insn;
7686 u32 target_size, size_default, off;
7687 struct bpf_prog *new_prog;
7688 enum bpf_access_type type;
7689 bool is_narrower_load;
7691 if (ops->gen_prologue || env->seen_direct_write) {
7692 if (!ops->gen_prologue) {
7693 verbose(env, "bpf verifier is misconfigured\n");
7696 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7698 if (cnt >= ARRAY_SIZE(insn_buf)) {
7699 verbose(env, "bpf verifier is misconfigured\n");
7702 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7706 env->prog = new_prog;
7711 if (bpf_prog_is_dev_bound(env->prog->aux))
7714 insn = env->prog->insnsi + delta;
7716 for (i = 0; i < insn_cnt; i++, insn++) {
7717 bpf_convert_ctx_access_t convert_ctx_access;
7719 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7720 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7721 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7722 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7724 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7725 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7726 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7727 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7732 if (type == BPF_WRITE &&
7733 env->insn_aux_data[i + delta].sanitize_stack_off) {
7734 struct bpf_insn patch[] = {
7735 /* Sanitize suspicious stack slot with zero.
7736 * There are no memory dependencies for this store,
7737 * since it's only using frame pointer and immediate
7740 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7741 env->insn_aux_data[i + delta].sanitize_stack_off,
7743 /* the original STX instruction will immediately
7744 * overwrite the same stack slot with appropriate value
7749 cnt = ARRAY_SIZE(patch);
7750 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7755 env->prog = new_prog;
7756 insn = new_prog->insnsi + i + delta;
7760 switch (env->insn_aux_data[i + delta].ptr_type) {
7762 if (!ops->convert_ctx_access)
7764 convert_ctx_access = ops->convert_ctx_access;
7767 case PTR_TO_SOCK_COMMON:
7768 convert_ctx_access = bpf_sock_convert_ctx_access;
7770 case PTR_TO_TCP_SOCK:
7771 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7777 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7778 size = BPF_LDST_BYTES(insn);
7780 /* If the read access is a narrower load of the field,
7781 * convert to a 4/8-byte load, to minimum program type specific
7782 * convert_ctx_access changes. If conversion is successful,
7783 * we will apply proper mask to the result.
7785 is_narrower_load = size < ctx_field_size;
7786 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7788 if (is_narrower_load) {
7791 if (type == BPF_WRITE) {
7792 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7797 if (ctx_field_size == 4)
7799 else if (ctx_field_size == 8)
7802 insn->off = off & ~(size_default - 1);
7803 insn->code = BPF_LDX | BPF_MEM | size_code;
7807 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7809 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7810 (ctx_field_size && !target_size)) {
7811 verbose(env, "bpf verifier is misconfigured\n");
7815 if (is_narrower_load && size < target_size) {
7816 u8 shift = (off & (size_default - 1)) * 8;
7818 if (ctx_field_size <= 4) {
7820 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7823 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7824 (1 << size * 8) - 1);
7827 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7830 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7831 (1ULL << size * 8) - 1);
7835 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7841 /* keep walking new program and skip insns we just inserted */
7842 env->prog = new_prog;
7843 insn = new_prog->insnsi + i + delta;
7849 static int jit_subprogs(struct bpf_verifier_env *env)
7851 struct bpf_prog *prog = env->prog, **func, *tmp;
7852 int i, j, subprog_start, subprog_end = 0, len, subprog;
7853 struct bpf_insn *insn;
7857 if (env->subprog_cnt <= 1)
7860 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7861 if (insn->code != (BPF_JMP | BPF_CALL) ||
7862 insn->src_reg != BPF_PSEUDO_CALL)
7864 /* Upon error here we cannot fall back to interpreter but
7865 * need a hard reject of the program. Thus -EFAULT is
7866 * propagated in any case.
7868 subprog = find_subprog(env, i + insn->imm + 1);
7870 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7874 /* temporarily remember subprog id inside insn instead of
7875 * aux_data, since next loop will split up all insns into funcs
7877 insn->off = subprog;
7878 /* remember original imm in case JIT fails and fallback
7879 * to interpreter will be needed
7881 env->insn_aux_data[i].call_imm = insn->imm;
7882 /* point imm to __bpf_call_base+1 from JITs point of view */
7886 err = bpf_prog_alloc_jited_linfo(prog);
7891 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7895 for (i = 0; i < env->subprog_cnt; i++) {
7896 subprog_start = subprog_end;
7897 subprog_end = env->subprog_info[i + 1].start;
7899 len = subprog_end - subprog_start;
7900 /* BPF_PROG_RUN doesn't call subprogs directly,
7901 * hence main prog stats include the runtime of subprogs.
7902 * subprogs don't have IDs and not reachable via prog_get_next_id
7903 * func[i]->aux->stats will never be accessed and stays NULL
7905 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7908 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7909 len * sizeof(struct bpf_insn));
7910 func[i]->type = prog->type;
7912 if (bpf_prog_calc_tag(func[i]))
7914 func[i]->is_func = 1;
7915 func[i]->aux->func_idx = i;
7916 /* the btf and func_info will be freed only at prog->aux */
7917 func[i]->aux->btf = prog->aux->btf;
7918 func[i]->aux->func_info = prog->aux->func_info;
7920 /* Use bpf_prog_F_tag to indicate functions in stack traces.
7921 * Long term would need debug info to populate names
7923 func[i]->aux->name[0] = 'F';
7924 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7925 func[i]->jit_requested = 1;
7926 func[i]->aux->linfo = prog->aux->linfo;
7927 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7928 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7929 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7930 func[i] = bpf_int_jit_compile(func[i]);
7931 if (!func[i]->jited) {
7937 /* at this point all bpf functions were successfully JITed
7938 * now populate all bpf_calls with correct addresses and
7939 * run last pass of JIT
7941 for (i = 0; i < env->subprog_cnt; i++) {
7942 insn = func[i]->insnsi;
7943 for (j = 0; j < func[i]->len; j++, insn++) {
7944 if (insn->code != (BPF_JMP | BPF_CALL) ||
7945 insn->src_reg != BPF_PSEUDO_CALL)
7947 subprog = insn->off;
7948 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
7952 /* we use the aux data to keep a list of the start addresses
7953 * of the JITed images for each function in the program
7955 * for some architectures, such as powerpc64, the imm field
7956 * might not be large enough to hold the offset of the start
7957 * address of the callee's JITed image from __bpf_call_base
7959 * in such cases, we can lookup the start address of a callee
7960 * by using its subprog id, available from the off field of
7961 * the call instruction, as an index for this list
7963 func[i]->aux->func = func;
7964 func[i]->aux->func_cnt = env->subprog_cnt;
7966 for (i = 0; i < env->subprog_cnt; i++) {
7967 old_bpf_func = func[i]->bpf_func;
7968 tmp = bpf_int_jit_compile(func[i]);
7969 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7970 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7977 /* finally lock prog and jit images for all functions and
7980 for (i = 0; i < env->subprog_cnt; i++) {
7981 bpf_prog_lock_ro(func[i]);
7982 bpf_prog_kallsyms_add(func[i]);
7985 /* Last step: make now unused interpreter insns from main
7986 * prog consistent for later dump requests, so they can
7987 * later look the same as if they were interpreted only.
7989 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7990 if (insn->code != (BPF_JMP | BPF_CALL) ||
7991 insn->src_reg != BPF_PSEUDO_CALL)
7993 insn->off = env->insn_aux_data[i].call_imm;
7994 subprog = find_subprog(env, i + insn->off + 1);
7995 insn->imm = subprog;
7999 prog->bpf_func = func[0]->bpf_func;
8000 prog->aux->func = func;
8001 prog->aux->func_cnt = env->subprog_cnt;
8002 bpf_prog_free_unused_jited_linfo(prog);
8005 for (i = 0; i < env->subprog_cnt; i++)
8007 bpf_jit_free(func[i]);
8010 /* cleanup main prog to be interpreted */
8011 prog->jit_requested = 0;
8012 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8013 if (insn->code != (BPF_JMP | BPF_CALL) ||
8014 insn->src_reg != BPF_PSEUDO_CALL)
8017 insn->imm = env->insn_aux_data[i].call_imm;
8019 bpf_prog_free_jited_linfo(prog);
8023 static int fixup_call_args(struct bpf_verifier_env *env)
8025 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8026 struct bpf_prog *prog = env->prog;
8027 struct bpf_insn *insn = prog->insnsi;
8032 if (env->prog->jit_requested &&
8033 !bpf_prog_is_dev_bound(env->prog->aux)) {
8034 err = jit_subprogs(env);
8040 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8041 for (i = 0; i < prog->len; i++, insn++) {
8042 if (insn->code != (BPF_JMP | BPF_CALL) ||
8043 insn->src_reg != BPF_PSEUDO_CALL)
8045 depth = get_callee_stack_depth(env, insn, i);
8048 bpf_patch_call_args(insn, depth);
8055 /* fixup insn->imm field of bpf_call instructions
8056 * and inline eligible helpers as explicit sequence of BPF instructions
8058 * this function is called after eBPF program passed verification
8060 static int fixup_bpf_calls(struct bpf_verifier_env *env)
8062 struct bpf_prog *prog = env->prog;
8063 struct bpf_insn *insn = prog->insnsi;
8064 const struct bpf_func_proto *fn;
8065 const int insn_cnt = prog->len;
8066 const struct bpf_map_ops *ops;
8067 struct bpf_insn_aux_data *aux;
8068 struct bpf_insn insn_buf[16];
8069 struct bpf_prog *new_prog;
8070 struct bpf_map *map_ptr;
8071 int i, cnt, delta = 0;
8073 for (i = 0; i < insn_cnt; i++, insn++) {
8074 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8075 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8076 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
8077 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8078 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8079 struct bpf_insn mask_and_div[] = {
8080 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8082 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8083 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8084 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8087 struct bpf_insn mask_and_mod[] = {
8088 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8089 /* Rx mod 0 -> Rx */
8090 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8093 struct bpf_insn *patchlet;
8095 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8096 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8097 patchlet = mask_and_div + (is64 ? 1 : 0);
8098 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8100 patchlet = mask_and_mod + (is64 ? 1 : 0);
8101 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8104 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
8109 env->prog = prog = new_prog;
8110 insn = new_prog->insnsi + i + delta;
8114 if (BPF_CLASS(insn->code) == BPF_LD &&
8115 (BPF_MODE(insn->code) == BPF_ABS ||
8116 BPF_MODE(insn->code) == BPF_IND)) {
8117 cnt = env->ops->gen_ld_abs(insn, insn_buf);
8118 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8119 verbose(env, "bpf verifier is misconfigured\n");
8123 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8128 env->prog = prog = new_prog;
8129 insn = new_prog->insnsi + i + delta;
8133 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
8134 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
8135 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
8136 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
8137 struct bpf_insn insn_buf[16];
8138 struct bpf_insn *patch = &insn_buf[0];
8142 aux = &env->insn_aux_data[i + delta];
8143 if (!aux->alu_state ||
8144 aux->alu_state == BPF_ALU_NON_POINTER)
8147 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
8148 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
8149 BPF_ALU_SANITIZE_SRC;
8151 off_reg = issrc ? insn->src_reg : insn->dst_reg;
8153 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8154 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
8155 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
8156 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
8157 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
8158 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
8160 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
8162 insn->src_reg = BPF_REG_AX;
8164 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
8168 insn->code = insn->code == code_add ?
8169 code_sub : code_add;
8172 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8173 cnt = patch - insn_buf;
8175 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8180 env->prog = prog = new_prog;
8181 insn = new_prog->insnsi + i + delta;
8185 if (insn->code != (BPF_JMP | BPF_CALL))
8187 if (insn->src_reg == BPF_PSEUDO_CALL)
8190 if (insn->imm == BPF_FUNC_get_route_realm)
8191 prog->dst_needed = 1;
8192 if (insn->imm == BPF_FUNC_get_prandom_u32)
8193 bpf_user_rnd_init_once();
8194 if (insn->imm == BPF_FUNC_override_return)
8195 prog->kprobe_override = 1;
8196 if (insn->imm == BPF_FUNC_tail_call) {
8197 /* If we tail call into other programs, we
8198 * cannot make any assumptions since they can
8199 * be replaced dynamically during runtime in
8200 * the program array.
8202 prog->cb_access = 1;
8203 env->prog->aux->stack_depth = MAX_BPF_STACK;
8204 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
8206 /* mark bpf_tail_call as different opcode to avoid
8207 * conditional branch in the interpeter for every normal
8208 * call and to prevent accidental JITing by JIT compiler
8209 * that doesn't support bpf_tail_call yet
8212 insn->code = BPF_JMP | BPF_TAIL_CALL;
8214 aux = &env->insn_aux_data[i + delta];
8215 if (!bpf_map_ptr_unpriv(aux))
8218 /* instead of changing every JIT dealing with tail_call
8219 * emit two extra insns:
8220 * if (index >= max_entries) goto out;
8221 * index &= array->index_mask;
8222 * to avoid out-of-bounds cpu speculation
8224 if (bpf_map_ptr_poisoned(aux)) {
8225 verbose(env, "tail_call abusing map_ptr\n");
8229 map_ptr = BPF_MAP_PTR(aux->map_state);
8230 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
8231 map_ptr->max_entries, 2);
8232 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
8233 container_of(map_ptr,
8236 insn_buf[2] = *insn;
8238 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8243 env->prog = prog = new_prog;
8244 insn = new_prog->insnsi + i + delta;
8248 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
8249 * and other inlining handlers are currently limited to 64 bit
8252 if (prog->jit_requested && BITS_PER_LONG == 64 &&
8253 (insn->imm == BPF_FUNC_map_lookup_elem ||
8254 insn->imm == BPF_FUNC_map_update_elem ||
8255 insn->imm == BPF_FUNC_map_delete_elem ||
8256 insn->imm == BPF_FUNC_map_push_elem ||
8257 insn->imm == BPF_FUNC_map_pop_elem ||
8258 insn->imm == BPF_FUNC_map_peek_elem)) {
8259 aux = &env->insn_aux_data[i + delta];
8260 if (bpf_map_ptr_poisoned(aux))
8261 goto patch_call_imm;
8263 map_ptr = BPF_MAP_PTR(aux->map_state);
8265 if (insn->imm == BPF_FUNC_map_lookup_elem &&
8266 ops->map_gen_lookup) {
8267 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
8268 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8269 verbose(env, "bpf verifier is misconfigured\n");
8273 new_prog = bpf_patch_insn_data(env, i + delta,
8279 env->prog = prog = new_prog;
8280 insn = new_prog->insnsi + i + delta;
8284 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
8285 (void *(*)(struct bpf_map *map, void *key))NULL));
8286 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
8287 (int (*)(struct bpf_map *map, void *key))NULL));
8288 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
8289 (int (*)(struct bpf_map *map, void *key, void *value,
8291 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
8292 (int (*)(struct bpf_map *map, void *value,
8294 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
8295 (int (*)(struct bpf_map *map, void *value))NULL));
8296 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
8297 (int (*)(struct bpf_map *map, void *value))NULL));
8299 switch (insn->imm) {
8300 case BPF_FUNC_map_lookup_elem:
8301 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
8304 case BPF_FUNC_map_update_elem:
8305 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
8308 case BPF_FUNC_map_delete_elem:
8309 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
8312 case BPF_FUNC_map_push_elem:
8313 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
8316 case BPF_FUNC_map_pop_elem:
8317 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
8320 case BPF_FUNC_map_peek_elem:
8321 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
8326 goto patch_call_imm;
8330 fn = env->ops->get_func_proto(insn->imm, env->prog);
8331 /* all functions that have prototype and verifier allowed
8332 * programs to call them, must be real in-kernel functions
8336 "kernel subsystem misconfigured func %s#%d\n",
8337 func_id_name(insn->imm), insn->imm);
8340 insn->imm = fn->func - __bpf_call_base;
8346 static void free_states(struct bpf_verifier_env *env)
8348 struct bpf_verifier_state_list *sl, *sln;
8351 sl = env->free_list;
8354 free_verifier_state(&sl->state, false);
8359 if (!env->explored_states)
8362 for (i = 0; i < state_htab_size(env); i++) {
8363 sl = env->explored_states[i];
8367 free_verifier_state(&sl->state, false);
8373 kvfree(env->explored_states);
8376 static void print_verification_stats(struct bpf_verifier_env *env)
8380 if (env->log.level & BPF_LOG_STATS) {
8381 verbose(env, "verification time %lld usec\n",
8382 div_u64(env->verification_time, 1000));
8383 verbose(env, "stack depth ");
8384 for (i = 0; i < env->subprog_cnt; i++) {
8385 u32 depth = env->subprog_info[i].stack_depth;
8387 verbose(env, "%d", depth);
8388 if (i + 1 < env->subprog_cnt)
8393 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8394 "total_states %d peak_states %d mark_read %d\n",
8395 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8396 env->max_states_per_insn, env->total_states,
8397 env->peak_states, env->longest_mark_read_walk);
8400 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8401 union bpf_attr __user *uattr)
8403 u64 start_time = ktime_get_ns();
8404 struct bpf_verifier_env *env;
8405 struct bpf_verifier_log *log;
8406 int i, len, ret = -EINVAL;
8409 /* no program is valid */
8410 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8413 /* 'struct bpf_verifier_env' can be global, but since it's not small,
8414 * allocate/free it every time bpf_check() is called
8416 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
8422 env->insn_aux_data =
8423 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
8425 if (!env->insn_aux_data)
8427 for (i = 0; i < len; i++)
8428 env->insn_aux_data[i].orig_idx = i;
8430 env->ops = bpf_verifier_ops[env->prog->type];
8431 is_priv = capable(CAP_SYS_ADMIN);
8433 /* grab the mutex to protect few globals used by verifier */
8435 mutex_lock(&bpf_verifier_lock);
8437 if (attr->log_level || attr->log_buf || attr->log_size) {
8438 /* user requested verbose verifier output
8439 * and supplied buffer to store the verification trace
8441 log->level = attr->log_level;
8442 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8443 log->len_total = attr->log_size;
8446 /* log attributes have to be sane */
8447 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
8448 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
8452 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8453 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
8454 env->strict_alignment = true;
8455 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8456 env->strict_alignment = false;
8458 env->allow_ptr_leaks = is_priv;
8460 ret = replace_map_fd_with_map_ptr(env);
8462 goto skip_full_check;
8464 if (bpf_prog_is_dev_bound(env->prog->aux)) {
8465 ret = bpf_prog_offload_verifier_prep(env->prog);
8467 goto skip_full_check;
8470 env->explored_states = kvcalloc(state_htab_size(env),
8471 sizeof(struct bpf_verifier_state_list *),
8474 if (!env->explored_states)
8475 goto skip_full_check;
8477 ret = check_subprogs(env);
8479 goto skip_full_check;
8481 ret = check_btf_info(env, attr, uattr);
8483 goto skip_full_check;
8485 ret = check_cfg(env);
8487 goto skip_full_check;
8489 ret = do_check(env);
8490 if (env->cur_state) {
8491 free_verifier_state(env->cur_state, true);
8492 env->cur_state = NULL;
8495 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8496 ret = bpf_prog_offload_finalize(env);
8499 while (!pop_stack(env, NULL, NULL));
8503 ret = check_max_stack_depth(env);
8505 /* instruction rewrites happen after this point */
8508 opt_hard_wire_dead_code_branches(env);
8510 ret = opt_remove_dead_code(env);
8512 ret = opt_remove_nops(env);
8515 sanitize_dead_code(env);
8519 /* program is valid, convert *(u32*)(ctx + off) accesses */
8520 ret = convert_ctx_accesses(env);
8523 ret = fixup_bpf_calls(env);
8525 /* do 32-bit optimization after insn patching has done so those patched
8526 * insns could be handled correctly.
8528 if (ret == 0 && bpf_jit_needs_zext() &&
8529 !bpf_prog_is_dev_bound(env->prog->aux)) {
8530 ret = opt_subreg_zext_lo32(env);
8531 env->prog->aux->verifier_zext = !ret;
8535 ret = fixup_call_args(env);
8537 env->verification_time = ktime_get_ns() - start_time;
8538 print_verification_stats(env);
8540 if (log->level && bpf_verifier_log_full(log))
8542 if (log->level && !log->ubuf) {
8544 goto err_release_maps;
8547 if (ret == 0 && env->used_map_cnt) {
8548 /* if program passed verifier, update used_maps in bpf_prog_info */
8549 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8550 sizeof(env->used_maps[0]),
8553 if (!env->prog->aux->used_maps) {
8555 goto err_release_maps;
8558 memcpy(env->prog->aux->used_maps, env->used_maps,
8559 sizeof(env->used_maps[0]) * env->used_map_cnt);
8560 env->prog->aux->used_map_cnt = env->used_map_cnt;
8562 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
8563 * bpf_ld_imm64 instructions
8565 convert_pseudo_ld_imm64(env);
8569 adjust_btf_func(env);
8572 if (!env->prog->aux->used_maps)
8573 /* if we didn't copy map pointers into bpf_prog_info, release
8574 * them now. Otherwise free_used_maps() will release them.
8580 mutex_unlock(&bpf_verifier_lock);
8581 vfree(env->insn_aux_data);