Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[platform/kernel/linux-starfive.git] / kernel / bpf / ringbuf.c
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/btf_ids.h>
14
15 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
16
17 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
18 #define RINGBUF_PGOFF \
19         (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
20 /* consumer page and producer page */
21 #define RINGBUF_POS_PAGES 2
22 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
23
24 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
25
26 struct bpf_ringbuf {
27         wait_queue_head_t waitq;
28         struct irq_work work;
29         u64 mask;
30         struct page **pages;
31         int nr_pages;
32         spinlock_t spinlock ____cacheline_aligned_in_smp;
33         /* For user-space producer ring buffers, an atomic_t busy bit is used
34          * to synchronize access to the ring buffers in the kernel, rather than
35          * the spinlock that is used for kernel-producer ring buffers. This is
36          * done because the ring buffer must hold a lock across a BPF program's
37          * callback:
38          *
39          *    __bpf_user_ringbuf_peek() // lock acquired
40          * -> program callback_fn()
41          * -> __bpf_user_ringbuf_sample_release() // lock released
42          *
43          * It is unsafe and incorrect to hold an IRQ spinlock across what could
44          * be a long execution window, so we instead simply disallow concurrent
45          * access to the ring buffer by kernel consumers, and return -EBUSY from
46          * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
47          */
48         atomic_t busy ____cacheline_aligned_in_smp;
49         /* Consumer and producer counters are put into separate pages to
50          * allow each position to be mapped with different permissions.
51          * This prevents a user-space application from modifying the
52          * position and ruining in-kernel tracking. The permissions of the
53          * pages depend on who is producing samples: user-space or the
54          * kernel.
55          *
56          * Kernel-producer
57          * ---------------
58          * The producer position and data pages are mapped as r/o in
59          * userspace. For this approach, bits in the header of samples are
60          * used to signal to user-space, and to other producers, whether a
61          * sample is currently being written.
62          *
63          * User-space producer
64          * -------------------
65          * Only the page containing the consumer position is mapped r/o in
66          * user-space. User-space producers also use bits of the header to
67          * communicate to the kernel, but the kernel must carefully check and
68          * validate each sample to ensure that they're correctly formatted, and
69          * fully contained within the ring buffer.
70          */
71         unsigned long consumer_pos __aligned(PAGE_SIZE);
72         unsigned long producer_pos __aligned(PAGE_SIZE);
73         char data[] __aligned(PAGE_SIZE);
74 };
75
76 struct bpf_ringbuf_map {
77         struct bpf_map map;
78         struct bpf_ringbuf *rb;
79 };
80
81 /* 8-byte ring buffer record header structure */
82 struct bpf_ringbuf_hdr {
83         u32 len;
84         u32 pg_off;
85 };
86
87 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
88 {
89         const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
90                             __GFP_NOWARN | __GFP_ZERO;
91         int nr_meta_pages = RINGBUF_NR_META_PAGES;
92         int nr_data_pages = data_sz >> PAGE_SHIFT;
93         int nr_pages = nr_meta_pages + nr_data_pages;
94         struct page **pages, *page;
95         struct bpf_ringbuf *rb;
96         size_t array_size;
97         int i;
98
99         /* Each data page is mapped twice to allow "virtual"
100          * continuous read of samples wrapping around the end of ring
101          * buffer area:
102          * ------------------------------------------------------
103          * | meta pages |  real data pages  |  same data pages  |
104          * ------------------------------------------------------
105          * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
106          * ------------------------------------------------------
107          * |            | TA             DA | TA             DA |
108          * ------------------------------------------------------
109          *                               ^^^^^^^
110          *                                  |
111          * Here, no need to worry about special handling of wrapped-around
112          * data due to double-mapped data pages. This works both in kernel and
113          * when mmap()'ed in user-space, simplifying both kernel and
114          * user-space implementations significantly.
115          */
116         array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
117         pages = bpf_map_area_alloc(array_size, numa_node);
118         if (!pages)
119                 return NULL;
120
121         for (i = 0; i < nr_pages; i++) {
122                 page = alloc_pages_node(numa_node, flags, 0);
123                 if (!page) {
124                         nr_pages = i;
125                         goto err_free_pages;
126                 }
127                 pages[i] = page;
128                 if (i >= nr_meta_pages)
129                         pages[nr_data_pages + i] = page;
130         }
131
132         rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
133                   VM_MAP | VM_USERMAP, PAGE_KERNEL);
134         if (rb) {
135                 kmemleak_not_leak(pages);
136                 rb->pages = pages;
137                 rb->nr_pages = nr_pages;
138                 return rb;
139         }
140
141 err_free_pages:
142         for (i = 0; i < nr_pages; i++)
143                 __free_page(pages[i]);
144         bpf_map_area_free(pages);
145         return NULL;
146 }
147
148 static void bpf_ringbuf_notify(struct irq_work *work)
149 {
150         struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
151
152         wake_up_all(&rb->waitq);
153 }
154
155 /* Maximum size of ring buffer area is limited by 32-bit page offset within
156  * record header, counted in pages. Reserve 8 bits for extensibility, and
157  * take into account few extra pages for consumer/producer pages and
158  * non-mmap()'able parts, the current maximum size would be:
159  *
160  *     (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
161  *
162  * This gives 64GB limit, which seems plenty for single ring buffer. Now
163  * considering that the maximum value of data_sz is (4GB - 1), there
164  * will be no overflow, so just note the size limit in the comments.
165  */
166 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
167 {
168         struct bpf_ringbuf *rb;
169
170         rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
171         if (!rb)
172                 return NULL;
173
174         spin_lock_init(&rb->spinlock);
175         atomic_set(&rb->busy, 0);
176         init_waitqueue_head(&rb->waitq);
177         init_irq_work(&rb->work, bpf_ringbuf_notify);
178
179         rb->mask = data_sz - 1;
180         rb->consumer_pos = 0;
181         rb->producer_pos = 0;
182
183         return rb;
184 }
185
186 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
187 {
188         struct bpf_ringbuf_map *rb_map;
189
190         if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
191                 return ERR_PTR(-EINVAL);
192
193         if (attr->key_size || attr->value_size ||
194             !is_power_of_2(attr->max_entries) ||
195             !PAGE_ALIGNED(attr->max_entries))
196                 return ERR_PTR(-EINVAL);
197
198         rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
199         if (!rb_map)
200                 return ERR_PTR(-ENOMEM);
201
202         bpf_map_init_from_attr(&rb_map->map, attr);
203
204         rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
205         if (!rb_map->rb) {
206                 bpf_map_area_free(rb_map);
207                 return ERR_PTR(-ENOMEM);
208         }
209
210         return &rb_map->map;
211 }
212
213 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
214 {
215         /* copy pages pointer and nr_pages to local variable, as we are going
216          * to unmap rb itself with vunmap() below
217          */
218         struct page **pages = rb->pages;
219         int i, nr_pages = rb->nr_pages;
220
221         vunmap(rb);
222         for (i = 0; i < nr_pages; i++)
223                 __free_page(pages[i]);
224         bpf_map_area_free(pages);
225 }
226
227 static void ringbuf_map_free(struct bpf_map *map)
228 {
229         struct bpf_ringbuf_map *rb_map;
230
231         rb_map = container_of(map, struct bpf_ringbuf_map, map);
232         bpf_ringbuf_free(rb_map->rb);
233         bpf_map_area_free(rb_map);
234 }
235
236 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
237 {
238         return ERR_PTR(-ENOTSUPP);
239 }
240
241 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
242                                     u64 flags)
243 {
244         return -ENOTSUPP;
245 }
246
247 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
248 {
249         return -ENOTSUPP;
250 }
251
252 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
253                                     void *next_key)
254 {
255         return -ENOTSUPP;
256 }
257
258 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
259 {
260         struct bpf_ringbuf_map *rb_map;
261
262         rb_map = container_of(map, struct bpf_ringbuf_map, map);
263
264         if (vma->vm_flags & VM_WRITE) {
265                 /* allow writable mapping for the consumer_pos only */
266                 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
267                         return -EPERM;
268         } else {
269                 vm_flags_clear(vma, VM_MAYWRITE);
270         }
271         /* remap_vmalloc_range() checks size and offset constraints */
272         return remap_vmalloc_range(vma, rb_map->rb,
273                                    vma->vm_pgoff + RINGBUF_PGOFF);
274 }
275
276 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
277 {
278         struct bpf_ringbuf_map *rb_map;
279
280         rb_map = container_of(map, struct bpf_ringbuf_map, map);
281
282         if (vma->vm_flags & VM_WRITE) {
283                 if (vma->vm_pgoff == 0)
284                         /* Disallow writable mappings to the consumer pointer,
285                          * and allow writable mappings to both the producer
286                          * position, and the ring buffer data itself.
287                          */
288                         return -EPERM;
289         } else {
290                 vm_flags_clear(vma, VM_MAYWRITE);
291         }
292         /* remap_vmalloc_range() checks size and offset constraints */
293         return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
294 }
295
296 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
297 {
298         unsigned long cons_pos, prod_pos;
299
300         cons_pos = smp_load_acquire(&rb->consumer_pos);
301         prod_pos = smp_load_acquire(&rb->producer_pos);
302         return prod_pos - cons_pos;
303 }
304
305 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
306 {
307         return rb->mask + 1;
308 }
309
310 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
311                                       struct poll_table_struct *pts)
312 {
313         struct bpf_ringbuf_map *rb_map;
314
315         rb_map = container_of(map, struct bpf_ringbuf_map, map);
316         poll_wait(filp, &rb_map->rb->waitq, pts);
317
318         if (ringbuf_avail_data_sz(rb_map->rb))
319                 return EPOLLIN | EPOLLRDNORM;
320         return 0;
321 }
322
323 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
324                                       struct poll_table_struct *pts)
325 {
326         struct bpf_ringbuf_map *rb_map;
327
328         rb_map = container_of(map, struct bpf_ringbuf_map, map);
329         poll_wait(filp, &rb_map->rb->waitq, pts);
330
331         if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
332                 return EPOLLOUT | EPOLLWRNORM;
333         return 0;
334 }
335
336 static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
337 {
338         struct bpf_ringbuf *rb;
339         int nr_data_pages;
340         int nr_meta_pages;
341         u64 usage = sizeof(struct bpf_ringbuf_map);
342
343         rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
344         usage += (u64)rb->nr_pages << PAGE_SHIFT;
345         nr_meta_pages = RINGBUF_NR_META_PAGES;
346         nr_data_pages = map->max_entries >> PAGE_SHIFT;
347         usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
348         return usage;
349 }
350
351 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
352 const struct bpf_map_ops ringbuf_map_ops = {
353         .map_meta_equal = bpf_map_meta_equal,
354         .map_alloc = ringbuf_map_alloc,
355         .map_free = ringbuf_map_free,
356         .map_mmap = ringbuf_map_mmap_kern,
357         .map_poll = ringbuf_map_poll_kern,
358         .map_lookup_elem = ringbuf_map_lookup_elem,
359         .map_update_elem = ringbuf_map_update_elem,
360         .map_delete_elem = ringbuf_map_delete_elem,
361         .map_get_next_key = ringbuf_map_get_next_key,
362         .map_mem_usage = ringbuf_map_mem_usage,
363         .map_btf_id = &ringbuf_map_btf_ids[0],
364 };
365
366 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
367 const struct bpf_map_ops user_ringbuf_map_ops = {
368         .map_meta_equal = bpf_map_meta_equal,
369         .map_alloc = ringbuf_map_alloc,
370         .map_free = ringbuf_map_free,
371         .map_mmap = ringbuf_map_mmap_user,
372         .map_poll = ringbuf_map_poll_user,
373         .map_lookup_elem = ringbuf_map_lookup_elem,
374         .map_update_elem = ringbuf_map_update_elem,
375         .map_delete_elem = ringbuf_map_delete_elem,
376         .map_get_next_key = ringbuf_map_get_next_key,
377         .map_mem_usage = ringbuf_map_mem_usage,
378         .map_btf_id = &user_ringbuf_map_btf_ids[0],
379 };
380
381 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
382  * calculate offset from record metadata to ring buffer in pages, rounded
383  * down. This page offset is stored as part of record metadata and allows to
384  * restore struct bpf_ringbuf * from record pointer. This page offset is
385  * stored at offset 4 of record metadata header.
386  */
387 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
388                                      struct bpf_ringbuf_hdr *hdr)
389 {
390         return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
391 }
392
393 /* Given pointer to ring buffer record header, restore pointer to struct
394  * bpf_ringbuf itself by using page offset stored at offset 4
395  */
396 static struct bpf_ringbuf *
397 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
398 {
399         unsigned long addr = (unsigned long)(void *)hdr;
400         unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
401
402         return (void*)((addr & PAGE_MASK) - off);
403 }
404
405 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
406 {
407         unsigned long cons_pos, prod_pos, new_prod_pos, flags;
408         u32 len, pg_off;
409         struct bpf_ringbuf_hdr *hdr;
410
411         if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
412                 return NULL;
413
414         len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
415         if (len > ringbuf_total_data_sz(rb))
416                 return NULL;
417
418         cons_pos = smp_load_acquire(&rb->consumer_pos);
419
420         if (in_nmi()) {
421                 if (!spin_trylock_irqsave(&rb->spinlock, flags))
422                         return NULL;
423         } else {
424                 spin_lock_irqsave(&rb->spinlock, flags);
425         }
426
427         prod_pos = rb->producer_pos;
428         new_prod_pos = prod_pos + len;
429
430         /* check for out of ringbuf space by ensuring producer position
431          * doesn't advance more than (ringbuf_size - 1) ahead
432          */
433         if (new_prod_pos - cons_pos > rb->mask) {
434                 spin_unlock_irqrestore(&rb->spinlock, flags);
435                 return NULL;
436         }
437
438         hdr = (void *)rb->data + (prod_pos & rb->mask);
439         pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
440         hdr->len = size | BPF_RINGBUF_BUSY_BIT;
441         hdr->pg_off = pg_off;
442
443         /* pairs with consumer's smp_load_acquire() */
444         smp_store_release(&rb->producer_pos, new_prod_pos);
445
446         spin_unlock_irqrestore(&rb->spinlock, flags);
447
448         return (void *)hdr + BPF_RINGBUF_HDR_SZ;
449 }
450
451 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
452 {
453         struct bpf_ringbuf_map *rb_map;
454
455         if (unlikely(flags))
456                 return 0;
457
458         rb_map = container_of(map, struct bpf_ringbuf_map, map);
459         return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
460 }
461
462 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
463         .func           = bpf_ringbuf_reserve,
464         .ret_type       = RET_PTR_TO_RINGBUF_MEM_OR_NULL,
465         .arg1_type      = ARG_CONST_MAP_PTR,
466         .arg2_type      = ARG_CONST_ALLOC_SIZE_OR_ZERO,
467         .arg3_type      = ARG_ANYTHING,
468 };
469
470 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
471 {
472         unsigned long rec_pos, cons_pos;
473         struct bpf_ringbuf_hdr *hdr;
474         struct bpf_ringbuf *rb;
475         u32 new_len;
476
477         hdr = sample - BPF_RINGBUF_HDR_SZ;
478         rb = bpf_ringbuf_restore_from_rec(hdr);
479         new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
480         if (discard)
481                 new_len |= BPF_RINGBUF_DISCARD_BIT;
482
483         /* update record header with correct final size prefix */
484         xchg(&hdr->len, new_len);
485
486         /* if consumer caught up and is waiting for our record, notify about
487          * new data availability
488          */
489         rec_pos = (void *)hdr - (void *)rb->data;
490         cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
491
492         if (flags & BPF_RB_FORCE_WAKEUP)
493                 irq_work_queue(&rb->work);
494         else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
495                 irq_work_queue(&rb->work);
496 }
497
498 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
499 {
500         bpf_ringbuf_commit(sample, flags, false /* discard */);
501         return 0;
502 }
503
504 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
505         .func           = bpf_ringbuf_submit,
506         .ret_type       = RET_VOID,
507         .arg1_type      = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
508         .arg2_type      = ARG_ANYTHING,
509 };
510
511 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
512 {
513         bpf_ringbuf_commit(sample, flags, true /* discard */);
514         return 0;
515 }
516
517 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
518         .func           = bpf_ringbuf_discard,
519         .ret_type       = RET_VOID,
520         .arg1_type      = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
521         .arg2_type      = ARG_ANYTHING,
522 };
523
524 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
525            u64, flags)
526 {
527         struct bpf_ringbuf_map *rb_map;
528         void *rec;
529
530         if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
531                 return -EINVAL;
532
533         rb_map = container_of(map, struct bpf_ringbuf_map, map);
534         rec = __bpf_ringbuf_reserve(rb_map->rb, size);
535         if (!rec)
536                 return -EAGAIN;
537
538         memcpy(rec, data, size);
539         bpf_ringbuf_commit(rec, flags, false /* discard */);
540         return 0;
541 }
542
543 const struct bpf_func_proto bpf_ringbuf_output_proto = {
544         .func           = bpf_ringbuf_output,
545         .ret_type       = RET_INTEGER,
546         .arg1_type      = ARG_CONST_MAP_PTR,
547         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
548         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
549         .arg4_type      = ARG_ANYTHING,
550 };
551
552 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
553 {
554         struct bpf_ringbuf *rb;
555
556         rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
557
558         switch (flags) {
559         case BPF_RB_AVAIL_DATA:
560                 return ringbuf_avail_data_sz(rb);
561         case BPF_RB_RING_SIZE:
562                 return ringbuf_total_data_sz(rb);
563         case BPF_RB_CONS_POS:
564                 return smp_load_acquire(&rb->consumer_pos);
565         case BPF_RB_PROD_POS:
566                 return smp_load_acquire(&rb->producer_pos);
567         default:
568                 return 0;
569         }
570 }
571
572 const struct bpf_func_proto bpf_ringbuf_query_proto = {
573         .func           = bpf_ringbuf_query,
574         .ret_type       = RET_INTEGER,
575         .arg1_type      = ARG_CONST_MAP_PTR,
576         .arg2_type      = ARG_ANYTHING,
577 };
578
579 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
580            struct bpf_dynptr_kern *, ptr)
581 {
582         struct bpf_ringbuf_map *rb_map;
583         void *sample;
584         int err;
585
586         if (unlikely(flags)) {
587                 bpf_dynptr_set_null(ptr);
588                 return -EINVAL;
589         }
590
591         err = bpf_dynptr_check_size(size);
592         if (err) {
593                 bpf_dynptr_set_null(ptr);
594                 return err;
595         }
596
597         rb_map = container_of(map, struct bpf_ringbuf_map, map);
598
599         sample = __bpf_ringbuf_reserve(rb_map->rb, size);
600         if (!sample) {
601                 bpf_dynptr_set_null(ptr);
602                 return -EINVAL;
603         }
604
605         bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
606
607         return 0;
608 }
609
610 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
611         .func           = bpf_ringbuf_reserve_dynptr,
612         .ret_type       = RET_INTEGER,
613         .arg1_type      = ARG_CONST_MAP_PTR,
614         .arg2_type      = ARG_ANYTHING,
615         .arg3_type      = ARG_ANYTHING,
616         .arg4_type      = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
617 };
618
619 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
620 {
621         if (!ptr->data)
622                 return 0;
623
624         bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
625
626         bpf_dynptr_set_null(ptr);
627
628         return 0;
629 }
630
631 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
632         .func           = bpf_ringbuf_submit_dynptr,
633         .ret_type       = RET_VOID,
634         .arg1_type      = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
635         .arg2_type      = ARG_ANYTHING,
636 };
637
638 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
639 {
640         if (!ptr->data)
641                 return 0;
642
643         bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
644
645         bpf_dynptr_set_null(ptr);
646
647         return 0;
648 }
649
650 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
651         .func           = bpf_ringbuf_discard_dynptr,
652         .ret_type       = RET_VOID,
653         .arg1_type      = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
654         .arg2_type      = ARG_ANYTHING,
655 };
656
657 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
658 {
659         int err;
660         u32 hdr_len, sample_len, total_len, flags, *hdr;
661         u64 cons_pos, prod_pos;
662
663         /* Synchronizes with smp_store_release() in user-space producer. */
664         prod_pos = smp_load_acquire(&rb->producer_pos);
665         if (prod_pos % 8)
666                 return -EINVAL;
667
668         /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
669         cons_pos = smp_load_acquire(&rb->consumer_pos);
670         if (cons_pos >= prod_pos)
671                 return -ENODATA;
672
673         hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
674         /* Synchronizes with smp_store_release() in user-space producer. */
675         hdr_len = smp_load_acquire(hdr);
676         flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
677         sample_len = hdr_len & ~flags;
678         total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
679
680         /* The sample must fit within the region advertised by the producer position. */
681         if (total_len > prod_pos - cons_pos)
682                 return -EINVAL;
683
684         /* The sample must fit within the data region of the ring buffer. */
685         if (total_len > ringbuf_total_data_sz(rb))
686                 return -E2BIG;
687
688         /* The sample must fit into a struct bpf_dynptr. */
689         err = bpf_dynptr_check_size(sample_len);
690         if (err)
691                 return -E2BIG;
692
693         if (flags & BPF_RINGBUF_DISCARD_BIT) {
694                 /* If the discard bit is set, the sample should be skipped.
695                  *
696                  * Update the consumer pos, and return -EAGAIN so the caller
697                  * knows to skip this sample and try to read the next one.
698                  */
699                 smp_store_release(&rb->consumer_pos, cons_pos + total_len);
700                 return -EAGAIN;
701         }
702
703         if (flags & BPF_RINGBUF_BUSY_BIT)
704                 return -ENODATA;
705
706         *sample = (void *)((uintptr_t)rb->data +
707                            (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
708         *size = sample_len;
709         return 0;
710 }
711
712 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
713 {
714         u64 consumer_pos;
715         u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
716
717         /* Using smp_load_acquire() is unnecessary here, as the busy-bit
718          * prevents another task from writing to consumer_pos after it was read
719          * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
720          */
721         consumer_pos = rb->consumer_pos;
722          /* Synchronizes with smp_load_acquire() in user-space producer. */
723         smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
724 }
725
726 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
727            void *, callback_fn, void *, callback_ctx, u64, flags)
728 {
729         struct bpf_ringbuf *rb;
730         long samples, discarded_samples = 0, ret = 0;
731         bpf_callback_t callback = (bpf_callback_t)callback_fn;
732         u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
733         int busy = 0;
734
735         if (unlikely(flags & ~wakeup_flags))
736                 return -EINVAL;
737
738         rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
739
740         /* If another consumer is already consuming a sample, wait for them to finish. */
741         if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
742                 return -EBUSY;
743
744         for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
745                 int err;
746                 u32 size;
747                 void *sample;
748                 struct bpf_dynptr_kern dynptr;
749
750                 err = __bpf_user_ringbuf_peek(rb, &sample, &size);
751                 if (err) {
752                         if (err == -ENODATA) {
753                                 break;
754                         } else if (err == -EAGAIN) {
755                                 discarded_samples++;
756                                 continue;
757                         } else {
758                                 ret = err;
759                                 goto schedule_work_return;
760                         }
761                 }
762
763                 bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
764                 ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
765                 __bpf_user_ringbuf_sample_release(rb, size, flags);
766         }
767         ret = samples - discarded_samples;
768
769 schedule_work_return:
770         /* Prevent the clearing of the busy-bit from being reordered before the
771          * storing of any rb consumer or producer positions.
772          */
773         smp_mb__before_atomic();
774         atomic_set(&rb->busy, 0);
775
776         if (flags & BPF_RB_FORCE_WAKEUP)
777                 irq_work_queue(&rb->work);
778         else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
779                 irq_work_queue(&rb->work);
780         return ret;
781 }
782
783 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
784         .func           = bpf_user_ringbuf_drain,
785         .ret_type       = RET_INTEGER,
786         .arg1_type      = ARG_CONST_MAP_PTR,
787         .arg2_type      = ARG_PTR_TO_FUNC,
788         .arg3_type      = ARG_PTR_TO_STACK_OR_NULL,
789         .arg4_type      = ARG_ANYTHING,
790 };