4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/btf_ids.h>
15 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
17 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
18 #define RINGBUF_PGOFF \
19 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
20 /* consumer page and producer page */
21 #define RINGBUF_POS_PAGES 2
23 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
25 /* Maximum size of ring buffer area is limited by 32-bit page offset within
26 * record header, counted in pages. Reserve 8 bits for extensibility, and take
27 * into account few extra pages for consumer/producer pages and
28 * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
31 #define RINGBUF_MAX_DATA_SZ \
32 (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
35 wait_queue_head_t waitq;
40 spinlock_t spinlock ____cacheline_aligned_in_smp;
41 /* For user-space producer ring buffers, an atomic_t busy bit is used
42 * to synchronize access to the ring buffers in the kernel, rather than
43 * the spinlock that is used for kernel-producer ring buffers. This is
44 * done because the ring buffer must hold a lock across a BPF program's
47 * __bpf_user_ringbuf_peek() // lock acquired
48 * -> program callback_fn()
49 * -> __bpf_user_ringbuf_sample_release() // lock released
51 * It is unsafe and incorrect to hold an IRQ spinlock across what could
52 * be a long execution window, so we instead simply disallow concurrent
53 * access to the ring buffer by kernel consumers, and return -EBUSY from
54 * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
56 atomic_t busy ____cacheline_aligned_in_smp;
57 /* Consumer and producer counters are put into separate pages to
58 * allow each position to be mapped with different permissions.
59 * This prevents a user-space application from modifying the
60 * position and ruining in-kernel tracking. The permissions of the
61 * pages depend on who is producing samples: user-space or the
66 * The producer position and data pages are mapped as r/o in
67 * userspace. For this approach, bits in the header of samples are
68 * used to signal to user-space, and to other producers, whether a
69 * sample is currently being written.
73 * Only the page containing the consumer position is mapped r/o in
74 * user-space. User-space producers also use bits of the header to
75 * communicate to the kernel, but the kernel must carefully check and
76 * validate each sample to ensure that they're correctly formatted, and
77 * fully contained within the ring buffer.
79 unsigned long consumer_pos __aligned(PAGE_SIZE);
80 unsigned long producer_pos __aligned(PAGE_SIZE);
81 char data[] __aligned(PAGE_SIZE);
84 struct bpf_ringbuf_map {
86 struct bpf_ringbuf *rb;
89 /* 8-byte ring buffer record header structure */
90 struct bpf_ringbuf_hdr {
95 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
97 const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
98 __GFP_NOWARN | __GFP_ZERO;
99 int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
100 int nr_data_pages = data_sz >> PAGE_SHIFT;
101 int nr_pages = nr_meta_pages + nr_data_pages;
102 struct page **pages, *page;
103 struct bpf_ringbuf *rb;
107 /* Each data page is mapped twice to allow "virtual"
108 * continuous read of samples wrapping around the end of ring
110 * ------------------------------------------------------
111 * | meta pages | real data pages | same data pages |
112 * ------------------------------------------------------
113 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
114 * ------------------------------------------------------
115 * | | TA DA | TA DA |
116 * ------------------------------------------------------
119 * Here, no need to worry about special handling of wrapped-around
120 * data due to double-mapped data pages. This works both in kernel and
121 * when mmap()'ed in user-space, simplifying both kernel and
122 * user-space implementations significantly.
124 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
125 pages = bpf_map_area_alloc(array_size, numa_node);
129 for (i = 0; i < nr_pages; i++) {
130 page = alloc_pages_node(numa_node, flags, 0);
136 if (i >= nr_meta_pages)
137 pages[nr_data_pages + i] = page;
140 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
141 VM_MAP | VM_USERMAP, PAGE_KERNEL);
143 kmemleak_not_leak(pages);
145 rb->nr_pages = nr_pages;
150 for (i = 0; i < nr_pages; i++)
151 __free_page(pages[i]);
152 bpf_map_area_free(pages);
156 static void bpf_ringbuf_notify(struct irq_work *work)
158 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
160 wake_up_all(&rb->waitq);
163 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
165 struct bpf_ringbuf *rb;
167 rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
171 spin_lock_init(&rb->spinlock);
172 atomic_set(&rb->busy, 0);
173 init_waitqueue_head(&rb->waitq);
174 init_irq_work(&rb->work, bpf_ringbuf_notify);
176 rb->mask = data_sz - 1;
177 rb->consumer_pos = 0;
178 rb->producer_pos = 0;
183 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
185 struct bpf_ringbuf_map *rb_map;
187 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
188 return ERR_PTR(-EINVAL);
190 if (attr->key_size || attr->value_size ||
191 !is_power_of_2(attr->max_entries) ||
192 !PAGE_ALIGNED(attr->max_entries))
193 return ERR_PTR(-EINVAL);
196 /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
197 if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
198 return ERR_PTR(-E2BIG);
201 rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
203 return ERR_PTR(-ENOMEM);
205 bpf_map_init_from_attr(&rb_map->map, attr);
207 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
209 bpf_map_area_free(rb_map);
210 return ERR_PTR(-ENOMEM);
216 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
218 /* copy pages pointer and nr_pages to local variable, as we are going
219 * to unmap rb itself with vunmap() below
221 struct page **pages = rb->pages;
222 int i, nr_pages = rb->nr_pages;
225 for (i = 0; i < nr_pages; i++)
226 __free_page(pages[i]);
227 bpf_map_area_free(pages);
230 static void ringbuf_map_free(struct bpf_map *map)
232 struct bpf_ringbuf_map *rb_map;
234 rb_map = container_of(map, struct bpf_ringbuf_map, map);
235 bpf_ringbuf_free(rb_map->rb);
236 bpf_map_area_free(rb_map);
239 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
241 return ERR_PTR(-ENOTSUPP);
244 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
250 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
255 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
261 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
263 struct bpf_ringbuf_map *rb_map;
265 rb_map = container_of(map, struct bpf_ringbuf_map, map);
267 if (vma->vm_flags & VM_WRITE) {
268 /* allow writable mapping for the consumer_pos only */
269 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
272 vma->vm_flags &= ~VM_MAYWRITE;
274 /* remap_vmalloc_range() checks size and offset constraints */
275 return remap_vmalloc_range(vma, rb_map->rb,
276 vma->vm_pgoff + RINGBUF_PGOFF);
279 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
281 struct bpf_ringbuf_map *rb_map;
283 rb_map = container_of(map, struct bpf_ringbuf_map, map);
285 if (vma->vm_flags & VM_WRITE) {
286 if (vma->vm_pgoff == 0)
287 /* Disallow writable mappings to the consumer pointer,
288 * and allow writable mappings to both the producer
289 * position, and the ring buffer data itself.
293 vma->vm_flags &= ~VM_MAYWRITE;
295 /* remap_vmalloc_range() checks size and offset constraints */
296 return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
299 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
301 unsigned long cons_pos, prod_pos;
303 cons_pos = smp_load_acquire(&rb->consumer_pos);
304 prod_pos = smp_load_acquire(&rb->producer_pos);
305 return prod_pos - cons_pos;
308 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
313 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
314 struct poll_table_struct *pts)
316 struct bpf_ringbuf_map *rb_map;
318 rb_map = container_of(map, struct bpf_ringbuf_map, map);
319 poll_wait(filp, &rb_map->rb->waitq, pts);
321 if (ringbuf_avail_data_sz(rb_map->rb))
322 return EPOLLIN | EPOLLRDNORM;
326 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
327 struct poll_table_struct *pts)
329 struct bpf_ringbuf_map *rb_map;
331 rb_map = container_of(map, struct bpf_ringbuf_map, map);
332 poll_wait(filp, &rb_map->rb->waitq, pts);
334 if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
335 return EPOLLOUT | EPOLLWRNORM;
339 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
340 const struct bpf_map_ops ringbuf_map_ops = {
341 .map_meta_equal = bpf_map_meta_equal,
342 .map_alloc = ringbuf_map_alloc,
343 .map_free = ringbuf_map_free,
344 .map_mmap = ringbuf_map_mmap_kern,
345 .map_poll = ringbuf_map_poll_kern,
346 .map_lookup_elem = ringbuf_map_lookup_elem,
347 .map_update_elem = ringbuf_map_update_elem,
348 .map_delete_elem = ringbuf_map_delete_elem,
349 .map_get_next_key = ringbuf_map_get_next_key,
350 .map_btf_id = &ringbuf_map_btf_ids[0],
353 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
354 const struct bpf_map_ops user_ringbuf_map_ops = {
355 .map_meta_equal = bpf_map_meta_equal,
356 .map_alloc = ringbuf_map_alloc,
357 .map_free = ringbuf_map_free,
358 .map_mmap = ringbuf_map_mmap_user,
359 .map_poll = ringbuf_map_poll_user,
360 .map_lookup_elem = ringbuf_map_lookup_elem,
361 .map_update_elem = ringbuf_map_update_elem,
362 .map_delete_elem = ringbuf_map_delete_elem,
363 .map_get_next_key = ringbuf_map_get_next_key,
364 .map_btf_id = &user_ringbuf_map_btf_ids[0],
367 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
368 * calculate offset from record metadata to ring buffer in pages, rounded
369 * down. This page offset is stored as part of record metadata and allows to
370 * restore struct bpf_ringbuf * from record pointer. This page offset is
371 * stored at offset 4 of record metadata header.
373 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
374 struct bpf_ringbuf_hdr *hdr)
376 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
379 /* Given pointer to ring buffer record header, restore pointer to struct
380 * bpf_ringbuf itself by using page offset stored at offset 4
382 static struct bpf_ringbuf *
383 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
385 unsigned long addr = (unsigned long)(void *)hdr;
386 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
388 return (void*)((addr & PAGE_MASK) - off);
391 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
393 unsigned long cons_pos, prod_pos, new_prod_pos, flags;
395 struct bpf_ringbuf_hdr *hdr;
397 if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
400 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
401 if (len > ringbuf_total_data_sz(rb))
404 cons_pos = smp_load_acquire(&rb->consumer_pos);
407 if (!spin_trylock_irqsave(&rb->spinlock, flags))
410 spin_lock_irqsave(&rb->spinlock, flags);
413 prod_pos = rb->producer_pos;
414 new_prod_pos = prod_pos + len;
416 /* check for out of ringbuf space by ensuring producer position
417 * doesn't advance more than (ringbuf_size - 1) ahead
419 if (new_prod_pos - cons_pos > rb->mask) {
420 spin_unlock_irqrestore(&rb->spinlock, flags);
424 hdr = (void *)rb->data + (prod_pos & rb->mask);
425 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
426 hdr->len = size | BPF_RINGBUF_BUSY_BIT;
427 hdr->pg_off = pg_off;
429 /* pairs with consumer's smp_load_acquire() */
430 smp_store_release(&rb->producer_pos, new_prod_pos);
432 spin_unlock_irqrestore(&rb->spinlock, flags);
434 return (void *)hdr + BPF_RINGBUF_HDR_SZ;
437 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
439 struct bpf_ringbuf_map *rb_map;
444 rb_map = container_of(map, struct bpf_ringbuf_map, map);
445 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
448 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
449 .func = bpf_ringbuf_reserve,
450 .ret_type = RET_PTR_TO_ALLOC_MEM_OR_NULL,
451 .arg1_type = ARG_CONST_MAP_PTR,
452 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
453 .arg3_type = ARG_ANYTHING,
456 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
458 unsigned long rec_pos, cons_pos;
459 struct bpf_ringbuf_hdr *hdr;
460 struct bpf_ringbuf *rb;
463 hdr = sample - BPF_RINGBUF_HDR_SZ;
464 rb = bpf_ringbuf_restore_from_rec(hdr);
465 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
467 new_len |= BPF_RINGBUF_DISCARD_BIT;
469 /* update record header with correct final size prefix */
470 xchg(&hdr->len, new_len);
472 /* if consumer caught up and is waiting for our record, notify about
473 * new data availability
475 rec_pos = (void *)hdr - (void *)rb->data;
476 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
478 if (flags & BPF_RB_FORCE_WAKEUP)
479 irq_work_queue(&rb->work);
480 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
481 irq_work_queue(&rb->work);
484 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
486 bpf_ringbuf_commit(sample, flags, false /* discard */);
490 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
491 .func = bpf_ringbuf_submit,
492 .ret_type = RET_VOID,
493 .arg1_type = ARG_PTR_TO_ALLOC_MEM | OBJ_RELEASE,
494 .arg2_type = ARG_ANYTHING,
497 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
499 bpf_ringbuf_commit(sample, flags, true /* discard */);
503 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
504 .func = bpf_ringbuf_discard,
505 .ret_type = RET_VOID,
506 .arg1_type = ARG_PTR_TO_ALLOC_MEM | OBJ_RELEASE,
507 .arg2_type = ARG_ANYTHING,
510 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
513 struct bpf_ringbuf_map *rb_map;
516 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
519 rb_map = container_of(map, struct bpf_ringbuf_map, map);
520 rec = __bpf_ringbuf_reserve(rb_map->rb, size);
524 memcpy(rec, data, size);
525 bpf_ringbuf_commit(rec, flags, false /* discard */);
529 const struct bpf_func_proto bpf_ringbuf_output_proto = {
530 .func = bpf_ringbuf_output,
531 .ret_type = RET_INTEGER,
532 .arg1_type = ARG_CONST_MAP_PTR,
533 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
534 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
535 .arg4_type = ARG_ANYTHING,
538 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
540 struct bpf_ringbuf *rb;
542 rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
545 case BPF_RB_AVAIL_DATA:
546 return ringbuf_avail_data_sz(rb);
547 case BPF_RB_RING_SIZE:
548 return ringbuf_total_data_sz(rb);
549 case BPF_RB_CONS_POS:
550 return smp_load_acquire(&rb->consumer_pos);
551 case BPF_RB_PROD_POS:
552 return smp_load_acquire(&rb->producer_pos);
558 const struct bpf_func_proto bpf_ringbuf_query_proto = {
559 .func = bpf_ringbuf_query,
560 .ret_type = RET_INTEGER,
561 .arg1_type = ARG_CONST_MAP_PTR,
562 .arg2_type = ARG_ANYTHING,
565 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
566 struct bpf_dynptr_kern *, ptr)
568 struct bpf_ringbuf_map *rb_map;
572 if (unlikely(flags)) {
573 bpf_dynptr_set_null(ptr);
577 err = bpf_dynptr_check_size(size);
579 bpf_dynptr_set_null(ptr);
583 rb_map = container_of(map, struct bpf_ringbuf_map, map);
585 sample = __bpf_ringbuf_reserve(rb_map->rb, size);
587 bpf_dynptr_set_null(ptr);
591 bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
596 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
597 .func = bpf_ringbuf_reserve_dynptr,
598 .ret_type = RET_INTEGER,
599 .arg1_type = ARG_CONST_MAP_PTR,
600 .arg2_type = ARG_ANYTHING,
601 .arg3_type = ARG_ANYTHING,
602 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
605 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
610 bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
612 bpf_dynptr_set_null(ptr);
617 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
618 .func = bpf_ringbuf_submit_dynptr,
619 .ret_type = RET_VOID,
620 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
621 .arg2_type = ARG_ANYTHING,
624 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
629 bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
631 bpf_dynptr_set_null(ptr);
636 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
637 .func = bpf_ringbuf_discard_dynptr,
638 .ret_type = RET_VOID,
639 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
640 .arg2_type = ARG_ANYTHING,
643 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
646 u32 hdr_len, sample_len, total_len, flags, *hdr;
647 u64 cons_pos, prod_pos;
649 /* Synchronizes with smp_store_release() in user-space producer. */
650 prod_pos = smp_load_acquire(&rb->producer_pos);
654 /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
655 cons_pos = smp_load_acquire(&rb->consumer_pos);
656 if (cons_pos >= prod_pos)
659 hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
660 /* Synchronizes with smp_store_release() in user-space producer. */
661 hdr_len = smp_load_acquire(hdr);
662 flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
663 sample_len = hdr_len & ~flags;
664 total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
666 /* The sample must fit within the region advertised by the producer position. */
667 if (total_len > prod_pos - cons_pos)
670 /* The sample must fit within the data region of the ring buffer. */
671 if (total_len > ringbuf_total_data_sz(rb))
674 /* The sample must fit into a struct bpf_dynptr. */
675 err = bpf_dynptr_check_size(sample_len);
679 if (flags & BPF_RINGBUF_DISCARD_BIT) {
680 /* If the discard bit is set, the sample should be skipped.
682 * Update the consumer pos, and return -EAGAIN so the caller
683 * knows to skip this sample and try to read the next one.
685 smp_store_release(&rb->consumer_pos, cons_pos + total_len);
689 if (flags & BPF_RINGBUF_BUSY_BIT)
692 *sample = (void *)((uintptr_t)rb->data +
693 (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
698 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
701 u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
703 /* Using smp_load_acquire() is unnecessary here, as the busy-bit
704 * prevents another task from writing to consumer_pos after it was read
705 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
707 consumer_pos = rb->consumer_pos;
708 /* Synchronizes with smp_load_acquire() in user-space producer. */
709 smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
712 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
713 void *, callback_fn, void *, callback_ctx, u64, flags)
715 struct bpf_ringbuf *rb;
716 long samples, discarded_samples = 0, ret = 0;
717 bpf_callback_t callback = (bpf_callback_t)callback_fn;
718 u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
721 if (unlikely(flags & ~wakeup_flags))
724 rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
726 /* If another consumer is already consuming a sample, wait for them to finish. */
727 if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
730 for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
734 struct bpf_dynptr_kern dynptr;
736 err = __bpf_user_ringbuf_peek(rb, &sample, &size);
738 if (err == -ENODATA) {
740 } else if (err == -EAGAIN) {
745 goto schedule_work_return;
749 bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
750 ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
751 __bpf_user_ringbuf_sample_release(rb, size, flags);
753 ret = samples - discarded_samples;
755 schedule_work_return:
756 /* Prevent the clearing of the busy-bit from being reordered before the
757 * storing of any rb consumer or producer positions.
759 smp_mb__before_atomic();
760 atomic_set(&rb->busy, 0);
762 if (flags & BPF_RB_FORCE_WAKEUP)
763 irq_work_queue(&rb->work);
764 else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
765 irq_work_queue(&rb->work);
769 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
770 .func = bpf_user_ringbuf_drain,
771 .ret_type = RET_INTEGER,
772 .arg1_type = ARG_CONST_MAP_PTR,
773 .arg2_type = ARG_PTR_TO_FUNC,
774 .arg3_type = ARG_PTR_TO_STACK_OR_NULL,
775 .arg4_type = ARG_ANYTHING,