Merge drm/drm-next into drm-intel-next
[platform/kernel/linux-rpi.git] / kernel / bpf / helpers.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/rcupdate.h>
8 #include <linux/random.h>
9 #include <linux/smp.h>
10 #include <linux/topology.h>
11 #include <linux/ktime.h>
12 #include <linux/sched.h>
13 #include <linux/uidgid.h>
14 #include <linux/filter.h>
15 #include <linux/ctype.h>
16 #include <linux/jiffies.h>
17 #include <linux/pid_namespace.h>
18 #include <linux/poison.h>
19 #include <linux/proc_ns.h>
20 #include <linux/security.h>
21 #include <linux/btf_ids.h>
22
23 #include "../../lib/kstrtox.h"
24
25 /* If kernel subsystem is allowing eBPF programs to call this function,
26  * inside its own verifier_ops->get_func_proto() callback it should return
27  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
28  *
29  * Different map implementations will rely on rcu in map methods
30  * lookup/update/delete, therefore eBPF programs must run under rcu lock
31  * if program is allowed to access maps, so check rcu_read_lock_held in
32  * all three functions.
33  */
34 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
35 {
36         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
37         return (unsigned long) map->ops->map_lookup_elem(map, key);
38 }
39
40 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
41         .func           = bpf_map_lookup_elem,
42         .gpl_only       = false,
43         .pkt_access     = true,
44         .ret_type       = RET_PTR_TO_MAP_VALUE_OR_NULL,
45         .arg1_type      = ARG_CONST_MAP_PTR,
46         .arg2_type      = ARG_PTR_TO_MAP_KEY,
47 };
48
49 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
50            void *, value, u64, flags)
51 {
52         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
53         return map->ops->map_update_elem(map, key, value, flags);
54 }
55
56 const struct bpf_func_proto bpf_map_update_elem_proto = {
57         .func           = bpf_map_update_elem,
58         .gpl_only       = false,
59         .pkt_access     = true,
60         .ret_type       = RET_INTEGER,
61         .arg1_type      = ARG_CONST_MAP_PTR,
62         .arg2_type      = ARG_PTR_TO_MAP_KEY,
63         .arg3_type      = ARG_PTR_TO_MAP_VALUE,
64         .arg4_type      = ARG_ANYTHING,
65 };
66
67 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
68 {
69         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
70         return map->ops->map_delete_elem(map, key);
71 }
72
73 const struct bpf_func_proto bpf_map_delete_elem_proto = {
74         .func           = bpf_map_delete_elem,
75         .gpl_only       = false,
76         .pkt_access     = true,
77         .ret_type       = RET_INTEGER,
78         .arg1_type      = ARG_CONST_MAP_PTR,
79         .arg2_type      = ARG_PTR_TO_MAP_KEY,
80 };
81
82 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
83 {
84         return map->ops->map_push_elem(map, value, flags);
85 }
86
87 const struct bpf_func_proto bpf_map_push_elem_proto = {
88         .func           = bpf_map_push_elem,
89         .gpl_only       = false,
90         .pkt_access     = true,
91         .ret_type       = RET_INTEGER,
92         .arg1_type      = ARG_CONST_MAP_PTR,
93         .arg2_type      = ARG_PTR_TO_MAP_VALUE,
94         .arg3_type      = ARG_ANYTHING,
95 };
96
97 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
98 {
99         return map->ops->map_pop_elem(map, value);
100 }
101
102 const struct bpf_func_proto bpf_map_pop_elem_proto = {
103         .func           = bpf_map_pop_elem,
104         .gpl_only       = false,
105         .ret_type       = RET_INTEGER,
106         .arg1_type      = ARG_CONST_MAP_PTR,
107         .arg2_type      = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
108 };
109
110 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
111 {
112         return map->ops->map_peek_elem(map, value);
113 }
114
115 const struct bpf_func_proto bpf_map_peek_elem_proto = {
116         .func           = bpf_map_peek_elem,
117         .gpl_only       = false,
118         .ret_type       = RET_INTEGER,
119         .arg1_type      = ARG_CONST_MAP_PTR,
120         .arg2_type      = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
121 };
122
123 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
124 {
125         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
126         return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
127 }
128
129 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
130         .func           = bpf_map_lookup_percpu_elem,
131         .gpl_only       = false,
132         .pkt_access     = true,
133         .ret_type       = RET_PTR_TO_MAP_VALUE_OR_NULL,
134         .arg1_type      = ARG_CONST_MAP_PTR,
135         .arg2_type      = ARG_PTR_TO_MAP_KEY,
136         .arg3_type      = ARG_ANYTHING,
137 };
138
139 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
140         .func           = bpf_user_rnd_u32,
141         .gpl_only       = false,
142         .ret_type       = RET_INTEGER,
143 };
144
145 BPF_CALL_0(bpf_get_smp_processor_id)
146 {
147         return smp_processor_id();
148 }
149
150 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
151         .func           = bpf_get_smp_processor_id,
152         .gpl_only       = false,
153         .ret_type       = RET_INTEGER,
154 };
155
156 BPF_CALL_0(bpf_get_numa_node_id)
157 {
158         return numa_node_id();
159 }
160
161 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
162         .func           = bpf_get_numa_node_id,
163         .gpl_only       = false,
164         .ret_type       = RET_INTEGER,
165 };
166
167 BPF_CALL_0(bpf_ktime_get_ns)
168 {
169         /* NMI safe access to clock monotonic */
170         return ktime_get_mono_fast_ns();
171 }
172
173 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
174         .func           = bpf_ktime_get_ns,
175         .gpl_only       = false,
176         .ret_type       = RET_INTEGER,
177 };
178
179 BPF_CALL_0(bpf_ktime_get_boot_ns)
180 {
181         /* NMI safe access to clock boottime */
182         return ktime_get_boot_fast_ns();
183 }
184
185 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
186         .func           = bpf_ktime_get_boot_ns,
187         .gpl_only       = false,
188         .ret_type       = RET_INTEGER,
189 };
190
191 BPF_CALL_0(bpf_ktime_get_coarse_ns)
192 {
193         return ktime_get_coarse_ns();
194 }
195
196 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
197         .func           = bpf_ktime_get_coarse_ns,
198         .gpl_only       = false,
199         .ret_type       = RET_INTEGER,
200 };
201
202 BPF_CALL_0(bpf_ktime_get_tai_ns)
203 {
204         /* NMI safe access to clock tai */
205         return ktime_get_tai_fast_ns();
206 }
207
208 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
209         .func           = bpf_ktime_get_tai_ns,
210         .gpl_only       = false,
211         .ret_type       = RET_INTEGER,
212 };
213
214 BPF_CALL_0(bpf_get_current_pid_tgid)
215 {
216         struct task_struct *task = current;
217
218         if (unlikely(!task))
219                 return -EINVAL;
220
221         return (u64) task->tgid << 32 | task->pid;
222 }
223
224 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
225         .func           = bpf_get_current_pid_tgid,
226         .gpl_only       = false,
227         .ret_type       = RET_INTEGER,
228 };
229
230 BPF_CALL_0(bpf_get_current_uid_gid)
231 {
232         struct task_struct *task = current;
233         kuid_t uid;
234         kgid_t gid;
235
236         if (unlikely(!task))
237                 return -EINVAL;
238
239         current_uid_gid(&uid, &gid);
240         return (u64) from_kgid(&init_user_ns, gid) << 32 |
241                      from_kuid(&init_user_ns, uid);
242 }
243
244 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
245         .func           = bpf_get_current_uid_gid,
246         .gpl_only       = false,
247         .ret_type       = RET_INTEGER,
248 };
249
250 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
251 {
252         struct task_struct *task = current;
253
254         if (unlikely(!task))
255                 goto err_clear;
256
257         /* Verifier guarantees that size > 0 */
258         strscpy(buf, task->comm, size);
259         return 0;
260 err_clear:
261         memset(buf, 0, size);
262         return -EINVAL;
263 }
264
265 const struct bpf_func_proto bpf_get_current_comm_proto = {
266         .func           = bpf_get_current_comm,
267         .gpl_only       = false,
268         .ret_type       = RET_INTEGER,
269         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
270         .arg2_type      = ARG_CONST_SIZE,
271 };
272
273 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
274
275 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
276 {
277         arch_spinlock_t *l = (void *)lock;
278         union {
279                 __u32 val;
280                 arch_spinlock_t lock;
281         } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
282
283         compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
284         BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
285         BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
286         arch_spin_lock(l);
287 }
288
289 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
290 {
291         arch_spinlock_t *l = (void *)lock;
292
293         arch_spin_unlock(l);
294 }
295
296 #else
297
298 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
299 {
300         atomic_t *l = (void *)lock;
301
302         BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
303         do {
304                 atomic_cond_read_relaxed(l, !VAL);
305         } while (atomic_xchg(l, 1));
306 }
307
308 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
309 {
310         atomic_t *l = (void *)lock;
311
312         atomic_set_release(l, 0);
313 }
314
315 #endif
316
317 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
318
319 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
320 {
321         unsigned long flags;
322
323         local_irq_save(flags);
324         __bpf_spin_lock(lock);
325         __this_cpu_write(irqsave_flags, flags);
326 }
327
328 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
329 {
330         __bpf_spin_lock_irqsave(lock);
331         return 0;
332 }
333
334 const struct bpf_func_proto bpf_spin_lock_proto = {
335         .func           = bpf_spin_lock,
336         .gpl_only       = false,
337         .ret_type       = RET_VOID,
338         .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
339 };
340
341 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
342 {
343         unsigned long flags;
344
345         flags = __this_cpu_read(irqsave_flags);
346         __bpf_spin_unlock(lock);
347         local_irq_restore(flags);
348 }
349
350 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
351 {
352         __bpf_spin_unlock_irqrestore(lock);
353         return 0;
354 }
355
356 const struct bpf_func_proto bpf_spin_unlock_proto = {
357         .func           = bpf_spin_unlock,
358         .gpl_only       = false,
359         .ret_type       = RET_VOID,
360         .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
361 };
362
363 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
364                            bool lock_src)
365 {
366         struct bpf_spin_lock *lock;
367
368         if (lock_src)
369                 lock = src + map->spin_lock_off;
370         else
371                 lock = dst + map->spin_lock_off;
372         preempt_disable();
373         __bpf_spin_lock_irqsave(lock);
374         copy_map_value(map, dst, src);
375         __bpf_spin_unlock_irqrestore(lock);
376         preempt_enable();
377 }
378
379 BPF_CALL_0(bpf_jiffies64)
380 {
381         return get_jiffies_64();
382 }
383
384 const struct bpf_func_proto bpf_jiffies64_proto = {
385         .func           = bpf_jiffies64,
386         .gpl_only       = false,
387         .ret_type       = RET_INTEGER,
388 };
389
390 #ifdef CONFIG_CGROUPS
391 BPF_CALL_0(bpf_get_current_cgroup_id)
392 {
393         struct cgroup *cgrp;
394         u64 cgrp_id;
395
396         rcu_read_lock();
397         cgrp = task_dfl_cgroup(current);
398         cgrp_id = cgroup_id(cgrp);
399         rcu_read_unlock();
400
401         return cgrp_id;
402 }
403
404 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
405         .func           = bpf_get_current_cgroup_id,
406         .gpl_only       = false,
407         .ret_type       = RET_INTEGER,
408 };
409
410 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
411 {
412         struct cgroup *cgrp;
413         struct cgroup *ancestor;
414         u64 cgrp_id;
415
416         rcu_read_lock();
417         cgrp = task_dfl_cgroup(current);
418         ancestor = cgroup_ancestor(cgrp, ancestor_level);
419         cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
420         rcu_read_unlock();
421
422         return cgrp_id;
423 }
424
425 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
426         .func           = bpf_get_current_ancestor_cgroup_id,
427         .gpl_only       = false,
428         .ret_type       = RET_INTEGER,
429         .arg1_type      = ARG_ANYTHING,
430 };
431 #endif /* CONFIG_CGROUPS */
432
433 #define BPF_STRTOX_BASE_MASK 0x1F
434
435 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
436                           unsigned long long *res, bool *is_negative)
437 {
438         unsigned int base = flags & BPF_STRTOX_BASE_MASK;
439         const char *cur_buf = buf;
440         size_t cur_len = buf_len;
441         unsigned int consumed;
442         size_t val_len;
443         char str[64];
444
445         if (!buf || !buf_len || !res || !is_negative)
446                 return -EINVAL;
447
448         if (base != 0 && base != 8 && base != 10 && base != 16)
449                 return -EINVAL;
450
451         if (flags & ~BPF_STRTOX_BASE_MASK)
452                 return -EINVAL;
453
454         while (cur_buf < buf + buf_len && isspace(*cur_buf))
455                 ++cur_buf;
456
457         *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
458         if (*is_negative)
459                 ++cur_buf;
460
461         consumed = cur_buf - buf;
462         cur_len -= consumed;
463         if (!cur_len)
464                 return -EINVAL;
465
466         cur_len = min(cur_len, sizeof(str) - 1);
467         memcpy(str, cur_buf, cur_len);
468         str[cur_len] = '\0';
469         cur_buf = str;
470
471         cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
472         val_len = _parse_integer(cur_buf, base, res);
473
474         if (val_len & KSTRTOX_OVERFLOW)
475                 return -ERANGE;
476
477         if (val_len == 0)
478                 return -EINVAL;
479
480         cur_buf += val_len;
481         consumed += cur_buf - str;
482
483         return consumed;
484 }
485
486 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
487                          long long *res)
488 {
489         unsigned long long _res;
490         bool is_negative;
491         int err;
492
493         err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
494         if (err < 0)
495                 return err;
496         if (is_negative) {
497                 if ((long long)-_res > 0)
498                         return -ERANGE;
499                 *res = -_res;
500         } else {
501                 if ((long long)_res < 0)
502                         return -ERANGE;
503                 *res = _res;
504         }
505         return err;
506 }
507
508 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
509            long *, res)
510 {
511         long long _res;
512         int err;
513
514         err = __bpf_strtoll(buf, buf_len, flags, &_res);
515         if (err < 0)
516                 return err;
517         if (_res != (long)_res)
518                 return -ERANGE;
519         *res = _res;
520         return err;
521 }
522
523 const struct bpf_func_proto bpf_strtol_proto = {
524         .func           = bpf_strtol,
525         .gpl_only       = false,
526         .ret_type       = RET_INTEGER,
527         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
528         .arg2_type      = ARG_CONST_SIZE,
529         .arg3_type      = ARG_ANYTHING,
530         .arg4_type      = ARG_PTR_TO_LONG,
531 };
532
533 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
534            unsigned long *, res)
535 {
536         unsigned long long _res;
537         bool is_negative;
538         int err;
539
540         err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
541         if (err < 0)
542                 return err;
543         if (is_negative)
544                 return -EINVAL;
545         if (_res != (unsigned long)_res)
546                 return -ERANGE;
547         *res = _res;
548         return err;
549 }
550
551 const struct bpf_func_proto bpf_strtoul_proto = {
552         .func           = bpf_strtoul,
553         .gpl_only       = false,
554         .ret_type       = RET_INTEGER,
555         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
556         .arg2_type      = ARG_CONST_SIZE,
557         .arg3_type      = ARG_ANYTHING,
558         .arg4_type      = ARG_PTR_TO_LONG,
559 };
560
561 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
562 {
563         return strncmp(s1, s2, s1_sz);
564 }
565
566 static const struct bpf_func_proto bpf_strncmp_proto = {
567         .func           = bpf_strncmp,
568         .gpl_only       = false,
569         .ret_type       = RET_INTEGER,
570         .arg1_type      = ARG_PTR_TO_MEM,
571         .arg2_type      = ARG_CONST_SIZE,
572         .arg3_type      = ARG_PTR_TO_CONST_STR,
573 };
574
575 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
576            struct bpf_pidns_info *, nsdata, u32, size)
577 {
578         struct task_struct *task = current;
579         struct pid_namespace *pidns;
580         int err = -EINVAL;
581
582         if (unlikely(size != sizeof(struct bpf_pidns_info)))
583                 goto clear;
584
585         if (unlikely((u64)(dev_t)dev != dev))
586                 goto clear;
587
588         if (unlikely(!task))
589                 goto clear;
590
591         pidns = task_active_pid_ns(task);
592         if (unlikely(!pidns)) {
593                 err = -ENOENT;
594                 goto clear;
595         }
596
597         if (!ns_match(&pidns->ns, (dev_t)dev, ino))
598                 goto clear;
599
600         nsdata->pid = task_pid_nr_ns(task, pidns);
601         nsdata->tgid = task_tgid_nr_ns(task, pidns);
602         return 0;
603 clear:
604         memset((void *)nsdata, 0, (size_t) size);
605         return err;
606 }
607
608 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
609         .func           = bpf_get_ns_current_pid_tgid,
610         .gpl_only       = false,
611         .ret_type       = RET_INTEGER,
612         .arg1_type      = ARG_ANYTHING,
613         .arg2_type      = ARG_ANYTHING,
614         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
615         .arg4_type      = ARG_CONST_SIZE,
616 };
617
618 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
619         .func           = bpf_get_raw_cpu_id,
620         .gpl_only       = false,
621         .ret_type       = RET_INTEGER,
622 };
623
624 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
625            u64, flags, void *, data, u64, size)
626 {
627         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
628                 return -EINVAL;
629
630         return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
631 }
632
633 const struct bpf_func_proto bpf_event_output_data_proto =  {
634         .func           = bpf_event_output_data,
635         .gpl_only       = true,
636         .ret_type       = RET_INTEGER,
637         .arg1_type      = ARG_PTR_TO_CTX,
638         .arg2_type      = ARG_CONST_MAP_PTR,
639         .arg3_type      = ARG_ANYTHING,
640         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
641         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
642 };
643
644 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
645            const void __user *, user_ptr)
646 {
647         int ret = copy_from_user(dst, user_ptr, size);
648
649         if (unlikely(ret)) {
650                 memset(dst, 0, size);
651                 ret = -EFAULT;
652         }
653
654         return ret;
655 }
656
657 const struct bpf_func_proto bpf_copy_from_user_proto = {
658         .func           = bpf_copy_from_user,
659         .gpl_only       = false,
660         .ret_type       = RET_INTEGER,
661         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
662         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
663         .arg3_type      = ARG_ANYTHING,
664 };
665
666 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
667            const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
668 {
669         int ret;
670
671         /* flags is not used yet */
672         if (unlikely(flags))
673                 return -EINVAL;
674
675         if (unlikely(!size))
676                 return 0;
677
678         ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
679         if (ret == size)
680                 return 0;
681
682         memset(dst, 0, size);
683         /* Return -EFAULT for partial read */
684         return ret < 0 ? ret : -EFAULT;
685 }
686
687 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
688         .func           = bpf_copy_from_user_task,
689         .gpl_only       = true,
690         .ret_type       = RET_INTEGER,
691         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
692         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
693         .arg3_type      = ARG_ANYTHING,
694         .arg4_type      = ARG_PTR_TO_BTF_ID,
695         .arg4_btf_id    = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
696         .arg5_type      = ARG_ANYTHING
697 };
698
699 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
700 {
701         if (cpu >= nr_cpu_ids)
702                 return (unsigned long)NULL;
703
704         return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
705 }
706
707 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
708         .func           = bpf_per_cpu_ptr,
709         .gpl_only       = false,
710         .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
711         .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
712         .arg2_type      = ARG_ANYTHING,
713 };
714
715 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
716 {
717         return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
718 }
719
720 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
721         .func           = bpf_this_cpu_ptr,
722         .gpl_only       = false,
723         .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
724         .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
725 };
726
727 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
728                 size_t bufsz)
729 {
730         void __user *user_ptr = (__force void __user *)unsafe_ptr;
731
732         buf[0] = 0;
733
734         switch (fmt_ptype) {
735         case 's':
736 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
737                 if ((unsigned long)unsafe_ptr < TASK_SIZE)
738                         return strncpy_from_user_nofault(buf, user_ptr, bufsz);
739                 fallthrough;
740 #endif
741         case 'k':
742                 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
743         case 'u':
744                 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
745         }
746
747         return -EINVAL;
748 }
749
750 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
751  * arguments representation.
752  */
753 #define MAX_BPRINTF_BUF_LEN     512
754
755 /* Support executing three nested bprintf helper calls on a given CPU */
756 #define MAX_BPRINTF_NEST_LEVEL  3
757 struct bpf_bprintf_buffers {
758         char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
759 };
760 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
761 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
762
763 static int try_get_fmt_tmp_buf(char **tmp_buf)
764 {
765         struct bpf_bprintf_buffers *bufs;
766         int nest_level;
767
768         preempt_disable();
769         nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
770         if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
771                 this_cpu_dec(bpf_bprintf_nest_level);
772                 preempt_enable();
773                 return -EBUSY;
774         }
775         bufs = this_cpu_ptr(&bpf_bprintf_bufs);
776         *tmp_buf = bufs->tmp_bufs[nest_level - 1];
777
778         return 0;
779 }
780
781 void bpf_bprintf_cleanup(void)
782 {
783         if (this_cpu_read(bpf_bprintf_nest_level)) {
784                 this_cpu_dec(bpf_bprintf_nest_level);
785                 preempt_enable();
786         }
787 }
788
789 /*
790  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
791  *
792  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
793  *
794  * This can be used in two ways:
795  * - Format string verification only: when bin_args is NULL
796  * - Arguments preparation: in addition to the above verification, it writes in
797  *   bin_args a binary representation of arguments usable by bstr_printf where
798  *   pointers from BPF have been sanitized.
799  *
800  * In argument preparation mode, if 0 is returned, safe temporary buffers are
801  * allocated and bpf_bprintf_cleanup should be called to free them after use.
802  */
803 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
804                         u32 **bin_args, u32 num_args)
805 {
806         char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
807         size_t sizeof_cur_arg, sizeof_cur_ip;
808         int err, i, num_spec = 0;
809         u64 cur_arg;
810         char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
811
812         fmt_end = strnchr(fmt, fmt_size, 0);
813         if (!fmt_end)
814                 return -EINVAL;
815         fmt_size = fmt_end - fmt;
816
817         if (bin_args) {
818                 if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
819                         return -EBUSY;
820
821                 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
822                 *bin_args = (u32 *)tmp_buf;
823         }
824
825         for (i = 0; i < fmt_size; i++) {
826                 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
827                         err = -EINVAL;
828                         goto out;
829                 }
830
831                 if (fmt[i] != '%')
832                         continue;
833
834                 if (fmt[i + 1] == '%') {
835                         i++;
836                         continue;
837                 }
838
839                 if (num_spec >= num_args) {
840                         err = -EINVAL;
841                         goto out;
842                 }
843
844                 /* The string is zero-terminated so if fmt[i] != 0, we can
845                  * always access fmt[i + 1], in the worst case it will be a 0
846                  */
847                 i++;
848
849                 /* skip optional "[0 +-][num]" width formatting field */
850                 while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
851                        fmt[i] == ' ')
852                         i++;
853                 if (fmt[i] >= '1' && fmt[i] <= '9') {
854                         i++;
855                         while (fmt[i] >= '0' && fmt[i] <= '9')
856                                 i++;
857                 }
858
859                 if (fmt[i] == 'p') {
860                         sizeof_cur_arg = sizeof(long);
861
862                         if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
863                             fmt[i + 2] == 's') {
864                                 fmt_ptype = fmt[i + 1];
865                                 i += 2;
866                                 goto fmt_str;
867                         }
868
869                         if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
870                             ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
871                             fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
872                             fmt[i + 1] == 'S') {
873                                 /* just kernel pointers */
874                                 if (tmp_buf)
875                                         cur_arg = raw_args[num_spec];
876                                 i++;
877                                 goto nocopy_fmt;
878                         }
879
880                         if (fmt[i + 1] == 'B') {
881                                 if (tmp_buf)  {
882                                         err = snprintf(tmp_buf,
883                                                        (tmp_buf_end - tmp_buf),
884                                                        "%pB",
885                                                        (void *)(long)raw_args[num_spec]);
886                                         tmp_buf += (err + 1);
887                                 }
888
889                                 i++;
890                                 num_spec++;
891                                 continue;
892                         }
893
894                         /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
895                         if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
896                             (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
897                                 err = -EINVAL;
898                                 goto out;
899                         }
900
901                         i += 2;
902                         if (!tmp_buf)
903                                 goto nocopy_fmt;
904
905                         sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
906                         if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
907                                 err = -ENOSPC;
908                                 goto out;
909                         }
910
911                         unsafe_ptr = (char *)(long)raw_args[num_spec];
912                         err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
913                                                        sizeof_cur_ip);
914                         if (err < 0)
915                                 memset(cur_ip, 0, sizeof_cur_ip);
916
917                         /* hack: bstr_printf expects IP addresses to be
918                          * pre-formatted as strings, ironically, the easiest way
919                          * to do that is to call snprintf.
920                          */
921                         ip_spec[2] = fmt[i - 1];
922                         ip_spec[3] = fmt[i];
923                         err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
924                                        ip_spec, &cur_ip);
925
926                         tmp_buf += err + 1;
927                         num_spec++;
928
929                         continue;
930                 } else if (fmt[i] == 's') {
931                         fmt_ptype = fmt[i];
932 fmt_str:
933                         if (fmt[i + 1] != 0 &&
934                             !isspace(fmt[i + 1]) &&
935                             !ispunct(fmt[i + 1])) {
936                                 err = -EINVAL;
937                                 goto out;
938                         }
939
940                         if (!tmp_buf)
941                                 goto nocopy_fmt;
942
943                         if (tmp_buf_end == tmp_buf) {
944                                 err = -ENOSPC;
945                                 goto out;
946                         }
947
948                         unsafe_ptr = (char *)(long)raw_args[num_spec];
949                         err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
950                                                     fmt_ptype,
951                                                     tmp_buf_end - tmp_buf);
952                         if (err < 0) {
953                                 tmp_buf[0] = '\0';
954                                 err = 1;
955                         }
956
957                         tmp_buf += err;
958                         num_spec++;
959
960                         continue;
961                 } else if (fmt[i] == 'c') {
962                         if (!tmp_buf)
963                                 goto nocopy_fmt;
964
965                         if (tmp_buf_end == tmp_buf) {
966                                 err = -ENOSPC;
967                                 goto out;
968                         }
969
970                         *tmp_buf = raw_args[num_spec];
971                         tmp_buf++;
972                         num_spec++;
973
974                         continue;
975                 }
976
977                 sizeof_cur_arg = sizeof(int);
978
979                 if (fmt[i] == 'l') {
980                         sizeof_cur_arg = sizeof(long);
981                         i++;
982                 }
983                 if (fmt[i] == 'l') {
984                         sizeof_cur_arg = sizeof(long long);
985                         i++;
986                 }
987
988                 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
989                     fmt[i] != 'x' && fmt[i] != 'X') {
990                         err = -EINVAL;
991                         goto out;
992                 }
993
994                 if (tmp_buf)
995                         cur_arg = raw_args[num_spec];
996 nocopy_fmt:
997                 if (tmp_buf) {
998                         tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
999                         if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1000                                 err = -ENOSPC;
1001                                 goto out;
1002                         }
1003
1004                         if (sizeof_cur_arg == 8) {
1005                                 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1006                                 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1007                         } else {
1008                                 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1009                         }
1010                         tmp_buf += sizeof_cur_arg;
1011                 }
1012                 num_spec++;
1013         }
1014
1015         err = 0;
1016 out:
1017         if (err)
1018                 bpf_bprintf_cleanup();
1019         return err;
1020 }
1021
1022 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1023            const void *, data, u32, data_len)
1024 {
1025         int err, num_args;
1026         u32 *bin_args;
1027
1028         if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1029             (data_len && !data))
1030                 return -EINVAL;
1031         num_args = data_len / 8;
1032
1033         /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1034          * can safely give an unbounded size.
1035          */
1036         err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
1037         if (err < 0)
1038                 return err;
1039
1040         err = bstr_printf(str, str_size, fmt, bin_args);
1041
1042         bpf_bprintf_cleanup();
1043
1044         return err + 1;
1045 }
1046
1047 const struct bpf_func_proto bpf_snprintf_proto = {
1048         .func           = bpf_snprintf,
1049         .gpl_only       = true,
1050         .ret_type       = RET_INTEGER,
1051         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1052         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1053         .arg3_type      = ARG_PTR_TO_CONST_STR,
1054         .arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1055         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
1056 };
1057
1058 /* BPF map elements can contain 'struct bpf_timer'.
1059  * Such map owns all of its BPF timers.
1060  * 'struct bpf_timer' is allocated as part of map element allocation
1061  * and it's zero initialized.
1062  * That space is used to keep 'struct bpf_timer_kern'.
1063  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1064  * remembers 'struct bpf_map *' pointer it's part of.
1065  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1066  * bpf_timer_start() arms the timer.
1067  * If user space reference to a map goes to zero at this point
1068  * ops->map_release_uref callback is responsible for cancelling the timers,
1069  * freeing their memory, and decrementing prog's refcnts.
1070  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1071  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1072  * freeing the timers when inner map is replaced or deleted by user space.
1073  */
1074 struct bpf_hrtimer {
1075         struct hrtimer timer;
1076         struct bpf_map *map;
1077         struct bpf_prog *prog;
1078         void __rcu *callback_fn;
1079         void *value;
1080 };
1081
1082 /* the actual struct hidden inside uapi struct bpf_timer */
1083 struct bpf_timer_kern {
1084         struct bpf_hrtimer *timer;
1085         /* bpf_spin_lock is used here instead of spinlock_t to make
1086          * sure that it always fits into space reserved by struct bpf_timer
1087          * regardless of LOCKDEP and spinlock debug flags.
1088          */
1089         struct bpf_spin_lock lock;
1090 } __attribute__((aligned(8)));
1091
1092 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1093
1094 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1095 {
1096         struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1097         struct bpf_map *map = t->map;
1098         void *value = t->value;
1099         bpf_callback_t callback_fn;
1100         void *key;
1101         u32 idx;
1102
1103         BTF_TYPE_EMIT(struct bpf_timer);
1104         callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1105         if (!callback_fn)
1106                 goto out;
1107
1108         /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1109          * cannot be preempted by another bpf_timer_cb() on the same cpu.
1110          * Remember the timer this callback is servicing to prevent
1111          * deadlock if callback_fn() calls bpf_timer_cancel() or
1112          * bpf_map_delete_elem() on the same timer.
1113          */
1114         this_cpu_write(hrtimer_running, t);
1115         if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1116                 struct bpf_array *array = container_of(map, struct bpf_array, map);
1117
1118                 /* compute the key */
1119                 idx = ((char *)value - array->value) / array->elem_size;
1120                 key = &idx;
1121         } else { /* hash or lru */
1122                 key = value - round_up(map->key_size, 8);
1123         }
1124
1125         callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1126         /* The verifier checked that return value is zero. */
1127
1128         this_cpu_write(hrtimer_running, NULL);
1129 out:
1130         return HRTIMER_NORESTART;
1131 }
1132
1133 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1134            u64, flags)
1135 {
1136         clockid_t clockid = flags & (MAX_CLOCKS - 1);
1137         struct bpf_hrtimer *t;
1138         int ret = 0;
1139
1140         BUILD_BUG_ON(MAX_CLOCKS != 16);
1141         BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1142         BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1143
1144         if (in_nmi())
1145                 return -EOPNOTSUPP;
1146
1147         if (flags >= MAX_CLOCKS ||
1148             /* similar to timerfd except _ALARM variants are not supported */
1149             (clockid != CLOCK_MONOTONIC &&
1150              clockid != CLOCK_REALTIME &&
1151              clockid != CLOCK_BOOTTIME))
1152                 return -EINVAL;
1153         __bpf_spin_lock_irqsave(&timer->lock);
1154         t = timer->timer;
1155         if (t) {
1156                 ret = -EBUSY;
1157                 goto out;
1158         }
1159         if (!atomic64_read(&map->usercnt)) {
1160                 /* maps with timers must be either held by user space
1161                  * or pinned in bpffs.
1162                  */
1163                 ret = -EPERM;
1164                 goto out;
1165         }
1166         /* allocate hrtimer via map_kmalloc to use memcg accounting */
1167         t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1168         if (!t) {
1169                 ret = -ENOMEM;
1170                 goto out;
1171         }
1172         t->value = (void *)timer - map->timer_off;
1173         t->map = map;
1174         t->prog = NULL;
1175         rcu_assign_pointer(t->callback_fn, NULL);
1176         hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1177         t->timer.function = bpf_timer_cb;
1178         timer->timer = t;
1179 out:
1180         __bpf_spin_unlock_irqrestore(&timer->lock);
1181         return ret;
1182 }
1183
1184 static const struct bpf_func_proto bpf_timer_init_proto = {
1185         .func           = bpf_timer_init,
1186         .gpl_only       = true,
1187         .ret_type       = RET_INTEGER,
1188         .arg1_type      = ARG_PTR_TO_TIMER,
1189         .arg2_type      = ARG_CONST_MAP_PTR,
1190         .arg3_type      = ARG_ANYTHING,
1191 };
1192
1193 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1194            struct bpf_prog_aux *, aux)
1195 {
1196         struct bpf_prog *prev, *prog = aux->prog;
1197         struct bpf_hrtimer *t;
1198         int ret = 0;
1199
1200         if (in_nmi())
1201                 return -EOPNOTSUPP;
1202         __bpf_spin_lock_irqsave(&timer->lock);
1203         t = timer->timer;
1204         if (!t) {
1205                 ret = -EINVAL;
1206                 goto out;
1207         }
1208         if (!atomic64_read(&t->map->usercnt)) {
1209                 /* maps with timers must be either held by user space
1210                  * or pinned in bpffs. Otherwise timer might still be
1211                  * running even when bpf prog is detached and user space
1212                  * is gone, since map_release_uref won't ever be called.
1213                  */
1214                 ret = -EPERM;
1215                 goto out;
1216         }
1217         prev = t->prog;
1218         if (prev != prog) {
1219                 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1220                  * can pick different callback_fn-s within the same prog.
1221                  */
1222                 prog = bpf_prog_inc_not_zero(prog);
1223                 if (IS_ERR(prog)) {
1224                         ret = PTR_ERR(prog);
1225                         goto out;
1226                 }
1227                 if (prev)
1228                         /* Drop prev prog refcnt when swapping with new prog */
1229                         bpf_prog_put(prev);
1230                 t->prog = prog;
1231         }
1232         rcu_assign_pointer(t->callback_fn, callback_fn);
1233 out:
1234         __bpf_spin_unlock_irqrestore(&timer->lock);
1235         return ret;
1236 }
1237
1238 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1239         .func           = bpf_timer_set_callback,
1240         .gpl_only       = true,
1241         .ret_type       = RET_INTEGER,
1242         .arg1_type      = ARG_PTR_TO_TIMER,
1243         .arg2_type      = ARG_PTR_TO_FUNC,
1244 };
1245
1246 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1247 {
1248         struct bpf_hrtimer *t;
1249         int ret = 0;
1250
1251         if (in_nmi())
1252                 return -EOPNOTSUPP;
1253         if (flags)
1254                 return -EINVAL;
1255         __bpf_spin_lock_irqsave(&timer->lock);
1256         t = timer->timer;
1257         if (!t || !t->prog) {
1258                 ret = -EINVAL;
1259                 goto out;
1260         }
1261         hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1262 out:
1263         __bpf_spin_unlock_irqrestore(&timer->lock);
1264         return ret;
1265 }
1266
1267 static const struct bpf_func_proto bpf_timer_start_proto = {
1268         .func           = bpf_timer_start,
1269         .gpl_only       = true,
1270         .ret_type       = RET_INTEGER,
1271         .arg1_type      = ARG_PTR_TO_TIMER,
1272         .arg2_type      = ARG_ANYTHING,
1273         .arg3_type      = ARG_ANYTHING,
1274 };
1275
1276 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1277 {
1278         struct bpf_prog *prog = t->prog;
1279
1280         if (prog) {
1281                 bpf_prog_put(prog);
1282                 t->prog = NULL;
1283                 rcu_assign_pointer(t->callback_fn, NULL);
1284         }
1285 }
1286
1287 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1288 {
1289         struct bpf_hrtimer *t;
1290         int ret = 0;
1291
1292         if (in_nmi())
1293                 return -EOPNOTSUPP;
1294         __bpf_spin_lock_irqsave(&timer->lock);
1295         t = timer->timer;
1296         if (!t) {
1297                 ret = -EINVAL;
1298                 goto out;
1299         }
1300         if (this_cpu_read(hrtimer_running) == t) {
1301                 /* If bpf callback_fn is trying to bpf_timer_cancel()
1302                  * its own timer the hrtimer_cancel() will deadlock
1303                  * since it waits for callback_fn to finish
1304                  */
1305                 ret = -EDEADLK;
1306                 goto out;
1307         }
1308         drop_prog_refcnt(t);
1309 out:
1310         __bpf_spin_unlock_irqrestore(&timer->lock);
1311         /* Cancel the timer and wait for associated callback to finish
1312          * if it was running.
1313          */
1314         ret = ret ?: hrtimer_cancel(&t->timer);
1315         return ret;
1316 }
1317
1318 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1319         .func           = bpf_timer_cancel,
1320         .gpl_only       = true,
1321         .ret_type       = RET_INTEGER,
1322         .arg1_type      = ARG_PTR_TO_TIMER,
1323 };
1324
1325 /* This function is called by map_delete/update_elem for individual element and
1326  * by ops->map_release_uref when the user space reference to a map reaches zero.
1327  */
1328 void bpf_timer_cancel_and_free(void *val)
1329 {
1330         struct bpf_timer_kern *timer = val;
1331         struct bpf_hrtimer *t;
1332
1333         /* Performance optimization: read timer->timer without lock first. */
1334         if (!READ_ONCE(timer->timer))
1335                 return;
1336
1337         __bpf_spin_lock_irqsave(&timer->lock);
1338         /* re-read it under lock */
1339         t = timer->timer;
1340         if (!t)
1341                 goto out;
1342         drop_prog_refcnt(t);
1343         /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1344          * this timer, since it won't be initialized.
1345          */
1346         timer->timer = NULL;
1347 out:
1348         __bpf_spin_unlock_irqrestore(&timer->lock);
1349         if (!t)
1350                 return;
1351         /* Cancel the timer and wait for callback to complete if it was running.
1352          * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1353          * right after for both preallocated and non-preallocated maps.
1354          * The timer->timer = NULL was already done and no code path can
1355          * see address 't' anymore.
1356          *
1357          * Check that bpf_map_delete/update_elem() wasn't called from timer
1358          * callback_fn. In such case don't call hrtimer_cancel() (since it will
1359          * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1360          * return -1). Though callback_fn is still running on this cpu it's
1361          * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1362          * from 't'. The bpf subprog callback_fn won't be able to access 't',
1363          * since timer->timer = NULL was already done. The timer will be
1364          * effectively cancelled because bpf_timer_cb() will return
1365          * HRTIMER_NORESTART.
1366          */
1367         if (this_cpu_read(hrtimer_running) != t)
1368                 hrtimer_cancel(&t->timer);
1369         kfree(t);
1370 }
1371
1372 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1373 {
1374         unsigned long *kptr = map_value;
1375
1376         return xchg(kptr, (unsigned long)ptr);
1377 }
1378
1379 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1380  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1381  * denote type that verifier will determine.
1382  */
1383 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1384         .func         = bpf_kptr_xchg,
1385         .gpl_only     = false,
1386         .ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1387         .ret_btf_id   = BPF_PTR_POISON,
1388         .arg1_type    = ARG_PTR_TO_KPTR,
1389         .arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1390         .arg2_btf_id  = BPF_PTR_POISON,
1391 };
1392
1393 /* Since the upper 8 bits of dynptr->size is reserved, the
1394  * maximum supported size is 2^24 - 1.
1395  */
1396 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1397 #define DYNPTR_TYPE_SHIFT       28
1398 #define DYNPTR_SIZE_MASK        0xFFFFFF
1399 #define DYNPTR_RDONLY_BIT       BIT(31)
1400
1401 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
1402 {
1403         return ptr->size & DYNPTR_RDONLY_BIT;
1404 }
1405
1406 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1407 {
1408         ptr->size |= type << DYNPTR_TYPE_SHIFT;
1409 }
1410
1411 u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr)
1412 {
1413         return ptr->size & DYNPTR_SIZE_MASK;
1414 }
1415
1416 int bpf_dynptr_check_size(u32 size)
1417 {
1418         return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1419 }
1420
1421 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1422                      enum bpf_dynptr_type type, u32 offset, u32 size)
1423 {
1424         ptr->data = data;
1425         ptr->offset = offset;
1426         ptr->size = size;
1427         bpf_dynptr_set_type(ptr, type);
1428 }
1429
1430 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1431 {
1432         memset(ptr, 0, sizeof(*ptr));
1433 }
1434
1435 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1436 {
1437         u32 size = bpf_dynptr_get_size(ptr);
1438
1439         if (len > size || offset > size - len)
1440                 return -E2BIG;
1441
1442         return 0;
1443 }
1444
1445 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1446 {
1447         int err;
1448
1449         BTF_TYPE_EMIT(struct bpf_dynptr);
1450
1451         err = bpf_dynptr_check_size(size);
1452         if (err)
1453                 goto error;
1454
1455         /* flags is currently unsupported */
1456         if (flags) {
1457                 err = -EINVAL;
1458                 goto error;
1459         }
1460
1461         bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1462
1463         return 0;
1464
1465 error:
1466         bpf_dynptr_set_null(ptr);
1467         return err;
1468 }
1469
1470 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1471         .func           = bpf_dynptr_from_mem,
1472         .gpl_only       = false,
1473         .ret_type       = RET_INTEGER,
1474         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
1475         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1476         .arg3_type      = ARG_ANYTHING,
1477         .arg4_type      = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1478 };
1479
1480 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src,
1481            u32, offset, u64, flags)
1482 {
1483         int err;
1484
1485         if (!src->data || flags)
1486                 return -EINVAL;
1487
1488         err = bpf_dynptr_check_off_len(src, offset, len);
1489         if (err)
1490                 return err;
1491
1492         memcpy(dst, src->data + src->offset + offset, len);
1493
1494         return 0;
1495 }
1496
1497 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1498         .func           = bpf_dynptr_read,
1499         .gpl_only       = false,
1500         .ret_type       = RET_INTEGER,
1501         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
1502         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1503         .arg3_type      = ARG_PTR_TO_DYNPTR,
1504         .arg4_type      = ARG_ANYTHING,
1505         .arg5_type      = ARG_ANYTHING,
1506 };
1507
1508 BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1509            u32, len, u64, flags)
1510 {
1511         int err;
1512
1513         if (!dst->data || flags || bpf_dynptr_is_rdonly(dst))
1514                 return -EINVAL;
1515
1516         err = bpf_dynptr_check_off_len(dst, offset, len);
1517         if (err)
1518                 return err;
1519
1520         memcpy(dst->data + dst->offset + offset, src, len);
1521
1522         return 0;
1523 }
1524
1525 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1526         .func           = bpf_dynptr_write,
1527         .gpl_only       = false,
1528         .ret_type       = RET_INTEGER,
1529         .arg1_type      = ARG_PTR_TO_DYNPTR,
1530         .arg2_type      = ARG_ANYTHING,
1531         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1532         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1533         .arg5_type      = ARG_ANYTHING,
1534 };
1535
1536 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1537 {
1538         int err;
1539
1540         if (!ptr->data)
1541                 return 0;
1542
1543         err = bpf_dynptr_check_off_len(ptr, offset, len);
1544         if (err)
1545                 return 0;
1546
1547         if (bpf_dynptr_is_rdonly(ptr))
1548                 return 0;
1549
1550         return (unsigned long)(ptr->data + ptr->offset + offset);
1551 }
1552
1553 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1554         .func           = bpf_dynptr_data,
1555         .gpl_only       = false,
1556         .ret_type       = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1557         .arg1_type      = ARG_PTR_TO_DYNPTR,
1558         .arg2_type      = ARG_ANYTHING,
1559         .arg3_type      = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1560 };
1561
1562 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1563 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1564 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1565 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1566 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1567 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1568 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1569
1570 const struct bpf_func_proto *
1571 bpf_base_func_proto(enum bpf_func_id func_id)
1572 {
1573         switch (func_id) {
1574         case BPF_FUNC_map_lookup_elem:
1575                 return &bpf_map_lookup_elem_proto;
1576         case BPF_FUNC_map_update_elem:
1577                 return &bpf_map_update_elem_proto;
1578         case BPF_FUNC_map_delete_elem:
1579                 return &bpf_map_delete_elem_proto;
1580         case BPF_FUNC_map_push_elem:
1581                 return &bpf_map_push_elem_proto;
1582         case BPF_FUNC_map_pop_elem:
1583                 return &bpf_map_pop_elem_proto;
1584         case BPF_FUNC_map_peek_elem:
1585                 return &bpf_map_peek_elem_proto;
1586         case BPF_FUNC_map_lookup_percpu_elem:
1587                 return &bpf_map_lookup_percpu_elem_proto;
1588         case BPF_FUNC_get_prandom_u32:
1589                 return &bpf_get_prandom_u32_proto;
1590         case BPF_FUNC_get_smp_processor_id:
1591                 return &bpf_get_raw_smp_processor_id_proto;
1592         case BPF_FUNC_get_numa_node_id:
1593                 return &bpf_get_numa_node_id_proto;
1594         case BPF_FUNC_tail_call:
1595                 return &bpf_tail_call_proto;
1596         case BPF_FUNC_ktime_get_ns:
1597                 return &bpf_ktime_get_ns_proto;
1598         case BPF_FUNC_ktime_get_boot_ns:
1599                 return &bpf_ktime_get_boot_ns_proto;
1600         case BPF_FUNC_ktime_get_tai_ns:
1601                 return &bpf_ktime_get_tai_ns_proto;
1602         case BPF_FUNC_ringbuf_output:
1603                 return &bpf_ringbuf_output_proto;
1604         case BPF_FUNC_ringbuf_reserve:
1605                 return &bpf_ringbuf_reserve_proto;
1606         case BPF_FUNC_ringbuf_submit:
1607                 return &bpf_ringbuf_submit_proto;
1608         case BPF_FUNC_ringbuf_discard:
1609                 return &bpf_ringbuf_discard_proto;
1610         case BPF_FUNC_ringbuf_query:
1611                 return &bpf_ringbuf_query_proto;
1612         case BPF_FUNC_strncmp:
1613                 return &bpf_strncmp_proto;
1614         case BPF_FUNC_strtol:
1615                 return &bpf_strtol_proto;
1616         case BPF_FUNC_strtoul:
1617                 return &bpf_strtoul_proto;
1618         default:
1619                 break;
1620         }
1621
1622         if (!bpf_capable())
1623                 return NULL;
1624
1625         switch (func_id) {
1626         case BPF_FUNC_spin_lock:
1627                 return &bpf_spin_lock_proto;
1628         case BPF_FUNC_spin_unlock:
1629                 return &bpf_spin_unlock_proto;
1630         case BPF_FUNC_jiffies64:
1631                 return &bpf_jiffies64_proto;
1632         case BPF_FUNC_per_cpu_ptr:
1633                 return &bpf_per_cpu_ptr_proto;
1634         case BPF_FUNC_this_cpu_ptr:
1635                 return &bpf_this_cpu_ptr_proto;
1636         case BPF_FUNC_timer_init:
1637                 return &bpf_timer_init_proto;
1638         case BPF_FUNC_timer_set_callback:
1639                 return &bpf_timer_set_callback_proto;
1640         case BPF_FUNC_timer_start:
1641                 return &bpf_timer_start_proto;
1642         case BPF_FUNC_timer_cancel:
1643                 return &bpf_timer_cancel_proto;
1644         case BPF_FUNC_kptr_xchg:
1645                 return &bpf_kptr_xchg_proto;
1646         case BPF_FUNC_for_each_map_elem:
1647                 return &bpf_for_each_map_elem_proto;
1648         case BPF_FUNC_loop:
1649                 return &bpf_loop_proto;
1650         case BPF_FUNC_user_ringbuf_drain:
1651                 return &bpf_user_ringbuf_drain_proto;
1652         case BPF_FUNC_ringbuf_reserve_dynptr:
1653                 return &bpf_ringbuf_reserve_dynptr_proto;
1654         case BPF_FUNC_ringbuf_submit_dynptr:
1655                 return &bpf_ringbuf_submit_dynptr_proto;
1656         case BPF_FUNC_ringbuf_discard_dynptr:
1657                 return &bpf_ringbuf_discard_dynptr_proto;
1658         case BPF_FUNC_dynptr_from_mem:
1659                 return &bpf_dynptr_from_mem_proto;
1660         case BPF_FUNC_dynptr_read:
1661                 return &bpf_dynptr_read_proto;
1662         case BPF_FUNC_dynptr_write:
1663                 return &bpf_dynptr_write_proto;
1664         case BPF_FUNC_dynptr_data:
1665                 return &bpf_dynptr_data_proto;
1666         default:
1667                 break;
1668         }
1669
1670         if (!perfmon_capable())
1671                 return NULL;
1672
1673         switch (func_id) {
1674         case BPF_FUNC_trace_printk:
1675                 return bpf_get_trace_printk_proto();
1676         case BPF_FUNC_get_current_task:
1677                 return &bpf_get_current_task_proto;
1678         case BPF_FUNC_get_current_task_btf:
1679                 return &bpf_get_current_task_btf_proto;
1680         case BPF_FUNC_probe_read_user:
1681                 return &bpf_probe_read_user_proto;
1682         case BPF_FUNC_probe_read_kernel:
1683                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1684                        NULL : &bpf_probe_read_kernel_proto;
1685         case BPF_FUNC_probe_read_user_str:
1686                 return &bpf_probe_read_user_str_proto;
1687         case BPF_FUNC_probe_read_kernel_str:
1688                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1689                        NULL : &bpf_probe_read_kernel_str_proto;
1690         case BPF_FUNC_snprintf_btf:
1691                 return &bpf_snprintf_btf_proto;
1692         case BPF_FUNC_snprintf:
1693                 return &bpf_snprintf_proto;
1694         case BPF_FUNC_task_pt_regs:
1695                 return &bpf_task_pt_regs_proto;
1696         case BPF_FUNC_trace_vprintk:
1697                 return bpf_get_trace_vprintk_proto();
1698         default:
1699                 return NULL;
1700         }
1701 }
1702
1703 BTF_SET8_START(tracing_btf_ids)
1704 #ifdef CONFIG_KEXEC_CORE
1705 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
1706 #endif
1707 BTF_SET8_END(tracing_btf_ids)
1708
1709 static const struct btf_kfunc_id_set tracing_kfunc_set = {
1710         .owner = THIS_MODULE,
1711         .set   = &tracing_btf_ids,
1712 };
1713
1714 static int __init kfunc_init(void)
1715 {
1716         return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &tracing_kfunc_set);
1717 }
1718
1719 late_initcall(kfunc_init);