1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include <linux/btf_ids.h>
14 #include "percpu_freelist.h"
15 #include "bpf_lru_list.h"
16 #include "map_in_map.h"
17 #include <linux/bpf_mem_alloc.h>
19 #define HTAB_CREATE_FLAG_MASK \
20 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \
21 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
23 #define BATCH_OPS(_name) \
25 _name##_map_lookup_batch, \
26 .map_lookup_and_delete_batch = \
27 _name##_map_lookup_and_delete_batch, \
29 generic_map_update_batch, \
31 generic_map_delete_batch
34 * The bucket lock has two protection scopes:
36 * 1) Serializing concurrent operations from BPF programs on different
39 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
41 * BPF programs can execute in any context including perf, kprobes and
42 * tracing. As there are almost no limits where perf, kprobes and tracing
43 * can be invoked from the lock operations need to be protected against
44 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
45 * the lock held section when functions which acquire this lock are invoked
46 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
47 * variable bpf_prog_active, which prevents BPF programs attached to perf
48 * events, kprobes and tracing to be invoked before the prior invocation
49 * from one of these contexts completed. sys_bpf() uses the same mechanism
50 * by pinning the task to the current CPU and incrementing the recursion
51 * protection across the map operation.
53 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
54 * operations like memory allocations (even with GFP_ATOMIC) from atomic
55 * contexts. This is required because even with GFP_ATOMIC the memory
56 * allocator calls into code paths which acquire locks with long held lock
57 * sections. To ensure the deterministic behaviour these locks are regular
58 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
59 * true atomic contexts on an RT kernel are the low level hardware
60 * handling, scheduling, low level interrupt handling, NMIs etc. None of
61 * these contexts should ever do memory allocations.
63 * As regular device interrupt handlers and soft interrupts are forced into
64 * thread context, the existing code which does
65 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
68 * In theory the BPF locks could be converted to regular spinlocks as well,
69 * but the bucket locks and percpu_freelist locks can be taken from
70 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
71 * atomic contexts even on RT. These mechanisms require preallocated maps,
72 * so there is no need to invoke memory allocations within the lock held
75 * BPF maps which need dynamic allocation are only used from (forced)
76 * thread context on RT and can therefore use regular spinlocks which in
77 * turn allows to invoke memory allocations from the lock held section.
79 * On a non RT kernel this distinction is neither possible nor required.
80 * spinlock maps to raw_spinlock and the extra code is optimized out by the
84 struct hlist_nulls_head head;
86 raw_spinlock_t raw_lock;
91 #define HASHTAB_MAP_LOCK_COUNT 8
92 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
96 struct bpf_mem_alloc ma;
97 struct bucket *buckets;
100 struct pcpu_freelist freelist;
103 struct htab_elem *__percpu *extra_elems;
104 atomic_t count; /* number of elements in this hashtable */
105 u32 n_buckets; /* number of hash buckets */
106 u32 elem_size; /* size of each element in bytes */
108 struct lock_class_key lockdep_key;
109 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
112 /* each htab element is struct htab_elem + key + value */
115 struct hlist_nulls_node hash_node;
119 struct bpf_htab *htab;
120 struct pcpu_freelist_node fnode;
121 struct htab_elem *batch_flink;
127 struct bpf_lru_node lru_node;
130 char key[] __aligned(8);
133 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
135 return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
138 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
140 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
143 static void htab_init_buckets(struct bpf_htab *htab)
147 for (i = 0; i < htab->n_buckets; i++) {
148 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
149 if (htab_use_raw_lock(htab)) {
150 raw_spin_lock_init(&htab->buckets[i].raw_lock);
151 lockdep_set_class(&htab->buckets[i].raw_lock,
154 spin_lock_init(&htab->buckets[i].lock);
155 lockdep_set_class(&htab->buckets[i].lock,
162 static inline int htab_lock_bucket(const struct bpf_htab *htab,
163 struct bucket *b, u32 hash,
164 unsigned long *pflags)
169 hash = hash & HASHTAB_MAP_LOCK_MASK;
171 use_raw_lock = htab_use_raw_lock(htab);
176 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
177 __this_cpu_dec(*(htab->map_locked[hash]));
186 raw_spin_lock_irqsave(&b->raw_lock, flags);
188 spin_lock_irqsave(&b->lock, flags);
194 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
195 struct bucket *b, u32 hash,
198 bool use_raw_lock = htab_use_raw_lock(htab);
200 hash = hash & HASHTAB_MAP_LOCK_MASK;
202 raw_spin_unlock_irqrestore(&b->raw_lock, flags);
204 spin_unlock_irqrestore(&b->lock, flags);
205 __this_cpu_dec(*(htab->map_locked[hash]));
212 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
214 static bool htab_is_lru(const struct bpf_htab *htab)
216 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
217 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
220 static bool htab_is_percpu(const struct bpf_htab *htab)
222 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
223 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
226 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
229 *(void __percpu **)(l->key + key_size) = pptr;
232 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
234 return *(void __percpu **)(l->key + key_size);
237 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
239 return *(void **)(l->key + roundup(map->key_size, 8));
242 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
244 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
247 static bool htab_has_extra_elems(struct bpf_htab *htab)
249 return !htab_is_percpu(htab) && !htab_is_lru(htab);
252 static void htab_free_prealloced_timers(struct bpf_htab *htab)
254 u32 num_entries = htab->map.max_entries;
257 if (!map_value_has_timer(&htab->map))
259 if (htab_has_extra_elems(htab))
260 num_entries += num_possible_cpus();
262 for (i = 0; i < num_entries; i++) {
263 struct htab_elem *elem;
265 elem = get_htab_elem(htab, i);
266 bpf_timer_cancel_and_free(elem->key +
267 round_up(htab->map.key_size, 8) +
268 htab->map.timer_off);
273 static void htab_free_prealloced_kptrs(struct bpf_htab *htab)
275 u32 num_entries = htab->map.max_entries;
278 if (!map_value_has_kptrs(&htab->map))
280 if (htab_has_extra_elems(htab))
281 num_entries += num_possible_cpus();
283 for (i = 0; i < num_entries; i++) {
284 struct htab_elem *elem;
286 elem = get_htab_elem(htab, i);
287 bpf_map_free_kptrs(&htab->map, elem->key + round_up(htab->map.key_size, 8));
292 static void htab_free_elems(struct bpf_htab *htab)
296 if (!htab_is_percpu(htab))
299 for (i = 0; i < htab->map.max_entries; i++) {
302 pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
308 bpf_map_area_free(htab->elems);
311 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
312 * (bucket_lock). If both locks need to be acquired together, the lock
313 * order is always lru_lock -> bucket_lock and this only happens in
314 * bpf_lru_list.c logic. For example, certain code path of
315 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
316 * will acquire lru_lock first followed by acquiring bucket_lock.
318 * In hashtab.c, to avoid deadlock, lock acquisition of
319 * bucket_lock followed by lru_lock is not allowed. In such cases,
320 * bucket_lock needs to be released first before acquiring lru_lock.
322 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
325 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
329 l = container_of(node, struct htab_elem, lru_node);
330 memcpy(l->key, key, htab->map.key_size);
337 static int prealloc_init(struct bpf_htab *htab)
339 u32 num_entries = htab->map.max_entries;
340 int err = -ENOMEM, i;
342 if (htab_has_extra_elems(htab))
343 num_entries += num_possible_cpus();
345 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
346 htab->map.numa_node);
350 if (!htab_is_percpu(htab))
351 goto skip_percpu_elems;
353 for (i = 0; i < num_entries; i++) {
354 u32 size = round_up(htab->map.value_size, 8);
357 pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
358 GFP_USER | __GFP_NOWARN);
361 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
367 if (htab_is_lru(htab))
368 err = bpf_lru_init(&htab->lru,
369 htab->map.map_flags & BPF_F_NO_COMMON_LRU,
370 offsetof(struct htab_elem, hash) -
371 offsetof(struct htab_elem, lru_node),
372 htab_lru_map_delete_node,
375 err = pcpu_freelist_init(&htab->freelist);
380 if (htab_is_lru(htab))
381 bpf_lru_populate(&htab->lru, htab->elems,
382 offsetof(struct htab_elem, lru_node),
383 htab->elem_size, num_entries);
385 pcpu_freelist_populate(&htab->freelist,
386 htab->elems + offsetof(struct htab_elem, fnode),
387 htab->elem_size, num_entries);
392 htab_free_elems(htab);
396 static void prealloc_destroy(struct bpf_htab *htab)
398 htab_free_elems(htab);
400 if (htab_is_lru(htab))
401 bpf_lru_destroy(&htab->lru);
403 pcpu_freelist_destroy(&htab->freelist);
406 static int alloc_extra_elems(struct bpf_htab *htab)
408 struct htab_elem *__percpu *pptr, *l_new;
409 struct pcpu_freelist_node *l;
412 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
413 GFP_USER | __GFP_NOWARN);
417 for_each_possible_cpu(cpu) {
418 l = pcpu_freelist_pop(&htab->freelist);
419 /* pop will succeed, since prealloc_init()
420 * preallocated extra num_possible_cpus elements
422 l_new = container_of(l, struct htab_elem, fnode);
423 *per_cpu_ptr(pptr, cpu) = l_new;
425 htab->extra_elems = pptr;
429 /* Called from syscall */
430 static int htab_map_alloc_check(union bpf_attr *attr)
432 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
433 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
434 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
435 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
436 /* percpu_lru means each cpu has its own LRU list.
437 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
438 * the map's value itself is percpu. percpu_lru has
439 * nothing to do with the map's value.
441 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
442 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
443 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
444 int numa_node = bpf_map_attr_numa_node(attr);
446 BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
447 offsetof(struct htab_elem, hash_node.pprev));
448 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
449 offsetof(struct htab_elem, hash_node.pprev));
451 if (lru && !bpf_capable())
452 /* LRU implementation is much complicated than other
453 * maps. Hence, limit to CAP_BPF.
457 if (zero_seed && !capable(CAP_SYS_ADMIN))
458 /* Guard against local DoS, and discourage production use. */
461 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
462 !bpf_map_flags_access_ok(attr->map_flags))
465 if (!lru && percpu_lru)
468 if (lru && !prealloc)
471 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
474 /* check sanity of attributes.
475 * value_size == 0 may be allowed in the future to use map as a set
477 if (attr->max_entries == 0 || attr->key_size == 0 ||
478 attr->value_size == 0)
481 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
482 sizeof(struct htab_elem))
483 /* if key_size + value_size is bigger, the user space won't be
484 * able to access the elements via bpf syscall. This check
485 * also makes sure that the elem_size doesn't overflow and it's
486 * kmalloc-able later in htab_map_update_elem()
493 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
495 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
496 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
497 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
498 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
499 /* percpu_lru means each cpu has its own LRU list.
500 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
501 * the map's value itself is percpu. percpu_lru has
502 * nothing to do with the map's value.
504 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
505 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
506 struct bpf_htab *htab;
509 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE);
511 return ERR_PTR(-ENOMEM);
513 lockdep_register_key(&htab->lockdep_key);
515 bpf_map_init_from_attr(&htab->map, attr);
518 /* ensure each CPU's lru list has >=1 elements.
519 * since we are at it, make each lru list has the same
520 * number of elements.
522 htab->map.max_entries = roundup(attr->max_entries,
523 num_possible_cpus());
524 if (htab->map.max_entries < attr->max_entries)
525 htab->map.max_entries = rounddown(attr->max_entries,
526 num_possible_cpus());
529 /* hash table size must be power of 2 */
530 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
532 htab->elem_size = sizeof(struct htab_elem) +
533 round_up(htab->map.key_size, 8);
535 htab->elem_size += sizeof(void *);
537 htab->elem_size += round_up(htab->map.value_size, 8);
540 /* prevent zero size kmalloc and check for u32 overflow */
541 if (htab->n_buckets == 0 ||
542 htab->n_buckets > U32_MAX / sizeof(struct bucket))
546 htab->buckets = bpf_map_area_alloc(htab->n_buckets *
547 sizeof(struct bucket),
548 htab->map.numa_node);
552 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
553 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
557 if (!htab->map_locked[i])
558 goto free_map_locked;
561 if (htab->map.map_flags & BPF_F_ZERO_SEED)
564 htab->hashrnd = get_random_int();
566 htab_init_buckets(htab);
569 err = prealloc_init(htab);
571 goto free_map_locked;
573 if (!percpu && !lru) {
574 /* lru itself can remove the least used element, so
575 * there is no need for an extra elem during map_update.
577 err = alloc_extra_elems(htab);
582 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size);
584 goto free_map_locked;
590 prealloc_destroy(htab);
592 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
593 free_percpu(htab->map_locked[i]);
594 bpf_map_area_free(htab->buckets);
595 bpf_mem_alloc_destroy(&htab->ma);
597 lockdep_unregister_key(&htab->lockdep_key);
598 bpf_map_area_free(htab);
602 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
604 return jhash(key, key_len, hashrnd);
607 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
609 return &htab->buckets[hash & (htab->n_buckets - 1)];
612 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
614 return &__select_bucket(htab, hash)->head;
617 /* this lookup function can only be called with bucket lock taken */
618 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
619 void *key, u32 key_size)
621 struct hlist_nulls_node *n;
624 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
625 if (l->hash == hash && !memcmp(&l->key, key, key_size))
631 /* can be called without bucket lock. it will repeat the loop in
632 * the unlikely event when elements moved from one bucket into another
633 * while link list is being walked
635 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
637 u32 key_size, u32 n_buckets)
639 struct hlist_nulls_node *n;
643 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
644 if (l->hash == hash && !memcmp(&l->key, key, key_size))
647 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
653 /* Called from syscall or from eBPF program directly, so
654 * arguments have to match bpf_map_lookup_elem() exactly.
655 * The return value is adjusted by BPF instructions
656 * in htab_map_gen_lookup().
658 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
660 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
661 struct hlist_nulls_head *head;
665 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
666 !rcu_read_lock_bh_held());
668 key_size = map->key_size;
670 hash = htab_map_hash(key, key_size, htab->hashrnd);
672 head = select_bucket(htab, hash);
674 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
679 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
681 struct htab_elem *l = __htab_map_lookup_elem(map, key);
684 return l->key + round_up(map->key_size, 8);
689 /* inline bpf_map_lookup_elem() call.
692 * bpf_map_lookup_elem
693 * map->ops->map_lookup_elem
694 * htab_map_lookup_elem
695 * __htab_map_lookup_elem
698 * __htab_map_lookup_elem
700 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
702 struct bpf_insn *insn = insn_buf;
703 const int ret = BPF_REG_0;
705 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
706 (void *(*)(struct bpf_map *map, void *key))NULL));
707 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
708 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
709 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
710 offsetof(struct htab_elem, key) +
711 round_up(map->key_size, 8));
712 return insn - insn_buf;
715 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
716 void *key, const bool mark)
718 struct htab_elem *l = __htab_map_lookup_elem(map, key);
722 bpf_lru_node_set_ref(&l->lru_node);
723 return l->key + round_up(map->key_size, 8);
729 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
731 return __htab_lru_map_lookup_elem(map, key, true);
734 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
736 return __htab_lru_map_lookup_elem(map, key, false);
739 static int htab_lru_map_gen_lookup(struct bpf_map *map,
740 struct bpf_insn *insn_buf)
742 struct bpf_insn *insn = insn_buf;
743 const int ret = BPF_REG_0;
744 const int ref_reg = BPF_REG_1;
746 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
747 (void *(*)(struct bpf_map *map, void *key))NULL));
748 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
749 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
750 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
751 offsetof(struct htab_elem, lru_node) +
752 offsetof(struct bpf_lru_node, ref));
753 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
754 *insn++ = BPF_ST_MEM(BPF_B, ret,
755 offsetof(struct htab_elem, lru_node) +
756 offsetof(struct bpf_lru_node, ref),
758 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
759 offsetof(struct htab_elem, key) +
760 round_up(map->key_size, 8));
761 return insn - insn_buf;
764 static void check_and_free_fields(struct bpf_htab *htab,
765 struct htab_elem *elem)
767 void *map_value = elem->key + round_up(htab->map.key_size, 8);
769 if (map_value_has_timer(&htab->map))
770 bpf_timer_cancel_and_free(map_value + htab->map.timer_off);
771 if (map_value_has_kptrs(&htab->map))
772 bpf_map_free_kptrs(&htab->map, map_value);
775 /* It is called from the bpf_lru_list when the LRU needs to delete
776 * older elements from the htab.
778 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
780 struct bpf_htab *htab = arg;
781 struct htab_elem *l = NULL, *tgt_l;
782 struct hlist_nulls_head *head;
783 struct hlist_nulls_node *n;
788 tgt_l = container_of(node, struct htab_elem, lru_node);
789 b = __select_bucket(htab, tgt_l->hash);
792 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
796 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
798 hlist_nulls_del_rcu(&l->hash_node);
799 check_and_free_fields(htab, l);
803 htab_unlock_bucket(htab, b, tgt_l->hash, flags);
808 /* Called from syscall */
809 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
811 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
812 struct hlist_nulls_head *head;
813 struct htab_elem *l, *next_l;
817 WARN_ON_ONCE(!rcu_read_lock_held());
819 key_size = map->key_size;
822 goto find_first_elem;
824 hash = htab_map_hash(key, key_size, htab->hashrnd);
826 head = select_bucket(htab, hash);
829 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
832 goto find_first_elem;
834 /* key was found, get next key in the same bucket */
835 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
836 struct htab_elem, hash_node);
839 /* if next elem in this hash list is non-zero, just return it */
840 memcpy(next_key, next_l->key, key_size);
844 /* no more elements in this hash list, go to the next bucket */
845 i = hash & (htab->n_buckets - 1);
849 /* iterate over buckets */
850 for (; i < htab->n_buckets; i++) {
851 head = select_bucket(htab, i);
853 /* pick first element in the bucket */
854 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
855 struct htab_elem, hash_node);
857 /* if it's not empty, just return it */
858 memcpy(next_key, next_l->key, key_size);
863 /* iterated over all buckets and all elements */
867 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
869 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
870 free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
871 check_and_free_fields(htab, l);
872 bpf_mem_cache_free(&htab->ma, l);
875 static void htab_elem_free_rcu(struct rcu_head *head)
877 struct htab_elem *l = container_of(head, struct htab_elem, rcu);
878 struct bpf_htab *htab = l->htab;
880 htab_elem_free(htab, l);
883 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
885 struct bpf_map *map = &htab->map;
888 if (map->ops->map_fd_put_ptr) {
889 ptr = fd_htab_map_get_ptr(map, l);
890 map->ops->map_fd_put_ptr(ptr);
894 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
896 htab_put_fd_value(htab, l);
898 if (htab_is_prealloc(htab)) {
899 check_and_free_fields(htab, l);
900 __pcpu_freelist_push(&htab->freelist, &l->fnode);
902 atomic_dec(&htab->count);
904 call_rcu(&l->rcu, htab_elem_free_rcu);
908 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
909 void *value, bool onallcpus)
912 /* copy true value_size bytes */
913 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
915 u32 size = round_up(htab->map.value_size, 8);
918 for_each_possible_cpu(cpu) {
919 bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
926 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
927 void *value, bool onallcpus)
929 /* When using prealloc and not setting the initial value on all cpus,
930 * zero-fill element values for other cpus (just as what happens when
931 * not using prealloc). Otherwise, bpf program has no way to ensure
932 * known initial values for cpus other than current one
933 * (onallcpus=false always when coming from bpf prog).
935 if (htab_is_prealloc(htab) && !onallcpus) {
936 u32 size = round_up(htab->map.value_size, 8);
937 int current_cpu = raw_smp_processor_id();
940 for_each_possible_cpu(cpu) {
941 if (cpu == current_cpu)
942 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
945 memset(per_cpu_ptr(pptr, cpu), 0, size);
948 pcpu_copy_value(htab, pptr, value, onallcpus);
952 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
954 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
958 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
959 void *value, u32 key_size, u32 hash,
960 bool percpu, bool onallcpus,
961 struct htab_elem *old_elem)
963 u32 size = htab->map.value_size;
964 bool prealloc = htab_is_prealloc(htab);
965 struct htab_elem *l_new, **pl_new;
970 /* if we're updating the existing element,
971 * use per-cpu extra elems to avoid freelist_pop/push
973 pl_new = this_cpu_ptr(htab->extra_elems);
975 htab_put_fd_value(htab, old_elem);
978 struct pcpu_freelist_node *l;
980 l = __pcpu_freelist_pop(&htab->freelist);
982 return ERR_PTR(-E2BIG);
983 l_new = container_of(l, struct htab_elem, fnode);
986 if (atomic_inc_return(&htab->count) > htab->map.max_entries)
988 /* when map is full and update() is replacing
989 * old element, it's ok to allocate, since
990 * old element will be freed immediately.
991 * Otherwise return an error
993 l_new = ERR_PTR(-E2BIG);
996 l_new = bpf_mem_cache_alloc(&htab->ma);
998 l_new = ERR_PTR(-ENOMEM);
1001 check_and_init_map_value(&htab->map,
1002 l_new->key + round_up(key_size, 8));
1005 memcpy(l_new->key, key, key_size);
1007 size = round_up(size, 8);
1009 pptr = htab_elem_get_ptr(l_new, key_size);
1011 /* alloc_percpu zero-fills */
1012 pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
1013 GFP_NOWAIT | __GFP_NOWARN);
1015 bpf_mem_cache_free(&htab->ma, l_new);
1016 l_new = ERR_PTR(-ENOMEM);
1021 pcpu_init_value(htab, pptr, value, onallcpus);
1024 htab_elem_set_ptr(l_new, key_size, pptr);
1025 } else if (fd_htab_map_needs_adjust(htab)) {
1026 size = round_up(size, 8);
1027 memcpy(l_new->key + round_up(key_size, 8), value, size);
1029 copy_map_value(&htab->map,
1030 l_new->key + round_up(key_size, 8),
1037 atomic_dec(&htab->count);
1041 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1044 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1045 /* elem already exists */
1048 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1049 /* elem doesn't exist, cannot update it */
1055 /* Called from syscall or from eBPF program */
1056 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1059 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1060 struct htab_elem *l_new = NULL, *l_old;
1061 struct hlist_nulls_head *head;
1062 unsigned long flags;
1067 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1071 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1072 !rcu_read_lock_bh_held());
1074 key_size = map->key_size;
1076 hash = htab_map_hash(key, key_size, htab->hashrnd);
1078 b = __select_bucket(htab, hash);
1081 if (unlikely(map_flags & BPF_F_LOCK)) {
1082 if (unlikely(!map_value_has_spin_lock(map)))
1084 /* find an element without taking the bucket lock */
1085 l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1087 ret = check_flags(htab, l_old, map_flags);
1091 /* grab the element lock and update value in place */
1092 copy_map_value_locked(map,
1093 l_old->key + round_up(key_size, 8),
1097 /* fall through, grab the bucket lock and lookup again.
1098 * 99.9% chance that the element won't be found,
1099 * but second lookup under lock has to be done.
1103 ret = htab_lock_bucket(htab, b, hash, &flags);
1107 l_old = lookup_elem_raw(head, hash, key, key_size);
1109 ret = check_flags(htab, l_old, map_flags);
1113 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1114 /* first lookup without the bucket lock didn't find the element,
1115 * but second lookup with the bucket lock found it.
1116 * This case is highly unlikely, but has to be dealt with:
1117 * grab the element lock in addition to the bucket lock
1118 * and update element in place
1120 copy_map_value_locked(map,
1121 l_old->key + round_up(key_size, 8),
1127 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1129 if (IS_ERR(l_new)) {
1130 /* all pre-allocated elements are in use or memory exhausted */
1131 ret = PTR_ERR(l_new);
1135 /* add new element to the head of the list, so that
1136 * concurrent search will find it before old elem
1138 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1140 hlist_nulls_del_rcu(&l_old->hash_node);
1141 if (!htab_is_prealloc(htab))
1142 free_htab_elem(htab, l_old);
1144 check_and_free_fields(htab, l_old);
1148 htab_unlock_bucket(htab, b, hash, flags);
1152 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1154 check_and_free_fields(htab, elem);
1155 bpf_lru_push_free(&htab->lru, &elem->lru_node);
1158 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1161 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1162 struct htab_elem *l_new, *l_old = NULL;
1163 struct hlist_nulls_head *head;
1164 unsigned long flags;
1169 if (unlikely(map_flags > BPF_EXIST))
1173 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1174 !rcu_read_lock_bh_held());
1176 key_size = map->key_size;
1178 hash = htab_map_hash(key, key_size, htab->hashrnd);
1180 b = __select_bucket(htab, hash);
1183 /* For LRU, we need to alloc before taking bucket's
1184 * spinlock because getting free nodes from LRU may need
1185 * to remove older elements from htab and this removal
1186 * operation will need a bucket lock.
1188 l_new = prealloc_lru_pop(htab, key, hash);
1191 copy_map_value(&htab->map,
1192 l_new->key + round_up(map->key_size, 8), value);
1194 ret = htab_lock_bucket(htab, b, hash, &flags);
1198 l_old = lookup_elem_raw(head, hash, key, key_size);
1200 ret = check_flags(htab, l_old, map_flags);
1204 /* add new element to the head of the list, so that
1205 * concurrent search will find it before old elem
1207 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1209 bpf_lru_node_set_ref(&l_new->lru_node);
1210 hlist_nulls_del_rcu(&l_old->hash_node);
1215 htab_unlock_bucket(htab, b, hash, flags);
1218 htab_lru_push_free(htab, l_new);
1220 htab_lru_push_free(htab, l_old);
1225 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1226 void *value, u64 map_flags,
1229 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1230 struct htab_elem *l_new = NULL, *l_old;
1231 struct hlist_nulls_head *head;
1232 unsigned long flags;
1237 if (unlikely(map_flags > BPF_EXIST))
1241 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1242 !rcu_read_lock_bh_held());
1244 key_size = map->key_size;
1246 hash = htab_map_hash(key, key_size, htab->hashrnd);
1248 b = __select_bucket(htab, hash);
1251 ret = htab_lock_bucket(htab, b, hash, &flags);
1255 l_old = lookup_elem_raw(head, hash, key, key_size);
1257 ret = check_flags(htab, l_old, map_flags);
1262 /* per-cpu hash map can update value in-place */
1263 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1266 l_new = alloc_htab_elem(htab, key, value, key_size,
1267 hash, true, onallcpus, NULL);
1268 if (IS_ERR(l_new)) {
1269 ret = PTR_ERR(l_new);
1272 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1276 htab_unlock_bucket(htab, b, hash, flags);
1280 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1281 void *value, u64 map_flags,
1284 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1285 struct htab_elem *l_new = NULL, *l_old;
1286 struct hlist_nulls_head *head;
1287 unsigned long flags;
1292 if (unlikely(map_flags > BPF_EXIST))
1296 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1297 !rcu_read_lock_bh_held());
1299 key_size = map->key_size;
1301 hash = htab_map_hash(key, key_size, htab->hashrnd);
1303 b = __select_bucket(htab, hash);
1306 /* For LRU, we need to alloc before taking bucket's
1307 * spinlock because LRU's elem alloc may need
1308 * to remove older elem from htab and this removal
1309 * operation will need a bucket lock.
1311 if (map_flags != BPF_EXIST) {
1312 l_new = prealloc_lru_pop(htab, key, hash);
1317 ret = htab_lock_bucket(htab, b, hash, &flags);
1321 l_old = lookup_elem_raw(head, hash, key, key_size);
1323 ret = check_flags(htab, l_old, map_flags);
1328 bpf_lru_node_set_ref(&l_old->lru_node);
1330 /* per-cpu hash map can update value in-place */
1331 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1334 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1336 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1341 htab_unlock_bucket(htab, b, hash, flags);
1343 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1347 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1348 void *value, u64 map_flags)
1350 return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1353 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1354 void *value, u64 map_flags)
1356 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1360 /* Called from syscall or from eBPF program */
1361 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1363 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1364 struct hlist_nulls_head *head;
1366 struct htab_elem *l;
1367 unsigned long flags;
1371 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1372 !rcu_read_lock_bh_held());
1374 key_size = map->key_size;
1376 hash = htab_map_hash(key, key_size, htab->hashrnd);
1377 b = __select_bucket(htab, hash);
1380 ret = htab_lock_bucket(htab, b, hash, &flags);
1384 l = lookup_elem_raw(head, hash, key, key_size);
1387 hlist_nulls_del_rcu(&l->hash_node);
1388 free_htab_elem(htab, l);
1393 htab_unlock_bucket(htab, b, hash, flags);
1397 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1399 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1400 struct hlist_nulls_head *head;
1402 struct htab_elem *l;
1403 unsigned long flags;
1407 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1408 !rcu_read_lock_bh_held());
1410 key_size = map->key_size;
1412 hash = htab_map_hash(key, key_size, htab->hashrnd);
1413 b = __select_bucket(htab, hash);
1416 ret = htab_lock_bucket(htab, b, hash, &flags);
1420 l = lookup_elem_raw(head, hash, key, key_size);
1423 hlist_nulls_del_rcu(&l->hash_node);
1427 htab_unlock_bucket(htab, b, hash, flags);
1429 htab_lru_push_free(htab, l);
1433 static void delete_all_elements(struct bpf_htab *htab)
1437 /* It's called from a worker thread, so disable migration here,
1438 * since bpf_mem_cache_free() relies on that.
1441 for (i = 0; i < htab->n_buckets; i++) {
1442 struct hlist_nulls_head *head = select_bucket(htab, i);
1443 struct hlist_nulls_node *n;
1444 struct htab_elem *l;
1446 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1447 hlist_nulls_del_rcu(&l->hash_node);
1448 htab_elem_free(htab, l);
1454 static void htab_free_malloced_timers(struct bpf_htab *htab)
1459 for (i = 0; i < htab->n_buckets; i++) {
1460 struct hlist_nulls_head *head = select_bucket(htab, i);
1461 struct hlist_nulls_node *n;
1462 struct htab_elem *l;
1464 hlist_nulls_for_each_entry(l, n, head, hash_node) {
1465 /* We don't reset or free kptr on uref dropping to zero,
1466 * hence just free timer.
1468 bpf_timer_cancel_and_free(l->key +
1469 round_up(htab->map.key_size, 8) +
1470 htab->map.timer_off);
1477 static void htab_map_free_timers(struct bpf_map *map)
1479 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1481 /* We don't reset or free kptr on uref dropping to zero. */
1482 if (!map_value_has_timer(&htab->map))
1484 if (!htab_is_prealloc(htab))
1485 htab_free_malloced_timers(htab);
1487 htab_free_prealloced_timers(htab);
1490 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1491 static void htab_map_free(struct bpf_map *map)
1493 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1496 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1497 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1498 * There is no need to synchronize_rcu() here to protect map elements.
1501 /* some of free_htab_elem() callbacks for elements of this map may
1502 * not have executed. Wait for them.
1505 if (!htab_is_prealloc(htab)) {
1506 delete_all_elements(htab);
1508 htab_free_prealloced_kptrs(htab);
1509 prealloc_destroy(htab);
1512 bpf_map_free_kptr_off_tab(map);
1513 free_percpu(htab->extra_elems);
1514 bpf_map_area_free(htab->buckets);
1515 bpf_mem_alloc_destroy(&htab->ma);
1516 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1517 free_percpu(htab->map_locked[i]);
1518 lockdep_unregister_key(&htab->lockdep_key);
1519 bpf_map_area_free(htab);
1522 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1529 value = htab_map_lookup_elem(map, key);
1535 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1537 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1543 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1544 void *value, bool is_lru_map,
1545 bool is_percpu, u64 flags)
1547 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1548 struct hlist_nulls_head *head;
1549 unsigned long bflags;
1550 struct htab_elem *l;
1555 key_size = map->key_size;
1557 hash = htab_map_hash(key, key_size, htab->hashrnd);
1558 b = __select_bucket(htab, hash);
1561 ret = htab_lock_bucket(htab, b, hash, &bflags);
1565 l = lookup_elem_raw(head, hash, key, key_size);
1570 u32 roundup_value_size = round_up(map->value_size, 8);
1571 void __percpu *pptr;
1574 pptr = htab_elem_get_ptr(l, key_size);
1575 for_each_possible_cpu(cpu) {
1576 bpf_long_memcpy(value + off,
1577 per_cpu_ptr(pptr, cpu),
1578 roundup_value_size);
1579 off += roundup_value_size;
1582 u32 roundup_key_size = round_up(map->key_size, 8);
1584 if (flags & BPF_F_LOCK)
1585 copy_map_value_locked(map, value, l->key +
1589 copy_map_value(map, value, l->key +
1591 check_and_init_map_value(map, value);
1594 hlist_nulls_del_rcu(&l->hash_node);
1596 free_htab_elem(htab, l);
1599 htab_unlock_bucket(htab, b, hash, bflags);
1601 if (is_lru_map && l)
1602 htab_lru_push_free(htab, l);
1607 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1608 void *value, u64 flags)
1610 return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1614 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1615 void *key, void *value,
1618 return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1622 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1623 void *value, u64 flags)
1625 return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1629 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1630 void *key, void *value,
1633 return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1638 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1639 const union bpf_attr *attr,
1640 union bpf_attr __user *uattr,
1641 bool do_delete, bool is_lru_map,
1644 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1645 u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1646 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1647 void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1648 void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1649 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1650 u32 batch, max_count, size, bucket_size, map_id;
1651 struct htab_elem *node_to_free = NULL;
1652 u64 elem_map_flags, map_flags;
1653 struct hlist_nulls_head *head;
1654 struct hlist_nulls_node *n;
1655 unsigned long flags = 0;
1656 bool locked = false;
1657 struct htab_elem *l;
1661 elem_map_flags = attr->batch.elem_flags;
1662 if ((elem_map_flags & ~BPF_F_LOCK) ||
1663 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1666 map_flags = attr->batch.flags;
1670 max_count = attr->batch.count;
1674 if (put_user(0, &uattr->batch.count))
1678 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1681 if (batch >= htab->n_buckets)
1684 key_size = htab->map.key_size;
1685 roundup_key_size = round_up(htab->map.key_size, 8);
1686 value_size = htab->map.value_size;
1687 size = round_up(value_size, 8);
1689 value_size = size * num_possible_cpus();
1691 /* while experimenting with hash tables with sizes ranging from 10 to
1692 * 1000, it was observed that a bucket can have up to 5 entries.
1697 /* We cannot do copy_from_user or copy_to_user inside
1698 * the rcu_read_lock. Allocate enough space here.
1700 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1701 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1702 if (!keys || !values) {
1708 bpf_disable_instrumentation();
1713 b = &htab->buckets[batch];
1715 /* do not grab the lock unless need it (bucket_cnt > 0). */
1717 ret = htab_lock_bucket(htab, b, batch, &flags);
1720 bpf_enable_instrumentation();
1726 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1729 if (bucket_cnt && !locked) {
1734 if (bucket_cnt > (max_count - total)) {
1737 /* Note that since bucket_cnt > 0 here, it is implicit
1738 * that the locked was grabbed, so release it.
1740 htab_unlock_bucket(htab, b, batch, flags);
1742 bpf_enable_instrumentation();
1746 if (bucket_cnt > bucket_size) {
1747 bucket_size = bucket_cnt;
1748 /* Note that since bucket_cnt > 0 here, it is implicit
1749 * that the locked was grabbed, so release it.
1751 htab_unlock_bucket(htab, b, batch, flags);
1753 bpf_enable_instrumentation();
1759 /* Next block is only safe to run if you have grabbed the lock */
1763 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1764 memcpy(dst_key, l->key, key_size);
1768 void __percpu *pptr;
1770 pptr = htab_elem_get_ptr(l, map->key_size);
1771 for_each_possible_cpu(cpu) {
1772 bpf_long_memcpy(dst_val + off,
1773 per_cpu_ptr(pptr, cpu), size);
1777 value = l->key + roundup_key_size;
1778 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1779 struct bpf_map **inner_map = value;
1781 /* Actual value is the id of the inner map */
1782 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1786 if (elem_map_flags & BPF_F_LOCK)
1787 copy_map_value_locked(map, dst_val, value,
1790 copy_map_value(map, dst_val, value);
1791 check_and_init_map_value(map, dst_val);
1794 hlist_nulls_del_rcu(&l->hash_node);
1796 /* bpf_lru_push_free() will acquire lru_lock, which
1797 * may cause deadlock. See comments in function
1798 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1799 * after releasing the bucket lock.
1802 l->batch_flink = node_to_free;
1805 free_htab_elem(htab, l);
1808 dst_key += key_size;
1809 dst_val += value_size;
1812 htab_unlock_bucket(htab, b, batch, flags);
1815 while (node_to_free) {
1817 node_to_free = node_to_free->batch_flink;
1818 htab_lru_push_free(htab, l);
1822 /* If we are not copying data, we can go to next bucket and avoid
1823 * unlocking the rcu.
1825 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1831 bpf_enable_instrumentation();
1832 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1833 key_size * bucket_cnt) ||
1834 copy_to_user(uvalues + total * value_size, values,
1835 value_size * bucket_cnt))) {
1840 total += bucket_cnt;
1842 if (batch >= htab->n_buckets) {
1852 /* copy # of entries and next batch */
1853 ubatch = u64_to_user_ptr(attr->batch.out_batch);
1854 if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1855 put_user(total, &uattr->batch.count))
1865 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1866 union bpf_attr __user *uattr)
1868 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1873 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1874 const union bpf_attr *attr,
1875 union bpf_attr __user *uattr)
1877 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1882 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1883 union bpf_attr __user *uattr)
1885 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1890 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1891 const union bpf_attr *attr,
1892 union bpf_attr __user *uattr)
1894 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1899 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1900 const union bpf_attr *attr,
1901 union bpf_attr __user *uattr)
1903 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1908 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1909 const union bpf_attr *attr,
1910 union bpf_attr __user *uattr)
1912 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1917 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1918 union bpf_attr __user *uattr)
1920 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1925 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1926 const union bpf_attr *attr,
1927 union bpf_attr __user *uattr)
1929 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1933 struct bpf_iter_seq_hash_map_info {
1934 struct bpf_map *map;
1935 struct bpf_htab *htab;
1936 void *percpu_value_buf; // non-zero means percpu hash
1941 static struct htab_elem *
1942 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1943 struct htab_elem *prev_elem)
1945 const struct bpf_htab *htab = info->htab;
1946 u32 skip_elems = info->skip_elems;
1947 u32 bucket_id = info->bucket_id;
1948 struct hlist_nulls_head *head;
1949 struct hlist_nulls_node *n;
1950 struct htab_elem *elem;
1954 if (bucket_id >= htab->n_buckets)
1957 /* try to find next elem in the same bucket */
1959 /* no update/deletion on this bucket, prev_elem should be still valid
1960 * and we won't skip elements.
1962 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1963 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1967 /* not found, unlock and go to the next bucket */
1968 b = &htab->buckets[bucket_id++];
1973 for (i = bucket_id; i < htab->n_buckets; i++) {
1974 b = &htab->buckets[i];
1979 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1980 if (count >= skip_elems) {
1981 info->bucket_id = i;
1982 info->skip_elems = count;
1992 info->bucket_id = i;
1993 info->skip_elems = 0;
1997 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1999 struct bpf_iter_seq_hash_map_info *info = seq->private;
2000 struct htab_elem *elem;
2002 elem = bpf_hash_map_seq_find_next(info, NULL);
2011 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2013 struct bpf_iter_seq_hash_map_info *info = seq->private;
2017 return bpf_hash_map_seq_find_next(info, v);
2020 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
2022 struct bpf_iter_seq_hash_map_info *info = seq->private;
2023 u32 roundup_key_size, roundup_value_size;
2024 struct bpf_iter__bpf_map_elem ctx = {};
2025 struct bpf_map *map = info->map;
2026 struct bpf_iter_meta meta;
2027 int ret = 0, off = 0, cpu;
2028 struct bpf_prog *prog;
2029 void __percpu *pptr;
2032 prog = bpf_iter_get_info(&meta, elem == NULL);
2035 ctx.map = info->map;
2037 roundup_key_size = round_up(map->key_size, 8);
2038 ctx.key = elem->key;
2039 if (!info->percpu_value_buf) {
2040 ctx.value = elem->key + roundup_key_size;
2042 roundup_value_size = round_up(map->value_size, 8);
2043 pptr = htab_elem_get_ptr(elem, map->key_size);
2044 for_each_possible_cpu(cpu) {
2045 bpf_long_memcpy(info->percpu_value_buf + off,
2046 per_cpu_ptr(pptr, cpu),
2047 roundup_value_size);
2048 off += roundup_value_size;
2050 ctx.value = info->percpu_value_buf;
2053 ret = bpf_iter_run_prog(prog, &ctx);
2059 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2061 return __bpf_hash_map_seq_show(seq, v);
2064 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2067 (void)__bpf_hash_map_seq_show(seq, NULL);
2072 static int bpf_iter_init_hash_map(void *priv_data,
2073 struct bpf_iter_aux_info *aux)
2075 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2076 struct bpf_map *map = aux->map;
2080 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2081 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2082 buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2083 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2087 seq_info->percpu_value_buf = value_buf;
2090 bpf_map_inc_with_uref(map);
2091 seq_info->map = map;
2092 seq_info->htab = container_of(map, struct bpf_htab, map);
2096 static void bpf_iter_fini_hash_map(void *priv_data)
2098 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2100 bpf_map_put_with_uref(seq_info->map);
2101 kfree(seq_info->percpu_value_buf);
2104 static const struct seq_operations bpf_hash_map_seq_ops = {
2105 .start = bpf_hash_map_seq_start,
2106 .next = bpf_hash_map_seq_next,
2107 .stop = bpf_hash_map_seq_stop,
2108 .show = bpf_hash_map_seq_show,
2111 static const struct bpf_iter_seq_info iter_seq_info = {
2112 .seq_ops = &bpf_hash_map_seq_ops,
2113 .init_seq_private = bpf_iter_init_hash_map,
2114 .fini_seq_private = bpf_iter_fini_hash_map,
2115 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info),
2118 static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2119 void *callback_ctx, u64 flags)
2121 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2122 struct hlist_nulls_head *head;
2123 struct hlist_nulls_node *n;
2124 struct htab_elem *elem;
2125 u32 roundup_key_size;
2126 int i, num_elems = 0;
2127 void __percpu *pptr;
2136 is_percpu = htab_is_percpu(htab);
2138 roundup_key_size = round_up(map->key_size, 8);
2139 /* disable migration so percpu value prepared here will be the
2140 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2144 for (i = 0; i < htab->n_buckets; i++) {
2145 b = &htab->buckets[i];
2148 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2151 /* current cpu value for percpu map */
2152 pptr = htab_elem_get_ptr(elem, map->key_size);
2153 val = this_cpu_ptr(pptr);
2155 val = elem->key + roundup_key_size;
2158 ret = callback_fn((u64)(long)map, (u64)(long)key,
2159 (u64)(long)val, (u64)(long)callback_ctx, 0);
2160 /* return value: 0 - continue, 1 - stop and return */
2174 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2175 const struct bpf_map_ops htab_map_ops = {
2176 .map_meta_equal = bpf_map_meta_equal,
2177 .map_alloc_check = htab_map_alloc_check,
2178 .map_alloc = htab_map_alloc,
2179 .map_free = htab_map_free,
2180 .map_get_next_key = htab_map_get_next_key,
2181 .map_release_uref = htab_map_free_timers,
2182 .map_lookup_elem = htab_map_lookup_elem,
2183 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2184 .map_update_elem = htab_map_update_elem,
2185 .map_delete_elem = htab_map_delete_elem,
2186 .map_gen_lookup = htab_map_gen_lookup,
2187 .map_seq_show_elem = htab_map_seq_show_elem,
2188 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2189 .map_for_each_callback = bpf_for_each_hash_elem,
2191 .map_btf_id = &htab_map_btf_ids[0],
2192 .iter_seq_info = &iter_seq_info,
2195 const struct bpf_map_ops htab_lru_map_ops = {
2196 .map_meta_equal = bpf_map_meta_equal,
2197 .map_alloc_check = htab_map_alloc_check,
2198 .map_alloc = htab_map_alloc,
2199 .map_free = htab_map_free,
2200 .map_get_next_key = htab_map_get_next_key,
2201 .map_release_uref = htab_map_free_timers,
2202 .map_lookup_elem = htab_lru_map_lookup_elem,
2203 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2204 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2205 .map_update_elem = htab_lru_map_update_elem,
2206 .map_delete_elem = htab_lru_map_delete_elem,
2207 .map_gen_lookup = htab_lru_map_gen_lookup,
2208 .map_seq_show_elem = htab_map_seq_show_elem,
2209 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2210 .map_for_each_callback = bpf_for_each_hash_elem,
2211 BATCH_OPS(htab_lru),
2212 .map_btf_id = &htab_map_btf_ids[0],
2213 .iter_seq_info = &iter_seq_info,
2216 /* Called from eBPF program */
2217 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2219 struct htab_elem *l = __htab_map_lookup_elem(map, key);
2222 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2227 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2229 struct htab_elem *l;
2231 if (cpu >= nr_cpu_ids)
2234 l = __htab_map_lookup_elem(map, key);
2236 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2241 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2243 struct htab_elem *l = __htab_map_lookup_elem(map, key);
2246 bpf_lru_node_set_ref(&l->lru_node);
2247 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2253 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2255 struct htab_elem *l;
2257 if (cpu >= nr_cpu_ids)
2260 l = __htab_map_lookup_elem(map, key);
2262 bpf_lru_node_set_ref(&l->lru_node);
2263 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2269 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2271 struct htab_elem *l;
2272 void __percpu *pptr;
2277 /* per_cpu areas are zero-filled and bpf programs can only
2278 * access 'value_size' of them, so copying rounded areas
2279 * will not leak any kernel data
2281 size = round_up(map->value_size, 8);
2283 l = __htab_map_lookup_elem(map, key);
2286 /* We do not mark LRU map element here in order to not mess up
2287 * eviction heuristics when user space does a map walk.
2289 pptr = htab_elem_get_ptr(l, map->key_size);
2290 for_each_possible_cpu(cpu) {
2291 bpf_long_memcpy(value + off,
2292 per_cpu_ptr(pptr, cpu), size);
2301 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2304 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2308 if (htab_is_lru(htab))
2309 ret = __htab_lru_percpu_map_update_elem(map, key, value,
2312 ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2319 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2322 struct htab_elem *l;
2323 void __percpu *pptr;
2328 l = __htab_map_lookup_elem(map, key);
2334 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2335 seq_puts(m, ": {\n");
2336 pptr = htab_elem_get_ptr(l, map->key_size);
2337 for_each_possible_cpu(cpu) {
2338 seq_printf(m, "\tcpu%d: ", cpu);
2339 btf_type_seq_show(map->btf, map->btf_value_type_id,
2340 per_cpu_ptr(pptr, cpu), m);
2348 const struct bpf_map_ops htab_percpu_map_ops = {
2349 .map_meta_equal = bpf_map_meta_equal,
2350 .map_alloc_check = htab_map_alloc_check,
2351 .map_alloc = htab_map_alloc,
2352 .map_free = htab_map_free,
2353 .map_get_next_key = htab_map_get_next_key,
2354 .map_lookup_elem = htab_percpu_map_lookup_elem,
2355 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2356 .map_update_elem = htab_percpu_map_update_elem,
2357 .map_delete_elem = htab_map_delete_elem,
2358 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2359 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2360 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2361 .map_for_each_callback = bpf_for_each_hash_elem,
2362 BATCH_OPS(htab_percpu),
2363 .map_btf_id = &htab_map_btf_ids[0],
2364 .iter_seq_info = &iter_seq_info,
2367 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2368 .map_meta_equal = bpf_map_meta_equal,
2369 .map_alloc_check = htab_map_alloc_check,
2370 .map_alloc = htab_map_alloc,
2371 .map_free = htab_map_free,
2372 .map_get_next_key = htab_map_get_next_key,
2373 .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2374 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2375 .map_update_elem = htab_lru_percpu_map_update_elem,
2376 .map_delete_elem = htab_lru_map_delete_elem,
2377 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2378 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2379 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2380 .map_for_each_callback = bpf_for_each_hash_elem,
2381 BATCH_OPS(htab_lru_percpu),
2382 .map_btf_id = &htab_map_btf_ids[0],
2383 .iter_seq_info = &iter_seq_info,
2386 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2388 if (attr->value_size != sizeof(u32))
2390 return htab_map_alloc_check(attr);
2393 static void fd_htab_map_free(struct bpf_map *map)
2395 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2396 struct hlist_nulls_node *n;
2397 struct hlist_nulls_head *head;
2398 struct htab_elem *l;
2401 for (i = 0; i < htab->n_buckets; i++) {
2402 head = select_bucket(htab, i);
2404 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2405 void *ptr = fd_htab_map_get_ptr(map, l);
2407 map->ops->map_fd_put_ptr(ptr);
2414 /* only called from syscall */
2415 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2420 if (!map->ops->map_fd_sys_lookup_elem)
2424 ptr = htab_map_lookup_elem(map, key);
2426 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2434 /* only called from syscall */
2435 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2436 void *key, void *value, u64 map_flags)
2440 u32 ufd = *(u32 *)value;
2442 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2444 return PTR_ERR(ptr);
2446 ret = htab_map_update_elem(map, key, &ptr, map_flags);
2448 map->ops->map_fd_put_ptr(ptr);
2453 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2455 struct bpf_map *map, *inner_map_meta;
2457 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2458 if (IS_ERR(inner_map_meta))
2459 return inner_map_meta;
2461 map = htab_map_alloc(attr);
2463 bpf_map_meta_free(inner_map_meta);
2467 map->inner_map_meta = inner_map_meta;
2472 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2474 struct bpf_map **inner_map = htab_map_lookup_elem(map, key);
2479 return READ_ONCE(*inner_map);
2482 static int htab_of_map_gen_lookup(struct bpf_map *map,
2483 struct bpf_insn *insn_buf)
2485 struct bpf_insn *insn = insn_buf;
2486 const int ret = BPF_REG_0;
2488 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2489 (void *(*)(struct bpf_map *map, void *key))NULL));
2490 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2491 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2492 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2493 offsetof(struct htab_elem, key) +
2494 round_up(map->key_size, 8));
2495 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2497 return insn - insn_buf;
2500 static void htab_of_map_free(struct bpf_map *map)
2502 bpf_map_meta_free(map->inner_map_meta);
2503 fd_htab_map_free(map);
2506 const struct bpf_map_ops htab_of_maps_map_ops = {
2507 .map_alloc_check = fd_htab_map_alloc_check,
2508 .map_alloc = htab_of_map_alloc,
2509 .map_free = htab_of_map_free,
2510 .map_get_next_key = htab_map_get_next_key,
2511 .map_lookup_elem = htab_of_map_lookup_elem,
2512 .map_delete_elem = htab_map_delete_elem,
2513 .map_fd_get_ptr = bpf_map_fd_get_ptr,
2514 .map_fd_put_ptr = bpf_map_fd_put_ptr,
2515 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2516 .map_gen_lookup = htab_of_map_gen_lookup,
2517 .map_check_btf = map_check_no_btf,
2519 .map_btf_id = &htab_map_btf_ids[0],