RISCV: Support pmd_leaf() in the function kernel_page_present()
[platform/kernel/linux-starfive.git] / kernel / bpf / cpumap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bitops.h>
20 #include <linux/bpf.h>
21 #include <linux/filter.h>
22 #include <linux/ptr_ring.h>
23 #include <net/xdp.h>
24
25 #include <linux/sched.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/capability.h>
29 #include <trace/events/xdp.h>
30
31 #include <linux/netdevice.h>   /* netif_receive_skb_list */
32 #include <linux/etherdevice.h> /* eth_type_trans */
33
34 /* General idea: XDP packets getting XDP redirected to another CPU,
35  * will maximum be stored/queued for one driver ->poll() call.  It is
36  * guaranteed that queueing the frame and the flush operation happen on
37  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
38  * which queue in bpf_cpu_map_entry contains packets.
39  */
40
41 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
42 struct bpf_cpu_map_entry;
43 struct bpf_cpu_map;
44
45 struct xdp_bulk_queue {
46         void *q[CPU_MAP_BULK_SIZE];
47         struct list_head flush_node;
48         struct bpf_cpu_map_entry *obj;
49         unsigned int count;
50 };
51
52 /* Struct for every remote "destination" CPU in map */
53 struct bpf_cpu_map_entry {
54         u32 cpu;    /* kthread CPU and map index */
55         int map_id; /* Back reference to map */
56
57         /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
58         struct xdp_bulk_queue __percpu *bulkq;
59
60         struct bpf_cpu_map *cmap;
61
62         /* Queue with potential multi-producers, and single-consumer kthread */
63         struct ptr_ring *queue;
64         struct task_struct *kthread;
65
66         struct bpf_cpumap_val value;
67         struct bpf_prog *prog;
68
69         atomic_t refcnt; /* Control when this struct can be free'ed */
70         struct rcu_head rcu;
71
72         struct work_struct kthread_stop_wq;
73 };
74
75 struct bpf_cpu_map {
76         struct bpf_map map;
77         /* Below members specific for map type */
78         struct bpf_cpu_map_entry __rcu **cpu_map;
79 };
80
81 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
82
83 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
84 {
85         u32 value_size = attr->value_size;
86         struct bpf_cpu_map *cmap;
87         int err = -ENOMEM;
88
89         if (!bpf_capable())
90                 return ERR_PTR(-EPERM);
91
92         /* check sanity of attributes */
93         if (attr->max_entries == 0 || attr->key_size != 4 ||
94             (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
95              value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
96             attr->map_flags & ~BPF_F_NUMA_NODE)
97                 return ERR_PTR(-EINVAL);
98
99         cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
100         if (!cmap)
101                 return ERR_PTR(-ENOMEM);
102
103         bpf_map_init_from_attr(&cmap->map, attr);
104
105         /* Pre-limit array size based on NR_CPUS, not final CPU check */
106         if (cmap->map.max_entries > NR_CPUS) {
107                 err = -E2BIG;
108                 goto free_cmap;
109         }
110
111         /* Alloc array for possible remote "destination" CPUs */
112         cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
113                                            sizeof(struct bpf_cpu_map_entry *),
114                                            cmap->map.numa_node);
115         if (!cmap->cpu_map)
116                 goto free_cmap;
117
118         return &cmap->map;
119 free_cmap:
120         kfree(cmap);
121         return ERR_PTR(err);
122 }
123
124 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
125 {
126         atomic_inc(&rcpu->refcnt);
127 }
128
129 /* called from workqueue, to workaround syscall using preempt_disable */
130 static void cpu_map_kthread_stop(struct work_struct *work)
131 {
132         struct bpf_cpu_map_entry *rcpu;
133
134         rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
135
136         /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
137          * as it waits until all in-flight call_rcu() callbacks complete.
138          */
139         rcu_barrier();
140
141         /* kthread_stop will wake_up_process and wait for it to complete */
142         kthread_stop(rcpu->kthread);
143 }
144
145 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
146 {
147         /* The tear-down procedure should have made sure that queue is
148          * empty.  See __cpu_map_entry_replace() and work-queue
149          * invoked cpu_map_kthread_stop(). Catch any broken behaviour
150          * gracefully and warn once.
151          */
152         struct xdp_frame *xdpf;
153
154         while ((xdpf = ptr_ring_consume(ring)))
155                 if (WARN_ON_ONCE(xdpf))
156                         xdp_return_frame(xdpf);
157 }
158
159 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
160 {
161         if (atomic_dec_and_test(&rcpu->refcnt)) {
162                 if (rcpu->prog)
163                         bpf_prog_put(rcpu->prog);
164                 /* The queue should be empty at this point */
165                 __cpu_map_ring_cleanup(rcpu->queue);
166                 ptr_ring_cleanup(rcpu->queue, NULL);
167                 kfree(rcpu->queue);
168                 kfree(rcpu);
169         }
170 }
171
172 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
173                                      struct list_head *listp,
174                                      struct xdp_cpumap_stats *stats)
175 {
176         struct sk_buff *skb, *tmp;
177         struct xdp_buff xdp;
178         u32 act;
179         int err;
180
181         list_for_each_entry_safe(skb, tmp, listp, list) {
182                 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
183                 switch (act) {
184                 case XDP_PASS:
185                         break;
186                 case XDP_REDIRECT:
187                         skb_list_del_init(skb);
188                         err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
189                                                       rcpu->prog);
190                         if (unlikely(err)) {
191                                 kfree_skb(skb);
192                                 stats->drop++;
193                         } else {
194                                 stats->redirect++;
195                         }
196                         return;
197                 default:
198                         bpf_warn_invalid_xdp_action(act);
199                         fallthrough;
200                 case XDP_ABORTED:
201                         trace_xdp_exception(skb->dev, rcpu->prog, act);
202                         fallthrough;
203                 case XDP_DROP:
204                         skb_list_del_init(skb);
205                         kfree_skb(skb);
206                         stats->drop++;
207                         return;
208                 }
209         }
210 }
211
212 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
213                                     void **frames, int n,
214                                     struct xdp_cpumap_stats *stats)
215 {
216         struct xdp_rxq_info rxq;
217         struct xdp_buff xdp;
218         int i, nframes = 0;
219
220         xdp_set_return_frame_no_direct();
221         xdp.rxq = &rxq;
222
223         for (i = 0; i < n; i++) {
224                 struct xdp_frame *xdpf = frames[i];
225                 u32 act;
226                 int err;
227
228                 rxq.dev = xdpf->dev_rx;
229                 rxq.mem = xdpf->mem;
230                 /* TODO: report queue_index to xdp_rxq_info */
231
232                 xdp_convert_frame_to_buff(xdpf, &xdp);
233
234                 act = bpf_prog_run_xdp(rcpu->prog, &xdp);
235                 switch (act) {
236                 case XDP_PASS:
237                         err = xdp_update_frame_from_buff(&xdp, xdpf);
238                         if (err < 0) {
239                                 xdp_return_frame(xdpf);
240                                 stats->drop++;
241                         } else {
242                                 frames[nframes++] = xdpf;
243                                 stats->pass++;
244                         }
245                         break;
246                 case XDP_REDIRECT:
247                         err = xdp_do_redirect(xdpf->dev_rx, &xdp,
248                                               rcpu->prog);
249                         if (unlikely(err)) {
250                                 xdp_return_frame(xdpf);
251                                 stats->drop++;
252                         } else {
253                                 stats->redirect++;
254                         }
255                         break;
256                 default:
257                         bpf_warn_invalid_xdp_action(act);
258                         fallthrough;
259                 case XDP_DROP:
260                         xdp_return_frame(xdpf);
261                         stats->drop++;
262                         break;
263                 }
264         }
265
266         xdp_clear_return_frame_no_direct();
267
268         return nframes;
269 }
270
271 #define CPUMAP_BATCH 8
272
273 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
274                                 int xdp_n, struct xdp_cpumap_stats *stats,
275                                 struct list_head *list)
276 {
277         int nframes;
278
279         if (!rcpu->prog)
280                 return xdp_n;
281
282         rcu_read_lock_bh();
283
284         nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
285
286         if (stats->redirect)
287                 xdp_do_flush();
288
289         if (unlikely(!list_empty(list)))
290                 cpu_map_bpf_prog_run_skb(rcpu, list, stats);
291
292         rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
293
294         return nframes;
295 }
296
297
298 static int cpu_map_kthread_run(void *data)
299 {
300         struct bpf_cpu_map_entry *rcpu = data;
301
302         set_current_state(TASK_INTERRUPTIBLE);
303
304         /* When kthread gives stop order, then rcpu have been disconnected
305          * from map, thus no new packets can enter. Remaining in-flight
306          * per CPU stored packets are flushed to this queue.  Wait honoring
307          * kthread_stop signal until queue is empty.
308          */
309         while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
310                 struct xdp_cpumap_stats stats = {}; /* zero stats */
311                 unsigned int kmem_alloc_drops = 0, sched = 0;
312                 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
313                 int i, n, m, nframes, xdp_n;
314                 void *frames[CPUMAP_BATCH];
315                 void *skbs[CPUMAP_BATCH];
316                 LIST_HEAD(list);
317
318                 /* Release CPU reschedule checks */
319                 if (__ptr_ring_empty(rcpu->queue)) {
320                         set_current_state(TASK_INTERRUPTIBLE);
321                         /* Recheck to avoid lost wake-up */
322                         if (__ptr_ring_empty(rcpu->queue)) {
323                                 schedule();
324                                 sched = 1;
325                         } else {
326                                 __set_current_state(TASK_RUNNING);
327                         }
328                 } else {
329                         sched = cond_resched();
330                 }
331
332                 /*
333                  * The bpf_cpu_map_entry is single consumer, with this
334                  * kthread CPU pinned. Lockless access to ptr_ring
335                  * consume side valid as no-resize allowed of queue.
336                  */
337                 n = __ptr_ring_consume_batched(rcpu->queue, frames,
338                                                CPUMAP_BATCH);
339                 for (i = 0, xdp_n = 0; i < n; i++) {
340                         void *f = frames[i];
341                         struct page *page;
342
343                         if (unlikely(__ptr_test_bit(0, &f))) {
344                                 struct sk_buff *skb = f;
345
346                                 __ptr_clear_bit(0, &skb);
347                                 list_add_tail(&skb->list, &list);
348                                 continue;
349                         }
350
351                         frames[xdp_n++] = f;
352                         page = virt_to_page(f);
353
354                         /* Bring struct page memory area to curr CPU. Read by
355                          * build_skb_around via page_is_pfmemalloc(), and when
356                          * freed written by page_frag_free call.
357                          */
358                         prefetchw(page);
359                 }
360
361                 /* Support running another XDP prog on this CPU */
362                 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
363                 if (nframes) {
364                         m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
365                         if (unlikely(m == 0)) {
366                                 for (i = 0; i < nframes; i++)
367                                         skbs[i] = NULL; /* effect: xdp_return_frame */
368                                 kmem_alloc_drops += nframes;
369                         }
370                 }
371
372                 local_bh_disable();
373                 for (i = 0; i < nframes; i++) {
374                         struct xdp_frame *xdpf = frames[i];
375                         struct sk_buff *skb = skbs[i];
376
377                         skb = __xdp_build_skb_from_frame(xdpf, skb,
378                                                          xdpf->dev_rx);
379                         if (!skb) {
380                                 xdp_return_frame(xdpf);
381                                 continue;
382                         }
383
384                         list_add_tail(&skb->list, &list);
385                 }
386                 netif_receive_skb_list(&list);
387
388                 /* Feedback loop via tracepoint */
389                 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
390                                          sched, &stats);
391
392                 local_bh_enable(); /* resched point, may call do_softirq() */
393         }
394         __set_current_state(TASK_RUNNING);
395
396         put_cpu_map_entry(rcpu);
397         return 0;
398 }
399
400 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
401 {
402         struct bpf_prog *prog;
403
404         prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
405         if (IS_ERR(prog))
406                 return PTR_ERR(prog);
407
408         if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
409                 bpf_prog_put(prog);
410                 return -EINVAL;
411         }
412
413         rcpu->value.bpf_prog.id = prog->aux->id;
414         rcpu->prog = prog;
415
416         return 0;
417 }
418
419 static struct bpf_cpu_map_entry *
420 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
421                       u32 cpu)
422 {
423         int numa, err, i, fd = value->bpf_prog.fd;
424         gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
425         struct bpf_cpu_map_entry *rcpu;
426         struct xdp_bulk_queue *bq;
427
428         /* Have map->numa_node, but choose node of redirect target CPU */
429         numa = cpu_to_node(cpu);
430
431         rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
432         if (!rcpu)
433                 return NULL;
434
435         /* Alloc percpu bulkq */
436         rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
437                                            sizeof(void *), gfp);
438         if (!rcpu->bulkq)
439                 goto free_rcu;
440
441         for_each_possible_cpu(i) {
442                 bq = per_cpu_ptr(rcpu->bulkq, i);
443                 bq->obj = rcpu;
444         }
445
446         /* Alloc queue */
447         rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
448                                            numa);
449         if (!rcpu->queue)
450                 goto free_bulkq;
451
452         err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
453         if (err)
454                 goto free_queue;
455
456         rcpu->cpu    = cpu;
457         rcpu->map_id = map->id;
458         rcpu->value.qsize  = value->qsize;
459
460         if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
461                 goto free_ptr_ring;
462
463         /* Setup kthread */
464         rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
465                                                "cpumap/%d/map:%d", cpu,
466                                                map->id);
467         if (IS_ERR(rcpu->kthread))
468                 goto free_prog;
469
470         get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
471         get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
472
473         /* Make sure kthread runs on a single CPU */
474         kthread_bind(rcpu->kthread, cpu);
475         wake_up_process(rcpu->kthread);
476
477         return rcpu;
478
479 free_prog:
480         if (rcpu->prog)
481                 bpf_prog_put(rcpu->prog);
482 free_ptr_ring:
483         ptr_ring_cleanup(rcpu->queue, NULL);
484 free_queue:
485         kfree(rcpu->queue);
486 free_bulkq:
487         free_percpu(rcpu->bulkq);
488 free_rcu:
489         kfree(rcpu);
490         return NULL;
491 }
492
493 static void __cpu_map_entry_free(struct rcu_head *rcu)
494 {
495         struct bpf_cpu_map_entry *rcpu;
496
497         /* This cpu_map_entry have been disconnected from map and one
498          * RCU grace-period have elapsed.  Thus, XDP cannot queue any
499          * new packets and cannot change/set flush_needed that can
500          * find this entry.
501          */
502         rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
503
504         free_percpu(rcpu->bulkq);
505         /* Cannot kthread_stop() here, last put free rcpu resources */
506         put_cpu_map_entry(rcpu);
507 }
508
509 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
510  * ensure any driver rcu critical sections have completed, but this
511  * does not guarantee a flush has happened yet. Because driver side
512  * rcu_read_lock/unlock only protects the running XDP program.  The
513  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
514  * pending flush op doesn't fail.
515  *
516  * The bpf_cpu_map_entry is still used by the kthread, and there can
517  * still be pending packets (in queue and percpu bulkq).  A refcnt
518  * makes sure to last user (kthread_stop vs. call_rcu) free memory
519  * resources.
520  *
521  * The rcu callback __cpu_map_entry_free flush remaining packets in
522  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
523  * preemption, cannot call kthread_stop() to make sure queue is empty.
524  * Instead a work_queue is started for stopping kthread,
525  * cpu_map_kthread_stop, which waits for an RCU grace period before
526  * stopping kthread, emptying the queue.
527  */
528 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
529                                     u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
530 {
531         struct bpf_cpu_map_entry *old_rcpu;
532
533         old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
534         if (old_rcpu) {
535                 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
536                 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
537                 schedule_work(&old_rcpu->kthread_stop_wq);
538         }
539 }
540
541 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
542 {
543         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
544         u32 key_cpu = *(u32 *)key;
545
546         if (key_cpu >= map->max_entries)
547                 return -EINVAL;
548
549         /* notice caller map_delete_elem() use preempt_disable() */
550         __cpu_map_entry_replace(cmap, key_cpu, NULL);
551         return 0;
552 }
553
554 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
555                                u64 map_flags)
556 {
557         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
558         struct bpf_cpumap_val cpumap_value = {};
559         struct bpf_cpu_map_entry *rcpu;
560         /* Array index key correspond to CPU number */
561         u32 key_cpu = *(u32 *)key;
562
563         memcpy(&cpumap_value, value, map->value_size);
564
565         if (unlikely(map_flags > BPF_EXIST))
566                 return -EINVAL;
567         if (unlikely(key_cpu >= cmap->map.max_entries))
568                 return -E2BIG;
569         if (unlikely(map_flags == BPF_NOEXIST))
570                 return -EEXIST;
571         if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
572                 return -EOVERFLOW;
573
574         /* Make sure CPU is a valid possible cpu */
575         if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
576                 return -ENODEV;
577
578         if (cpumap_value.qsize == 0) {
579                 rcpu = NULL; /* Same as deleting */
580         } else {
581                 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
582                 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
583                 if (!rcpu)
584                         return -ENOMEM;
585                 rcpu->cmap = cmap;
586         }
587         rcu_read_lock();
588         __cpu_map_entry_replace(cmap, key_cpu, rcpu);
589         rcu_read_unlock();
590         return 0;
591 }
592
593 static void cpu_map_free(struct bpf_map *map)
594 {
595         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
596         u32 i;
597
598         /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
599          * so the bpf programs (can be more than one that used this map) were
600          * disconnected from events. Wait for outstanding critical sections in
601          * these programs to complete. The rcu critical section only guarantees
602          * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
603          * It does __not__ ensure pending flush operations (if any) are
604          * complete.
605          */
606
607         synchronize_rcu();
608
609         /* For cpu_map the remote CPUs can still be using the entries
610          * (struct bpf_cpu_map_entry).
611          */
612         for (i = 0; i < cmap->map.max_entries; i++) {
613                 struct bpf_cpu_map_entry *rcpu;
614
615                 rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
616                 if (!rcpu)
617                         continue;
618
619                 /* bq flush and cleanup happens after RCU grace-period */
620                 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
621         }
622         bpf_map_area_free(cmap->cpu_map);
623         kfree(cmap);
624 }
625
626 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
627  * by local_bh_disable() (from XDP calls inside NAPI). The
628  * rcu_read_lock_bh_held() below makes lockdep accept both.
629  */
630 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
631 {
632         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
633         struct bpf_cpu_map_entry *rcpu;
634
635         if (key >= map->max_entries)
636                 return NULL;
637
638         rcpu = rcu_dereference_check(cmap->cpu_map[key],
639                                      rcu_read_lock_bh_held());
640         return rcpu;
641 }
642
643 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
644 {
645         struct bpf_cpu_map_entry *rcpu =
646                 __cpu_map_lookup_elem(map, *(u32 *)key);
647
648         return rcpu ? &rcpu->value : NULL;
649 }
650
651 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
652 {
653         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
654         u32 index = key ? *(u32 *)key : U32_MAX;
655         u32 *next = next_key;
656
657         if (index >= cmap->map.max_entries) {
658                 *next = 0;
659                 return 0;
660         }
661
662         if (index == cmap->map.max_entries - 1)
663                 return -ENOENT;
664         *next = index + 1;
665         return 0;
666 }
667
668 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
669 {
670         return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
671                                       __cpu_map_lookup_elem);
672 }
673
674 static int cpu_map_btf_id;
675 const struct bpf_map_ops cpu_map_ops = {
676         .map_meta_equal         = bpf_map_meta_equal,
677         .map_alloc              = cpu_map_alloc,
678         .map_free               = cpu_map_free,
679         .map_delete_elem        = cpu_map_delete_elem,
680         .map_update_elem        = cpu_map_update_elem,
681         .map_lookup_elem        = cpu_map_lookup_elem,
682         .map_get_next_key       = cpu_map_get_next_key,
683         .map_check_btf          = map_check_no_btf,
684         .map_btf_name           = "bpf_cpu_map",
685         .map_btf_id             = &cpu_map_btf_id,
686         .map_redirect           = cpu_map_redirect,
687 };
688
689 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
690 {
691         struct bpf_cpu_map_entry *rcpu = bq->obj;
692         unsigned int processed = 0, drops = 0;
693         const int to_cpu = rcpu->cpu;
694         struct ptr_ring *q;
695         int i;
696
697         if (unlikely(!bq->count))
698                 return;
699
700         q = rcpu->queue;
701         spin_lock(&q->producer_lock);
702
703         for (i = 0; i < bq->count; i++) {
704                 struct xdp_frame *xdpf = bq->q[i];
705                 int err;
706
707                 err = __ptr_ring_produce(q, xdpf);
708                 if (err) {
709                         drops++;
710                         xdp_return_frame_rx_napi(xdpf);
711                 }
712                 processed++;
713         }
714         bq->count = 0;
715         spin_unlock(&q->producer_lock);
716
717         __list_del_clearprev(&bq->flush_node);
718
719         /* Feedback loop via tracepoints */
720         trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
721 }
722
723 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
724  * Thus, safe percpu variable access.
725  */
726 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
727 {
728         struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
729         struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
730
731         if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
732                 bq_flush_to_queue(bq);
733
734         /* Notice, xdp_buff/page MUST be queued here, long enough for
735          * driver to code invoking us to finished, due to driver
736          * (e.g. ixgbe) recycle tricks based on page-refcnt.
737          *
738          * Thus, incoming xdp_frame is always queued here (else we race
739          * with another CPU on page-refcnt and remaining driver code).
740          * Queue time is very short, as driver will invoke flush
741          * operation, when completing napi->poll call.
742          */
743         bq->q[bq->count++] = xdpf;
744
745         if (!bq->flush_node.prev)
746                 list_add(&bq->flush_node, flush_list);
747 }
748
749 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
750                     struct net_device *dev_rx)
751 {
752         struct xdp_frame *xdpf;
753
754         xdpf = xdp_convert_buff_to_frame(xdp);
755         if (unlikely(!xdpf))
756                 return -EOVERFLOW;
757
758         /* Info needed when constructing SKB on remote CPU */
759         xdpf->dev_rx = dev_rx;
760
761         bq_enqueue(rcpu, xdpf);
762         return 0;
763 }
764
765 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
766                              struct sk_buff *skb)
767 {
768         int ret;
769
770         __skb_pull(skb, skb->mac_len);
771         skb_set_redirected(skb, false);
772         __ptr_set_bit(0, &skb);
773
774         ret = ptr_ring_produce(rcpu->queue, skb);
775         if (ret < 0)
776                 goto trace;
777
778         wake_up_process(rcpu->kthread);
779 trace:
780         trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
781         return ret;
782 }
783
784 void __cpu_map_flush(void)
785 {
786         struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
787         struct xdp_bulk_queue *bq, *tmp;
788
789         list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
790                 bq_flush_to_queue(bq);
791
792                 /* If already running, costs spin_lock_irqsave + smb_mb */
793                 wake_up_process(bq->obj->kthread);
794         }
795 }
796
797 static int __init cpu_map_init(void)
798 {
799         int cpu;
800
801         for_each_possible_cpu(cpu)
802                 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
803         return 0;
804 }
805
806 subsys_initcall(cpu_map_init);