Merge tag 'drm-misc-next-fixes-2023-09-01' of git://anongit.freedesktop.org/drm/drm...
[platform/kernel/linux-rpi.git] / kernel / bpf / cpumap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6
7 /**
8  * DOC: cpu map
9  * The 'cpumap' is primarily used as a backend map for XDP BPF helper
10  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
11  *
12  * Unlike devmap which redirects XDP frames out to another NIC device,
13  * this map type redirects raw XDP frames to another CPU.  The remote
14  * CPU will do SKB-allocation and call the normal network stack.
15  */
16 /*
17  * This is a scalability and isolation mechanism, that allow
18  * separating the early driver network XDP layer, from the rest of the
19  * netstack, and assigning dedicated CPUs for this stage.  This
20  * basically allows for 10G wirespeed pre-filtering via bpf.
21  */
22 #include <linux/bitops.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <net/xdp.h>
27
28 #include <linux/sched.h>
29 #include <linux/workqueue.h>
30 #include <linux/kthread.h>
31 #include <linux/completion.h>
32 #include <trace/events/xdp.h>
33 #include <linux/btf_ids.h>
34
35 #include <linux/netdevice.h>   /* netif_receive_skb_list */
36 #include <linux/etherdevice.h> /* eth_type_trans */
37
38 /* General idea: XDP packets getting XDP redirected to another CPU,
39  * will maximum be stored/queued for one driver ->poll() call.  It is
40  * guaranteed that queueing the frame and the flush operation happen on
41  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
42  * which queue in bpf_cpu_map_entry contains packets.
43  */
44
45 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
46 struct bpf_cpu_map_entry;
47 struct bpf_cpu_map;
48
49 struct xdp_bulk_queue {
50         void *q[CPU_MAP_BULK_SIZE];
51         struct list_head flush_node;
52         struct bpf_cpu_map_entry *obj;
53         unsigned int count;
54 };
55
56 /* Struct for every remote "destination" CPU in map */
57 struct bpf_cpu_map_entry {
58         u32 cpu;    /* kthread CPU and map index */
59         int map_id; /* Back reference to map */
60
61         /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
62         struct xdp_bulk_queue __percpu *bulkq;
63
64         struct bpf_cpu_map *cmap;
65
66         /* Queue with potential multi-producers, and single-consumer kthread */
67         struct ptr_ring *queue;
68         struct task_struct *kthread;
69
70         struct bpf_cpumap_val value;
71         struct bpf_prog *prog;
72
73         atomic_t refcnt; /* Control when this struct can be free'ed */
74         struct rcu_head rcu;
75
76         struct work_struct kthread_stop_wq;
77         struct completion kthread_running;
78 };
79
80 struct bpf_cpu_map {
81         struct bpf_map map;
82         /* Below members specific for map type */
83         struct bpf_cpu_map_entry __rcu **cpu_map;
84 };
85
86 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
87
88 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
89 {
90         u32 value_size = attr->value_size;
91         struct bpf_cpu_map *cmap;
92
93         /* check sanity of attributes */
94         if (attr->max_entries == 0 || attr->key_size != 4 ||
95             (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
96              value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
97             attr->map_flags & ~BPF_F_NUMA_NODE)
98                 return ERR_PTR(-EINVAL);
99
100         /* Pre-limit array size based on NR_CPUS, not final CPU check */
101         if (attr->max_entries > NR_CPUS)
102                 return ERR_PTR(-E2BIG);
103
104         cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
105         if (!cmap)
106                 return ERR_PTR(-ENOMEM);
107
108         bpf_map_init_from_attr(&cmap->map, attr);
109
110         /* Alloc array for possible remote "destination" CPUs */
111         cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
112                                            sizeof(struct bpf_cpu_map_entry *),
113                                            cmap->map.numa_node);
114         if (!cmap->cpu_map) {
115                 bpf_map_area_free(cmap);
116                 return ERR_PTR(-ENOMEM);
117         }
118
119         return &cmap->map;
120 }
121
122 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
123 {
124         atomic_inc(&rcpu->refcnt);
125 }
126
127 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
128 {
129         /* The tear-down procedure should have made sure that queue is
130          * empty.  See __cpu_map_entry_replace() and work-queue
131          * invoked cpu_map_kthread_stop(). Catch any broken behaviour
132          * gracefully and warn once.
133          */
134         void *ptr;
135
136         while ((ptr = ptr_ring_consume(ring))) {
137                 WARN_ON_ONCE(1);
138                 if (unlikely(__ptr_test_bit(0, &ptr))) {
139                         __ptr_clear_bit(0, &ptr);
140                         kfree_skb(ptr);
141                         continue;
142                 }
143                 xdp_return_frame(ptr);
144         }
145 }
146
147 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
148 {
149         if (atomic_dec_and_test(&rcpu->refcnt)) {
150                 if (rcpu->prog)
151                         bpf_prog_put(rcpu->prog);
152                 /* The queue should be empty at this point */
153                 __cpu_map_ring_cleanup(rcpu->queue);
154                 ptr_ring_cleanup(rcpu->queue, NULL);
155                 kfree(rcpu->queue);
156                 kfree(rcpu);
157         }
158 }
159
160 /* called from workqueue, to workaround syscall using preempt_disable */
161 static void cpu_map_kthread_stop(struct work_struct *work)
162 {
163         struct bpf_cpu_map_entry *rcpu;
164
165         rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
166
167         /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
168          * as it waits until all in-flight call_rcu() callbacks complete.
169          */
170         rcu_barrier();
171
172         /* kthread_stop will wake_up_process and wait for it to complete */
173         kthread_stop(rcpu->kthread);
174 }
175
176 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
177                                      struct list_head *listp,
178                                      struct xdp_cpumap_stats *stats)
179 {
180         struct sk_buff *skb, *tmp;
181         struct xdp_buff xdp;
182         u32 act;
183         int err;
184
185         list_for_each_entry_safe(skb, tmp, listp, list) {
186                 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
187                 switch (act) {
188                 case XDP_PASS:
189                         break;
190                 case XDP_REDIRECT:
191                         skb_list_del_init(skb);
192                         err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
193                                                       rcpu->prog);
194                         if (unlikely(err)) {
195                                 kfree_skb(skb);
196                                 stats->drop++;
197                         } else {
198                                 stats->redirect++;
199                         }
200                         return;
201                 default:
202                         bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
203                         fallthrough;
204                 case XDP_ABORTED:
205                         trace_xdp_exception(skb->dev, rcpu->prog, act);
206                         fallthrough;
207                 case XDP_DROP:
208                         skb_list_del_init(skb);
209                         kfree_skb(skb);
210                         stats->drop++;
211                         return;
212                 }
213         }
214 }
215
216 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
217                                     void **frames, int n,
218                                     struct xdp_cpumap_stats *stats)
219 {
220         struct xdp_rxq_info rxq;
221         struct xdp_buff xdp;
222         int i, nframes = 0;
223
224         xdp_set_return_frame_no_direct();
225         xdp.rxq = &rxq;
226
227         for (i = 0; i < n; i++) {
228                 struct xdp_frame *xdpf = frames[i];
229                 u32 act;
230                 int err;
231
232                 rxq.dev = xdpf->dev_rx;
233                 rxq.mem = xdpf->mem;
234                 /* TODO: report queue_index to xdp_rxq_info */
235
236                 xdp_convert_frame_to_buff(xdpf, &xdp);
237
238                 act = bpf_prog_run_xdp(rcpu->prog, &xdp);
239                 switch (act) {
240                 case XDP_PASS:
241                         err = xdp_update_frame_from_buff(&xdp, xdpf);
242                         if (err < 0) {
243                                 xdp_return_frame(xdpf);
244                                 stats->drop++;
245                         } else {
246                                 frames[nframes++] = xdpf;
247                                 stats->pass++;
248                         }
249                         break;
250                 case XDP_REDIRECT:
251                         err = xdp_do_redirect(xdpf->dev_rx, &xdp,
252                                               rcpu->prog);
253                         if (unlikely(err)) {
254                                 xdp_return_frame(xdpf);
255                                 stats->drop++;
256                         } else {
257                                 stats->redirect++;
258                         }
259                         break;
260                 default:
261                         bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
262                         fallthrough;
263                 case XDP_DROP:
264                         xdp_return_frame(xdpf);
265                         stats->drop++;
266                         break;
267                 }
268         }
269
270         xdp_clear_return_frame_no_direct();
271
272         return nframes;
273 }
274
275 #define CPUMAP_BATCH 8
276
277 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
278                                 int xdp_n, struct xdp_cpumap_stats *stats,
279                                 struct list_head *list)
280 {
281         int nframes;
282
283         if (!rcpu->prog)
284                 return xdp_n;
285
286         rcu_read_lock_bh();
287
288         nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
289
290         if (stats->redirect)
291                 xdp_do_flush();
292
293         if (unlikely(!list_empty(list)))
294                 cpu_map_bpf_prog_run_skb(rcpu, list, stats);
295
296         rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
297
298         return nframes;
299 }
300
301 static int cpu_map_kthread_run(void *data)
302 {
303         struct bpf_cpu_map_entry *rcpu = data;
304
305         complete(&rcpu->kthread_running);
306         set_current_state(TASK_INTERRUPTIBLE);
307
308         /* When kthread gives stop order, then rcpu have been disconnected
309          * from map, thus no new packets can enter. Remaining in-flight
310          * per CPU stored packets are flushed to this queue.  Wait honoring
311          * kthread_stop signal until queue is empty.
312          */
313         while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
314                 struct xdp_cpumap_stats stats = {}; /* zero stats */
315                 unsigned int kmem_alloc_drops = 0, sched = 0;
316                 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
317                 int i, n, m, nframes, xdp_n;
318                 void *frames[CPUMAP_BATCH];
319                 void *skbs[CPUMAP_BATCH];
320                 LIST_HEAD(list);
321
322                 /* Release CPU reschedule checks */
323                 if (__ptr_ring_empty(rcpu->queue)) {
324                         set_current_state(TASK_INTERRUPTIBLE);
325                         /* Recheck to avoid lost wake-up */
326                         if (__ptr_ring_empty(rcpu->queue)) {
327                                 schedule();
328                                 sched = 1;
329                         } else {
330                                 __set_current_state(TASK_RUNNING);
331                         }
332                 } else {
333                         sched = cond_resched();
334                 }
335
336                 /*
337                  * The bpf_cpu_map_entry is single consumer, with this
338                  * kthread CPU pinned. Lockless access to ptr_ring
339                  * consume side valid as no-resize allowed of queue.
340                  */
341                 n = __ptr_ring_consume_batched(rcpu->queue, frames,
342                                                CPUMAP_BATCH);
343                 for (i = 0, xdp_n = 0; i < n; i++) {
344                         void *f = frames[i];
345                         struct page *page;
346
347                         if (unlikely(__ptr_test_bit(0, &f))) {
348                                 struct sk_buff *skb = f;
349
350                                 __ptr_clear_bit(0, &skb);
351                                 list_add_tail(&skb->list, &list);
352                                 continue;
353                         }
354
355                         frames[xdp_n++] = f;
356                         page = virt_to_page(f);
357
358                         /* Bring struct page memory area to curr CPU. Read by
359                          * build_skb_around via page_is_pfmemalloc(), and when
360                          * freed written by page_frag_free call.
361                          */
362                         prefetchw(page);
363                 }
364
365                 /* Support running another XDP prog on this CPU */
366                 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
367                 if (nframes) {
368                         m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs);
369                         if (unlikely(m == 0)) {
370                                 for (i = 0; i < nframes; i++)
371                                         skbs[i] = NULL; /* effect: xdp_return_frame */
372                                 kmem_alloc_drops += nframes;
373                         }
374                 }
375
376                 local_bh_disable();
377                 for (i = 0; i < nframes; i++) {
378                         struct xdp_frame *xdpf = frames[i];
379                         struct sk_buff *skb = skbs[i];
380
381                         skb = __xdp_build_skb_from_frame(xdpf, skb,
382                                                          xdpf->dev_rx);
383                         if (!skb) {
384                                 xdp_return_frame(xdpf);
385                                 continue;
386                         }
387
388                         list_add_tail(&skb->list, &list);
389                 }
390                 netif_receive_skb_list(&list);
391
392                 /* Feedback loop via tracepoint */
393                 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
394                                          sched, &stats);
395
396                 local_bh_enable(); /* resched point, may call do_softirq() */
397         }
398         __set_current_state(TASK_RUNNING);
399
400         put_cpu_map_entry(rcpu);
401         return 0;
402 }
403
404 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
405                                       struct bpf_map *map, int fd)
406 {
407         struct bpf_prog *prog;
408
409         prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
410         if (IS_ERR(prog))
411                 return PTR_ERR(prog);
412
413         if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
414             !bpf_prog_map_compatible(map, prog)) {
415                 bpf_prog_put(prog);
416                 return -EINVAL;
417         }
418
419         rcpu->value.bpf_prog.id = prog->aux->id;
420         rcpu->prog = prog;
421
422         return 0;
423 }
424
425 static struct bpf_cpu_map_entry *
426 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
427                       u32 cpu)
428 {
429         int numa, err, i, fd = value->bpf_prog.fd;
430         gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
431         struct bpf_cpu_map_entry *rcpu;
432         struct xdp_bulk_queue *bq;
433
434         /* Have map->numa_node, but choose node of redirect target CPU */
435         numa = cpu_to_node(cpu);
436
437         rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
438         if (!rcpu)
439                 return NULL;
440
441         /* Alloc percpu bulkq */
442         rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
443                                            sizeof(void *), gfp);
444         if (!rcpu->bulkq)
445                 goto free_rcu;
446
447         for_each_possible_cpu(i) {
448                 bq = per_cpu_ptr(rcpu->bulkq, i);
449                 bq->obj = rcpu;
450         }
451
452         /* Alloc queue */
453         rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
454                                            numa);
455         if (!rcpu->queue)
456                 goto free_bulkq;
457
458         err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
459         if (err)
460                 goto free_queue;
461
462         rcpu->cpu    = cpu;
463         rcpu->map_id = map->id;
464         rcpu->value.qsize  = value->qsize;
465
466         if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
467                 goto free_ptr_ring;
468
469         /* Setup kthread */
470         init_completion(&rcpu->kthread_running);
471         rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
472                                                "cpumap/%d/map:%d", cpu,
473                                                map->id);
474         if (IS_ERR(rcpu->kthread))
475                 goto free_prog;
476
477         get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
478         get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
479
480         /* Make sure kthread runs on a single CPU */
481         kthread_bind(rcpu->kthread, cpu);
482         wake_up_process(rcpu->kthread);
483
484         /* Make sure kthread has been running, so kthread_stop() will not
485          * stop the kthread prematurely and all pending frames or skbs
486          * will be handled by the kthread before kthread_stop() returns.
487          */
488         wait_for_completion(&rcpu->kthread_running);
489
490         return rcpu;
491
492 free_prog:
493         if (rcpu->prog)
494                 bpf_prog_put(rcpu->prog);
495 free_ptr_ring:
496         ptr_ring_cleanup(rcpu->queue, NULL);
497 free_queue:
498         kfree(rcpu->queue);
499 free_bulkq:
500         free_percpu(rcpu->bulkq);
501 free_rcu:
502         kfree(rcpu);
503         return NULL;
504 }
505
506 static void __cpu_map_entry_free(struct rcu_head *rcu)
507 {
508         struct bpf_cpu_map_entry *rcpu;
509
510         /* This cpu_map_entry have been disconnected from map and one
511          * RCU grace-period have elapsed.  Thus, XDP cannot queue any
512          * new packets and cannot change/set flush_needed that can
513          * find this entry.
514          */
515         rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
516
517         free_percpu(rcpu->bulkq);
518         /* Cannot kthread_stop() here, last put free rcpu resources */
519         put_cpu_map_entry(rcpu);
520 }
521
522 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
523  * ensure any driver rcu critical sections have completed, but this
524  * does not guarantee a flush has happened yet. Because driver side
525  * rcu_read_lock/unlock only protects the running XDP program.  The
526  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
527  * pending flush op doesn't fail.
528  *
529  * The bpf_cpu_map_entry is still used by the kthread, and there can
530  * still be pending packets (in queue and percpu bulkq).  A refcnt
531  * makes sure to last user (kthread_stop vs. call_rcu) free memory
532  * resources.
533  *
534  * The rcu callback __cpu_map_entry_free flush remaining packets in
535  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
536  * preemption, cannot call kthread_stop() to make sure queue is empty.
537  * Instead a work_queue is started for stopping kthread,
538  * cpu_map_kthread_stop, which waits for an RCU grace period before
539  * stopping kthread, emptying the queue.
540  */
541 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
542                                     u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
543 {
544         struct bpf_cpu_map_entry *old_rcpu;
545
546         old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
547         if (old_rcpu) {
548                 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
549                 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
550                 schedule_work(&old_rcpu->kthread_stop_wq);
551         }
552 }
553
554 static long cpu_map_delete_elem(struct bpf_map *map, void *key)
555 {
556         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
557         u32 key_cpu = *(u32 *)key;
558
559         if (key_cpu >= map->max_entries)
560                 return -EINVAL;
561
562         /* notice caller map_delete_elem() use preempt_disable() */
563         __cpu_map_entry_replace(cmap, key_cpu, NULL);
564         return 0;
565 }
566
567 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
568                                 u64 map_flags)
569 {
570         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
571         struct bpf_cpumap_val cpumap_value = {};
572         struct bpf_cpu_map_entry *rcpu;
573         /* Array index key correspond to CPU number */
574         u32 key_cpu = *(u32 *)key;
575
576         memcpy(&cpumap_value, value, map->value_size);
577
578         if (unlikely(map_flags > BPF_EXIST))
579                 return -EINVAL;
580         if (unlikely(key_cpu >= cmap->map.max_entries))
581                 return -E2BIG;
582         if (unlikely(map_flags == BPF_NOEXIST))
583                 return -EEXIST;
584         if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
585                 return -EOVERFLOW;
586
587         /* Make sure CPU is a valid possible cpu */
588         if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
589                 return -ENODEV;
590
591         if (cpumap_value.qsize == 0) {
592                 rcpu = NULL; /* Same as deleting */
593         } else {
594                 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
595                 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
596                 if (!rcpu)
597                         return -ENOMEM;
598                 rcpu->cmap = cmap;
599         }
600         rcu_read_lock();
601         __cpu_map_entry_replace(cmap, key_cpu, rcpu);
602         rcu_read_unlock();
603         return 0;
604 }
605
606 static void cpu_map_free(struct bpf_map *map)
607 {
608         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
609         u32 i;
610
611         /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
612          * so the bpf programs (can be more than one that used this map) were
613          * disconnected from events. Wait for outstanding critical sections in
614          * these programs to complete. The rcu critical section only guarantees
615          * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
616          * It does __not__ ensure pending flush operations (if any) are
617          * complete.
618          */
619
620         synchronize_rcu();
621
622         /* For cpu_map the remote CPUs can still be using the entries
623          * (struct bpf_cpu_map_entry).
624          */
625         for (i = 0; i < cmap->map.max_entries; i++) {
626                 struct bpf_cpu_map_entry *rcpu;
627
628                 rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
629                 if (!rcpu)
630                         continue;
631
632                 /* bq flush and cleanup happens after RCU grace-period */
633                 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
634         }
635         bpf_map_area_free(cmap->cpu_map);
636         bpf_map_area_free(cmap);
637 }
638
639 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
640  * by local_bh_disable() (from XDP calls inside NAPI). The
641  * rcu_read_lock_bh_held() below makes lockdep accept both.
642  */
643 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
644 {
645         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
646         struct bpf_cpu_map_entry *rcpu;
647
648         if (key >= map->max_entries)
649                 return NULL;
650
651         rcpu = rcu_dereference_check(cmap->cpu_map[key],
652                                      rcu_read_lock_bh_held());
653         return rcpu;
654 }
655
656 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
657 {
658         struct bpf_cpu_map_entry *rcpu =
659                 __cpu_map_lookup_elem(map, *(u32 *)key);
660
661         return rcpu ? &rcpu->value : NULL;
662 }
663
664 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
665 {
666         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
667         u32 index = key ? *(u32 *)key : U32_MAX;
668         u32 *next = next_key;
669
670         if (index >= cmap->map.max_entries) {
671                 *next = 0;
672                 return 0;
673         }
674
675         if (index == cmap->map.max_entries - 1)
676                 return -ENOENT;
677         *next = index + 1;
678         return 0;
679 }
680
681 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
682 {
683         return __bpf_xdp_redirect_map(map, index, flags, 0,
684                                       __cpu_map_lookup_elem);
685 }
686
687 static u64 cpu_map_mem_usage(const struct bpf_map *map)
688 {
689         u64 usage = sizeof(struct bpf_cpu_map);
690
691         /* Currently the dynamically allocated elements are not counted */
692         usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
693         return usage;
694 }
695
696 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
697 const struct bpf_map_ops cpu_map_ops = {
698         .map_meta_equal         = bpf_map_meta_equal,
699         .map_alloc              = cpu_map_alloc,
700         .map_free               = cpu_map_free,
701         .map_delete_elem        = cpu_map_delete_elem,
702         .map_update_elem        = cpu_map_update_elem,
703         .map_lookup_elem        = cpu_map_lookup_elem,
704         .map_get_next_key       = cpu_map_get_next_key,
705         .map_check_btf          = map_check_no_btf,
706         .map_mem_usage          = cpu_map_mem_usage,
707         .map_btf_id             = &cpu_map_btf_ids[0],
708         .map_redirect           = cpu_map_redirect,
709 };
710
711 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
712 {
713         struct bpf_cpu_map_entry *rcpu = bq->obj;
714         unsigned int processed = 0, drops = 0;
715         const int to_cpu = rcpu->cpu;
716         struct ptr_ring *q;
717         int i;
718
719         if (unlikely(!bq->count))
720                 return;
721
722         q = rcpu->queue;
723         spin_lock(&q->producer_lock);
724
725         for (i = 0; i < bq->count; i++) {
726                 struct xdp_frame *xdpf = bq->q[i];
727                 int err;
728
729                 err = __ptr_ring_produce(q, xdpf);
730                 if (err) {
731                         drops++;
732                         xdp_return_frame_rx_napi(xdpf);
733                 }
734                 processed++;
735         }
736         bq->count = 0;
737         spin_unlock(&q->producer_lock);
738
739         __list_del_clearprev(&bq->flush_node);
740
741         /* Feedback loop via tracepoints */
742         trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
743 }
744
745 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
746  * Thus, safe percpu variable access.
747  */
748 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
749 {
750         struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
751         struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
752
753         if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
754                 bq_flush_to_queue(bq);
755
756         /* Notice, xdp_buff/page MUST be queued here, long enough for
757          * driver to code invoking us to finished, due to driver
758          * (e.g. ixgbe) recycle tricks based on page-refcnt.
759          *
760          * Thus, incoming xdp_frame is always queued here (else we race
761          * with another CPU on page-refcnt and remaining driver code).
762          * Queue time is very short, as driver will invoke flush
763          * operation, when completing napi->poll call.
764          */
765         bq->q[bq->count++] = xdpf;
766
767         if (!bq->flush_node.prev)
768                 list_add(&bq->flush_node, flush_list);
769 }
770
771 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
772                     struct net_device *dev_rx)
773 {
774         /* Info needed when constructing SKB on remote CPU */
775         xdpf->dev_rx = dev_rx;
776
777         bq_enqueue(rcpu, xdpf);
778         return 0;
779 }
780
781 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
782                              struct sk_buff *skb)
783 {
784         int ret;
785
786         __skb_pull(skb, skb->mac_len);
787         skb_set_redirected(skb, false);
788         __ptr_set_bit(0, &skb);
789
790         ret = ptr_ring_produce(rcpu->queue, skb);
791         if (ret < 0)
792                 goto trace;
793
794         wake_up_process(rcpu->kthread);
795 trace:
796         trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
797         return ret;
798 }
799
800 void __cpu_map_flush(void)
801 {
802         struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
803         struct xdp_bulk_queue *bq, *tmp;
804
805         list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
806                 bq_flush_to_queue(bq);
807
808                 /* If already running, costs spin_lock_irqsave + smb_mb */
809                 wake_up_process(bq->obj->kthread);
810         }
811 }
812
813 static int __init cpu_map_init(void)
814 {
815         int cpu;
816
817         for_each_possible_cpu(cpu)
818                 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
819         return 0;
820 }
821
822 subsys_initcall(cpu_map_init);