1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Linux Socket Filter - Kernel level socket filtering
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
36 #include <asm/barrier.h>
37 #include <asm/unaligned.h>
40 #define BPF_R0 regs[BPF_REG_0]
41 #define BPF_R1 regs[BPF_REG_1]
42 #define BPF_R2 regs[BPF_REG_2]
43 #define BPF_R3 regs[BPF_REG_3]
44 #define BPF_R4 regs[BPF_REG_4]
45 #define BPF_R5 regs[BPF_REG_5]
46 #define BPF_R6 regs[BPF_REG_6]
47 #define BPF_R7 regs[BPF_REG_7]
48 #define BPF_R8 regs[BPF_REG_8]
49 #define BPF_R9 regs[BPF_REG_9]
50 #define BPF_R10 regs[BPF_REG_10]
53 #define DST regs[insn->dst_reg]
54 #define SRC regs[insn->src_reg]
55 #define FP regs[BPF_REG_FP]
56 #define AX regs[BPF_REG_AX]
57 #define ARG1 regs[BPF_REG_ARG1]
58 #define CTX regs[BPF_REG_CTX]
61 /* No hurry in this branch
63 * Exported for the bpf jit load helper.
65 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
70 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
71 else if (k >= SKF_LL_OFF)
72 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
74 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
80 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
82 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
83 struct bpf_prog_aux *aux;
86 size = round_up(size, PAGE_SIZE);
87 fp = __vmalloc(size, gfp_flags);
91 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
96 fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
103 fp->pages = size / PAGE_SIZE;
106 fp->jit_requested = ebpf_jit_enabled();
108 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
109 mutex_init(&fp->aux->used_maps_mutex);
110 mutex_init(&fp->aux->dst_mutex);
115 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
117 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
118 struct bpf_prog *prog;
121 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
125 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
127 free_percpu(prog->active);
133 for_each_possible_cpu(cpu) {
134 struct bpf_prog_stats *pstats;
136 pstats = per_cpu_ptr(prog->stats, cpu);
137 u64_stats_init(&pstats->syncp);
141 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
143 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
145 if (!prog->aux->nr_linfo || !prog->jit_requested)
148 prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
149 sizeof(*prog->aux->jited_linfo),
150 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
151 if (!prog->aux->jited_linfo)
157 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
159 if (prog->aux->jited_linfo &&
160 (!prog->jited || !prog->aux->jited_linfo[0])) {
161 kvfree(prog->aux->jited_linfo);
162 prog->aux->jited_linfo = NULL;
165 kfree(prog->aux->kfunc_tab);
166 prog->aux->kfunc_tab = NULL;
169 /* The jit engine is responsible to provide an array
170 * for insn_off to the jited_off mapping (insn_to_jit_off).
172 * The idx to this array is the insn_off. Hence, the insn_off
173 * here is relative to the prog itself instead of the main prog.
174 * This array has one entry for each xlated bpf insn.
176 * jited_off is the byte off to the last byte of the jited insn.
180 * The first bpf insn off of the prog. The insn off
181 * here is relative to the main prog.
182 * e.g. if prog is a subprog, insn_start > 0
184 * The prog's idx to prog->aux->linfo and jited_linfo
186 * jited_linfo[linfo_idx] = prog->bpf_func
190 * jited_linfo[i] = prog->bpf_func +
191 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
193 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
194 const u32 *insn_to_jit_off)
196 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
197 const struct bpf_line_info *linfo;
200 if (!prog->aux->jited_linfo)
201 /* Userspace did not provide linfo */
204 linfo_idx = prog->aux->linfo_idx;
205 linfo = &prog->aux->linfo[linfo_idx];
206 insn_start = linfo[0].insn_off;
207 insn_end = insn_start + prog->len;
209 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
210 jited_linfo[0] = prog->bpf_func;
212 nr_linfo = prog->aux->nr_linfo - linfo_idx;
214 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
215 /* The verifier ensures that linfo[i].insn_off is
216 * strictly increasing
218 jited_linfo[i] = prog->bpf_func +
219 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
222 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
223 gfp_t gfp_extra_flags)
225 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
229 size = round_up(size, PAGE_SIZE);
230 pages = size / PAGE_SIZE;
231 if (pages <= fp_old->pages)
234 fp = __vmalloc(size, gfp_flags);
236 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
240 /* We keep fp->aux from fp_old around in the new
241 * reallocated structure.
244 fp_old->stats = NULL;
245 fp_old->active = NULL;
246 __bpf_prog_free(fp_old);
252 void __bpf_prog_free(struct bpf_prog *fp)
255 mutex_destroy(&fp->aux->used_maps_mutex);
256 mutex_destroy(&fp->aux->dst_mutex);
257 kfree(fp->aux->poke_tab);
260 free_percpu(fp->stats);
261 free_percpu(fp->active);
265 int bpf_prog_calc_tag(struct bpf_prog *fp)
267 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
268 u32 raw_size = bpf_prog_tag_scratch_size(fp);
269 u32 digest[SHA1_DIGEST_WORDS];
270 u32 ws[SHA1_WORKSPACE_WORDS];
271 u32 i, bsize, psize, blocks;
272 struct bpf_insn *dst;
278 raw = vmalloc(raw_size);
283 memset(ws, 0, sizeof(ws));
285 /* We need to take out the map fd for the digest calculation
286 * since they are unstable from user space side.
289 for (i = 0, was_ld_map = false; i < fp->len; i++) {
290 dst[i] = fp->insnsi[i];
292 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
293 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
294 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
297 } else if (was_ld_map &&
299 dst[i].dst_reg == 0 &&
300 dst[i].src_reg == 0 &&
309 psize = bpf_prog_insn_size(fp);
310 memset(&raw[psize], 0, raw_size - psize);
313 bsize = round_up(psize, SHA1_BLOCK_SIZE);
314 blocks = bsize / SHA1_BLOCK_SIZE;
316 if (bsize - psize >= sizeof(__be64)) {
317 bits = (__be64 *)(todo + bsize - sizeof(__be64));
319 bits = (__be64 *)(todo + bsize + bits_offset);
322 *bits = cpu_to_be64((psize - 1) << 3);
325 sha1_transform(digest, todo, ws);
326 todo += SHA1_BLOCK_SIZE;
329 result = (__force __be32 *)digest;
330 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
331 result[i] = cpu_to_be32(digest[i]);
332 memcpy(fp->tag, result, sizeof(fp->tag));
338 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
339 s32 end_new, s32 curr, const bool probe_pass)
341 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
342 s32 delta = end_new - end_old;
345 if (curr < pos && curr + imm + 1 >= end_old)
347 else if (curr >= end_new && curr + imm + 1 < end_new)
349 if (imm < imm_min || imm > imm_max)
356 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
357 s32 end_new, s32 curr, const bool probe_pass)
359 const s32 off_min = S16_MIN, off_max = S16_MAX;
360 s32 delta = end_new - end_old;
363 if (curr < pos && curr + off + 1 >= end_old)
365 else if (curr >= end_new && curr + off + 1 < end_new)
367 if (off < off_min || off > off_max)
374 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
375 s32 end_new, const bool probe_pass)
377 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
378 struct bpf_insn *insn = prog->insnsi;
381 for (i = 0; i < insn_cnt; i++, insn++) {
384 /* In the probing pass we still operate on the original,
385 * unpatched image in order to check overflows before we
386 * do any other adjustments. Therefore skip the patchlet.
388 if (probe_pass && i == pos) {
390 insn = prog->insnsi + end_old;
393 if ((BPF_CLASS(code) != BPF_JMP &&
394 BPF_CLASS(code) != BPF_JMP32) ||
395 BPF_OP(code) == BPF_EXIT)
397 /* Adjust offset of jmps if we cross patch boundaries. */
398 if (BPF_OP(code) == BPF_CALL) {
399 if (insn->src_reg != BPF_PSEUDO_CALL)
401 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
402 end_new, i, probe_pass);
404 ret = bpf_adj_delta_to_off(insn, pos, end_old,
405 end_new, i, probe_pass);
414 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
416 struct bpf_line_info *linfo;
419 nr_linfo = prog->aux->nr_linfo;
420 if (!nr_linfo || !delta)
423 linfo = prog->aux->linfo;
425 for (i = 0; i < nr_linfo; i++)
426 if (off < linfo[i].insn_off)
429 /* Push all off < linfo[i].insn_off by delta */
430 for (; i < nr_linfo; i++)
431 linfo[i].insn_off += delta;
434 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
435 const struct bpf_insn *patch, u32 len)
437 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
438 const u32 cnt_max = S16_MAX;
439 struct bpf_prog *prog_adj;
442 /* Since our patchlet doesn't expand the image, we're done. */
443 if (insn_delta == 0) {
444 memcpy(prog->insnsi + off, patch, sizeof(*patch));
448 insn_adj_cnt = prog->len + insn_delta;
450 /* Reject anything that would potentially let the insn->off
451 * target overflow when we have excessive program expansions.
452 * We need to probe here before we do any reallocation where
453 * we afterwards may not fail anymore.
455 if (insn_adj_cnt > cnt_max &&
456 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
459 /* Several new instructions need to be inserted. Make room
460 * for them. Likely, there's no need for a new allocation as
461 * last page could have large enough tailroom.
463 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
466 return ERR_PTR(-ENOMEM);
468 prog_adj->len = insn_adj_cnt;
470 /* Patching happens in 3 steps:
472 * 1) Move over tail of insnsi from next instruction onwards,
473 * so we can patch the single target insn with one or more
474 * new ones (patching is always from 1 to n insns, n > 0).
475 * 2) Inject new instructions at the target location.
476 * 3) Adjust branch offsets if necessary.
478 insn_rest = insn_adj_cnt - off - len;
480 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
481 sizeof(*patch) * insn_rest);
482 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
484 /* We are guaranteed to not fail at this point, otherwise
485 * the ship has sailed to reverse to the original state. An
486 * overflow cannot happen at this point.
488 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
490 bpf_adj_linfo(prog_adj, off, insn_delta);
495 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
497 /* Branch offsets can't overflow when program is shrinking, no need
498 * to call bpf_adj_branches(..., true) here
500 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
501 sizeof(struct bpf_insn) * (prog->len - off - cnt));
504 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
507 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
511 for (i = 0; i < fp->aux->func_cnt; i++)
512 bpf_prog_kallsyms_del(fp->aux->func[i]);
515 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
517 bpf_prog_kallsyms_del_subprogs(fp);
518 bpf_prog_kallsyms_del(fp);
521 #ifdef CONFIG_BPF_JIT
522 /* All BPF JIT sysctl knobs here. */
523 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
524 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
525 int bpf_jit_harden __read_mostly;
526 long bpf_jit_limit __read_mostly;
529 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
531 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
532 unsigned long addr = (unsigned long)hdr;
534 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
536 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
537 prog->aux->ksym.end = addr + hdr->pages * PAGE_SIZE;
541 bpf_prog_ksym_set_name(struct bpf_prog *prog)
543 char *sym = prog->aux->ksym.name;
544 const char *end = sym + KSYM_NAME_LEN;
545 const struct btf_type *type;
546 const char *func_name;
548 BUILD_BUG_ON(sizeof("bpf_prog_") +
549 sizeof(prog->tag) * 2 +
550 /* name has been null terminated.
551 * We should need +1 for the '_' preceding
552 * the name. However, the null character
553 * is double counted between the name and the
554 * sizeof("bpf_prog_") above, so we omit
557 sizeof(prog->aux->name) > KSYM_NAME_LEN);
559 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
560 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
562 /* prog->aux->name will be ignored if full btf name is available */
563 if (prog->aux->func_info_cnt) {
564 type = btf_type_by_id(prog->aux->btf,
565 prog->aux->func_info[prog->aux->func_idx].type_id);
566 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
567 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
571 if (prog->aux->name[0])
572 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
577 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
579 return container_of(n, struct bpf_ksym, tnode)->start;
582 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
583 struct latch_tree_node *b)
585 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
588 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
590 unsigned long val = (unsigned long)key;
591 const struct bpf_ksym *ksym;
593 ksym = container_of(n, struct bpf_ksym, tnode);
595 if (val < ksym->start)
597 if (val >= ksym->end)
603 static const struct latch_tree_ops bpf_tree_ops = {
604 .less = bpf_tree_less,
605 .comp = bpf_tree_comp,
608 static DEFINE_SPINLOCK(bpf_lock);
609 static LIST_HEAD(bpf_kallsyms);
610 static struct latch_tree_root bpf_tree __cacheline_aligned;
612 void bpf_ksym_add(struct bpf_ksym *ksym)
614 spin_lock_bh(&bpf_lock);
615 WARN_ON_ONCE(!list_empty(&ksym->lnode));
616 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
617 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
618 spin_unlock_bh(&bpf_lock);
621 static void __bpf_ksym_del(struct bpf_ksym *ksym)
623 if (list_empty(&ksym->lnode))
626 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
627 list_del_rcu(&ksym->lnode);
630 void bpf_ksym_del(struct bpf_ksym *ksym)
632 spin_lock_bh(&bpf_lock);
633 __bpf_ksym_del(ksym);
634 spin_unlock_bh(&bpf_lock);
637 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
639 return fp->jited && !bpf_prog_was_classic(fp);
642 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
644 return list_empty(&fp->aux->ksym.lnode) ||
645 fp->aux->ksym.lnode.prev == LIST_POISON2;
648 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
650 if (!bpf_prog_kallsyms_candidate(fp) ||
654 bpf_prog_ksym_set_addr(fp);
655 bpf_prog_ksym_set_name(fp);
656 fp->aux->ksym.prog = true;
658 bpf_ksym_add(&fp->aux->ksym);
661 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
663 if (!bpf_prog_kallsyms_candidate(fp))
666 bpf_ksym_del(&fp->aux->ksym);
669 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
671 struct latch_tree_node *n;
673 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
674 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
677 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
678 unsigned long *off, char *sym)
680 struct bpf_ksym *ksym;
684 ksym = bpf_ksym_find(addr);
686 unsigned long symbol_start = ksym->start;
687 unsigned long symbol_end = ksym->end;
689 strncpy(sym, ksym->name, KSYM_NAME_LEN);
693 *size = symbol_end - symbol_start;
695 *off = addr - symbol_start;
702 bool is_bpf_text_address(unsigned long addr)
707 ret = bpf_ksym_find(addr) != NULL;
713 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
715 struct bpf_ksym *ksym = bpf_ksym_find(addr);
717 return ksym && ksym->prog ?
718 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
722 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
724 const struct exception_table_entry *e = NULL;
725 struct bpf_prog *prog;
728 prog = bpf_prog_ksym_find(addr);
731 if (!prog->aux->num_exentries)
734 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
740 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
743 struct bpf_ksym *ksym;
747 if (!bpf_jit_kallsyms_enabled())
751 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
755 strncpy(sym, ksym->name, KSYM_NAME_LEN);
757 *value = ksym->start;
758 *type = BPF_SYM_ELF_TYPE;
768 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
769 struct bpf_jit_poke_descriptor *poke)
771 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
772 static const u32 poke_tab_max = 1024;
773 u32 slot = prog->aux->size_poke_tab;
776 if (size > poke_tab_max)
778 if (poke->tailcall_target || poke->tailcall_target_stable ||
779 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
782 switch (poke->reason) {
783 case BPF_POKE_REASON_TAIL_CALL:
784 if (!poke->tail_call.map)
791 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
795 memcpy(&tab[slot], poke, sizeof(*poke));
796 prog->aux->size_poke_tab = size;
797 prog->aux->poke_tab = tab;
802 static atomic_long_t bpf_jit_current;
804 /* Can be overridden by an arch's JIT compiler if it has a custom,
805 * dedicated BPF backend memory area, or if neither of the two
808 u64 __weak bpf_jit_alloc_exec_limit(void)
810 #if defined(MODULES_VADDR)
811 return MODULES_END - MODULES_VADDR;
813 return VMALLOC_END - VMALLOC_START;
817 static int __init bpf_jit_charge_init(void)
819 /* Only used as heuristic here to derive limit. */
820 bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
821 PAGE_SIZE), LONG_MAX);
824 pure_initcall(bpf_jit_charge_init);
826 int bpf_jit_charge_modmem(u32 pages)
828 if (atomic_long_add_return(pages, &bpf_jit_current) >
829 (bpf_jit_limit >> PAGE_SHIFT)) {
830 if (!capable(CAP_SYS_ADMIN)) {
831 atomic_long_sub(pages, &bpf_jit_current);
839 void bpf_jit_uncharge_modmem(u32 pages)
841 atomic_long_sub(pages, &bpf_jit_current);
844 void *__weak bpf_jit_alloc_exec(unsigned long size)
846 return module_alloc(size);
849 void __weak bpf_jit_free_exec(void *addr)
851 module_memfree(addr);
854 struct bpf_binary_header *
855 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
856 unsigned int alignment,
857 bpf_jit_fill_hole_t bpf_fill_ill_insns)
859 struct bpf_binary_header *hdr;
860 u32 size, hole, start, pages;
862 WARN_ON_ONCE(!is_power_of_2(alignment) ||
863 alignment > BPF_IMAGE_ALIGNMENT);
865 /* Most of BPF filters are really small, but if some of them
866 * fill a page, allow at least 128 extra bytes to insert a
867 * random section of illegal instructions.
869 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
870 pages = size / PAGE_SIZE;
872 if (bpf_jit_charge_modmem(pages))
874 hdr = bpf_jit_alloc_exec(size);
876 bpf_jit_uncharge_modmem(pages);
880 /* Fill space with illegal/arch-dep instructions. */
881 bpf_fill_ill_insns(hdr, size);
884 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
885 PAGE_SIZE - sizeof(*hdr));
886 start = (get_random_int() % hole) & ~(alignment - 1);
888 /* Leave a random number of instructions before BPF code. */
889 *image_ptr = &hdr->image[start];
894 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
896 u32 pages = hdr->pages;
898 bpf_jit_free_exec(hdr);
899 bpf_jit_uncharge_modmem(pages);
902 /* This symbol is only overridden by archs that have different
903 * requirements than the usual eBPF JITs, f.e. when they only
904 * implement cBPF JIT, do not set images read-only, etc.
906 void __weak bpf_jit_free(struct bpf_prog *fp)
909 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
911 bpf_jit_binary_free(hdr);
913 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
916 bpf_prog_unlock_free(fp);
919 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
920 const struct bpf_insn *insn, bool extra_pass,
921 u64 *func_addr, bool *func_addr_fixed)
927 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
928 if (!*func_addr_fixed) {
929 /* Place-holder address till the last pass has collected
930 * all addresses for JITed subprograms in which case we
931 * can pick them up from prog->aux.
935 else if (prog->aux->func &&
936 off >= 0 && off < prog->aux->func_cnt)
937 addr = (u8 *)prog->aux->func[off]->bpf_func;
941 /* Address of a BPF helper call. Since part of the core
942 * kernel, it's always at a fixed location. __bpf_call_base
943 * and the helper with imm relative to it are both in core
946 addr = (u8 *)__bpf_call_base + imm;
949 *func_addr = (unsigned long)addr;
953 static int bpf_jit_blind_insn(const struct bpf_insn *from,
954 const struct bpf_insn *aux,
955 struct bpf_insn *to_buff,
958 struct bpf_insn *to = to_buff;
959 u32 imm_rnd = get_random_int();
962 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
963 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
965 /* Constraints on AX register:
967 * AX register is inaccessible from user space. It is mapped in
968 * all JITs, and used here for constant blinding rewrites. It is
969 * typically "stateless" meaning its contents are only valid within
970 * the executed instruction, but not across several instructions.
971 * There are a few exceptions however which are further detailed
974 * Constant blinding is only used by JITs, not in the interpreter.
975 * The interpreter uses AX in some occasions as a local temporary
976 * register e.g. in DIV or MOD instructions.
978 * In restricted circumstances, the verifier can also use the AX
979 * register for rewrites as long as they do not interfere with
982 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
985 if (from->imm == 0 &&
986 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
987 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
988 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
992 switch (from->code) {
993 case BPF_ALU | BPF_ADD | BPF_K:
994 case BPF_ALU | BPF_SUB | BPF_K:
995 case BPF_ALU | BPF_AND | BPF_K:
996 case BPF_ALU | BPF_OR | BPF_K:
997 case BPF_ALU | BPF_XOR | BPF_K:
998 case BPF_ALU | BPF_MUL | BPF_K:
999 case BPF_ALU | BPF_MOV | BPF_K:
1000 case BPF_ALU | BPF_DIV | BPF_K:
1001 case BPF_ALU | BPF_MOD | BPF_K:
1002 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1003 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1004 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1007 case BPF_ALU64 | BPF_ADD | BPF_K:
1008 case BPF_ALU64 | BPF_SUB | BPF_K:
1009 case BPF_ALU64 | BPF_AND | BPF_K:
1010 case BPF_ALU64 | BPF_OR | BPF_K:
1011 case BPF_ALU64 | BPF_XOR | BPF_K:
1012 case BPF_ALU64 | BPF_MUL | BPF_K:
1013 case BPF_ALU64 | BPF_MOV | BPF_K:
1014 case BPF_ALU64 | BPF_DIV | BPF_K:
1015 case BPF_ALU64 | BPF_MOD | BPF_K:
1016 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1017 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1018 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1021 case BPF_JMP | BPF_JEQ | BPF_K:
1022 case BPF_JMP | BPF_JNE | BPF_K:
1023 case BPF_JMP | BPF_JGT | BPF_K:
1024 case BPF_JMP | BPF_JLT | BPF_K:
1025 case BPF_JMP | BPF_JGE | BPF_K:
1026 case BPF_JMP | BPF_JLE | BPF_K:
1027 case BPF_JMP | BPF_JSGT | BPF_K:
1028 case BPF_JMP | BPF_JSLT | BPF_K:
1029 case BPF_JMP | BPF_JSGE | BPF_K:
1030 case BPF_JMP | BPF_JSLE | BPF_K:
1031 case BPF_JMP | BPF_JSET | BPF_K:
1032 /* Accommodate for extra offset in case of a backjump. */
1036 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1037 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1038 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1041 case BPF_JMP32 | BPF_JEQ | BPF_K:
1042 case BPF_JMP32 | BPF_JNE | BPF_K:
1043 case BPF_JMP32 | BPF_JGT | BPF_K:
1044 case BPF_JMP32 | BPF_JLT | BPF_K:
1045 case BPF_JMP32 | BPF_JGE | BPF_K:
1046 case BPF_JMP32 | BPF_JLE | BPF_K:
1047 case BPF_JMP32 | BPF_JSGT | BPF_K:
1048 case BPF_JMP32 | BPF_JSLT | BPF_K:
1049 case BPF_JMP32 | BPF_JSGE | BPF_K:
1050 case BPF_JMP32 | BPF_JSLE | BPF_K:
1051 case BPF_JMP32 | BPF_JSET | BPF_K:
1052 /* Accommodate for extra offset in case of a backjump. */
1056 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1057 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1058 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1062 case BPF_LD | BPF_IMM | BPF_DW:
1063 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1064 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1065 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1066 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1068 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1069 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1070 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1072 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1073 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1076 case BPF_ST | BPF_MEM | BPF_DW:
1077 case BPF_ST | BPF_MEM | BPF_W:
1078 case BPF_ST | BPF_MEM | BPF_H:
1079 case BPF_ST | BPF_MEM | BPF_B:
1080 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1081 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1082 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1086 return to - to_buff;
1089 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1090 gfp_t gfp_extra_flags)
1092 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1093 struct bpf_prog *fp;
1095 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1097 /* aux->prog still points to the fp_other one, so
1098 * when promoting the clone to the real program,
1099 * this still needs to be adapted.
1101 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1107 static void bpf_prog_clone_free(struct bpf_prog *fp)
1109 /* aux was stolen by the other clone, so we cannot free
1110 * it from this path! It will be freed eventually by the
1111 * other program on release.
1113 * At this point, we don't need a deferred release since
1114 * clone is guaranteed to not be locked.
1119 __bpf_prog_free(fp);
1122 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1124 /* We have to repoint aux->prog to self, as we don't
1125 * know whether fp here is the clone or the original.
1128 bpf_prog_clone_free(fp_other);
1131 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1133 struct bpf_insn insn_buff[16], aux[2];
1134 struct bpf_prog *clone, *tmp;
1135 int insn_delta, insn_cnt;
1136 struct bpf_insn *insn;
1139 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1142 clone = bpf_prog_clone_create(prog, GFP_USER);
1144 return ERR_PTR(-ENOMEM);
1146 insn_cnt = clone->len;
1147 insn = clone->insnsi;
1149 for (i = 0; i < insn_cnt; i++, insn++) {
1150 /* We temporarily need to hold the original ld64 insn
1151 * so that we can still access the first part in the
1152 * second blinding run.
1154 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1156 memcpy(aux, insn, sizeof(aux));
1158 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1159 clone->aux->verifier_zext);
1163 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1165 /* Patching may have repointed aux->prog during
1166 * realloc from the original one, so we need to
1167 * fix it up here on error.
1169 bpf_jit_prog_release_other(prog, clone);
1174 insn_delta = rewritten - 1;
1176 /* Walk new program and skip insns we just inserted. */
1177 insn = clone->insnsi + i + insn_delta;
1178 insn_cnt += insn_delta;
1185 #endif /* CONFIG_BPF_JIT */
1187 /* Base function for offset calculation. Needs to go into .text section,
1188 * therefore keeping it non-static as well; will also be used by JITs
1189 * anyway later on, so do not let the compiler omit it. This also needs
1190 * to go into kallsyms for correlation from e.g. bpftool, so naming
1193 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1197 EXPORT_SYMBOL_GPL(__bpf_call_base);
1199 /* All UAPI available opcodes. */
1200 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1201 /* 32 bit ALU operations. */ \
1202 /* Register based. */ \
1203 INSN_3(ALU, ADD, X), \
1204 INSN_3(ALU, SUB, X), \
1205 INSN_3(ALU, AND, X), \
1206 INSN_3(ALU, OR, X), \
1207 INSN_3(ALU, LSH, X), \
1208 INSN_3(ALU, RSH, X), \
1209 INSN_3(ALU, XOR, X), \
1210 INSN_3(ALU, MUL, X), \
1211 INSN_3(ALU, MOV, X), \
1212 INSN_3(ALU, ARSH, X), \
1213 INSN_3(ALU, DIV, X), \
1214 INSN_3(ALU, MOD, X), \
1216 INSN_3(ALU, END, TO_BE), \
1217 INSN_3(ALU, END, TO_LE), \
1218 /* Immediate based. */ \
1219 INSN_3(ALU, ADD, K), \
1220 INSN_3(ALU, SUB, K), \
1221 INSN_3(ALU, AND, K), \
1222 INSN_3(ALU, OR, K), \
1223 INSN_3(ALU, LSH, K), \
1224 INSN_3(ALU, RSH, K), \
1225 INSN_3(ALU, XOR, K), \
1226 INSN_3(ALU, MUL, K), \
1227 INSN_3(ALU, MOV, K), \
1228 INSN_3(ALU, ARSH, K), \
1229 INSN_3(ALU, DIV, K), \
1230 INSN_3(ALU, MOD, K), \
1231 /* 64 bit ALU operations. */ \
1232 /* Register based. */ \
1233 INSN_3(ALU64, ADD, X), \
1234 INSN_3(ALU64, SUB, X), \
1235 INSN_3(ALU64, AND, X), \
1236 INSN_3(ALU64, OR, X), \
1237 INSN_3(ALU64, LSH, X), \
1238 INSN_3(ALU64, RSH, X), \
1239 INSN_3(ALU64, XOR, X), \
1240 INSN_3(ALU64, MUL, X), \
1241 INSN_3(ALU64, MOV, X), \
1242 INSN_3(ALU64, ARSH, X), \
1243 INSN_3(ALU64, DIV, X), \
1244 INSN_3(ALU64, MOD, X), \
1245 INSN_2(ALU64, NEG), \
1246 /* Immediate based. */ \
1247 INSN_3(ALU64, ADD, K), \
1248 INSN_3(ALU64, SUB, K), \
1249 INSN_3(ALU64, AND, K), \
1250 INSN_3(ALU64, OR, K), \
1251 INSN_3(ALU64, LSH, K), \
1252 INSN_3(ALU64, RSH, K), \
1253 INSN_3(ALU64, XOR, K), \
1254 INSN_3(ALU64, MUL, K), \
1255 INSN_3(ALU64, MOV, K), \
1256 INSN_3(ALU64, ARSH, K), \
1257 INSN_3(ALU64, DIV, K), \
1258 INSN_3(ALU64, MOD, K), \
1259 /* Call instruction. */ \
1260 INSN_2(JMP, CALL), \
1261 /* Exit instruction. */ \
1262 INSN_2(JMP, EXIT), \
1263 /* 32-bit Jump instructions. */ \
1264 /* Register based. */ \
1265 INSN_3(JMP32, JEQ, X), \
1266 INSN_3(JMP32, JNE, X), \
1267 INSN_3(JMP32, JGT, X), \
1268 INSN_3(JMP32, JLT, X), \
1269 INSN_3(JMP32, JGE, X), \
1270 INSN_3(JMP32, JLE, X), \
1271 INSN_3(JMP32, JSGT, X), \
1272 INSN_3(JMP32, JSLT, X), \
1273 INSN_3(JMP32, JSGE, X), \
1274 INSN_3(JMP32, JSLE, X), \
1275 INSN_3(JMP32, JSET, X), \
1276 /* Immediate based. */ \
1277 INSN_3(JMP32, JEQ, K), \
1278 INSN_3(JMP32, JNE, K), \
1279 INSN_3(JMP32, JGT, K), \
1280 INSN_3(JMP32, JLT, K), \
1281 INSN_3(JMP32, JGE, K), \
1282 INSN_3(JMP32, JLE, K), \
1283 INSN_3(JMP32, JSGT, K), \
1284 INSN_3(JMP32, JSLT, K), \
1285 INSN_3(JMP32, JSGE, K), \
1286 INSN_3(JMP32, JSLE, K), \
1287 INSN_3(JMP32, JSET, K), \
1288 /* Jump instructions. */ \
1289 /* Register based. */ \
1290 INSN_3(JMP, JEQ, X), \
1291 INSN_3(JMP, JNE, X), \
1292 INSN_3(JMP, JGT, X), \
1293 INSN_3(JMP, JLT, X), \
1294 INSN_3(JMP, JGE, X), \
1295 INSN_3(JMP, JLE, X), \
1296 INSN_3(JMP, JSGT, X), \
1297 INSN_3(JMP, JSLT, X), \
1298 INSN_3(JMP, JSGE, X), \
1299 INSN_3(JMP, JSLE, X), \
1300 INSN_3(JMP, JSET, X), \
1301 /* Immediate based. */ \
1302 INSN_3(JMP, JEQ, K), \
1303 INSN_3(JMP, JNE, K), \
1304 INSN_3(JMP, JGT, K), \
1305 INSN_3(JMP, JLT, K), \
1306 INSN_3(JMP, JGE, K), \
1307 INSN_3(JMP, JLE, K), \
1308 INSN_3(JMP, JSGT, K), \
1309 INSN_3(JMP, JSLT, K), \
1310 INSN_3(JMP, JSGE, K), \
1311 INSN_3(JMP, JSLE, K), \
1312 INSN_3(JMP, JSET, K), \
1314 /* Store instructions. */ \
1315 /* Register based. */ \
1316 INSN_3(STX, MEM, B), \
1317 INSN_3(STX, MEM, H), \
1318 INSN_3(STX, MEM, W), \
1319 INSN_3(STX, MEM, DW), \
1320 INSN_3(STX, ATOMIC, W), \
1321 INSN_3(STX, ATOMIC, DW), \
1322 /* Immediate based. */ \
1323 INSN_3(ST, MEM, B), \
1324 INSN_3(ST, MEM, H), \
1325 INSN_3(ST, MEM, W), \
1326 INSN_3(ST, MEM, DW), \
1327 /* Load instructions. */ \
1328 /* Register based. */ \
1329 INSN_3(LDX, MEM, B), \
1330 INSN_3(LDX, MEM, H), \
1331 INSN_3(LDX, MEM, W), \
1332 INSN_3(LDX, MEM, DW), \
1333 /* Immediate based. */ \
1336 bool bpf_opcode_in_insntable(u8 code)
1338 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1339 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1340 static const bool public_insntable[256] = {
1341 [0 ... 255] = false,
1342 /* Now overwrite non-defaults ... */
1343 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1344 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1345 [BPF_LD | BPF_ABS | BPF_B] = true,
1346 [BPF_LD | BPF_ABS | BPF_H] = true,
1347 [BPF_LD | BPF_ABS | BPF_W] = true,
1348 [BPF_LD | BPF_IND | BPF_B] = true,
1349 [BPF_LD | BPF_IND | BPF_H] = true,
1350 [BPF_LD | BPF_IND | BPF_W] = true,
1352 #undef BPF_INSN_3_TBL
1353 #undef BPF_INSN_2_TBL
1354 return public_insntable[code];
1357 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1358 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1360 memset(dst, 0, size);
1365 * ___bpf_prog_run - run eBPF program on a given context
1366 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1367 * @insn: is the array of eBPF instructions
1369 * Decode and execute eBPF instructions.
1371 * Return: whatever value is in %BPF_R0 at program exit
1373 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1375 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1376 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1377 static const void * const jumptable[256] __annotate_jump_table = {
1378 [0 ... 255] = &&default_label,
1379 /* Now overwrite non-defaults ... */
1380 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1381 /* Non-UAPI available opcodes. */
1382 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1383 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1384 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
1385 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1386 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1387 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1388 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1390 #undef BPF_INSN_3_LBL
1391 #undef BPF_INSN_2_LBL
1392 u32 tail_call_cnt = 0;
1394 #define CONT ({ insn++; goto select_insn; })
1395 #define CONT_JMP ({ insn++; goto select_insn; })
1398 goto *jumptable[insn->code];
1400 /* Explicitly mask the register-based shift amounts with 63 or 31
1401 * to avoid undefined behavior. Normally this won't affect the
1402 * generated code, for example, in case of native 64 bit archs such
1403 * as x86-64 or arm64, the compiler is optimizing the AND away for
1404 * the interpreter. In case of JITs, each of the JIT backends compiles
1405 * the BPF shift operations to machine instructions which produce
1406 * implementation-defined results in such a case; the resulting
1407 * contents of the register may be arbitrary, but program behaviour
1408 * as a whole remains defined. In other words, in case of JIT backends,
1409 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1412 #define SHT(OPCODE, OP) \
1413 ALU64_##OPCODE##_X: \
1414 DST = DST OP (SRC & 63); \
1417 DST = (u32) DST OP ((u32) SRC & 31); \
1419 ALU64_##OPCODE##_K: \
1423 DST = (u32) DST OP (u32) IMM; \
1426 #define ALU(OPCODE, OP) \
1427 ALU64_##OPCODE##_X: \
1431 DST = (u32) DST OP (u32) SRC; \
1433 ALU64_##OPCODE##_K: \
1437 DST = (u32) DST OP (u32) IMM; \
1468 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1472 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1475 DST = (u64) (u32) (((s32) DST) >> IMM);
1478 (*(s64 *) &DST) >>= (SRC & 63);
1481 (*(s64 *) &DST) >>= IMM;
1484 div64_u64_rem(DST, SRC, &AX);
1489 DST = do_div(AX, (u32) SRC);
1492 div64_u64_rem(DST, IMM, &AX);
1497 DST = do_div(AX, (u32) IMM);
1500 DST = div64_u64(DST, SRC);
1504 do_div(AX, (u32) SRC);
1508 DST = div64_u64(DST, IMM);
1512 do_div(AX, (u32) IMM);
1518 DST = (__force u16) cpu_to_be16(DST);
1521 DST = (__force u32) cpu_to_be32(DST);
1524 DST = (__force u64) cpu_to_be64(DST);
1531 DST = (__force u16) cpu_to_le16(DST);
1534 DST = (__force u32) cpu_to_le32(DST);
1537 DST = (__force u64) cpu_to_le64(DST);
1544 /* Function call scratches BPF_R1-BPF_R5 registers,
1545 * preserves BPF_R6-BPF_R9, and stores return value
1548 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1553 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1556 insn + insn->off + 1);
1560 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1561 struct bpf_array *array = container_of(map, struct bpf_array, map);
1562 struct bpf_prog *prog;
1565 if (unlikely(index >= array->map.max_entries))
1567 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1572 prog = READ_ONCE(array->ptrs[index]);
1576 /* ARG1 at this point is guaranteed to point to CTX from
1577 * the verifier side due to the fact that the tail call is
1578 * handled like a helper, that is, bpf_tail_call_proto,
1579 * where arg1_type is ARG_PTR_TO_CTX.
1581 insn = prog->insnsi;
1592 #define COND_JMP(SIGN, OPCODE, CMP_OP) \
1594 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1595 insn += insn->off; \
1599 JMP32_##OPCODE##_X: \
1600 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1601 insn += insn->off; \
1606 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1607 insn += insn->off; \
1611 JMP32_##OPCODE##_K: \
1612 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1613 insn += insn->off; \
1617 COND_JMP(u, JEQ, ==)
1618 COND_JMP(u, JNE, !=)
1621 COND_JMP(u, JGE, >=)
1622 COND_JMP(u, JLE, <=)
1623 COND_JMP(u, JSET, &)
1624 COND_JMP(s, JSGT, >)
1625 COND_JMP(s, JSLT, <)
1626 COND_JMP(s, JSGE, >=)
1627 COND_JMP(s, JSLE, <=)
1629 /* ST, STX and LDX*/
1631 /* Speculation barrier for mitigating Speculative Store Bypass.
1632 * In case of arm64, we rely on the firmware mitigation as
1633 * controlled via the ssbd kernel parameter. Whenever the
1634 * mitigation is enabled, it works for all of the kernel code
1635 * with no need to provide any additional instructions here.
1636 * In case of x86, we use 'lfence' insn for mitigation. We
1637 * reuse preexisting logic from Spectre v1 mitigation that
1638 * happens to produce the required code on x86 for v4 as well.
1644 #define LDST(SIZEOP, SIZE) \
1646 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1649 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1652 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1660 #define LDX_PROBE(SIZEOP, SIZE) \
1661 LDX_PROBE_MEM_##SIZEOP: \
1662 bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); \
1670 #define ATOMIC_ALU_OP(BOP, KOP) \
1672 if (BPF_SIZE(insn->code) == BPF_W) \
1673 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1674 (DST + insn->off)); \
1676 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1677 (DST + insn->off)); \
1679 case BOP | BPF_FETCH: \
1680 if (BPF_SIZE(insn->code) == BPF_W) \
1681 SRC = (u32) atomic_fetch_##KOP( \
1683 (atomic_t *)(unsigned long) (DST + insn->off)); \
1685 SRC = (u64) atomic64_fetch_##KOP( \
1687 (atomic64_t *)(unsigned long) (DST + insn->off)); \
1693 ATOMIC_ALU_OP(BPF_ADD, add)
1694 ATOMIC_ALU_OP(BPF_AND, and)
1695 ATOMIC_ALU_OP(BPF_OR, or)
1696 ATOMIC_ALU_OP(BPF_XOR, xor)
1697 #undef ATOMIC_ALU_OP
1700 if (BPF_SIZE(insn->code) == BPF_W)
1701 SRC = (u32) atomic_xchg(
1702 (atomic_t *)(unsigned long) (DST + insn->off),
1705 SRC = (u64) atomic64_xchg(
1706 (atomic64_t *)(unsigned long) (DST + insn->off),
1710 if (BPF_SIZE(insn->code) == BPF_W)
1711 BPF_R0 = (u32) atomic_cmpxchg(
1712 (atomic_t *)(unsigned long) (DST + insn->off),
1713 (u32) BPF_R0, (u32) SRC);
1715 BPF_R0 = (u64) atomic64_cmpxchg(
1716 (atomic64_t *)(unsigned long) (DST + insn->off),
1717 (u64) BPF_R0, (u64) SRC);
1726 /* If we ever reach this, we have a bug somewhere. Die hard here
1727 * instead of just returning 0; we could be somewhere in a subprog,
1728 * so execution could continue otherwise which we do /not/ want.
1730 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1732 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1733 insn->code, insn->imm);
1738 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1739 #define DEFINE_BPF_PROG_RUN(stack_size) \
1740 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1742 u64 stack[stack_size / sizeof(u64)]; \
1743 u64 regs[MAX_BPF_EXT_REG]; \
1745 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1746 ARG1 = (u64) (unsigned long) ctx; \
1747 return ___bpf_prog_run(regs, insn); \
1750 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1751 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1752 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1753 const struct bpf_insn *insn) \
1755 u64 stack[stack_size / sizeof(u64)]; \
1756 u64 regs[MAX_BPF_EXT_REG]; \
1758 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1764 return ___bpf_prog_run(regs, insn); \
1767 #define EVAL1(FN, X) FN(X)
1768 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1769 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1770 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1771 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1772 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1774 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1775 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1776 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1778 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1779 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1780 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1782 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1784 static unsigned int (*interpreters[])(const void *ctx,
1785 const struct bpf_insn *insn) = {
1786 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1787 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1788 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1790 #undef PROG_NAME_LIST
1791 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1792 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1793 const struct bpf_insn *insn) = {
1794 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1795 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1796 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1798 #undef PROG_NAME_LIST
1800 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1802 stack_depth = max_t(u32, stack_depth, 1);
1803 insn->off = (s16) insn->imm;
1804 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1805 __bpf_call_base_args;
1806 insn->code = BPF_JMP | BPF_CALL_ARGS;
1810 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1811 const struct bpf_insn *insn)
1813 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1814 * is not working properly, so warn about it!
1821 bool bpf_prog_array_compatible(struct bpf_array *array,
1822 const struct bpf_prog *fp)
1824 if (fp->kprobe_override)
1827 if (!array->aux->type) {
1828 /* There's no owner yet where we could check for
1831 array->aux->type = fp->type;
1832 array->aux->jited = fp->jited;
1836 return array->aux->type == fp->type &&
1837 array->aux->jited == fp->jited;
1840 static int bpf_check_tail_call(const struct bpf_prog *fp)
1842 struct bpf_prog_aux *aux = fp->aux;
1845 mutex_lock(&aux->used_maps_mutex);
1846 for (i = 0; i < aux->used_map_cnt; i++) {
1847 struct bpf_map *map = aux->used_maps[i];
1848 struct bpf_array *array;
1850 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1853 array = container_of(map, struct bpf_array, map);
1854 if (!bpf_prog_array_compatible(array, fp)) {
1861 mutex_unlock(&aux->used_maps_mutex);
1865 static void bpf_prog_select_func(struct bpf_prog *fp)
1867 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1868 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1870 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1872 fp->bpf_func = __bpf_prog_ret0_warn;
1877 * bpf_prog_select_runtime - select exec runtime for BPF program
1878 * @fp: bpf_prog populated with internal BPF program
1879 * @err: pointer to error variable
1881 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1882 * The BPF program will be executed via bpf_prog_run() function.
1884 * Return: the &fp argument along with &err set to 0 for success or
1885 * a negative errno code on failure
1887 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1889 /* In case of BPF to BPF calls, verifier did all the prep
1890 * work with regards to JITing, etc.
1892 bool jit_needed = false;
1897 if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
1898 bpf_prog_has_kfunc_call(fp))
1901 bpf_prog_select_func(fp);
1903 /* eBPF JITs can rewrite the program in case constant
1904 * blinding is active. However, in case of error during
1905 * blinding, bpf_int_jit_compile() must always return a
1906 * valid program, which in this case would simply not
1907 * be JITed, but falls back to the interpreter.
1909 if (!bpf_prog_is_dev_bound(fp->aux)) {
1910 *err = bpf_prog_alloc_jited_linfo(fp);
1914 fp = bpf_int_jit_compile(fp);
1915 bpf_prog_jit_attempt_done(fp);
1916 if (!fp->jited && jit_needed) {
1921 *err = bpf_prog_offload_compile(fp);
1927 bpf_prog_lock_ro(fp);
1929 /* The tail call compatibility check can only be done at
1930 * this late stage as we need to determine, if we deal
1931 * with JITed or non JITed program concatenations and not
1932 * all eBPF JITs might immediately support all features.
1934 *err = bpf_check_tail_call(fp);
1938 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1940 static unsigned int __bpf_prog_ret1(const void *ctx,
1941 const struct bpf_insn *insn)
1946 static struct bpf_prog_dummy {
1947 struct bpf_prog prog;
1948 } dummy_bpf_prog = {
1950 .bpf_func = __bpf_prog_ret1,
1954 /* to avoid allocating empty bpf_prog_array for cgroups that
1955 * don't have bpf program attached use one global 'empty_prog_array'
1956 * It will not be modified the caller of bpf_prog_array_alloc()
1957 * (since caller requested prog_cnt == 0)
1958 * that pointer should be 'freed' by bpf_prog_array_free()
1961 struct bpf_prog_array hdr;
1962 struct bpf_prog *null_prog;
1963 } empty_prog_array = {
1967 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1970 return kzalloc(sizeof(struct bpf_prog_array) +
1971 sizeof(struct bpf_prog_array_item) *
1975 return &empty_prog_array.hdr;
1978 void bpf_prog_array_free(struct bpf_prog_array *progs)
1980 if (!progs || progs == &empty_prog_array.hdr)
1982 kfree_rcu(progs, rcu);
1985 int bpf_prog_array_length(struct bpf_prog_array *array)
1987 struct bpf_prog_array_item *item;
1990 for (item = array->items; item->prog; item++)
1991 if (item->prog != &dummy_bpf_prog.prog)
1996 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1998 struct bpf_prog_array_item *item;
2000 for (item = array->items; item->prog; item++)
2001 if (item->prog != &dummy_bpf_prog.prog)
2006 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2010 struct bpf_prog_array_item *item;
2013 for (item = array->items; item->prog; item++) {
2014 if (item->prog == &dummy_bpf_prog.prog)
2016 prog_ids[i] = item->prog->aux->id;
2017 if (++i == request_cnt) {
2023 return !!(item->prog);
2026 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2027 __u32 __user *prog_ids, u32 cnt)
2029 unsigned long err = 0;
2033 /* users of this function are doing:
2034 * cnt = bpf_prog_array_length();
2036 * bpf_prog_array_copy_to_user(..., cnt);
2037 * so below kcalloc doesn't need extra cnt > 0 check.
2039 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2042 nospc = bpf_prog_array_copy_core(array, ids, cnt);
2043 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2052 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2053 struct bpf_prog *old_prog)
2055 struct bpf_prog_array_item *item;
2057 for (item = array->items; item->prog; item++)
2058 if (item->prog == old_prog) {
2059 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2065 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2066 * index into the program array with
2067 * a dummy no-op program.
2068 * @array: a bpf_prog_array
2069 * @index: the index of the program to replace
2071 * Skips over dummy programs, by not counting them, when calculating
2072 * the position of the program to replace.
2076 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2077 * * -ENOENT - Index out of range
2079 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2081 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2085 * bpf_prog_array_update_at() - Updates the program at the given index
2086 * into the program array.
2087 * @array: a bpf_prog_array
2088 * @index: the index of the program to update
2089 * @prog: the program to insert into the array
2091 * Skips over dummy programs, by not counting them, when calculating
2092 * the position of the program to update.
2096 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2097 * * -ENOENT - Index out of range
2099 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2100 struct bpf_prog *prog)
2102 struct bpf_prog_array_item *item;
2104 if (unlikely(index < 0))
2107 for (item = array->items; item->prog; item++) {
2108 if (item->prog == &dummy_bpf_prog.prog)
2111 WRITE_ONCE(item->prog, prog);
2119 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2120 struct bpf_prog *exclude_prog,
2121 struct bpf_prog *include_prog,
2123 struct bpf_prog_array **new_array)
2125 int new_prog_cnt, carry_prog_cnt = 0;
2126 struct bpf_prog_array_item *existing, *new;
2127 struct bpf_prog_array *array;
2128 bool found_exclude = false;
2130 /* Figure out how many existing progs we need to carry over to
2134 existing = old_array->items;
2135 for (; existing->prog; existing++) {
2136 if (existing->prog == exclude_prog) {
2137 found_exclude = true;
2140 if (existing->prog != &dummy_bpf_prog.prog)
2142 if (existing->prog == include_prog)
2147 if (exclude_prog && !found_exclude)
2150 /* How many progs (not NULL) will be in the new array? */
2151 new_prog_cnt = carry_prog_cnt;
2155 /* Do we have any prog (not NULL) in the new array? */
2156 if (!new_prog_cnt) {
2161 /* +1 as the end of prog_array is marked with NULL */
2162 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2167 /* Fill in the new prog array */
2168 if (carry_prog_cnt) {
2169 existing = old_array->items;
2170 for (; existing->prog; existing++) {
2171 if (existing->prog == exclude_prog ||
2172 existing->prog == &dummy_bpf_prog.prog)
2175 new->prog = existing->prog;
2176 new->bpf_cookie = existing->bpf_cookie;
2181 new->prog = include_prog;
2182 new->bpf_cookie = bpf_cookie;
2190 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2191 u32 *prog_ids, u32 request_cnt,
2197 cnt = bpf_prog_array_length(array);
2201 /* return early if user requested only program count or nothing to copy */
2202 if (!request_cnt || !cnt)
2205 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2206 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2210 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2211 struct bpf_map **used_maps, u32 len)
2213 struct bpf_map *map;
2216 for (i = 0; i < len; i++) {
2218 if (map->ops->map_poke_untrack)
2219 map->ops->map_poke_untrack(map, aux);
2224 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2226 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2227 kfree(aux->used_maps);
2230 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2231 struct btf_mod_pair *used_btfs, u32 len)
2233 #ifdef CONFIG_BPF_SYSCALL
2234 struct btf_mod_pair *btf_mod;
2237 for (i = 0; i < len; i++) {
2238 btf_mod = &used_btfs[i];
2239 if (btf_mod->module)
2240 module_put(btf_mod->module);
2241 btf_put(btf_mod->btf);
2246 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2248 __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2249 kfree(aux->used_btfs);
2252 static void bpf_prog_free_deferred(struct work_struct *work)
2254 struct bpf_prog_aux *aux;
2257 aux = container_of(work, struct bpf_prog_aux, work);
2258 bpf_free_used_maps(aux);
2259 bpf_free_used_btfs(aux);
2260 if (bpf_prog_is_dev_bound(aux))
2261 bpf_prog_offload_destroy(aux->prog);
2262 #ifdef CONFIG_PERF_EVENTS
2263 if (aux->prog->has_callchain_buf)
2264 put_callchain_buffers();
2266 if (aux->dst_trampoline)
2267 bpf_trampoline_put(aux->dst_trampoline);
2268 for (i = 0; i < aux->func_cnt; i++) {
2269 /* We can just unlink the subprog poke descriptor table as
2270 * it was originally linked to the main program and is also
2271 * released along with it.
2273 aux->func[i]->aux->poke_tab = NULL;
2274 bpf_jit_free(aux->func[i]);
2276 if (aux->func_cnt) {
2278 bpf_prog_unlock_free(aux->prog);
2280 bpf_jit_free(aux->prog);
2284 /* Free internal BPF program */
2285 void bpf_prog_free(struct bpf_prog *fp)
2287 struct bpf_prog_aux *aux = fp->aux;
2290 bpf_prog_put(aux->dst_prog);
2291 INIT_WORK(&aux->work, bpf_prog_free_deferred);
2292 schedule_work(&aux->work);
2294 EXPORT_SYMBOL_GPL(bpf_prog_free);
2296 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2297 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2299 void bpf_user_rnd_init_once(void)
2301 prandom_init_once(&bpf_user_rnd_state);
2304 BPF_CALL_0(bpf_user_rnd_u32)
2306 /* Should someone ever have the rather unwise idea to use some
2307 * of the registers passed into this function, then note that
2308 * this function is called from native eBPF and classic-to-eBPF
2309 * transformations. Register assignments from both sides are
2310 * different, f.e. classic always sets fn(ctx, A, X) here.
2312 struct rnd_state *state;
2315 state = &get_cpu_var(bpf_user_rnd_state);
2316 res = prandom_u32_state(state);
2317 put_cpu_var(bpf_user_rnd_state);
2322 BPF_CALL_0(bpf_get_raw_cpu_id)
2324 return raw_smp_processor_id();
2327 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2328 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2329 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2330 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2331 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2332 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2333 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2334 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2335 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2336 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2338 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2339 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2340 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2341 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2342 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2343 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2345 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2346 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2347 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2348 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2349 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2350 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2351 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2352 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2353 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2355 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2361 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2362 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2366 EXPORT_SYMBOL_GPL(bpf_event_output);
2368 /* Always built-in helper functions. */
2369 const struct bpf_func_proto bpf_tail_call_proto = {
2372 .ret_type = RET_VOID,
2373 .arg1_type = ARG_PTR_TO_CTX,
2374 .arg2_type = ARG_CONST_MAP_PTR,
2375 .arg3_type = ARG_ANYTHING,
2378 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2379 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2380 * eBPF and implicitly also cBPF can get JITed!
2382 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2387 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2388 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2390 void __weak bpf_jit_compile(struct bpf_prog *prog)
2394 bool __weak bpf_helper_changes_pkt_data(void *func)
2399 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2400 * analysis code and wants explicit zero extension inserted by verifier.
2401 * Otherwise, return FALSE.
2403 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2404 * you don't override this. JITs that don't want these extra insns can detect
2405 * them using insn_is_zext.
2407 bool __weak bpf_jit_needs_zext(void)
2412 bool __weak bpf_jit_supports_kfunc_call(void)
2417 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2418 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2420 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2426 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2427 void *addr1, void *addr2)
2432 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2433 EXPORT_SYMBOL(bpf_stats_enabled_key);
2435 /* All definitions of tracepoints related to BPF. */
2436 #define CREATE_TRACE_POINTS
2437 #include <linux/bpf_trace.h>
2439 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2440 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);