1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
29 /* BTF (BPF Type Format) is the meta data format which describes
30 * the data types of BPF program/map. Hence, it basically focus
31 * on the C programming language which the modern BPF is primary
36 * The BTF data is stored under the ".BTF" ELF section
40 * Each 'struct btf_type' object describes a C data type.
41 * Depending on the type it is describing, a 'struct btf_type'
42 * object may be followed by more data. F.e.
43 * To describe an array, 'struct btf_type' is followed by
46 * 'struct btf_type' and any extra data following it are
51 * The BTF type section contains a list of 'struct btf_type' objects.
52 * Each one describes a C type. Recall from the above section
53 * that a 'struct btf_type' object could be immediately followed by extra
54 * data in order to desribe some particular C types.
58 * Each btf_type object is identified by a type_id. The type_id
59 * is implicitly implied by the location of the btf_type object in
60 * the BTF type section. The first one has type_id 1. The second
61 * one has type_id 2...etc. Hence, an earlier btf_type has
64 * A btf_type object may refer to another btf_type object by using
65 * type_id (i.e. the "type" in the "struct btf_type").
67 * NOTE that we cannot assume any reference-order.
68 * A btf_type object can refer to an earlier btf_type object
69 * but it can also refer to a later btf_type object.
71 * For example, to describe "const void *". A btf_type
72 * object describing "const" may refer to another btf_type
73 * object describing "void *". This type-reference is done
74 * by specifying type_id:
76 * [1] CONST (anon) type_id=2
77 * [2] PTR (anon) type_id=0
79 * The above is the btf_verifier debug log:
80 * - Each line started with "[?]" is a btf_type object
81 * - [?] is the type_id of the btf_type object.
82 * - CONST/PTR is the BTF_KIND_XXX
83 * - "(anon)" is the name of the type. It just
84 * happens that CONST and PTR has no name.
85 * - type_id=XXX is the 'u32 type' in btf_type
87 * NOTE: "void" has type_id 0
91 * The BTF string section contains the names used by the type section.
92 * Each string is referred by an "offset" from the beginning of the
95 * Each string is '\0' terminated.
97 * The first character in the string section must be '\0'
98 * which is used to mean 'anonymous'. Some btf_type may not
104 * To verify BTF data, two passes are needed.
108 * The first pass is to collect all btf_type objects to
109 * an array: "btf->types".
111 * Depending on the C type that a btf_type is describing,
112 * a btf_type may be followed by extra data. We don't know
113 * how many btf_type is there, and more importantly we don't
114 * know where each btf_type is located in the type section.
116 * Without knowing the location of each type_id, most verifications
117 * cannot be done. e.g. an earlier btf_type may refer to a later
118 * btf_type (recall the "const void *" above), so we cannot
119 * check this type-reference in the first pass.
121 * In the first pass, it still does some verifications (e.g.
122 * checking the name is a valid offset to the string section).
126 * The main focus is to resolve a btf_type that is referring
129 * We have to ensure the referring type:
130 * 1) does exist in the BTF (i.e. in btf->types[])
131 * 2) does not cause a loop:
140 * btf_type_needs_resolve() decides if a btf_type needs
143 * The needs_resolve type implements the "resolve()" ops which
144 * essentially does a DFS and detects backedge.
146 * During resolve (or DFS), different C types have different
147 * "RESOLVED" conditions.
149 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
150 * members because a member is always referring to another
151 * type. A struct's member can be treated as "RESOLVED" if
152 * it is referring to a BTF_KIND_PTR. Otherwise, the
153 * following valid C struct would be rejected:
160 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
161 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
162 * detect a pointer loop, e.g.:
163 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
165 * +-----------------------------------------+
169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
173 #define BITS_ROUNDUP_BYTES(bits) \
174 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
176 #define BTF_INFO_MASK 0x9f00ffff
177 #define BTF_INT_MASK 0x0fffffff
178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
181 /* 16MB for 64k structs and each has 16 members and
182 * a few MB spaces for the string section.
183 * The hard limit is S32_MAX.
185 #define BTF_MAX_SIZE (16 * 1024 * 1024)
187 #define for_each_member_from(i, from, struct_type, member) \
188 for (i = from, member = btf_type_member(struct_type) + from; \
189 i < btf_type_vlen(struct_type); \
192 #define for_each_vsi_from(i, from, struct_type, member) \
193 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
194 i < btf_type_vlen(struct_type); \
198 DEFINE_SPINLOCK(btf_idr_lock);
202 struct btf_type **types;
207 struct btf_header hdr;
208 u32 nr_types; /* includes VOID for base BTF */
215 /* split BTF support */
216 struct btf *base_btf;
217 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
218 u32 start_str_off; /* first string offset (0 for base BTF) */
219 char name[MODULE_NAME_LEN];
223 enum verifier_phase {
228 struct resolve_vertex {
229 const struct btf_type *t;
241 RESOLVE_TBD, /* To Be Determined */
242 RESOLVE_PTR, /* Resolving for Pointer */
243 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
248 #define MAX_RESOLVE_DEPTH 32
250 struct btf_sec_info {
255 struct btf_verifier_env {
258 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
259 struct bpf_verifier_log log;
262 enum verifier_phase phase;
263 enum resolve_mode resolve_mode;
266 static const char * const btf_kind_str[NR_BTF_KINDS] = {
267 [BTF_KIND_UNKN] = "UNKNOWN",
268 [BTF_KIND_INT] = "INT",
269 [BTF_KIND_PTR] = "PTR",
270 [BTF_KIND_ARRAY] = "ARRAY",
271 [BTF_KIND_STRUCT] = "STRUCT",
272 [BTF_KIND_UNION] = "UNION",
273 [BTF_KIND_ENUM] = "ENUM",
274 [BTF_KIND_FWD] = "FWD",
275 [BTF_KIND_TYPEDEF] = "TYPEDEF",
276 [BTF_KIND_VOLATILE] = "VOLATILE",
277 [BTF_KIND_CONST] = "CONST",
278 [BTF_KIND_RESTRICT] = "RESTRICT",
279 [BTF_KIND_FUNC] = "FUNC",
280 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
281 [BTF_KIND_VAR] = "VAR",
282 [BTF_KIND_DATASEC] = "DATASEC",
283 [BTF_KIND_FLOAT] = "FLOAT",
286 const char *btf_type_str(const struct btf_type *t)
288 return btf_kind_str[BTF_INFO_KIND(t->info)];
291 /* Chunk size we use in safe copy of data to be shown. */
292 #define BTF_SHOW_OBJ_SAFE_SIZE 32
295 * This is the maximum size of a base type value (equivalent to a
296 * 128-bit int); if we are at the end of our safe buffer and have
297 * less than 16 bytes space we can't be assured of being able
298 * to copy the next type safely, so in such cases we will initiate
301 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
304 #define BTF_SHOW_NAME_SIZE 80
307 * Common data to all BTF show operations. Private show functions can add
308 * their own data to a structure containing a struct btf_show and consult it
309 * in the show callback. See btf_type_show() below.
311 * One challenge with showing nested data is we want to skip 0-valued
312 * data, but in order to figure out whether a nested object is all zeros
313 * we need to walk through it. As a result, we need to make two passes
314 * when handling structs, unions and arrays; the first path simply looks
315 * for nonzero data, while the second actually does the display. The first
316 * pass is signalled by show->state.depth_check being set, and if we
317 * encounter a non-zero value we set show->state.depth_to_show to
318 * the depth at which we encountered it. When we have completed the
319 * first pass, we will know if anything needs to be displayed if
320 * depth_to_show > depth. See btf_[struct,array]_show() for the
321 * implementation of this.
323 * Another problem is we want to ensure the data for display is safe to
324 * access. To support this, the anonymous "struct {} obj" tracks the data
325 * object and our safe copy of it. We copy portions of the data needed
326 * to the object "copy" buffer, but because its size is limited to
327 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
328 * traverse larger objects for display.
330 * The various data type show functions all start with a call to
331 * btf_show_start_type() which returns a pointer to the safe copy
332 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
333 * raw data itself). btf_show_obj_safe() is responsible for
334 * using copy_from_kernel_nofault() to update the safe data if necessary
335 * as we traverse the object's data. skbuff-like semantics are
338 * - obj.head points to the start of the toplevel object for display
339 * - obj.size is the size of the toplevel object
340 * - obj.data points to the current point in the original data at
341 * which our safe data starts. obj.data will advance as we copy
342 * portions of the data.
344 * In most cases a single copy will suffice, but larger data structures
345 * such as "struct task_struct" will require many copies. The logic in
346 * btf_show_obj_safe() handles the logic that determines if a new
347 * copy_from_kernel_nofault() is needed.
351 void *target; /* target of show operation (seq file, buffer) */
352 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
353 const struct btf *btf;
354 /* below are used during iteration */
363 int status; /* non-zero for error */
364 const struct btf_type *type;
365 const struct btf_member *member;
366 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
372 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
376 struct btf_kind_operations {
377 s32 (*check_meta)(struct btf_verifier_env *env,
378 const struct btf_type *t,
380 int (*resolve)(struct btf_verifier_env *env,
381 const struct resolve_vertex *v);
382 int (*check_member)(struct btf_verifier_env *env,
383 const struct btf_type *struct_type,
384 const struct btf_member *member,
385 const struct btf_type *member_type);
386 int (*check_kflag_member)(struct btf_verifier_env *env,
387 const struct btf_type *struct_type,
388 const struct btf_member *member,
389 const struct btf_type *member_type);
390 void (*log_details)(struct btf_verifier_env *env,
391 const struct btf_type *t);
392 void (*show)(const struct btf *btf, const struct btf_type *t,
393 u32 type_id, void *data, u8 bits_offsets,
394 struct btf_show *show);
397 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
398 static struct btf_type btf_void;
400 static int btf_resolve(struct btf_verifier_env *env,
401 const struct btf_type *t, u32 type_id);
403 static bool btf_type_is_modifier(const struct btf_type *t)
405 /* Some of them is not strictly a C modifier
406 * but they are grouped into the same bucket
408 * A type (t) that refers to another
409 * type through t->type AND its size cannot
410 * be determined without following the t->type.
412 * ptr does not fall into this bucket
413 * because its size is always sizeof(void *).
415 switch (BTF_INFO_KIND(t->info)) {
416 case BTF_KIND_TYPEDEF:
417 case BTF_KIND_VOLATILE:
419 case BTF_KIND_RESTRICT:
426 bool btf_type_is_void(const struct btf_type *t)
428 return t == &btf_void;
431 static bool btf_type_is_fwd(const struct btf_type *t)
433 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
436 static bool btf_type_nosize(const struct btf_type *t)
438 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
439 btf_type_is_func(t) || btf_type_is_func_proto(t);
442 static bool btf_type_nosize_or_null(const struct btf_type *t)
444 return !t || btf_type_nosize(t);
447 static bool __btf_type_is_struct(const struct btf_type *t)
449 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
452 static bool btf_type_is_array(const struct btf_type *t)
454 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
457 static bool btf_type_is_datasec(const struct btf_type *t)
459 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
462 u32 btf_nr_types(const struct btf *btf)
467 total += btf->nr_types;
474 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
476 const struct btf_type *t;
480 total = btf_nr_types(btf);
481 for (i = 1; i < total; i++) {
482 t = btf_type_by_id(btf, i);
483 if (BTF_INFO_KIND(t->info) != kind)
486 tname = btf_name_by_offset(btf, t->name_off);
487 if (!strcmp(tname, name))
494 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
497 const struct btf_type *t = btf_type_by_id(btf, id);
499 while (btf_type_is_modifier(t)) {
501 t = btf_type_by_id(btf, t->type);
510 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
513 const struct btf_type *t;
515 t = btf_type_skip_modifiers(btf, id, NULL);
516 if (!btf_type_is_ptr(t))
519 return btf_type_skip_modifiers(btf, t->type, res_id);
522 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
525 const struct btf_type *ptype;
527 ptype = btf_type_resolve_ptr(btf, id, res_id);
528 if (ptype && btf_type_is_func_proto(ptype))
534 /* Types that act only as a source, not sink or intermediate
535 * type when resolving.
537 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
539 return btf_type_is_var(t) ||
540 btf_type_is_datasec(t);
543 /* What types need to be resolved?
545 * btf_type_is_modifier() is an obvious one.
547 * btf_type_is_struct() because its member refers to
548 * another type (through member->type).
550 * btf_type_is_var() because the variable refers to
551 * another type. btf_type_is_datasec() holds multiple
552 * btf_type_is_var() types that need resolving.
554 * btf_type_is_array() because its element (array->type)
555 * refers to another type. Array can be thought of a
556 * special case of struct while array just has the same
557 * member-type repeated by array->nelems of times.
559 static bool btf_type_needs_resolve(const struct btf_type *t)
561 return btf_type_is_modifier(t) ||
562 btf_type_is_ptr(t) ||
563 btf_type_is_struct(t) ||
564 btf_type_is_array(t) ||
565 btf_type_is_var(t) ||
566 btf_type_is_datasec(t);
569 /* t->size can be used */
570 static bool btf_type_has_size(const struct btf_type *t)
572 switch (BTF_INFO_KIND(t->info)) {
574 case BTF_KIND_STRUCT:
577 case BTF_KIND_DATASEC:
585 static const char *btf_int_encoding_str(u8 encoding)
589 else if (encoding == BTF_INT_SIGNED)
591 else if (encoding == BTF_INT_CHAR)
593 else if (encoding == BTF_INT_BOOL)
599 static u32 btf_type_int(const struct btf_type *t)
601 return *(u32 *)(t + 1);
604 static const struct btf_array *btf_type_array(const struct btf_type *t)
606 return (const struct btf_array *)(t + 1);
609 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
611 return (const struct btf_enum *)(t + 1);
614 static const struct btf_var *btf_type_var(const struct btf_type *t)
616 return (const struct btf_var *)(t + 1);
619 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
621 return kind_ops[BTF_INFO_KIND(t->info)];
624 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
626 if (!BTF_STR_OFFSET_VALID(offset))
629 while (offset < btf->start_str_off)
632 offset -= btf->start_str_off;
633 return offset < btf->hdr.str_len;
636 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
638 if ((first ? !isalpha(c) :
641 ((c == '.' && !dot_ok) ||
647 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
649 while (offset < btf->start_str_off)
652 offset -= btf->start_str_off;
653 if (offset < btf->hdr.str_len)
654 return &btf->strings[offset];
659 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
661 /* offset must be valid */
662 const char *src = btf_str_by_offset(btf, offset);
663 const char *src_limit;
665 if (!__btf_name_char_ok(*src, true, dot_ok))
668 /* set a limit on identifier length */
669 src_limit = src + KSYM_NAME_LEN;
671 while (*src && src < src_limit) {
672 if (!__btf_name_char_ok(*src, false, dot_ok))
680 /* Only C-style identifier is permitted. This can be relaxed if
683 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
685 return __btf_name_valid(btf, offset, false);
688 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
690 return __btf_name_valid(btf, offset, true);
693 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
700 name = btf_str_by_offset(btf, offset);
701 return name ?: "(invalid-name-offset)";
704 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
706 return btf_str_by_offset(btf, offset);
709 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
711 while (type_id < btf->start_id)
714 type_id -= btf->start_id;
715 if (type_id >= btf->nr_types)
717 return btf->types[type_id];
721 * Regular int is not a bit field and it must be either
722 * u8/u16/u32/u64 or __int128.
724 static bool btf_type_int_is_regular(const struct btf_type *t)
726 u8 nr_bits, nr_bytes;
729 int_data = btf_type_int(t);
730 nr_bits = BTF_INT_BITS(int_data);
731 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
732 if (BITS_PER_BYTE_MASKED(nr_bits) ||
733 BTF_INT_OFFSET(int_data) ||
734 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
735 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
736 nr_bytes != (2 * sizeof(u64)))) {
744 * Check that given struct member is a regular int with expected
747 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
748 const struct btf_member *m,
749 u32 expected_offset, u32 expected_size)
751 const struct btf_type *t;
756 t = btf_type_id_size(btf, &id, NULL);
757 if (!t || !btf_type_is_int(t))
760 int_data = btf_type_int(t);
761 nr_bits = BTF_INT_BITS(int_data);
762 if (btf_type_kflag(s)) {
763 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
764 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
766 /* if kflag set, int should be a regular int and
767 * bit offset should be at byte boundary.
769 return !bitfield_size &&
770 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
771 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
774 if (BTF_INT_OFFSET(int_data) ||
775 BITS_PER_BYTE_MASKED(m->offset) ||
776 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
777 BITS_PER_BYTE_MASKED(nr_bits) ||
778 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
784 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
785 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
788 const struct btf_type *t = btf_type_by_id(btf, id);
790 while (btf_type_is_modifier(t) &&
791 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
793 t = btf_type_by_id(btf, t->type);
799 #define BTF_SHOW_MAX_ITER 10
801 #define BTF_KIND_BIT(kind) (1ULL << kind)
804 * Populate show->state.name with type name information.
805 * Format of type name is
807 * [.member_name = ] (type_name)
809 static const char *btf_show_name(struct btf_show *show)
811 /* BTF_MAX_ITER array suffixes "[]" */
812 const char *array_suffixes = "[][][][][][][][][][]";
813 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
814 /* BTF_MAX_ITER pointer suffixes "*" */
815 const char *ptr_suffixes = "**********";
816 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
817 const char *name = NULL, *prefix = "", *parens = "";
818 const struct btf_member *m = show->state.member;
819 const struct btf_type *t = show->state.type;
820 const struct btf_array *array;
821 u32 id = show->state.type_id;
822 const char *member = NULL;
823 bool show_member = false;
827 show->state.name[0] = '\0';
830 * Don't show type name if we're showing an array member;
831 * in that case we show the array type so don't need to repeat
832 * ourselves for each member.
834 if (show->state.array_member)
837 /* Retrieve member name, if any. */
839 member = btf_name_by_offset(show->btf, m->name_off);
840 show_member = strlen(member) > 0;
845 * Start with type_id, as we have resolved the struct btf_type *
846 * via btf_modifier_show() past the parent typedef to the child
847 * struct, int etc it is defined as. In such cases, the type_id
848 * still represents the starting type while the struct btf_type *
849 * in our show->state points at the resolved type of the typedef.
851 t = btf_type_by_id(show->btf, id);
856 * The goal here is to build up the right number of pointer and
857 * array suffixes while ensuring the type name for a typedef
858 * is represented. Along the way we accumulate a list of
859 * BTF kinds we have encountered, since these will inform later
860 * display; for example, pointer types will not require an
861 * opening "{" for struct, we will just display the pointer value.
863 * We also want to accumulate the right number of pointer or array
864 * indices in the format string while iterating until we get to
865 * the typedef/pointee/array member target type.
867 * We start by pointing at the end of pointer and array suffix
868 * strings; as we accumulate pointers and arrays we move the pointer
869 * or array string backwards so it will show the expected number of
870 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
871 * and/or arrays and typedefs are supported as a precaution.
873 * We also want to get typedef name while proceeding to resolve
874 * type it points to so that we can add parentheses if it is a
875 * "typedef struct" etc.
877 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
879 switch (BTF_INFO_KIND(t->info)) {
880 case BTF_KIND_TYPEDEF:
882 name = btf_name_by_offset(show->btf,
884 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
888 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
892 array = btf_type_array(t);
893 if (array_suffix > array_suffixes)
898 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
899 if (ptr_suffix > ptr_suffixes)
909 t = btf_type_skip_qualifiers(show->btf, id);
911 /* We may not be able to represent this type; bail to be safe */
912 if (i == BTF_SHOW_MAX_ITER)
916 name = btf_name_by_offset(show->btf, t->name_off);
918 switch (BTF_INFO_KIND(t->info)) {
919 case BTF_KIND_STRUCT:
921 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
923 /* if it's an array of struct/union, parens is already set */
924 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
934 /* pointer does not require parens */
935 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
937 /* typedef does not require struct/union/enum prefix */
938 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
944 /* Even if we don't want type name info, we want parentheses etc */
945 if (show->flags & BTF_SHOW_NONAME)
946 snprintf(show->state.name, sizeof(show->state.name), "%s",
949 snprintf(show->state.name, sizeof(show->state.name),
950 "%s%s%s(%s%s%s%s%s%s)%s",
951 /* first 3 strings comprise ".member = " */
952 show_member ? "." : "",
953 show_member ? member : "",
954 show_member ? " = " : "",
955 /* ...next is our prefix (struct, enum, etc) */
957 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
958 /* ...this is the type name itself */
960 /* ...suffixed by the appropriate '*', '[]' suffixes */
961 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
962 array_suffix, parens);
964 return show->state.name;
967 static const char *__btf_show_indent(struct btf_show *show)
969 const char *indents = " ";
970 const char *indent = &indents[strlen(indents)];
972 if ((indent - show->state.depth) >= indents)
973 return indent - show->state.depth;
977 static const char *btf_show_indent(struct btf_show *show)
979 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
982 static const char *btf_show_newline(struct btf_show *show)
984 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
987 static const char *btf_show_delim(struct btf_show *show)
989 if (show->state.depth == 0)
992 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
993 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
999 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1003 if (!show->state.depth_check) {
1004 va_start(args, fmt);
1005 show->showfn(show, fmt, args);
1010 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1011 * format specifiers to the format specifier passed in; these do the work of
1012 * adding indentation, delimiters etc while the caller simply has to specify
1013 * the type value(s) in the format specifier + value(s).
1015 #define btf_show_type_value(show, fmt, value) \
1017 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \
1018 show->state.depth == 0) { \
1019 btf_show(show, "%s%s" fmt "%s%s", \
1020 btf_show_indent(show), \
1021 btf_show_name(show), \
1022 value, btf_show_delim(show), \
1023 btf_show_newline(show)); \
1024 if (show->state.depth > show->state.depth_to_show) \
1025 show->state.depth_to_show = show->state.depth; \
1029 #define btf_show_type_values(show, fmt, ...) \
1031 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1032 btf_show_name(show), \
1033 __VA_ARGS__, btf_show_delim(show), \
1034 btf_show_newline(show)); \
1035 if (show->state.depth > show->state.depth_to_show) \
1036 show->state.depth_to_show = show->state.depth; \
1039 /* How much is left to copy to safe buffer after @data? */
1040 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1042 return show->obj.head + show->obj.size - data;
1045 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1046 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1048 return data >= show->obj.data &&
1049 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1053 * If object pointed to by @data of @size falls within our safe buffer, return
1054 * the equivalent pointer to the same safe data. Assumes
1055 * copy_from_kernel_nofault() has already happened and our safe buffer is
1058 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1060 if (btf_show_obj_is_safe(show, data, size))
1061 return show->obj.safe + (data - show->obj.data);
1066 * Return a safe-to-access version of data pointed to by @data.
1067 * We do this by copying the relevant amount of information
1068 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1070 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1071 * safe copy is needed.
1073 * Otherwise we need to determine if we have the required amount
1074 * of data (determined by the @data pointer and the size of the
1075 * largest base type we can encounter (represented by
1076 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1077 * that we will be able to print some of the current object,
1078 * and if more is needed a copy will be triggered.
1079 * Some objects such as structs will not fit into the buffer;
1080 * in such cases additional copies when we iterate over their
1081 * members may be needed.
1083 * btf_show_obj_safe() is used to return a safe buffer for
1084 * btf_show_start_type(); this ensures that as we recurse into
1085 * nested types we always have safe data for the given type.
1086 * This approach is somewhat wasteful; it's possible for example
1087 * that when iterating over a large union we'll end up copying the
1088 * same data repeatedly, but the goal is safety not performance.
1089 * We use stack data as opposed to per-CPU buffers because the
1090 * iteration over a type can take some time, and preemption handling
1091 * would greatly complicate use of the safe buffer.
1093 static void *btf_show_obj_safe(struct btf_show *show,
1094 const struct btf_type *t,
1097 const struct btf_type *rt;
1098 int size_left, size;
1101 if (show->flags & BTF_SHOW_UNSAFE)
1104 rt = btf_resolve_size(show->btf, t, &size);
1106 show->state.status = PTR_ERR(rt);
1111 * Is this toplevel object? If so, set total object size and
1112 * initialize pointers. Otherwise check if we still fall within
1113 * our safe object data.
1115 if (show->state.depth == 0) {
1116 show->obj.size = size;
1117 show->obj.head = data;
1120 * If the size of the current object is > our remaining
1121 * safe buffer we _may_ need to do a new copy. However
1122 * consider the case of a nested struct; it's size pushes
1123 * us over the safe buffer limit, but showing any individual
1124 * struct members does not. In such cases, we don't need
1125 * to initiate a fresh copy yet; however we definitely need
1126 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1127 * in our buffer, regardless of the current object size.
1128 * The logic here is that as we resolve types we will
1129 * hit a base type at some point, and we need to be sure
1130 * the next chunk of data is safely available to display
1131 * that type info safely. We cannot rely on the size of
1132 * the current object here because it may be much larger
1133 * than our current buffer (e.g. task_struct is 8k).
1134 * All we want to do here is ensure that we can print the
1135 * next basic type, which we can if either
1136 * - the current type size is within the safe buffer; or
1137 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1140 safe = __btf_show_obj_safe(show, data,
1142 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1146 * We need a new copy to our safe object, either because we haven't
1147 * yet copied and are intializing safe data, or because the data
1148 * we want falls outside the boundaries of the safe object.
1151 size_left = btf_show_obj_size_left(show, data);
1152 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1153 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1154 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1156 if (!show->state.status) {
1157 show->obj.data = data;
1158 safe = show->obj.safe;
1166 * Set the type we are starting to show and return a safe data pointer
1167 * to be used for showing the associated data.
1169 static void *btf_show_start_type(struct btf_show *show,
1170 const struct btf_type *t,
1171 u32 type_id, void *data)
1173 show->state.type = t;
1174 show->state.type_id = type_id;
1175 show->state.name[0] = '\0';
1177 return btf_show_obj_safe(show, t, data);
1180 static void btf_show_end_type(struct btf_show *show)
1182 show->state.type = NULL;
1183 show->state.type_id = 0;
1184 show->state.name[0] = '\0';
1187 static void *btf_show_start_aggr_type(struct btf_show *show,
1188 const struct btf_type *t,
1189 u32 type_id, void *data)
1191 void *safe_data = btf_show_start_type(show, t, type_id, data);
1196 btf_show(show, "%s%s%s", btf_show_indent(show),
1197 btf_show_name(show),
1198 btf_show_newline(show));
1199 show->state.depth++;
1203 static void btf_show_end_aggr_type(struct btf_show *show,
1206 show->state.depth--;
1207 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1208 btf_show_delim(show), btf_show_newline(show));
1209 btf_show_end_type(show);
1212 static void btf_show_start_member(struct btf_show *show,
1213 const struct btf_member *m)
1215 show->state.member = m;
1218 static void btf_show_start_array_member(struct btf_show *show)
1220 show->state.array_member = 1;
1221 btf_show_start_member(show, NULL);
1224 static void btf_show_end_member(struct btf_show *show)
1226 show->state.member = NULL;
1229 static void btf_show_end_array_member(struct btf_show *show)
1231 show->state.array_member = 0;
1232 btf_show_end_member(show);
1235 static void *btf_show_start_array_type(struct btf_show *show,
1236 const struct btf_type *t,
1241 show->state.array_encoding = array_encoding;
1242 show->state.array_terminated = 0;
1243 return btf_show_start_aggr_type(show, t, type_id, data);
1246 static void btf_show_end_array_type(struct btf_show *show)
1248 show->state.array_encoding = 0;
1249 show->state.array_terminated = 0;
1250 btf_show_end_aggr_type(show, "]");
1253 static void *btf_show_start_struct_type(struct btf_show *show,
1254 const struct btf_type *t,
1258 return btf_show_start_aggr_type(show, t, type_id, data);
1261 static void btf_show_end_struct_type(struct btf_show *show)
1263 btf_show_end_aggr_type(show, "}");
1266 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1267 const char *fmt, ...)
1271 va_start(args, fmt);
1272 bpf_verifier_vlog(log, fmt, args);
1276 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1277 const char *fmt, ...)
1279 struct bpf_verifier_log *log = &env->log;
1282 if (!bpf_verifier_log_needed(log))
1285 va_start(args, fmt);
1286 bpf_verifier_vlog(log, fmt, args);
1290 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1291 const struct btf_type *t,
1293 const char *fmt, ...)
1295 struct bpf_verifier_log *log = &env->log;
1296 u8 kind = BTF_INFO_KIND(t->info);
1297 struct btf *btf = env->btf;
1300 if (!bpf_verifier_log_needed(log))
1303 /* btf verifier prints all types it is processing via
1304 * btf_verifier_log_type(..., fmt = NULL).
1305 * Skip those prints for in-kernel BTF verification.
1307 if (log->level == BPF_LOG_KERNEL && !fmt)
1310 __btf_verifier_log(log, "[%u] %s %s%s",
1313 __btf_name_by_offset(btf, t->name_off),
1314 log_details ? " " : "");
1317 btf_type_ops(t)->log_details(env, t);
1320 __btf_verifier_log(log, " ");
1321 va_start(args, fmt);
1322 bpf_verifier_vlog(log, fmt, args);
1326 __btf_verifier_log(log, "\n");
1329 #define btf_verifier_log_type(env, t, ...) \
1330 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1331 #define btf_verifier_log_basic(env, t, ...) \
1332 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1335 static void btf_verifier_log_member(struct btf_verifier_env *env,
1336 const struct btf_type *struct_type,
1337 const struct btf_member *member,
1338 const char *fmt, ...)
1340 struct bpf_verifier_log *log = &env->log;
1341 struct btf *btf = env->btf;
1344 if (!bpf_verifier_log_needed(log))
1347 if (log->level == BPF_LOG_KERNEL && !fmt)
1349 /* The CHECK_META phase already did a btf dump.
1351 * If member is logged again, it must hit an error in
1352 * parsing this member. It is useful to print out which
1353 * struct this member belongs to.
1355 if (env->phase != CHECK_META)
1356 btf_verifier_log_type(env, struct_type, NULL);
1358 if (btf_type_kflag(struct_type))
1359 __btf_verifier_log(log,
1360 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1361 __btf_name_by_offset(btf, member->name_off),
1363 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1364 BTF_MEMBER_BIT_OFFSET(member->offset));
1366 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1367 __btf_name_by_offset(btf, member->name_off),
1368 member->type, member->offset);
1371 __btf_verifier_log(log, " ");
1372 va_start(args, fmt);
1373 bpf_verifier_vlog(log, fmt, args);
1377 __btf_verifier_log(log, "\n");
1381 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1382 const struct btf_type *datasec_type,
1383 const struct btf_var_secinfo *vsi,
1384 const char *fmt, ...)
1386 struct bpf_verifier_log *log = &env->log;
1389 if (!bpf_verifier_log_needed(log))
1391 if (log->level == BPF_LOG_KERNEL && !fmt)
1393 if (env->phase != CHECK_META)
1394 btf_verifier_log_type(env, datasec_type, NULL);
1396 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1397 vsi->type, vsi->offset, vsi->size);
1399 __btf_verifier_log(log, " ");
1400 va_start(args, fmt);
1401 bpf_verifier_vlog(log, fmt, args);
1405 __btf_verifier_log(log, "\n");
1408 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1411 struct bpf_verifier_log *log = &env->log;
1412 const struct btf *btf = env->btf;
1413 const struct btf_header *hdr;
1415 if (!bpf_verifier_log_needed(log))
1418 if (log->level == BPF_LOG_KERNEL)
1421 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1422 __btf_verifier_log(log, "version: %u\n", hdr->version);
1423 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1424 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1425 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1426 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1427 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1428 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1429 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1432 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1434 struct btf *btf = env->btf;
1436 if (btf->types_size == btf->nr_types) {
1437 /* Expand 'types' array */
1439 struct btf_type **new_types;
1440 u32 expand_by, new_size;
1442 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1443 btf_verifier_log(env, "Exceeded max num of types");
1447 expand_by = max_t(u32, btf->types_size >> 2, 16);
1448 new_size = min_t(u32, BTF_MAX_TYPE,
1449 btf->types_size + expand_by);
1451 new_types = kvcalloc(new_size, sizeof(*new_types),
1452 GFP_KERNEL | __GFP_NOWARN);
1456 if (btf->nr_types == 0) {
1457 if (!btf->base_btf) {
1458 /* lazily init VOID type */
1459 new_types[0] = &btf_void;
1463 memcpy(new_types, btf->types,
1464 sizeof(*btf->types) * btf->nr_types);
1468 btf->types = new_types;
1469 btf->types_size = new_size;
1472 btf->types[btf->nr_types++] = t;
1477 static int btf_alloc_id(struct btf *btf)
1481 idr_preload(GFP_KERNEL);
1482 spin_lock_bh(&btf_idr_lock);
1483 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1486 spin_unlock_bh(&btf_idr_lock);
1489 if (WARN_ON_ONCE(!id))
1492 return id > 0 ? 0 : id;
1495 static void btf_free_id(struct btf *btf)
1497 unsigned long flags;
1500 * In map-in-map, calling map_delete_elem() on outer
1501 * map will call bpf_map_put on the inner map.
1502 * It will then eventually call btf_free_id()
1503 * on the inner map. Some of the map_delete_elem()
1504 * implementation may have irq disabled, so
1505 * we need to use the _irqsave() version instead
1506 * of the _bh() version.
1508 spin_lock_irqsave(&btf_idr_lock, flags);
1509 idr_remove(&btf_idr, btf->id);
1510 spin_unlock_irqrestore(&btf_idr_lock, flags);
1513 static void btf_free(struct btf *btf)
1516 kvfree(btf->resolved_sizes);
1517 kvfree(btf->resolved_ids);
1522 static void btf_free_rcu(struct rcu_head *rcu)
1524 struct btf *btf = container_of(rcu, struct btf, rcu);
1529 void btf_get(struct btf *btf)
1531 refcount_inc(&btf->refcnt);
1534 void btf_put(struct btf *btf)
1536 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1538 call_rcu(&btf->rcu, btf_free_rcu);
1542 static int env_resolve_init(struct btf_verifier_env *env)
1544 struct btf *btf = env->btf;
1545 u32 nr_types = btf->nr_types;
1546 u32 *resolved_sizes = NULL;
1547 u32 *resolved_ids = NULL;
1548 u8 *visit_states = NULL;
1550 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1551 GFP_KERNEL | __GFP_NOWARN);
1552 if (!resolved_sizes)
1555 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1556 GFP_KERNEL | __GFP_NOWARN);
1560 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1561 GFP_KERNEL | __GFP_NOWARN);
1565 btf->resolved_sizes = resolved_sizes;
1566 btf->resolved_ids = resolved_ids;
1567 env->visit_states = visit_states;
1572 kvfree(resolved_sizes);
1573 kvfree(resolved_ids);
1574 kvfree(visit_states);
1578 static void btf_verifier_env_free(struct btf_verifier_env *env)
1580 kvfree(env->visit_states);
1584 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1585 const struct btf_type *next_type)
1587 switch (env->resolve_mode) {
1589 /* int, enum or void is a sink */
1590 return !btf_type_needs_resolve(next_type);
1592 /* int, enum, void, struct, array, func or func_proto is a sink
1595 return !btf_type_is_modifier(next_type) &&
1596 !btf_type_is_ptr(next_type);
1597 case RESOLVE_STRUCT_OR_ARRAY:
1598 /* int, enum, void, ptr, func or func_proto is a sink
1599 * for struct and array
1601 return !btf_type_is_modifier(next_type) &&
1602 !btf_type_is_array(next_type) &&
1603 !btf_type_is_struct(next_type);
1609 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1612 /* base BTF types should be resolved by now */
1613 if (type_id < env->btf->start_id)
1616 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1619 static int env_stack_push(struct btf_verifier_env *env,
1620 const struct btf_type *t, u32 type_id)
1622 const struct btf *btf = env->btf;
1623 struct resolve_vertex *v;
1625 if (env->top_stack == MAX_RESOLVE_DEPTH)
1628 if (type_id < btf->start_id
1629 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1632 env->visit_states[type_id - btf->start_id] = VISITED;
1634 v = &env->stack[env->top_stack++];
1636 v->type_id = type_id;
1639 if (env->resolve_mode == RESOLVE_TBD) {
1640 if (btf_type_is_ptr(t))
1641 env->resolve_mode = RESOLVE_PTR;
1642 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1643 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1649 static void env_stack_set_next_member(struct btf_verifier_env *env,
1652 env->stack[env->top_stack - 1].next_member = next_member;
1655 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1656 u32 resolved_type_id,
1659 u32 type_id = env->stack[--(env->top_stack)].type_id;
1660 struct btf *btf = env->btf;
1662 type_id -= btf->start_id; /* adjust to local type id */
1663 btf->resolved_sizes[type_id] = resolved_size;
1664 btf->resolved_ids[type_id] = resolved_type_id;
1665 env->visit_states[type_id] = RESOLVED;
1668 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1670 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1673 /* Resolve the size of a passed-in "type"
1675 * type: is an array (e.g. u32 array[x][y])
1676 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1677 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1678 * corresponds to the return type.
1680 * *elem_id: id of u32
1681 * *total_nelems: (x * y). Hence, individual elem size is
1682 * (*type_size / *total_nelems)
1683 * *type_id: id of type if it's changed within the function, 0 if not
1685 * type: is not an array (e.g. const struct X)
1686 * return type: type "struct X"
1687 * *type_size: sizeof(struct X)
1688 * *elem_type: same as return type ("struct X")
1691 * *type_id: id of type if it's changed within the function, 0 if not
1693 static const struct btf_type *
1694 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1695 u32 *type_size, const struct btf_type **elem_type,
1696 u32 *elem_id, u32 *total_nelems, u32 *type_id)
1698 const struct btf_type *array_type = NULL;
1699 const struct btf_array *array = NULL;
1700 u32 i, size, nelems = 1, id = 0;
1702 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1703 switch (BTF_INFO_KIND(type->info)) {
1704 /* type->size can be used */
1706 case BTF_KIND_STRUCT:
1707 case BTF_KIND_UNION:
1709 case BTF_KIND_FLOAT:
1714 size = sizeof(void *);
1718 case BTF_KIND_TYPEDEF:
1719 case BTF_KIND_VOLATILE:
1720 case BTF_KIND_CONST:
1721 case BTF_KIND_RESTRICT:
1723 type = btf_type_by_id(btf, type->type);
1726 case BTF_KIND_ARRAY:
1729 array = btf_type_array(type);
1730 if (nelems && array->nelems > U32_MAX / nelems)
1731 return ERR_PTR(-EINVAL);
1732 nelems *= array->nelems;
1733 type = btf_type_by_id(btf, array->type);
1736 /* type without size */
1738 return ERR_PTR(-EINVAL);
1742 return ERR_PTR(-EINVAL);
1745 if (nelems && size > U32_MAX / nelems)
1746 return ERR_PTR(-EINVAL);
1748 *type_size = nelems * size;
1750 *total_nelems = nelems;
1754 *elem_id = array ? array->type : 0;
1758 return array_type ? : type;
1761 const struct btf_type *
1762 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1765 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1768 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1770 while (type_id < btf->start_id)
1771 btf = btf->base_btf;
1773 return btf->resolved_ids[type_id - btf->start_id];
1776 /* The input param "type_id" must point to a needs_resolve type */
1777 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1780 *type_id = btf_resolved_type_id(btf, *type_id);
1781 return btf_type_by_id(btf, *type_id);
1784 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1786 while (type_id < btf->start_id)
1787 btf = btf->base_btf;
1789 return btf->resolved_sizes[type_id - btf->start_id];
1792 const struct btf_type *btf_type_id_size(const struct btf *btf,
1793 u32 *type_id, u32 *ret_size)
1795 const struct btf_type *size_type;
1796 u32 size_type_id = *type_id;
1799 size_type = btf_type_by_id(btf, size_type_id);
1800 if (btf_type_nosize_or_null(size_type))
1803 if (btf_type_has_size(size_type)) {
1804 size = size_type->size;
1805 } else if (btf_type_is_array(size_type)) {
1806 size = btf_resolved_type_size(btf, size_type_id);
1807 } else if (btf_type_is_ptr(size_type)) {
1808 size = sizeof(void *);
1810 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1811 !btf_type_is_var(size_type)))
1814 size_type_id = btf_resolved_type_id(btf, size_type_id);
1815 size_type = btf_type_by_id(btf, size_type_id);
1816 if (btf_type_nosize_or_null(size_type))
1818 else if (btf_type_has_size(size_type))
1819 size = size_type->size;
1820 else if (btf_type_is_array(size_type))
1821 size = btf_resolved_type_size(btf, size_type_id);
1822 else if (btf_type_is_ptr(size_type))
1823 size = sizeof(void *);
1828 *type_id = size_type_id;
1835 static int btf_df_check_member(struct btf_verifier_env *env,
1836 const struct btf_type *struct_type,
1837 const struct btf_member *member,
1838 const struct btf_type *member_type)
1840 btf_verifier_log_basic(env, struct_type,
1841 "Unsupported check_member");
1845 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1846 const struct btf_type *struct_type,
1847 const struct btf_member *member,
1848 const struct btf_type *member_type)
1850 btf_verifier_log_basic(env, struct_type,
1851 "Unsupported check_kflag_member");
1855 /* Used for ptr, array struct/union and float type members.
1856 * int, enum and modifier types have their specific callback functions.
1858 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1859 const struct btf_type *struct_type,
1860 const struct btf_member *member,
1861 const struct btf_type *member_type)
1863 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1864 btf_verifier_log_member(env, struct_type, member,
1865 "Invalid member bitfield_size");
1869 /* bitfield size is 0, so member->offset represents bit offset only.
1870 * It is safe to call non kflag check_member variants.
1872 return btf_type_ops(member_type)->check_member(env, struct_type,
1877 static int btf_df_resolve(struct btf_verifier_env *env,
1878 const struct resolve_vertex *v)
1880 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1884 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1885 u32 type_id, void *data, u8 bits_offsets,
1886 struct btf_show *show)
1888 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1891 static int btf_int_check_member(struct btf_verifier_env *env,
1892 const struct btf_type *struct_type,
1893 const struct btf_member *member,
1894 const struct btf_type *member_type)
1896 u32 int_data = btf_type_int(member_type);
1897 u32 struct_bits_off = member->offset;
1898 u32 struct_size = struct_type->size;
1902 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1903 btf_verifier_log_member(env, struct_type, member,
1904 "bits_offset exceeds U32_MAX");
1908 struct_bits_off += BTF_INT_OFFSET(int_data);
1909 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1910 nr_copy_bits = BTF_INT_BITS(int_data) +
1911 BITS_PER_BYTE_MASKED(struct_bits_off);
1913 if (nr_copy_bits > BITS_PER_U128) {
1914 btf_verifier_log_member(env, struct_type, member,
1915 "nr_copy_bits exceeds 128");
1919 if (struct_size < bytes_offset ||
1920 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1921 btf_verifier_log_member(env, struct_type, member,
1922 "Member exceeds struct_size");
1929 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1930 const struct btf_type *struct_type,
1931 const struct btf_member *member,
1932 const struct btf_type *member_type)
1934 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1935 u32 int_data = btf_type_int(member_type);
1936 u32 struct_size = struct_type->size;
1939 /* a regular int type is required for the kflag int member */
1940 if (!btf_type_int_is_regular(member_type)) {
1941 btf_verifier_log_member(env, struct_type, member,
1942 "Invalid member base type");
1946 /* check sanity of bitfield size */
1947 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1948 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1949 nr_int_data_bits = BTF_INT_BITS(int_data);
1951 /* Not a bitfield member, member offset must be at byte
1954 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1955 btf_verifier_log_member(env, struct_type, member,
1956 "Invalid member offset");
1960 nr_bits = nr_int_data_bits;
1961 } else if (nr_bits > nr_int_data_bits) {
1962 btf_verifier_log_member(env, struct_type, member,
1963 "Invalid member bitfield_size");
1967 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1968 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1969 if (nr_copy_bits > BITS_PER_U128) {
1970 btf_verifier_log_member(env, struct_type, member,
1971 "nr_copy_bits exceeds 128");
1975 if (struct_size < bytes_offset ||
1976 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1977 btf_verifier_log_member(env, struct_type, member,
1978 "Member exceeds struct_size");
1985 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1986 const struct btf_type *t,
1989 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1992 if (meta_left < meta_needed) {
1993 btf_verifier_log_basic(env, t,
1994 "meta_left:%u meta_needed:%u",
1995 meta_left, meta_needed);
1999 if (btf_type_vlen(t)) {
2000 btf_verifier_log_type(env, t, "vlen != 0");
2004 if (btf_type_kflag(t)) {
2005 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2009 int_data = btf_type_int(t);
2010 if (int_data & ~BTF_INT_MASK) {
2011 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2016 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2018 if (nr_bits > BITS_PER_U128) {
2019 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2024 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2025 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2030 * Only one of the encoding bits is allowed and it
2031 * should be sufficient for the pretty print purpose (i.e. decoding).
2032 * Multiple bits can be allowed later if it is found
2033 * to be insufficient.
2035 encoding = BTF_INT_ENCODING(int_data);
2037 encoding != BTF_INT_SIGNED &&
2038 encoding != BTF_INT_CHAR &&
2039 encoding != BTF_INT_BOOL) {
2040 btf_verifier_log_type(env, t, "Unsupported encoding");
2044 btf_verifier_log_type(env, t, NULL);
2049 static void btf_int_log(struct btf_verifier_env *env,
2050 const struct btf_type *t)
2052 int int_data = btf_type_int(t);
2054 btf_verifier_log(env,
2055 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2056 t->size, BTF_INT_OFFSET(int_data),
2057 BTF_INT_BITS(int_data),
2058 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2061 static void btf_int128_print(struct btf_show *show, void *data)
2063 /* data points to a __int128 number.
2065 * int128_num = *(__int128 *)data;
2066 * The below formulas shows what upper_num and lower_num represents:
2067 * upper_num = int128_num >> 64;
2068 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2070 u64 upper_num, lower_num;
2072 #ifdef __BIG_ENDIAN_BITFIELD
2073 upper_num = *(u64 *)data;
2074 lower_num = *(u64 *)(data + 8);
2076 upper_num = *(u64 *)(data + 8);
2077 lower_num = *(u64 *)data;
2080 btf_show_type_value(show, "0x%llx", lower_num);
2082 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2086 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2087 u16 right_shift_bits)
2089 u64 upper_num, lower_num;
2091 #ifdef __BIG_ENDIAN_BITFIELD
2092 upper_num = print_num[0];
2093 lower_num = print_num[1];
2095 upper_num = print_num[1];
2096 lower_num = print_num[0];
2099 /* shake out un-needed bits by shift/or operations */
2100 if (left_shift_bits >= 64) {
2101 upper_num = lower_num << (left_shift_bits - 64);
2104 upper_num = (upper_num << left_shift_bits) |
2105 (lower_num >> (64 - left_shift_bits));
2106 lower_num = lower_num << left_shift_bits;
2109 if (right_shift_bits >= 64) {
2110 lower_num = upper_num >> (right_shift_bits - 64);
2113 lower_num = (lower_num >> right_shift_bits) |
2114 (upper_num << (64 - right_shift_bits));
2115 upper_num = upper_num >> right_shift_bits;
2118 #ifdef __BIG_ENDIAN_BITFIELD
2119 print_num[0] = upper_num;
2120 print_num[1] = lower_num;
2122 print_num[0] = lower_num;
2123 print_num[1] = upper_num;
2127 static void btf_bitfield_show(void *data, u8 bits_offset,
2128 u8 nr_bits, struct btf_show *show)
2130 u16 left_shift_bits, right_shift_bits;
2133 u64 print_num[2] = {};
2135 nr_copy_bits = nr_bits + bits_offset;
2136 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2138 memcpy(print_num, data, nr_copy_bytes);
2140 #ifdef __BIG_ENDIAN_BITFIELD
2141 left_shift_bits = bits_offset;
2143 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2145 right_shift_bits = BITS_PER_U128 - nr_bits;
2147 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2148 btf_int128_print(show, print_num);
2152 static void btf_int_bits_show(const struct btf *btf,
2153 const struct btf_type *t,
2154 void *data, u8 bits_offset,
2155 struct btf_show *show)
2157 u32 int_data = btf_type_int(t);
2158 u8 nr_bits = BTF_INT_BITS(int_data);
2159 u8 total_bits_offset;
2162 * bits_offset is at most 7.
2163 * BTF_INT_OFFSET() cannot exceed 128 bits.
2165 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2166 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2167 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2168 btf_bitfield_show(data, bits_offset, nr_bits, show);
2171 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2172 u32 type_id, void *data, u8 bits_offset,
2173 struct btf_show *show)
2175 u32 int_data = btf_type_int(t);
2176 u8 encoding = BTF_INT_ENCODING(int_data);
2177 bool sign = encoding & BTF_INT_SIGNED;
2178 u8 nr_bits = BTF_INT_BITS(int_data);
2181 safe_data = btf_show_start_type(show, t, type_id, data);
2185 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2186 BITS_PER_BYTE_MASKED(nr_bits)) {
2187 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2193 btf_int128_print(show, safe_data);
2197 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2199 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2203 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2205 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2209 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2211 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2214 if (show->state.array_encoding == BTF_INT_CHAR) {
2215 /* check for null terminator */
2216 if (show->state.array_terminated)
2218 if (*(char *)data == '\0') {
2219 show->state.array_terminated = 1;
2222 if (isprint(*(char *)data)) {
2223 btf_show_type_value(show, "'%c'",
2224 *(char *)safe_data);
2229 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2231 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2234 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2238 btf_show_end_type(show);
2241 static const struct btf_kind_operations int_ops = {
2242 .check_meta = btf_int_check_meta,
2243 .resolve = btf_df_resolve,
2244 .check_member = btf_int_check_member,
2245 .check_kflag_member = btf_int_check_kflag_member,
2246 .log_details = btf_int_log,
2247 .show = btf_int_show,
2250 static int btf_modifier_check_member(struct btf_verifier_env *env,
2251 const struct btf_type *struct_type,
2252 const struct btf_member *member,
2253 const struct btf_type *member_type)
2255 const struct btf_type *resolved_type;
2256 u32 resolved_type_id = member->type;
2257 struct btf_member resolved_member;
2258 struct btf *btf = env->btf;
2260 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2261 if (!resolved_type) {
2262 btf_verifier_log_member(env, struct_type, member,
2267 resolved_member = *member;
2268 resolved_member.type = resolved_type_id;
2270 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2275 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2276 const struct btf_type *struct_type,
2277 const struct btf_member *member,
2278 const struct btf_type *member_type)
2280 const struct btf_type *resolved_type;
2281 u32 resolved_type_id = member->type;
2282 struct btf_member resolved_member;
2283 struct btf *btf = env->btf;
2285 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2286 if (!resolved_type) {
2287 btf_verifier_log_member(env, struct_type, member,
2292 resolved_member = *member;
2293 resolved_member.type = resolved_type_id;
2295 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2300 static int btf_ptr_check_member(struct btf_verifier_env *env,
2301 const struct btf_type *struct_type,
2302 const struct btf_member *member,
2303 const struct btf_type *member_type)
2305 u32 struct_size, struct_bits_off, bytes_offset;
2307 struct_size = struct_type->size;
2308 struct_bits_off = member->offset;
2309 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2311 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2312 btf_verifier_log_member(env, struct_type, member,
2313 "Member is not byte aligned");
2317 if (struct_size - bytes_offset < sizeof(void *)) {
2318 btf_verifier_log_member(env, struct_type, member,
2319 "Member exceeds struct_size");
2326 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2327 const struct btf_type *t,
2330 if (btf_type_vlen(t)) {
2331 btf_verifier_log_type(env, t, "vlen != 0");
2335 if (btf_type_kflag(t)) {
2336 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2340 if (!BTF_TYPE_ID_VALID(t->type)) {
2341 btf_verifier_log_type(env, t, "Invalid type_id");
2345 /* typedef type must have a valid name, and other ref types,
2346 * volatile, const, restrict, should have a null name.
2348 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2350 !btf_name_valid_identifier(env->btf, t->name_off)) {
2351 btf_verifier_log_type(env, t, "Invalid name");
2356 btf_verifier_log_type(env, t, "Invalid name");
2361 btf_verifier_log_type(env, t, NULL);
2366 static int btf_modifier_resolve(struct btf_verifier_env *env,
2367 const struct resolve_vertex *v)
2369 const struct btf_type *t = v->t;
2370 const struct btf_type *next_type;
2371 u32 next_type_id = t->type;
2372 struct btf *btf = env->btf;
2374 next_type = btf_type_by_id(btf, next_type_id);
2375 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2376 btf_verifier_log_type(env, v->t, "Invalid type_id");
2380 if (!env_type_is_resolve_sink(env, next_type) &&
2381 !env_type_is_resolved(env, next_type_id))
2382 return env_stack_push(env, next_type, next_type_id);
2384 /* Figure out the resolved next_type_id with size.
2385 * They will be stored in the current modifier's
2386 * resolved_ids and resolved_sizes such that it can
2387 * save us a few type-following when we use it later (e.g. in
2390 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2391 if (env_type_is_resolved(env, next_type_id))
2392 next_type = btf_type_id_resolve(btf, &next_type_id);
2394 /* "typedef void new_void", "const void"...etc */
2395 if (!btf_type_is_void(next_type) &&
2396 !btf_type_is_fwd(next_type) &&
2397 !btf_type_is_func_proto(next_type)) {
2398 btf_verifier_log_type(env, v->t, "Invalid type_id");
2403 env_stack_pop_resolved(env, next_type_id, 0);
2408 static int btf_var_resolve(struct btf_verifier_env *env,
2409 const struct resolve_vertex *v)
2411 const struct btf_type *next_type;
2412 const struct btf_type *t = v->t;
2413 u32 next_type_id = t->type;
2414 struct btf *btf = env->btf;
2416 next_type = btf_type_by_id(btf, next_type_id);
2417 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2418 btf_verifier_log_type(env, v->t, "Invalid type_id");
2422 if (!env_type_is_resolve_sink(env, next_type) &&
2423 !env_type_is_resolved(env, next_type_id))
2424 return env_stack_push(env, next_type, next_type_id);
2426 if (btf_type_is_modifier(next_type)) {
2427 const struct btf_type *resolved_type;
2428 u32 resolved_type_id;
2430 resolved_type_id = next_type_id;
2431 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2433 if (btf_type_is_ptr(resolved_type) &&
2434 !env_type_is_resolve_sink(env, resolved_type) &&
2435 !env_type_is_resolved(env, resolved_type_id))
2436 return env_stack_push(env, resolved_type,
2440 /* We must resolve to something concrete at this point, no
2441 * forward types or similar that would resolve to size of
2444 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2445 btf_verifier_log_type(env, v->t, "Invalid type_id");
2449 env_stack_pop_resolved(env, next_type_id, 0);
2454 static int btf_ptr_resolve(struct btf_verifier_env *env,
2455 const struct resolve_vertex *v)
2457 const struct btf_type *next_type;
2458 const struct btf_type *t = v->t;
2459 u32 next_type_id = t->type;
2460 struct btf *btf = env->btf;
2462 next_type = btf_type_by_id(btf, next_type_id);
2463 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2464 btf_verifier_log_type(env, v->t, "Invalid type_id");
2468 if (!env_type_is_resolve_sink(env, next_type) &&
2469 !env_type_is_resolved(env, next_type_id))
2470 return env_stack_push(env, next_type, next_type_id);
2472 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2473 * the modifier may have stopped resolving when it was resolved
2474 * to a ptr (last-resolved-ptr).
2476 * We now need to continue from the last-resolved-ptr to
2477 * ensure the last-resolved-ptr will not referring back to
2478 * the currenct ptr (t).
2480 if (btf_type_is_modifier(next_type)) {
2481 const struct btf_type *resolved_type;
2482 u32 resolved_type_id;
2484 resolved_type_id = next_type_id;
2485 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2487 if (btf_type_is_ptr(resolved_type) &&
2488 !env_type_is_resolve_sink(env, resolved_type) &&
2489 !env_type_is_resolved(env, resolved_type_id))
2490 return env_stack_push(env, resolved_type,
2494 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2495 if (env_type_is_resolved(env, next_type_id))
2496 next_type = btf_type_id_resolve(btf, &next_type_id);
2498 if (!btf_type_is_void(next_type) &&
2499 !btf_type_is_fwd(next_type) &&
2500 !btf_type_is_func_proto(next_type)) {
2501 btf_verifier_log_type(env, v->t, "Invalid type_id");
2506 env_stack_pop_resolved(env, next_type_id, 0);
2511 static void btf_modifier_show(const struct btf *btf,
2512 const struct btf_type *t,
2513 u32 type_id, void *data,
2514 u8 bits_offset, struct btf_show *show)
2516 if (btf->resolved_ids)
2517 t = btf_type_id_resolve(btf, &type_id);
2519 t = btf_type_skip_modifiers(btf, type_id, NULL);
2521 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2524 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2525 u32 type_id, void *data, u8 bits_offset,
2526 struct btf_show *show)
2528 t = btf_type_id_resolve(btf, &type_id);
2530 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2533 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2534 u32 type_id, void *data, u8 bits_offset,
2535 struct btf_show *show)
2539 safe_data = btf_show_start_type(show, t, type_id, data);
2543 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2544 if (show->flags & BTF_SHOW_PTR_RAW)
2545 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2547 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2548 btf_show_end_type(show);
2551 static void btf_ref_type_log(struct btf_verifier_env *env,
2552 const struct btf_type *t)
2554 btf_verifier_log(env, "type_id=%u", t->type);
2557 static struct btf_kind_operations modifier_ops = {
2558 .check_meta = btf_ref_type_check_meta,
2559 .resolve = btf_modifier_resolve,
2560 .check_member = btf_modifier_check_member,
2561 .check_kflag_member = btf_modifier_check_kflag_member,
2562 .log_details = btf_ref_type_log,
2563 .show = btf_modifier_show,
2566 static struct btf_kind_operations ptr_ops = {
2567 .check_meta = btf_ref_type_check_meta,
2568 .resolve = btf_ptr_resolve,
2569 .check_member = btf_ptr_check_member,
2570 .check_kflag_member = btf_generic_check_kflag_member,
2571 .log_details = btf_ref_type_log,
2572 .show = btf_ptr_show,
2575 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2576 const struct btf_type *t,
2579 if (btf_type_vlen(t)) {
2580 btf_verifier_log_type(env, t, "vlen != 0");
2585 btf_verifier_log_type(env, t, "type != 0");
2589 /* fwd type must have a valid name */
2591 !btf_name_valid_identifier(env->btf, t->name_off)) {
2592 btf_verifier_log_type(env, t, "Invalid name");
2596 btf_verifier_log_type(env, t, NULL);
2601 static void btf_fwd_type_log(struct btf_verifier_env *env,
2602 const struct btf_type *t)
2604 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2607 static struct btf_kind_operations fwd_ops = {
2608 .check_meta = btf_fwd_check_meta,
2609 .resolve = btf_df_resolve,
2610 .check_member = btf_df_check_member,
2611 .check_kflag_member = btf_df_check_kflag_member,
2612 .log_details = btf_fwd_type_log,
2613 .show = btf_df_show,
2616 static int btf_array_check_member(struct btf_verifier_env *env,
2617 const struct btf_type *struct_type,
2618 const struct btf_member *member,
2619 const struct btf_type *member_type)
2621 u32 struct_bits_off = member->offset;
2622 u32 struct_size, bytes_offset;
2623 u32 array_type_id, array_size;
2624 struct btf *btf = env->btf;
2626 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2627 btf_verifier_log_member(env, struct_type, member,
2628 "Member is not byte aligned");
2632 array_type_id = member->type;
2633 btf_type_id_size(btf, &array_type_id, &array_size);
2634 struct_size = struct_type->size;
2635 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2636 if (struct_size - bytes_offset < array_size) {
2637 btf_verifier_log_member(env, struct_type, member,
2638 "Member exceeds struct_size");
2645 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2646 const struct btf_type *t,
2649 const struct btf_array *array = btf_type_array(t);
2650 u32 meta_needed = sizeof(*array);
2652 if (meta_left < meta_needed) {
2653 btf_verifier_log_basic(env, t,
2654 "meta_left:%u meta_needed:%u",
2655 meta_left, meta_needed);
2659 /* array type should not have a name */
2661 btf_verifier_log_type(env, t, "Invalid name");
2665 if (btf_type_vlen(t)) {
2666 btf_verifier_log_type(env, t, "vlen != 0");
2670 if (btf_type_kflag(t)) {
2671 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2676 btf_verifier_log_type(env, t, "size != 0");
2680 /* Array elem type and index type cannot be in type void,
2681 * so !array->type and !array->index_type are not allowed.
2683 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2684 btf_verifier_log_type(env, t, "Invalid elem");
2688 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2689 btf_verifier_log_type(env, t, "Invalid index");
2693 btf_verifier_log_type(env, t, NULL);
2698 static int btf_array_resolve(struct btf_verifier_env *env,
2699 const struct resolve_vertex *v)
2701 const struct btf_array *array = btf_type_array(v->t);
2702 const struct btf_type *elem_type, *index_type;
2703 u32 elem_type_id, index_type_id;
2704 struct btf *btf = env->btf;
2707 /* Check array->index_type */
2708 index_type_id = array->index_type;
2709 index_type = btf_type_by_id(btf, index_type_id);
2710 if (btf_type_nosize_or_null(index_type) ||
2711 btf_type_is_resolve_source_only(index_type)) {
2712 btf_verifier_log_type(env, v->t, "Invalid index");
2716 if (!env_type_is_resolve_sink(env, index_type) &&
2717 !env_type_is_resolved(env, index_type_id))
2718 return env_stack_push(env, index_type, index_type_id);
2720 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2721 if (!index_type || !btf_type_is_int(index_type) ||
2722 !btf_type_int_is_regular(index_type)) {
2723 btf_verifier_log_type(env, v->t, "Invalid index");
2727 /* Check array->type */
2728 elem_type_id = array->type;
2729 elem_type = btf_type_by_id(btf, elem_type_id);
2730 if (btf_type_nosize_or_null(elem_type) ||
2731 btf_type_is_resolve_source_only(elem_type)) {
2732 btf_verifier_log_type(env, v->t,
2737 if (!env_type_is_resolve_sink(env, elem_type) &&
2738 !env_type_is_resolved(env, elem_type_id))
2739 return env_stack_push(env, elem_type, elem_type_id);
2741 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2743 btf_verifier_log_type(env, v->t, "Invalid elem");
2747 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2748 btf_verifier_log_type(env, v->t, "Invalid array of int");
2752 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2753 btf_verifier_log_type(env, v->t,
2754 "Array size overflows U32_MAX");
2758 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2763 static void btf_array_log(struct btf_verifier_env *env,
2764 const struct btf_type *t)
2766 const struct btf_array *array = btf_type_array(t);
2768 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2769 array->type, array->index_type, array->nelems);
2772 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2773 u32 type_id, void *data, u8 bits_offset,
2774 struct btf_show *show)
2776 const struct btf_array *array = btf_type_array(t);
2777 const struct btf_kind_operations *elem_ops;
2778 const struct btf_type *elem_type;
2779 u32 i, elem_size = 0, elem_type_id;
2782 elem_type_id = array->type;
2783 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2784 if (elem_type && btf_type_has_size(elem_type))
2785 elem_size = elem_type->size;
2787 if (elem_type && btf_type_is_int(elem_type)) {
2788 u32 int_type = btf_type_int(elem_type);
2790 encoding = BTF_INT_ENCODING(int_type);
2793 * BTF_INT_CHAR encoding never seems to be set for
2794 * char arrays, so if size is 1 and element is
2795 * printable as a char, we'll do that.
2798 encoding = BTF_INT_CHAR;
2801 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2806 elem_ops = btf_type_ops(elem_type);
2808 for (i = 0; i < array->nelems; i++) {
2810 btf_show_start_array_member(show);
2812 elem_ops->show(btf, elem_type, elem_type_id, data,
2816 btf_show_end_array_member(show);
2818 if (show->state.array_terminated)
2822 btf_show_end_array_type(show);
2825 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2826 u32 type_id, void *data, u8 bits_offset,
2827 struct btf_show *show)
2829 const struct btf_member *m = show->state.member;
2832 * First check if any members would be shown (are non-zero).
2833 * See comments above "struct btf_show" definition for more
2834 * details on how this works at a high-level.
2836 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2837 if (!show->state.depth_check) {
2838 show->state.depth_check = show->state.depth + 1;
2839 show->state.depth_to_show = 0;
2841 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2842 show->state.member = m;
2844 if (show->state.depth_check != show->state.depth + 1)
2846 show->state.depth_check = 0;
2848 if (show->state.depth_to_show <= show->state.depth)
2851 * Reaching here indicates we have recursed and found
2852 * non-zero array member(s).
2855 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2858 static struct btf_kind_operations array_ops = {
2859 .check_meta = btf_array_check_meta,
2860 .resolve = btf_array_resolve,
2861 .check_member = btf_array_check_member,
2862 .check_kflag_member = btf_generic_check_kflag_member,
2863 .log_details = btf_array_log,
2864 .show = btf_array_show,
2867 static int btf_struct_check_member(struct btf_verifier_env *env,
2868 const struct btf_type *struct_type,
2869 const struct btf_member *member,
2870 const struct btf_type *member_type)
2872 u32 struct_bits_off = member->offset;
2873 u32 struct_size, bytes_offset;
2875 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2876 btf_verifier_log_member(env, struct_type, member,
2877 "Member is not byte aligned");
2881 struct_size = struct_type->size;
2882 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2883 if (struct_size - bytes_offset < member_type->size) {
2884 btf_verifier_log_member(env, struct_type, member,
2885 "Member exceeds struct_size");
2892 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2893 const struct btf_type *t,
2896 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2897 const struct btf_member *member;
2898 u32 meta_needed, last_offset;
2899 struct btf *btf = env->btf;
2900 u32 struct_size = t->size;
2904 meta_needed = btf_type_vlen(t) * sizeof(*member);
2905 if (meta_left < meta_needed) {
2906 btf_verifier_log_basic(env, t,
2907 "meta_left:%u meta_needed:%u",
2908 meta_left, meta_needed);
2912 /* struct type either no name or a valid one */
2914 !btf_name_valid_identifier(env->btf, t->name_off)) {
2915 btf_verifier_log_type(env, t, "Invalid name");
2919 btf_verifier_log_type(env, t, NULL);
2922 for_each_member(i, t, member) {
2923 if (!btf_name_offset_valid(btf, member->name_off)) {
2924 btf_verifier_log_member(env, t, member,
2925 "Invalid member name_offset:%u",
2930 /* struct member either no name or a valid one */
2931 if (member->name_off &&
2932 !btf_name_valid_identifier(btf, member->name_off)) {
2933 btf_verifier_log_member(env, t, member, "Invalid name");
2936 /* A member cannot be in type void */
2937 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2938 btf_verifier_log_member(env, t, member,
2943 offset = btf_member_bit_offset(t, member);
2944 if (is_union && offset) {
2945 btf_verifier_log_member(env, t, member,
2946 "Invalid member bits_offset");
2951 * ">" instead of ">=" because the last member could be
2954 if (last_offset > offset) {
2955 btf_verifier_log_member(env, t, member,
2956 "Invalid member bits_offset");
2960 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2961 btf_verifier_log_member(env, t, member,
2962 "Member bits_offset exceeds its struct size");
2966 btf_verifier_log_member(env, t, member, NULL);
2967 last_offset = offset;
2973 static int btf_struct_resolve(struct btf_verifier_env *env,
2974 const struct resolve_vertex *v)
2976 const struct btf_member *member;
2980 /* Before continue resolving the next_member,
2981 * ensure the last member is indeed resolved to a
2982 * type with size info.
2984 if (v->next_member) {
2985 const struct btf_type *last_member_type;
2986 const struct btf_member *last_member;
2987 u16 last_member_type_id;
2989 last_member = btf_type_member(v->t) + v->next_member - 1;
2990 last_member_type_id = last_member->type;
2991 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2992 last_member_type_id)))
2995 last_member_type = btf_type_by_id(env->btf,
2996 last_member_type_id);
2997 if (btf_type_kflag(v->t))
2998 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3002 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3009 for_each_member_from(i, v->next_member, v->t, member) {
3010 u32 member_type_id = member->type;
3011 const struct btf_type *member_type = btf_type_by_id(env->btf,
3014 if (btf_type_nosize_or_null(member_type) ||
3015 btf_type_is_resolve_source_only(member_type)) {
3016 btf_verifier_log_member(env, v->t, member,
3021 if (!env_type_is_resolve_sink(env, member_type) &&
3022 !env_type_is_resolved(env, member_type_id)) {
3023 env_stack_set_next_member(env, i + 1);
3024 return env_stack_push(env, member_type, member_type_id);
3027 if (btf_type_kflag(v->t))
3028 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3032 err = btf_type_ops(member_type)->check_member(env, v->t,
3039 env_stack_pop_resolved(env, 0, 0);
3044 static void btf_struct_log(struct btf_verifier_env *env,
3045 const struct btf_type *t)
3047 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3050 /* find 'struct bpf_spin_lock' in map value.
3051 * return >= 0 offset if found
3052 * and < 0 in case of error
3054 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3056 const struct btf_member *member;
3057 u32 i, off = -ENOENT;
3059 if (!__btf_type_is_struct(t))
3062 for_each_member(i, t, member) {
3063 const struct btf_type *member_type = btf_type_by_id(btf,
3065 if (!__btf_type_is_struct(member_type))
3067 if (member_type->size != sizeof(struct bpf_spin_lock))
3069 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
3073 /* only one 'struct bpf_spin_lock' is allowed */
3075 off = btf_member_bit_offset(t, member);
3077 /* valid C code cannot generate such BTF */
3080 if (off % __alignof__(struct bpf_spin_lock))
3081 /* valid struct bpf_spin_lock will be 4 byte aligned */
3087 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3088 u32 type_id, void *data, u8 bits_offset,
3089 struct btf_show *show)
3091 const struct btf_member *member;
3095 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3099 for_each_member(i, t, member) {
3100 const struct btf_type *member_type = btf_type_by_id(btf,
3102 const struct btf_kind_operations *ops;
3103 u32 member_offset, bitfield_size;
3107 btf_show_start_member(show, member);
3109 member_offset = btf_member_bit_offset(t, member);
3110 bitfield_size = btf_member_bitfield_size(t, member);
3111 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3112 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3113 if (bitfield_size) {
3114 safe_data = btf_show_start_type(show, member_type,
3116 data + bytes_offset);
3118 btf_bitfield_show(safe_data,
3120 bitfield_size, show);
3121 btf_show_end_type(show);
3123 ops = btf_type_ops(member_type);
3124 ops->show(btf, member_type, member->type,
3125 data + bytes_offset, bits8_offset, show);
3128 btf_show_end_member(show);
3131 btf_show_end_struct_type(show);
3134 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3135 u32 type_id, void *data, u8 bits_offset,
3136 struct btf_show *show)
3138 const struct btf_member *m = show->state.member;
3141 * First check if any members would be shown (are non-zero).
3142 * See comments above "struct btf_show" definition for more
3143 * details on how this works at a high-level.
3145 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3146 if (!show->state.depth_check) {
3147 show->state.depth_check = show->state.depth + 1;
3148 show->state.depth_to_show = 0;
3150 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3151 /* Restore saved member data here */
3152 show->state.member = m;
3153 if (show->state.depth_check != show->state.depth + 1)
3155 show->state.depth_check = 0;
3157 if (show->state.depth_to_show <= show->state.depth)
3160 * Reaching here indicates we have recursed and found
3161 * non-zero child values.
3165 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3168 static struct btf_kind_operations struct_ops = {
3169 .check_meta = btf_struct_check_meta,
3170 .resolve = btf_struct_resolve,
3171 .check_member = btf_struct_check_member,
3172 .check_kflag_member = btf_generic_check_kflag_member,
3173 .log_details = btf_struct_log,
3174 .show = btf_struct_show,
3177 static int btf_enum_check_member(struct btf_verifier_env *env,
3178 const struct btf_type *struct_type,
3179 const struct btf_member *member,
3180 const struct btf_type *member_type)
3182 u32 struct_bits_off = member->offset;
3183 u32 struct_size, bytes_offset;
3185 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3186 btf_verifier_log_member(env, struct_type, member,
3187 "Member is not byte aligned");
3191 struct_size = struct_type->size;
3192 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3193 if (struct_size - bytes_offset < member_type->size) {
3194 btf_verifier_log_member(env, struct_type, member,
3195 "Member exceeds struct_size");
3202 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3203 const struct btf_type *struct_type,
3204 const struct btf_member *member,
3205 const struct btf_type *member_type)
3207 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3208 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3210 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3211 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3213 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3214 btf_verifier_log_member(env, struct_type, member,
3215 "Member is not byte aligned");
3219 nr_bits = int_bitsize;
3220 } else if (nr_bits > int_bitsize) {
3221 btf_verifier_log_member(env, struct_type, member,
3222 "Invalid member bitfield_size");
3226 struct_size = struct_type->size;
3227 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3228 if (struct_size < bytes_end) {
3229 btf_verifier_log_member(env, struct_type, member,
3230 "Member exceeds struct_size");
3237 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3238 const struct btf_type *t,
3241 const struct btf_enum *enums = btf_type_enum(t);
3242 struct btf *btf = env->btf;
3246 nr_enums = btf_type_vlen(t);
3247 meta_needed = nr_enums * sizeof(*enums);
3249 if (meta_left < meta_needed) {
3250 btf_verifier_log_basic(env, t,
3251 "meta_left:%u meta_needed:%u",
3252 meta_left, meta_needed);
3256 if (btf_type_kflag(t)) {
3257 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3261 if (t->size > 8 || !is_power_of_2(t->size)) {
3262 btf_verifier_log_type(env, t, "Unexpected size");
3266 /* enum type either no name or a valid one */
3268 !btf_name_valid_identifier(env->btf, t->name_off)) {
3269 btf_verifier_log_type(env, t, "Invalid name");
3273 btf_verifier_log_type(env, t, NULL);
3275 for (i = 0; i < nr_enums; i++) {
3276 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3277 btf_verifier_log(env, "\tInvalid name_offset:%u",
3282 /* enum member must have a valid name */
3283 if (!enums[i].name_off ||
3284 !btf_name_valid_identifier(btf, enums[i].name_off)) {
3285 btf_verifier_log_type(env, t, "Invalid name");
3289 if (env->log.level == BPF_LOG_KERNEL)
3291 btf_verifier_log(env, "\t%s val=%d\n",
3292 __btf_name_by_offset(btf, enums[i].name_off),
3299 static void btf_enum_log(struct btf_verifier_env *env,
3300 const struct btf_type *t)
3302 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3305 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3306 u32 type_id, void *data, u8 bits_offset,
3307 struct btf_show *show)
3309 const struct btf_enum *enums = btf_type_enum(t);
3310 u32 i, nr_enums = btf_type_vlen(t);
3314 safe_data = btf_show_start_type(show, t, type_id, data);
3318 v = *(int *)safe_data;
3320 for (i = 0; i < nr_enums; i++) {
3321 if (v != enums[i].val)
3324 btf_show_type_value(show, "%s",
3325 __btf_name_by_offset(btf,
3326 enums[i].name_off));
3328 btf_show_end_type(show);
3332 btf_show_type_value(show, "%d", v);
3333 btf_show_end_type(show);
3336 static struct btf_kind_operations enum_ops = {
3337 .check_meta = btf_enum_check_meta,
3338 .resolve = btf_df_resolve,
3339 .check_member = btf_enum_check_member,
3340 .check_kflag_member = btf_enum_check_kflag_member,
3341 .log_details = btf_enum_log,
3342 .show = btf_enum_show,
3345 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3346 const struct btf_type *t,
3349 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3351 if (meta_left < meta_needed) {
3352 btf_verifier_log_basic(env, t,
3353 "meta_left:%u meta_needed:%u",
3354 meta_left, meta_needed);
3359 btf_verifier_log_type(env, t, "Invalid name");
3363 if (btf_type_kflag(t)) {
3364 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3368 btf_verifier_log_type(env, t, NULL);
3373 static void btf_func_proto_log(struct btf_verifier_env *env,
3374 const struct btf_type *t)
3376 const struct btf_param *args = (const struct btf_param *)(t + 1);
3377 u16 nr_args = btf_type_vlen(t), i;
3379 btf_verifier_log(env, "return=%u args=(", t->type);
3381 btf_verifier_log(env, "void");
3385 if (nr_args == 1 && !args[0].type) {
3386 /* Only one vararg */
3387 btf_verifier_log(env, "vararg");
3391 btf_verifier_log(env, "%u %s", args[0].type,
3392 __btf_name_by_offset(env->btf,
3394 for (i = 1; i < nr_args - 1; i++)
3395 btf_verifier_log(env, ", %u %s", args[i].type,
3396 __btf_name_by_offset(env->btf,
3400 const struct btf_param *last_arg = &args[nr_args - 1];
3403 btf_verifier_log(env, ", %u %s", last_arg->type,
3404 __btf_name_by_offset(env->btf,
3405 last_arg->name_off));
3407 btf_verifier_log(env, ", vararg");
3411 btf_verifier_log(env, ")");
3414 static struct btf_kind_operations func_proto_ops = {
3415 .check_meta = btf_func_proto_check_meta,
3416 .resolve = btf_df_resolve,
3418 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3419 * a struct's member.
3421 * It should be a funciton pointer instead.
3422 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3424 * Hence, there is no btf_func_check_member().
3426 .check_member = btf_df_check_member,
3427 .check_kflag_member = btf_df_check_kflag_member,
3428 .log_details = btf_func_proto_log,
3429 .show = btf_df_show,
3432 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3433 const struct btf_type *t,
3437 !btf_name_valid_identifier(env->btf, t->name_off)) {
3438 btf_verifier_log_type(env, t, "Invalid name");
3442 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3443 btf_verifier_log_type(env, t, "Invalid func linkage");
3447 if (btf_type_kflag(t)) {
3448 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3452 btf_verifier_log_type(env, t, NULL);
3457 static struct btf_kind_operations func_ops = {
3458 .check_meta = btf_func_check_meta,
3459 .resolve = btf_df_resolve,
3460 .check_member = btf_df_check_member,
3461 .check_kflag_member = btf_df_check_kflag_member,
3462 .log_details = btf_ref_type_log,
3463 .show = btf_df_show,
3466 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3467 const struct btf_type *t,
3470 const struct btf_var *var;
3471 u32 meta_needed = sizeof(*var);
3473 if (meta_left < meta_needed) {
3474 btf_verifier_log_basic(env, t,
3475 "meta_left:%u meta_needed:%u",
3476 meta_left, meta_needed);
3480 if (btf_type_vlen(t)) {
3481 btf_verifier_log_type(env, t, "vlen != 0");
3485 if (btf_type_kflag(t)) {
3486 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3491 !__btf_name_valid(env->btf, t->name_off, true)) {
3492 btf_verifier_log_type(env, t, "Invalid name");
3496 /* A var cannot be in type void */
3497 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3498 btf_verifier_log_type(env, t, "Invalid type_id");
3502 var = btf_type_var(t);
3503 if (var->linkage != BTF_VAR_STATIC &&
3504 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3505 btf_verifier_log_type(env, t, "Linkage not supported");
3509 btf_verifier_log_type(env, t, NULL);
3514 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3516 const struct btf_var *var = btf_type_var(t);
3518 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3521 static const struct btf_kind_operations var_ops = {
3522 .check_meta = btf_var_check_meta,
3523 .resolve = btf_var_resolve,
3524 .check_member = btf_df_check_member,
3525 .check_kflag_member = btf_df_check_kflag_member,
3526 .log_details = btf_var_log,
3527 .show = btf_var_show,
3530 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3531 const struct btf_type *t,
3534 const struct btf_var_secinfo *vsi;
3535 u64 last_vsi_end_off = 0, sum = 0;
3538 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3539 if (meta_left < meta_needed) {
3540 btf_verifier_log_basic(env, t,
3541 "meta_left:%u meta_needed:%u",
3542 meta_left, meta_needed);
3547 btf_verifier_log_type(env, t, "size == 0");
3551 if (btf_type_kflag(t)) {
3552 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3557 !btf_name_valid_section(env->btf, t->name_off)) {
3558 btf_verifier_log_type(env, t, "Invalid name");
3562 btf_verifier_log_type(env, t, NULL);
3564 for_each_vsi(i, t, vsi) {
3565 /* A var cannot be in type void */
3566 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3567 btf_verifier_log_vsi(env, t, vsi,
3572 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3573 btf_verifier_log_vsi(env, t, vsi,
3578 if (!vsi->size || vsi->size > t->size) {
3579 btf_verifier_log_vsi(env, t, vsi,
3584 last_vsi_end_off = vsi->offset + vsi->size;
3585 if (last_vsi_end_off > t->size) {
3586 btf_verifier_log_vsi(env, t, vsi,
3587 "Invalid offset+size");
3591 btf_verifier_log_vsi(env, t, vsi, NULL);
3595 if (t->size < sum) {
3596 btf_verifier_log_type(env, t, "Invalid btf_info size");
3603 static int btf_datasec_resolve(struct btf_verifier_env *env,
3604 const struct resolve_vertex *v)
3606 const struct btf_var_secinfo *vsi;
3607 struct btf *btf = env->btf;
3610 for_each_vsi_from(i, v->next_member, v->t, vsi) {
3611 u32 var_type_id = vsi->type, type_id, type_size = 0;
3612 const struct btf_type *var_type = btf_type_by_id(env->btf,
3614 if (!var_type || !btf_type_is_var(var_type)) {
3615 btf_verifier_log_vsi(env, v->t, vsi,
3616 "Not a VAR kind member");
3620 if (!env_type_is_resolve_sink(env, var_type) &&
3621 !env_type_is_resolved(env, var_type_id)) {
3622 env_stack_set_next_member(env, i + 1);
3623 return env_stack_push(env, var_type, var_type_id);
3626 type_id = var_type->type;
3627 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3628 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3632 if (vsi->size < type_size) {
3633 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3638 env_stack_pop_resolved(env, 0, 0);
3642 static void btf_datasec_log(struct btf_verifier_env *env,
3643 const struct btf_type *t)
3645 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3648 static void btf_datasec_show(const struct btf *btf,
3649 const struct btf_type *t, u32 type_id,
3650 void *data, u8 bits_offset,
3651 struct btf_show *show)
3653 const struct btf_var_secinfo *vsi;
3654 const struct btf_type *var;
3657 if (!btf_show_start_type(show, t, type_id, data))
3660 btf_show_type_value(show, "section (\"%s\") = {",
3661 __btf_name_by_offset(btf, t->name_off));
3662 for_each_vsi(i, t, vsi) {
3663 var = btf_type_by_id(btf, vsi->type);
3665 btf_show(show, ",");
3666 btf_type_ops(var)->show(btf, var, vsi->type,
3667 data + vsi->offset, bits_offset, show);
3669 btf_show_end_type(show);
3672 static const struct btf_kind_operations datasec_ops = {
3673 .check_meta = btf_datasec_check_meta,
3674 .resolve = btf_datasec_resolve,
3675 .check_member = btf_df_check_member,
3676 .check_kflag_member = btf_df_check_kflag_member,
3677 .log_details = btf_datasec_log,
3678 .show = btf_datasec_show,
3681 static s32 btf_float_check_meta(struct btf_verifier_env *env,
3682 const struct btf_type *t,
3685 if (btf_type_vlen(t)) {
3686 btf_verifier_log_type(env, t, "vlen != 0");
3690 if (btf_type_kflag(t)) {
3691 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3695 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3697 btf_verifier_log_type(env, t, "Invalid type_size");
3701 btf_verifier_log_type(env, t, NULL);
3706 static int btf_float_check_member(struct btf_verifier_env *env,
3707 const struct btf_type *struct_type,
3708 const struct btf_member *member,
3709 const struct btf_type *member_type)
3711 u64 start_offset_bytes;
3712 u64 end_offset_bytes;
3717 /* Different architectures have different alignment requirements, so
3718 * here we check only for the reasonable minimum. This way we ensure
3719 * that types after CO-RE can pass the kernel BTF verifier.
3721 align_bytes = min_t(u64, sizeof(void *), member_type->size);
3722 align_bits = align_bytes * BITS_PER_BYTE;
3723 div64_u64_rem(member->offset, align_bits, &misalign_bits);
3724 if (misalign_bits) {
3725 btf_verifier_log_member(env, struct_type, member,
3726 "Member is not properly aligned");
3730 start_offset_bytes = member->offset / BITS_PER_BYTE;
3731 end_offset_bytes = start_offset_bytes + member_type->size;
3732 if (end_offset_bytes > struct_type->size) {
3733 btf_verifier_log_member(env, struct_type, member,
3734 "Member exceeds struct_size");
3741 static void btf_float_log(struct btf_verifier_env *env,
3742 const struct btf_type *t)
3744 btf_verifier_log(env, "size=%u", t->size);
3747 static const struct btf_kind_operations float_ops = {
3748 .check_meta = btf_float_check_meta,
3749 .resolve = btf_df_resolve,
3750 .check_member = btf_float_check_member,
3751 .check_kflag_member = btf_generic_check_kflag_member,
3752 .log_details = btf_float_log,
3753 .show = btf_df_show,
3756 static int btf_func_proto_check(struct btf_verifier_env *env,
3757 const struct btf_type *t)
3759 const struct btf_type *ret_type;
3760 const struct btf_param *args;
3761 const struct btf *btf;
3766 args = (const struct btf_param *)(t + 1);
3767 nr_args = btf_type_vlen(t);
3769 /* Check func return type which could be "void" (t->type == 0) */
3771 u32 ret_type_id = t->type;
3773 ret_type = btf_type_by_id(btf, ret_type_id);
3775 btf_verifier_log_type(env, t, "Invalid return type");
3779 if (btf_type_needs_resolve(ret_type) &&
3780 !env_type_is_resolved(env, ret_type_id)) {
3781 err = btf_resolve(env, ret_type, ret_type_id);
3786 /* Ensure the return type is a type that has a size */
3787 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3788 btf_verifier_log_type(env, t, "Invalid return type");
3796 /* Last func arg type_id could be 0 if it is a vararg */
3797 if (!args[nr_args - 1].type) {
3798 if (args[nr_args - 1].name_off) {
3799 btf_verifier_log_type(env, t, "Invalid arg#%u",
3807 for (i = 0; i < nr_args; i++) {
3808 const struct btf_type *arg_type;
3811 arg_type_id = args[i].type;
3812 arg_type = btf_type_by_id(btf, arg_type_id);
3814 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3819 if (args[i].name_off &&
3820 (!btf_name_offset_valid(btf, args[i].name_off) ||
3821 !btf_name_valid_identifier(btf, args[i].name_off))) {
3822 btf_verifier_log_type(env, t,
3823 "Invalid arg#%u", i + 1);
3828 if (btf_type_needs_resolve(arg_type) &&
3829 !env_type_is_resolved(env, arg_type_id)) {
3830 err = btf_resolve(env, arg_type, arg_type_id);
3835 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3836 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3845 static int btf_func_check(struct btf_verifier_env *env,
3846 const struct btf_type *t)
3848 const struct btf_type *proto_type;
3849 const struct btf_param *args;
3850 const struct btf *btf;
3854 proto_type = btf_type_by_id(btf, t->type);
3856 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3857 btf_verifier_log_type(env, t, "Invalid type_id");
3861 args = (const struct btf_param *)(proto_type + 1);
3862 nr_args = btf_type_vlen(proto_type);
3863 for (i = 0; i < nr_args; i++) {
3864 if (!args[i].name_off && args[i].type) {
3865 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3873 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3874 [BTF_KIND_INT] = &int_ops,
3875 [BTF_KIND_PTR] = &ptr_ops,
3876 [BTF_KIND_ARRAY] = &array_ops,
3877 [BTF_KIND_STRUCT] = &struct_ops,
3878 [BTF_KIND_UNION] = &struct_ops,
3879 [BTF_KIND_ENUM] = &enum_ops,
3880 [BTF_KIND_FWD] = &fwd_ops,
3881 [BTF_KIND_TYPEDEF] = &modifier_ops,
3882 [BTF_KIND_VOLATILE] = &modifier_ops,
3883 [BTF_KIND_CONST] = &modifier_ops,
3884 [BTF_KIND_RESTRICT] = &modifier_ops,
3885 [BTF_KIND_FUNC] = &func_ops,
3886 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3887 [BTF_KIND_VAR] = &var_ops,
3888 [BTF_KIND_DATASEC] = &datasec_ops,
3889 [BTF_KIND_FLOAT] = &float_ops,
3892 static s32 btf_check_meta(struct btf_verifier_env *env,
3893 const struct btf_type *t,
3896 u32 saved_meta_left = meta_left;
3899 if (meta_left < sizeof(*t)) {
3900 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3901 env->log_type_id, meta_left, sizeof(*t));
3904 meta_left -= sizeof(*t);
3906 if (t->info & ~BTF_INFO_MASK) {
3907 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3908 env->log_type_id, t->info);
3912 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3913 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3914 btf_verifier_log(env, "[%u] Invalid kind:%u",
3915 env->log_type_id, BTF_INFO_KIND(t->info));
3919 if (!btf_name_offset_valid(env->btf, t->name_off)) {
3920 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3921 env->log_type_id, t->name_off);
3925 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3926 if (var_meta_size < 0)
3927 return var_meta_size;
3929 meta_left -= var_meta_size;
3931 return saved_meta_left - meta_left;
3934 static int btf_check_all_metas(struct btf_verifier_env *env)
3936 struct btf *btf = env->btf;
3937 struct btf_header *hdr;
3941 cur = btf->nohdr_data + hdr->type_off;
3942 end = cur + hdr->type_len;
3944 env->log_type_id = btf->base_btf ? btf->start_id : 1;
3946 struct btf_type *t = cur;
3949 meta_size = btf_check_meta(env, t, end - cur);
3953 btf_add_type(env, t);
3961 static bool btf_resolve_valid(struct btf_verifier_env *env,
3962 const struct btf_type *t,
3965 struct btf *btf = env->btf;
3967 if (!env_type_is_resolved(env, type_id))
3970 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3971 return !btf_resolved_type_id(btf, type_id) &&
3972 !btf_resolved_type_size(btf, type_id);
3974 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3975 btf_type_is_var(t)) {
3976 t = btf_type_id_resolve(btf, &type_id);
3978 !btf_type_is_modifier(t) &&
3979 !btf_type_is_var(t) &&
3980 !btf_type_is_datasec(t);
3983 if (btf_type_is_array(t)) {
3984 const struct btf_array *array = btf_type_array(t);
3985 const struct btf_type *elem_type;
3986 u32 elem_type_id = array->type;
3989 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3990 return elem_type && !btf_type_is_modifier(elem_type) &&
3991 (array->nelems * elem_size ==
3992 btf_resolved_type_size(btf, type_id));
3998 static int btf_resolve(struct btf_verifier_env *env,
3999 const struct btf_type *t, u32 type_id)
4001 u32 save_log_type_id = env->log_type_id;
4002 const struct resolve_vertex *v;
4005 env->resolve_mode = RESOLVE_TBD;
4006 env_stack_push(env, t, type_id);
4007 while (!err && (v = env_stack_peak(env))) {
4008 env->log_type_id = v->type_id;
4009 err = btf_type_ops(v->t)->resolve(env, v);
4012 env->log_type_id = type_id;
4013 if (err == -E2BIG) {
4014 btf_verifier_log_type(env, t,
4015 "Exceeded max resolving depth:%u",
4017 } else if (err == -EEXIST) {
4018 btf_verifier_log_type(env, t, "Loop detected");
4021 /* Final sanity check */
4022 if (!err && !btf_resolve_valid(env, t, type_id)) {
4023 btf_verifier_log_type(env, t, "Invalid resolve state");
4027 env->log_type_id = save_log_type_id;
4031 static int btf_check_all_types(struct btf_verifier_env *env)
4033 struct btf *btf = env->btf;
4034 const struct btf_type *t;
4038 err = env_resolve_init(env);
4043 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4044 type_id = btf->start_id + i;
4045 t = btf_type_by_id(btf, type_id);
4047 env->log_type_id = type_id;
4048 if (btf_type_needs_resolve(t) &&
4049 !env_type_is_resolved(env, type_id)) {
4050 err = btf_resolve(env, t, type_id);
4055 if (btf_type_is_func_proto(t)) {
4056 err = btf_func_proto_check(env, t);
4061 if (btf_type_is_func(t)) {
4062 err = btf_func_check(env, t);
4071 static int btf_parse_type_sec(struct btf_verifier_env *env)
4073 const struct btf_header *hdr = &env->btf->hdr;
4076 /* Type section must align to 4 bytes */
4077 if (hdr->type_off & (sizeof(u32) - 1)) {
4078 btf_verifier_log(env, "Unaligned type_off");
4082 if (!env->btf->base_btf && !hdr->type_len) {
4083 btf_verifier_log(env, "No type found");
4087 err = btf_check_all_metas(env);
4091 return btf_check_all_types(env);
4094 static int btf_parse_str_sec(struct btf_verifier_env *env)
4096 const struct btf_header *hdr;
4097 struct btf *btf = env->btf;
4098 const char *start, *end;
4101 start = btf->nohdr_data + hdr->str_off;
4102 end = start + hdr->str_len;
4104 if (end != btf->data + btf->data_size) {
4105 btf_verifier_log(env, "String section is not at the end");
4109 btf->strings = start;
4111 if (btf->base_btf && !hdr->str_len)
4113 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4114 btf_verifier_log(env, "Invalid string section");
4117 if (!btf->base_btf && start[0]) {
4118 btf_verifier_log(env, "Invalid string section");
4125 static const size_t btf_sec_info_offset[] = {
4126 offsetof(struct btf_header, type_off),
4127 offsetof(struct btf_header, str_off),
4130 static int btf_sec_info_cmp(const void *a, const void *b)
4132 const struct btf_sec_info *x = a;
4133 const struct btf_sec_info *y = b;
4135 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4138 static int btf_check_sec_info(struct btf_verifier_env *env,
4141 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4142 u32 total, expected_total, i;
4143 const struct btf_header *hdr;
4144 const struct btf *btf;
4149 /* Populate the secs from hdr */
4150 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4151 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4152 btf_sec_info_offset[i]);
4154 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4155 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4157 /* Check for gaps and overlap among sections */
4159 expected_total = btf_data_size - hdr->hdr_len;
4160 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4161 if (expected_total < secs[i].off) {
4162 btf_verifier_log(env, "Invalid section offset");
4165 if (total < secs[i].off) {
4167 btf_verifier_log(env, "Unsupported section found");
4170 if (total > secs[i].off) {
4171 btf_verifier_log(env, "Section overlap found");
4174 if (expected_total - total < secs[i].len) {
4175 btf_verifier_log(env,
4176 "Total section length too long");
4179 total += secs[i].len;
4182 /* There is data other than hdr and known sections */
4183 if (expected_total != total) {
4184 btf_verifier_log(env, "Unsupported section found");
4191 static int btf_parse_hdr(struct btf_verifier_env *env)
4193 u32 hdr_len, hdr_copy, btf_data_size;
4194 const struct btf_header *hdr;
4199 btf_data_size = btf->data_size;
4202 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4203 btf_verifier_log(env, "hdr_len not found");
4208 hdr_len = hdr->hdr_len;
4209 if (btf_data_size < hdr_len) {
4210 btf_verifier_log(env, "btf_header not found");
4214 /* Ensure the unsupported header fields are zero */
4215 if (hdr_len > sizeof(btf->hdr)) {
4216 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4217 u8 *end = btf->data + hdr_len;
4219 for (; expected_zero < end; expected_zero++) {
4220 if (*expected_zero) {
4221 btf_verifier_log(env, "Unsupported btf_header");
4227 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4228 memcpy(&btf->hdr, btf->data, hdr_copy);
4232 btf_verifier_log_hdr(env, btf_data_size);
4234 if (hdr->magic != BTF_MAGIC) {
4235 btf_verifier_log(env, "Invalid magic");
4239 if (hdr->version != BTF_VERSION) {
4240 btf_verifier_log(env, "Unsupported version");
4245 btf_verifier_log(env, "Unsupported flags");
4249 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4250 btf_verifier_log(env, "No data");
4254 err = btf_check_sec_info(env, btf_data_size);
4261 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4262 u32 log_level, char __user *log_ubuf, u32 log_size)
4264 struct btf_verifier_env *env = NULL;
4265 struct bpf_verifier_log *log;
4266 struct btf *btf = NULL;
4270 if (btf_data_size > BTF_MAX_SIZE)
4271 return ERR_PTR(-E2BIG);
4273 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4275 return ERR_PTR(-ENOMEM);
4278 if (log_level || log_ubuf || log_size) {
4279 /* user requested verbose verifier output
4280 * and supplied buffer to store the verification trace
4282 log->level = log_level;
4283 log->ubuf = log_ubuf;
4284 log->len_total = log_size;
4286 /* log attributes have to be sane */
4287 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4288 !log->level || !log->ubuf) {
4294 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4301 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4308 btf->data_size = btf_data_size;
4310 if (copy_from_user(data, btf_data, btf_data_size)) {
4315 err = btf_parse_hdr(env);
4319 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4321 err = btf_parse_str_sec(env);
4325 err = btf_parse_type_sec(env);
4329 if (log->level && bpf_verifier_log_full(log)) {
4334 btf_verifier_env_free(env);
4335 refcount_set(&btf->refcnt, 1);
4339 btf_verifier_env_free(env);
4342 return ERR_PTR(err);
4345 extern char __weak __start_BTF[];
4346 extern char __weak __stop_BTF[];
4347 extern struct btf *btf_vmlinux;
4349 #define BPF_MAP_TYPE(_id, _ops)
4350 #define BPF_LINK_TYPE(_id, _name)
4352 struct bpf_ctx_convert {
4353 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4354 prog_ctx_type _id##_prog; \
4355 kern_ctx_type _id##_kern;
4356 #include <linux/bpf_types.h>
4357 #undef BPF_PROG_TYPE
4359 /* 't' is written once under lock. Read many times. */
4360 const struct btf_type *t;
4363 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4365 #include <linux/bpf_types.h>
4366 #undef BPF_PROG_TYPE
4367 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
4369 static u8 bpf_ctx_convert_map[] = {
4370 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4371 [_id] = __ctx_convert##_id,
4372 #include <linux/bpf_types.h>
4373 #undef BPF_PROG_TYPE
4374 0, /* avoid empty array */
4377 #undef BPF_LINK_TYPE
4379 static const struct btf_member *
4380 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
4381 const struct btf_type *t, enum bpf_prog_type prog_type,
4384 const struct btf_type *conv_struct;
4385 const struct btf_type *ctx_struct;
4386 const struct btf_member *ctx_type;
4387 const char *tname, *ctx_tname;
4389 conv_struct = bpf_ctx_convert.t;
4391 bpf_log(log, "btf_vmlinux is malformed\n");
4394 t = btf_type_by_id(btf, t->type);
4395 while (btf_type_is_modifier(t))
4396 t = btf_type_by_id(btf, t->type);
4397 if (!btf_type_is_struct(t)) {
4398 /* Only pointer to struct is supported for now.
4399 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4400 * is not supported yet.
4401 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4405 tname = btf_name_by_offset(btf, t->name_off);
4407 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4410 /* prog_type is valid bpf program type. No need for bounds check. */
4411 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4412 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4413 * Like 'struct __sk_buff'
4415 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4417 /* should not happen */
4419 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4421 /* should not happen */
4422 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4425 /* only compare that prog's ctx type name is the same as
4426 * kernel expects. No need to compare field by field.
4427 * It's ok for bpf prog to do:
4428 * struct __sk_buff {};
4429 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4430 * { // no fields of skb are ever used }
4432 if (strcmp(ctx_tname, tname))
4437 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4438 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4439 #define BPF_LINK_TYPE(_id, _name)
4440 #define BPF_MAP_TYPE(_id, _ops) \
4442 #include <linux/bpf_types.h>
4443 #undef BPF_PROG_TYPE
4444 #undef BPF_LINK_TYPE
4448 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4449 struct bpf_verifier_log *log)
4451 const struct bpf_map_ops *ops;
4454 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4455 ops = btf_vmlinux_map_ops[i];
4456 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4458 if (!ops->map_btf_name || !ops->map_btf_id) {
4459 bpf_log(log, "map type %d is misconfigured\n", i);
4462 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4466 *ops->map_btf_id = btf_id;
4472 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4474 const struct btf_type *t,
4475 enum bpf_prog_type prog_type,
4478 const struct btf_member *prog_ctx_type, *kern_ctx_type;
4480 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4483 kern_ctx_type = prog_ctx_type + 1;
4484 return kern_ctx_type->type;
4487 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4488 BTF_ID(struct, bpf_ctx_convert)
4490 struct btf *btf_parse_vmlinux(void)
4492 struct btf_verifier_env *env = NULL;
4493 struct bpf_verifier_log *log;
4494 struct btf *btf = NULL;
4497 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4499 return ERR_PTR(-ENOMEM);
4502 log->level = BPF_LOG_KERNEL;
4504 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4511 btf->data = __start_BTF;
4512 btf->data_size = __stop_BTF - __start_BTF;
4513 btf->kernel_btf = true;
4514 snprintf(btf->name, sizeof(btf->name), "vmlinux");
4516 err = btf_parse_hdr(env);
4520 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4522 err = btf_parse_str_sec(env);
4526 err = btf_check_all_metas(env);
4530 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
4531 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4533 /* find bpf map structs for map_ptr access checking */
4534 err = btf_vmlinux_map_ids_init(btf, log);
4538 bpf_struct_ops_init(btf, log);
4540 refcount_set(&btf->refcnt, 1);
4542 err = btf_alloc_id(btf);
4546 btf_verifier_env_free(env);
4550 btf_verifier_env_free(env);
4555 return ERR_PTR(err);
4558 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4560 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4562 struct btf_verifier_env *env = NULL;
4563 struct bpf_verifier_log *log;
4564 struct btf *btf = NULL, *base_btf;
4567 base_btf = bpf_get_btf_vmlinux();
4568 if (IS_ERR(base_btf))
4571 return ERR_PTR(-EINVAL);
4573 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4575 return ERR_PTR(-ENOMEM);
4578 log->level = BPF_LOG_KERNEL;
4580 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4587 btf->base_btf = base_btf;
4588 btf->start_id = base_btf->nr_types;
4589 btf->start_str_off = base_btf->hdr.str_len;
4590 btf->kernel_btf = true;
4591 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4593 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4598 memcpy(btf->data, data, data_size);
4599 btf->data_size = data_size;
4601 err = btf_parse_hdr(env);
4605 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4607 err = btf_parse_str_sec(env);
4611 err = btf_check_all_metas(env);
4615 btf_verifier_env_free(env);
4616 refcount_set(&btf->refcnt, 1);
4620 btf_verifier_env_free(env);
4626 return ERR_PTR(err);
4629 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4631 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4633 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4636 return tgt_prog->aux->btf;
4638 return prog->aux->attach_btf;
4641 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4643 /* t comes in already as a pointer */
4644 t = btf_type_by_id(btf, t->type);
4647 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4648 t = btf_type_by_id(btf, t->type);
4650 /* char, signed char, unsigned char */
4651 return btf_type_is_int(t) && t->size == 1;
4654 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4655 const struct bpf_prog *prog,
4656 struct bpf_insn_access_aux *info)
4658 const struct btf_type *t = prog->aux->attach_func_proto;
4659 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4660 struct btf *btf = bpf_prog_get_target_btf(prog);
4661 const char *tname = prog->aux->attach_func_name;
4662 struct bpf_verifier_log *log = info->log;
4663 const struct btf_param *args;
4668 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4673 args = (const struct btf_param *)(t + 1);
4674 /* if (t == NULL) Fall back to default BPF prog with
4675 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4677 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
4678 if (prog->aux->attach_btf_trace) {
4679 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4684 if (arg > nr_args) {
4685 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4690 if (arg == nr_args) {
4691 switch (prog->expected_attach_type) {
4693 case BPF_TRACE_FEXIT:
4694 /* When LSM programs are attached to void LSM hooks
4695 * they use FEXIT trampolines and when attached to
4696 * int LSM hooks, they use MODIFY_RETURN trampolines.
4698 * While the LSM programs are BPF_MODIFY_RETURN-like
4701 * if (ret_type != 'int')
4704 * is _not_ done here. This is still safe as LSM hooks
4705 * have only void and int return types.
4709 t = btf_type_by_id(btf, t->type);
4711 case BPF_MODIFY_RETURN:
4712 /* For now the BPF_MODIFY_RETURN can only be attached to
4713 * functions that return an int.
4718 t = btf_type_skip_modifiers(btf, t->type, NULL);
4719 if (!btf_type_is_small_int(t)) {
4721 "ret type %s not allowed for fmod_ret\n",
4722 btf_kind_str[BTF_INFO_KIND(t->info)]);
4727 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4733 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
4735 t = btf_type_by_id(btf, args[arg].type);
4738 /* skip modifiers */
4739 while (btf_type_is_modifier(t))
4740 t = btf_type_by_id(btf, t->type);
4741 if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4742 /* accessing a scalar */
4744 if (!btf_type_is_ptr(t)) {
4746 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4748 __btf_name_by_offset(btf, t->name_off),
4749 btf_kind_str[BTF_INFO_KIND(t->info)]);
4753 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4754 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4755 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4757 if (ctx_arg_info->offset == off &&
4758 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4759 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4760 info->reg_type = ctx_arg_info->reg_type;
4766 /* This is a pointer to void.
4767 * It is the same as scalar from the verifier safety pov.
4768 * No further pointer walking is allowed.
4772 if (is_string_ptr(btf, t))
4775 /* this is a pointer to another type */
4776 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4777 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4779 if (ctx_arg_info->offset == off) {
4780 info->reg_type = ctx_arg_info->reg_type;
4781 info->btf = btf_vmlinux;
4782 info->btf_id = ctx_arg_info->btf_id;
4787 info->reg_type = PTR_TO_BTF_ID;
4789 enum bpf_prog_type tgt_type;
4791 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4792 tgt_type = tgt_prog->aux->saved_dst_prog_type;
4794 tgt_type = tgt_prog->type;
4796 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4798 info->btf = btf_vmlinux;
4807 info->btf_id = t->type;
4808 t = btf_type_by_id(btf, t->type);
4809 /* skip modifiers */
4810 while (btf_type_is_modifier(t)) {
4811 info->btf_id = t->type;
4812 t = btf_type_by_id(btf, t->type);
4814 if (!btf_type_is_struct(t)) {
4816 "func '%s' arg%d type %s is not a struct\n",
4817 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4820 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4821 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4822 __btf_name_by_offset(btf, t->name_off));
4826 enum bpf_struct_walk_result {
4833 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
4834 const struct btf_type *t, int off, int size,
4837 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4838 const struct btf_type *mtype, *elem_type = NULL;
4839 const struct btf_member *member;
4840 const char *tname, *mname;
4841 u32 vlen, elem_id, mid;
4844 tname = __btf_name_by_offset(btf, t->name_off);
4845 if (!btf_type_is_struct(t)) {
4846 bpf_log(log, "Type '%s' is not a struct\n", tname);
4850 vlen = btf_type_vlen(t);
4851 if (off + size > t->size) {
4852 /* If the last element is a variable size array, we may
4853 * need to relax the rule.
4855 struct btf_array *array_elem;
4860 member = btf_type_member(t) + vlen - 1;
4861 mtype = btf_type_skip_modifiers(btf, member->type,
4863 if (!btf_type_is_array(mtype))
4866 array_elem = (struct btf_array *)(mtype + 1);
4867 if (array_elem->nelems != 0)
4870 moff = btf_member_bit_offset(t, member) / 8;
4874 /* Only allow structure for now, can be relaxed for
4875 * other types later.
4877 t = btf_type_skip_modifiers(btf, array_elem->type,
4879 if (!btf_type_is_struct(t))
4882 off = (off - moff) % t->size;
4886 bpf_log(log, "access beyond struct %s at off %u size %u\n",
4891 for_each_member(i, t, member) {
4892 /* offset of the field in bytes */
4893 moff = btf_member_bit_offset(t, member) / 8;
4894 if (off + size <= moff)
4895 /* won't find anything, field is already too far */
4898 if (btf_member_bitfield_size(t, member)) {
4899 u32 end_bit = btf_member_bit_offset(t, member) +
4900 btf_member_bitfield_size(t, member);
4902 /* off <= moff instead of off == moff because clang
4903 * does not generate a BTF member for anonymous
4904 * bitfield like the ":16" here:
4911 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4914 /* off may be accessing a following member
4918 * Doing partial access at either end of this
4919 * bitfield. Continue on this case also to
4920 * treat it as not accessing this bitfield
4921 * and eventually error out as field not
4922 * found to keep it simple.
4923 * It could be relaxed if there was a legit
4924 * partial access case later.
4929 /* In case of "off" is pointing to holes of a struct */
4933 /* type of the field */
4935 mtype = btf_type_by_id(btf, member->type);
4936 mname = __btf_name_by_offset(btf, member->name_off);
4938 mtype = __btf_resolve_size(btf, mtype, &msize,
4939 &elem_type, &elem_id, &total_nelems,
4941 if (IS_ERR(mtype)) {
4942 bpf_log(log, "field %s doesn't have size\n", mname);
4946 mtrue_end = moff + msize;
4947 if (off >= mtrue_end)
4948 /* no overlap with member, keep iterating */
4951 if (btf_type_is_array(mtype)) {
4954 /* __btf_resolve_size() above helps to
4955 * linearize a multi-dimensional array.
4957 * The logic here is treating an array
4958 * in a struct as the following way:
4961 * struct inner array[2][2];
4967 * struct inner array_elem0;
4968 * struct inner array_elem1;
4969 * struct inner array_elem2;
4970 * struct inner array_elem3;
4973 * When accessing outer->array[1][0], it moves
4974 * moff to "array_elem2", set mtype to
4975 * "struct inner", and msize also becomes
4976 * sizeof(struct inner). Then most of the
4977 * remaining logic will fall through without
4978 * caring the current member is an array or
4981 * Unlike mtype/msize/moff, mtrue_end does not
4982 * change. The naming difference ("_true") tells
4983 * that it is not always corresponding to
4984 * the current mtype/msize/moff.
4985 * It is the true end of the current
4986 * member (i.e. array in this case). That
4987 * will allow an int array to be accessed like
4989 * i.e. allow access beyond the size of
4990 * the array's element as long as it is
4991 * within the mtrue_end boundary.
4994 /* skip empty array */
4995 if (moff == mtrue_end)
4998 msize /= total_nelems;
4999 elem_idx = (off - moff) / msize;
5000 moff += elem_idx * msize;
5005 /* the 'off' we're looking for is either equal to start
5006 * of this field or inside of this struct
5008 if (btf_type_is_struct(mtype)) {
5009 /* our field must be inside that union or struct */
5012 /* return if the offset matches the member offset */
5018 /* adjust offset we're looking for */
5023 if (btf_type_is_ptr(mtype)) {
5024 const struct btf_type *stype;
5027 if (msize != size || off != moff) {
5029 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5030 mname, moff, tname, off, size);
5033 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5034 if (btf_type_is_struct(stype)) {
5040 /* Allow more flexible access within an int as long as
5041 * it is within mtrue_end.
5042 * Since mtrue_end could be the end of an array,
5043 * that also allows using an array of int as a scratch
5044 * space. e.g. skb->cb[].
5046 if (off + size > mtrue_end) {
5048 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5049 mname, mtrue_end, tname, off, size);
5055 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5059 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5060 const struct btf_type *t, int off, int size,
5061 enum bpf_access_type atype __maybe_unused,
5068 err = btf_struct_walk(log, btf, t, off, size, &id);
5072 /* If we found the pointer or scalar on t+off,
5076 return PTR_TO_BTF_ID;
5078 return SCALAR_VALUE;
5080 /* We found nested struct, so continue the search
5081 * by diving in it. At this point the offset is
5082 * aligned with the new type, so set it to 0.
5084 t = btf_type_by_id(btf, id);
5088 /* It's either error or unknown return value..
5091 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5100 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5101 * the same. Trivial ID check is not enough due to module BTFs, because we can
5102 * end up with two different module BTFs, but IDs point to the common type in
5105 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5106 const struct btf *btf2, u32 id2)
5112 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5115 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5116 const struct btf *btf, u32 id, int off,
5117 const struct btf *need_btf, u32 need_type_id)
5119 const struct btf_type *type;
5122 /* Are we already done? */
5123 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5127 type = btf_type_by_id(btf, id);
5130 err = btf_struct_walk(log, btf, type, off, 1, &id);
5131 if (err != WALK_STRUCT)
5134 /* We found nested struct object. If it matches
5135 * the requested ID, we're done. Otherwise let's
5136 * continue the search with offset 0 in the new
5139 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5147 static int __get_type_size(struct btf *btf, u32 btf_id,
5148 const struct btf_type **bad_type)
5150 const struct btf_type *t;
5155 t = btf_type_by_id(btf, btf_id);
5156 while (t && btf_type_is_modifier(t))
5157 t = btf_type_by_id(btf, t->type);
5159 *bad_type = btf_type_by_id(btf, 0);
5162 if (btf_type_is_ptr(t))
5163 /* kernel size of pointer. Not BPF's size of pointer*/
5164 return sizeof(void *);
5165 if (btf_type_is_int(t) || btf_type_is_enum(t))
5171 int btf_distill_func_proto(struct bpf_verifier_log *log,
5173 const struct btf_type *func,
5175 struct btf_func_model *m)
5177 const struct btf_param *args;
5178 const struct btf_type *t;
5183 /* BTF function prototype doesn't match the verifier types.
5184 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5186 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5189 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5192 args = (const struct btf_param *)(func + 1);
5193 nargs = btf_type_vlen(func);
5194 if (nargs >= MAX_BPF_FUNC_ARGS) {
5196 "The function %s has %d arguments. Too many.\n",
5200 ret = __get_type_size(btf, func->type, &t);
5203 "The function %s return type %s is unsupported.\n",
5204 tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5209 for (i = 0; i < nargs; i++) {
5210 ret = __get_type_size(btf, args[i].type, &t);
5213 "The function %s arg%d type %s is unsupported.\n",
5214 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5217 m->arg_size[i] = ret;
5223 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5224 * t1 points to BTF_KIND_FUNC in btf1
5225 * t2 points to BTF_KIND_FUNC in btf2
5227 * EINVAL - function prototype mismatch
5228 * EFAULT - verifier bug
5229 * 0 - 99% match. The last 1% is validated by the verifier.
5231 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5232 struct btf *btf1, const struct btf_type *t1,
5233 struct btf *btf2, const struct btf_type *t2)
5235 const struct btf_param *args1, *args2;
5236 const char *fn1, *fn2, *s1, *s2;
5237 u32 nargs1, nargs2, i;
5239 fn1 = btf_name_by_offset(btf1, t1->name_off);
5240 fn2 = btf_name_by_offset(btf2, t2->name_off);
5242 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5243 bpf_log(log, "%s() is not a global function\n", fn1);
5246 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5247 bpf_log(log, "%s() is not a global function\n", fn2);
5251 t1 = btf_type_by_id(btf1, t1->type);
5252 if (!t1 || !btf_type_is_func_proto(t1))
5254 t2 = btf_type_by_id(btf2, t2->type);
5255 if (!t2 || !btf_type_is_func_proto(t2))
5258 args1 = (const struct btf_param *)(t1 + 1);
5259 nargs1 = btf_type_vlen(t1);
5260 args2 = (const struct btf_param *)(t2 + 1);
5261 nargs2 = btf_type_vlen(t2);
5263 if (nargs1 != nargs2) {
5264 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5265 fn1, nargs1, fn2, nargs2);
5269 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5270 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5271 if (t1->info != t2->info) {
5273 "Return type %s of %s() doesn't match type %s of %s()\n",
5274 btf_type_str(t1), fn1,
5275 btf_type_str(t2), fn2);
5279 for (i = 0; i < nargs1; i++) {
5280 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5281 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5283 if (t1->info != t2->info) {
5284 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5285 i, fn1, btf_type_str(t1),
5286 fn2, btf_type_str(t2));
5289 if (btf_type_has_size(t1) && t1->size != t2->size) {
5291 "arg%d in %s() has size %d while %s() has %d\n",
5297 /* global functions are validated with scalars and pointers
5298 * to context only. And only global functions can be replaced.
5299 * Hence type check only those types.
5301 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5303 if (!btf_type_is_ptr(t1)) {
5305 "arg%d in %s() has unrecognized type\n",
5309 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5310 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5311 if (!btf_type_is_struct(t1)) {
5313 "arg%d in %s() is not a pointer to context\n",
5317 if (!btf_type_is_struct(t2)) {
5319 "arg%d in %s() is not a pointer to context\n",
5323 /* This is an optional check to make program writing easier.
5324 * Compare names of structs and report an error to the user.
5325 * btf_prepare_func_args() already checked that t2 struct
5326 * is a context type. btf_prepare_func_args() will check
5327 * later that t1 struct is a context type as well.
5329 s1 = btf_name_by_offset(btf1, t1->name_off);
5330 s2 = btf_name_by_offset(btf2, t2->name_off);
5331 if (strcmp(s1, s2)) {
5333 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5334 i, fn1, s1, fn2, s2);
5341 /* Compare BTFs of given program with BTF of target program */
5342 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5343 struct btf *btf2, const struct btf_type *t2)
5345 struct btf *btf1 = prog->aux->btf;
5346 const struct btf_type *t1;
5349 if (!prog->aux->func_info) {
5350 bpf_log(log, "Program extension requires BTF\n");
5354 btf_id = prog->aux->func_info[0].type_id;
5358 t1 = btf_type_by_id(btf1, btf_id);
5359 if (!t1 || !btf_type_is_func(t1))
5362 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5365 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5367 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5368 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5369 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5373 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5374 const struct btf *btf, u32 func_id,
5375 struct bpf_reg_state *regs,
5378 struct bpf_verifier_log *log = &env->log;
5379 const char *func_name, *ref_tname;
5380 const struct btf_type *t, *ref_t;
5381 const struct btf_param *args;
5382 u32 i, nargs, ref_id;
5384 t = btf_type_by_id(btf, func_id);
5385 if (!t || !btf_type_is_func(t)) {
5386 /* These checks were already done by the verifier while loading
5387 * struct bpf_func_info or in add_kfunc_call().
5389 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5393 func_name = btf_name_by_offset(btf, t->name_off);
5395 t = btf_type_by_id(btf, t->type);
5396 if (!t || !btf_type_is_func_proto(t)) {
5397 bpf_log(log, "Invalid BTF of func %s\n", func_name);
5400 args = (const struct btf_param *)(t + 1);
5401 nargs = btf_type_vlen(t);
5402 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5403 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
5404 MAX_BPF_FUNC_REG_ARGS);
5408 /* check that BTF function arguments match actual types that the
5411 for (i = 0; i < nargs; i++) {
5413 struct bpf_reg_state *reg = ®s[regno];
5415 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5416 if (btf_type_is_scalar(t)) {
5417 if (reg->type == SCALAR_VALUE)
5419 bpf_log(log, "R%d is not a scalar\n", regno);
5423 if (!btf_type_is_ptr(t)) {
5424 bpf_log(log, "Unrecognized arg#%d type %s\n",
5425 i, btf_type_str(t));
5429 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
5430 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
5431 if (btf_is_kernel(btf)) {
5432 const struct btf_type *reg_ref_t;
5433 const struct btf *reg_btf;
5434 const char *reg_ref_tname;
5437 if (!btf_type_is_struct(ref_t)) {
5438 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5439 func_name, i, btf_type_str(ref_t),
5444 if (reg->type == PTR_TO_BTF_ID) {
5446 reg_ref_id = reg->btf_id;
5447 } else if (reg2btf_ids[reg->type]) {
5448 reg_btf = btf_vmlinux;
5449 reg_ref_id = *reg2btf_ids[reg->type];
5451 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d is not a pointer to btf_id\n",
5453 btf_type_str(ref_t), ref_tname, regno);
5457 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5459 reg_ref_tname = btf_name_by_offset(reg_btf,
5460 reg_ref_t->name_off);
5461 if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5462 reg->off, btf, ref_id)) {
5463 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5465 btf_type_str(ref_t), ref_tname,
5466 regno, btf_type_str(reg_ref_t),
5470 } else if (btf_get_prog_ctx_type(log, btf, t,
5471 env->prog->type, i)) {
5472 /* If function expects ctx type in BTF check that caller
5473 * is passing PTR_TO_CTX.
5475 if (reg->type != PTR_TO_CTX) {
5477 "arg#%d expected pointer to ctx, but got %s\n",
5478 i, btf_type_str(t));
5481 if (check_ctx_reg(env, reg, regno))
5483 } else if (ptr_to_mem_ok) {
5484 const struct btf_type *resolve_ret;
5487 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5488 if (IS_ERR(resolve_ret)) {
5490 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5491 i, btf_type_str(ref_t), ref_tname,
5492 PTR_ERR(resolve_ret));
5496 if (check_mem_reg(env, reg, regno, type_size))
5506 /* Compare BTF of a function with given bpf_reg_state.
5508 * EFAULT - there is a verifier bug. Abort verification.
5509 * EINVAL - there is a type mismatch or BTF is not available.
5510 * 0 - BTF matches with what bpf_reg_state expects.
5511 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5513 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5514 struct bpf_reg_state *regs)
5516 struct bpf_prog *prog = env->prog;
5517 struct btf *btf = prog->aux->btf;
5522 if (!prog->aux->func_info)
5525 btf_id = prog->aux->func_info[subprog].type_id;
5529 if (prog->aux->func_info_aux[subprog].unreliable)
5532 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5533 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5535 /* Compiler optimizations can remove arguments from static functions
5536 * or mismatched type can be passed into a global function.
5537 * In such cases mark the function as unreliable from BTF point of view.
5540 prog->aux->func_info_aux[subprog].unreliable = true;
5544 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
5545 const struct btf *btf, u32 func_id,
5546 struct bpf_reg_state *regs)
5548 return btf_check_func_arg_match(env, btf, func_id, regs, false);
5551 /* Convert BTF of a function into bpf_reg_state if possible
5553 * EFAULT - there is a verifier bug. Abort verification.
5554 * EINVAL - cannot convert BTF.
5555 * 0 - Successfully converted BTF into bpf_reg_state
5556 * (either PTR_TO_CTX or SCALAR_VALUE).
5558 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5559 struct bpf_reg_state *regs)
5561 struct bpf_verifier_log *log = &env->log;
5562 struct bpf_prog *prog = env->prog;
5563 enum bpf_prog_type prog_type = prog->type;
5564 struct btf *btf = prog->aux->btf;
5565 const struct btf_param *args;
5566 const struct btf_type *t, *ref_t;
5567 u32 i, nargs, btf_id;
5570 if (!prog->aux->func_info ||
5571 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5572 bpf_log(log, "Verifier bug\n");
5576 btf_id = prog->aux->func_info[subprog].type_id;
5578 bpf_log(log, "Global functions need valid BTF\n");
5582 t = btf_type_by_id(btf, btf_id);
5583 if (!t || !btf_type_is_func(t)) {
5584 /* These checks were already done by the verifier while loading
5585 * struct bpf_func_info
5587 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5591 tname = btf_name_by_offset(btf, t->name_off);
5593 if (log->level & BPF_LOG_LEVEL)
5594 bpf_log(log, "Validating %s() func#%d...\n",
5597 if (prog->aux->func_info_aux[subprog].unreliable) {
5598 bpf_log(log, "Verifier bug in function %s()\n", tname);
5601 if (prog_type == BPF_PROG_TYPE_EXT)
5602 prog_type = prog->aux->dst_prog->type;
5604 t = btf_type_by_id(btf, t->type);
5605 if (!t || !btf_type_is_func_proto(t)) {
5606 bpf_log(log, "Invalid type of function %s()\n", tname);
5609 args = (const struct btf_param *)(t + 1);
5610 nargs = btf_type_vlen(t);
5611 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5612 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
5613 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
5616 /* check that function returns int */
5617 t = btf_type_by_id(btf, t->type);
5618 while (btf_type_is_modifier(t))
5619 t = btf_type_by_id(btf, t->type);
5620 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5622 "Global function %s() doesn't return scalar. Only those are supported.\n",
5626 /* Convert BTF function arguments into verifier types.
5627 * Only PTR_TO_CTX and SCALAR are supported atm.
5629 for (i = 0; i < nargs; i++) {
5630 struct bpf_reg_state *reg = ®s[i + 1];
5632 t = btf_type_by_id(btf, args[i].type);
5633 while (btf_type_is_modifier(t))
5634 t = btf_type_by_id(btf, t->type);
5635 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5636 reg->type = SCALAR_VALUE;
5639 if (btf_type_is_ptr(t)) {
5640 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5641 reg->type = PTR_TO_CTX;
5645 t = btf_type_skip_modifiers(btf, t->type, NULL);
5647 ref_t = btf_resolve_size(btf, t, ®->mem_size);
5648 if (IS_ERR(ref_t)) {
5650 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5651 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5656 reg->type = PTR_TO_MEM_OR_NULL;
5657 reg->id = ++env->id_gen;
5661 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5662 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5668 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5669 struct btf_show *show)
5671 const struct btf_type *t = btf_type_by_id(btf, type_id);
5674 memset(&show->state, 0, sizeof(show->state));
5675 memset(&show->obj, 0, sizeof(show->obj));
5677 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5680 static void btf_seq_show(struct btf_show *show, const char *fmt,
5683 seq_vprintf((struct seq_file *)show->target, fmt, args);
5686 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5687 void *obj, struct seq_file *m, u64 flags)
5689 struct btf_show sseq;
5692 sseq.showfn = btf_seq_show;
5695 btf_type_show(btf, type_id, obj, &sseq);
5697 return sseq.state.status;
5700 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5703 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5704 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5705 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5708 struct btf_show_snprintf {
5709 struct btf_show show;
5710 int len_left; /* space left in string */
5711 int len; /* length we would have written */
5714 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5717 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5720 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5723 ssnprintf->len_left = 0;
5724 ssnprintf->len = len;
5725 } else if (len > ssnprintf->len_left) {
5726 /* no space, drive on to get length we would have written */
5727 ssnprintf->len_left = 0;
5728 ssnprintf->len += len;
5730 ssnprintf->len_left -= len;
5731 ssnprintf->len += len;
5732 show->target += len;
5736 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5737 char *buf, int len, u64 flags)
5739 struct btf_show_snprintf ssnprintf;
5741 ssnprintf.show.target = buf;
5742 ssnprintf.show.flags = flags;
5743 ssnprintf.show.showfn = btf_snprintf_show;
5744 ssnprintf.len_left = len;
5747 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5749 /* If we encontered an error, return it. */
5750 if (ssnprintf.show.state.status)
5751 return ssnprintf.show.state.status;
5753 /* Otherwise return length we would have written */
5754 return ssnprintf.len;
5757 #ifdef CONFIG_PROC_FS
5758 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5760 const struct btf *btf = filp->private_data;
5762 seq_printf(m, "btf_id:\t%u\n", btf->id);
5766 static int btf_release(struct inode *inode, struct file *filp)
5768 btf_put(filp->private_data);
5772 const struct file_operations btf_fops = {
5773 #ifdef CONFIG_PROC_FS
5774 .show_fdinfo = bpf_btf_show_fdinfo,
5776 .release = btf_release,
5779 static int __btf_new_fd(struct btf *btf)
5781 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5784 int btf_new_fd(const union bpf_attr *attr)
5789 btf = btf_parse(u64_to_user_ptr(attr->btf),
5790 attr->btf_size, attr->btf_log_level,
5791 u64_to_user_ptr(attr->btf_log_buf),
5792 attr->btf_log_size);
5794 return PTR_ERR(btf);
5796 ret = btf_alloc_id(btf);
5803 * The BTF ID is published to the userspace.
5804 * All BTF free must go through call_rcu() from
5805 * now on (i.e. free by calling btf_put()).
5808 ret = __btf_new_fd(btf);
5815 struct btf *btf_get_by_fd(int fd)
5823 return ERR_PTR(-EBADF);
5825 if (f.file->f_op != &btf_fops) {
5827 return ERR_PTR(-EINVAL);
5830 btf = f.file->private_data;
5831 refcount_inc(&btf->refcnt);
5837 int btf_get_info_by_fd(const struct btf *btf,
5838 const union bpf_attr *attr,
5839 union bpf_attr __user *uattr)
5841 struct bpf_btf_info __user *uinfo;
5842 struct bpf_btf_info info;
5843 u32 info_copy, btf_copy;
5846 u32 uinfo_len, uname_len, name_len;
5849 uinfo = u64_to_user_ptr(attr->info.info);
5850 uinfo_len = attr->info.info_len;
5852 info_copy = min_t(u32, uinfo_len, sizeof(info));
5853 memset(&info, 0, sizeof(info));
5854 if (copy_from_user(&info, uinfo, info_copy))
5858 ubtf = u64_to_user_ptr(info.btf);
5859 btf_copy = min_t(u32, btf->data_size, info.btf_size);
5860 if (copy_to_user(ubtf, btf->data, btf_copy))
5862 info.btf_size = btf->data_size;
5864 info.kernel_btf = btf->kernel_btf;
5866 uname = u64_to_user_ptr(info.name);
5867 uname_len = info.name_len;
5868 if (!uname ^ !uname_len)
5871 name_len = strlen(btf->name);
5872 info.name_len = name_len;
5875 if (uname_len >= name_len + 1) {
5876 if (copy_to_user(uname, btf->name, name_len + 1))
5881 if (copy_to_user(uname, btf->name, uname_len - 1))
5883 if (put_user(zero, uname + uname_len - 1))
5885 /* let user-space know about too short buffer */
5890 if (copy_to_user(uinfo, &info, info_copy) ||
5891 put_user(info_copy, &uattr->info.info_len))
5897 int btf_get_fd_by_id(u32 id)
5903 btf = idr_find(&btf_idr, id);
5904 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5905 btf = ERR_PTR(-ENOENT);
5909 return PTR_ERR(btf);
5911 fd = __btf_new_fd(btf);
5918 u32 btf_obj_id(const struct btf *btf)
5923 bool btf_is_kernel(const struct btf *btf)
5925 return btf->kernel_btf;
5928 bool btf_is_module(const struct btf *btf)
5930 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
5933 static int btf_id_cmp_func(const void *a, const void *b)
5935 const int *pa = a, *pb = b;
5940 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
5942 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5945 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5947 struct list_head list;
5948 struct module *module;
5950 struct bin_attribute *sysfs_attr;
5953 static LIST_HEAD(btf_modules);
5954 static DEFINE_MUTEX(btf_module_mutex);
5957 btf_module_read(struct file *file, struct kobject *kobj,
5958 struct bin_attribute *bin_attr,
5959 char *buf, loff_t off, size_t len)
5961 const struct btf *btf = bin_attr->private;
5963 memcpy(buf, btf->data + off, len);
5967 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
5970 struct btf_module *btf_mod, *tmp;
5971 struct module *mod = module;
5975 if (mod->btf_data_size == 0 ||
5976 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
5980 case MODULE_STATE_COMING:
5981 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
5986 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
5988 pr_warn("failed to validate module [%s] BTF: %ld\n",
5989 mod->name, PTR_ERR(btf));
5994 err = btf_alloc_id(btf);
6001 mutex_lock(&btf_module_mutex);
6002 btf_mod->module = module;
6004 list_add(&btf_mod->list, &btf_modules);
6005 mutex_unlock(&btf_module_mutex);
6007 if (IS_ENABLED(CONFIG_SYSFS)) {
6008 struct bin_attribute *attr;
6010 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6014 sysfs_bin_attr_init(attr);
6015 attr->attr.name = btf->name;
6016 attr->attr.mode = 0444;
6017 attr->size = btf->data_size;
6018 attr->private = btf;
6019 attr->read = btf_module_read;
6021 err = sysfs_create_bin_file(btf_kobj, attr);
6023 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6030 btf_mod->sysfs_attr = attr;
6034 case MODULE_STATE_GOING:
6035 mutex_lock(&btf_module_mutex);
6036 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6037 if (btf_mod->module != module)
6040 list_del(&btf_mod->list);
6041 if (btf_mod->sysfs_attr)
6042 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6043 btf_put(btf_mod->btf);
6044 kfree(btf_mod->sysfs_attr);
6048 mutex_unlock(&btf_module_mutex);
6052 return notifier_from_errno(err);
6055 static struct notifier_block btf_module_nb = {
6056 .notifier_call = btf_module_notify,
6059 static int __init btf_module_init(void)
6061 register_module_notifier(&btf_module_nb);
6065 fs_initcall(btf_module_init);
6066 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6068 struct module *btf_try_get_module(const struct btf *btf)
6070 struct module *res = NULL;
6071 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6072 struct btf_module *btf_mod, *tmp;
6074 mutex_lock(&btf_module_mutex);
6075 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6076 if (btf_mod->btf != btf)
6079 if (try_module_get(btf_mod->module))
6080 res = btf_mod->module;
6084 mutex_unlock(&btf_module_mutex);