1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
84 /* Indicates that audit should log the full pathname. */
85 #define AUDIT_NAME_FULL -1
87 /* no execve audit message should be longer than this (userspace limits) */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* number of audit rules */
93 /* determines whether we collect data for signals sent */
96 struct audit_cap_data {
97 kernel_cap_t permitted;
98 kernel_cap_t inheritable;
100 unsigned int fE; /* effective bit of a file capability */
101 kernel_cap_t effective; /* effective set of a process */
105 /* When fs/namei.c:getname() is called, we store the pointer in name and
106 * we don't let putname() free it (instead we free all of the saved
107 * pointers at syscall exit time).
109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
111 struct list_head list; /* audit_context->names_list */
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 int name_len; /* number of name's characters to log */
123 bool name_put; /* call __putname() for this name */
125 * This was an allocated audit_names and not from the array of
126 * names allocated in the task audit context. Thus this name
127 * should be freed on syscall exit
132 struct audit_aux_data {
133 struct audit_aux_data *next;
137 #define AUDIT_AUX_IPCPERM 0
139 /* Number of target pids per aux struct. */
140 #define AUDIT_AUX_PIDS 16
142 struct audit_aux_data_execve {
143 struct audit_aux_data d;
146 struct mm_struct *mm;
149 struct audit_aux_data_pids {
150 struct audit_aux_data d;
151 pid_t target_pid[AUDIT_AUX_PIDS];
152 kuid_t target_auid[AUDIT_AUX_PIDS];
153 kuid_t target_uid[AUDIT_AUX_PIDS];
154 unsigned int target_sessionid[AUDIT_AUX_PIDS];
155 u32 target_sid[AUDIT_AUX_PIDS];
156 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
160 struct audit_aux_data_bprm_fcaps {
161 struct audit_aux_data d;
162 struct audit_cap_data fcap;
163 unsigned int fcap_ver;
164 struct audit_cap_data old_pcap;
165 struct audit_cap_data new_pcap;
168 struct audit_aux_data_capset {
169 struct audit_aux_data d;
171 struct audit_cap_data cap;
174 struct audit_tree_refs {
175 struct audit_tree_refs *next;
176 struct audit_chunk *c[31];
179 /* The per-task audit context. */
180 struct audit_context {
181 int dummy; /* must be the first element */
182 int in_syscall; /* 1 if task is in a syscall */
183 enum audit_state state, current_state;
184 unsigned int serial; /* serial number for record */
185 int major; /* syscall number */
186 struct timespec ctime; /* time of syscall entry */
187 unsigned long argv[4]; /* syscall arguments */
188 long return_code;/* syscall return code */
190 int return_valid; /* return code is valid */
192 * The names_list is the list of all audit_names collected during this
193 * syscall. The first AUDIT_NAMES entries in the names_list will
194 * actually be from the preallocated_names array for performance
195 * reasons. Except during allocation they should never be referenced
196 * through the preallocated_names array and should only be found/used
197 * by running the names_list.
199 struct audit_names preallocated_names[AUDIT_NAMES];
200 int name_count; /* total records in names_list */
201 struct list_head names_list; /* anchor for struct audit_names->list */
202 char * filterkey; /* key for rule that triggered record */
204 struct audit_context *previous; /* For nested syscalls */
205 struct audit_aux_data *aux;
206 struct audit_aux_data *aux_pids;
207 struct sockaddr_storage *sockaddr;
209 /* Save things to print about task_struct */
211 kuid_t uid, euid, suid, fsuid;
212 kgid_t gid, egid, sgid, fsgid;
213 unsigned long personality;
219 unsigned int target_sessionid;
221 char target_comm[TASK_COMM_LEN];
223 struct audit_tree_refs *trees, *first_trees;
224 struct list_head killed_trees;
242 unsigned long qbytes;
246 struct mq_attr mqstat;
255 unsigned int msg_prio;
256 struct timespec abs_timeout;
265 struct audit_cap_data cap;
280 static inline int open_arg(int flags, int mask)
282 int n = ACC_MODE(flags);
283 if (flags & (O_TRUNC | O_CREAT))
284 n |= AUDIT_PERM_WRITE;
288 static int audit_match_perm(struct audit_context *ctx, int mask)
295 switch (audit_classify_syscall(ctx->arch, n)) {
297 if ((mask & AUDIT_PERM_WRITE) &&
298 audit_match_class(AUDIT_CLASS_WRITE, n))
300 if ((mask & AUDIT_PERM_READ) &&
301 audit_match_class(AUDIT_CLASS_READ, n))
303 if ((mask & AUDIT_PERM_ATTR) &&
304 audit_match_class(AUDIT_CLASS_CHATTR, n))
307 case 1: /* 32bit on biarch */
308 if ((mask & AUDIT_PERM_WRITE) &&
309 audit_match_class(AUDIT_CLASS_WRITE_32, n))
311 if ((mask & AUDIT_PERM_READ) &&
312 audit_match_class(AUDIT_CLASS_READ_32, n))
314 if ((mask & AUDIT_PERM_ATTR) &&
315 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
319 return mask & ACC_MODE(ctx->argv[1]);
321 return mask & ACC_MODE(ctx->argv[2]);
322 case 4: /* socketcall */
323 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
325 return mask & AUDIT_PERM_EXEC;
331 static int audit_match_filetype(struct audit_context *ctx, int val)
333 struct audit_names *n;
334 umode_t mode = (umode_t)val;
339 list_for_each_entry(n, &ctx->names_list, list) {
340 if ((n->ino != -1) &&
341 ((n->mode & S_IFMT) == mode))
349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
350 * ->first_trees points to its beginning, ->trees - to the current end of data.
351 * ->tree_count is the number of free entries in array pointed to by ->trees.
352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
353 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
354 * it's going to remain 1-element for almost any setup) until we free context itself.
355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
358 #ifdef CONFIG_AUDIT_TREE
359 static void audit_set_auditable(struct audit_context *ctx)
363 ctx->current_state = AUDIT_RECORD_CONTEXT;
367 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
369 struct audit_tree_refs *p = ctx->trees;
370 int left = ctx->tree_count;
372 p->c[--left] = chunk;
373 ctx->tree_count = left;
382 ctx->tree_count = 30;
388 static int grow_tree_refs(struct audit_context *ctx)
390 struct audit_tree_refs *p = ctx->trees;
391 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
397 p->next = ctx->trees;
399 ctx->first_trees = ctx->trees;
400 ctx->tree_count = 31;
405 static void unroll_tree_refs(struct audit_context *ctx,
406 struct audit_tree_refs *p, int count)
408 #ifdef CONFIG_AUDIT_TREE
409 struct audit_tree_refs *q;
412 /* we started with empty chain */
413 p = ctx->first_trees;
415 /* if the very first allocation has failed, nothing to do */
420 for (q = p; q != ctx->trees; q = q->next, n = 31) {
422 audit_put_chunk(q->c[n]);
426 while (n-- > ctx->tree_count) {
427 audit_put_chunk(q->c[n]);
431 ctx->tree_count = count;
435 static void free_tree_refs(struct audit_context *ctx)
437 struct audit_tree_refs *p, *q;
438 for (p = ctx->first_trees; p; p = q) {
444 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
446 #ifdef CONFIG_AUDIT_TREE
447 struct audit_tree_refs *p;
452 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
453 for (n = 0; n < 31; n++)
454 if (audit_tree_match(p->c[n], tree))
459 for (n = ctx->tree_count; n < 31; n++)
460 if (audit_tree_match(p->c[n], tree))
467 static int audit_compare_uid(kuid_t uid,
468 struct audit_names *name,
469 struct audit_field *f,
470 struct audit_context *ctx)
472 struct audit_names *n;
476 rc = audit_uid_comparator(uid, f->op, name->uid);
482 list_for_each_entry(n, &ctx->names_list, list) {
483 rc = audit_uid_comparator(uid, f->op, n->uid);
491 static int audit_compare_gid(kgid_t gid,
492 struct audit_names *name,
493 struct audit_field *f,
494 struct audit_context *ctx)
496 struct audit_names *n;
500 rc = audit_gid_comparator(gid, f->op, name->gid);
506 list_for_each_entry(n, &ctx->names_list, list) {
507 rc = audit_gid_comparator(gid, f->op, n->gid);
515 static int audit_field_compare(struct task_struct *tsk,
516 const struct cred *cred,
517 struct audit_field *f,
518 struct audit_context *ctx,
519 struct audit_names *name)
522 /* process to file object comparisons */
523 case AUDIT_COMPARE_UID_TO_OBJ_UID:
524 return audit_compare_uid(cred->uid, name, f, ctx);
525 case AUDIT_COMPARE_GID_TO_OBJ_GID:
526 return audit_compare_gid(cred->gid, name, f, ctx);
527 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
528 return audit_compare_uid(cred->euid, name, f, ctx);
529 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
530 return audit_compare_gid(cred->egid, name, f, ctx);
531 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
532 return audit_compare_uid(tsk->loginuid, name, f, ctx);
533 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
534 return audit_compare_uid(cred->suid, name, f, ctx);
535 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
536 return audit_compare_gid(cred->sgid, name, f, ctx);
537 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
538 return audit_compare_uid(cred->fsuid, name, f, ctx);
539 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
540 return audit_compare_gid(cred->fsgid, name, f, ctx);
541 /* uid comparisons */
542 case AUDIT_COMPARE_UID_TO_AUID:
543 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
544 case AUDIT_COMPARE_UID_TO_EUID:
545 return audit_uid_comparator(cred->uid, f->op, cred->euid);
546 case AUDIT_COMPARE_UID_TO_SUID:
547 return audit_uid_comparator(cred->uid, f->op, cred->suid);
548 case AUDIT_COMPARE_UID_TO_FSUID:
549 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
550 /* auid comparisons */
551 case AUDIT_COMPARE_AUID_TO_EUID:
552 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
553 case AUDIT_COMPARE_AUID_TO_SUID:
554 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
555 case AUDIT_COMPARE_AUID_TO_FSUID:
556 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
557 /* euid comparisons */
558 case AUDIT_COMPARE_EUID_TO_SUID:
559 return audit_uid_comparator(cred->euid, f->op, cred->suid);
560 case AUDIT_COMPARE_EUID_TO_FSUID:
561 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
562 /* suid comparisons */
563 case AUDIT_COMPARE_SUID_TO_FSUID:
564 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
565 /* gid comparisons */
566 case AUDIT_COMPARE_GID_TO_EGID:
567 return audit_gid_comparator(cred->gid, f->op, cred->egid);
568 case AUDIT_COMPARE_GID_TO_SGID:
569 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
570 case AUDIT_COMPARE_GID_TO_FSGID:
571 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
572 /* egid comparisons */
573 case AUDIT_COMPARE_EGID_TO_SGID:
574 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
575 case AUDIT_COMPARE_EGID_TO_FSGID:
576 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
577 /* sgid comparison */
578 case AUDIT_COMPARE_SGID_TO_FSGID:
579 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
581 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
587 /* Determine if any context name data matches a rule's watch data */
588 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
591 * If task_creation is true, this is an explicit indication that we are
592 * filtering a task rule at task creation time. This and tsk == current are
593 * the only situations where tsk->cred may be accessed without an rcu read lock.
595 static int audit_filter_rules(struct task_struct *tsk,
596 struct audit_krule *rule,
597 struct audit_context *ctx,
598 struct audit_names *name,
599 enum audit_state *state,
602 const struct cred *cred;
606 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
608 for (i = 0; i < rule->field_count; i++) {
609 struct audit_field *f = &rule->fields[i];
610 struct audit_names *n;
615 result = audit_comparator(tsk->pid, f->op, f->val);
620 ctx->ppid = sys_getppid();
621 result = audit_comparator(ctx->ppid, f->op, f->val);
625 result = audit_uid_comparator(cred->uid, f->op, f->uid);
628 result = audit_uid_comparator(cred->euid, f->op, f->uid);
631 result = audit_uid_comparator(cred->suid, f->op, f->uid);
634 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
637 result = audit_gid_comparator(cred->gid, f->op, f->gid);
640 result = audit_gid_comparator(cred->egid, f->op, f->gid);
643 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
646 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
649 result = audit_comparator(tsk->personality, f->op, f->val);
653 result = audit_comparator(ctx->arch, f->op, f->val);
657 if (ctx && ctx->return_valid)
658 result = audit_comparator(ctx->return_code, f->op, f->val);
661 if (ctx && ctx->return_valid) {
663 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
665 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
670 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
671 audit_comparator(MAJOR(name->rdev), f->op, f->val))
674 list_for_each_entry(n, &ctx->names_list, list) {
675 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
676 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
685 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
686 audit_comparator(MINOR(name->rdev), f->op, f->val))
689 list_for_each_entry(n, &ctx->names_list, list) {
690 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
691 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
700 result = (name->ino == f->val);
702 list_for_each_entry(n, &ctx->names_list, list) {
703 if (audit_comparator(n->ino, f->op, f->val)) {
712 result = audit_uid_comparator(name->uid, f->op, f->uid);
714 list_for_each_entry(n, &ctx->names_list, list) {
715 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
724 result = audit_gid_comparator(name->gid, f->op, f->gid);
726 list_for_each_entry(n, &ctx->names_list, list) {
727 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
736 result = audit_watch_compare(rule->watch, name->ino, name->dev);
740 result = match_tree_refs(ctx, rule->tree);
745 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
747 case AUDIT_SUBJ_USER:
748 case AUDIT_SUBJ_ROLE:
749 case AUDIT_SUBJ_TYPE:
752 /* NOTE: this may return negative values indicating
753 a temporary error. We simply treat this as a
754 match for now to avoid losing information that
755 may be wanted. An error message will also be
759 security_task_getsecid(tsk, &sid);
762 result = security_audit_rule_match(sid, f->type,
771 case AUDIT_OBJ_LEV_LOW:
772 case AUDIT_OBJ_LEV_HIGH:
773 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
776 /* Find files that match */
778 result = security_audit_rule_match(
779 name->osid, f->type, f->op,
782 list_for_each_entry(n, &ctx->names_list, list) {
783 if (security_audit_rule_match(n->osid, f->type,
791 /* Find ipc objects that match */
792 if (!ctx || ctx->type != AUDIT_IPC)
794 if (security_audit_rule_match(ctx->ipc.osid,
805 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
807 case AUDIT_FILTERKEY:
808 /* ignore this field for filtering */
812 result = audit_match_perm(ctx, f->val);
815 result = audit_match_filetype(ctx, f->val);
817 case AUDIT_FIELD_COMPARE:
818 result = audit_field_compare(tsk, cred, f, ctx, name);
826 if (rule->prio <= ctx->prio)
828 if (rule->filterkey) {
829 kfree(ctx->filterkey);
830 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
832 ctx->prio = rule->prio;
834 switch (rule->action) {
835 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
836 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
841 /* At process creation time, we can determine if system-call auditing is
842 * completely disabled for this task. Since we only have the task
843 * structure at this point, we can only check uid and gid.
845 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
847 struct audit_entry *e;
848 enum audit_state state;
851 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
852 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
854 if (state == AUDIT_RECORD_CONTEXT)
855 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
861 return AUDIT_BUILD_CONTEXT;
864 /* At syscall entry and exit time, this filter is called if the
865 * audit_state is not low enough that auditing cannot take place, but is
866 * also not high enough that we already know we have to write an audit
867 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
869 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
870 struct audit_context *ctx,
871 struct list_head *list)
873 struct audit_entry *e;
874 enum audit_state state;
876 if (audit_pid && tsk->tgid == audit_pid)
877 return AUDIT_DISABLED;
880 if (!list_empty(list)) {
881 int word = AUDIT_WORD(ctx->major);
882 int bit = AUDIT_BIT(ctx->major);
884 list_for_each_entry_rcu(e, list, list) {
885 if ((e->rule.mask[word] & bit) == bit &&
886 audit_filter_rules(tsk, &e->rule, ctx, NULL,
889 ctx->current_state = state;
895 return AUDIT_BUILD_CONTEXT;
899 * Given an audit_name check the inode hash table to see if they match.
900 * Called holding the rcu read lock to protect the use of audit_inode_hash
902 static int audit_filter_inode_name(struct task_struct *tsk,
903 struct audit_names *n,
904 struct audit_context *ctx) {
906 int h = audit_hash_ino((u32)n->ino);
907 struct list_head *list = &audit_inode_hash[h];
908 struct audit_entry *e;
909 enum audit_state state;
911 word = AUDIT_WORD(ctx->major);
912 bit = AUDIT_BIT(ctx->major);
914 if (list_empty(list))
917 list_for_each_entry_rcu(e, list, list) {
918 if ((e->rule.mask[word] & bit) == bit &&
919 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
920 ctx->current_state = state;
928 /* At syscall exit time, this filter is called if any audit_names have been
929 * collected during syscall processing. We only check rules in sublists at hash
930 * buckets applicable to the inode numbers in audit_names.
931 * Regarding audit_state, same rules apply as for audit_filter_syscall().
933 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
935 struct audit_names *n;
937 if (audit_pid && tsk->tgid == audit_pid)
942 list_for_each_entry(n, &ctx->names_list, list) {
943 if (audit_filter_inode_name(tsk, n, ctx))
949 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
953 struct audit_context *context = tsk->audit_context;
957 context->return_valid = return_valid;
960 * we need to fix up the return code in the audit logs if the actual
961 * return codes are later going to be fixed up by the arch specific
964 * This is actually a test for:
965 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
966 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
968 * but is faster than a bunch of ||
970 if (unlikely(return_code <= -ERESTARTSYS) &&
971 (return_code >= -ERESTART_RESTARTBLOCK) &&
972 (return_code != -ENOIOCTLCMD))
973 context->return_code = -EINTR;
975 context->return_code = return_code;
977 if (context->in_syscall && !context->dummy) {
978 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
979 audit_filter_inodes(tsk, context);
982 tsk->audit_context = NULL;
986 static inline void audit_free_names(struct audit_context *context)
988 struct audit_names *n, *next;
991 if (context->put_count + context->ino_count != context->name_count) {
992 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
993 " name_count=%d put_count=%d"
994 " ino_count=%d [NOT freeing]\n",
996 context->serial, context->major, context->in_syscall,
997 context->name_count, context->put_count,
999 list_for_each_entry(n, &context->names_list, list) {
1000 printk(KERN_ERR "names[%d] = %p = %s\n", i,
1001 n->name, n->name ?: "(null)");
1008 context->put_count = 0;
1009 context->ino_count = 0;
1012 list_for_each_entry_safe(n, next, &context->names_list, list) {
1014 if (n->name && n->name_put)
1019 context->name_count = 0;
1020 path_put(&context->pwd);
1021 context->pwd.dentry = NULL;
1022 context->pwd.mnt = NULL;
1025 static inline void audit_free_aux(struct audit_context *context)
1027 struct audit_aux_data *aux;
1029 while ((aux = context->aux)) {
1030 context->aux = aux->next;
1033 while ((aux = context->aux_pids)) {
1034 context->aux_pids = aux->next;
1039 static inline void audit_zero_context(struct audit_context *context,
1040 enum audit_state state)
1042 memset(context, 0, sizeof(*context));
1043 context->state = state;
1044 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1047 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1049 struct audit_context *context;
1051 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1053 audit_zero_context(context, state);
1054 INIT_LIST_HEAD(&context->killed_trees);
1055 INIT_LIST_HEAD(&context->names_list);
1060 * audit_alloc - allocate an audit context block for a task
1063 * Filter on the task information and allocate a per-task audit context
1064 * if necessary. Doing so turns on system call auditing for the
1065 * specified task. This is called from copy_process, so no lock is
1068 int audit_alloc(struct task_struct *tsk)
1070 struct audit_context *context;
1071 enum audit_state state;
1074 if (likely(!audit_ever_enabled))
1075 return 0; /* Return if not auditing. */
1077 state = audit_filter_task(tsk, &key);
1078 if (state == AUDIT_DISABLED)
1081 if (!(context = audit_alloc_context(state))) {
1083 audit_log_lost("out of memory in audit_alloc");
1086 context->filterkey = key;
1088 tsk->audit_context = context;
1089 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1093 static inline void audit_free_context(struct audit_context *context)
1095 struct audit_context *previous;
1099 previous = context->previous;
1100 if (previous || (count && count < 10)) {
1102 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1103 " freeing multiple contexts (%d)\n",
1104 context->serial, context->major,
1105 context->name_count, count);
1107 audit_free_names(context);
1108 unroll_tree_refs(context, NULL, 0);
1109 free_tree_refs(context);
1110 audit_free_aux(context);
1111 kfree(context->filterkey);
1112 kfree(context->sockaddr);
1117 printk(KERN_ERR "audit: freed %d contexts\n", count);
1120 void audit_log_task_context(struct audit_buffer *ab)
1127 security_task_getsecid(current, &sid);
1131 error = security_secid_to_secctx(sid, &ctx, &len);
1133 if (error != -EINVAL)
1138 audit_log_format(ab, " subj=%s", ctx);
1139 security_release_secctx(ctx, len);
1143 audit_panic("error in audit_log_task_context");
1147 EXPORT_SYMBOL(audit_log_task_context);
1149 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1151 const struct cred *cred;
1152 char name[sizeof(tsk->comm)];
1153 struct mm_struct *mm = tsk->mm;
1159 /* tsk == current */
1160 cred = current_cred();
1162 spin_lock_irq(&tsk->sighand->siglock);
1163 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1164 tty = tsk->signal->tty->name;
1167 spin_unlock_irq(&tsk->sighand->siglock);
1170 audit_log_format(ab,
1171 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1172 " euid=%u suid=%u fsuid=%u"
1173 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1176 from_kuid(&init_user_ns, tsk->loginuid),
1177 from_kuid(&init_user_ns, cred->uid),
1178 from_kgid(&init_user_ns, cred->gid),
1179 from_kuid(&init_user_ns, cred->euid),
1180 from_kuid(&init_user_ns, cred->suid),
1181 from_kuid(&init_user_ns, cred->fsuid),
1182 from_kgid(&init_user_ns, cred->egid),
1183 from_kgid(&init_user_ns, cred->sgid),
1184 from_kgid(&init_user_ns, cred->fsgid),
1185 tsk->sessionid, tty);
1187 get_task_comm(name, tsk);
1188 audit_log_format(ab, " comm=");
1189 audit_log_untrustedstring(ab, name);
1192 down_read(&mm->mmap_sem);
1194 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1195 up_read(&mm->mmap_sem);
1197 audit_log_task_context(ab);
1200 EXPORT_SYMBOL(audit_log_task_info);
1202 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1203 kuid_t auid, kuid_t uid, unsigned int sessionid,
1204 u32 sid, char *comm)
1206 struct audit_buffer *ab;
1211 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1215 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1216 from_kuid(&init_user_ns, auid),
1217 from_kuid(&init_user_ns, uid), sessionid);
1218 if (security_secid_to_secctx(sid, &ctx, &len)) {
1219 audit_log_format(ab, " obj=(none)");
1222 audit_log_format(ab, " obj=%s", ctx);
1223 security_release_secctx(ctx, len);
1225 audit_log_format(ab, " ocomm=");
1226 audit_log_untrustedstring(ab, comm);
1233 * to_send and len_sent accounting are very loose estimates. We aren't
1234 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1235 * within about 500 bytes (next page boundary)
1237 * why snprintf? an int is up to 12 digits long. if we just assumed when
1238 * logging that a[%d]= was going to be 16 characters long we would be wasting
1239 * space in every audit message. In one 7500 byte message we can log up to
1240 * about 1000 min size arguments. That comes down to about 50% waste of space
1241 * if we didn't do the snprintf to find out how long arg_num_len was.
1243 static int audit_log_single_execve_arg(struct audit_context *context,
1244 struct audit_buffer **ab,
1247 const char __user *p,
1250 char arg_num_len_buf[12];
1251 const char __user *tmp_p = p;
1252 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1253 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1254 size_t len, len_left, to_send;
1255 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1256 unsigned int i, has_cntl = 0, too_long = 0;
1259 /* strnlen_user includes the null we don't want to send */
1260 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1263 * We just created this mm, if we can't find the strings
1264 * we just copied into it something is _very_ wrong. Similar
1265 * for strings that are too long, we should not have created
1268 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1270 send_sig(SIGKILL, current, 0);
1274 /* walk the whole argument looking for non-ascii chars */
1276 if (len_left > MAX_EXECVE_AUDIT_LEN)
1277 to_send = MAX_EXECVE_AUDIT_LEN;
1280 ret = copy_from_user(buf, tmp_p, to_send);
1282 * There is no reason for this copy to be short. We just
1283 * copied them here, and the mm hasn't been exposed to user-
1288 send_sig(SIGKILL, current, 0);
1291 buf[to_send] = '\0';
1292 has_cntl = audit_string_contains_control(buf, to_send);
1295 * hex messages get logged as 2 bytes, so we can only
1296 * send half as much in each message
1298 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1301 len_left -= to_send;
1303 } while (len_left > 0);
1307 if (len > max_execve_audit_len)
1310 /* rewalk the argument actually logging the message */
1311 for (i = 0; len_left > 0; i++) {
1314 if (len_left > max_execve_audit_len)
1315 to_send = max_execve_audit_len;
1319 /* do we have space left to send this argument in this ab? */
1320 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1322 room_left -= (to_send * 2);
1324 room_left -= to_send;
1325 if (room_left < 0) {
1328 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1334 * first record needs to say how long the original string was
1335 * so we can be sure nothing was lost.
1337 if ((i == 0) && (too_long))
1338 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1339 has_cntl ? 2*len : len);
1342 * normally arguments are small enough to fit and we already
1343 * filled buf above when we checked for control characters
1344 * so don't bother with another copy_from_user
1346 if (len >= max_execve_audit_len)
1347 ret = copy_from_user(buf, p, to_send);
1352 send_sig(SIGKILL, current, 0);
1355 buf[to_send] = '\0';
1357 /* actually log it */
1358 audit_log_format(*ab, " a%d", arg_num);
1360 audit_log_format(*ab, "[%d]", i);
1361 audit_log_format(*ab, "=");
1363 audit_log_n_hex(*ab, buf, to_send);
1365 audit_log_string(*ab, buf);
1368 len_left -= to_send;
1369 *len_sent += arg_num_len;
1371 *len_sent += to_send * 2;
1373 *len_sent += to_send;
1375 /* include the null we didn't log */
1379 static void audit_log_execve_info(struct audit_context *context,
1380 struct audit_buffer **ab,
1381 struct audit_aux_data_execve *axi)
1384 size_t len_sent = 0;
1385 const char __user *p;
1388 if (axi->mm != current->mm)
1389 return; /* execve failed, no additional info */
1391 p = (const char __user *)axi->mm->arg_start;
1393 audit_log_format(*ab, "argc=%d", axi->argc);
1396 * we need some kernel buffer to hold the userspace args. Just
1397 * allocate one big one rather than allocating one of the right size
1398 * for every single argument inside audit_log_single_execve_arg()
1399 * should be <8k allocation so should be pretty safe.
1401 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1403 audit_panic("out of memory for argv string\n");
1407 for (i = 0; i < axi->argc; i++) {
1408 len = audit_log_single_execve_arg(context, ab, i,
1417 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1421 audit_log_format(ab, " %s=", prefix);
1422 CAP_FOR_EACH_U32(i) {
1423 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1427 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1429 kernel_cap_t *perm = &name->fcap.permitted;
1430 kernel_cap_t *inh = &name->fcap.inheritable;
1433 if (!cap_isclear(*perm)) {
1434 audit_log_cap(ab, "cap_fp", perm);
1437 if (!cap_isclear(*inh)) {
1438 audit_log_cap(ab, "cap_fi", inh);
1443 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1446 static void show_special(struct audit_context *context, int *call_panic)
1448 struct audit_buffer *ab;
1451 ab = audit_log_start(context, GFP_KERNEL, context->type);
1455 switch (context->type) {
1456 case AUDIT_SOCKETCALL: {
1457 int nargs = context->socketcall.nargs;
1458 audit_log_format(ab, "nargs=%d", nargs);
1459 for (i = 0; i < nargs; i++)
1460 audit_log_format(ab, " a%d=%lx", i,
1461 context->socketcall.args[i]);
1464 u32 osid = context->ipc.osid;
1466 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1467 from_kuid(&init_user_ns, context->ipc.uid),
1468 from_kgid(&init_user_ns, context->ipc.gid),
1473 if (security_secid_to_secctx(osid, &ctx, &len)) {
1474 audit_log_format(ab, " osid=%u", osid);
1477 audit_log_format(ab, " obj=%s", ctx);
1478 security_release_secctx(ctx, len);
1481 if (context->ipc.has_perm) {
1483 ab = audit_log_start(context, GFP_KERNEL,
1484 AUDIT_IPC_SET_PERM);
1485 audit_log_format(ab,
1486 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1487 context->ipc.qbytes,
1488 context->ipc.perm_uid,
1489 context->ipc.perm_gid,
1490 context->ipc.perm_mode);
1495 case AUDIT_MQ_OPEN: {
1496 audit_log_format(ab,
1497 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1498 "mq_msgsize=%ld mq_curmsgs=%ld",
1499 context->mq_open.oflag, context->mq_open.mode,
1500 context->mq_open.attr.mq_flags,
1501 context->mq_open.attr.mq_maxmsg,
1502 context->mq_open.attr.mq_msgsize,
1503 context->mq_open.attr.mq_curmsgs);
1505 case AUDIT_MQ_SENDRECV: {
1506 audit_log_format(ab,
1507 "mqdes=%d msg_len=%zd msg_prio=%u "
1508 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1509 context->mq_sendrecv.mqdes,
1510 context->mq_sendrecv.msg_len,
1511 context->mq_sendrecv.msg_prio,
1512 context->mq_sendrecv.abs_timeout.tv_sec,
1513 context->mq_sendrecv.abs_timeout.tv_nsec);
1515 case AUDIT_MQ_NOTIFY: {
1516 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1517 context->mq_notify.mqdes,
1518 context->mq_notify.sigev_signo);
1520 case AUDIT_MQ_GETSETATTR: {
1521 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1522 audit_log_format(ab,
1523 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1525 context->mq_getsetattr.mqdes,
1526 attr->mq_flags, attr->mq_maxmsg,
1527 attr->mq_msgsize, attr->mq_curmsgs);
1529 case AUDIT_CAPSET: {
1530 audit_log_format(ab, "pid=%d", context->capset.pid);
1531 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1532 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1533 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1536 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1537 context->mmap.flags);
1543 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1544 int record_num, int *call_panic)
1546 struct audit_buffer *ab;
1547 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1549 return; /* audit_panic has been called */
1551 audit_log_format(ab, "item=%d", record_num);
1554 switch (n->name_len) {
1555 case AUDIT_NAME_FULL:
1556 /* log the full path */
1557 audit_log_format(ab, " name=");
1558 audit_log_untrustedstring(ab, n->name);
1561 /* name was specified as a relative path and the
1562 * directory component is the cwd */
1563 audit_log_d_path(ab, " name=", &context->pwd);
1566 /* log the name's directory component */
1567 audit_log_format(ab, " name=");
1568 audit_log_n_untrustedstring(ab, n->name,
1572 audit_log_format(ab, " name=(null)");
1574 if (n->ino != (unsigned long)-1) {
1575 audit_log_format(ab, " inode=%lu"
1576 " dev=%02x:%02x mode=%#ho"
1577 " ouid=%u ogid=%u rdev=%02x:%02x",
1582 from_kuid(&init_user_ns, n->uid),
1583 from_kgid(&init_user_ns, n->gid),
1590 if (security_secid_to_secctx(
1591 n->osid, &ctx, &len)) {
1592 audit_log_format(ab, " osid=%u", n->osid);
1595 audit_log_format(ab, " obj=%s", ctx);
1596 security_release_secctx(ctx, len);
1600 audit_log_fcaps(ab, n);
1605 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1607 int i, call_panic = 0;
1608 struct audit_buffer *ab;
1609 struct audit_aux_data *aux;
1610 struct audit_names *n;
1612 /* tsk == current */
1613 context->personality = tsk->personality;
1615 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1617 return; /* audit_panic has been called */
1618 audit_log_format(ab, "arch=%x syscall=%d",
1619 context->arch, context->major);
1620 if (context->personality != PER_LINUX)
1621 audit_log_format(ab, " per=%lx", context->personality);
1622 if (context->return_valid)
1623 audit_log_format(ab, " success=%s exit=%ld",
1624 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1625 context->return_code);
1627 audit_log_format(ab,
1628 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1633 context->name_count);
1635 audit_log_task_info(ab, tsk);
1636 audit_log_key(ab, context->filterkey);
1639 for (aux = context->aux; aux; aux = aux->next) {
1641 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1643 continue; /* audit_panic has been called */
1645 switch (aux->type) {
1647 case AUDIT_EXECVE: {
1648 struct audit_aux_data_execve *axi = (void *)aux;
1649 audit_log_execve_info(context, &ab, axi);
1652 case AUDIT_BPRM_FCAPS: {
1653 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1654 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1655 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1656 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1657 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1658 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1659 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1660 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1661 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1662 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1663 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1671 show_special(context, &call_panic);
1673 if (context->fds[0] >= 0) {
1674 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1676 audit_log_format(ab, "fd0=%d fd1=%d",
1677 context->fds[0], context->fds[1]);
1682 if (context->sockaddr_len) {
1683 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1685 audit_log_format(ab, "saddr=");
1686 audit_log_n_hex(ab, (void *)context->sockaddr,
1687 context->sockaddr_len);
1692 for (aux = context->aux_pids; aux; aux = aux->next) {
1693 struct audit_aux_data_pids *axs = (void *)aux;
1695 for (i = 0; i < axs->pid_count; i++)
1696 if (audit_log_pid_context(context, axs->target_pid[i],
1697 axs->target_auid[i],
1699 axs->target_sessionid[i],
1701 axs->target_comm[i]))
1705 if (context->target_pid &&
1706 audit_log_pid_context(context, context->target_pid,
1707 context->target_auid, context->target_uid,
1708 context->target_sessionid,
1709 context->target_sid, context->target_comm))
1712 if (context->pwd.dentry && context->pwd.mnt) {
1713 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1715 audit_log_d_path(ab, " cwd=", &context->pwd);
1721 list_for_each_entry(n, &context->names_list, list)
1722 audit_log_name(context, n, i++, &call_panic);
1724 /* Send end of event record to help user space know we are finished */
1725 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1729 audit_panic("error converting sid to string");
1733 * audit_free - free a per-task audit context
1734 * @tsk: task whose audit context block to free
1736 * Called from copy_process and do_exit
1738 void __audit_free(struct task_struct *tsk)
1740 struct audit_context *context;
1742 context = audit_get_context(tsk, 0, 0);
1746 /* Check for system calls that do not go through the exit
1747 * function (e.g., exit_group), then free context block.
1748 * We use GFP_ATOMIC here because we might be doing this
1749 * in the context of the idle thread */
1750 /* that can happen only if we are called from do_exit() */
1751 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1752 audit_log_exit(context, tsk);
1753 if (!list_empty(&context->killed_trees))
1754 audit_kill_trees(&context->killed_trees);
1756 audit_free_context(context);
1760 * audit_syscall_entry - fill in an audit record at syscall entry
1761 * @arch: architecture type
1762 * @major: major syscall type (function)
1763 * @a1: additional syscall register 1
1764 * @a2: additional syscall register 2
1765 * @a3: additional syscall register 3
1766 * @a4: additional syscall register 4
1768 * Fill in audit context at syscall entry. This only happens if the
1769 * audit context was created when the task was created and the state or
1770 * filters demand the audit context be built. If the state from the
1771 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1772 * then the record will be written at syscall exit time (otherwise, it
1773 * will only be written if another part of the kernel requests that it
1776 void __audit_syscall_entry(int arch, int major,
1777 unsigned long a1, unsigned long a2,
1778 unsigned long a3, unsigned long a4)
1780 struct task_struct *tsk = current;
1781 struct audit_context *context = tsk->audit_context;
1782 enum audit_state state;
1788 * This happens only on certain architectures that make system
1789 * calls in kernel_thread via the entry.S interface, instead of
1790 * with direct calls. (If you are porting to a new
1791 * architecture, hitting this condition can indicate that you
1792 * got the _exit/_leave calls backward in entry.S.)
1796 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1798 * This also happens with vm86 emulation in a non-nested manner
1799 * (entries without exits), so this case must be caught.
1801 if (context->in_syscall) {
1802 struct audit_context *newctx;
1806 "audit(:%d) pid=%d in syscall=%d;"
1807 " entering syscall=%d\n",
1808 context->serial, tsk->pid, context->major, major);
1810 newctx = audit_alloc_context(context->state);
1812 newctx->previous = context;
1814 tsk->audit_context = newctx;
1816 /* If we can't alloc a new context, the best we
1817 * can do is to leak memory (any pending putname
1818 * will be lost). The only other alternative is
1819 * to abandon auditing. */
1820 audit_zero_context(context, context->state);
1823 BUG_ON(context->in_syscall || context->name_count);
1828 context->arch = arch;
1829 context->major = major;
1830 context->argv[0] = a1;
1831 context->argv[1] = a2;
1832 context->argv[2] = a3;
1833 context->argv[3] = a4;
1835 state = context->state;
1836 context->dummy = !audit_n_rules;
1837 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1839 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1841 if (state == AUDIT_DISABLED)
1844 context->serial = 0;
1845 context->ctime = CURRENT_TIME;
1846 context->in_syscall = 1;
1847 context->current_state = state;
1852 * audit_syscall_exit - deallocate audit context after a system call
1853 * @success: success value of the syscall
1854 * @return_code: return value of the syscall
1856 * Tear down after system call. If the audit context has been marked as
1857 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1858 * filtering, or because some other part of the kernel wrote an audit
1859 * message), then write out the syscall information. In call cases,
1860 * free the names stored from getname().
1862 void __audit_syscall_exit(int success, long return_code)
1864 struct task_struct *tsk = current;
1865 struct audit_context *context;
1868 success = AUDITSC_SUCCESS;
1870 success = AUDITSC_FAILURE;
1872 context = audit_get_context(tsk, success, return_code);
1876 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1877 audit_log_exit(context, tsk);
1879 context->in_syscall = 0;
1880 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1882 if (!list_empty(&context->killed_trees))
1883 audit_kill_trees(&context->killed_trees);
1885 if (context->previous) {
1886 struct audit_context *new_context = context->previous;
1887 context->previous = NULL;
1888 audit_free_context(context);
1889 tsk->audit_context = new_context;
1891 audit_free_names(context);
1892 unroll_tree_refs(context, NULL, 0);
1893 audit_free_aux(context);
1894 context->aux = NULL;
1895 context->aux_pids = NULL;
1896 context->target_pid = 0;
1897 context->target_sid = 0;
1898 context->sockaddr_len = 0;
1900 context->fds[0] = -1;
1901 if (context->state != AUDIT_RECORD_CONTEXT) {
1902 kfree(context->filterkey);
1903 context->filterkey = NULL;
1905 tsk->audit_context = context;
1909 static inline void handle_one(const struct inode *inode)
1911 #ifdef CONFIG_AUDIT_TREE
1912 struct audit_context *context;
1913 struct audit_tree_refs *p;
1914 struct audit_chunk *chunk;
1916 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1918 context = current->audit_context;
1920 count = context->tree_count;
1922 chunk = audit_tree_lookup(inode);
1926 if (likely(put_tree_ref(context, chunk)))
1928 if (unlikely(!grow_tree_refs(context))) {
1929 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1930 audit_set_auditable(context);
1931 audit_put_chunk(chunk);
1932 unroll_tree_refs(context, p, count);
1935 put_tree_ref(context, chunk);
1939 static void handle_path(const struct dentry *dentry)
1941 #ifdef CONFIG_AUDIT_TREE
1942 struct audit_context *context;
1943 struct audit_tree_refs *p;
1944 const struct dentry *d, *parent;
1945 struct audit_chunk *drop;
1949 context = current->audit_context;
1951 count = context->tree_count;
1956 seq = read_seqbegin(&rename_lock);
1958 struct inode *inode = d->d_inode;
1959 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1960 struct audit_chunk *chunk;
1961 chunk = audit_tree_lookup(inode);
1963 if (unlikely(!put_tree_ref(context, chunk))) {
1969 parent = d->d_parent;
1974 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1977 /* just a race with rename */
1978 unroll_tree_refs(context, p, count);
1981 audit_put_chunk(drop);
1982 if (grow_tree_refs(context)) {
1983 /* OK, got more space */
1984 unroll_tree_refs(context, p, count);
1989 "out of memory, audit has lost a tree reference\n");
1990 unroll_tree_refs(context, p, count);
1991 audit_set_auditable(context);
1998 static struct audit_names *audit_alloc_name(struct audit_context *context)
2000 struct audit_names *aname;
2002 if (context->name_count < AUDIT_NAMES) {
2003 aname = &context->preallocated_names[context->name_count];
2004 memset(aname, 0, sizeof(*aname));
2006 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2009 aname->should_free = true;
2012 aname->ino = (unsigned long)-1;
2013 list_add_tail(&aname->list, &context->names_list);
2015 context->name_count++;
2017 context->ino_count++;
2023 * audit_getname - add a name to the list
2024 * @name: name to add
2026 * Add a name to the list of audit names for this context.
2027 * Called from fs/namei.c:getname().
2029 void __audit_getname(const char *name)
2031 struct audit_context *context = current->audit_context;
2032 struct audit_names *n;
2034 if (!context->in_syscall) {
2035 #if AUDIT_DEBUG == 2
2036 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2037 __FILE__, __LINE__, context->serial, name);
2043 n = audit_alloc_name(context);
2048 n->name_len = AUDIT_NAME_FULL;
2051 if (!context->pwd.dentry)
2052 get_fs_pwd(current->fs, &context->pwd);
2055 /* audit_putname - intercept a putname request
2056 * @name: name to intercept and delay for putname
2058 * If we have stored the name from getname in the audit context,
2059 * then we delay the putname until syscall exit.
2060 * Called from include/linux/fs.h:putname().
2062 void audit_putname(const char *name)
2064 struct audit_context *context = current->audit_context;
2067 if (!context->in_syscall) {
2068 #if AUDIT_DEBUG == 2
2069 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2070 __FILE__, __LINE__, context->serial, name);
2071 if (context->name_count) {
2072 struct audit_names *n;
2075 list_for_each_entry(n, &context->names_list, list)
2076 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2077 n->name, n->name ?: "(null)");
2084 ++context->put_count;
2085 if (context->put_count > context->name_count) {
2086 printk(KERN_ERR "%s:%d(:%d): major=%d"
2087 " in_syscall=%d putname(%p) name_count=%d"
2090 context->serial, context->major,
2091 context->in_syscall, name, context->name_count,
2092 context->put_count);
2099 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2101 struct cpu_vfs_cap_data caps;
2107 rc = get_vfs_caps_from_disk(dentry, &caps);
2111 name->fcap.permitted = caps.permitted;
2112 name->fcap.inheritable = caps.inheritable;
2113 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2114 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2120 /* Copy inode data into an audit_names. */
2121 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2122 const struct inode *inode)
2124 name->ino = inode->i_ino;
2125 name->dev = inode->i_sb->s_dev;
2126 name->mode = inode->i_mode;
2127 name->uid = inode->i_uid;
2128 name->gid = inode->i_gid;
2129 name->rdev = inode->i_rdev;
2130 security_inode_getsecid(inode, &name->osid);
2131 audit_copy_fcaps(name, dentry);
2135 * audit_inode - store the inode and device from a lookup
2136 * @name: name being audited
2137 * @dentry: dentry being audited
2139 * Called from fs/namei.c:path_lookup().
2141 void __audit_inode(const char *name, const struct dentry *dentry)
2143 struct audit_context *context = current->audit_context;
2144 const struct inode *inode = dentry->d_inode;
2145 struct audit_names *n;
2147 if (!context->in_syscall)
2150 list_for_each_entry_reverse(n, &context->names_list, list) {
2151 if (n->name && (n->name == name))
2155 /* unable to find the name from a previous getname() */
2156 n = audit_alloc_name(context);
2160 handle_path(dentry);
2161 audit_copy_inode(n, dentry, inode);
2165 * audit_inode_child - collect inode info for created/removed objects
2166 * @dentry: dentry being audited
2167 * @parent: inode of dentry parent
2169 * For syscalls that create or remove filesystem objects, audit_inode
2170 * can only collect information for the filesystem object's parent.
2171 * This call updates the audit context with the child's information.
2172 * Syscalls that create a new filesystem object must be hooked after
2173 * the object is created. Syscalls that remove a filesystem object
2174 * must be hooked prior, in order to capture the target inode during
2175 * unsuccessful attempts.
2177 void __audit_inode_child(const struct dentry *dentry,
2178 const struct inode *parent)
2180 struct audit_context *context = current->audit_context;
2181 const char *found_parent = NULL, *found_child = NULL;
2182 const struct inode *inode = dentry->d_inode;
2183 const char *dname = dentry->d_name.name;
2184 struct audit_names *n;
2187 if (!context->in_syscall)
2193 /* parent is more likely, look for it first */
2194 list_for_each_entry(n, &context->names_list, list) {
2198 if (n->ino == parent->i_ino &&
2199 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2200 n->name_len = dirlen; /* update parent data in place */
2201 found_parent = n->name;
2206 /* no matching parent, look for matching child */
2207 list_for_each_entry(n, &context->names_list, list) {
2211 /* strcmp() is the more likely scenario */
2212 if (!strcmp(dname, n->name) ||
2213 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2215 audit_copy_inode(n, NULL, inode);
2217 n->ino = (unsigned long)-1;
2218 found_child = n->name;
2224 if (!found_parent) {
2225 n = audit_alloc_name(context);
2228 audit_copy_inode(n, NULL, parent);
2232 n = audit_alloc_name(context);
2236 /* Re-use the name belonging to the slot for a matching parent
2237 * directory. All names for this context are relinquished in
2238 * audit_free_names() */
2240 n->name = found_parent;
2241 n->name_len = AUDIT_NAME_FULL;
2242 /* don't call __putname() */
2243 n->name_put = false;
2247 audit_copy_inode(n, NULL, inode);
2250 EXPORT_SYMBOL_GPL(__audit_inode_child);
2253 * auditsc_get_stamp - get local copies of audit_context values
2254 * @ctx: audit_context for the task
2255 * @t: timespec to store time recorded in the audit_context
2256 * @serial: serial value that is recorded in the audit_context
2258 * Also sets the context as auditable.
2260 int auditsc_get_stamp(struct audit_context *ctx,
2261 struct timespec *t, unsigned int *serial)
2263 if (!ctx->in_syscall)
2266 ctx->serial = audit_serial();
2267 t->tv_sec = ctx->ctime.tv_sec;
2268 t->tv_nsec = ctx->ctime.tv_nsec;
2269 *serial = ctx->serial;
2272 ctx->current_state = AUDIT_RECORD_CONTEXT;
2277 /* global counter which is incremented every time something logs in */
2278 static atomic_t session_id = ATOMIC_INIT(0);
2281 * audit_set_loginuid - set current task's audit_context loginuid
2282 * @loginuid: loginuid value
2286 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2288 int audit_set_loginuid(kuid_t loginuid)
2290 struct task_struct *task = current;
2291 struct audit_context *context = task->audit_context;
2292 unsigned int sessionid;
2294 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2295 if (uid_valid(task->loginuid))
2297 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2298 if (!capable(CAP_AUDIT_CONTROL))
2300 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2302 sessionid = atomic_inc_return(&session_id);
2303 if (context && context->in_syscall) {
2304 struct audit_buffer *ab;
2306 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2308 audit_log_format(ab, "login pid=%d uid=%u "
2309 "old auid=%u new auid=%u"
2310 " old ses=%u new ses=%u",
2312 from_kuid(&init_user_ns, task_uid(task)),
2313 from_kuid(&init_user_ns, task->loginuid),
2314 from_kuid(&init_user_ns, loginuid),
2315 task->sessionid, sessionid);
2319 task->sessionid = sessionid;
2320 task->loginuid = loginuid;
2325 * __audit_mq_open - record audit data for a POSIX MQ open
2328 * @attr: queue attributes
2331 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2333 struct audit_context *context = current->audit_context;
2336 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2338 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2340 context->mq_open.oflag = oflag;
2341 context->mq_open.mode = mode;
2343 context->type = AUDIT_MQ_OPEN;
2347 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2348 * @mqdes: MQ descriptor
2349 * @msg_len: Message length
2350 * @msg_prio: Message priority
2351 * @abs_timeout: Message timeout in absolute time
2354 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2355 const struct timespec *abs_timeout)
2357 struct audit_context *context = current->audit_context;
2358 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2361 memcpy(p, abs_timeout, sizeof(struct timespec));
2363 memset(p, 0, sizeof(struct timespec));
2365 context->mq_sendrecv.mqdes = mqdes;
2366 context->mq_sendrecv.msg_len = msg_len;
2367 context->mq_sendrecv.msg_prio = msg_prio;
2369 context->type = AUDIT_MQ_SENDRECV;
2373 * __audit_mq_notify - record audit data for a POSIX MQ notify
2374 * @mqdes: MQ descriptor
2375 * @notification: Notification event
2379 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2381 struct audit_context *context = current->audit_context;
2384 context->mq_notify.sigev_signo = notification->sigev_signo;
2386 context->mq_notify.sigev_signo = 0;
2388 context->mq_notify.mqdes = mqdes;
2389 context->type = AUDIT_MQ_NOTIFY;
2393 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2394 * @mqdes: MQ descriptor
2398 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2400 struct audit_context *context = current->audit_context;
2401 context->mq_getsetattr.mqdes = mqdes;
2402 context->mq_getsetattr.mqstat = *mqstat;
2403 context->type = AUDIT_MQ_GETSETATTR;
2407 * audit_ipc_obj - record audit data for ipc object
2408 * @ipcp: ipc permissions
2411 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2413 struct audit_context *context = current->audit_context;
2414 context->ipc.uid = ipcp->uid;
2415 context->ipc.gid = ipcp->gid;
2416 context->ipc.mode = ipcp->mode;
2417 context->ipc.has_perm = 0;
2418 security_ipc_getsecid(ipcp, &context->ipc.osid);
2419 context->type = AUDIT_IPC;
2423 * audit_ipc_set_perm - record audit data for new ipc permissions
2424 * @qbytes: msgq bytes
2425 * @uid: msgq user id
2426 * @gid: msgq group id
2427 * @mode: msgq mode (permissions)
2429 * Called only after audit_ipc_obj().
2431 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2433 struct audit_context *context = current->audit_context;
2435 context->ipc.qbytes = qbytes;
2436 context->ipc.perm_uid = uid;
2437 context->ipc.perm_gid = gid;
2438 context->ipc.perm_mode = mode;
2439 context->ipc.has_perm = 1;
2442 int __audit_bprm(struct linux_binprm *bprm)
2444 struct audit_aux_data_execve *ax;
2445 struct audit_context *context = current->audit_context;
2447 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2451 ax->argc = bprm->argc;
2452 ax->envc = bprm->envc;
2454 ax->d.type = AUDIT_EXECVE;
2455 ax->d.next = context->aux;
2456 context->aux = (void *)ax;
2462 * audit_socketcall - record audit data for sys_socketcall
2463 * @nargs: number of args
2467 void __audit_socketcall(int nargs, unsigned long *args)
2469 struct audit_context *context = current->audit_context;
2471 context->type = AUDIT_SOCKETCALL;
2472 context->socketcall.nargs = nargs;
2473 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2477 * __audit_fd_pair - record audit data for pipe and socketpair
2478 * @fd1: the first file descriptor
2479 * @fd2: the second file descriptor
2482 void __audit_fd_pair(int fd1, int fd2)
2484 struct audit_context *context = current->audit_context;
2485 context->fds[0] = fd1;
2486 context->fds[1] = fd2;
2490 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2491 * @len: data length in user space
2492 * @a: data address in kernel space
2494 * Returns 0 for success or NULL context or < 0 on error.
2496 int __audit_sockaddr(int len, void *a)
2498 struct audit_context *context = current->audit_context;
2500 if (!context->sockaddr) {
2501 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2504 context->sockaddr = p;
2507 context->sockaddr_len = len;
2508 memcpy(context->sockaddr, a, len);
2512 void __audit_ptrace(struct task_struct *t)
2514 struct audit_context *context = current->audit_context;
2516 context->target_pid = t->pid;
2517 context->target_auid = audit_get_loginuid(t);
2518 context->target_uid = task_uid(t);
2519 context->target_sessionid = audit_get_sessionid(t);
2520 security_task_getsecid(t, &context->target_sid);
2521 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2525 * audit_signal_info - record signal info for shutting down audit subsystem
2526 * @sig: signal value
2527 * @t: task being signaled
2529 * If the audit subsystem is being terminated, record the task (pid)
2530 * and uid that is doing that.
2532 int __audit_signal_info(int sig, struct task_struct *t)
2534 struct audit_aux_data_pids *axp;
2535 struct task_struct *tsk = current;
2536 struct audit_context *ctx = tsk->audit_context;
2537 kuid_t uid = current_uid(), t_uid = task_uid(t);
2539 if (audit_pid && t->tgid == audit_pid) {
2540 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2541 audit_sig_pid = tsk->pid;
2542 if (uid_valid(tsk->loginuid))
2543 audit_sig_uid = tsk->loginuid;
2545 audit_sig_uid = uid;
2546 security_task_getsecid(tsk, &audit_sig_sid);
2548 if (!audit_signals || audit_dummy_context())
2552 /* optimize the common case by putting first signal recipient directly
2553 * in audit_context */
2554 if (!ctx->target_pid) {
2555 ctx->target_pid = t->tgid;
2556 ctx->target_auid = audit_get_loginuid(t);
2557 ctx->target_uid = t_uid;
2558 ctx->target_sessionid = audit_get_sessionid(t);
2559 security_task_getsecid(t, &ctx->target_sid);
2560 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2564 axp = (void *)ctx->aux_pids;
2565 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2566 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2570 axp->d.type = AUDIT_OBJ_PID;
2571 axp->d.next = ctx->aux_pids;
2572 ctx->aux_pids = (void *)axp;
2574 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2576 axp->target_pid[axp->pid_count] = t->tgid;
2577 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2578 axp->target_uid[axp->pid_count] = t_uid;
2579 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2580 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2581 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2588 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2589 * @bprm: pointer to the bprm being processed
2590 * @new: the proposed new credentials
2591 * @old: the old credentials
2593 * Simply check if the proc already has the caps given by the file and if not
2594 * store the priv escalation info for later auditing at the end of the syscall
2598 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2599 const struct cred *new, const struct cred *old)
2601 struct audit_aux_data_bprm_fcaps *ax;
2602 struct audit_context *context = current->audit_context;
2603 struct cpu_vfs_cap_data vcaps;
2604 struct dentry *dentry;
2606 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2610 ax->d.type = AUDIT_BPRM_FCAPS;
2611 ax->d.next = context->aux;
2612 context->aux = (void *)ax;
2614 dentry = dget(bprm->file->f_dentry);
2615 get_vfs_caps_from_disk(dentry, &vcaps);
2618 ax->fcap.permitted = vcaps.permitted;
2619 ax->fcap.inheritable = vcaps.inheritable;
2620 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2621 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2623 ax->old_pcap.permitted = old->cap_permitted;
2624 ax->old_pcap.inheritable = old->cap_inheritable;
2625 ax->old_pcap.effective = old->cap_effective;
2627 ax->new_pcap.permitted = new->cap_permitted;
2628 ax->new_pcap.inheritable = new->cap_inheritable;
2629 ax->new_pcap.effective = new->cap_effective;
2634 * __audit_log_capset - store information about the arguments to the capset syscall
2635 * @pid: target pid of the capset call
2636 * @new: the new credentials
2637 * @old: the old (current) credentials
2639 * Record the aguments userspace sent to sys_capset for later printing by the
2640 * audit system if applicable
2642 void __audit_log_capset(pid_t pid,
2643 const struct cred *new, const struct cred *old)
2645 struct audit_context *context = current->audit_context;
2646 context->capset.pid = pid;
2647 context->capset.cap.effective = new->cap_effective;
2648 context->capset.cap.inheritable = new->cap_effective;
2649 context->capset.cap.permitted = new->cap_permitted;
2650 context->type = AUDIT_CAPSET;
2653 void __audit_mmap_fd(int fd, int flags)
2655 struct audit_context *context = current->audit_context;
2656 context->mmap.fd = fd;
2657 context->mmap.flags = flags;
2658 context->type = AUDIT_MMAP;
2661 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2665 unsigned int sessionid;
2667 auid = audit_get_loginuid(current);
2668 sessionid = audit_get_sessionid(current);
2669 current_uid_gid(&uid, &gid);
2671 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2672 from_kuid(&init_user_ns, auid),
2673 from_kuid(&init_user_ns, uid),
2674 from_kgid(&init_user_ns, gid),
2676 audit_log_task_context(ab);
2677 audit_log_format(ab, " pid=%d comm=", current->pid);
2678 audit_log_untrustedstring(ab, current->comm);
2679 audit_log_format(ab, " reason=");
2680 audit_log_string(ab, reason);
2681 audit_log_format(ab, " sig=%ld", signr);
2684 * audit_core_dumps - record information about processes that end abnormally
2685 * @signr: signal value
2687 * If a process ends with a core dump, something fishy is going on and we
2688 * should record the event for investigation.
2690 void audit_core_dumps(long signr)
2692 struct audit_buffer *ab;
2697 if (signr == SIGQUIT) /* don't care for those */
2700 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2701 audit_log_abend(ab, "memory violation", signr);
2705 void __audit_seccomp(unsigned long syscall, long signr, int code)
2707 struct audit_buffer *ab;
2709 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710 audit_log_abend(ab, "seccomp", signr);
2711 audit_log_format(ab, " syscall=%ld", syscall);
2712 audit_log_format(ab, " compat=%d", is_compat_task());
2713 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2714 audit_log_format(ab, " code=0x%x", code);
2718 struct list_head *audit_killed_trees(void)
2720 struct audit_context *ctx = current->audit_context;
2721 if (likely(!ctx || !ctx->in_syscall))
2723 return &ctx->killed_trees;