1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
84 /* Indicates that audit should log the full pathname. */
85 #define AUDIT_NAME_FULL -1
87 /* no execve audit message should be longer than this (userspace limits) */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* number of audit rules */
93 /* determines whether we collect data for signals sent */
96 struct audit_cap_data {
97 kernel_cap_t permitted;
98 kernel_cap_t inheritable;
100 unsigned int fE; /* effective bit of a file capability */
101 kernel_cap_t effective; /* effective set of a process */
105 /* When fs/namei.c:getname() is called, we store the pointer in name and
106 * we don't let putname() free it (instead we free all of the saved
107 * pointers at syscall exit time).
109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
111 struct list_head list; /* audit_context->names_list */
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 int name_len; /* number of name's characters to log */
123 unsigned char type; /* record type */
124 bool name_put; /* call __putname() for this name */
126 * This was an allocated audit_names and not from the array of
127 * names allocated in the task audit context. Thus this name
128 * should be freed on syscall exit
133 struct audit_aux_data {
134 struct audit_aux_data *next;
138 #define AUDIT_AUX_IPCPERM 0
140 /* Number of target pids per aux struct. */
141 #define AUDIT_AUX_PIDS 16
143 struct audit_aux_data_execve {
144 struct audit_aux_data d;
147 struct mm_struct *mm;
150 struct audit_aux_data_pids {
151 struct audit_aux_data d;
152 pid_t target_pid[AUDIT_AUX_PIDS];
153 kuid_t target_auid[AUDIT_AUX_PIDS];
154 kuid_t target_uid[AUDIT_AUX_PIDS];
155 unsigned int target_sessionid[AUDIT_AUX_PIDS];
156 u32 target_sid[AUDIT_AUX_PIDS];
157 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
161 struct audit_aux_data_bprm_fcaps {
162 struct audit_aux_data d;
163 struct audit_cap_data fcap;
164 unsigned int fcap_ver;
165 struct audit_cap_data old_pcap;
166 struct audit_cap_data new_pcap;
169 struct audit_aux_data_capset {
170 struct audit_aux_data d;
172 struct audit_cap_data cap;
175 struct audit_tree_refs {
176 struct audit_tree_refs *next;
177 struct audit_chunk *c[31];
180 /* The per-task audit context. */
181 struct audit_context {
182 int dummy; /* must be the first element */
183 int in_syscall; /* 1 if task is in a syscall */
184 enum audit_state state, current_state;
185 unsigned int serial; /* serial number for record */
186 int major; /* syscall number */
187 struct timespec ctime; /* time of syscall entry */
188 unsigned long argv[4]; /* syscall arguments */
189 long return_code;/* syscall return code */
191 int return_valid; /* return code is valid */
193 * The names_list is the list of all audit_names collected during this
194 * syscall. The first AUDIT_NAMES entries in the names_list will
195 * actually be from the preallocated_names array for performance
196 * reasons. Except during allocation they should never be referenced
197 * through the preallocated_names array and should only be found/used
198 * by running the names_list.
200 struct audit_names preallocated_names[AUDIT_NAMES];
201 int name_count; /* total records in names_list */
202 struct list_head names_list; /* anchor for struct audit_names->list */
203 char * filterkey; /* key for rule that triggered record */
205 struct audit_context *previous; /* For nested syscalls */
206 struct audit_aux_data *aux;
207 struct audit_aux_data *aux_pids;
208 struct sockaddr_storage *sockaddr;
210 /* Save things to print about task_struct */
212 kuid_t uid, euid, suid, fsuid;
213 kgid_t gid, egid, sgid, fsgid;
214 unsigned long personality;
220 unsigned int target_sessionid;
222 char target_comm[TASK_COMM_LEN];
224 struct audit_tree_refs *trees, *first_trees;
225 struct list_head killed_trees;
243 unsigned long qbytes;
247 struct mq_attr mqstat;
256 unsigned int msg_prio;
257 struct timespec abs_timeout;
266 struct audit_cap_data cap;
281 static inline int open_arg(int flags, int mask)
283 int n = ACC_MODE(flags);
284 if (flags & (O_TRUNC | O_CREAT))
285 n |= AUDIT_PERM_WRITE;
289 static int audit_match_perm(struct audit_context *ctx, int mask)
296 switch (audit_classify_syscall(ctx->arch, n)) {
298 if ((mask & AUDIT_PERM_WRITE) &&
299 audit_match_class(AUDIT_CLASS_WRITE, n))
301 if ((mask & AUDIT_PERM_READ) &&
302 audit_match_class(AUDIT_CLASS_READ, n))
304 if ((mask & AUDIT_PERM_ATTR) &&
305 audit_match_class(AUDIT_CLASS_CHATTR, n))
308 case 1: /* 32bit on biarch */
309 if ((mask & AUDIT_PERM_WRITE) &&
310 audit_match_class(AUDIT_CLASS_WRITE_32, n))
312 if ((mask & AUDIT_PERM_READ) &&
313 audit_match_class(AUDIT_CLASS_READ_32, n))
315 if ((mask & AUDIT_PERM_ATTR) &&
316 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
320 return mask & ACC_MODE(ctx->argv[1]);
322 return mask & ACC_MODE(ctx->argv[2]);
323 case 4: /* socketcall */
324 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
326 return mask & AUDIT_PERM_EXEC;
332 static int audit_match_filetype(struct audit_context *ctx, int val)
334 struct audit_names *n;
335 umode_t mode = (umode_t)val;
340 list_for_each_entry(n, &ctx->names_list, list) {
341 if ((n->ino != -1) &&
342 ((n->mode & S_IFMT) == mode))
350 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
351 * ->first_trees points to its beginning, ->trees - to the current end of data.
352 * ->tree_count is the number of free entries in array pointed to by ->trees.
353 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
354 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
355 * it's going to remain 1-element for almost any setup) until we free context itself.
356 * References in it _are_ dropped - at the same time we free/drop aux stuff.
359 #ifdef CONFIG_AUDIT_TREE
360 static void audit_set_auditable(struct audit_context *ctx)
364 ctx->current_state = AUDIT_RECORD_CONTEXT;
368 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
370 struct audit_tree_refs *p = ctx->trees;
371 int left = ctx->tree_count;
373 p->c[--left] = chunk;
374 ctx->tree_count = left;
383 ctx->tree_count = 30;
389 static int grow_tree_refs(struct audit_context *ctx)
391 struct audit_tree_refs *p = ctx->trees;
392 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
398 p->next = ctx->trees;
400 ctx->first_trees = ctx->trees;
401 ctx->tree_count = 31;
406 static void unroll_tree_refs(struct audit_context *ctx,
407 struct audit_tree_refs *p, int count)
409 #ifdef CONFIG_AUDIT_TREE
410 struct audit_tree_refs *q;
413 /* we started with empty chain */
414 p = ctx->first_trees;
416 /* if the very first allocation has failed, nothing to do */
421 for (q = p; q != ctx->trees; q = q->next, n = 31) {
423 audit_put_chunk(q->c[n]);
427 while (n-- > ctx->tree_count) {
428 audit_put_chunk(q->c[n]);
432 ctx->tree_count = count;
436 static void free_tree_refs(struct audit_context *ctx)
438 struct audit_tree_refs *p, *q;
439 for (p = ctx->first_trees; p; p = q) {
445 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
447 #ifdef CONFIG_AUDIT_TREE
448 struct audit_tree_refs *p;
453 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
454 for (n = 0; n < 31; n++)
455 if (audit_tree_match(p->c[n], tree))
460 for (n = ctx->tree_count; n < 31; n++)
461 if (audit_tree_match(p->c[n], tree))
468 static int audit_compare_uid(kuid_t uid,
469 struct audit_names *name,
470 struct audit_field *f,
471 struct audit_context *ctx)
473 struct audit_names *n;
477 rc = audit_uid_comparator(uid, f->op, name->uid);
483 list_for_each_entry(n, &ctx->names_list, list) {
484 rc = audit_uid_comparator(uid, f->op, n->uid);
492 static int audit_compare_gid(kgid_t gid,
493 struct audit_names *name,
494 struct audit_field *f,
495 struct audit_context *ctx)
497 struct audit_names *n;
501 rc = audit_gid_comparator(gid, f->op, name->gid);
507 list_for_each_entry(n, &ctx->names_list, list) {
508 rc = audit_gid_comparator(gid, f->op, n->gid);
516 static int audit_field_compare(struct task_struct *tsk,
517 const struct cred *cred,
518 struct audit_field *f,
519 struct audit_context *ctx,
520 struct audit_names *name)
523 /* process to file object comparisons */
524 case AUDIT_COMPARE_UID_TO_OBJ_UID:
525 return audit_compare_uid(cred->uid, name, f, ctx);
526 case AUDIT_COMPARE_GID_TO_OBJ_GID:
527 return audit_compare_gid(cred->gid, name, f, ctx);
528 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
529 return audit_compare_uid(cred->euid, name, f, ctx);
530 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
531 return audit_compare_gid(cred->egid, name, f, ctx);
532 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
533 return audit_compare_uid(tsk->loginuid, name, f, ctx);
534 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
535 return audit_compare_uid(cred->suid, name, f, ctx);
536 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
537 return audit_compare_gid(cred->sgid, name, f, ctx);
538 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
539 return audit_compare_uid(cred->fsuid, name, f, ctx);
540 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
541 return audit_compare_gid(cred->fsgid, name, f, ctx);
542 /* uid comparisons */
543 case AUDIT_COMPARE_UID_TO_AUID:
544 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
545 case AUDIT_COMPARE_UID_TO_EUID:
546 return audit_uid_comparator(cred->uid, f->op, cred->euid);
547 case AUDIT_COMPARE_UID_TO_SUID:
548 return audit_uid_comparator(cred->uid, f->op, cred->suid);
549 case AUDIT_COMPARE_UID_TO_FSUID:
550 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
551 /* auid comparisons */
552 case AUDIT_COMPARE_AUID_TO_EUID:
553 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
554 case AUDIT_COMPARE_AUID_TO_SUID:
555 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
556 case AUDIT_COMPARE_AUID_TO_FSUID:
557 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
558 /* euid comparisons */
559 case AUDIT_COMPARE_EUID_TO_SUID:
560 return audit_uid_comparator(cred->euid, f->op, cred->suid);
561 case AUDIT_COMPARE_EUID_TO_FSUID:
562 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
563 /* suid comparisons */
564 case AUDIT_COMPARE_SUID_TO_FSUID:
565 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
566 /* gid comparisons */
567 case AUDIT_COMPARE_GID_TO_EGID:
568 return audit_gid_comparator(cred->gid, f->op, cred->egid);
569 case AUDIT_COMPARE_GID_TO_SGID:
570 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
571 case AUDIT_COMPARE_GID_TO_FSGID:
572 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
573 /* egid comparisons */
574 case AUDIT_COMPARE_EGID_TO_SGID:
575 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
576 case AUDIT_COMPARE_EGID_TO_FSGID:
577 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
578 /* sgid comparison */
579 case AUDIT_COMPARE_SGID_TO_FSGID:
580 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
582 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
588 /* Determine if any context name data matches a rule's watch data */
589 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
592 * If task_creation is true, this is an explicit indication that we are
593 * filtering a task rule at task creation time. This and tsk == current are
594 * the only situations where tsk->cred may be accessed without an rcu read lock.
596 static int audit_filter_rules(struct task_struct *tsk,
597 struct audit_krule *rule,
598 struct audit_context *ctx,
599 struct audit_names *name,
600 enum audit_state *state,
603 const struct cred *cred;
607 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
609 for (i = 0; i < rule->field_count; i++) {
610 struct audit_field *f = &rule->fields[i];
611 struct audit_names *n;
616 result = audit_comparator(tsk->pid, f->op, f->val);
621 ctx->ppid = sys_getppid();
622 result = audit_comparator(ctx->ppid, f->op, f->val);
626 result = audit_uid_comparator(cred->uid, f->op, f->uid);
629 result = audit_uid_comparator(cred->euid, f->op, f->uid);
632 result = audit_uid_comparator(cred->suid, f->op, f->uid);
635 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
638 result = audit_gid_comparator(cred->gid, f->op, f->gid);
641 result = audit_gid_comparator(cred->egid, f->op, f->gid);
644 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
647 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
650 result = audit_comparator(tsk->personality, f->op, f->val);
654 result = audit_comparator(ctx->arch, f->op, f->val);
658 if (ctx && ctx->return_valid)
659 result = audit_comparator(ctx->return_code, f->op, f->val);
662 if (ctx && ctx->return_valid) {
664 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
666 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
671 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
672 audit_comparator(MAJOR(name->rdev), f->op, f->val))
675 list_for_each_entry(n, &ctx->names_list, list) {
676 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
677 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
686 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
687 audit_comparator(MINOR(name->rdev), f->op, f->val))
690 list_for_each_entry(n, &ctx->names_list, list) {
691 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
692 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
701 result = (name->ino == f->val);
703 list_for_each_entry(n, &ctx->names_list, list) {
704 if (audit_comparator(n->ino, f->op, f->val)) {
713 result = audit_uid_comparator(name->uid, f->op, f->uid);
715 list_for_each_entry(n, &ctx->names_list, list) {
716 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
725 result = audit_gid_comparator(name->gid, f->op, f->gid);
727 list_for_each_entry(n, &ctx->names_list, list) {
728 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
737 result = audit_watch_compare(rule->watch, name->ino, name->dev);
741 result = match_tree_refs(ctx, rule->tree);
746 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
748 case AUDIT_SUBJ_USER:
749 case AUDIT_SUBJ_ROLE:
750 case AUDIT_SUBJ_TYPE:
753 /* NOTE: this may return negative values indicating
754 a temporary error. We simply treat this as a
755 match for now to avoid losing information that
756 may be wanted. An error message will also be
760 security_task_getsecid(tsk, &sid);
763 result = security_audit_rule_match(sid, f->type,
772 case AUDIT_OBJ_LEV_LOW:
773 case AUDIT_OBJ_LEV_HIGH:
774 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
777 /* Find files that match */
779 result = security_audit_rule_match(
780 name->osid, f->type, f->op,
783 list_for_each_entry(n, &ctx->names_list, list) {
784 if (security_audit_rule_match(n->osid, f->type,
792 /* Find ipc objects that match */
793 if (!ctx || ctx->type != AUDIT_IPC)
795 if (security_audit_rule_match(ctx->ipc.osid,
806 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
808 case AUDIT_FILTERKEY:
809 /* ignore this field for filtering */
813 result = audit_match_perm(ctx, f->val);
816 result = audit_match_filetype(ctx, f->val);
818 case AUDIT_FIELD_COMPARE:
819 result = audit_field_compare(tsk, cred, f, ctx, name);
827 if (rule->prio <= ctx->prio)
829 if (rule->filterkey) {
830 kfree(ctx->filterkey);
831 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
833 ctx->prio = rule->prio;
835 switch (rule->action) {
836 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
837 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
842 /* At process creation time, we can determine if system-call auditing is
843 * completely disabled for this task. Since we only have the task
844 * structure at this point, we can only check uid and gid.
846 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
848 struct audit_entry *e;
849 enum audit_state state;
852 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
853 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
855 if (state == AUDIT_RECORD_CONTEXT)
856 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
862 return AUDIT_BUILD_CONTEXT;
865 /* At syscall entry and exit time, this filter is called if the
866 * audit_state is not low enough that auditing cannot take place, but is
867 * also not high enough that we already know we have to write an audit
868 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
870 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
871 struct audit_context *ctx,
872 struct list_head *list)
874 struct audit_entry *e;
875 enum audit_state state;
877 if (audit_pid && tsk->tgid == audit_pid)
878 return AUDIT_DISABLED;
881 if (!list_empty(list)) {
882 int word = AUDIT_WORD(ctx->major);
883 int bit = AUDIT_BIT(ctx->major);
885 list_for_each_entry_rcu(e, list, list) {
886 if ((e->rule.mask[word] & bit) == bit &&
887 audit_filter_rules(tsk, &e->rule, ctx, NULL,
890 ctx->current_state = state;
896 return AUDIT_BUILD_CONTEXT;
900 * Given an audit_name check the inode hash table to see if they match.
901 * Called holding the rcu read lock to protect the use of audit_inode_hash
903 static int audit_filter_inode_name(struct task_struct *tsk,
904 struct audit_names *n,
905 struct audit_context *ctx) {
907 int h = audit_hash_ino((u32)n->ino);
908 struct list_head *list = &audit_inode_hash[h];
909 struct audit_entry *e;
910 enum audit_state state;
912 word = AUDIT_WORD(ctx->major);
913 bit = AUDIT_BIT(ctx->major);
915 if (list_empty(list))
918 list_for_each_entry_rcu(e, list, list) {
919 if ((e->rule.mask[word] & bit) == bit &&
920 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
921 ctx->current_state = state;
929 /* At syscall exit time, this filter is called if any audit_names have been
930 * collected during syscall processing. We only check rules in sublists at hash
931 * buckets applicable to the inode numbers in audit_names.
932 * Regarding audit_state, same rules apply as for audit_filter_syscall().
934 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
936 struct audit_names *n;
938 if (audit_pid && tsk->tgid == audit_pid)
943 list_for_each_entry(n, &ctx->names_list, list) {
944 if (audit_filter_inode_name(tsk, n, ctx))
950 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
954 struct audit_context *context = tsk->audit_context;
958 context->return_valid = return_valid;
961 * we need to fix up the return code in the audit logs if the actual
962 * return codes are later going to be fixed up by the arch specific
965 * This is actually a test for:
966 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
967 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
969 * but is faster than a bunch of ||
971 if (unlikely(return_code <= -ERESTARTSYS) &&
972 (return_code >= -ERESTART_RESTARTBLOCK) &&
973 (return_code != -ENOIOCTLCMD))
974 context->return_code = -EINTR;
976 context->return_code = return_code;
978 if (context->in_syscall && !context->dummy) {
979 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
980 audit_filter_inodes(tsk, context);
983 tsk->audit_context = NULL;
987 static inline void audit_free_names(struct audit_context *context)
989 struct audit_names *n, *next;
992 if (context->put_count + context->ino_count != context->name_count) {
993 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
994 " name_count=%d put_count=%d"
995 " ino_count=%d [NOT freeing]\n",
997 context->serial, context->major, context->in_syscall,
998 context->name_count, context->put_count,
1000 list_for_each_entry(n, &context->names_list, list) {
1001 printk(KERN_ERR "names[%d] = %p = %s\n", i,
1002 n->name, n->name ?: "(null)");
1009 context->put_count = 0;
1010 context->ino_count = 0;
1013 list_for_each_entry_safe(n, next, &context->names_list, list) {
1015 if (n->name && n->name_put)
1020 context->name_count = 0;
1021 path_put(&context->pwd);
1022 context->pwd.dentry = NULL;
1023 context->pwd.mnt = NULL;
1026 static inline void audit_free_aux(struct audit_context *context)
1028 struct audit_aux_data *aux;
1030 while ((aux = context->aux)) {
1031 context->aux = aux->next;
1034 while ((aux = context->aux_pids)) {
1035 context->aux_pids = aux->next;
1040 static inline void audit_zero_context(struct audit_context *context,
1041 enum audit_state state)
1043 memset(context, 0, sizeof(*context));
1044 context->state = state;
1045 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1048 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1050 struct audit_context *context;
1052 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1054 audit_zero_context(context, state);
1055 INIT_LIST_HEAD(&context->killed_trees);
1056 INIT_LIST_HEAD(&context->names_list);
1061 * audit_alloc - allocate an audit context block for a task
1064 * Filter on the task information and allocate a per-task audit context
1065 * if necessary. Doing so turns on system call auditing for the
1066 * specified task. This is called from copy_process, so no lock is
1069 int audit_alloc(struct task_struct *tsk)
1071 struct audit_context *context;
1072 enum audit_state state;
1075 if (likely(!audit_ever_enabled))
1076 return 0; /* Return if not auditing. */
1078 state = audit_filter_task(tsk, &key);
1079 if (state == AUDIT_DISABLED)
1082 if (!(context = audit_alloc_context(state))) {
1084 audit_log_lost("out of memory in audit_alloc");
1087 context->filterkey = key;
1089 tsk->audit_context = context;
1090 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1094 static inline void audit_free_context(struct audit_context *context)
1096 struct audit_context *previous;
1100 previous = context->previous;
1101 if (previous || (count && count < 10)) {
1103 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1104 " freeing multiple contexts (%d)\n",
1105 context->serial, context->major,
1106 context->name_count, count);
1108 audit_free_names(context);
1109 unroll_tree_refs(context, NULL, 0);
1110 free_tree_refs(context);
1111 audit_free_aux(context);
1112 kfree(context->filterkey);
1113 kfree(context->sockaddr);
1118 printk(KERN_ERR "audit: freed %d contexts\n", count);
1121 void audit_log_task_context(struct audit_buffer *ab)
1128 security_task_getsecid(current, &sid);
1132 error = security_secid_to_secctx(sid, &ctx, &len);
1134 if (error != -EINVAL)
1139 audit_log_format(ab, " subj=%s", ctx);
1140 security_release_secctx(ctx, len);
1144 audit_panic("error in audit_log_task_context");
1148 EXPORT_SYMBOL(audit_log_task_context);
1150 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1152 const struct cred *cred;
1153 char name[sizeof(tsk->comm)];
1154 struct mm_struct *mm = tsk->mm;
1160 /* tsk == current */
1161 cred = current_cred();
1163 spin_lock_irq(&tsk->sighand->siglock);
1164 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1165 tty = tsk->signal->tty->name;
1168 spin_unlock_irq(&tsk->sighand->siglock);
1171 audit_log_format(ab,
1172 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1173 " euid=%u suid=%u fsuid=%u"
1174 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1177 from_kuid(&init_user_ns, tsk->loginuid),
1178 from_kuid(&init_user_ns, cred->uid),
1179 from_kgid(&init_user_ns, cred->gid),
1180 from_kuid(&init_user_ns, cred->euid),
1181 from_kuid(&init_user_ns, cred->suid),
1182 from_kuid(&init_user_ns, cred->fsuid),
1183 from_kgid(&init_user_ns, cred->egid),
1184 from_kgid(&init_user_ns, cred->sgid),
1185 from_kgid(&init_user_ns, cred->fsgid),
1186 tsk->sessionid, tty);
1188 get_task_comm(name, tsk);
1189 audit_log_format(ab, " comm=");
1190 audit_log_untrustedstring(ab, name);
1193 down_read(&mm->mmap_sem);
1195 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1196 up_read(&mm->mmap_sem);
1198 audit_log_task_context(ab);
1201 EXPORT_SYMBOL(audit_log_task_info);
1203 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1204 kuid_t auid, kuid_t uid, unsigned int sessionid,
1205 u32 sid, char *comm)
1207 struct audit_buffer *ab;
1212 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1216 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1217 from_kuid(&init_user_ns, auid),
1218 from_kuid(&init_user_ns, uid), sessionid);
1219 if (security_secid_to_secctx(sid, &ctx, &len)) {
1220 audit_log_format(ab, " obj=(none)");
1223 audit_log_format(ab, " obj=%s", ctx);
1224 security_release_secctx(ctx, len);
1226 audit_log_format(ab, " ocomm=");
1227 audit_log_untrustedstring(ab, comm);
1234 * to_send and len_sent accounting are very loose estimates. We aren't
1235 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1236 * within about 500 bytes (next page boundary)
1238 * why snprintf? an int is up to 12 digits long. if we just assumed when
1239 * logging that a[%d]= was going to be 16 characters long we would be wasting
1240 * space in every audit message. In one 7500 byte message we can log up to
1241 * about 1000 min size arguments. That comes down to about 50% waste of space
1242 * if we didn't do the snprintf to find out how long arg_num_len was.
1244 static int audit_log_single_execve_arg(struct audit_context *context,
1245 struct audit_buffer **ab,
1248 const char __user *p,
1251 char arg_num_len_buf[12];
1252 const char __user *tmp_p = p;
1253 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1254 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1255 size_t len, len_left, to_send;
1256 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1257 unsigned int i, has_cntl = 0, too_long = 0;
1260 /* strnlen_user includes the null we don't want to send */
1261 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1264 * We just created this mm, if we can't find the strings
1265 * we just copied into it something is _very_ wrong. Similar
1266 * for strings that are too long, we should not have created
1269 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1271 send_sig(SIGKILL, current, 0);
1275 /* walk the whole argument looking for non-ascii chars */
1277 if (len_left > MAX_EXECVE_AUDIT_LEN)
1278 to_send = MAX_EXECVE_AUDIT_LEN;
1281 ret = copy_from_user(buf, tmp_p, to_send);
1283 * There is no reason for this copy to be short. We just
1284 * copied them here, and the mm hasn't been exposed to user-
1289 send_sig(SIGKILL, current, 0);
1292 buf[to_send] = '\0';
1293 has_cntl = audit_string_contains_control(buf, to_send);
1296 * hex messages get logged as 2 bytes, so we can only
1297 * send half as much in each message
1299 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1302 len_left -= to_send;
1304 } while (len_left > 0);
1308 if (len > max_execve_audit_len)
1311 /* rewalk the argument actually logging the message */
1312 for (i = 0; len_left > 0; i++) {
1315 if (len_left > max_execve_audit_len)
1316 to_send = max_execve_audit_len;
1320 /* do we have space left to send this argument in this ab? */
1321 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1323 room_left -= (to_send * 2);
1325 room_left -= to_send;
1326 if (room_left < 0) {
1329 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1335 * first record needs to say how long the original string was
1336 * so we can be sure nothing was lost.
1338 if ((i == 0) && (too_long))
1339 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1340 has_cntl ? 2*len : len);
1343 * normally arguments are small enough to fit and we already
1344 * filled buf above when we checked for control characters
1345 * so don't bother with another copy_from_user
1347 if (len >= max_execve_audit_len)
1348 ret = copy_from_user(buf, p, to_send);
1353 send_sig(SIGKILL, current, 0);
1356 buf[to_send] = '\0';
1358 /* actually log it */
1359 audit_log_format(*ab, " a%d", arg_num);
1361 audit_log_format(*ab, "[%d]", i);
1362 audit_log_format(*ab, "=");
1364 audit_log_n_hex(*ab, buf, to_send);
1366 audit_log_string(*ab, buf);
1369 len_left -= to_send;
1370 *len_sent += arg_num_len;
1372 *len_sent += to_send * 2;
1374 *len_sent += to_send;
1376 /* include the null we didn't log */
1380 static void audit_log_execve_info(struct audit_context *context,
1381 struct audit_buffer **ab,
1382 struct audit_aux_data_execve *axi)
1385 size_t len_sent = 0;
1386 const char __user *p;
1389 if (axi->mm != current->mm)
1390 return; /* execve failed, no additional info */
1392 p = (const char __user *)axi->mm->arg_start;
1394 audit_log_format(*ab, "argc=%d", axi->argc);
1397 * we need some kernel buffer to hold the userspace args. Just
1398 * allocate one big one rather than allocating one of the right size
1399 * for every single argument inside audit_log_single_execve_arg()
1400 * should be <8k allocation so should be pretty safe.
1402 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1404 audit_panic("out of memory for argv string\n");
1408 for (i = 0; i < axi->argc; i++) {
1409 len = audit_log_single_execve_arg(context, ab, i,
1418 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1422 audit_log_format(ab, " %s=", prefix);
1423 CAP_FOR_EACH_U32(i) {
1424 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1428 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1430 kernel_cap_t *perm = &name->fcap.permitted;
1431 kernel_cap_t *inh = &name->fcap.inheritable;
1434 if (!cap_isclear(*perm)) {
1435 audit_log_cap(ab, "cap_fp", perm);
1438 if (!cap_isclear(*inh)) {
1439 audit_log_cap(ab, "cap_fi", inh);
1444 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1447 static void show_special(struct audit_context *context, int *call_panic)
1449 struct audit_buffer *ab;
1452 ab = audit_log_start(context, GFP_KERNEL, context->type);
1456 switch (context->type) {
1457 case AUDIT_SOCKETCALL: {
1458 int nargs = context->socketcall.nargs;
1459 audit_log_format(ab, "nargs=%d", nargs);
1460 for (i = 0; i < nargs; i++)
1461 audit_log_format(ab, " a%d=%lx", i,
1462 context->socketcall.args[i]);
1465 u32 osid = context->ipc.osid;
1467 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1468 from_kuid(&init_user_ns, context->ipc.uid),
1469 from_kgid(&init_user_ns, context->ipc.gid),
1474 if (security_secid_to_secctx(osid, &ctx, &len)) {
1475 audit_log_format(ab, " osid=%u", osid);
1478 audit_log_format(ab, " obj=%s", ctx);
1479 security_release_secctx(ctx, len);
1482 if (context->ipc.has_perm) {
1484 ab = audit_log_start(context, GFP_KERNEL,
1485 AUDIT_IPC_SET_PERM);
1486 audit_log_format(ab,
1487 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1488 context->ipc.qbytes,
1489 context->ipc.perm_uid,
1490 context->ipc.perm_gid,
1491 context->ipc.perm_mode);
1496 case AUDIT_MQ_OPEN: {
1497 audit_log_format(ab,
1498 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1499 "mq_msgsize=%ld mq_curmsgs=%ld",
1500 context->mq_open.oflag, context->mq_open.mode,
1501 context->mq_open.attr.mq_flags,
1502 context->mq_open.attr.mq_maxmsg,
1503 context->mq_open.attr.mq_msgsize,
1504 context->mq_open.attr.mq_curmsgs);
1506 case AUDIT_MQ_SENDRECV: {
1507 audit_log_format(ab,
1508 "mqdes=%d msg_len=%zd msg_prio=%u "
1509 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1510 context->mq_sendrecv.mqdes,
1511 context->mq_sendrecv.msg_len,
1512 context->mq_sendrecv.msg_prio,
1513 context->mq_sendrecv.abs_timeout.tv_sec,
1514 context->mq_sendrecv.abs_timeout.tv_nsec);
1516 case AUDIT_MQ_NOTIFY: {
1517 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1518 context->mq_notify.mqdes,
1519 context->mq_notify.sigev_signo);
1521 case AUDIT_MQ_GETSETATTR: {
1522 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1523 audit_log_format(ab,
1524 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1526 context->mq_getsetattr.mqdes,
1527 attr->mq_flags, attr->mq_maxmsg,
1528 attr->mq_msgsize, attr->mq_curmsgs);
1530 case AUDIT_CAPSET: {
1531 audit_log_format(ab, "pid=%d", context->capset.pid);
1532 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1533 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1534 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1537 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1538 context->mmap.flags);
1544 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1545 int record_num, int *call_panic)
1547 struct audit_buffer *ab;
1548 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1550 return; /* audit_panic has been called */
1552 audit_log_format(ab, "item=%d", record_num);
1555 switch (n->name_len) {
1556 case AUDIT_NAME_FULL:
1557 /* log the full path */
1558 audit_log_format(ab, " name=");
1559 audit_log_untrustedstring(ab, n->name);
1562 /* name was specified as a relative path and the
1563 * directory component is the cwd */
1564 audit_log_d_path(ab, " name=", &context->pwd);
1567 /* log the name's directory component */
1568 audit_log_format(ab, " name=");
1569 audit_log_n_untrustedstring(ab, n->name,
1573 audit_log_format(ab, " name=(null)");
1575 if (n->ino != (unsigned long)-1) {
1576 audit_log_format(ab, " inode=%lu"
1577 " dev=%02x:%02x mode=%#ho"
1578 " ouid=%u ogid=%u rdev=%02x:%02x",
1583 from_kuid(&init_user_ns, n->uid),
1584 from_kgid(&init_user_ns, n->gid),
1591 if (security_secid_to_secctx(
1592 n->osid, &ctx, &len)) {
1593 audit_log_format(ab, " osid=%u", n->osid);
1596 audit_log_format(ab, " obj=%s", ctx);
1597 security_release_secctx(ctx, len);
1601 audit_log_fcaps(ab, n);
1606 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1608 int i, call_panic = 0;
1609 struct audit_buffer *ab;
1610 struct audit_aux_data *aux;
1611 struct audit_names *n;
1613 /* tsk == current */
1614 context->personality = tsk->personality;
1616 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1618 return; /* audit_panic has been called */
1619 audit_log_format(ab, "arch=%x syscall=%d",
1620 context->arch, context->major);
1621 if (context->personality != PER_LINUX)
1622 audit_log_format(ab, " per=%lx", context->personality);
1623 if (context->return_valid)
1624 audit_log_format(ab, " success=%s exit=%ld",
1625 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1626 context->return_code);
1628 audit_log_format(ab,
1629 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1634 context->name_count);
1636 audit_log_task_info(ab, tsk);
1637 audit_log_key(ab, context->filterkey);
1640 for (aux = context->aux; aux; aux = aux->next) {
1642 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1644 continue; /* audit_panic has been called */
1646 switch (aux->type) {
1648 case AUDIT_EXECVE: {
1649 struct audit_aux_data_execve *axi = (void *)aux;
1650 audit_log_execve_info(context, &ab, axi);
1653 case AUDIT_BPRM_FCAPS: {
1654 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1655 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1656 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1657 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1658 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1659 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1660 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1661 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1662 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1663 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1664 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1672 show_special(context, &call_panic);
1674 if (context->fds[0] >= 0) {
1675 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1677 audit_log_format(ab, "fd0=%d fd1=%d",
1678 context->fds[0], context->fds[1]);
1683 if (context->sockaddr_len) {
1684 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1686 audit_log_format(ab, "saddr=");
1687 audit_log_n_hex(ab, (void *)context->sockaddr,
1688 context->sockaddr_len);
1693 for (aux = context->aux_pids; aux; aux = aux->next) {
1694 struct audit_aux_data_pids *axs = (void *)aux;
1696 for (i = 0; i < axs->pid_count; i++)
1697 if (audit_log_pid_context(context, axs->target_pid[i],
1698 axs->target_auid[i],
1700 axs->target_sessionid[i],
1702 axs->target_comm[i]))
1706 if (context->target_pid &&
1707 audit_log_pid_context(context, context->target_pid,
1708 context->target_auid, context->target_uid,
1709 context->target_sessionid,
1710 context->target_sid, context->target_comm))
1713 if (context->pwd.dentry && context->pwd.mnt) {
1714 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1716 audit_log_d_path(ab, " cwd=", &context->pwd);
1722 list_for_each_entry(n, &context->names_list, list)
1723 audit_log_name(context, n, i++, &call_panic);
1725 /* Send end of event record to help user space know we are finished */
1726 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1730 audit_panic("error converting sid to string");
1734 * audit_free - free a per-task audit context
1735 * @tsk: task whose audit context block to free
1737 * Called from copy_process and do_exit
1739 void __audit_free(struct task_struct *tsk)
1741 struct audit_context *context;
1743 context = audit_get_context(tsk, 0, 0);
1747 /* Check for system calls that do not go through the exit
1748 * function (e.g., exit_group), then free context block.
1749 * We use GFP_ATOMIC here because we might be doing this
1750 * in the context of the idle thread */
1751 /* that can happen only if we are called from do_exit() */
1752 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1753 audit_log_exit(context, tsk);
1754 if (!list_empty(&context->killed_trees))
1755 audit_kill_trees(&context->killed_trees);
1757 audit_free_context(context);
1761 * audit_syscall_entry - fill in an audit record at syscall entry
1762 * @arch: architecture type
1763 * @major: major syscall type (function)
1764 * @a1: additional syscall register 1
1765 * @a2: additional syscall register 2
1766 * @a3: additional syscall register 3
1767 * @a4: additional syscall register 4
1769 * Fill in audit context at syscall entry. This only happens if the
1770 * audit context was created when the task was created and the state or
1771 * filters demand the audit context be built. If the state from the
1772 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1773 * then the record will be written at syscall exit time (otherwise, it
1774 * will only be written if another part of the kernel requests that it
1777 void __audit_syscall_entry(int arch, int major,
1778 unsigned long a1, unsigned long a2,
1779 unsigned long a3, unsigned long a4)
1781 struct task_struct *tsk = current;
1782 struct audit_context *context = tsk->audit_context;
1783 enum audit_state state;
1789 * This happens only on certain architectures that make system
1790 * calls in kernel_thread via the entry.S interface, instead of
1791 * with direct calls. (If you are porting to a new
1792 * architecture, hitting this condition can indicate that you
1793 * got the _exit/_leave calls backward in entry.S.)
1797 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1799 * This also happens with vm86 emulation in a non-nested manner
1800 * (entries without exits), so this case must be caught.
1802 if (context->in_syscall) {
1803 struct audit_context *newctx;
1807 "audit(:%d) pid=%d in syscall=%d;"
1808 " entering syscall=%d\n",
1809 context->serial, tsk->pid, context->major, major);
1811 newctx = audit_alloc_context(context->state);
1813 newctx->previous = context;
1815 tsk->audit_context = newctx;
1817 /* If we can't alloc a new context, the best we
1818 * can do is to leak memory (any pending putname
1819 * will be lost). The only other alternative is
1820 * to abandon auditing. */
1821 audit_zero_context(context, context->state);
1824 BUG_ON(context->in_syscall || context->name_count);
1829 context->arch = arch;
1830 context->major = major;
1831 context->argv[0] = a1;
1832 context->argv[1] = a2;
1833 context->argv[2] = a3;
1834 context->argv[3] = a4;
1836 state = context->state;
1837 context->dummy = !audit_n_rules;
1838 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1840 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1842 if (state == AUDIT_DISABLED)
1845 context->serial = 0;
1846 context->ctime = CURRENT_TIME;
1847 context->in_syscall = 1;
1848 context->current_state = state;
1853 * audit_syscall_exit - deallocate audit context after a system call
1854 * @success: success value of the syscall
1855 * @return_code: return value of the syscall
1857 * Tear down after system call. If the audit context has been marked as
1858 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1859 * filtering, or because some other part of the kernel wrote an audit
1860 * message), then write out the syscall information. In call cases,
1861 * free the names stored from getname().
1863 void __audit_syscall_exit(int success, long return_code)
1865 struct task_struct *tsk = current;
1866 struct audit_context *context;
1869 success = AUDITSC_SUCCESS;
1871 success = AUDITSC_FAILURE;
1873 context = audit_get_context(tsk, success, return_code);
1877 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1878 audit_log_exit(context, tsk);
1880 context->in_syscall = 0;
1881 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1883 if (!list_empty(&context->killed_trees))
1884 audit_kill_trees(&context->killed_trees);
1886 if (context->previous) {
1887 struct audit_context *new_context = context->previous;
1888 context->previous = NULL;
1889 audit_free_context(context);
1890 tsk->audit_context = new_context;
1892 audit_free_names(context);
1893 unroll_tree_refs(context, NULL, 0);
1894 audit_free_aux(context);
1895 context->aux = NULL;
1896 context->aux_pids = NULL;
1897 context->target_pid = 0;
1898 context->target_sid = 0;
1899 context->sockaddr_len = 0;
1901 context->fds[0] = -1;
1902 if (context->state != AUDIT_RECORD_CONTEXT) {
1903 kfree(context->filterkey);
1904 context->filterkey = NULL;
1906 tsk->audit_context = context;
1910 static inline void handle_one(const struct inode *inode)
1912 #ifdef CONFIG_AUDIT_TREE
1913 struct audit_context *context;
1914 struct audit_tree_refs *p;
1915 struct audit_chunk *chunk;
1917 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1919 context = current->audit_context;
1921 count = context->tree_count;
1923 chunk = audit_tree_lookup(inode);
1927 if (likely(put_tree_ref(context, chunk)))
1929 if (unlikely(!grow_tree_refs(context))) {
1930 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1931 audit_set_auditable(context);
1932 audit_put_chunk(chunk);
1933 unroll_tree_refs(context, p, count);
1936 put_tree_ref(context, chunk);
1940 static void handle_path(const struct dentry *dentry)
1942 #ifdef CONFIG_AUDIT_TREE
1943 struct audit_context *context;
1944 struct audit_tree_refs *p;
1945 const struct dentry *d, *parent;
1946 struct audit_chunk *drop;
1950 context = current->audit_context;
1952 count = context->tree_count;
1957 seq = read_seqbegin(&rename_lock);
1959 struct inode *inode = d->d_inode;
1960 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1961 struct audit_chunk *chunk;
1962 chunk = audit_tree_lookup(inode);
1964 if (unlikely(!put_tree_ref(context, chunk))) {
1970 parent = d->d_parent;
1975 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1978 /* just a race with rename */
1979 unroll_tree_refs(context, p, count);
1982 audit_put_chunk(drop);
1983 if (grow_tree_refs(context)) {
1984 /* OK, got more space */
1985 unroll_tree_refs(context, p, count);
1990 "out of memory, audit has lost a tree reference\n");
1991 unroll_tree_refs(context, p, count);
1992 audit_set_auditable(context);
1999 static struct audit_names *audit_alloc_name(struct audit_context *context,
2002 struct audit_names *aname;
2004 if (context->name_count < AUDIT_NAMES) {
2005 aname = &context->preallocated_names[context->name_count];
2006 memset(aname, 0, sizeof(*aname));
2008 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2011 aname->should_free = true;
2014 aname->ino = (unsigned long)-1;
2016 list_add_tail(&aname->list, &context->names_list);
2018 context->name_count++;
2020 context->ino_count++;
2026 * audit_getname - add a name to the list
2027 * @name: name to add
2029 * Add a name to the list of audit names for this context.
2030 * Called from fs/namei.c:getname().
2032 void __audit_getname(const char *name)
2034 struct audit_context *context = current->audit_context;
2035 struct audit_names *n;
2037 if (!context->in_syscall) {
2038 #if AUDIT_DEBUG == 2
2039 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2040 __FILE__, __LINE__, context->serial, name);
2046 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2051 n->name_len = AUDIT_NAME_FULL;
2054 if (!context->pwd.dentry)
2055 get_fs_pwd(current->fs, &context->pwd);
2058 /* audit_putname - intercept a putname request
2059 * @name: name to intercept and delay for putname
2061 * If we have stored the name from getname in the audit context,
2062 * then we delay the putname until syscall exit.
2063 * Called from include/linux/fs.h:putname().
2065 void audit_putname(const char *name)
2067 struct audit_context *context = current->audit_context;
2070 if (!context->in_syscall) {
2071 #if AUDIT_DEBUG == 2
2072 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2073 __FILE__, __LINE__, context->serial, name);
2074 if (context->name_count) {
2075 struct audit_names *n;
2078 list_for_each_entry(n, &context->names_list, list)
2079 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2080 n->name, n->name ?: "(null)");
2087 ++context->put_count;
2088 if (context->put_count > context->name_count) {
2089 printk(KERN_ERR "%s:%d(:%d): major=%d"
2090 " in_syscall=%d putname(%p) name_count=%d"
2093 context->serial, context->major,
2094 context->in_syscall, name, context->name_count,
2095 context->put_count);
2102 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2104 struct cpu_vfs_cap_data caps;
2110 rc = get_vfs_caps_from_disk(dentry, &caps);
2114 name->fcap.permitted = caps.permitted;
2115 name->fcap.inheritable = caps.inheritable;
2116 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2117 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2123 /* Copy inode data into an audit_names. */
2124 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2125 const struct inode *inode)
2127 name->ino = inode->i_ino;
2128 name->dev = inode->i_sb->s_dev;
2129 name->mode = inode->i_mode;
2130 name->uid = inode->i_uid;
2131 name->gid = inode->i_gid;
2132 name->rdev = inode->i_rdev;
2133 security_inode_getsecid(inode, &name->osid);
2134 audit_copy_fcaps(name, dentry);
2138 * audit_inode - store the inode and device from a lookup
2139 * @name: name being audited
2140 * @dentry: dentry being audited
2142 * Called from fs/namei.c:path_lookup().
2144 void __audit_inode(const char *name, const struct dentry *dentry)
2146 struct audit_context *context = current->audit_context;
2147 const struct inode *inode = dentry->d_inode;
2148 struct audit_names *n;
2150 if (!context->in_syscall)
2156 list_for_each_entry_reverse(n, &context->names_list, list) {
2157 if (n->name == name)
2162 /* unable to find the name from a previous getname() */
2163 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2167 handle_path(dentry);
2168 audit_copy_inode(n, dentry, inode);
2169 n->type = AUDIT_TYPE_NORMAL;
2173 * __audit_inode_child - collect inode info for created/removed objects
2174 * @parent: inode of dentry parent
2175 * @dentry: dentry being audited
2177 * For syscalls that create or remove filesystem objects, audit_inode
2178 * can only collect information for the filesystem object's parent.
2179 * This call updates the audit context with the child's information.
2180 * Syscalls that create a new filesystem object must be hooked after
2181 * the object is created. Syscalls that remove a filesystem object
2182 * must be hooked prior, in order to capture the target inode during
2183 * unsuccessful attempts.
2185 void __audit_inode_child(const struct inode *parent,
2186 const struct dentry *dentry)
2188 struct audit_context *context = current->audit_context;
2189 const char *found_parent = NULL, *found_child = NULL;
2190 const struct inode *inode = dentry->d_inode;
2191 const char *dname = dentry->d_name.name;
2192 struct audit_names *n;
2195 if (!context->in_syscall)
2201 /* parent is more likely, look for it first */
2202 list_for_each_entry(n, &context->names_list, list) {
2206 if (n->ino == parent->i_ino &&
2207 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2208 n->name_len = dirlen; /* update parent data in place */
2209 found_parent = n->name;
2214 /* no matching parent, look for matching child */
2215 list_for_each_entry(n, &context->names_list, list) {
2219 /* strcmp() is the more likely scenario */
2220 if (!strcmp(dname, n->name) ||
2221 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2223 audit_copy_inode(n, dentry, inode);
2225 n->ino = (unsigned long)-1;
2226 n->type = AUDIT_TYPE_NORMAL;
2227 found_child = n->name;
2233 if (!found_parent) {
2234 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2237 audit_copy_inode(n, NULL, parent);
2241 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2245 /* Re-use the name belonging to the slot for a matching parent
2246 * directory. All names for this context are relinquished in
2247 * audit_free_names() */
2249 n->name = found_parent;
2250 n->name_len = AUDIT_NAME_FULL;
2251 /* don't call __putname() */
2252 n->name_put = false;
2256 audit_copy_inode(n, dentry, inode);
2259 EXPORT_SYMBOL_GPL(__audit_inode_child);
2262 * auditsc_get_stamp - get local copies of audit_context values
2263 * @ctx: audit_context for the task
2264 * @t: timespec to store time recorded in the audit_context
2265 * @serial: serial value that is recorded in the audit_context
2267 * Also sets the context as auditable.
2269 int auditsc_get_stamp(struct audit_context *ctx,
2270 struct timespec *t, unsigned int *serial)
2272 if (!ctx->in_syscall)
2275 ctx->serial = audit_serial();
2276 t->tv_sec = ctx->ctime.tv_sec;
2277 t->tv_nsec = ctx->ctime.tv_nsec;
2278 *serial = ctx->serial;
2281 ctx->current_state = AUDIT_RECORD_CONTEXT;
2286 /* global counter which is incremented every time something logs in */
2287 static atomic_t session_id = ATOMIC_INIT(0);
2290 * audit_set_loginuid - set current task's audit_context loginuid
2291 * @loginuid: loginuid value
2295 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2297 int audit_set_loginuid(kuid_t loginuid)
2299 struct task_struct *task = current;
2300 struct audit_context *context = task->audit_context;
2301 unsigned int sessionid;
2303 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2304 if (uid_valid(task->loginuid))
2306 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2307 if (!capable(CAP_AUDIT_CONTROL))
2309 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2311 sessionid = atomic_inc_return(&session_id);
2312 if (context && context->in_syscall) {
2313 struct audit_buffer *ab;
2315 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2317 audit_log_format(ab, "login pid=%d uid=%u "
2318 "old auid=%u new auid=%u"
2319 " old ses=%u new ses=%u",
2321 from_kuid(&init_user_ns, task_uid(task)),
2322 from_kuid(&init_user_ns, task->loginuid),
2323 from_kuid(&init_user_ns, loginuid),
2324 task->sessionid, sessionid);
2328 task->sessionid = sessionid;
2329 task->loginuid = loginuid;
2334 * __audit_mq_open - record audit data for a POSIX MQ open
2337 * @attr: queue attributes
2340 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2342 struct audit_context *context = current->audit_context;
2345 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2347 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2349 context->mq_open.oflag = oflag;
2350 context->mq_open.mode = mode;
2352 context->type = AUDIT_MQ_OPEN;
2356 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2357 * @mqdes: MQ descriptor
2358 * @msg_len: Message length
2359 * @msg_prio: Message priority
2360 * @abs_timeout: Message timeout in absolute time
2363 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2364 const struct timespec *abs_timeout)
2366 struct audit_context *context = current->audit_context;
2367 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2370 memcpy(p, abs_timeout, sizeof(struct timespec));
2372 memset(p, 0, sizeof(struct timespec));
2374 context->mq_sendrecv.mqdes = mqdes;
2375 context->mq_sendrecv.msg_len = msg_len;
2376 context->mq_sendrecv.msg_prio = msg_prio;
2378 context->type = AUDIT_MQ_SENDRECV;
2382 * __audit_mq_notify - record audit data for a POSIX MQ notify
2383 * @mqdes: MQ descriptor
2384 * @notification: Notification event
2388 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2390 struct audit_context *context = current->audit_context;
2393 context->mq_notify.sigev_signo = notification->sigev_signo;
2395 context->mq_notify.sigev_signo = 0;
2397 context->mq_notify.mqdes = mqdes;
2398 context->type = AUDIT_MQ_NOTIFY;
2402 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2403 * @mqdes: MQ descriptor
2407 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2409 struct audit_context *context = current->audit_context;
2410 context->mq_getsetattr.mqdes = mqdes;
2411 context->mq_getsetattr.mqstat = *mqstat;
2412 context->type = AUDIT_MQ_GETSETATTR;
2416 * audit_ipc_obj - record audit data for ipc object
2417 * @ipcp: ipc permissions
2420 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2422 struct audit_context *context = current->audit_context;
2423 context->ipc.uid = ipcp->uid;
2424 context->ipc.gid = ipcp->gid;
2425 context->ipc.mode = ipcp->mode;
2426 context->ipc.has_perm = 0;
2427 security_ipc_getsecid(ipcp, &context->ipc.osid);
2428 context->type = AUDIT_IPC;
2432 * audit_ipc_set_perm - record audit data for new ipc permissions
2433 * @qbytes: msgq bytes
2434 * @uid: msgq user id
2435 * @gid: msgq group id
2436 * @mode: msgq mode (permissions)
2438 * Called only after audit_ipc_obj().
2440 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2442 struct audit_context *context = current->audit_context;
2444 context->ipc.qbytes = qbytes;
2445 context->ipc.perm_uid = uid;
2446 context->ipc.perm_gid = gid;
2447 context->ipc.perm_mode = mode;
2448 context->ipc.has_perm = 1;
2451 int __audit_bprm(struct linux_binprm *bprm)
2453 struct audit_aux_data_execve *ax;
2454 struct audit_context *context = current->audit_context;
2456 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2460 ax->argc = bprm->argc;
2461 ax->envc = bprm->envc;
2463 ax->d.type = AUDIT_EXECVE;
2464 ax->d.next = context->aux;
2465 context->aux = (void *)ax;
2471 * audit_socketcall - record audit data for sys_socketcall
2472 * @nargs: number of args
2476 void __audit_socketcall(int nargs, unsigned long *args)
2478 struct audit_context *context = current->audit_context;
2480 context->type = AUDIT_SOCKETCALL;
2481 context->socketcall.nargs = nargs;
2482 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2486 * __audit_fd_pair - record audit data for pipe and socketpair
2487 * @fd1: the first file descriptor
2488 * @fd2: the second file descriptor
2491 void __audit_fd_pair(int fd1, int fd2)
2493 struct audit_context *context = current->audit_context;
2494 context->fds[0] = fd1;
2495 context->fds[1] = fd2;
2499 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2500 * @len: data length in user space
2501 * @a: data address in kernel space
2503 * Returns 0 for success or NULL context or < 0 on error.
2505 int __audit_sockaddr(int len, void *a)
2507 struct audit_context *context = current->audit_context;
2509 if (!context->sockaddr) {
2510 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2513 context->sockaddr = p;
2516 context->sockaddr_len = len;
2517 memcpy(context->sockaddr, a, len);
2521 void __audit_ptrace(struct task_struct *t)
2523 struct audit_context *context = current->audit_context;
2525 context->target_pid = t->pid;
2526 context->target_auid = audit_get_loginuid(t);
2527 context->target_uid = task_uid(t);
2528 context->target_sessionid = audit_get_sessionid(t);
2529 security_task_getsecid(t, &context->target_sid);
2530 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2534 * audit_signal_info - record signal info for shutting down audit subsystem
2535 * @sig: signal value
2536 * @t: task being signaled
2538 * If the audit subsystem is being terminated, record the task (pid)
2539 * and uid that is doing that.
2541 int __audit_signal_info(int sig, struct task_struct *t)
2543 struct audit_aux_data_pids *axp;
2544 struct task_struct *tsk = current;
2545 struct audit_context *ctx = tsk->audit_context;
2546 kuid_t uid = current_uid(), t_uid = task_uid(t);
2548 if (audit_pid && t->tgid == audit_pid) {
2549 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2550 audit_sig_pid = tsk->pid;
2551 if (uid_valid(tsk->loginuid))
2552 audit_sig_uid = tsk->loginuid;
2554 audit_sig_uid = uid;
2555 security_task_getsecid(tsk, &audit_sig_sid);
2557 if (!audit_signals || audit_dummy_context())
2561 /* optimize the common case by putting first signal recipient directly
2562 * in audit_context */
2563 if (!ctx->target_pid) {
2564 ctx->target_pid = t->tgid;
2565 ctx->target_auid = audit_get_loginuid(t);
2566 ctx->target_uid = t_uid;
2567 ctx->target_sessionid = audit_get_sessionid(t);
2568 security_task_getsecid(t, &ctx->target_sid);
2569 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2573 axp = (void *)ctx->aux_pids;
2574 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2575 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2579 axp->d.type = AUDIT_OBJ_PID;
2580 axp->d.next = ctx->aux_pids;
2581 ctx->aux_pids = (void *)axp;
2583 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2585 axp->target_pid[axp->pid_count] = t->tgid;
2586 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2587 axp->target_uid[axp->pid_count] = t_uid;
2588 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2589 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2590 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2597 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2598 * @bprm: pointer to the bprm being processed
2599 * @new: the proposed new credentials
2600 * @old: the old credentials
2602 * Simply check if the proc already has the caps given by the file and if not
2603 * store the priv escalation info for later auditing at the end of the syscall
2607 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2608 const struct cred *new, const struct cred *old)
2610 struct audit_aux_data_bprm_fcaps *ax;
2611 struct audit_context *context = current->audit_context;
2612 struct cpu_vfs_cap_data vcaps;
2613 struct dentry *dentry;
2615 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2619 ax->d.type = AUDIT_BPRM_FCAPS;
2620 ax->d.next = context->aux;
2621 context->aux = (void *)ax;
2623 dentry = dget(bprm->file->f_dentry);
2624 get_vfs_caps_from_disk(dentry, &vcaps);
2627 ax->fcap.permitted = vcaps.permitted;
2628 ax->fcap.inheritable = vcaps.inheritable;
2629 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2630 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2632 ax->old_pcap.permitted = old->cap_permitted;
2633 ax->old_pcap.inheritable = old->cap_inheritable;
2634 ax->old_pcap.effective = old->cap_effective;
2636 ax->new_pcap.permitted = new->cap_permitted;
2637 ax->new_pcap.inheritable = new->cap_inheritable;
2638 ax->new_pcap.effective = new->cap_effective;
2643 * __audit_log_capset - store information about the arguments to the capset syscall
2644 * @pid: target pid of the capset call
2645 * @new: the new credentials
2646 * @old: the old (current) credentials
2648 * Record the aguments userspace sent to sys_capset for later printing by the
2649 * audit system if applicable
2651 void __audit_log_capset(pid_t pid,
2652 const struct cred *new, const struct cred *old)
2654 struct audit_context *context = current->audit_context;
2655 context->capset.pid = pid;
2656 context->capset.cap.effective = new->cap_effective;
2657 context->capset.cap.inheritable = new->cap_effective;
2658 context->capset.cap.permitted = new->cap_permitted;
2659 context->type = AUDIT_CAPSET;
2662 void __audit_mmap_fd(int fd, int flags)
2664 struct audit_context *context = current->audit_context;
2665 context->mmap.fd = fd;
2666 context->mmap.flags = flags;
2667 context->type = AUDIT_MMAP;
2670 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2674 unsigned int sessionid;
2676 auid = audit_get_loginuid(current);
2677 sessionid = audit_get_sessionid(current);
2678 current_uid_gid(&uid, &gid);
2680 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2681 from_kuid(&init_user_ns, auid),
2682 from_kuid(&init_user_ns, uid),
2683 from_kgid(&init_user_ns, gid),
2685 audit_log_task_context(ab);
2686 audit_log_format(ab, " pid=%d comm=", current->pid);
2687 audit_log_untrustedstring(ab, current->comm);
2688 audit_log_format(ab, " reason=");
2689 audit_log_string(ab, reason);
2690 audit_log_format(ab, " sig=%ld", signr);
2693 * audit_core_dumps - record information about processes that end abnormally
2694 * @signr: signal value
2696 * If a process ends with a core dump, something fishy is going on and we
2697 * should record the event for investigation.
2699 void audit_core_dumps(long signr)
2701 struct audit_buffer *ab;
2706 if (signr == SIGQUIT) /* don't care for those */
2709 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710 audit_log_abend(ab, "memory violation", signr);
2714 void __audit_seccomp(unsigned long syscall, long signr, int code)
2716 struct audit_buffer *ab;
2718 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2719 audit_log_abend(ab, "seccomp", signr);
2720 audit_log_format(ab, " syscall=%ld", syscall);
2721 audit_log_format(ab, " compat=%d", is_compat_task());
2722 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2723 audit_log_format(ab, " code=0x%x", code);
2727 struct list_head *audit_killed_trees(void)
2729 struct audit_context *ctx = current->audit_context;
2730 if (likely(!ctx || !ctx->in_syscall))
2732 return &ctx->killed_trees;