1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
87 /* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
94 /* number of audit rules */
97 /* determines whether we collect data for signals sent */
100 struct audit_aux_data {
101 struct audit_aux_data *next;
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS 16
108 struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 u32 target_sid[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
119 struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
127 struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
132 struct audit_nfcfgop_tab {
133 enum audit_nfcfgop op;
137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 { AUDIT_XT_OP_REGISTER, "xt_register" },
139 { AUDIT_XT_OP_REPLACE, "xt_replace" },
140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
157 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
160 static int audit_match_perm(struct audit_context *ctx, int mask)
167 switch (audit_classify_syscall(ctx->arch, n)) {
169 if ((mask & AUDIT_PERM_WRITE) &&
170 audit_match_class(AUDIT_CLASS_WRITE, n))
172 if ((mask & AUDIT_PERM_READ) &&
173 audit_match_class(AUDIT_CLASS_READ, n))
175 if ((mask & AUDIT_PERM_ATTR) &&
176 audit_match_class(AUDIT_CLASS_CHATTR, n))
179 case 1: /* 32bit on biarch */
180 if ((mask & AUDIT_PERM_WRITE) &&
181 audit_match_class(AUDIT_CLASS_WRITE_32, n))
183 if ((mask & AUDIT_PERM_READ) &&
184 audit_match_class(AUDIT_CLASS_READ_32, n))
186 if ((mask & AUDIT_PERM_ATTR) &&
187 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
191 return mask & ACC_MODE(ctx->argv[1]);
193 return mask & ACC_MODE(ctx->argv[2]);
194 case 4: /* socketcall */
195 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
197 return mask & AUDIT_PERM_EXEC;
203 static int audit_match_filetype(struct audit_context *ctx, int val)
205 struct audit_names *n;
206 umode_t mode = (umode_t)val;
211 list_for_each_entry(n, &ctx->names_list, list) {
212 if ((n->ino != AUDIT_INO_UNSET) &&
213 ((n->mode & S_IFMT) == mode))
221 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
222 * ->first_trees points to its beginning, ->trees - to the current end of data.
223 * ->tree_count is the number of free entries in array pointed to by ->trees.
224 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
225 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
226 * it's going to remain 1-element for almost any setup) until we free context itself.
227 * References in it _are_ dropped - at the same time we free/drop aux stuff.
230 static void audit_set_auditable(struct audit_context *ctx)
234 ctx->current_state = AUDIT_RECORD_CONTEXT;
238 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
240 struct audit_tree_refs *p = ctx->trees;
241 int left = ctx->tree_count;
243 p->c[--left] = chunk;
244 ctx->tree_count = left;
253 ctx->tree_count = 30;
259 static int grow_tree_refs(struct audit_context *ctx)
261 struct audit_tree_refs *p = ctx->trees;
262 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
268 p->next = ctx->trees;
270 ctx->first_trees = ctx->trees;
271 ctx->tree_count = 31;
275 static void unroll_tree_refs(struct audit_context *ctx,
276 struct audit_tree_refs *p, int count)
278 struct audit_tree_refs *q;
281 /* we started with empty chain */
282 p = ctx->first_trees;
284 /* if the very first allocation has failed, nothing to do */
289 for (q = p; q != ctx->trees; q = q->next, n = 31) {
291 audit_put_chunk(q->c[n]);
295 while (n-- > ctx->tree_count) {
296 audit_put_chunk(q->c[n]);
300 ctx->tree_count = count;
303 static void free_tree_refs(struct audit_context *ctx)
305 struct audit_tree_refs *p, *q;
306 for (p = ctx->first_trees; p; p = q) {
312 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
314 struct audit_tree_refs *p;
319 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
320 for (n = 0; n < 31; n++)
321 if (audit_tree_match(p->c[n], tree))
326 for (n = ctx->tree_count; n < 31; n++)
327 if (audit_tree_match(p->c[n], tree))
333 static int audit_compare_uid(kuid_t uid,
334 struct audit_names *name,
335 struct audit_field *f,
336 struct audit_context *ctx)
338 struct audit_names *n;
342 rc = audit_uid_comparator(uid, f->op, name->uid);
348 list_for_each_entry(n, &ctx->names_list, list) {
349 rc = audit_uid_comparator(uid, f->op, n->uid);
357 static int audit_compare_gid(kgid_t gid,
358 struct audit_names *name,
359 struct audit_field *f,
360 struct audit_context *ctx)
362 struct audit_names *n;
366 rc = audit_gid_comparator(gid, f->op, name->gid);
372 list_for_each_entry(n, &ctx->names_list, list) {
373 rc = audit_gid_comparator(gid, f->op, n->gid);
381 static int audit_field_compare(struct task_struct *tsk,
382 const struct cred *cred,
383 struct audit_field *f,
384 struct audit_context *ctx,
385 struct audit_names *name)
388 /* process to file object comparisons */
389 case AUDIT_COMPARE_UID_TO_OBJ_UID:
390 return audit_compare_uid(cred->uid, name, f, ctx);
391 case AUDIT_COMPARE_GID_TO_OBJ_GID:
392 return audit_compare_gid(cred->gid, name, f, ctx);
393 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
394 return audit_compare_uid(cred->euid, name, f, ctx);
395 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
396 return audit_compare_gid(cred->egid, name, f, ctx);
397 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
398 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
399 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->suid, name, f, ctx);
401 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->sgid, name, f, ctx);
403 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
404 return audit_compare_uid(cred->fsuid, name, f, ctx);
405 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
406 return audit_compare_gid(cred->fsgid, name, f, ctx);
407 /* uid comparisons */
408 case AUDIT_COMPARE_UID_TO_AUID:
409 return audit_uid_comparator(cred->uid, f->op,
410 audit_get_loginuid(tsk));
411 case AUDIT_COMPARE_UID_TO_EUID:
412 return audit_uid_comparator(cred->uid, f->op, cred->euid);
413 case AUDIT_COMPARE_UID_TO_SUID:
414 return audit_uid_comparator(cred->uid, f->op, cred->suid);
415 case AUDIT_COMPARE_UID_TO_FSUID:
416 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
417 /* auid comparisons */
418 case AUDIT_COMPARE_AUID_TO_EUID:
419 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
421 case AUDIT_COMPARE_AUID_TO_SUID:
422 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
424 case AUDIT_COMPARE_AUID_TO_FSUID:
425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
427 /* euid comparisons */
428 case AUDIT_COMPARE_EUID_TO_SUID:
429 return audit_uid_comparator(cred->euid, f->op, cred->suid);
430 case AUDIT_COMPARE_EUID_TO_FSUID:
431 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
432 /* suid comparisons */
433 case AUDIT_COMPARE_SUID_TO_FSUID:
434 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
435 /* gid comparisons */
436 case AUDIT_COMPARE_GID_TO_EGID:
437 return audit_gid_comparator(cred->gid, f->op, cred->egid);
438 case AUDIT_COMPARE_GID_TO_SGID:
439 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
440 case AUDIT_COMPARE_GID_TO_FSGID:
441 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
442 /* egid comparisons */
443 case AUDIT_COMPARE_EGID_TO_SGID:
444 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
445 case AUDIT_COMPARE_EGID_TO_FSGID:
446 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
447 /* sgid comparison */
448 case AUDIT_COMPARE_SGID_TO_FSGID:
449 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
451 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
457 /* Determine if any context name data matches a rule's watch data */
458 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
461 * If task_creation is true, this is an explicit indication that we are
462 * filtering a task rule at task creation time. This and tsk == current are
463 * the only situations where tsk->cred may be accessed without an rcu read lock.
465 static int audit_filter_rules(struct task_struct *tsk,
466 struct audit_krule *rule,
467 struct audit_context *ctx,
468 struct audit_names *name,
469 enum audit_state *state,
472 const struct cred *cred;
475 unsigned int sessionid;
477 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
479 for (i = 0; i < rule->field_count; i++) {
480 struct audit_field *f = &rule->fields[i];
481 struct audit_names *n;
487 pid = task_tgid_nr(tsk);
488 result = audit_comparator(pid, f->op, f->val);
493 ctx->ppid = task_ppid_nr(tsk);
494 result = audit_comparator(ctx->ppid, f->op, f->val);
498 result = audit_exe_compare(tsk, rule->exe);
499 if (f->op == Audit_not_equal)
503 result = audit_uid_comparator(cred->uid, f->op, f->uid);
506 result = audit_uid_comparator(cred->euid, f->op, f->uid);
509 result = audit_uid_comparator(cred->suid, f->op, f->uid);
512 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515 result = audit_gid_comparator(cred->gid, f->op, f->gid);
516 if (f->op == Audit_equal) {
518 result = groups_search(cred->group_info, f->gid);
519 } else if (f->op == Audit_not_equal) {
521 result = !groups_search(cred->group_info, f->gid);
525 result = audit_gid_comparator(cred->egid, f->op, f->gid);
526 if (f->op == Audit_equal) {
528 result = groups_search(cred->group_info, f->gid);
529 } else if (f->op == Audit_not_equal) {
531 result = !groups_search(cred->group_info, f->gid);
535 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
540 case AUDIT_SESSIONID:
541 sessionid = audit_get_sessionid(tsk);
542 result = audit_comparator(sessionid, f->op, f->val);
545 result = audit_comparator(tsk->personality, f->op, f->val);
549 result = audit_comparator(ctx->arch, f->op, f->val);
553 if (ctx && ctx->return_valid != AUDITSC_INVALID)
554 result = audit_comparator(ctx->return_code, f->op, f->val);
557 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
559 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
566 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
567 audit_comparator(MAJOR(name->rdev), f->op, f->val))
570 list_for_each_entry(n, &ctx->names_list, list) {
571 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
572 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
581 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
582 audit_comparator(MINOR(name->rdev), f->op, f->val))
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
587 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
596 result = audit_comparator(name->ino, f->op, f->val);
598 list_for_each_entry(n, &ctx->names_list, list) {
599 if (audit_comparator(n->ino, f->op, f->val)) {
608 result = audit_uid_comparator(name->uid, f->op, f->uid);
610 list_for_each_entry(n, &ctx->names_list, list) {
611 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
620 result = audit_gid_comparator(name->gid, f->op, f->gid);
622 list_for_each_entry(n, &ctx->names_list, list) {
623 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
632 result = audit_watch_compare(rule->watch,
635 if (f->op == Audit_not_equal)
641 result = match_tree_refs(ctx, rule->tree);
642 if (f->op == Audit_not_equal)
647 result = audit_uid_comparator(audit_get_loginuid(tsk),
650 case AUDIT_LOGINUID_SET:
651 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
653 case AUDIT_SADDR_FAM:
655 result = audit_comparator(ctx->sockaddr->ss_family,
658 case AUDIT_SUBJ_USER:
659 case AUDIT_SUBJ_ROLE:
660 case AUDIT_SUBJ_TYPE:
663 /* NOTE: this may return negative values indicating
664 a temporary error. We simply treat this as a
665 match for now to avoid losing information that
666 may be wanted. An error message will also be
670 security_task_getsecid_subj(tsk, &sid);
673 result = security_audit_rule_match(sid, f->type,
681 case AUDIT_OBJ_LEV_LOW:
682 case AUDIT_OBJ_LEV_HIGH:
683 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
686 /* Find files that match */
688 result = security_audit_rule_match(
694 list_for_each_entry(n, &ctx->names_list, list) {
695 if (security_audit_rule_match(
705 /* Find ipc objects that match */
706 if (!ctx || ctx->type != AUDIT_IPC)
708 if (security_audit_rule_match(ctx->ipc.osid,
719 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
721 case AUDIT_FILTERKEY:
722 /* ignore this field for filtering */
726 result = audit_match_perm(ctx, f->val);
727 if (f->op == Audit_not_equal)
731 result = audit_match_filetype(ctx, f->val);
732 if (f->op == Audit_not_equal)
735 case AUDIT_FIELD_COMPARE:
736 result = audit_field_compare(tsk, cred, f, ctx, name);
744 if (rule->prio <= ctx->prio)
746 if (rule->filterkey) {
747 kfree(ctx->filterkey);
748 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
750 ctx->prio = rule->prio;
752 switch (rule->action) {
754 *state = AUDIT_DISABLED;
757 *state = AUDIT_RECORD_CONTEXT;
763 /* At process creation time, we can determine if system-call auditing is
764 * completely disabled for this task. Since we only have the task
765 * structure at this point, we can only check uid and gid.
767 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
769 struct audit_entry *e;
770 enum audit_state state;
773 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
774 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
776 if (state == AUDIT_RECORD_CONTEXT)
777 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
783 return AUDIT_BUILD_CONTEXT;
786 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
790 if (val > 0xffffffff)
793 word = AUDIT_WORD(val);
794 if (word >= AUDIT_BITMASK_SIZE)
797 bit = AUDIT_BIT(val);
799 return rule->mask[word] & bit;
802 /* At syscall exit time, this filter is called if the audit_state is
803 * not low enough that auditing cannot take place, but is also not
804 * high enough that we already know we have to write an audit record
805 * (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
807 static void audit_filter_syscall(struct task_struct *tsk,
808 struct audit_context *ctx)
810 struct audit_entry *e;
811 enum audit_state state;
813 if (auditd_test_task(tsk))
817 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
818 if (audit_in_mask(&e->rule, ctx->major) &&
819 audit_filter_rules(tsk, &e->rule, ctx, NULL,
822 ctx->current_state = state;
831 * Given an audit_name check the inode hash table to see if they match.
832 * Called holding the rcu read lock to protect the use of audit_inode_hash
834 static int audit_filter_inode_name(struct task_struct *tsk,
835 struct audit_names *n,
836 struct audit_context *ctx) {
837 int h = audit_hash_ino((u32)n->ino);
838 struct list_head *list = &audit_inode_hash[h];
839 struct audit_entry *e;
840 enum audit_state state;
842 list_for_each_entry_rcu(e, list, list) {
843 if (audit_in_mask(&e->rule, ctx->major) &&
844 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
845 ctx->current_state = state;
852 /* At syscall exit time, this filter is called if any audit_names have been
853 * collected during syscall processing. We only check rules in sublists at hash
854 * buckets applicable to the inode numbers in audit_names.
855 * Regarding audit_state, same rules apply as for audit_filter_syscall().
857 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
859 struct audit_names *n;
861 if (auditd_test_task(tsk))
866 list_for_each_entry(n, &ctx->names_list, list) {
867 if (audit_filter_inode_name(tsk, n, ctx))
873 static inline void audit_proctitle_free(struct audit_context *context)
875 kfree(context->proctitle.value);
876 context->proctitle.value = NULL;
877 context->proctitle.len = 0;
880 static inline void audit_free_module(struct audit_context *context)
882 if (context->type == AUDIT_KERN_MODULE) {
883 kfree(context->module.name);
884 context->module.name = NULL;
887 static inline void audit_free_names(struct audit_context *context)
889 struct audit_names *n, *next;
891 list_for_each_entry_safe(n, next, &context->names_list, list) {
898 context->name_count = 0;
899 path_put(&context->pwd);
900 context->pwd.dentry = NULL;
901 context->pwd.mnt = NULL;
904 static inline void audit_free_aux(struct audit_context *context)
906 struct audit_aux_data *aux;
908 while ((aux = context->aux)) {
909 context->aux = aux->next;
912 while ((aux = context->aux_pids)) {
913 context->aux_pids = aux->next;
918 static inline struct audit_context *audit_alloc_context(enum audit_state state)
920 struct audit_context *context;
922 context = kzalloc(sizeof(*context), GFP_KERNEL);
925 context->state = state;
926 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
927 INIT_LIST_HEAD(&context->killed_trees);
928 INIT_LIST_HEAD(&context->names_list);
929 context->fds[0] = -1;
930 context->return_valid = AUDITSC_INVALID;
935 * audit_alloc - allocate an audit context block for a task
938 * Filter on the task information and allocate a per-task audit context
939 * if necessary. Doing so turns on system call auditing for the
940 * specified task. This is called from copy_process, so no lock is
943 int audit_alloc(struct task_struct *tsk)
945 struct audit_context *context;
946 enum audit_state state;
949 if (likely(!audit_ever_enabled))
950 return 0; /* Return if not auditing. */
952 state = audit_filter_task(tsk, &key);
953 if (state == AUDIT_DISABLED) {
954 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
958 if (!(context = audit_alloc_context(state))) {
960 audit_log_lost("out of memory in audit_alloc");
963 context->filterkey = key;
965 audit_set_context(tsk, context);
966 set_task_syscall_work(tsk, SYSCALL_AUDIT);
970 static inline void audit_free_context(struct audit_context *context)
972 audit_free_module(context);
973 audit_free_names(context);
974 unroll_tree_refs(context, NULL, 0);
975 free_tree_refs(context);
976 audit_free_aux(context);
977 kfree(context->filterkey);
978 kfree(context->sockaddr);
979 audit_proctitle_free(context);
983 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
984 kuid_t auid, kuid_t uid, unsigned int sessionid,
987 struct audit_buffer *ab;
992 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
996 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
997 from_kuid(&init_user_ns, auid),
998 from_kuid(&init_user_ns, uid), sessionid);
1000 if (security_secid_to_secctx(sid, &ctx, &len)) {
1001 audit_log_format(ab, " obj=(none)");
1004 audit_log_format(ab, " obj=%s", ctx);
1005 security_release_secctx(ctx, len);
1008 audit_log_format(ab, " ocomm=");
1009 audit_log_untrustedstring(ab, comm);
1015 static void audit_log_execve_info(struct audit_context *context,
1016 struct audit_buffer **ab)
1030 const char __user *p = (const char __user *)current->mm->arg_start;
1032 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1033 * data we put in the audit record for this argument (see the
1034 * code below) ... at this point in time 96 is plenty */
1037 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1038 * current value of 7500 is not as important as the fact that it
1039 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1040 * room if we go over a little bit in the logging below */
1041 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1042 len_max = MAX_EXECVE_AUDIT_LEN;
1044 /* scratch buffer to hold the userspace args */
1045 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1047 audit_panic("out of memory for argv string");
1052 audit_log_format(*ab, "argc=%d", context->execve.argc);
1057 require_data = true;
1062 /* NOTE: we don't ever want to trust this value for anything
1063 * serious, but the audit record format insists we
1064 * provide an argument length for really long arguments,
1065 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1066 * to use strncpy_from_user() to obtain this value for
1067 * recording in the log, although we don't use it
1068 * anywhere here to avoid a double-fetch problem */
1070 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1072 /* read more data from userspace */
1074 /* can we make more room in the buffer? */
1075 if (buf != buf_head) {
1076 memmove(buf_head, buf, len_buf);
1080 /* fetch as much as we can of the argument */
1081 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1083 if (len_tmp == -EFAULT) {
1084 /* unable to copy from userspace */
1085 send_sig(SIGKILL, current, 0);
1087 } else if (len_tmp == (len_max - len_buf)) {
1088 /* buffer is not large enough */
1089 require_data = true;
1090 /* NOTE: if we are going to span multiple
1091 * buffers force the encoding so we stand
1092 * a chance at a sane len_full value and
1093 * consistent record encoding */
1095 len_full = len_full * 2;
1098 require_data = false;
1100 encode = audit_string_contains_control(
1102 /* try to use a trusted value for len_full */
1103 if (len_full < len_max)
1104 len_full = (encode ?
1105 len_tmp * 2 : len_tmp);
1109 buf_head[len_buf] = '\0';
1111 /* length of the buffer in the audit record? */
1112 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1115 /* write as much as we can to the audit log */
1117 /* NOTE: some magic numbers here - basically if we
1118 * can't fit a reasonable amount of data into the
1119 * existing audit buffer, flush it and start with
1121 if ((sizeof(abuf) + 8) > len_rem) {
1124 *ab = audit_log_start(context,
1125 GFP_KERNEL, AUDIT_EXECVE);
1130 /* create the non-arg portion of the arg record */
1132 if (require_data || (iter > 0) ||
1133 ((len_abuf + sizeof(abuf)) > len_rem)) {
1135 len_tmp += snprintf(&abuf[len_tmp],
1136 sizeof(abuf) - len_tmp,
1140 len_tmp += snprintf(&abuf[len_tmp],
1141 sizeof(abuf) - len_tmp,
1142 " a%d[%d]=", arg, iter++);
1144 len_tmp += snprintf(&abuf[len_tmp],
1145 sizeof(abuf) - len_tmp,
1147 WARN_ON(len_tmp >= sizeof(abuf));
1148 abuf[sizeof(abuf) - 1] = '\0';
1150 /* log the arg in the audit record */
1151 audit_log_format(*ab, "%s", abuf);
1155 if (len_abuf > len_rem)
1156 len_tmp = len_rem / 2; /* encoding */
1157 audit_log_n_hex(*ab, buf, len_tmp);
1158 len_rem -= len_tmp * 2;
1159 len_abuf -= len_tmp * 2;
1161 if (len_abuf > len_rem)
1162 len_tmp = len_rem - 2; /* quotes */
1163 audit_log_n_string(*ab, buf, len_tmp);
1164 len_rem -= len_tmp + 2;
1165 /* don't subtract the "2" because we still need
1166 * to add quotes to the remaining string */
1167 len_abuf -= len_tmp;
1173 /* ready to move to the next argument? */
1174 if ((len_buf == 0) && !require_data) {
1178 require_data = true;
1181 } while (arg < context->execve.argc);
1183 /* NOTE: the caller handles the final audit_log_end() call */
1189 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1194 if (cap_isclear(*cap)) {
1195 audit_log_format(ab, " %s=0", prefix);
1198 audit_log_format(ab, " %s=", prefix);
1200 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1203 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205 if (name->fcap_ver == -1) {
1206 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1209 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1210 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1211 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1212 name->fcap.fE, name->fcap_ver,
1213 from_kuid(&init_user_ns, name->fcap.rootid));
1216 static void show_special(struct audit_context *context, int *call_panic)
1218 struct audit_buffer *ab;
1221 ab = audit_log_start(context, GFP_KERNEL, context->type);
1225 switch (context->type) {
1226 case AUDIT_SOCKETCALL: {
1227 int nargs = context->socketcall.nargs;
1228 audit_log_format(ab, "nargs=%d", nargs);
1229 for (i = 0; i < nargs; i++)
1230 audit_log_format(ab, " a%d=%lx", i,
1231 context->socketcall.args[i]);
1234 u32 osid = context->ipc.osid;
1236 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1237 from_kuid(&init_user_ns, context->ipc.uid),
1238 from_kgid(&init_user_ns, context->ipc.gid),
1243 if (security_secid_to_secctx(osid, &ctx, &len)) {
1244 audit_log_format(ab, " osid=%u", osid);
1247 audit_log_format(ab, " obj=%s", ctx);
1248 security_release_secctx(ctx, len);
1251 if (context->ipc.has_perm) {
1253 ab = audit_log_start(context, GFP_KERNEL,
1254 AUDIT_IPC_SET_PERM);
1257 audit_log_format(ab,
1258 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1259 context->ipc.qbytes,
1260 context->ipc.perm_uid,
1261 context->ipc.perm_gid,
1262 context->ipc.perm_mode);
1266 audit_log_format(ab,
1267 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1268 "mq_msgsize=%ld mq_curmsgs=%ld",
1269 context->mq_open.oflag, context->mq_open.mode,
1270 context->mq_open.attr.mq_flags,
1271 context->mq_open.attr.mq_maxmsg,
1272 context->mq_open.attr.mq_msgsize,
1273 context->mq_open.attr.mq_curmsgs);
1275 case AUDIT_MQ_SENDRECV:
1276 audit_log_format(ab,
1277 "mqdes=%d msg_len=%zd msg_prio=%u "
1278 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1279 context->mq_sendrecv.mqdes,
1280 context->mq_sendrecv.msg_len,
1281 context->mq_sendrecv.msg_prio,
1282 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1283 context->mq_sendrecv.abs_timeout.tv_nsec);
1285 case AUDIT_MQ_NOTIFY:
1286 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1287 context->mq_notify.mqdes,
1288 context->mq_notify.sigev_signo);
1290 case AUDIT_MQ_GETSETATTR: {
1291 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1292 audit_log_format(ab,
1293 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1295 context->mq_getsetattr.mqdes,
1296 attr->mq_flags, attr->mq_maxmsg,
1297 attr->mq_msgsize, attr->mq_curmsgs);
1300 audit_log_format(ab, "pid=%d", context->capset.pid);
1301 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1302 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1303 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1304 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1307 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1308 context->mmap.flags);
1311 audit_log_execve_info(context, &ab);
1313 case AUDIT_KERN_MODULE:
1314 audit_log_format(ab, "name=");
1315 if (context->module.name) {
1316 audit_log_untrustedstring(ab, context->module.name);
1318 audit_log_format(ab, "(null)");
1325 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1327 char *end = proctitle + len - 1;
1328 while (end > proctitle && !isprint(*end))
1331 /* catch the case where proctitle is only 1 non-print character */
1332 len = end - proctitle + 1;
1333 len -= isprint(proctitle[len-1]) == 0;
1338 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1339 * @context: audit_context for the task
1340 * @n: audit_names structure with reportable details
1341 * @path: optional path to report instead of audit_names->name
1342 * @record_num: record number to report when handling a list of names
1343 * @call_panic: optional pointer to int that will be updated if secid fails
1345 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1346 const struct path *path, int record_num, int *call_panic)
1348 struct audit_buffer *ab;
1350 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1354 audit_log_format(ab, "item=%d", record_num);
1357 audit_log_d_path(ab, " name=", path);
1359 switch (n->name_len) {
1360 case AUDIT_NAME_FULL:
1361 /* log the full path */
1362 audit_log_format(ab, " name=");
1363 audit_log_untrustedstring(ab, n->name->name);
1366 /* name was specified as a relative path and the
1367 * directory component is the cwd
1369 if (context->pwd.dentry && context->pwd.mnt)
1370 audit_log_d_path(ab, " name=", &context->pwd);
1372 audit_log_format(ab, " name=(null)");
1375 /* log the name's directory component */
1376 audit_log_format(ab, " name=");
1377 audit_log_n_untrustedstring(ab, n->name->name,
1381 audit_log_format(ab, " name=(null)");
1383 if (n->ino != AUDIT_INO_UNSET)
1384 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1389 from_kuid(&init_user_ns, n->uid),
1390 from_kgid(&init_user_ns, n->gid),
1397 if (security_secid_to_secctx(
1398 n->osid, &ctx, &len)) {
1399 audit_log_format(ab, " osid=%u", n->osid);
1403 audit_log_format(ab, " obj=%s", ctx);
1404 security_release_secctx(ctx, len);
1408 /* log the audit_names record type */
1410 case AUDIT_TYPE_NORMAL:
1411 audit_log_format(ab, " nametype=NORMAL");
1413 case AUDIT_TYPE_PARENT:
1414 audit_log_format(ab, " nametype=PARENT");
1416 case AUDIT_TYPE_CHILD_DELETE:
1417 audit_log_format(ab, " nametype=DELETE");
1419 case AUDIT_TYPE_CHILD_CREATE:
1420 audit_log_format(ab, " nametype=CREATE");
1423 audit_log_format(ab, " nametype=UNKNOWN");
1427 audit_log_fcaps(ab, n);
1431 static void audit_log_proctitle(void)
1435 char *msg = "(null)";
1436 int len = strlen(msg);
1437 struct audit_context *context = audit_context();
1438 struct audit_buffer *ab;
1440 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1442 return; /* audit_panic or being filtered */
1444 audit_log_format(ab, "proctitle=");
1447 if (!context->proctitle.value) {
1448 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1451 /* Historically called this from procfs naming */
1452 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1457 res = audit_proctitle_rtrim(buf, res);
1462 context->proctitle.value = buf;
1463 context->proctitle.len = res;
1465 msg = context->proctitle.value;
1466 len = context->proctitle.len;
1468 audit_log_n_untrustedstring(ab, msg, len);
1472 static void audit_log_exit(void)
1474 int i, call_panic = 0;
1475 struct audit_context *context = audit_context();
1476 struct audit_buffer *ab;
1477 struct audit_aux_data *aux;
1478 struct audit_names *n;
1480 context->personality = current->personality;
1482 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1484 return; /* audit_panic has been called */
1485 audit_log_format(ab, "arch=%x syscall=%d",
1486 context->arch, context->major);
1487 if (context->personality != PER_LINUX)
1488 audit_log_format(ab, " per=%lx", context->personality);
1489 if (context->return_valid != AUDITSC_INVALID)
1490 audit_log_format(ab, " success=%s exit=%ld",
1491 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1492 context->return_code);
1494 audit_log_format(ab,
1495 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1500 context->name_count);
1502 audit_log_task_info(ab);
1503 audit_log_key(ab, context->filterkey);
1506 for (aux = context->aux; aux; aux = aux->next) {
1508 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1510 continue; /* audit_panic has been called */
1512 switch (aux->type) {
1514 case AUDIT_BPRM_FCAPS: {
1515 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1516 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1517 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1518 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1519 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1520 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1521 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1522 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1523 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1524 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1525 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1526 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1527 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1528 audit_log_format(ab, " frootid=%d",
1529 from_kuid(&init_user_ns,
1538 show_special(context, &call_panic);
1540 if (context->fds[0] >= 0) {
1541 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1543 audit_log_format(ab, "fd0=%d fd1=%d",
1544 context->fds[0], context->fds[1]);
1549 if (context->sockaddr_len) {
1550 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1552 audit_log_format(ab, "saddr=");
1553 audit_log_n_hex(ab, (void *)context->sockaddr,
1554 context->sockaddr_len);
1559 for (aux = context->aux_pids; aux; aux = aux->next) {
1560 struct audit_aux_data_pids *axs = (void *)aux;
1562 for (i = 0; i < axs->pid_count; i++)
1563 if (audit_log_pid_context(context, axs->target_pid[i],
1564 axs->target_auid[i],
1566 axs->target_sessionid[i],
1568 axs->target_comm[i]))
1572 if (context->target_pid &&
1573 audit_log_pid_context(context, context->target_pid,
1574 context->target_auid, context->target_uid,
1575 context->target_sessionid,
1576 context->target_sid, context->target_comm))
1579 if (context->pwd.dentry && context->pwd.mnt) {
1580 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1582 audit_log_d_path(ab, "cwd=", &context->pwd);
1588 list_for_each_entry(n, &context->names_list, list) {
1591 audit_log_name(context, n, NULL, i++, &call_panic);
1594 audit_log_proctitle();
1596 /* Send end of event record to help user space know we are finished */
1597 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1601 audit_panic("error converting sid to string");
1605 * __audit_free - free a per-task audit context
1606 * @tsk: task whose audit context block to free
1608 * Called from copy_process and do_exit
1610 void __audit_free(struct task_struct *tsk)
1612 struct audit_context *context = tsk->audit_context;
1617 if (!list_empty(&context->killed_trees))
1618 audit_kill_trees(context);
1620 /* We are called either by do_exit() or the fork() error handling code;
1621 * in the former case tsk == current and in the latter tsk is a
1622 * random task_struct that doesn't doesn't have any meaningful data we
1623 * need to log via audit_log_exit().
1625 if (tsk == current && !context->dummy && context->in_syscall) {
1626 context->return_valid = AUDITSC_INVALID;
1627 context->return_code = 0;
1629 audit_filter_syscall(tsk, context);
1630 audit_filter_inodes(tsk, context);
1631 if (context->current_state == AUDIT_RECORD_CONTEXT)
1635 audit_set_context(tsk, NULL);
1636 audit_free_context(context);
1640 * __audit_syscall_entry - fill in an audit record at syscall entry
1641 * @major: major syscall type (function)
1642 * @a1: additional syscall register 1
1643 * @a2: additional syscall register 2
1644 * @a3: additional syscall register 3
1645 * @a4: additional syscall register 4
1647 * Fill in audit context at syscall entry. This only happens if the
1648 * audit context was created when the task was created and the state or
1649 * filters demand the audit context be built. If the state from the
1650 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1651 * then the record will be written at syscall exit time (otherwise, it
1652 * will only be written if another part of the kernel requests that it
1655 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1656 unsigned long a3, unsigned long a4)
1658 struct audit_context *context = audit_context();
1659 enum audit_state state;
1661 if (!audit_enabled || !context)
1664 BUG_ON(context->in_syscall || context->name_count);
1666 state = context->state;
1667 if (state == AUDIT_DISABLED)
1670 context->dummy = !audit_n_rules;
1671 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1673 if (auditd_test_task(current))
1677 context->arch = syscall_get_arch(current);
1678 context->major = major;
1679 context->argv[0] = a1;
1680 context->argv[1] = a2;
1681 context->argv[2] = a3;
1682 context->argv[3] = a4;
1683 context->serial = 0;
1684 context->in_syscall = 1;
1685 context->current_state = state;
1687 ktime_get_coarse_real_ts64(&context->ctime);
1691 * __audit_syscall_exit - deallocate audit context after a system call
1692 * @success: success value of the syscall
1693 * @return_code: return value of the syscall
1695 * Tear down after system call. If the audit context has been marked as
1696 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1697 * filtering, or because some other part of the kernel wrote an audit
1698 * message), then write out the syscall information. In call cases,
1699 * free the names stored from getname().
1701 void __audit_syscall_exit(int success, long return_code)
1703 struct audit_context *context;
1705 context = audit_context();
1709 if (!list_empty(&context->killed_trees))
1710 audit_kill_trees(context);
1712 if (!context->dummy && context->in_syscall) {
1714 context->return_valid = AUDITSC_SUCCESS;
1716 context->return_valid = AUDITSC_FAILURE;
1719 * we need to fix up the return code in the audit logs if the
1720 * actual return codes are later going to be fixed up by the
1721 * arch specific signal handlers
1723 * This is actually a test for:
1724 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1725 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1727 * but is faster than a bunch of ||
1729 if (unlikely(return_code <= -ERESTARTSYS) &&
1730 (return_code >= -ERESTART_RESTARTBLOCK) &&
1731 (return_code != -ENOIOCTLCMD))
1732 context->return_code = -EINTR;
1734 context->return_code = return_code;
1736 audit_filter_syscall(current, context);
1737 audit_filter_inodes(current, context);
1738 if (context->current_state == AUDIT_RECORD_CONTEXT)
1742 context->in_syscall = 0;
1743 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1745 audit_free_module(context);
1746 audit_free_names(context);
1747 unroll_tree_refs(context, NULL, 0);
1748 audit_free_aux(context);
1749 context->aux = NULL;
1750 context->aux_pids = NULL;
1751 context->target_pid = 0;
1752 context->target_sid = 0;
1753 context->sockaddr_len = 0;
1755 context->fds[0] = -1;
1756 if (context->state != AUDIT_RECORD_CONTEXT) {
1757 kfree(context->filterkey);
1758 context->filterkey = NULL;
1762 static inline void handle_one(const struct inode *inode)
1764 struct audit_context *context;
1765 struct audit_tree_refs *p;
1766 struct audit_chunk *chunk;
1768 if (likely(!inode->i_fsnotify_marks))
1770 context = audit_context();
1772 count = context->tree_count;
1774 chunk = audit_tree_lookup(inode);
1778 if (likely(put_tree_ref(context, chunk)))
1780 if (unlikely(!grow_tree_refs(context))) {
1781 pr_warn("out of memory, audit has lost a tree reference\n");
1782 audit_set_auditable(context);
1783 audit_put_chunk(chunk);
1784 unroll_tree_refs(context, p, count);
1787 put_tree_ref(context, chunk);
1790 static void handle_path(const struct dentry *dentry)
1792 struct audit_context *context;
1793 struct audit_tree_refs *p;
1794 const struct dentry *d, *parent;
1795 struct audit_chunk *drop;
1799 context = audit_context();
1801 count = context->tree_count;
1806 seq = read_seqbegin(&rename_lock);
1808 struct inode *inode = d_backing_inode(d);
1809 if (inode && unlikely(inode->i_fsnotify_marks)) {
1810 struct audit_chunk *chunk;
1811 chunk = audit_tree_lookup(inode);
1813 if (unlikely(!put_tree_ref(context, chunk))) {
1819 parent = d->d_parent;
1824 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1827 /* just a race with rename */
1828 unroll_tree_refs(context, p, count);
1831 audit_put_chunk(drop);
1832 if (grow_tree_refs(context)) {
1833 /* OK, got more space */
1834 unroll_tree_refs(context, p, count);
1838 pr_warn("out of memory, audit has lost a tree reference\n");
1839 unroll_tree_refs(context, p, count);
1840 audit_set_auditable(context);
1846 static struct audit_names *audit_alloc_name(struct audit_context *context,
1849 struct audit_names *aname;
1851 if (context->name_count < AUDIT_NAMES) {
1852 aname = &context->preallocated_names[context->name_count];
1853 memset(aname, 0, sizeof(*aname));
1855 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1858 aname->should_free = true;
1861 aname->ino = AUDIT_INO_UNSET;
1863 list_add_tail(&aname->list, &context->names_list);
1865 context->name_count++;
1866 if (!context->pwd.dentry)
1867 get_fs_pwd(current->fs, &context->pwd);
1872 * __audit_reusename - fill out filename with info from existing entry
1873 * @uptr: userland ptr to pathname
1875 * Search the audit_names list for the current audit context. If there is an
1876 * existing entry with a matching "uptr" then return the filename
1877 * associated with that audit_name. If not, return NULL.
1880 __audit_reusename(const __user char *uptr)
1882 struct audit_context *context = audit_context();
1883 struct audit_names *n;
1885 list_for_each_entry(n, &context->names_list, list) {
1888 if (n->name->uptr == uptr) {
1897 * __audit_getname - add a name to the list
1898 * @name: name to add
1900 * Add a name to the list of audit names for this context.
1901 * Called from fs/namei.c:getname().
1903 void __audit_getname(struct filename *name)
1905 struct audit_context *context = audit_context();
1906 struct audit_names *n;
1908 if (!context->in_syscall)
1911 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1916 n->name_len = AUDIT_NAME_FULL;
1921 static inline int audit_copy_fcaps(struct audit_names *name,
1922 const struct dentry *dentry)
1924 struct cpu_vfs_cap_data caps;
1930 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
1934 name->fcap.permitted = caps.permitted;
1935 name->fcap.inheritable = caps.inheritable;
1936 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1937 name->fcap.rootid = caps.rootid;
1938 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1939 VFS_CAP_REVISION_SHIFT;
1944 /* Copy inode data into an audit_names. */
1945 static void audit_copy_inode(struct audit_names *name,
1946 const struct dentry *dentry,
1947 struct inode *inode, unsigned int flags)
1949 name->ino = inode->i_ino;
1950 name->dev = inode->i_sb->s_dev;
1951 name->mode = inode->i_mode;
1952 name->uid = inode->i_uid;
1953 name->gid = inode->i_gid;
1954 name->rdev = inode->i_rdev;
1955 security_inode_getsecid(inode, &name->osid);
1956 if (flags & AUDIT_INODE_NOEVAL) {
1957 name->fcap_ver = -1;
1960 audit_copy_fcaps(name, dentry);
1964 * __audit_inode - store the inode and device from a lookup
1965 * @name: name being audited
1966 * @dentry: dentry being audited
1967 * @flags: attributes for this particular entry
1969 void __audit_inode(struct filename *name, const struct dentry *dentry,
1972 struct audit_context *context = audit_context();
1973 struct inode *inode = d_backing_inode(dentry);
1974 struct audit_names *n;
1975 bool parent = flags & AUDIT_INODE_PARENT;
1976 struct audit_entry *e;
1977 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1980 if (!context->in_syscall)
1984 list_for_each_entry_rcu(e, list, list) {
1985 for (i = 0; i < e->rule.field_count; i++) {
1986 struct audit_field *f = &e->rule.fields[i];
1988 if (f->type == AUDIT_FSTYPE
1989 && audit_comparator(inode->i_sb->s_magic,
1991 && e->rule.action == AUDIT_NEVER) {
2003 * If we have a pointer to an audit_names entry already, then we can
2004 * just use it directly if the type is correct.
2009 if (n->type == AUDIT_TYPE_PARENT ||
2010 n->type == AUDIT_TYPE_UNKNOWN)
2013 if (n->type != AUDIT_TYPE_PARENT)
2018 list_for_each_entry_reverse(n, &context->names_list, list) {
2020 /* valid inode number, use that for the comparison */
2021 if (n->ino != inode->i_ino ||
2022 n->dev != inode->i_sb->s_dev)
2024 } else if (n->name) {
2025 /* inode number has not been set, check the name */
2026 if (strcmp(n->name->name, name->name))
2029 /* no inode and no name (?!) ... this is odd ... */
2032 /* match the correct record type */
2034 if (n->type == AUDIT_TYPE_PARENT ||
2035 n->type == AUDIT_TYPE_UNKNOWN)
2038 if (n->type != AUDIT_TYPE_PARENT)
2044 /* unable to find an entry with both a matching name and type */
2045 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2055 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2056 n->type = AUDIT_TYPE_PARENT;
2057 if (flags & AUDIT_INODE_HIDDEN)
2060 n->name_len = AUDIT_NAME_FULL;
2061 n->type = AUDIT_TYPE_NORMAL;
2063 handle_path(dentry);
2064 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2067 void __audit_file(const struct file *file)
2069 __audit_inode(NULL, file->f_path.dentry, 0);
2073 * __audit_inode_child - collect inode info for created/removed objects
2074 * @parent: inode of dentry parent
2075 * @dentry: dentry being audited
2076 * @type: AUDIT_TYPE_* value that we're looking for
2078 * For syscalls that create or remove filesystem objects, audit_inode
2079 * can only collect information for the filesystem object's parent.
2080 * This call updates the audit context with the child's information.
2081 * Syscalls that create a new filesystem object must be hooked after
2082 * the object is created. Syscalls that remove a filesystem object
2083 * must be hooked prior, in order to capture the target inode during
2084 * unsuccessful attempts.
2086 void __audit_inode_child(struct inode *parent,
2087 const struct dentry *dentry,
2088 const unsigned char type)
2090 struct audit_context *context = audit_context();
2091 struct inode *inode = d_backing_inode(dentry);
2092 const struct qstr *dname = &dentry->d_name;
2093 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2094 struct audit_entry *e;
2095 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2098 if (!context->in_syscall)
2102 list_for_each_entry_rcu(e, list, list) {
2103 for (i = 0; i < e->rule.field_count; i++) {
2104 struct audit_field *f = &e->rule.fields[i];
2106 if (f->type == AUDIT_FSTYPE
2107 && audit_comparator(parent->i_sb->s_magic,
2109 && e->rule.action == AUDIT_NEVER) {
2120 /* look for a parent entry first */
2121 list_for_each_entry(n, &context->names_list, list) {
2123 (n->type != AUDIT_TYPE_PARENT &&
2124 n->type != AUDIT_TYPE_UNKNOWN))
2127 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2128 !audit_compare_dname_path(dname,
2129 n->name->name, n->name_len)) {
2130 if (n->type == AUDIT_TYPE_UNKNOWN)
2131 n->type = AUDIT_TYPE_PARENT;
2137 /* is there a matching child entry? */
2138 list_for_each_entry(n, &context->names_list, list) {
2139 /* can only match entries that have a name */
2141 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2144 if (!strcmp(dname->name, n->name->name) ||
2145 !audit_compare_dname_path(dname, n->name->name,
2147 found_parent->name_len :
2149 if (n->type == AUDIT_TYPE_UNKNOWN)
2156 if (!found_parent) {
2157 /* create a new, "anonymous" parent record */
2158 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2161 audit_copy_inode(n, NULL, parent, 0);
2165 found_child = audit_alloc_name(context, type);
2169 /* Re-use the name belonging to the slot for a matching parent
2170 * directory. All names for this context are relinquished in
2171 * audit_free_names() */
2173 found_child->name = found_parent->name;
2174 found_child->name_len = AUDIT_NAME_FULL;
2175 found_child->name->refcnt++;
2180 audit_copy_inode(found_child, dentry, inode, 0);
2182 found_child->ino = AUDIT_INO_UNSET;
2184 EXPORT_SYMBOL_GPL(__audit_inode_child);
2187 * auditsc_get_stamp - get local copies of audit_context values
2188 * @ctx: audit_context for the task
2189 * @t: timespec64 to store time recorded in the audit_context
2190 * @serial: serial value that is recorded in the audit_context
2192 * Also sets the context as auditable.
2194 int auditsc_get_stamp(struct audit_context *ctx,
2195 struct timespec64 *t, unsigned int *serial)
2197 if (!ctx->in_syscall)
2200 ctx->serial = audit_serial();
2201 t->tv_sec = ctx->ctime.tv_sec;
2202 t->tv_nsec = ctx->ctime.tv_nsec;
2203 *serial = ctx->serial;
2206 ctx->current_state = AUDIT_RECORD_CONTEXT;
2212 * __audit_mq_open - record audit data for a POSIX MQ open
2215 * @attr: queue attributes
2218 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2220 struct audit_context *context = audit_context();
2223 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2225 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2227 context->mq_open.oflag = oflag;
2228 context->mq_open.mode = mode;
2230 context->type = AUDIT_MQ_OPEN;
2234 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2235 * @mqdes: MQ descriptor
2236 * @msg_len: Message length
2237 * @msg_prio: Message priority
2238 * @abs_timeout: Message timeout in absolute time
2241 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2242 const struct timespec64 *abs_timeout)
2244 struct audit_context *context = audit_context();
2245 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2248 memcpy(p, abs_timeout, sizeof(*p));
2250 memset(p, 0, sizeof(*p));
2252 context->mq_sendrecv.mqdes = mqdes;
2253 context->mq_sendrecv.msg_len = msg_len;
2254 context->mq_sendrecv.msg_prio = msg_prio;
2256 context->type = AUDIT_MQ_SENDRECV;
2260 * __audit_mq_notify - record audit data for a POSIX MQ notify
2261 * @mqdes: MQ descriptor
2262 * @notification: Notification event
2266 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2268 struct audit_context *context = audit_context();
2271 context->mq_notify.sigev_signo = notification->sigev_signo;
2273 context->mq_notify.sigev_signo = 0;
2275 context->mq_notify.mqdes = mqdes;
2276 context->type = AUDIT_MQ_NOTIFY;
2280 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2281 * @mqdes: MQ descriptor
2285 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2287 struct audit_context *context = audit_context();
2288 context->mq_getsetattr.mqdes = mqdes;
2289 context->mq_getsetattr.mqstat = *mqstat;
2290 context->type = AUDIT_MQ_GETSETATTR;
2294 * __audit_ipc_obj - record audit data for ipc object
2295 * @ipcp: ipc permissions
2298 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2300 struct audit_context *context = audit_context();
2301 context->ipc.uid = ipcp->uid;
2302 context->ipc.gid = ipcp->gid;
2303 context->ipc.mode = ipcp->mode;
2304 context->ipc.has_perm = 0;
2305 security_ipc_getsecid(ipcp, &context->ipc.osid);
2306 context->type = AUDIT_IPC;
2310 * __audit_ipc_set_perm - record audit data for new ipc permissions
2311 * @qbytes: msgq bytes
2312 * @uid: msgq user id
2313 * @gid: msgq group id
2314 * @mode: msgq mode (permissions)
2316 * Called only after audit_ipc_obj().
2318 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2320 struct audit_context *context = audit_context();
2322 context->ipc.qbytes = qbytes;
2323 context->ipc.perm_uid = uid;
2324 context->ipc.perm_gid = gid;
2325 context->ipc.perm_mode = mode;
2326 context->ipc.has_perm = 1;
2329 void __audit_bprm(struct linux_binprm *bprm)
2331 struct audit_context *context = audit_context();
2333 context->type = AUDIT_EXECVE;
2334 context->execve.argc = bprm->argc;
2339 * __audit_socketcall - record audit data for sys_socketcall
2340 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2344 int __audit_socketcall(int nargs, unsigned long *args)
2346 struct audit_context *context = audit_context();
2348 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2350 context->type = AUDIT_SOCKETCALL;
2351 context->socketcall.nargs = nargs;
2352 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2357 * __audit_fd_pair - record audit data for pipe and socketpair
2358 * @fd1: the first file descriptor
2359 * @fd2: the second file descriptor
2362 void __audit_fd_pair(int fd1, int fd2)
2364 struct audit_context *context = audit_context();
2365 context->fds[0] = fd1;
2366 context->fds[1] = fd2;
2370 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2371 * @len: data length in user space
2372 * @a: data address in kernel space
2374 * Returns 0 for success or NULL context or < 0 on error.
2376 int __audit_sockaddr(int len, void *a)
2378 struct audit_context *context = audit_context();
2380 if (!context->sockaddr) {
2381 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2384 context->sockaddr = p;
2387 context->sockaddr_len = len;
2388 memcpy(context->sockaddr, a, len);
2392 void __audit_ptrace(struct task_struct *t)
2394 struct audit_context *context = audit_context();
2396 context->target_pid = task_tgid_nr(t);
2397 context->target_auid = audit_get_loginuid(t);
2398 context->target_uid = task_uid(t);
2399 context->target_sessionid = audit_get_sessionid(t);
2400 security_task_getsecid_obj(t, &context->target_sid);
2401 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2405 * audit_signal_info_syscall - record signal info for syscalls
2406 * @t: task being signaled
2408 * If the audit subsystem is being terminated, record the task (pid)
2409 * and uid that is doing that.
2411 int audit_signal_info_syscall(struct task_struct *t)
2413 struct audit_aux_data_pids *axp;
2414 struct audit_context *ctx = audit_context();
2415 kuid_t t_uid = task_uid(t);
2417 if (!audit_signals || audit_dummy_context())
2420 /* optimize the common case by putting first signal recipient directly
2421 * in audit_context */
2422 if (!ctx->target_pid) {
2423 ctx->target_pid = task_tgid_nr(t);
2424 ctx->target_auid = audit_get_loginuid(t);
2425 ctx->target_uid = t_uid;
2426 ctx->target_sessionid = audit_get_sessionid(t);
2427 security_task_getsecid_obj(t, &ctx->target_sid);
2428 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2432 axp = (void *)ctx->aux_pids;
2433 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2434 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2438 axp->d.type = AUDIT_OBJ_PID;
2439 axp->d.next = ctx->aux_pids;
2440 ctx->aux_pids = (void *)axp;
2442 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2444 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2445 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2446 axp->target_uid[axp->pid_count] = t_uid;
2447 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2448 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2449 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2456 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2457 * @bprm: pointer to the bprm being processed
2458 * @new: the proposed new credentials
2459 * @old: the old credentials
2461 * Simply check if the proc already has the caps given by the file and if not
2462 * store the priv escalation info for later auditing at the end of the syscall
2466 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2467 const struct cred *new, const struct cred *old)
2469 struct audit_aux_data_bprm_fcaps *ax;
2470 struct audit_context *context = audit_context();
2471 struct cpu_vfs_cap_data vcaps;
2473 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2477 ax->d.type = AUDIT_BPRM_FCAPS;
2478 ax->d.next = context->aux;
2479 context->aux = (void *)ax;
2481 get_vfs_caps_from_disk(&init_user_ns,
2482 bprm->file->f_path.dentry, &vcaps);
2484 ax->fcap.permitted = vcaps.permitted;
2485 ax->fcap.inheritable = vcaps.inheritable;
2486 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2487 ax->fcap.rootid = vcaps.rootid;
2488 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2490 ax->old_pcap.permitted = old->cap_permitted;
2491 ax->old_pcap.inheritable = old->cap_inheritable;
2492 ax->old_pcap.effective = old->cap_effective;
2493 ax->old_pcap.ambient = old->cap_ambient;
2495 ax->new_pcap.permitted = new->cap_permitted;
2496 ax->new_pcap.inheritable = new->cap_inheritable;
2497 ax->new_pcap.effective = new->cap_effective;
2498 ax->new_pcap.ambient = new->cap_ambient;
2503 * __audit_log_capset - store information about the arguments to the capset syscall
2504 * @new: the new credentials
2505 * @old: the old (current) credentials
2507 * Record the arguments userspace sent to sys_capset for later printing by the
2508 * audit system if applicable
2510 void __audit_log_capset(const struct cred *new, const struct cred *old)
2512 struct audit_context *context = audit_context();
2513 context->capset.pid = task_tgid_nr(current);
2514 context->capset.cap.effective = new->cap_effective;
2515 context->capset.cap.inheritable = new->cap_effective;
2516 context->capset.cap.permitted = new->cap_permitted;
2517 context->capset.cap.ambient = new->cap_ambient;
2518 context->type = AUDIT_CAPSET;
2521 void __audit_mmap_fd(int fd, int flags)
2523 struct audit_context *context = audit_context();
2524 context->mmap.fd = fd;
2525 context->mmap.flags = flags;
2526 context->type = AUDIT_MMAP;
2529 void __audit_log_kern_module(char *name)
2531 struct audit_context *context = audit_context();
2533 context->module.name = kstrdup(name, GFP_KERNEL);
2534 if (!context->module.name)
2535 audit_log_lost("out of memory in __audit_log_kern_module");
2536 context->type = AUDIT_KERN_MODULE;
2539 void __audit_fanotify(unsigned int response)
2541 audit_log(audit_context(), GFP_KERNEL,
2542 AUDIT_FANOTIFY, "resp=%u", response);
2545 void __audit_tk_injoffset(struct timespec64 offset)
2547 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2548 "sec=%lli nsec=%li",
2549 (long long)offset.tv_sec, offset.tv_nsec);
2552 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2553 const char *op, enum audit_ntp_type type)
2555 const struct audit_ntp_val *val = &ad->vals[type];
2557 if (val->newval == val->oldval)
2560 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2561 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2564 void __audit_ntp_log(const struct audit_ntp_data *ad)
2566 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2567 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2568 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2569 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2570 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2571 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2574 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2575 enum audit_nfcfgop op, gfp_t gfp)
2577 struct audit_buffer *ab;
2578 char comm[sizeof(current->comm)];
2580 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2583 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2584 name, af, nentries, audit_nfcfgs[op].s);
2586 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2587 audit_log_task_context(ab); /* subj= */
2588 audit_log_format(ab, " comm=");
2589 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2592 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2594 static void audit_log_task(struct audit_buffer *ab)
2598 unsigned int sessionid;
2599 char comm[sizeof(current->comm)];
2601 auid = audit_get_loginuid(current);
2602 sessionid = audit_get_sessionid(current);
2603 current_uid_gid(&uid, &gid);
2605 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2606 from_kuid(&init_user_ns, auid),
2607 from_kuid(&init_user_ns, uid),
2608 from_kgid(&init_user_ns, gid),
2610 audit_log_task_context(ab);
2611 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2612 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2613 audit_log_d_path_exe(ab, current->mm);
2617 * audit_core_dumps - record information about processes that end abnormally
2618 * @signr: signal value
2620 * If a process ends with a core dump, something fishy is going on and we
2621 * should record the event for investigation.
2623 void audit_core_dumps(long signr)
2625 struct audit_buffer *ab;
2630 if (signr == SIGQUIT) /* don't care for those */
2633 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2637 audit_log_format(ab, " sig=%ld res=1", signr);
2642 * audit_seccomp - record information about a seccomp action
2643 * @syscall: syscall number
2644 * @signr: signal value
2645 * @code: the seccomp action
2647 * Record the information associated with a seccomp action. Event filtering for
2648 * seccomp actions that are not to be logged is done in seccomp_log().
2649 * Therefore, this function forces auditing independent of the audit_enabled
2650 * and dummy context state because seccomp actions should be logged even when
2651 * audit is not in use.
2653 void audit_seccomp(unsigned long syscall, long signr, int code)
2655 struct audit_buffer *ab;
2657 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2661 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2662 signr, syscall_get_arch(current), syscall,
2663 in_compat_syscall(), KSTK_EIP(current), code);
2667 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2670 struct audit_buffer *ab;
2675 ab = audit_log_start(audit_context(), GFP_KERNEL,
2676 AUDIT_CONFIG_CHANGE);
2680 audit_log_format(ab,
2681 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2682 names, old_names, res);
2686 struct list_head *audit_killed_trees(void)
2688 struct audit_context *ctx = audit_context();
2689 if (likely(!ctx || !ctx->in_syscall))
2691 return &ctx->killed_trees;