1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/init.h>
35 #include <asm/types.h>
36 #include <linux/atomic.h>
38 #include <linux/namei.h>
40 #include <linux/export.h>
41 #include <linux/slab.h>
42 #include <linux/mount.h>
43 #include <linux/socket.h>
44 #include <linux/mqueue.h>
45 #include <linux/audit.h>
46 #include <linux/personality.h>
47 #include <linux/time.h>
48 #include <linux/netlink.h>
49 #include <linux/compiler.h>
50 #include <asm/unistd.h>
51 #include <linux/security.h>
52 #include <linux/list.h>
53 #include <linux/binfmts.h>
54 #include <linux/highmem.h>
55 #include <linux/syscalls.h>
56 #include <asm/syscall.h>
57 #include <linux/capability.h>
58 #include <linux/fs_struct.h>
59 #include <linux/compat.h>
60 #include <linux/ctype.h>
61 #include <linux/string.h>
62 #include <linux/uaccess.h>
63 #include <linux/fsnotify_backend.h>
64 #include <uapi/linux/limits.h>
65 #include <uapi/linux/netfilter/nf_tables.h>
66 #include <uapi/linux/openat2.h> // struct open_how
67 #include <uapi/linux/fanotify.h>
71 /* flags stating the success for a syscall */
72 #define AUDITSC_INVALID 0
73 #define AUDITSC_SUCCESS 1
74 #define AUDITSC_FAILURE 2
76 /* no execve audit message should be longer than this (userspace limits),
77 * see the note near the top of audit_log_execve_info() about this value */
78 #define MAX_EXECVE_AUDIT_LEN 7500
80 /* max length to print of cmdline/proctitle value during audit */
81 #define MAX_PROCTITLE_AUDIT_LEN 128
83 /* number of audit rules */
86 /* determines whether we collect data for signals sent */
89 struct audit_aux_data {
90 struct audit_aux_data *next;
94 /* Number of target pids per aux struct. */
95 #define AUDIT_AUX_PIDS 16
97 struct audit_aux_data_pids {
98 struct audit_aux_data d;
99 pid_t target_pid[AUDIT_AUX_PIDS];
100 kuid_t target_auid[AUDIT_AUX_PIDS];
101 kuid_t target_uid[AUDIT_AUX_PIDS];
102 unsigned int target_sessionid[AUDIT_AUX_PIDS];
103 u32 target_sid[AUDIT_AUX_PIDS];
104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
108 struct audit_aux_data_bprm_fcaps {
109 struct audit_aux_data d;
110 struct audit_cap_data fcap;
111 unsigned int fcap_ver;
112 struct audit_cap_data old_pcap;
113 struct audit_cap_data new_pcap;
116 struct audit_tree_refs {
117 struct audit_tree_refs *next;
118 struct audit_chunk *c[31];
121 struct audit_nfcfgop_tab {
122 enum audit_nfcfgop op;
126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
127 { AUDIT_XT_OP_REGISTER, "xt_register" },
128 { AUDIT_XT_OP_REPLACE, "xt_replace" },
129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
146 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
149 static int audit_match_perm(struct audit_context *ctx, int mask)
157 switch (audit_classify_syscall(ctx->arch, n)) {
159 if ((mask & AUDIT_PERM_WRITE) &&
160 audit_match_class(AUDIT_CLASS_WRITE, n))
162 if ((mask & AUDIT_PERM_READ) &&
163 audit_match_class(AUDIT_CLASS_READ, n))
165 if ((mask & AUDIT_PERM_ATTR) &&
166 audit_match_class(AUDIT_CLASS_CHATTR, n))
169 case AUDITSC_COMPAT: /* 32bit on biarch */
170 if ((mask & AUDIT_PERM_WRITE) &&
171 audit_match_class(AUDIT_CLASS_WRITE_32, n))
173 if ((mask & AUDIT_PERM_READ) &&
174 audit_match_class(AUDIT_CLASS_READ_32, n))
176 if ((mask & AUDIT_PERM_ATTR) &&
177 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
181 return mask & ACC_MODE(ctx->argv[1]);
183 return mask & ACC_MODE(ctx->argv[2]);
184 case AUDITSC_SOCKETCALL:
185 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
187 return mask & AUDIT_PERM_EXEC;
188 case AUDITSC_OPENAT2:
189 return mask & ACC_MODE((u32)ctx->openat2.flags);
195 static int audit_match_filetype(struct audit_context *ctx, int val)
197 struct audit_names *n;
198 umode_t mode = (umode_t)val;
203 list_for_each_entry(n, &ctx->names_list, list) {
204 if ((n->ino != AUDIT_INO_UNSET) &&
205 ((n->mode & S_IFMT) == mode))
213 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
214 * ->first_trees points to its beginning, ->trees - to the current end of data.
215 * ->tree_count is the number of free entries in array pointed to by ->trees.
216 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
217 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
218 * it's going to remain 1-element for almost any setup) until we free context itself.
219 * References in it _are_ dropped - at the same time we free/drop aux stuff.
222 static void audit_set_auditable(struct audit_context *ctx)
226 ctx->current_state = AUDIT_STATE_RECORD;
230 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
232 struct audit_tree_refs *p = ctx->trees;
233 int left = ctx->tree_count;
236 p->c[--left] = chunk;
237 ctx->tree_count = left;
246 ctx->tree_count = 30;
252 static int grow_tree_refs(struct audit_context *ctx)
254 struct audit_tree_refs *p = ctx->trees;
256 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
262 p->next = ctx->trees;
264 ctx->first_trees = ctx->trees;
265 ctx->tree_count = 31;
269 static void unroll_tree_refs(struct audit_context *ctx,
270 struct audit_tree_refs *p, int count)
272 struct audit_tree_refs *q;
276 /* we started with empty chain */
277 p = ctx->first_trees;
279 /* if the very first allocation has failed, nothing to do */
284 for (q = p; q != ctx->trees; q = q->next, n = 31) {
286 audit_put_chunk(q->c[n]);
290 while (n-- > ctx->tree_count) {
291 audit_put_chunk(q->c[n]);
295 ctx->tree_count = count;
298 static void free_tree_refs(struct audit_context *ctx)
300 struct audit_tree_refs *p, *q;
302 for (p = ctx->first_trees; p; p = q) {
308 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
310 struct audit_tree_refs *p;
316 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
317 for (n = 0; n < 31; n++)
318 if (audit_tree_match(p->c[n], tree))
323 for (n = ctx->tree_count; n < 31; n++)
324 if (audit_tree_match(p->c[n], tree))
330 static int audit_compare_uid(kuid_t uid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
335 struct audit_names *n;
339 rc = audit_uid_comparator(uid, f->op, name->uid);
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_uid_comparator(uid, f->op, n->uid);
354 static int audit_compare_gid(kgid_t gid,
355 struct audit_names *name,
356 struct audit_field *f,
357 struct audit_context *ctx)
359 struct audit_names *n;
363 rc = audit_gid_comparator(gid, f->op, name->gid);
369 list_for_each_entry(n, &ctx->names_list, list) {
370 rc = audit_gid_comparator(gid, f->op, n->gid);
378 static int audit_field_compare(struct task_struct *tsk,
379 const struct cred *cred,
380 struct audit_field *f,
381 struct audit_context *ctx,
382 struct audit_names *name)
385 /* process to file object comparisons */
386 case AUDIT_COMPARE_UID_TO_OBJ_UID:
387 return audit_compare_uid(cred->uid, name, f, ctx);
388 case AUDIT_COMPARE_GID_TO_OBJ_GID:
389 return audit_compare_gid(cred->gid, name, f, ctx);
390 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
391 return audit_compare_uid(cred->euid, name, f, ctx);
392 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
393 return audit_compare_gid(cred->egid, name, f, ctx);
394 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
395 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
396 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
397 return audit_compare_uid(cred->suid, name, f, ctx);
398 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
399 return audit_compare_gid(cred->sgid, name, f, ctx);
400 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
401 return audit_compare_uid(cred->fsuid, name, f, ctx);
402 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
403 return audit_compare_gid(cred->fsgid, name, f, ctx);
404 /* uid comparisons */
405 case AUDIT_COMPARE_UID_TO_AUID:
406 return audit_uid_comparator(cred->uid, f->op,
407 audit_get_loginuid(tsk));
408 case AUDIT_COMPARE_UID_TO_EUID:
409 return audit_uid_comparator(cred->uid, f->op, cred->euid);
410 case AUDIT_COMPARE_UID_TO_SUID:
411 return audit_uid_comparator(cred->uid, f->op, cred->suid);
412 case AUDIT_COMPARE_UID_TO_FSUID:
413 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
414 /* auid comparisons */
415 case AUDIT_COMPARE_AUID_TO_EUID:
416 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
418 case AUDIT_COMPARE_AUID_TO_SUID:
419 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
421 case AUDIT_COMPARE_AUID_TO_FSUID:
422 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
424 /* euid comparisons */
425 case AUDIT_COMPARE_EUID_TO_SUID:
426 return audit_uid_comparator(cred->euid, f->op, cred->suid);
427 case AUDIT_COMPARE_EUID_TO_FSUID:
428 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
429 /* suid comparisons */
430 case AUDIT_COMPARE_SUID_TO_FSUID:
431 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
432 /* gid comparisons */
433 case AUDIT_COMPARE_GID_TO_EGID:
434 return audit_gid_comparator(cred->gid, f->op, cred->egid);
435 case AUDIT_COMPARE_GID_TO_SGID:
436 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
437 case AUDIT_COMPARE_GID_TO_FSGID:
438 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
439 /* egid comparisons */
440 case AUDIT_COMPARE_EGID_TO_SGID:
441 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
442 case AUDIT_COMPARE_EGID_TO_FSGID:
443 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
444 /* sgid comparison */
445 case AUDIT_COMPARE_SGID_TO_FSGID:
446 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
448 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
454 /* Determine if any context name data matches a rule's watch data */
455 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
458 * If task_creation is true, this is an explicit indication that we are
459 * filtering a task rule at task creation time. This and tsk == current are
460 * the only situations where tsk->cred may be accessed without an rcu read lock.
462 static int audit_filter_rules(struct task_struct *tsk,
463 struct audit_krule *rule,
464 struct audit_context *ctx,
465 struct audit_names *name,
466 enum audit_state *state,
469 const struct cred *cred;
472 unsigned int sessionid;
474 if (ctx && rule->prio <= ctx->prio)
477 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
479 for (i = 0; i < rule->field_count; i++) {
480 struct audit_field *f = &rule->fields[i];
481 struct audit_names *n;
487 pid = task_tgid_nr(tsk);
488 result = audit_comparator(pid, f->op, f->val);
493 ctx->ppid = task_ppid_nr(tsk);
494 result = audit_comparator(ctx->ppid, f->op, f->val);
498 result = audit_exe_compare(tsk, rule->exe);
499 if (f->op == Audit_not_equal)
503 result = audit_uid_comparator(cred->uid, f->op, f->uid);
506 result = audit_uid_comparator(cred->euid, f->op, f->uid);
509 result = audit_uid_comparator(cred->suid, f->op, f->uid);
512 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515 result = audit_gid_comparator(cred->gid, f->op, f->gid);
516 if (f->op == Audit_equal) {
518 result = groups_search(cred->group_info, f->gid);
519 } else if (f->op == Audit_not_equal) {
521 result = !groups_search(cred->group_info, f->gid);
525 result = audit_gid_comparator(cred->egid, f->op, f->gid);
526 if (f->op == Audit_equal) {
528 result = groups_search(cred->group_info, f->gid);
529 } else if (f->op == Audit_not_equal) {
531 result = !groups_search(cred->group_info, f->gid);
535 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
540 case AUDIT_SESSIONID:
541 sessionid = audit_get_sessionid(tsk);
542 result = audit_comparator(sessionid, f->op, f->val);
545 result = audit_comparator(tsk->personality, f->op, f->val);
549 result = audit_comparator(ctx->arch, f->op, f->val);
553 if (ctx && ctx->return_valid != AUDITSC_INVALID)
554 result = audit_comparator(ctx->return_code, f->op, f->val);
557 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
559 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
566 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
567 audit_comparator(MAJOR(name->rdev), f->op, f->val))
570 list_for_each_entry(n, &ctx->names_list, list) {
571 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
572 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
581 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
582 audit_comparator(MINOR(name->rdev), f->op, f->val))
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
587 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
596 result = audit_comparator(name->ino, f->op, f->val);
598 list_for_each_entry(n, &ctx->names_list, list) {
599 if (audit_comparator(n->ino, f->op, f->val)) {
608 result = audit_uid_comparator(name->uid, f->op, f->uid);
610 list_for_each_entry(n, &ctx->names_list, list) {
611 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
620 result = audit_gid_comparator(name->gid, f->op, f->gid);
622 list_for_each_entry(n, &ctx->names_list, list) {
623 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
632 result = audit_watch_compare(rule->watch,
635 if (f->op == Audit_not_equal)
641 result = match_tree_refs(ctx, rule->tree);
642 if (f->op == Audit_not_equal)
647 result = audit_uid_comparator(audit_get_loginuid(tsk),
650 case AUDIT_LOGINUID_SET:
651 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
653 case AUDIT_SADDR_FAM:
654 if (ctx && ctx->sockaddr)
655 result = audit_comparator(ctx->sockaddr->ss_family,
658 case AUDIT_SUBJ_USER:
659 case AUDIT_SUBJ_ROLE:
660 case AUDIT_SUBJ_TYPE:
663 /* NOTE: this may return negative values indicating
664 a temporary error. We simply treat this as a
665 match for now to avoid losing information that
666 may be wanted. An error message will also be
670 /* @tsk should always be equal to
671 * @current with the exception of
672 * fork()/copy_process() in which case
673 * the new @tsk creds are still a dup
674 * of @current's creds so we can still
675 * use security_current_getsecid_subj()
676 * here even though it always refs
679 security_current_getsecid_subj(&sid);
682 result = security_audit_rule_match(sid, f->type,
690 case AUDIT_OBJ_LEV_LOW:
691 case AUDIT_OBJ_LEV_HIGH:
692 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
695 /* Find files that match */
697 result = security_audit_rule_match(
703 list_for_each_entry(n, &ctx->names_list, list) {
704 if (security_audit_rule_match(
714 /* Find ipc objects that match */
715 if (!ctx || ctx->type != AUDIT_IPC)
717 if (security_audit_rule_match(ctx->ipc.osid,
728 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
730 case AUDIT_FILTERKEY:
731 /* ignore this field for filtering */
735 result = audit_match_perm(ctx, f->val);
736 if (f->op == Audit_not_equal)
740 result = audit_match_filetype(ctx, f->val);
741 if (f->op == Audit_not_equal)
744 case AUDIT_FIELD_COMPARE:
745 result = audit_field_compare(tsk, cred, f, ctx, name);
753 if (rule->filterkey) {
754 kfree(ctx->filterkey);
755 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
757 ctx->prio = rule->prio;
759 switch (rule->action) {
761 *state = AUDIT_STATE_DISABLED;
764 *state = AUDIT_STATE_RECORD;
770 /* At process creation time, we can determine if system-call auditing is
771 * completely disabled for this task. Since we only have the task
772 * structure at this point, we can only check uid and gid.
774 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
776 struct audit_entry *e;
777 enum audit_state state;
780 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
781 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
783 if (state == AUDIT_STATE_RECORD)
784 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
790 return AUDIT_STATE_BUILD;
793 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
797 if (val > 0xffffffff)
800 word = AUDIT_WORD(val);
801 if (word >= AUDIT_BITMASK_SIZE)
804 bit = AUDIT_BIT(val);
806 return rule->mask[word] & bit;
810 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
811 * @tsk: associated task
812 * @ctx: audit context
813 * @list: audit filter list
814 * @name: audit_name (can be NULL)
815 * @op: current syscall/uring_op
817 * Run the udit filters specified in @list against @tsk using @ctx,
818 * @name, and @op, as necessary; the caller is responsible for ensuring
819 * that the call is made while the RCU read lock is held. The @name
820 * parameter can be NULL, but all others must be specified.
821 * Returns 1/true if the filter finds a match, 0/false if none are found.
823 static int __audit_filter_op(struct task_struct *tsk,
824 struct audit_context *ctx,
825 struct list_head *list,
826 struct audit_names *name,
829 struct audit_entry *e;
830 enum audit_state state;
832 list_for_each_entry_rcu(e, list, list) {
833 if (audit_in_mask(&e->rule, op) &&
834 audit_filter_rules(tsk, &e->rule, ctx, name,
836 ctx->current_state = state;
844 * audit_filter_uring - apply filters to an io_uring operation
845 * @tsk: associated task
846 * @ctx: audit context
848 static void audit_filter_uring(struct task_struct *tsk,
849 struct audit_context *ctx)
851 if (auditd_test_task(tsk))
855 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
856 NULL, ctx->uring_op);
860 /* At syscall exit time, this filter is called if the audit_state is
861 * not low enough that auditing cannot take place, but is also not
862 * high enough that we already know we have to write an audit record
863 * (i.e., the state is AUDIT_STATE_BUILD).
865 static void audit_filter_syscall(struct task_struct *tsk,
866 struct audit_context *ctx)
868 if (auditd_test_task(tsk))
872 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
878 * Given an audit_name check the inode hash table to see if they match.
879 * Called holding the rcu read lock to protect the use of audit_inode_hash
881 static int audit_filter_inode_name(struct task_struct *tsk,
882 struct audit_names *n,
883 struct audit_context *ctx)
885 int h = audit_hash_ino((u32)n->ino);
886 struct list_head *list = &audit_inode_hash[h];
888 return __audit_filter_op(tsk, ctx, list, n, ctx->major);
891 /* At syscall exit time, this filter is called if any audit_names have been
892 * collected during syscall processing. We only check rules in sublists at hash
893 * buckets applicable to the inode numbers in audit_names.
894 * Regarding audit_state, same rules apply as for audit_filter_syscall().
896 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
898 struct audit_names *n;
900 if (auditd_test_task(tsk))
905 list_for_each_entry(n, &ctx->names_list, list) {
906 if (audit_filter_inode_name(tsk, n, ctx))
912 static inline void audit_proctitle_free(struct audit_context *context)
914 kfree(context->proctitle.value);
915 context->proctitle.value = NULL;
916 context->proctitle.len = 0;
919 static inline void audit_free_module(struct audit_context *context)
921 if (context->type == AUDIT_KERN_MODULE) {
922 kfree(context->module.name);
923 context->module.name = NULL;
926 static inline void audit_free_names(struct audit_context *context)
928 struct audit_names *n, *next;
930 list_for_each_entry_safe(n, next, &context->names_list, list) {
937 context->name_count = 0;
938 path_put(&context->pwd);
939 context->pwd.dentry = NULL;
940 context->pwd.mnt = NULL;
943 static inline void audit_free_aux(struct audit_context *context)
945 struct audit_aux_data *aux;
947 while ((aux = context->aux)) {
948 context->aux = aux->next;
952 while ((aux = context->aux_pids)) {
953 context->aux_pids = aux->next;
956 context->aux_pids = NULL;
960 * audit_reset_context - reset a audit_context structure
961 * @ctx: the audit_context to reset
963 * All fields in the audit_context will be reset to an initial state, all
964 * references held by fields will be dropped, and private memory will be
965 * released. When this function returns the audit_context will be suitable
966 * for reuse, so long as the passed context is not NULL or a dummy context.
968 static void audit_reset_context(struct audit_context *ctx)
973 /* if ctx is non-null, reset the "ctx->context" regardless */
974 ctx->context = AUDIT_CTX_UNUSED;
979 * NOTE: It shouldn't matter in what order we release the fields, so
980 * release them in the order in which they appear in the struct;
981 * this gives us some hope of quickly making sure we are
982 * resetting the audit_context properly.
984 * Other things worth mentioning:
985 * - we don't reset "dummy"
986 * - we don't reset "state", we do reset "current_state"
987 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
988 * - much of this is likely overkill, but play it safe for now
989 * - we really need to work on improving the audit_context struct
992 ctx->current_state = ctx->state;
996 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
997 memset(ctx->argv, 0, sizeof(ctx->argv));
998 ctx->return_code = 0;
999 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1000 ctx->return_valid = AUDITSC_INVALID;
1001 audit_free_names(ctx);
1002 if (ctx->state != AUDIT_STATE_RECORD) {
1003 kfree(ctx->filterkey);
1004 ctx->filterkey = NULL;
1006 audit_free_aux(ctx);
1007 kfree(ctx->sockaddr);
1008 ctx->sockaddr = NULL;
1009 ctx->sockaddr_len = 0;
1011 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1012 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1013 ctx->personality = 0;
1015 ctx->target_pid = 0;
1016 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1017 ctx->target_sessionid = 0;
1018 ctx->target_sid = 0;
1019 ctx->target_comm[0] = '\0';
1020 unroll_tree_refs(ctx, NULL, 0);
1021 WARN_ON(!list_empty(&ctx->killed_trees));
1022 audit_free_module(ctx);
1024 ctx->type = 0; /* reset last for audit_free_*() */
1027 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1029 struct audit_context *context;
1031 context = kzalloc(sizeof(*context), GFP_KERNEL);
1034 context->context = AUDIT_CTX_UNUSED;
1035 context->state = state;
1036 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1037 INIT_LIST_HEAD(&context->killed_trees);
1038 INIT_LIST_HEAD(&context->names_list);
1039 context->fds[0] = -1;
1040 context->return_valid = AUDITSC_INVALID;
1045 * audit_alloc - allocate an audit context block for a task
1048 * Filter on the task information and allocate a per-task audit context
1049 * if necessary. Doing so turns on system call auditing for the
1050 * specified task. This is called from copy_process, so no lock is
1053 int audit_alloc(struct task_struct *tsk)
1055 struct audit_context *context;
1056 enum audit_state state;
1059 if (likely(!audit_ever_enabled))
1062 state = audit_filter_task(tsk, &key);
1063 if (state == AUDIT_STATE_DISABLED) {
1064 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1068 context = audit_alloc_context(state);
1071 audit_log_lost("out of memory in audit_alloc");
1074 context->filterkey = key;
1076 audit_set_context(tsk, context);
1077 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1081 static inline void audit_free_context(struct audit_context *context)
1083 /* resetting is extra work, but it is likely just noise */
1084 audit_reset_context(context);
1085 audit_proctitle_free(context);
1086 free_tree_refs(context);
1087 kfree(context->filterkey);
1091 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1092 kuid_t auid, kuid_t uid, unsigned int sessionid,
1093 u32 sid, char *comm)
1095 struct audit_buffer *ab;
1100 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1104 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1105 from_kuid(&init_user_ns, auid),
1106 from_kuid(&init_user_ns, uid), sessionid);
1108 if (security_secid_to_secctx(sid, &ctx, &len)) {
1109 audit_log_format(ab, " obj=(none)");
1112 audit_log_format(ab, " obj=%s", ctx);
1113 security_release_secctx(ctx, len);
1116 audit_log_format(ab, " ocomm=");
1117 audit_log_untrustedstring(ab, comm);
1123 static void audit_log_execve_info(struct audit_context *context,
1124 struct audit_buffer **ab)
1138 const char __user *p = (const char __user *)current->mm->arg_start;
1140 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1141 * data we put in the audit record for this argument (see the
1142 * code below) ... at this point in time 96 is plenty */
1145 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1146 * current value of 7500 is not as important as the fact that it
1147 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1148 * room if we go over a little bit in the logging below */
1149 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1150 len_max = MAX_EXECVE_AUDIT_LEN;
1152 /* scratch buffer to hold the userspace args */
1153 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1155 audit_panic("out of memory for argv string");
1160 audit_log_format(*ab, "argc=%d", context->execve.argc);
1165 require_data = true;
1170 /* NOTE: we don't ever want to trust this value for anything
1171 * serious, but the audit record format insists we
1172 * provide an argument length for really long arguments,
1173 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1174 * to use strncpy_from_user() to obtain this value for
1175 * recording in the log, although we don't use it
1176 * anywhere here to avoid a double-fetch problem */
1178 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1180 /* read more data from userspace */
1182 /* can we make more room in the buffer? */
1183 if (buf != buf_head) {
1184 memmove(buf_head, buf, len_buf);
1188 /* fetch as much as we can of the argument */
1189 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1191 if (len_tmp == -EFAULT) {
1192 /* unable to copy from userspace */
1193 send_sig(SIGKILL, current, 0);
1195 } else if (len_tmp == (len_max - len_buf)) {
1196 /* buffer is not large enough */
1197 require_data = true;
1198 /* NOTE: if we are going to span multiple
1199 * buffers force the encoding so we stand
1200 * a chance at a sane len_full value and
1201 * consistent record encoding */
1203 len_full = len_full * 2;
1206 require_data = false;
1208 encode = audit_string_contains_control(
1210 /* try to use a trusted value for len_full */
1211 if (len_full < len_max)
1212 len_full = (encode ?
1213 len_tmp * 2 : len_tmp);
1217 buf_head[len_buf] = '\0';
1219 /* length of the buffer in the audit record? */
1220 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1223 /* write as much as we can to the audit log */
1225 /* NOTE: some magic numbers here - basically if we
1226 * can't fit a reasonable amount of data into the
1227 * existing audit buffer, flush it and start with
1229 if ((sizeof(abuf) + 8) > len_rem) {
1232 *ab = audit_log_start(context,
1233 GFP_KERNEL, AUDIT_EXECVE);
1238 /* create the non-arg portion of the arg record */
1240 if (require_data || (iter > 0) ||
1241 ((len_abuf + sizeof(abuf)) > len_rem)) {
1243 len_tmp += snprintf(&abuf[len_tmp],
1244 sizeof(abuf) - len_tmp,
1248 len_tmp += snprintf(&abuf[len_tmp],
1249 sizeof(abuf) - len_tmp,
1250 " a%d[%d]=", arg, iter++);
1252 len_tmp += snprintf(&abuf[len_tmp],
1253 sizeof(abuf) - len_tmp,
1255 WARN_ON(len_tmp >= sizeof(abuf));
1256 abuf[sizeof(abuf) - 1] = '\0';
1258 /* log the arg in the audit record */
1259 audit_log_format(*ab, "%s", abuf);
1263 if (len_abuf > len_rem)
1264 len_tmp = len_rem / 2; /* encoding */
1265 audit_log_n_hex(*ab, buf, len_tmp);
1266 len_rem -= len_tmp * 2;
1267 len_abuf -= len_tmp * 2;
1269 if (len_abuf > len_rem)
1270 len_tmp = len_rem - 2; /* quotes */
1271 audit_log_n_string(*ab, buf, len_tmp);
1272 len_rem -= len_tmp + 2;
1273 /* don't subtract the "2" because we still need
1274 * to add quotes to the remaining string */
1275 len_abuf -= len_tmp;
1281 /* ready to move to the next argument? */
1282 if ((len_buf == 0) && !require_data) {
1286 require_data = true;
1289 } while (arg < context->execve.argc);
1291 /* NOTE: the caller handles the final audit_log_end() call */
1297 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1300 if (cap_isclear(*cap)) {
1301 audit_log_format(ab, " %s=0", prefix);
1304 audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1307 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1309 if (name->fcap_ver == -1) {
1310 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1313 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1314 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1315 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1316 name->fcap.fE, name->fcap_ver,
1317 from_kuid(&init_user_ns, name->fcap.rootid));
1320 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1322 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1323 const struct timespec64 *tk = &context->time.tk_injoffset;
1324 static const char * const ntp_name[] = {
1334 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1335 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1336 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1338 *ab = audit_log_start(context,
1340 AUDIT_TIME_ADJNTPVAL);
1344 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1346 ntp->vals[type].oldval,
1347 ntp->vals[type].newval);
1353 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1355 *ab = audit_log_start(context, GFP_KERNEL,
1356 AUDIT_TIME_INJOFFSET);
1360 audit_log_format(*ab, "sec=%lli nsec=%li",
1361 (long long)tk->tv_sec, tk->tv_nsec);
1367 static void show_special(struct audit_context *context, int *call_panic)
1369 struct audit_buffer *ab;
1372 ab = audit_log_start(context, GFP_KERNEL, context->type);
1376 switch (context->type) {
1377 case AUDIT_SOCKETCALL: {
1378 int nargs = context->socketcall.nargs;
1380 audit_log_format(ab, "nargs=%d", nargs);
1381 for (i = 0; i < nargs; i++)
1382 audit_log_format(ab, " a%d=%lx", i,
1383 context->socketcall.args[i]);
1386 u32 osid = context->ipc.osid;
1388 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1389 from_kuid(&init_user_ns, context->ipc.uid),
1390 from_kgid(&init_user_ns, context->ipc.gid),
1396 if (security_secid_to_secctx(osid, &ctx, &len)) {
1397 audit_log_format(ab, " osid=%u", osid);
1400 audit_log_format(ab, " obj=%s", ctx);
1401 security_release_secctx(ctx, len);
1404 if (context->ipc.has_perm) {
1406 ab = audit_log_start(context, GFP_KERNEL,
1407 AUDIT_IPC_SET_PERM);
1410 audit_log_format(ab,
1411 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1412 context->ipc.qbytes,
1413 context->ipc.perm_uid,
1414 context->ipc.perm_gid,
1415 context->ipc.perm_mode);
1419 audit_log_format(ab,
1420 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1421 "mq_msgsize=%ld mq_curmsgs=%ld",
1422 context->mq_open.oflag, context->mq_open.mode,
1423 context->mq_open.attr.mq_flags,
1424 context->mq_open.attr.mq_maxmsg,
1425 context->mq_open.attr.mq_msgsize,
1426 context->mq_open.attr.mq_curmsgs);
1428 case AUDIT_MQ_SENDRECV:
1429 audit_log_format(ab,
1430 "mqdes=%d msg_len=%zd msg_prio=%u "
1431 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1432 context->mq_sendrecv.mqdes,
1433 context->mq_sendrecv.msg_len,
1434 context->mq_sendrecv.msg_prio,
1435 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1436 context->mq_sendrecv.abs_timeout.tv_nsec);
1438 case AUDIT_MQ_NOTIFY:
1439 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1440 context->mq_notify.mqdes,
1441 context->mq_notify.sigev_signo);
1443 case AUDIT_MQ_GETSETATTR: {
1444 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1446 audit_log_format(ab,
1447 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1449 context->mq_getsetattr.mqdes,
1450 attr->mq_flags, attr->mq_maxmsg,
1451 attr->mq_msgsize, attr->mq_curmsgs);
1454 audit_log_format(ab, "pid=%d", context->capset.pid);
1455 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1456 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1457 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1458 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1461 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1462 context->mmap.flags);
1465 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1466 context->openat2.flags,
1467 context->openat2.mode,
1468 context->openat2.resolve);
1471 audit_log_execve_info(context, &ab);
1473 case AUDIT_KERN_MODULE:
1474 audit_log_format(ab, "name=");
1475 if (context->module.name) {
1476 audit_log_untrustedstring(ab, context->module.name);
1478 audit_log_format(ab, "(null)");
1481 case AUDIT_TIME_ADJNTPVAL:
1482 case AUDIT_TIME_INJOFFSET:
1483 /* this call deviates from the rest, eating the buffer */
1484 audit_log_time(context, &ab);
1490 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1492 char *end = proctitle + len - 1;
1494 while (end > proctitle && !isprint(*end))
1497 /* catch the case where proctitle is only 1 non-print character */
1498 len = end - proctitle + 1;
1499 len -= isprint(proctitle[len-1]) == 0;
1504 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1505 * @context: audit_context for the task
1506 * @n: audit_names structure with reportable details
1507 * @path: optional path to report instead of audit_names->name
1508 * @record_num: record number to report when handling a list of names
1509 * @call_panic: optional pointer to int that will be updated if secid fails
1511 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1512 const struct path *path, int record_num, int *call_panic)
1514 struct audit_buffer *ab;
1516 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1520 audit_log_format(ab, "item=%d", record_num);
1523 audit_log_d_path(ab, " name=", path);
1525 switch (n->name_len) {
1526 case AUDIT_NAME_FULL:
1527 /* log the full path */
1528 audit_log_format(ab, " name=");
1529 audit_log_untrustedstring(ab, n->name->name);
1532 /* name was specified as a relative path and the
1533 * directory component is the cwd
1535 if (context->pwd.dentry && context->pwd.mnt)
1536 audit_log_d_path(ab, " name=", &context->pwd);
1538 audit_log_format(ab, " name=(null)");
1541 /* log the name's directory component */
1542 audit_log_format(ab, " name=");
1543 audit_log_n_untrustedstring(ab, n->name->name,
1547 audit_log_format(ab, " name=(null)");
1549 if (n->ino != AUDIT_INO_UNSET)
1550 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1555 from_kuid(&init_user_ns, n->uid),
1556 from_kgid(&init_user_ns, n->gid),
1563 if (security_secid_to_secctx(
1564 n->osid, &ctx, &len)) {
1565 audit_log_format(ab, " osid=%u", n->osid);
1569 audit_log_format(ab, " obj=%s", ctx);
1570 security_release_secctx(ctx, len);
1574 /* log the audit_names record type */
1576 case AUDIT_TYPE_NORMAL:
1577 audit_log_format(ab, " nametype=NORMAL");
1579 case AUDIT_TYPE_PARENT:
1580 audit_log_format(ab, " nametype=PARENT");
1582 case AUDIT_TYPE_CHILD_DELETE:
1583 audit_log_format(ab, " nametype=DELETE");
1585 case AUDIT_TYPE_CHILD_CREATE:
1586 audit_log_format(ab, " nametype=CREATE");
1589 audit_log_format(ab, " nametype=UNKNOWN");
1593 audit_log_fcaps(ab, n);
1597 static void audit_log_proctitle(void)
1601 char *msg = "(null)";
1602 int len = strlen(msg);
1603 struct audit_context *context = audit_context();
1604 struct audit_buffer *ab;
1606 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1608 return; /* audit_panic or being filtered */
1610 audit_log_format(ab, "proctitle=");
1613 if (!context->proctitle.value) {
1614 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1617 /* Historically called this from procfs naming */
1618 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1623 res = audit_proctitle_rtrim(buf, res);
1628 context->proctitle.value = buf;
1629 context->proctitle.len = res;
1631 msg = context->proctitle.value;
1632 len = context->proctitle.len;
1634 audit_log_n_untrustedstring(ab, msg, len);
1639 * audit_log_uring - generate a AUDIT_URINGOP record
1640 * @ctx: the audit context
1642 static void audit_log_uring(struct audit_context *ctx)
1644 struct audit_buffer *ab;
1645 const struct cred *cred;
1647 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1650 cred = current_cred();
1651 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1652 if (ctx->return_valid != AUDITSC_INVALID)
1653 audit_log_format(ab, " success=%s exit=%ld",
1654 (ctx->return_valid == AUDITSC_SUCCESS ?
1657 audit_log_format(ab,
1659 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1660 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1662 task_ppid_nr(current), task_tgid_nr(current),
1663 from_kuid(&init_user_ns, cred->uid),
1664 from_kgid(&init_user_ns, cred->gid),
1665 from_kuid(&init_user_ns, cred->euid),
1666 from_kuid(&init_user_ns, cred->suid),
1667 from_kuid(&init_user_ns, cred->fsuid),
1668 from_kgid(&init_user_ns, cred->egid),
1669 from_kgid(&init_user_ns, cred->sgid),
1670 from_kgid(&init_user_ns, cred->fsgid));
1671 audit_log_task_context(ab);
1672 audit_log_key(ab, ctx->filterkey);
1676 static void audit_log_exit(void)
1678 int i, call_panic = 0;
1679 struct audit_context *context = audit_context();
1680 struct audit_buffer *ab;
1681 struct audit_aux_data *aux;
1682 struct audit_names *n;
1684 context->personality = current->personality;
1686 switch (context->context) {
1687 case AUDIT_CTX_SYSCALL:
1688 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1691 audit_log_format(ab, "arch=%x syscall=%d",
1692 context->arch, context->major);
1693 if (context->personality != PER_LINUX)
1694 audit_log_format(ab, " per=%lx", context->personality);
1695 if (context->return_valid != AUDITSC_INVALID)
1696 audit_log_format(ab, " success=%s exit=%ld",
1697 (context->return_valid == AUDITSC_SUCCESS ?
1699 context->return_code);
1700 audit_log_format(ab,
1701 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1706 context->name_count);
1707 audit_log_task_info(ab);
1708 audit_log_key(ab, context->filterkey);
1711 case AUDIT_CTX_URING:
1712 audit_log_uring(context);
1719 for (aux = context->aux; aux; aux = aux->next) {
1721 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1723 continue; /* audit_panic has been called */
1725 switch (aux->type) {
1727 case AUDIT_BPRM_FCAPS: {
1728 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1730 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1731 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1732 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1733 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1734 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1735 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1736 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1737 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1738 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1739 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1740 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1741 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1742 audit_log_format(ab, " frootid=%d",
1743 from_kuid(&init_user_ns,
1752 show_special(context, &call_panic);
1754 if (context->fds[0] >= 0) {
1755 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1757 audit_log_format(ab, "fd0=%d fd1=%d",
1758 context->fds[0], context->fds[1]);
1763 if (context->sockaddr_len) {
1764 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1766 audit_log_format(ab, "saddr=");
1767 audit_log_n_hex(ab, (void *)context->sockaddr,
1768 context->sockaddr_len);
1773 for (aux = context->aux_pids; aux; aux = aux->next) {
1774 struct audit_aux_data_pids *axs = (void *)aux;
1776 for (i = 0; i < axs->pid_count; i++)
1777 if (audit_log_pid_context(context, axs->target_pid[i],
1778 axs->target_auid[i],
1780 axs->target_sessionid[i],
1782 axs->target_comm[i]))
1786 if (context->target_pid &&
1787 audit_log_pid_context(context, context->target_pid,
1788 context->target_auid, context->target_uid,
1789 context->target_sessionid,
1790 context->target_sid, context->target_comm))
1793 if (context->pwd.dentry && context->pwd.mnt) {
1794 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1796 audit_log_d_path(ab, "cwd=", &context->pwd);
1802 list_for_each_entry(n, &context->names_list, list) {
1805 audit_log_name(context, n, NULL, i++, &call_panic);
1808 if (context->context == AUDIT_CTX_SYSCALL)
1809 audit_log_proctitle();
1811 /* Send end of event record to help user space know we are finished */
1812 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1816 audit_panic("error in audit_log_exit()");
1820 * __audit_free - free a per-task audit context
1821 * @tsk: task whose audit context block to free
1823 * Called from copy_process, do_exit, and the io_uring code
1825 void __audit_free(struct task_struct *tsk)
1827 struct audit_context *context = tsk->audit_context;
1832 /* this may generate CONFIG_CHANGE records */
1833 if (!list_empty(&context->killed_trees))
1834 audit_kill_trees(context);
1836 /* We are called either by do_exit() or the fork() error handling code;
1837 * in the former case tsk == current and in the latter tsk is a
1838 * random task_struct that doesn't have any meaningful data we
1839 * need to log via audit_log_exit().
1841 if (tsk == current && !context->dummy) {
1842 context->return_valid = AUDITSC_INVALID;
1843 context->return_code = 0;
1844 if (context->context == AUDIT_CTX_SYSCALL) {
1845 audit_filter_syscall(tsk, context);
1846 audit_filter_inodes(tsk, context);
1847 if (context->current_state == AUDIT_STATE_RECORD)
1849 } else if (context->context == AUDIT_CTX_URING) {
1850 /* TODO: verify this case is real and valid */
1851 audit_filter_uring(tsk, context);
1852 audit_filter_inodes(tsk, context);
1853 if (context->current_state == AUDIT_STATE_RECORD)
1854 audit_log_uring(context);
1858 audit_set_context(tsk, NULL);
1859 audit_free_context(context);
1863 * audit_return_fixup - fixup the return codes in the audit_context
1864 * @ctx: the audit_context
1865 * @success: true/false value to indicate if the operation succeeded or not
1866 * @code: operation return code
1868 * We need to fixup the return code in the audit logs if the actual return
1869 * codes are later going to be fixed by the arch specific signal handlers.
1871 static void audit_return_fixup(struct audit_context *ctx,
1872 int success, long code)
1875 * This is actually a test for:
1876 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1877 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1879 * but is faster than a bunch of ||
1881 if (unlikely(code <= -ERESTARTSYS) &&
1882 (code >= -ERESTART_RESTARTBLOCK) &&
1883 (code != -ENOIOCTLCMD))
1884 ctx->return_code = -EINTR;
1886 ctx->return_code = code;
1887 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1891 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1892 * @op: the io_uring opcode
1894 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1895 * operations. This function should only ever be called from
1896 * audit_uring_entry() as we rely on the audit context checking present in that
1899 void __audit_uring_entry(u8 op)
1901 struct audit_context *ctx = audit_context();
1903 if (ctx->state == AUDIT_STATE_DISABLED)
1907 * NOTE: It's possible that we can be called from the process' context
1908 * before it returns to userspace, and before audit_syscall_exit()
1909 * is called. In this case there is not much to do, just record
1910 * the io_uring details and return.
1913 if (ctx->context == AUDIT_CTX_SYSCALL)
1916 ctx->dummy = !audit_n_rules;
1917 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1920 ctx->context = AUDIT_CTX_URING;
1921 ctx->current_state = ctx->state;
1922 ktime_get_coarse_real_ts64(&ctx->ctime);
1926 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1927 * @success: true/false value to indicate if the operation succeeded or not
1928 * @code: operation return code
1930 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1931 * operations. This function should only ever be called from
1932 * audit_uring_exit() as we rely on the audit context checking present in that
1935 void __audit_uring_exit(int success, long code)
1937 struct audit_context *ctx = audit_context();
1940 if (ctx->context != AUDIT_CTX_URING)
1945 audit_return_fixup(ctx, success, code);
1946 if (ctx->context == AUDIT_CTX_SYSCALL) {
1948 * NOTE: See the note in __audit_uring_entry() about the case
1949 * where we may be called from process context before we
1950 * return to userspace via audit_syscall_exit(). In this
1951 * case we simply emit a URINGOP record and bail, the
1952 * normal syscall exit handling will take care of
1954 * It is also worth mentioning that when we are called,
1955 * the current process creds may differ from the creds
1956 * used during the normal syscall processing; keep that
1957 * in mind if/when we move the record generation code.
1961 * We need to filter on the syscall info here to decide if we
1962 * should emit a URINGOP record. I know it seems odd but this
1963 * solves the problem where users have a filter to block *all*
1964 * syscall records in the "exit" filter; we want to preserve
1965 * the behavior here.
1967 audit_filter_syscall(current, ctx);
1968 if (ctx->current_state != AUDIT_STATE_RECORD)
1969 audit_filter_uring(current, ctx);
1970 audit_filter_inodes(current, ctx);
1971 if (ctx->current_state != AUDIT_STATE_RECORD)
1974 audit_log_uring(ctx);
1978 /* this may generate CONFIG_CHANGE records */
1979 if (!list_empty(&ctx->killed_trees))
1980 audit_kill_trees(ctx);
1982 /* run through both filters to ensure we set the filterkey properly */
1983 audit_filter_uring(current, ctx);
1984 audit_filter_inodes(current, ctx);
1985 if (ctx->current_state != AUDIT_STATE_RECORD)
1990 audit_reset_context(ctx);
1994 * __audit_syscall_entry - fill in an audit record at syscall entry
1995 * @major: major syscall type (function)
1996 * @a1: additional syscall register 1
1997 * @a2: additional syscall register 2
1998 * @a3: additional syscall register 3
1999 * @a4: additional syscall register 4
2001 * Fill in audit context at syscall entry. This only happens if the
2002 * audit context was created when the task was created and the state or
2003 * filters demand the audit context be built. If the state from the
2004 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2005 * then the record will be written at syscall exit time (otherwise, it
2006 * will only be written if another part of the kernel requests that it
2009 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2010 unsigned long a3, unsigned long a4)
2012 struct audit_context *context = audit_context();
2013 enum audit_state state;
2015 if (!audit_enabled || !context)
2018 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2019 WARN_ON(context->name_count);
2020 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2021 audit_panic("unrecoverable error in audit_syscall_entry()");
2025 state = context->state;
2026 if (state == AUDIT_STATE_DISABLED)
2029 context->dummy = !audit_n_rules;
2030 if (!context->dummy && state == AUDIT_STATE_BUILD) {
2032 if (auditd_test_task(current))
2036 context->arch = syscall_get_arch(current);
2037 context->major = major;
2038 context->argv[0] = a1;
2039 context->argv[1] = a2;
2040 context->argv[2] = a3;
2041 context->argv[3] = a4;
2042 context->context = AUDIT_CTX_SYSCALL;
2043 context->current_state = state;
2044 ktime_get_coarse_real_ts64(&context->ctime);
2048 * __audit_syscall_exit - deallocate audit context after a system call
2049 * @success: success value of the syscall
2050 * @return_code: return value of the syscall
2052 * Tear down after system call. If the audit context has been marked as
2053 * auditable (either because of the AUDIT_STATE_RECORD state from
2054 * filtering, or because some other part of the kernel wrote an audit
2055 * message), then write out the syscall information. In call cases,
2056 * free the names stored from getname().
2058 void __audit_syscall_exit(int success, long return_code)
2060 struct audit_context *context = audit_context();
2062 if (!context || context->dummy ||
2063 context->context != AUDIT_CTX_SYSCALL)
2066 /* this may generate CONFIG_CHANGE records */
2067 if (!list_empty(&context->killed_trees))
2068 audit_kill_trees(context);
2070 audit_return_fixup(context, success, return_code);
2071 /* run through both filters to ensure we set the filterkey properly */
2072 audit_filter_syscall(current, context);
2073 audit_filter_inodes(current, context);
2074 if (context->current_state != AUDIT_STATE_RECORD)
2080 audit_reset_context(context);
2083 static inline void handle_one(const struct inode *inode)
2085 struct audit_context *context;
2086 struct audit_tree_refs *p;
2087 struct audit_chunk *chunk;
2090 if (likely(!inode->i_fsnotify_marks))
2092 context = audit_context();
2094 count = context->tree_count;
2096 chunk = audit_tree_lookup(inode);
2100 if (likely(put_tree_ref(context, chunk)))
2102 if (unlikely(!grow_tree_refs(context))) {
2103 pr_warn("out of memory, audit has lost a tree reference\n");
2104 audit_set_auditable(context);
2105 audit_put_chunk(chunk);
2106 unroll_tree_refs(context, p, count);
2109 put_tree_ref(context, chunk);
2112 static void handle_path(const struct dentry *dentry)
2114 struct audit_context *context;
2115 struct audit_tree_refs *p;
2116 const struct dentry *d, *parent;
2117 struct audit_chunk *drop;
2121 context = audit_context();
2123 count = context->tree_count;
2128 seq = read_seqbegin(&rename_lock);
2130 struct inode *inode = d_backing_inode(d);
2132 if (inode && unlikely(inode->i_fsnotify_marks)) {
2133 struct audit_chunk *chunk;
2135 chunk = audit_tree_lookup(inode);
2137 if (unlikely(!put_tree_ref(context, chunk))) {
2143 parent = d->d_parent;
2148 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2151 /* just a race with rename */
2152 unroll_tree_refs(context, p, count);
2155 audit_put_chunk(drop);
2156 if (grow_tree_refs(context)) {
2157 /* OK, got more space */
2158 unroll_tree_refs(context, p, count);
2162 pr_warn("out of memory, audit has lost a tree reference\n");
2163 unroll_tree_refs(context, p, count);
2164 audit_set_auditable(context);
2170 static struct audit_names *audit_alloc_name(struct audit_context *context,
2173 struct audit_names *aname;
2175 if (context->name_count < AUDIT_NAMES) {
2176 aname = &context->preallocated_names[context->name_count];
2177 memset(aname, 0, sizeof(*aname));
2179 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2182 aname->should_free = true;
2185 aname->ino = AUDIT_INO_UNSET;
2187 list_add_tail(&aname->list, &context->names_list);
2189 context->name_count++;
2190 if (!context->pwd.dentry)
2191 get_fs_pwd(current->fs, &context->pwd);
2196 * __audit_reusename - fill out filename with info from existing entry
2197 * @uptr: userland ptr to pathname
2199 * Search the audit_names list for the current audit context. If there is an
2200 * existing entry with a matching "uptr" then return the filename
2201 * associated with that audit_name. If not, return NULL.
2204 __audit_reusename(const __user char *uptr)
2206 struct audit_context *context = audit_context();
2207 struct audit_names *n;
2209 list_for_each_entry(n, &context->names_list, list) {
2212 if (n->name->uptr == uptr) {
2221 * __audit_getname - add a name to the list
2222 * @name: name to add
2224 * Add a name to the list of audit names for this context.
2225 * Called from fs/namei.c:getname().
2227 void __audit_getname(struct filename *name)
2229 struct audit_context *context = audit_context();
2230 struct audit_names *n;
2232 if (context->context == AUDIT_CTX_UNUSED)
2235 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2240 n->name_len = AUDIT_NAME_FULL;
2245 static inline int audit_copy_fcaps(struct audit_names *name,
2246 const struct dentry *dentry)
2248 struct cpu_vfs_cap_data caps;
2254 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2258 name->fcap.permitted = caps.permitted;
2259 name->fcap.inheritable = caps.inheritable;
2260 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2261 name->fcap.rootid = caps.rootid;
2262 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2263 VFS_CAP_REVISION_SHIFT;
2268 /* Copy inode data into an audit_names. */
2269 static void audit_copy_inode(struct audit_names *name,
2270 const struct dentry *dentry,
2271 struct inode *inode, unsigned int flags)
2273 name->ino = inode->i_ino;
2274 name->dev = inode->i_sb->s_dev;
2275 name->mode = inode->i_mode;
2276 name->uid = inode->i_uid;
2277 name->gid = inode->i_gid;
2278 name->rdev = inode->i_rdev;
2279 security_inode_getsecid(inode, &name->osid);
2280 if (flags & AUDIT_INODE_NOEVAL) {
2281 name->fcap_ver = -1;
2284 audit_copy_fcaps(name, dentry);
2288 * __audit_inode - store the inode and device from a lookup
2289 * @name: name being audited
2290 * @dentry: dentry being audited
2291 * @flags: attributes for this particular entry
2293 void __audit_inode(struct filename *name, const struct dentry *dentry,
2296 struct audit_context *context = audit_context();
2297 struct inode *inode = d_backing_inode(dentry);
2298 struct audit_names *n;
2299 bool parent = flags & AUDIT_INODE_PARENT;
2300 struct audit_entry *e;
2301 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2304 if (context->context == AUDIT_CTX_UNUSED)
2308 list_for_each_entry_rcu(e, list, list) {
2309 for (i = 0; i < e->rule.field_count; i++) {
2310 struct audit_field *f = &e->rule.fields[i];
2312 if (f->type == AUDIT_FSTYPE
2313 && audit_comparator(inode->i_sb->s_magic,
2315 && e->rule.action == AUDIT_NEVER) {
2327 * If we have a pointer to an audit_names entry already, then we can
2328 * just use it directly if the type is correct.
2333 if (n->type == AUDIT_TYPE_PARENT ||
2334 n->type == AUDIT_TYPE_UNKNOWN)
2337 if (n->type != AUDIT_TYPE_PARENT)
2342 list_for_each_entry_reverse(n, &context->names_list, list) {
2344 /* valid inode number, use that for the comparison */
2345 if (n->ino != inode->i_ino ||
2346 n->dev != inode->i_sb->s_dev)
2348 } else if (n->name) {
2349 /* inode number has not been set, check the name */
2350 if (strcmp(n->name->name, name->name))
2353 /* no inode and no name (?!) ... this is odd ... */
2356 /* match the correct record type */
2358 if (n->type == AUDIT_TYPE_PARENT ||
2359 n->type == AUDIT_TYPE_UNKNOWN)
2362 if (n->type != AUDIT_TYPE_PARENT)
2368 /* unable to find an entry with both a matching name and type */
2369 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2379 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2380 n->type = AUDIT_TYPE_PARENT;
2381 if (flags & AUDIT_INODE_HIDDEN)
2384 n->name_len = AUDIT_NAME_FULL;
2385 n->type = AUDIT_TYPE_NORMAL;
2387 handle_path(dentry);
2388 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2391 void __audit_file(const struct file *file)
2393 __audit_inode(NULL, file->f_path.dentry, 0);
2397 * __audit_inode_child - collect inode info for created/removed objects
2398 * @parent: inode of dentry parent
2399 * @dentry: dentry being audited
2400 * @type: AUDIT_TYPE_* value that we're looking for
2402 * For syscalls that create or remove filesystem objects, audit_inode
2403 * can only collect information for the filesystem object's parent.
2404 * This call updates the audit context with the child's information.
2405 * Syscalls that create a new filesystem object must be hooked after
2406 * the object is created. Syscalls that remove a filesystem object
2407 * must be hooked prior, in order to capture the target inode during
2408 * unsuccessful attempts.
2410 void __audit_inode_child(struct inode *parent,
2411 const struct dentry *dentry,
2412 const unsigned char type)
2414 struct audit_context *context = audit_context();
2415 struct inode *inode = d_backing_inode(dentry);
2416 const struct qstr *dname = &dentry->d_name;
2417 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2418 struct audit_entry *e;
2419 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2422 if (context->context == AUDIT_CTX_UNUSED)
2426 list_for_each_entry_rcu(e, list, list) {
2427 for (i = 0; i < e->rule.field_count; i++) {
2428 struct audit_field *f = &e->rule.fields[i];
2430 if (f->type == AUDIT_FSTYPE
2431 && audit_comparator(parent->i_sb->s_magic,
2433 && e->rule.action == AUDIT_NEVER) {
2444 /* look for a parent entry first */
2445 list_for_each_entry(n, &context->names_list, list) {
2447 (n->type != AUDIT_TYPE_PARENT &&
2448 n->type != AUDIT_TYPE_UNKNOWN))
2451 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2452 !audit_compare_dname_path(dname,
2453 n->name->name, n->name_len)) {
2454 if (n->type == AUDIT_TYPE_UNKNOWN)
2455 n->type = AUDIT_TYPE_PARENT;
2463 /* is there a matching child entry? */
2464 list_for_each_entry(n, &context->names_list, list) {
2465 /* can only match entries that have a name */
2467 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2470 if (!strcmp(dname->name, n->name->name) ||
2471 !audit_compare_dname_path(dname, n->name->name,
2473 found_parent->name_len :
2475 if (n->type == AUDIT_TYPE_UNKNOWN)
2482 if (!found_parent) {
2483 /* create a new, "anonymous" parent record */
2484 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2487 audit_copy_inode(n, NULL, parent, 0);
2491 found_child = audit_alloc_name(context, type);
2495 /* Re-use the name belonging to the slot for a matching parent
2496 * directory. All names for this context are relinquished in
2497 * audit_free_names() */
2499 found_child->name = found_parent->name;
2500 found_child->name_len = AUDIT_NAME_FULL;
2501 found_child->name->refcnt++;
2506 audit_copy_inode(found_child, dentry, inode, 0);
2508 found_child->ino = AUDIT_INO_UNSET;
2510 EXPORT_SYMBOL_GPL(__audit_inode_child);
2513 * auditsc_get_stamp - get local copies of audit_context values
2514 * @ctx: audit_context for the task
2515 * @t: timespec64 to store time recorded in the audit_context
2516 * @serial: serial value that is recorded in the audit_context
2518 * Also sets the context as auditable.
2520 int auditsc_get_stamp(struct audit_context *ctx,
2521 struct timespec64 *t, unsigned int *serial)
2523 if (ctx->context == AUDIT_CTX_UNUSED)
2526 ctx->serial = audit_serial();
2527 t->tv_sec = ctx->ctime.tv_sec;
2528 t->tv_nsec = ctx->ctime.tv_nsec;
2529 *serial = ctx->serial;
2532 ctx->current_state = AUDIT_STATE_RECORD;
2538 * __audit_mq_open - record audit data for a POSIX MQ open
2541 * @attr: queue attributes
2544 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2546 struct audit_context *context = audit_context();
2549 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2551 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2553 context->mq_open.oflag = oflag;
2554 context->mq_open.mode = mode;
2556 context->type = AUDIT_MQ_OPEN;
2560 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2561 * @mqdes: MQ descriptor
2562 * @msg_len: Message length
2563 * @msg_prio: Message priority
2564 * @abs_timeout: Message timeout in absolute time
2567 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2568 const struct timespec64 *abs_timeout)
2570 struct audit_context *context = audit_context();
2571 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2574 memcpy(p, abs_timeout, sizeof(*p));
2576 memset(p, 0, sizeof(*p));
2578 context->mq_sendrecv.mqdes = mqdes;
2579 context->mq_sendrecv.msg_len = msg_len;
2580 context->mq_sendrecv.msg_prio = msg_prio;
2582 context->type = AUDIT_MQ_SENDRECV;
2586 * __audit_mq_notify - record audit data for a POSIX MQ notify
2587 * @mqdes: MQ descriptor
2588 * @notification: Notification event
2592 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2594 struct audit_context *context = audit_context();
2597 context->mq_notify.sigev_signo = notification->sigev_signo;
2599 context->mq_notify.sigev_signo = 0;
2601 context->mq_notify.mqdes = mqdes;
2602 context->type = AUDIT_MQ_NOTIFY;
2606 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2607 * @mqdes: MQ descriptor
2611 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2613 struct audit_context *context = audit_context();
2615 context->mq_getsetattr.mqdes = mqdes;
2616 context->mq_getsetattr.mqstat = *mqstat;
2617 context->type = AUDIT_MQ_GETSETATTR;
2621 * __audit_ipc_obj - record audit data for ipc object
2622 * @ipcp: ipc permissions
2625 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2627 struct audit_context *context = audit_context();
2629 context->ipc.uid = ipcp->uid;
2630 context->ipc.gid = ipcp->gid;
2631 context->ipc.mode = ipcp->mode;
2632 context->ipc.has_perm = 0;
2633 security_ipc_getsecid(ipcp, &context->ipc.osid);
2634 context->type = AUDIT_IPC;
2638 * __audit_ipc_set_perm - record audit data for new ipc permissions
2639 * @qbytes: msgq bytes
2640 * @uid: msgq user id
2641 * @gid: msgq group id
2642 * @mode: msgq mode (permissions)
2644 * Called only after audit_ipc_obj().
2646 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2648 struct audit_context *context = audit_context();
2650 context->ipc.qbytes = qbytes;
2651 context->ipc.perm_uid = uid;
2652 context->ipc.perm_gid = gid;
2653 context->ipc.perm_mode = mode;
2654 context->ipc.has_perm = 1;
2657 void __audit_bprm(struct linux_binprm *bprm)
2659 struct audit_context *context = audit_context();
2661 context->type = AUDIT_EXECVE;
2662 context->execve.argc = bprm->argc;
2667 * __audit_socketcall - record audit data for sys_socketcall
2668 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2672 int __audit_socketcall(int nargs, unsigned long *args)
2674 struct audit_context *context = audit_context();
2676 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2678 context->type = AUDIT_SOCKETCALL;
2679 context->socketcall.nargs = nargs;
2680 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2685 * __audit_fd_pair - record audit data for pipe and socketpair
2686 * @fd1: the first file descriptor
2687 * @fd2: the second file descriptor
2690 void __audit_fd_pair(int fd1, int fd2)
2692 struct audit_context *context = audit_context();
2694 context->fds[0] = fd1;
2695 context->fds[1] = fd2;
2699 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2700 * @len: data length in user space
2701 * @a: data address in kernel space
2703 * Returns 0 for success or NULL context or < 0 on error.
2705 int __audit_sockaddr(int len, void *a)
2707 struct audit_context *context = audit_context();
2709 if (!context->sockaddr) {
2710 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2714 context->sockaddr = p;
2717 context->sockaddr_len = len;
2718 memcpy(context->sockaddr, a, len);
2722 void __audit_ptrace(struct task_struct *t)
2724 struct audit_context *context = audit_context();
2726 context->target_pid = task_tgid_nr(t);
2727 context->target_auid = audit_get_loginuid(t);
2728 context->target_uid = task_uid(t);
2729 context->target_sessionid = audit_get_sessionid(t);
2730 security_task_getsecid_obj(t, &context->target_sid);
2731 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2735 * audit_signal_info_syscall - record signal info for syscalls
2736 * @t: task being signaled
2738 * If the audit subsystem is being terminated, record the task (pid)
2739 * and uid that is doing that.
2741 int audit_signal_info_syscall(struct task_struct *t)
2743 struct audit_aux_data_pids *axp;
2744 struct audit_context *ctx = audit_context();
2745 kuid_t t_uid = task_uid(t);
2747 if (!audit_signals || audit_dummy_context())
2750 /* optimize the common case by putting first signal recipient directly
2751 * in audit_context */
2752 if (!ctx->target_pid) {
2753 ctx->target_pid = task_tgid_nr(t);
2754 ctx->target_auid = audit_get_loginuid(t);
2755 ctx->target_uid = t_uid;
2756 ctx->target_sessionid = audit_get_sessionid(t);
2757 security_task_getsecid_obj(t, &ctx->target_sid);
2758 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2762 axp = (void *)ctx->aux_pids;
2763 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2764 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2768 axp->d.type = AUDIT_OBJ_PID;
2769 axp->d.next = ctx->aux_pids;
2770 ctx->aux_pids = (void *)axp;
2772 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2774 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2775 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2776 axp->target_uid[axp->pid_count] = t_uid;
2777 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2778 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2779 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2786 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2787 * @bprm: pointer to the bprm being processed
2788 * @new: the proposed new credentials
2789 * @old: the old credentials
2791 * Simply check if the proc already has the caps given by the file and if not
2792 * store the priv escalation info for later auditing at the end of the syscall
2796 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2797 const struct cred *new, const struct cred *old)
2799 struct audit_aux_data_bprm_fcaps *ax;
2800 struct audit_context *context = audit_context();
2801 struct cpu_vfs_cap_data vcaps;
2803 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2807 ax->d.type = AUDIT_BPRM_FCAPS;
2808 ax->d.next = context->aux;
2809 context->aux = (void *)ax;
2811 get_vfs_caps_from_disk(&nop_mnt_idmap,
2812 bprm->file->f_path.dentry, &vcaps);
2814 ax->fcap.permitted = vcaps.permitted;
2815 ax->fcap.inheritable = vcaps.inheritable;
2816 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2817 ax->fcap.rootid = vcaps.rootid;
2818 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2820 ax->old_pcap.permitted = old->cap_permitted;
2821 ax->old_pcap.inheritable = old->cap_inheritable;
2822 ax->old_pcap.effective = old->cap_effective;
2823 ax->old_pcap.ambient = old->cap_ambient;
2825 ax->new_pcap.permitted = new->cap_permitted;
2826 ax->new_pcap.inheritable = new->cap_inheritable;
2827 ax->new_pcap.effective = new->cap_effective;
2828 ax->new_pcap.ambient = new->cap_ambient;
2833 * __audit_log_capset - store information about the arguments to the capset syscall
2834 * @new: the new credentials
2835 * @old: the old (current) credentials
2837 * Record the arguments userspace sent to sys_capset for later printing by the
2838 * audit system if applicable
2840 void __audit_log_capset(const struct cred *new, const struct cred *old)
2842 struct audit_context *context = audit_context();
2844 context->capset.pid = task_tgid_nr(current);
2845 context->capset.cap.effective = new->cap_effective;
2846 context->capset.cap.inheritable = new->cap_effective;
2847 context->capset.cap.permitted = new->cap_permitted;
2848 context->capset.cap.ambient = new->cap_ambient;
2849 context->type = AUDIT_CAPSET;
2852 void __audit_mmap_fd(int fd, int flags)
2854 struct audit_context *context = audit_context();
2856 context->mmap.fd = fd;
2857 context->mmap.flags = flags;
2858 context->type = AUDIT_MMAP;
2861 void __audit_openat2_how(struct open_how *how)
2863 struct audit_context *context = audit_context();
2865 context->openat2.flags = how->flags;
2866 context->openat2.mode = how->mode;
2867 context->openat2.resolve = how->resolve;
2868 context->type = AUDIT_OPENAT2;
2871 void __audit_log_kern_module(char *name)
2873 struct audit_context *context = audit_context();
2875 context->module.name = kstrdup(name, GFP_KERNEL);
2876 if (!context->module.name)
2877 audit_log_lost("out of memory in __audit_log_kern_module");
2878 context->type = AUDIT_KERN_MODULE;
2881 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2883 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2884 switch (friar->hdr.type) {
2885 case FAN_RESPONSE_INFO_NONE:
2886 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2887 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2888 response, FAN_RESPONSE_INFO_NONE);
2890 case FAN_RESPONSE_INFO_AUDIT_RULE:
2891 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2892 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2893 response, friar->hdr.type, friar->rule_number,
2894 friar->subj_trust, friar->obj_trust);
2898 void __audit_tk_injoffset(struct timespec64 offset)
2900 struct audit_context *context = audit_context();
2902 /* only set type if not already set by NTP */
2904 context->type = AUDIT_TIME_INJOFFSET;
2905 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2908 void __audit_ntp_log(const struct audit_ntp_data *ad)
2910 struct audit_context *context = audit_context();
2913 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2914 if (ad->vals[type].newval != ad->vals[type].oldval) {
2915 /* unconditionally set type, overwriting TK */
2916 context->type = AUDIT_TIME_ADJNTPVAL;
2917 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2922 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2923 enum audit_nfcfgop op, gfp_t gfp)
2925 struct audit_buffer *ab;
2926 char comm[sizeof(current->comm)];
2928 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2931 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2932 name, af, nentries, audit_nfcfgs[op].s);
2934 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2935 audit_log_task_context(ab); /* subj= */
2936 audit_log_format(ab, " comm=");
2937 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2940 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2942 static void audit_log_task(struct audit_buffer *ab)
2946 unsigned int sessionid;
2947 char comm[sizeof(current->comm)];
2949 auid = audit_get_loginuid(current);
2950 sessionid = audit_get_sessionid(current);
2951 current_uid_gid(&uid, &gid);
2953 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2954 from_kuid(&init_user_ns, auid),
2955 from_kuid(&init_user_ns, uid),
2956 from_kgid(&init_user_ns, gid),
2958 audit_log_task_context(ab);
2959 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2960 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2961 audit_log_d_path_exe(ab, current->mm);
2965 * audit_core_dumps - record information about processes that end abnormally
2966 * @signr: signal value
2968 * If a process ends with a core dump, something fishy is going on and we
2969 * should record the event for investigation.
2971 void audit_core_dumps(long signr)
2973 struct audit_buffer *ab;
2978 if (signr == SIGQUIT) /* don't care for those */
2981 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2985 audit_log_format(ab, " sig=%ld res=1", signr);
2990 * audit_seccomp - record information about a seccomp action
2991 * @syscall: syscall number
2992 * @signr: signal value
2993 * @code: the seccomp action
2995 * Record the information associated with a seccomp action. Event filtering for
2996 * seccomp actions that are not to be logged is done in seccomp_log().
2997 * Therefore, this function forces auditing independent of the audit_enabled
2998 * and dummy context state because seccomp actions should be logged even when
2999 * audit is not in use.
3001 void audit_seccomp(unsigned long syscall, long signr, int code)
3003 struct audit_buffer *ab;
3005 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3009 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3010 signr, syscall_get_arch(current), syscall,
3011 in_compat_syscall(), KSTK_EIP(current), code);
3015 void audit_seccomp_actions_logged(const char *names, const char *old_names,
3018 struct audit_buffer *ab;
3023 ab = audit_log_start(audit_context(), GFP_KERNEL,
3024 AUDIT_CONFIG_CHANGE);
3028 audit_log_format(ab,
3029 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3030 names, old_names, res);
3034 struct list_head *audit_killed_trees(void)
3036 struct audit_context *ctx = audit_context();
3037 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3039 return &ctx->killed_trees;