1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
87 /* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
94 /* number of audit rules */
97 /* determines whether we collect data for signals sent */
100 struct audit_aux_data {
101 struct audit_aux_data *next;
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS 16
108 struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 u32 target_sid[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
119 struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
127 struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
132 struct audit_nfcfgop_tab {
133 enum audit_nfcfgop op;
137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 { AUDIT_XT_OP_REGISTER, "xt_register" },
139 { AUDIT_XT_OP_REPLACE, "xt_replace" },
140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
157 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
160 static int audit_match_perm(struct audit_context *ctx, int mask)
168 switch (audit_classify_syscall(ctx->arch, n)) {
170 if ((mask & AUDIT_PERM_WRITE) &&
171 audit_match_class(AUDIT_CLASS_WRITE, n))
173 if ((mask & AUDIT_PERM_READ) &&
174 audit_match_class(AUDIT_CLASS_READ, n))
176 if ((mask & AUDIT_PERM_ATTR) &&
177 audit_match_class(AUDIT_CLASS_CHATTR, n))
180 case 1: /* 32bit on biarch */
181 if ((mask & AUDIT_PERM_WRITE) &&
182 audit_match_class(AUDIT_CLASS_WRITE_32, n))
184 if ((mask & AUDIT_PERM_READ) &&
185 audit_match_class(AUDIT_CLASS_READ_32, n))
187 if ((mask & AUDIT_PERM_ATTR) &&
188 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
192 return mask & ACC_MODE(ctx->argv[1]);
194 return mask & ACC_MODE(ctx->argv[2]);
195 case 4: /* socketcall */
196 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
198 return mask & AUDIT_PERM_EXEC;
204 static int audit_match_filetype(struct audit_context *ctx, int val)
206 struct audit_names *n;
207 umode_t mode = (umode_t)val;
212 list_for_each_entry(n, &ctx->names_list, list) {
213 if ((n->ino != AUDIT_INO_UNSET) &&
214 ((n->mode & S_IFMT) == mode))
222 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
223 * ->first_trees points to its beginning, ->trees - to the current end of data.
224 * ->tree_count is the number of free entries in array pointed to by ->trees.
225 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
226 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
227 * it's going to remain 1-element for almost any setup) until we free context itself.
228 * References in it _are_ dropped - at the same time we free/drop aux stuff.
231 static void audit_set_auditable(struct audit_context *ctx)
235 ctx->current_state = AUDIT_STATE_RECORD;
239 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
241 struct audit_tree_refs *p = ctx->trees;
242 int left = ctx->tree_count;
245 p->c[--left] = chunk;
246 ctx->tree_count = left;
255 ctx->tree_count = 30;
261 static int grow_tree_refs(struct audit_context *ctx)
263 struct audit_tree_refs *p = ctx->trees;
265 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
271 p->next = ctx->trees;
273 ctx->first_trees = ctx->trees;
274 ctx->tree_count = 31;
278 static void unroll_tree_refs(struct audit_context *ctx,
279 struct audit_tree_refs *p, int count)
281 struct audit_tree_refs *q;
285 /* we started with empty chain */
286 p = ctx->first_trees;
288 /* if the very first allocation has failed, nothing to do */
293 for (q = p; q != ctx->trees; q = q->next, n = 31) {
295 audit_put_chunk(q->c[n]);
299 while (n-- > ctx->tree_count) {
300 audit_put_chunk(q->c[n]);
304 ctx->tree_count = count;
307 static void free_tree_refs(struct audit_context *ctx)
309 struct audit_tree_refs *p, *q;
311 for (p = ctx->first_trees; p; p = q) {
317 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
319 struct audit_tree_refs *p;
325 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
326 for (n = 0; n < 31; n++)
327 if (audit_tree_match(p->c[n], tree))
332 for (n = ctx->tree_count; n < 31; n++)
333 if (audit_tree_match(p->c[n], tree))
339 static int audit_compare_uid(kuid_t uid,
340 struct audit_names *name,
341 struct audit_field *f,
342 struct audit_context *ctx)
344 struct audit_names *n;
348 rc = audit_uid_comparator(uid, f->op, name->uid);
354 list_for_each_entry(n, &ctx->names_list, list) {
355 rc = audit_uid_comparator(uid, f->op, n->uid);
363 static int audit_compare_gid(kgid_t gid,
364 struct audit_names *name,
365 struct audit_field *f,
366 struct audit_context *ctx)
368 struct audit_names *n;
372 rc = audit_gid_comparator(gid, f->op, name->gid);
378 list_for_each_entry(n, &ctx->names_list, list) {
379 rc = audit_gid_comparator(gid, f->op, n->gid);
387 static int audit_field_compare(struct task_struct *tsk,
388 const struct cred *cred,
389 struct audit_field *f,
390 struct audit_context *ctx,
391 struct audit_names *name)
394 /* process to file object comparisons */
395 case AUDIT_COMPARE_UID_TO_OBJ_UID:
396 return audit_compare_uid(cred->uid, name, f, ctx);
397 case AUDIT_COMPARE_GID_TO_OBJ_GID:
398 return audit_compare_gid(cred->gid, name, f, ctx);
399 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->euid, name, f, ctx);
401 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->egid, name, f, ctx);
403 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
404 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
405 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
406 return audit_compare_uid(cred->suid, name, f, ctx);
407 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
408 return audit_compare_gid(cred->sgid, name, f, ctx);
409 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
410 return audit_compare_uid(cred->fsuid, name, f, ctx);
411 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
412 return audit_compare_gid(cred->fsgid, name, f, ctx);
413 /* uid comparisons */
414 case AUDIT_COMPARE_UID_TO_AUID:
415 return audit_uid_comparator(cred->uid, f->op,
416 audit_get_loginuid(tsk));
417 case AUDIT_COMPARE_UID_TO_EUID:
418 return audit_uid_comparator(cred->uid, f->op, cred->euid);
419 case AUDIT_COMPARE_UID_TO_SUID:
420 return audit_uid_comparator(cred->uid, f->op, cred->suid);
421 case AUDIT_COMPARE_UID_TO_FSUID:
422 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
423 /* auid comparisons */
424 case AUDIT_COMPARE_AUID_TO_EUID:
425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
427 case AUDIT_COMPARE_AUID_TO_SUID:
428 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
430 case AUDIT_COMPARE_AUID_TO_FSUID:
431 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
433 /* euid comparisons */
434 case AUDIT_COMPARE_EUID_TO_SUID:
435 return audit_uid_comparator(cred->euid, f->op, cred->suid);
436 case AUDIT_COMPARE_EUID_TO_FSUID:
437 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
438 /* suid comparisons */
439 case AUDIT_COMPARE_SUID_TO_FSUID:
440 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
441 /* gid comparisons */
442 case AUDIT_COMPARE_GID_TO_EGID:
443 return audit_gid_comparator(cred->gid, f->op, cred->egid);
444 case AUDIT_COMPARE_GID_TO_SGID:
445 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
446 case AUDIT_COMPARE_GID_TO_FSGID:
447 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
448 /* egid comparisons */
449 case AUDIT_COMPARE_EGID_TO_SGID:
450 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
451 case AUDIT_COMPARE_EGID_TO_FSGID:
452 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
453 /* sgid comparison */
454 case AUDIT_COMPARE_SGID_TO_FSGID:
455 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
457 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
463 /* Determine if any context name data matches a rule's watch data */
464 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
467 * If task_creation is true, this is an explicit indication that we are
468 * filtering a task rule at task creation time. This and tsk == current are
469 * the only situations where tsk->cred may be accessed without an rcu read lock.
471 static int audit_filter_rules(struct task_struct *tsk,
472 struct audit_krule *rule,
473 struct audit_context *ctx,
474 struct audit_names *name,
475 enum audit_state *state,
478 const struct cred *cred;
481 unsigned int sessionid;
483 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
485 for (i = 0; i < rule->field_count; i++) {
486 struct audit_field *f = &rule->fields[i];
487 struct audit_names *n;
493 pid = task_tgid_nr(tsk);
494 result = audit_comparator(pid, f->op, f->val);
499 ctx->ppid = task_ppid_nr(tsk);
500 result = audit_comparator(ctx->ppid, f->op, f->val);
504 result = audit_exe_compare(tsk, rule->exe);
505 if (f->op == Audit_not_equal)
509 result = audit_uid_comparator(cred->uid, f->op, f->uid);
512 result = audit_uid_comparator(cred->euid, f->op, f->uid);
515 result = audit_uid_comparator(cred->suid, f->op, f->uid);
518 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
521 result = audit_gid_comparator(cred->gid, f->op, f->gid);
522 if (f->op == Audit_equal) {
524 result = groups_search(cred->group_info, f->gid);
525 } else if (f->op == Audit_not_equal) {
527 result = !groups_search(cred->group_info, f->gid);
531 result = audit_gid_comparator(cred->egid, f->op, f->gid);
532 if (f->op == Audit_equal) {
534 result = groups_search(cred->group_info, f->gid);
535 } else if (f->op == Audit_not_equal) {
537 result = !groups_search(cred->group_info, f->gid);
541 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
544 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
546 case AUDIT_SESSIONID:
547 sessionid = audit_get_sessionid(tsk);
548 result = audit_comparator(sessionid, f->op, f->val);
551 result = audit_comparator(tsk->personality, f->op, f->val);
555 result = audit_comparator(ctx->arch, f->op, f->val);
559 if (ctx && ctx->return_valid != AUDITSC_INVALID)
560 result = audit_comparator(ctx->return_code, f->op, f->val);
563 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
565 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
567 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
572 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
573 audit_comparator(MAJOR(name->rdev), f->op, f->val))
576 list_for_each_entry(n, &ctx->names_list, list) {
577 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
578 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
587 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
588 audit_comparator(MINOR(name->rdev), f->op, f->val))
591 list_for_each_entry(n, &ctx->names_list, list) {
592 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
593 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
602 result = audit_comparator(name->ino, f->op, f->val);
604 list_for_each_entry(n, &ctx->names_list, list) {
605 if (audit_comparator(n->ino, f->op, f->val)) {
614 result = audit_uid_comparator(name->uid, f->op, f->uid);
616 list_for_each_entry(n, &ctx->names_list, list) {
617 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
626 result = audit_gid_comparator(name->gid, f->op, f->gid);
628 list_for_each_entry(n, &ctx->names_list, list) {
629 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
638 result = audit_watch_compare(rule->watch,
641 if (f->op == Audit_not_equal)
647 result = match_tree_refs(ctx, rule->tree);
648 if (f->op == Audit_not_equal)
653 result = audit_uid_comparator(audit_get_loginuid(tsk),
656 case AUDIT_LOGINUID_SET:
657 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
659 case AUDIT_SADDR_FAM:
661 result = audit_comparator(ctx->sockaddr->ss_family,
664 case AUDIT_SUBJ_USER:
665 case AUDIT_SUBJ_ROLE:
666 case AUDIT_SUBJ_TYPE:
669 /* NOTE: this may return negative values indicating
670 a temporary error. We simply treat this as a
671 match for now to avoid losing information that
672 may be wanted. An error message will also be
676 security_task_getsecid_subj(tsk, &sid);
679 result = security_audit_rule_match(sid, f->type,
687 case AUDIT_OBJ_LEV_LOW:
688 case AUDIT_OBJ_LEV_HIGH:
689 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
692 /* Find files that match */
694 result = security_audit_rule_match(
700 list_for_each_entry(n, &ctx->names_list, list) {
701 if (security_audit_rule_match(
711 /* Find ipc objects that match */
712 if (!ctx || ctx->type != AUDIT_IPC)
714 if (security_audit_rule_match(ctx->ipc.osid,
725 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
727 case AUDIT_FILTERKEY:
728 /* ignore this field for filtering */
732 result = audit_match_perm(ctx, f->val);
733 if (f->op == Audit_not_equal)
737 result = audit_match_filetype(ctx, f->val);
738 if (f->op == Audit_not_equal)
741 case AUDIT_FIELD_COMPARE:
742 result = audit_field_compare(tsk, cred, f, ctx, name);
750 if (rule->prio <= ctx->prio)
752 if (rule->filterkey) {
753 kfree(ctx->filterkey);
754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
756 ctx->prio = rule->prio;
758 switch (rule->action) {
760 *state = AUDIT_STATE_DISABLED;
763 *state = AUDIT_STATE_RECORD;
769 /* At process creation time, we can determine if system-call auditing is
770 * completely disabled for this task. Since we only have the task
771 * structure at this point, we can only check uid and gid.
773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
775 struct audit_entry *e;
776 enum audit_state state;
779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
782 if (state == AUDIT_STATE_RECORD)
783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
789 return AUDIT_STATE_BUILD;
792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
796 if (val > 0xffffffff)
799 word = AUDIT_WORD(val);
800 if (word >= AUDIT_BITMASK_SIZE)
803 bit = AUDIT_BIT(val);
805 return rule->mask[word] & bit;
808 /* At syscall exit time, this filter is called if the audit_state is
809 * not low enough that auditing cannot take place, but is also not
810 * high enough that we already know we have to write an audit record
811 * (i.e., the state is AUDIT_STATE_BUILD).
813 static void audit_filter_syscall(struct task_struct *tsk,
814 struct audit_context *ctx)
816 struct audit_entry *e;
817 enum audit_state state;
819 if (auditd_test_task(tsk))
823 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
824 if (audit_in_mask(&e->rule, ctx->major) &&
825 audit_filter_rules(tsk, &e->rule, ctx, NULL,
828 ctx->current_state = state;
837 * Given an audit_name check the inode hash table to see if they match.
838 * Called holding the rcu read lock to protect the use of audit_inode_hash
840 static int audit_filter_inode_name(struct task_struct *tsk,
841 struct audit_names *n,
842 struct audit_context *ctx) {
843 int h = audit_hash_ino((u32)n->ino);
844 struct list_head *list = &audit_inode_hash[h];
845 struct audit_entry *e;
846 enum audit_state state;
848 list_for_each_entry_rcu(e, list, list) {
849 if (audit_in_mask(&e->rule, ctx->major) &&
850 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
851 ctx->current_state = state;
858 /* At syscall exit time, this filter is called if any audit_names have been
859 * collected during syscall processing. We only check rules in sublists at hash
860 * buckets applicable to the inode numbers in audit_names.
861 * Regarding audit_state, same rules apply as for audit_filter_syscall().
863 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
865 struct audit_names *n;
867 if (auditd_test_task(tsk))
872 list_for_each_entry(n, &ctx->names_list, list) {
873 if (audit_filter_inode_name(tsk, n, ctx))
879 static inline void audit_proctitle_free(struct audit_context *context)
881 kfree(context->proctitle.value);
882 context->proctitle.value = NULL;
883 context->proctitle.len = 0;
886 static inline void audit_free_module(struct audit_context *context)
888 if (context->type == AUDIT_KERN_MODULE) {
889 kfree(context->module.name);
890 context->module.name = NULL;
893 static inline void audit_free_names(struct audit_context *context)
895 struct audit_names *n, *next;
897 list_for_each_entry_safe(n, next, &context->names_list, list) {
904 context->name_count = 0;
905 path_put(&context->pwd);
906 context->pwd.dentry = NULL;
907 context->pwd.mnt = NULL;
910 static inline void audit_free_aux(struct audit_context *context)
912 struct audit_aux_data *aux;
914 while ((aux = context->aux)) {
915 context->aux = aux->next;
918 while ((aux = context->aux_pids)) {
919 context->aux_pids = aux->next;
924 static inline struct audit_context *audit_alloc_context(enum audit_state state)
926 struct audit_context *context;
928 context = kzalloc(sizeof(*context), GFP_KERNEL);
931 context->state = state;
932 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
933 INIT_LIST_HEAD(&context->killed_trees);
934 INIT_LIST_HEAD(&context->names_list);
935 context->fds[0] = -1;
936 context->return_valid = AUDITSC_INVALID;
941 * audit_alloc - allocate an audit context block for a task
944 * Filter on the task information and allocate a per-task audit context
945 * if necessary. Doing so turns on system call auditing for the
946 * specified task. This is called from copy_process, so no lock is
949 int audit_alloc(struct task_struct *tsk)
951 struct audit_context *context;
952 enum audit_state state;
955 if (likely(!audit_ever_enabled))
956 return 0; /* Return if not auditing. */
958 state = audit_filter_task(tsk, &key);
959 if (state == AUDIT_STATE_DISABLED) {
960 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
964 if (!(context = audit_alloc_context(state))) {
966 audit_log_lost("out of memory in audit_alloc");
969 context->filterkey = key;
971 audit_set_context(tsk, context);
972 set_task_syscall_work(tsk, SYSCALL_AUDIT);
976 static inline void audit_free_context(struct audit_context *context)
978 audit_free_module(context);
979 audit_free_names(context);
980 unroll_tree_refs(context, NULL, 0);
981 free_tree_refs(context);
982 audit_free_aux(context);
983 kfree(context->filterkey);
984 kfree(context->sockaddr);
985 audit_proctitle_free(context);
989 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990 kuid_t auid, kuid_t uid, unsigned int sessionid,
993 struct audit_buffer *ab;
998 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1002 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1003 from_kuid(&init_user_ns, auid),
1004 from_kuid(&init_user_ns, uid), sessionid);
1006 if (security_secid_to_secctx(sid, &ctx, &len)) {
1007 audit_log_format(ab, " obj=(none)");
1010 audit_log_format(ab, " obj=%s", ctx);
1011 security_release_secctx(ctx, len);
1014 audit_log_format(ab, " ocomm=");
1015 audit_log_untrustedstring(ab, comm);
1021 static void audit_log_execve_info(struct audit_context *context,
1022 struct audit_buffer **ab)
1036 const char __user *p = (const char __user *)current->mm->arg_start;
1038 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1039 * data we put in the audit record for this argument (see the
1040 * code below) ... at this point in time 96 is plenty */
1043 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1044 * current value of 7500 is not as important as the fact that it
1045 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1046 * room if we go over a little bit in the logging below */
1047 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1048 len_max = MAX_EXECVE_AUDIT_LEN;
1050 /* scratch buffer to hold the userspace args */
1051 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1053 audit_panic("out of memory for argv string");
1058 audit_log_format(*ab, "argc=%d", context->execve.argc);
1063 require_data = true;
1068 /* NOTE: we don't ever want to trust this value for anything
1069 * serious, but the audit record format insists we
1070 * provide an argument length for really long arguments,
1071 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1072 * to use strncpy_from_user() to obtain this value for
1073 * recording in the log, although we don't use it
1074 * anywhere here to avoid a double-fetch problem */
1076 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1078 /* read more data from userspace */
1080 /* can we make more room in the buffer? */
1081 if (buf != buf_head) {
1082 memmove(buf_head, buf, len_buf);
1086 /* fetch as much as we can of the argument */
1087 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1089 if (len_tmp == -EFAULT) {
1090 /* unable to copy from userspace */
1091 send_sig(SIGKILL, current, 0);
1093 } else if (len_tmp == (len_max - len_buf)) {
1094 /* buffer is not large enough */
1095 require_data = true;
1096 /* NOTE: if we are going to span multiple
1097 * buffers force the encoding so we stand
1098 * a chance at a sane len_full value and
1099 * consistent record encoding */
1101 len_full = len_full * 2;
1104 require_data = false;
1106 encode = audit_string_contains_control(
1108 /* try to use a trusted value for len_full */
1109 if (len_full < len_max)
1110 len_full = (encode ?
1111 len_tmp * 2 : len_tmp);
1115 buf_head[len_buf] = '\0';
1117 /* length of the buffer in the audit record? */
1118 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1121 /* write as much as we can to the audit log */
1123 /* NOTE: some magic numbers here - basically if we
1124 * can't fit a reasonable amount of data into the
1125 * existing audit buffer, flush it and start with
1127 if ((sizeof(abuf) + 8) > len_rem) {
1130 *ab = audit_log_start(context,
1131 GFP_KERNEL, AUDIT_EXECVE);
1136 /* create the non-arg portion of the arg record */
1138 if (require_data || (iter > 0) ||
1139 ((len_abuf + sizeof(abuf)) > len_rem)) {
1141 len_tmp += snprintf(&abuf[len_tmp],
1142 sizeof(abuf) - len_tmp,
1146 len_tmp += snprintf(&abuf[len_tmp],
1147 sizeof(abuf) - len_tmp,
1148 " a%d[%d]=", arg, iter++);
1150 len_tmp += snprintf(&abuf[len_tmp],
1151 sizeof(abuf) - len_tmp,
1153 WARN_ON(len_tmp >= sizeof(abuf));
1154 abuf[sizeof(abuf) - 1] = '\0';
1156 /* log the arg in the audit record */
1157 audit_log_format(*ab, "%s", abuf);
1161 if (len_abuf > len_rem)
1162 len_tmp = len_rem / 2; /* encoding */
1163 audit_log_n_hex(*ab, buf, len_tmp);
1164 len_rem -= len_tmp * 2;
1165 len_abuf -= len_tmp * 2;
1167 if (len_abuf > len_rem)
1168 len_tmp = len_rem - 2; /* quotes */
1169 audit_log_n_string(*ab, buf, len_tmp);
1170 len_rem -= len_tmp + 2;
1171 /* don't subtract the "2" because we still need
1172 * to add quotes to the remaining string */
1173 len_abuf -= len_tmp;
1179 /* ready to move to the next argument? */
1180 if ((len_buf == 0) && !require_data) {
1184 require_data = true;
1187 } while (arg < context->execve.argc);
1189 /* NOTE: the caller handles the final audit_log_end() call */
1195 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1200 if (cap_isclear(*cap)) {
1201 audit_log_format(ab, " %s=0", prefix);
1204 audit_log_format(ab, " %s=", prefix);
1206 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1209 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1211 if (name->fcap_ver == -1) {
1212 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1215 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1216 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1217 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1218 name->fcap.fE, name->fcap_ver,
1219 from_kuid(&init_user_ns, name->fcap.rootid));
1222 static void show_special(struct audit_context *context, int *call_panic)
1224 struct audit_buffer *ab;
1227 ab = audit_log_start(context, GFP_KERNEL, context->type);
1231 switch (context->type) {
1232 case AUDIT_SOCKETCALL: {
1233 int nargs = context->socketcall.nargs;
1235 audit_log_format(ab, "nargs=%d", nargs);
1236 for (i = 0; i < nargs; i++)
1237 audit_log_format(ab, " a%d=%lx", i,
1238 context->socketcall.args[i]);
1241 u32 osid = context->ipc.osid;
1243 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1244 from_kuid(&init_user_ns, context->ipc.uid),
1245 from_kgid(&init_user_ns, context->ipc.gid),
1251 if (security_secid_to_secctx(osid, &ctx, &len)) {
1252 audit_log_format(ab, " osid=%u", osid);
1255 audit_log_format(ab, " obj=%s", ctx);
1256 security_release_secctx(ctx, len);
1259 if (context->ipc.has_perm) {
1261 ab = audit_log_start(context, GFP_KERNEL,
1262 AUDIT_IPC_SET_PERM);
1265 audit_log_format(ab,
1266 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1267 context->ipc.qbytes,
1268 context->ipc.perm_uid,
1269 context->ipc.perm_gid,
1270 context->ipc.perm_mode);
1274 audit_log_format(ab,
1275 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1276 "mq_msgsize=%ld mq_curmsgs=%ld",
1277 context->mq_open.oflag, context->mq_open.mode,
1278 context->mq_open.attr.mq_flags,
1279 context->mq_open.attr.mq_maxmsg,
1280 context->mq_open.attr.mq_msgsize,
1281 context->mq_open.attr.mq_curmsgs);
1283 case AUDIT_MQ_SENDRECV:
1284 audit_log_format(ab,
1285 "mqdes=%d msg_len=%zd msg_prio=%u "
1286 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1287 context->mq_sendrecv.mqdes,
1288 context->mq_sendrecv.msg_len,
1289 context->mq_sendrecv.msg_prio,
1290 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1291 context->mq_sendrecv.abs_timeout.tv_nsec);
1293 case AUDIT_MQ_NOTIFY:
1294 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1295 context->mq_notify.mqdes,
1296 context->mq_notify.sigev_signo);
1298 case AUDIT_MQ_GETSETATTR: {
1299 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1301 audit_log_format(ab,
1302 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1304 context->mq_getsetattr.mqdes,
1305 attr->mq_flags, attr->mq_maxmsg,
1306 attr->mq_msgsize, attr->mq_curmsgs);
1309 audit_log_format(ab, "pid=%d", context->capset.pid);
1310 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1311 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1312 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1313 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1316 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1317 context->mmap.flags);
1320 audit_log_execve_info(context, &ab);
1322 case AUDIT_KERN_MODULE:
1323 audit_log_format(ab, "name=");
1324 if (context->module.name) {
1325 audit_log_untrustedstring(ab, context->module.name);
1327 audit_log_format(ab, "(null)");
1334 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1336 char *end = proctitle + len - 1;
1338 while (end > proctitle && !isprint(*end))
1341 /* catch the case where proctitle is only 1 non-print character */
1342 len = end - proctitle + 1;
1343 len -= isprint(proctitle[len-1]) == 0;
1348 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1349 * @context: audit_context for the task
1350 * @n: audit_names structure with reportable details
1351 * @path: optional path to report instead of audit_names->name
1352 * @record_num: record number to report when handling a list of names
1353 * @call_panic: optional pointer to int that will be updated if secid fails
1355 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1356 const struct path *path, int record_num, int *call_panic)
1358 struct audit_buffer *ab;
1360 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1364 audit_log_format(ab, "item=%d", record_num);
1367 audit_log_d_path(ab, " name=", path);
1369 switch (n->name_len) {
1370 case AUDIT_NAME_FULL:
1371 /* log the full path */
1372 audit_log_format(ab, " name=");
1373 audit_log_untrustedstring(ab, n->name->name);
1376 /* name was specified as a relative path and the
1377 * directory component is the cwd
1379 if (context->pwd.dentry && context->pwd.mnt)
1380 audit_log_d_path(ab, " name=", &context->pwd);
1382 audit_log_format(ab, " name=(null)");
1385 /* log the name's directory component */
1386 audit_log_format(ab, " name=");
1387 audit_log_n_untrustedstring(ab, n->name->name,
1391 audit_log_format(ab, " name=(null)");
1393 if (n->ino != AUDIT_INO_UNSET)
1394 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1399 from_kuid(&init_user_ns, n->uid),
1400 from_kgid(&init_user_ns, n->gid),
1407 if (security_secid_to_secctx(
1408 n->osid, &ctx, &len)) {
1409 audit_log_format(ab, " osid=%u", n->osid);
1413 audit_log_format(ab, " obj=%s", ctx);
1414 security_release_secctx(ctx, len);
1418 /* log the audit_names record type */
1420 case AUDIT_TYPE_NORMAL:
1421 audit_log_format(ab, " nametype=NORMAL");
1423 case AUDIT_TYPE_PARENT:
1424 audit_log_format(ab, " nametype=PARENT");
1426 case AUDIT_TYPE_CHILD_DELETE:
1427 audit_log_format(ab, " nametype=DELETE");
1429 case AUDIT_TYPE_CHILD_CREATE:
1430 audit_log_format(ab, " nametype=CREATE");
1433 audit_log_format(ab, " nametype=UNKNOWN");
1437 audit_log_fcaps(ab, n);
1441 static void audit_log_proctitle(void)
1445 char *msg = "(null)";
1446 int len = strlen(msg);
1447 struct audit_context *context = audit_context();
1448 struct audit_buffer *ab;
1450 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1452 return; /* audit_panic or being filtered */
1454 audit_log_format(ab, "proctitle=");
1457 if (!context->proctitle.value) {
1458 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1461 /* Historically called this from procfs naming */
1462 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1467 res = audit_proctitle_rtrim(buf, res);
1472 context->proctitle.value = buf;
1473 context->proctitle.len = res;
1475 msg = context->proctitle.value;
1476 len = context->proctitle.len;
1478 audit_log_n_untrustedstring(ab, msg, len);
1482 static void audit_log_exit(void)
1484 int i, call_panic = 0;
1485 struct audit_context *context = audit_context();
1486 struct audit_buffer *ab;
1487 struct audit_aux_data *aux;
1488 struct audit_names *n;
1490 context->personality = current->personality;
1492 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1494 return; /* audit_panic has been called */
1495 audit_log_format(ab, "arch=%x syscall=%d",
1496 context->arch, context->major);
1497 if (context->personality != PER_LINUX)
1498 audit_log_format(ab, " per=%lx", context->personality);
1499 if (context->return_valid != AUDITSC_INVALID)
1500 audit_log_format(ab, " success=%s exit=%ld",
1501 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1502 context->return_code);
1504 audit_log_format(ab,
1505 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1510 context->name_count);
1512 audit_log_task_info(ab);
1513 audit_log_key(ab, context->filterkey);
1516 for (aux = context->aux; aux; aux = aux->next) {
1518 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1520 continue; /* audit_panic has been called */
1522 switch (aux->type) {
1524 case AUDIT_BPRM_FCAPS: {
1525 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1527 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1528 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1529 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1530 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1531 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1532 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1533 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1534 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1535 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1536 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1537 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1538 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1539 audit_log_format(ab, " frootid=%d",
1540 from_kuid(&init_user_ns,
1549 show_special(context, &call_panic);
1551 if (context->fds[0] >= 0) {
1552 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1554 audit_log_format(ab, "fd0=%d fd1=%d",
1555 context->fds[0], context->fds[1]);
1560 if (context->sockaddr_len) {
1561 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1563 audit_log_format(ab, "saddr=");
1564 audit_log_n_hex(ab, (void *)context->sockaddr,
1565 context->sockaddr_len);
1570 for (aux = context->aux_pids; aux; aux = aux->next) {
1571 struct audit_aux_data_pids *axs = (void *)aux;
1573 for (i = 0; i < axs->pid_count; i++)
1574 if (audit_log_pid_context(context, axs->target_pid[i],
1575 axs->target_auid[i],
1577 axs->target_sessionid[i],
1579 axs->target_comm[i]))
1583 if (context->target_pid &&
1584 audit_log_pid_context(context, context->target_pid,
1585 context->target_auid, context->target_uid,
1586 context->target_sessionid,
1587 context->target_sid, context->target_comm))
1590 if (context->pwd.dentry && context->pwd.mnt) {
1591 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1593 audit_log_d_path(ab, "cwd=", &context->pwd);
1599 list_for_each_entry(n, &context->names_list, list) {
1602 audit_log_name(context, n, NULL, i++, &call_panic);
1605 audit_log_proctitle();
1607 /* Send end of event record to help user space know we are finished */
1608 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1612 audit_panic("error converting sid to string");
1616 * __audit_free - free a per-task audit context
1617 * @tsk: task whose audit context block to free
1619 * Called from copy_process and do_exit
1621 void __audit_free(struct task_struct *tsk)
1623 struct audit_context *context = tsk->audit_context;
1628 if (!list_empty(&context->killed_trees))
1629 audit_kill_trees(context);
1631 /* We are called either by do_exit() or the fork() error handling code;
1632 * in the former case tsk == current and in the latter tsk is a
1633 * random task_struct that doesn't doesn't have any meaningful data we
1634 * need to log via audit_log_exit().
1636 if (tsk == current && !context->dummy && context->in_syscall) {
1637 context->return_valid = AUDITSC_INVALID;
1638 context->return_code = 0;
1640 audit_filter_syscall(tsk, context);
1641 audit_filter_inodes(tsk, context);
1642 if (context->current_state == AUDIT_STATE_RECORD)
1646 audit_set_context(tsk, NULL);
1647 audit_free_context(context);
1651 * __audit_syscall_entry - fill in an audit record at syscall entry
1652 * @major: major syscall type (function)
1653 * @a1: additional syscall register 1
1654 * @a2: additional syscall register 2
1655 * @a3: additional syscall register 3
1656 * @a4: additional syscall register 4
1658 * Fill in audit context at syscall entry. This only happens if the
1659 * audit context was created when the task was created and the state or
1660 * filters demand the audit context be built. If the state from the
1661 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1662 * then the record will be written at syscall exit time (otherwise, it
1663 * will only be written if another part of the kernel requests that it
1666 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1667 unsigned long a3, unsigned long a4)
1669 struct audit_context *context = audit_context();
1670 enum audit_state state;
1672 if (!audit_enabled || !context)
1675 BUG_ON(context->in_syscall || context->name_count);
1677 state = context->state;
1678 if (state == AUDIT_STATE_DISABLED)
1681 context->dummy = !audit_n_rules;
1682 if (!context->dummy && state == AUDIT_STATE_BUILD) {
1684 if (auditd_test_task(current))
1688 context->arch = syscall_get_arch(current);
1689 context->major = major;
1690 context->argv[0] = a1;
1691 context->argv[1] = a2;
1692 context->argv[2] = a3;
1693 context->argv[3] = a4;
1694 context->serial = 0;
1695 context->in_syscall = 1;
1696 context->current_state = state;
1698 ktime_get_coarse_real_ts64(&context->ctime);
1702 * __audit_syscall_exit - deallocate audit context after a system call
1703 * @success: success value of the syscall
1704 * @return_code: return value of the syscall
1706 * Tear down after system call. If the audit context has been marked as
1707 * auditable (either because of the AUDIT_STATE_RECORD state from
1708 * filtering, or because some other part of the kernel wrote an audit
1709 * message), then write out the syscall information. In call cases,
1710 * free the names stored from getname().
1712 void __audit_syscall_exit(int success, long return_code)
1714 struct audit_context *context;
1716 context = audit_context();
1720 if (!list_empty(&context->killed_trees))
1721 audit_kill_trees(context);
1723 if (!context->dummy && context->in_syscall) {
1725 context->return_valid = AUDITSC_SUCCESS;
1727 context->return_valid = AUDITSC_FAILURE;
1730 * we need to fix up the return code in the audit logs if the
1731 * actual return codes are later going to be fixed up by the
1732 * arch specific signal handlers
1734 * This is actually a test for:
1735 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1736 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1738 * but is faster than a bunch of ||
1740 if (unlikely(return_code <= -ERESTARTSYS) &&
1741 (return_code >= -ERESTART_RESTARTBLOCK) &&
1742 (return_code != -ENOIOCTLCMD))
1743 context->return_code = -EINTR;
1745 context->return_code = return_code;
1747 audit_filter_syscall(current, context);
1748 audit_filter_inodes(current, context);
1749 if (context->current_state == AUDIT_STATE_RECORD)
1753 context->in_syscall = 0;
1754 context->prio = context->state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1756 audit_free_module(context);
1757 audit_free_names(context);
1758 unroll_tree_refs(context, NULL, 0);
1759 audit_free_aux(context);
1760 context->aux = NULL;
1761 context->aux_pids = NULL;
1762 context->target_pid = 0;
1763 context->target_sid = 0;
1764 context->sockaddr_len = 0;
1766 context->fds[0] = -1;
1767 if (context->state != AUDIT_STATE_RECORD) {
1768 kfree(context->filterkey);
1769 context->filterkey = NULL;
1773 static inline void handle_one(const struct inode *inode)
1775 struct audit_context *context;
1776 struct audit_tree_refs *p;
1777 struct audit_chunk *chunk;
1780 if (likely(!inode->i_fsnotify_marks))
1782 context = audit_context();
1784 count = context->tree_count;
1786 chunk = audit_tree_lookup(inode);
1790 if (likely(put_tree_ref(context, chunk)))
1792 if (unlikely(!grow_tree_refs(context))) {
1793 pr_warn("out of memory, audit has lost a tree reference\n");
1794 audit_set_auditable(context);
1795 audit_put_chunk(chunk);
1796 unroll_tree_refs(context, p, count);
1799 put_tree_ref(context, chunk);
1802 static void handle_path(const struct dentry *dentry)
1804 struct audit_context *context;
1805 struct audit_tree_refs *p;
1806 const struct dentry *d, *parent;
1807 struct audit_chunk *drop;
1811 context = audit_context();
1813 count = context->tree_count;
1818 seq = read_seqbegin(&rename_lock);
1820 struct inode *inode = d_backing_inode(d);
1822 if (inode && unlikely(inode->i_fsnotify_marks)) {
1823 struct audit_chunk *chunk;
1825 chunk = audit_tree_lookup(inode);
1827 if (unlikely(!put_tree_ref(context, chunk))) {
1833 parent = d->d_parent;
1838 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1841 /* just a race with rename */
1842 unroll_tree_refs(context, p, count);
1845 audit_put_chunk(drop);
1846 if (grow_tree_refs(context)) {
1847 /* OK, got more space */
1848 unroll_tree_refs(context, p, count);
1852 pr_warn("out of memory, audit has lost a tree reference\n");
1853 unroll_tree_refs(context, p, count);
1854 audit_set_auditable(context);
1860 static struct audit_names *audit_alloc_name(struct audit_context *context,
1863 struct audit_names *aname;
1865 if (context->name_count < AUDIT_NAMES) {
1866 aname = &context->preallocated_names[context->name_count];
1867 memset(aname, 0, sizeof(*aname));
1869 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1872 aname->should_free = true;
1875 aname->ino = AUDIT_INO_UNSET;
1877 list_add_tail(&aname->list, &context->names_list);
1879 context->name_count++;
1880 if (!context->pwd.dentry)
1881 get_fs_pwd(current->fs, &context->pwd);
1886 * __audit_reusename - fill out filename with info from existing entry
1887 * @uptr: userland ptr to pathname
1889 * Search the audit_names list for the current audit context. If there is an
1890 * existing entry with a matching "uptr" then return the filename
1891 * associated with that audit_name. If not, return NULL.
1894 __audit_reusename(const __user char *uptr)
1896 struct audit_context *context = audit_context();
1897 struct audit_names *n;
1899 list_for_each_entry(n, &context->names_list, list) {
1902 if (n->name->uptr == uptr) {
1911 * __audit_getname - add a name to the list
1912 * @name: name to add
1914 * Add a name to the list of audit names for this context.
1915 * Called from fs/namei.c:getname().
1917 void __audit_getname(struct filename *name)
1919 struct audit_context *context = audit_context();
1920 struct audit_names *n;
1922 if (!context->in_syscall)
1925 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1930 n->name_len = AUDIT_NAME_FULL;
1935 static inline int audit_copy_fcaps(struct audit_names *name,
1936 const struct dentry *dentry)
1938 struct cpu_vfs_cap_data caps;
1944 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
1948 name->fcap.permitted = caps.permitted;
1949 name->fcap.inheritable = caps.inheritable;
1950 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1951 name->fcap.rootid = caps.rootid;
1952 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1953 VFS_CAP_REVISION_SHIFT;
1958 /* Copy inode data into an audit_names. */
1959 static void audit_copy_inode(struct audit_names *name,
1960 const struct dentry *dentry,
1961 struct inode *inode, unsigned int flags)
1963 name->ino = inode->i_ino;
1964 name->dev = inode->i_sb->s_dev;
1965 name->mode = inode->i_mode;
1966 name->uid = inode->i_uid;
1967 name->gid = inode->i_gid;
1968 name->rdev = inode->i_rdev;
1969 security_inode_getsecid(inode, &name->osid);
1970 if (flags & AUDIT_INODE_NOEVAL) {
1971 name->fcap_ver = -1;
1974 audit_copy_fcaps(name, dentry);
1978 * __audit_inode - store the inode and device from a lookup
1979 * @name: name being audited
1980 * @dentry: dentry being audited
1981 * @flags: attributes for this particular entry
1983 void __audit_inode(struct filename *name, const struct dentry *dentry,
1986 struct audit_context *context = audit_context();
1987 struct inode *inode = d_backing_inode(dentry);
1988 struct audit_names *n;
1989 bool parent = flags & AUDIT_INODE_PARENT;
1990 struct audit_entry *e;
1991 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1994 if (!context->in_syscall)
1998 list_for_each_entry_rcu(e, list, list) {
1999 for (i = 0; i < e->rule.field_count; i++) {
2000 struct audit_field *f = &e->rule.fields[i];
2002 if (f->type == AUDIT_FSTYPE
2003 && audit_comparator(inode->i_sb->s_magic,
2005 && e->rule.action == AUDIT_NEVER) {
2017 * If we have a pointer to an audit_names entry already, then we can
2018 * just use it directly if the type is correct.
2023 if (n->type == AUDIT_TYPE_PARENT ||
2024 n->type == AUDIT_TYPE_UNKNOWN)
2027 if (n->type != AUDIT_TYPE_PARENT)
2032 list_for_each_entry_reverse(n, &context->names_list, list) {
2034 /* valid inode number, use that for the comparison */
2035 if (n->ino != inode->i_ino ||
2036 n->dev != inode->i_sb->s_dev)
2038 } else if (n->name) {
2039 /* inode number has not been set, check the name */
2040 if (strcmp(n->name->name, name->name))
2043 /* no inode and no name (?!) ... this is odd ... */
2046 /* match the correct record type */
2048 if (n->type == AUDIT_TYPE_PARENT ||
2049 n->type == AUDIT_TYPE_UNKNOWN)
2052 if (n->type != AUDIT_TYPE_PARENT)
2058 /* unable to find an entry with both a matching name and type */
2059 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2069 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2070 n->type = AUDIT_TYPE_PARENT;
2071 if (flags & AUDIT_INODE_HIDDEN)
2074 n->name_len = AUDIT_NAME_FULL;
2075 n->type = AUDIT_TYPE_NORMAL;
2077 handle_path(dentry);
2078 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2081 void __audit_file(const struct file *file)
2083 __audit_inode(NULL, file->f_path.dentry, 0);
2087 * __audit_inode_child - collect inode info for created/removed objects
2088 * @parent: inode of dentry parent
2089 * @dentry: dentry being audited
2090 * @type: AUDIT_TYPE_* value that we're looking for
2092 * For syscalls that create or remove filesystem objects, audit_inode
2093 * can only collect information for the filesystem object's parent.
2094 * This call updates the audit context with the child's information.
2095 * Syscalls that create a new filesystem object must be hooked after
2096 * the object is created. Syscalls that remove a filesystem object
2097 * must be hooked prior, in order to capture the target inode during
2098 * unsuccessful attempts.
2100 void __audit_inode_child(struct inode *parent,
2101 const struct dentry *dentry,
2102 const unsigned char type)
2104 struct audit_context *context = audit_context();
2105 struct inode *inode = d_backing_inode(dentry);
2106 const struct qstr *dname = &dentry->d_name;
2107 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2108 struct audit_entry *e;
2109 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2112 if (!context->in_syscall)
2116 list_for_each_entry_rcu(e, list, list) {
2117 for (i = 0; i < e->rule.field_count; i++) {
2118 struct audit_field *f = &e->rule.fields[i];
2120 if (f->type == AUDIT_FSTYPE
2121 && audit_comparator(parent->i_sb->s_magic,
2123 && e->rule.action == AUDIT_NEVER) {
2134 /* look for a parent entry first */
2135 list_for_each_entry(n, &context->names_list, list) {
2137 (n->type != AUDIT_TYPE_PARENT &&
2138 n->type != AUDIT_TYPE_UNKNOWN))
2141 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2142 !audit_compare_dname_path(dname,
2143 n->name->name, n->name_len)) {
2144 if (n->type == AUDIT_TYPE_UNKNOWN)
2145 n->type = AUDIT_TYPE_PARENT;
2151 /* is there a matching child entry? */
2152 list_for_each_entry(n, &context->names_list, list) {
2153 /* can only match entries that have a name */
2155 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2158 if (!strcmp(dname->name, n->name->name) ||
2159 !audit_compare_dname_path(dname, n->name->name,
2161 found_parent->name_len :
2163 if (n->type == AUDIT_TYPE_UNKNOWN)
2170 if (!found_parent) {
2171 /* create a new, "anonymous" parent record */
2172 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2175 audit_copy_inode(n, NULL, parent, 0);
2179 found_child = audit_alloc_name(context, type);
2183 /* Re-use the name belonging to the slot for a matching parent
2184 * directory. All names for this context are relinquished in
2185 * audit_free_names() */
2187 found_child->name = found_parent->name;
2188 found_child->name_len = AUDIT_NAME_FULL;
2189 found_child->name->refcnt++;
2194 audit_copy_inode(found_child, dentry, inode, 0);
2196 found_child->ino = AUDIT_INO_UNSET;
2198 EXPORT_SYMBOL_GPL(__audit_inode_child);
2201 * auditsc_get_stamp - get local copies of audit_context values
2202 * @ctx: audit_context for the task
2203 * @t: timespec64 to store time recorded in the audit_context
2204 * @serial: serial value that is recorded in the audit_context
2206 * Also sets the context as auditable.
2208 int auditsc_get_stamp(struct audit_context *ctx,
2209 struct timespec64 *t, unsigned int *serial)
2211 if (!ctx->in_syscall)
2214 ctx->serial = audit_serial();
2215 t->tv_sec = ctx->ctime.tv_sec;
2216 t->tv_nsec = ctx->ctime.tv_nsec;
2217 *serial = ctx->serial;
2220 ctx->current_state = AUDIT_STATE_RECORD;
2226 * __audit_mq_open - record audit data for a POSIX MQ open
2229 * @attr: queue attributes
2232 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2234 struct audit_context *context = audit_context();
2237 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2239 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2241 context->mq_open.oflag = oflag;
2242 context->mq_open.mode = mode;
2244 context->type = AUDIT_MQ_OPEN;
2248 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2249 * @mqdes: MQ descriptor
2250 * @msg_len: Message length
2251 * @msg_prio: Message priority
2252 * @abs_timeout: Message timeout in absolute time
2255 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2256 const struct timespec64 *abs_timeout)
2258 struct audit_context *context = audit_context();
2259 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2262 memcpy(p, abs_timeout, sizeof(*p));
2264 memset(p, 0, sizeof(*p));
2266 context->mq_sendrecv.mqdes = mqdes;
2267 context->mq_sendrecv.msg_len = msg_len;
2268 context->mq_sendrecv.msg_prio = msg_prio;
2270 context->type = AUDIT_MQ_SENDRECV;
2274 * __audit_mq_notify - record audit data for a POSIX MQ notify
2275 * @mqdes: MQ descriptor
2276 * @notification: Notification event
2280 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2282 struct audit_context *context = audit_context();
2285 context->mq_notify.sigev_signo = notification->sigev_signo;
2287 context->mq_notify.sigev_signo = 0;
2289 context->mq_notify.mqdes = mqdes;
2290 context->type = AUDIT_MQ_NOTIFY;
2294 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2295 * @mqdes: MQ descriptor
2299 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2301 struct audit_context *context = audit_context();
2303 context->mq_getsetattr.mqdes = mqdes;
2304 context->mq_getsetattr.mqstat = *mqstat;
2305 context->type = AUDIT_MQ_GETSETATTR;
2309 * __audit_ipc_obj - record audit data for ipc object
2310 * @ipcp: ipc permissions
2313 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2315 struct audit_context *context = audit_context();
2317 context->ipc.uid = ipcp->uid;
2318 context->ipc.gid = ipcp->gid;
2319 context->ipc.mode = ipcp->mode;
2320 context->ipc.has_perm = 0;
2321 security_ipc_getsecid(ipcp, &context->ipc.osid);
2322 context->type = AUDIT_IPC;
2326 * __audit_ipc_set_perm - record audit data for new ipc permissions
2327 * @qbytes: msgq bytes
2328 * @uid: msgq user id
2329 * @gid: msgq group id
2330 * @mode: msgq mode (permissions)
2332 * Called only after audit_ipc_obj().
2334 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2336 struct audit_context *context = audit_context();
2338 context->ipc.qbytes = qbytes;
2339 context->ipc.perm_uid = uid;
2340 context->ipc.perm_gid = gid;
2341 context->ipc.perm_mode = mode;
2342 context->ipc.has_perm = 1;
2345 void __audit_bprm(struct linux_binprm *bprm)
2347 struct audit_context *context = audit_context();
2349 context->type = AUDIT_EXECVE;
2350 context->execve.argc = bprm->argc;
2355 * __audit_socketcall - record audit data for sys_socketcall
2356 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2360 int __audit_socketcall(int nargs, unsigned long *args)
2362 struct audit_context *context = audit_context();
2364 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2366 context->type = AUDIT_SOCKETCALL;
2367 context->socketcall.nargs = nargs;
2368 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2373 * __audit_fd_pair - record audit data for pipe and socketpair
2374 * @fd1: the first file descriptor
2375 * @fd2: the second file descriptor
2378 void __audit_fd_pair(int fd1, int fd2)
2380 struct audit_context *context = audit_context();
2382 context->fds[0] = fd1;
2383 context->fds[1] = fd2;
2387 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2388 * @len: data length in user space
2389 * @a: data address in kernel space
2391 * Returns 0 for success or NULL context or < 0 on error.
2393 int __audit_sockaddr(int len, void *a)
2395 struct audit_context *context = audit_context();
2397 if (!context->sockaddr) {
2398 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2402 context->sockaddr = p;
2405 context->sockaddr_len = len;
2406 memcpy(context->sockaddr, a, len);
2410 void __audit_ptrace(struct task_struct *t)
2412 struct audit_context *context = audit_context();
2414 context->target_pid = task_tgid_nr(t);
2415 context->target_auid = audit_get_loginuid(t);
2416 context->target_uid = task_uid(t);
2417 context->target_sessionid = audit_get_sessionid(t);
2418 security_task_getsecid_obj(t, &context->target_sid);
2419 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2423 * audit_signal_info_syscall - record signal info for syscalls
2424 * @t: task being signaled
2426 * If the audit subsystem is being terminated, record the task (pid)
2427 * and uid that is doing that.
2429 int audit_signal_info_syscall(struct task_struct *t)
2431 struct audit_aux_data_pids *axp;
2432 struct audit_context *ctx = audit_context();
2433 kuid_t t_uid = task_uid(t);
2435 if (!audit_signals || audit_dummy_context())
2438 /* optimize the common case by putting first signal recipient directly
2439 * in audit_context */
2440 if (!ctx->target_pid) {
2441 ctx->target_pid = task_tgid_nr(t);
2442 ctx->target_auid = audit_get_loginuid(t);
2443 ctx->target_uid = t_uid;
2444 ctx->target_sessionid = audit_get_sessionid(t);
2445 security_task_getsecid_obj(t, &ctx->target_sid);
2446 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2450 axp = (void *)ctx->aux_pids;
2451 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2452 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2456 axp->d.type = AUDIT_OBJ_PID;
2457 axp->d.next = ctx->aux_pids;
2458 ctx->aux_pids = (void *)axp;
2460 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2462 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2463 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2464 axp->target_uid[axp->pid_count] = t_uid;
2465 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2466 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2467 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2474 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2475 * @bprm: pointer to the bprm being processed
2476 * @new: the proposed new credentials
2477 * @old: the old credentials
2479 * Simply check if the proc already has the caps given by the file and if not
2480 * store the priv escalation info for later auditing at the end of the syscall
2484 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2485 const struct cred *new, const struct cred *old)
2487 struct audit_aux_data_bprm_fcaps *ax;
2488 struct audit_context *context = audit_context();
2489 struct cpu_vfs_cap_data vcaps;
2491 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2495 ax->d.type = AUDIT_BPRM_FCAPS;
2496 ax->d.next = context->aux;
2497 context->aux = (void *)ax;
2499 get_vfs_caps_from_disk(&init_user_ns,
2500 bprm->file->f_path.dentry, &vcaps);
2502 ax->fcap.permitted = vcaps.permitted;
2503 ax->fcap.inheritable = vcaps.inheritable;
2504 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2505 ax->fcap.rootid = vcaps.rootid;
2506 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2508 ax->old_pcap.permitted = old->cap_permitted;
2509 ax->old_pcap.inheritable = old->cap_inheritable;
2510 ax->old_pcap.effective = old->cap_effective;
2511 ax->old_pcap.ambient = old->cap_ambient;
2513 ax->new_pcap.permitted = new->cap_permitted;
2514 ax->new_pcap.inheritable = new->cap_inheritable;
2515 ax->new_pcap.effective = new->cap_effective;
2516 ax->new_pcap.ambient = new->cap_ambient;
2521 * __audit_log_capset - store information about the arguments to the capset syscall
2522 * @new: the new credentials
2523 * @old: the old (current) credentials
2525 * Record the arguments userspace sent to sys_capset for later printing by the
2526 * audit system if applicable
2528 void __audit_log_capset(const struct cred *new, const struct cred *old)
2530 struct audit_context *context = audit_context();
2532 context->capset.pid = task_tgid_nr(current);
2533 context->capset.cap.effective = new->cap_effective;
2534 context->capset.cap.inheritable = new->cap_effective;
2535 context->capset.cap.permitted = new->cap_permitted;
2536 context->capset.cap.ambient = new->cap_ambient;
2537 context->type = AUDIT_CAPSET;
2540 void __audit_mmap_fd(int fd, int flags)
2542 struct audit_context *context = audit_context();
2544 context->mmap.fd = fd;
2545 context->mmap.flags = flags;
2546 context->type = AUDIT_MMAP;
2549 void __audit_log_kern_module(char *name)
2551 struct audit_context *context = audit_context();
2553 context->module.name = kstrdup(name, GFP_KERNEL);
2554 if (!context->module.name)
2555 audit_log_lost("out of memory in __audit_log_kern_module");
2556 context->type = AUDIT_KERN_MODULE;
2559 void __audit_fanotify(unsigned int response)
2561 audit_log(audit_context(), GFP_KERNEL,
2562 AUDIT_FANOTIFY, "resp=%u", response);
2565 void __audit_tk_injoffset(struct timespec64 offset)
2567 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2568 "sec=%lli nsec=%li",
2569 (long long)offset.tv_sec, offset.tv_nsec);
2572 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2573 const char *op, enum audit_ntp_type type)
2575 const struct audit_ntp_val *val = &ad->vals[type];
2577 if (val->newval == val->oldval)
2580 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2581 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2584 void __audit_ntp_log(const struct audit_ntp_data *ad)
2586 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2587 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2588 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2589 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2590 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2591 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2594 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2595 enum audit_nfcfgop op, gfp_t gfp)
2597 struct audit_buffer *ab;
2598 char comm[sizeof(current->comm)];
2600 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2603 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2604 name, af, nentries, audit_nfcfgs[op].s);
2606 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2607 audit_log_task_context(ab); /* subj= */
2608 audit_log_format(ab, " comm=");
2609 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2612 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2614 static void audit_log_task(struct audit_buffer *ab)
2618 unsigned int sessionid;
2619 char comm[sizeof(current->comm)];
2621 auid = audit_get_loginuid(current);
2622 sessionid = audit_get_sessionid(current);
2623 current_uid_gid(&uid, &gid);
2625 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2626 from_kuid(&init_user_ns, auid),
2627 from_kuid(&init_user_ns, uid),
2628 from_kgid(&init_user_ns, gid),
2630 audit_log_task_context(ab);
2631 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2632 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2633 audit_log_d_path_exe(ab, current->mm);
2637 * audit_core_dumps - record information about processes that end abnormally
2638 * @signr: signal value
2640 * If a process ends with a core dump, something fishy is going on and we
2641 * should record the event for investigation.
2643 void audit_core_dumps(long signr)
2645 struct audit_buffer *ab;
2650 if (signr == SIGQUIT) /* don't care for those */
2653 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2657 audit_log_format(ab, " sig=%ld res=1", signr);
2662 * audit_seccomp - record information about a seccomp action
2663 * @syscall: syscall number
2664 * @signr: signal value
2665 * @code: the seccomp action
2667 * Record the information associated with a seccomp action. Event filtering for
2668 * seccomp actions that are not to be logged is done in seccomp_log().
2669 * Therefore, this function forces auditing independent of the audit_enabled
2670 * and dummy context state because seccomp actions should be logged even when
2671 * audit is not in use.
2673 void audit_seccomp(unsigned long syscall, long signr, int code)
2675 struct audit_buffer *ab;
2677 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2681 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2682 signr, syscall_get_arch(current), syscall,
2683 in_compat_syscall(), KSTK_EIP(current), code);
2687 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2690 struct audit_buffer *ab;
2695 ab = audit_log_start(audit_context(), GFP_KERNEL,
2696 AUDIT_CONFIG_CHANGE);
2700 audit_log_format(ab,
2701 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2702 names, old_names, res);
2706 struct list_head *audit_killed_trees(void)
2708 struct audit_context *ctx = audit_context();
2710 if (likely(!ctx || !ctx->in_syscall))
2712 return &ctx->killed_trees;