1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/init.h>
35 #include <asm/types.h>
36 #include <linux/atomic.h>
38 #include <linux/namei.h>
40 #include <linux/export.h>
41 #include <linux/slab.h>
42 #include <linux/mount.h>
43 #include <linux/socket.h>
44 #include <linux/mqueue.h>
45 #include <linux/audit.h>
46 #include <linux/personality.h>
47 #include <linux/time.h>
48 #include <linux/netlink.h>
49 #include <linux/compiler.h>
50 #include <asm/unistd.h>
51 #include <linux/security.h>
52 #include <linux/list.h>
53 #include <linux/binfmts.h>
54 #include <linux/highmem.h>
55 #include <linux/syscalls.h>
56 #include <asm/syscall.h>
57 #include <linux/capability.h>
58 #include <linux/fs_struct.h>
59 #include <linux/compat.h>
60 #include <linux/ctype.h>
61 #include <linux/string.h>
62 #include <linux/uaccess.h>
63 #include <linux/fsnotify_backend.h>
64 #include <uapi/linux/limits.h>
65 #include <uapi/linux/netfilter/nf_tables.h>
66 #include <uapi/linux/openat2.h> // struct open_how
70 /* flags stating the success for a syscall */
71 #define AUDITSC_INVALID 0
72 #define AUDITSC_SUCCESS 1
73 #define AUDITSC_FAILURE 2
75 /* no execve audit message should be longer than this (userspace limits),
76 * see the note near the top of audit_log_execve_info() about this value */
77 #define MAX_EXECVE_AUDIT_LEN 7500
79 /* max length to print of cmdline/proctitle value during audit */
80 #define MAX_PROCTITLE_AUDIT_LEN 128
82 /* number of audit rules */
85 /* determines whether we collect data for signals sent */
88 struct audit_aux_data {
89 struct audit_aux_data *next;
93 /* Number of target pids per aux struct. */
94 #define AUDIT_AUX_PIDS 16
96 struct audit_aux_data_pids {
97 struct audit_aux_data d;
98 pid_t target_pid[AUDIT_AUX_PIDS];
99 kuid_t target_auid[AUDIT_AUX_PIDS];
100 kuid_t target_uid[AUDIT_AUX_PIDS];
101 unsigned int target_sessionid[AUDIT_AUX_PIDS];
102 u32 target_sid[AUDIT_AUX_PIDS];
103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
107 struct audit_aux_data_bprm_fcaps {
108 struct audit_aux_data d;
109 struct audit_cap_data fcap;
110 unsigned int fcap_ver;
111 struct audit_cap_data old_pcap;
112 struct audit_cap_data new_pcap;
115 struct audit_tree_refs {
116 struct audit_tree_refs *next;
117 struct audit_chunk *c[31];
120 struct audit_nfcfgop_tab {
121 enum audit_nfcfgop op;
125 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
126 { AUDIT_XT_OP_REGISTER, "xt_register" },
127 { AUDIT_XT_OP_REPLACE, "xt_replace" },
128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
145 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
148 static int audit_match_perm(struct audit_context *ctx, int mask)
156 switch (audit_classify_syscall(ctx->arch, n)) {
158 if ((mask & AUDIT_PERM_WRITE) &&
159 audit_match_class(AUDIT_CLASS_WRITE, n))
161 if ((mask & AUDIT_PERM_READ) &&
162 audit_match_class(AUDIT_CLASS_READ, n))
164 if ((mask & AUDIT_PERM_ATTR) &&
165 audit_match_class(AUDIT_CLASS_CHATTR, n))
168 case AUDITSC_COMPAT: /* 32bit on biarch */
169 if ((mask & AUDIT_PERM_WRITE) &&
170 audit_match_class(AUDIT_CLASS_WRITE_32, n))
172 if ((mask & AUDIT_PERM_READ) &&
173 audit_match_class(AUDIT_CLASS_READ_32, n))
175 if ((mask & AUDIT_PERM_ATTR) &&
176 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
180 return mask & ACC_MODE(ctx->argv[1]);
182 return mask & ACC_MODE(ctx->argv[2]);
183 case AUDITSC_SOCKETCALL:
184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
186 return mask & AUDIT_PERM_EXEC;
187 case AUDITSC_OPENAT2:
188 return mask & ACC_MODE((u32)ctx->openat2.flags);
194 static int audit_match_filetype(struct audit_context *ctx, int val)
196 struct audit_names *n;
197 umode_t mode = (umode_t)val;
202 list_for_each_entry(n, &ctx->names_list, list) {
203 if ((n->ino != AUDIT_INO_UNSET) &&
204 ((n->mode & S_IFMT) == mode))
212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
213 * ->first_trees points to its beginning, ->trees - to the current end of data.
214 * ->tree_count is the number of free entries in array pointed to by ->trees.
215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
217 * it's going to remain 1-element for almost any setup) until we free context itself.
218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
221 static void audit_set_auditable(struct audit_context *ctx)
225 ctx->current_state = AUDIT_STATE_RECORD;
229 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
231 struct audit_tree_refs *p = ctx->trees;
232 int left = ctx->tree_count;
235 p->c[--left] = chunk;
236 ctx->tree_count = left;
245 ctx->tree_count = 30;
251 static int grow_tree_refs(struct audit_context *ctx)
253 struct audit_tree_refs *p = ctx->trees;
255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
261 p->next = ctx->trees;
263 ctx->first_trees = ctx->trees;
264 ctx->tree_count = 31;
268 static void unroll_tree_refs(struct audit_context *ctx,
269 struct audit_tree_refs *p, int count)
271 struct audit_tree_refs *q;
275 /* we started with empty chain */
276 p = ctx->first_trees;
278 /* if the very first allocation has failed, nothing to do */
283 for (q = p; q != ctx->trees; q = q->next, n = 31) {
285 audit_put_chunk(q->c[n]);
289 while (n-- > ctx->tree_count) {
290 audit_put_chunk(q->c[n]);
294 ctx->tree_count = count;
297 static void free_tree_refs(struct audit_context *ctx)
299 struct audit_tree_refs *p, *q;
301 for (p = ctx->first_trees; p; p = q) {
307 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
309 struct audit_tree_refs *p;
315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
316 for (n = 0; n < 31; n++)
317 if (audit_tree_match(p->c[n], tree))
322 for (n = ctx->tree_count; n < 31; n++)
323 if (audit_tree_match(p->c[n], tree))
329 static int audit_compare_uid(kuid_t uid,
330 struct audit_names *name,
331 struct audit_field *f,
332 struct audit_context *ctx)
334 struct audit_names *n;
338 rc = audit_uid_comparator(uid, f->op, name->uid);
344 list_for_each_entry(n, &ctx->names_list, list) {
345 rc = audit_uid_comparator(uid, f->op, n->uid);
353 static int audit_compare_gid(kgid_t gid,
354 struct audit_names *name,
355 struct audit_field *f,
356 struct audit_context *ctx)
358 struct audit_names *n;
362 rc = audit_gid_comparator(gid, f->op, name->gid);
368 list_for_each_entry(n, &ctx->names_list, list) {
369 rc = audit_gid_comparator(gid, f->op, n->gid);
377 static int audit_field_compare(struct task_struct *tsk,
378 const struct cred *cred,
379 struct audit_field *f,
380 struct audit_context *ctx,
381 struct audit_names *name)
384 /* process to file object comparisons */
385 case AUDIT_COMPARE_UID_TO_OBJ_UID:
386 return audit_compare_uid(cred->uid, name, f, ctx);
387 case AUDIT_COMPARE_GID_TO_OBJ_GID:
388 return audit_compare_gid(cred->gid, name, f, ctx);
389 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
390 return audit_compare_uid(cred->euid, name, f, ctx);
391 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
392 return audit_compare_gid(cred->egid, name, f, ctx);
393 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
395 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
396 return audit_compare_uid(cred->suid, name, f, ctx);
397 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
398 return audit_compare_gid(cred->sgid, name, f, ctx);
399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->fsuid, name, f, ctx);
401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->fsgid, name, f, ctx);
403 /* uid comparisons */
404 case AUDIT_COMPARE_UID_TO_AUID:
405 return audit_uid_comparator(cred->uid, f->op,
406 audit_get_loginuid(tsk));
407 case AUDIT_COMPARE_UID_TO_EUID:
408 return audit_uid_comparator(cred->uid, f->op, cred->euid);
409 case AUDIT_COMPARE_UID_TO_SUID:
410 return audit_uid_comparator(cred->uid, f->op, cred->suid);
411 case AUDIT_COMPARE_UID_TO_FSUID:
412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
413 /* auid comparisons */
414 case AUDIT_COMPARE_AUID_TO_EUID:
415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
417 case AUDIT_COMPARE_AUID_TO_SUID:
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
420 case AUDIT_COMPARE_AUID_TO_FSUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
423 /* euid comparisons */
424 case AUDIT_COMPARE_EUID_TO_SUID:
425 return audit_uid_comparator(cred->euid, f->op, cred->suid);
426 case AUDIT_COMPARE_EUID_TO_FSUID:
427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
428 /* suid comparisons */
429 case AUDIT_COMPARE_SUID_TO_FSUID:
430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
431 /* gid comparisons */
432 case AUDIT_COMPARE_GID_TO_EGID:
433 return audit_gid_comparator(cred->gid, f->op, cred->egid);
434 case AUDIT_COMPARE_GID_TO_SGID:
435 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
436 case AUDIT_COMPARE_GID_TO_FSGID:
437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
438 /* egid comparisons */
439 case AUDIT_COMPARE_EGID_TO_SGID:
440 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
441 case AUDIT_COMPARE_EGID_TO_FSGID:
442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
443 /* sgid comparison */
444 case AUDIT_COMPARE_SGID_TO_FSGID:
445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
453 /* Determine if any context name data matches a rule's watch data */
454 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
457 * If task_creation is true, this is an explicit indication that we are
458 * filtering a task rule at task creation time. This and tsk == current are
459 * the only situations where tsk->cred may be accessed without an rcu read lock.
461 static int audit_filter_rules(struct task_struct *tsk,
462 struct audit_krule *rule,
463 struct audit_context *ctx,
464 struct audit_names *name,
465 enum audit_state *state,
468 const struct cred *cred;
471 unsigned int sessionid;
473 if (ctx && rule->prio <= ctx->prio)
476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
478 for (i = 0; i < rule->field_count; i++) {
479 struct audit_field *f = &rule->fields[i];
480 struct audit_names *n;
486 pid = task_tgid_nr(tsk);
487 result = audit_comparator(pid, f->op, f->val);
492 ctx->ppid = task_ppid_nr(tsk);
493 result = audit_comparator(ctx->ppid, f->op, f->val);
497 result = audit_exe_compare(tsk, rule->exe);
498 if (f->op == Audit_not_equal)
502 result = audit_uid_comparator(cred->uid, f->op, f->uid);
505 result = audit_uid_comparator(cred->euid, f->op, f->uid);
508 result = audit_uid_comparator(cred->suid, f->op, f->uid);
511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
514 result = audit_gid_comparator(cred->gid, f->op, f->gid);
515 if (f->op == Audit_equal) {
517 result = groups_search(cred->group_info, f->gid);
518 } else if (f->op == Audit_not_equal) {
520 result = !groups_search(cred->group_info, f->gid);
524 result = audit_gid_comparator(cred->egid, f->op, f->gid);
525 if (f->op == Audit_equal) {
527 result = groups_search(cred->group_info, f->gid);
528 } else if (f->op == Audit_not_equal) {
530 result = !groups_search(cred->group_info, f->gid);
534 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
539 case AUDIT_SESSIONID:
540 sessionid = audit_get_sessionid(tsk);
541 result = audit_comparator(sessionid, f->op, f->val);
544 result = audit_comparator(tsk->personality, f->op, f->val);
548 result = audit_comparator(ctx->arch, f->op, f->val);
552 if (ctx && ctx->return_valid != AUDITSC_INVALID)
553 result = audit_comparator(ctx->return_code, f->op, f->val);
556 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
566 audit_comparator(MAJOR(name->rdev), f->op, f->val))
569 list_for_each_entry(n, &ctx->names_list, list) {
570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
580 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
581 audit_comparator(MINOR(name->rdev), f->op, f->val))
584 list_for_each_entry(n, &ctx->names_list, list) {
585 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
586 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
595 result = audit_comparator(name->ino, f->op, f->val);
597 list_for_each_entry(n, &ctx->names_list, list) {
598 if (audit_comparator(n->ino, f->op, f->val)) {
607 result = audit_uid_comparator(name->uid, f->op, f->uid);
609 list_for_each_entry(n, &ctx->names_list, list) {
610 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
619 result = audit_gid_comparator(name->gid, f->op, f->gid);
621 list_for_each_entry(n, &ctx->names_list, list) {
622 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
631 result = audit_watch_compare(rule->watch,
634 if (f->op == Audit_not_equal)
640 result = match_tree_refs(ctx, rule->tree);
641 if (f->op == Audit_not_equal)
646 result = audit_uid_comparator(audit_get_loginuid(tsk),
649 case AUDIT_LOGINUID_SET:
650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
652 case AUDIT_SADDR_FAM:
653 if (ctx && ctx->sockaddr)
654 result = audit_comparator(ctx->sockaddr->ss_family,
657 case AUDIT_SUBJ_USER:
658 case AUDIT_SUBJ_ROLE:
659 case AUDIT_SUBJ_TYPE:
662 /* NOTE: this may return negative values indicating
663 a temporary error. We simply treat this as a
664 match for now to avoid losing information that
665 may be wanted. An error message will also be
669 /* @tsk should always be equal to
670 * @current with the exception of
671 * fork()/copy_process() in which case
672 * the new @tsk creds are still a dup
673 * of @current's creds so we can still
674 * use security_current_getsecid_subj()
675 * here even though it always refs
678 security_current_getsecid_subj(&sid);
681 result = security_audit_rule_match(sid, f->type,
689 case AUDIT_OBJ_LEV_LOW:
690 case AUDIT_OBJ_LEV_HIGH:
691 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
694 /* Find files that match */
696 result = security_audit_rule_match(
702 list_for_each_entry(n, &ctx->names_list, list) {
703 if (security_audit_rule_match(
713 /* Find ipc objects that match */
714 if (!ctx || ctx->type != AUDIT_IPC)
716 if (security_audit_rule_match(ctx->ipc.osid,
727 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
729 case AUDIT_FILTERKEY:
730 /* ignore this field for filtering */
734 result = audit_match_perm(ctx, f->val);
735 if (f->op == Audit_not_equal)
739 result = audit_match_filetype(ctx, f->val);
740 if (f->op == Audit_not_equal)
743 case AUDIT_FIELD_COMPARE:
744 result = audit_field_compare(tsk, cred, f, ctx, name);
752 if (rule->filterkey) {
753 kfree(ctx->filterkey);
754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
756 ctx->prio = rule->prio;
758 switch (rule->action) {
760 *state = AUDIT_STATE_DISABLED;
763 *state = AUDIT_STATE_RECORD;
769 /* At process creation time, we can determine if system-call auditing is
770 * completely disabled for this task. Since we only have the task
771 * structure at this point, we can only check uid and gid.
773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
775 struct audit_entry *e;
776 enum audit_state state;
779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
782 if (state == AUDIT_STATE_RECORD)
783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
789 return AUDIT_STATE_BUILD;
792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
796 if (val > 0xffffffff)
799 word = AUDIT_WORD(val);
800 if (word >= AUDIT_BITMASK_SIZE)
803 bit = AUDIT_BIT(val);
805 return rule->mask[word] & bit;
809 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
810 * @tsk: associated task
811 * @ctx: audit context
812 * @list: audit filter list
813 * @name: audit_name (can be NULL)
814 * @op: current syscall/uring_op
816 * Run the udit filters specified in @list against @tsk using @ctx,
817 * @name, and @op, as necessary; the caller is responsible for ensuring
818 * that the call is made while the RCU read lock is held. The @name
819 * parameter can be NULL, but all others must be specified.
820 * Returns 1/true if the filter finds a match, 0/false if none are found.
822 static int __audit_filter_op(struct task_struct *tsk,
823 struct audit_context *ctx,
824 struct list_head *list,
825 struct audit_names *name,
828 struct audit_entry *e;
829 enum audit_state state;
831 list_for_each_entry_rcu(e, list, list) {
832 if (audit_in_mask(&e->rule, op) &&
833 audit_filter_rules(tsk, &e->rule, ctx, name,
835 ctx->current_state = state;
843 * audit_filter_uring - apply filters to an io_uring operation
844 * @tsk: associated task
845 * @ctx: audit context
847 static void audit_filter_uring(struct task_struct *tsk,
848 struct audit_context *ctx)
850 if (auditd_test_task(tsk))
854 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
855 NULL, ctx->uring_op);
859 /* At syscall exit time, this filter is called if the audit_state is
860 * not low enough that auditing cannot take place, but is also not
861 * high enough that we already know we have to write an audit record
862 * (i.e., the state is AUDIT_STATE_BUILD).
864 static void audit_filter_syscall(struct task_struct *tsk,
865 struct audit_context *ctx)
867 if (auditd_test_task(tsk))
871 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
877 * Given an audit_name check the inode hash table to see if they match.
878 * Called holding the rcu read lock to protect the use of audit_inode_hash
880 static int audit_filter_inode_name(struct task_struct *tsk,
881 struct audit_names *n,
882 struct audit_context *ctx) {
883 int h = audit_hash_ino((u32)n->ino);
884 struct list_head *list = &audit_inode_hash[h];
886 return __audit_filter_op(tsk, ctx, list, n, ctx->major);
889 /* At syscall exit time, this filter is called if any audit_names have been
890 * collected during syscall processing. We only check rules in sublists at hash
891 * buckets applicable to the inode numbers in audit_names.
892 * Regarding audit_state, same rules apply as for audit_filter_syscall().
894 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
896 struct audit_names *n;
898 if (auditd_test_task(tsk))
903 list_for_each_entry(n, &ctx->names_list, list) {
904 if (audit_filter_inode_name(tsk, n, ctx))
910 static inline void audit_proctitle_free(struct audit_context *context)
912 kfree(context->proctitle.value);
913 context->proctitle.value = NULL;
914 context->proctitle.len = 0;
917 static inline void audit_free_module(struct audit_context *context)
919 if (context->type == AUDIT_KERN_MODULE) {
920 kfree(context->module.name);
921 context->module.name = NULL;
924 static inline void audit_free_names(struct audit_context *context)
926 struct audit_names *n, *next;
928 list_for_each_entry_safe(n, next, &context->names_list, list) {
935 context->name_count = 0;
936 path_put(&context->pwd);
937 context->pwd.dentry = NULL;
938 context->pwd.mnt = NULL;
941 static inline void audit_free_aux(struct audit_context *context)
943 struct audit_aux_data *aux;
945 while ((aux = context->aux)) {
946 context->aux = aux->next;
950 while ((aux = context->aux_pids)) {
951 context->aux_pids = aux->next;
954 context->aux_pids = NULL;
958 * audit_reset_context - reset a audit_context structure
959 * @ctx: the audit_context to reset
961 * All fields in the audit_context will be reset to an initial state, all
962 * references held by fields will be dropped, and private memory will be
963 * released. When this function returns the audit_context will be suitable
964 * for reuse, so long as the passed context is not NULL or a dummy context.
966 static void audit_reset_context(struct audit_context *ctx)
971 /* if ctx is non-null, reset the "ctx->context" regardless */
972 ctx->context = AUDIT_CTX_UNUSED;
977 * NOTE: It shouldn't matter in what order we release the fields, so
978 * release them in the order in which they appear in the struct;
979 * this gives us some hope of quickly making sure we are
980 * resetting the audit_context properly.
982 * Other things worth mentioning:
983 * - we don't reset "dummy"
984 * - we don't reset "state", we do reset "current_state"
985 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
986 * - much of this is likely overkill, but play it safe for now
987 * - we really need to work on improving the audit_context struct
990 ctx->current_state = ctx->state;
994 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
995 memset(ctx->argv, 0, sizeof(ctx->argv));
996 ctx->return_code = 0;
997 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
998 ctx->return_valid = AUDITSC_INVALID;
999 audit_free_names(ctx);
1000 if (ctx->state != AUDIT_STATE_RECORD) {
1001 kfree(ctx->filterkey);
1002 ctx->filterkey = NULL;
1004 audit_free_aux(ctx);
1005 kfree(ctx->sockaddr);
1006 ctx->sockaddr = NULL;
1007 ctx->sockaddr_len = 0;
1009 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1010 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1011 ctx->personality = 0;
1013 ctx->target_pid = 0;
1014 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1015 ctx->target_sessionid = 0;
1016 ctx->target_sid = 0;
1017 ctx->target_comm[0] = '\0';
1018 unroll_tree_refs(ctx, NULL, 0);
1019 WARN_ON(!list_empty(&ctx->killed_trees));
1020 audit_free_module(ctx);
1022 ctx->type = 0; /* reset last for audit_free_*() */
1025 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1027 struct audit_context *context;
1029 context = kzalloc(sizeof(*context), GFP_KERNEL);
1032 context->context = AUDIT_CTX_UNUSED;
1033 context->state = state;
1034 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1035 INIT_LIST_HEAD(&context->killed_trees);
1036 INIT_LIST_HEAD(&context->names_list);
1037 context->fds[0] = -1;
1038 context->return_valid = AUDITSC_INVALID;
1043 * audit_alloc - allocate an audit context block for a task
1046 * Filter on the task information and allocate a per-task audit context
1047 * if necessary. Doing so turns on system call auditing for the
1048 * specified task. This is called from copy_process, so no lock is
1051 int audit_alloc(struct task_struct *tsk)
1053 struct audit_context *context;
1054 enum audit_state state;
1057 if (likely(!audit_ever_enabled))
1060 state = audit_filter_task(tsk, &key);
1061 if (state == AUDIT_STATE_DISABLED) {
1062 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1066 if (!(context = audit_alloc_context(state))) {
1068 audit_log_lost("out of memory in audit_alloc");
1071 context->filterkey = key;
1073 audit_set_context(tsk, context);
1074 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1078 static inline void audit_free_context(struct audit_context *context)
1080 /* resetting is extra work, but it is likely just noise */
1081 audit_reset_context(context);
1082 audit_proctitle_free(context);
1083 free_tree_refs(context);
1084 kfree(context->filterkey);
1088 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1089 kuid_t auid, kuid_t uid, unsigned int sessionid,
1090 u32 sid, char *comm)
1092 struct audit_buffer *ab;
1097 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1101 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1102 from_kuid(&init_user_ns, auid),
1103 from_kuid(&init_user_ns, uid), sessionid);
1105 if (security_secid_to_secctx(sid, &ctx, &len)) {
1106 audit_log_format(ab, " obj=(none)");
1109 audit_log_format(ab, " obj=%s", ctx);
1110 security_release_secctx(ctx, len);
1113 audit_log_format(ab, " ocomm=");
1114 audit_log_untrustedstring(ab, comm);
1120 static void audit_log_execve_info(struct audit_context *context,
1121 struct audit_buffer **ab)
1135 const char __user *p = (const char __user *)current->mm->arg_start;
1137 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1138 * data we put in the audit record for this argument (see the
1139 * code below) ... at this point in time 96 is plenty */
1142 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1143 * current value of 7500 is not as important as the fact that it
1144 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1145 * room if we go over a little bit in the logging below */
1146 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1147 len_max = MAX_EXECVE_AUDIT_LEN;
1149 /* scratch buffer to hold the userspace args */
1150 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1152 audit_panic("out of memory for argv string");
1157 audit_log_format(*ab, "argc=%d", context->execve.argc);
1162 require_data = true;
1167 /* NOTE: we don't ever want to trust this value for anything
1168 * serious, but the audit record format insists we
1169 * provide an argument length for really long arguments,
1170 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1171 * to use strncpy_from_user() to obtain this value for
1172 * recording in the log, although we don't use it
1173 * anywhere here to avoid a double-fetch problem */
1175 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1177 /* read more data from userspace */
1179 /* can we make more room in the buffer? */
1180 if (buf != buf_head) {
1181 memmove(buf_head, buf, len_buf);
1185 /* fetch as much as we can of the argument */
1186 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1188 if (len_tmp == -EFAULT) {
1189 /* unable to copy from userspace */
1190 send_sig(SIGKILL, current, 0);
1192 } else if (len_tmp == (len_max - len_buf)) {
1193 /* buffer is not large enough */
1194 require_data = true;
1195 /* NOTE: if we are going to span multiple
1196 * buffers force the encoding so we stand
1197 * a chance at a sane len_full value and
1198 * consistent record encoding */
1200 len_full = len_full * 2;
1203 require_data = false;
1205 encode = audit_string_contains_control(
1207 /* try to use a trusted value for len_full */
1208 if (len_full < len_max)
1209 len_full = (encode ?
1210 len_tmp * 2 : len_tmp);
1214 buf_head[len_buf] = '\0';
1216 /* length of the buffer in the audit record? */
1217 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1220 /* write as much as we can to the audit log */
1222 /* NOTE: some magic numbers here - basically if we
1223 * can't fit a reasonable amount of data into the
1224 * existing audit buffer, flush it and start with
1226 if ((sizeof(abuf) + 8) > len_rem) {
1229 *ab = audit_log_start(context,
1230 GFP_KERNEL, AUDIT_EXECVE);
1235 /* create the non-arg portion of the arg record */
1237 if (require_data || (iter > 0) ||
1238 ((len_abuf + sizeof(abuf)) > len_rem)) {
1240 len_tmp += snprintf(&abuf[len_tmp],
1241 sizeof(abuf) - len_tmp,
1245 len_tmp += snprintf(&abuf[len_tmp],
1246 sizeof(abuf) - len_tmp,
1247 " a%d[%d]=", arg, iter++);
1249 len_tmp += snprintf(&abuf[len_tmp],
1250 sizeof(abuf) - len_tmp,
1252 WARN_ON(len_tmp >= sizeof(abuf));
1253 abuf[sizeof(abuf) - 1] = '\0';
1255 /* log the arg in the audit record */
1256 audit_log_format(*ab, "%s", abuf);
1260 if (len_abuf > len_rem)
1261 len_tmp = len_rem / 2; /* encoding */
1262 audit_log_n_hex(*ab, buf, len_tmp);
1263 len_rem -= len_tmp * 2;
1264 len_abuf -= len_tmp * 2;
1266 if (len_abuf > len_rem)
1267 len_tmp = len_rem - 2; /* quotes */
1268 audit_log_n_string(*ab, buf, len_tmp);
1269 len_rem -= len_tmp + 2;
1270 /* don't subtract the "2" because we still need
1271 * to add quotes to the remaining string */
1272 len_abuf -= len_tmp;
1278 /* ready to move to the next argument? */
1279 if ((len_buf == 0) && !require_data) {
1283 require_data = true;
1286 } while (arg < context->execve.argc);
1288 /* NOTE: the caller handles the final audit_log_end() call */
1294 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1299 if (cap_isclear(*cap)) {
1300 audit_log_format(ab, " %s=0", prefix);
1303 audit_log_format(ab, " %s=", prefix);
1305 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1308 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1310 if (name->fcap_ver == -1) {
1311 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1314 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1315 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1316 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1317 name->fcap.fE, name->fcap_ver,
1318 from_kuid(&init_user_ns, name->fcap.rootid));
1321 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1323 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1324 const struct timespec64 *tk = &context->time.tk_injoffset;
1325 static const char * const ntp_name[] = {
1335 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1336 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1337 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1339 *ab = audit_log_start(context,
1341 AUDIT_TIME_ADJNTPVAL);
1345 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1347 ntp->vals[type].oldval,
1348 ntp->vals[type].newval);
1354 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1356 *ab = audit_log_start(context, GFP_KERNEL,
1357 AUDIT_TIME_INJOFFSET);
1361 audit_log_format(*ab, "sec=%lli nsec=%li",
1362 (long long)tk->tv_sec, tk->tv_nsec);
1368 static void show_special(struct audit_context *context, int *call_panic)
1370 struct audit_buffer *ab;
1373 ab = audit_log_start(context, GFP_KERNEL, context->type);
1377 switch (context->type) {
1378 case AUDIT_SOCKETCALL: {
1379 int nargs = context->socketcall.nargs;
1381 audit_log_format(ab, "nargs=%d", nargs);
1382 for (i = 0; i < nargs; i++)
1383 audit_log_format(ab, " a%d=%lx", i,
1384 context->socketcall.args[i]);
1387 u32 osid = context->ipc.osid;
1389 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1390 from_kuid(&init_user_ns, context->ipc.uid),
1391 from_kgid(&init_user_ns, context->ipc.gid),
1397 if (security_secid_to_secctx(osid, &ctx, &len)) {
1398 audit_log_format(ab, " osid=%u", osid);
1401 audit_log_format(ab, " obj=%s", ctx);
1402 security_release_secctx(ctx, len);
1405 if (context->ipc.has_perm) {
1407 ab = audit_log_start(context, GFP_KERNEL,
1408 AUDIT_IPC_SET_PERM);
1411 audit_log_format(ab,
1412 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1413 context->ipc.qbytes,
1414 context->ipc.perm_uid,
1415 context->ipc.perm_gid,
1416 context->ipc.perm_mode);
1420 audit_log_format(ab,
1421 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1422 "mq_msgsize=%ld mq_curmsgs=%ld",
1423 context->mq_open.oflag, context->mq_open.mode,
1424 context->mq_open.attr.mq_flags,
1425 context->mq_open.attr.mq_maxmsg,
1426 context->mq_open.attr.mq_msgsize,
1427 context->mq_open.attr.mq_curmsgs);
1429 case AUDIT_MQ_SENDRECV:
1430 audit_log_format(ab,
1431 "mqdes=%d msg_len=%zd msg_prio=%u "
1432 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1433 context->mq_sendrecv.mqdes,
1434 context->mq_sendrecv.msg_len,
1435 context->mq_sendrecv.msg_prio,
1436 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1437 context->mq_sendrecv.abs_timeout.tv_nsec);
1439 case AUDIT_MQ_NOTIFY:
1440 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1441 context->mq_notify.mqdes,
1442 context->mq_notify.sigev_signo);
1444 case AUDIT_MQ_GETSETATTR: {
1445 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1447 audit_log_format(ab,
1448 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1450 context->mq_getsetattr.mqdes,
1451 attr->mq_flags, attr->mq_maxmsg,
1452 attr->mq_msgsize, attr->mq_curmsgs);
1455 audit_log_format(ab, "pid=%d", context->capset.pid);
1456 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1457 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1458 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1459 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1462 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1463 context->mmap.flags);
1466 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1467 context->openat2.flags,
1468 context->openat2.mode,
1469 context->openat2.resolve);
1472 audit_log_execve_info(context, &ab);
1474 case AUDIT_KERN_MODULE:
1475 audit_log_format(ab, "name=");
1476 if (context->module.name) {
1477 audit_log_untrustedstring(ab, context->module.name);
1479 audit_log_format(ab, "(null)");
1482 case AUDIT_TIME_ADJNTPVAL:
1483 case AUDIT_TIME_INJOFFSET:
1484 /* this call deviates from the rest, eating the buffer */
1485 audit_log_time(context, &ab);
1491 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1493 char *end = proctitle + len - 1;
1495 while (end > proctitle && !isprint(*end))
1498 /* catch the case where proctitle is only 1 non-print character */
1499 len = end - proctitle + 1;
1500 len -= isprint(proctitle[len-1]) == 0;
1505 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1506 * @context: audit_context for the task
1507 * @n: audit_names structure with reportable details
1508 * @path: optional path to report instead of audit_names->name
1509 * @record_num: record number to report when handling a list of names
1510 * @call_panic: optional pointer to int that will be updated if secid fails
1512 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1513 const struct path *path, int record_num, int *call_panic)
1515 struct audit_buffer *ab;
1517 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1521 audit_log_format(ab, "item=%d", record_num);
1524 audit_log_d_path(ab, " name=", path);
1526 switch (n->name_len) {
1527 case AUDIT_NAME_FULL:
1528 /* log the full path */
1529 audit_log_format(ab, " name=");
1530 audit_log_untrustedstring(ab, n->name->name);
1533 /* name was specified as a relative path and the
1534 * directory component is the cwd
1536 if (context->pwd.dentry && context->pwd.mnt)
1537 audit_log_d_path(ab, " name=", &context->pwd);
1539 audit_log_format(ab, " name=(null)");
1542 /* log the name's directory component */
1543 audit_log_format(ab, " name=");
1544 audit_log_n_untrustedstring(ab, n->name->name,
1548 audit_log_format(ab, " name=(null)");
1550 if (n->ino != AUDIT_INO_UNSET)
1551 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1556 from_kuid(&init_user_ns, n->uid),
1557 from_kgid(&init_user_ns, n->gid),
1564 if (security_secid_to_secctx(
1565 n->osid, &ctx, &len)) {
1566 audit_log_format(ab, " osid=%u", n->osid);
1570 audit_log_format(ab, " obj=%s", ctx);
1571 security_release_secctx(ctx, len);
1575 /* log the audit_names record type */
1577 case AUDIT_TYPE_NORMAL:
1578 audit_log_format(ab, " nametype=NORMAL");
1580 case AUDIT_TYPE_PARENT:
1581 audit_log_format(ab, " nametype=PARENT");
1583 case AUDIT_TYPE_CHILD_DELETE:
1584 audit_log_format(ab, " nametype=DELETE");
1586 case AUDIT_TYPE_CHILD_CREATE:
1587 audit_log_format(ab, " nametype=CREATE");
1590 audit_log_format(ab, " nametype=UNKNOWN");
1594 audit_log_fcaps(ab, n);
1598 static void audit_log_proctitle(void)
1602 char *msg = "(null)";
1603 int len = strlen(msg);
1604 struct audit_context *context = audit_context();
1605 struct audit_buffer *ab;
1607 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1609 return; /* audit_panic or being filtered */
1611 audit_log_format(ab, "proctitle=");
1614 if (!context->proctitle.value) {
1615 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1618 /* Historically called this from procfs naming */
1619 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1624 res = audit_proctitle_rtrim(buf, res);
1629 context->proctitle.value = buf;
1630 context->proctitle.len = res;
1632 msg = context->proctitle.value;
1633 len = context->proctitle.len;
1635 audit_log_n_untrustedstring(ab, msg, len);
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1643 static void audit_log_uring(struct audit_context *ctx)
1645 struct audit_buffer *ab;
1646 const struct cred *cred;
1648 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1651 cred = current_cred();
1652 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1653 if (ctx->return_valid != AUDITSC_INVALID)
1654 audit_log_format(ab, " success=%s exit=%ld",
1655 (ctx->return_valid == AUDITSC_SUCCESS ?
1658 audit_log_format(ab,
1660 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1663 task_ppid_nr(current), task_tgid_nr(current),
1664 from_kuid(&init_user_ns, cred->uid),
1665 from_kgid(&init_user_ns, cred->gid),
1666 from_kuid(&init_user_ns, cred->euid),
1667 from_kuid(&init_user_ns, cred->suid),
1668 from_kuid(&init_user_ns, cred->fsuid),
1669 from_kgid(&init_user_ns, cred->egid),
1670 from_kgid(&init_user_ns, cred->sgid),
1671 from_kgid(&init_user_ns, cred->fsgid));
1672 audit_log_task_context(ab);
1673 audit_log_key(ab, ctx->filterkey);
1677 static void audit_log_exit(void)
1679 int i, call_panic = 0;
1680 struct audit_context *context = audit_context();
1681 struct audit_buffer *ab;
1682 struct audit_aux_data *aux;
1683 struct audit_names *n;
1685 context->personality = current->personality;
1687 switch (context->context) {
1688 case AUDIT_CTX_SYSCALL:
1689 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1692 audit_log_format(ab, "arch=%x syscall=%d",
1693 context->arch, context->major);
1694 if (context->personality != PER_LINUX)
1695 audit_log_format(ab, " per=%lx", context->personality);
1696 if (context->return_valid != AUDITSC_INVALID)
1697 audit_log_format(ab, " success=%s exit=%ld",
1698 (context->return_valid == AUDITSC_SUCCESS ?
1700 context->return_code);
1701 audit_log_format(ab,
1702 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1707 context->name_count);
1708 audit_log_task_info(ab);
1709 audit_log_key(ab, context->filterkey);
1712 case AUDIT_CTX_URING:
1713 audit_log_uring(context);
1720 for (aux = context->aux; aux; aux = aux->next) {
1722 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1724 continue; /* audit_panic has been called */
1726 switch (aux->type) {
1728 case AUDIT_BPRM_FCAPS: {
1729 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1731 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1732 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1733 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1734 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1735 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1736 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1737 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1738 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1739 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1740 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1741 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1742 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1743 audit_log_format(ab, " frootid=%d",
1744 from_kuid(&init_user_ns,
1753 show_special(context, &call_panic);
1755 if (context->fds[0] >= 0) {
1756 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1758 audit_log_format(ab, "fd0=%d fd1=%d",
1759 context->fds[0], context->fds[1]);
1764 if (context->sockaddr_len) {
1765 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1767 audit_log_format(ab, "saddr=");
1768 audit_log_n_hex(ab, (void *)context->sockaddr,
1769 context->sockaddr_len);
1774 for (aux = context->aux_pids; aux; aux = aux->next) {
1775 struct audit_aux_data_pids *axs = (void *)aux;
1777 for (i = 0; i < axs->pid_count; i++)
1778 if (audit_log_pid_context(context, axs->target_pid[i],
1779 axs->target_auid[i],
1781 axs->target_sessionid[i],
1783 axs->target_comm[i]))
1787 if (context->target_pid &&
1788 audit_log_pid_context(context, context->target_pid,
1789 context->target_auid, context->target_uid,
1790 context->target_sessionid,
1791 context->target_sid, context->target_comm))
1794 if (context->pwd.dentry && context->pwd.mnt) {
1795 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1797 audit_log_d_path(ab, "cwd=", &context->pwd);
1803 list_for_each_entry(n, &context->names_list, list) {
1806 audit_log_name(context, n, NULL, i++, &call_panic);
1809 if (context->context == AUDIT_CTX_SYSCALL)
1810 audit_log_proctitle();
1812 /* Send end of event record to help user space know we are finished */
1813 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1817 audit_panic("error in audit_log_exit()");
1821 * __audit_free - free a per-task audit context
1822 * @tsk: task whose audit context block to free
1824 * Called from copy_process, do_exit, and the io_uring code
1826 void __audit_free(struct task_struct *tsk)
1828 struct audit_context *context = tsk->audit_context;
1833 /* this may generate CONFIG_CHANGE records */
1834 if (!list_empty(&context->killed_trees))
1835 audit_kill_trees(context);
1837 /* We are called either by do_exit() or the fork() error handling code;
1838 * in the former case tsk == current and in the latter tsk is a
1839 * random task_struct that doesn't have any meaningful data we
1840 * need to log via audit_log_exit().
1842 if (tsk == current && !context->dummy) {
1843 context->return_valid = AUDITSC_INVALID;
1844 context->return_code = 0;
1845 if (context->context == AUDIT_CTX_SYSCALL) {
1846 audit_filter_syscall(tsk, context);
1847 audit_filter_inodes(tsk, context);
1848 if (context->current_state == AUDIT_STATE_RECORD)
1850 } else if (context->context == AUDIT_CTX_URING) {
1851 /* TODO: verify this case is real and valid */
1852 audit_filter_uring(tsk, context);
1853 audit_filter_inodes(tsk, context);
1854 if (context->current_state == AUDIT_STATE_RECORD)
1855 audit_log_uring(context);
1859 audit_set_context(tsk, NULL);
1860 audit_free_context(context);
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1872 static void audit_return_fixup(struct audit_context *ctx,
1873 int success, long code)
1876 * This is actually a test for:
1877 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1880 * but is faster than a bunch of ||
1882 if (unlikely(code <= -ERESTARTSYS) &&
1883 (code >= -ERESTART_RESTARTBLOCK) &&
1884 (code != -ENOIOCTLCMD))
1885 ctx->return_code = -EINTR;
1887 ctx->return_code = code;
1888 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations. This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1900 void __audit_uring_entry(u8 op)
1902 struct audit_context *ctx = audit_context();
1904 if (ctx->state == AUDIT_STATE_DISABLED)
1908 * NOTE: It's possible that we can be called from the process' context
1909 * before it returns to userspace, and before audit_syscall_exit()
1910 * is called. In this case there is not much to do, just record
1911 * the io_uring details and return.
1914 if (ctx->context == AUDIT_CTX_SYSCALL)
1917 ctx->dummy = !audit_n_rules;
1918 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1921 ctx->context = AUDIT_CTX_URING;
1922 ctx->current_state = ctx->state;
1923 ktime_get_coarse_real_ts64(&ctx->ctime);
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations. This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1936 void __audit_uring_exit(int success, long code)
1938 struct audit_context *ctx = audit_context();
1941 if (ctx->context != AUDIT_CTX_URING)
1946 audit_return_fixup(ctx, success, code);
1947 if (ctx->context == AUDIT_CTX_SYSCALL) {
1949 * NOTE: See the note in __audit_uring_entry() about the case
1950 * where we may be called from process context before we
1951 * return to userspace via audit_syscall_exit(). In this
1952 * case we simply emit a URINGOP record and bail, the
1953 * normal syscall exit handling will take care of
1955 * It is also worth mentioning that when we are called,
1956 * the current process creds may differ from the creds
1957 * used during the normal syscall processing; keep that
1958 * in mind if/when we move the record generation code.
1962 * We need to filter on the syscall info here to decide if we
1963 * should emit a URINGOP record. I know it seems odd but this
1964 * solves the problem where users have a filter to block *all*
1965 * syscall records in the "exit" filter; we want to preserve
1966 * the behavior here.
1968 audit_filter_syscall(current, ctx);
1969 if (ctx->current_state != AUDIT_STATE_RECORD)
1970 audit_filter_uring(current, ctx);
1971 audit_filter_inodes(current, ctx);
1972 if (ctx->current_state != AUDIT_STATE_RECORD)
1975 audit_log_uring(ctx);
1979 /* this may generate CONFIG_CHANGE records */
1980 if (!list_empty(&ctx->killed_trees))
1981 audit_kill_trees(ctx);
1983 /* run through both filters to ensure we set the filterkey properly */
1984 audit_filter_uring(current, ctx);
1985 audit_filter_inodes(current, ctx);
1986 if (ctx->current_state != AUDIT_STATE_RECORD)
1991 audit_reset_context(ctx);
1995 * __audit_syscall_entry - fill in an audit record at syscall entry
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2002 * Fill in audit context at syscall entry. This only happens if the
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built. If the state from the
2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
2010 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2011 unsigned long a3, unsigned long a4)
2013 struct audit_context *context = audit_context();
2014 enum audit_state state;
2016 if (!audit_enabled || !context)
2019 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2020 WARN_ON(context->name_count);
2021 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2022 audit_panic("unrecoverable error in audit_syscall_entry()");
2026 state = context->state;
2027 if (state == AUDIT_STATE_DISABLED)
2030 context->dummy = !audit_n_rules;
2031 if (!context->dummy && state == AUDIT_STATE_BUILD) {
2033 if (auditd_test_task(current))
2037 context->arch = syscall_get_arch(current);
2038 context->major = major;
2039 context->argv[0] = a1;
2040 context->argv[1] = a2;
2041 context->argv[2] = a3;
2042 context->argv[3] = a4;
2043 context->context = AUDIT_CTX_SYSCALL;
2044 context->current_state = state;
2045 ktime_get_coarse_real_ts64(&context->ctime);
2049 * __audit_syscall_exit - deallocate audit context after a system call
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
2053 * Tear down after system call. If the audit context has been marked as
2054 * auditable (either because of the AUDIT_STATE_RECORD state from
2055 * filtering, or because some other part of the kernel wrote an audit
2056 * message), then write out the syscall information. In call cases,
2057 * free the names stored from getname().
2059 void __audit_syscall_exit(int success, long return_code)
2061 struct audit_context *context = audit_context();
2063 if (!context || context->dummy ||
2064 context->context != AUDIT_CTX_SYSCALL)
2067 /* this may generate CONFIG_CHANGE records */
2068 if (!list_empty(&context->killed_trees))
2069 audit_kill_trees(context);
2071 audit_return_fixup(context, success, return_code);
2072 /* run through both filters to ensure we set the filterkey properly */
2073 audit_filter_syscall(current, context);
2074 audit_filter_inodes(current, context);
2075 if (context->current_state != AUDIT_STATE_RECORD)
2081 audit_reset_context(context);
2084 static inline void handle_one(const struct inode *inode)
2086 struct audit_context *context;
2087 struct audit_tree_refs *p;
2088 struct audit_chunk *chunk;
2091 if (likely(!inode->i_fsnotify_marks))
2093 context = audit_context();
2095 count = context->tree_count;
2097 chunk = audit_tree_lookup(inode);
2101 if (likely(put_tree_ref(context, chunk)))
2103 if (unlikely(!grow_tree_refs(context))) {
2104 pr_warn("out of memory, audit has lost a tree reference\n");
2105 audit_set_auditable(context);
2106 audit_put_chunk(chunk);
2107 unroll_tree_refs(context, p, count);
2110 put_tree_ref(context, chunk);
2113 static void handle_path(const struct dentry *dentry)
2115 struct audit_context *context;
2116 struct audit_tree_refs *p;
2117 const struct dentry *d, *parent;
2118 struct audit_chunk *drop;
2122 context = audit_context();
2124 count = context->tree_count;
2129 seq = read_seqbegin(&rename_lock);
2131 struct inode *inode = d_backing_inode(d);
2133 if (inode && unlikely(inode->i_fsnotify_marks)) {
2134 struct audit_chunk *chunk;
2136 chunk = audit_tree_lookup(inode);
2138 if (unlikely(!put_tree_ref(context, chunk))) {
2144 parent = d->d_parent;
2149 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2152 /* just a race with rename */
2153 unroll_tree_refs(context, p, count);
2156 audit_put_chunk(drop);
2157 if (grow_tree_refs(context)) {
2158 /* OK, got more space */
2159 unroll_tree_refs(context, p, count);
2163 pr_warn("out of memory, audit has lost a tree reference\n");
2164 unroll_tree_refs(context, p, count);
2165 audit_set_auditable(context);
2171 static struct audit_names *audit_alloc_name(struct audit_context *context,
2174 struct audit_names *aname;
2176 if (context->name_count < AUDIT_NAMES) {
2177 aname = &context->preallocated_names[context->name_count];
2178 memset(aname, 0, sizeof(*aname));
2180 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2183 aname->should_free = true;
2186 aname->ino = AUDIT_INO_UNSET;
2188 list_add_tail(&aname->list, &context->names_list);
2190 context->name_count++;
2191 if (!context->pwd.dentry)
2192 get_fs_pwd(current->fs, &context->pwd);
2197 * __audit_reusename - fill out filename with info from existing entry
2198 * @uptr: userland ptr to pathname
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2205 __audit_reusename(const __user char *uptr)
2207 struct audit_context *context = audit_context();
2208 struct audit_names *n;
2210 list_for_each_entry(n, &context->names_list, list) {
2213 if (n->name->uptr == uptr) {
2222 * __audit_getname - add a name to the list
2223 * @name: name to add
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2228 void __audit_getname(struct filename *name)
2230 struct audit_context *context = audit_context();
2231 struct audit_names *n;
2233 if (context->context == AUDIT_CTX_UNUSED)
2236 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2241 n->name_len = AUDIT_NAME_FULL;
2246 static inline int audit_copy_fcaps(struct audit_names *name,
2247 const struct dentry *dentry)
2249 struct cpu_vfs_cap_data caps;
2255 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2259 name->fcap.permitted = caps.permitted;
2260 name->fcap.inheritable = caps.inheritable;
2261 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2262 name->fcap.rootid = caps.rootid;
2263 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2264 VFS_CAP_REVISION_SHIFT;
2269 /* Copy inode data into an audit_names. */
2270 static void audit_copy_inode(struct audit_names *name,
2271 const struct dentry *dentry,
2272 struct inode *inode, unsigned int flags)
2274 name->ino = inode->i_ino;
2275 name->dev = inode->i_sb->s_dev;
2276 name->mode = inode->i_mode;
2277 name->uid = inode->i_uid;
2278 name->gid = inode->i_gid;
2279 name->rdev = inode->i_rdev;
2280 security_inode_getsecid(inode, &name->osid);
2281 if (flags & AUDIT_INODE_NOEVAL) {
2282 name->fcap_ver = -1;
2285 audit_copy_fcaps(name, dentry);
2289 * __audit_inode - store the inode and device from a lookup
2290 * @name: name being audited
2291 * @dentry: dentry being audited
2292 * @flags: attributes for this particular entry
2294 void __audit_inode(struct filename *name, const struct dentry *dentry,
2297 struct audit_context *context = audit_context();
2298 struct inode *inode = d_backing_inode(dentry);
2299 struct audit_names *n;
2300 bool parent = flags & AUDIT_INODE_PARENT;
2301 struct audit_entry *e;
2302 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2305 if (context->context == AUDIT_CTX_UNUSED)
2309 list_for_each_entry_rcu(e, list, list) {
2310 for (i = 0; i < e->rule.field_count; i++) {
2311 struct audit_field *f = &e->rule.fields[i];
2313 if (f->type == AUDIT_FSTYPE
2314 && audit_comparator(inode->i_sb->s_magic,
2316 && e->rule.action == AUDIT_NEVER) {
2328 * If we have a pointer to an audit_names entry already, then we can
2329 * just use it directly if the type is correct.
2334 if (n->type == AUDIT_TYPE_PARENT ||
2335 n->type == AUDIT_TYPE_UNKNOWN)
2338 if (n->type != AUDIT_TYPE_PARENT)
2343 list_for_each_entry_reverse(n, &context->names_list, list) {
2345 /* valid inode number, use that for the comparison */
2346 if (n->ino != inode->i_ino ||
2347 n->dev != inode->i_sb->s_dev)
2349 } else if (n->name) {
2350 /* inode number has not been set, check the name */
2351 if (strcmp(n->name->name, name->name))
2354 /* no inode and no name (?!) ... this is odd ... */
2357 /* match the correct record type */
2359 if (n->type == AUDIT_TYPE_PARENT ||
2360 n->type == AUDIT_TYPE_UNKNOWN)
2363 if (n->type != AUDIT_TYPE_PARENT)
2369 /* unable to find an entry with both a matching name and type */
2370 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2380 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2381 n->type = AUDIT_TYPE_PARENT;
2382 if (flags & AUDIT_INODE_HIDDEN)
2385 n->name_len = AUDIT_NAME_FULL;
2386 n->type = AUDIT_TYPE_NORMAL;
2388 handle_path(dentry);
2389 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2392 void __audit_file(const struct file *file)
2394 __audit_inode(NULL, file->f_path.dentry, 0);
2398 * __audit_inode_child - collect inode info for created/removed objects
2399 * @parent: inode of dentry parent
2400 * @dentry: dentry being audited
2401 * @type: AUDIT_TYPE_* value that we're looking for
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created. Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2411 void __audit_inode_child(struct inode *parent,
2412 const struct dentry *dentry,
2413 const unsigned char type)
2415 struct audit_context *context = audit_context();
2416 struct inode *inode = d_backing_inode(dentry);
2417 const struct qstr *dname = &dentry->d_name;
2418 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2419 struct audit_entry *e;
2420 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2423 if (context->context == AUDIT_CTX_UNUSED)
2427 list_for_each_entry_rcu(e, list, list) {
2428 for (i = 0; i < e->rule.field_count; i++) {
2429 struct audit_field *f = &e->rule.fields[i];
2431 if (f->type == AUDIT_FSTYPE
2432 && audit_comparator(parent->i_sb->s_magic,
2434 && e->rule.action == AUDIT_NEVER) {
2445 /* look for a parent entry first */
2446 list_for_each_entry(n, &context->names_list, list) {
2448 (n->type != AUDIT_TYPE_PARENT &&
2449 n->type != AUDIT_TYPE_UNKNOWN))
2452 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2453 !audit_compare_dname_path(dname,
2454 n->name->name, n->name_len)) {
2455 if (n->type == AUDIT_TYPE_UNKNOWN)
2456 n->type = AUDIT_TYPE_PARENT;
2462 /* is there a matching child entry? */
2463 list_for_each_entry(n, &context->names_list, list) {
2464 /* can only match entries that have a name */
2466 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2469 if (!strcmp(dname->name, n->name->name) ||
2470 !audit_compare_dname_path(dname, n->name->name,
2472 found_parent->name_len :
2474 if (n->type == AUDIT_TYPE_UNKNOWN)
2481 if (!found_parent) {
2482 /* create a new, "anonymous" parent record */
2483 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2486 audit_copy_inode(n, NULL, parent, 0);
2490 found_child = audit_alloc_name(context, type);
2494 /* Re-use the name belonging to the slot for a matching parent
2495 * directory. All names for this context are relinquished in
2496 * audit_free_names() */
2498 found_child->name = found_parent->name;
2499 found_child->name_len = AUDIT_NAME_FULL;
2500 found_child->name->refcnt++;
2505 audit_copy_inode(found_child, dentry, inode, 0);
2507 found_child->ino = AUDIT_INO_UNSET;
2509 EXPORT_SYMBOL_GPL(__audit_inode_child);
2512 * auditsc_get_stamp - get local copies of audit_context values
2513 * @ctx: audit_context for the task
2514 * @t: timespec64 to store time recorded in the audit_context
2515 * @serial: serial value that is recorded in the audit_context
2517 * Also sets the context as auditable.
2519 int auditsc_get_stamp(struct audit_context *ctx,
2520 struct timespec64 *t, unsigned int *serial)
2522 if (ctx->context == AUDIT_CTX_UNUSED)
2525 ctx->serial = audit_serial();
2526 t->tv_sec = ctx->ctime.tv_sec;
2527 t->tv_nsec = ctx->ctime.tv_nsec;
2528 *serial = ctx->serial;
2531 ctx->current_state = AUDIT_STATE_RECORD;
2537 * __audit_mq_open - record audit data for a POSIX MQ open
2540 * @attr: queue attributes
2543 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2545 struct audit_context *context = audit_context();
2548 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2550 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2552 context->mq_open.oflag = oflag;
2553 context->mq_open.mode = mode;
2555 context->type = AUDIT_MQ_OPEN;
2559 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2560 * @mqdes: MQ descriptor
2561 * @msg_len: Message length
2562 * @msg_prio: Message priority
2563 * @abs_timeout: Message timeout in absolute time
2566 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2567 const struct timespec64 *abs_timeout)
2569 struct audit_context *context = audit_context();
2570 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2573 memcpy(p, abs_timeout, sizeof(*p));
2575 memset(p, 0, sizeof(*p));
2577 context->mq_sendrecv.mqdes = mqdes;
2578 context->mq_sendrecv.msg_len = msg_len;
2579 context->mq_sendrecv.msg_prio = msg_prio;
2581 context->type = AUDIT_MQ_SENDRECV;
2585 * __audit_mq_notify - record audit data for a POSIX MQ notify
2586 * @mqdes: MQ descriptor
2587 * @notification: Notification event
2591 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2593 struct audit_context *context = audit_context();
2596 context->mq_notify.sigev_signo = notification->sigev_signo;
2598 context->mq_notify.sigev_signo = 0;
2600 context->mq_notify.mqdes = mqdes;
2601 context->type = AUDIT_MQ_NOTIFY;
2605 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2606 * @mqdes: MQ descriptor
2610 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2612 struct audit_context *context = audit_context();
2614 context->mq_getsetattr.mqdes = mqdes;
2615 context->mq_getsetattr.mqstat = *mqstat;
2616 context->type = AUDIT_MQ_GETSETATTR;
2620 * __audit_ipc_obj - record audit data for ipc object
2621 * @ipcp: ipc permissions
2624 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2626 struct audit_context *context = audit_context();
2628 context->ipc.uid = ipcp->uid;
2629 context->ipc.gid = ipcp->gid;
2630 context->ipc.mode = ipcp->mode;
2631 context->ipc.has_perm = 0;
2632 security_ipc_getsecid(ipcp, &context->ipc.osid);
2633 context->type = AUDIT_IPC;
2637 * __audit_ipc_set_perm - record audit data for new ipc permissions
2638 * @qbytes: msgq bytes
2639 * @uid: msgq user id
2640 * @gid: msgq group id
2641 * @mode: msgq mode (permissions)
2643 * Called only after audit_ipc_obj().
2645 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2647 struct audit_context *context = audit_context();
2649 context->ipc.qbytes = qbytes;
2650 context->ipc.perm_uid = uid;
2651 context->ipc.perm_gid = gid;
2652 context->ipc.perm_mode = mode;
2653 context->ipc.has_perm = 1;
2656 void __audit_bprm(struct linux_binprm *bprm)
2658 struct audit_context *context = audit_context();
2660 context->type = AUDIT_EXECVE;
2661 context->execve.argc = bprm->argc;
2666 * __audit_socketcall - record audit data for sys_socketcall
2667 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2671 int __audit_socketcall(int nargs, unsigned long *args)
2673 struct audit_context *context = audit_context();
2675 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2677 context->type = AUDIT_SOCKETCALL;
2678 context->socketcall.nargs = nargs;
2679 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2684 * __audit_fd_pair - record audit data for pipe and socketpair
2685 * @fd1: the first file descriptor
2686 * @fd2: the second file descriptor
2689 void __audit_fd_pair(int fd1, int fd2)
2691 struct audit_context *context = audit_context();
2693 context->fds[0] = fd1;
2694 context->fds[1] = fd2;
2698 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2699 * @len: data length in user space
2700 * @a: data address in kernel space
2702 * Returns 0 for success or NULL context or < 0 on error.
2704 int __audit_sockaddr(int len, void *a)
2706 struct audit_context *context = audit_context();
2708 if (!context->sockaddr) {
2709 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2713 context->sockaddr = p;
2716 context->sockaddr_len = len;
2717 memcpy(context->sockaddr, a, len);
2721 void __audit_ptrace(struct task_struct *t)
2723 struct audit_context *context = audit_context();
2725 context->target_pid = task_tgid_nr(t);
2726 context->target_auid = audit_get_loginuid(t);
2727 context->target_uid = task_uid(t);
2728 context->target_sessionid = audit_get_sessionid(t);
2729 security_task_getsecid_obj(t, &context->target_sid);
2730 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2734 * audit_signal_info_syscall - record signal info for syscalls
2735 * @t: task being signaled
2737 * If the audit subsystem is being terminated, record the task (pid)
2738 * and uid that is doing that.
2740 int audit_signal_info_syscall(struct task_struct *t)
2742 struct audit_aux_data_pids *axp;
2743 struct audit_context *ctx = audit_context();
2744 kuid_t t_uid = task_uid(t);
2746 if (!audit_signals || audit_dummy_context())
2749 /* optimize the common case by putting first signal recipient directly
2750 * in audit_context */
2751 if (!ctx->target_pid) {
2752 ctx->target_pid = task_tgid_nr(t);
2753 ctx->target_auid = audit_get_loginuid(t);
2754 ctx->target_uid = t_uid;
2755 ctx->target_sessionid = audit_get_sessionid(t);
2756 security_task_getsecid_obj(t, &ctx->target_sid);
2757 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2761 axp = (void *)ctx->aux_pids;
2762 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2763 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2767 axp->d.type = AUDIT_OBJ_PID;
2768 axp->d.next = ctx->aux_pids;
2769 ctx->aux_pids = (void *)axp;
2771 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2773 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2774 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2775 axp->target_uid[axp->pid_count] = t_uid;
2776 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2777 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2778 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2785 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2786 * @bprm: pointer to the bprm being processed
2787 * @new: the proposed new credentials
2788 * @old: the old credentials
2790 * Simply check if the proc already has the caps given by the file and if not
2791 * store the priv escalation info for later auditing at the end of the syscall
2795 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2796 const struct cred *new, const struct cred *old)
2798 struct audit_aux_data_bprm_fcaps *ax;
2799 struct audit_context *context = audit_context();
2800 struct cpu_vfs_cap_data vcaps;
2802 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2806 ax->d.type = AUDIT_BPRM_FCAPS;
2807 ax->d.next = context->aux;
2808 context->aux = (void *)ax;
2810 get_vfs_caps_from_disk(&init_user_ns,
2811 bprm->file->f_path.dentry, &vcaps);
2813 ax->fcap.permitted = vcaps.permitted;
2814 ax->fcap.inheritable = vcaps.inheritable;
2815 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2816 ax->fcap.rootid = vcaps.rootid;
2817 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2819 ax->old_pcap.permitted = old->cap_permitted;
2820 ax->old_pcap.inheritable = old->cap_inheritable;
2821 ax->old_pcap.effective = old->cap_effective;
2822 ax->old_pcap.ambient = old->cap_ambient;
2824 ax->new_pcap.permitted = new->cap_permitted;
2825 ax->new_pcap.inheritable = new->cap_inheritable;
2826 ax->new_pcap.effective = new->cap_effective;
2827 ax->new_pcap.ambient = new->cap_ambient;
2832 * __audit_log_capset - store information about the arguments to the capset syscall
2833 * @new: the new credentials
2834 * @old: the old (current) credentials
2836 * Record the arguments userspace sent to sys_capset for later printing by the
2837 * audit system if applicable
2839 void __audit_log_capset(const struct cred *new, const struct cred *old)
2841 struct audit_context *context = audit_context();
2843 context->capset.pid = task_tgid_nr(current);
2844 context->capset.cap.effective = new->cap_effective;
2845 context->capset.cap.inheritable = new->cap_effective;
2846 context->capset.cap.permitted = new->cap_permitted;
2847 context->capset.cap.ambient = new->cap_ambient;
2848 context->type = AUDIT_CAPSET;
2851 void __audit_mmap_fd(int fd, int flags)
2853 struct audit_context *context = audit_context();
2855 context->mmap.fd = fd;
2856 context->mmap.flags = flags;
2857 context->type = AUDIT_MMAP;
2860 void __audit_openat2_how(struct open_how *how)
2862 struct audit_context *context = audit_context();
2864 context->openat2.flags = how->flags;
2865 context->openat2.mode = how->mode;
2866 context->openat2.resolve = how->resolve;
2867 context->type = AUDIT_OPENAT2;
2870 void __audit_log_kern_module(char *name)
2872 struct audit_context *context = audit_context();
2874 context->module.name = kstrdup(name, GFP_KERNEL);
2875 if (!context->module.name)
2876 audit_log_lost("out of memory in __audit_log_kern_module");
2877 context->type = AUDIT_KERN_MODULE;
2880 void __audit_fanotify(unsigned int response)
2882 audit_log(audit_context(), GFP_KERNEL,
2883 AUDIT_FANOTIFY, "resp=%u", response);
2886 void __audit_tk_injoffset(struct timespec64 offset)
2888 struct audit_context *context = audit_context();
2890 /* only set type if not already set by NTP */
2892 context->type = AUDIT_TIME_INJOFFSET;
2893 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2896 void __audit_ntp_log(const struct audit_ntp_data *ad)
2898 struct audit_context *context = audit_context();
2901 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2902 if (ad->vals[type].newval != ad->vals[type].oldval) {
2903 /* unconditionally set type, overwriting TK */
2904 context->type = AUDIT_TIME_ADJNTPVAL;
2905 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2910 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2911 enum audit_nfcfgop op, gfp_t gfp)
2913 struct audit_buffer *ab;
2914 char comm[sizeof(current->comm)];
2916 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2919 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2920 name, af, nentries, audit_nfcfgs[op].s);
2922 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2923 audit_log_task_context(ab); /* subj= */
2924 audit_log_format(ab, " comm=");
2925 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2928 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2930 static void audit_log_task(struct audit_buffer *ab)
2934 unsigned int sessionid;
2935 char comm[sizeof(current->comm)];
2937 auid = audit_get_loginuid(current);
2938 sessionid = audit_get_sessionid(current);
2939 current_uid_gid(&uid, &gid);
2941 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2942 from_kuid(&init_user_ns, auid),
2943 from_kuid(&init_user_ns, uid),
2944 from_kgid(&init_user_ns, gid),
2946 audit_log_task_context(ab);
2947 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2948 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2949 audit_log_d_path_exe(ab, current->mm);
2953 * audit_core_dumps - record information about processes that end abnormally
2954 * @signr: signal value
2956 * If a process ends with a core dump, something fishy is going on and we
2957 * should record the event for investigation.
2959 void audit_core_dumps(long signr)
2961 struct audit_buffer *ab;
2966 if (signr == SIGQUIT) /* don't care for those */
2969 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2973 audit_log_format(ab, " sig=%ld res=1", signr);
2978 * audit_seccomp - record information about a seccomp action
2979 * @syscall: syscall number
2980 * @signr: signal value
2981 * @code: the seccomp action
2983 * Record the information associated with a seccomp action. Event filtering for
2984 * seccomp actions that are not to be logged is done in seccomp_log().
2985 * Therefore, this function forces auditing independent of the audit_enabled
2986 * and dummy context state because seccomp actions should be logged even when
2987 * audit is not in use.
2989 void audit_seccomp(unsigned long syscall, long signr, int code)
2991 struct audit_buffer *ab;
2993 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2997 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2998 signr, syscall_get_arch(current), syscall,
2999 in_compat_syscall(), KSTK_EIP(current), code);
3003 void audit_seccomp_actions_logged(const char *names, const char *old_names,
3006 struct audit_buffer *ab;
3011 ab = audit_log_start(audit_context(), GFP_KERNEL,
3012 AUDIT_CONFIG_CHANGE);
3016 audit_log_format(ab,
3017 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3018 names, old_names, res);
3022 struct list_head *audit_killed_trees(void)
3024 struct audit_context *ctx = audit_context();
3025 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3027 return &ctx->killed_trees;