1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
87 /* number of audit rules */
90 /* determines whether we collect data for signals sent */
93 struct audit_cap_data {
94 kernel_cap_t permitted;
95 kernel_cap_t inheritable;
97 unsigned int fE; /* effective bit of a file capability */
98 kernel_cap_t effective; /* effective set of a process */
102 /* When fs/namei.c:getname() is called, we store the pointer in name and
103 * we don't let putname() free it (instead we free all of the saved
104 * pointers at syscall exit time).
106 * Further, in fs/namei.c:path_lookup() we store the inode and device.
109 struct list_head list; /* audit_context->names_list */
110 struct filename *name;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 int name_len; /* number of name's characters to log */
121 unsigned char type; /* record type */
122 bool name_put; /* call __putname() for this name */
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
131 struct audit_aux_data {
132 struct audit_aux_data *next;
136 #define AUDIT_AUX_IPCPERM 0
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
145 struct mm_struct *mm;
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 kuid_t target_auid[AUDIT_AUX_PIDS];
152 kuid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
170 struct audit_cap_data cap;
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
189 int return_valid; /* return code is valid */
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
205 struct audit_aux_data *aux_pids;
206 struct sockaddr_storage *sockaddr;
208 /* Save things to print about task_struct */
210 kuid_t uid, euid, suid, fsuid;
211 kgid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
218 unsigned int target_sessionid;
220 char target_comm[TASK_COMM_LEN];
222 struct audit_tree_refs *trees, *first_trees;
223 struct list_head killed_trees;
241 unsigned long qbytes;
245 struct mq_attr mqstat;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
264 struct audit_cap_data cap;
279 static inline int open_arg(int flags, int mask)
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
287 static int audit_match_perm(struct audit_context *ctx, int mask)
294 switch (audit_classify_syscall(ctx->arch, n)) {
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
318 return mask & ACC_MODE(ctx->argv[1]);
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
324 return mask & AUDIT_PERM_EXEC;
330 static int audit_match_filetype(struct audit_context *ctx, int val)
332 struct audit_names *n;
333 umode_t mode = (umode_t)val;
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context *ctx)
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
381 ctx->tree_count = 30;
387 static int grow_tree_refs(struct audit_context *ctx)
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
396 p->next = ctx->trees;
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
404 static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
407 #ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
411 /* we started with empty chain */
412 p = ctx->first_trees;
414 /* if the very first allocation has failed, nothing to do */
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
421 audit_put_chunk(q->c[n]);
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
430 ctx->tree_count = count;
434 static void free_tree_refs(struct audit_context *ctx)
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
445 #ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
466 static int audit_compare_uid(kuid_t uid,
467 struct audit_names *name,
468 struct audit_field *f,
469 struct audit_context *ctx)
471 struct audit_names *n;
475 rc = audit_uid_comparator(uid, f->op, name->uid);
481 list_for_each_entry(n, &ctx->names_list, list) {
482 rc = audit_uid_comparator(uid, f->op, n->uid);
490 static int audit_compare_gid(kgid_t gid,
491 struct audit_names *name,
492 struct audit_field *f,
493 struct audit_context *ctx)
495 struct audit_names *n;
499 rc = audit_gid_comparator(gid, f->op, name->gid);
505 list_for_each_entry(n, &ctx->names_list, list) {
506 rc = audit_gid_comparator(gid, f->op, n->gid);
514 static int audit_field_compare(struct task_struct *tsk,
515 const struct cred *cred,
516 struct audit_field *f,
517 struct audit_context *ctx,
518 struct audit_names *name)
521 /* process to file object comparisons */
522 case AUDIT_COMPARE_UID_TO_OBJ_UID:
523 return audit_compare_uid(cred->uid, name, f, ctx);
524 case AUDIT_COMPARE_GID_TO_OBJ_GID:
525 return audit_compare_gid(cred->gid, name, f, ctx);
526 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
527 return audit_compare_uid(cred->euid, name, f, ctx);
528 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
529 return audit_compare_gid(cred->egid, name, f, ctx);
530 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
531 return audit_compare_uid(tsk->loginuid, name, f, ctx);
532 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
533 return audit_compare_uid(cred->suid, name, f, ctx);
534 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
535 return audit_compare_gid(cred->sgid, name, f, ctx);
536 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
537 return audit_compare_uid(cred->fsuid, name, f, ctx);
538 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
539 return audit_compare_gid(cred->fsgid, name, f, ctx);
540 /* uid comparisons */
541 case AUDIT_COMPARE_UID_TO_AUID:
542 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
543 case AUDIT_COMPARE_UID_TO_EUID:
544 return audit_uid_comparator(cred->uid, f->op, cred->euid);
545 case AUDIT_COMPARE_UID_TO_SUID:
546 return audit_uid_comparator(cred->uid, f->op, cred->suid);
547 case AUDIT_COMPARE_UID_TO_FSUID:
548 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
549 /* auid comparisons */
550 case AUDIT_COMPARE_AUID_TO_EUID:
551 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
552 case AUDIT_COMPARE_AUID_TO_SUID:
553 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
554 case AUDIT_COMPARE_AUID_TO_FSUID:
555 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
556 /* euid comparisons */
557 case AUDIT_COMPARE_EUID_TO_SUID:
558 return audit_uid_comparator(cred->euid, f->op, cred->suid);
559 case AUDIT_COMPARE_EUID_TO_FSUID:
560 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
561 /* suid comparisons */
562 case AUDIT_COMPARE_SUID_TO_FSUID:
563 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
564 /* gid comparisons */
565 case AUDIT_COMPARE_GID_TO_EGID:
566 return audit_gid_comparator(cred->gid, f->op, cred->egid);
567 case AUDIT_COMPARE_GID_TO_SGID:
568 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
569 case AUDIT_COMPARE_GID_TO_FSGID:
570 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
571 /* egid comparisons */
572 case AUDIT_COMPARE_EGID_TO_SGID:
573 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
574 case AUDIT_COMPARE_EGID_TO_FSGID:
575 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
576 /* sgid comparison */
577 case AUDIT_COMPARE_SGID_TO_FSGID:
578 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
580 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
586 /* Determine if any context name data matches a rule's watch data */
587 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
590 * If task_creation is true, this is an explicit indication that we are
591 * filtering a task rule at task creation time. This and tsk == current are
592 * the only situations where tsk->cred may be accessed without an rcu read lock.
594 static int audit_filter_rules(struct task_struct *tsk,
595 struct audit_krule *rule,
596 struct audit_context *ctx,
597 struct audit_names *name,
598 enum audit_state *state,
601 const struct cred *cred;
605 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
607 for (i = 0; i < rule->field_count; i++) {
608 struct audit_field *f = &rule->fields[i];
609 struct audit_names *n;
614 result = audit_comparator(tsk->pid, f->op, f->val);
619 ctx->ppid = sys_getppid();
620 result = audit_comparator(ctx->ppid, f->op, f->val);
624 result = audit_uid_comparator(cred->uid, f->op, f->uid);
627 result = audit_uid_comparator(cred->euid, f->op, f->uid);
630 result = audit_uid_comparator(cred->suid, f->op, f->uid);
633 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
636 result = audit_gid_comparator(cred->gid, f->op, f->gid);
639 result = audit_gid_comparator(cred->egid, f->op, f->gid);
642 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
645 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
648 result = audit_comparator(tsk->personality, f->op, f->val);
652 result = audit_comparator(ctx->arch, f->op, f->val);
656 if (ctx && ctx->return_valid)
657 result = audit_comparator(ctx->return_code, f->op, f->val);
660 if (ctx && ctx->return_valid) {
662 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
664 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
669 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
670 audit_comparator(MAJOR(name->rdev), f->op, f->val))
673 list_for_each_entry(n, &ctx->names_list, list) {
674 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
675 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
684 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
685 audit_comparator(MINOR(name->rdev), f->op, f->val))
688 list_for_each_entry(n, &ctx->names_list, list) {
689 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
690 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
699 result = (name->ino == f->val);
701 list_for_each_entry(n, &ctx->names_list, list) {
702 if (audit_comparator(n->ino, f->op, f->val)) {
711 result = audit_uid_comparator(name->uid, f->op, f->uid);
713 list_for_each_entry(n, &ctx->names_list, list) {
714 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
723 result = audit_gid_comparator(name->gid, f->op, f->gid);
725 list_for_each_entry(n, &ctx->names_list, list) {
726 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
735 result = audit_watch_compare(rule->watch, name->ino, name->dev);
739 result = match_tree_refs(ctx, rule->tree);
744 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
746 case AUDIT_SUBJ_USER:
747 case AUDIT_SUBJ_ROLE:
748 case AUDIT_SUBJ_TYPE:
751 /* NOTE: this may return negative values indicating
752 a temporary error. We simply treat this as a
753 match for now to avoid losing information that
754 may be wanted. An error message will also be
758 security_task_getsecid(tsk, &sid);
761 result = security_audit_rule_match(sid, f->type,
770 case AUDIT_OBJ_LEV_LOW:
771 case AUDIT_OBJ_LEV_HIGH:
772 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
775 /* Find files that match */
777 result = security_audit_rule_match(
778 name->osid, f->type, f->op,
781 list_for_each_entry(n, &ctx->names_list, list) {
782 if (security_audit_rule_match(n->osid, f->type,
790 /* Find ipc objects that match */
791 if (!ctx || ctx->type != AUDIT_IPC)
793 if (security_audit_rule_match(ctx->ipc.osid,
804 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
806 case AUDIT_FILTERKEY:
807 /* ignore this field for filtering */
811 result = audit_match_perm(ctx, f->val);
814 result = audit_match_filetype(ctx, f->val);
816 case AUDIT_FIELD_COMPARE:
817 result = audit_field_compare(tsk, cred, f, ctx, name);
825 if (rule->prio <= ctx->prio)
827 if (rule->filterkey) {
828 kfree(ctx->filterkey);
829 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
831 ctx->prio = rule->prio;
833 switch (rule->action) {
834 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
835 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
840 /* At process creation time, we can determine if system-call auditing is
841 * completely disabled for this task. Since we only have the task
842 * structure at this point, we can only check uid and gid.
844 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
846 struct audit_entry *e;
847 enum audit_state state;
850 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
851 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
853 if (state == AUDIT_RECORD_CONTEXT)
854 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
860 return AUDIT_BUILD_CONTEXT;
863 /* At syscall entry and exit time, this filter is called if the
864 * audit_state is not low enough that auditing cannot take place, but is
865 * also not high enough that we already know we have to write an audit
866 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
868 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
869 struct audit_context *ctx,
870 struct list_head *list)
872 struct audit_entry *e;
873 enum audit_state state;
875 if (audit_pid && tsk->tgid == audit_pid)
876 return AUDIT_DISABLED;
879 if (!list_empty(list)) {
880 int word = AUDIT_WORD(ctx->major);
881 int bit = AUDIT_BIT(ctx->major);
883 list_for_each_entry_rcu(e, list, list) {
884 if ((e->rule.mask[word] & bit) == bit &&
885 audit_filter_rules(tsk, &e->rule, ctx, NULL,
888 ctx->current_state = state;
894 return AUDIT_BUILD_CONTEXT;
898 * Given an audit_name check the inode hash table to see if they match.
899 * Called holding the rcu read lock to protect the use of audit_inode_hash
901 static int audit_filter_inode_name(struct task_struct *tsk,
902 struct audit_names *n,
903 struct audit_context *ctx) {
905 int h = audit_hash_ino((u32)n->ino);
906 struct list_head *list = &audit_inode_hash[h];
907 struct audit_entry *e;
908 enum audit_state state;
910 word = AUDIT_WORD(ctx->major);
911 bit = AUDIT_BIT(ctx->major);
913 if (list_empty(list))
916 list_for_each_entry_rcu(e, list, list) {
917 if ((e->rule.mask[word] & bit) == bit &&
918 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
919 ctx->current_state = state;
927 /* At syscall exit time, this filter is called if any audit_names have been
928 * collected during syscall processing. We only check rules in sublists at hash
929 * buckets applicable to the inode numbers in audit_names.
930 * Regarding audit_state, same rules apply as for audit_filter_syscall().
932 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
934 struct audit_names *n;
936 if (audit_pid && tsk->tgid == audit_pid)
941 list_for_each_entry(n, &ctx->names_list, list) {
942 if (audit_filter_inode_name(tsk, n, ctx))
948 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
952 struct audit_context *context = tsk->audit_context;
956 context->return_valid = return_valid;
959 * we need to fix up the return code in the audit logs if the actual
960 * return codes are later going to be fixed up by the arch specific
963 * This is actually a test for:
964 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
965 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
967 * but is faster than a bunch of ||
969 if (unlikely(return_code <= -ERESTARTSYS) &&
970 (return_code >= -ERESTART_RESTARTBLOCK) &&
971 (return_code != -ENOIOCTLCMD))
972 context->return_code = -EINTR;
974 context->return_code = return_code;
976 if (context->in_syscall && !context->dummy) {
977 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
978 audit_filter_inodes(tsk, context);
981 tsk->audit_context = NULL;
985 static inline void audit_free_names(struct audit_context *context)
987 struct audit_names *n, *next;
990 if (context->put_count + context->ino_count != context->name_count) {
991 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
992 " name_count=%d put_count=%d"
993 " ino_count=%d [NOT freeing]\n",
995 context->serial, context->major, context->in_syscall,
996 context->name_count, context->put_count,
998 list_for_each_entry(n, &context->names_list, list) {
999 printk(KERN_ERR "names[%d] = %p = %s\n", i,
1000 n->name, n->name->name ?: "(null)");
1007 context->put_count = 0;
1008 context->ino_count = 0;
1011 list_for_each_entry_safe(n, next, &context->names_list, list) {
1013 if (n->name && n->name_put)
1018 context->name_count = 0;
1019 path_put(&context->pwd);
1020 context->pwd.dentry = NULL;
1021 context->pwd.mnt = NULL;
1024 static inline void audit_free_aux(struct audit_context *context)
1026 struct audit_aux_data *aux;
1028 while ((aux = context->aux)) {
1029 context->aux = aux->next;
1032 while ((aux = context->aux_pids)) {
1033 context->aux_pids = aux->next;
1038 static inline void audit_zero_context(struct audit_context *context,
1039 enum audit_state state)
1041 memset(context, 0, sizeof(*context));
1042 context->state = state;
1043 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1046 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1048 struct audit_context *context;
1050 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1052 audit_zero_context(context, state);
1053 INIT_LIST_HEAD(&context->killed_trees);
1054 INIT_LIST_HEAD(&context->names_list);
1059 * audit_alloc - allocate an audit context block for a task
1062 * Filter on the task information and allocate a per-task audit context
1063 * if necessary. Doing so turns on system call auditing for the
1064 * specified task. This is called from copy_process, so no lock is
1067 int audit_alloc(struct task_struct *tsk)
1069 struct audit_context *context;
1070 enum audit_state state;
1073 if (likely(!audit_ever_enabled))
1074 return 0; /* Return if not auditing. */
1076 state = audit_filter_task(tsk, &key);
1077 if (state == AUDIT_DISABLED)
1080 if (!(context = audit_alloc_context(state))) {
1082 audit_log_lost("out of memory in audit_alloc");
1085 context->filterkey = key;
1087 tsk->audit_context = context;
1088 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1092 static inline void audit_free_context(struct audit_context *context)
1094 struct audit_context *previous;
1098 previous = context->previous;
1099 if (previous || (count && count < 10)) {
1101 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1102 " freeing multiple contexts (%d)\n",
1103 context->serial, context->major,
1104 context->name_count, count);
1106 audit_free_names(context);
1107 unroll_tree_refs(context, NULL, 0);
1108 free_tree_refs(context);
1109 audit_free_aux(context);
1110 kfree(context->filterkey);
1111 kfree(context->sockaddr);
1116 printk(KERN_ERR "audit: freed %d contexts\n", count);
1119 void audit_log_task_context(struct audit_buffer *ab)
1126 security_task_getsecid(current, &sid);
1130 error = security_secid_to_secctx(sid, &ctx, &len);
1132 if (error != -EINVAL)
1137 audit_log_format(ab, " subj=%s", ctx);
1138 security_release_secctx(ctx, len);
1142 audit_panic("error in audit_log_task_context");
1146 EXPORT_SYMBOL(audit_log_task_context);
1148 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1150 const struct cred *cred;
1151 char name[sizeof(tsk->comm)];
1152 struct mm_struct *mm = tsk->mm;
1158 /* tsk == current */
1159 cred = current_cred();
1161 spin_lock_irq(&tsk->sighand->siglock);
1162 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1163 tty = tsk->signal->tty->name;
1166 spin_unlock_irq(&tsk->sighand->siglock);
1169 audit_log_format(ab,
1170 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1171 " euid=%u suid=%u fsuid=%u"
1172 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1175 from_kuid(&init_user_ns, tsk->loginuid),
1176 from_kuid(&init_user_ns, cred->uid),
1177 from_kgid(&init_user_ns, cred->gid),
1178 from_kuid(&init_user_ns, cred->euid),
1179 from_kuid(&init_user_ns, cred->suid),
1180 from_kuid(&init_user_ns, cred->fsuid),
1181 from_kgid(&init_user_ns, cred->egid),
1182 from_kgid(&init_user_ns, cred->sgid),
1183 from_kgid(&init_user_ns, cred->fsgid),
1184 tsk->sessionid, tty);
1186 get_task_comm(name, tsk);
1187 audit_log_format(ab, " comm=");
1188 audit_log_untrustedstring(ab, name);
1191 down_read(&mm->mmap_sem);
1193 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1194 up_read(&mm->mmap_sem);
1196 audit_log_task_context(ab);
1199 EXPORT_SYMBOL(audit_log_task_info);
1201 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1202 kuid_t auid, kuid_t uid, unsigned int sessionid,
1203 u32 sid, char *comm)
1205 struct audit_buffer *ab;
1210 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1214 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1215 from_kuid(&init_user_ns, auid),
1216 from_kuid(&init_user_ns, uid), sessionid);
1217 if (security_secid_to_secctx(sid, &ctx, &len)) {
1218 audit_log_format(ab, " obj=(none)");
1221 audit_log_format(ab, " obj=%s", ctx);
1222 security_release_secctx(ctx, len);
1224 audit_log_format(ab, " ocomm=");
1225 audit_log_untrustedstring(ab, comm);
1232 * to_send and len_sent accounting are very loose estimates. We aren't
1233 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1234 * within about 500 bytes (next page boundary)
1236 * why snprintf? an int is up to 12 digits long. if we just assumed when
1237 * logging that a[%d]= was going to be 16 characters long we would be wasting
1238 * space in every audit message. In one 7500 byte message we can log up to
1239 * about 1000 min size arguments. That comes down to about 50% waste of space
1240 * if we didn't do the snprintf to find out how long arg_num_len was.
1242 static int audit_log_single_execve_arg(struct audit_context *context,
1243 struct audit_buffer **ab,
1246 const char __user *p,
1249 char arg_num_len_buf[12];
1250 const char __user *tmp_p = p;
1251 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1252 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1253 size_t len, len_left, to_send;
1254 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1255 unsigned int i, has_cntl = 0, too_long = 0;
1258 /* strnlen_user includes the null we don't want to send */
1259 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1262 * We just created this mm, if we can't find the strings
1263 * we just copied into it something is _very_ wrong. Similar
1264 * for strings that are too long, we should not have created
1267 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1269 send_sig(SIGKILL, current, 0);
1273 /* walk the whole argument looking for non-ascii chars */
1275 if (len_left > MAX_EXECVE_AUDIT_LEN)
1276 to_send = MAX_EXECVE_AUDIT_LEN;
1279 ret = copy_from_user(buf, tmp_p, to_send);
1281 * There is no reason for this copy to be short. We just
1282 * copied them here, and the mm hasn't been exposed to user-
1287 send_sig(SIGKILL, current, 0);
1290 buf[to_send] = '\0';
1291 has_cntl = audit_string_contains_control(buf, to_send);
1294 * hex messages get logged as 2 bytes, so we can only
1295 * send half as much in each message
1297 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1300 len_left -= to_send;
1302 } while (len_left > 0);
1306 if (len > max_execve_audit_len)
1309 /* rewalk the argument actually logging the message */
1310 for (i = 0; len_left > 0; i++) {
1313 if (len_left > max_execve_audit_len)
1314 to_send = max_execve_audit_len;
1318 /* do we have space left to send this argument in this ab? */
1319 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1321 room_left -= (to_send * 2);
1323 room_left -= to_send;
1324 if (room_left < 0) {
1327 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1333 * first record needs to say how long the original string was
1334 * so we can be sure nothing was lost.
1336 if ((i == 0) && (too_long))
1337 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1338 has_cntl ? 2*len : len);
1341 * normally arguments are small enough to fit and we already
1342 * filled buf above when we checked for control characters
1343 * so don't bother with another copy_from_user
1345 if (len >= max_execve_audit_len)
1346 ret = copy_from_user(buf, p, to_send);
1351 send_sig(SIGKILL, current, 0);
1354 buf[to_send] = '\0';
1356 /* actually log it */
1357 audit_log_format(*ab, " a%d", arg_num);
1359 audit_log_format(*ab, "[%d]", i);
1360 audit_log_format(*ab, "=");
1362 audit_log_n_hex(*ab, buf, to_send);
1364 audit_log_string(*ab, buf);
1367 len_left -= to_send;
1368 *len_sent += arg_num_len;
1370 *len_sent += to_send * 2;
1372 *len_sent += to_send;
1374 /* include the null we didn't log */
1378 static void audit_log_execve_info(struct audit_context *context,
1379 struct audit_buffer **ab,
1380 struct audit_aux_data_execve *axi)
1383 size_t len_sent = 0;
1384 const char __user *p;
1387 if (axi->mm != current->mm)
1388 return; /* execve failed, no additional info */
1390 p = (const char __user *)axi->mm->arg_start;
1392 audit_log_format(*ab, "argc=%d", axi->argc);
1395 * we need some kernel buffer to hold the userspace args. Just
1396 * allocate one big one rather than allocating one of the right size
1397 * for every single argument inside audit_log_single_execve_arg()
1398 * should be <8k allocation so should be pretty safe.
1400 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1402 audit_panic("out of memory for argv string\n");
1406 for (i = 0; i < axi->argc; i++) {
1407 len = audit_log_single_execve_arg(context, ab, i,
1416 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1420 audit_log_format(ab, " %s=", prefix);
1421 CAP_FOR_EACH_U32(i) {
1422 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1426 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1428 kernel_cap_t *perm = &name->fcap.permitted;
1429 kernel_cap_t *inh = &name->fcap.inheritable;
1432 if (!cap_isclear(*perm)) {
1433 audit_log_cap(ab, "cap_fp", perm);
1436 if (!cap_isclear(*inh)) {
1437 audit_log_cap(ab, "cap_fi", inh);
1442 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1445 static void show_special(struct audit_context *context, int *call_panic)
1447 struct audit_buffer *ab;
1450 ab = audit_log_start(context, GFP_KERNEL, context->type);
1454 switch (context->type) {
1455 case AUDIT_SOCKETCALL: {
1456 int nargs = context->socketcall.nargs;
1457 audit_log_format(ab, "nargs=%d", nargs);
1458 for (i = 0; i < nargs; i++)
1459 audit_log_format(ab, " a%d=%lx", i,
1460 context->socketcall.args[i]);
1463 u32 osid = context->ipc.osid;
1465 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1466 from_kuid(&init_user_ns, context->ipc.uid),
1467 from_kgid(&init_user_ns, context->ipc.gid),
1472 if (security_secid_to_secctx(osid, &ctx, &len)) {
1473 audit_log_format(ab, " osid=%u", osid);
1476 audit_log_format(ab, " obj=%s", ctx);
1477 security_release_secctx(ctx, len);
1480 if (context->ipc.has_perm) {
1482 ab = audit_log_start(context, GFP_KERNEL,
1483 AUDIT_IPC_SET_PERM);
1484 audit_log_format(ab,
1485 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1486 context->ipc.qbytes,
1487 context->ipc.perm_uid,
1488 context->ipc.perm_gid,
1489 context->ipc.perm_mode);
1494 case AUDIT_MQ_OPEN: {
1495 audit_log_format(ab,
1496 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1497 "mq_msgsize=%ld mq_curmsgs=%ld",
1498 context->mq_open.oflag, context->mq_open.mode,
1499 context->mq_open.attr.mq_flags,
1500 context->mq_open.attr.mq_maxmsg,
1501 context->mq_open.attr.mq_msgsize,
1502 context->mq_open.attr.mq_curmsgs);
1504 case AUDIT_MQ_SENDRECV: {
1505 audit_log_format(ab,
1506 "mqdes=%d msg_len=%zd msg_prio=%u "
1507 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1508 context->mq_sendrecv.mqdes,
1509 context->mq_sendrecv.msg_len,
1510 context->mq_sendrecv.msg_prio,
1511 context->mq_sendrecv.abs_timeout.tv_sec,
1512 context->mq_sendrecv.abs_timeout.tv_nsec);
1514 case AUDIT_MQ_NOTIFY: {
1515 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1516 context->mq_notify.mqdes,
1517 context->mq_notify.sigev_signo);
1519 case AUDIT_MQ_GETSETATTR: {
1520 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1521 audit_log_format(ab,
1522 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1524 context->mq_getsetattr.mqdes,
1525 attr->mq_flags, attr->mq_maxmsg,
1526 attr->mq_msgsize, attr->mq_curmsgs);
1528 case AUDIT_CAPSET: {
1529 audit_log_format(ab, "pid=%d", context->capset.pid);
1530 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1531 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1532 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1535 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1536 context->mmap.flags);
1542 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1543 int record_num, int *call_panic)
1545 struct audit_buffer *ab;
1546 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1548 return; /* audit_panic has been called */
1550 audit_log_format(ab, "item=%d", record_num);
1553 switch (n->name_len) {
1554 case AUDIT_NAME_FULL:
1555 /* log the full path */
1556 audit_log_format(ab, " name=");
1557 audit_log_untrustedstring(ab, n->name->name);
1560 /* name was specified as a relative path and the
1561 * directory component is the cwd */
1562 audit_log_d_path(ab, " name=", &context->pwd);
1565 /* log the name's directory component */
1566 audit_log_format(ab, " name=");
1567 audit_log_n_untrustedstring(ab, n->name->name,
1571 audit_log_format(ab, " name=(null)");
1573 if (n->ino != (unsigned long)-1) {
1574 audit_log_format(ab, " inode=%lu"
1575 " dev=%02x:%02x mode=%#ho"
1576 " ouid=%u ogid=%u rdev=%02x:%02x",
1581 from_kuid(&init_user_ns, n->uid),
1582 from_kgid(&init_user_ns, n->gid),
1589 if (security_secid_to_secctx(
1590 n->osid, &ctx, &len)) {
1591 audit_log_format(ab, " osid=%u", n->osid);
1594 audit_log_format(ab, " obj=%s", ctx);
1595 security_release_secctx(ctx, len);
1599 audit_log_fcaps(ab, n);
1604 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1606 int i, call_panic = 0;
1607 struct audit_buffer *ab;
1608 struct audit_aux_data *aux;
1609 struct audit_names *n;
1611 /* tsk == current */
1612 context->personality = tsk->personality;
1614 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1616 return; /* audit_panic has been called */
1617 audit_log_format(ab, "arch=%x syscall=%d",
1618 context->arch, context->major);
1619 if (context->personality != PER_LINUX)
1620 audit_log_format(ab, " per=%lx", context->personality);
1621 if (context->return_valid)
1622 audit_log_format(ab, " success=%s exit=%ld",
1623 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1624 context->return_code);
1626 audit_log_format(ab,
1627 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1632 context->name_count);
1634 audit_log_task_info(ab, tsk);
1635 audit_log_key(ab, context->filterkey);
1638 for (aux = context->aux; aux; aux = aux->next) {
1640 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1642 continue; /* audit_panic has been called */
1644 switch (aux->type) {
1646 case AUDIT_EXECVE: {
1647 struct audit_aux_data_execve *axi = (void *)aux;
1648 audit_log_execve_info(context, &ab, axi);
1651 case AUDIT_BPRM_FCAPS: {
1652 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1653 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1654 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1655 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1656 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1657 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1658 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1659 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1660 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1661 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1662 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1670 show_special(context, &call_panic);
1672 if (context->fds[0] >= 0) {
1673 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1675 audit_log_format(ab, "fd0=%d fd1=%d",
1676 context->fds[0], context->fds[1]);
1681 if (context->sockaddr_len) {
1682 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1684 audit_log_format(ab, "saddr=");
1685 audit_log_n_hex(ab, (void *)context->sockaddr,
1686 context->sockaddr_len);
1691 for (aux = context->aux_pids; aux; aux = aux->next) {
1692 struct audit_aux_data_pids *axs = (void *)aux;
1694 for (i = 0; i < axs->pid_count; i++)
1695 if (audit_log_pid_context(context, axs->target_pid[i],
1696 axs->target_auid[i],
1698 axs->target_sessionid[i],
1700 axs->target_comm[i]))
1704 if (context->target_pid &&
1705 audit_log_pid_context(context, context->target_pid,
1706 context->target_auid, context->target_uid,
1707 context->target_sessionid,
1708 context->target_sid, context->target_comm))
1711 if (context->pwd.dentry && context->pwd.mnt) {
1712 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1714 audit_log_d_path(ab, " cwd=", &context->pwd);
1720 list_for_each_entry(n, &context->names_list, list)
1721 audit_log_name(context, n, i++, &call_panic);
1723 /* Send end of event record to help user space know we are finished */
1724 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1728 audit_panic("error converting sid to string");
1732 * audit_free - free a per-task audit context
1733 * @tsk: task whose audit context block to free
1735 * Called from copy_process and do_exit
1737 void __audit_free(struct task_struct *tsk)
1739 struct audit_context *context;
1741 context = audit_get_context(tsk, 0, 0);
1745 /* Check for system calls that do not go through the exit
1746 * function (e.g., exit_group), then free context block.
1747 * We use GFP_ATOMIC here because we might be doing this
1748 * in the context of the idle thread */
1749 /* that can happen only if we are called from do_exit() */
1750 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1751 audit_log_exit(context, tsk);
1752 if (!list_empty(&context->killed_trees))
1753 audit_kill_trees(&context->killed_trees);
1755 audit_free_context(context);
1759 * audit_syscall_entry - fill in an audit record at syscall entry
1760 * @arch: architecture type
1761 * @major: major syscall type (function)
1762 * @a1: additional syscall register 1
1763 * @a2: additional syscall register 2
1764 * @a3: additional syscall register 3
1765 * @a4: additional syscall register 4
1767 * Fill in audit context at syscall entry. This only happens if the
1768 * audit context was created when the task was created and the state or
1769 * filters demand the audit context be built. If the state from the
1770 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1771 * then the record will be written at syscall exit time (otherwise, it
1772 * will only be written if another part of the kernel requests that it
1775 void __audit_syscall_entry(int arch, int major,
1776 unsigned long a1, unsigned long a2,
1777 unsigned long a3, unsigned long a4)
1779 struct task_struct *tsk = current;
1780 struct audit_context *context = tsk->audit_context;
1781 enum audit_state state;
1787 * This happens only on certain architectures that make system
1788 * calls in kernel_thread via the entry.S interface, instead of
1789 * with direct calls. (If you are porting to a new
1790 * architecture, hitting this condition can indicate that you
1791 * got the _exit/_leave calls backward in entry.S.)
1795 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1797 * This also happens with vm86 emulation in a non-nested manner
1798 * (entries without exits), so this case must be caught.
1800 if (context->in_syscall) {
1801 struct audit_context *newctx;
1805 "audit(:%d) pid=%d in syscall=%d;"
1806 " entering syscall=%d\n",
1807 context->serial, tsk->pid, context->major, major);
1809 newctx = audit_alloc_context(context->state);
1811 newctx->previous = context;
1813 tsk->audit_context = newctx;
1815 /* If we can't alloc a new context, the best we
1816 * can do is to leak memory (any pending putname
1817 * will be lost). The only other alternative is
1818 * to abandon auditing. */
1819 audit_zero_context(context, context->state);
1822 BUG_ON(context->in_syscall || context->name_count);
1827 context->arch = arch;
1828 context->major = major;
1829 context->argv[0] = a1;
1830 context->argv[1] = a2;
1831 context->argv[2] = a3;
1832 context->argv[3] = a4;
1834 state = context->state;
1835 context->dummy = !audit_n_rules;
1836 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1838 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1840 if (state == AUDIT_DISABLED)
1843 context->serial = 0;
1844 context->ctime = CURRENT_TIME;
1845 context->in_syscall = 1;
1846 context->current_state = state;
1851 * audit_syscall_exit - deallocate audit context after a system call
1852 * @success: success value of the syscall
1853 * @return_code: return value of the syscall
1855 * Tear down after system call. If the audit context has been marked as
1856 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1857 * filtering, or because some other part of the kernel wrote an audit
1858 * message), then write out the syscall information. In call cases,
1859 * free the names stored from getname().
1861 void __audit_syscall_exit(int success, long return_code)
1863 struct task_struct *tsk = current;
1864 struct audit_context *context;
1867 success = AUDITSC_SUCCESS;
1869 success = AUDITSC_FAILURE;
1871 context = audit_get_context(tsk, success, return_code);
1875 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1876 audit_log_exit(context, tsk);
1878 context->in_syscall = 0;
1879 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1881 if (!list_empty(&context->killed_trees))
1882 audit_kill_trees(&context->killed_trees);
1884 if (context->previous) {
1885 struct audit_context *new_context = context->previous;
1886 context->previous = NULL;
1887 audit_free_context(context);
1888 tsk->audit_context = new_context;
1890 audit_free_names(context);
1891 unroll_tree_refs(context, NULL, 0);
1892 audit_free_aux(context);
1893 context->aux = NULL;
1894 context->aux_pids = NULL;
1895 context->target_pid = 0;
1896 context->target_sid = 0;
1897 context->sockaddr_len = 0;
1899 context->fds[0] = -1;
1900 if (context->state != AUDIT_RECORD_CONTEXT) {
1901 kfree(context->filterkey);
1902 context->filterkey = NULL;
1904 tsk->audit_context = context;
1908 static inline void handle_one(const struct inode *inode)
1910 #ifdef CONFIG_AUDIT_TREE
1911 struct audit_context *context;
1912 struct audit_tree_refs *p;
1913 struct audit_chunk *chunk;
1915 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1917 context = current->audit_context;
1919 count = context->tree_count;
1921 chunk = audit_tree_lookup(inode);
1925 if (likely(put_tree_ref(context, chunk)))
1927 if (unlikely(!grow_tree_refs(context))) {
1928 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1929 audit_set_auditable(context);
1930 audit_put_chunk(chunk);
1931 unroll_tree_refs(context, p, count);
1934 put_tree_ref(context, chunk);
1938 static void handle_path(const struct dentry *dentry)
1940 #ifdef CONFIG_AUDIT_TREE
1941 struct audit_context *context;
1942 struct audit_tree_refs *p;
1943 const struct dentry *d, *parent;
1944 struct audit_chunk *drop;
1948 context = current->audit_context;
1950 count = context->tree_count;
1955 seq = read_seqbegin(&rename_lock);
1957 struct inode *inode = d->d_inode;
1958 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1959 struct audit_chunk *chunk;
1960 chunk = audit_tree_lookup(inode);
1962 if (unlikely(!put_tree_ref(context, chunk))) {
1968 parent = d->d_parent;
1973 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1976 /* just a race with rename */
1977 unroll_tree_refs(context, p, count);
1980 audit_put_chunk(drop);
1981 if (grow_tree_refs(context)) {
1982 /* OK, got more space */
1983 unroll_tree_refs(context, p, count);
1988 "out of memory, audit has lost a tree reference\n");
1989 unroll_tree_refs(context, p, count);
1990 audit_set_auditable(context);
1997 static struct audit_names *audit_alloc_name(struct audit_context *context,
2000 struct audit_names *aname;
2002 if (context->name_count < AUDIT_NAMES) {
2003 aname = &context->preallocated_names[context->name_count];
2004 memset(aname, 0, sizeof(*aname));
2006 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2009 aname->should_free = true;
2012 aname->ino = (unsigned long)-1;
2014 list_add_tail(&aname->list, &context->names_list);
2016 context->name_count++;
2018 context->ino_count++;
2024 * audit_reusename - fill out filename with info from existing entry
2025 * @uptr: userland ptr to pathname
2027 * Search the audit_names list for the current audit context. If there is an
2028 * existing entry with a matching "uptr" then return the filename
2029 * associated with that audit_name. If not, return NULL.
2032 __audit_reusename(const __user char *uptr)
2034 struct audit_context *context = current->audit_context;
2035 struct audit_names *n;
2037 list_for_each_entry(n, &context->names_list, list) {
2040 if (n->name->uptr == uptr)
2047 * audit_getname - add a name to the list
2048 * @name: name to add
2050 * Add a name to the list of audit names for this context.
2051 * Called from fs/namei.c:getname().
2053 void __audit_getname(struct filename *name)
2055 struct audit_context *context = current->audit_context;
2056 struct audit_names *n;
2058 if (!context->in_syscall) {
2059 #if AUDIT_DEBUG == 2
2060 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2061 __FILE__, __LINE__, context->serial, name);
2068 /* The filename _must_ have a populated ->name */
2069 BUG_ON(!name->name);
2072 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2077 n->name_len = AUDIT_NAME_FULL;
2081 if (!context->pwd.dentry)
2082 get_fs_pwd(current->fs, &context->pwd);
2085 /* audit_putname - intercept a putname request
2086 * @name: name to intercept and delay for putname
2088 * If we have stored the name from getname in the audit context,
2089 * then we delay the putname until syscall exit.
2090 * Called from include/linux/fs.h:putname().
2092 void audit_putname(struct filename *name)
2094 struct audit_context *context = current->audit_context;
2097 if (!context->in_syscall) {
2098 #if AUDIT_DEBUG == 2
2099 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2100 __FILE__, __LINE__, context->serial, name);
2101 if (context->name_count) {
2102 struct audit_names *n;
2105 list_for_each_entry(n, &context->names_list, list)
2106 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2107 n->name, n->name->name ?: "(null)");
2114 ++context->put_count;
2115 if (context->put_count > context->name_count) {
2116 printk(KERN_ERR "%s:%d(:%d): major=%d"
2117 " in_syscall=%d putname(%p) name_count=%d"
2120 context->serial, context->major,
2121 context->in_syscall, name->name,
2122 context->name_count, context->put_count);
2129 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2131 struct cpu_vfs_cap_data caps;
2137 rc = get_vfs_caps_from_disk(dentry, &caps);
2141 name->fcap.permitted = caps.permitted;
2142 name->fcap.inheritable = caps.inheritable;
2143 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2144 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2150 /* Copy inode data into an audit_names. */
2151 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2152 const struct inode *inode)
2154 name->ino = inode->i_ino;
2155 name->dev = inode->i_sb->s_dev;
2156 name->mode = inode->i_mode;
2157 name->uid = inode->i_uid;
2158 name->gid = inode->i_gid;
2159 name->rdev = inode->i_rdev;
2160 security_inode_getsecid(inode, &name->osid);
2161 audit_copy_fcaps(name, dentry);
2165 * __audit_inode - store the inode and device from a lookup
2166 * @name: name being audited
2167 * @dentry: dentry being audited
2168 * @parent: does this dentry represent the parent?
2170 void __audit_inode(struct filename *name, const struct dentry *dentry,
2171 unsigned int parent)
2173 struct audit_context *context = current->audit_context;
2174 const struct inode *inode = dentry->d_inode;
2175 struct audit_names *n;
2177 if (!context->in_syscall)
2184 /* The struct filename _must_ have a populated ->name */
2185 BUG_ON(!name->name);
2188 * If we have a pointer to an audit_names entry already, then we can
2189 * just use it directly if the type is correct.
2194 if (n->type == AUDIT_TYPE_PARENT ||
2195 n->type == AUDIT_TYPE_UNKNOWN)
2198 if (n->type != AUDIT_TYPE_PARENT)
2203 list_for_each_entry_reverse(n, &context->names_list, list) {
2204 /* does the name pointer match? */
2205 if (!n->name || n->name->name != name->name)
2208 /* match the correct record type */
2210 if (n->type == AUDIT_TYPE_PARENT ||
2211 n->type == AUDIT_TYPE_UNKNOWN)
2214 if (n->type != AUDIT_TYPE_PARENT)
2220 /* unable to find the name from a previous getname(). Allocate a new
2223 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2228 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2229 n->type = AUDIT_TYPE_PARENT;
2231 n->name_len = AUDIT_NAME_FULL;
2232 n->type = AUDIT_TYPE_NORMAL;
2234 handle_path(dentry);
2235 audit_copy_inode(n, dentry, inode);
2239 * __audit_inode_child - collect inode info for created/removed objects
2240 * @parent: inode of dentry parent
2241 * @dentry: dentry being audited
2242 * @type: AUDIT_TYPE_* value that we're looking for
2244 * For syscalls that create or remove filesystem objects, audit_inode
2245 * can only collect information for the filesystem object's parent.
2246 * This call updates the audit context with the child's information.
2247 * Syscalls that create a new filesystem object must be hooked after
2248 * the object is created. Syscalls that remove a filesystem object
2249 * must be hooked prior, in order to capture the target inode during
2250 * unsuccessful attempts.
2252 void __audit_inode_child(const struct inode *parent,
2253 const struct dentry *dentry,
2254 const unsigned char type)
2256 struct audit_context *context = current->audit_context;
2257 const struct inode *inode = dentry->d_inode;
2258 const char *dname = dentry->d_name.name;
2259 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2261 if (!context->in_syscall)
2267 /* look for a parent entry first */
2268 list_for_each_entry(n, &context->names_list, list) {
2269 if (!n->name || n->type != AUDIT_TYPE_PARENT)
2272 if (n->ino == parent->i_ino &&
2273 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
2279 /* is there a matching child entry? */
2280 list_for_each_entry(n, &context->names_list, list) {
2281 /* can only match entries that have a name */
2282 if (!n->name || n->type != type)
2285 /* if we found a parent, make sure this one is a child of it */
2286 if (found_parent && (n->name != found_parent->name))
2289 if (!strcmp(dname, n->name->name) ||
2290 !audit_compare_dname_path(dname, n->name->name,
2292 found_parent->name_len :
2299 if (!found_parent) {
2300 /* create a new, "anonymous" parent record */
2301 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2304 audit_copy_inode(n, NULL, parent);
2308 found_child = audit_alloc_name(context, type);
2312 /* Re-use the name belonging to the slot for a matching parent
2313 * directory. All names for this context are relinquished in
2314 * audit_free_names() */
2316 found_child->name = found_parent->name;
2317 found_child->name_len = AUDIT_NAME_FULL;
2318 /* don't call __putname() */
2319 found_child->name_put = false;
2323 audit_copy_inode(found_child, dentry, inode);
2325 found_child->ino = (unsigned long)-1;
2327 EXPORT_SYMBOL_GPL(__audit_inode_child);
2330 * auditsc_get_stamp - get local copies of audit_context values
2331 * @ctx: audit_context for the task
2332 * @t: timespec to store time recorded in the audit_context
2333 * @serial: serial value that is recorded in the audit_context
2335 * Also sets the context as auditable.
2337 int auditsc_get_stamp(struct audit_context *ctx,
2338 struct timespec *t, unsigned int *serial)
2340 if (!ctx->in_syscall)
2343 ctx->serial = audit_serial();
2344 t->tv_sec = ctx->ctime.tv_sec;
2345 t->tv_nsec = ctx->ctime.tv_nsec;
2346 *serial = ctx->serial;
2349 ctx->current_state = AUDIT_RECORD_CONTEXT;
2354 /* global counter which is incremented every time something logs in */
2355 static atomic_t session_id = ATOMIC_INIT(0);
2358 * audit_set_loginuid - set current task's audit_context loginuid
2359 * @loginuid: loginuid value
2363 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2365 int audit_set_loginuid(kuid_t loginuid)
2367 struct task_struct *task = current;
2368 struct audit_context *context = task->audit_context;
2369 unsigned int sessionid;
2371 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2372 if (uid_valid(task->loginuid))
2374 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2375 if (!capable(CAP_AUDIT_CONTROL))
2377 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2379 sessionid = atomic_inc_return(&session_id);
2380 if (context && context->in_syscall) {
2381 struct audit_buffer *ab;
2383 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2385 audit_log_format(ab, "login pid=%d uid=%u "
2386 "old auid=%u new auid=%u"
2387 " old ses=%u new ses=%u",
2389 from_kuid(&init_user_ns, task_uid(task)),
2390 from_kuid(&init_user_ns, task->loginuid),
2391 from_kuid(&init_user_ns, loginuid),
2392 task->sessionid, sessionid);
2396 task->sessionid = sessionid;
2397 task->loginuid = loginuid;
2402 * __audit_mq_open - record audit data for a POSIX MQ open
2405 * @attr: queue attributes
2408 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2410 struct audit_context *context = current->audit_context;
2413 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2415 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2417 context->mq_open.oflag = oflag;
2418 context->mq_open.mode = mode;
2420 context->type = AUDIT_MQ_OPEN;
2424 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2425 * @mqdes: MQ descriptor
2426 * @msg_len: Message length
2427 * @msg_prio: Message priority
2428 * @abs_timeout: Message timeout in absolute time
2431 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2432 const struct timespec *abs_timeout)
2434 struct audit_context *context = current->audit_context;
2435 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2438 memcpy(p, abs_timeout, sizeof(struct timespec));
2440 memset(p, 0, sizeof(struct timespec));
2442 context->mq_sendrecv.mqdes = mqdes;
2443 context->mq_sendrecv.msg_len = msg_len;
2444 context->mq_sendrecv.msg_prio = msg_prio;
2446 context->type = AUDIT_MQ_SENDRECV;
2450 * __audit_mq_notify - record audit data for a POSIX MQ notify
2451 * @mqdes: MQ descriptor
2452 * @notification: Notification event
2456 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2458 struct audit_context *context = current->audit_context;
2461 context->mq_notify.sigev_signo = notification->sigev_signo;
2463 context->mq_notify.sigev_signo = 0;
2465 context->mq_notify.mqdes = mqdes;
2466 context->type = AUDIT_MQ_NOTIFY;
2470 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2471 * @mqdes: MQ descriptor
2475 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2477 struct audit_context *context = current->audit_context;
2478 context->mq_getsetattr.mqdes = mqdes;
2479 context->mq_getsetattr.mqstat = *mqstat;
2480 context->type = AUDIT_MQ_GETSETATTR;
2484 * audit_ipc_obj - record audit data for ipc object
2485 * @ipcp: ipc permissions
2488 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2490 struct audit_context *context = current->audit_context;
2491 context->ipc.uid = ipcp->uid;
2492 context->ipc.gid = ipcp->gid;
2493 context->ipc.mode = ipcp->mode;
2494 context->ipc.has_perm = 0;
2495 security_ipc_getsecid(ipcp, &context->ipc.osid);
2496 context->type = AUDIT_IPC;
2500 * audit_ipc_set_perm - record audit data for new ipc permissions
2501 * @qbytes: msgq bytes
2502 * @uid: msgq user id
2503 * @gid: msgq group id
2504 * @mode: msgq mode (permissions)
2506 * Called only after audit_ipc_obj().
2508 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2510 struct audit_context *context = current->audit_context;
2512 context->ipc.qbytes = qbytes;
2513 context->ipc.perm_uid = uid;
2514 context->ipc.perm_gid = gid;
2515 context->ipc.perm_mode = mode;
2516 context->ipc.has_perm = 1;
2519 int __audit_bprm(struct linux_binprm *bprm)
2521 struct audit_aux_data_execve *ax;
2522 struct audit_context *context = current->audit_context;
2524 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2528 ax->argc = bprm->argc;
2529 ax->envc = bprm->envc;
2531 ax->d.type = AUDIT_EXECVE;
2532 ax->d.next = context->aux;
2533 context->aux = (void *)ax;
2539 * audit_socketcall - record audit data for sys_socketcall
2540 * @nargs: number of args
2544 void __audit_socketcall(int nargs, unsigned long *args)
2546 struct audit_context *context = current->audit_context;
2548 context->type = AUDIT_SOCKETCALL;
2549 context->socketcall.nargs = nargs;
2550 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2554 * __audit_fd_pair - record audit data for pipe and socketpair
2555 * @fd1: the first file descriptor
2556 * @fd2: the second file descriptor
2559 void __audit_fd_pair(int fd1, int fd2)
2561 struct audit_context *context = current->audit_context;
2562 context->fds[0] = fd1;
2563 context->fds[1] = fd2;
2567 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2568 * @len: data length in user space
2569 * @a: data address in kernel space
2571 * Returns 0 for success or NULL context or < 0 on error.
2573 int __audit_sockaddr(int len, void *a)
2575 struct audit_context *context = current->audit_context;
2577 if (!context->sockaddr) {
2578 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2581 context->sockaddr = p;
2584 context->sockaddr_len = len;
2585 memcpy(context->sockaddr, a, len);
2589 void __audit_ptrace(struct task_struct *t)
2591 struct audit_context *context = current->audit_context;
2593 context->target_pid = t->pid;
2594 context->target_auid = audit_get_loginuid(t);
2595 context->target_uid = task_uid(t);
2596 context->target_sessionid = audit_get_sessionid(t);
2597 security_task_getsecid(t, &context->target_sid);
2598 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2602 * audit_signal_info - record signal info for shutting down audit subsystem
2603 * @sig: signal value
2604 * @t: task being signaled
2606 * If the audit subsystem is being terminated, record the task (pid)
2607 * and uid that is doing that.
2609 int __audit_signal_info(int sig, struct task_struct *t)
2611 struct audit_aux_data_pids *axp;
2612 struct task_struct *tsk = current;
2613 struct audit_context *ctx = tsk->audit_context;
2614 kuid_t uid = current_uid(), t_uid = task_uid(t);
2616 if (audit_pid && t->tgid == audit_pid) {
2617 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2618 audit_sig_pid = tsk->pid;
2619 if (uid_valid(tsk->loginuid))
2620 audit_sig_uid = tsk->loginuid;
2622 audit_sig_uid = uid;
2623 security_task_getsecid(tsk, &audit_sig_sid);
2625 if (!audit_signals || audit_dummy_context())
2629 /* optimize the common case by putting first signal recipient directly
2630 * in audit_context */
2631 if (!ctx->target_pid) {
2632 ctx->target_pid = t->tgid;
2633 ctx->target_auid = audit_get_loginuid(t);
2634 ctx->target_uid = t_uid;
2635 ctx->target_sessionid = audit_get_sessionid(t);
2636 security_task_getsecid(t, &ctx->target_sid);
2637 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2641 axp = (void *)ctx->aux_pids;
2642 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2643 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2647 axp->d.type = AUDIT_OBJ_PID;
2648 axp->d.next = ctx->aux_pids;
2649 ctx->aux_pids = (void *)axp;
2651 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2653 axp->target_pid[axp->pid_count] = t->tgid;
2654 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2655 axp->target_uid[axp->pid_count] = t_uid;
2656 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2657 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2658 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2665 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2666 * @bprm: pointer to the bprm being processed
2667 * @new: the proposed new credentials
2668 * @old: the old credentials
2670 * Simply check if the proc already has the caps given by the file and if not
2671 * store the priv escalation info for later auditing at the end of the syscall
2675 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2676 const struct cred *new, const struct cred *old)
2678 struct audit_aux_data_bprm_fcaps *ax;
2679 struct audit_context *context = current->audit_context;
2680 struct cpu_vfs_cap_data vcaps;
2681 struct dentry *dentry;
2683 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2687 ax->d.type = AUDIT_BPRM_FCAPS;
2688 ax->d.next = context->aux;
2689 context->aux = (void *)ax;
2691 dentry = dget(bprm->file->f_dentry);
2692 get_vfs_caps_from_disk(dentry, &vcaps);
2695 ax->fcap.permitted = vcaps.permitted;
2696 ax->fcap.inheritable = vcaps.inheritable;
2697 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2698 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2700 ax->old_pcap.permitted = old->cap_permitted;
2701 ax->old_pcap.inheritable = old->cap_inheritable;
2702 ax->old_pcap.effective = old->cap_effective;
2704 ax->new_pcap.permitted = new->cap_permitted;
2705 ax->new_pcap.inheritable = new->cap_inheritable;
2706 ax->new_pcap.effective = new->cap_effective;
2711 * __audit_log_capset - store information about the arguments to the capset syscall
2712 * @pid: target pid of the capset call
2713 * @new: the new credentials
2714 * @old: the old (current) credentials
2716 * Record the aguments userspace sent to sys_capset for later printing by the
2717 * audit system if applicable
2719 void __audit_log_capset(pid_t pid,
2720 const struct cred *new, const struct cred *old)
2722 struct audit_context *context = current->audit_context;
2723 context->capset.pid = pid;
2724 context->capset.cap.effective = new->cap_effective;
2725 context->capset.cap.inheritable = new->cap_effective;
2726 context->capset.cap.permitted = new->cap_permitted;
2727 context->type = AUDIT_CAPSET;
2730 void __audit_mmap_fd(int fd, int flags)
2732 struct audit_context *context = current->audit_context;
2733 context->mmap.fd = fd;
2734 context->mmap.flags = flags;
2735 context->type = AUDIT_MMAP;
2738 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2742 unsigned int sessionid;
2744 auid = audit_get_loginuid(current);
2745 sessionid = audit_get_sessionid(current);
2746 current_uid_gid(&uid, &gid);
2748 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2749 from_kuid(&init_user_ns, auid),
2750 from_kuid(&init_user_ns, uid),
2751 from_kgid(&init_user_ns, gid),
2753 audit_log_task_context(ab);
2754 audit_log_format(ab, " pid=%d comm=", current->pid);
2755 audit_log_untrustedstring(ab, current->comm);
2756 audit_log_format(ab, " reason=");
2757 audit_log_string(ab, reason);
2758 audit_log_format(ab, " sig=%ld", signr);
2761 * audit_core_dumps - record information about processes that end abnormally
2762 * @signr: signal value
2764 * If a process ends with a core dump, something fishy is going on and we
2765 * should record the event for investigation.
2767 void audit_core_dumps(long signr)
2769 struct audit_buffer *ab;
2774 if (signr == SIGQUIT) /* don't care for those */
2777 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2778 audit_log_abend(ab, "memory violation", signr);
2782 void __audit_seccomp(unsigned long syscall, long signr, int code)
2784 struct audit_buffer *ab;
2786 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2787 audit_log_abend(ab, "seccomp", signr);
2788 audit_log_format(ab, " syscall=%ld", syscall);
2789 audit_log_format(ab, " compat=%d", is_compat_task());
2790 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2791 audit_log_format(ab, " code=0x%x", code);
2795 struct list_head *audit_killed_trees(void)
2797 struct audit_context *ctx = current->audit_context;
2798 if (likely(!ctx || !ctx->in_syscall))
2800 return &ctx->killed_trees;