1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/init.h>
35 #include <asm/types.h>
36 #include <linux/atomic.h>
38 #include <linux/namei.h>
40 #include <linux/export.h>
41 #include <linux/slab.h>
42 #include <linux/mount.h>
43 #include <linux/socket.h>
44 #include <linux/mqueue.h>
45 #include <linux/audit.h>
46 #include <linux/personality.h>
47 #include <linux/time.h>
48 #include <linux/netlink.h>
49 #include <linux/compiler.h>
50 #include <asm/unistd.h>
51 #include <linux/security.h>
52 #include <linux/list.h>
53 #include <linux/binfmts.h>
54 #include <linux/highmem.h>
55 #include <linux/syscalls.h>
56 #include <asm/syscall.h>
57 #include <linux/capability.h>
58 #include <linux/fs_struct.h>
59 #include <linux/compat.h>
60 #include <linux/ctype.h>
61 #include <linux/string.h>
62 #include <linux/uaccess.h>
63 #include <linux/fsnotify_backend.h>
64 #include <uapi/linux/limits.h>
65 #include <uapi/linux/netfilter/nf_tables.h>
66 #include <uapi/linux/openat2.h> // struct open_how
67 #include <uapi/linux/fanotify.h>
71 /* flags stating the success for a syscall */
72 #define AUDITSC_INVALID 0
73 #define AUDITSC_SUCCESS 1
74 #define AUDITSC_FAILURE 2
76 /* no execve audit message should be longer than this (userspace limits),
77 * see the note near the top of audit_log_execve_info() about this value */
78 #define MAX_EXECVE_AUDIT_LEN 7500
80 /* max length to print of cmdline/proctitle value during audit */
81 #define MAX_PROCTITLE_AUDIT_LEN 128
83 /* number of audit rules */
86 /* determines whether we collect data for signals sent */
89 struct audit_aux_data {
90 struct audit_aux_data *next;
94 /* Number of target pids per aux struct. */
95 #define AUDIT_AUX_PIDS 16
97 struct audit_aux_data_pids {
98 struct audit_aux_data d;
99 pid_t target_pid[AUDIT_AUX_PIDS];
100 kuid_t target_auid[AUDIT_AUX_PIDS];
101 kuid_t target_uid[AUDIT_AUX_PIDS];
102 unsigned int target_sessionid[AUDIT_AUX_PIDS];
103 u32 target_sid[AUDIT_AUX_PIDS];
104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
108 struct audit_aux_data_bprm_fcaps {
109 struct audit_aux_data d;
110 struct audit_cap_data fcap;
111 unsigned int fcap_ver;
112 struct audit_cap_data old_pcap;
113 struct audit_cap_data new_pcap;
116 struct audit_tree_refs {
117 struct audit_tree_refs *next;
118 struct audit_chunk *c[31];
121 struct audit_nfcfgop_tab {
122 enum audit_nfcfgop op;
126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
127 { AUDIT_XT_OP_REGISTER, "xt_register" },
128 { AUDIT_XT_OP_REPLACE, "xt_replace" },
129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" },
147 { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" },
148 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
151 static int audit_match_perm(struct audit_context *ctx, int mask)
159 switch (audit_classify_syscall(ctx->arch, n)) {
161 if ((mask & AUDIT_PERM_WRITE) &&
162 audit_match_class(AUDIT_CLASS_WRITE, n))
164 if ((mask & AUDIT_PERM_READ) &&
165 audit_match_class(AUDIT_CLASS_READ, n))
167 if ((mask & AUDIT_PERM_ATTR) &&
168 audit_match_class(AUDIT_CLASS_CHATTR, n))
171 case AUDITSC_COMPAT: /* 32bit on biarch */
172 if ((mask & AUDIT_PERM_WRITE) &&
173 audit_match_class(AUDIT_CLASS_WRITE_32, n))
175 if ((mask & AUDIT_PERM_READ) &&
176 audit_match_class(AUDIT_CLASS_READ_32, n))
178 if ((mask & AUDIT_PERM_ATTR) &&
179 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
183 return mask & ACC_MODE(ctx->argv[1]);
185 return mask & ACC_MODE(ctx->argv[2]);
186 case AUDITSC_SOCKETCALL:
187 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
189 return mask & AUDIT_PERM_EXEC;
190 case AUDITSC_OPENAT2:
191 return mask & ACC_MODE((u32)ctx->openat2.flags);
197 static int audit_match_filetype(struct audit_context *ctx, int val)
199 struct audit_names *n;
200 umode_t mode = (umode_t)val;
205 list_for_each_entry(n, &ctx->names_list, list) {
206 if ((n->ino != AUDIT_INO_UNSET) &&
207 ((n->mode & S_IFMT) == mode))
215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
216 * ->first_trees points to its beginning, ->trees - to the current end of data.
217 * ->tree_count is the number of free entries in array pointed to by ->trees.
218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
220 * it's going to remain 1-element for almost any setup) until we free context itself.
221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
224 static void audit_set_auditable(struct audit_context *ctx)
228 ctx->current_state = AUDIT_STATE_RECORD;
232 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
234 struct audit_tree_refs *p = ctx->trees;
235 int left = ctx->tree_count;
238 p->c[--left] = chunk;
239 ctx->tree_count = left;
248 ctx->tree_count = 30;
254 static int grow_tree_refs(struct audit_context *ctx)
256 struct audit_tree_refs *p = ctx->trees;
258 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
264 p->next = ctx->trees;
266 ctx->first_trees = ctx->trees;
267 ctx->tree_count = 31;
271 static void unroll_tree_refs(struct audit_context *ctx,
272 struct audit_tree_refs *p, int count)
274 struct audit_tree_refs *q;
278 /* we started with empty chain */
279 p = ctx->first_trees;
281 /* if the very first allocation has failed, nothing to do */
286 for (q = p; q != ctx->trees; q = q->next, n = 31) {
288 audit_put_chunk(q->c[n]);
292 while (n-- > ctx->tree_count) {
293 audit_put_chunk(q->c[n]);
297 ctx->tree_count = count;
300 static void free_tree_refs(struct audit_context *ctx)
302 struct audit_tree_refs *p, *q;
304 for (p = ctx->first_trees; p; p = q) {
310 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
312 struct audit_tree_refs *p;
318 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
319 for (n = 0; n < 31; n++)
320 if (audit_tree_match(p->c[n], tree))
325 for (n = ctx->tree_count; n < 31; n++)
326 if (audit_tree_match(p->c[n], tree))
332 static int audit_compare_uid(kuid_t uid,
333 struct audit_names *name,
334 struct audit_field *f,
335 struct audit_context *ctx)
337 struct audit_names *n;
341 rc = audit_uid_comparator(uid, f->op, name->uid);
347 list_for_each_entry(n, &ctx->names_list, list) {
348 rc = audit_uid_comparator(uid, f->op, n->uid);
356 static int audit_compare_gid(kgid_t gid,
357 struct audit_names *name,
358 struct audit_field *f,
359 struct audit_context *ctx)
361 struct audit_names *n;
365 rc = audit_gid_comparator(gid, f->op, name->gid);
371 list_for_each_entry(n, &ctx->names_list, list) {
372 rc = audit_gid_comparator(gid, f->op, n->gid);
380 static int audit_field_compare(struct task_struct *tsk,
381 const struct cred *cred,
382 struct audit_field *f,
383 struct audit_context *ctx,
384 struct audit_names *name)
387 /* process to file object comparisons */
388 case AUDIT_COMPARE_UID_TO_OBJ_UID:
389 return audit_compare_uid(cred->uid, name, f, ctx);
390 case AUDIT_COMPARE_GID_TO_OBJ_GID:
391 return audit_compare_gid(cred->gid, name, f, ctx);
392 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
393 return audit_compare_uid(cred->euid, name, f, ctx);
394 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
395 return audit_compare_gid(cred->egid, name, f, ctx);
396 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
397 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
398 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
399 return audit_compare_uid(cred->suid, name, f, ctx);
400 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
401 return audit_compare_gid(cred->sgid, name, f, ctx);
402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
403 return audit_compare_uid(cred->fsuid, name, f, ctx);
404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
405 return audit_compare_gid(cred->fsgid, name, f, ctx);
406 /* uid comparisons */
407 case AUDIT_COMPARE_UID_TO_AUID:
408 return audit_uid_comparator(cred->uid, f->op,
409 audit_get_loginuid(tsk));
410 case AUDIT_COMPARE_UID_TO_EUID:
411 return audit_uid_comparator(cred->uid, f->op, cred->euid);
412 case AUDIT_COMPARE_UID_TO_SUID:
413 return audit_uid_comparator(cred->uid, f->op, cred->suid);
414 case AUDIT_COMPARE_UID_TO_FSUID:
415 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
416 /* auid comparisons */
417 case AUDIT_COMPARE_AUID_TO_EUID:
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
420 case AUDIT_COMPARE_AUID_TO_SUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
423 case AUDIT_COMPARE_AUID_TO_FSUID:
424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 /* euid comparisons */
427 case AUDIT_COMPARE_EUID_TO_SUID:
428 return audit_uid_comparator(cred->euid, f->op, cred->suid);
429 case AUDIT_COMPARE_EUID_TO_FSUID:
430 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
431 /* suid comparisons */
432 case AUDIT_COMPARE_SUID_TO_FSUID:
433 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
434 /* gid comparisons */
435 case AUDIT_COMPARE_GID_TO_EGID:
436 return audit_gid_comparator(cred->gid, f->op, cred->egid);
437 case AUDIT_COMPARE_GID_TO_SGID:
438 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
439 case AUDIT_COMPARE_GID_TO_FSGID:
440 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
441 /* egid comparisons */
442 case AUDIT_COMPARE_EGID_TO_SGID:
443 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
444 case AUDIT_COMPARE_EGID_TO_FSGID:
445 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
446 /* sgid comparison */
447 case AUDIT_COMPARE_SGID_TO_FSGID:
448 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
456 /* Determine if any context name data matches a rule's watch data */
457 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
460 * If task_creation is true, this is an explicit indication that we are
461 * filtering a task rule at task creation time. This and tsk == current are
462 * the only situations where tsk->cred may be accessed without an rcu read lock.
464 static int audit_filter_rules(struct task_struct *tsk,
465 struct audit_krule *rule,
466 struct audit_context *ctx,
467 struct audit_names *name,
468 enum audit_state *state,
471 const struct cred *cred;
474 unsigned int sessionid;
476 if (ctx && rule->prio <= ctx->prio)
479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
481 for (i = 0; i < rule->field_count; i++) {
482 struct audit_field *f = &rule->fields[i];
483 struct audit_names *n;
489 pid = task_tgid_nr(tsk);
490 result = audit_comparator(pid, f->op, f->val);
495 ctx->ppid = task_ppid_nr(tsk);
496 result = audit_comparator(ctx->ppid, f->op, f->val);
500 result = audit_exe_compare(tsk, rule->exe);
501 if (f->op == Audit_not_equal)
505 result = audit_uid_comparator(cred->uid, f->op, f->uid);
508 result = audit_uid_comparator(cred->euid, f->op, f->uid);
511 result = audit_uid_comparator(cred->suid, f->op, f->uid);
514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
517 result = audit_gid_comparator(cred->gid, f->op, f->gid);
518 if (f->op == Audit_equal) {
520 result = groups_search(cred->group_info, f->gid);
521 } else if (f->op == Audit_not_equal) {
523 result = !groups_search(cred->group_info, f->gid);
527 result = audit_gid_comparator(cred->egid, f->op, f->gid);
528 if (f->op == Audit_equal) {
530 result = groups_search(cred->group_info, f->gid);
531 } else if (f->op == Audit_not_equal) {
533 result = !groups_search(cred->group_info, f->gid);
537 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
542 case AUDIT_SESSIONID:
543 sessionid = audit_get_sessionid(tsk);
544 result = audit_comparator(sessionid, f->op, f->val);
547 result = audit_comparator(tsk->personality, f->op, f->val);
551 result = audit_comparator(ctx->arch, f->op, f->val);
555 if (ctx && ctx->return_valid != AUDITSC_INVALID)
556 result = audit_comparator(ctx->return_code, f->op, f->val);
559 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569 audit_comparator(MAJOR(name->rdev), f->op, f->val))
572 list_for_each_entry(n, &ctx->names_list, list) {
573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
583 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584 audit_comparator(MINOR(name->rdev), f->op, f->val))
587 list_for_each_entry(n, &ctx->names_list, list) {
588 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
598 result = audit_comparator(name->ino, f->op, f->val);
600 list_for_each_entry(n, &ctx->names_list, list) {
601 if (audit_comparator(n->ino, f->op, f->val)) {
610 result = audit_uid_comparator(name->uid, f->op, f->uid);
612 list_for_each_entry(n, &ctx->names_list, list) {
613 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
622 result = audit_gid_comparator(name->gid, f->op, f->gid);
624 list_for_each_entry(n, &ctx->names_list, list) {
625 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
634 result = audit_watch_compare(rule->watch,
637 if (f->op == Audit_not_equal)
643 result = match_tree_refs(ctx, rule->tree);
644 if (f->op == Audit_not_equal)
649 result = audit_uid_comparator(audit_get_loginuid(tsk),
652 case AUDIT_LOGINUID_SET:
653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
655 case AUDIT_SADDR_FAM:
656 if (ctx && ctx->sockaddr)
657 result = audit_comparator(ctx->sockaddr->ss_family,
660 case AUDIT_SUBJ_USER:
661 case AUDIT_SUBJ_ROLE:
662 case AUDIT_SUBJ_TYPE:
665 /* NOTE: this may return negative values indicating
666 a temporary error. We simply treat this as a
667 match for now to avoid losing information that
668 may be wanted. An error message will also be
672 /* @tsk should always be equal to
673 * @current with the exception of
674 * fork()/copy_process() in which case
675 * the new @tsk creds are still a dup
676 * of @current's creds so we can still
677 * use security_current_getsecid_subj()
678 * here even though it always refs
681 security_current_getsecid_subj(&sid);
684 result = security_audit_rule_match(sid, f->type,
692 case AUDIT_OBJ_LEV_LOW:
693 case AUDIT_OBJ_LEV_HIGH:
694 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
697 /* Find files that match */
699 result = security_audit_rule_match(
705 list_for_each_entry(n, &ctx->names_list, list) {
706 if (security_audit_rule_match(
716 /* Find ipc objects that match */
717 if (!ctx || ctx->type != AUDIT_IPC)
719 if (security_audit_rule_match(ctx->ipc.osid,
730 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
732 case AUDIT_FILTERKEY:
733 /* ignore this field for filtering */
737 result = audit_match_perm(ctx, f->val);
738 if (f->op == Audit_not_equal)
742 result = audit_match_filetype(ctx, f->val);
743 if (f->op == Audit_not_equal)
746 case AUDIT_FIELD_COMPARE:
747 result = audit_field_compare(tsk, cred, f, ctx, name);
755 if (rule->filterkey) {
756 kfree(ctx->filterkey);
757 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
759 ctx->prio = rule->prio;
761 switch (rule->action) {
763 *state = AUDIT_STATE_DISABLED;
766 *state = AUDIT_STATE_RECORD;
772 /* At process creation time, we can determine if system-call auditing is
773 * completely disabled for this task. Since we only have the task
774 * structure at this point, we can only check uid and gid.
776 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
778 struct audit_entry *e;
779 enum audit_state state;
782 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
783 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
785 if (state == AUDIT_STATE_RECORD)
786 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
792 return AUDIT_STATE_BUILD;
795 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
799 if (val > 0xffffffff)
802 word = AUDIT_WORD(val);
803 if (word >= AUDIT_BITMASK_SIZE)
806 bit = AUDIT_BIT(val);
808 return rule->mask[word] & bit;
812 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
813 * @tsk: associated task
814 * @ctx: audit context
815 * @list: audit filter list
816 * @name: audit_name (can be NULL)
817 * @op: current syscall/uring_op
819 * Run the udit filters specified in @list against @tsk using @ctx,
820 * @name, and @op, as necessary; the caller is responsible for ensuring
821 * that the call is made while the RCU read lock is held. The @name
822 * parameter can be NULL, but all others must be specified.
823 * Returns 1/true if the filter finds a match, 0/false if none are found.
825 static int __audit_filter_op(struct task_struct *tsk,
826 struct audit_context *ctx,
827 struct list_head *list,
828 struct audit_names *name,
831 struct audit_entry *e;
832 enum audit_state state;
834 list_for_each_entry_rcu(e, list, list) {
835 if (audit_in_mask(&e->rule, op) &&
836 audit_filter_rules(tsk, &e->rule, ctx, name,
838 ctx->current_state = state;
846 * audit_filter_uring - apply filters to an io_uring operation
847 * @tsk: associated task
848 * @ctx: audit context
850 static void audit_filter_uring(struct task_struct *tsk,
851 struct audit_context *ctx)
853 if (auditd_test_task(tsk))
857 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
858 NULL, ctx->uring_op);
862 /* At syscall exit time, this filter is called if the audit_state is
863 * not low enough that auditing cannot take place, but is also not
864 * high enough that we already know we have to write an audit record
865 * (i.e., the state is AUDIT_STATE_BUILD).
867 static void audit_filter_syscall(struct task_struct *tsk,
868 struct audit_context *ctx)
870 if (auditd_test_task(tsk))
874 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
880 * Given an audit_name check the inode hash table to see if they match.
881 * Called holding the rcu read lock to protect the use of audit_inode_hash
883 static int audit_filter_inode_name(struct task_struct *tsk,
884 struct audit_names *n,
885 struct audit_context *ctx)
887 int h = audit_hash_ino((u32)n->ino);
888 struct list_head *list = &audit_inode_hash[h];
890 return __audit_filter_op(tsk, ctx, list, n, ctx->major);
893 /* At syscall exit time, this filter is called if any audit_names have been
894 * collected during syscall processing. We only check rules in sublists at hash
895 * buckets applicable to the inode numbers in audit_names.
896 * Regarding audit_state, same rules apply as for audit_filter_syscall().
898 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
900 struct audit_names *n;
902 if (auditd_test_task(tsk))
907 list_for_each_entry(n, &ctx->names_list, list) {
908 if (audit_filter_inode_name(tsk, n, ctx))
914 static inline void audit_proctitle_free(struct audit_context *context)
916 kfree(context->proctitle.value);
917 context->proctitle.value = NULL;
918 context->proctitle.len = 0;
921 static inline void audit_free_module(struct audit_context *context)
923 if (context->type == AUDIT_KERN_MODULE) {
924 kfree(context->module.name);
925 context->module.name = NULL;
928 static inline void audit_free_names(struct audit_context *context)
930 struct audit_names *n, *next;
932 list_for_each_entry_safe(n, next, &context->names_list, list) {
939 context->name_count = 0;
940 path_put(&context->pwd);
941 context->pwd.dentry = NULL;
942 context->pwd.mnt = NULL;
945 static inline void audit_free_aux(struct audit_context *context)
947 struct audit_aux_data *aux;
949 while ((aux = context->aux)) {
950 context->aux = aux->next;
954 while ((aux = context->aux_pids)) {
955 context->aux_pids = aux->next;
958 context->aux_pids = NULL;
962 * audit_reset_context - reset a audit_context structure
963 * @ctx: the audit_context to reset
965 * All fields in the audit_context will be reset to an initial state, all
966 * references held by fields will be dropped, and private memory will be
967 * released. When this function returns the audit_context will be suitable
968 * for reuse, so long as the passed context is not NULL or a dummy context.
970 static void audit_reset_context(struct audit_context *ctx)
975 /* if ctx is non-null, reset the "ctx->context" regardless */
976 ctx->context = AUDIT_CTX_UNUSED;
981 * NOTE: It shouldn't matter in what order we release the fields, so
982 * release them in the order in which they appear in the struct;
983 * this gives us some hope of quickly making sure we are
984 * resetting the audit_context properly.
986 * Other things worth mentioning:
987 * - we don't reset "dummy"
988 * - we don't reset "state", we do reset "current_state"
989 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
990 * - much of this is likely overkill, but play it safe for now
991 * - we really need to work on improving the audit_context struct
994 ctx->current_state = ctx->state;
998 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
999 memset(ctx->argv, 0, sizeof(ctx->argv));
1000 ctx->return_code = 0;
1001 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1002 ctx->return_valid = AUDITSC_INVALID;
1003 audit_free_names(ctx);
1004 if (ctx->state != AUDIT_STATE_RECORD) {
1005 kfree(ctx->filterkey);
1006 ctx->filterkey = NULL;
1008 audit_free_aux(ctx);
1009 kfree(ctx->sockaddr);
1010 ctx->sockaddr = NULL;
1011 ctx->sockaddr_len = 0;
1013 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1014 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1015 ctx->personality = 0;
1017 ctx->target_pid = 0;
1018 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1019 ctx->target_sessionid = 0;
1020 ctx->target_sid = 0;
1021 ctx->target_comm[0] = '\0';
1022 unroll_tree_refs(ctx, NULL, 0);
1023 WARN_ON(!list_empty(&ctx->killed_trees));
1024 audit_free_module(ctx);
1026 ctx->type = 0; /* reset last for audit_free_*() */
1029 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1031 struct audit_context *context;
1033 context = kzalloc(sizeof(*context), GFP_KERNEL);
1036 context->context = AUDIT_CTX_UNUSED;
1037 context->state = state;
1038 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1039 INIT_LIST_HEAD(&context->killed_trees);
1040 INIT_LIST_HEAD(&context->names_list);
1041 context->fds[0] = -1;
1042 context->return_valid = AUDITSC_INVALID;
1047 * audit_alloc - allocate an audit context block for a task
1050 * Filter on the task information and allocate a per-task audit context
1051 * if necessary. Doing so turns on system call auditing for the
1052 * specified task. This is called from copy_process, so no lock is
1055 int audit_alloc(struct task_struct *tsk)
1057 struct audit_context *context;
1058 enum audit_state state;
1061 if (likely(!audit_ever_enabled))
1064 state = audit_filter_task(tsk, &key);
1065 if (state == AUDIT_STATE_DISABLED) {
1066 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1070 context = audit_alloc_context(state);
1073 audit_log_lost("out of memory in audit_alloc");
1076 context->filterkey = key;
1078 audit_set_context(tsk, context);
1079 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1083 static inline void audit_free_context(struct audit_context *context)
1085 /* resetting is extra work, but it is likely just noise */
1086 audit_reset_context(context);
1087 audit_proctitle_free(context);
1088 free_tree_refs(context);
1089 kfree(context->filterkey);
1093 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1094 kuid_t auid, kuid_t uid, unsigned int sessionid,
1095 u32 sid, char *comm)
1097 struct audit_buffer *ab;
1102 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1106 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1107 from_kuid(&init_user_ns, auid),
1108 from_kuid(&init_user_ns, uid), sessionid);
1110 if (security_secid_to_secctx(sid, &ctx, &len)) {
1111 audit_log_format(ab, " obj=(none)");
1114 audit_log_format(ab, " obj=%s", ctx);
1115 security_release_secctx(ctx, len);
1118 audit_log_format(ab, " ocomm=");
1119 audit_log_untrustedstring(ab, comm);
1125 static void audit_log_execve_info(struct audit_context *context,
1126 struct audit_buffer **ab)
1140 const char __user *p = (const char __user *)current->mm->arg_start;
1142 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1143 * data we put in the audit record for this argument (see the
1144 * code below) ... at this point in time 96 is plenty */
1147 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1148 * current value of 7500 is not as important as the fact that it
1149 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1150 * room if we go over a little bit in the logging below */
1151 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1152 len_max = MAX_EXECVE_AUDIT_LEN;
1154 /* scratch buffer to hold the userspace args */
1155 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1157 audit_panic("out of memory for argv string");
1162 audit_log_format(*ab, "argc=%d", context->execve.argc);
1167 require_data = true;
1172 /* NOTE: we don't ever want to trust this value for anything
1173 * serious, but the audit record format insists we
1174 * provide an argument length for really long arguments,
1175 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1176 * to use strncpy_from_user() to obtain this value for
1177 * recording in the log, although we don't use it
1178 * anywhere here to avoid a double-fetch problem */
1180 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1182 /* read more data from userspace */
1184 /* can we make more room in the buffer? */
1185 if (buf != buf_head) {
1186 memmove(buf_head, buf, len_buf);
1190 /* fetch as much as we can of the argument */
1191 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1193 if (len_tmp == -EFAULT) {
1194 /* unable to copy from userspace */
1195 send_sig(SIGKILL, current, 0);
1197 } else if (len_tmp == (len_max - len_buf)) {
1198 /* buffer is not large enough */
1199 require_data = true;
1200 /* NOTE: if we are going to span multiple
1201 * buffers force the encoding so we stand
1202 * a chance at a sane len_full value and
1203 * consistent record encoding */
1205 len_full = len_full * 2;
1208 require_data = false;
1210 encode = audit_string_contains_control(
1212 /* try to use a trusted value for len_full */
1213 if (len_full < len_max)
1214 len_full = (encode ?
1215 len_tmp * 2 : len_tmp);
1219 buf_head[len_buf] = '\0';
1221 /* length of the buffer in the audit record? */
1222 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1225 /* write as much as we can to the audit log */
1227 /* NOTE: some magic numbers here - basically if we
1228 * can't fit a reasonable amount of data into the
1229 * existing audit buffer, flush it and start with
1231 if ((sizeof(abuf) + 8) > len_rem) {
1234 *ab = audit_log_start(context,
1235 GFP_KERNEL, AUDIT_EXECVE);
1240 /* create the non-arg portion of the arg record */
1242 if (require_data || (iter > 0) ||
1243 ((len_abuf + sizeof(abuf)) > len_rem)) {
1245 len_tmp += snprintf(&abuf[len_tmp],
1246 sizeof(abuf) - len_tmp,
1250 len_tmp += snprintf(&abuf[len_tmp],
1251 sizeof(abuf) - len_tmp,
1252 " a%d[%d]=", arg, iter++);
1254 len_tmp += snprintf(&abuf[len_tmp],
1255 sizeof(abuf) - len_tmp,
1257 WARN_ON(len_tmp >= sizeof(abuf));
1258 abuf[sizeof(abuf) - 1] = '\0';
1260 /* log the arg in the audit record */
1261 audit_log_format(*ab, "%s", abuf);
1265 if (len_abuf > len_rem)
1266 len_tmp = len_rem / 2; /* encoding */
1267 audit_log_n_hex(*ab, buf, len_tmp);
1268 len_rem -= len_tmp * 2;
1269 len_abuf -= len_tmp * 2;
1271 if (len_abuf > len_rem)
1272 len_tmp = len_rem - 2; /* quotes */
1273 audit_log_n_string(*ab, buf, len_tmp);
1274 len_rem -= len_tmp + 2;
1275 /* don't subtract the "2" because we still need
1276 * to add quotes to the remaining string */
1277 len_abuf -= len_tmp;
1283 /* ready to move to the next argument? */
1284 if ((len_buf == 0) && !require_data) {
1288 require_data = true;
1291 } while (arg < context->execve.argc);
1293 /* NOTE: the caller handles the final audit_log_end() call */
1299 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1302 if (cap_isclear(*cap)) {
1303 audit_log_format(ab, " %s=0", prefix);
1306 audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1309 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1311 if (name->fcap_ver == -1) {
1312 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1315 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1316 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1317 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1318 name->fcap.fE, name->fcap_ver,
1319 from_kuid(&init_user_ns, name->fcap.rootid));
1322 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1324 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1325 const struct timespec64 *tk = &context->time.tk_injoffset;
1326 static const char * const ntp_name[] = {
1336 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1337 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1338 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1340 *ab = audit_log_start(context,
1342 AUDIT_TIME_ADJNTPVAL);
1346 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1348 ntp->vals[type].oldval,
1349 ntp->vals[type].newval);
1355 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1357 *ab = audit_log_start(context, GFP_KERNEL,
1358 AUDIT_TIME_INJOFFSET);
1362 audit_log_format(*ab, "sec=%lli nsec=%li",
1363 (long long)tk->tv_sec, tk->tv_nsec);
1369 static void show_special(struct audit_context *context, int *call_panic)
1371 struct audit_buffer *ab;
1374 ab = audit_log_start(context, GFP_KERNEL, context->type);
1378 switch (context->type) {
1379 case AUDIT_SOCKETCALL: {
1380 int nargs = context->socketcall.nargs;
1382 audit_log_format(ab, "nargs=%d", nargs);
1383 for (i = 0; i < nargs; i++)
1384 audit_log_format(ab, " a%d=%lx", i,
1385 context->socketcall.args[i]);
1388 u32 osid = context->ipc.osid;
1390 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1391 from_kuid(&init_user_ns, context->ipc.uid),
1392 from_kgid(&init_user_ns, context->ipc.gid),
1398 if (security_secid_to_secctx(osid, &ctx, &len)) {
1399 audit_log_format(ab, " osid=%u", osid);
1402 audit_log_format(ab, " obj=%s", ctx);
1403 security_release_secctx(ctx, len);
1406 if (context->ipc.has_perm) {
1408 ab = audit_log_start(context, GFP_KERNEL,
1409 AUDIT_IPC_SET_PERM);
1412 audit_log_format(ab,
1413 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1414 context->ipc.qbytes,
1415 context->ipc.perm_uid,
1416 context->ipc.perm_gid,
1417 context->ipc.perm_mode);
1421 audit_log_format(ab,
1422 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1423 "mq_msgsize=%ld mq_curmsgs=%ld",
1424 context->mq_open.oflag, context->mq_open.mode,
1425 context->mq_open.attr.mq_flags,
1426 context->mq_open.attr.mq_maxmsg,
1427 context->mq_open.attr.mq_msgsize,
1428 context->mq_open.attr.mq_curmsgs);
1430 case AUDIT_MQ_SENDRECV:
1431 audit_log_format(ab,
1432 "mqdes=%d msg_len=%zd msg_prio=%u "
1433 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1434 context->mq_sendrecv.mqdes,
1435 context->mq_sendrecv.msg_len,
1436 context->mq_sendrecv.msg_prio,
1437 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1438 context->mq_sendrecv.abs_timeout.tv_nsec);
1440 case AUDIT_MQ_NOTIFY:
1441 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1442 context->mq_notify.mqdes,
1443 context->mq_notify.sigev_signo);
1445 case AUDIT_MQ_GETSETATTR: {
1446 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1448 audit_log_format(ab,
1449 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1451 context->mq_getsetattr.mqdes,
1452 attr->mq_flags, attr->mq_maxmsg,
1453 attr->mq_msgsize, attr->mq_curmsgs);
1456 audit_log_format(ab, "pid=%d", context->capset.pid);
1457 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1458 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1459 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1460 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1463 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1464 context->mmap.flags);
1467 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1468 context->openat2.flags,
1469 context->openat2.mode,
1470 context->openat2.resolve);
1473 audit_log_execve_info(context, &ab);
1475 case AUDIT_KERN_MODULE:
1476 audit_log_format(ab, "name=");
1477 if (context->module.name) {
1478 audit_log_untrustedstring(ab, context->module.name);
1480 audit_log_format(ab, "(null)");
1483 case AUDIT_TIME_ADJNTPVAL:
1484 case AUDIT_TIME_INJOFFSET:
1485 /* this call deviates from the rest, eating the buffer */
1486 audit_log_time(context, &ab);
1492 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1494 char *end = proctitle + len - 1;
1496 while (end > proctitle && !isprint(*end))
1499 /* catch the case where proctitle is only 1 non-print character */
1500 len = end - proctitle + 1;
1501 len -= isprint(proctitle[len-1]) == 0;
1506 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1507 * @context: audit_context for the task
1508 * @n: audit_names structure with reportable details
1509 * @path: optional path to report instead of audit_names->name
1510 * @record_num: record number to report when handling a list of names
1511 * @call_panic: optional pointer to int that will be updated if secid fails
1513 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1514 const struct path *path, int record_num, int *call_panic)
1516 struct audit_buffer *ab;
1518 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1522 audit_log_format(ab, "item=%d", record_num);
1525 audit_log_d_path(ab, " name=", path);
1527 switch (n->name_len) {
1528 case AUDIT_NAME_FULL:
1529 /* log the full path */
1530 audit_log_format(ab, " name=");
1531 audit_log_untrustedstring(ab, n->name->name);
1534 /* name was specified as a relative path and the
1535 * directory component is the cwd
1537 if (context->pwd.dentry && context->pwd.mnt)
1538 audit_log_d_path(ab, " name=", &context->pwd);
1540 audit_log_format(ab, " name=(null)");
1543 /* log the name's directory component */
1544 audit_log_format(ab, " name=");
1545 audit_log_n_untrustedstring(ab, n->name->name,
1549 audit_log_format(ab, " name=(null)");
1551 if (n->ino != AUDIT_INO_UNSET)
1552 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1557 from_kuid(&init_user_ns, n->uid),
1558 from_kgid(&init_user_ns, n->gid),
1565 if (security_secid_to_secctx(
1566 n->osid, &ctx, &len)) {
1567 audit_log_format(ab, " osid=%u", n->osid);
1571 audit_log_format(ab, " obj=%s", ctx);
1572 security_release_secctx(ctx, len);
1576 /* log the audit_names record type */
1578 case AUDIT_TYPE_NORMAL:
1579 audit_log_format(ab, " nametype=NORMAL");
1581 case AUDIT_TYPE_PARENT:
1582 audit_log_format(ab, " nametype=PARENT");
1584 case AUDIT_TYPE_CHILD_DELETE:
1585 audit_log_format(ab, " nametype=DELETE");
1587 case AUDIT_TYPE_CHILD_CREATE:
1588 audit_log_format(ab, " nametype=CREATE");
1591 audit_log_format(ab, " nametype=UNKNOWN");
1595 audit_log_fcaps(ab, n);
1599 static void audit_log_proctitle(void)
1603 char *msg = "(null)";
1604 int len = strlen(msg);
1605 struct audit_context *context = audit_context();
1606 struct audit_buffer *ab;
1608 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1610 return; /* audit_panic or being filtered */
1612 audit_log_format(ab, "proctitle=");
1615 if (!context->proctitle.value) {
1616 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1619 /* Historically called this from procfs naming */
1620 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1625 res = audit_proctitle_rtrim(buf, res);
1630 context->proctitle.value = buf;
1631 context->proctitle.len = res;
1633 msg = context->proctitle.value;
1634 len = context->proctitle.len;
1636 audit_log_n_untrustedstring(ab, msg, len);
1641 * audit_log_uring - generate a AUDIT_URINGOP record
1642 * @ctx: the audit context
1644 static void audit_log_uring(struct audit_context *ctx)
1646 struct audit_buffer *ab;
1647 const struct cred *cred;
1649 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1652 cred = current_cred();
1653 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1654 if (ctx->return_valid != AUDITSC_INVALID)
1655 audit_log_format(ab, " success=%s exit=%ld",
1656 (ctx->return_valid == AUDITSC_SUCCESS ?
1659 audit_log_format(ab,
1661 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1662 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1664 task_ppid_nr(current), task_tgid_nr(current),
1665 from_kuid(&init_user_ns, cred->uid),
1666 from_kgid(&init_user_ns, cred->gid),
1667 from_kuid(&init_user_ns, cred->euid),
1668 from_kuid(&init_user_ns, cred->suid),
1669 from_kuid(&init_user_ns, cred->fsuid),
1670 from_kgid(&init_user_ns, cred->egid),
1671 from_kgid(&init_user_ns, cred->sgid),
1672 from_kgid(&init_user_ns, cred->fsgid));
1673 audit_log_task_context(ab);
1674 audit_log_key(ab, ctx->filterkey);
1678 static void audit_log_exit(void)
1680 int i, call_panic = 0;
1681 struct audit_context *context = audit_context();
1682 struct audit_buffer *ab;
1683 struct audit_aux_data *aux;
1684 struct audit_names *n;
1686 context->personality = current->personality;
1688 switch (context->context) {
1689 case AUDIT_CTX_SYSCALL:
1690 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1693 audit_log_format(ab, "arch=%x syscall=%d",
1694 context->arch, context->major);
1695 if (context->personality != PER_LINUX)
1696 audit_log_format(ab, " per=%lx", context->personality);
1697 if (context->return_valid != AUDITSC_INVALID)
1698 audit_log_format(ab, " success=%s exit=%ld",
1699 (context->return_valid == AUDITSC_SUCCESS ?
1701 context->return_code);
1702 audit_log_format(ab,
1703 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1708 context->name_count);
1709 audit_log_task_info(ab);
1710 audit_log_key(ab, context->filterkey);
1713 case AUDIT_CTX_URING:
1714 audit_log_uring(context);
1721 for (aux = context->aux; aux; aux = aux->next) {
1723 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1725 continue; /* audit_panic has been called */
1727 switch (aux->type) {
1729 case AUDIT_BPRM_FCAPS: {
1730 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1732 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1733 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1734 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1735 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1736 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1737 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1738 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1739 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1740 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1741 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1742 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1743 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1744 audit_log_format(ab, " frootid=%d",
1745 from_kuid(&init_user_ns,
1754 show_special(context, &call_panic);
1756 if (context->fds[0] >= 0) {
1757 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1759 audit_log_format(ab, "fd0=%d fd1=%d",
1760 context->fds[0], context->fds[1]);
1765 if (context->sockaddr_len) {
1766 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1768 audit_log_format(ab, "saddr=");
1769 audit_log_n_hex(ab, (void *)context->sockaddr,
1770 context->sockaddr_len);
1775 for (aux = context->aux_pids; aux; aux = aux->next) {
1776 struct audit_aux_data_pids *axs = (void *)aux;
1778 for (i = 0; i < axs->pid_count; i++)
1779 if (audit_log_pid_context(context, axs->target_pid[i],
1780 axs->target_auid[i],
1782 axs->target_sessionid[i],
1784 axs->target_comm[i]))
1788 if (context->target_pid &&
1789 audit_log_pid_context(context, context->target_pid,
1790 context->target_auid, context->target_uid,
1791 context->target_sessionid,
1792 context->target_sid, context->target_comm))
1795 if (context->pwd.dentry && context->pwd.mnt) {
1796 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1798 audit_log_d_path(ab, "cwd=", &context->pwd);
1804 list_for_each_entry(n, &context->names_list, list) {
1807 audit_log_name(context, n, NULL, i++, &call_panic);
1810 if (context->context == AUDIT_CTX_SYSCALL)
1811 audit_log_proctitle();
1813 /* Send end of event record to help user space know we are finished */
1814 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1818 audit_panic("error in audit_log_exit()");
1822 * __audit_free - free a per-task audit context
1823 * @tsk: task whose audit context block to free
1825 * Called from copy_process, do_exit, and the io_uring code
1827 void __audit_free(struct task_struct *tsk)
1829 struct audit_context *context = tsk->audit_context;
1834 /* this may generate CONFIG_CHANGE records */
1835 if (!list_empty(&context->killed_trees))
1836 audit_kill_trees(context);
1838 /* We are called either by do_exit() or the fork() error handling code;
1839 * in the former case tsk == current and in the latter tsk is a
1840 * random task_struct that doesn't have any meaningful data we
1841 * need to log via audit_log_exit().
1843 if (tsk == current && !context->dummy) {
1844 context->return_valid = AUDITSC_INVALID;
1845 context->return_code = 0;
1846 if (context->context == AUDIT_CTX_SYSCALL) {
1847 audit_filter_syscall(tsk, context);
1848 audit_filter_inodes(tsk, context);
1849 if (context->current_state == AUDIT_STATE_RECORD)
1851 } else if (context->context == AUDIT_CTX_URING) {
1852 /* TODO: verify this case is real and valid */
1853 audit_filter_uring(tsk, context);
1854 audit_filter_inodes(tsk, context);
1855 if (context->current_state == AUDIT_STATE_RECORD)
1856 audit_log_uring(context);
1860 audit_set_context(tsk, NULL);
1861 audit_free_context(context);
1865 * audit_return_fixup - fixup the return codes in the audit_context
1866 * @ctx: the audit_context
1867 * @success: true/false value to indicate if the operation succeeded or not
1868 * @code: operation return code
1870 * We need to fixup the return code in the audit logs if the actual return
1871 * codes are later going to be fixed by the arch specific signal handlers.
1873 static void audit_return_fixup(struct audit_context *ctx,
1874 int success, long code)
1877 * This is actually a test for:
1878 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1879 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1881 * but is faster than a bunch of ||
1883 if (unlikely(code <= -ERESTARTSYS) &&
1884 (code >= -ERESTART_RESTARTBLOCK) &&
1885 (code != -ENOIOCTLCMD))
1886 ctx->return_code = -EINTR;
1888 ctx->return_code = code;
1889 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1893 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1894 * @op: the io_uring opcode
1896 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1897 * operations. This function should only ever be called from
1898 * audit_uring_entry() as we rely on the audit context checking present in that
1901 void __audit_uring_entry(u8 op)
1903 struct audit_context *ctx = audit_context();
1905 if (ctx->state == AUDIT_STATE_DISABLED)
1909 * NOTE: It's possible that we can be called from the process' context
1910 * before it returns to userspace, and before audit_syscall_exit()
1911 * is called. In this case there is not much to do, just record
1912 * the io_uring details and return.
1915 if (ctx->context == AUDIT_CTX_SYSCALL)
1918 ctx->dummy = !audit_n_rules;
1919 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1922 ctx->context = AUDIT_CTX_URING;
1923 ctx->current_state = ctx->state;
1924 ktime_get_coarse_real_ts64(&ctx->ctime);
1928 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1929 * @success: true/false value to indicate if the operation succeeded or not
1930 * @code: operation return code
1932 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1933 * operations. This function should only ever be called from
1934 * audit_uring_exit() as we rely on the audit context checking present in that
1937 void __audit_uring_exit(int success, long code)
1939 struct audit_context *ctx = audit_context();
1942 if (ctx->context != AUDIT_CTX_URING)
1947 audit_return_fixup(ctx, success, code);
1948 if (ctx->context == AUDIT_CTX_SYSCALL) {
1950 * NOTE: See the note in __audit_uring_entry() about the case
1951 * where we may be called from process context before we
1952 * return to userspace via audit_syscall_exit(). In this
1953 * case we simply emit a URINGOP record and bail, the
1954 * normal syscall exit handling will take care of
1956 * It is also worth mentioning that when we are called,
1957 * the current process creds may differ from the creds
1958 * used during the normal syscall processing; keep that
1959 * in mind if/when we move the record generation code.
1963 * We need to filter on the syscall info here to decide if we
1964 * should emit a URINGOP record. I know it seems odd but this
1965 * solves the problem where users have a filter to block *all*
1966 * syscall records in the "exit" filter; we want to preserve
1967 * the behavior here.
1969 audit_filter_syscall(current, ctx);
1970 if (ctx->current_state != AUDIT_STATE_RECORD)
1971 audit_filter_uring(current, ctx);
1972 audit_filter_inodes(current, ctx);
1973 if (ctx->current_state != AUDIT_STATE_RECORD)
1976 audit_log_uring(ctx);
1980 /* this may generate CONFIG_CHANGE records */
1981 if (!list_empty(&ctx->killed_trees))
1982 audit_kill_trees(ctx);
1984 /* run through both filters to ensure we set the filterkey properly */
1985 audit_filter_uring(current, ctx);
1986 audit_filter_inodes(current, ctx);
1987 if (ctx->current_state != AUDIT_STATE_RECORD)
1992 audit_reset_context(ctx);
1996 * __audit_syscall_entry - fill in an audit record at syscall entry
1997 * @major: major syscall type (function)
1998 * @a1: additional syscall register 1
1999 * @a2: additional syscall register 2
2000 * @a3: additional syscall register 3
2001 * @a4: additional syscall register 4
2003 * Fill in audit context at syscall entry. This only happens if the
2004 * audit context was created when the task was created and the state or
2005 * filters demand the audit context be built. If the state from the
2006 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2007 * then the record will be written at syscall exit time (otherwise, it
2008 * will only be written if another part of the kernel requests that it
2011 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2012 unsigned long a3, unsigned long a4)
2014 struct audit_context *context = audit_context();
2015 enum audit_state state;
2017 if (!audit_enabled || !context)
2020 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2021 WARN_ON(context->name_count);
2022 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2023 audit_panic("unrecoverable error in audit_syscall_entry()");
2027 state = context->state;
2028 if (state == AUDIT_STATE_DISABLED)
2031 context->dummy = !audit_n_rules;
2032 if (!context->dummy && state == AUDIT_STATE_BUILD) {
2034 if (auditd_test_task(current))
2038 context->arch = syscall_get_arch(current);
2039 context->major = major;
2040 context->argv[0] = a1;
2041 context->argv[1] = a2;
2042 context->argv[2] = a3;
2043 context->argv[3] = a4;
2044 context->context = AUDIT_CTX_SYSCALL;
2045 context->current_state = state;
2046 ktime_get_coarse_real_ts64(&context->ctime);
2050 * __audit_syscall_exit - deallocate audit context after a system call
2051 * @success: success value of the syscall
2052 * @return_code: return value of the syscall
2054 * Tear down after system call. If the audit context has been marked as
2055 * auditable (either because of the AUDIT_STATE_RECORD state from
2056 * filtering, or because some other part of the kernel wrote an audit
2057 * message), then write out the syscall information. In call cases,
2058 * free the names stored from getname().
2060 void __audit_syscall_exit(int success, long return_code)
2062 struct audit_context *context = audit_context();
2064 if (!context || context->dummy ||
2065 context->context != AUDIT_CTX_SYSCALL)
2068 /* this may generate CONFIG_CHANGE records */
2069 if (!list_empty(&context->killed_trees))
2070 audit_kill_trees(context);
2072 audit_return_fixup(context, success, return_code);
2073 /* run through both filters to ensure we set the filterkey properly */
2074 audit_filter_syscall(current, context);
2075 audit_filter_inodes(current, context);
2076 if (context->current_state != AUDIT_STATE_RECORD)
2082 audit_reset_context(context);
2085 static inline void handle_one(const struct inode *inode)
2087 struct audit_context *context;
2088 struct audit_tree_refs *p;
2089 struct audit_chunk *chunk;
2092 if (likely(!inode->i_fsnotify_marks))
2094 context = audit_context();
2096 count = context->tree_count;
2098 chunk = audit_tree_lookup(inode);
2102 if (likely(put_tree_ref(context, chunk)))
2104 if (unlikely(!grow_tree_refs(context))) {
2105 pr_warn("out of memory, audit has lost a tree reference\n");
2106 audit_set_auditable(context);
2107 audit_put_chunk(chunk);
2108 unroll_tree_refs(context, p, count);
2111 put_tree_ref(context, chunk);
2114 static void handle_path(const struct dentry *dentry)
2116 struct audit_context *context;
2117 struct audit_tree_refs *p;
2118 const struct dentry *d, *parent;
2119 struct audit_chunk *drop;
2123 context = audit_context();
2125 count = context->tree_count;
2130 seq = read_seqbegin(&rename_lock);
2132 struct inode *inode = d_backing_inode(d);
2134 if (inode && unlikely(inode->i_fsnotify_marks)) {
2135 struct audit_chunk *chunk;
2137 chunk = audit_tree_lookup(inode);
2139 if (unlikely(!put_tree_ref(context, chunk))) {
2145 parent = d->d_parent;
2150 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2153 /* just a race with rename */
2154 unroll_tree_refs(context, p, count);
2157 audit_put_chunk(drop);
2158 if (grow_tree_refs(context)) {
2159 /* OK, got more space */
2160 unroll_tree_refs(context, p, count);
2164 pr_warn("out of memory, audit has lost a tree reference\n");
2165 unroll_tree_refs(context, p, count);
2166 audit_set_auditable(context);
2172 static struct audit_names *audit_alloc_name(struct audit_context *context,
2175 struct audit_names *aname;
2177 if (context->name_count < AUDIT_NAMES) {
2178 aname = &context->preallocated_names[context->name_count];
2179 memset(aname, 0, sizeof(*aname));
2181 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2184 aname->should_free = true;
2187 aname->ino = AUDIT_INO_UNSET;
2189 list_add_tail(&aname->list, &context->names_list);
2191 context->name_count++;
2192 if (!context->pwd.dentry)
2193 get_fs_pwd(current->fs, &context->pwd);
2198 * __audit_reusename - fill out filename with info from existing entry
2199 * @uptr: userland ptr to pathname
2201 * Search the audit_names list for the current audit context. If there is an
2202 * existing entry with a matching "uptr" then return the filename
2203 * associated with that audit_name. If not, return NULL.
2206 __audit_reusename(const __user char *uptr)
2208 struct audit_context *context = audit_context();
2209 struct audit_names *n;
2211 list_for_each_entry(n, &context->names_list, list) {
2214 if (n->name->uptr == uptr) {
2223 * __audit_getname - add a name to the list
2224 * @name: name to add
2226 * Add a name to the list of audit names for this context.
2227 * Called from fs/namei.c:getname().
2229 void __audit_getname(struct filename *name)
2231 struct audit_context *context = audit_context();
2232 struct audit_names *n;
2234 if (context->context == AUDIT_CTX_UNUSED)
2237 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2242 n->name_len = AUDIT_NAME_FULL;
2247 static inline int audit_copy_fcaps(struct audit_names *name,
2248 const struct dentry *dentry)
2250 struct cpu_vfs_cap_data caps;
2256 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2260 name->fcap.permitted = caps.permitted;
2261 name->fcap.inheritable = caps.inheritable;
2262 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2263 name->fcap.rootid = caps.rootid;
2264 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2265 VFS_CAP_REVISION_SHIFT;
2270 /* Copy inode data into an audit_names. */
2271 static void audit_copy_inode(struct audit_names *name,
2272 const struct dentry *dentry,
2273 struct inode *inode, unsigned int flags)
2275 name->ino = inode->i_ino;
2276 name->dev = inode->i_sb->s_dev;
2277 name->mode = inode->i_mode;
2278 name->uid = inode->i_uid;
2279 name->gid = inode->i_gid;
2280 name->rdev = inode->i_rdev;
2281 security_inode_getsecid(inode, &name->osid);
2282 if (flags & AUDIT_INODE_NOEVAL) {
2283 name->fcap_ver = -1;
2286 audit_copy_fcaps(name, dentry);
2290 * __audit_inode - store the inode and device from a lookup
2291 * @name: name being audited
2292 * @dentry: dentry being audited
2293 * @flags: attributes for this particular entry
2295 void __audit_inode(struct filename *name, const struct dentry *dentry,
2298 struct audit_context *context = audit_context();
2299 struct inode *inode = d_backing_inode(dentry);
2300 struct audit_names *n;
2301 bool parent = flags & AUDIT_INODE_PARENT;
2302 struct audit_entry *e;
2303 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2306 if (context->context == AUDIT_CTX_UNUSED)
2310 list_for_each_entry_rcu(e, list, list) {
2311 for (i = 0; i < e->rule.field_count; i++) {
2312 struct audit_field *f = &e->rule.fields[i];
2314 if (f->type == AUDIT_FSTYPE
2315 && audit_comparator(inode->i_sb->s_magic,
2317 && e->rule.action == AUDIT_NEVER) {
2329 * If we have a pointer to an audit_names entry already, then we can
2330 * just use it directly if the type is correct.
2335 if (n->type == AUDIT_TYPE_PARENT ||
2336 n->type == AUDIT_TYPE_UNKNOWN)
2339 if (n->type != AUDIT_TYPE_PARENT)
2344 list_for_each_entry_reverse(n, &context->names_list, list) {
2346 /* valid inode number, use that for the comparison */
2347 if (n->ino != inode->i_ino ||
2348 n->dev != inode->i_sb->s_dev)
2350 } else if (n->name) {
2351 /* inode number has not been set, check the name */
2352 if (strcmp(n->name->name, name->name))
2355 /* no inode and no name (?!) ... this is odd ... */
2358 /* match the correct record type */
2360 if (n->type == AUDIT_TYPE_PARENT ||
2361 n->type == AUDIT_TYPE_UNKNOWN)
2364 if (n->type != AUDIT_TYPE_PARENT)
2370 /* unable to find an entry with both a matching name and type */
2371 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2381 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2382 n->type = AUDIT_TYPE_PARENT;
2383 if (flags & AUDIT_INODE_HIDDEN)
2386 n->name_len = AUDIT_NAME_FULL;
2387 n->type = AUDIT_TYPE_NORMAL;
2389 handle_path(dentry);
2390 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2393 void __audit_file(const struct file *file)
2395 __audit_inode(NULL, file->f_path.dentry, 0);
2399 * __audit_inode_child - collect inode info for created/removed objects
2400 * @parent: inode of dentry parent
2401 * @dentry: dentry being audited
2402 * @type: AUDIT_TYPE_* value that we're looking for
2404 * For syscalls that create or remove filesystem objects, audit_inode
2405 * can only collect information for the filesystem object's parent.
2406 * This call updates the audit context with the child's information.
2407 * Syscalls that create a new filesystem object must be hooked after
2408 * the object is created. Syscalls that remove a filesystem object
2409 * must be hooked prior, in order to capture the target inode during
2410 * unsuccessful attempts.
2412 void __audit_inode_child(struct inode *parent,
2413 const struct dentry *dentry,
2414 const unsigned char type)
2416 struct audit_context *context = audit_context();
2417 struct inode *inode = d_backing_inode(dentry);
2418 const struct qstr *dname = &dentry->d_name;
2419 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2420 struct audit_entry *e;
2421 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2424 if (context->context == AUDIT_CTX_UNUSED)
2428 list_for_each_entry_rcu(e, list, list) {
2429 for (i = 0; i < e->rule.field_count; i++) {
2430 struct audit_field *f = &e->rule.fields[i];
2432 if (f->type == AUDIT_FSTYPE
2433 && audit_comparator(parent->i_sb->s_magic,
2435 && e->rule.action == AUDIT_NEVER) {
2446 /* look for a parent entry first */
2447 list_for_each_entry(n, &context->names_list, list) {
2449 (n->type != AUDIT_TYPE_PARENT &&
2450 n->type != AUDIT_TYPE_UNKNOWN))
2453 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2454 !audit_compare_dname_path(dname,
2455 n->name->name, n->name_len)) {
2456 if (n->type == AUDIT_TYPE_UNKNOWN)
2457 n->type = AUDIT_TYPE_PARENT;
2465 /* is there a matching child entry? */
2466 list_for_each_entry(n, &context->names_list, list) {
2467 /* can only match entries that have a name */
2469 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2472 if (!strcmp(dname->name, n->name->name) ||
2473 !audit_compare_dname_path(dname, n->name->name,
2475 found_parent->name_len :
2477 if (n->type == AUDIT_TYPE_UNKNOWN)
2484 if (!found_parent) {
2485 /* create a new, "anonymous" parent record */
2486 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2489 audit_copy_inode(n, NULL, parent, 0);
2493 found_child = audit_alloc_name(context, type);
2497 /* Re-use the name belonging to the slot for a matching parent
2498 * directory. All names for this context are relinquished in
2499 * audit_free_names() */
2501 found_child->name = found_parent->name;
2502 found_child->name_len = AUDIT_NAME_FULL;
2503 found_child->name->refcnt++;
2508 audit_copy_inode(found_child, dentry, inode, 0);
2510 found_child->ino = AUDIT_INO_UNSET;
2512 EXPORT_SYMBOL_GPL(__audit_inode_child);
2515 * auditsc_get_stamp - get local copies of audit_context values
2516 * @ctx: audit_context for the task
2517 * @t: timespec64 to store time recorded in the audit_context
2518 * @serial: serial value that is recorded in the audit_context
2520 * Also sets the context as auditable.
2522 int auditsc_get_stamp(struct audit_context *ctx,
2523 struct timespec64 *t, unsigned int *serial)
2525 if (ctx->context == AUDIT_CTX_UNUSED)
2528 ctx->serial = audit_serial();
2529 t->tv_sec = ctx->ctime.tv_sec;
2530 t->tv_nsec = ctx->ctime.tv_nsec;
2531 *serial = ctx->serial;
2534 ctx->current_state = AUDIT_STATE_RECORD;
2540 * __audit_mq_open - record audit data for a POSIX MQ open
2543 * @attr: queue attributes
2546 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2548 struct audit_context *context = audit_context();
2551 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2553 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2555 context->mq_open.oflag = oflag;
2556 context->mq_open.mode = mode;
2558 context->type = AUDIT_MQ_OPEN;
2562 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2563 * @mqdes: MQ descriptor
2564 * @msg_len: Message length
2565 * @msg_prio: Message priority
2566 * @abs_timeout: Message timeout in absolute time
2569 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2570 const struct timespec64 *abs_timeout)
2572 struct audit_context *context = audit_context();
2573 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2576 memcpy(p, abs_timeout, sizeof(*p));
2578 memset(p, 0, sizeof(*p));
2580 context->mq_sendrecv.mqdes = mqdes;
2581 context->mq_sendrecv.msg_len = msg_len;
2582 context->mq_sendrecv.msg_prio = msg_prio;
2584 context->type = AUDIT_MQ_SENDRECV;
2588 * __audit_mq_notify - record audit data for a POSIX MQ notify
2589 * @mqdes: MQ descriptor
2590 * @notification: Notification event
2594 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2596 struct audit_context *context = audit_context();
2599 context->mq_notify.sigev_signo = notification->sigev_signo;
2601 context->mq_notify.sigev_signo = 0;
2603 context->mq_notify.mqdes = mqdes;
2604 context->type = AUDIT_MQ_NOTIFY;
2608 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2609 * @mqdes: MQ descriptor
2613 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2615 struct audit_context *context = audit_context();
2617 context->mq_getsetattr.mqdes = mqdes;
2618 context->mq_getsetattr.mqstat = *mqstat;
2619 context->type = AUDIT_MQ_GETSETATTR;
2623 * __audit_ipc_obj - record audit data for ipc object
2624 * @ipcp: ipc permissions
2627 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2629 struct audit_context *context = audit_context();
2631 context->ipc.uid = ipcp->uid;
2632 context->ipc.gid = ipcp->gid;
2633 context->ipc.mode = ipcp->mode;
2634 context->ipc.has_perm = 0;
2635 security_ipc_getsecid(ipcp, &context->ipc.osid);
2636 context->type = AUDIT_IPC;
2640 * __audit_ipc_set_perm - record audit data for new ipc permissions
2641 * @qbytes: msgq bytes
2642 * @uid: msgq user id
2643 * @gid: msgq group id
2644 * @mode: msgq mode (permissions)
2646 * Called only after audit_ipc_obj().
2648 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2650 struct audit_context *context = audit_context();
2652 context->ipc.qbytes = qbytes;
2653 context->ipc.perm_uid = uid;
2654 context->ipc.perm_gid = gid;
2655 context->ipc.perm_mode = mode;
2656 context->ipc.has_perm = 1;
2659 void __audit_bprm(struct linux_binprm *bprm)
2661 struct audit_context *context = audit_context();
2663 context->type = AUDIT_EXECVE;
2664 context->execve.argc = bprm->argc;
2669 * __audit_socketcall - record audit data for sys_socketcall
2670 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2674 int __audit_socketcall(int nargs, unsigned long *args)
2676 struct audit_context *context = audit_context();
2678 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2680 context->type = AUDIT_SOCKETCALL;
2681 context->socketcall.nargs = nargs;
2682 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2687 * __audit_fd_pair - record audit data for pipe and socketpair
2688 * @fd1: the first file descriptor
2689 * @fd2: the second file descriptor
2692 void __audit_fd_pair(int fd1, int fd2)
2694 struct audit_context *context = audit_context();
2696 context->fds[0] = fd1;
2697 context->fds[1] = fd2;
2701 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2702 * @len: data length in user space
2703 * @a: data address in kernel space
2705 * Returns 0 for success or NULL context or < 0 on error.
2707 int __audit_sockaddr(int len, void *a)
2709 struct audit_context *context = audit_context();
2711 if (!context->sockaddr) {
2712 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2716 context->sockaddr = p;
2719 context->sockaddr_len = len;
2720 memcpy(context->sockaddr, a, len);
2724 void __audit_ptrace(struct task_struct *t)
2726 struct audit_context *context = audit_context();
2728 context->target_pid = task_tgid_nr(t);
2729 context->target_auid = audit_get_loginuid(t);
2730 context->target_uid = task_uid(t);
2731 context->target_sessionid = audit_get_sessionid(t);
2732 security_task_getsecid_obj(t, &context->target_sid);
2733 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2737 * audit_signal_info_syscall - record signal info for syscalls
2738 * @t: task being signaled
2740 * If the audit subsystem is being terminated, record the task (pid)
2741 * and uid that is doing that.
2743 int audit_signal_info_syscall(struct task_struct *t)
2745 struct audit_aux_data_pids *axp;
2746 struct audit_context *ctx = audit_context();
2747 kuid_t t_uid = task_uid(t);
2749 if (!audit_signals || audit_dummy_context())
2752 /* optimize the common case by putting first signal recipient directly
2753 * in audit_context */
2754 if (!ctx->target_pid) {
2755 ctx->target_pid = task_tgid_nr(t);
2756 ctx->target_auid = audit_get_loginuid(t);
2757 ctx->target_uid = t_uid;
2758 ctx->target_sessionid = audit_get_sessionid(t);
2759 security_task_getsecid_obj(t, &ctx->target_sid);
2760 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2764 axp = (void *)ctx->aux_pids;
2765 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2766 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2770 axp->d.type = AUDIT_OBJ_PID;
2771 axp->d.next = ctx->aux_pids;
2772 ctx->aux_pids = (void *)axp;
2774 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2776 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2777 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2778 axp->target_uid[axp->pid_count] = t_uid;
2779 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2780 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2781 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2788 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2789 * @bprm: pointer to the bprm being processed
2790 * @new: the proposed new credentials
2791 * @old: the old credentials
2793 * Simply check if the proc already has the caps given by the file and if not
2794 * store the priv escalation info for later auditing at the end of the syscall
2798 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2799 const struct cred *new, const struct cred *old)
2801 struct audit_aux_data_bprm_fcaps *ax;
2802 struct audit_context *context = audit_context();
2803 struct cpu_vfs_cap_data vcaps;
2805 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2809 ax->d.type = AUDIT_BPRM_FCAPS;
2810 ax->d.next = context->aux;
2811 context->aux = (void *)ax;
2813 get_vfs_caps_from_disk(&nop_mnt_idmap,
2814 bprm->file->f_path.dentry, &vcaps);
2816 ax->fcap.permitted = vcaps.permitted;
2817 ax->fcap.inheritable = vcaps.inheritable;
2818 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2819 ax->fcap.rootid = vcaps.rootid;
2820 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2822 ax->old_pcap.permitted = old->cap_permitted;
2823 ax->old_pcap.inheritable = old->cap_inheritable;
2824 ax->old_pcap.effective = old->cap_effective;
2825 ax->old_pcap.ambient = old->cap_ambient;
2827 ax->new_pcap.permitted = new->cap_permitted;
2828 ax->new_pcap.inheritable = new->cap_inheritable;
2829 ax->new_pcap.effective = new->cap_effective;
2830 ax->new_pcap.ambient = new->cap_ambient;
2835 * __audit_log_capset - store information about the arguments to the capset syscall
2836 * @new: the new credentials
2837 * @old: the old (current) credentials
2839 * Record the arguments userspace sent to sys_capset for later printing by the
2840 * audit system if applicable
2842 void __audit_log_capset(const struct cred *new, const struct cred *old)
2844 struct audit_context *context = audit_context();
2846 context->capset.pid = task_tgid_nr(current);
2847 context->capset.cap.effective = new->cap_effective;
2848 context->capset.cap.inheritable = new->cap_effective;
2849 context->capset.cap.permitted = new->cap_permitted;
2850 context->capset.cap.ambient = new->cap_ambient;
2851 context->type = AUDIT_CAPSET;
2854 void __audit_mmap_fd(int fd, int flags)
2856 struct audit_context *context = audit_context();
2858 context->mmap.fd = fd;
2859 context->mmap.flags = flags;
2860 context->type = AUDIT_MMAP;
2863 void __audit_openat2_how(struct open_how *how)
2865 struct audit_context *context = audit_context();
2867 context->openat2.flags = how->flags;
2868 context->openat2.mode = how->mode;
2869 context->openat2.resolve = how->resolve;
2870 context->type = AUDIT_OPENAT2;
2873 void __audit_log_kern_module(char *name)
2875 struct audit_context *context = audit_context();
2877 context->module.name = kstrdup(name, GFP_KERNEL);
2878 if (!context->module.name)
2879 audit_log_lost("out of memory in __audit_log_kern_module");
2880 context->type = AUDIT_KERN_MODULE;
2883 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2885 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2886 switch (friar->hdr.type) {
2887 case FAN_RESPONSE_INFO_NONE:
2888 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2889 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2890 response, FAN_RESPONSE_INFO_NONE);
2892 case FAN_RESPONSE_INFO_AUDIT_RULE:
2893 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2894 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2895 response, friar->hdr.type, friar->rule_number,
2896 friar->subj_trust, friar->obj_trust);
2900 void __audit_tk_injoffset(struct timespec64 offset)
2902 struct audit_context *context = audit_context();
2904 /* only set type if not already set by NTP */
2906 context->type = AUDIT_TIME_INJOFFSET;
2907 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2910 void __audit_ntp_log(const struct audit_ntp_data *ad)
2912 struct audit_context *context = audit_context();
2915 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2916 if (ad->vals[type].newval != ad->vals[type].oldval) {
2917 /* unconditionally set type, overwriting TK */
2918 context->type = AUDIT_TIME_ADJNTPVAL;
2919 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2924 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2925 enum audit_nfcfgop op, gfp_t gfp)
2927 struct audit_buffer *ab;
2928 char comm[sizeof(current->comm)];
2930 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2933 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2934 name, af, nentries, audit_nfcfgs[op].s);
2936 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2937 audit_log_task_context(ab); /* subj= */
2938 audit_log_format(ab, " comm=");
2939 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2942 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2944 static void audit_log_task(struct audit_buffer *ab)
2948 unsigned int sessionid;
2949 char comm[sizeof(current->comm)];
2951 auid = audit_get_loginuid(current);
2952 sessionid = audit_get_sessionid(current);
2953 current_uid_gid(&uid, &gid);
2955 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2956 from_kuid(&init_user_ns, auid),
2957 from_kuid(&init_user_ns, uid),
2958 from_kgid(&init_user_ns, gid),
2960 audit_log_task_context(ab);
2961 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2962 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2963 audit_log_d_path_exe(ab, current->mm);
2967 * audit_core_dumps - record information about processes that end abnormally
2968 * @signr: signal value
2970 * If a process ends with a core dump, something fishy is going on and we
2971 * should record the event for investigation.
2973 void audit_core_dumps(long signr)
2975 struct audit_buffer *ab;
2980 if (signr == SIGQUIT) /* don't care for those */
2983 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2987 audit_log_format(ab, " sig=%ld res=1", signr);
2992 * audit_seccomp - record information about a seccomp action
2993 * @syscall: syscall number
2994 * @signr: signal value
2995 * @code: the seccomp action
2997 * Record the information associated with a seccomp action. Event filtering for
2998 * seccomp actions that are not to be logged is done in seccomp_log().
2999 * Therefore, this function forces auditing independent of the audit_enabled
3000 * and dummy context state because seccomp actions should be logged even when
3001 * audit is not in use.
3003 void audit_seccomp(unsigned long syscall, long signr, int code)
3005 struct audit_buffer *ab;
3007 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3011 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3012 signr, syscall_get_arch(current), syscall,
3013 in_compat_syscall(), KSTK_EIP(current), code);
3017 void audit_seccomp_actions_logged(const char *names, const char *old_names,
3020 struct audit_buffer *ab;
3025 ab = audit_log_start(audit_context(), GFP_KERNEL,
3026 AUDIT_CONFIG_CHANGE);
3030 audit_log_format(ab,
3031 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3032 names, old_names, res);
3036 struct list_head *audit_killed_trees(void)
3038 struct audit_context *ctx = audit_context();
3039 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3041 return &ctx->killed_trees;